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Abstract 

Fetal alcohol syndrome (FAS) is a devastating developmental disorder resulting from alcohol 

exposure during fetal development. It is a considerable public health problem worldwide, 

but in several communities in South Africa, specifically in the Western and Northern Cape, it 

has an exceptionally high prevalence of 68.0 – 89.2 per 1000 children of school going age. 

FAS is a developmental disorder characterised by facial dysmorphic features, growth 

retardation and central nervous system abnormalities. Twin concordance studies and animal 

models suggest that there are genetic and epigenetic susceptibility factors for developing 

FAS. Imprinted genes are known to play an important role in growth and development and 

most of them are located in imprinted clusters. The IGF2/H19, DLK1/MEG3 (GTL2), CDKNIC/ 

KCNQ1OT1 and PEG3 imprinted loci play a critical role in fetal development. Each of these 

imprinted loci contain several imprinted genes that are reciprocally imprinted, and their 

differential expression is controlled by differentially methylated regions (DMR) referred to 

as imprinting control regions (ICRs). The ICR for IGF2/H19 is called H19 ICR and for 

DLK1/MEG3 (GTL2) is IG-DMR and they are both marked with DNA methylation on their 

paternal allele. KvDMR1 and PEG3 DMR are ICRs for CDKNIC/KCNQ1OT1 and PEG3 imprinted 

loci respectively and they are marked with methylation on their maternal allele. DNA 

methylation at CpG dinucleotides is an epigenetic modification that is important in 

regulating gene expression during embryogenesis. It is proposed that alcohol-associated 

alterations in fetal DNA methylation at the four ICRs may contribute to developmental 

abnormalities seen in FAS and which persist into adulthood. 

The aim of the study was to examine the effect of maternal alcohol consumption during 

pregnancy on DNA methylation profiles at specific ICRs (H19 ICR, IG-DMR, KvDMR1 and 

PEG3 DMR) between FAS offspring and unaffected controls. The participants were FAS 

children and controls from the Western and Northern Cape Province. DNA samples 

extracted from blood and buccal tissues were bisulphite modified and the ICRs were 

amplified by PCR. The pyrosequencing method was used to derive a quantitative estimate of 

methylation at selected CpG dinucleotides. Analyses were done for H19 ICR (6 CpG sites; 50 

controls and 73 cases); KvDMR1 (7 CpG sites; 55 controls and 86 cases); IG-DMR (10 CpG 

sites; 56 controls and 84 cases) and PEG3 DMR (7 CpG sites; 50 controls and 79 cases). 
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Age and gender are reported confounders in DNA methylation studies and their effects 

were investigated in the present study. In this study age was shown to influence 

methylation at three of the four loci investigated, IG-DMR, KvDMR1 and PEG3 DMR. The 

effect of gender on methylation was shown to be significant at only one locus, PEG3 DMR. 

After adjusting for gender and age, there was a significant difference in methylation (CpG 

specific and locus averaged) at KvDMR1 and PEG3 DMR but not at the H19 ICR, with only a 

small effect on average methylation (0.84% lower in cases; p=0.035) at IG-DMR.  The two 

maternally imprinted loci, KvDMR1 and PEG3 DMR, showed significantly lower locus 

averaged methylation in the FAS cases (1.49%; p<0.001 and 7.09%; p=0.001, respectively). 

Hypomethylation at the KvDMR1 was unexpected since reduced methylation at KvDMR1 

has been associated with Beckwith Wiedemann Syndrome, an overgrowth syndrome. The 

largest effect was observed at the PEG3 DMR, which regulates the paternal PEG3 gene 

expression in the brain, but we are yet to understand its impact on the FAS phenotype. This 

study provides supportive evidence for the role of epigenetic modulation as a mechanism 

for the teratogenic effect of alcohol by altering the methylation profiles of ICRs of imprinted 

loci in a locus-specific manner. 
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1. Introduction 

1.1.  Overview/prenatal alcohol exposure 

Alcohol consumption during pregnancy results in a wide range of detrimental effects on the 

individual exposed (Sokol et al., 2003). Alcohol is a teratogen (an agent that is able to cause 

birth defects) and therefore can have devastating effects on the developing embryo and 

fetus (Riley et al., 2011). The most profound prenatal alcohol exposure effects are 

manifested on physical, cognitive and behavioural outcomes with possible lifelong 

implications (Floyd et al., 2006, Kleiber et al., 2014, Riley and McGee, 2005). Thus the 

consequences of prenatal alcohol exposure represent a major public health problem 

worldwide, having a wide range of effects on the economy (Health, Educational and Social 

Services (May and Gossage, 2001, Riley et al., 2011). 

1.2.  History of Fetal Alcohol Syndrome (FAS) 

The knowledge of the harmful effect of maternal alcohol consumption on the fetus seems to 

date back to biblical and ancient times, even though it was not understood it was noted or 

suspected. A biblical passage in the Old Testament states that an angel spoke to the mother 

of the legendary hero, Sampson, before he was conceived and said “Thou shall conceive, 

and bear a son. Now therefore, beware, I pray thee, and drink no wine or strong drink” 

(Judges, 13: 3 – 4, King James I Holy Bible).  Some of the ancient connections can be traced 

back to the ancient Greek and Roman beliefs that alcohol consumption at the time of 

procreation results in the birth of a damaged child (Green, 1974). There was also an ancient 

Carthaginian custom that prohibited bridal couple from drinking on the wedding night in 

order to prevent the conception of defective children (Jones and Smith, 1973, Calhoun and 

Warren, 2007). In the 1700s there was a gin epidemic in England after the country lifted 

restriction on the consumption of spirits, this led to cheap gin being readily available 

resulting in widespread abuse of gin drinking. Several physician groups during that period 

described children born to alcoholic women as “weak, feeble and distempered children” 

(Abel, 2001, Calhoun and Warren, 2007).  

Physical and behavioral abnormalities together with medical disorders associated maternal 

alcohol drinking were first documented in the medical literature in 1968 by French 
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researchers Lemoine and colleagues who reported these characteristics in over 100 children 

born to mothers who drank heavily during their pregnancies (Calhoun and Warren, 2007, 

Jones, 2011, Koren, 2012, Lemoine et al., 1968). Their article described all the characteristics 

which were later referred to as the features of Fetal Alcohol Syndrome (FAS), however it did 

not lead to wide recognition of the deleterious effect of alcohol on the fetal development in 

France or elsewhere in Europe (Calhoun and Warren, 2007, Koren, 2012).       

FAS was first specifically labelled as such in 1973 by two pediatric dysmorphologists, 

Kenneth L Jones and David W Smith, from the University of Washington, Seattle, USA (Jones 

and Smith, 1973) after they noted aberrant physical features in eight unrelated children of 

three different ethnic groups (native Americans, black and white), all born to chronic 

alcoholic mothers. The infants had similar patterns of craniofacial, limb and cardiovascular 

defects. These children were brought to their attention by a hospital pediatrician Dr Christy 

N Ulleland after observing growth deficiency and developmental delays in them (Abel, 1995, 

Jones and Smith, 1973, Jones et al., 1973). The infants were also diagnosed by the child 

psychologist Ann P Streissguth to have aberrant intellectual, motor and behavioral 

performances. By labelling the characteristics of FAS in their publication, Jones and his 

colleagues managed to get the worldwide attention of the public and scientific community, 

and initiated a new branch of research and clinical practice into the impact of alcohol on the 

developing fetus (Sanders, 2009, Streissguth et al., 1994)  

1.3.  Fetal alcohol spectrum disorders (FASD) and Fetal alcohol 

syndrome (FAS) 

As mentioned above prenatal alcohol consumption during pregnancy results in a wide range 

of effects on the individuals exposed, these effects are collectively known as fetal alcohol 

spectrum disorders (FASD) (Sokol et al., 2003). FASD is a non-diagnostic term but an 

umbrella term used to describe the range of effects on an individual due to prenatal alcohol 

exposure (Riley et al., 2011). 

FASD include the following classifications according to the Institute of Medicine (IOM) i.e. 

Fetal alcohol syndrome (FAS) with or without confirmed maternal alcohol exposure; Partial 

FAS (pFAS) with confirmed history of maternal alcohol exposure (when there is a confirmed 

history of prenatal alcohol exposure and some components of the full syndrome but not 
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enough to establish the diagnosis of FAS)(Stratton et al., 1996); Alcohol Related Birth 

Defects (ARBD) is used when prenatally  exposed children without FAS facial features have 

other alcohol related physical abnormalities of the skeleton and other organ systems;  and 

Alcohol Related Neurodevelopmental Disorders (ARND) is used when there is serious 

alcohol induced mental impairment on prenatally exposed children but no characteristic 

facial defects and growth deficiency seen in FAS (Chudley et al., 2005, Hoyme et al., 2005, 

Stratton et al., 1996, Welch-Carre, 2005). FAS represents the more severe end of the 

spectrum.        

FAS is one of the leading causes of non-genetic preventable mental retardation and 

developmental disabilities in the world. It is an international problem that shows no racial 

boundaries (Clarren and Smith, 1978, Masotti et al., 2006). Children with FAS can be 

diagnosed by the following characteristics in three distinct areas (Landgraf et al., 2013): 

1. Three key facial dysmorphic features i.e. shorter palpebral fissures (abnormally small 

space between the inner and outer canthus of each eye), smooth philtrum (absence of 

grooves on the upper lip leading to the nose) and thin vermilion border to the upper lip 

(abnormally thin upper lip with a distinct border) (Figure 1).  

2.  Growth retardation (pre and postnatal) e.g. height and weight less than 10th percentile. 

3. Central nervous system (CNS) abnormalities e.g. head circumference less than 10th 

percentile, mental retardation, hyperactivity, learning disabilities and poor social skills.    

 

 

 



4 
 

 

 

Figure 1: The facial phenotype of FAS 

A smooth philtrum, thin vermillion border to the upper lip, and short palpebral fissures are typically 

used in the diagnosis of FAS, although the other features are common (Riley and McGee, 2005). 

Over the years the diagnosis of FAS has been expanded and refined (Douzgou et al., 2012, 

Riley et al., 2011) but still includes many anomalies described in the original publications 

(Jones and Smith, 1973, Jones et al., 1973). Currently there are four commonly used 

diagnostic schemas (Riley et al., 2011): 4-digit code (Astley and Clarren, 2000); National Task 

Force/CDC (Bertrand et al., 2005); Canadian Guidelines (Chudley et al., 2005) and Revised 

IOM (Hoyme et al., 2005). Despite the differences among all four schemas, they still rely on 

anomalies in three distinct areas i.e. prenatal and/or postnatal growth deficiency, central 

nervous system (CNS) abnormalities and characteristic facial dysmorphologies. All the three 

schemas agree on facial characteristics used to define FAS but differ on how many must be 

present to provide a diagnosis. Growth deficiency for FAS is defined as pre or postnatal 

weight or height below the 10th percentile in all the schemas. The CNS dysfunction is the 



5 
 

most variable among the schemas because it has a wide range of potential deficits but is 

most consistently defined as evidence of a structural brain anomaly (Riley et al., 2011). 

At birth, children with FAS are recognisable by their apparent growth deficiency and 

characteristic facial anomalies that tend to become less noticeable and adopt a more 

normal appearance as the child matures (Chaudhuri, 2000). Therefore less evident at birth, 

but far more devastating in the FAS children and their families, are the lifelong effects of 

alcohol-induced damage to the developing brain(Riley and McGee, 2005). The problems 

associated with the neurodevelopmental and behavioural characteristics related to FAS 

remain throughout life and change very little (Streissguth et al., 1991, Michaelis and 

Michaelis, 1994).  In addition to a deficit in general intellectual functioning, individuals with 

FAS often demonstrate difficulties with learning, memory, problem solving and attention, 

mental health and social interaction (Kodituwakku, 2009).  

Not all individuals who are prenatally exposed to high doses of alcohol develop all the 

diagnostic features of FAS, there are variability in the range of physical and behavioral 

outcomes. There are a number of predisposition factors that could influence the outcome of 

prenatal alcohol exposure, such as dose and drinking pattern, timing of exposure, genetic 

factors, and nutritional factors/status of the mother during pregnancy.  

1.3.1. Dose and Drinking pattern 

In general the amount of alcohol consumed is correlated with the severity of the outcome 

(Sood et al., 2001, Streissguth et al., 1989). However patterns of alcohol exposure can often 

moderate this effect (Bailey et al., 2004). Both the amount of alcohol consumed and 

drinking patterns of alcohol consumption are predisposition factors in the etiology of FAS. 

The more alcohol is consumed and the more quickly it is consumed, the higher the blood 

alcohol levels (BAL). The higher BAL will result in more alcohol passing freely across the 

placenta and entering the fetus’ circulatory system. Since the fetus is compromised in its 

ability to eliminate the teratogenic alcohol, the more likely the given fetus will reach the 

threshold for developing FAS (Abel and Hannigan, 1995, Brien et al., 1983, Schneider et al., 

2011). All teratogens including alcohol produce their effect within a range of exposures, 

below one level there may be no noticeable damage to the conceptus, above another level 
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there may be various anomalies while at very high levels the teratogen may be fatal to the 

embryo or fetotoxic.  

There are drinking behaviours/patterns that have been defined as conferring significant risk 

for FAS, for example, one drink per day during pregnancy or, in the case of binge drinking, 

five drinks per episode (Sokol et al., 2003). However there is no threshold for alcohol’s 

harmful effect on the fetus because there have been reports of deleterious outcomes for 

offspring prenatally exposed to small amounts of alcohol, for example half a drink per day 

(Sood et al., 2001). Binge drinking is defined as consumption of large amount of alcohol in a 

short period of time i.e. in one evening or day while chronic drinking is the consumption of 

one or two drinks everyday over a long period i.e. a week or a month. Binge drinking has 

been shown to produce more severe brain damage and behavioural changes than chronic 

drinking in rats (Thomas and Riley, 1998). Animal studies have shown that binge drinking, 

which causes a high peak of blood alcohol concentration produces more cellular damage 

and thus severe microencephaly, neural cell loss and behavioural deficit in the offspring. 

Chronic alcohol consumption produces a continuous but low blood alcohol concentration 

and causes a less severe phenotype (Bailey et al., 2004, Pierce and West, 1986). Long term 

studies in humans have confirmed that binge drinking in pregnant women may result in 

children who have severe cognitive and behavioural deficits (Maier and West, 2001).       

1.3.2. Prenatal alcohol exposure during different periods of fetal development 

(timing of exposure) 

Alcohol exposure during different periods of fetal development can greatly influence the 

pattern and severity of structural and functional abnormalities seen in FAS (Guerri et al., 

2009).  

The effect of alcohol exposure during different prenatal developmental stages was studied 

in animal models. High dosage of alcohol exposure in early gestation may results in fetal 

death, spontaneous abortion and premature birth  (Kleiber et al., 2014). Exposure during 

the pre-differentiation period (which is approximately 6 days between fertilisation and 

implantation in both mice and humans) was shown to increase blastocyst death (resorption) 

however, malformations were observed, affecting craniofacial development, eye, urogenital 

and limb development in live born pups (Padmanabhan and Hameed, 1988). In the period of 
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embryonic development (period between early germ layer differentiation and completion of 

organ formation, which begins after implantation, which in humans is between 3-8 weeks of 

gestation (Figure 2) alcohol exposure was shown to produce craniofacial malformations 

resembling those seen in FAS, as well as brain anomalies (Sulik, 2005, Lipinski et al., 2012). 

These malformations are due to the abnormal development of the neural crest and its 

derivatives. At this stage most cell types appear to be more vulnerable to alcohol induced 

cell death, more particularly the neural cell populations (Da Lee et al., 2004, Sulik et al., 

1986, Sulik et al., 1981, Mantha et al., 2014). During the period of fetal development 

(interval from end of organogenesis until birth, week 9 to birth in humans (Figure 2) alcohol 

exposure has been shown to produce histological changes in tissues, inhibit growth and 

produce subtle damage to the developing CNS (often manifesting as neurobehavioral 

effects) and other organ systems by interfering with histogenesis, synaptogenesis, and 

formation of myelin and other biochemical processes (Ikonomidou et al., 2000, Stratton et 

al., 1996). It should be noted that the CNS develops throughout the gestation period and 

even up to adolescent stage(in humans), therefore it is constantly vulnerable to the harmful 

effects of alcohol (Kleiber et al., 2014). In rats reports have shown that heavy alcohol intake 

during the brain growth spurt during the early postnatal period, corresponding to the third 

trimester and early infancy in humans, significantly reduces the weight of the forebrain, 

brain stem and cerebellum (Chen et al., 1998, Maier et al., 1997). Heavy and frequent 

alcohol consumption during the first trimester has been shown to predominantly affect 

facial and structural features whereas drinking in the third trimester has adverse effects on 

growth (May et al., 2004). Therefore maternal alcohol consumption during any time of 

pregnancy is detrimental to the fetus or embryo.  
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Figure 2: Stages off fetal organ development  

Various stages of organ development and critical periods, at which the fetus is most susceptible to 
birth defects induced by teratogens. Pink indicates the highly sensitive periods where major defects 
may be produced. White represents the stages that are less sensitive to teratogenic effects where 
minor defects may be induced (Boeree, 2009).  

1.4.  Prevalence of FAS 
 

The worldwide average prevalence of FAS in the high income countries is estimated at 0.97 

per 1000 live births (Abel, 1995, May and Gossage, 2001, McKinstry, 2005). In a developed 

country like the United States (US) the rate of FAS was reported to be 0.5-2/1000 live births 

(May and Gossage, 2001). Prevalence rates among selected American Indian reservation 

communities group in the US, who were considered at high-risk, did not exceed 10/1000 live 

births (May et al., 2000, Viljoen et al., 2005). Recently May et al., (2009), reported the 

prevalence of FAS as 2-7 per 1000 school children in the US.  It appears that FAS is on the 

increase, but this could partly be due to an increased awareness of the condition and a 

correlated increase in the diagnosis rate (May et al., 2009). 
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The prevalence of FAS in South Africa is one of the highest reported in the world, especially 

in the populations of the Western Cape (a wine producing areas) and Northern Cape where 

many of the FAS studies have been done. In the year 2000, the rates were reported at 40.5-

46.4/1000 first grade children in regions of the Western Cape (May et al., 2000) and two 

follow up studies conducted in the same area has reported an increasing prevalence to 65.2-

74.2/1000 first grade children (Viljoen et al., 2005) and 68-89.2/1000 first grade children 

(May et al., 2007). In a study done in the Northern Cape in primary school going children (De 

Aar-sheep farming area and Upington-wine farming area), the overall FAS rate of  67.2/1000 

was reported for both areas, with the FAS rate being higher in De Aar than in Upington 

(Urban et al., 2008). This higher rate of FAS in a sheep farming area (De Aar) compared to a 

wine producing area (e.g. Upington), shows that high rates of FAS are not limited to wine 

farming areas.  Another study supporting this fact was conducted in four areas of 

Johannesburg, Gauteng province in South Africa, where wine production is absent, where 

the reported FAS prevalence was 19/1000 children. Although the value is low compared to 

those of the Western Cape, it is still high compared to the rates worldwide (Viljoen et al., 

2003). The most recent study by Urban et al., (2015), reported the prevalence of FAS to be 

63/1000 first grade learners in predominantly mixed ancestry population of Roodepan, 

Northern Cape; and 52/1000 first grade learners in predominantly black population of 

Galeshewe, Northern Cape (Urban et al., 2015). 

1.4.1. FAS and the Economy 

 

Considering the high prevalence of FAS reported in the Western Cape and Northern Cape, it 

is clear that FAS is a considerable public health problem in these communities. Throughout 

the world FAS poses a huge economic burden on the health care system and also on the 

families of children having the condition, with a greater percentage of financial costs being 

incurred by the need for special schooling, home schooling and medical treatment (Popova 

et al., 2012, Stade et al., 2009). According to a study by Crede et al., (2011) children with 

FAS/PFAS from the Western Cape utilise the healthcare system on average 3 times more 

than those without the condition, indicating a significant financial burden that this condition 

puts on the health care system’s budget. Again another burden was indicated on the social 

development system because children with FAS/PFAS are likely to be given foster care 
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grants and if they are suffering from severe or permanent disability would qualify for care 

dependency-grants throughout their lives (Crede et al., 2011).   

1.4.2. Factors that influence the high prevalence of FAS  

The reasons for the high prevalence of FAS in specific communities in the Western Cape and 

Northern Cape, South Africa, is not known or understood, but contributing factors may be 

multifaceted, as described below. 

1.4.2.1. Maternal binge drinking and a history of alcohol abuse 

Regular binge drinking (a heavy episodic drinking of five to more units of alcohol per 

occasion) is a drinking pattern that poses a high risk for FAS (Jacobson et al., 1998), and 

binge drinking is a well recognised problem drinking pattern in some South African 

communities (Bulletin, 2011, Marais et al., 2011). Binge drinking was reported to be high 

among women attending an antenatal clinic in the Western Cape (Croxford and Viljoen, 

1999, Katwan et al., 2011), and 50% of mothers of FAS children reported drinking more 

heavily during their pregnancies (May et al., 2000, McKinstry, 2005). The mothers of FAS 

children in the Western Cape communities have been reported to come from families with a 

long history of generations of alcohol abuse and heavy drinking, this factor may be one 

influencing factor to maternal heavy drinking (Viljoen et al., 2002).  This destructive 

behaviour can be blamed partly on the ‘Dop’ system. 

1.4.2.2. Dop system 

Dop or ‘tot’ system can be described as a historical practice of paying farm workers in part 

with alcohol, and was developed in the 1700s by colonial farmers in the Cape (London, 

2000). Initially the payment consisted of bread, tobacco and wine and the tradition became 

an institutionalised element of the farming practice and played a key role in recruitment and 

retention of coastal people as farm workers. It was also used to get rid of low grade wine, 

which was sold to the farm workers for close to nothing (London, 1999). Even though the 

dop system was made illegal in 1961, alcohol abuse still prevails (as it is still favoured by 

many people and valued) in this population; this is due to the fact that the dop system 

entrenched a bad culture of alcohol abuse and a high prevalence of excessive alcohol 

consumption amongst the farm workers of the Western and Northern Cape (Gossage et al., 
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2014), therefore the dop system can be partly blamed for the high prevalence of FAS in 

these populations.  

1.4.2.3. Abundance of Shebeens (informal bars) 

 A Shebeen is a form of illegal informal bar where cheap, and often inferior alcohol, is sold 

(May et al., 2000). It is illegal because the owner usually does not have a license to sell 

alcohol.  It is not regulated, and therefore alcohol can be accessed anytime of the day and 

night. According to Dennis Viljoen there are about 27 sheebens in a population of 28 000 in 

De Aar, Northern Cape Province (Viljoen, 2011) and 37 000 shebeens have been reported to 

exist in the Western Cape Province (Bulletin, 2011). Therefore the high number of shebeens 

in these communities contributes considerably to the alcohol abuse and maternal drinking 

in this population because alcohol is highly accessible at any time.  

1.4.2.4. Poverty 

The prevalence of FAS varies depending on the poverty of the population, the poorer the 

population, the higher the risk of developing FAS. The populations most at risk for FAS are 

overwhelmingly poverty stricken (Abel and Hannigan, 1995, Viljoen et al., 2002). Poverty is a 

factor of low socioeconomic status and it goes together with malnutrition or an unbalanced 

diet. A balanced diet is a requirement for normal pregnancy outcome and for normal 

fetal/embryonic development and growth and also for maintaining maternal health 

(Dreosti, 1993). Severe malnutrition has been shown to increase the risk of abortion, 

intrauterine growth retardation and impaired fetal brain development (Gabr, 1987) 

therefore it can be speculated that malnutrition with deficiencies of essential nutrients, as a 

resultant of poverty, may be an enhancing risk factor for the development of FAS (Keen et 

al., 2010). Maternal malnutrition with deficiencies of essential nutrients such as folate; 

coupled with maternal alcohol consumption during pregnancy may exacerbate the risk of 

developing FAS (Abel et al., 1995) and this may mediated through the disturbance of OCM. 

OCM is critical pathway responsible for the production of universal methyl donor and other 

compound that are vital for DNA methylation and DNA synthesis respectively; and therefore 

it is important for normal fetal development (Bailey et al., 2012).  Folate is a coenzyme that 

plays an important role as a source of methyl group in the OCM. Since humans cannot 

synthesise folate, dietary deficiencies due to poverty will lead to reduced availability of 
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methyl groups therefore leading to disturbances in the OCM and then DNA methylation 

(Wani et al., 2012). Alcohol intake on the other hand may cause folate deficiency through 

poor diet and eating less (as seen in alcoholics) and also by interfering with folate 

absorption and   renal re-absorption (Hamid et al., 2009). Therefore maternal malnutrition 

in the presence of alcohol abuse during pregnancy will lead to unavailability or critically low 

levels of the essential nutrients like folate and other methyl groups, with the resultant of 

fetal malformation and FAS development. 

Most of the FAS cases reported in the United State by epidemiological studies were 

diagnosed predominantly in the African - American population, uniformly characterised by  

poverty (2.29 cases per 1000 live births), compared to sites where the population was 

primarily Caucasian and middle class (0.26 per 1000)(Abel, 1995). The 11 FAS children 

originally diagnosed by Smith and Jones (Jones and Smith, 1973) were racially divergent e.g. 

Caucasians, African American and Native Americans, but what was similar in all the mothers 

was that they were all living on welfare. Therefore FAS does occur in people of all races but 

it occurs predominantly in people of low socioeconomic status (SES) regardless of race (Abel 

and Hannigan, 1995). The rural populations of the Western and Northern Cape are faced 

with high poverty levels like most of the rural areas in South Africa. The majority of them are 

farm workers and they are faced with the difficulties of having to live with extremely low 

wages (London, 2003) and hence this is a factor contributing to the high prevalence of FAS.  

1.4.2.5. Paternal contribution to FAS 

Most of mothers of FAS children from the Western Cape have alcoholic partners. Mothers 

have been reported to consume about 97% of their alcohol intake over the weekend, which 

is when they spend a significant time with their partners (Viljoen et al., 2002). It has been 

previously reported that 75% of children with FAS had heavy drinking or alcoholic biological 

fathers (Abel et al., 1983). This observation lead to the view that a number of FAS cases 

thought to be contributed by maternal alcohol abuse may have resulted due excessive 

paternal drinking (Abel, 2004). Animal models have also shown that paternal preconception 

alcohol abuse had a significant effect on neurobehaviour of subsequent offspring and 

congenital malformation, low birth weight, growth retardation and neonatal mortality were 

also reported (Friedler, 1996, Jamerson et al., 2004). Therefore since it has been reported in 
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the Western Cape that mothers of FAS children have partners that are heavy drinkers or 

alcoholics, it may be plausible that paternal contribution to FAS is a contributing factor to 

high prevalence of FAS in this community. Possible mechanism for preconception paternal 

alcohol consumption to the development of FAS may be through the disruption of 

epigenetic modifications in the male sperm DNA by alcohol. Therefore transmission of the 

abnormal sperm DNA epigenetic changes to the offspring may results in development of FAS 

phenotype.  In a study on the sperm of males who consume alcohol, it was shown that 

epigenetic changes in sperm DNA were correlated with the amount of alcohol consumed 

(Ouko et al., 2009). A mouse model study by Knezovich and colleagues reported a significant 

reduction in DNA methylation at the H19 ICR in offspring of ethanol-treated sires which 

corresponded to reduced weight (Knezovich and Ramsay, 2012). Another mouse study also 

reported increase in hearing loss in offspring of chronic ethanol-exposed sires (Liang et al., 

2015). Alcohol has been associated with diminished sperm quality, which in turn is 

correlated with altered epigenetic changes in specific regions of the sperm DNA (Marques et 

al., 2008).  

1.5.  Alcohol metabolism and genetic predisposition to FAS 

It is well established that maternal alcohol consumption during pregnancy is the primary 

cause of FAS development. Both alcohol and its metabolites are teratogenic and therefore 

may directly cause damage to the fetus. When a woman drinks alcohol during pregnancy, 

ethanol is metabolised in the maternal liver by cytosolic alcohol dehydrogenase (ADH) to 

acetaldehyde, acetaldehyde is further oxidised to acetate and water by mitochondrial 

aldehyde dehydrogenase (ALDH) (Figure 3). Another enzyme, cytochrome P450 E21 

(CYPE21), can also metabolise alcohol to acetaldehyde with the release of oxygen derived 

free radicals (reactive oxygen species-ROS) as a byproduct (Cederbaum et al., 2001). CYPE21 

shows a much lower affinity for ethanol than ADH at moderate doses of alcohol. Excessive 

alcohol exposure and long term alcohol intake induces CYPE21 expression, and thus the rate 

of ethanol clearance (Howard et al., 2003). CYPE21 is expressed in the placenta, fetal liver 

and brain during organogenesis where the CYPE21-catalyzed ethanol oxidation may cause 

oxidative stress (Gemma et al., 2007). Both alcohol and acetaldehyde can freely cross the 

placental barrier to enter the fetal circulation. Due to its water solubility, ethanol is readily 

and uniformly distributed to the body water space of the mother and the fetus (Norberg et 
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al., 2003). ADH activity is low in human fetal liver throughout intrauterine life, far less so 

than in the adult. Alcohol is cleared more slowly from the fetal than the maternal 

circulation, its rate of elimination is far less than half that observed in the mother (Kaufman, 

1997). Therefore the low activity of fetal ADH may be one factor contributing to fetal 

alcohol toxicity because it results in persistent high fetal blood alcohol concentration. 

FAS is a complex multifactorial disease, even though prenatal alcohol exposure is the 

primary trigger for the presentation of FAS, twin concordance studies and animal models 

suggest that there may be genetic susceptibility to the development of FAS (Becker et al., 

1996, Streissguth and Dehaene, 1993). 

The first indication that genetic factors may underlie the vulnerability to prenatal alcohol 

induced adverse pregnancy outcome was by a single case report of significant discordance 

between a dizygotic twin pair born to an alcoholic mother. One twin was severely affected 

by FAS at birth while the other was minimally affected. The minimally affected twin would 

not have been recognised in the neonatal period if his other twin had not been so severely 

affected (Christoffel and Salafsky, 1975). Twin studies undertaken by Streissguth and 

Dehaene (1993) have demonstrated higher concordance for FAS among monozygous twins 

when compared to dizygous twins. Among 16 twin pairs (5 monozygotic and 11 dizygotic 

twin pairs) exposed to high levels of alcohol during gestation, all individuals of five 

monozygotic twin pairs and seven of the dizygotic twin pairs were equally affected. The 

remaining four dizygotic twin pairs showed discordance for FAS, suggesting that fetal 

genotype also may play a role in development of FAS (Streissguth and Dehaene, 1993).  

These monozygotic and dizygotic twin studies reflect the modulating influence of genes in 

the expression of the teratogenic effect of alcohol. 

Another genetic factor that may influence vulnerability to FAS includes genetic variation in 

enzymes that metabolise alcohol, thus regulating the blood concentration of alcohol. The 

metabolic activity of the mothers’ alcohol metabolising enzymes is one of the determinants 

of how much alcohol (or its metabolites) the fetus would be exposed to and thus the 

predisposition to FAS development (Gemma et al., 2007). There is a significant variation in 

human alcohol metabolism rates, of which 50% may be genetically determined. 

Polymorphism at the ADH1B allele has been proposed as one of the major determinants to 
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account for this variability (Arfsten et al., 2004). Allelic variants of ADH1B are ADH1B*1, 

ADH1B*2 and ADH1B*3 and their respectively encoded isoenzymes show different rates of 

alcohol metabolism (Warren and Li, 2005, Hurley and Edenberg, 2012). Isoenzymes encoded 

by ADH1B*2 and ADH1B*3 have higher rates of alcohol oxidation than those encoded by 

ADH1B*1, therefore individuals carrying these alleles (ADH1B*2 and ADH1B*3) will have a 

faster and more efficient alcohol clearance than those carrying the ADH1B*1 allele (Arfsten 

et al., 2004).  Some CYPE21 variants are associated with enhanced alcohol metabolic 

capacity and may modulate the risk for developing FAS (Gemma et al., 2007). 

Several studies have evaluated the impact of genetic polymorphism of the ADH gene family 

on the risk of FAS in humans. Viljoen et al., (2001) found that the ADH1B*2 allele (a rapid 

metaboliser of alcohol) was significantly more common in the control mothers, than in 

mothers of FAS affected children and FAS children in the population of the Western Cape 

(Viljoen et al., 2001). This suggests that the ADH1B*2 allele may have a protective effect 

against FAS. In two different studies involving African American populations, the ADH1B*3 

allele (a rapid metaboliser of alcohol) was more highly represented in control mothers than 

in mothers of children with neurobehavioral abnormalities seen in association with prenatal 

alcohol exposure (Jacobson et al., 2006, McCarver et al., 1997). There are multiple reasons 

why the presence of ADH1B*2 and ADH1B*3 variants in the mother is associated with 

reduced risk for FAS development in children, this may be because the mothers drink less or 

that the alcohol is cleared rapidly and thus it is not present in the blood for longer period 

leading to less fetal exposure.     

