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ABSTRACT 

The study reported in this dissertation sought to explore Grade 8 learners’ identities in 

mathematics. The study focused on examining learners’ interpretations of their relationships 

with the discipline of mathematics. The study drew on ideas from three different yet 

complementing theoretical perspectives as advocated by Gee (2001), Wenger (1998), and 

Sfard and Prusak (2005). However, Wenger’s (1998) broader social theory of learning was 

selected as a theoretical framework of this study to particularly connect the process of active 

engagement and participation in the practices of social communities and explain the 

construction of learners’ identity in mathematics.                  

The study refuted a view that mathematics learners are born with special genes which drive 

them to succeed in doing the subject. This stance permitted the study to divert from 

discussing the role of models of abilities when doing mathematics or what Darragh (2016) 

described as a ‘performative identity’. Rather, the study was inclined to look at relationships 

between emotional and cognitive reactions that shift from time to time whenever 

mathematics is made accessible for learners through participatory pedagogy which 

encourages exploration, negotiation and ownership of knowledge. 

The study employed mixed methods research. The reasons for employing mixed methods 

research included the researcher’s beliefs and that the research questions were both 

exploratory and confirmatory type of questions. The research used a sequential mixed 

methods design. In the first phase, data sets were collected and analysed from an open-

ended questionnaire (qualitative component). The results from the first phase were then 

used to develop a Likert-scale questionnaire (quantitative component) which informed the 

third phase (qualitative component). The third phase of the research design was semi-

structured interviews. The interviews expanded the analyses of data from both initial 

qualitative and quantitative components. 

The reported findings indicated that the learners strongly needed teachers to clearly explain 

mathematics concepts. The learners required to understand mathematics in order to identify 

with the subject. The learners explained that if they understand mathematics, they become 

interested in learning the subject. Mathematics becomes their favourite subject. And if they 

do not understand, the learners expressed that they withdraw their participation in the 

classroom. In cases where learners shared incoherent views about how they are at learning 

mathematics, it was concluded from the analyses of the results that they needed to carefully 

listen to the teacher, ask for more examples to familiarise themselves with procedures, and 

then do their level best during assessments to pass the subject in order to align themselves 

with certain careers in the future.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background to the study 

The study seeks to explore learners’ identities in mathematics and possible ways in which 

they can be developed. Drawing on relevant literature, the study examines Grade 8 learning 

and teaching practice from the perspectives of learners in order to understand how they view 

themselves in relation to mathematics (Boaler, Wiliam & Zevenbergen, 2000). The study is 

theoretically framed within the broader social theory of learning by Wenger (1998), and 

focuses on the analyses of learners’ interpretations of their relationships with mathematics.  

One aspect of exploring learners’ identities in an attempt to increase success in mathematics 

education has been to compare the subject achievement of different racial, class and gender 

groups. There are many studies that have been conducted from this perspective. For 

example, Nasir (2002) concluded that African-American and Latino students score lower on 

tests of mathematical knowledge than White students. Shih, Pittinsky and Ambady (1999) 

pointed out that African-American students, who can be stereotyped to be poor in 

mathematics, underperform as soon as they are aware that they are being tested for their 

abilities. In South Africa, rural Black female students suffer the most from disadvantages of 

the education system (Mabokela, 2001, cited in Mophosho, 2013, p. 1). Hence, within this 

context, South African studies on learner identity tend to focus on political and historical 

events that have caused inequalities and prejudices towards certain groups in the society 

(Mophosho, 2013). 

South Africa has endured three major curricular reforms in trying to rectify the inequalities 

and prejudices of the past, and the educational changes have profoundly been historical and 

political driven (Weber, 2008). South Africans (e.g. politicians, academics) have strived to 

create a reputable curriculum (Weber, 2008). The ambitions to transform the country’s 

education system were justifiable considering that the curriculum handed down during 

apartheid was heavy on content, authoritarian, and promoted rote-learning (Jansen, 1999).  

In 1997, the government introduced the national curriculum which was referred to as 

Curriculum 2005 (C2005) (Department of Education (DoE), 1997). The thinking behind 

C2005 was to look at the need to shift from the traditional aims-and-objectives to outcomes-

based education (Stoffels, 2008). In 2002, the government introduced the Revised National 

Curriculum Statement which retained the outcomes-based foundation from C2005 and 

looked more into innovative epistemological principles (DoE, 2002). However, learners from 

better resourced and historically privileged schools continued to benefit the most from the 
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revised curriculum when compared to learners from historically disadvantaged backgrounds 

(Christie, 1999), and hence C2005 was abandoned. The current national curriculum 

document is called the Curriculum and Assessment Policy Statement (CAPS). It intends to 

ensure that children acquire knowledge and skills in ways that promote local contexts, whilst 

being sensitive to international imperatives (Department of Basic Education (DBE), 2011).  

Within the background of curriculum changes in South Africa, learners’ performance in 

mathematics has remained at the bottom when compared to other school subjects, although 

there has been some overall improvement in results (DBE, 2014). For schools in rural 

provinces like Eastern Cape and KwaZulu-Natal, the overall mathematics results remain 

undisputedly lower when compared to urban provinces like Western Cape and Gauteng 

(DBE, 2014). This occurrence highlights the challenges around pedagogical principles in the 

country. That is, the way mathematics content is taught, learned and assessed in the South 

African system does not adequately provide equal education opportunities for all sections of 

the population (DoE, 2002).   

Furthermore, international studies have revealed that South Africa has not demonstrated 

strong adaptations to curricular reforms. For example, the country has participated in several 

international studies such as the Trends in International Mathematics and Science Study 

(TIMSS), the Monitoring Learning Achievements (MLA) initiative and the Southern Africa 

Consortium for Monitoring Educational Quality (SACMEQ), but the results from these studies 

have been unsatisfactory (Chauraya, 2013). Learners from South African schools who 

participated in the TIMSS 1999 study came last out of 38 countries (Howie, 2012). TIMSS 

focuses on assessing mathematics and science knowledge and skills based on the school 

curriculum for grade four and grade eight learners (Reddy, 2005). In other cases, South 

Africa has low scores in numeracy in the MLA and SACMEQ studies (Reddy, 2005). This is 

an indication that South Africa needs to commit more towards improving educational quality 

and accountability particularly in mathematics and the sciences (Reddy, 2005).   

 

To return to learners’ identities, researchers (for example O’Brien, Martinez-Pons & Kopala, 

1999) concentrated on psychological perspectives such as self-efficacy and self-stereotype 

of learners as other aspects that can be explored to improve the quality and accountability in 

mathematics education. Educational psychologists, for example, supported the use of self-

efficacy to explain how learners engage themselves in doing mathematics (Boaler et al., 

2000). Writers (for example Bandura, 1977; McMillan, 2012) define self-efficacy to be beliefs 

that motivate individuals to strive to succeed when engaging with mathematical tasks. In 

another example, it is stereotypical to assume that male students are better achievers in 

advanced mathematics than their female peers (Mendick, 2005). The notion of self-
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stereotyping becomes part of a psychological perspective whereby learners identify 

themselves in relation to how other individuals of social groups identify them (Shih et al., 

1999). Nevertheless, as Aschbacher, Li and Roth (2010) argue, the influence of self-efficacy 

and self-stereotyping creates negative perceptions from learners about their abilities, career 

options, and their expected successes, thereby shaping certain mathematical identities and 

consequential trajectories.                          

From psychological perspectives, the locus of identity in mathematics education becomes an 

individual phenomenon (Durkheim, 1956). Identity is viewed to be a fixed and stable ability 

that each of us possesses (Nasir, 2002). In this sense, the construction of identity is seen 

largely as the individuals’ adaptations or developments intended to fit with the events and 

situations of life (Erikson, 1968, cited in Boaler et al., 2000, p. 3). Nasir (2002) underlined the 

fact that identity, even from this perspective, is influenced by the social environment and put 

forward that psychologists have begun to view identity as a more dynamic construct, 

fundamentally tied to the social world.  

On the other hand, Foucault (1984), cited in Grootenboer et al. (2006), challenged the idea 

of identity formation as being either an individual or a social phenomenon (p. 613). Hall 

(1992) built on Foucault’s theoretical framework and advocated that our identities are 

continuously shifting to temporarily accommodate what we are subjected to at a particular 

time and space. Thus, from the post-structural perspective, the process of identity formation 

is not fixed and is “somewhat unstable” (Grootenboer et al., 2006, p. 613). If identity 

formation is always changing, the post-structural perspective becomes a theory of discursive 

practice (Hall, 1996, as cited in Kempe, 2014, p. 36) which does not directly explain “how 

individuals know and name themselves” (Grootenboer et al., 2006). In other words, identity 

formation changes rapidly to obscure any predictable learning trajectories. According to Hall 

(1992), this post-structural viewpoint undermines the same theoretical framework which 

gave individuals stable anchor in the social world. In this context, Grootenboer and 

Zevenbergen (2008) argue that researchers are beginning to work across these division 

lines to validate their investigations on identity. With regard to learning, Lave and Wenger 

(1991) emphasised the importance of “shifting the analytic focus” (p. 43) from either 

individuals (as learners) or social phenomenon to emphasise learning as participation in the 

social world.   

Whilst taking into account that researching identity in mathematics education appears to 

have emerged from psychological and post-structural perspectives, recent researchers (for 

example Boaler & Greeno, 2000; Gee, 2001; Holland et al., 1998; Lave & Wenger, 1991) 

believe that significant successes for improving the quality of mathematics are entailed in 
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framing the concept of identity in socio-cultural perspectives. These perspectives focus more 

specifically on the interactions between the individual, culture and society. For example, the 

locus of identity becomes a process of individuals becoming who they are by being able to 

participate in the practices of a particular group or community (Cobb & Hodge, 2009). The 

degree of affiliations within the practice supports the process of identity formation that is 

steered by society with individuals attempting to navigate predetermined passages of 

knowledge (Grootenboer et al., 2006).  

Cobb and Hodge (2009) highlighted difficulties of having many different theoretical 

perspectives to investigate identity in both mathematics education and other disciplines. The 

authors encouraged researchers to identify with relevant perspectives that can be tailored to 

analyse students’ identities in mathematics and avoid the politics of which viewpoint is right 

or not. Boaler (2000a) identified the socio-cultural perspective to be capable of dealing 

directly with the relations between cognitive changes and social interactions. This theoretical 

perspective creates bases for understanding the influences that the mathematics classroom 

community (teachers, learners, and discipline of mathematics) has on students’ production 

of knowledge in different situations, within the social and cultural learning context (Boaler, 

2000a). In turn, the socio-cultural perspective allows researchers to analyse identities that 

learners develop in the classroom that can feed back to inform instructional settings that 

generate a sense of accountability for both teachers and learners (Cobb & Hodge, 2009). 

Hence, this study employed a socio-cultural perspective to contextualise the notion of 

identity and selected Wenger’s (1998) broader social theory of learning as a theoretical 

framework to particularly connect the process of active participation in the practices of social 

communities and explain the construction of learners’ identity in mathematics. 

 

1.2 Statement of the problem  

There has been concerns amongst researchers (for example Boaler, 1998, 2000b; Ross, 

1998; Handal, 2003) that some mathematics teachers have not abandoned traditional 

teaching approaches. Learners are expected to understand concepts by being instructed in 

procedures without connecting them to meanings (Boaler, 1999). By connection, Adler 

(2005) clarified that Stein et al. (2000) meant that task demands do not require learners to 

connect what they know about mathematical concepts to anything else they know either 

about the real world or about mathematics (p. 1). It becomes an “instrumental understanding 

of rules without reasons” where learners may possess the necessary rules, and have ability 

to use them, without actually comprehending ‘why or how’ those rules work (Barnes, 2005, 

p. 45). 
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Year in and year out, some learners manage to ‘crack the secret code’ of procedures without 

meanings and pass all their examinations (Zevenbergen, 2000). Given that mathematics is a 

“strongly hierarchical subject” (Graven, 2015, p. 2), and it is regarded as a difficult subject, 

politicians and mathematicians outside the schooling system influence the culture of how 

mathematics should be learned and taught in the classroom (Grootenboer & Jorgensen, 

2009). For instance, some mathematicians are still prioritising procedural knowledge and 

frequently expect learners to be procedurally effective, accurate and flexible in using the 

rules, definitions, and mathematical syntax (Ross, 1998). They assume that learners will be 

able to apply those rules and definitions when they eventually advance their careers in 

mathematics (Lave, 1988). The problem is, however, that some learners instead opt out from 

advanced mathematics and rather pass it, even with distinctions, and then drop it to pursue 

other careers which are not necessarily aligned with mathematics (Boaler & Greeno, 2000). 

This implies that they do not associate or identify with mathematicians; rather they passively 

receive mathematical knowledge (Boaler, 2002) and assume that mathematics was desired 

to be passed on paper and be shelved away (Fennema & Sherman, 1976).                          

Brown, Collins and Duguid (1989) explained that the direct teaching of procedures is similar 

to attempts at learning a language from the dictionary. The instructing of procedures is 

similar to instructing on vocabulary by concentrating on the general definitions from the 

dictionary and constructing sentences out of context of normal use (Brown et al., 1989). With 

regards to what is learned in mathematics, researchers (e.g., Miller & Gildea, 1987, as cited 

in Brown et al., 1989, p. 32) argue that these teaching methods, with time, have become 

generally unsuccessful and almost useless. Rather, researchers advocate that much 

successful learning of language emanates from listening, talking and reading (Brown et al., 

1989). Thus, any power of abstraction of knowledge is “thoroughly situated in the lives of 

persons and in the culture that makes it possible” (Lave & Wenger, 1991, p. 34) for them to 

learn.                      

Brown et al. (1989) explored the idea that abstraction of knowledge can progressively be 

developed by learners and teachers through activities. They argued that knowledge 

becomes more useful when it is being understood as a tool. People that are working with 

tools fully appreciate using them when those tools have contributing effects on their view of 

the world (Brown et al., 1989). Similarly in mathematics education, Brown et al. (1989) 

elaborate that “students can often manipulate algorithms, routines, and definitions they have 

acquired with apparent competence” (p. 33) in classrooms and yet struggle to apply the 

same concepts in other relevant domains. Hence, by merely engaging students with 

activities in classrooms, without linking those activities to practical concepts, students miss 
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out on ‘relational understanding’ which entails integrating new ideas into existing schemata 

in order to understand both ‘what to do and why’ (Skemp, 1976; Barnes, 2005). 

School mathematics continues to receive unhealthy views from around the world 

(Grootenboer & Zevenbergen, 2008). In South Africa, an impact of traditional teaching 

approaches, as inherited by some teachers from the apartheid curriculum, contributes to the 

negative relationships that many learners are experiencing when learning mathematics. As 

Graven (2011) indicated, the problem of negative identification with mathematics resonate 

as early as primary school for many learners, and it includes the terms such as failure, 

struggle, stress, nervous, worry, extremely difficult, no confidence and hopeless. So for 

example, learners who are taught from traditional approaches rely on rote memorisation, and 

they become hopeless in keeping up with endless rules and procedures. As such, when 

rules and procedures are isolated from real-life situations, learners struggle to recognise and 

generalise mathematical concepts (Suh, 2007). In turn, learners perceive mathematics to be 

a rigid and inflexible school subject where there is no room to negotiate meaning (Boaler, 

Wiliam & Zevenbergen, 2000). Thus, once problems of identities are understood, learners 

may be supported to continue studying mathematics whilst they align themselves to advance 

mathematical careers (Darragh, 2016).    

 
1.3 Purpose of the study 

Teachers are potentially blamed for learners’ poor participation in mathematics. As Cooney, 

Shealy and Arvold (1998) argued, teachers are required to be more grounded in content 

knowledge. The development of strong content knowledge is significant to improving the 

quality of education (Grootenboer & Jorgensen, 2009). In addition, Mandeville and Lui 

(1997) asserted that teachers with high levels of mathematical understandings provide 

higher quality learning opportunities for students than their peers with limited understandings 

of mathematics. In South Africa, the Department of Education has mainly utilised training 

workshops and short courses to develop teachers’ mathematical knowledge and 

contemporary teaching skills to overcome curricular challenges (Chauraya, 2013). Recent 

research studies have focused on teacher professional development programs which are 

designed to impact on knowledge, attitudes and behaviours of teachers in an attempt to 

improve learning and performance of learners in the classroom (Hull & Saxon, 2008).  

Yet given the complexity of mathematics education, researchers may however focus on 

developing learners by directly exploring their engagements in learning for success in the 

classroom. Putman and Borko (2000) suggested that “how a person learns a particular set of 

knowledge and skills, and the situation in which a person learns, become a fundamental part 
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of what is learned” (p. 243). Boaler, Wiliam and Zevenbergen (2000) explained that students 

learn more than just mathematical knowledge and skills in the mathematics classroom. 

Boaler (2002) advocated that researchers may begin to explore the relationships between 

knowledge, practice and identity to influence students’ development towards learning 

mathematics for success in the classroom. Grootenboer and Zevenbergen (2008) looked 

specifically at identity to be a useful conceptual tool to “understand mathematical learning 

because it includes the broader context of the learning environment, all the dimensions of 

learners’ selves that they bring to the classroom” (p. 243). Within these explanations, the 

purpose of this study was to explore learners’ identity in mathematics. It was critical to focus 

on examining learners’ experiences on identification from local and international studies that 

could practically contribute to enhancing research studies for South Africa. If not, Ruffell, 

Mason and Allen (1998) recommend that research studies should at least point out effective 

ways of probing and developing instruments which would be easy for teachers to use as 

tools towards their own enquires into informing their teaching of mathematics. 

‘Learners’ identities in mathematics’ in this study refers to views, beliefs and interpretations 

held by the Grade 8 learners about themselves and by others when participating in the 

processes of learning and teaching of mathematics. In defining learner identity, the study 

rejected the view that mathematics learners are born with special genes which drive them to 

succeed in doing the subject (Devlin, 2000b, as cited in Anderson, 2007, p. 11). This implies 

that learner identity is not fixed for a few individuals; rather it can be developed through 

engaging learners with mathematics. As such, learner identity is presented as relationships 

between emotional and cognitive reactions that shift from time to time whenever 

mathematics is made accessible for learners through active participatory pedagogy which 

encourages exploration, negotiation and ownership of knowledge (Solomon, 2007). 

In the literature review, Wenger’s (1998) three modes of belonging were discussed to make 

sense of the formation of identity and learning in mathematics, and these are as follows: 

engagement, imagination and alignment. In discussing engagement, the study looked at 

cognitive and behavioural reactions that propel learners to participate or not participate in the 

mathematics classroom. Also, the study discussed imagination and alignment as the 

motivating factors that learners develop to connect to the broader world of mathematical 

knowledge and learning inside and outside the classroom. The two modes (imagination and 

alignment) are not observable, but according to Anderson (2007), the affective 

consequences give acceptance to the goals of schooling through the sense of belonging and 

compliance. Therefore this study intended to explore such dimensions, if they emerge from 

the current research, and further analyse them for their appropriateness in the South African 

context. 
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To give the present research a focus, researchers (for example Darragh, 2013; Newstead, 

1998) asserted that learners in junior secondary school are at the critical level for the 

development of positive identities and other favourable affective factors toward mathematics. 

According to Cobb and Hodge (2009), learners’ persistence, interest in, and motivation to 

learn mathematics form part of positive identities. It has been established from a socio-

cultural perspective that identities of learners change throughout a schooling progression 

depending on their classrooms’ experiences. Accordingly, this study sought to examine 

learners’ views of doing mathematics from when they were in primary school to junior 

secondary school, and to further project to their future aspirations. If there were changes in 

their experiences, the study required to understand circumstances or reasons that have 

caused those changes in order to support progressive learning trajectories. The challenge is 

that once learners have developed negative perceptions about mathematics, it becomes 

difficult to change them and somehow these perceptions may persist into adult life, with far-

reaching consequences (Newstead, 1998). Therefore, additionally, the study investigated 

how learners can be supported to develop and improve identity which will prepare them to 

fully participate in the future mathematical education and careers.  

     

1.4 Research questions 

The following research questions guided the study: 

(a) What are the factors of learners’ identities that emerge from Grade 8 mathematics 

classrooms? 

(b) What caused the changes in learners’ identities from when they were younger to now 

if there have been any changes?  

(c) How can learners be supported to develop identities in mathematics? 

 
1.5 Rationale 

As part of the Bachelor of Education with Honours degree, students are introduced to a 
research project. In my case, I investigated junior secondary school learners’ attitudes 
towards mathematics. The research questions sought to examine what attitudes the learners 
have and explored the influences these attitudes have on learners’ subject choices. As the 
conceptual framework, I employed a ‘tripartite’ view of attitudes which incorporated cognitive, 
affective and behavioural components. This conceptual framework was recognised by 
Barmby, Bolden and Raine (2014) to have encompassed broader views of attitudes in the 
mathematics education literature. Sfard and Prusak (2005) argued that learners’ attitudes 
towards mathematics alongside beliefs and conceptions form part of their identity in 
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mathematics. Thus, when the opportunity was presented, it was reasonable to want to 
extend my understanding of emotional and cognitive factors of mathematics and embark on 
investigating identities of learners in mathematics.   

In addition, it is hoped that the present study will add value to research on identity by using a 

mixed methods approach. The study came at a time when researchers, for example Barmby 

and Bolden (2014), looked to utilise the strength of both qualitative and quantitative features 

to research emotional reactions of participants in mathematics. The combination of 

qualitative and quantitative methods moved beyond the matter of having more than one type 

of data collection instrument, but rather, for instance, one method being used to develop the 

instrument for the next stage of the research. For example, Barmby and Bolden (2014) firstly 

would collect views of participants from open questions and then use statements from 

participants to formulate Likert-scale questionnaire items. In support of the approach and to 

elaborate on the example, literature shows that the use of open questions dates back many 

years in the history of researching emotional reactions of participants (Aiken, 1970). The 

purpose of open-ended questioning has been to encourage participants to freely express 

their individual views about the focal object without leads from the researcher other than the 

dimensions of appraisal such as ‘What do you think…’and ‘How are you at…’ (Barmby & 

Bolden, 2014). However, many researchers resort to relegating the use of open questions to 

pilot studies because of their complexity for being utilised in quantitative analyses (Agheyisi 

& Fishman, 1970). The crux of the matter is that the technique of converting statements from 

open-ended questions to Likert-scale items has been welcomed for studying many other 

groups for their emotional reactions or for other topics that can be done “by changing the 

focus of the initial open statements” (Barmby & Bolden, 2014, p. 103). Indeed, this technique 

gives a mixed methods approach a very powerful component to increase the rigour of 

research (Creswell, 2012). Hence, this study will also explore the possibilities of using mixed 

methods approaches to explore learners’ identities in mathematics. 

 

1.6 Summary 

This chapter has provided details of the background to the study, the problem statement, 

and the purpose of researching learners’ identities in mathematics. This chapter has further 

discussed the rationale for embarking on this study. In the rationale statement, it was 

highlighted that the study intends to utilise mixed methods research which will be further 

discussed in Chapter 3. However, the next chapter (Chapter 2) discusses the theoretical 

framework alongside the literature review of the study. These two sections are presented in 

one chapter because they are interconnected and inform each other.  
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CHAPTER 2 

THEORETICAL FRAMEWORK AND LITERATURE REVIEW   

2.1 Introduction 

In this chapter the study begins by providing a general definition of identity in mathematics. A 

general definition encapsulates what is common from various definitions of identity in the 

literature (Beijaard, Meijer & Verloop, 2004). Secondly, Gee’s (2001), Wenger’s (1998), and 

Sfard and Prusak’s (2005) perspectives on identity are discussed accordingly to illuminate 

operational definitions used in this study. Furthermore, the integrated perspectives provide 

necessary backgrounds to support the study’s theoretical framework. Going forward, 

Wenger’s (1998) social theory of learning was selected as a broader framework that frames 

the study. Lastly, the key identity components (learning, meaning, community and practice) 

are elaborated on within the social theory of learning to inform the research questions, and 

further used to review central themes (the interacting learner, lack of meaning, and 

monotony) from Boaler’s (2000b) study which focuses on the construction of learner identity.  

 

2.2 Definition of identity in mathematics    

Sfard and Prusak (2005) investigated studies which defined identity in a more operational 

manner. The authors intended to find a more explicit definition of identity in mathematics 

whilst preserving an appropriate use of language from the literature. On the surface, there 

was an impression that identity in mathematics emerged as “natural givens and biological 

determinants” (Sfard & Prusak, 2005, p. 15) for certain individuals. Stated in simple terms, 

some learners relate more with mathematics because the subject is embodied in their 

makeup or genes (Anderson, 2007). This suggests that learners who are performing poorly 

in mathematics “have no control” (Anderson, 2007, p. 10) towards improving their 

understanding and knowledge of the subject. Researchers (for example Devlin, 2000b, as 

cited in Anderson, 2007, p. 11; Gee, 2001; Lave & Wenger, 1991) refuted this point of view.  

It follows rather that every learner has the ability to learn and be taught mathematics. Devlin 

(2000b), cited in Anderson (2007), asserted that everyone has the mathematics gene (p. 

11). Hence, identity in mathematics is not fixed for a few lucky individuals (Johnston, 2012). 

Johnston (2012) argued that “identity is under construction and is continually forming and 

reforming” (p. 12) in mathematics learners. This argument is in line with Wenger (1998) who 

viewed identity as a dynamic aspect of learning which is created and re-created by learners’ 

participation in the classroom. The learners’ participation is recognised at a given time, it can 

change from context to context, and it can be ambiguous or unstable (Gee, 2001). In specific 
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terms, learners use their past and present experiences to aspire to future participations in 

mathematics (Anderson, 2007).  

In order to fully participate in mathematics, learners need to firstly become members of a 

mathematical community (Lave, 1993). Through interaction with others (Anderson, 2007), 

members of a mathematical community transform their lives from who they are to what they 

can do (Wenger, 1998). In this sense, for example, mathematics learners begin to talk about 

how learning can change who they are within their social and cultural spaces (Wenger, 

1998). Thus, mathematics learners become aware of how they view themselves in relation to 

how they are viewed by others (Lave, 1993). However, some learners are recognised by 

other members in a mathematical community (e.g. teachers, parents and peers) as being 

more central to the practice and others situated on the periphery (Wenger, 1998). 