 

 

Figure 3: Alcohol Metabolism 

ADH oxidises alcohol to acetaldehyde, and ALDH oxidises acetaldehyde to acetate and 
eventually to CO2 and water to be eliminated by the body. Another enzyme, CYPE21, can also 
metabolise alcohol to acetaldehyde with the release of oxygen derived free radicals as a 
byproduct (U.S. Department of Health and Human Services, 2007) 
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1.6.  Epigenetics as a mechanism of FAS 

There is growing understanding that patterns of gene expression controlled by epigenetic 

imprints are vital for normal development and perturbation of these imprints underlies 

many states of pathology. Inappropriate or altered levels of gene expression have also been 

shown to play a role in cancers and other specific abnormalities (Laird and Jaenisch, 1996). It 

is for these reasons that the role of epigenetic modification as a mechanism for alcohol 

related effects is investigated for this study.   

The Greek prefix “epi-“ in epigenetics implies features that are “on top of” or “in addition 

to”  genetics, therefore epigenetics  in fact means to act on “top of” or “in addition” to 

genetics (Meissner, 2009). A developmental biologist, Conrad Waddington, first coined the 

term epigenetics in 1938, which is derived from the Aristotelian word 'epigenesis’. He 

defined it as “the science concerned with causal analysis of development” (Jablonka and 

Lamb, 2002, Waddington, 1952). During that period there was no evidence that supported a 

genetic component of development, as it is presently understood. However Waddington’s 

statements and pictures certainly support that he understood development in terms of 

what is today called differential gene expression and regulation (Jablonka and Lamb, 2002). 

Over the years the definition of epigenetics has evolved and been refined. Robin Holliday 

broadly described epigentics as the “unfolding of genetic program for development” 

(Holliday, 2006). Later Adrian Bird defined epigenetics as “the structural adaptation of 

chromosomal regions, so as to register signals and perpetuate altered activity states” (Bird, 

2007).      

Therefore epigenetics can be defined as the study of heritable changes in gene expression 

patterns that are not caused by changes in the nucleotide sequence of the genetic code 

itself (Groom et al., 2011, Tost, 2009). There are three epigenetic mechanisms i.e. DNA 

methylation (biochemical alteration of DNA), modification of histones that package the DNA 

and non-coding or interfering RNAs, including micro RNAs. These mechanisms work 

together to produce a unique, and reversible epigenetic signature that regulates gene 

expression through chromatin remodelling.    
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1.6.1. DNA methylation 

The most widely investigated epigenetic mechanism is DNA methylation, and therefore it is 

the best understood (Groom et al., 2011). DNA methylation is a naturally occurring event in 

both prokaryotic and eukaryotic organisms. In prokaryotes, DNA methylation provides a way 

to protect the host cells from digestion by restriction endonucleases that are designed to 

eliminate foreign DNA, and in higher eukaryotes DNA methylation has a function in 

regulating gene expression (Costello and Plass, 2001). Robin Holiday and John Pugh, 

suggested in 1975, that DNA methylation controls gene expression, therefore contributing 

to developmental changes by controlling gene activity (Holliday and Pugh, 1975). It was also 

suggested that this modification can serve as heritable epigenetic modification for cellular 

memory (Riggs, 1975). DNA methylation is a mitotically stable epigenetic mark that 

regulates gene expression, and together with chromatin structure, has been implicated in 

important processes like embryogenesis, genomic imprinting, X-chromosome inactivation, 

cell type specific gene expression and silencing of repetitive elements (Li, 2002).   

DNA methylation involves the biochemical modification of the DNA; whereby there is 

addition of an methyl group to the fifth carbon position of the cytosine base pyrimidine ring, 

in the presence of DNA methyltransferases to form 5-methyl cytosine (Adams, 1995).  The 

majority of DNA methylation in mammals occurs only in the context of CpG dinucleotides, 

where a cytosine residue is followed by guanine residue (5′...CpG...3′dinucleotides). These 

locations are referred to as CpG sites, the “p” indicating the phosphate group between the 

di-nucleotide pair.  

The mammalian genome is globally depleted of CpGs, except at short DNA stretches called 

CpG islands (CGIs) (Siegfried and Simon, 2010). CGIs are defined as being longer than 500bp 

and having a GC content greater than 55% and observed CpG /expected CpG ratio of 0.65 

(Takai and Jones, 2002). CGIs are often, but not always, found in promoter regions of genes. 

These include the 5′ end of the promoters, 5′ untranslated region and exon 1 (Jones and 

Baylin, 2002). The rest of the genome, such as the intergenic and intronic regions, is 

considered to be CpG poor. In healthy cells CpG sites in CpG poor regions are often 

methylated while the CpGs in CGIs are generally hypomethylated. Most CpGs in promoters 

are protected from methylation in somatic tissues (Schneider et al., 2010). Promoter 
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methylation leads to stable gene silencing during development /differentiation and may be 

involved in disease processes (Feinberg, 2007, Rollins et al., 2006, Weber et al., 2007). For 

example, the pluripotency genes are switched from a demethylated and transcriptionally 

active state in embryonic stem cells, to a fully methylated repressed state in somatic cells 

(Okita et al., 2007, Reik, 2007). On the other hand, tumor suppressor genes are 

demethylated and active in somatic cells, where the ectopic methylation begins early in 

cancer development (Esteller et al., 2000, Ting et al., 2006).  

DNA methylation is generally associated with a repressed chromatin state and inhibition of 

promoter activity. DNA methylation usually conducts its transcriptional control in two ways: 

first, cytosine methylation can directly prevent binding of some transcription factors to their 

target sequences; secondly, DNA methylation can affect chromatin states indirectly by 

recruitment of methyl-CpG-binding protein (MeCP2) and methyl CpG binding domain 

protein (MBDs 1-4) and their associated repressive chromatin remodelling activities 

(Jaenisch and Bird, 2003, Klose and Bird, 2006). The MeCP2 and MBDs proteins recognise 

methylation sites on DNA then bind the methylated DNA and thus regulate genes by 

blocking the binding of RNA polymerase to the promoter (Baylin and Herman, 2000). 

Together these methyl-binding proteins function as transcriptional silencers. They recruit 

transcriptional co-repressors such as histone deacetylating complexes, polycomp proteins 

and chromatin remodelling complexes (Ballestar and Wolffe, 2001). Methylated DNA can 

also be bound by zinc finger proteins like Kaiso which are able to repress transcription in a 

methylation dependent manner (Tost, 2009).   

1.6.2. Role of DNA methyltransferases (DNMTs) in DNA methylation 

 

The activities of DNA methyltransferases (DNMTS) facilitate the epigenetic control of gene 

expression by cytosine methylation. They recognise the CpGs within the double stranded 

DNA as a substrate. DNMTs catalyse the transmethylation of cytosine by transferring the 

methyl group (CH3) from the methyl donor S-adenosylmethionine (SAM) to position 5 of the 

pyrimidine ring, (Figure 4) (Hitchler and Domann, 2007). The reaction results in the 

production of 5-methyl cytosine (5-MeC) and cofactor S-adenosylhomocysteine (SAH). High 

concentrations of SAH inhibit the activities of methyltransferases.  Mammalian one carbon 
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metabolism provides all methyl groups for all biological methylation reactions through 

synthesis of universal methyl donor, SAM (Ulrey et al., 2005).  

 

In mammals, five DNA methyltranferases (DNMTs) have been characterised and classified 

according to similarities found in their C-terminal catalytic domain. The enzymes are 

DNMT1, DNMT2, DNMT3a, DNMT3b and DNMT3L (Goll and Bestor, 2005). Only DNMT1, 3a 

and 3b are catalytically active in methylating in vivo. 

DNMT1 is the major methyltransferase in somatic tissue and has high preference for 

hemimethylated DNA (when only one strand of the double stranded DNA contains 

methylated CpGs). It maintains DNA methylation during replication by copying the DNA 

methylation of the old DNA strand onto the newly synthesised strand, and this occurs 

rapidly following DNA replication. It is localised to the replication fork during cellular division 

 

Figure 4: The transmethylation reaction catalysed by DNA transmethylases (DNMTs) 

The DNMTs catalyse the transfer of methyl donor groups (dashed box) from SAM to 5 position of 
cytosine within CpG dinuceotides. The reaction results in the production of 5-Me-cytosine and 
SAH (Hitchler and Domann, 2007).  
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(S phase of cell cycle) (Beaulieu et al., 2002). This interaction puts it in close proximity to the 

newly synthesised hemimethylated CpG dinucleotides (Leonhardt et al., 1992). It plays a 

primary critical role in maintenance of DNA methylation patterns during replication of DNA, 

passing on the DNA methylation mark and thus epigenetic control of gene expression to 

daughter cells (Kautiainen and Jones, 1985).  

DNMT3A and DNMT3B are responsible for de novo methylation of DNA, because they are 

able to target the unmethylated CpG sites. The two enzymes have high affinity for 

unmethylated CpG dinucleotides which is critical for their role in de novo 

methylation(Okano et al., 1998). They are primarily responsible for initiating new epigenetic 

marks that regulate gene expression that can be passed on during cell division(Okano et al., 

1999). They are also reported to work together with DNMT1 to propagate methylation 

patterns during cell divisions (Jia et al., 2007, Liang et al., 2002). De novo methylation can 

occur anytime following DNA replication to initiate new epigenetic events that can be 

passed on during future cell divisions. Again DNMT3a has been reported to have preference 

in methylating CpGs that are packed together while DNMT3b is more efficient at 

methylating isolated CpGs (Gowher and Jeltsch, 2002). These enzymes for maintenance of 

DNA methylation and de novo DNA methylation are important in generating and 

perpetuating epigenetic control of gene expression during development, gametogenesis and 

imprinting.   

DNMT3L (accessory protein DNMT 3-like protein) lacks the functional catalytic domains and 

forms a heterotetramer with DNMT3a or DNMT3b (Jia et al., 2007, Kelsey, 2011). It 

potentiates DNA methylation through its interaction with DNMT3a and DNMT3b (Okano et 

al., 1999). It has been reported to stimulate the activities of its de novo partners, or guiding 

the recognition of DNA targets with particular periodicity of CpG sites (Jia et al., 2007). In 

mice Dnmt3a and Dnmt3l are key regulators of DNA methylation, they co-operate to de 

novo methylate DNA in the germ line. Dnmt3l functions to activate Dnmt3a and recognises 

the target sequence based on nucleosome modification and CpG spacing (Chedin et al., 

2002). Female mice that lack either Dnmt3a or Dnmt3l are fertile but their heterozygous 

progeny lack the maternal imprint and the mice die before mid-gestation while male mice 

that lack these methylases are infertile and oligospermic (Kaneda et al., 2004). The last 
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methyltransferase, Dnmt2, has been shown to have a weak methylation activity in vitro, 

however it has been suggested to function as an RNA transferase in vivo (Goll et al., 2006). 

DNA methylation facilitated by DNMTs activities is essential for mammalian development, 

and this has been shown by the lethality, developmental delays and abnormalities in various 

DNMTs deficient mice (Li, 2002, Li et al., 1999, Okano et al., 1999). Therefore through the 

normal activities of DNMTs, DNA methylation provides a mechanism for maintaining a 

specific state of gene expression and genome stability during development (Robertson, 

2005). 

DNA methylation and other forms of epigenetic modifications, like histone modification, do 

not act independently of one another, for example, methylation of specific regions can act 

to recruit histone deacytelation, changing the chromatin state and leading to gene silencing 

(Jones et al., 1998, Nan et al., 1998). DNA methylation can alter the structure and stability of 

chromatin relevant for transcriptional control of genes (Hashimshony et al., 2003). 

1.7.  Genomic imprinting 

Genomic imprinting is an epigenetic phenomenon resulting in expression of one parental 

allele, while the other one is silenced. It is the mono-allelic expression of genes depending 

on the parental origin of the allele (Ulaner et al., 2003). Genes expressed in this manner are 

called imprinted genes. Imprinted genes are functionally haploid since they are expressed 

from only the maternal or paternal allele but not both, making them more vulnerable to 

negative effects of mutations which otherwise would be recessive (Jirtle et al., 2000). Their 

function can be changed by environmentally induced changes to the epigenome, which may 

affect their expression in time and in space (Jirtle and Skinner, 2007). Genomic imprinting is 

mediated by epigenetic modifications such as DNA methylation and histone modification 

and is important for development and growth (Rodenhiser and Mann, 2006).  

Almost all imprinted genes contain homologous sequence regions with differences in DNA 

methylation (differential methylation) between the parental alleles; the regions are called 

differentially methylated regions (DMRs).  The DMR serve as a mark that differentiates the 

paternal allele from the maternal allele. Methylation of the CpG dinucleotides of the DMR is 

the primary mechanism of imprinting. There are two types of DMRs. Primary DMRs (also 
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called ICRs or germline DMRs) with imprinting methylation marks established in the 

gametes and then maintained in somatic tissues of offspring throughout development, also 

referred to as regions that control genomic imprinting (Smallwood and Kelsey, 2012). 

Secondary DMRs (also called post-zygotic DMRs) have their imprinting marks established 

after fertilisation during the genome wide wave of demethylation and de novo methylation 

in the zygote (Geuns et al., 2007a). The establishment of secondary DMRs is dependent on 

primary DMRs in the cluster in which they reside (Lewis and Reik, 2006). The imprinting 

marks in both the primary and secondary DMRs are erased in the primordial germ cells 

before new parental specific methylation is established (Lewis and Reik, 2006).  

About 1% of autosomal genes are imprinted genes (Jirtle and Skinner, 2007), and 

approximately 150 imprinted genes have been identified so far(Barlow and Bartolomei, 

2014). One of the hallmarks of imprinted genes is that the majority are found in clusters 

with other imprinted genes in the same region of the genome, which they sometimes share 

with common developmental and tissue-specific patterns of gene expression (Lopes et al., 

2003, Verona et al., 2003). A few lone or singly positioned imprinted genes (e.g. Inpp5f_v2) 

have been reported (Choi et al., 2005). Imprinted clusters contain two or more imprinted 

genes over a region that can span 1Mb or more. The clusters generally contain several 

protein coding genes and at least one non-coding RNA (ncRNA) gene. Each cluster is under 

the control of single major cis-acting element called the imprinting control region (ICR) even 

though other elements may modulate the function of the ICR (Edwards et al., 2007). ICRs 

are able to control the imprinting of all the genes within a cluster because they can affect 

activity and repression over a large region. Deletion of an ICRs has been shown to result in 

the loss of imprinting of multiple genes within the cluster, usually with major phenotypic 

effects (Fitzpatrick et al., 2002). Knockouts of ICRs in mice often result in lethality or severe 

growth defects while mutations in human ICRs lead to imprinting disorders (Lewis and Reik, 

2006). 

With singleton imprinted genes, their differentially methylated promoters serve as their 

ICRs (Choi et al., 2005). An ICR is differentially methylated between the two parental alleles 

and the imprints are acquired or set up in the germ line at the time when the genomes are 

in their distinct compartments.  After fertilisation the parental imprints must survive the 

reprogramming that takes place in the preimplantation embryo including DNA 
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demethylation, protamine-histone exchange and changes in histone modification (Reik and 

Walter, 2001). ICRs can function as insulators and also serve as promoters for ncRNA 

(Ideraabdullah et al., 2008). Imprinting clusters can be divided into two categories:  

maternally methylated ICR whose methylation was acquired during oogenesis on their 

maternally inherited chromosome and paternally methylated ICR whose methylation was 

acquired during spermatogenesis on the paternally inherited chromosome (Edwards et al., 

2007). In addition to differential DNA methylation, ICRs also show allelic differences in 

chromatin structure, i.e. histone tail modifications. Several studies have shown that 

repressive histone modifications such as methylation at histone H3 lysine 9 and lysine 27 are 

found at ICRs on the methylated allele, whereas the activating histone modifications such as 

(H3 and H4 acetylations) and H3 lysine 4 are found on the unmethylated allele (Grandjean et 

al., 2001, Lewis and Reik, 2006, Pedone et al., 1999).  A number of imprinted genes remain 

imprinted throughout the life of an organism, however many genes are imprinted in a tissue 

or in a temporal specific way. Epigenetic abnormalities at imprinted loci have been observed 

in cloned mammals and their disruptions have been reported in human developmental 

disorders and cancers (Wood and Oakey, 2006).  

1.7.1. Evolution of imprinting  

There are several theories that have been put forward to explain the evolution of 

imprinting, the most common being the ovarian time bomb hypothesis and the conflict 

hypothesis.  

The ovarian time bomb hypothesis states that imprinting occurs to prevent the problem of 

an unfertilised oocyte that develops into an individual, a phenomenon called 

parthenogenesis, which can lead to malignant trophoblastic disease (Wood and Oakey, 

2006). Imprinting is believed to protect women against germ cell tumours by guarding 

against excess placental growth (Jirtle and Skinner, 2007). The ovarian time bomb 

hypothesis predicts that only a small number of genes vital for early embryonic 

development would be imprinted, and cannot readily explain the involvement of imprinted 

genes in postnatal traits (Wood and Oakey, 2006).  However it remains possible that the 

action of a small number of imprinted genes in preventing parthenogenesis has been 

advantageous to mammalian development.  
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The most widely accepted theory for the evolution of imprinting is the conflict hypothesis, 

commonly called kinship theory (Haig, 2000, Haig and Graham, 1991, Jirtle and Skinner, 

2007, Moore and Haig, 1991). According to the theory, imprinting evolved because of the 

genetic tug-of-war over the amount of nutrients extracted from the mother by her 

offspring. It predicts that paternally expressed genes promote placental growth and thus 

prenatal growth. On the other hand, maternally expressed genes promote fetal 

development, but suppress offspring growth in order to maximise the mother’s 

reproductive potential over her reproductive lifespan. The function of most oppositely 

imprinted genes in a cluster supports this theory, and shows opposite roles in fetal growth, 

depending on the parental origin of their imprint (DeChiara et al., 1991).  

1.7.2. Epigenetic reprogramming   

In mammals epigenetic reprogramming refers to the remodelling of epigenetic marks during 

germ cell development and following fertilisation in the early embryo. There are three 

important periods in the life of an imprinted gene: firstly during gametogenesis, when 

imprints must be reset according to the sex of transmitting parent; secondly during the 

preimplantation period when there is genome-wide demethylation in the zygote and thirdly 

during gastrulation period when there is genome-wide de novo methylation where 

secondary imprints arise with important roles in differentiation and proliferation in late 

gestation (Weinstein et al., 2002) (illustrated in Figure 5).  

Soon after the onset of gastrulation in the mouse embryo, precursors of germ cells or 

primordial germ cells (PGCs) emerge from the epiblast by embryonic day 7.25 (E7.25). E7.25 

refers to the 7.25 day of the mouse embryonic gestation, E is embryonic day and the 

number depicts the actual day. They proliferate, migrate to and colonise the genital ridge 

from which the gonads develop (E10.5-E11.5). Because PGCs originate from embryonic cells 

that have started to adopt the somatic fate, extensive remodelling of DNA methylation and 

histone modification marks towards the requirement of a germ cell is essential (Feng et al., 

2010, Hajkova, 2010). Preexisting DNA methylation patterns are comprehensively erased 

(including the imprinted regions and non-imprinted loci) during PGCs migration (Figure 5), 

such that by E13.5 their overall methylation is <10% as compared to >70% methylation in 

the entire embryo (Popp et al., 2010, Smallwood and Kelsey, 2012). The consequence of 
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across-the-board DNA methylation erasure is that the de novo DNA methylation during 

germ cell development takes place on a clean slate. Depending on the sex of the embryo 

(E12.5), the new DNA methylation pattern is established differently in male and female 

germ cells (Figure 5), resulting in distinct methylation profiles of the mature oocyte and 

sperm. This asymmetry is related to the fact that de novo DNA methylation takes place in 

distinct cellular contexts in male and female germ cells (Feil, 2009). In the female, germ cell 

methylation takes place during the postnatal growth phase in oocytes arrested in meiotic 

phase I. In the male germ cells, methylation initiates before birth in mitotically arrested 

prospermatogonia, before the onset of meiosis (Smallwood and Kelsey, 2012). The 

reprogramming at this stage is needed to reset the imprints in each generation and to 

remove any epigenetic changes that have accumulated in the previous generation 

(Piedrahita, 2011) .  

Epigenetic reprogramming does also occur after fertilisation, resulting in another wave of 

remodelling and erasure of DNA methylation marks (Figure 5). The demethylation at this 

stage does not affect the two parental alleles in the same way. Paternally acquired DNA 

methylation marks are erased quickly in the zygote, by an active demethylation mechanism, 

which may involve oxidation of methylated cytosine by the ten-eleven translocation family 

of dioxygenases (TET) protein (Gu et al., 2011). Maternally acquired germ line methylation 

marks are erased passively, which is thought to be due to the lack of DNA methylation 

maintenance at replication, resulting in progressive loss of methylation at each cell division. 

This second wave of demethylation does not affect all regions of the genome, the 

methylation at primary DMRs of imprinted genes is not affected and it is faithfully 

maintained after fertilisation as a lifelong memory of parental origin of the allele in the new 

generation leading to monoallelic expression of the associated imprinted genes. Maximal 

demethylation is reached at the morula stage of embryonic development. Once the 

blastocyst starts to develop, a new wave of global methylation is initiated. However the 

inner cell mass is methylated to a different extend than the trophectoderm of the 

blastocyst. These differences in DNA methylation levels are maintained post implantation 

and throughout development, therefore the fetus proper has a higher level of methylation 

than the placenta (Piedrahita, 2011). The DNA methylation landscape has to be properly 

remodelled during the epigenetic reprogramming, which is a vurnable period for external 
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insults and therefore any environmental disturbances to the process will results in abnormal 

embryonic development.  

 

 

Figure 5: Epigenetic Reprogramming  

During fetal development germ cells destined to become PGCs are demethylated. Global 
methylation (solid lines) and imprinted gene methylation (broken line) occur, as shown. After 
complete erasure, the new imprints are added. The timing for adding paternal imprints (dark lines) 
during spermatogenesis differ from maternal imprints (light lines) added during oogenesis. Upon 
completion of gametogenesis global and imprinted DNA methylation are at their highest. After 
fertilisation there is a wave of both active and passive demethylation. This demethylation affects 
global methylation but does not affect imprinting markings. Maximal demethylation is reached at 
the morula stage of embryonic development. Once the blastocyst starts to develop, a new wave of 
global methylation is initiated. However the inner cell mass is methylated to a different extend than 
the trophectoderm of the blastocyst. These differences in DNA methylation levels are maintained 
post implantation and throughout development, therefore the fetus proper has a higher level of 
methylation than the placenta (Piedrahita, 2011).        

 

1.7.3. Imprinting clusters 

1.7.3.1. H19/IGF2 imprinting cluster 

This cluster resides at chromosome 11p15.5 in humans and on distal chromosome 7 in mice. 

It contains the reciprocally imprinted genes, maternally expressed H19 and paternally 

expressed insulin like-growth factor 2 (IGF2) (Bartolomei et al., 1991). Even though most of 

the studies on H19 and IGF2 have been done on mouse models, many characteristics of 

these genes (gene expression profiles and regulatory mechanism) are similar to their 

homologues in humans (Ideraabdullah et al., 2008). H19 and IGF2 gene are widely expressed 

during embryonic development and postnatally down-regulated in many tissues in both 

human and mouse. H19 encodes for a fully processed 2.3kb non-coding RNA, a putative 

tumour suppressor (Hao et al., 1993, Yoshimizu et al., 2008). However it has also been 
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shown to have oncogenic properties (Cui et al., 2002). IGF2 encodes a potent growth factor 

protein that plays an important role in promoting embryonic and placental development 

(DeChiara et al., 1990, Ohlsson et al., 1993).   

H19 and IGF2 imprinting and differential expression is regulated by a germ line DMR, that is 

methylated on the paternal allele and unmethylated on the maternal allele (Lewis and Reik, 

2006, Morgan et al., 2005), located between the two genes, about 2 kb upstream of H19 

gene in humans. The ICR is also called ICR1 or H19 ICR (Jinno et al., 1996, Leighton et al., 

1995). The region is approximately 5 kb long in humans and 2 kb long in mice. The ICR 

displays a parent of origin dependent methylation profile in both humans and mice, such 

that it is methylated on the paternal allele and unmethylated on the maternal allele (Vu et 

al., 2000). H19 and IGF2 promoters share enhancers that lie downstream of H19, and the 

ICR region maintains differential expression of the two genes by regulating the interaction 

between the IGF2 and H19 promoters and their shared enhancers.  Deletion of the ICR has 

been shown to result in loss of imprinting (LOI) at H19 and IGF2 (Thorvaldsen et al., 1998). 

The ICR contains the binding site sequence for an insulator protein, zinc-finger CCCTC-

binding factor (CTCF), and therefore it is a biological target for the CTCF. The sequence is 

conserved in the mouse and human ICR (Frevel et al., 1999). The mouse H19 ICR contains 4 

CTCF binding sites of which the first three are differentially methylated, while the human 

ICR contains 7 (Hark et al., 2000). In humans, the sixth CTCF binding site has been shown to 

be differentially methylated, while the other CTCF binding sites appeared to be methylated 

irrespective of the parent of origin of the allele (Takai et al., 2001). Therefore the sixth CTCF 

binding is the key regulatory domain for maintaining the differential expression of the H19 

and IGF2 genes in humans. Loss of differential methylation at this ICR is associated with loss 

of imprinting in various types of cancers (Ulaner et al., 2003). In addition the overgrowth 

disorder Beckwith-Weidemann Syndrome (BWS) and the Silver-Russell Syndrome (SRS) 

(characterized by reduced growth) are strongly associated with defects in H19/IGF2 

imprinting (Gicquel et al., 2005, Ideraabdullah et al., 2008, Reik et al., 1995). 

In the current model of imprinting regulation at the H19/IGF2 locus, the ICR functions as a 

methylation regulated enhancer blocker (Hark et al., 2000). The CTCF proteins bind to the 

unmethylated maternally inherited allele of the ICR because it is a suitable binding site for 

CTCF. The CTCF binding creates an insulator or physical boundary on the maternal allele 
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between the IGF2 promoter and the downstream enhancer, preventing the enhancers from 

activating transcription of IGF2 and leaving them available to activate transcription of H19 

(Figure 6). On the methylated paternally inherited allele ICR, the CTCF is unable to bind (due 

to presence of methylation) allowing downstream enhancers to activate transcription of 

IGF2 while the H19 is silenced (Engel et al., 2006, Lewis et al., 2004)(Engel et al., 2006; Lewis 

et al., et al., 2004) (Figure 6). The insulator mechanism has been demonstrated both in vitro 

and in a mouse model (Bell and Felsenfeld, 2000, Schoenherr et al., 2003). In addition CTCF 

binding to the unmethylated maternal ICR might be necessary to prevent de novo 

methylation of the maternal allele. Targeted mutation of the CTCF binding sites 

demonstrates that these sites are necessary for imprint maintenance and not for the 

establishment of the imprints (Szabo et al., 2004). The CTCF binding in the ICR is the major 

organiser of chromatin composition in the maternal allele along the entire imprinted 

domain (Han et al., 2008)(Han et al., 2008). CTCF recruits active histone tail modification 

marks to the ICR and recruits, at a distance, the Polycomb-mediated H3K27me3 repressive 

marks at the Igf2 promoter (Li et al., 2008). 
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Figure 6: The H19 ICR.  

The H19 ICR in the context of the H19/Igf2 imprinted domain in the mouse. Filled and unfilled 
lollipops represent methylated and unmethylated CpG dinucleotides, respectively. Arrows represent 
transcription start sites of the Igf2 and H19 genes; when CTCF binds to the unmethylated maternal 
allele it blocks access of maternal Igf2 to enhancer sequences located downstream of H19; 
conversely the insulator function of the H19 ICR is abrogated by methylation on the paternal allele, 
blocking CTCF and allowing paternal Igf2 access to the enhancers. Thus, paternal Igf2 is expressed 
and maternal Igf2 is silenced (Engel et al., 2006). 
 

1.7.3.2. CDKNIC/KCNQ1OT1 imprinting cluster 

The CDKNIC/KCNQ1OT1 locus is located on chromosome 11p15.5 in humans, and contains 

one paternally expressed ncRNA gene, potassium channel KQT-family member 1 OT 1 

(KCNQ1OT1) also called LIT1. It also contains eight maternally expressed protein coding 

genes, including potassium channel KQT-family member 1 (KCNQ1), cyclic dependent kinase 

inhibitor 1C (CDKNIC) also called p57KIP2 and pleckstrin homology-like domain family A 

member 2 (PHILDA2/TSSC3), OSBPL5, SLC22A18, SLC22A18AS, KCNQ1DN and ASCL2 (Chiesa 

et al., 2012, Reik and Walter, 2001) (Figure 7). The locus is regulated by a maternally 

methylated ICR, KvDMR1 (also called ICR2). The KvDMR1 is located within intron 10 of the 

KCNQ1 gene and is methylated on the maternal allele and unmethylated on the paternal 

allele. KvDMR1 has been shown to be methylated in the oocytes but not in sperm in mice 
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and humans, thus indicating the KvDMR1 carries a germline epigenetic imprint ((Geuns et 

al., 2007b, Yatsuki et al., 2002). CDKNIC encodes a cyclin-dependent kinase inhibitor (CDKI) 

that belongs to the CIP/KIP family of cell cycle regulators and is considered to be a putative 

tumor suppressor gene (Watanabe et al., 1998). Overexpression of CDKNIC can arrest cells 

in G1. Cells that have exited the cell cycle express this protein (Maher and Reik, 2000). In 

Beckwith-Wiedemann syndrome (BWS), germ-line mutations of CDKNIC have been 

identified and shown to cause loss of cell cycle inhibition (Maher and Reik, 2000). Decrease 

in the expression of CDKNIC has been shown in sporadic cancers and embryonic tumours 

(Higashimoto et al., 2006).Therefore CDKNIC is a critical protein in BWS and cancers.  

 

KCNQ1OT1, mentioned above, is a non-coding antisense transcript to KCNQ1 gene, spanning 

about 60 kb and 54 kb in human and mice, respectively. Its promoter resides within KvDMR1 

(Lee et al., 1999, Mitsuya et al., 1999, Smilinich et al., 1999). Hypomethylation of the 

promoter of KCNQ1OT1 or KvDMR1 on the paternal allele lead to expression of KCNQ1OT1 

and repression of adjacent protein coding imprinted genes, whereas hypermethylation of 

KvDMR1 on the maternal allele leads to repression of the ncRNA and activation of the 

adjacent protein coding imprinted genes (Ideraabdullah et al., 2008). In mice deletion of the 

KvDMR1 on the paternal allele result in repression of Kcnq1ot1 and depression of normally 

paternally silent imprinted genes (Fitzpatrick et al., 2002) suggesting that transcription of 

KCNQ1OT1 is essential to silencing the 8 protein coding imprinted genes in cis.  

 

KvDMR1 has been shown to function as a bi-directional silencer in regulating imprinting in 

the CDKNIC/KCNQ1OT1 locus (Thakur et al., 2003). KvDMR1 uses the non-coding RNA model 

of imprinting to regulate imprinting, where, transcription of KCNQ1OT1 or the transcript 

itself is required for bi-directional silencing of maternally expressed genes in cis (Mancini-

Dinardo et al., 2006). It is suggested that the KCNQ1OT1 transcript silences its neighbouring 

genes in a similar manner as XIST, the non-coding RNA which is the driving force behind the 

process of X chromosome inactivation. The Xist RNA coats the future inactive X and triggers 

the events that lead to gene silencing along the length of the X chromosome (Heard, 2004, 

Reik and Lewis, 2005). Therefore the KCNQ1OT1 transcript may silence genes in cis, by 

coating them and recruiting heterochromatin factors.  
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Histone modification has been reported at this ICR: H3 Lys9 di-methylation (H3m2K9) has 

been shown to be abundant on the methylated maternal KvDMR1 in both humans and mice 

indicating a condensed and inactive heterochromatin. While on the other hand H3Ac, H4Ac 

and H3Lys4 di-methylation (H3me2 K4) were observed to be abundant on the unmethylated 

paternal KvDMR1 allele in both human and mice, indicating open chromatin and active 

transcription (Higashimoto et al., 2003). The histone modification state at the KvDMR1 was 

associated with DNA methylation status and the expression of KCNQ1OT1.  

 
 
 
 

 
 
Figure 7: Human CDKN1C / KCNQ1OT1 imprinted domain  

Maternally and paternally expressed genes are indicated by red and blue boxes, respectively. DNA 
methylation status at KvDMR is shown by the white oval (unmethylated) and by the black oval 
(methylated). Unmethylated KvDMR1 on the paternal allele (Pat), which works as a silencer and as a 
promoter for KCNQ1OT1 RNA transcription, represses the surrounding maternally expressed genes. 
Methylated KvDMR1 on the maternal allele (Mat) cannot work as a silencer, and KCNQ1OT1 RNA 
cannot be transcribed. As a result, surrounding maternal expressed genes are transcribed 
(Higashimoto et al., 2006).   
 

1.7.3.3. DLK1/GTL2 imprinting locus  

The DLK1/GTL2 imprinting locus is located on distal mouse chromosome 12 and on 

chromosome 14q32 in humans. It has been demonstrated that the organisation and 

imprinting of the DLK1/GTL2 imprinting locus is highly conserved between mouse and 

human species (Kobayashi et al., 2000, Miyoshi et al., 2000). The DLK1/GTL2 domain 

contains the paternally expressed delta- like homologue 1 (Dlk1) gene and maternally 

expressed non-coding RNA transcript, gene trap line 2 (GTL2). The human orthologue of Gtl2 

is called MEG3 (maternally expressed gene 3) (Geuns et al., 2007a, Kobayashi et al., 2000). 