               

2.3 Social learning theories: Identity perspectives  

To explain different positions that members of a mathematical community find themselves in, 

the study highlights three perspectives that provide different but complementary 

perspectives for defining and viewing identities. Given the multi-faceted construct of this 

area, researchers (for example Chauraya, 2013; Kempe, 2014; Lerseth, 2013) have 

approached identity formation by contrasting and comparing a variety of perspectives to set 

up integrated theoretical frameworks for their studies. Accordingly, this study considered 

three perspectives that are offered by Gee (2001), Wenger (1998), and Sfard and Prusak 

(2005) in their social learning theories. 

        

2.3.1 The Gee (2001) perspective  

Gee (2001) described four ways of viewing identity. These are: Nature-identity, Institutional-

identity, Discourse-identity, and Affinity-identity. See the synopsis of these four ways of 

viewing identity and their processes of construction in Table 2.1 below. When these views 

are understood within institutional and socio-cultural contexts, members of a mathematical 

community can comprehend why some learners are in different learning positions. In 

addition, members can learn how to act or interact with each other in order to fully participate 

in mathematics. 
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Table 2.1: Four ways of viewing identity as categorised and described by Gee (2001). 
Category Process of construction  

Nature-identity 

 

Institutional-identity 

Discourse-identity 

 

Affinity-identity  

A natural perspective that may be due to genes or 

neurological state. 

A position authorized by authorities within institutions. 

An individual identity which is influenced by dialogues or 

voices from a community. 

An experience shared by a group of people in a specific 

practice.  

 

The natural perspective (Nature-identity) describes who we are from what nature gave us at 

birth such as gender and skin colour. Learning outcomes which depend on how we act or 

interact in a mathematical community do not have direct relationships with what we were 

born into. Rather, institutional and socio-cultural spaces produce, maintain and reinforce 

characteristics of a natural perspective by encouraging (or discouraging) others from 

participating in a mathematical community. In Gee’s (2001) terms, natural identities can only 

become identities because they are recognised, by an individual or others, to constitute 

anything meaningful in creating a certain “kind of person” (p. 102). Thus, the work of 

schools, teachers, teacher educators, and learners can offer support to individuals who are 

disadvantaged by a natural perspective to develop positive learners’ identity in mathematics.          

The second way of viewing identity is Institutional-identity. This identity looks at positions 

assumed by an individual within an institution. For example, learners who are participating in 

this research have to recognise that they are in a Grade 8 class, and that they are 

mathematics learners as categorised by the schooling system. These learners are expected 

to accept roles and responsibilities associated with being Grade 8 mathematics learners. 

Gee (2001) explained that the institutional view positions people on a continuum of how 

actively or passively they are in fulfilling their roles or duties. Gee (2001) used the example 

of prisoners. The author stated that prisoners are often forced to carry out certain activities, 

and therefore, they might be passive in their participations.               

The third way of looking at identity is from the discursive position (Discourse-identity). 

‘Rational individuals’ tend to categorise individuals as certain kinds of people (Gee, 2001). 

By ‘rational’, this implies that these individuals treat, talk about, and interact with people to 

create and sustain the kinds of people they want to see in the society. In some sense, those 

people get to own the kind of treatment they receive from a discursive position. In the 

classroom, for example, some learners are said to be ‘high achievers’ in mathematics 
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because of their consecutive performances during assessments. As such, the positions of 

those learners gain traction from stories as narrated by the teachers or other learners. Such 

learners become cognisant of their status and begin to attend to mathematical activities with 

a resilient attitude to maintain perceived positions. As Gee (2001) argues, Discourse-

identities provide the labelled individuals with opportunities to nurture those characteristics or 

opt out.   

The last way of looking at identity according to Gee (2001) is Affinity-identity. Gee (2001) 

described an affinity group as people who participate in specific practices that provide each 

of the group’s members the requisite experiences. The author argued that the source of 

power for Affinity-identity is not nature or institutions, or even other people’s discourses and 

dialogues alone, but an affinity group. Thus, the Affinity-identity perspective focuses on how 

individuals build their relationships with others in joint activities (Gee, 2001). Members of the 

affinity group sustain their allegiance to uphold the sense of belonging and that of social 

affiliations. In fact, Gee (2001) uses the term ‘affinity groups’ interchangeably with 

‘communities of practice’. More details on communities of practice will be provided later on. 

What follows below is the discussion of Wenger’s (1998) perspective. 

   

2.3.2 The Wenger (1998) perspective  

A description of Wenger’s (1998) social theory of learning is provided here. There are three 

main reasons for this description. Firstly, the discussion gives an account of where the social 

theory of learning is located. Secondly, the social theory permits the systematic descriptions 

of identity by connecting them to aspects of learning, meaning, community and practice. 

Thirdly, in the next segment, Wenger’s (1998) social theory of learning will inform the 

literature review of this study in order to further explain central concepts such as the 

development of identity in relation to the learning of mathematics in the classroom. 

Wenger (1998) explained the ‘intellectual context’ (p.11) of his social theory of learning by 

locating it at the intersection of two axes of intellectual traditions, as illustrated in Figure 2.1 

below. In the tradition of social theory, the vertical axis has two ends that are described as 

‘theories of social structure’ at the top, and ‘theories of situated experience’ at the bottom. 

Theories of social structures put emphasis on institutions, cultural systems, discourses, and 

history whilst theories of situated experience give primacy to agency of individual actors and 

their intentions. The social view of learning is thus placed in the middle. In Wenger’s (1998) 

theory, learning takes place through our individual engagement in actions and interactions, 

but embeds this engagement in culture and history. In turn, learning reproduces and 

transforms the social structure in which it takes place (Wenger, 1998).  



14 
 

Wenger (1998) also placed a horizontal axis and described each end as ‘theories of social 

practice’ on the left-hand side and ‘theories of identity’ on the right-hand side. Theories of 

social practice address the production and reproduction of ways of engaging with the world. 

On the other hand, theories of identity focus on the issues of gender, class, ethnicity, age, 

and other forms of categorisation. Within this axis, Wenger (1998) placed the social view of 

learning in the middle again. 

 

 

 

 

 

 

 

 
Figure 2.1: Two main axes of relevant traditions (Wenger, 1998, p. 12) 

 

Wenger (1998) proceeded to articulate that his theory has four interconnected components 

of identity that are necessary to characterise the social view of learning. The interconnected 

components are culminations of conceptions attained from the intellectual traditions 

presented around Wenger’s (1998) social theory of learning. These components are shown 

in Figure 2.2 below, and they are: learning, meaning, community and practice. Wenger 

(1998) argues that these four components are “interconnected and mutually defined” (p. 5), 

and in fact advocates that any of the four peripheral components can be switched with 

‘identity’ and the figure would still make sense. Each component of identity is discussed 

below.    

 Community: Identity as belonging 

Wenger’s (1998) described three modes of belonging (engagement, imagination and 

alignment) to a community. Anderson (2007) refers to these modes of belonging as ‘faces’ of 

identity. The phenomenon of modes of belonging is significant to studies that have employed 

Wenger’s (1998) social theory of learning. Chauraya (2013) has used the modes of 

belonging as the analytical framework for studying identity. However in this section, the 

Social theory of 
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theories of 
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experience 
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social practice 
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modes of belonging are discussed in relation to how they influence the learning of 

mathematics. Accordingly, each mode of belonging is discussed starting with engagement.  

  

 

                    

 

 

 

 

 

 

 

 

 

From a constructivist view, engagement meant that learners are continuously adapting to 

processes of procedures, mathematical concepts and skills that are offered to them in 

classrooms (Hatano, 1996). Constructivists propose that learners are able to actively 

organise their different ideas into their own schema, selecting, adapting and reorganising 

information to develop knowledge (Boaler, 2002). Parallel to that, teachers are required to 

facilitate or mediate learning by sharing their experiences with learners to encourage new 

construction of knowledge (Hatano, 1996). However, social perspectives on learning extend 

this notion of developing knowledge, from an individual adaptation process to a process that 

is distributed among learners and activities and systems within their environment (Boaler, 

2002).  

Wenger (1998) described engagement as an active involvement of individuals in mutual 

processes of negotiation of meaning. The author alluded to the fact that engagement can 

take place at a certain time and space. An intense space for learners to negotiate meaning is 

in mathematics classrooms. Learners get to interact with their peers in the classroom, and 

with the involvement of teachers and parents, they discover identities about themselves as 

mathematics learners (Anderson, 2007). The negotiation of meaning allows more learners to 

appreciate their capabilities of “doing mathematics” (Ross, 1998; Boaler, 2000b). Learners 

Identity  

Community  

Identity as 
belonging 

Learning  

Identity as 
becoming 

Practice  

Identity as  
doing 

Meaning  

Identity as 
experience 

Figure 2.2: Identity components of Wenger’s (1998) social theory of learning (p. 5)  
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come to see themselves moving towards the centre of the mathematics learning community 

(Lave & Wenger, 1991). In this regard, for example, learners stop celebrating ultimate single 

answers to mathematical exercises (Anderson, 2007) and place more emphasis on the 

“authentic access to both the participative and the reificative aspects” (Wenger, 1998, p. 

184) of learning mathematics. Details of ‘the negotiation of meaning’ aspects will be provided 

below when discussing ‘identity as negotiated experience’.                         

What happens when learners do not engage meaningfully in learning of mathematics? This 

implies that learners are denied access to knowledge through social interaction. Boaler 

(2000b) pointed out that classrooms can appear alien or esoteric to some learners. As such, 

learners may not identify with classroom environments and “may come to see themselves as 

only marginally part of the mathematics community” (Anderson, 2007, p. 8). In this case, 

Boaler and Greeno (2000) explained that learners can be offered opportunities to connect 

with mathematics on a personal level in order for them to feel that their explanations and 

contributions are accepted in classrooms’ discussions. This will mean that learners are being 

recognised as members of the community and begin to see themselves as competent at 

learning mathematics (Boaler & Greeno, 2000). 

A second mode of belonging is imagination. To describe imagination, Wenger (1998) 

provided an analogy of two stonecutters who were asked what they were doing. One 

responded: “I am cutting this stone in a perfectly square shape.” The other responded: “I am 

building a cathedral.” The second stonecutter connected himself to a broader community of 

builders (Nasir, 2002). In other words, the second stonecutter related his engagement to a 

broader imaginary scheme of things. Nonetheless, the first stonecutter was not wrong in 

giving an exact account of what he was doing (Wenger, 1998). To return to learning, 

Anderson (2007) asserted that high school learners are mostly aware of their place in the 

world. As such, learners respond with some in-depth considerations when they take into 

account how mathematics fits in with other activities in their present and in their future (Sfard 

& Prusak, 2005). Hence, learners begin to affiliate and engage more with classrooms 

activities whilst, on the other hand, focusing their attention on how these activities can be 

useful in their everyday life (Nasir, 2002). 

Anderson (2007) confirms that the prospect of taking mathematics seriously at high school 

occurs more when individuals have to apply mathematical concepts and skills in their 

everyday life. For example, learners find themselves being aware of having to spend money 

when they are purchasing groceries (Nasir, 2002) or having to save money from their 

allowances. In education, learners imagine future access to universities in disciplines such 

as science studies which require certain high grades in mathematics (Anderson, 2007). 
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Moreover, some learners take mathematics in high school to align themselves to future jobs 

opportunities (Sfard & Prusack, 2005). Wenger (1998) asserted that learners locate 

themselves in the world and in history through imagination. 

According to Wenger (1998), imagination is a mode of belonging that always involves the 

social world which then expands the scope of reality and identity. Conversely, imagination 

can also disconnect individuals from the broader community. That is, the broader context 

may contribute negatively to some individuals within the society (Gee, 2001). For example, 

there are learners who cannot associate themselves with certain broad reasons that are 

provided in society for studying mathematics (Anderson, 2007). For instance, not every 

learner wants to enrol for science studies despite being considered as an important area by 

the society. As such, and without taking into account the everyday necessity for 

mathematics, the imagination and engagement of those learners linger on the periphery of 

the community of practice (Lave & Wenger, 1991).                  

The third mode of belonging is alignment. Nasir (2002) described alignment as “how actions 

within that community come to be aligned toward a broader common purpose” (p. 219). This 

mode demands learners to channel their energies within their institutional boundaries 

(Wenger, 1998). In the process of alignment, the mathematics teacher can expect learners 

to adopt a certain position in the school to connect to broader practices (Gee, 2001). For 

example, my mathematics teacher would hardly finish his lesson without uttering that by 

“being here in the mathematics class, you are a cut above the rest and you must go home 

and practice mathematical procedures because you are destined to be future scientists.” 

Teachers believed, back then, that the best way for pupils to learn mathematics would be to 

gain multiple opportunities to practice methods, thus re-forcing certain behaviours (Boaler, 

2002). The teacher was connecting our participation to an affinity group of scientists we 

knew very little about (Gee, 2001), and according to Anderson (2007), teachers can take an 

active role in keeping students informed of mathematics requirements for careers and 

university entrance. Wenger (1998) affirms that “the process of alignment bridges time and 

space to form broader enterprises” (p. 179).                

In the current South African education system, learners have a choice between mathematics 

and mathematical literacy when they advance their schooling to the senior secondary stage 

(Department of Education, 2005). Malahlela (2015) noted that mathematics offers learners 

with more elite post-school education and employment opportunities. As such, some schools 

in the country set high standards for junior secondary learners as a requirement for them to 

proceed with mathematics in the Further Education and Training phase (Bowie & Frith, 

2006). That is why some grade 8 learners concentrate more when learning mathematics in 
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order to align themselves with certain career choices (Anderson, 2007). As a result, learners 

who intend to pursue post-secondary educational careers with mathematics as a requisite 

“direct their energy towards” (Anderson, 2007, p. 10) learning and passing the subject than 

learners who cannot imagine the need for mathematics in their future endeavours. Thus high 

school learners strive to comply with the requirements set by teachers, school districts, 

universities and so forth (Wenger, 1998). 

Wenger (1998) also flagged the negative side of this alignment mode of belonging. The 

author observed that alignment within the system can be disempowering and abusive. For 

example, mathematics learners in high school may be expected to attend extra lessons after 

school or on weekends or holidays (Barnes, 2004). The obvious threat that learners identify 

with is that they will fail if they do not accept extra support from teachers (Barnes, 2004). The 

source of this power is not affinity groups or communities of practice, but the institutional 

identity (Gee, 2001). The process through which this power works is authoritarian factors 

based on traditions and rules (Gee, 2001). When the source of power is the institution, 

learners can choose to “adhere to the rules of the game” (Sfard & Prusak, 2005, p. 19) and 

produce evidence of their work to impress teachers rather than to strive towards substantial 

learning. 

 Meaning: Identity as negotiated experience 

Identity as negotiated experience can be reconciled with the earlier discussions of how 

learners can negotiate meaning in the classroom. Meaning is referred to as our ability to 

experience the world as meaningful (Wenger, 1998). This requires that we negotiate 

meaning for our life. According to Wenger (1998), the negotiation of meaning entails talking, 

thinking, acting and solving problems within the certain practice. More often than not, we 

may do and say things that have been said and done in the past, “and yet we produce again 

a new situation, an impression, an experience: we produce meanings that extend, redirect, 

dismiss, reinterpret, modify or confirm the histories of meanings of which they are part” 

(Wenger, 1998, p. 52 – 53). As Wenger (1998) elaborates, the process of negotiation of 

meaning becomes more prominent in practice when learners are involved in mathematical 

activities that they ‘care about’ or when they are presented with problems without the world 

imposing one way of finding solutions. Hence, the process of negotiating, co-constructing 

and modifying of meanings becomes another form of identification (Wenger, 1998). 

Wenger (1998) defined this form of identification as a product of the way we live to 

experience the world. How much of learners’ lived experiences are taken into account in the 

negotiations of ‘rules and procedures’ that are used in mathematics classrooms? Ball (1993) 

responded firmly to this question and asserted that children learn about subjects (e.g., 
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music, geography, history, and so forth) but those subjects are separate from them. Part of 

the solution to this assertion requires “connected teaching” strategies which attempts to link 

lived experiences and conceptual understanding instead of authoritative texts or authoritative 

teaching (Ball, 1993). Esmonde (2009) refers to connected teaching to be a shared process 

between learners and teachers in solving mathematical problems to ensure connected 

‘knowing’ and making mathematics more equitably accessible. This promotes self-images 

whereby learners begin to talk about themselves and about each other when engaging 

through negotiations in specific communities (Wenger, 1998). As such, narratives of learners 

give certain meanings to form identities (Wenger, 1998).                              

 Practice: Identity as doing  

Identity as doing entails both lived experience and a display of competence within familiar 

territory of individuals (Wenger, 1998). That is, when we engage with other members, we 

must recognise our areas of competence whilst allowing others to recognise us as being 

competent (Wenger, 1998). Research on learning within a domain of fostering competence 

has focused on mathematical explorations as a significant classroom practice that can 

encourage learners to discuss how to solve new or unfamiliar problems (Goos, 2004; Zhu & 

Simon, 1987). As Wenger (1998) argues, we know who we are by being able to synthesise 

what is unfamiliar with what is familiar in order to understand the world. Learners with the 

identity as doing component are confident enough to trace back on their work from known to 

unknown. 

According to Zhu and Simon (1987), learning by exploration is nearly synonymous to 

learning by doing. During explorations, for instance, learners can discover patterns and test 

them to arrive at a valid generalisation (Flores, 2010). For Zhu and Simon (1987), 

prerequisite knowledge becomes a first step for learners to discover patterns. For example, 

when teaching learners how to solve quadratic equations, even if learners are not familiar 

with the concept of quadratic equations, they must be clear about what it means to solve an 

equation. In junior secondary, learners can be familiar with solving linear equations. Also, the 

learners must know the concept of multiplying numbers or squaring numbers. For the next 

interactive steps between the teacher and the learners in the mathematics classroom, Goos 

(2004) looked at presumptions made in the Zone of Proximal Development as a framework 

for teaching processes towards getting learners to generalise mathematical concepts. For 

instance, in each step, learners can be asked to check their answers (if necessary, for 

instance, they can use calculators) or the teacher can provide feedback or scaffold essential 

information to move learning forward. At the same time, learners can be reminded about the 

activity goals.              
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For Wenger (1998), identity becomes a mutual engagement where we develop certain 

expectations about how to interact and work together. As part of working together on the 

shared activity, researchers (for example Barnes, 2000; Flores, 2010) recommended 

collaborative learning as one strategy that can enhance the learning of mathematics. 

Grootenboer et al. (2009) suggested that learners should not feel like they are working in 

isolation. Learners can be asked to explain their solutions to each other. It emerged in 

Boaler (2000b) that some learners prefer to ask other learners for help. Collaborative 

learning can be utilised as the supporting structure for learner-centred engagement in 

classrooms (Brodie, 2007). That is, learners can be allowed to share and discuss 

mathematical activities. When learners have shared and understood a mathematical 

concept, each learner tends to follow his or her path towards finding similar or different 

solutions to those of others (Kempe, 2014). As such, learners are able to justify and explain 

their work to promote mathematical reasoning (Brodie, 2009). Hence, collaborating is valued 

in social and cultural communities of learning mathematics (Burton, 1999a). At the end of 

exploration, the teacher can start engaging learners with appropriate terminology and 

formalising mathematical ideas. 

 Learning: Identity as becoming  

It has been noted that identity entails aspects of lived experience by considering what we 

have learned in our past. As such, our past experiences shape knowledge and skills that we 

have accumulated in a process of becoming certain individuals. Certain individuals are 

characterised by what they know and do not know about their mathematical communities. 

Therefore, the construction of present identity is an on-going process of becoming what we 

are inspired to achieve in the future (Nasir, 2002; Stentoft & Valero, 2009). In Wenger’s 

(1998) terms, the construction of identity is defined “with respect to the interaction of multiple 

convergent and divergent trajectories” (p. 154).  

Given a range of factors that are influencing the learning of mathematics in the classroom, 

identity as becoming tends to be continuously changing experiences of what matters and 

does not matter in the lives of learners (Boaler, 2002). The modern world has different ways 

of shaping and positioning (or locating) people in communities of practice (Lave, 1993). For 

example, there are children that are suffering from undiagnosed health conditions. To take 

ADHD for example, Gee (2001) categorised children with such conditions to have fixed 

natural identities because these conditions constitute the kind of persons they are. Gee 

(2001) put forward that natural identities always gain power or disempowerment through the 

work of institutions, discourse, or affinity groups. In this case, such health conditions may 

have hidden negative effects towards children’s learning abilities if institutions or affinity 



21 
 

groups members fail to attend to them. These children may struggle to negotiate their natural 

identities for future learning projections (Wenger, 1998) if they do not receive some form of 

mediation from societies. Consequently, learners may never end with full membership in the 

mathematical community of practice (Wenger, 1998).   

Gee (2001) categorised the concepts of lived experiences of students that are influenced by 

the availability of learning resources within the learning institutions as an institutional identity. 

Learners are positioned within communities of practice according to institutional means. For 

example, public schools that are ‘poor’ – as categorised by the National Department of 

Education in terms of the lack of infrastructure factors and the poverty of communities 

around them – are more likely to generate and regenerate individuals that remain on the 

periphery of communities of practice. This means that some individuals are trapped within 

the gloomy cycles of social location (Bourdieu, 1986; Van der Berg et al., 2011, as cited in 

Spaull & Kotze, 2015, p. 26), and those individuals have no adequate learning means to 

envisage a prosperous future (Holland et al., 1998). Wenger (1998) described this 

exemplary phenomenon as a ‘learning peripheral trajectories’ where individuals are provided 

with mere access to mathematical communities which however “never lead to full 

participation” (p. 154). Thus, learning obstacles – for example, a “hole on the roof” of the 

classroom due to dilapidated school buildings, undiagnosed health conditions, or language 

barriers – can limit individuals from becoming certain learners of mathematics (Skovsmose, 

2005, p. 5).  

 

2.3.3 The Sfard and Prusak (2005) perspective 

Sfard and Prusak (2005) used ‘identity as narrative’ as another perspective to describe and 

investigate learning within social and cultural contexts. Many contemporary researchers (for 

example Aschbacher, Li & Roth, 2010; Bishop, 2012; Dyer & Keller-Cohen, 2000; Holmes, 

2005; Sfard & Prusak, 2005; Varelas, Martin & Kane, 2012) define ‘identity as narrative’ to 

be a collections of stories that are narrated by us about ourselves and about others. The 

benefits of viewing identities through storytelling fit into the motivational notion of learning by 

interacting with others in communities of practice (Lave, 1993). As Wenger (1998) argues, 

we learn by ‘doing’ whilst lived stories of old-timers encourage newcomers to move from the 

peripheral position to full participation.  

Holmes (2005) stated that stories are complex discursive formations with enabling factors for 

constructing identities of individuals in relation to others within communities of practice.  

According to Foucault (1970),  
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whenever one can describe, between a number of statements, such a system of dispersion, 

whenever, between objects, types of statement, concepts, or thematic choices, one can 

define a regularity (an order, correlations, positions and functionings, transformations), we will 

say, for the sake of convenience, that, we are dealing with discursive formations (p. 38). 

In this post-structural context, identity refers to the combined individual voices to form a 

stronger voice of a community (Sfard & Prusak, 2005). The contributing factors for unifying 

individual’s voices come into play in classrooms and outside schools when learners interact 

with each other in one-on-one, face-to-face interactions, after school conversations, and 

recently on social media type of situations (Holmes, 2005). This includes family participation 

in these ‘informal narratives’. Thus, the collection of stories creates or changes identities of 

individuals to adopt a certain “position and status” about the nature of learning mathematics 

(Varelas et al., 2012, p. 324). For example, changes in position and status can motivate 

learners who are perceived by their communities or by themselves as being ‘pretty clever’ to 

thoroughly engage with mathematical ideas and activities to prove being worthy of being 

characterised as being pretty clever in doing the subject (Forster, 2000). Holland et al. 

(1998) state that “people tell others who they are, but even more importantly, they tell 

themselves and then try to act as though they are who they say they are” (p. 3). Sfard and 

Prusak (2005) highlight that informal conversations have reifying qualities if they come with 

adverbs such as ‘always’ and ‘usual’. Therefore, in turn, such positive conversations boost 

learners’ confidence in engaging with mathematical contents which grows into performances 

that are endorsed by learners or institutions (Forster, 2000). 

Furthermore, learners need to be oriented through ‘formal narratives’ about the subject in 

order for them to gain knowledgeable skills (Holmes, 2005). A schooling system has the 

potential of constructing individuals’ social identities from institutional identities (Gioia & 

Thomas, 1996). In the classroom, the community of practice includes all learners, but is 

usually dominated by the teacher (Grootenboer & Zevenbergen, 2008). As such, the roles of 

teachers become important in sharing their life stories. According to Holmes (2005), sharing 

life stories can encourage learners to develop an interest in learning mathematics once they 

understand how the subject has transformed the teachers’ life. Sharing life stories also 

lessens the authoritative voice which closes down avenues of social discussions (Bakhtin, 

1981, cited in Kempe, 2014, p. 28). Drawing parallels with other communities, researchers 

(for example Cain, 1991; Holland et al., 1998; Lave, 1993; Lave & Wenger, 1991) consider 

the characteristics of Alcoholics Anonymous (AA) as a learning environment. That is, 

through talk and sharing of personal stories or history, newcomers learn ways of becoming 

sober and they are gradually constructing their own stories to share when they ultimately 

become old-timers in the AA community (Cain, 1991). Sfard and Prusak (2005) described 
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AA stories to be significant stories because they often validate “one’s memberships in, or 

exclusions from, various communities” (p. 17).  

Holland et al. (1998) conceptualised the ‘figured world’ as the “socially and culturally 

constructed realm of interpretation in which particular characters and actors are recognized, 

significance is assigned to certain acts, and particular outcomes are valued over others” (p. 

52). In the ‘figured world’ of learning, the capabilities of learners to pass mathematics and 

grades are recognised and tested by teachers and schooling systems. In Rubin’s (2007) 

study, teachers were adamant in their collective voices that the inabilities of students to 

receive passing grades are caused by their own incompetence. In some instances, the 

message of blaming learners can be interpreted to have been endorsed in an institutional 

philosophy (Holmes, 2005). In defence, learners (and parents) explain their failures by 

blaming teachers. Forster (2000) believes that teachers have a responsibility to take more 

blame for students’ failure instead of uttering types of statements which are discursive 

practices that distance students from constituting mathematical identity. 