DLK1 and GTL2 (MEG3) are located within a 1 Mb imprinting cluster containing additional 
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imprinted genes including two paternally expressed protein coding genes [type III 

iodothyronine deiodinase (DIO3) gene and tetrotransposon-like gene1 (RTL 1)], several 

maternally expressed non-coding RNAs, a maternally active cluster of small nucleolar RNAs 

(C/D box snoRNAs) and numerous maternally active microRNA encoding genes (Figure 8) 

(Geuns et al., 2007a). Therefore this imprinting cluster deviates from other imprinting 

clusters exhibiting a single critical non-coding RNA as it contains several maternally 

expressed non-coding RNAs.  

 

GTL2 (MEG3) appears to lack an open reading frame and it expresses a non-coding poly-

adenylated transcript with unknown function in both humans and mice (Wylie et al., 2000). 

The DLK1 gene codes for a cell-surface transmembrane glycoprotein, containing six 

epidermal growth factor- like (EGF-like) repeat motifs (in its extracellular domain), similar to 

those present in notch/delta/serrate family of signalling molecules (Kawakami et al., 2006). 

DLK1 has been identified as preadipocyte factor -1 (PREF-1), a crucial negative regulator of 

adipocyte differentiation (Smas and Sul, 1993) and zona glomerulosa specific protein (ZOG), 

a  gene involved in zonal differentiation of the adrenal gland (Okamoto et al., 1998). It has 

also been implicated in pancreatic islet cell differentiation and critically involved in 

regulating the cellularity of developing thymocytes (Kaneta et al., 2000). DLK has been 

shown to be overexpressed in the adrenal medulla neuroendocrine tumour, 

pheochromocytoma and Wilms tumour (Helman et al., 1987). All these findings indicate that 

DKL1 plays an important role in normal cellular differentiation and carcinogenesis (Geuns et 

al., 2007a, Laborda, 2000).  

 

Imprinting in the DLK1/GTL2 cluster is regulated by an intergenic differentially imprinted 

region (termed IG-DMR) located between DLK and GTL2 (Edwards et al., 2008). IG-DMR is 

methylated on the paternal allele and unmethylated on the maternal allele and has been 

shown to be methylated during spermatogenesis and remain unmethylated in the maternal 

germline in both mice and humans (Lin et al., 2003, Takada et al., 2002). The IG-DMR is 

therefore an ICR and regulates imprinting of all the genes in the cluster (Lin et al., 2003). 

Targeted deletion of the IG-DMR has been shown to repress all maternal-specific transcripts 

(GTL2 and all the other noncoding RNA genes) while expressing paternal-specific transcripts 

(Dlk1, Rtl1 and Dio3); and perinatally lethal when the deletion is inherited maternally. 
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However no effects are seen when the deletion is paternally inherited (Lin et al., 2003). This 

is unusual because the IG-DMR is normally unmethylated on the maternal allele and 

methylated on the paternal allele, therefore suggesting that it is the maternally inherited 

unmethylated copy that is essential for maintaining repression of protein-coding genes and 

activation of the non-coding RNA (da Rocha et al., 2008). On the other hand methylation of 

the paternal chromosome seems to be important for the expression of the protein coding-

genes because failure to maintain paternal methylation results in considerable Dlk1 

repression (Schmidt et al., 2000).  

 

The exact mechanism(s) regulating imprinting at the DLK1/GTL2 domain is unknown, 

however there are several proposed models for the regulation of imprinting at the 

DLK1/GTL2 domain: 1. IG-DMR may act as an insulator element, as described for the 

IGF2/H19 locus (Figure 6); 2. IG-DMR may use the non-coding RNA model as described for 

CDKNIC/KCNQ1OT1 locus; 3. The maternally inherited unmethylated IG-DMR may acts as a 

positive transcriptional regulator for Gtl2 and its associated transcripts and is required for 

repression of the maternally silent imprinted genes. Gtl2 transcription might prevent the 

ability of the enhancers to act on the protein coding genes in the region (da Rocha et al., 

2008); 4. The last possibility is that interaction between the unmethylated IG-DMR and 

other long range cis-acting regulators confer a conformation on the maternal chromosome 

that places the protein coding genes in a repressive chromatin ‘compartment’ (da Rocha et 

al., 2008)      
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Figure 8: The DLK-Gtl2 imprinting domain in the mouse  

It shows genes expressed from the paternal chromosome (blue) and noncoding RNAs (red) 
expressed from the maternally inherited chromosome. The imprinting control region for the domain 
is the paternally methylated IG-DMR (circle) (Edwards et al., 2008). 

 

1.7.3.4. PEG3 imprinting locus 

Paternally expressed gene 3 (Peg3) is the first gene detected on the proximal imprinted 

domain region of mouse chromosome 7 (Kim et al., 1997, Kuroiwa et al., 1996). Five 

additional imprinted genes have been identified subsequently within the surrounding 

genomic region, and they include the paternally expressed gene Usp29 and Zf264, and the 

maternally expressed genes Zim1, Zin2 and Zim3 (Kim et al., 2003). The human homologs of 

most of these mouse imprinted genes are located in the syntenically homologous region of 

the long arm of chromosome 19q13.4 (Kohda et al., 2001) and human PEG3 and ZIM2 are 

also imprinted (Murphy et al., 2001). Mouse Peg3 encodes a Kruppel-type (C2H2) zinc finger 

containing protein, most of which are thought to function as transcription factors (Kim et al., 

1997, Pieler and Bellefroid, 1994). Mouse Peg3 is expressed in mesodermal tissues during 

embryogenesis and high level of expression has been shown in the central nervous system 

in adults (Kuroiwa et al., 1996). Peg3 knockout mice have been found to show growth 

retardation before birth as well as impairment of maternal behaviour of the adult female 

that resulted in death of offspring (Li et al., 1999). In the Peg3 mutant female mouse the 

number of oxytocin-positive neurons in the hypothalamus is reduced as compared to that in 

the wild type female. Thus it is suggested that Peg3 plays a role in growth, differentiation 

and survival of neural cells (Kim et al., 1997). Both human and mouse PEG3 are strongly 

expressed in the brain suggesting that it may have an important and conserved role in 

neuronal cells. Human PEG3 is expressed in the placenta consistent with the notion that 
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most imprinted genes are involved with embryogenesis (Barlow, 1995).  A decrease in 

human PEG3 expression has been commonly observed in glioma cell lines (Kohda et al., 

2001). 

 

The PEG3 locus is regulated by a PEG3-DMR which has been identified as a CpG island region 

of about 5kb surrounding the first exon of Peg3 and Usp29 and is conserved in mice and 

humans (Kim et al., 2003). The CpG island was shown to be methylated in an allele specific 

pattern in somatic cells (Li et al., 2000) and germ cells (Lucifero et al., 2002), therefore it is 

an ICR. Comparison analysis of PEG3-DMR sequences derived from human, mouse and cow 

has shown that the region contains an evolutionary conserved element, and multiple 

binding sites for the Gli-type transcription factor (Kim et al., 2003) . A study by Kim et al 

(2003) showed that YY1-binding to the motifs is methylation-sensitive and that all of the YY1 

sites are differentially methylated between the two parental alleles in vivo. Functional 

assays of PEG3-DMR suggest that the YY1-binding region acts as a methylation-sensitive 

insulator that may play a role in imprinting control of Peg 3 and neighbouring genes (Kim et 

al., 2003). 

 

All the four loci mentioned above were investigated for the present study. What they have 

in common is that their DMRs have methylation that is established in the gametes and 

therefore important in controlling the imprinting of genes in their imprinting cluster. Both 

the maternal and paternal methylated ICRs were represented. The selected imprinted 

clusters are implicated in growth, embryonic development and neurogenesis. Therefore 

they are good candidates in terms of their biological impacts in line with FAS features like 

growth and brain defects.  

1.8.  Effect of Ethanol on DNA methylation 

DNA methylation has been proposed as a possible candidate mechanism of alcohol 

teratogenesis resulting in the development of the features that characterise the FASD 

phenotype. This proposition follows early studies of a mouse model by Garro et al., (1991) 

where they demonstrated that acute alcohol exposure in pregnant mice resulted in global 

hypomethylation in mid-gestation mouse fetuses. There were also lower levels of 

methyltrasferase activity in fetuses of alcohol fed mice as compared to controls (Garro et al., 
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1991). They also demonstrated that acetaldehyde, a byproduct of alcohol metabolism, 

inhibited DNA methyltransferase activities even at low concentration (Garro et al., 1991). 

Since DNA methylation is known to play an important role in the regulation of gene 

expression during embryogenesis, ethanol associated alterations in fetal DNA methylation 

may contribute to the developmental abnormalities seen in FAS.  

Haycock and Ramsay (2009) studied a locus specific effect of alcohol, where they looked at 

imprinting of the Igf2/H19 locus in mouse embryos and placentae after maternal alcohol 

exposure in the preimplantation stage. Severe growth retardation was observed in embryos 

and placentae in the alcohol exposed group compared to controls, however no epigenetic 

changes at H19 ICR were observed in the embryos but hypomethylation was observed in 

placentae H19 ICR (Haycock and Ramsay, 2009).  

A study by Kaminen-Ahola (2010) tested the hypothesis that epigenetics is involved in 

gestational reprogramming of the adult phenotype when exposed to alcohol in utero or 

preconception. They used an epigenetically sensitive allele in mice, Agouti viable yellow (Avy) 

(whose expression is closely linked to their epigenetic state), as a reporter to detect 

epigenetic alterations caused by alcohol exposure. They used two mouse models, one to 

study the effect of maternal gestational alcohol consumption and the other to study the 

effect of maternal preconception alcohol exposure on the phenotype of her offspring. They 

found that both maternal preconception and gestational alcohol exposure affected the 

expression of the Avy allele in the offspring. Maternal alcohol exposure was found to induce 

hypermethylation at the Avy locus, which was associated with increasing the probability of 

transcriptional silencing at the Avy locus, resulting in more mice with an agouti colored coat. 

Postnatal growth retardation and craniofacial dysmorphologies significant in FAS affected 

individuals were reported following gestational alcohol exposure.  Genome-wide expression 

studies demonstrated that several genes (those associated with growth and development of 

the nervous system) were significantly down regulated in alcohol exposed mice (Kaminen-

Ahola et al., 2010).  

Strouder et al. (2011) used a mouse model to evaluate the possible effect of low dose 

alcohol exposure in pregnant mice (administered from gestational day 10-18 which is a 

period consistent with the major event of organogenesis and fetal development), on DNA 
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methylation patterns of selected  imprinted genes (H19, Gtl2, Peg1 , Snrpn and Peg3) in 

different  tissues of the offspring. The tissues included were tail, liver, skeletal muscle, 

hippocampus and sperm DNAs from male offspring over two generations. They also looked 

at the transgenerational effect of alcohol exposure. No difference in methylation status was 

observed in the 5 imprinted genes from different tissues (tail, liver, muscle hippocampus 

and new born whole brain) between controls and alcohol fed offspring. The effects 

observed were a 3% (p<0.05) decrease in the number of methylated CpGs of H19 in the F1 

offspring sperm, a 4% (p<0.05) decrease in the number of methylated CpGs of H19 in the F2 

offspring brain and a 26% (p<0.05) decrease in sperm concentration. CpGs 1 and 2 of the 

H19 CTCF binding site 2 exhibited significant methylation percentage losses. Their 

observations suggest that hypomethylation at H19 may contribute to decreased 

spermatogenesis seen in the offspring (Stouder et al., 2011).        

In a study by Bielawski et al. (2002) male rats were treated with alcohol before breeding; it 

was shown that alcohol exposure resulted in a decrease in cytosine methyltransferase 

1(DNMT1) mRNA levels in their sperm compared with controls and a significant decrease in 

mean fetal weight was also observed. These finding suggest that paternal alcohol exposure 

before conception may be one of the mechanism causing altered genomic imprinting and 

thus disrupting offspring development.  It has been shown that deficiency of 

methyltransferase activity in mutant mice resulted in hypomethylation, expression of 

imprinted genes like H19 which are normally silent on the paternal allele and repression of 

the normally active paternal Igf2 gene, with an increase in embryonic lethality in mice (Li et 

al., 1993). These suggest that appropriate levels of DNA methyltransferases are critical for 

maintaining proper transcriptional activation of the paternal allele, and thus normal 

development (Bielawski et al., 2002).  Knezovich and colleagues, investigated the effect of 

paternal alcohol exposure on DNA methylation at H19 and Rasgrf1 (paternally methylated 

ICRs), in exposed sperm and somatic DNA of sired offspring (Knezovich and Ramsay, 2012). 

They reported a significant reduction in DNA methylation at the H19 ICR in offspring of 

ethanol-treated sires which corresponded to reduced weight at postnatal day 35 to 42. 

A study by Liu et al. (2009) used a mouse model to assess the effect of alcohol exposure at 

early embryonic neurulation, on genome-wide DNA methylation and gene expression. 

Alcohol induced alterations in DNA methylation were observed particularly in genes on 
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chromosomes 7, 10, and X. An increase in methylation in genes known to play a role in 

metabolism (Cyp4f13) and a decrease in methylation in genes associated with development 

(Nlgn2, Sox21, Elavl2 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was observed. 

Altered methylation was associated with significant changes in the expression of about 84 

genes. This study was the first to use a mouse model for FASD that showed that alcohol 

exposure during early neurulation can induce aberrant changes in DNA methylation with 

associated changes in gene expression, which together contribute to observed abnormal 

fetal development (Liu et al., 2009).     

A study by Ouko et al. (2009) looked at sperm DNA of male alcoholics and controls in trying 

to establish a link between alcohol use in men and DNA methylation at two paternally 

imprinted loci. They found that there was a pattern of decreased methylation correlated 

with alcohol consumption at two imprinted ICRs, H19 ICR and IG-DMR, with significant 

differences observed at the IG-DMR between the non-drinking group and heavy alcohol 

consuming group (Ouko et al., 2009).  

The studies described in this section support alteration in epigenetic mechanism (e.g. DNA 

methylation) as a contributing factor for the development of features observed in FAS. It is 

suggested that the effect is mediated through the interruption of the one carbon pathway 

by alcohol (Fowler et al., 2012, Halsted et al., 2002, Liu et al., 2009)(Liu at al., 2009, Halsted 

et al., 2002, Frowler et al., 2012). 

1.9.  One carbon metabolism and Alcohol 

One carbon Metabolism (OCM) can be described as a sequence of biochemical reactions 

whereby one carbon atom (e.g. methyl group) is transferred from a donor to another 

compound or methyl acceptor (e.g. DNA, proteins and neurotransmitters) in a series of 

steps. OCM encompasses folate, methionine and choline metabolism (Bailey et al., 2012). 

OCM is essential for the biosynthesis of universal methyl donor, S-adenosyl methionine 

(SAM) and also for the production of compounds that are important for DNA synthesis. SAM 

makes methyl groups available for epigenetic processes like DNA methylation.  

 Folate is a coenzyme that plays a vital role as a source of methyl group in the OCM in 

mammals.  Humans cannot synthesise folate even though little amount can be synthesised 
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from the intestinal flora (Wani et al., 2012); therefore they mainly obtain folate from dietary 

sources.  

Folate circulates in the blood in the form of 5-methyl tetrahydrofolate (5MTHF) (Friso et al., 

2002) and therefore enters the OCM as such. In the presence of B12, the enzyme methionine 

synthase (MS) transfers the methyl group from 5MTHF to homocysteine converting it to 

methionine (Figure 9). Homocysteine can also be remethylated to methionine by a folate 

independent pathway (Kohlmeier et al., 2005) that involves methyl donor betaine. 

Methionine is then converted to SAM in the presence of methionine adenosyl transferase 

(MAT) and ATP. SAM serves as a substrate for DMNT enzymes where the methyl groups are 

transferred from SAM to the DNA for the DNA methylation processes. Once SAM loses its 

methyl group it becomes S-adenosylhomocycteine (SAH) which can be hydrolysed to 

homocysteine and adenosine by SAH hydrolase. SAH is a strong competitive inhibitor for 

DNMTs since it has the ability to bind with high affinity to methyltransferases, therefore can 

inhibit transmethylation reactions and affect DNA methylation processes (De Cabo et al., 

1995). The intracellular ratio of SAM to SAH is a critical determinant of methylation capacity 

of the cell and thus transmethylation reactions (Lu, 2000, Schalinske and Nieman, 2005, Yi et 

al., 2000). The homocysteine can either be remethylated back to form methionine or be 

irreversibly catabolised to cystathionine by cystathionine synthase through the 

transsulfuration pathway.  

OCM pathway is essential in maintenance of normal development and any disturbance in 

the pathway will result in disorders such as birth defects, cardiovascular disorders, 

neurological disorders, and cancer (Schalinske and Nieman, 2005). Alcohol is one of the 

factors that can disturb the OCM, leading to perturbation of DNA methylation processes. 

There are several plausible mechanisms that have been suggested. Firstly through its 

metabolite acetaldehyde, which has been reported to inhibit DNMT activity (Bonsch et al., 

2006, Garro et al., 1991) and also alcohol itself has been reported to reduce DNMT mRNA 

levels (Bielawski et al., 2002). Secondly alcohol may reduce the pool of methyl donors by 

inducing folate deficiency, which may be due to poor diet (common in chronic drinkers).  

Alcohol may also impair folate transport system in the kidneys and intestines, leading to 

reduction in folate intestinal absorption and increase in folate renal excretion (due to 

reduced renal folate re-absorption) and therefore folate deficiency (Hamid et al., 2009).  
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Lastly alcohol may directly reduce the activity of enzymes involved in the OCM including 

methionine adenosyl transferase (MAT) and methionine synthase (MS), therefore causing 

reduction in the SAM and its precursor methionine and also an increase in SAH. The effects 

of the enzymes will eventually lead to reduction in the SAM to SAH ratio and therefore the 

methylation capacity of the cell (Hamid et al., 2009, Stickel et al., 2000).  

 

Figure 9: Schematic representation of the biochemistry of one-carbon metabolism (Hitchler and 
Domann, 2007). 
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1.10. Study Aim and objectives  

Aim 

The main aim of the study was to examine the effect of alcohol on DNA methylation of 

imprinting control regions (ICRs) of specific imprinted genes in children with FAS and 

unaffected individuals in a case control study. 

 

Hypothesis 

Alcohol exposure during prenatal development will result in epigenetic modifications at 

imprinted loci, such as a reduction or increase in DNA methylation at ICRs that could be 

observed in the blood derived DNA of children with FAS. 

 

Specific Objectives 

 To select specific imprinted loci to examine for epigenetic changes. 

 To examine DNA methylation at ICRs of selected imprinted loci in case and control 

samples using the pyrosequencing method. 

 To asses methylation status in different tissues i.e. blood and buccal tissues 

 To asses potential DNA methylation differences at different ICRs between cases and 

controls (locus averaged and CpG site specific). 

 To examine the effect of confounders on methylation in cases and controls. 

 To determine the effect size difference in methylation between cases and controls at 

different imprinted loci after adjusting for confounding factors 
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2. Subjects and Methods 
Method describing the preparations of solutions are available in Appendix B, unless 

otherwise stated. 

2.1.  Study participants 

2.1.1. Case control study participants  

The participants of this study (both cases and controls) are of mixed ancestry, referred to as 

“Coloureds” in the South African context. This population has been reported to have the 

highest prevalence of FASD /FAS in the world. Most of the South African Coloureds reside in 

the Western Cape region of South Africa and their population is estimated to be about 4 

million people, which is approximately 9% of the South African population. They form a 

unique genetically admixed population in which the Africans (Khoisan, local Bantu-speakers 

and other Africans from other parts of Africa), Europeans and south Asian population groups 

have contributed to the admixture (Quintana-Murci et al., 2010).   

The FAS cases were recruited from several areas of the Western Cape (Wellington, Philippi, 

Nyanga, Michell’s plain and Bredasdorp) and the Northern Cape (De Aar and Upington). The 

FAS cases were diagnosed by a team of trained clinicians from the Division of Human 

Genetics, National Health Laboratory Service (NHLS), Braamfontein, Johannesburg and also 

by a clinical team of the Foundation for Alcohol related Research (FARR) lead by Prof Denis 

Viljoen. FARR is a non-governmental, non-profit organisation established in 1997 by Prof D 

Viljoen. Their main focus is substance abuse with FASD (including FAS) as their primary 

interest (FARR, 2008). 

The control participants were mainly from the Northern Cape (De Aar and Upington). 

Western Cape control samples were available, however they were not used for this study 

because they were collected from a blood bank, and did not have information about age 

and ethnicity.  The controls were randomly selected and not phenotyped (no phenotype 

data was collected). The cases and controls were ethnically matched and partially 

geographically matched (no controls from the Western Cape).  
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2.1.2. Case control participant recruitment and sample collection  

I was not part of the participant recruitment and sample collection for the case control 

study. The recruitment of participants and collection of samples was done in previous 

studies between the years 1999 and 2005 (as part of the larger study initiated by Prof Denis 

Viljoen). Ethics approval for the study was obtained from University of the Witwatersrand 

Committee for Research on Human Subjects (Medical) and ethics protocol number 

M02/10/41 and  M03/10/20 was issued for collection of FAS and controls participants, 

respectively (Appendix A). Information sheets and consent forms for FAS cases and controls 

are also shown in Appendix A. For the molecular analysis performed in the present study by 

myself, ethics approval was obtained from the University of the Witwatersrand, Human 

Research Ethics Committee (Medical), protocol number: M080548 (Appendix A). 

The initial screening of FAS or partial FAS (PFAS) involved measurements of head 

circumference, body height and weight. If measurements were below the 10th percentile for 

growth within their age group, the participants were examined by two physicians. When 

both physicians were in agreement on the diagnosis, a maternal interview was conducted. If 

a maternal history of alcohol abuse during pregnancy was identified, a neurodevelopmental 

examination of the child was performed. Finally a case conference was held to determine 

the most accurate diagnosis. Most of the FAS cases were children of school entry age or 

much younger and therefore their parents or guardians had to give informed consent.  

The ethnic origins of the participants’ parents and grandparents were recorded. Control 

Individuals were also asked about their geographic origins. No information was obtained on 

whether the control individuals were prenatally exposed to alcohol or not. The participants 

had to be 18 years and older for informed consent purposes (See information sheet for 

ethics protocol number: M03/10/20, Appendix A).  The individuals were not phenotyped 

because they did not undergo any physical or neurological examinations.  

Blood samples and buccal swabs were collected by nurses from the Division of Human 

Genetic, NHLS, Braamfontein, Johannesburg. Either 10ml blood (collected in 

ethylenediamine tetra-acetic acid (EDTA) anti-coagulant tubes) or buccal swabs were 

collected from the cases and controls. The blood samples and buccal swabs were stored in 



44 
 

cooler boxes and sent to the Molecular Genetics Laboratory at the NHLS, Braamfontein, 

Johannesburg.      

2.1.3. Participants and sample collection for assessment of methylation status in 

different tissues  

This part of the study was performed to establish if the blood and buccal tissue samples 

reflected similar imprinting profiles at the H19 ICR. This was done because in the case 

control study the participants donated either a blood or buccal tissue sample. The study was 

done under the ethics approval protocol number: M080548, after permission to do the 

study under the mentioned protocol number was requested and granted (see Appendix A 

for information sheet, informed consent form and approval letter).  

Fifty adult volunteers (assumed to be healthy) were recruited from NHLS, Braamfontein, 

Johannesburg, for participation in this study. After the aim and objectives of the study were 

explained, the participants were asked to sign a consent form if willing to participate. Blood 

(5-10 ml in EDTA tubes) was drawn by a qualified nurse from the NHLS, Braamfontein, 

Johannesburg; the tubes were mixed gently and thoroughly. The samples were stored at 

4oC.  

The buccal tissue swab was collected using a nylon bristle cytology brush which was 

supplied with the Gentra Puregene buccal cell kit (Qiagen, Valencia, CA). As advised by the 

kit’s instruction protocol, the participants were asked to wait for at least 1 hour after eating 

or drinking. The inside of the mouth was scraped 10 times with buccal collection brush by 

participants themselves. The collection brush’s head was immersed completely in a clearly 

labelled 1.5 ml tube containing lysis solution (provided with the kit) and the handle cut off 

using a sterilised scissors. The tube was closed and stored at 4oC.  

2.2.  DNA Extraction 

I performed DNA extractions for blood samples and buccal tissues for the study to assess 

the methylation status in different tissues. For the case and control study the DNA samples 

were extracted previously and were already available. 
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2.2.1. Blood DNA extraction 

Blood DNA was extracted according to a modified protocol from Miller et al., (1988)(Miller 

et al., 1988).  Five to ten milliliters of blood collected into EDTA vacutainer tubes was mixed 

gently and thoroughly, before being decanted into a clearly labeled 50 ml polypropylene 

tube. The blood in the tube was stored in the -20oC freezer until used. Before starting with 

DNA extraction the frozen whole blood was thawed at room temperature. Once thawed, 

the 50 ml tube was filled up to the 40 ml mark with Sucrose-Triton X lysing buffer (which 

was kept cold during the procedure). The Sucrose-Triton X lysing buffer lyses the red blood 

cells. The tube was inverted several times to mix it then it was centrifuged at 1200 x g at 4oC 

for 10 minutes. After centrifugation a reddish white pellet was visible at the bottom. The 

supernatant fluid (containing the lysed red blood cells) was discarded carefully making sure 

that the pellet does not dislodge. 20 ml of cold Sucrose-Triton X-lysing buffer was added to 

the pellet and mixed by inversion. The tube was put at -40oC for 5 minutes. Afterwards the 

tube was centrifuged for 5 minutes at 1200 x g and the supernatant discarded. 3 ml of 

T20E5, 0.2 ml of 10% SDS and 0.5 ml of Proteinase-K mix (see Table B1, Appendix B) was 

added to the pellet and the tube mixed by inversion. The tube was then incubated overnight 

in a 42oC incubator (without agitation).   After the incubation 1 ml saturated NaCl was added 

to the lysate and it was mixed gently by inversion for 15 seconds. The tube was then placed 

in a -40oC freezer for 5-10 minutes followed by centrifugation at 1200 x g at room 

temperature. A white pellet-containing protein should be visible at the bottom of the tube 

after centrifugation, if not, the tube was centrifuged again. The supernatant-containing the 

DNA was transferred to a new clearly labeled 50 ml tube. Two volumes of 100% absolute 

ethanol kept at room temperature were added to the supernatant to precipitate the DNA. 

The tube was agitated gently and the DNA was spooled or fished out then washed in 1 ml of 

ice cold 70% ethanol. The washed DNA was air dried and re-suspended in an appropriate 

amount of TE (TRIS-EDTA) buffer, depending on the amount of pellet. The DNA was stored 

at 4oC until use.    

2.2.2. Buccal tissue DNA 

The buccal tissue DNA was extracted using the Gentra Puregene buccal cell kit (Qiagen, 

Valencia, CA), according to the manufacturer’s protocol. The protocol followed is for 

purification of genomic DNA from 1 buccal DNA brush.  
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 As described above under sample collection, the buccal brush head was immersed in a 

clearly labelled 1.5 ml tube containing lysis solution (provided with the kit). The tube was 

then incubated at 65oC for 15 – 60 minutes. 1.5 µl of Puregene proteinase K (20 mg/ml) was 

added to the lysate and tube was mixed with inversion 25 times, and then incubated at 55oC 

for 1 hour (up to overnight if maximum yield required). After incubation the collection brush 

heads were removed from the lysis solution, scraping it on the insides of the tubes to 

recover as much liquid as possible. 1.5 µl of RNase A solution was added to the cell lysate 

and the tube was mixed by inverting 25 times before it was incubated at 37oC for 15 

minutes. Then it was cooled on ice for 1 minute. 100 µl of protein precipitation solution was 

added to the tube and then vortexed vigorously for 20 seconds at high speed, and then 

incubated on ice for 5 minutes. The tube was centrifuged at 15 000 x g for 3 minutes, to 

separate the tube contents into a white tight pellet (containing the protein) and a 

supernatant. The supernatant was carefully poured (making sure not to disturb the pellet) 

into a new tube containing 300 µl of Isopropanol and 0.5 µl glycogen solution. The tube was 

then mixed 50 times by gentle inversion and centrifuged for 5 minutes at 15 000 x g. After 

centrifugation the supernatant was carefully discarded and the tube was drained on a clean 

piece of paper towel, taking care that the pellet remains in the tube. 300 µl of 70% ethanol 

was added to wash the DNA pellet by inverting several times. The tube was centrifuged for 1 

min at 15 000 x g, thereafter the supernatant was carefully discarded, the tube was then 

drained on a piece of clean paper towel making sure the pellet remain in the tube. The 

pellet was allowed to air dry for up to 15 min. 20 µl DNA hydration solution was added to 

the dried pellet and vortexed for 5 seconds to mix. The DNA was incubated for an hour at 

65oC to dissolve the DNA, and further incubated overnight at room temperature to make 

sure it is completely dissolved. After incubation the tube was briefly centrifuged and the 

concentration and quality of the DNA was checked before the DNA was transferred to a 1.5 

ml tube. The concentration was determined and the samples were stored at -20oC until use.    

2.2.3. Quantification of genomic DNA (gDNA) 

The extracted gDNA (blood and buccal) concentrations were quantified using a NanoDrop® 

ND-100 spectrophotometer (Thermo Fisher Scientific, MA United States of America). It is a 

full spectrum (220-750nm) spectrophotometer that measures absorbance of 1 µl of DNA 

sample with accuracy and reproducibility without dilution. The absorbance was read at 
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260nm for DNA and 280nm for proteins. The concentration was calculated by the 

NanoDrop. The ratio of 260/280 provides an estimate for purity of the gDNA.  The ratio of 

1.8-2.0 indicates an acceptable purity for gDNA while the ratio below 1.5 indicates protein 

contamination.    

2.2.4. Agarose gel electrophoresis 

The quality of the extracted genomic DNA was checked by electrophoresing 5 µl DNA mixed 

with 5 µl ficoll on a 0.8% agarose gel, at 6 V/cm.  A distinct and intact bright band positioned 

above the largest band of the 1Kb+ DNA marker (Invitrogen, Corporation CA United States) 

was accepted as good quality high molecular weight DNA (see appendix C).  

2.2.5. Bisulfite modification 

Bisulfite treatment of DNA is a requirement for DNA methylation analysis for many 

epigenetics-based studies involving methylation profiling and quantification of methylation 

status and is currently a “gold standard’’ in distinguishing between cytosine and 5-methyl 

cytosine (Ruga et al., 2008). During bisulfite modification, sodium bisulphite deaminates all 

unmethylated cytosine bases and converts them to uracil while methylated cytosines (5-

methylcytosines) remain unchanged because it is resistant to the conversion. This resistance 

is induced by the presence of methyl at position 5 of cytosine that makes the amino acid at 

position 4 resistant to the bisulfite deamination (Hayatsu et al., 2007).  Therefore the 

sequence of the treated DNA will differ from that of its original composition at 

unmethylated cytosine residues. During subsequent PCR reactions, the uracil bases are 

complemented with adenosine bases, which are in turn used as a template for thymine 

complementation. Thus the UpG dinucleotides of the bisulfite modified sample strand are 

converted to TpG (Figure 10). Primers for PCR are therefore specifically designed based on 

the chemically modified sequence, which can be further analysed by pyrosequencing.  
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Figure 10: DNA treatment with sodium bisulfite 

Methylated cytosines (mC) remain as Cs while unmethylated cytosines are converted to uracil (U) and 
subsequently to thymine (T) during PCR (England and Pettersson, 2005).   

 

For the present study gDNA from blood and buccal tissues were bisulfite modified using EZ-

DNA Methylation Gold Kit TM (Zymo Research, Orange, CA) according to the manufacturer’s 

instruction (Appendix C). The protocol of the kit involves the transformation of DNA 

unmethylated cytosine bases, by sodium bisulfite and it combines the DNA denaturation 

step and sodium bisulfite step into one single step. It utelises the temperature denaturation  

method, instead of the chemical denaturation. The protocol is customised for better 

recovery of DNA and production of complete conversion of unmethylated cytosine.  

The protocol recommended a DNA input of 200 – 500 ng, however 500ng of gDNA was used 

as starting DNA concentration for my samples. gDNA from the case control study was 

normalised to 50 ng/µl in 96 well plates  using the TECAN FREEDOM EVO® SYSTEM (TECAN 

AG Trading, Switzerland) while gDNA for the study on assessment of methylation status in 

different tissues was manually diluted to 50 ng/µl with TE buffer.   

2.3.  Pyrosequencing TM for quantitative DNA methylation analysis 

PyrosequencingTM technology is a real time sequencing method used for the analysis of 

short to medium length DNA sequences (Aydin et al., 2006, Ronaghi et al., 1998). It is 
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classified as sequencing by synthesis method that detects luminescence (proportional to the 

quantity of DNA and number of nucleotides) from the release of pyrophosphate (PPi) on 

nucleotide incorporation into the complementary strand (Tost and Gut, 2007). The released 

PPi is subsequently converted to light through a cascade of enzyme reactions and the 

generated light is seen as a peak in the Pyrogram. The signal produced is proportional to the 

amount of PPi produced and hence the methylation at the CpG can be detected and 

quantified by analysing the chemically induced C/T sequence differences (Ronaghi, 2001, 

Uhlmann et al., 2002). The incorporation of a cytosine is an indication of a methylated 

residue, whereas the incorporation of thymine indicates an original unmethylated cytosine 

at the CpG site. Thus the methylation status of a CpG site can be read as a C/T single 

nucleotide polymorphism (SNP) (Reed et al., 2010).         