Sfard and Prusak (2005) advocated two significant subsets of narratives which represent 

analytical perspective of developing identities. There are ‘actual identities’ and ‘designated 

identities’. Actual identities refer to the understanding of us from stories which are narrated 

by ourselves and by others in the present tense (Sfard & Prusak, 2005). Stories that are told 

to us now have a potential to change our current views about ourselves, and if our views are 

not influenced by current views, people expect us to become acceptable to who we are in 

the future. Thus, designated identities are based on the commitments and targets we have 

set for ourselves to become in the future (Sfard & Prusak, 2005). Our means of setting 

targets arise from labels and descriptions we obtain in actual identities in the form of grading 

in schools or certificates we achieve from institutions (Nasir, 2002). Institutional identities 

become our window of viewing and weighing designated identities (Sfard & Prusak, 2005). 

Hence, if authors of actual identities are ourselves and are addressed to ourselves, the 

actual identities are believed to be likely to have the most immediate impact on our future 

actions (Sfard & Prusak, 2005). 

 
2.4 Integrated perspectives informing the development of learner identity    

The deliberated three complementary perspectives on identity from within social theories 

illuminate the complexity of dealing with learners’ interpretations of their relationships with 

mathematics for this study. However, the integrated perspectives provide operational 

definitions and particular ways of viewing identity within the socio-cultural context of learning 

mathematics. Identity labels from the integrated perspectives can be used to stereotype, 
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privilege, disempower, empower, or marginalise learners. During labelling, learners can be 

categorised as being effective or ineffective, proficient or non-proficient, or successful or 

unsuccessful at learning mathematics (Lerseth, 2013).  

Gee’s (2001) four ways of viewing identity set up comprehensive but unambiguous 

categorises to be considered in exploring what it means to be a mathematics learner. 

According to Lerseth (2013), Gee’s (2001) perspective describes ‘who a mathematics 

learner is’. Wenger’s (1998) perspective describes identity from ‘what a mathematics learner 

does’. Wenger’s (1998) perspective gives further details on an institutional identity. It 

postulates how learners can negotiate meaning in order to belong to a community. It further 

theorises what learners can do in the classroom to become certain individuals that are more 

central in the practice. The aspects of ‘identity as narrative’ (Sfard & Prusak, 2005), and the 

Discursive-identity (Gee, 2001) complimented the aspects of ‘identity as negotiated 

experience’ (Wenger, 1998) by contending ‘what mathematics communities say’ or ‘how they 

interact and act’ to empower (or disempower) certain individuals. Taking all these 

contributions that formed the integrated perspectives into account, this study focused on 

using Wenger’s (1998) broader social theory of learning as a theoretical framework for two 

main purposes when exploring learners’ identities in mathematics.  

For the first purpose, the concepts of identity as becoming which entail lived experiences of 

mathematical community members became a descriptive structure in formulating the 

research questions of this study. The first research question seeks to identify factors of 

identities from learners’ lived or negotiated experiences. The second research question is 

intended to compare learners’ identities when they were younger to now. The second 

question becomes the confirmatory question and it accounts for changes learners 

experience through their schooling progression. The third research question seeks to 

discover how learners can be supported to develop their identities from the concepts of 

identity as doing. The third research question takes into consideration that identity changes 

due to accessibility to active participatory pedagogy. At the same time, the concepts of 

identity as negotiated experience and identity as doing are not mutually exclusive, and they 

cannot be neglected in the concepts of identity as becoming as they strengthen 

understanding of different ways of how learners become certain types of individuals in 

mathematics classrooms. Thereafter, the research questions informed the research design, 

methods and analyses used in the study in order to make sense of data. 

The second purpose of focusing on Wenger’s (1998) social theory of learning was to 

understand the development of learners’ identities in mathematics. The concepts of identity 

as belonging formed an important structure for discussing the review of literature. Anderson 
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(2007) highlighted that the modes of belonging are not mutually exclusive. Indeed, Wenger 

(1998) had suggested, for instance, that alignment coordinates imagination and 

engagement, while engagement serves as a central strand in developing learners’ identities 

(Anderson, 2007). As such, the combinations of these modes of belonging can result in 

distinct qualities of communities of practice (Wenger, 1998).  

 

2.5 Literature review 

The following literature review intends to reinforce Wenger’s (1998) broader social theory of 

learning by utilising constructions from Boaler’s (2000b) study. However, other elements 

from the integrated perspectives on identity may be present and woven together within a 

given context to shape and support individuals’ meanings in the mathematics classroom 

community. The subsequent review of literature concentrates on issues that influence 

learners’ active engagement and participation in the classroom. But first, the study defines a 

mathematics classroom as a community of practice. Mathematics classrooms are 

understood as intense spaces for learning. The study intends to highlight strange behaviours 

that can be observed in the classroom, and points to relevant identity concepts as described 

by Wenger (1998) that can help mitigate such behaviours whilst motivating learners to stay 

interested in learning mathematics.  

 

2.5.1 Mathematics classroom as a community of practice 

A social theory of learning considers how learners within formal and informal groups in 

communities progress to develop identities in mathematics (Boaler, Wiliam, & Zevenbergen, 

2000). A major component of learning for individuals is about becoming members of 

schooling communities (Davis, 1999, cited in Forster, 2000, p. 227). The phenomena of 

becoming community members through negotiations between individuals within networks of 

social and cultural relationships are called “communities of practice” (Lave & Wenger, 1991). 

In this case, schools are the recognized institutional structures where many communities of 

practice exist (Wenger, 1998). Hence, the mathematics classroom within a school can be 

identified as another community of practice (Goos, 2004).    

The discussions in the next segments firstly focus on highlighting negative occurrences that 

can take place in the mathematics classroom, and thereafter conclude by deliberating on 

Wenger’s (1998) description of a well-functioning community of practice. Eckert and 

McConnell-Ginet (1992) regarded a community of practice as an aggregate of people who 

come together around mutual engagement in an endeavour. From this narrow description, it 

emerges that members of the classroom community can engage in strange ways of doing 
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things from their past experiences within the practice (Holmes & Marra, 2002). Wenger 

(1998) pronounces that if learners fail to learn what is expected in classrooms, they are 

involved in learning something else instead.  

Identities become an influential component to individuals’ (in this case learners of 

mathematics) involvement in a manner that yield intended or unintended learning outcomes 

in communities of practice (Wenger, 1998). In other words, learners of mathematics are 

aware of what is expected from them in classrooms but they may opt for alternative learning 

practices. For example, when learners in stressful classrooms are given tasks from 

textbooks, they know how to implicitly appear busy but avoid internalizing and reflecting on 

their work for scrutiny (Boaler et al., 2000). In this sense, learners protect themselves from 

the shame of not being able to demonstrate competence in knowledge that is expected from 

them by teachers, peers or themselves (Bibby, 2002). Hence, for Wenger (1998), the 

concept of identity as negotiated experience provides important contributions to how 

teachers can positively or negatively utilise learners’ lived experiences to connect learning 

and identities of learners in mathematics classrooms.                                                             

When learning revolves around a teacher in mathematics classrooms, most learners have 

learned to nod their heads to portray sincere understanding towards elucidated concepts. In 

general, when learners in the classroom are asked to verbally confirm if they understand a 

concept, often than not, a teacher will get a ‘chorus of voices’ saying ‘yes, we understand’. 

When single individuals are confronted to demonstrate understanding or competence, 

learners get into a defensive mode and resist participation (Boaler et al., 2000). Learners 

inevitably embrace inappropriate behaviours when they are placed in teacher-centred 

mathematics classrooms (Holmes & Marra, 2002). Thus, some learners become anxious 

towards engaging with mathematics and suddenly become unsure of what is familiar and 

unfamiliar (Newstead, 1998). Because of such implicit occurrences, Wenger (1998) 

presented the concepts of identity as doing which promote collaborative, inclusive and 

reflective learning in classrooms.   

In addition, joining a community of practice involves ways of talking to other members and 

ways of talking about the subject (Eckert & McConnell-Ginet, 1992). In this case, learners 

begin to formally and informally talk about the common language, rituals, stories and 

historical events of mathematics (Aschbacher, Li & Roth, 2010). For example, doing 

mathematics has been historically believed to be challenging. As a result, from what learners 

feel and think, they can develop negative attitudes towards mathematics (Boaler, 2002). In 

general, negative attitudes lead to poor performance in the future mathematical endeavours 

(Zan & Di Martino, 2007). The concepts of identity as narrative outline discursive formations 
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of how past and present experiences can influence future experiences of learning 

mathematics in communities of practice.                

However, Wenger (1998) built on Lave and Wenger (1991) to define a well-functioning 

community of practice. In the community of practice, learners gain access to experts, and 

they may either perceive themselves to be members or aspire to membership in a 

community in which experts practices are central (Lave & Wenger, 1991). Wenger (1998) 

identified three dimensions to consider when describing communities of practice: mutual 

engagement, a joint enterprise, and a shared repertoire.  

The concept of ‘mutual engagement’ permits learners to take charge of their learning in 

mathematics classrooms (Boaler, 2002). Boaler (2000b) argues that practices should give 

learners an active role in doing mathematics in order to prompt a sense of human agency 

which will allow them to negotiate, shape, and reflect upon their participation or non-

participation in the classroom. In turn, learners will develop mathematical identities because 

they will be in good positions to exercise their own freedom and thoughts when engaging 

with the subject (Boaler et al., 2000).  

‘A joint enterprise’ supports the mutual engagement in the community of practice. A joint 

enterprise is characterised by its factors of persuading members of the community of 

practice to work together towards a common goal (Hughes et al., 2007). Members become 

accountable to their mutual engagements because they have ownership of the community of 

practice (Chauraya, 2013). For learners in mathematics classrooms, for example, their 

common purpose might be to apply logical reasoning and critical thinking in order to make 

sense of the subject.  

‘A shared repertoire’ gives members access to shared resources which have been 

“produced or adopted in the course of its existence, and which have become part of its 

practice” (Wenger, 1998, p. 83). The shared resources comprise of “routines, words, tools, 

ways of doing things, stories, gestures, symbols, genres, actions or concepts” (Wenger, 

1998, p. 83). In Wenger’s (1998) theory, the enlisted three dimensions (mutual engagement, 

joint enterprise, and shared repertoire) of a community of practice, alongside the modes of 

belonging, are critical sources of identity formation.  

 
2.5.2 Development of identity through classroom practices  

Boaler (1998, 2000b) advocated that classroom practices are extremely important in 

supporting learners to develop a positive identity. The discussions below are structured to 

entail three themes associated with developing identities (1. the interacting learner, 2. lack of 
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meaning, and 3. monotony) from Boaler’s (2000b) study. Returning to Wenger’s (1998) 

deliberations on identity, the modes of belonging (engagement, imagination, and alignment) 

contributed in structuring the following discussions. Considering the fact that the schooling 

system has specific learning outcomes, the concept of engagement as a mode of belonging 

became prominent in the discussions, as we will see below. 

 A focus on engagement  

Firstly, how can teachers organise classrooms in a way that will allow ‘an interacting learner’ 

to engage with other learners (and the teacher) in discussions, and in sharing mathematical 

knowledge through collaborations and group work? Bibby (2009) explained that the concepts 

of teaching and learning are bound by unconscious emotional flows of relationships between 

teachers and learners. To forge these emotional relationships, teachers can begin to “treat 

learners as people, rather than simply learners of mathematics” (Boaler, 2000b, p. 388). 

McLaughlin (1994), cited in Boaler (2000b), claimed that the way teachers treat learners 

counts more in determining their attachment to education and the school (p. 389).  Boaler 

(2000b) asserted that learners are aware that teachers cannot be their friends, but they 

expect at least that teachers make efforts to understand them and begin occasionally to talk 

to them about non-mathematics issues. This gesture provides learners with an opportunity to 

be “responsible young adults” (Boaler & Greeno, 2000, p. 190). In this way, learners are able 

to discuss mathematics with each other in a relaxed environment (Boaler, 1998, 1999, 

2000b). In other words, teachers should transform classrooms into a life-like environment 

(Boaler, 2000b) and a scholarly home with opportunities to enhance the understanding of 

mathematics (Wenger, 1998).  

In relation to the above paragraph, Boaler (2000b) conducted a study which revealed that 

students do not appreciate anti-social classroom environments where efforts at working 

together or even helping each other are curbed by teachers. In this study, one student 

pointed out that “it was annoying and off-putting” to get into trouble for trying to help other 

students. Boaler (2000b) affirmed that as much as adults forge professional relationships 

with colleagues to impact on job success, it was also important for teachers to encourage 

students’ discussions in the classroom as this forms a strong basis for mathematical thinking 

and learning. This statement relates to Dewey (1938), cited in Boaler (2000b), who argued 

that “humans are inherently social beings, and interactions with people form the basis for 

life’s experiences” (p. 390). In this regard, Boaler (2000b) reiterated that students must not 

lose out on the opportunity of discussing classwork in order to gain meaning from 

participating in the mathematics community.      
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Secondly, Boaler (2000b) argued that “lack of meaning” distances students from 

participating fully in the mathematics community (p. 384). This requires that teachers should 

shift from enforcing traditional practices where learners are expected to memorise and recall 

mathematical procedures (Boaler, 1998). Certainly, the traditional teaching approach 

requires teachers to concentrate on introducing mathematical concepts and procedures to 

students “in hope that students will learn and understand the procedures, as well as link the 

different procedures to the broader mathematical domain” (Boaler, 2000b, p. 384). Ross 

(1998) also argues that more learning results from doing mathematics rather than from 

looking at a teacher demonstrating methods and procedures on the chalkboard. In this way, 

learners tend to own mathematics if they engage in creating the subject themselves (Ross, 

1998). Moreover, learners take responsibility for their own learning, and in turn, their 

identification increases towards mathematics (Boaler, 1999).    

Consequently, learners must make sense of mathematics in order to develop their strong 

positive identities in mathematics (Boaler, 2000b). For learners to make sense of 

mathematics, Brodie (2009) advocates that teachers need to give learners tasks which allow 

them to explore, reason, and think creatively. Hence, Kabiri and Smith (2003) recommend 

that teachers must engage learners in open-ended mathematical tasks, questions or projects 

that have multiple responses or one response with multiple solutions. In the “Creating 

flexible knowledge in the mathematics classroom” article, Boaler (1999) highlights that 

learners who are encouraged to engage in open-ended mathematical tasks begin to like the 

subject. And when learners like the subject, it becomes the subject of their choice and they 

become more interested to the meaning of content whilst applying the content knowledge 

and understanding in the world (Boaler, 2000b). To put it differently, open-ended 

mathematical tasks allow learners to understand the subject and develop more flexible forms 

of knowledge that they are able to use in a variety of different situations, including the formal 

school assessments and the ‘real world’ (Boaler, 1999).              

The effects of an ‘open-ended tasks’ approach contrast with the effects of a textbook 

approach in learning mathematics. To support this claim, Boaler (1999) identified these two 

teaching methods to be “completely different” (p. 10). As much as teaching using a textbook 

approach is easy and less time consuming (Goodson, 1991), it also reverses some gains of 

the open-ended tasks approach (Boaler, 2000a). In general, textbooks present examples of 

particular mathematical methods and then sets of exercises from which learners can practice 

the methods (Boaler, 1999). The role of a teacher in the textbook approach is to 

demonstrate techniques and methods on the chalkboard at the start of a class and set off 

learners to do one exercise after the other (Boaler, 1999). As a result, learners often rely on 

methods they have just been introduced to on the board and if questions require different 
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methods, they would often get answers wrong, or become confused as to what to do next 

(Bibby, 2009). In this regard, mathematics becomes a subject inclined towards the 

“collection of sums, rules and equations that simply needed to be learned” and solved by 

learners (Boaler, 1999, p. 12). Peter and Swing (1982), as cited in Boaler (1999), 

encapsulates these arguments to suggest that as much as the textbook approach keeps 

learners more on task whilst learners who engage in open-ended tasks spent a larger 

proportion of their lessons ‘off task’, it was this latter approach that enabled more learners to 

use mathematics in a range of settings (p. 15). At the end however, when learners are 

assessed on what they have learned from closed mathematics approaches in classrooms, 

their performance is lower than those of learners who engaged in the open-ended 

mathematical tasks approach (Boaler, 1999).      

Thirdly, Boaler (2000b) identified “monotony” as another issue that needs to be discussed in 

order to characterise learners’ mathematics experiences in classrooms (p. 383). Monotony 

can be described as the lack of variety learners experience from repetitive teaching 

approach in classrooms (Boaler, 1999, 2000b). In Boaler’s (2000b) study, monotony 

emerged to limit learners’ affiliation with the mathematics community. For example, in 

traditional systems of learning mathematics, learners would rely more on techniques and 

methods demonstrated to them by teachers at the front (Boaler, 1999). In turn, learners 

demonstrate their understanding of particular mathematical concepts by working through 

exercises from textbooks (Boaler, 1999). Thus, learners engage with mathematics exercises 

from one page of a textbook to the next page (Boaler, 2000b). In a situation when rules or 

methods do not work in an equation, learners would approach a teacher for more clues 

(Boaler, 1999).  

To extend this notion, Boaler (1999) asserted that engaging learners in content-based 

activities can create a controllable and orderly learning environment. However, if the content-

based activities present low-level questions that do not “ensure genuine participation and 

mathematical thinking” (Brodie, 2007, p. 4), learners often become “uninterested and 

uninvolved” (Boaler, 1999, p.11) in how they find those ‘one right answer’ which are often 

found at the back of textbooks (Boaler & Greeno, 2000) or from each chapter. In short, 

learners sit and work through many exercises, page by page, without really thinking about 

what they are doing (Boaler, 1997). Anderson (2007) confirms that learners come to believe 

that doing mathematics means getting the correct answers, often quickly. Thus, those who 

cannot get correct answers quickly begin to doubt their capabilities of doing mathematics 

(Anderson, 2007). In the process, they stop engaging with other learners to develop effective 

strategies for solving mathematical problems (Anderson, 2007). 
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The monotonous nature of school mathematics lessons becomes a distinguishing factor for 

learners between an enjoyable and a boring learning environment. In Boaler’s (2000b) study, 

one learner asserted that enjoyable lessons are when they are occasionally exposed to 

different forms of tasks in mathematics classrooms. The different forms of mathematical 

tasks can include working on open-ended projects, investigations, and practical work 

(Boaler, 2000b). In any case, the variety of teaching methods does far more than making the 

lessons less boring; it also develops learners’ mathematical knowledge, and so, they are 

able to negotiate meanings in the classroom (Boaler, 2000b). 

The above discussions challenge the need for didactic teaching methods through a textbook 

approach. However, and in all fairness, studies (for example Brodie, 2009; Ross, 1998) do 

not dismiss the use of the textbook approach and the syllabus in classrooms. Instead, 

researchers (for example Boaler & Greeno, 2000) begin to recommend that teachers must 

de-emphasise “mindless drilling” (Ross, 1998, p. 252) of algorithms and procedures in 

classrooms. Rather, textbook activities and examination questions should be used in 

ensuring that learners are experiencing diversified teaching approaches in the classroom 

(Boaler, 2000b).    

 A focus on imagination and alignment 

The other important features of developing positive learners’ identity in mathematics include 

the imagination and alignment modes of belonging dimensions (Wenger, 1998). With respect 

to imagination and alignment, Anderson (2007) points out:   

Teachers and others in schools can consistently reinforce that mathematics is an interesting 

body of knowledge worth studying, an intellectual tool for other disciplines, and an admission 

ticket for colleges and careers (p. 12). 

For me, there is no better way of enforcing the notion that mathematics is an interesting 

body of knowledge worth studying than to actually make it an interesting subject in the 

classroom. In this literature review, it has been discussed that learners enjoy lessons when 

teachers use a variety of approaches in mathematics classrooms. Also, the review has 

established that teachers can choose to transform classrooms into a more relaxed life-like 

environment, and a scholarly home in order for learners to make sense of mathematics. 

However, the development of identities through the imagination dimension extends beyond 

classrooms because learners often want to know relevant applications of mathematical 

knowledge in life (Suh, 2007). As Masingila (1994) argues, classroom mathematics should 

be the mathematics that will prepare learners for its application in all life situations. Thus, 

schools can present learners with opportunities to see themselves as mathematics learners 
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away from the classroom (Anderson, 2007). For instance, teachers and parents can invite 

people from outside schools to give talks about how they use mathematics to solve problems 

in their professions (Anderson, 2007). Sfard and Prusak (2005) look at this event as “linking 

identity to the socio-cultural context of learning” (p. 20). In addition, research (for example 

Suh, 2007) has shown that learners can also become aware of the usefulness of 

mathematics when they are required to reflect (by keeping logs and records) of any real-life 

problem that they themselves solved using mathematics.      

Lastly, many students (and their parents) are unaware of the vast number of careers that 

require mathematical knowledge (Aschbacher, Li & Roth, 2010). For example, in sciences 

and engineering sectors, the participation of women in such professions remains 

disproportionally low (Dick & Rallis, 1991). Anderson (2007) argues that teachers (and 

parents) can foster the alignment dimension of shaping identities in mathematics by making 

learners more aware of possible career choices. For example, there could be learners who 

can be inspired to take teaching as their careers (Goodson, 1991). In addition, schools can 

encourage and support learners to attend career days which are often offered by universities 

and other stakeholders. At the University of the Witwatersrand, grade 11 and 12 learners are 

invited every year to attend Wits Focus Day. This is where learners are exposed to 

academic subjects so that they learn more about study options and possible career path 

choices available to them.                               

      

2.5.3 Classroom as a community of practice and identity 

The concepts which formed the literature review are discussed further in order to connect 

them to certain other features that are associated with identity. The connections are 

specifically presented to relate classrooms as a community of practice with identity as 

practice, and identity as narrative. As we will see below, these relationships highlight the 

roles of classroom community members, particularly that of a teacher, when developing 

learners’ identities in mathematics.  

The classroom community as a social context with different backgrounds, views, behaviours, 

and expectations of its players has been identified as an intense source of learners’ 

identities in mathematics education (Atweh, Forgasz & Nebres, 2001). The exploration of 

differences in roles of players becomes factors that emerge when examining learners’ 

identities in mathematics. The roles of players influence the changes of learners’ identities 

from time to time. Players in the classroom context are mainly teachers, learners and the 

discipline of mathematics.           
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Grootenboer and Zevenbergen (2008) located the teacher’s role in a key strategic position 

(as shown in Figure 2.3 below) in the classroom community when developing learners’ 

identity in mathematics. The role of the teacher dominates the classroom community. The 

teacher’s role is followed by other defining factors of learning such as the curriculum, 

textbooks, and stories about mathematics. The teacher’s dominance includes re-introducing 

mathematics to learners at first encounters of teaching in a new grade or phase. The re-

introducing mathematics description acknowledges that teachers are not beginning with a 

blank slate, but in many respect it becomes a new start (Grootenboer & Zevenbergen, 

2008). The teacher’s role in influencing learners’ mathematical identity seeks to bridge 

relationships between learners and the discipline of mathematics (Boaler, 2002). At the end, 

the teacher’s role becomes finite and learners become independent enough to go further 

with an enabling mathematical identity. 

 
                                 teacher 

 
 
 
 
Figure 2.3: The relationship between learner and mathematics (Grootenboer & Zevenbergen, 2008) 

 
Grossman et al. (2001) posited that learners fail to carry along relationships they have 

accumulated with the discipline of mathematics because of their memberships to a 

pseudocommunity. The pseudocommunity notion starts from acknowledging that members 

may have tendencies of acting as “if they are already a community that shares values and 

common beliefs” (Grossman et al., 2001, p. 955). Many contributing factors to a 

pseudocommunity include some concerns that were raised previously in this study, such as 

teacher-centred classroom, rote learning, monotonous teaching methods, and a lack of 

learning resources across many rural and township schools especially in the South African 

context. However, in this instance, the notion of pseudocommunity analyses of learners’ 

experiences can concentrate on general narratives which maintain superficial levels of 

agreement during conversations (McGraw et al., 2003). Within this context, and as per the 

problem statement, learners may not question the teacher’s role or challenge each other to 

negotiate meaning to yield appropriate actions towards contributing in the production of 

mathematical knowledge and understanding (McGraw et al., 2003). As a result, learners with 

certain abilities figure out ways of passing mathematics whilst they tend to stop advancing 

with the subject. On the other side, learners who cannot figure out ways of passing get 
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excluded by the schooling system, whilst pretending to know what it takes to pass or 

pretending to have positive relationships with the subject. 

                 

2.6 Summary 

This chapter has firstly described a common definition of identity. It was suggested that a 

certain kind of individual, as being recognised by the mathematical community at a given 

time and space, can change from time to time during interaction, and, can change from 

context to context (Gee, 2001). Secondly, particular definitions and different ways of viewing 

learners’ identities in mathematics were expressed by integrating Gee’s (2001), Wenger’s 

(1998), and Sfard and Prusak’s (2005) perspectives from their social learning theories. 

However, Wenger’s (1998) broader social theory of learning was selected as the theoretical 

framework to frame the study. By purposefully selecting Wenger’s (1998) broader social 

theory of learning, the theoretical framework guided the structuring of the research questions 

which informed the methodology and research design - the next chapter. The theoretical 

framework also informed the central concepts of the study; namely the mathematics 

classroom as a community of practice, and the development of learner identity. Lastly, the 

teachers’ roles were described as dominating mathematics classrooms, whilst at the same 

time, their roles were suggested to be finite and temporary in order for learners to gain 

enough confidence when working independently with each other in negotiating meaning 

during learning and teaching practice.   
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CHAPTER 3 

METHODOLOGY AND RESEARCH DESIGN 

3.1 Introduction 

This chapter firstly enumerates different research approaches (with examples) that have 

been applied to studies of emotional and cognitive reactions of learners towards 

mathematics. The purpose of reviewing literature on previously utilised methodological 

approaches is to demonstrate a need to explore features of mixed methods research. 

Secondly, the mixed methods research design is discussed whilst showing which learners 

are studied, and from which type of school. Thirdly, the study concentrates on how the data 

sets were collected for analysis in order to answer the research questions. Lastly, the study 

account for rigour in the research.  