2.3.1. Assay design 

Pyrosequencing assays were designed using PSQ Assay Design Software (Biotage). This 

software specifically designs an assay to amplify the region of interest that contains a 

number of single nucleotide polymorphisms (SNPs). In this instance the cytosine nucleotide 

contained within a CpG dinucleotide, that will either remain as a cytosine if methylated or 

converted to thymine (through bisulfite modification) if unmethylated, is actually the 

“polymorphism”, the C/T (IUPAC code, Y). However in the case of DNA methylation, the C 

(methylated): T (unmethylated) ratio at a given CpG within a specific DNA sample may vary 

and is therefore unlike a traditional SNP where a sample is either heterozygous or 

homozygous. Therefore the C and T alleles are quantified and subsequently expressed as a 

percentage.  

Once the reference sequence containing the IUPAC code Y, for each CG (YG) has been 

imported and the target region of approximately 100 bp selected, the assay design software 

generates a series of potential primer sets to amplify the region. In addition a sequencing 

primer is also generated for each primer set that will be used for the pyrosequencing 

reaction. 

The technique of pyrosequencing in conjunction with pyro Q-CpG methylation offers several 

advantages for methylation analysis. It is highly sensitive, accurate and therefore 

reproducible (Huse et al., 2007) and quantifies the DNA methylation of a sample by 
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analysing all amplicons within a pooled PCR sample, therefore regarded as being more 

accurate than bisulfite sequencing PCR (BSP)(Reed et al., 2010). Reproducible quantification 

of consecutive CpG site is easy and fast on 96 samples in parallel. As the methylation of each 

site is measured in the context of the DNA sequence, the software automatically performs 

quality control of the raw data to make sure that the expected sites were analysed. 

Furthermore Cs not followed by a G are used as a quality control measure to evaluate 

whether the bisulfite treatment went to completion, thereby ensuring reliable data 

(England and Pettersson, 2005).   

2.3.2. Pre-pyrosequencing PCR 

For methylation analysis, pyrosequencing is done directly on the PCR product of bisulfite 

modified DNA (Kobayashi et al., 2006). A target region of up to 350 bp is amplified using a 

pair of primers complementary to the bisulfite treated DNA sequence, amplifying all strands 

irrespective of methylation status.   

As a starting material for the pyrosequencing reaction, a PCR-amplified single stranded DNA 

template (with a sequencing primer hybridised to it) is required.  There are several methods 

that can be used to generate the single stranded DNA template for pyrosequencing analysis 

(Ronaghi et al., 1996) and for our study streptavidin-coated Sepharose™ beads were used. 

When using the streptavidin-coated Sepharose™ beads method for sample preparation, one 

of the PCR primers has to be 5′ biotin labelled (biotinylated) for immobilisation to the beads 

and the other unlabelled. Thus the PCR product will have one strand 5′ biotin labelled and 

the other unlabelled. The PCR product is captured to the Sepharose beads through the 

biotin labelled strand, eventually a biotin labelled single stranded DNA template is 

generated and used as a template for pyrosequencing complementary strand.  

As mentioned above, the method of pyrosequencing requires that one of the PCR primers 

(forward or reverse) be 5′ biotinylated. In order to eliminate the need for a unique  biotin-

labelled primer for each primer set, a universal biotin labelled primer was used to generate 

labelled DNA fragments (Colella et al., 2003), therefore reducing cost.  The sequence specific 

prepyrosequencing PCR primer that has been designated to be biotin labelled (tagged in 

Table 1, 2 and 4) thus requires a complementary tail or tag off which a universal primer can 

prime. This is achieved by the addition of a 23 bp complementary tag, 5′-
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GACGGGACACCGCTGATCGTTTA-3′ to the 5′ end of the specified primer. Therefore for the 

pre-pyrosequencing PCR, 3 primers are utilised; normal, tagged and universal primer. Again 

the pre-pyrosequencing PCR requires more cycles (45-50) in order to make sure that all the 

biotinylated primers are consumed, which is important for pyrosequencing.  

The PCR products were electrophoresed on a 3% agarose gel with either 100 bp or 50 bp 

DNA ladder to size the PCR product. A negative control was also run together with the PCR 

product, to check if the PCR product was not contaminated. A strong PCR product band 

without excess primers, primer dimmers and non- specific bands (spurious bands) were 

accepted as good PCR product for pyrosequencing. A PCR product gel pictures for IG-DMR 

and H19 ICR respectively are shown in the appendix C. 

Published primer sets and designed primer sets were used to amplify a specific region within 

the ICR of each of the imprinted loci under investigation i.e. IGF2/H19; DLK1/GTL2 (MEG3), 

KCNQ1OT1/CDKN1C and PEG3 (Table 1). These ICRs are usually located between two genes 

within each locus. The ICR for IGF2/H19 is called H19 ICR; for DLK1/GTL2 is IG-DMR 

(intergenic region) KCNQ1OT1/CDKN1C is KvDMR1 and for PEG3 is PEG3 DMR.  

Nested PCR was used to amplify the H19 ICR region (Table 1 and 2). Nested PCR is used to 

amplify the target sequences when the number of DNA copies is very low. It involves two 

consecutive rounds of amplification, where the first round uses external primers and the 

second uses the internal or nested primers. The first round amplifies the target region as in 

typical PCR while in the second round the nested primers anneal to the sequence internal to 

the product of the first round PCR. The first round was a normal PCR of 28 cycles using the 

bisulfite modified DNA as a starting template and second round PCR was a pre-

pyrosequencing of 50 cycles using the first round PCR as a starting template. For the other 

ICRs we did not use nested PCR (Table 1). 
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Table 1: Locus specific information for PCR amplification and pyrosequencing  

Locus 
(Contig) 

No. CpG 
sites 

PCR primers (5’-3’) Amplicon 
length (bp) 

Annealing 
Temp (OC) 

Sequencing primer  
(5’-3’) 

Reference 

H19 ICR  
(AF087017) 

6 Outer Reverse  
CTTAAATCCCAAACCATAACACTA  
Outer  Forward 
GTATATGGGTATTTTTTGGAGGT 
Inner Forward  
GTATATGGGTATTTTTTGGAGGT 
Inner Reverse 
Tag- ATATCCTATTCCCAAATAA 

317 
 
 
 
 
 
217 

61.5 
 
 
 
 
53 

TGGTTGTAGTTGTGGAA
T 

Present study 

IG-DMR  
(A117190) 

7 Forward 
Tag- TTTATTGGGTTGGGTTTTGTTAG 
Reverse 
AACCAATTACAATACCACAAAATT 

267 58 Primer 1 
CAATTACAATACCACAAA
AT 

Present study 

3 Primer 2 
CCATAAACAACTATAAAC
CT 

Present study 

KvDMR1 
(U90095) 

7 Forward  
TTAGTTTTTTGYGTGATGTGTTTATTA   
Reverse 
Tag- CCCACAAACCTCCACACC 

101 55 TTGYGTGATGTGTTTATT
A 

(Bourque et al., 
2010) 

PEG3 DMR 
(AC006115) 

7 Reverse 
Tag-
CCTATAAACAACCCCACACCTATAC 
Forward  
TAATGAAAGTGTTTGAGATTTGTTG 

272 62 GGGGGTAGTTGAGGTT (Boissonnas et al., 
2010) 

 

* 5’-biotin-GACGGGACACCGCTGATCGTTTA-3’ - universal biotin labelled tag. Note: the amplicon size excludes the 23bp 5’-biotin label.
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2.3.2.1. H19 ICR PCR 

The H19 ICR is the only ICR amplified using nested PCR (Table 1 and 2). The H19 ICR 

amplified region is located to contig AF087017. The H19 ICR contains seven CTCF binding 

sites, of which the sixth CTCF binding site is differentially methylated (Takai et al., 2001). 

Therefore the region amplified for the present study contains the sixth CTCF binding site. 

The sixth CTCF binding site contains 5 CpGs, but the amplified region included one extra CpG 

outside of the binding site, therefore the amplified region contains six CpGs (Appendix D, 

Figure 21). The primer set used for amplification of this region was designed using the PSQ 

assay design software (Biotage, AB Sweden). The PCR for this region was performed in 

triplicate. After a sample was bisulfite modified, it was divided into 3 aliquots of 2 µl bisulfite 

DNA. The aliquots were used for PCR for round 1, followed by round 2. The sequences for 

the primers are shown in Table 1. 

Table 2: PCR conditions for H19 ICR 

PCR reagents Volume PCR conditions Cycles 

                                                                                         Round 1 

ddH2O  
10X PCR buffer 
MgCl2 (25mM) 
dNTPs (1.25mM) 
Out F (10µM 
Out R (10µM)  
AmpliTaq (5U/µl) 
gDNA(~100ng)  
 

29.8µl 
5µl 
4 µl 
5 µl 
2 µl 
2 µl 
0.2 µl 
2µl 

 
94oC - 5min    

 
1 

94oC - 30sec 
61.5oC - 30sec 
72oC  - 30sec 

 
28 

72oC - 5 min 1 

4oC - ∞ 
 
 

 

50µl final volume 

PCR reagents Volume PCR conditions Cycles 

                                                                                      Round 2 

ddH2O  
10X PCR buffer 
MgCl2 (25mM) 
dNTPs (1.25mM) 
Primer Normal (10µM) 
Primer tagged (1µM) 
Universal primer (10µM) 
Betaine (5M) 
AmpliTaq (5U/µl) 
DNA (from round 1) 
 
 

25.1 µl 
5 µl 
4 µl 
2.5 µl 
1 µl 
1 µl 
1 µl 
7 µl 
0.4 µl 
3 µl 

 
95ooC -5min 

 
1 

95oC - 20s 
53oC - 30s 
72oC - 20s 

 
50 

72oC - 5min 1 

4oC - ∞ 
 
 
 

 

50µl final volume 
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2.3.2.2. IG-DMR 

The IG-DMR amplified region is located to contig A117190 and does not contain the CTCF 

binding site. It contains 15 CpGs, however only 10 CpGs in total were analysed by 

pyrosequencing, using two different sequencing primers named primer 1 and 2 (Table 1 and 

Appendix D_Figure 23). Primer 1 analysed 3 CpGs and primer 2 analysed 7 CpGs respectively 

from different independent PCRs. The primer set used for amplification of this region was 

designed using the PSQ assay design software (Biotage, AB Sweden). The PCR was run in 

duplicate using PCR conditions shown in Table 3.  

Table 3: PCR conditions for IG-DMR and KvDMR1 

IG-DMR PCR 
conditions 

Cycles KvDMR1 PCR 
conditions 

Cycles 

95oC - 5min 1 95oC - 10min   1 

95oC -15s 
58oC - 30s 
72oC – 15s 

 
50 

95oC - 40s      
55oC - 40s 
72oC - 40s 

 
45 

72oC – 5min 1 72oC - 7min 1 

4oC - ∞  4oC - ∞  

 

2.3.2.3. KvDMR1 

The amplified KvDMR1 region is located to the contig U90095. The amplified region contains 

7 CpGs including the differentially methylated NotI site that is often altered in BWS 

(Weksberg et al., 2001) and is used in diagnostic testing for Beckwith-Wiedemann Syndrome 

(BWS) (Bourque et al., 2010). Patients with BWS show loss of methylation at the NotI site 

(Bourque et al., 2011). The NotI restriction enzyme is methylation sensitive and its 

recognition sequence is 5′-GCGGCCGC-3′. It encompasses CpG 4 and 5 of our amplified 

KvDMR1, (Figure 22, and Appendix D) for KvDMR1 sequence. This ICR does not contain a 

CTCF binding site. The PCR was run in duplicate. PCR and pyrosequencing primers used for 

amplification of the KvDMR1 are published primers used in pyrosequencing of the region 

(Bourque et al., 2011) (Table 1). The forward and sequencing primer had a wobble 

introduced to accommodate an unavoidable CpG site in the sequence template that could 

either be methylated or unmethylated.  PCR conditions are shown in Table 3. PCR reagent 

cocktails for both KvDMR1 and IG-DMR were the same as round 2 PCR reagents cocktail for 
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H19 ICR except that 2 µl of bisulfite modified DNA was used instead of 3 µl, however, their 

PCR conditions were different (Table 3). 

2.3.2.4. PEG3 DMR 

The amplified PEG3 DMR region is located to contig AC006115. The amplified region 

contains 14 CpGs but only 7 CpGs were analysed (Figure 24, Appendix D). The ICR does not 

contain a CTCF binding site.  The PCR was run in duplicate. PCR and pyrosequencing primers 

used to amplify the PEG3 DMR are published primers used in pyrosequencing of the region 

(Boissonnas et al., 2010) (Table 1). The PEG3 DMR PCR cocktail and conditions are shown in 

Table 4. 

Table 4: PCR conditions for PEG3 DMR 

PCR reagents Volume PCR conditions Cycles 

ddH2O 
10X PCR buffer 
 MgCl2 (25mM) 
dNTPs (1.25mM) Primer  
normal(10µM)  
Primer tagged (1µM) 
Universal primer  
(10µM) 
Betaine (5M) 
AmpliTaq (5U/µl) 
DNA  

9.1µl 
2.5µl 
2.5µl 
2 µl 
0.8µl 
0.8 µl 
0.8µl 
 
5µl 
0.4 µl 
2µl 

 
95oC - 15min 

 
1 

95oC - 30s 
62oC - 30s 
72oC - 30s 

 
50 

72oC – 5min 1 

4oC - ∞  

25 µl 

 

2.4.  Pyrosequencing Preparation and run 

For a detailed method see Appendix C 

Prior to the actual pyrosequencing run, a DNA preparation step is performed outside the 

PSQ 96 MA Pyrosequencer ™ (Biotage, Uppsala, Sweden). In preparation PCR amplicons are 

incubated with streptavidin-coated Sepharose™ beads and binding buffer. During incubation 

the PCR amplicons are bound to the Sepharose beads through the biotin-labelled strand. 

The non-biotinylated strand is eventually removed by treatment with 70% EtOH and NaOH 

denaturation solution and separated from the biotinylated strand that is attached to the 

beads. The immobilised strand is then washed with washing buffer (pH 7.6) that neutralise 
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the pH. The beads with attached DNA strand are transferred to an annealing buffer 

containing the sequencing primer in a pyrosequencing plate.  

The sequencing primer hybridises to the bead bound single stranded DNA fragment (Figure 

11a) after heating at 80°C and allowed to cool. The following steps occur inside the 

machine; the sequencing primer hybridised to the  DNA strand is incubated with four 

enzyme cocktail, namely DNA polymerase, ATP sulfurylase, luciferase and apyrase together 

with substrates adenosine 5’ phosphosulfate (APS) and luciferin and dNTPs which are 

dispensed in a pre-defined dispensation order  into the wells using a cartridge (Ronaghi et 

al., 1998). The first dNTP is added to the reaction and if it is complementary to the first 

nucleotide after the sequencing primer on the DNA template, it is incorporated into the 

complementary DNA strand by DNA polymerase (Figure 11a and b).  

Incorporation of a dNTP results in the release of a PPi in a quantity equivalent to the amount 

of incorporated nucleotide (Figure 11b). The released PPi is then converted to ATP by ATP 

sulfurylase in the presence of APS. The resulting ATP drives the conversion of luciferin to 

oxyluciferin by luciferase. The oxyluciferin then generates visible light in amounts that are 

proportional to the amount of ATP used which is proportional to the amount of PPi 

released. The light is then detected by a charge coupled device (CCD) camera and recorded 

as a peak in a Program™ (Figure 11c). Between nucleotide incorporations, apyrase degrades 

all unincorporated dNTPs and unused ATP (Figure 11d), and the dNTPs incorporation 

continues. As the complementary strand grows a pyrogram is constructed (Figure 11e).   
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a.    b .  

 

  

c.            d.                                              

   

   e       

Figure 11: Pyrosequencing run 

The pyrosequencing run occurs in four steps the result in a pyrogram. The first step is the 
hybridization of the sequencing primer (a) followed by nucleotide incorporation (b), visible light 
production (c) and the degradation of incorporated and unused dNTPs and ATP (d) which all result in 
the construction of a pyrogram (e). Double peak height indicates an incorporation of two nucleotides 
in a row (Biotage, 2008) 
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2.5.  Statistical Analysis 

Descriptive statistics, including mean, standard deviation (SD), average and distribution, was 

done using SAS statistical software, version 4.22.0.9238. 

Linear mixed-effects models were used to generate the results, and a biostatistician from 

the Medical Research Council of South Africa (MRC), Dr Lize van der Merwe assisted me 

with the statistical analyses. These analyses were based on joint models, where all the 

observations were included into a single model to simultaneously do the tests.  One 

advantage is that it avoids some false positive results, because all the results are adjusted 

for each other. These models also enabled us to adjust for different kinds of random 

variation as random effects: those between sites, those between individuals and those 

within individuals (replicates). Adjusting for the variation between individuals is a different 

way of saying the correlation between replicates on the same individual were adjusted for. 

After confirming, using linear mixed-effect model that age and sex were confounders, all 

further models were adjusted for them, as fixed effects.   All p values, effects sizes and 

standard errors (SE) come from interaction terms in the models. All results corresponding to 

p- values below 0.05 are described as significant, below 0.01 as highly significant and below 

0.001 as very highly significant.      

The observed methylation data are also summarised with box plots. Each box extends from 

the first quartile to the 3rd quartile (interquartile range), the line inside the box is at the 

median, and the whiskers extend to the non-outlying minimum and maximum, respectively.  

Outliers are shown as open circles. The freely available environment for statistical 

computing and graphics, R (R Core Team, 2015) and R package (Pinheiro et al., 2015) were 

used for these analyses.   
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3. Results 
 

Part of the study results have been published in the journal Frontiers in genetics (Appendix 

F). 

The results are presented in three sections. Firstly results on optimisation of the method are 

represented; the optimisation was done in order to make sure that accurate and reliable 

data are produced. The second results section is for testing for tissue specificity, which was 

done to establish if the use of two different tissues (blood and buccal tissue) in the case 

control study was not going to confound the results. Lastly the results on the main objective 

of the study, which is comparison of methylation variation/profiles at selected loci between 

FAS affected children and controls, are presented. 

3.1.  Optimising the H19 ICR DNA methylation assay 

Methylation profiles were obtained for 50 blood DNA samples and their matching buccal 

tissue DNA from the same individual. Table 5 shows methylation percentages analysed at six 

CpG sites of H19 ICR. The first five CpG sites form part of the 6th CTCF binding site of H19 ICR 

while the last does not (Figure 12, Appendix D). The 6th CTCF binding site of H19 ICR is 

differentially methylated in a parent of origin manner. Only a few samples are shown in the 

Tables 5 and 6, a complete set of results are shown in Appendix E. 

Table 5 and Figure 12 show that there are three different methylation patterns in different 

individuals i.e. hypomethylation (BL 002 and 008), hypermethylation (BL 011 and 027) and 

intermediated methylation (BL 003 and 004). In samples from somatic tissue an 

intermediate level methylation (35-65%) is expected at imprinted loci where one of the 

parental alleles is methylated and the other is not. All consecutive CpG sites showed 

relatively similar methylation percentages in individual samples e.g. BL002, BL008 and 

BL004; however in some of the individual samples, CpG site 4 behaved differently from 

other CpG sites of the same individual sample. CpG site 4 was completely unmethylated 

(mean percentage of 1, 7% and 4% respectively) in individual samples e.g. BL003, BL011 and 

BL0027. 
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Table 5: Methylation profiles of CpG sites at the 6th CTCF binding site of H19 ICR using primers 
which overlapped with sites for a known SNP 

Sample ID                                        Methylation percentages (%) 

 CpG1 CpG2 CpG3 CpG4 CpG5 CpG6 

BL002  0 4 0 3 0 5 

BL002 0 0 5 0 5 0 

BL002 3 3 0 0 0 3 

mean 1 2 2 1 2 3 

BL008 3 5 4 2 2 4 

BL008 4 5 4 2 2 4 

BL008 3 5 3 3 2 7 

mean 3 5 2 2 2 5 

BL003 42 42 40 0 39 41 

BL003 42 45 44 2 41 43 

BL003 42 42 50 0 39 39 

mean 42 43 45 1 40 41 

BL004 33 36 35 34 34 34 

BL004 31 31 31 30 32 34 

BL004 30 31 31 29 29 32 

mean 31 33 32 31 32 33 

BL011 90 96 91 6 90 95 

BL011 89 90 91 5 88 85 

BL011 91 91 86 9 82 92 

mean 90 92 89 7 87 91 

BL027 90 92 90 3 86 88 

BL027 87 97 91 6 87 87 

BL027 90 96 91 3 88 88 

mean 89 95 91 4 87 88 

BL= blood sample 

 

Figure 12: Methylation profiles of CpG sites at the 6th CTCF binding site of H19 ICR using primers 
which overlapped with sites for a known SNP. 
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During the course of the study, I came across a retracted article by Tost and collegues which 

highlighted that the variable methylation profiles shown in Table 5 may be due to biased 

amplification caused by the presence of SNPs in some of the binding sites of the H19 ICR 

nested primers used (Tost et al., 2007). The primers were then checked if they contained 

known SNPs, and indeed two of the primers were found to contain a known SNP (outer 

forward primer_rs11564736 and inner reverse primer_rs56125822, Appendix D). Thereafter 

primers were redesigned to avoid sites containing known SNPs, and the modified primers 

were used to amplify the same H19 ICR region for the same samples shown in Table 5. 

Table 6: Methylation profiles of CpG sites at the 6th CTCF binding site of H19 ICR using modified 
primers that did not overlap with a known SNP site 

Sample ID Methylation percentages (%) 

  CpG1 CpG2 CpG3 CpG4 CpG5 CpG6 

BL002 48.00 48.00 50.00 49.00 52.00 49.00 

BL002 49.00 49.00 48.00 49.00 51.00 49.00 

BL002 48.00 48.00 49.00 49.00 52.00 49.00 

Mean 48.33 48.33 49.00 49.00 51.67 49.00 

BL008 55.00 57.00 53.0 51.00 53.00 53.00 

BL008 56.00 56.00 52.00 51.00 54.00 52.00 

BL008 55.00 57.00 53.00 51.00 53.00 53.00 

 Mean 55.33 56.67 52.67 51.00 53.33 52.67 

BL003 56.00 57.00 54.00 0.00 53.00 53.00 

BL003 55.00 57.00 53.00 1.00 52.00 52.00 

BL003 56.00 57.00 54.00 0.00 53.00 53.00 

 Mean 55.67 57.00 53.67 0.33 52.67 52.67 

BL004 52.00 55.00 50.00 52.00 49.00 53.00 

BL004 50.00 56.00 52.00 52.00 50.00 52.00 

BL004 52.00 55.00 50.00 52.00 49.00 53.00 

 Mean 51.33 55.33 50.60 52.00 49.33 52.67 

BL011 50.00 54.00 51.00 2.00 51.00 52.00 

BL011 49.00 55.00 51.00 1.00 53.00 55.00 

BL011 50.00 54.00 51.00 2.00 51.00 52.00 

 Mean 49.67 54.33 51.00 1.67 51.67 53.00 

BL027 56.00 61.00 56.00 2.00 55.00 56.00 

BL027 55.00 60.00 56.00 0.00 52.00 54.00 

BL027 56.00 61.00 56.00 2.00 55.00 56.00 

 Mean 55.67 60.67 56.00 1.33 54.00 55.33 

BL=Blood sample 
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Figure 13: Methylation profiles of CpG sites at the 6th CTCF binding site of H19 ICR using modified 
primers that did not overlap with a known SNP site. 

From the results in Table 6 and Figure 13 it is observed that the methylation pattern of all 

the CpG sites of H19 ICR in the different individual samples were about  50%, even for 

samples that previously reflected a hypermethylation pattern in Table 5 (BL011 and BL027). 

It is also observed that all the CpG sites of different individual samples reflected methylation 

of roughly 50% except for CpG site 4 which was still hypomethylated in some individuals the 

same way as in Table 5 (BL003, BL011 and BL0027). The hypomethylation at CpG site 4 is 

explained by the presence of a known C/T SNP (rs10732516) at this site. The T allele 

appeared hypomethylated at the fourth CpG site while the C allele did not.  

3.2.  Testing for tissue specific DNA methylation differences at H19 ICR 

This section of the study was performed to establish if the blood and buccal tissue DNA 

samples reflected similar patterns of methylation at the imprinted locus, H19 ICR. This was 

done because in the case control study the participants donated either blood or buccal 

tissue samples. The control participants (N=58) all donated blood samples and of the 87 FAS 

cases, 8 donated buccal samples and the remainder donated blood (Appendix E).  We 

wanted to verify, before performing the case control study, that the methylation profiles 

between the two tissues were not different, and therefore not going to confound or bias 
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our results. Table 7 represents methylation profiles of six CpG sites of H19 ICR obtained 

from blood and buccal tissue of the same individual. 

 

Table 7: Methylation profiles of CpG sites at the 6th CTCF binding site of H19 ICR obtained from 
blood and buccal tissue DNA of each participant 

Sample ID                                        Methylation percentages (%) 

  CpG1 CpG2 CpG3 CpG4 CpG5 CpG6 

BL002 0.00 4.00 0.00 3.00 0.00 5.00 

BL002 0.00 0.00 5.00 0.00 5.00 0.00 

BL002 3.00 3.00 0.00 0.00 0.00 3.00 

Mean 1.00 2.33 1.67 1.00 1.67 2.67 

BC002 4.00 7.00 3.00 4.00 4.00 5.00 

BC002 4.00 4.00 3.00 3.00 3.00 6.00 

BC002 0.00 4.00 3.00 0.00 0.00 4.00 

 Mean 2.67 5.00 3.00 2.33 2.33 5.00 

BL003 42.00 46.00 40.00 0.00 39.00 41.00 

BL003 42.00 45.00 44.00 2.00 41.00 43.00 

BL003 42.00 45.00 50.00 3.00 42.00 39.00 

 Mean 42.00 45.00 44.67 1.67 40.67 41.00 

BC003 41.00 49.00 41.00 3.00 41.00 45.00 

BC003 43.00 48.00 42.00 4.00 44.00 45.00 

BC003 41.00 47.00 42.00 3.00 43.00 44.00 

 Mean 41.67 48 41.67 3.33 42.67 44.67 

BL011 90.00 96.00 91.00 6.00 90.00 95.00 

BL011 89.00 90.00 91.00 5.00 88.00 85.00 

BL011 91.00 91.00 86.00 9.00 82.00 92.00 

 Mean 90 92 89.00 7.00 87.00 91 

BC011 91 92 89 4 87 84 

BC011 87 95 88 4 83 86 

BC011 82 92 83 5 82 86 

 Mean 86.67 93 86.67 4.33 84 85.33 

BL=Blood; BC=Buccal tissue 
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Table 8: Comparison of methylation profiles of CpG sites at the 6th CTCF binding site of H19 ICR 
between blood and buccal DNA samples of a participant 

Sample 
no CpGs Blood DNA mean methylation (%) Buccal DNA mean methylation (%)  p-value 

BL002 
BC002 

CpG1 1.00 2.67 0.44 

CpG2 2.33 5.00 0.16 

CpG3 1.67 3.00 0.47 

CpG4 1.00 2.33 0.44 

CpG5 1.67 2.33 0.76 

CpG6 2.67 5.00 0.21 

BL003 
BC003 

CpG1 42.00 41.67 0.64 

CpG2 45.00 48.00 0.36 

CpG3 44.67 41.67 0.36 

CpG4 1.67 3.33 0.6 

CpG5 40.67 42.67 0.2 

CpG6 41.00 44.67 0.3 

BL011 
BC011 

CpG1 90.00 86.67 0.28 

CpG2 92.00 93.00 0.77 

CpG3 89.00 86.67 0.35 

CpG4 7.00 4.33 0.14 

CpG5 87.00 84.00 0.4 

CpG6 91.00 85.33 0.15 

BL=Blood; BC=Buccal tissue; significant: p<0.05 

It should be noted that the methylation profiles from Table 7 and 8 come from H19 ICR 

region amplified by primers that contained SNPs in their binding region, which is why there 

are samples that are still hypermethylated and hypomethylated in the tables.  By looking at 

the methylation percentages represented in Table 7 and 8, it is observed that methylation 

levels at all the six CpG sites analysed in blood and buccal tissues from the same individual 

were not different (p-values <0.005, Table 8).  

3.3.  Case control study of methylation variation at imprinted loci in FAS 

affected and control individuals 

3.3.1. Study and sample description 

The main objective of the study was to compare methylation profiles at four imprinted locus 

imprinting control regions (ICRs) between cases (FAS) and controls. In the case group two 

partial FAS (PFAS) DNA samples (1PFAS male and 1PFAS female) were included and were 
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combined with all FAS cases for all statistical analysis (Appendix F). Therefore in the 

discussion we only refer to the FAS group. Not all samples were typed for every locus 

(Appendix E). For the H19 ICR, some of the results are presented in triplicate and some in 

duplicate. The reason for this is that for H19 ICR, every sample was run in triplicate, but for 

some samples one run of the three runs would fail quality control (QC) and would therefore 

be excluded from the results. The other loci (KvDMR1, IG-DMR and PEG3 DMR) were run in 

duplicate for reasons of scarce sample and cost of reagents. For all four loci (Appendix F), 

one case sample (DNA004270) was excluded from statistical analysis because of a lack of 

information on age, gender and diagnosis (diagnosis=indication of whether it was a FAS or 

PFAS sample). Three other case samples (DNA004258, DNA004312 and DNA004313) did not 

have age data (Appendix F) and therefore were excluded from analysis involving age. A 

summary for the number of samples, gender and age distribution at the different loci in the 

case and control groups is shown in Table 9. For all the loci, control samples had a median 

age of 20 years (range 18 to 26 years) while cases had a median age of 9 years (range 1 to 16 

years). The control group had a lower number of samples (50+) while the case group had a 

higher number of samples (70+). There is almost the same number of males and females 

tested at all loci in the control groups but in the case groups at KvDMR1 and IG-DMR the 

number of males and females are almost the same, whereas at H19 ICR and PEG3 DMR 

there is slightly higher number of males than females.  A complete data set of all loci 

including the replicates is shown in Appendix E and F. 

Table 9: Summary table for number of samples, gender and age distribution for the different loci 
tested in the control and case groups 

  Controls Cases 

    Age Gender   Age Gender 

Locus N 
mean(yrs) 
(min:max) Male Female N 

mean(yrs) 
(min:max) Male Female 

H19 ICR 50 21 (18:26)   27 23 73 8.7 (1:16) 41 32 

KvDMR1 55 21 (18:26) 27 28 86 8.4 (1:16) 46 40 

IG-DMR 56 21 (18:26) 29 27 84 8.5 (1:16) 45 39 

PEG3 DMR 50 21 (18:26) 25 25 79 8.7 (1:16) 46 33 
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3.3.2. Locus specific methylation analysis 

Results in Tables 10 up to 19 were generated by me using SAS statistical software, version 

4.22.0.9238. The mean methylation of each individual at each CpG site in a locus and across 

a locus was calculated and analysed. The data in Tables (10-19) and box plots were not 

adjusted for confounders and therefore may be biased.  Data for average methylation at 

different CpG sites and average methylation across a locus for different loci were first 

checked if they were normally distributed (Tables 10, 12, 14, 16 and 18), before comparison 

of means for sites and average methylation across a locus calculations between cases and 

controls were done (Tables 11, 13, 15, 17 and 19). If the data being compared were 

normally distributed, a t-test (a parametric test) was used to test if the means of the two 

groups were significantly different. If the data was not normally distributed a non-

parametric test (Kruskal-Wallis test) was used. Figures 14-19 were generated by a 

biostatistician from the Medical Research Council of South Africa (MRC),Dr Lize van der 

Merwe, using a statistical joint model (R package version 3.1-102), but were put under this 

section because their data is unadjusted for age and gender.  The adjusted analysis taking 

into consideration age and gender are shown in a later section.  