 
3.2 Approaches to studying learners’ emotional reactions 

Most studies of emotional notions of learners (such as identities, attitudes, and anxiety) in 

mathematics diversify to employ either qualitative research, quantitative research or mixed 

methods research approaches (Turney & Robb, 1971). The qualitative approach preceded 

other approaches for the development of identities and other emotional reactions towards 

mathematics (Darragh, 2016; Lerseth, 2013). For example, Boaler (2000b) compared and 

contrasted the impact of different teaching and learning methods in relation to how it affects 

mathematical learners’ ability which in turn develops their identities. The author grouped 

common themes which emerged from interviews, questionnaires, and from her own 

observations of both classroom and school environments. In this Boaler (2000b) study, 

among other things, students were asked to describe mathematics lessons whilst 

highlighting particularly those lessons that they liked or disliked in relation to their past, 

present, and future experiences within the classroom environment. Then, the author 

discussed the most dominant themes – the interacting learner, lack of meaning, and 

monotony – that characterised learners’ views of their school mathematics learning 

environments in respect to different teaching methods.  

In many qualitative studies (for example Boaler, 2000b; Boaler & Greeno, 2000; Bibby, 

2009), unstructured or semi-structured interviews are used to avoid imposing researchers’ 

views from the outside on understanding and perspectives of identity formation in 

mathematics. For example, to ensure that data is collected within the context of studying 

learners’ identities in its natural form, interviews (or questionnaires) can be open-ended in 
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order to concentrate on exploring learners’ views and perceptions in their experiences of 

doing mathematics (Bibby, 2002).    

Alternatively, taking a quantitative approach, Fennema and Sherman (1976) provided a 

number of scales suitable for measuring emotional factors of learners’ towards mathematics. 

Researchers can select scales that are compatible to their studies. Researchers can gather 

scores from measuring instruments such as closed questionnaires to identify emerging 

dimensions that are related to the learning of mathematics (Fennema & Sherman, 1976). For 

example, Newstead (1998) used a quantitative approach to analyse pupils’ anxiety in 

mathematics. The focus for Newstead’s (1998) study was to measure and compare the 

mathematics anxiety of pupils taught in a traditional manner with that of pupils whose 

teachers adopted an alternative approach emphasising problem-solving and discussion of 

pupils’ own informal strategies. In this exemplified study, the emerged dimensions ranged 

from feeling at ease to feeling distinctly anxious which is different to other emotional 

reactions like enjoyment or confidence in relation to the learning of mathematics (Fennema 

& Sherman, 1976).  

In quantitative approaches, researchers often design closed questionnaires to control 

conditions and rule out variables that cannot be accounted for by their studies (Turney & 

Robb, 1971). In some surveys, researchers (for example Dick & Rallis, 1991) use forced-

choice format. For instance, participants will have to somehow agree or disagree to 

statements or questions. Moreover, the validity of closed questionnaires may be supported 

by interviews where some core statements or questions may be repeated, and the reliability 

may be confirmed by statistical analysis (McMillan & Schumacher, 2006). 

Finally, as it will be established in the present study, a mixed methods approach combines 

qualitative and quantitative approaches (McMillan & Schumacher, 2006). Many writers (for 

example Creswell, 2004; Creswell & Plano Clark, 2007; McMillan, 2012) identified the 

following three mixed methods research designs: triangulation, exploratory and explanatory. 

Johnson and Onwuegbuzie (2004) refer to triangulation as a research design which seeks 

“convergence and corroboration of results from different methods and designs studying the 

same phenomenon” (p. 22). Exploratory design is a two-phase research design which firstly 

gathers data from qualitative methods and then follows that by quantitative processes 

(McMillan, 2012). Typically, this design uses the initial qualitative phase with a few 

individuals to identify themes or ideas for the larger-scale quantitative part of the study 

(McMillan, 2012).  

Many researchers (for example Geldenhuys, Kruger & Moss, 2013) have relied on the 

explanatory research design to investigate emotional reactions of learners in mathematics. 
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This is another two-phase research design. Researchers firstly collect data by using 

quantitative methods and then apply qualitative methods to explain results that are obtained 

from quantitative methods (Creswell, 2004). For example, researchers self-design a closed 

questionnaire to collect data for quantitative analysis. As the next step, researchers allow 

participants to further explain their views by using open-ended questionnaires or interviews. 

The rationale of this approach is that quantitative analysis provides a general picture of the 

research problem, and to define, refine and explain the general picture, qualitative processes 

can be applied for further analysis (Creswell, 2012). 

    

3.3 Proposed methodological approach 

Given the complexity of exploring learners’ identities in mathematics, it was important to mix 

both qualitative research (QUAL) and quantitative research (QUAN) in order to best answer 

the research questions of the study (Onwuegbuzie & Leech, 2004). In this study, the first and 

third research questions are more exploratory, whilst the second research question is a 

confirmatory type of question. According to Teddlie and Tashakkori (2009), such research 

questions (and researchers’ beliefs) inform the appropriateness of employing a mixed 

methods research, and its fitness to a pragmatic perspective. Furthermore, Barmby and 

Bolden (2014) recommend a mixed methods research to research emotional and cognitive 

reactions of participants in mathematics education.  

When Jennifer Greene was asked in Johnson, Onwuegbuzie and Turner (2007), she stated 

that mixed methods research is an approach to investigating the social world that ideally 

involves human phenomena with a diversified interpretation of knowing, “all for the purpose 

of better understanding” (p. 119). In this study, the qualitative approaches describe how the 

learners interact with each other and teachers in the mathematics classrooms as a 

community of practice, and the study also quantitatively assess trends of different interaction 

types in order to develop a rounded understanding of learners’ identities. Moreover, given 

the background of the study, learner identity was viewed from a socio-cultural perspective. 

According to Kempe (2014), citing Wertsh (1998), taking a socio-cultural approach enables 

the researcher to ‘live in the middle’ and view data from different perspectives provided by 

different contexts, and to identify ways in which the intersecting identities of the researched 

participants enhance the interpretation of the findings (p. 21). 

Johnson and Onwuegbuzie (2004) referred to the mixed methods approach as a “class of 

research where the researcher mixes or combines quantitative and qualitative research 

techniques, methods, approaches, concepts or language into a single study” (p. 17). In a 

continuum that ranges from pure QUAN to pure QUAL a researcher can decide how much of 



38 
 

QUAN and QUAL approaches to consider in her study (Johnson et al., 2007). Within this 

regard, the present study used an open-ended questionnaire (QUAL component) to develop 

a Likert-scale questionnaire (QUAN component), and returned back to expand QUAL 

processes through interviews. That said, in sequential mixed designs, data sets are collected 

and analysed from one phase of a study and used to inform other phases of the investigation 

(Teddlie & Tashakkori, 2009). The research design of this study met such a definition. 

 

3.3.1 Mixed methods research design 

Sequential mixed designs occur when an individual researcher or team of researchers 

alternate the qualitative and quantitative methods across three phases (Creswell & Plano 

Clark, 2011; Tashakkori & Teddlie, 2010). Typically in these designs, a researcher first 

collects and analyses the qualitative data. The quantitative data is then collected and 

analysed as the second phase. The benefits of quantitative analysis include building on the 

qualitative results obtained in the first phase to develop instruments as an intermediate step 

between the two phases. The third phase of these designs, which is the qualitative data, 

helps to explain, or expand, on the quantitative results from the second phase. All three 

phases are sequentially connected for the purposes of addressing a set of incremental 

research questions that advance one programmatic research objective (Creswell & Plano 

Clark, 2011; Teddlie & Tashakkori, 2009).                 

Greene, Caracelli and Graham (1989) identified the following five broad purposes of mixed 

methods research designs: triangulation, complementarity, development, initiation and 

expansion. Development, complementarity and expansion were applied for the purposes of 

this research study. Most aspects of development appear to have superseded other 

explanations in this study. The study valued the idea of developing the closed questionnaire 

from the open-ended questions. The complementarity aspects came to play in the idea of 

seeking enhancement and clarification of the results from the Likert-scale questionnaire 

when comparing the results from the open-ended questionnaires (Johnson et al., 2004). 

Furthermore, the importance of using the results from the closed questionnaire was kept in 

mind to inform the expansion purposes for the semi-structured interviews which was the third 

phase of data collection of this study (Johnson et al., 2007).  

Many writers (for example Creswell et al., 2011; Johnson et al., 2007; Maxcy, 2003; 

Tashakkori et al., 2010) recommended that researchers use pragmatism as an umbrella 

philosophy for mixed methods research design. A pragmatic approach distances itself from 

the metaphysical principles (e.g. epistemology and ontology) associated with the paradigm 

disputes, and instead, it helps improve communication among researchers in order to 
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advance knowledge (Johnson et al., 2004). Also, a pragmatic approach takes a special 

interest in combining methods in order to provide meaningful answers to research questions 

at hand (Johnson et al., 2007). Therefore, pragmatic philosophical assumptions for mixed 

methods research balance the act of objectivity and subjectivity within the meaningful use of 

research language (Johnson et al., 2004).   

However, post-positivist philosophical assumptions are preferred to implement quantitative 

research methods which, in this research, have been developed from the contributions of 

qualitative research methods, and visa versa (Creswell et al., 2011). Qualitative research 

methods are respectively framed in constructivist philosophical assumptions (Creswell et al., 

2011). Differences of philosophical assumptions, at different stages of mixed methods 

research design, addressed different aspects of research questions that were guiding the 

study (Creswell, 2009). To account for objectivity, post-positivists find the need to identify 

and assess causes that influence outcomes of an inquiry (Creswell, 2009). The researcher 

claims knowledge by reducing information with different vast variables to give 

comprehensive message from fewer correlating variables (Field, 2009). The researcher 

seeks to discover the number of factors influencing variables and to determine which 

variables ‘go together’ (Yong & Pearce, 2013) to yield an unassuming reality from multiple 

perspectives.  

Constructivism is typically associated with qualitative approaches. It seeks to understand 

and explain phenomena formed through participants’ interpretations and their subjective 

views (Creswell et al., 2011). For Tashakkori et al. (2010), constructivists hold a worldview 

that “there is no structural gap between human beings and their environments because we 

are participants in an ever evolving universe” (p. 112). Participants provide their 

understandings that are shaped by social interaction with others and from their own personal 

experiences (Creswell et al., 2011). As such, the research questions of this study were 

explained and elaborated using qualitative approaches which were shaped by individuals 

within the ‘mathematics classroom as a community of practice’.  

To conclude this section, I have described a featured research design whilst deliberating on 

its purposes. The research design was philosophically framed in pragmatic interpretations 

which offer researchers an empirical space to practically answer their research questions 

using procedures from both qualitative and quantitative approaches. Tashakkori et al. (2010) 

described research design as a detailed plan for conducting a research study. Based on the 

described research design, the study adopted a sequential mixed design model. The 

research design model is depicted in Figure 3.1 below. 
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THE MIXED METHODS RESEARCH DESIGN 

 

Sequential Mixed Designs 

 

  

 

 

 

 

 

 

 

Figure 3.1: The adopted mixed methods research design model (Tashakkori & Teddlie, 2010, p. 325) 

 
3.3.2 The participants  

In 2016, Grade 8 learners from a Johannesburg school were asked to participate in the 

larger project. The school has positive working relationships with the university. The primary 

objective of the larger project was to improve Grade 8 learners’ identities when it comes to 

the learning of mathematics. Broad sets of information were gathered using questionnaires, 

interviews, observations, audiotaping and videotaping for the project. This study became the 

forepart of the larger project. The study concentrated on exploring learners’ identity in 

mathematics.  

During my involvement in all the processes of gathering information with other researchers 

within the project, I had this Masters study in mind. My roles in the project included leading 

the processes of collecting information using both the open-ended and closed 

questionnaires. Thus in the next sections below, and given the above contexts, I use “we” in 

my writing to acknowledge the contributions of other researchers. What follows next are 

some reasons for selecting Grade 8 learners to participate in this study.  
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There are many reasons for selecting Grade 8 learners to participate in a research study of 

this nature. For one, as highlighted in the literature, secondary school learners are at that 

stage where they can reflect back on their primary school experiences. As a result, there are 

more chances that grade 8 learners can value opportunities that are carried out from 

understanding the development of mathematical learner identity. Secondly, it is on record 

that Annual National Assessments (ANA) results in mathematics have been shockingly low 

(DBE, 2014). For example, in 2014, the average national percentage of grade 9 learners 

who wrote and passed the mathematics assessment was 11% (DBE, 2014). ANA 

performances are corroborated by the results of international studies such as the Trends in 

Mathematics and Science Studies (TIMSS), and this has called for interventions that will 

focus on grade 9 learners. However, most knowledge content that is assessed in the ANA 

for grade 9 learners is not based on the grade 9 curriculum, therefore the improvement of 

learning and teaching strategies are equally needed to be directed to lower grades (DBE, 

2014). This links to the fact that grade 9 results are used in most schools to place learners 

as to which subject choices they can take in grade 10 onwards (DoE, 2005). Lastly, there is 

an opportunity that junior secondary school learners can be motivated through the modes of 

belonging (engagement, imagination and alignment), as discussed in the review of literature, 

to positively influence and develop their mathematical identities.                                           

The number of learners sampled to participate in filling both the open-ended questionnaire 

and the Likert-scale questionnaire was 117. This is the total number of four grade 8 classes 

from the chosen school. Each classroom has an average of 29 learners. The advantage of 

getting all Grade 8 learners to participate in these first two phases of data collection (details 

to follow below) was to get a diversity of views from the wider spectrum of learners. The 

sample size was large enough to gain a better insight into the learners’ views about 

mathematics (Cohen, Manion & Morrison, 2011), and enable greater reliability when using 

exploratory factor analysis (Yong & Pearce, 2013).  

Six learners were interviewed. Interviews are time-consuming by their nature (McMillan & 

Schumacher, 2010), and the small number of the interviewed learners was satisfactory as 

interviews were intended to contribute to adding value to the open-ended and closed 

questionnaires. The six learners were chosen using stratified purposeful sampling. Two 

learners were chosen purposefully from learners who were found to have demonstrated 

drastic changes from negative views in the past to positive views when doing mathematics in 

the present. Another two demonstrated opposite changes in their views. Another two 

learners were randomly chosen from the group which was consistent with the majority views 

about doing mathematics. According to McMillan (2012), stratified purposeful sampling 



42 
 

ensures that adequate numbers of participants that can be examined intensely are selected 

from different subgroups.    

The school is a technical school. This implies that grade 9 learners do not have an option of 

doing Mathematical Literacy when they advance to the Further Education and Training 

phase. Mathematical Literacy has been highlighted in the literature to be an easier subject 

choice for learners when compared to Mathematics. Hence, the learners were equally 

expected to identify with mathematics positively and pass the subject in order to not face 

exclusion by the schooling system.  

Furthermore, the school is closely located to the university. Mixed methods research 

requires more time and they can be costly (McMillan & Schumacher, 2006). The close site 

location allowed the mixed methods research process to conveniently take place. In the 

three phases of data collection for this research, there were many back and forth trips taken 

between the university and the school. Mixed methods research allows the researcher to 

return to the field to collect more data at any given moment when needed (Creswell, 2009). 

 
3.3.3 Methods of data collection 

The present research set up three sequential phases for data collection. First, we created a 

questionnaire with open-ended items. Second, we used the responses collected in the first 

phase to develop a Likert-scale questionnaire. Lastly, participants were interviewed. Below 

each phase of data collection are discussed whilst making deliberate attempts to support 

claims made in the introductory paragraphs of the mixed methods research design above. 

 Open-ended questionnaire (QUAL component) 

Learners responded to the following three open statements: (1) ‘Describe doing maths when 

you were younger’; (2) ‘Described doing maths at the moment’; and (3) ‘Described doing 

maths when you get older’. See Appendix A for the copy of this open-ended questionnaire. 

The structure of looking at learners’ past, their present experiences, and their future 

projections was adopted from the study by Gardee (2016). As discussed in the theoretical 

framework, Wenger’s (1998) definitions of identity as practice, particularly that of identity as 

becoming, accommodate this structure of examining learners’ experiences of learning. 

Learners were asked to write two or three sentences when responding to each statement of 

the questionnaire. As highlighted in the literature, it was important to keep the statements 

open in order to explore different views for learners. The use of open questions allows 

participants to freely state their views (in their own terms) about the subject (Agheyisi & 

Fishman, 1970). In other words, open questions invite honest views and minimise what 
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McMillan (2012) called the ‘response set’ where participants tend to provide responses that 

they think are acceptable to the society.   

Open-ended questionnaires can lead to irrelevant and redundant information (Cohen et al., 

2011). However, in setting the objectives for this instrument, the open-ended statements 

were structured in such a way that they directed participants to respond about the intended 

subject. The idea was to generate issues that needed to be addressed in data analyses 

(McMillan & Schumacher, 2006). Within this sense, questions followed proposed definitions 

from the literature that learner identity changes from time to time according to how 

mathematics is presented at that present moment. Wenger (1998) posited that the positive 

changes of learner identity are encouraged through active participatory pedagogy, and 

hence choosing the wording ‘doing maths’ was an attempt to get learners to reflect on their 

actions and their experiences of learning mathematics. Also, there was an attempt to 

carefully phrase the statements in such a way that learners broadly shared their thinking of 

doing mathematics from their “social experiences of living in the world” (Wenger, 1998, p. 

55) by avoiding including wording such as ‘for you’ that would have narrowed down 

responses to learners’ personal attributes of learning mathematics. We therefore anticipated 

views that entailed factors of learner identity such as beliefs, attitudes, perceptions, talks, 

solving problems, alignments and others to emerge from the questions. 

In general, using open-ended questions can lead to respondents overlooking instructions 

because they are occupied with the task of writing responses in their own words rather than 

reading the instructions or statements (Cohen et al., 2011). As such, the instructions were 

read to learners. We also made ourselves available to assist learners with more information 

should they encounter problems with the questions. 

 Closed questionnaire (QUAN component) 

It is standard practice that open-ended questions can be used to develop closed questions 

(Cohen et al., 2011; McMillan et al., 2006). In this step, we collected all the responses from 

the open-ended questionnaire, categorised them according to their themes, and selected 

statements at random to develop a Likert-scale questionnaire (see Appendix B for the copy). 

I shall return to give specific descriptions of how the closed questionnaire was developed in 

the methods of analysis. At this point, I wish to elaborate more on why the closed 

questionnaire was developed. 

According to Cohen et al. (2011), there is a danger of assuming that the respondent will 

have an instant viewpoint about all the matters from a questionnaire. As such, we had hoped 

that the closed questionnaire on the same subject would give the participants a second 
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chance to state their experiences of doing mathematics. On the other hand, closed 

questions increase the level of confidence of participants and allow them to provide more 

reliable information (Johnson et al., 2007). In this case, the qualitative technique in phase 

one complemented the quantitative technique of the second phase. Johnson et al. (2007) 

argued that the researcher can be more confident about the data collected because of its 

authenticity.    

There is an issue of choice of vocabulary when learners are required to fill a closed 

questionnaire designed by the researcher. Hence, the development of closed questions from 

the open-ended questionnaire responses lessens the gap between the researcher and the 

participants (Cohen et al., 2011). The participants barely misunderstood the questions or 

statements from the closed questionnaire. We anticipated fewer unfilled questions.  

 Semi-structured interviews (QUAL component) 

In planning the strategies for data collection, it was important for this study that the interview 

questions were worded in order to keep the subject in mind. See Appendix C for the copy. 

The proposed worded questions for this phase were open-ended, and the thinking behind 

them was to conduct semi-structured interviews that will provide an in-depth understanding 

about how Grade 8 learners identify with mathematics. As McMillan and Schumacher (1993) 

remark, interviewees can be encouraged to respond open-endedly when using semi-

structured interviews. In this case, interviewees were offered opportunities to provide 

individual responses (McMillan & Schumacher, 1993), whilst the interviewers had an 

opportunity to probe for further clarity around aspects of research interest. The purpose of 

these interviews sought to expand the breadth and range of the research (Johnson & 

Onwuegbuzie, 2004). 

Given the nature of semi-structured interviews, it was expected that respondents may now 

and then divert to talk about their areas of interest. However, the strategy of allowing 

respondents to divert from the subject gets them to relax and return to talk more in detail 

about the subject once they are probed to share more information. In Cohen et al.’s (2011) 

terms, interviewees must be given space for spontaneity. In addition, Creswell (2012) argues 

that stories are narrated from certain chronological perspectives to give participants more 

voice. Hence, it becomes important to audiotape interviews as it may be difficult to take 

down notes whilst the interviewee is talking (McMillan & Schumacher, 1993). Indeed, 

interviews for the present study were recorded and transcribed for data analysis. Hence, 

there were multiple opportunities to go back and listen to the recordings to filter explicit and 

relevant responses for data analysis (McMillan & Schumacher, 1993).  
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Cohen et al. (2011) proposed that interviews must be taken as a social encounter. To put it 

differently, interviews must be seen as two or more people exchanging views on a topic of 

mutual interest. As such, we were obligated to set up an interview room with minimum 

interruptions, and abide by the ‘rules of the game’ (Cohen et al., 2011). Firstly, interviewers 

were introduced by their first names, and not with their surnames and titles. According to 

Mauthner (1997), this act establishes a tone of informality to gain learners’ cooperation. 

Secondly, we were careful when explaining the purpose of the interview. For example, we 

emphasised the fact that ‘we wanted to find out more about their views’ rather than to say 

that ‘we are researching learners’ identities in mathematics’. This gesture establishes rapport 

and participants may be sincere in their responses to allow data accuracy at the end (Cohen 

et al., 2011). Thirdly, we considered ‘latitude’ to pursue a wide range of responses (McMillan 

& Schumacher, 1993). Latitude in this context implies the need to allow participants to freely 

answer questions without strict control as some questions may have different answers. For 

example, one would say ‘please tell us more’ as a follow up probe to get the learner to share 

more insight or a different answer to a question. This also led to clarification. Fourthly, to 

lessen the language barrier, the interviewers were pleased to repeat questions and even 

explain them for clarity. The interviewers restrained from leading participants to respond to 

closed questions that may support certain point of view (McMillan & Schumacher, 2010), 

rather they were patient and waited for the responses. Other conceptions of the interview will 

follow in other sections, but next, the methods of data analysis are discussed. 

 

3.3.4 Methods of data analysis       

Data analysis also followed a three-phase process. To present the integrated mixed 

analysis, (1) the study analysed responses from the open-ended questionnaire using 

inductive data analysis; (2) that step was followed by the analysis of the closed 

questionnaire using exploratory factor analysis; and (3) finally transcripts from the interviews 

were analysed through predetermined categories to expand on the themes that emerged 

from the open-ended questionnaire.  

 Open-ended questionnaire (QUAL processes) 

All filled open-ended questionnaires were collected from the participants. Each filled 

questionnaire was numbered for later administrative purposes. To get started with data 

analysis, McMillan and Schumacher (2006) recommend that the researcher can “develop an 

organising system from the data” (p. 368). We grouped data from generally reading learners’ 

statements about mathematics. We needed to familiarise ourselves with the collected data. 

The idea was to get a general sense of the study (Creswell, 2009). In general, the learners 
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believed that mathematics ‘was easy’ in primary school, then it ‘got hard’ in Grade 8, and it 

will be ‘even harder’ going forward.  

When coding data from open-ended statements, we firstly looked for words (in this case, 

‘easy’, ‘hard’, and ‘harder’) which fitted the groups (Cohen et al., 2011). In order for words to 

fit the groups, meanings were taken into account (McMillan & Schumacher, 2006). That is, 

we then fitted the words with similar meanings. As a simple example, ‘hard’ will get together 

with ‘difficult’ or ‘challenging’. This system yielded another group when learners have, for 

example, written mathematical symbols or examples and provided explanation outside our 

initial worded groups. As informed by McMillan & Schumacher (2006), it was here where we 

had to ask ourselves, ‘What were these learners talking about or implying by providing such 

information?’, and thus we looked for the same meanings from different contexts in order to 

fit them to our initial groups. The issue of overlapping (or duplicating) factors was taken into 

consideration. If statements overlapped, we chose one group where we thought it fitted the 

most. At this point of interim analysis (McMillan & Schumacher, 2006), we were able to get a 

glimpse of where the study was going when compared to our planned strategies for data 

analysis. The interim analysis stopped looking into further details for each group. Cohen et 

al. (2011) cautioned researchers that trying to explain data from this grouping approach can 

be cumbersome. Similarly, in this case, interim analysis from this approach became 

superficial in dealing with the issues of learner identity in mathematics.        

However, it was interesting that within the initial groups, learners were determined to justify 

or give reasons for their statements. In other words, learners were not giving two or three 

statements about mathematics. Instead, it was one statement with a ‘but’ or a ‘because’ that 

was followed by another statement(s). As McMillan and Schumacher (2006) recommend, 

there was a need to continue to refine our coding system. Going forward, the study looked at 

the learners’ justifications and their reasoning. It was at this stage where common themes 

were organised using inductive data analysis method. Themes were carried over in order to 

explain hypothesis, different contexts of learner identities, and more importantly, explore the 

development of other instruments for further data collection. McMillan and Schumacher 

(2006) argue that the significant purpose for qualitative analysis is to look for systematic 

processes of categorising, synthesising, comparing, and interpreting data to provide 

explanations of particular interest in the study.  

 Closed questionnaire (QUAN processes) 

To account for how the closed questionnaire was developed, the point of departure is that 

the filled open-ended questionnaires were numbered when they were collected. The reason 

for numbering them was to randomly pick filled questionnaires to develop the closed 
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questionnaire. In this case, EXCEL was used to pick questionnaires at random. The study 

had developed themes from the open-ended questionnaire with three statements. From the 

first open-ended statement that was ‘Describe doing maths when you were younger’, the 

major theme was called ‘understanding in statement 1’ and it was present in about two thirds 

of the data. From the second open-ended statement that was ‘Describe doing maths at the 

moment’, the major theme was named ‘understanding in statement 2’ and it was just below 

two thirds of the data. And from the last open-ended statement that was ‘Describe doing 

maths when you get older’, the major theme was ‘motivation in statement 3’ and this was just 

above one third of the data. See summary of themes with their percentages in the next 

chapter. At the end, a total number of 36 random statements were chosen from the major 

themes (15 statements from ‘understand in statement 1’, 14 statements from ‘understanding 

in statement 2’, and 7 statements from ‘motivation in statement 3’) to form a 36-item Likert-

scale questionnaire – 36 items were deemed adequate for the study. We ensured that the 

statements were not repeated from any particular theme. If repeated, one statement was 

discarded and another statement from the related theme would be randomly chosen. We 

limited statements to a single idea or concept by adding or removing odd words for 

clarification. This technique was informed by Barmby, Bolden and Raine (2014).  

This became the second phase for data collection, and learners responded by ticking their 

boxes of choice from strongly agree, agree, neither agree nor disagree, disagree, to strongly 

disagree per given statements. McMillan and Schumacher (2006) highlight that rating scales 

are mostly used in questionnaires because they allow fairly accurate assessments of 

emotional reactions from participants. This is because emotional reactions such as beliefs 

and attitudes are thought of in terms of gradations (McMillan & Schumacher, 2006). When 

the learners finished filling the Likert-scale questionnaires, they were asked to check if they 

did not inadvertently skip any statement (Cohen et al., 2011). This gesture contributed to the 

quality of research. 

The Likert-scale questionnaire data was analysed using SPSS. From the SPSS packages, 

exploratory factor analysis (EFA) was used to determine which dimensions emerged strongly 

from the data. In this case, two dimensions emerged from this analysis. The learners were 

relating more to their experiences of ‘doing maths’ in the past, and to some degree the 

learners shared experiences of ‘doing maths’ at the present moment. The future projections 

of learners did not come out as a coherent dimension. As a result, the focus of the study for 

further analysis, synthesis and interpretation eliminated future projections of learners. A 

scatter plot of learners was presented using the two identified dimensions to categorised 

learners for the stratified purposeful sampling of learners that were to be interviewed. As 

mentioned previously, three categories of learners were observed, and two participants per 
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category were interviewed to explore mathematical learner identity with another instrument – 

the interviews. 

 The interviews of six individual learners (QUAL processes)  

The interviews had two parts. One, it followed the same structure as the open-ended 

questionnaire, which adopted the explanations of identity as becoming. However, the 

questions were more directed to accommodate both identity as negotiated experience and 

identity as doing as described in Wenger’s (1998) social theory of learning as our theoretical 

framework. In practical terms, the interviewers asked the interviewees about their 

experiences of doing mathematics in the past, in the present, and about their future 

projections. As follow up questions, for example, learners were asked how they were taught 

or what did they enjoy about learning mathematics. Two, the questions were extended to 

explore ways of developing or improving mathematics learner identity from the learners’ 

perspectives. This part reflected on the issues covered in the literature review which focused 

on classroom practices. Yet again, the nature of the interview was semi-structured. The 

interviewers were free to modify the sequence of questions, change the wording, explain 

them or add to them (Cohen et al., 1994).  

As highlighted above, this phase of data analysis followed a qualitative process. That is, data 

was organised, analysed, synthesised and interpreted using qualitative processes (McMillan 

& Schumacher, 2006). As such, data was coded to develop themes. We used predetermined 

subcategories to develop themes. Subcategories were guided by the research questions, 

and the themes were: identity factors, pedagogy, and cause of change (Cohen et al. 2011). 

More details of data analysis from the interviews will be discussed during the sequential 

reporting of the results in the next chapter. The interviews analysis depended on some 

outcomes based on both the open-ended and closed questionnaires analysis.    

 Consolidation of data analysis  

Creswell (2009) encourages the need to consolidate data analysis. The study has 

demonstrated links of how each phase of the data analysis are connected. The three key 

concepts from identity as practice – identity as negotiated experience, identity as doing, and 

identity as becoming – were found to be appropriate for analysing different pieces of themes 

from both the open-ended questionnaire and interviews (Srivastava & Thomson, 2009). 

However, going forward, identity as becoming received lesser consideration in the analysis 

framework since the analysis of the closed questionnaire objectively restricted the study to 

concentrate on the learners’ past and present experiences. Table 3.1 below shows the two 

characterised analysis frameworks. 
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Identity as negotiated experience implies learners identity that is developed from treatments 

they receive from their “daily engagement” (Wenger, 1998, p. 150) in the community of 

practice. For example, learners are justified to withdraw their engagement in the classroom if 

getting wrong answers from activities permits others to pass hostile comments or gestures 

towards them. So for instance, learners in some classrooms go as far as laughing if a 

learner provides an incorrect answer to the teacher’s question. Moreover, on the other hand, 

identity as negotiated experience provides positive inferences in the formation of self-images 

when learners receive encouraging remarks from the teacher and other learners in 

mathematics classrooms (Wenger, 1998). The process of analysing identity depends on how 

events play out in the classroom at the present moment. The focus of analysis became 

whether teaching and learning environments were supportive or dismissive towards learners’ 

social interpretations.       

Identity as doing refers to knowing who we are by being exposed to what we understand, 

usable, negotiable, and familiar about the community of practice (Wenger, 1998). Members 

are offered opportunities to interpret usable information in order for them to identify 

themselves as knowers of different concepts in the community. In a community of practice, 

members find ways of working together on the familiar concepts through mutual engagement 

(Wenger, 1998). On the opposing end, “we know who we are not by what is foreign, opaque, 

unwieldy, unproductive” (Wenger, 1998, p. 153). A standard of analysing data focuses on 

relationships of understanding mathematics from collaborative learning perspectives. 

   
Table 3.1: Identity as practice – Learners’ identity analysis frameworks  

Characterisations  Key aspects for coding  
 

Identity as negotiated 

experience 

Learning experiences through participation 

Self-images in relations with others 

Motivating learning environment    

Effects of engaging with the teacher 

 

Identity as doing 

Display of competence in the subject   

Collaborative learning perspectives 

Why learners engage in activities  

Accountability to an enterprise  

 

As much as the data analyses were conducted per each phase, and per each thematic 

outcome, the ultimate goal of the analyses was to draw conclusions from Grade 8 learners’ 

views and further highlight possible generalisation of findings that can contribute in identity 

research. 
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3.4 Rigour in the research 

Researchers have a responsibility of conducting studies that are open for criticism and 

evaluation (Long & Johnson, 2000). Thus, researchers are required to abide by the shared 

values, rules and standards of how all research studies are measured for quality and rigour 

(Davies & Dodd, 2002). Rigour is characterised by the trustworthiness of the research 

(Chauraya, 2013; Golafshani, 2003; Shenton, 2004). In general, such accountability and 

evaluations are centred on assessing validity and reliability of research (Long & Johnson, 

2000). It is however understood that reliability is a consequence of the validity in a study 

(Cohen et al., 2011). Furthermore, ethical considerations become an integral part of rigour in 

research (Gorard & Taylor, 2004).  

 
3.4.1 Validity      

The nature of mixed methods research intends to promote the quality of research by drawing 

strengths and discounting weakness from paradigm characteristics. Onwuegbuzie and 

Johnson (2006) advocated that “strengths and non-overlapping weaknesses” (p. 51) from 

different paradigms can complement each other to enhance validity. The present study 

applied a sequential mixed design by switching between qualitative methods to quantitative 

methods. The study followed what Onwuegbuzie and Johnson (2006) described as “bilingual 

nomenclature” (p. 55) by using language of validity that is acceptable from both qualitative 

and quantitative communities of researchers. That is, the study used language for validity 

that was aligned with that of the philosophical stances (post-positivism and constructivism) 

adopted in the mixed methods research design. Within this explanation, the next segments 

describe an account for validity for each method of data collection.                

 Qualitative validity (The open-ended questionnaire) 

This section seeks to account for the use of the open questionnaire as to whether it was able 

to measure, describe, explain and theorise what it was intended (Long & Johnson, 2000). 

The use of an open-ended questionnaire ought “to collect contextual information for 

facilitating the interpretation of qualitative data” (Onwuegbuzie & Johnson, 2006, p. 53). Data 

collected from an open-ended questionnaire yields broad viewpoints. Considering that all the 

Grade 8 learners participated in the open-ended questionnaire, this ensured rich and thick 

descriptions that can provide details to support how information can be organised and 

analysed for interpretation (Teddlie & Tashakkori, 2009). In turn, results can become more 

realistic which can add to the validity of the study (Creswell, 2009).        
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The participants could not have directly provided responses to answer the research 

questions or confirm any hypothesis from the open-ended questionnaire. In other words, 

participants provided concentrated information deemed necessary to subjectively explore 

different meanings (Creswell et al., 2011). Cohen et al. (2011) argue that a wide distance 

between methods of data collection and research questions encourages honest cooperation 

from participants. In an effort to improve truthfulness of the data, the open-ended 

questionnaire was followed by the use of the Likert-scale questionnaire and the interviews. 

Moreover, it was communicated to the participants that their views from open questions were 

to be followed by other instruments for data collection. This prepared participants to be 

aware of what was coming next and allowed them to reflect on their understanding of 

statements they provided (McMillan & Schumacher, 2006). 

 Quantitative validity (The Likert-scale questionnaire) 

Quantitative validation is taken to imply “the degree to which an instrument measures what it 

is intended to measure” (Long & Johnson, 2000, p. 31). The instrument was intended to 

fairly cover the domain of learners’ views with the same weight as the major themes 

obtained from the open-ended questionnaire. In developing the Likert-scale questionnaire, 

each statement from individuals within the major themes had an equal probability because of 

its randomised selection. For Cohen et al. (2011), this form of validity demonstrates that the 

instrument comprehensively covers the items that it purports to cover is known as the 

‘content validity’.  

Punch (2009) described internal validity to look at the extent to which the items are 

correlating with each other. As noted, two dimensions emerged after extraction for analysis 

using exploratory factor analysis. In one dimension the Cronbach alpha was 0.72, and in 

another dimension it was 0.88. In both cases, the scores were reliable. What constitute 

marginally or unacceptable low reliability is a coefficient alpha below 0.60 (Cohen et al., 

2011). In fact, the two extracted dimensions in the study were accepted for further 

exploration because of their reliability (Field, 2009). A coefficient alpha calculates an 

average of all possible split-half reliability (Cohen et al. 2011). Also, it can be noted that the 

relatively high average of all the inter-item correlation yields a high reliable measure (Field, 

2009). 

Validity is further understood as a judgement of the appropriateness of a measure for 

specific decisions that result from the scores (McMillan & Schumacher, 2006). In mixed 

methods research, it was significant to understand the role of quantitative analysis from the 

notion that it was also intended to expand data for further methods of data collection 

(Onwuegbuzie & Johnson, 2006). The results from the Likert-scale quantitative informed the 
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subgroups which were necessary to select as participants for the interviews. As much as 

qualitative research values each participant (McMillan & Schumacher, 1993), given many 

challenges of interviewing a larger population, it was necessary for the study to stratified 

purposefully in sampling key informants who have special status that can be shared for the 

trustworthiness of the research (McMillan & Schumacher, 2010).  

 Qualitative validity (The interviews) 

Face-to-face verbal interviews were conducted in this study. Each learner was interviewed 

separately. Considering that the interviews were the third phase of data collection, 

participants were familiar with the faces of the researchers at that time, and that promoted 

the characteristics of prolonged engagements and social conversations (Long & Johnson, 

2000). Prolonged engagements are commended to build trust and the natural bound 

between the researcher and participants (McMillan & Schumacher, 2006). Moreover, the 

researchers treated participants with respect and empathy to maintain mutual objectives of 

the research (Davies & Dodd, 2002). For example, the interviewers were careful not to 

interrupt participants during interviews. 

In order to enhance validity, the researchers made attempts to reduce bias (i.e. a systemic 

tendency to make errors in the same direction) during interviews (Cohen et al., 1994). 

Interviewers have different interactive styles (McMillan & Schumacher, 2010). Each 

researcher brings along some degree of biasness to the interviewing processes (Creswell, 

2009). For instance, if the interviewer has a soft voice or a different accent, respondents can 

struggle to hear all the words, and opt to assume the meaning of the questions. Cohen et al. 

(2011) suggest that the interviews can be scheduled in a way to allow different researchers 

to contribute their different interviewing styles. In this study, three interviewers collected 

data. It was one masters student (me), one doctoral student, and the senior lecturer. The 

senior lecturer also provided guidance in planning and carrying out the interviewing 

processes.  

Punch (2009) maintains that interviews are a good way of accessing people’s perceptions, 

meanings of situations and constructions of reality. As already stated, this study used semi-

structured interviews with an intention to examine learners’ views in more detail whilst 

expanding data from the open-ended questionnaire instrument. The same structure of open 

questions was used for the interviews as the open-ended questionnaire. Statements from 

the open-ended questionnaire informed the development of the Likert-scale questionnaire. 

As such, the use of the interviews was valid when compared to the validity effects obtained 

from the Likert-scale questionnaire and the open-ended questionnaire. The matching of two 

or more measures is known as ‘convergent validity’. Hence, it can be assumed that the 
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validity of the interviews was comparable with the proven validity of the other measures 

(Cohen et al., 2011). 

  

3.4.2 Reliability 

Another essential concept for rigour in research is reliability. Reliability can be described as 

the consistency of a measuring instrument (McMillan & Schumacher, 2006). In general, 

reliability can suffer if different instruments used to collect data are administered at the same 

time (McMillan, 2012). In this study, learners participated in three sequential processes for 

data collection. Each measuring instrument was administered separately to keep learners 

motivated in order to enhance reliability. Below I begin by discussing the impact of the 

qualitative methods (i.e. the open-ended questionnaire and the interviews) to account for 

reliability. 

 Qualitative reliability (The open-ended questionnaire and the interviews) 

In the nature of active involvement of the researcher, Guba and Lincoln (1985), cited in 

Punch (2009), extended the concept of reliability and looked at the “consistency over time 

(or stability)” (p. 244). One aspect of dealing with consistency over time is to give the same 

test to the same participants, under the same circumstances, but at a different time, and 

assess if the scores would correlate (McMillan & Schumacher, 2006). In this research, the 

open-ended questionnaire was used and later the participants were interviewed. This 

embodied the level of repeatability of results (Cohen et al., 2011).   

The other common sources of bias that may have effect on reliability can be associated with 

the personal conditions such as lack of motivation, mood, fatigue, and so on (McMillan, 

2012). In this research, the participants took 15 minutes at most to fill the open-ended 

questionnaire. Also, the interviews took about 10 minutes per participant. The durations were 

deemed short enough to keep the learners motivated and relatively less stressed to 

participate in the data collections.      

 Quantitative reliability (The Likert-scale questionnaire) 

Punch (2009) asserted that consistency over time can be directly assessed by parallel forms 

of the instrument. This study utilised the sequential mixed methods design approach. 

Particularly the use of more than one instrument to collect data ensured that if the Likert-

scale questionnaire was valid and reliable, and there was general agreement with the Likert-

scale questionnaire and the other instruments, then the other qualitative instruments were 

reliable. In this regard, McMillan and Schumacher (2010) refer to this technique as 
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‘equivalence reliability’. The authors confirm that alternative forms can even be made up of 

different items; the scores attained by an individual would be about the same on each form. 

In this research, a 36-items Likert-scale questionnaire had similar responses to those that 

were offered by participants from the open-ended questionnaire. To a greater degree 

participants were familiar with the type of statement used, and according to McMillan (2012), 

this implies that reliability is therefore relatively free from errors. 

 
3.4.3 Pilot testing the instruments 

Two instruments were pilot tested in this research. Firstly, we piloted the open-ended 

questionnaire. Grade 9 learners within the same school were asked to participant in the pilot 

testing. For McMillan and Schumacher (1993), it is important to test if participants are able to 

understand the instructions of an instrument. In our case, learners were offered an 

opportunity to ask for clarity if they did not fully understand what was expected from them. 

Moreover, pilot testing a documented instrument can assist to identify whether a sequence 

of questions or any ambiguities in questions can lead to producing an irrelevant data 

(McMillan, 2012). Irrelevant data can be useless (Cohen et al., 2011). Thus, pilot testing the 

instrument shed light on how learners identify with mathematics (McMillan & Schumacher, 

2006). At the same time, pilot testing the open-ended questionnaire gave us an indication as 

to how long the targeted participants take to complete responding to the questions (Cohen et 

al. 2011).   

Secondly, the interviews processes were pilot tested. One learner from the same group of 

learners that were going to be used in the study was interviewed. Again, time taken to 

participate in the interviewing processes was noted. This was essential for scheduling the 

entire interviews. In scheduling the interviews, the senior lecturer played a leading role in 

arranging suitable interviewing venues and to inform participants about dates and times. The 

other objective of pilot testing the interviews included a check for biases in the procedures, 

the interviewers, and the questions. During the pilot testing, we reflected on the procedures 

to identify clues that suggested that the participant were uncomfortable or did not understand 

the questions (McMillan & Schumacher, 2010). From the results, we slightly changed the 

order of questions to enhance clarity and to appreciate what had emerged from the pilot 

testing. 

 

3.4.4 Ethical considerations 

Learners that were selected to participant in this research study were minors under 18 years 

of age. The researchers were compelled to get informed consent from the government, the 
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school, the learners, and the learners’ parents. When requesting informed consent, all facts 

about the project were communicated particularly to learners (and their parents), and 

decisions were left to the individuals if they wanted to participate or not. This study relied on 

the informed consent from the larger project. However, I also obtained ethical clearance from 

the Wits University Ethics Committee. The protocol number is 2017ECE006MR (see 

Appendix D).   

An aspect of ethical principles in educational research includes taking into account that 

participants are somehow inconvenienced by their involvement in research studies (McMillan 

& Schumacher, 2010). In this research, learners were requested to sit in the classroom and 

respond to two sets of questionnaires. Each questionnaire took learners 15 minutes at most 

to complete. Also, some learners participated in the interviews and that took about another 

10 minutes in order for participants to respond verbally to open-ended questions. Moreover, 

learners who were interviewed were audiotaped. These procedures may have intrusive 

elements (Cohen at al., 2000) and carry some levels of discomfort, stress and anxiety for 

some learners as they are sharing their personal experiences and interpretations regarding 

mathematics. In order to offer learners control and free will, they were advised to withdraw 

their participation at any stage if they were feeling uncomfortable, exhausted or otherwise. At 

the same time, learners were assured that they were not going to be penalised or be 

disadvantage in anyway possible by not getting involved or withdrawing their participation 

from the project. McMillan and Schumacher (2010) asserted that “No one should be forced 

to participate in research” (p. 118).  

In order to protect the privacy of participants, the following two practices were considered: 

(1) anonymity, and (2) confidentiality (McMillan & Schumacher, 2010). In all three stages of 

data collection, learners were assured that access to their characteristics, responses, 

behaviour, and other information was restricted to the involved researchers. In both the 

open-ended and closed questionnaires, the participants were required to provide their 

names. This stance ensured a systematic way of tracking learners throughout the project. 

The reason was that data analysis began before all the data was collected (Onwuegbuzie & 

Leech, 2004). On the other hand, we knew the names of learners that were selected for 

interviews. However, the names of the learners were not identifiable in any form of reporting 

in order to preserve anonymity, and this gesture was communicated clearly to participants 

and their parents. 

With regard to confidentiality, we ensured that information from participants will only be 

accessible to the researchers that were involved with the project (Cohen et al., 2011). In 

other words, we will never discuss or disclose any information to enable people outside the 



56 
 

project to have means of linking such information to participants’ identities (McMillan & 

Schumacher, 2010). Another component of confidentiality required that all collected 

information from participants be stored in secured and controlled locations. That is, we have 

stored all soft copies in computers with personal security codes. Hard copies with 

information are also stored in locked cabinets. In five years after the research had been 

completed, all information will be destroyed. This means that we will delete all soft copies 

from the computers and their extended memories, and we will shred hard copies. Whilst this 

section accounts for procedural ethics, researchers have a responsibility to consider how 

their research contents, methods and reporting abide by ethical principles and rigour (Cohen 

et al., 2011). 

 

3.5 Summary 

A mixed methods research approach was employed to frame the methodological research 

design of the study. The rationale of employing mixed methods research approaches 

appropriated the selection of the sequential mixed design. The sequential mixed design 

permitted the integration of both post-positivist and constructivist explanations while being 

guided by pragmatic philosophical worldviews in order to answer the research questions. 

The study further provided details of how learners participated during the collection of data 

for analysis. Data sets were collected in three phases. All Grade 8 learners participated in 

filling the open-ended and closed questionnaires, whilst six learners were purposeful 

stratified to participate in the interviews. Lastly, the study discussed validity, reliability, and 

ethical considerations to account for the quality and rigour of the study. The next chapter 

concentrates on reporting and processing the results obtained during data analysis from this 

chapter.  
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CHAPTER 4 

REPORTING OF THE RESULTS 

4.1 Introduction  

This chapter presents the results obtained in both the qualitative and quantitative processes 

of the study. Given the objective of the research which sought to explore learners’ identities 

in mathematics, the results are reported and analysed in three sequential phases to allow 

further consistent interpretations and discussions. The results are reported with separate 

headings for each phase, but there was a need to consolidate the data analyses because 

each phase of data collection entailed elements which directly influenced other phases of the 

investigation.    

 

4.2 Results from the open-ended questionnaire 

In the first statement, where learners were asked to describe their experiences of learning 

mathematics when they were in primary school, the following themes were extrapolated from 

their responses: understanding, resources and unclear. The context of themes was generally 

generated around the level of difficulty in learning mathematics. For example, learners were 

inclined to have experienced the learning of mathematics as being easy because of help 

they received from teachers in order for them to understand different concepts. The levels of 

difficulty in learning mathematics from the participants’ past experiences were demonstrated 

to be trivial for the exploration of learners’ identities. Instead, as indicated in Chapter 3, the 

focus was on justifications or reasons why mathematics was difficult for learners. The major 

theme was the ‘understanding’ of mathematics, and was raised by 68% of the learners. 

What further constituted the major theme was the context which entailed aspects of 

‘knowing’ or ‘unforgettable’. The dominant reasons for describing mathematics as being 

understandable were that pupils learned mathematics using smaller numbers and 

concentrated on fewer mathematical operations such as addition and subtraction in primary 

school. 

Table 4.1 below provides a summary of themes obtained from statement one of the open-

ended questionnaire. As shown in the table, themes are matched to two columns. The first 

column, named ‘reasons or justifications’, indicates the central reasons of how a theme 

came about. The second column, named ‘factors of identity’, provides a list of dominated 

words that brought about factors of identity which portray emotional reactions experienced 

by learners. For example, learners in the ‘understanding’ theme stated that when smaller 

numbers are used in learning mathematics, the subject becomes interesting, enjoyable or 
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likeable. The notion of ‘factors of identity’ is further exemplified in the ‘results of interviews’ 

section, and is also used in context to answer the first research question. 

 
Table 4.1: List of themes from statement one and their related pronouncements 
Themes  Reasons or justifications Factors of identity 
 

 

Understanding (68%)* 

- Smaller numbers were used when 
learning mathematics. 

- Fewer mathematical operations 
such as addition and subtraction 
were utilised in learning of 
mathematics. 

Fun, enjoyable, likeable, 

interesting, and exciting.  

Resources (24%) - Mathematical concepts were new 
to learners, and concrete teaching 
tools supported their learning. 

- Teachers played an important role 
to help learners pass the subject.      

Helpful, logical, necessary, 

favourite, basic, and 

simple.  

Unclear (8%) - Mathematics was easier. 

- Mathematics was hard. 

Nice, boring, and painful.  

 

The second theme from statement one was called ‘resources’. The learners found 

mathematics to be manageable because of the application of teaching and learning 

resources. The learners found mathematics to be a challenging or puzzling subject although 

they managed to pass it. The common attribute shared by the learners in this theme was 

that mathematics was introduced formally to them for the first time, and that is why 

mathematics was a challenging subject. The theme received 24% from the learners who 

suggested that their learning of mathematics was dependent on teaching aids. The learners 

relied on concrete learning tools such as an abacus and sticks to count. One learner stated: 

“I was able to pass mathematics as long as I had my fingers”. On the other hand, many other 

learners claimed that the help of their teachers and parents was necessary for them to pass 

the subject. A sense of collaborative learning also surfaced when learners appreciated 

support from each other. These learners occasionally used plural pronouns such as ‘we’ and 

‘us’ when sharing their past experiences.  

The other 8% of views of learners remained in the context of different levels of difficulty. 

Some learners perceived mathematics as being an easy subject, but they provided 

insufficient reasons to justify their assertions. For instance, the learners stated that 

mathematics was understandable because it was easy or mathematics was manageable 

because it was not difficult. In other instances, the learners compared their past experiences 
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with their current experiences of learning mathematics. For example, learners would state 

that mathematics was easy in the past because it is difficult now. Learners in this theme 

were characterised as being ‘unclear’ about their views of learning mathematics.       

In the second statement, learners were describing their experiences of doing mathematics at 

the present moment. The learners generally described the present moment of doing 

mathematics to be gradually becoming harder when they were comparing their experiences 

with those of the past. The learners indicated that mathematics is a ‘bit’ tough, difficult, 

confusing, or complicated at the moment because of the introduction of variables when 

solving algebraic equations. Again, the focus was on the reasons why learners find 

mathematics to be harder at the moment. The following three themes were presented from 

responses based on this statement, namely: understanding, resources and motivation.   

The majority of learners (62%) stated that, as much as mathematics was getting a bit harder 

or challenging, they were managing, mainly because they understood what was explained to 

them in the classroom. The language used by the learners in this theme was that they could 

manage to ‘figure out’ what was required from them. Yet, these learners seemed to be in 

agreement that they still needed to focus more in class in order to pass the subject with good 

grades. One learner wrote: “Maths seems like a tough subject but if you put your mind to it, it 

can be the most easiest subject”. This can be linked to the kind of motivation learners 

envisaged to pass the grades. Moreover, the learners suggested that they need to practise 

more in order to be able to adequately understand and solve mathematical problems which 

demand long step-by-step methods. 

The second theme from the second statement was named ‘resources’ and it represented 

23% of learners’ views about the subject. In this theme, teachers, parents, and siblings were 

presented to have played important roles in assisting and supporting the learners to cope 

with challenges of mathematics. The learners praised the teacher for providing them with 

detailed explanations in his teaching methods. However, the detailed explanations did not 

give learners access to understanding new concepts in mathematics, but what emerged 

from the analysis was that the learners gained enough confidence to participate during 

classroom activities. Almost half of the learners in this group commended the teacher for 

permitting them to use calculators (and even calculators on their cellular phones) to workout 

different sums in mathematics. The learners also appreciated help from their parents for 

explaining some of the new concepts to make it easy for them to cope with difficulties of the 

subject. 