3.3.2.1. H19 ICR 

Table 10: Descriptive data for H19 ICR methylation percentages at different CpG sites and average 
methylation 

Control  

mean age 
(yrs) 
(min:max) sites 

Mean 
methylation 
% 

Std 
Dev Median Minimum Maximum 

Normal 
distribution 

N=50 21 (18:26) CpG1 51.57 3.13 51.33 40.33 57.50 no 

  
CpG2 54.64 3.28 54.67 44.67 62.67 yes 

  
 

CpG3 52.21 3.44 52.25 40.00 58.50 no 

  
 

CpG5 51.82 3.07 51.58 42.00 59.50 yes 

  
 

CpG6 53.43 3.39 53.33 43.33 61.33 yes 

  
 

Average 52.73 3.36 53.97 42.07 59.10 yes 

Cases  8.7 (1:16) CpG1 53.37 3.53 53.58 44.67 62.50 yes 

N=73 
 

CpG2 55.64 3.77 55.5 47.00 64.50 yes 

  
CpG3 53.38 3.73 53.58 44.00 62.67 yes 

  
 

CpG5 53.29 3.25 53.33 45.67 61.33 yes 

  
 

CpG6 54.77 3.78 54.83 47.50 64.33 yes 

  
 

Average 54.07 2.97 52.6 46.80 61.80 yes 
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N=number 

In the H19 ICR locus, six CpG sites were analysed by pyrosequencing.  As already mentioned 

in section 3.1 all the CpG sites, except site 6, form part of the 6th CTCF binding site (which is 

differentially methylated) in the H19 ICR.  All the CpG sites reflected a methylation 

percentage of ± 50% as is expected in a normal somatic tissue for an imprinted locus (where 

only one parental allele is methylated and the other is not). However CpG site 4 appeared 

hypomethylated (< 10%) in some samples and had methylation of ±50 percent in other 

samples and this is explained by the presence of a known C/T SNP (rs10732516) in this 

position. Therefore site 4 was excluded from the statistical analysis for H19 ICR (Table 10 

and 11). In cases and controls methylation percentages were normally distributed in all H19 

ICR CpG sites and in terms of methylation across the locus, except for sites 1 and 3 in 

controls (Table 10).  

Table 11: Comparison of means at different sites and average methylation across the loci at H19 
ICR between controls and cases 

H19 ICR sites Control mean % Case mean %  p-value 

  CpG1 51.57 53.37 0.007* 

  CpG2 54.64 55.64 0.132 

  CpG3 52.21 53.38 0.081 

  CpG5 51.82 53.29 0.013* 

  CpG6 53.43 54.77 0.046* 

 
Average 52.73 54.07 0.024* 

Significant:* p<0.05  

Table 11 and Figure 14 represent comparisons of methylation percentage means at different 

CpG sites in H19 ICR between controls and cases. It was observed that there is a significant 

difference of means at CpG site 1, 5 and 6, (higher methylation in cases than controls) while 

no difference was observed at sites 2 and 3. Average methylation across the H19 ICR locus 

was also significantly different between cases and controls.  

 



68 
 

 
 
 
Figure 14: Boxplots summarising the observed percentage methylation at different CpG sites in 
H19 ICR in (CON) controls and cases (FAS), unadjusted for age and gender. 

 

3.3.2.2. KvDMR1 

Table 12: Descriptive data for KvDMR1 methylation percentages at different CpG sites and average 
methylation 

Control  
 

Mean age 
(yrs) 
(min:max) sites 

Mean 
methy-
lation % 

Std 
Dev Median Minimum 

Maximu
m 

Normal 
distribution 

N=55 21 (18:26) CpG1 58.64 2.41 59.00 52.50 63.50 yes 

  
CpG2 61.06 2.82 61.50 51.50 66.50 no 

  
 

CpG3 57.16 2.16 57.50 49.50 61.50 no 

  
 

CpG4 58.42 2.06 58.50 50.50 62.00 no 

  
 

CpG5 59.23 2.47 59.50 50.50 64.50 yes 

  
 

CpG6 58.33 2.79 58.50 51.50 63.50 yes 

  
 

CpG7 60.16 2.62 60.00 54.00 67.00 yes 

  
 

Averag
e 59.04 2.03 58.93 51.64 62.36 no 

Cases  8.3 (1:16) CpG1 59.48 2.97 59.50 52.50 70.00 no 

N=86 
 

CpG2 61.44 2.86 61.00 55.50 71.50 no 

  
CpG3 57.30 2.17 57.00 53.00 64.50 no 

  
 

CpG4 58.14 2.25 57.50 54.50 65.50 no 

  
 

CpG5 59.21 2.84 59.00 54.00 68.00 no 

  
 

CpG6 58.14 3.08 58.00 52.50 68.50 no 

  
 

CpG7 59.47 2.53 59.50 55.00 67.00 no 

  
 

Averag
e 59.02 2.37 58.57 55.57 67.37 no 

N=number 
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At KvDMR1 seven CpG sites were analysed. All the CpG sites of the KvDMR1 had 

intermediate methylation as expected of a normal imprinted locus of a somatic tissue. CpG 

4 and 5 represent the two cutting sites for NotI restriction enzyme (Appendix D, KvDMR1 

sequence), which is methylation sensitive.  

The methylation data for all the sites in the case group, including average methylation, were 

not normally distributed. In the control group methylation for sites 1, 5 and 6 were normally 

distributed while for the other sites as well as for the average methylation across the loci 

were not normally distributed (Table 12).  

Table 13: Comparison of means at different sites and average methylation across the loci at 
KvDMR1 between controls and cases 

KvDMR1 sites Control mean % Case mean % p-value 

  CpG1 58.64 59.48 0.142 

  CpG2 61.06 61.44 0.693 

  CpG3 57.16 57.3 0.790 

  CpG4 58.42 58.14 0.093 

  CpG5 59.26 59.21 0.376 

  CpG6 58.33 58.14 0.338 

  CpG7 60.16 59.47 0.026* 

 
Average 59.04 59.02 0.215 

Significant:* p<0.05  

In Table 13 and Figure 15 it was observed that there is a significant difference of means only 

at CpG site 7, where mean methylation is lower in cases than controls. The remaining sites 

including sites 4 and 5 were not significantly different between the groups.  

 

Figure 15: Boxplots summarising the observed percentage methylation at different CpG sites in 
KvDMR1 in (CON) controls and cases (FAS), unadjusted for age and gender. 
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3.3.2.3. IG-DMR (region A and B) 

For the IG-DMR, ten CpG sites were analysed. It has been observed that IG-DMR has a wide 

variability in methylation at the different CpG sites analysed. Most of the individuals had 

methylation levels of above 70% at CpG 1-5 while CpG sites 6-10 have methylation of 

approximately 50 percent (Figure 16). The IG-DMR primer annealing sites were checked for 

the presence of known SNPs, and no known SNPs were found. Betaine solution (which is 

known to improve DNA amplification by reducing the secondary structure in the GC rich 

regions and also enhances the specificity of PCR) was used in our PCR cocktail but still the 

CpG site 1-5 methylation remained above 70%. The two regions appear to behave 

independently with regard to their methylation imprint.  Since the average methylation was 

shown to differ significantly between CpG sites 1-5 and CpG sites 6-10 (Figure 16) they were 

analysed separately. The IG-DMR region was therefore divided into two regions, region A 

(CpG 1-5) and B (CpG site 6-10) and analysed independently. The average methylation was 

shown to differ highly significantly between the two regions; region B had 18.3 % lower 

methylation than region A, p< 0.0001(using a joint model).    

In Table 14 it was observed that in the control group DNA methylation was normally 

distributed in all the IG-DMR.A region CpG sites together with the average methylation 

across the region, except for CpG site 5. In the case group only methylation for CpG sites 1 

and 5, and average methylation across the locus, were normally distributed. CpG sites 2, 3 

and 4 were not normally distributed.   As mentioned above, this region does behave as 

expected for a normal imprinted locus. 
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Table 14: Descriptive data for IG-DMR.A methylation percentages at different CpG sites and 
average methylation 

Control  
mean age 
(min:max) sites 

Mean 
methy-
lation % 

Std 
Dev Median Minimum Maximum 

Normal 
distribution 

N=56 21.2 (18:26) CpG1 71.93 4.44 71.00 63.00 81.50 yes 

  
CpG2 74.83 5.14 74.00 64.00 85.50 yes 

  
 

CpG3 66.23 3.77 66.00 57.00 76.00 yes 

  
 

CpG4 72.54 3.87 73.00 65.00 82.00 yes 

  
 

CpG5 74.56 5.38 74.25 65.00 86.50 no 

  
 

Average 72.02 4.22 71.40 64.40 80.60 yes 

Cases  8.5 (1:16) CpG1 73.05 5.20 73.00 54.00 84.00 yes 

N =84 
 

CpG2 76.01 5.99 76.00 52.00 89.00 no 

  
CpG3 66.67 4.18 67.00 50.00 78.00 no 

  
 

CpG4 72.73 4.17 72.50 64.00 87.50 no 

  
 

CpG5 77.76 6.55 77.00 66.50 91.50 yes 

  
 

Average 73.25 4.55 73.00 63.80 84.10 yes 

N=number 

 

In Table 15 it is observed that there is no significant difference in mean methylation at 

almost all the CpG sites, except for site 5 whose mean methylation is significantly higher in 

cases than controls.  Average methylation of all sites across the IG-DMR.A region is also not 

different between controls and cases. 

 

Table 15: Comparison of means at different sites and average methylation across the loci at IG-
DMR.A between controls and cases 

IG-DMR.A sites Control mean % Case mean % p- value 

  CpG1 71.93 73.05 0.188 

  CpG2 74.83 76.01 0.19 

  CpG3 66.23 66.69 0.492 

  CpG4 72.55 72.73 0.866 

  CpG5 74.56 77.76 0.007* 

  Average 72.02 73.25 0.109 

Significant:* p<0.05  
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Table 16: Descriptive data for IG-DMR.B methylation percentages at different CpG sites and 
average methylation 

Control  
mean age 
(min:max) sites 

Mean 
methy-
lation  
% 

Std 
Dev Median 

Minimu
m Maximum 

Normal 
distributio
n 

N=56 21.2 (18:26) CpG6 56.17 2.84 56.00 51.00 63.00 yes 

  
CpG7 56.93 2.50 56.75 52.00 65.00 no 

  
 

CpG8 52.41 2.30 52.00 49.00 59.00 no 

  
 

CpG9 51.80 2.12 51.25 49.00 58.00 yes 

  
 

CpG10 52.52 2.32 52.00 49.50 59.00 no 

  
 

Average 53.97 1.84 53.40 51.00 59.00 no 

Cases  8.5 (1:16) CpG6 57.56 3.39 57.00 50.00 66.00 yes 

N=84 
 

CpG7 57.13 2.51 57.00 52.00 64.00 yes 

  
CpG8 53.22 3.57 52.50 49.00 65.50 no 

  
 

CpG9 53.28 3.81 52.00 49.00 68.50 no 

  
 

CpG10 52.86 3.05 52.50 48.50 63.00 no 

  
 

Average 54.81 2.76 54.00 50.60 64.40 no 

N=number 

All the CpG sites for the IG-DMR.B reflected an intermediate methylation of about 50 

percent consistent with the expected normal methylation distribution for an imprinted 

tissue locus (Table 16). In controls methylation of CpG 6 and 9 were normally distributed 

while those for the remaining sites together with the average methylation of CpG sites 

across the locus were not. In cases methylation for only sites 6 and 7 were normally 

distributed, while those of the remaining sites together with the average methylation of all 

CpG sites across the locus were not.  

In Table 17 and Figure 16 it is observed that there is no significant difference in mean 

methylation at CpG site 7, 8 and 10 while at sites 6 and 9 mean methylation is significantly 

different between controls and cases, with cases having higher mean methylation than 

controls. Average methylation of all sites across the IG-DMR.B region is not different 

between controls and cases. 
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Table 17: Comparison of means at different sites and average methylation across the loci at IG-
DMR.B between controls and cases 

IG-DMR.B Sites Control mean % Case mean % p- value 

  CpG6 56.17 57.53 0.012* 

  CpG7 56.93 57.14 0.491 

  CpG8 52.41 53.22 0.39 

  CpG9 51.8 53.28 0.031* 

  CpG10 52.52 52.87 0.866 

  Average 53.97 54.81 0.084 

Significant:* p<0.05  

 

 

 

Figure 16: Boxplots summarising the observed percentage methylation at different CpG sites in IG-
DMR in (CON) controls and cases (FAS), unadjusted for age and gender. 

3.3.2.4. PEG3 DMR 

All seven CpG sites at the PEG3 DMR in controls reflected an intermediate methylation 

percentage (30-58%), consistent with methylation levels for a normal imprinted tissue. The 

methylation percentage for PEG3 DMR sites seem to be different from the other imprinted 

loci (H19 ICR, IG-DMR and KvDMR1), their methylation is lower than 50 percent at some 

sites.  In controls methylation of CpG sites 1-6 were normally distributed as was the average 

methylation of all the CpG site across the locus, but CpG 7 was not. In cases only 

methylation of CpG sites 1, 3, 4 and 5 as well as average methylation of CpG sites across the 

locus were normally distributed while the remaining sites were not. 
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Table 18: Descriptive data for PEG3 DMR methylation percentage at different CpG sites and 
average methylation 

Control  

mean age 
(yrs) 
(min:max) sites 

Mean 
methy-
lation 
% 

Std 
Dev Median Minimum Maximum 

Normal 
distribution 

N=50 21.3 (18:26) CpG1 49.97 4.94 49.75 41.00 62.00 yes 

  
CpG2 45.85 5.92 45.00 35.00 60.00 yes 

  
 

CpG3 45.72 5.37 45.25 34.50 57.00 yes 

  
 

CpG4 46.71 5.25 47.00 38.00 58.50 yes 

  
 

CpG5 39.12 5.15 39.00 30.00 50.50 yes 

  
 

CpG6 39.86 4.96 39.50 30.00 53.00 yes 

  
 

CpG7 40.7 5.16 40.00 32.00 50.00 no 

  
 

Averag
e 43.99 4.81 43.61 35.07 54.79 yes 

Cases  8.7 (1:16) CpG1 44.52 4.64 44.00 33.00 53.50 yes 

N=79 
 

CpG2 40.88 4.98 41.00 29.00 58.00 no 

  
CpG3 39.47 4.85 39.75 26.00 51.00 yes 

  
 

CpG4 41.84 4.63 41.75 29.50 55.50 yes 

  
 

CpG5 33.46 4.45 33.50 25.00 44.00 yes 

  
 

CpG6 34.62 4.44 34.00 25.00 45.00 no 

  
 

CpG7 35.21 3.97 35.00 26.00 50.50 no 

  
 

Averag
e 38.55 4.00 39.04 29.71 47.93 yes 

N=number 

 In Table 19 and Figure 17 it is observed that mean methylation of all seven CpG sites is 

highly significantly different between controls and cases, with cases having lower mean 

methylation than controls. The average methylation of all sites across PEG3 DMR is also 

highly significantly different between cases and control.  

Table 19: Comparison of means at different sites in PEG3 DMR between controls and cases 

PEG3 DMR sites Control mean % Case mean % p -value 

  CpG1 49.97 44.51 <0.0001* 

  CpG2 45.85 40.88 <0.0001* 

  CpG3 45.72 39.47 <0.0001* 

  CpG4 46.71 41.84 <0.0001* 

  CpG5 39.12 33.46 <0.0001* 

  CpG6 39.86 34.62 <0.0001* 

  CpG7 40.7 35.21 <0.0001* 

  Average 43.99 38.55 <0.0001* 

Significant:* p<0.05  
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Figure 17: Boxplots summarising the observed percentage methylation at different CpG sites in 
PEG3 DMR in (CON) controls and cases (FAS), unadjusted for age and gender. 

 

3.3.3. Potential confounders 

Age and gender are reported confounders in DNA methylation studies; therefore it was 

important to examine their effect as potential confounders of DNA methylation changes in 

the present study. Unfortunately the study design was sub-optimal in terms of age. All cases 

were below 17 years of age and ranged from 1 to 16 years; all controls were above 18 years 

of age and ranged from 18 to 26 years. There is no overlap in age and therefore the age 

effect and alcohol effect on percentage methylation could not be separated. The reason for 

this major limitation is that ethics approval for the collection of controls stipulated that 

controls should be over the age of 18 in order to provide informed consent (Appendix A).  In 

addition, when this study was initially planned there was limited knowledge about age as a 

confounding factor for epigenetic mechanisms. The statistical data for this section of 

potential confounders and effect size (from Table 20-24 and box plots from Figures 14-19) 

were generated by a biostatistician from MRC, Dr Lize van der Merwe, using statistical linear 

mixed-effects models (R package version 3.1-102). All p-values, effects and standard errors 

(SE) come from the linear mixed-effects models.  

3.3.3.1. Age 

In Tables 20 and 21 below, methylation percentages were stratified by age of the 

participants (FAS children and controls), in order to see if average methylation across a locus 

differed by age in controls and cases. The data were adjusted for gender (fixed), CpG sites, 

replicates and individuals (random effect). The difference is called effect. Effect is defined as 
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the estimated percentage difference in methylation between participants of a specific age 

and those one year younger, in a specific group at the specific locus.  

The most significant effect is seen at both IG-DMR A and B in FAS cases (Table 20), where 

the estimated methylation percentage decreased by 0.43% and 0.38% respectively for a one 

year increase in age. At KvDMR1 there is a significant estimated methylation increase by 

0.19% for every year increase in age in controls however in FAS cases there is a significant 

decrease by 0.11. Again the highly significant effect is seen at PEG3 DMR in the control 

group, where estimated methylation percentage decrease by 0.22 % for every year increase 

in age. This decrease is almost half of that seen for IG-DMR A and B cases.  No age effect 

was observed at H19 ICR (in both cases and controls), at both IG-DMR A and B (in controls) 

and at PEG3 DMR (in cases).  

Table 20: The estimated effect of one year of age on percentage methylation per locus per group 

Locus Group Effect SE p-value 

H19 ICR CON -0.05 0.10 0.634 

H19 ICR FAS 0.02 0.06 0.749 

IG-DMR.A CON 0.02 0.10 0.861 

IG-DMR.A FAS -0.43 0.06 < 0.001* 

IG-DMR.B CON 0.01 0.10 0.920 

IG-DMR.B FAS -0.38 0.06 < 0.001* 

KvDMR1 CON 0.19 0.08 0.016* 

KvDMR1 FAS -0.11 0.05 0.021* 

PEG3 DMR CON -0.22 0.08 0.008* 

PEG3 DMR FAS 0.00 0.05 0.948 

CON=controls; FAS=FAS case; SE=standard error of effect, Significant:* p<0.05  

Table 21 summarises, for each CpG site, the effect of one year of age on methylation, 

separately for controls and FAS cases, as well as the estimated difference between cases 

and controls in that effect.   There are five CpG sites in IG-DMR, one in KvDMR1, where the 

effect of age on methylation is significantly more negative in FAS cases and controls.  At IG-

DMR sites 2, 5, 6, 8, and 9, as well as at KvDMR1 site 6, methylation decreased highly 

significantly with age in FAS cases but no significant effect was detected in controls.  In PEG3 

DMR site 2, the effect was significantly higher in FAS cases than controls.  
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Table 21: The estimated effect of one year of age on methylation percentage, at different sites of a locus, in controls and cases, separately, and the 
estimated difference between those effects between FAS and controls   

CONTROL GROUP FAS CASES 

Estimated difference in age 
effect on Me between FAS and 

CON 

Locus Site 
Age 
effect SE P-value 

Age 
effect SE P-value FAS - CON SE p-value 

H19 ICR CpG1 0.02 0.16 0.89 0.03 0.1 0.758 0.01 0.19 0.962 

H19 ICR CpG2 0.04 0.16 0.811 0.06 0.1 0.577 0.02 0.19 0.924 

H19 ICR CpG3 -0.16 0.16 0.298 0.02 0.1 0.851 0.18 0.19 0.326 

H19 ICR CpG5 0.1 0.16 0.522 -0.01 0.1 0.896 -0.11 0.19 0.541 

H19 ICR CpG6 -0.09 0.16 0.546 0.08 0.1 0.448 0.17 0.19 0.36 

IG-DMR CpG1 -0.05 0.17 0.789 -0.43 0.1 < 0.001* -0.38 0.2 0.052 

IG-DMR CpG2 -0.19 0.17 0.273 -0.72 0.1 < 0.001* -0.53 0.2 0.007* 

IG-DMR CpG3 0.19 0.17 0.256 -0.02 0.1 0.811 -0.22 0.2 0.273 

IG-DMR CpG4 0.17 0.17 0.311 -0.17 0.1 0.089 -0.35 0.2 0.081 

IG-DMR CpG5 -0.11 0.17 0.52 -0.95 0.1 < 0.001* -0.84 0.2 < 0.001* 

IG-DMR CpG6 -0.02 0.17 0.922 -0.45 0.1 < 0.001* -0.43 0.2 0.03* 

IG-DMR CpG7 0.05 0.17 0.774 -0.25 0.1 0.016* -0.3 0.2 0.134 

IG-DMR CpG8 0.03 0.17 0.878 -0.44 0.1 < 0.001* -0.47 0.2 0.019* 

IG-DMR CpG9 -0.04 0.17 0.812 -0.52 0.1 < 0.001* -0.48 0.2 0.016* 

IG-DMR CpG10 -0.03 0.17 0.863 -0.4 0.1 < 0.001* -0.37 0.2 0.059 

KvDMR1 CpG1 0.26 0.17 0.122 -0.11 0.1 0.255 -0.37 0.2 0.056 

KvDMR1 CpG2 0.11 0.17 0.513 -0.04 0.1 0.687 -0.15 0.2 0.443 

KvDMR1 CpG3 0.1 0.17 0.562 -0.14 0.1 0.148 -0.24 0.2 0.218 

KvDMR1 CpG4 0.14 0.17 0.412 -0.09 0.1 0.363 -0.23 0.2 0.243 

KvDMR1 CpG5 0.26 0.17 0.126 -0.03 0.1 0.769 -0.29 0.2 0.142 

KvDMR1 CpG6 0.18 0.17 0.284 -0.22 0.1 0.023* -0.4 0.2 0.038* 
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KvDMR1 CpG7 0.15 0.17 0.38 -0.12 0.1 0.225 -0.27 0.2 0.17 

PEG3 DMR CpG1 -0.19 0.17 0.272 0.02 0.1 0.818 0.22 0.2 0.289 

PEG3 DMR CpG2 -0.28 0.17 0.115 0.25 0.1 0.017* 0.53 0.2 0.01* 

PEG3 DMR CpG3 -0.03 0.17 0.858 0.09 0.1 0.376 0.12 0.2 0.543 

PEG3 DMR CpG4 -0.11 0.17 0.523 0.03 0.1 0.793 0.14 0.2 0.495 

PEG3 DMR CpG5 -0.22 0.17 0.201 -0.14 0.1 0.194 0.09 0.2 0.665 

PEG3 DMR CpG6 -0.19 0.17 0.284 -0.16 0.1 0.125 0.03 0.2 0.895 

PEG3 DMR CpG7 -0.37 0.17 0.033* 0.03 0.1 0.799 0.4 0.2 0.05 

  SE=standard error; CON=controls; FAS=FAS case; Significant:* p<0.05  
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3.3.3.2. Gender      

Table 22 gives the difference in percentage methylation between males and females, in 

cases and controls. The data were adjusted for CpG sites, replicate and individuals. The data 

were not adjusted for age because it was done as a baseline to see if gender needed to be 

adjusted for. Effect is the percentage difference in estimated methylation between males 

and females at specific locus.  The box plots summarising the percentage methylation by 

gender are shown in Figure 18.  

The gender effect was shown to be highly significant at PEG3 DMR in FAS cases, where 

males had an estimated 1.11% more methyation than females on average. In contrast in 

controls at PEG3 DMR males had a modest but, significant 0.84% lower average methylation 

in males than females. However average methylation did not differ by gender in control and 

FAS cases at H19 ICR, IG-DMR A, IG-DMR B and KvDMR1.  

In light of these differences, age and gender were adjusted for in the subsequent analyses in 

the following section to assess differences between FAS cases and controls. 

Table 22: Comparison of average methylation within a locus between genders, in FAS and controls  

Locus Group Effecta SE p-value 

H19 ICR CON 0.33 0.48 0.495 

H19 ICR FAS -0.16 0.4 0.687 

IG-DMR.A CON 0.37 0.46 0.428 

IG-DMR.A FAS 0.18 0.38 0.626 

IG-DMR.B CON -0.45 0.46 0.329 

IG-DMR.B FAS -0.6 0.38 0.112 

KvDMR1 CON 0.1 0.39 0.795 

KvDMR1 FAS -0.22 0.32 0.49 

PEG3 DMR CON -0.84 0.41 0.042* 

PEG3 DMR FAS 1.11 0.33 0.001* 

CON=controls; FAS=FAS case; SE=standard error. Significant: *p<0.05  
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Figure 18: Boxplots summarising observed % methylation within a locus, stratified by gender, in 
cases (FAS) and controls (CON) and males (M) and females (F). 

 

3.3.4. Case control comparisons - Effect size: unadjusted and adjusted statistical 

analysis 

In this section we assessed potential differences in methylation percentages at different 

CpG sites and also across loci between controls and FAS cases. For simple comparison, the 

tables show unadjusted results on the left side and results adjusted for age and gender on 

the right. The random variation between sites, individuals and replicates per individual was 

adjusted for in all analyses.  The box plots in Figures 14-19 summarise the unadjusted results 

in Table 23 and represent percentage methylation at different CpG sites in H19 ICR, IG-DMR, 

KvDMR1 and PEG3 DMR. 

Table 23 gives a summary of estimated difference in CpG methylation between FAS cases 

and controls (FAS-CON), per CpG site, unadjusted and adjusted for age and gender.  Both 

models were adjusted for random variation between and within KvDMR1, were at sites 4 

and 7, where methylation was significantly lower in FAS cases than controls, after 

adjustment for age and gender. At PEG3 DMR, across all CpG sites, estimated methylation 
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were very highly significantly lower (all p-values <0 .001) in FAS than in controls, with and 

without adjustment for age sex and individuals.  

At H19 ICR, all sites and at IG-DMR sites 2, 5, 6 and 9, the case group had significantly higher 

methylation than the control group.  However after adjusting for age and gender there was 

no longer a significant difference between controls and cases.  The only significant effects 

detected at KvDMR1, were at sites 4 and 7, where methylation was significantly lower in FAS 

cases than controls, after adjustment for age and gender. At PEG3 DMR, across all CpG sites 

estimated methylation were very highly significantly lower (all p-values <0.001) in FAS than 

in controls, with and without adjustment for age and sex.     

Table 23: Summary of estimated differential CpG methylation between FAS cases and controls 
(FAS-CON), per CpG site 

  
Locus 

  
Site 

Unadjusted Adjusted for age and gender 

FAS-CON SE p-value FAS-CON SE p-value 

H19 ICR CpG1 1.8 0.5 < 0.001* 0.23 0.79 0.767 

H19 ICR CpG2 1.06 0.5 0.035* -0.49 0.79 0.537 

H19 ICR CpG3 1.17 0.5 0.019* -0.42 0.79 0.594 

H19 ICR CpG5 1.48 0.5 0.003* -0.05 0.79 0.95 

H19 ICR CpG6 1.35 0.5 0.007* -0.16 0.79 0.835 

IG-DMR.A CpG1 1.02 0.53 0.054* -0.5 0.81 0.54 

IG-DMR.A CpG2 1.07 0.53 0.043* -0.52 0.81 0.52 

IG-DMR.A CpG3 0.48 0.53 0.364 -1.01 0.81 0.216 

IG-DMR.A CpG4 0.19 0.53 0.724 -1.27 0.81 0.117 

IG-DMR.A CpG5 3.05 0.53 < 0.001* 1.5 0.81 0.065 

IG-DMR.B CpG6 1.34 0.53 0.012* -0.21 0.81 0.792 

IG-DMR.B CpG7 0.22 0.53 0.679 -1.31 0.81 0.106 

IG-DMR.B CpG8 0.68 0.53 0.202 -0.92 0.81 0.258 

IG-DMR.B CpG9 1.36 0.53 0.01* -0.22 0.81 0.782 

IG-DMR.B CpG10 0.24 0.53 0.646 -1.33 0.81 0.101 

KvDMR1 CpG1 0.96 0.53 0.072 -0.53 0.81 0.512 

KvDMR1 CpG2 0.28 0.53 0.596 -1.21 0.81 0.138 

KvDMR1 CpG3 0.28 0.53 0.595 -1.2 0.81 0.141 

KvDMR1 CpG4 -0.17 0.53 0.752 -1.67 0.81 0.04* 

KvDMR1 CpG5 -0.01 0.53 0.986 -1.43 0.81 0.079 

KvDMR1 CpG6 -0.1 0.53 0.851 -1.55 0.81 0.057 

KvDMR1 CpG7 -0.6 0.53 0.262 -2.12 0.81 0.009* 

PEG3 DMR CpG1 -5.34 0.55 < 0.001* -6.98 0.83 < 0.001* 

PEG3 DMR CpG2 -5.08 0.55 < 0.001* -6.69 0.83 < 0.001* 
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PEG3 DMR CpG3 -6.14 0.55 < 0.001* -7.73 0.83 < 0.001* 

PEG3 DMR CpG4 -4.74 0.55 < 0.001* -6.43 0.83 < 0.001* 

PEG3 DMR CpG5 -5.51 0.55 < 0.001* -7.07 0.83 < 0.001* 

PEG3 DMR CpG6 -5.11 0.55 < 0.001* -6.67 0.83 < 0.001* 

PEG3 DMR CpG7 -5.35 0.55 < 0.001* -6.96 0.83 < 0.001* 

Effect=difference in estimated methylation between control and FAS; SE=standard error. 

Significant:* p<0.05  

The estimated methylation percentage difference between controls and cases across each 

locus is summarised in Table 24 and the observed percentage methylation in Figure 19. At 

the H19 ICR locus, cases showed a highly significant increased average methylation 

compared to the controls, but this was no longer significant after adjusting for age and sex. 

At KvDMR1 locus showed a significant lower average methylation after age and sex were 

adjusted. At IG-DMR region A and B, in the unadjusted analysis, the average methylation 

was significantly higher (1.15 and 0.75% respectively) in cases than controls, however after 

adjusting for age and sex the direction of the effect had changed but the reduced 

methylation was only significant at region B. The PEG3 DMR also showed a highly significant 

difference between cases and controls and the unadjusted (p<0.001) and adjusted (p<0.001) 

effect sizes were similar (5.47% lower in cases before adjustment and 7.09% lower in cases 

after adjustment). Since the unadjusted results may be biased, only the adjusted results are 

emphasised in the discussion. 

Table 24: Estimated differences in percentage methylation between cases and controls at each 
locus 

Locus 

Unadjusted adjusted for age and gender 

Effect SE p-value Effect SE p-value 

H19 ICR 1.36 0.31 < 0.001* -0.17 0.41 0.674 

IG-DMR.A 1.15 0.3 < 0.001* -0.4 0.4 0.315 

IG-DMR.B 0.75 0.3 0.012* -0.84 0.4 0.035* 

KvDMR1 0.01 0.25 0.967 -1.49 0.37 < 0.001* 

PEG3 DMR -5.47 0.26 < 0.001* -7.09 0.37 < 0.001* 

SE=standard error. Significant: p<0.05. Analysis were adjusted for variation between sites and 
variation between individuals, with and without adjustment for age and gender 
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Figure 19: Box plots of observed methylation percentages across ICRs, H19 ICR, IG-DMR, KvDMR1 
and PEG3 DMR in controls and cases, unadjusted for age and gender. 
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4. Discussion 
 

The hypothesis of the study is that alcohol exposure during prenatal development will result 

in epigenetic modifications at imprinted loci, which may be observed as a reduction or 

increase in DNA methylation at ICRs. The results presented in this thesis support this 

hypothesis, with an observed reduction in methylation at two of the four ICR loci that I 

investigated. The following discussion of the study will start by looking at implications of 

validation of the assay method, specifically with regard to H19 ICR, and how the findings 

were adopted for the other ICR assays. The assessment of tissue specific methylation at ICRs 

was carried out because of the fact that my study DNA samples originated from two 

different tissues. The effect of alcohol exposure on the methylation of four selected ICRs will 

be discussed in accordance with the hypothesis. However, I first start by looking at the 

implications of the two known confounding factors of DNA methylation, i.e. age and gender. 

The mechanism involved in the reduction of DNA methylation due to alcohol exposure, 

together with implications of a loss of imprinting at ICRs, will be explored in terms of 

epigenetic regulation of imprinted loci and how these may result in the clinical features of 

FASD.    

4.1.  Considerations for assay and study design optimisation 

In this section I discuss the importance of optimisation of the methodology and study design 

prior to embarking on a study. In the first instance it is important to ensure that there is no 

allelic bias in PCR amplification at specific loci and that the results are reproducible. 

Secondly, since two different tissues were used for DNA extraction, it was important to 

understand whether there was tissue specific differential DNA methylation at the loci I 

planned to investigate. I essentially used the H19 ICR for this purpose, as it is the best 

studied and documented in the literature (Barlow and Bartolomei, 2014, Ollikainen and 

Craig, 2011). Therefore this section is divided into two, optimisation of the assay method for 

H19 ICR and assessment of tissue specific methylation patterns.   

4.1.1. Optimising of the H19 ICR DNA methylation assay 

In this study it was confirmed that the presence of commonly occurring SNPs in the binding 

region of PCR primers may lead to biased PCR amplification, which results in DNA 
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methylation patterns reflecting apparent hypermethylation, hypomethylation and 

intermediate methylation at the H19 imprinting control region being analysed. This finding 

was first documented by a retraction of an IGF2/H19 imprinting study by Tost and 

colleagues (Tost et al., 2007). In their study they analysed methylation profiles at the 6th 

CTCF binding site of H19 ICR in normal human tissues, and reported three methylation 

profiles to be present (Tost et al., 2006). However, after being made aware that the three 

methylation profiles could be fully explained by biased amplification caused by a SNP in the 

binding site of their PCR reverse primer, they then used a primer avoiding the SNP and only 

one methylation profile (intermediate methylation, approximately 50%) was observed in all 

samples.  Thus they concluded that the three methylation profiles at the H19 ICR were due 

to a technical artifact (Tost et al., 2007). I went through a similar learning curve during this 

project and adjusted the H19 ICR primers for my study, such that they avoided this 

polymorphism, which was also present in my study group. This finding was therefore also 

very important for my case control study and the lesson learnt was applied to the other 

three ICRs (IG-DMR, KvDMR1 and PEG3 DMR). I was careful to check the literature and 

annotated genome databases for the presence of SNPs in the binding sites for their PCR 

primers in order to eliminate biased PCR amplification.  

In order to ensure reproducibility of results, my runs were done in triplicate for H19 ICR. 

This assisted me in monitoring the consistency or variation of my results, therefore ensuring 

quality of the data. Running samples in triplicate is advantageous over duplicate runs 

because if you have an outlier out of the three results you may still use the remaining two. 

However due to scarce sample and cost of reagents the runs for the IG-DMR, KvDMR1 and 

PEG3 DMR were done in duplicate.  

4.1.2. Assessment of methylation status in different tissues 

It is now well established that there is differential CpG methylation between tissues (Byun et 

al., 2009). However when this study was started we did not know much about tissue 

differential methylation for ICRs and therefore it was important to do this section of the 

study.  

One of the early objectives of the study was therefore to assess if blood and buccal tissues 

reflected similar methylation profiles at the 6th CTCF binding site of H19 ICR (db SNP 
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annotation database), because the case control participants donated either blood or buccal 

tissue for the study. All the control participants (N=58) donated blood samples, however 

with the FAS case participants 8 out of 87 cases donated buccal samples and the remaining 

79 participants donated blood (Appendix E).  

In order to assess methylation status between the two tissues, I conducted a study using 

independent control participant specifically recruited for this study and asked them to 

donate blood and buccal samples. My results showed that H19 ICR methylation profiles 

between blood and buccal tissues from the same individual were not different, and I was 

confident that using both tissue types in the case control study was not going to confound 

my results for the H19 ICR. However methylation status between the two tissues was not 

assessed at KvDMR1, IG-DMR and PEG3 DMR which are also included for analysis in the case 

control study. I made the assumption that methylation profiles at these other three ICRs are 

also not likely to differ between the two tissues, similar to what I observed for the H19 ICR. 

Although a limitation for my study, it was a reasonable assumption based on two studies in 

the literature. Bourque et al., (2010) compared average methylation profiles at KvDMR1 

between blood and saliva tissues in healthy adults and reported that their methylation 

patterns were similar (Bourque et al., 2010). In addition a study by Woodfine et al., (2011) 

examined the methylation patterns of 17 germ-line DMRs (including H19 ICR, KvDMR1, IG-

DMR and PEG3 DMR) amongst several somatic tissues (including brain, breast, colon, heart, 

kidney and liver) and reported that the average methylation did not vary amongst the 

tissues, thus showing that the germ-line DMRs are stable (Woodfine et al., 2011). These 

studies support the assumption made in my study, that methylation profiles at the three 

ICRs are likely to be similar between blood and buccal tissues.  

It is important to always validate an assay first before running research samples in order to 

avoid errors which may bias the results. With methylation studies it is important to check 

SNPs in the binding sites of the primers in order to avoid biased PCR amplification. 

Methylation profiles between blood and buccal DNA from the same individual are not 

different at H19 ICR. Even though I did not manage to physically check the methylation 

status for KvDMR1, IG-DMR and PEG3 DMR between the blood and buccal DNA in the 

laboratory, there is evidence from the literature (Woodfine et al., 2011) which supports that 

the methylation profiles between the two tissues are unlikely to differ because germ line 
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DMR methylation is stable.  The methodology optimisation was an essential part of my 

study and once completed led to higher expected confidence in the results that will be 

presented in the following sections. 

4.2.  The effect of alcohol on methylation profiles of ICRs at selected 

imprinted loci 

The main aim of the present study was to examine the effect of alcohol on DNA methylation 

at ICRs of specific imprinted loci in children with FAS. Children with FAS represent the 

outcome of alcohol exposure during fetal development. The selected imprinted loci 

(IGF2/H19, DLK1/MEG3 (GTL2), CDKNIC/ KCNQ1OT1 and PEG3) have been shown to be 

important during embryonic development and growth. I compared the DNA methylation 

profiles of the paternally imprinted ICRs (H19 ICR and IG-DMR) and maternally imprinted 

ICRs (KvDMR1 and PEG3 DMR) between FAS cases and controls. Based on previous research, 

I proposed that prenatal alcohol exposure will result in epigenetic changes that will lead to 

the reduction of DNA methylation at the ICRs which will subsequently affect gene 

expression and contribute to developmental abnormalities seen in FAS individuals. The 

results of this study support the hypothesis, but only at the KvDMR1 and PEG3 DMR loci, 

where there is a significant decrease in methylation at these two ICRs in comparison with 

controls. However, in this study there was no observed effect of alcohol on DNA 

methylation at H19 ICR and IG-DMR because there was no significant difference in DNA 

methylation at these loci between FAS cases and controls.  

In this study I first expected a reduction in DNA methylation at selected loci in FAS cases 

because in an earlier study by Garro and colleagues, prenatal alcohol exposure was reported 

to cause global DNA hypomethylation in mice (Garro et al., 1991).  In another study alcohol 

was shown to cause a decrease in cytosine methyltransferase mRNA in sperm of offspring of 

male rats which were exposed alcohol before breeding (Bielawski et al., 2002). Although a 

global reduction in DNA methylation may seem a reasonable expectation, further studies 

now suggest locus specific differences. Interestingly it is becoming clear that individual loci 

may be either hypermethylated or hypomethylated following alcohol exposure. A study by 

Kaminen-Ahola and colleagues reported that maternal alcohol exposure tended to induce 

hypermethylation at the Avy locus (Kaminen-Ahola et al., 2010), while Haycock and Ramsay 

(2009) reported hypomethylation at the H19 ICR in mouse placenta following in utero 
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alcohol exposure (Haycock and Ramsay, 2009) and Stouder at al., (2011) also reported 

hypomethylation at H19 ICR in the brain and sperm of in utero exposed offspring (Stouder et 

al., 2011). A study by Liu et al., (2009) has demonstrated that alcohol exposure during early 

embryonic neurulation can induce aberrant changes in DNA methylation patterns (increased 

and decreased methylation) with associated changes in gene expression (Liu et al., 2009) .  

It is widely suggested that the effect of alcohol on DNA methylation is mediated through the 

interruption of the one OCM pathway that is critical in the production of the methyl groups 

for the maintenance of DNA methylation (Halsted et al., 2002, Liu et al., 2009). Alcohol may 

interrupt the one carbon metabolic pathway by causing folate deficiency (Hamid et al., 

2009), this may happen in cases of people who drink a lot in conjunction with poor diet that 

is lacking essential nutrients like folate. Folate (a member of B class vitamins) is one of the 

key molecules that makes methyl groups available (donate or transfer) for the one carbon 

pathway, therefore folate deficiency will interrupt the one carbon pathway and 

subsequently the DNA methylation (Halsted et al., 2002, Hamid et al., 2009). Secondly 

alcohol has been reported to reduce the intestinal absorption of folate and also increase its 

renal excretion, by interfering with the folate transport system (Hamid et al., 2009). Alcohol 

can also reduce the activity of methionine synthase which remethylates the homocysteine 

in the one carbon pathway, converting it to methionine which is eventually converted to S-

adynosylmethionine (SAM), the universal donor for DNA methylation. Reduced activity of 

methionine synthase will lead to reduced levels of SAM and therefore hypomethylation 

(Wani et al., 2012). Lastly, as reported by Garro et al., (1991), alcohol can directly reduce the 

activity levels of DNA methyltransferases through its metabolite acetaldehyde. 

Acetaldehyde has been reported to inhibit the activity of the methyltranferases thus leading 

to global hypomethylation.        

4.2.1. The effect of confounding factors on the levels of DNA methylation 

Age has been shown to have an effect on DNA methylation (Fraga et al., 2005), while DNA 

methylation has been shown to differ with gender (Murphy et al., 2012). Our study 

participants included males and females and the ages of the control and case groups were 

not overlapping, cases were of a younger age and controls of older age.  
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4.2.1.1. Age as a confounding factor for DNA methylation 

Age is reported to cause a reduction in global DNA methylation and causes dramatic 

changes in the distribution of 5-methylcytosine across the genome (Heyn et al., 2012, Liu et 

al., 2011). The promoter regions of many specific genes however, tend to switch from an 

unmethylated to a methylated state resulting in gene silencing in an age dependent 

manner. This includes the promoters of several tumor and aging related genes such as Runt 

related transcription factor 3(RUNX3) and Tazarotine-induced gene 1(TIG1) (Fuke et al., 

2004, Liu et al., 2011, Wilson and Jones, 1983). The mechanism contributing to the age 

dependent changes in global methylation include a decrease in the expression of DMNT1 

(Liu et al., 2003, Lopatina et al., 2002). With respect to specific genes, methylation can 

either be increased or decreased depending on the specific gene investigated (Liu et al., 

2003). Issa et al., (1996) reported that the IGF2 P2-P4 promoter-associated CpG island is 

methylated on the silenced maternal allele in young individuals, however with age this 

methylation also appears on the paternal allele resulting in biallelic methylation (indicating 

an increase in methylation with age)(Issa et al., 1996). Longitudinal research on age effect 

that study the same individuals at several time points is rare (Flanagan et al., 2015, Florath 

et al., 2014). In two studies DNA methylation of participants was examined at two ages only, 

one where they were sampled 6 years apart and the other 8 years apart. It is therefore not 

yet clear whether age-related changes in methylation at CpG loci associated with age effect 

occur linearly with age (Flanagan et al., 2015, Florath et al., 2014). 

In my study I examined the effect of age on the different CpG sites of the loci (H19 ICR, 

KvDMR1, IG-DMR and PEG3 DMR) and average methylation across each locus. In the control 

group, with the exception of PEG3 DMR CpG7 there was no CpG site age specific effect. In 

FAS cases however, eight out of the ten IG-DMR CpG sites, one KvDMR1 site and one PEG3 

DMR site showed a significant age effect. With a single exception, methylation in the FAS 

group decreased by a modest amount for every addition year of age. When examining the 

locus averaged-methylation and the effect of age, there was a small but significant effect for 

KvDMR1 (both cases and controls), but a larger effect in the FAS cases for IG-DMR (for both 

region A and B). This effect was not observed in controls. In contrast the controls showed an 

age effect at the PEG3 DMR where estimated methylation percentage decrease by 0.22% for 

every year increase in age. The measure for an age effect is the difference in methylation 
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per additional year of age, however there was no overlap in absolute age between cases 

and controls in my study. From my results it would appear that age effects are more 

significant at younger ages (1 to 16 years) than in the older age group (18 to 26 years), in a 

locus-specific manner.  

In this study age was shown to influence methylation at three of the four loci investigated. 

In alignment with my study, a study by Heijmans et al., (2008), assessed the relationship 

between age and IGF2DMR methylation in controls for the peri-conceptional famine 

exposure. They found that within the age group of 43 to 70 years the DNA methylation of a 

10 year older group was associated with a 3.6% lower methylation (p=0.015). The 

magnitude of the effect (0.36% per annum) in their study was greater than that observed in 

my study (Heijmans et al., 2008).   

4.2.1.2. Gender as a confounding factor for DNA methylation 

The effect of gender on global DNA methylation and locus specific methylation has been 

reported. Global DNA methylation has been reported to have a tendency towards higher 

methylation levels in males (Fuke et al., 2004, Shimabukuro et al., 2007). The results were 

found to be surprising considering that in female cells, the inactivation of one X 

chromosome is accompanied by DNA methylation of CpG islands on the inactive 

chromosome (Norris et al., 1991). However, this apparent anomaly can be explained by 

studies that showed hypomethylation of regions of the inactive X chromosome, especially at 

gene poor regions, and hypermethylation of CpG islands in gene rich regions while the 

active X chromosome is hypermethylated in the body of genes (Hellman and Chess, 2007, 

Wilson et al., 2006). Another potential explanation for global methylation being higher in 

males than females may be due to the fact that females tend to have low circulating folate 

levels (Hsiung et al., 2007).  Folate is required for the synthesis of the precursor of the 

universal methyl donor, SAM, which is essential for DNA methylation. Again folate is 

important for the formation of erythrocytes. Erythrocytes are regularly depleted by 

menstruation in females and as a result more folate would be utilised for the formation of 

erythrocytes leading to low blood folate and thus a decrease in DNA methylation (Terry et 

al., 2011).   
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Studies on the effect of gender on locus specific methylation have shown conflicting results. 

Sandovici et al., (2005) and Eckhardt et al., (2006) found no gender effect on methylation of 

specific Alu repeats and different loci on chromosomes 6, 20 and 22 (Eckhardt et al., 2006, 

Sandovici et al., 2005).  Sarter et al., (2005) studied promoter regions of four autosomal 

genes (MTHFR, CALCA and MGMT and ESR1) and reported gender as a strong predictor of 

methylation at three of these autosomal genes, MTHFR, CALCA and MGMT, with males 

showing higher methylation, ESR1 methylation levels were not gender dependent (Sarter et 

al., 2005). Imprinted genes in primordial germ cells, prior to meiotic division, were shown to 

be more highly methylated in XY cells than in XX cells (Durcova-Hills et al., 2004, Durcova-

Hills et al., 2006, El-Maarri et al., 2007).  A study by El-Maarrie et al., (2007) looked at the 

effect of gender on global methylation (Line-1 and Alu repeats) and locus specific 

methylation (DMRs of H19, PEG3 and NESP55). All the DMRs of the three imprinted genes 

showed a small tendency towards higher methylation in males but none of them reached 

statistical significance. 

In my study the effect of gender on methylation was shown to be significant at only one 

locus i.e. PEG3 DMR. Interestingly the effects are modest, but opposite in FAS cases and 

controls, with FAS males showing an increased locus-averaged methylation (1.11%) while 

control males had a lower locus-averaged methylation (0.84%) than females. It is not clear 

why gender effect on methylation is different in the two groups, but it may be due to the 

fact that the data were not adjusted for age when the analysis was done because it was 

done as a baseline comparison to decide if gender needed to be adjusted for in the main 

analysis. PEG3 DMR average methylation was shown to decrease in controls for every one 

year increase in age. Therefore at this locus, there may be an age gender interaction.  There 

was no effect of gender on average methylation at H19 ICR, KvDMR1 and IG-DMR. This 

shows that the effect of gender on methylation in this study is locus specific.  

The study by El-Maarrie et al., (2007) mentioned above supports my results where I found 

no effect of gender on methylation at H19 ICR, KvDMR1 and IG-DMR, on average. But in 

contrast I found a significant gender effect on PEG3 DMR while they did not find any. They 

hypothesise that the reason why imprinted genes are not significantly affected by gender 

may be because any factors influencing gender specific differences in methylation (if any) 
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act during development, or during  the cell cycle at the time when methylation or epigenetic 

marks at an imprinted region are already established (El-Maarri et al., 2007).  

Since both age and gender showed some effect on DNA methylation at one or more of the 

imprinted loci in this study, the discussion that follows presents age and gender adjusted 

analyses when comparing DNA CpG methylation between FAS cases and unaffected 

controls.      

4.2.2. The effect of in utero alcohol exposure on DNA methylation at the four 

imprinted loci    

In this study I assessed the possible effect of maternal alcohol consumption on DNA 

methylation at four imprinted loci (H19 ICR, KvDMR1, IG-DMR and PEG3 DMR) by comparing 

methylation levels between FAS cases and unaffected controls. After adjusting for age and 

gender there was no observed correlation with in utero alcohol exposure at the CpG site 

level at two of the imprinted loci, H19 ICR and IG-DMR. Interestingly, a modest effect 

(p=0.035) of decreased averaged methylation (0.84%) at IG-DMR region B was observed in 

FAS cases.  There was no difference in average methylation across the loci and at different 

CpG sites at the H19 ICR and KvDMR1 regions between FAS cases and controls, after 

adjusting for age and gender.   

The IG-DMR is a good candidate in terms of its biological impact, in line with the features of 

FAS. The paternally methylated IG-DMR is the primary ICR at the DLK1/GTL2 (MEG3) 

imprinting domain in human chromosome 14q32, where it plays an essential role in 

regulating monoallelic expression of several imprinted genes including the paternally 

expressed DLK1 and maternally expressed GTL2 (Lin et al., 2003). The methylation on the 

paternal allele is essential in maintaining the expression of imprinted genes, because, in a 

mouse model, failure to maintain the paternal methylation has been shown to result in 

considerable Dlk repression while Gtl2 expression is increased (Schmidt et al., 2000). 

The DLK1/GTL2 (MEG3) imprinting cluster is a critical region for phenotypes associated with 

both maternal and paternal uniparental disomy (UPD) of human chromosome 14 (Buiting et 

al., 2008, Coveler et al., 2002, Kagami et al., 2005, Temple et al., 2007). Maternal 

uniparental disomy 14 [Upd(14)mat] and hypomethylation at paternally imprinted IG-DMR 

(Ogata et al., 2008) are characterised by pre-  and postnatal growth retardation, 
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developmental delays, mild and moderate mental retardation, muscular hypotonia, small 

hands and feet, premature puberty and truncal obesity. The locus-averaged methylation of 

IG-DMR was modestly reduced, (p=0.315, region A) and moderately significant (p=0.035, 

region B) in FAS cases, tending towards hypomethylation which may potentially contribute 

to the growth and neuronal deficit in affected individuals.  The magnitude of alcohol effects 

may be tissue specific and may play an important role in neurogenesis. These findings 

warrant further study and validation.   

One of the key features of FAS is pre and post growth-retardation and dysregulation of 

imprinting at H19 ICR has been associated with growth disorders (Gicquel et al., 2005, 

Ideraabdullah et al., 2008, Reik et al., 1995). Loss of imprinting at the H19 ICR has been 

implicated in growth disorders like Russell-Silver syndrome (Azzi et al., 2009). Russell-Silver 

syndrome (RSS) is a developmental disorder characterized by severe intrauterine and 

postnatal growth retardation (<3rd percentile), atypical craniofacial features, clinodacty lV 

and hemihypotrophy (Binder et al., 2011, Hitchins et al., 2001). It has been shown that loss 

of DNA methylation (LOM) at H19 ICR is found in over 50% of patients with RSS (Netchine et 

al., 2007). Since growth retardation is one of the clinical features of FAS just like in RSS, I 

expected a decrease in methylation at the H19 ICR to be a contributing factor to the growth 

retardation seen in FAS children. In my study there was no effect of maternal alcohol 

exposure on DNA methylation at H19 ICR in FAS cases. In some cases of FAS there is a catch-

up on their growth as they grow older (Streissguth, 2007), therefore, their growth 

retardation may have a different molecular aetiology to severe growth retardation seen in 

RSS, suggesting that loss of imprinting at the H19 ICR may only be observed in severe 

growth abnormalities. This possibility is supported by a study that analysed the methylation 

status at H19 ICR in three groups of patients with growth retardation (patients with RSS 

features, patients with isolated growth retardation and patients presented with clinical signs 

not related to RSS)(Schonherr et al., 2007). The study was done to elucidate whether 

epigenetic mutations at H19 ICR were generally involved in growth retardation. They 

reported H19 ICR hypomethylation in 20% of patients with RSS features and no cases of H19 

ICR hypomethylation in the other two groups, thus suggesting that loss of imprinting at H19 

ICR may be rare in growth retardation in general, but seems to be restricted to a subgroup 

of patients with RSS (Schonherr et al., 2007).  
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The findings of my study are, however, in agreement with a study done in a mouse model by 

Haycock and Ramsay (2009) where they reported no difference in methylation at the H19 

ICR of mouse embryos exposed to alcohol during the preimplantation period, when 

compared to unexposed control embryos (Haycock and Ramsay, 2009). Interestingly H19 

ICR hypomethylation was observed in the mouse placentas suggesting a localised effect on 

the extra-embryonic tissue, which could explain the effect on fetal growth. In two other 

related studies subtle differential DNA methylation was observed.   In a study by Dawning et 

al., (2011), a small decrease in methylation was observed at the mouse Igf2 DMR1 locus, 

with a significant decrease seen at only one CpG site, in embryos following in utero alcohol 

exposure (Downing et al., 2011). Knezovich and Ramsay (2012) reported a significant 

decrease at the H19 ICR in mice offspring following preconception paternal alcohol 

exposure(Knezovich and Ramsay, 2012).   

One important fact to be noted about the Downing and colleagues study (2011) is that in 

addition to assessing DNA methylation, they also examined the gene expression of the Igf2 

gene and showed that there was an approximately 1.5 fold decrease in expression of three 

Igf2 transcripts in the embryos, following alcohol exposure (Downing et al., 2011). 

Unfortunately the study by Haycock and Ramsay, as well as my study did not complement 

the DNA methylation studies with expression studies of genes controlled by the DNA 

methylation at ICRs that were looked at. This is a limitation for my study, although only 

blood and/or buccal tissue could have been examined and may not have been the most 

appropriate tissue to show relevant gene expression differences. Gene expression studies 

would have assisted me in distinguishing if expression of genes regulated by H19 ICR were 

affected or not affected by alcohol exposure in children with FAS. The importance of 

expression studies is demonstrated in the Downing study, because they reported no 

significant decrease in methylation at the mouse Igf2 DMR1 locus in placentae following in 

utero alcohol exposure but on the other hand the expression studies showed that the 

expression of four Igf2 transcripts were decreased by approximately 1.5 fold in placentae 

(Downing et al., 2011). This implies that alcohol can alter gene expression in the absence of 

changes in DNA methylation at the ICR, therefore suggesting that other epigenetic 

modifications that are also important in gene expression, like histone modification and 

micro-RNA expression, may be affected by alcohol exposure. Therefore future studies 



95 
 

should couple DNA methylation studies at this locus with gene expression studies to validate 

the effect of maternal alcohol on gene expressions at this locus. 

After adjusting for age and gender, two KvDMR1 CpG sites (4 and 7) showed significant 

decreased DNA methylation in FAS children which contributed to a locus-averaged decrease 

of 1.49% methylation in the KvDMR1. The functional impact of this difference is not clear. 

The biggest effect (a decrease of 7.09% methylation in FAS cases) was observed at PEG3 

DMR, which was significantly affected by in utero alcohol exposure. Both loci show a 

decrease in methylation following alcohol exposure.  

The hypomethylation at KvDMR1 and PEG3 DMR is aligned to our original hypothesis 

suggesting that alcohol reduces DNA methylation through OCM pathway and its effect on 

reducing folate levels. In the next section the potential implications of hypomethylation at 

these loci are explored.         

4.2.3. The functional impact of reduced KvDMR1 methylation in FAS cases is 

unclear 

KvDMR1 CpG site-specific and average locus-wide hypomethylation in response to in utero 

alcohol exposure would suggest a loss of methylation on the maternally methylated ICR 

which regulates the monoallelic expression of several imprinted genes located in the 

CDKN1C/KCNQ1OT1 imprinting domain cluster. This imprinting domain harbours the 

paternally expressed non-coding antisense transcript to KCNQ1 called KCNQ1OT1, and other 

maternally expressed protein coding genes including KCNQ1 and CDKN1C.  Loss of 

imprinting or hypomethylation at the KvDMR1 has been widely implicated in Beckwith 

Wiedemann syndrome (BWS) (Azzi et al., 2009, Diaz-Meyer et al., 2003, Gaston et al., 2001). 

BWS is a congenital disorder characterized by pre- and postnatal overgrowth, organomegaly 

and a high risk of childhood tumours (Weksberg et al., 2010).  Hypomethylation at this locus 

has also been observed in cases of BWS arising after intracytoplasmic sperm injection, in 

vitro fertilization and embryo transfer (Chen et al., 2014). The KvDMR1 sequence that I 

analysed included the differentially methylated NotI site, which is represented by CpG sites 

4 and 5. The NotI site at the KvDMR1 is often altered in BWS and is used in the diagnostic 

testing of the BWS (Smilinich et al., 1999). Patients with BWS show loss of methylation at 

the NotI site (Bourque et al., 2010). Paradoxically, the FAS cases showed significant 
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hypomethylation at CpG sites 4 and 7 (1.67 and 2.1%, respectively) and also locus-averaged 

methylation, yet FAS affected individuals are growth restricted. It is unclear whether 

hypomethylation of only two of the seven CpG sites in this ICR will affect the level of 

expression of the imprinted genes in the cluster and what the functional effect may be.  

Hypomethylation at KvDMR1 is expected to result in a degree of biallelic expression of 

paternally expressed KCNQ1OT1, with reciprocal repression of maternally expressed 

imprinted genes like cyclic-dependent kinase inhibitor 1C (CDKN1C). CDKN1C encodes for 

cyclic-dependent kinase inhibitor (CDKI) that belongs to the CIP/KIP family of cell cycle 

regulators and is considered to be a putative tumour suppressor gene (Besson et al., 2008, 

Watanabe et al., 1998). Decreased expression of CDKN1C has been observed in sporadic 

cancers and embryonic tumours (Higashimoto et al., 2006). There is no evidence to suggest 

that cancers are more common in individuals with FAS. 

To gain further insight into the gene regulation at this locus will require both gene 

expression and DNA methylation studies to more fully understand the impact of altered 

methylation at the KvDMR1. This is the first study to show the effect of alcohol on the 

methylation status at KvDMR1 and the findings are contrary to expectation given that 

hypomethylation is associated with an overgrowth phenotype (BWS), in contrast to small 

stature in FAS case.    

4.2.4. The role of alcohol induced hypomethylation at the PEG3 imprinted gene 

cluster in the pathogenesis of FAS 

The PEG3 imprinting cluster is located on human chromosome 19q13.4 and is regulated by a 

maternally methylated ICR, the PEG3 DMR. The cluster includes several imprinted genes 

including the paternally expressed gene 3 (PEG3), the imprinted zinc-finger gene 2 (ZIM2) 

and the ubiquitin-specific processing protease 29 (USP29), all of which are paternally 

expressed. Although these loci are syntenic in mouse and human, there are some 

interesting differences regarding their regulation, their tissue specific expression and their 

exon structure and genomic arrangement (Kim et al., 2004, Kim et al., 2000b, Murphy et al., 

2001). USP29, a likely de-ubiquinating enzyme which may be involved in the turnover of 

many proteins, is highly expressed in the mouse brain (Kim et al., 2000a). USP29 does not 

however show significant expression in the human brain. It is highly expressed in mouse and 
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human testis (Kim et al., 2000a). PEG3, on the other hand, is expressed in mouse and human 

brain, but most highly in human ovary but not mouse ovary (Kim et al., 1997).  The PEG3 

gene is also expressed in embryonic tissues including the hypothalamus and brain. PEG3 

encodes a DNA binding protein based on its multiple zinc finger motifs (Iuchi, 2001, Relaix et 

al., 1996) and it is an imprinted transcription factor that has multiple target genes (Thiaville 

et al., 2013). It has a proposed tumour suppressive function (Nye et al., 2013) and has been 

shown to induce p53-mediated apoptosis in multiple cell types (Yamaguchi et al., 2002). A 

mouse knockout model targeting the Peg3 gene has shown that it is responsible for a 

variety of phenotypic outcomes including altered maternal offspring rearing behaviour, low 

birth weight, alteration in fat tissue storage and synthesis, and lower metabolic activity 

(Curley et al., 2004, Li et al., 1999).      

In this study I observed that maternal alcohol consumption is correlated with a significant 

reduction of approximately 7% methylation at the PEG3 DMR in FAS cases as compared to 

controls. The highly significant (p<0.001) decrease in methylation was observed for all the 

CpG sites analysed for this locus and also for the average methylation across this locus. It is 

possible that this change in methylation at the PEG3 DMR may affect multiple imprinted 

genes in the region. PEG3 is expressed from the paternal allele (because of a lack of 

methylation on the paternal allele of PEG3 DMR) and is reciprocally repressed on the 

maternal allele (because of the presence of methylation on the PEG3 DMR maternal allele); 

suggesting that alcohol induced demethylation likely affects the maternal allele thus leading 

to derepression of the PEG3 gene on the maternal allele, and therefore biallelic expression 

of PEG3. This would lead to an overall increase in PEG3 expression. Most studies have 

focused on the effects of reduced Peg3 (Champagne et al., 2009, Curley et al., 2004, Kim et 

al., 2012, Li et al., 1999), but none have yet explored the phenotypic outcome of over 

expression of PEG3.  

Since the mouse knockout model targeting Peg3 resulted in growth retardation due to non-

functional Peg3 or reduced expression of Peg 3 (Curley et al., 2004, Li et al., 1999), it is 

curious that the increased expression of PEG3 appears to have the same outcome in 

humans.  There is good evidence that gene regulation in this PEG3 DMR regulated cluster is 

different between species and the effect of hypomethylation in humans has not yet been 
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explored. The role of increased expression of PEG3 on growth retardation, if any, remains 

unclear.  

In a study on Peg3 target genes  by Thiaville and colleagues, it was illustrated that the Peg3 

protein is able to bind to specific regions near its target genes, for example those genes that 

regulate mitochondrial function, tissue developmental genes and imprinted genes like 

Growth factor receptor bound 10 (Grb10)  (Thiaville et al., 2013). They further analysed the 

expression levels of the Peg3 bound genes in a mutant mouse model (with 75% lower levels 

of Peg3 expression relative to the wild type), in order to determine the response of target 

genes to reduced expression of Peg3; and reported either a reduction or increase in several 

target genes. Grb10 was reported to have reduced expression due to low expression levels 

of Peg3 in the mouse (Thiaville et al., 2013). Grb10 is an imprinted gene involved in 

regulating growth and development, and has been implicated as a potent growth inhibitor 

(Lim et al., 2004). It is maternally expressed in mice, but in humans the expression is both 

isoform and tissue specific. This further emphasises the differences between the species in 

terms of the function of the Peg3 imprinted gene cluster. Grb10 has been suggested as a 

strong candidate gene associated with the aetiology of RSS (characterised by growth 

retardation) because about 10% of RSS patients have been reported to have maternal UPD 

of chromosome 7 (that encompasses IGFBP1, IGFBP2 and Grb10). Since IGFBP1 and IGFBP2 

are not imprinted, Grb10 is mooted as the gene to contribute to the pre- and post-natal 

growth retardation seen in RSS by inhibiting the growth promoting effect of insulin growth 

factor 1 (IGF-1) (Lim et al., 2004).  Since low expression of Peg3 has been associated with 

reduced expression of Grb10 (Thiaville et al., 2013), it can be speculated that high 

expression of PEG3 (as expected in the case of hypomethylation at PEG3 DMR observed in 

my study), may lead to overexpression of Grb10 and therefore growth retardation. If such 

regulation were equivalent in humans (which we do not know) it may suggest a mechanism 

by which PEG3 may indirectly contribute to growth related features of FAS through its 

interaction with some of its target genes.  

Gene expression studies, without correlation to their imprinting status have demonstrated 

upregulation of the PEG3 gene (as well as several other genes) in intrauterine growth 

restriction (IUGR) placentas  (Ishida and Moore, 2013). Since IUGR is a cause of reduced fetal 
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growth, this study supports our findings that the proposed increase in PEG3 expression is 

associated with a growth restriction phenotypes. 

At present it is not possible to predict with certainty what the mechanism is through which 

the significantly reduced methylation at PEG3 DMR acts to exert a phenotypic effect in FAS 

cases. Its role could affect both fetal growth and neuronal development and may involve 

dysregulation of PEG3 target genes. The role of the PEG3 DMR in regulating the imprinted 

gene cluster in humans requires further investigations.   

4.3.  Limitations of the study  

This study has several limitations, most of which relate to study design and the challenges 

working with children. There are also limitations in the technical aspects of the study and 

the availability of funding to do state of the art NGS approaches to genome wide 

methylation.    

One major limitation of the present study is that the controls and cases were not age 

matched. The cases were of younger age (17 years and below) while the controls were of 

older age (18 and above). This means that age is so strongly confounded that it is not easy 

to tell whether differences between cases and controls are caused by age differences or by 

the variable under investigation. In an attempt to ameliorate the effect of age, statistical 

adjustment to the data was done for sex and age in order to ensure that the differences in 

DNA methylation between the cases and control groups were minimised by these two 

confounders. The assumption was made that methylation differences are linear with age, 

meaning that the percentage difference is the same for every year a person is older, within 

the case and control groups. This is not ideal, as we do not know if the relationship is linear, 

but it was the best option, given this challenge.  

Sample size is another limitation of the study. Although the present study is large in terms of 

a human FAS cohort, it is still a relatively small sample size for an epigenetic association 

study. Increasing the sample size would increase the statistical power of the study and 

therefore the ability to detect small but significant differences. Performance of our study 

with a larger sample may increase the statistical power to detect subtle alcohol effects on 
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DNA methylation that could not be detected between the FAS affected offspring and 

unaffected controls in this study.  