The other group (15%) presented views whereby learners were comparing doing 

mathematics at the moment with when they were younger. Few learners in this group 
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stopped at only stating that mathematics is now harder when compared to before. A number 

of learners in this group expressed that they hate mathematics now because of all the rules 

that they are required to remember. The learners expressed being demotivated when they 

try to use the rules but still get most answers wrong at the end. As a result, they were no 

longer interested to learn the subject anymore.                          

Table 4.2 below, similarly to Table 4.1, shows the list of themes and a summary of 

justification provided by the learners in response to statement two. The table also listed 

some central reasons why a larger proportion of the learners felt that mathematics were bit 

challenging now when compared to when they were younger.                                        

 
Table 4.2: List of themes from statement two and their related pronouncements 
Themes  Reasons or justifications Factors of identity 
 

 

Understanding (62%)* 

- The introduction of variables to 
solve algebraic equations 
required learners’ understanding. 

- Learners have to cope with 
learning new things like 
Geometry. 

Confusing, nervousness, 

pressured, interested, 

favourite, and enjoyment.  

Resources (23%) - The learners praised the help of 
the teacher and the support from 
parents to cope with challenges 
of the subject. 

- The used of calculators was 
important for the learners.      

Helpful, necessary, and 

supportive.  

Motivation (15%) - Mathematics was confusing 

because of rules. 

Boring, hate, painful, and 

hurtful.  

 

In the third statement, four themes were drawn from the views of learners when they were 

describing their projections of doing mathematics when they get older. They were as follows: 

motivation, understanding, resources, and unclear. In general, learners responded by 

projecting that mathematics will be even harder in the future. About one third of learners 

(37%) indicated that they were motivated to continue with doing mathematics when they get 

to senior secondary school or higher learning institutions. The learners gave an impression 

that they have fewer options other than to concentrate and pass mathematics now in order 

to cope with grade 12 mathematics. The learners indicated that they are aware of the fact 

that mathematics was compulsory to them in the FET phase since they are attending a 

technical school. Also, the learners were motivated to pass mathematics in order to align 
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themselves with the career paths that they are inspired to choose when they get to attend 

universities and colleges. In this sense, a larger number of learners highlighted mathematics 

as a subject that is a pre-requisite to gaining competitive access to higher institutions of 

learning whilst standing a better chance of getting students’ funding such as bursaries.  

Table 4.3 below, similarly to Table 4.1 and Table 4.2, provides a summary of themes, their 

relative justifications and their emotional elements experienced by learners respectively. 

    
Table 4.3: List of themes from statement three and the relative pronouncements 
Themes  Reasons or justifications Factors of identity 
 

Motivation (37%)*  

- Learners were motivated to study 
mathematics in order to align 
themselves with different career 
paths. 

Inspired, motivated, 

encouraged, and 

compulsory.  

 

Understanding (28%) 

- Learners hoped that they will be 
familiar with the rules of 
mathematics. 

Necessary, needed, 

enjoyable, and desirable.      

 

Resources (9%) 

- Learners predict that new and 
improved technology will assist 
them to progress when studying 
mathematics.      

Helpful, and supportive.  

 

Unclear (26%) 

- Mathematics will be very hard or 

very easy. 

Do not know or were not 

sure.  

 

The second theme from the third statement presented how learners were intending to pass 

the subject. Views of the learners in this theme which was named ‘understanding’ received 

28%. The learners believed that they must understand what they were doing in class in order 

for them to pass the subject. The language used by some learners in this theme included the 

fact that they needed to ‘practise’ or ‘study’ in order for them to understand mathematical 

concepts. There was also a sense that learners would get to understand mathematics 

because they would be familiar with ‘steps and rules’ used in the subject at that time. Also, 

some learners indicated that teachers would still be needed to explain different mathematical 

concepts even at university level. 

A small number of learners (9%) predicted that mathematics would be easy in the future 

because of advancements in technology. Learners in this group claimed that new technology 

(computers, calculators, maths sets, and so forth) would bring about smarter ways of solving 

mathematical problems. In this way, mathematics would be embedded in their everyday life 
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experiences. However, there was an assertion from some of the learners that much of 

adjustment and “some getting used to” would be needed to accommodate new technology. 

A group of learners who constituted views which formed the last theme received 26%. The 

theme was called ‘unclear’. The learners stated that they were not clear or have no views 

other than to predict that learning mathematics will be much harder or much easier in the 

future. 

 

4.3 Results from the Likert-scale questionnaire 

The Likert-scale questionnaire had 36 items which were randomly developed from the major 

themes that had occurred from the open-ended questionnaire results. The major themes are 

indicated by stars (*) in the tables above, and they are: understanding, and motivation. The 

use of exploratory factor analysis (EFA) allowed the extraction of dimensions that emerged 

from the data. The following two dimensions emerged, namely: ‘present views of doing 

maths’ and ‘past views of doing maths’. This means that there were relatively strong 

correlations of items in those two dimensions. In practical terms, for example, the learners 

shared a common consideration that ‘Doing maths now is very understandable’. In another 

example, learners were consistent in their agreement with the following statement: ‘I enjoyed 

doing maths when I was younger’. See Table 4.4 below for the summary of components of 

this analysis.  

 Table 4.4: Dimensions identified for identities of learners for analysis  

Dimension 
identified 

Number of 
items 

Exemplar items Cronbach α of 
resulting 
measure 

(reliability) 

% 
Past / 

present / 
future 

Present 
views of 

doing maths  

7 I understand maths now; 
Maths at the moment is 

actually fun; Doing maths 
now is very 

understandable; and so 
forth. 

 

0.88 100% 
present 

Past views 
of doing 
maths 

4 I managed to pass maths 
when I was younger; I 

enjoyed doing maths when 
I was younger; and so on. 

0.72 100% past 

 

In the table above, the last column, named ‘% Past/present/future’, indicates the origins of 

grouped statements for the identified dimensions. For example, all seven statements in the 
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‘present views of doing maths’ dimension came from learners’ experiences of doing 

mathematics at the present moment. 

For further analysis, we then listed items of the two identified dimensions in Table 4.5. There 

were 11 items in total. In the ‘present views of doing maths’ dimension, one item was 

affecting the internal reliability for that group of items. The wording of the item was ‘The more 

maths I do, the smarter I get’. This one item was removed to obtain the reliability of 0.88 

otherwise the reliability would have been lower. 

  
  Table 4.5: List of items per identified dimension  

                                                                                                                                             Dimensions 
 1 

Factor Type 

2 
Factor Type 

I understand maths now. Present  

Mathematics at the moment is actually fun. 
 

Present  

Maths is now not difficult and I understand it better. 
 

Present  

Maths is quite easy at the moment. 
 

Present  

Doing maths now is very understandable. 
 

Present  

Maths is now interesting for me and I would like to 
learn as much as I can about it. 

Present  

Maths is easy now only if you follow instructions 
and concentrate. 
 
 

Present  

Maths was fun when I was younger because we 
were using smaller numbers.  

 Past 

Maths was easy when I was younger because it 
used basic operations (such as +, - , ÷ , and ×).   

 Past 

I managed to pass maths when I was younger. 
  

 Past 

I enjoyed doing maths when I was younger. 
 

 Past 

 

To explore different perspectives about the two identified dimensions, we plotted them 

together using a scatter plot diagram (see Figure 4.1). This effort was to contribute to 

determining subgroups of different views from the learners’ past experiences versus their 

present experiences of doing mathematics. A scatter plot diagram yielded three subgroups. 

Some learners have bad experiences of doing mathematics in the present whilst in the past 

they had good experiences. These two learners were positioned at the top left (TL) of the 
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diagram. Some learners had good experiences of doing mathematics in the past but not 

now, and these two learners were located at the bottom right (BR) of the diagram. The rest 

of the learners were scattered in a range where they had good experiences in the past as 

well as having good experiences now. These learners were located at the top right (TR) of 

the diagram. There were no learners that had a bad experience in the past and a bad 

experience now – i.e. there were no learners located at the bottom left (BL) of the diagram.           
            

 

Figure 4.1: Scatter plot of the learners with the present views against the past views of doing maths 
                      

In the interest of getting to understand experiences shared by the learners from the two 

subgroups which did not conform to the majority views (the top left two and the bottom right 

two in Figure 4.1), there was a need to look particularly at their responses offered by each 

learner from the open-ended questionnaire. The comparison of the results between the 

Likert-scale and open-ended questionnaires became necessary for the complementarity 

purpose of the mixed methods research (Greene et al., 1989). We needed to confirm these 

learners’ positions. Table 4.6 lists such comments made by the learners in the initial 

qualitative component when describing their experiences of doing mathematics in the past 

and in the present. Their future projections were not included as the focus was now on the 

comparison of the two emerged dimensions. 
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Table 4.6: Responses from the starred two subgroups 
The bottom right learners The top left learners 
Describe doing maths when you were 

younger: 

- Maths was basic and fun when I was a 

young boy. 

- Maths was my favourite subject. It was 

easy if you listen and understand. 

Describe doing maths when you were 

younger: 

- It was extremely difficult for me. I 

couldn’t even tell time before. 

- Maths was very hard back when I was 

younger. 

Describe doing maths at the moment: 

- Maths has become a challenge at the 

moment as I do not understand the 

equations and so on. 

- Maths is bit difficult now. I don’t have a 

lot of interest in maths anymore 

because it’s more complicated now 

and confusing. I also get very confused 

with the rules in maths.  

Describe doing maths at the moment: 

- Math is suitable and easier at the 

moment. The more math I do, the 

smarter I get. 

- Maths is now not difficult, I understand 

it better. 

  

 

In short, responses of the learners at the bottom right position had stated that mathematics 

was fun when they were younger because they understood the subject, but now they have 

lost interest in mathematics because of confusing rules and equations. The top left two 

learners acknowledged that they found mathematics to be ‘extremely difficult’ in the past, but 

they are able to understand the subject much better now.  

 

4.4 Results from the interviews 

The interviews were intended to interrogate the views shared by learners from their 

subgroups (at the BR, TL, and TR) for qualitative analysis. The first step in this section 

sought to discuss the three subgroups separately for analysis. The analysis concentrated on 

the three subcategories which were predetermined to contributing to answering the research 

questions, namely: factors of identity, pedagogy, and cause of change. The second step was 

to fit emotional reactions as factors of learners’ identities about mathematics in the 

predetermined subcategories for analysis. These emotional identity factors were obtained 

from the major themes received from the open-ended questionnaire analysis. As indicated 

previously, the last columns in the tables (Table 4.1, Table 4.2, and Table 4.3 above) listed 

words which became what was labelled as factors of identity. Another example of such 
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identity factors was from the suggestion that learners have perceived mathematics to be 

understandable because they enjoyed doing the subject. From this exemplified outcome, we 

needed to direct questions to expand on what did the learners enjoy or did not enjoy about 

doing mathematics. As highlighted in the literature review, when learners enjoy the subject, 

they are transformed to realise what they can do to become certain individuals (Boaler, 

Wiliam & Zevenbergen, 2000). The last step of data analysis examined the views from the 

six interviewed learners to understand how learners can be supported to develop or improve 

identities in mathematics. Wenger’s (1998) aspects of ‘identity as practice’ were used in all 

three steps of analysis. By framing the study in identity as practice, the researcher focuses 

on analysing cognitive and emotional reactions of the participants, with emphasis away from 

“models of ability” (Boaler et al., 2000, p. 3) or what Darragh (2016) broadly described as a 

“performative identity” (p. 24).  

        

4.4.1 The learners at the bottom right of the scatter plot  

The two learners at the bottom right indicated that they had good experiences of doing 

mathematics in the past. The sources that influenced the identity of these learners were 

aligned with what they felt was expected from them by the school, besides the fact that the 

subject was easy because of the use of smaller numbers and the emphasis in using fewer 

mathematical operational symbols. At this stage, the learners did not confirm the findings 

from the other phases of the data analyses. The learners stated that they did not enjoy much 

about the learning of mathematics. When they were asked about what they enjoyed in doing 

mathematics in the past, these were their responses: 

 Learner 1: In primary school, math was not too much; I enjoyed solving problems, I liked 

 sum, and subtraction. I never enjoyed doing division. Multiplication – that is fine.   

 Learners 16: I wouldn’t say I enjoyed much about mathematics, but I know that it is a very 

 compulsory subject; so I took it as a subject that I needed to do, so I didn’t really much enjoy 

 it. 

Furthermore, the use of language in the quoted responses does not entail different ways that 

they could have engaged with other learners in the classroom. The responses indicate self-

perceived roles by the learners. This is evident in the constant use of a pronoun “I” and the 

focus on different mathematical contents that they enjoyed (or did not enjoy) other than how 

such contents were taught or learned. The follow up questions were around the issue of how 

they were taught mathematics. Here were their responses:  

 Learner 1: In primary school, the teachers always told us the rules and we did four or more 

 activities in a specific rule; and the teachers explained more than once.  
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 Learner 16: They [the teachers] gave a textbook, they gave us an activity and they told us to 

 read through that activity, and read through that chapter and complete the activity; and there 

 were few sums which were written on the board.  

There were indications from the quotes that the teachers used less time to explain classwork 

using the chalkboard. The learners used more time to do activities on their own. The fact that 

the learners concentrated on learning through textbooks and that they followed specific rules 

to complete activities from different chapters, in essence, such descriptions illustrate 

traditional teaching methods.   

In sharing the experiences of doing mathematics at the moment, the learners indicated that 

they had lost interest in learning of mathematics. When the learners were asked to discuss 

what they were enjoying in Grade 8, again there was a sense of individuals’ dedication when 

doing mathematics which involved less engagement with other learners other than 

expectations to interact with the teacher. On the other hand, the learners expressed that to 

not understand mathematical concepts limit them from participating in the classroom. The 

following quotes were the learners’ responses:          

 Learner 1: I enjoyed doing fractions in grade 8, but our teacher moves very fast so I can’t 

 really take notes because I need to take notes at the same time; and sometime, this makes it 

 very difficult to understand. 

 Learner 16: At this moment, I find it challenging because of my lack of asking the teachers in 

 class. So the thing is that I don’t interact much when I don’t understand [laughing]. I think I am 

 very shy. 

The follow up question was about how they were taught mathematics at the moment. The 

learners emphasised that they were expected to remember different rules as they continue 

doing mathematics in Grade 8. The quote below gives the sense of applying a step by step 

approach when the teacher is explaining an activity to learners.       

 Learner 1: The teacher says the rule once, we do one activity and then we move to the next 

 step... I am struggling with my maths. I am struggling because I don’t understand the rules, 

 they are too much at once. 

The learners’ identity from this quote reflects the consequence of traditional teaching 

methods which sought to focus on reproducing knowledge from the provided rules, formulae, 

or concrete information. It also gives the sense that learners were expected to reproduce 

procedures without connecting them to everyday life concepts. The act of emphasising 

procedures without meaning has detriment effects towards developing learners’ 

mathematical understanding (Brodie et al., 2009).  
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The last set of questions for this subgroup compared the experiences of learners when they 

were in primary school with that of the present moment. The questions sought to determine 

the causal effects of the change in their affective or cognitive reactions. Here are the 

questions: Has your view on maths changed from when you were younger to now? If so, 

what things have caused this change? Both learners agreed that their views have changed. 

The following response elaborates: 

 Learner 16: They have changed. Well I would say the company, my determination and my 

 commitment to  school work; so that has really changed the whole perspective of math 

 because now I have to  take math seriously now. So I would say my views about math have 

 changed a lot, then I wouldn’t say math is a compulsory subject for me, but now they have 

 changed.  

So far the learners’ identity in this subgroup could be summarised to have been influenced 

by an alignment mode of belonging. The learners concentrated on working out activities in 

the classroom because mathematics is a compulsory subject or they were following the 

teachers’ instructions. In the last quote above, the learner brought elements of engaging with 

other learners as another reason that contributed to have changed his “whole perspective” 

and acknowledge to have started to “take math seriously now”. In addition, the elements of 

self-determination and self-motivation have been credited to have contributed into these 

changes. 

 

4.4.2 The learners at the top left of the scatter plot             

The learners in this position had shared their cognitive responses about doing mathematics 

when they were in primary school. In their past experiences of engaging with mathematics, 

the learners had expressed that the subject was very challenging for them. In order to 

understand their emotional reactions, the learners were asked to respond to what they 

enjoyed the most and the least in doing mathematics. The learners pointed out that they did 

not enjoy the calculations which involved long divisions and multiplications procedures. One 

learner responded by stating the following when he was asked about what he enjoyed the 

most:  

 Learner 8: Well, mathematics, I enjoyed that you could always, like, you could always get the 

 answer. You could always make a right choice or a wrong choice but if you made something 

 wrong, you could correct it. 

The quote at this point gives an indication of how the learner engaged with mathematics to 

negotiate meaning. In the literature review, it was highlighted that a learner who have a 

positive “emotional engagement” (Santos & Barmby, 2010, p. 200) towards activities in the 
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classroom has acquired some effect of identity as doing. In other words, an individual is 

more likely to work across known and unknown without stressing about the correctness of 

single answers at the end of each activity. In the follow-up questions which were about how 

they were taught mathematics, the learners appreciated the importance of an experienced 

teacher. Experienced teachers are expected to know how to explain different concepts using 

sufficient examples whilst demonstrating that they know what they are doing. The following 

quote illustrates some of the dilemmas faced by learners with bad experiences of learning 

mathematics:       

 Learner 13: They [the teachers] just teach us the same way they teach us now, but then she 

 couldn’t explain  everything well because when I asked her, she would shout then I would ask 

 another Sir who teaches me, he would not explain well. They are doing maths in grade six but 

 they don’t know what to do. 

In the next segment, the learners are describing their experiences of doing mathematics at 

the present moment. The learners had expressed that they understand mathematics much 

better now. To determine affective responses in this subgroup, the learners were asked to 

share what they were enjoying about learning mathematics in grade 8. The continuation of 

how experienced teachers could add value by allowing learners to engage with other 

learners in the classroom came out again in this section. An experienced teacher manages 

small discussions that are taking place in the classroom. Moreover, an experience teacher 

stimulates mathematical discussions to continue even outside the classroom. The stated 

assertions followed from this quote:             

Learner 13: I understand it better. Because my Sir can explain it well when I go ask him. He 

tells me what to do and if I cannot understand him, I ask my friends because they understand 

better… 

A role of the teacher has motivating effects on the enjoyment of learning mathematics. 

Motivating effects could reassure learners to work through long procedural algorithms whilst 

knowing that even if they get wrong answers, correct solutions are also attainable. 

This last segment, similar to the other subgroup at the bottom right, sought to interrogate the 

cause of change from how the learners viewed mathematics in the past to how they view 

mathematics at the present moment. If there have been any changes, the learners were 

asked to described such changes. The learners agreed on the fact that they have 

experienced change in how they view mathematics at the moment when compared to 

before. One learner asserted that he has developed a much broader imagination of what the 

subject entails, and sees mathematics to have to do with “more things other than numbers”. 

The other learner was quoted saying, “I am more focused now because last year if I didn’t 
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understand, I will just leave it like that but now I make sure that I understand it”. This quote 

illustrate that the learner has developed resilient attitudes toward engaging with teachers 

and other learners in order to cope with the challenges of the subject. 

 

4.4.3 The learners at the top right of the scatter plot 

The learners in this subgroup held the majority views. The learners had generally described 

the present moment of doing mathematics to be gradually becoming hard when they were 

comparing it to the past. For selection purposes, two learners from this group were chosen 

at random and they were interviewed. The idea was to move beyond the cognitive 

responses which were received from the open-ended questionnaire, and further interrogate 

emotional reactions. In this segment, we discuss the analysis of this subgroup from the 

similar sets of questions as the above two subgroups. The first question was, “What did you 

enjoy in primary school?” The learners referred to different contents to exemplify areas that 

they enjoyed or did not enjoy in their different schooling phases. For example, one learner 

would state that he enjoyed algebraic expressions, and another learner would state that she 

did not enjoy learning about shapes in geometry. 

The follow-up set of questions was about how the learners were taught mathematics. It 

emerged that the learners were required to memorise rules. Learners tend to forget rules. 

This assertion is evident in the following quote:  

 Learner 7: He showed us the… What is this rule? I forgot the rule. He showed us how we 

 should use the  rule and minus, plus, divided, subtract.   

 Learner 12:  They always make us do drills. They will start from level five – that you have to 

 write a multiplication drill in five minutes. Then they change us into writing in four minutes  and 

 then the better you got the less time you get until you make it to level one which is very much 

 impossible to reach – to write 50 questions in one minute. But some people were able to 

 complete it.                    

During interviews on the same point of how learners were taught mathematics, one learner 

was unconsciously switching across formal school and after-school programs experiences. 

She relied on after-school programs’ experiences to respond to her questions. According to 

this learner, after-school programs or weekend’s camps assist learners with extra lessons. In 

her explanations, teachers in the after-school programs use informal mathematical language 

which assisted learners to remember rules. She explained that tutors of after-school 

programs use different teaching methods which include brainteasers, games and songs in 

order for learners to remember rules whilst they are having fun. Another learner in this 
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subgroup shared similar experiences but her sources of information about extra lessons 

were from watching learning channels on the television.  

The learners shared similar descriptions of doing mathematics at the present moment in 

comparison to their primary school experiences. When they were asked about what they 

were enjoying now in junior secondary school, the learners reiterated that teaching and 

learning methods were not much different than those at primary school other that now they 

were required to remember even more rules. However, there were indications that learners 

enjoy doing mathematics when they are equipped with mechanisms to check if their own 

answers from working out activities are correct or wrong. The following response highlighted 

this point: 

Learner 12: …I don’t like doing the triangle stuff but when it comes to solving for 𝑥𝑥 I usually do 

that and you have to check it if is right or wrong. That’s nice. 

In the follow-up sets of questions which sought to determine how the learners were taught 

mathematics, the same sense of a teacher-centred approach emerged from their responses. 

Learners were expected to gain knowledge from textbook activities and as per teacher’s 

explanations on the chalkboard. From this approach, one learner who passed the subject 

with a distinction gave credit to God. However, the learners recommended that teachers 

must be grounded in their subject knowledge. One learner reiterated that a teacher must 

“know what his doing” because “he can’t teach what he doesn’t understand”.      

The last segment was intended to determine the cause of change, if any, that learners have 

experienced between primary school and junior secondary school. The learners 

acknowledge that their views of learning mathematics have been narrow in the past. The 

learners have thought that mathematics was about “counting and stuff” but now they are 

aware of many career choices which can be achieved from studying the subject. The teacher 

was credited to have played an important role into ensuring that learners understand 

mathematics, and that mathematics was worthy to be studied despite the challenges. One 

learner was quoted saying, “now I understand everything… Sir is a brilliant man. He knows 

what he is doing”. Within this sense, the learners were satisfied to be learning mathematics 

whilst aligning themselves towards different career choices. 

 

4.4.4 The six interviewed learners 

There were two questions which were asked with an intention to further contribute to the 

exploration of how learners can be motivated to develop or improve identities in 

mathematics. It was “What would your ideal mathematics classroom look like?”, and “What 
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could people do to improve the way learners view mathematics?” For the first question, 

Boaler and Greeno (2000) have argued that suitable classroom environment encourage 

learners to fully participate in learning of mathematics. We anticipated both pedagogical and 

identification responses. The second question invited learners to share their experiences on 

how they can be engaged in order for them to participate in mathematics classrooms. 

Boaler, Wiliam and Zevenbergen (2000) used similar type of questions to investigate “the 

construction of identity in secondary mathematics education” (p. 3) in their study. 

The learners appreciated to be in the classroom with posters on the walls. They described 

walls with posters to bring different colours to the classroom. The learners were convinced 

that posters must have mathematical examples that can help them remember the rules. 

Another learner suggested that learners can “sit around in a circle” and help each other with 

mathematics questions that they do not understand. This suggestion was connected to many 

responses which were offered by the learners with regard to the second question of how 

people can contribute to improving identity in mathematics. Moreover, the learners wanted 

teachers to provide clearer explanations in order for learners to understand mathematics 

better. It followed that teachers can use different ways to check if learners understand 

different mathematical concepts. This means that learners needed teachers to assess their 

understanding of mathematics.   

Another suggestion was that teachers can provide extra lessons. In the extra lessons, it was 

reported that teachers can go over work covered in normal classes to ensure that learners 

who did not understand have another opportunity to understand rules of mathematics. A 

student had this to say: 

 Learner 1: … like in English they have the rules, you must just follow the rules and you can 

 get through anything; but I think the teacher should explain more than once because some 

 learners really struggle… with math but I think the teacher should just do one rule maybe for 

 two weeks so that they [the teachers] can explain it over and over again so that we could 

 understand it properly.    

The learners further pleaded with mathematics teachers to “bond more with learners” and 

not to “build walls” around them. The appeal was based on a general argument that 

mathematics teachers are not close enough to learners. A suggestion was that the teacher 

could talk more to learners like they are talking to their friends, particularly to those learners 

who are not participating in the classroom. One learner claimed that once learners are closer 

to a mathematics teacher, they rise to like mathematics more. Similar suggestions from this 

paragraph emerged in Boaler (2000b), and they were discussed in Chapter 2. 
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4.5 Summary 

This chapter has presented the results of the study in three sequential phases. In the results 

from the open-ended questionnaire, learners’ views about mathematics yielded themes 

which were discussed using texts and summarised in tables. Random statements from the 

major themes were used to develop the closed questionnaire. The results from the closed 

questionnaire were reduced to look at fewer variables using exploratory factor analysis. The 

notion of dealing with fewer variables assisted in stratifying learners for the purposes of the 

interviewing processes. Thus, at the end, this chapter reported the results from the 

interviews. Not all the results of the study were reported in this chapter. We looked at the 

results which sought to contribute directly to the means of responding to the research 

questions. The next chapter draws on the results and analysis presented in this chapter to 

answer the research questions and to relate the findings more to the existing literature. 
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CHAPTER 5 

DISCUSSION OF THE RESULTS  

5.1 Introduction  

This chapter discusses the results that were reported and analysed in the previous chapter. 

The general findings about learners’ identity open discussions to provide a background 

towards answering the research questions. Then, the results from all three research 

analyses (the open-ended, Likert-scale questionnaires, and interviews) are interpreted to 

contribute directly to answering the research questions alongside the relative literature. 

Thereafter, the research findings are explained whilst they are being compared to findings of 

other studies to account for the implications to teaching and learning practice. The last 

section discusses relationships between understanding, practice and identity to complement 

the implications of the findings to the practice, and further contribute in the development of 

theory for learner identity. 