5-hydroxymethyl cytosine (5hmC) is the endproduct of the oxidation of 5-methyl cytosine 

(5mC) during the process of active DNA demethylation and TET enzymes are responsible for 

the oxidative process (Ito et al., 2011).  Increased levels of 5hmC have been observed in 

brain tissues and embryonic stem cells where it is enriched in promoter regions, gene 

bodies and intergenic areas near genes; and it is associated positively with gene expression 

(Xu et al., 2011). Therefore the production of 5hmC appears to have a functional role in 

promoting gene expression during active DNA demethylation. Alcohol metabolism has been 

speculated to cause oxidation of 5mC to 5hmC (Jenner et al., 1998, Wright et al., 1999). The 

method that is the gold standard for the detection of 5mC is bisulfite modification; however, 

it is unable to differentiate between the 5mC and 5hmC and will detect both. The reason 

being that when 5hmC is treated with bisulfite, a stable methyl-sulfonate adduct is 

produced which is also read as a cytosine when sequenced (Huang et al., 2010). The bisulfite 

modification method therefore would present the concentration 5mC in combination with 

5hmC instead of only 5mC alone (Booth et al., 2013). In my study, I was unable to use an 

alternative method that could differentiate between the 5mC and 5hmC. Given the 

importance of the implications of 5hmC to understanding gene expression and regulation, 

such studies should be done in future as it it would have interpretative implications. 

The most profound effects of alcohol exposure are on neuronal development and the brain 

represents the affected tissue as it is the site where the major deficits of the disorder 

primarily manifest.  The present study examined the effect of alcohol only at four loci, which 

were well chosen in line with their potential role in affecting features of FAS phenotype, 

however the loci could not be examined in affected tissue, such as the brain. The study 

reports on the epigenetic effect observed in blood and buccal tissue, which may not directly 

reflect tissue-specific alterations in the developing brain.  For the purpose of human 

epigenetic studies, blood tissue is easily accessible and buccal tissue is readily available 

without discomfort or pain, unlike brain tissue which is impractical to obtain in living 

individuals. There are limited human studies that correlate the epigenetic variations 

between the brain tissue and blood tissue from the same individuals, however the 

Genotype Tissue Expression (GTEx) project may address this dilemma. Through their 
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compilation of information on gene expression from multiple tissues taken from a large 

number of deceased humans, the GTEx project will make available valuable information to 

researchers on which tissues /cell types are relevant to a study in relation to the diseases or 

disorders under investigation (GTEx Portal, 2015). However there are still limitations, for 

example, all these studies were done post-mortem. A recent study looked at the correlation 

of DNA methylation between blood and brain tissue collected during neurosurgical 

treatment from epileptic patient (Walton et al., 2015).  Their results suggested that a subset 

of peripheral blood data may represent methylation status of the brain tissue.   

Lastly the present study did not include gene expression studies in parallel with the DNA 

methylation studies at selected ICRs. Therefore the study was unable to validate if maternal 

alcohol exposure had an effect on the expression of genes regulated by DNA methylation at 

specific ICRs.  

4.4.  Conclusion 

This is the first human study to examine epigenetic changes in children with FAS. Most 

similar studies on epigenetics as a mechanism for in utero alcohol effects reported so far are 

on animal models. The human FAS model is extremely complex to decipher because the 

time, amount of alcohol and manner of exposure is usually unclear and is at best based on 

the verbal recollection of drinking behaviour of a mother, often years after the pregnancy. 

The aim of the study was to examine the effect of maternal prenatal alcohol exposure on 

DNA methylation profiles of specific ICRs (H19 ICR, IG-DMR, KvDMR1 and PEG3 DMR) in 

children with FAS. Despite some of the shortcomings indicated under limitations, the 

present study suggests that prenatal alcohol exposure is correlated with a reduction in DNA 

methylation in a locus-specific manner. The study shows significant reduction in DNA 

methylation at two maternally methylated ICRs, KvDMR1 and IG-DMR, in children with FAS 

when compared to unaffected controls. The observed hypomethylation at the two ICRs 

supports the original hypothesis that suggests that alcohol causes a reduction in DNA 

methylation, through the one carbon metabolism pathway and the effect of alcohol on 

reducing folate levels.  

The observed hypomethylation at the KvDMR1 however has an uncertain impact on gene 

expression and the FAS phenotype. The largest epigenetic effect among the loci 
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investigated, was observed at PEG3 DMR where a locus-averaged 7% reduction in 

methylation was observed across all its 7 CpG sites. This ICR orchestrates a complex pattern 

of gene expression across the region with reported differences in a mouse model compared 

to humans. It is proposed that hypomethylation of the PEG3 DMR would result in an 

increase of the paternally expressed PEG3 gene. PEG3 has a DNA binding motif and is 

considered an imprinted transcription factor, and therefore its function is most likely 

mediated by altered expression of its targets. Although there is some spatiotemporal 

congruence of gene expression in line with the developmental origin of aspects of the FAS 

related phenotype, the effect and mechanism of altered gene expression of other imprinted 

genes controlled by PEG3 DMR remains unclear. Despite the uncertainty of the functional 

biological mechanism of the locus-specific hypomethylation of important ICRs in the blood 

of FAS cases, these findings support the role of epigenetic mechanism in the development of 

FAS.     

4.5.  Future Studies 

As emphasised in the study limitations above, future studies to validate the results will have 

to employ a larger sample size and age matched cases and controls. In addition to DNA 

methylation at specific ICRs, inclusion of gene expression studies of genes regulated by 

respective ICRs will be of great importance as they will provide insight into understanding 

the impact of altered methylation on gene expression at specific ICRs. Gene expression 

studies could also answer the question of whether alcohol could alter gene expression of 

respective genes without observed altered DNA methylation at the ICRs that regulate their 

expression. Secondary DMRs are also of significant importance in regulating associated gene 

expression in an imprinted cluster, therefore future studies should consider expanding the 

repertoire of imprinted loci to include secondary DMRs such as IGF2 DMR and MEG3 DMR. 

Whole blood is a mixture of different blood cells and DNA methylation has been reported to 

vary among the different blood cell types (Reinius et al., 2012, Wu et al., 2011); therefore 

blood cellular heterogeneity should be considered as a confounding factor for methylation 

in future studies using whole blood. 

Since there is evidence from human and animal model studies on the contribution of 

preconception paternal alcohol exposure on the development of FAS, data collection of  
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information on the drinking pattern of fathers of the FAS offspring may be of importance as 

it can be correlated with the severity of the FAS phenotype and epigenetic changes. In 

addition, inclusion of additional maternal information such as maternal age, maternal 

nutrition, and patterns of maternal alcohol consumption in the data would be valuable as it 

could also be correlated with epigenetic changes in the FAS offspring.   

DNA methylation is known to interact with histone modifications and ncRNAs in order to 

maintain the stability and integrity of the genome and alcohol has also been shown to affect 

these other epigenetic mechanisms, therefore in future studies assessment of the effect of 

maternal alcohol on histone modification and RNA species in addition to DNA methylation, 

coupled with gene expression of associated regions, would be of great value.  

Measurement of global DNA methylation gives an estimate of the overall DNA methylation 

level across the genome, and it can be done directly or by using surrogate markers of global 

DNA methylation e.g. LINE1 and Alu repeats. Therefore inclusion of measurements of global 

DNA methylation in addition to locus-specific DNA methylation in future studies will be 

useful as it will give a more general and complete picture of the effect of alcohol on DNA 

methylation across the genome.  

Future studies may assess genome-wide methylation levels and identify novel sites of 

importance by employing the high throughput techniques like Illumina HumanMethylation 

450 Bead chip array. This would involve DNA bisulfite modification followed by whole 

genome sequencing for methylation using next-generation sequencing. For gene expression 

(transcriptome) studies, next- generation sequence based transcriptome methodologies 

(RNA-seq) may be used. This includes messenger RNA (mRNA) extraction with subsequent 

conversion to cDNA, making a library and then doing next-generation RNA sequencing using, 

for example, the Illumina platform.    

Since blood and buccal tissues do not represent FAS affected tissues, and there are very few 

human studies that have correlated the epigenetic changes between blood/buccal and brain 

tissue in an individual; epigenetic results obtained from blood or buccal tissue should be 

interpreted with caution. The use of postmortem brain tissue in future studies may be 

useful  in solving the problem of getting access to the affected tissue, and would more 

accurately reflect the alcohol effect on epigenetic variation. The use of post-mortem brain 
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tissues has been reported in epigenetic related studies of psychiatric disorders like psychosis 

and depression (Pidsley and Mill, 2011, Sabunciyan et al., 2012). A study that involves post-

mortem tissues will be a retrospective study design, for obvious reasons, and it would take a 

long time to reach a required sample size of FAS cases and controls.  The National Institutes 

of Health Epigenomic Roadmap (Epigenomic Roadmap Project, 2010) and GTEx studies 

(GTEx Portal, 2015) which aim to index profiles of epigenetic difference across different cell 

and tissue types may shed some light on the current dearth of knowledge of specific gene 

expressions in different tissues, and data should be examined carefully to understand the 

behaviour of primary DMRs at different stages of development.   

The aim of the study was to examine the effect of maternal prenatal alcohol exposure on 

DNA methylation profiles of specific ICRs in children with FAS. The effect of alcohol on DNA 

methylation was observed to be locus specific, and caused hypomethylation at two loci of 

the four loci examined. The study suggests alcohol’s contribution to FAS phenotype through 

alteration of epigenetic modifications, specifically DNA methylation. Since epigenetic 

changes are potentially modifiable, this may present an opportunity for therapeutic 

intervention in FAS individuals. This is supported by animal model studies which have shown 

that administration of choline (a methyl donor) following prenatal alcohol exposure has 

beneficial effects. Supplementation of choline during postnatal development (up to 30 days) 

and (days 40-60; adolescent/young adult stage in rats) were shown to reduce the severity of 

alcohol related working memory deficit and behavioural outcome (Ryan et al., 2008, 

Thomas et al., 2004). If these results can be replicated in human studies it will present 

opportunity for mitigation of long lasting alcohol effects on the brain in FAS individuals. A 

plausible mechanism may be that since choline is a methyl donor, it will target DNA 

methylation, probably by making methyl available for methyl transferases and therefore 

increase DNA methylation with resultant reduction of alcohol related effects in FAS 

individuals.  
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A1.  Information Sheet for M080548 

January 2009 

EPIGENETIC MODIFICATION AT IMPRINTED LOCI FOLLOWING ALCOHOL EXPOSURE DURING 

PRENATAL DEVELOPMENT. 

INFORMATION SHEET  

Dear Colleague  

We would like to invite you to participate in a study that intends to investigate the epigenetic 

contribution to fetal alcohol syndrome (FAS). Participation is voluntary. If you choose to participate 

in this study, your samples will be used as controls for validating the laboratory methods to be used 

in the above project and again for comparison of methylation status of H19 ICR between different 

tissues i.e. blood and buccal swabs.  

The aim of our study is to examine the effect of alcohol on the methylation of imprinting control 

regions (ICR) of specific imprinted genes in FAS and non FAS offspring. FAS is a devastating 

developmental disorder that result from alcohol exposure during fetal development, and a serious 

public health problem in South Africa. FAS is induced by environmental trigger, excessive alcohol 

exposure during foetal development, but twin concordance studies and animal models suggest that 

there are genetic and epigenetic susceptibility factors for developing FAS.    

We are going to require blood and buccal swabs. A qualified nurse will take approximately two table 

spoon (2 tubes) of blood. There will only be a little discomfort. Again you will be requested to scrape 

the inside of the mouth 10 times with a buccal collection Brush in order to collect buccal cells. For 

confidentiality all samples will be deidentified. The identity of participants would not be used if the 

data is published in a scientific journal. There are no costs involved in participating in this study. 

Participation is completely voluntary. Non-participation has no consequences. If you are willing to 

participate please complete and sign the attached consent form.  

Should you require any further information please, please do not hesitate to contact: 

 

Ms. Matshane Lydia Masemola    Prof. Michele Ramsay 

Tel: 083 404 8971       Tel: 011 489 9214 

 

Department of Human Genetics, School of Pathology 

National health laboratory Services/ WITS University 

P.O. Box 1038, Johannesburg, 2000 
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A2. Informed Consent for M080548 

 

CASE CODE: ______________ 

 

EPIGENETIC MODIFICATION AT IMPRINTED LOCI FOLLOWING ALCOHOL EXPOSURE DURING 

PRENATAL DEVELOPMENT. 

 

 

INFORMED CONSENT FORM 

 

To be completed by the participant: 

 

I,___________________________________________, have read and fully understand the 

information sheet and agree to participate in this study. 

 

Date of Birth: ______________________________ 

 

Signature: _________________________________  Date: __________________ 

_______________________________________________________________________ 

 

To be completed by the researcher: 

 

I have fully explained the procedure and purpose of the study to the participants. I have answered all 

the participant’s questions to the best of my ability. 

 

 

Signature: ___________________________  Date: _____________________ 
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A3. Ethics clearance, M02-10-41 
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A4.  Information sheet for M02-10-41 
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A5. Ethics clearance M03-10-20, Information sheet and Consent form  
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A6.  Ethics clearance for additional samples 
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Appendix B:  Solution Preparations 
 

Blood DNA Extraction Solutions 

 
1 M Tris – HCL pH 8 
121.1 g Tris 
Make up to 1 L with dH2O 
Adjust pH 
Autoclave 
 

0.5 M EDTA 

93.06 g EDTA  

Make up to 500 ml with dH2O 

pH to 8.0 with NaOH 

NB: EDTA will only dissolve once correct pH is reached 

 

1 M MgCL2 

101.66 g MgCl2 

Make up to 500 ml with dH2O 

Autoclave 

 

Sucrose-Triton-X Lysing buffer 
10 ml 1M Tris-HCL pH8  
5 ml 1M MgCL2 

10 ml Triton-X 100  
Make up to 1L with dH20 

Autoclave 

Keep solution chilled at 4oC  

Add 105.9 g sucrose just before use. 

(Do not keep longer than 1 day) 

 

20 mM Tris 5 mM EDTA (T20E5) 

20 ml 1 M Tris-HCL( pH8) 

10 ml 0.5 M EDTA (pH8) 

Make up to 1L with dH20 

Autoclave 

 

1X Tris EDTA (TE) Buffer 
10 ml 1M Tris-HCL (pH8) 
2 ml 0.5 EDTA 
Make up to 1 L with dH20 
Autoclave 
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Saturated NaCl 

Autoclave 100 ml dH2O 

Slowly add 40 g NaCl until absolutely saturated i.e. some NaCl will precipitate out. 

NB: Before use agitate and let NaCl settle. Use clear supernatant  

 

10% SDS 

Add 10 g SDS to 100 ml autoclaved dH2O 

 

10 mg/ml Proteinase K  

Add 100 mg to 10 ml autoclaved dH2O 

Make aliquots of 1ml into 1.5 ml eppendorf tubes and store at -20oC until use 

The proteinase K stock is available from Roche 

 

Table B1: Proteinase K mix preparation according to number of samples 

 

No of samples 
10% 
SDS 

0.5 M 
EDTA 

10 mg/ml  
Proteinase-K H2O Total 

1 50 µl 2 µl 100 µl 348 µl 500 µl 

2 100 µl 4 µl 200 µl 696 µl 1 ml 

3 150 µl  6 µl 300 µl 1044 µl 1.5 ml 

4 200 µl 8 µl 400 µl 1392 µl 2 ml 

5 250 µl 10 µl 500 µl 1740 µl 2.5 ml 

6 300 µl 12 µl 600 µl 2088 µl 3 ml 

7 350 µl 14 µl 700 µl 2436 µl 3.5 ml 

8 400 µl 16 µl 800 µl 2784 µl 4 ml 

9 450 µl 18 µl 900 µl 3132 µl 4.5 ml 

10 500 µl 20 µl 1000 µl 3480 µl 5 ml 

11 550 µl 22 µl 1100 µl 3828 µl 5.5 ml 

12 600 µl 24 µl 1200 µl 4176 µl 6 ml 

13 650 µl 26 µl 1300 µl 4524 µl 6.5 ml 

14 700 µl 28 µl 1400 µl 4872 µl 7 ml 

15 750 µl 30 µl 1500 µl 5220 µl 7.5 ml 

16 800 µl 32 µl 1600 µl 5568 µl 8 ml 

17 850 µl 34 µl 1700 µl 5916 µl 8.5 ml 

18 900 µl 36 µl 1800 µl 6264 µl 9 ml 

 

 

Proteinase- K Mix 

For 16 extractions 

800 µl 10% SDS 

32 µl 0.5M EDTA 

5568 µl autoclaved dH2O  

Add 1600 µl proteinase- K (10 mg/ml stock), just before use 
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Pyrosequencing Solutions 

 

Binding buffer (pH 7.6) 

10 mM Tris-HCL (1.21 g Tris- HCL) 

2 M NaCl (117 g NaCl) 

1 mM EDTA (0.292 ml EDTA)) 

0.1% Tween 20 (1 ml Tween 20) 

Dissolve in 900 ml ddH2O, adjust pH with 1 M HCL, Add 1 ml Tween 20,  Make up to 1000 ml with 

ddH2O 

 

Annealing buffer (pH 7.6) 

20 mM Tris (2.42 g Tris) 

2 mM Mg-Acetate tetra hydrate (0.43 g) 

Dissolve in 900 ml ddH2O, once completely dissolved, make up to 1000 ml with ddH2O 

Denaturation solution 

0.2 M NaOH (8 g NaOH) 

Dissolve in 900ml ddH2O, once completely dissolved, make up to 1000ml with ddH2O 

Store at room temperature 

 

Washing buffer (pH 7.6) 

10 mM Tris (1.21 g Tris) 

Dissolve in 900ml ddH2O, Adjust pH with 4 M Acetic acid, and make up to 1000 ml with ddH2O 

  

70% Ethanol  

700 ml absolute ETOH 

30 ml ddH2O 

 

Other Solutions 

 

Ficoll-Bromophenol Blue Loading dye (Ficoll) 

50% sucrose crystal (50 g) 

0.5 M EDTA_ pH7.0 (0.1 ml) 

0.1% bromophenol blue dye (0.1 g) 

10% Ficoll powder (10 g) 

Dissolve in 100 ml of ddH2O 

Store at 4oC  

 

100bp molecular weight marker 

1 µl Ficoll (prepared above) 

1 µl 100 bp DNA molecular marker (1µg/µl) 

Make up to 10 µl by adding 8 µl of ddH2O 

Store at 4oC 
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50 bp molecular weight marker 

1 µl Ficoll (prepared above) 

1 µl 50bp DNA molecular marker (1 µg/µl) 

Make up to 10 µl by adding 8 µl of ddH2O 

Store at 4oC 

The 100 bp and 50 bp are all available commercially from Invitrogen 

 

1.25 mM dNTP mix  

12.5 µl dATP (100 mM) 

12.5 µl dTTP (100 mM) 

12.5 µl dCTP (100 mM) 

12.5 µl dGTP (100 mM) 

950 µl ddH2O (autoclaved) 

Make aliquots and store at -20oC 

 

0.8% Agarose gel 

3.2 g Agarose powder  

400 ml 1X TBE buffer 

12 µl EtBr (10mg/ml) 

EtBr (Ethidium Bromide): 3µl EtBr /100 ml of 1X TBE buffer 

 

3% Agarose gel 

12 g Agarose  

400 ml 1X TBE buffer 

12 µl EtBr (10 mg/ml) 

EtBr (Ethidium Bromide): 3 µl EtBr /100ml of 1X TBE buffer 

EtBr solution (Sigma Aldrich) 

 

10 X TBE buffer 

216 g Tris 

110 g Boric acid 

14.88 g EDTA 

Make up to 2L with ddH2O. 

Autoclave and store at room temperature 
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Appendix C: Gels 

 

Whole gDNA gel 

 

IG-DMR PCR gel (267bp amplicon length) 

 

H19 ICR PCR gel (217bp amplicon length)  
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Appendix D: Protocols 

EZ DNA Methylation-Gold kit protocol  

Preparation of CT Conversion Reagent 

 Add 900 µl ddH2O, 300 µl M-Dilution and 50 µl M-Dissolving to the CT Conversation tube. Mix the 

tube with frequent vortexing and shaking for 10 minutes to dissolve the tube contents.  

 Add 130 µl of the prepared CT conversion reagent solution to 20 µl of DNA sample in a PCR 

tube. Mix the sample by flicking then centrifuged briefly to collect the liquid to the bottom 

of the tube.  

Place the sample tubes in a thermal cycler and perform the following steps: 

98oC for 10 minutes 

64oC for 2.5 hours 

4oC storage for up to 20 hours 

 Add 600 µl of M-Binding buffer into a Zymo-Spin TM Spin IC Column and place the column 

into a provided collection tubes.  

 Load the samples from the thermal cycler onto the column containing M-Binding buffer. 

Close the cap and mix inverted the column several times. 

 Centrifuged the tubes at full speed (≥10 000 x g) for 30 seconds, discard the flow- through.  

 Add 100 µl of M-Washing buffer to the column and centrifuged at full speed for 30 seconds.  

 Add 200 µl M-Desulphonation of buffer to the column and let stand at room temperature 

(20-30oC) for 15-20 minutes.  After incubation centrifuge at full speed for 30 seconds.  

 Add 200 µl of M-Washing buffer to the column. Spin at full speed for 30 seconds. Repeat the 

washing step once.  

 Place the column in a sterile 1.5 ml microcentrifuge tube. Add 10µl of M-Elution buffer 

directly to the column matrix then centrifuge at full speed for 30 seconds to elude the DNA.  

 The DNA is ready for immediate use or can be stored at -20oC until later use.      

Pyrosequencing preparation protocol 

Pyrosequencing was performed using the PSQ 96MA system (Biotage).  

The following protocol was taken from Biotage’s sample preparation protocol guidelines: Sample 

preparation guidelines for PSQ TM 96 and PSQMA systems. 

 For all the samples; electrophorese 5 ul of the prepyrosequencing PCR product mixed with 

5ul of ficoll on a 3% gel to check if the PCR was successful.  

 Set up your run on the PSQ96MA software programme as directed in PSQ ’Getting Started 

Guide’ manual.  

1. Cleaning of the vacuum prep needles and Checking if needles sucks properly 

 Fill the 96 PCR plate with 80 µl of ddH2O. Switch on the vacuum pump and apply the vacuum 

by turning the switch ‘on’, lower the vacuum prep tool onto the plate for 20 secs or more so 
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that all ddH2O is taken up by the vacuum prep tool.  (All wells should be empty after this). If 

there is still ddH2O it means the needles are non functional, therefore the wells should not 

be used for the run. Place the vacuum prep on the ‘parking position’. 

2. Immobilisation of PCR products to the beads 

 

 40-45 µl PCR DNA was added to a clean/sterile 96 well MicroAmp PCR plate 

 Shake the bottle of Streptavidin – coated SepharoseTM High performance beads gently until a 

homogenous solution is obtained.  

 Make up a master mix of sepharose beads and binding buffer by adding 6 ul of sepharose 

beads and 40 µl of binding buffer for each sample. 

 Add 46 µl of Sepharose-binding buffer mix to samples previously added to the 96 well 

MicroAmp PCR plate.  

 Cover the MicroAmp PCR plate and place on the orbital shaker set at 300 r.p.m for 10 

minutes. 

 Prepare the PSQ 96 plate Low well with the sequencing primer and annealing buffer.  For 

each sample add 38.4 µl annealing buffer and 1.6 µl of 10 µM sequencing primer. Make a 

master mix depending on how many samples you have and then aliquot 40µl into each well 

corresponding to the samples wells in the MicroAmp PCR plate.  

 

3. Strand separation of products 

 

 Place the 4 troughs on the Vacuum Prep station in order shown in the diagram in the manual 

page 5. 

 Fill each trough with the following : 

180 ml of 70% EtOH (trough 1) 

120 ml of Denaturation buffer (trough 2) 

180 ml of Washing buffer pH 7.6 (trough 3)  

180 ml of ddH2O (trough 4) 

 After the agitation of the 96 MicroAmp PCR plate was complete, the samples were 

resuspended using a pipette before vacuum prep tool was applied to the samples. 

 Turn the vacuum pump on and apply the vacuum. Capture the beads-containing the 

immobilised template on the filter probes by lowering the vacuum prep tool into the 96 

MicroAmp PCR plate.   

 Make sure all the Sepharose beads have been captured onto the filter probes. Then move 

the Vacuum Prep Tool sequentially to a trough containing 70% alcohol for 20secs, 

Denaturation solution for 20 secs, Washing buffer for 20 secs and lastly ddH2O for 20secs. 

After the last trough allow the liquid to drain completely from the probes by holding the 

prep tool up at 90oCfor a few seconds and return to horizontal position. 

 Turn off the Vacuum off to release the vacuum. 

 Place the PSQ 96 well Low plate (containing the sequencing primer and annealing buffer mix 

on the work station. Release the beads from the filter probes onto the plate by shaking the 

vacuum prep tool while allowing the filter probes to rest on the bottom of the wells.  

 

4. Primer Annealing  
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 Heat the PSQ plate containing the beads, sequencing primer and annealing primer on a 

heating block at 80oC for 3 minutes. 

 Allow to cool at room temperature. 

 

5. Cartridge preparation (this should be done preferable while waiting for the PSQ plate to cool 

at room temperature)  

 Put the cartridge on the bench with the label facing you. Add the specific amount of enzyme, 

substrate and dNTPs into their respective wells. The amounts are specified from the 

pyrosequencing software after entering the necessary information for the run and are 

calculated according to how many samples are going to be analysed at a time. 

 Place the PSQ plate and cartridge in their respective positions in the pyrosequencer, and 

start the run.     
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Appendix E: DNA sequences 

Bisulfite modified DNA sequences for different ICRs analysed  

 

GAAATATTTTAGGTTATTTAAGTCGGGCGTTATAGGGTTTATAGGGGTCGTGAGGTATAGGATATTTA

TGGGAGTTATATCGGGTTACGTGTTTGATTTATTTTAGGGTGTATTGTTGAAGGTTGGGGAGATGGGA

GGAGATATTAGGGGAATAATGAGGTGTTTTAGTTTTATGGATGATGGGGATTTCGGTTTTAGTGTGAA

ATTTTTTTCGTAGGGTTTTTGGTAGGTATAGAGTTTGGGGGTTTTTGTATAGTATATGGGTATTTTTG

GAGGTTTTTTTTTCGGTTTTATCGTTTGGATGGTACGGAATTGGTTGTAGTTGTGGAATCGGAAGTGG

TCGCGCGGCGGTAGTGTAGGTTTATATATTATAGTTCGAGTTCGTTTTAATTGGGGTTCGTTCGTGGA

AACGTTTCGGGTTATTTAAGTTACGCGTCGTAGGGTTTACGGGGGTTATTTGGGAATAGGATATTTAT

GGGAGTCGTATTAGATTTTTAGGTCGGGTATTATTTATAGTTTCGTGGTTTCGGGTTATATTTCGAGG

GTTTTAGTGTTATGGTTTGGGATTTAAGTTACGTTTATTTATGTGATGATTATAGT 

Figure 20: Bisulfied modified H19 ICR sequence with primers binding in regions containing known 
SNPs. The nested PCR primers were used innitially for amplification of H19ICR in the pilot study.  

Outer foward primer: 5′-GAGTTCGGGGGTTTTTGTATAGTAT-3′,(G=rs11564736) 

Outer reverse primer: 5′-CTTAAATCCCAAACCATAACACTA-3′(5’-TAGTGTTATGGTTTGGGATTTAAG-3’) 

Inner foward primer: 5′-GTATATGGGTATTTTTGGAGGT-3′ 

Inner reverse primer: 5′-ATATCCTATTCCCAAATAAC-3′ (5′-GTTATTTGGGAATAGGATAT-3′) 
G=rs56125822 

Sequencing primer: 5′-TGGTTGTAGTTGTGGAAT-3′ 

The underlined yellow highlighted sequence is the 6th CTCF binding site and the last CG (part of the 
underlined but not highlighted with yellow) is not part of the CTCF binding site but was included in 
the pyrosequencing analysis. The C in CTCF binding sequence represents the known SNP (C/T), 
rs10732516. The SNP caused variability of methylation at this CpG site.  

GAAATATTTTAGGTTATTTAAGTCGGGCGTTATAGGGTTTATAGGGGTCGTGAGGTATAGGATATTTA

TGGGAGTTATATCGGGTTACGTGTTTGATTTATTTTAGGGTGTATTGTTGAAGGTTGGGGAGATGGGA

GGAGATATTAGGGGAATAATGAGGTGTTTTAGTTTTATGGATGATGGGGATTTCGGTTTTAGTGTGAA

ATTTTTTTCGTAGGGTTTTTGGTAGGTATAGAGTTCGGGGGTTTTTGTATAGTATATGGGTATTTTTG

GAGGTTTTTTTTTCGGTTTTATCGTTTGGATGGTACGGAATTGGTTGTAGTTGTGGAATCGGAAGTGG

TCGCGCGGCGGTAGTGTAGGTTTATATATTATAGTTCGAGTTCGTTTTAATTGGGGTTCGTTCGTGGA

AACGTTTCGGGTTATTTAAGTTACGCGTCGTAGGGTTTACGGGGGTTATTTGGGAATAGGATATTTAT

GGGAGTCGTATTAGATTTTTAGGTCGGGTATTATTTATAGTTTCGTGGTTTCGGGTTATATTTCGAGG

GTTTTAGTGTTATGGTTTGGGATTTAAGTTACGTTTATTTATGTGATGATTATAGT 

Figure 21: Bisulfite modified H19 ICR sequence with primers that did not contain SNPs in their 
binding sites. The primers were used for the case control study. 
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Outer reverse primer (purple): CTTAAATCCCAAACCATAACACTA (TAGTGTTATGGTTTGGGATTTAAG) 

Inner foward primer (blue): 5′-GTATATGGGTATTTTTGGAGGT-3′ (also used as Outer foward primer) 

Inner reverse primer (blue):  5′-ATATCCTATTCCCAAATAA-3′ ( 5′-TTATTTGGGAATAGGATAT-3′) 

Sequencing primer (red): 5′-TGGTTGTAGTTGTGGAAT-3′ 
 

GGCGCGAGTCGTCGTTTTTTTTGTTTTTATTCGTCGTTTTTGAGTATTATCGGGGGTCGGGGTTAGCG

TTAGTTTTAGCGTTGGTATCGTCGGGGTGAGTTGGAGATACGGGTTAGTTTTTTGCGTGATGTGTTTA

TTATTTCGGGGTGATCGCGTGAGGATAGCGGTCGTATTTCGATATTGTTGTGGGTTTTCGGTGTGGAG

GTTTGTGGGCGTTTAGGTTACGTTCGAGATTAGTTTTTTCGTCGGCGTCGTTGTAGCGATTTTCGAAT

TCGGGTAAGGTT 

Figure 22: Bisulfite modified KvDMR1 Sequence  

Forward primer (blue and underlined part of red): 5′-TTAGTTTTTTGYGTGATGTGTTTATTA-3′  

Reverse labeled primer (purple): 5′-CCCACAAACCTCCACACC-3′ (5′-GGTGTGGAGGTTTGTGGG-3′) 

Sequencing primer (red): 5′-TTGYGTGATGTGTTTATTA-3′ 

Not1 restriction site (highlighted in green): GCGGTCGT and the recognition site is 

 

The highlighted yellow region is the sequence of the CpG sites analysed by pyro.  
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TTTAGGTTGGAATTGTTAAGAGTTTGTGGATTTGTGAGAAATGATTTCGTTTATTGGGTTGGGTTTTG

TTAGTTGTTTGTGGTTTATTAGTTGTTCGCGGTTTATTAGTTGTTCGCGATTTATTAGSTGTTTGCGG

TTTATTAGTTGTTTGTGGTTTATTAGTTGTTCGTGGTTTATTAGTTGTTCGTGGTTTATAGTTGTTCG

AGGTTTATAGTTGTTTATGGTTTGTTAATTGTTAGCGATTTGTTAATTGCGAGTGGTTCGTTAGTTGT

TCGCGGTTCGTTAAATTCGTAATTTTGTGGTATTGTAATTGGTTATAATGGATT 

Figure 23: Bisulfite modified IG-DMR sequence region. 

Forward primer (Bio), blue: 5′- TTTATTGGGTTGGGTTTTGTTAG – 3′ 

Reverse primer: 5′ red – AACCAATTACAATACCACAAAATT – 3′ (5′-AATTTTGTGGTATTGTAATTGGTT-3′) 

Sequencing primer (reverse) region1, underlined red: 5′ – CAATTACAATACCACAAAAT – 3′ (5′-

ATTTTGTGGTATTGTAATTG-3′) 

Sequencing primer (reverse) region2; underlined dark red: 5′ – CCATAAACAACTATAAACCT – 3′ (5′-

AGGTTTATAGTTGTTTATGG-3′) 

Region 1: highlighted yellow sequence (7 CpG sites) 

Region 2: highlighted dark yellow sequence (3 CpG sites) 

 

GTTGGAGTTTGTTGCGTAGGTGTTGTTTTGGTTGGTTGGTGGTAGATGGGGCGGGGTAAGGTTGAAGT

GATAGGGTGGTATTGGATTTAGTGGTTTGTTTAAGTTTTATTTATTTGGGCGTTATTTTTAATGAAAG

TGTTTGAGATTTGTTGCGTAGGCGTTGTTTTAGTTGGTTGGGCGAGATAAGGTTCGTTCGTTTGGGCG

TTATTTTTGATGGGGGTAGTTGAGGTTTGTCGCGTAGGCGTTGTTCGGATTGGTTGGCGGTAGATGCG

GCGGGGTAAGGTTGAAGTGGTTGTAGGTGGTATGGGCGGGACGGTTTGTTTAAGTTTCGTTTATTTGG

GTGTTATTTTTGATCGGGGCGGTTGCGGTTTGTCGTATAGGTGTGGGGTTGTTTATAGGGAGGGGCGG

GGTTACGGTTGTTGTGTTTGTTTGTTTTGTGGTGATGGAAAGTTGTGGAGTGTCGCGTTTTTTGGGTT

GTGTGTGTTGGTCGTTAGGTTGTT 

 
Figure 24: Bisulfite modified PEG3 DMR sequence  

PEG3 Forward primer (blue): 5′-TAATGAAAGTGTTTGAGATTTGTTG-3′ 

PEG3 Reverse primer (Bio) (purple):  5′-CCTATAAACAACCCCACACCTATAC-3′ (5′-

GTATAGGTGTGGGGTTGTTTATAGG-3′) 

PEG3 Sequencing Primer 1(red): 5′-GGGGGTAGTTGAGGTT-3′ 
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Appendix F: Complete data 

Table 25: Methylation profiles at 6 CpG sites of H19 ICR obtained from blood and buccal tissue 
DNA. 