 

5.2 The general findings about learners’ identity  

The learners were consistent in indicating pedagogical connections between what they 

learned in primary school and junior secondary school. They identified with different levels of 

difficulty in doing mathematics as they gradually progressed within the schooling system. 

The learners were aware that content and context of each grade needed to show 

progression from simple to complex (DBE, 2011). The learners believed that mathematics 

‘was easy’ in primary school, then it ‘got hard’ in Grade 8, and it will be ‘even harder’ going 

forward. Furthermore, the learners expressed continuous expectations that demanded 

clearer explanations in their quest for ‘understanding’ the subject. The notion of 

understanding became central in this study. Other findings from the analyses (resources, 

motivation, and unclear) contextualised how learners identified with mathematics, and 

likewise, they were carried over from primary school to secondary school.   

The analysis of the Likert-scale questionnaire redirected this study to objectively give a focus 

to learners’ views about their present and their past experiences. The analysis put forward 

an assumption that learners’ mathematical identities were more coherent when they were 

examined within past and present experiences. The analysis therefore excluded the 

learners’ thoughts, beliefs and attitudes about their future projections of learning 

mathematics. Learners’ future inspirations of learning mathematics primarily depend on 

“making reality in the image of fantasies” (Sfard & Prusak. 2005, p. 19) and levels of 

imaginations can be widely different. It is also possible that a dimension about learners’ 
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future inspirations did not emerge because fewer statements were used in the Likert-scale 

questionnaire. 

    

5.3 Answering the research questions 

Based on the context of general findings which emerged from all three phases (i.e. the open-

ended questionnaire, Likert-scale questionnaire, and interviews) of data analyses and 

syntheses provided in the previous paragraphs, the study further discusses direct answers to 

each research question whilst illuminating deductions drawn from relevant findings of other 

studies. 

 

5.3.1  What are the factors of learners’ identities that emerge from Grade 8 
 mathematics  classrooms? 

The learners consistently required to receive clearer explanations from teachers in order for 

them to better understand different mathematical concepts in classrooms. The concept of 

understanding emerged strongly in both qualitative (thematic) and quantitative (numerical) 

analyses. The learners expressed that they become interested in doing mathematics if they 

understand different concepts. Mathematics becomes their favourite subject. Other 

emotional reactions which resonated from the concept of understanding mathematics 

included that the subject becomes fun, likeable, enjoyable, desirable, or exciting. On the 

other side, if they do not understand, the learners expressed that they feel pressured, 

confused, compelled, or nervous when doing mathematics. To illustrate these assertions, 

one learner was quoted as follows: “if I don’t understand, I don’t interact”. Another learner 

was quoted as saying that she was struggling with activities because she does not 

understand the rules and different procedures of mathematics.       

Parallel to emotional descriptions of understanding towards learning mathematics, the 

learners further explained their cognitive reactions. The learners needed teachers to use 

different and simpler methods to explain mathematical concepts. Firstly, by simpler methods, 

the learners meant that they were expecting to use short procedures when calculating in 

mathematics. The learners believed that using shorter procedures would enable them to 

arrive at correct answers quickly. Details of disadvantages of this position were discussed in 

the reviewed literature of this research. Furthermore, the learners expressed that they did 

not like or enjoy long division or multiplication because of its complicated procedural nature. 

Secondly, the learners used phrases like ‘different teaching methods’ and ‘different 

examples’ interchangeably. The learners described the use of different examples in 

mathematics as being different teaching methods. Thirdly, the teachers were expected to 
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remain in the same topics for longer in order for the learners to follow mathematical rules 

and not forget them. Barmby et al. (2007) cited Skemp (1976) who encapsulated these 

cognitive positions by classifying them as an ‘instrumental understanding’ of mathematics (p. 

41).  

Barmby et al. (2007) put forward an alternative definition of understanding from a variety of 

studies such as Skemp (1976), Nickerson (1985), Hiebert and Carpenter (1992), and 

Sierpinska (1994). For example, Skemp’s (1976) contribution in defining relational 

understanding, which was “knowing what to do and why” (p. 2), was incorporated in 

Nickerson’s (1985) description which required that learners get to see deeper characteristics 

of different mathematical concepts in relation to everyday life situations. The definition drew 

together ideas of “understanding being a network of internalised concepts with the 

clarification of understanding as an action and a result of an action” (Barmby et al., 2007, p. 

42). The reported results in the study do not demonstrate if the participated learners firmly 

identified with such inclusive explanations of the concept of understanding. However, the 

concept of understanding was important for learners when sharing their views and beliefs of 

doing mathematics in both their primary and secondary schooling experiences. The concept 

of understanding will further be discussed in the implications of findings to the practice – the 

next section. What follows below are the other findings from the thematic analyses (i.e. 

resources, motivation, and unclear) which form part of how learners identified with 

mathematics.  

A second influential theme that emerged from the research was called ‘resources’. It was 

about how the learners identified with roles of teachers in mathematics classrooms. The 

learners believed that inexperienced teachers are not adequately capable of teaching 

mathematics. From the analysis of the results, experienced teachers were described to be 

competent enough to explain different concepts or examples in great detail whilst building 

learners’ confidence towards the subject. The ‘Norms and Standards for Educators’ describe 

the roles of teachers to include being specialists in mathematical concepts for a particular 

phase, and being specialists in teaching and learning practices (DoE, 2000). Grootenboer 

and Zevenbergen (2008) extend these descriptions by suggesting that the “teacher’s role is 

to facilitate the development of students’ mathematical identity by relationally bridging 

student and subject” (p. 243). In turn, there is a need for teachers to have a well-developed 

personal mathematical identity (Boaler, 2002). 

In the statement of the problem to this study, there were claims that some teachers never 

abandon traditional teaching methods. The open-ended questionnaire and interviews 

analyses contributed to demonstrate how learners were taught mathematics in classrooms. 
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The analyses, particularly within the ‘resources’ theme, revealed that learners identified with 

mathematics from experiences where teachers were perceived as central sources of 

knowledge during the teaching and learning practice. Many learners believed that 

mathematical knowledge presented at school by teachers was new to them. This position 

contrasts with a suggestion that learners can “interpret what they see and hear on the basis 

of what they already know” (Brodie et al., 2009, p. 19) in order for them to construct meaning 

(Wenger, 1998). The Curriculum and Assessment Policy Statement also encourages that 

teachers need to embrace active and critical approaches to learning from the socio-cultural 

perspectives of learners (DBE, 2011). 

Furthermore, in the ‘resources’ theme, and given the fact that learner identity was viewed 

from the socio-cultural perspective, it was reported that many learners appreciated support 

from parents, peers and siblings. Other learners expressed their experiences of learning 

from the individualised dedications. Literature (for example Wenger, 1998) affirms that 

individuals are able to negotiate and make meaning from mathematics from their own social 

or cultural background. There were some learners, particularly during the interviews, who 

perceived the learning of mathematics from the natural identity perspective. However, the 

majority of learners returned to suggestions that the presence of teachers in classrooms 

enable them to be confident enough to work through long mathematical procedures. 

Teachers were commended for checking their class activities, but it was generally important 

for learners to be permitted to use calculators (even calculators on cellular phones) as a 

form of support when doing mathematics.    

‘Motivation’ is another important dimension of identity that has emerged in the thematic 

analyses of this study. The effectiveness of motivation was analysed from the understanding 

of identity as doing (Wenger, 1998). The learners have displayed competence in 

mathematics, and their accountability to the classroom community. However, the reported 

findings were that the learners have demonstrated ego or performance goals. The 

phenomenon of ego or performance goals further emerged during the interviews. Githua 

(2013) refers to ego or performance goals to emanate from extrinsic motivation. Extrinsic 

motivation is a response to learners’ external needs. The learners were motivated by 

external goals, which were more for the sake of passing tests or from the fear of failure. In 

the performance goals, learners are continuously stressing about “endless lists of isolated 

skills, concepts, rules and symbols” (Penlington, 2000, p. 22) to remember during 

assessments. This position narrowly characterised identity as doing where learners display 

competence merely because good grades in mathematics enable access to variety career 

choices. The learners did not adequately demonstrate inspirations of engaging in 
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mathematical activities, or demonstrate the importance of collaborative or explorative 

perspectives of learning.  

An adverse side to identity as doing is that if these ego or performance goals are not 

achieved, learners embark on displaying other smaller goals such as being disruptive in 

class or refusing to complete assignments (Nasir, 2002). Nasir (2002) alluded to the 

importance of “achievement motivation” (p. 217), which yields long-term goals that are 

focused on how learners construct and negotiate mathematical knowledge in socio-cultural 

settings both in and out of school. Van de Walle (2004) refers to ‘achievement motivation’ as 

an ‘inward motivation’. The author contends that ‘relational understanding’ yields ‘inwardly 

motivated’ mathematics learners.  

The responses in the fourth theme (which was called ‘unclear’) carried over from describing 

doing mathematics in primary school to describing mathematics in the future. Given that “we 

define who we are by where we have been and where we are going” (Wenger, 1998, p. 

149), Grootenboer and Zevenbergen (2008) stated that learners’ future participations in 

learning mathematics are significantly influenced by their previous experiences of learning 

mathematics. It was concerning that some learners in this research were unclear in defining 

how they see themselves as learners of mathematics. There are limitations that might have 

influenced such findings, and such characteristics will be discussed in the last chapter. 

 

5.3.2  What caused the changes in learners’ identities from when they were younger 
 to now if there have been any changes? 

A significant number of learners in the study were becoming negative in their identities. The 

quantitative analyses illustrated that learners’ views of doing mathematics were negatively 

changing from when they were younger to now. A scatter plot (Table 4.5) in the reported 

results was refined to obtain the table below (Table 5.1). The refinement of Table 4.5 was 

intended to show how many learners had moved from positive experiences of learning 

mathematics to negative experiences. Before further explanations, it can be unsurprisingly 

observed that less than 1% of learners moved from being negative in the past to being 

further negative about doing mathematics now. Reasons for such change did not emerge in 

this study, but Gardee (2016), citing Graven and Buytenhuys (2010), explained that learners 

who experience mathematical ‘abuse’ in primary school give up on the subject as soon as 

they get a chance (p. 25). When looking at the diagonal end of the table for learners who 

move from being positive in the past to being positive now, 64.1% of learners were reported. 

Indeed, in general, literature confirms that positive experiences of doing mathematics in 

primary school contribute positively for current experiences (Gardee, 2016). 
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 Table 5.1: Pre-measure of learners’ views of doing mathematics   

 

mathspast 

Total 

   

1.51 - 
2.50 

2.51 - 
3.50 

3.51 - 
4.50 4.51+ 

 
Percentages 
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4.51+ 1 6 8 22 37  
8.5% 

  
64.1% 3.51 - 

4.50 
1 2 17 28 48 

2.51 - 
3.50 

0 0 16 12 28  
 

0.9% 

 
 

26.5% 1.51 - 
2.50 

0 1 1 2 4 

Total 2 9 42 64 117    

 

8.5% of learners shared negative views of doing mathematics in the past, but moved to have 

more positive views in the present. During the interrogation of these learners, it was reported 

that although they had negative experiences with mathematics in the past, their relationships 

with the discipline of mathematics were strong. However, the subgroup of learners who 

moved from being positive in the past to being negative now was 26.5%. The difference 

between 26.5% and 8.5% indicates that more learners were becoming negative about doing 

mathematics. Hence, it was reported from using the numerical analyses that the 

mathematical identities of a significant number of learners who participated in this research 

shifted from being positive in primary school to being negative now.        

The causal explanations for change in learners’ mathematical identities were attained more 

from the qualitative analyses. For learners who had negative views about mathematics in the 

past, they described doing mathematics now to be more important than before. The learners 

acknowledged that when they were younger they saw mathematics to be a subject of merely 

numbers and counting. However, at the present moment, the learners recognised that 

passing mathematics, especially with good grades, increases their chances of better career 

choices. In secondary school, learners are exposed to a broader use of mathematics, and 

they are motivated to engage with other learners and teachers in the classroom community 

to align themselves with pre-requisitions of higher learning institutions (e.g. universities and 

colleges). Anderson (2007) points out that learners are aware that mathematics has become 

a gatekeeper to many educational and employment opportunities for adults. So for example, 

learners have understood that the learning of mathematics is an ultimate price to pay for 

pursuing careers in sciences and engineering sectors (Boaler et al., 2000). Learners of 

mathematics have learned to strive to appreciate mathematical knowledge whilst developing 

resilient attitudes toward the subject.  

Within this regard, reasons for change were further established from how learners were 

taught mathematics during the interviews. In the subgroup where learners have had bad 
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experiences in the past but they were having good experiences now, the findings 

demonstrate that the learners were exposed to teachers with strong personal mathematical 

identities. In addition, it was intriguing that these learners had described positive 

mathematical identity in the past but described mathematics to have been an “extremely 

difficult” subject for them. 

For this subgroup of learners who described mathematics to have been “extremely difficult” 

in the past, but only became interested in mathematics now, the findings demonstrate that 

these learners had developed strong learner identity through open-ended and discussion-

based orientated classrooms. This concern may not receive a satisfactory response here, 

and further research in the South African context may be needed, but according to Boaler 

(2002), some learners become reflective of their relationships with the discipline of 

mathematics. Thus, different teaching methods for such learners at a later stage, which 

could even mean traditional teaching methods, do not unsettle their developed relationships 

with the discipline (Boaler, 2002).                          

Learners who had good experiences of learning mathematics in the past but have lost 

interest in the subject now demonstrated little of what has changed and only trivial reasons 

why they have experienced such changes. However, such findings were discussed here as 

they provide important bases for implications of further research studies. The learners 

expressed that they were expected to remember rules and formulae in both primary school 

and secondary school. The learners felt that mathematical rules, formulae, and procedures 

were confusing and easily forgettable. In addition, they did not enjoy long mathematical 

procedures in both primary school and now.  

However, in the problem statement, there were claims that some learners from traditional 

teaching practices could pass their examinations even with distinctions. To tie up this claim 

with those views of learners from the major group, Boaler (2002) confirmed that some 

learners come to like passive participation. These are the learners who have learned to 

position themselves as receivers of knowledge. They seek to faithfully reproduce procedures 

and follow clues that allow them to successfully work through tests and examinations 

(Boaler, 2002). To give one example, for many years in National Senior Certificate 

examination papers (i.e. South African grade 12 assessment), in algebra section of papers, 

learners are given a quadratic equation and asked to solve for ‘x’ correct to two decimal 

places. Learners who have learned to look for clues know that they have to use the 

quadratic formula to solve such an equation without wasting time searching for factors. 

Boaler (2002) argued that such learners remain extrinsically motivated in the mathematical 

community and do not begin to think about how or why some things are the way they are. 
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5.3.3  How can learners be supported to develop identities in mathematics? 

It was highlighted in the literature review that learners enjoy doing mathematics if their 

classrooms employ integrated teaching approaches. Literature commended positive 

relationships between learners who enjoy doing mathematics and their capability to make 

sense of the subject. In this research, many learners avoided to identify with what they enjoy 

about learning mathematics. Many learners concentrated on pointing out different 

mathematical content that they liked or disliked. They did not discuss mathematics using 

cognitive terms – different ways of knowing or doing mathematics – which are elaborated in 

the mode of belonging as active engagement and participation. They preferred to discuss 

the importance of learning and passing the subject in order to align themselves with their 

potential career paths. In this regard, we concluded the same as the following assertion from 

Boaler et al. (2000):  

 Most learners want to be successful at school, not least to avoid conflict with parents, but  they 

 also want to negotiate a way of being successful that does not alienate them from groups with 

 whom they feel affinity (p. 10).   

In essence, the learners wanted to carefully listen to the teacher, take notes, respond to the 

teacher’s questions, ask questions for clarity in order to understand the explanations or ask 

for more examples to familiarise themselves with procedures, and then do their level best 

during assessments to pass the subject. The learners have come to accept that doing 

mathematics was “the suffering that cannot be avoided” (Geijsel & Meijers, 2005, p. 424). 

The learners were “detached from broader notions of identity” (Boaler et al., 2000, p. 9). In 

short, the learners were displaying a resilient attitude towards what they think was expected 

from them by the schooling system and the society.    

A second suggestion from some learners described aspects of collaborative learning. When 

reporting the results, the learners had imagined sitting around in a circle and helping each 

other with questions that they do not understand in the classroom. The findings 

demonstrated that learners believe in classroom-based discussions. However, many 

learners placed a teacher at the centre of discussions. A teacher would ask questions, and 

learners would discuss solutions amongst themselves in order to respond. In traditional 

teaching methods, Chauraya (2013) observed that teachers and learners communicate 

mainly by using questions and answers. This is because many teachers believe that if they 

ask questions and learners provide answers, learners are participating in the lesson (Brodie, 

2007). Brodie (2007) argues that an in-depth consideration of “different kinds of questions 

and different interaction patterns” (p. 3) can be taken into account to develop learners’ 

mathematical thinking in discussion-based classrooms. This author explored different kinds 
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of classroom dialogues for learner-centred interactions in mathematics classrooms, whereby 

she advocated for other forms of dialogues which take us beyond merely question-and-

answers methods. Such dialogues will be discussed in the implications of the findings to the 

teaching and learning practice of mathematics. 

Lastly, the learners suggested that teachers can provide extra lessons in order to improve 

mathematical success and develop positive ways of thinking about the subject. Some 

learners who have experienced after-school maths clubs reported that tutors from such 

programs use informal mathematical language which assisted them to remember rules of 

mathematics. This view was echoed by many other learners in the reported results. 

However, the learners believed that teachers in after-school programs should go over work 

covered in the regular classroom. Birmingham et al. (2005) suggest that after-school 

programs can develop a range of enriching learning opportunities with an emphasis on 

building positive relationships between learners and mathematics. This suggestion focuses 

less on helping learners with their classwork or homework. Rather, these programmes or 

clubs can aim to create new positive experiences and stories (Graven, 2011) that can 

contribute in developing learners’ identity in mathematics whilst improving their mathematical 

knowledge and skills. 

 

5.4 Implications of the findings to practice 

In answering the research questions, the discussion of findings has focused on diagnosing, 

evaluating, and listing suggestions of what learners perceive to exist in the teaching and 

learning practice without elaborating further on ‘how’ or possible ‘reasons and 

consequences’ of such findings. When diagnosing the factors of learners’ identity in 

mathematics, for example, the study firstly presented what the learners meant by 

understanding. The reported findings characterised learners to have described the concept 

of understanding more from the instrumental perspective. Secondly, the learners described 

the mathematics teacher as a source of knowledge. Lastly, the learners described 

discussion-based classrooms, and also put the teacher at the centre of discussions. In light 

of such descriptions and suggestions, this section incorporates the contents of findings from 

other studies to give a rounded picture of how the findings of this study may have 

implications to practice.  

Carpenter and Lehrer (1999) propose five forms of mental activity that can be developed to 

promote teaching and learning mathematics with understanding in the classroom. There are: 

(a) Constructing relationships, (b) extending and applying mathematical knowledge, (c) 

reflecting about experiences, (d) articulating what one knows, and (e) making mathematical 
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knowledge one’s own. These various forms of mental activity are interrelated and are 

integrated in the discussion below. Furthermore, the intention was to demonstrate how they 

link to the conceptual framework of this study in relation to the findings. 

Learners construct meaning for a new idea or process by relating it to ideas or processes 

that they already understand (Carpenter & Lehrer, 1999). This assertion connects with 

Wenger’s (1998) description of how people negotiate new meanings from their past 

experiences. Things take meaning from the ways they are connected to other things. For 

example, in some reported results of this study, the learners indicated that they enjoy solving 

algebraic equations. Learners used logical reasoning to solve a variety of problems involving 

finding the value of ‘x’ because it has room for guesswork, and it emerged in the results of 

the study that the learners themselves enjoy checking if their answers are correct or not. In 

general, and for this example, learners connect the concept of placing the missing number 

which was learned in primary school to solving for ‘x’ during formal algebraic concepts or in 

processes of symbol manipulation. 

Carpenter and Lehrer (1999) also observed that developing understanding in mathematics 

involves more than simply connecting new knowledge to prior knowledge. The authors 

highlighted the need to construct rich and applicable mathematical knowledge. This 

suggests that school mathematics could be viewed as a human activity that reflects on 

finding out how and why given techniques work in solving mathematical problems (DoE, 

2002). In Suh’s (2007) study where she sought to change learners’ disposition toward 

mathematics by focusing on understanding, the author would share with learners her 

personal real-life problems. For example, at some stage she shared how she used 

mathematics to build a playground set in their backyard which led into exploring 

measurement of area and perimeter, budgeting money, and comparing unit prices. Suh 

(2007) challenged learners to share their real-life experiences to pose problems in order for 

the class to utilise shared problems to engage them in formulating mathematical solutions.  

Reflection involves the conscious examinations of learners’ own actions and thoughts when 

doing mathematics (Wenger, 1998; Carpenter & Lehrer, 1999) which contrasts with merely 

assimilating procedures as they are explained to them. Reflective learning allows learners to 

navigate through a set of familiar and unfamiliar facts and concepts in order to make sense 

of mathematics (Kilpatrick et al., 2001). Reflection provides learners with a chance to 

discuss their mathematical ideas, arguments, and justifications (Suh, 2007). It becomes 

central in understanding different mathematical concepts that promotes learner’s ability to 

communicate or articulate one’s ideas (Carpenter & Lehrer, 1999). In other words, 

articulation requires reflection, and Carpenter and Lehrer (1999) refers to articulation “as a 
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public form of reflection” (p. 22). Fennema and Romberg (1999) summarised these concepts 

by suggesting that “understanding is constructed, reflected on, and articulated by the learner 

and the knowledge that results is his or her own” (p. 187). Within the description of reflective 

learning, understanding of mathematics connects to the notion of identity. That is, learners 

identify with what the community of practice expect from them inside and outside the 

classroom.             

Carpenter and Lehrer (1999) suggested that knowledge that has been learned with 

understanding plays an important role in solving unfamiliar problems. For example, junior 

secondary school covers different strategies for solving quadratic equations for a later stage 

of their syllabus. However, learners who have understood a concept of multiplying a number 

by itself (i.e. squaring a number) might solve the quadratic equation, say 2𝑥𝑥2 + 2 = 10, by 

guessing numbers (in this case are −2 and 2) that can be multiplied by themselves, times 

two, plus two, to get the given answer ten, by connecting concepts and procedures from 

linear equations and can give arguments to explain their solutions. Kilpatrick et al. (2001) 

stated that such learners gain necessary confidence to move to another level of 

understanding. 

A second reported identity factor was ‘resources’. The learners identified teachers as their 

supreme source of mathematics. Indeed, teachers have a significant place in the classroom 

community. For Boaler et al. (2000), the ‘old-timers’ (teachers) through their actions and talk 

convey a sense of what it is to belong to the mathematics classroom community. In this 

case, the notion of actions and talk becomes more than perceived ways of how teachers 

present mathematical knowledge and skills to learners. In other words, mathematics 

becomes more than “an inert body of information and skills that teachers try to pass onto 

learners” (Grootenboer & Zevenbergen, 2008, p. 246). Boaler (2002) argued that teachers 

must themselves develop a personal mathematical identity, alongside their teaching 

experiences or mathematics understanding, which can include all learners and connections 

that are beyond the immediate classroom walls (Grootenboer & Zevenbergen, 2008). Adler 

(2001) encourages that the phenomenon of teachers as human resources can be realised 

from both ‘noun and verb’ characterisations, whereby in addition to basic issues of teachers’ 

qualifications and their knowledge, teachers can play a supportive and mediating role in the 

classroom community. 

Part of the reasons why learners view teachers as their main source of mathematical 

knowledge, and demonstrate insufficient connections between themselves and the subject, 

is generally because of the shortage of well-qualified mathematics in both the secondary and 

the primary school level. Grootenboer and Zevenbergen (2008) confirmed that more often 
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than not, mathematics classes are taught by non-specialist teachers especially in primary 

school, and so their commitment to mathematics is divided and that has negative 

consequences to their practice. Chauraya (2013) observed that some teachers have dual 

identities in South African schools. Some teachers get to teach more than one subject in 

schools, and according to Graven (2004), insufficiently qualified teachers of mathematics 

tend to lack the necessary confidence to fully participant in the practices of a community. 

This concern links to a point made earlier on in the problem statement which suggested that 

some students with strong potential to graduate in mathematics studies stop pursuing the 

subject, and for example, they venture into becoming teachers in other disciplines, but 

somehow find themselves returning to teach mathematics. Thus, every year, the schooling 

system creates a vicious cycle of producing fewer and ineffective teachers of mathematics 

(Grootenboer & Zevenbergen, 2008). 

In describing effective teachers with a well-developed mathematical identity, Grootenboer 

and Zevenbergen (2008) suggested that they display authentic relationship between 

themselves and the subject. In this way, when learners are introduced to mathematics, they 

witness actions of something that has helped to define and transform lives of the old-timers 

(e.g. teachers). The learners must know why teachers value the subject. A sense of joy and 

satisfaction must shine from teachers when mediating relationships between learners and 

mathematics – learners’ mathematical identities. Teachers themselves must have a strong 

mathematical identity. Chauraya (2013) described a strong mathematical identity to include, 

among other factors, love of the subject; enjoyment when teaching; positive attitude towards 

it; and self-perceptions such as dedication and commitment.    

Another unexplained suggestion in the findings was about how learners perceive classroom-

based discussions. The learners have put mathematics teachers at the centre of 

discussions. From learners’ experiences of mathematics classroom, participation was more 

about answering teachers’ questions. Part of the problem is that teachers tend to control 

learners’ attention and behaviour by using question-and-answer as their teaching approach 

(Stiggins, 1992). In this approach, teachers randomly ask questions mostly when they intend 

to receive one-word or one-phrase responses. The questioning of learners becomes a 

classroom-management tool. An immediate solution to the problem is to encourage teachers 

to use and maintain more open-ended questions. When assessing learners in this way, 

learners may respond with proofs and justifications in their answers.   

As previously indicated, Brodie (2007) explored this problem further within the South African 

context. The author placed an example of the traditional question-and-answers approach – 

questions with elicited one-word or one-phrase responses – at the centre and argued for 



86 
 

other kinds of interactions that support more genuine participation and thinking which 

included ‘learner-learner dialogue’ and ‘whole-class dialogue’. In the learner-learner 

dialogue, a teacher poses questions to the class, and the learners challenge each other’s 

reasoning through discussions to deepen their understanding of a mathematical concept. 

The discussions can allow learners to persuade each other in their thinking by interrogating 

each other’s responses. At the end of the learner-learner dialogue, the learners themselves 

(and the teacher) confirm the correctness of the answer. In the whole-class dialogue, a 

learner can ask the teacher a question, and the teacher can redirect a question to allow the 

learners to respond to that question. The teacher may be central in the learners’ discussions 

by making learners talk to each other. The teacher may also play a leading role in ensuring 

that learners’ suggestions are not miscommunicated and that she or he can even repeats 

questions now and then when necessary. In both learner-learner and whole-class dialogues, 

it is important that teachers maintain the level of the cognitive demands of questions at all 

times, and not narrow questions or tasks demands to funnel learners to answers (Brodie, 

2007). Another point that was encouraged in the study was that of authenticity of questions 

used in the classrooms. To elaborate on this point, Brodie (2007) was quoted as follows: 

 ‘Authentic questions’ are questions which do not have pre-specified answers, which convey 

 the teacher’s interest in what learners think, and which serve to validate learner ideas and 

 bring them into the lesson (p. 4).                                  

‘Authentic questions’ are different from ‘test questions’ which seek to find out what learners 

know, and how closely their responses correspond to what the teacher requires (Nystrand et 

al., 1997 as cited in Brodie, 2007, p. 4).    

 

5.5 Relationships between understanding, practice and identity 

The study answered the research questions from the learners’ interpretations of their 

experiences of learning mathematics in the classrooms. The learners were reported to 

believe that they can succeed in knowing mathematics through understanding. When 

describing understanding, the learners were more concerned about remembering rules and 

using procedures in order to know different mathematical concepts. However, the learners 

described emotional aspects which match with the outcomes of relational understanding. 

The notion of relational understanding was discussed to elaborate on “understanding as the 

measure of the quality and quantity of connections that an idea has with existing ideas” 

(Penlington, 2000, p. 18). Thus, the findings about the learning (and somewhat teaching) of 

mathematics in the classrooms have led us to look at relationships between understanding, 

practice and identity as a theoretical relationship that needs development.  
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The findings of this present study extends Boaler’s (2002) theoretical model (see Figure 5.1 

below) of describing the relationships between knowledge, practice and identity by 

substituting ‘knowledge’ with ‘understanding’. This study demonstrates that understanding 

yields certain kinds of knowledge that influences identity and practice. The notion of 

understanding can position learners as passive receivers or active producers of knowledge 

in the practice.  

                                                                

                                                                 knowledge 

 

      

       identity     practice 

 
 

Figure 5.1: Relationships between knowledge, practice and identity (Boaler, 2002, p. 11) 
 

The majority of learners in this study shared common views about the practice of learning 

mathematics. The findings also reported that many learners have not yet experienced a 

change of doing mathematics and how they identify with the subject. In light of these, the 

learners’ past experiences from certain classroom practices influenced the kind of 

knowledge they have about mathematics, and their kind of knowledge limited identification. 

The learners who were unsure about their learning experiences within the classroom 

community (practice) became unclear about how they think of mathematics (cognitive 

effect), and then they could not adequately comprehend the description of how they think of 

themselves in relation to others and mathematics (identity). Hence, the findings of the study 

concur with the supposition that identities of learners and classroom practices are “mirror 

images of each other” (Wenger, 1998, p. 149).  

How does understanding influence identity or practice? Literature (for example Barmby et 

al., 2007; Grossman, 1986; Penlington, 2000) reveals that understanding depends on the 

existence of appropriate links between different concepts and the adaptation of new links. 

The greater the number of appropriate links to a network of ideas, the better the learner will 

understand. If ‘instrumental understanding’ and ‘relational understanding’ were placed 

across each other and allow learners’ connections to exist along in a continuum, it will mean 

that learners who are towards the ‘relational understanding’ end have gained richer networks 

of related ideas, whilst on the other end, learners have ‘loose linkages’ in their ideas 

(Penlington, 2000). Van de Walle (2004) explained that nearly all learners situated towards 

the ‘relational understanding’ end enjoy learning mathematics. This is because new 
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information and new concepts that are presented find ways to connect with the learner’s own 

ideas that have resonated from his or her background interactions (Boaler, 2002). 

Furthermore, relational understanding inspires a positive feeling, emotion (affective effects) 

in the learner of mathematics, as well as promoting a desire of knowing and reasoning 

(cognitive effects). Thus, as Van de Walle (2004) argued, through understanding, learners 

experience an ‘inward motivation’ to actively participate in classroom practices, whilst 

carrying along their relationships with mathematics.  

                                                                

                                                              understanding  

 

      

       identity     practice 

 
 

Figure 5.2: Relationships between understanding, practice and identity 
 

Further research may be needed to evaluate inter-relationships between understanding, 

practice and identity (See Figure 5.2 above). A research can particularly link how a use of 

open-ended tasks in classroom practices can contribute directly to positive identities of 

learners in mathematics. However, an exploration of learners’ identities in mathematics from 

the open-ended questionnaire as a first instrument when using mixed methods approaches 

has demonstrated that most learners prefer to understand mathematical concepts in order to 

positively identify with the subject. The notion of understanding therefore became pivotal for 

learners in their relationships with the discipline of mathematics and their learning practices.  

 
5.6 Summary  

The study analysed the learners’ identities using identity as practice, particularly identity as 

becoming which encompasses identity as negotiated experience and identity as doing, and 

generally identity as narrative. Identity as becoming analyses describe learners’ experiences 

(about themselves and mathematics) by examining classroom practices which include 

teachers’ roles to project their future endeavours. Given that the results were not predicted 

at the start of the study, both qualitative and quantitative methods described the learners’ 

pedagogical experiences from the emergent research design. The findings were synthesised 

and contextualised by drawing parallelises with findings from other studies for implications to 

the practice. The study concluded by putting forward that learners prefer to understand 

mathematical concepts in order for them to identify with the subject. The next concluding 
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chapter mainly discusses the implications of the findings for further studies whilst explaining 

factors that contributed to limitations of this study. 
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CHAPTER 6 

CONCLUSIONS 

6.1 Introduction 

The limitations of the study are discussed in the first segment of this concluding chapter. 

This first segment focuses on different emphases of theories associated with Wenger’s 

(1998) social theory of learning as relative frameworks when studying learners’ identity in 

mathematics. The second segment deals with implications of findings for further research. In 

the last segment, the study presents a summary of the findings of this dissertation in the 

context of other studies.  
 

6.2 Limitations of the study 

The review of literature provided arguments about how learners can be influenced to 

develop positive identity in mathematics. The study used ‘three modes of belonging’ by 

Wenger (1998) as a theoretical foundation. At that stage, it had emerged that studying 

identities of learners proves to have a diversity of theoretical perspectives (Darragh, 2016; 

Sfard & Prusak, 2005). Studying learners’ identities needed navigation around and refutation 

of certain issues when reporting the research. Mathematics education literature supports the 

steering among issues of learners’ identities. However, the steering among issues limits 

research to explanations that are “away from other important foci that may have been 

considered in its place” (Darragh, 2016, p. 29). 

Identity studies in mathematics education necessitate theoretical triangulation. Researchers 

(for example Chauraya, 2013; Klein, 2012, as cited in Darragh, 2016, p. 28; Lerseth, 2013) 

use more than one theory in their studies. As Denzin (1978) explained, cited in Johnson et 

al. (2007), theoretical triangulation implies that the researcher adopts more than one 

theoretical perspective to frame, explain, analyse and interpret different aspects of a study 

(p. 114). The following four enumerated segments of discussions elaborate on the 

theoretical limitations of the study while demonstrating links between intellectual traditions 

that can be emphasised or incorporated in further learners’ identities studies which are 

intended to select Wenger’s (1998) social theory of learning.  

Firstly, this present study focused on exploring learners’ identities from the emergent 

research design. A strong inclusion of other theories of social structures would have meant 

debating on issues without drawing parallels from the primary data to provide augmented 

discussions in the study. For example, Bourdieu (1986) provides in-depth theoretical tools 
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which encompasses solutions to debates of why some pedagogical practices are socially 

and culturally biased in contributing to stratified successes (and failures) of certain groups 

despite their direct attempts to become certain learners of mathematics (Atweh et al., 2001). 

South Africa has diversified cultures and polarised social classes. The embodiment of 

cultures and social classes include a linguistic competence. Linguistic competence (or 

incompetence) determines the legitimacy of how learners participate in the mathematics 

classroom dialogic interactions (Zevenbergen, 2001).  

Barwell (2009) conducted research in the United Kingdom and noted that learners from 

minority ethnic groups regard English as a second language. Similarly, in South Africa, 

particularly in rural and township schools, English is a second language for the majority of 

learners. However, English is used in mathematics classrooms as the formal language of 

teaching, textbooks and examinations. In the context of classrooms, learners use two or 

more languages to do mathematics (Setati & Adler, 2000). According to Boulet (2007), 

English becomes a barrier in learning mathematics where for instance certain concepts are 

understood (sometime with misconceptions and errors) and cannot be explained by learners 

during participation in classrooms. Pedagogic discourse from linguistic competence 

influences mathematical identity. For example, the emerged findings of this study depended 

on descriptions from conversations with learners about each other and their relationships 

with mathematics. In the reported findings, a small group of learners (on an average of 11%) 

were not sure about their experiences of doing mathematics in the past and about what to 

expect in their learning endeavours. Boulet (2007) explains that linguistic competence can 

limit learners’ experiences of learning mathematics and their abilities to articulate what they 

have experienced during learning processes.          

Secondly, theories of social structures particularly around cultural systems as highlighted 

above link directly to theories of identity which turn to compare issues of gender, class, 

ethnicity, and age. Given the intentions of this study to explore identities, it unvaryingly 

focused on analysing data for all Grade 8 learners in the mathematics classrooms. The 

participants’ social classes and their ages in particular, and ethnicity in general, may 

constitute to be homogenous in terms of generalising the study, but gender groups from 

theories of identity have room to contribute in equity debates especially in the South African 

context. Mophosho (2013) points out that “the burden of history” (p. 92) which is often 

expected not to be a part of generations of younger female South Africans lived experiences 

is spoken of as present. Identity debates within a gender context can contribute to 

addressing disproportionality in numbers of women in certain career sectors such as 

sciences and engineering.                                              
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Thirdly, a minimal inclusion of theories of social practice, particularly those of social 

reproduction, poses another limitation for further research in identity. The study discussed 

two implications of the modern world when describing identity as becoming. First, it was 

about how the modern world position learners with certain fixed natural identities to have 

unfavourable relationships with mathematics. Second, it was stated that poor public schools 

tend to regenerate individuals that remain on the periphery of communities of practice. As 

much as schools serve as a vehicle to escape poverty and other inequalities for some 

learners, even though they are presented with mere access to learning mathematics, many 

learners are ‘left behind’. In South Africa, researchers (for example Graven, 2015; Spaull & 

Kotze, 2015) point out that by the time learners from poorer schools get to grade 9, they will 

be as good as learners in grade 6 when compared to their peers in wealthier schools. This 

discrepancy will force learners to not advance in mathematics or some of them dropping out 

of school. Thus, other than to research identity from the ‘theories of social practice’ context, 

practical intervention strategies can be recommended for further research. 

Lastly, an adequate elaboration on theories of situated experiences is important when 

researching learner identity in mathematics. Many researchers (for example Lave, 1988, 

Brown et al., 1989; Lave & Wenger, 1991; Boaler, 2000a, 2000b, 2002) explained that 

situated perspectives on learning offer radical interpretations on how knowledge can be 

distributed between people and activities. Situated perspectives yield divergent positions 

from psychological perspectives which represent knowledge as an individual attribute. In this 

study, it was argued that practitioners from psychological perspectives on learning have 

began to recognise knowledge as being co-constructed by individuals and other people 

within the social context.   

The problem statement of this study could have been expressed in the context of situated 

experiences which emphasise agency. Instead, the study considered modes of belonging 

(engagement, imagination and alignment) to be central in encouraging learners in 

mathematics. The study did not directly explore the effect of human agency. Rather, the 

study criticised traditional teaching approaches as a contributing factor in supressing positive 

learner identity, and consequently an underdeveloped identity will reduce agency (Boaler & 

Greeno, 2000). The assertions of learners dropping mathematics (as soon as they can) did 

not elaborate on many learners who decide to change schools, and sometimes be returned 

to lower grades, in order to change their experiences of learning and express their agency.         

However, on the impact of situated perspectives, the study discussed in some detail learning 

processes as understood in the concept of ‘cognitive apprenticeship’ by Brown et al. (1989). 

In cognitive apprenticeship, the focus is to elaborate on why definitions, rules and 
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procedures are important when learning mathematics. The argument is that a manipulation 

of rules and procedures can be understood as mathematical tools or procedural fluency. 

This suggested that learners, equipped with mathematical tools, whilst knowing when and 

how to use them, can actively participate in mathematics classroom to develop different 

knowledge that they can use in different situations.  

In addition, two other limitations were noted in the section on mixed methods research 

design. As previously stated in the rationale and elsewhere, using an open-ended 

questionnaire as a first step of data collection can be complex. The purpose behind an open-

ended questionnaire encourages participants to express their views free from the subjectivity 

of the researchers. Researchers use theorised open questions from a certain conceptual 

framework to capture views of a particular content area. The open-ended questioning can 

have a wide gap between what is researched and the participants’ responses which can lead 

to further complexity when collecting and analysing data. For that reason, open-ended 

questions may yield broad outcomes with a variety of connections, imprecisely directed at 

times towards the topic. In this research, the participants did not respond directly to 

relationships they have with mathematics. For instance, the learners stated what they think 

about mathematics from their beliefs. As much as beliefs form a part of identity (Sfard & 

Prusak, 2005), analyses of identity need not be limited to learners’ perceived descriptions of 

mathematics, rather analyses further necessitate actual actions of how they respond to 

different practical situations during learning and teaching practice (Chauraya, 2013).                     

A final limitation came from the development of the Likert-scale questionnaire from the open-

ended questionnaire. The data were collected and analysed in three sequential phases. 

Utilising the open-ended questionnaire was the first phase. The learners responded to three 

open statements – statement one required learners to share their experiences of learning 

mathematics in the past; statement two required learners’ present experiences; and 

statement three required future projections of learners. For the development of the Likert-

scale questionnaire, statements were randomly collected from the major themes that 

emerged from each statement of the open-ended questionnaire. The weighting of random 

statements carried over from the open-ended questionnaire to the Likert-scale questionnaire 

was equal. In a total number of 36 random statements, 15 statements were from ‘understand 

in statement one’ which formed 68% of learners’ views, 14 statements from ‘understanding 

in statement two’ which formed 62% of learners’ views, and 7 statements from ‘motivation in 

statement three’ which formed 37% learners’ views. An argument will be that there were 

fewer statements from the major theme in statement three of the open-ended questionnaire 

that were carried over to form part of the Likert-scale questionnaire, and as a result, views of 

learners about their future projections did not emerge strong from the exploratory factor 
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analysis of the Likert-scale questionnaire. Instead, if equal number of random statements (12 

statements per the major theme) were used, presumably a third dimension about learners’ 

future projections might emerge more strongly. Going forward, other studies can experiment 

with these contested technical strategies to validate (or dispute) such logical arguments. 

         

6.3 Implications of the findings for further research 

The learners shared more of their experiences of learning mathematics from their past 

(primary school) and elsewhere (extra mathematics lessons). Data collection in this study 

started during the second term (April) of school, and it was collected from Grade 8 learners. 

Data collection instruments required learners to share their experiences from when they 

were younger (which implied primary school) to now (which implied junior secondary school), 

and their future projections (e.g. universities or workplace). Hence, keeping in mind that the 

learners have spent many years in primary school, the findings of this study can be read with 

an understanding that they did not have adequate experiences of secondary school.  

Barnes (2004) documented that a significant number of learners in South African urban 

areas attend some form of extra mathematics lessons. The author recorded an average of 

41% of junior secondary school learners that attend extra tutorials in urban areas. Graven 

(2011, 2015) reported on the after-school mathematics clubs that are rolled out for learners 

in rural schools as a learning intervention strategy. The reasons for attending extra 

mathematics lessons included an ‘improvement of the results’, ‘understanding the work done 

in class’ (Barnes, 2004), ‘strengthening learning dispositions’, and ‘creating positive learners’ 

identities’ (Graven, 2015). Learners who have experienced extra mathematics lessons 

outside of school hours also emerged in this study. As such, further research can interrogate 

an impact of extra mathematics lessons when exploring learners’ identity from the regular 

mathematics classrooms.               

 
6.4 Summary of the findings   

The study avoided debates around the notion of natural identities and performance abilities 

of learners. It relied on deductions which advocate that every learner has a potential to 

succeed at learning mathematics. The focal lens of studying learners’ identities in 

mathematics zoomed out to look at learning from its sociocultural context, and zoomed in to 

explore learners’ relationships with mathematics (Darragh, 2016). The study was framed in 

Wenger’s (1998) broader social theory of learning. It concentrated on what Darragh (2016) 

characterised as “participative identity” (p. 24). Participative identity looks at the ways in 
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which identity is constructed through participation and engagement in social groups 

(Darragh, 2016).  

Thus, in the literature review, the study discussed the development of positive learners’ 

identity in mathematics through three modes of belonging (engagement, imagination and 

alignment) to a community of practice. In other words, positive learners’ identity in 

mathematics implied that learners can be encouraged to engage with different mathematical 

concepts in order to adapt to procedures, and knowledge through understanding when 

offered in the classroom. And through imagination and alignment, learners can be motivated 

to develop positive relationships with mathematics. In this study, the majority of learners 

have generally accepted that mathematics will remain part of their lives as long as they are 

still attending school or still have intentions of advancing their studies. Thus, the first set of 

findings about positive learners’ identity generally meant that the learners were continuously 

striving to belong to a mathematics community through engagement, imagination and 

alignment.      

In the second set of findings, when listing factors of identity, the concept of understanding 

emerged strongly in the study as a product of clearer explanations from the mathematics 

teachers. When their understanding of the concept was analysed, it emerged that learners 

needed teachers of mathematics to remain longer in one section in order for them to not 

forget the rules and procedures or they needed teachers to explain using many examples on 

the board. They described the concept of understanding more from the instrumental 

perspective.  

The problem with instrumental understanding is that learners become performance driven. 

The notion of motivation was discussed in this study. The learners were reported to 

concentrate on passing grades with good marks and moving on to the next class. The 

learners needed to be seen as being competent in the classroom. Extrinsic motivation limits 

learners to short-term goals that needed to be achieved at the present moment. On the other 

hand, literature reveals that learners with relational understanding obtain inward motivation, 

or what Nasir (2002) described as ‘achievement motivation’, which allow sense of reflection 

during mutual engagement with other learners when doing mathematics. In turn, learners 

who are inwardly motivated can align themselves towards the mathematical careers. 

In the third set of findings, the quantitative analyses confirmed that a significant number of 

learners were becoming negative in their identities. The study discussed reasons for change 

highlighting the analyses from two subgroups. The minority of learners talked more about 

their relationships with mathematics. This subgroup also deliberated on the fact that it was 

important to understand mathematics. This subgroup also highlighted the significance of a 
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mathematics teacher who equips learners with different learning methods which included 

techniques of checking their own answers or a teacher who is able to verify if what learners 

are doing in the classroom make sense. Along similar lines to the processes of justifying 

mathematical concepts and proofs, the learners were happy to receive timeous feedback 

from a teacher.  

When the minority subgroup were describing doing mathematics, it was more about how 

they were at learning the subject. These learners used content areas of mathematics as 

examples to elaborate on how they were like at learning mathematics. When they were 

asked about what did they enjoy or like in learning mathematics, it was more about engaging 

with the subject to negotiate meaning. They emphasised that it was enjoyable knowing that 

one could get correct answers once he or she had made a right choice or redeem oneself if 

he or she got wrong answers by seeking alternative methods. Burton (1999a) has asserted 

that learners must have resilient feeling of knowing that a path towards getting a correct 

solution exists. It was further clear from the discussions with this small group that 

collaborative learning was necessary. One learner stated that, if she did not understand the 

explanations from the teacher, she would ask her peers for further explanations. These 

learners in this minority group demonstrated envisioned learners’ identity in mathematics. 

The other subgroup demonstrated little of what has changed and only trivial reasons why 

they have experienced such changes. The learners expressed that they were expected to 

remember rules and formulae in both primary school and secondary school. The learners felt 

that mathematical rules, formulae, and procedures were confusing and easily forgettable. 

These learners were noted to want to carefully listen to the teacher, take notes, respond to 

the teacher’s questions, ask questions for clarity in order to understand the explanations or 

ask for more examples to familiarise themselves with procedures, and then do their level 

best during assessments to pass the subject. 

The last set of findings focused on how learners can be supported to develop their identities 

in mathematics. The learners suggested that teachers can provide extra lessons in order to 

improve mathematical success. The learners believed that teachers during extra lessons 

should go over work covered in the regular classroom. However, Birmingham et al. (2005) 

suggest that after-school programs can develop a range of enriching learning opportunities 

with an emphasis on building positive relationships between learners and mathematics. This 

suggestion focuses less on helping learners with their classwork or homework. Rather, these 

programmes or clubs can aim to create new positive experiences and stories (Graven, 2011) 

that can contribute in developing learners’ identity in mathematics whilst improving their 

mathematical knowledge and skills. 
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Your views of mathematics 

NAME …………………………………… SURNAME……………………………………….......... 

CLASS ………………………………….. 

 

We need your name just in case we want to further follow up some of your comments, 
but otherwise what you write will remain completely anonymous. 

Please write two or three sentences for each of the following question.  

 

Describe doing maths when you were younger: 

 

 

 

 

 

 

 

Describe doing maths at the moment: 

 

 

 

 

 

 

 

Describe doing maths when you get older: 
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NAME……………………………………. SURNAME………………………………………………. 
 
Please tick one box for each statement to show your level of agreement 

 Strongly 
agree Agree 

Neither 
agree nor 
disagree 

Disagree Strongly 
disagree 

1 Maths was easy when I was younger because it 
used basic operations (such as +, - , ÷ and ×). SA A N D SD 

2 Maths is quite easy now and it needs to be 
explained only once. SA A N D SD 

3 Maths will obviously get more difficult, confusing 
and complicated in the future. SA A N D SD 

4 Maths is a good thing to have in life.  SA A N D SD 

5 Maths is now interesting for me and I would like to 
learn as much as I can about it. SA A N D SD 

6 In order for me to understand maths in the future I 
got to start learning it now. SA A N D SD 

7 Maths was fun when I was younger because we 
were using smaller numbers.  SA A N D SD 

8 Maths is now a little bit hard and not 
understandable in some topics. SA A N D SD 

9 I see maths as challenging in the next few years. 
SA A N D SD 

10 My previous teacher explained until you 
understood so for me it was not hard. SA A N D SD 

11 Doing maths at the moment is difficult and some 
things are confusing like in algebra. SA A N D SD 

12 I will be using new and improved instruments to 
do maths in the future. SA A N D SD 

13 Maths was easy in the past because I used to work 
out sums with an abacus.  SA A N D SD 

14 Doing maths now is very understandable. SA A N D SD 

15 I am willing to work harder at learning maths and 
get a distinction.  SA A N D SD 

16 Maths used to be a challenging subject. 
SA A N D SD 

17 Maths is quite easy at the moment. 
SA A N D SD 

 
 

Please turn over the page 
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Please tick one box for each statement to show your level of agreement 

 Strongly 
agree Agree 

Neither 
agree nor 
disagree 

Disagree Strongly 
disagree 

18 I am going to use maths in my future career.  SA A N D SD 

19 I managed to pass maths when I was younger.  SA A N D SD 

20 Maths is now not difficult and I understand it 
better. SA A N D SD 

21 I will never stop doing maths because someday I 
could have my own business. SA A N D SD 

22 The teacher I used to have was helpful because he 
used to always explain over and over again.  SA A N D SD 

23 I understand maths now. SA A N D SD 

24 I am hoping to get the best maths teacher in the 
future. SA A N D SD 

25 Maths was a bit difficult in the primary school. 
SA A N D SD 

26 For me, I find maths to be a subject that needs a lot 
of thinking and practising. SA A N D SD 

27 My everyday life will revolve around maths in the 
future. SA A N D SD 

28 Maths was bit difficult when I was younger. 
SA A N D SD 

29 Mathematics at the moment is actually fun. 
SA A N D SD 

30 I expect maths to be a lot harder in the future, but I 
know I'll pass it well once I've learned it.  SA A N D SD 

31 I enjoyed doing maths when I was younger. SA A N D SD 

32 Maths is easy now only if you follow instructions 
and concentrate. SA A N D SD 

33 I currently hate maths because of the polygons 
(shapes) and the algebraic expressions. SA A N D SD 

34 I will have to learn with others to understand maths 
to make my future better. SA A N D SD 

35 The more maths I do, the smarter I get. 
SA A N D SD 

36 Maths is my favourite subject because without 
maths you can't pass the grade. SA A N D SD 

 
 
 
 
 

Thank you for completing this questionnaire. 
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Interview questions 
 

1. What is your favorite subject in school? Why? 

2. Please tell us about your experiences of doing math when you were in primary school. 

       (a) What did you enjoy the most and the least? 

   (b) Did you find math easy or difficult? Why? 

 (c) How were you taught mathematics?  

  (d) What were your teachers like? 

3. Please tell us about your experiences of learning math in Grade 8. 

   (a) What do you enjoy the most and the least? 

      (b) Do you find math easy or difficult? Why? 

      (c) How are you taught mathematics? What is your teacher like? 

  (d) How useful is math for you at the moment?  

  (e) Why are you struggling with math at the moment? 

4. Has your view on math changed from when you were younger to now? If so, what things 

 have caused this change? 

5. Please tell us about your views on doing math when you get older. 

       (a) Will math be important for you in the future? 

6. What could people do to improve the way learners view doing mathematics? 

  (a) What would your ideal math classroom look like? 

        (b) What things could an after-school club do to improve learners’ views of 

 mathematics? 

7. Thank you. That is all we wanted to ask. Is there anything else you would like to say about  

 doing mathematics? 
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