  % Methylation 

Sample ID CpG 1 CpG 2 CpG 3 CpG 4 CpG 5 CpG 6 

BL001 36 35 34 33 35 35 

BL001 34 35 34 34 36 37 

BL001 37 37 34 34 34 36 

Mean 36 36 34 34 35 36 

BS001 33 35 36 32 31 37 

BS001 40 40 34 38 36 40 

BS001 35 37 34 35 33 37 

Mean 36 37 35 35 33 38 

BL002 0 4 0 3 0 5 

BL002 0 0 5 0 5 0 

BL002 3 3 0 0 0 3 

Mean 1 2 2 1 2 3 

BS002 4 7 3 4 4 5 

BS002 4 4 3 3 3 6 

BS002 0 4 3 0 0 4 

Mean 3 5 3 2 2 5 

BL003 42 42 40 0 39 41 

BL003 42 45 44 2 41 43 

BL003 42 42 50 0 39 39 

Mean 42 43 45 1 40 41 

BS003 41 49 41 3 41 45 

B0003 43 48 42 4 44 45 

BS003 41 47 42 3 43 44 

Mean 42 48 42 3 43 45 

BL004 33 36 35 34 34 34 

BL004 31 31 31 30 32 34 

B0004 30 31 31 29 29 32 

Mean 31 33 32 31 32 33 

BS004 39 42 40 39 38 41 

BS004 36 41 40 39 37 43 

BS004 33 34 32 30 31 33 

Mean 36 39 37 36 35 39 

BL005 34 31 33 27 33 34 

BL005 31 34 33 29 31 33 

BL005 31 35 33 31 31 32 

Mean 32 33 33 29 32 33 

BS005 42 48 42 43 44 45 

BS005 41 46 39 42 41 41 
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BS005 41 44 44 41 42 44 

Mean 41 46 42 42 42 43 

BL 06 37 34 35 34 36 35 

BL 06 39 39 39 37 39 39 

BL 06 36 37 37 36 37 40 

Mean 37 37 37 36 37 38 

BS006 36 39 37 37 39 42 

BS006 39 45 40 41 40 44 

BS006 39 44 39 40 38 41 

Mean 38 43 39 39 39 42 

BL008 3 5 4 2 2 4 

BL008 4 5 3 2 2 7 

BL008 3 5 2 3 2 5 

Mean 3 5 3 2 2 5 

BS 08 2 5 2 3 3 6 

BS 08 2 4 2 2 2 5 

BS 08 3 8 0 5 4 6 

Mean 2 6 1 3 3 6 

BL009 29 32 31 29 31 31 

BL009 32 32 30 28 31 34 

BL009 30 31 31 31 30 31 

Mean 30 32 31 29 31 32 

BS009 41 47 40 42 35 34 

BS009 32 36 35 36 35 35 

BS009 35 43 37 36 39 33 

Mean 36 42 37 38 36 34 

BL010 31 34 30 31 30 32 

BL010 34 33 35 31 33 34 

BL010 34 32 33 31 33 35 

Mean 33 33 33 31 32 34 

BS010 32 34 33 31 33 34 

BS010 38 39 40 38 40 42 

BS010 29 32 30 32 31 31 

Mean 33 35 34 34 35 36 

BL011 90 96 91 6 90 95 

BL011 89 90 91 5 88 85 

BL011 91 91 86 9 82 92 

Mean 90 92 89 7 87 91 

BS011 91 92 89 4 87 84 

BS011 87 95 88 4 83 86 

BS011 82 92 83 5 82 86 

Mean 87 93 87 4 84 85 

BL012 35 38 35 35 34 34 

BL012 32 34 30 32 32 35 
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BL012 29 31 30 31 29 30 

Mean 32 34 32 33 32 33 

BS012 40 42 40 40 40 43 

BS012 34 37 35 32 36 38 

BS012 35 42 35 37 38 39 

Mean 36 40 37 36 38 40 

BL013 36 38 37 34 35 36 

BL013 37 38 36 35 34 37 

BL013 35 38 37 35 36 34 

Mean 36 38 37 35 35 36 

BS013 38 42 36 38 39 39 

BS013 39 44 38 39 39 42 

BS013 38 43 39 41 41 39 

Mean 38 43 38 39 40 40 

BL014 37 39 38 36 36 36 

BL014 37 38 34 36 37 36 

BL014 34 38 36 34 32 38 

Mean 36 38 36 35 35 37 

BS 14 38 39 40 39 40 41 

BS 14 31 34 33 33 32 33 

BS 14 36 34 35 40 38 35 

Mean 35 36 36 37 37 36 

BL015 37 37 37 2 36 37 

BL015 38 40 40 4 38 42 

BL015 42 42 42 0 40 41 

Mean 39 40 40 2 38 40 

BS015 49 50 46 0 45 45 

BS015 39 36 35 5 36 39 

BS015 40 43 37 4 38 46 

Mean 43 43 39 3 40 43 

BL016 36 38 36 32 35 34 

BL016 33 33 33 33 30 34 

BL016 32 35 32 32 32 34 

Mean 34 35 34 32 32 34 

BS016 33 31 34 32 34 35 

BS016 34 37 36 32 36 38 

BS016 26 28 27 29 29 33 

Mean 31 32 32 31 33 35 

BL017 32 34 30 31 32 33 

BL017 35 37 34 33 34 36 

BL017 33 36 32 32 33 34 

Mean 33 36 32 32 33 34 

BS017 35 38 36 38 37 36 

BS017 35 40 35 37 36 39 
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BS017 35 36 32 33 36 35 

Mean 35 38 34 36 36 37 

BL018 30 32 31 30 32 32 

BL018 33 35 34 31 35 35 

BL018 32 36 29 31 20 36 

Mean 32 34 31 31 29 34 

BS018 24 28 27 24 26 29 

BS018 28 30 29 29 29 31 

BS018 35 35 32 29 31 31 

Mean 29 31 29 27 29 30 

BL019 28 30 25 25 24 26 

BL019 30 34 28 29 29 34 

BL019 29 32 28 29 28 31 

Mean 29 32 27 28 27 30 

BS019 29 28 28 27 29 29 

BS019 28 30 34 30 30 36 

BS019 30 30 30 30 29 32 

Mean 29 29 31 29 29 32 

BL020 29 29 27 26 28 29 

BL020 30 33 30 31 29 34 

BL020 33 34 30 30 32 34 

Mean 31 32 29 29 30 32 

BS020 27 32 26 29 27 30 

BS020 34 31 32 30 31 35 

BS020 29 30 31 29 29 34 

Mean 30 31 30 29 29 33 

BL021 3 5 2 2 0 4 

BL021 4 5 4 4 4 7 

BL021 3 5 0 3 3 0 

Mean 3 5 2 3 2 4 

BS021 6 7 5 5 6 5 

BS021 0 6 0 0 8 8 

BS021 0 4 0 0 2 4 

Mean 2 6 2 2 5 6 

BL022 28 31 28 28 29 32 

BL022 32 35 29 30 29 33 

BL022 32 35 28 31 30 30 

Mean 31 34 28 30 29 32 

BS022 32 35 26 27 30 33 

BS022 29 34 30 29 31 32 

BS022 32 33 30 30 28 30 

  31 34 29 29 30 32 

BL023 33 35 32 30 31 34 

BL023 32 31 29 28 31 32 
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BL023 33 37 32 34 31 35 

Mean 33 34 31 31 31 34 

BS023 34 32 36 33 34 34 

BS023 28 29 32 27 30 33 

BS023 34 38 36 34 36 37 

Mean 32 33 35 31 33 35 

BL024 34 37 34 36 34 37 

BL024 30 35 28 31 30 33 

BL024 35 36 34 33 33 36 

Mean 33 36 32 33 32 35 

BS024 32 34 32 33 34 35 

BS024 35 37 36 36 33 37 

BS024 32 33 31 31 32 31 

Mean 33 35 33 33 33 34 

BL025 34 36 33 33 33 35 

BL025 34 35 33 33 32 36 

BL025 33 33 32 32 32 37 

Mean 34 35 33 33 32 36 

BS025 36 35 36 32 35 34 

BS025 30 32 29 33 32 32 

BS025 36 36 40 34 39 37 

Mean 34 34 35 33 35 34 

BL026 39 40 39 2 36 38 

BL026 38 39 38 2 36 39 

BL026 39 40 38 1 36 39 

Mean 39 40 38 2 36 39 

BS026 36 41 37 2 36 39 

BS026 37 40 36 2 35 38 

BS026 38 44 37 0 37 40 

Mean 37 42 37 1 36 39 

BL027 90 92 90 3 86 88 

BL027 87 97 91 6 87 87 

BL027 90 96 91 3 88 88 

Mean 89 95 91 4 87 88 

BS027 88 95 87 3 86 89 

BS027 88 94 87 4 85 88 

BS027 89 91 88 4 86 85 

Mean 88 93 87 4 86 87 

BL028 3 4 3 2 2 4 

BL028 2 4 0 3 0 5 

BL028 2 3 3 2 1 6 

Mean 2 4 2 2 1 5 

BS028 2 4 2 3 2 5 

BS028 3 4 3 2 1 7 
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BS028 2 4 0 3 2 5 

Mean 2 4 2 2 2 6 

BL029 36 39 37 2 36 37 

BL029 36 39 38 4 34 39 

BL029 33 36 35 2 32 35 

Mean 35 38 37 3 34 37 

BS029 33 36 30 0 28 31 

BS029 33 35 33 3 32 34 

BS029 35 37 34 3 35 38 

Mean 34 36 32 2 32 34 

BL030 87 89 84 86 85 88 

BL030 85 88 87 91 70 90 

BL030 86 87 86 87 88 86 

Mean 86 88 86 88 81 88 

BS030 88 88 85 86 83 87 

BS030 84 87 86 90 70 90 

BS0030 87 87 86 88 87 87 

Mean 86 87 86 88 80 88 

BL031 28 30 29 29 29 31 

BL031 33 33 30 30 27 34 

BL031 35 36 33 34 33 36 

Mean 32 33 31 31 30 34 

BS031 33 38 33 31 32 32 

BS031 37 42 37 35 34 37 

BS031 34 36 33 33 33 38 

Mean 35 39 34 33 33 36 

BL032 33 34 35 32 32 36 

BL032 34 35 37 32 34 36 

BL032 36 38 35 36 34 36 

Mean 34 36 36 33 33 36 

BS032 35 35 33 33 33 34 

BS032 29 32 31 31 30 33 

BS032 32 34 32 32 32 34 

Mean 32 34 32 32 32 34 

BL033 33 34 34 33 32 37 

BL033 33 37 35 36 33 39 

BL033 32 34 33 32 32 35 

Mean 33 35 34 34 32 37 

BS033 37 39 34 36 35 37 

BS033 39 41 37 35 36 39 

BS033 35 36 36 34 35 37 

Mean 37 39 36 35 35 38 

BL034 36 34 35 0 35 35 

BL034 34 36 34 2 33 33 
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BL034 38 39 35 1 34 36 

Mean 36 36 35 1 34 35 

BS034 38 40 37 3 36 38 

BS034 35 39 38 3 40 38 

BS034 33 39 32 4 33 36 

Mean 35 39 36 3 36 37 

BL035 37 39 35 37 35 38 

BL035 36 36 34 35 32 35 

BL035 37 37 38 36 37 38 

Mean 37 37 36 36 35 37 

BS035 41 42 38 40 39 41 

BS035 39 40 40 37 37 42 

BS035 41 44 41 43 41 44 

Mean 40 42 40 40 39 42 

BL036 39 31 36 36 37 39 

BL036 34 38 34 34 34 37 

BL036 35 37 36 36 35 37 

Mean 36 35 35 35 35 38 

BS036 36 39 36 36 36 37 

BS036 37 43 40 40 38 42 

BS036 41 44 38 40 39 41 

Mean 38 42 38 39 38 40 

BL037 3 4 4 0 4 6 

BL037 3 4 2 2 3 4 

BL037 2 3 2 2 2 4 

Mean 3 4 3 1 3 5 

BS037 0 5 6 0 0 7 

BS037 3 4 3 3 3 6 

BS037 4 0 0 0 0 0 

Mean 2 3 3 1 1 4 

BL038 36 36 34 32 32 37 

BL038 38 41 39 37 38 41 

BL038 37 44 33 34 32 41 

Mean 37 40 35 34 34 40 

BS038 39 35 36 32 36 32 

BS038 39 39 42 39 38 40 

BS038 39 37 38 36 37 36 

Mean 39 37 39 36 37 36 

BL039 35 36 34 0 35 37 

BL039 30 31 29 3 27 30 

BL039 34 40 33 0 35 36 

Mean 33 36 32 1 32 34 

BS039 34 37 34 3 33 39 

BS039 33 37 34 0 33 38 
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BS039 35 38 34 0 32 36 

Mean 34 37 34 1 33 37 

BL040 34 37 36 34 39 38 

BL040 34 34 31 32 32 33 

BL040 35 38 31 36 33 34 

Mean 34 36 33 34 35 35 

BS040 31 37 35 35 35 37 

BS040 35 34 34 32 34 33 

BS040 30 38 30 36 36 34 

Mean 32 36 33 34 35 35 

BL041 24 27 24 24 22 26 

BL041 31 32 33 31 31 32 

BL041 28 30 30 28 28 29 

Mean 28 30 29 28 27 29 

BS041 41 41 41 41 38 43 

BS041 30 36 29 33 30 36 

BS041 38 39 39 40 38 39 

Mean 36 39 36 38 35 39 

BL042 36 42 41 0 37 42 

BL042 39 38 38 0 38 40 

BL042 34 34 30 3 30 35 

Mean 36 38 36 1 35 39 

BS042 38 34 34 0 32 38 

BS042 37 40 35 0 34 39 

BS042 34 33 34 0 32 35 

Mean 36 36 34 0 33 37 

BL043 37 37 37 37 34 36 

B0 43 35 38 34 35 34 38 

BL043 34 37 34 33 34 36 

Mean 35 37 35 35 34 37 

BS043 34 37 34 33 34 36 

BS043 33 36 33 33 28 38 

BS043 37 37 37 37 34 36 

Mean 35 37 35 34 32 37 

BL044 36 41 36 36 36 39 

BL044 36 38 38 40 35 36 

BL044 36 37 36 34 36 39 

Mean 36 39 37 37 36 38 

BS044 35 35 37 29 31 36 

BS044 35 37 36 31 34 36 

BS044 36 38 35 33 36 36 

Mean 35 37 36 31 34 36 

BL045 36 43 42 0 35 42 

BL045 43 45 40 2 39 41 
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BL045 32 37 32 1 32 34 

Mean 37 42 38 1 35 39 

BS045 32 36 42 5 32 32 

BS045 39 41 39 4 38 42 

BS045 37 38 37 0 37 39 

Mean 36 38 39 3 36 38 

BL046 29 31 30 2 29 32 

BL046 30 32 31 0 31 32 

BL046 30 31 30 0 30 31 

Mean 30 31 30 1 30 32 

BS046 30 32 31 0 31 32 

BS046 30 31 30 0 30 31 

BS046 29 31 30 2 29 32 

Mean 30 31 30 1 30 32 

BL047 37 35 34 6 34 36 

BL047 32 32 34 3 33 33 

BL047 38 37 38 0 37 37 

Mean 36 35 35 3 35 35 

BS047 37 36 36 5 35 39 

BS047 36 41 33 5 33 37 

BS047 39 40 37 5 36 41 

Mean 37 39 35 5 35 39 

BL048 30 30 33 30 31 32 

BL048 34 35 34 36 33 33 

BL048 33 35 34 35 33 32 

Mean 32 33 34 34 32 32 

BS048 40 43 38 39 40 40 

BS048 37 40 37 39 36 37 

BS048 39 42 38 40 38 38 

Mean 39 42 38 39 38 38 

BL049 30 28 29 28 28 33 

B0 49 31 31 31 30 29 33 

BL049 29 29 31 27 29 30 

Mean 30 29 30 28 29 32 

BS049 31 33 32 31 32 33 

BS049 28 31 25 28 25 26 

BS049 34 36 30 31 31 29 

Mean 31 33 29 30 29 29 

BL050 31 30 32 29 31 31 

BL050 32 34 36 33 36 33 

BL050 30 30 30 29 29 33 

Mean 31 31 33 30 32 32 

BS050 30 30 30 29 29 33 

BS050 32 34 36 33 36 33 
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BS050 31 30 32 29 31 31 

Mean 31 31 33 30 32 32 

BL051 33 27 26 25 26 26 

BL051 31 34 33 32 32 34 

BL051 31 28 36 29 34 34 

  28 30 32 29 31 31 

BS051 30 30 23 24 27 30 

BS051 29 29 30 29 29 31 

BS051 32 37 29 32 32 34 

  30 32 27 28 29 32 

BL052 28 26 29 28 27 29 

BL052 25 27 26 26 25 30 

BL052 28 31 32 26 31 31 

  27 28 29 27 28 30 

BS052 31 33 27 29 26 28 

BS052 32 32 27 28 31 33 

BS052 32 35 32 31 32 33 

Mean 32 33 29 29 30 31 

   

Table 26: Typed control samples for different ICRs 

Controls H19ICR KvDMR1 IG-DMR PEG3DMR 

          

DNA004392 Yes Yes Yes Yes 

DNA004393 Yes Yes Yes Yes 

DNA004394 Yes Yes Yes Yes 

DNA004395 Yes Yes Yes Yes 

DNA004396 Yes Yes Yes Yes 

DNA004398 Yes Yes Yes Yes 

DNA004399 No Yes Yes Yes 

DNA004401 Yes Yes Yes Yes 

DNA004402 Yes Yes Yes No 

DNA004404 No Yes Yes Yes 

DNA004406 Yes Yes Yes Yes 

DNA004407 Yes Yes Yes Yes 

DNA004408 Yes Yes Yes Yes 

DNA004410 Yes Yes Yes No 

DNA004411 Yes Yes Yes Yes 

DNA004412 Yes Yes Yes Yes 

DNA004413 Yes Yes Yes Yes 

DNA004414 Yes Yes Yes Yes 

DNA004415 Yes Yes Yes Yes 

DNA004418 Yes Yes Yes Yes 

DNA004420 Yes Yes Yes Yes 
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DNA004421 Yes Yes Yes Yes 

DNA004422 No Yes Yes Yes 

DNA004425 Yes Yes Yes Yes 

DNA004426 Yes Yes Yes Yes 

DNA004428 Yes Yes Yes Yes 

DNA004429 Yes Yes Yes Yes 

DNA004430 No Yes No No 

DNA004431 Yes Yes Yes Yes 

DNA004434 Yes No Yes Yes 

DNA004437 No Yes Yes Yes 

DNA004440 Yes Yes Yes Yes 

DNA004441 Yes Yes Yes Yes 

DNA004442 Yes Yes Yes Yes 

DNA004448 Yes Yes Yes Yes 

DNA004450 Yes Yes Yes Yes 

DNA004456 Yes Yes Yes No 

DNA004460 Yes Yes Yes No 

DNA004461 Yes Yes Yes No 

DNA004463 No Yes Yes Yes 

DNA004465 No Yes Yes Yes 

DNA004466 Yes Yes Yes Yes 

DNA004476 Yes Yes Yes Yes 

DNA004477 Yes Yes Yes Yes 

DNA004481 No Yes Yes Yes 

DNA004482 Yes Yes no Yes 

DNA004483 Yes Yes Yes Yes 

DNA004487 Yes Yes Yes Yes 

DNA004492 Yes Yes Yes Yes 

DNA004494 Yes Yes Yes No 

DNA004496 Yes Yes Yes No 

DNA004497 Yes Yes Yes Yes 

DNA004498 Yes Yes Yes Yes 

DNA004500 Yes Yes Yes Yes 

DNA004501 Yes Yes Yes Yes 

DNA004664 Yes No Yes Yes 

DNA004668 Yes No Yes Yes 

DNA004690 Yes Yes Yes Yes 

All samples are blood DNA samples 
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Table 27: Typed case samples for different ICRs 

Cases H19 ICR KvDMR1 IG-DMR PEG3 DMR 

          

DNA003985 Yes Yes Yes Yes 

DNA003989 Yes Yes Yes Yes 

DNA003991 Yes Yes Yes Yes 

DNA004010 Yes Yes Yes Yes 

DNA004012 Yes Yes Yes Yes 

DNA004013 Yes Yes Yes Yes 

DNA004017 Yes Yes Yes No 

DNA004021 Yes Yes Yes Yes 

DNA004024 Yes Yes Yes Yes 

DNA004029 Yes Yes Yes Yes 

DNA004032 Yes Yes Yes Yes 

DNA004035 Yes Yes Yes Yes 

DNA004042 No Yes Yes Yes 

DNA004052 Yes Yes Yes Yes 

DNA004053 Yes Yes Yes Yes 

DNA004055 Yes Yes Yes Yes 

DNA004059 Yes Yes Yes Yes 

DNA004061 Yes Yes Yes Yes 

DNA004063 Yes Yes Yes Yes 

DNA004064 Yes Yes Yes Yes 

DNA004065 No Yes Yes Yes 

DNA004068 Yes Yes Yes Yes 

DNA004069 Yes Yes Yes Yes 

DNA004072 Yes Yes Yes Yes 

DNA004074 Yes Yes Yes Yes 

DNA004076 Yes Yes Yes Yes 

DNA004082 Yes Yes Yes Yes 

DNA004094 Yes Yes Yes Yes 

DNA004126 Yes Yes Yes Yes 

DNA004141 Yes Yes Yes No 

DNA004146 No Yes No Yes 

DNA004157 No Yes Yes No 

DNA004161 No Yes Yes No 

DNA004166 No Yes No Yes 

DNA004168 Yes Yes Yes Yes 

DNA004172 Yes Yes Yes Yes 

DNA004191 Yes Yes Yes Yes 

DNA004193 Yes Yes Yes Yes 

DNA004198 Yes Yes Yes Yes 

DNA004200 Yes Yes Yes Yes 
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DNA004204 Yes Yes Yes Yes 

DNA004225 Yes Yes Yes Yes 

DNA004227 Yes Yes Yes Yes 

DNA004231 Yes Yes Yes Yes 

DNA004233 Yes Yes Yes Yes 

DNA004241 Yes Yes Yes Yes 

DNA004246 Yes Yes Yes Yes 

DNA004249 Yes Yes Yes Yes 

DNA004253 Yes Yes Yes Yes 

DNA004258 Yes Yes Yes Yes 

DNA004267 Yes Yes Yes Yes 

DNA004270 Yes Yes Yes Yes 

DNA004280 Yes Yes Yes Yes 

DNA004290 Yes Yes Yes Yes 

DNA004292 Yes Yes Yes Yes 

DNA004296 Yes Yes Yes Yes 

DNA004300 Yes Yes Yes Yes 

DNA004301 Yes Yes Yes Yes 

DNA004304 Yes Yes Yes Yes 

DNA004305 Yes Yes Yes Yes 

DNA004308 Yes Yes Yes No 

DNA004312 Yes Yes Yes Yes 

DNA004313 Yes Yes Yes Yes 

DNA004317 Yes Yes Yes Yes 

DNA004325 Yes Yes Yes Yes 

DNA004327 Yes Yes Yes Yes 

DNA004331 Yes Yes Yes Yes 

DNA004335 Yes Yes Yes Yes 

DNA004337 Yes Yes Yes Yes 

DNA004343 Yes Yes Yes Yes 

DNA004348 No Yes Yes Yes 

DNA004350 No Yes Yes Yes 

DNA004354 Yes Yes Yes No 

DNA004356 Yes Yes Yes Yes 

DNA004360 Yes Yes Yes Yes 

DNA004365 Yes Yes Yes Yes 

DNA004370 No Yes Yes Yes 

DNA004373 Yes Yes Yes Yes 

DNA004375 no Yes Yes Yes 

DNA004378 Yes Yes Yes Yes 

DNA004380 No Yes Yes Yes 

DNA004382 Yes Yes Yes Yes 

DNA004384 No Yes Yes Yes 
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DNA004386 Yes Yes Yes Yes 

DNA004388 No Yes Yes Yes 

DNA004390 Yes Yes Yes No 

DNA004391 Yes Yes Yes Yes 

Highlighted grey=buccal DNA samples; unhighlighted =blood DNA samples 

Table 28: Complete data for H19 ICR control samples and runs. 

H19 ICR  

Sample ID Gender Age(yrs)  Run %  Methylations 

        CpG1 CpG2 CpG3 CpG5 CpG6 

DNA004392 F 25 1 51 52 54 52 54 

      2 56 57 56 56 57 

      3 54 58 56 55 58 

DNA004393 M 19 1 52 54 54 54 54 

      2 51 55 53 54 53 

      3 57 58 58 57 59 

DNA004394 M 20 1 51 50 51 51 54 

      2 53 55 52 52 56 

      3 50 54 50 52 51 

DNA004395 F 26 1 53 55 53 52 53 

      2 58 61 59 59 58 

      3 55 58 56 54 53 

DNA004396 F 25 1 50 50 39 49 49 

      2 54 53 43 56 54 

      3 53 53 45 55 54 

DNA004398 M 19 1 51 52 53 52 56 

      2 46 49 47 47 51 

      3 49 46 48 48 52 

DNA004401 F 22 1 51 53 51 49 53 

      2 48 50 52 51 54 

      3 52 56 53 53 53 

DNA004402 F 21 1 52 53 54 51 53 

      2 48 51 49 48 48 

      3 54 56 53 51 52 

DNA004406 F 22 1 47 50 46 45 48 

      2 48 52 48 49 50 

      3 47 50 46 45 48 

DNA004407 F 24 1 41 46 39 43 45 

      2 39 44 39 40 43 

      3 41 44 42 43 42 

DNA004408 M 24 1 54 60 52 54 53 

      2 56 62 58 57 58 

      3 58 66 58 58 59 

DNA004410 F 20 1 54 58 54 56 56 
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      2 56 60 56 57 59 

      3 52 56 52 54 53 

DNA004411 M 19 1 51 53 51 51 52 

      2 53 56 53 53 55 

      3 49 49 48 48 49 

DNA004412 M 23 1 51 59 52 53 55 

      2 50 58 57 54 54 

      3 50 57 54 55 57 

DNA004413 F 19 1 54 57 53 53 55 

      2 51 52 50 49 51 

      3 49 56 50 51 54 

DNA004414 M 23 1 56 62 58 53 54 

      2 55 58 55 54 54 

      3 56 60 57 54 54 

DNA004415 F 21 1 49 54 51 50 50 

      2 50 55 50 50 51 

      3 47 53 51 50 49 

DNA004418 F 19 1 50 52 50 50 50 

      2 55 57 55 54 55 

      3 56 58 56 53 55 

DNA004420 M 19 1 48 52 48 48 51 

      2 47 50 48 47 49 

      3 48 51 48 48 50 

DNA004421 M 18 1 56 56 55 55 60 

      2 57 57 57 55 61 

DNA004425 F 22 1 58 58 59 56 62 

      2 56 54 55 55 59 

      3 57 57 55 56 63 

DNA004426 F 24 1 47 56 48 49 51 

      2 52 53 52 51 54 

DNA004428 F 20 1 46 52 51 48 52 

      2 50 51 50 51 51 

      3 46 52 51 48 54 

DNA004429 F 24 1 55 58 56 57 57 

      2 60 63 61 62 62 

DNA004431 M 25 1 50 50 52 51 54 

      2 53 56 54 53 56 

      3 50 50 52 51 54 

DNA004434 M 24 1 51 55 51 51 53 

      2 50 54 52 51 53 

      3 52 54 52 51 53 

DNA004440 M 21 1 52 57 50 52 54 

      2 54 59 53 54 58 

      3 54 60 52 52 53 

DNA004441 M 19 1 52 58 54 54 56 
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      2 53 59 54 52 56 

      3 52 58 54 54 56 

DNA004442 M 20 1 53 56 54 53 53 

      2 53 59 53 55 54 

      3 58 59 54 55 55 

DNA004448 M 18 1 50 55 49 52 50 

      2 53 57 54 53 56 

      3 50 53 52 50 55 

DNA004450 F 19 1 50 53 53 51 51 

      2 51 57 54 53 54 

DNA004456 M 20 1 47 53 50 48 50 

      2 47 53 50 48 50 

      3 47 50 49 47 53 

DNA004460 M 18 1 56 59 57 58 59 

      2 53 55 52 53 56 

      3 55 58 56 57 58 

DNA004461 F 24 1 53 56 55 54 52 

      2 47 52 52 49 51 

      3 53 53 55 51 56 

DNA004466 F 18 1 51 52 53 50 53 

      2 51 55 53 51 53 

      3 53 57 55 52 59 

DNA004476 M 19 1 52 55 53 51 53 

      2 53 56 51 52 50 

DNA004477 F 24 1 52 55 51 52 52 

      2 52 53 51 52 54 

      3 53 56 52 53 53 

DNA004482 F 19 1 52 61 54 59 56 

      2 50 58 52 57 54 

DNA004483 F 19 1 52 55 51 49 51 

      2 52 58 55 53 58 

DNA004487 M 20 1 55 57 56 53 57 

      2 55 57 56 53 57 

      3 53 56 54 48 53 

DNA004492 F 21 1 51 53 51 51 49 

      2 51 54 51 51 48 

DNA004494 M 20 1 50 52 53 48 52 

      2 52 55 53 51 52 

      3 49 51 52 47 51 

DNA004496 M 18 1 49 51 49 48 51 

      2 48 49 48 48 48 

      3 48 54 50 51 50 

DNA004497 M 19 1 51 52 53 51 50 

      2 51 52 53 51 50 

      3 53 54 55 53 52 
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DNA004498 F 24 1 49 56 53 53 51 

      2 55 59 53 55 54 

      3 50 53 49 50 50 

DNA004500 M 18 1 49 50 53 48 49 

      2 53 52 52 49 52 

DNA004501 M 18 1 53 56 57 53 58 

      2 55 58 59 55 60 

DNA004664 M 22 1 50 52 51 51 51 

      2 51 53 53 52 52 

      3 49 51 51 51 50 

DNA004668 M 22 1 50 52 51 51 58 

      2 51 53 52 51 59 

DNA004690 M 24 1 47 50 47 48 47 

      2 46 49 46 47 45 

      3 48 51 48 50 48 

 

Table 29: Complete data for H19 ICR case samples and runs  

H19 ICR cases  

Sample ID Gender Age (yrs) Phenotype Run %  Methylations 

          CpG1 CpG2 CpG3 CpG5 CpG6 

DNA003985 F 9 FAS 1 49 51 49 48 53 

        2 50 53 51 49 48 

        3 52 54 50 50 53 

DNA003989 F 9 FAS 1 52 64 54 53 61 

        2 52 64 54 53 61 

        3 55 64 56 61 62 

DNA003991 F 12 FAS 1 54 55 51 52 54 

        2 55 56 54 54 57 

        3 56 60 56 56 58 

DNA004010 M 9 FAS 1 56 59 53 54 57 

        2 57 64 58 57 60 

        3 55 62 60 60 63 

DNA004012 F 9 FAS 1 56 59 57 59 59 

        2 56 63 58 58 62 

        3 56 59 57 59 59 

DNA004013 M 9 FAS 1 56 55 52 53 56 

        2 56 55 52 53 56 

        3 56 55 56 55 55 

DNA004017 F 9 FAS 1 48 54 49 49 52 

        2 50 55 48 50 54 

        3 50 58 53 52 55 

DNA004021 M 9 FAS 1 45 50 44 46 50 

        2 44 49 44 45 50 
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        3 45 50 44 46 50 

DNA004024 F 7 FAS 1 53 58 52 52 57 

        2 54 57 53 52 59 

        3 49 54 50 48 54 

DNA004029 F 9 FAS 1 52 54 52 54 55 

        2 54 56 53 53 53 

        3 53 58 54 54 58 

DNA004032 M 10 FAS 1 49 52 52 51 52 

        2 48 51 51 50 51 

        3 48 49 46 47 51 

DNA004035 M 9 FAS 1 50 54 52 51 54 

        2 56 60 57 56 59 

DNA004052 M 10 FAS 1 54 57 56 55 65 

        2 54 57 56 55 65 

        3 55 58 57 56 63 

DNA004053 F 11 FAS 1 50 54 51 52 56 

        2 52 53 52 53 57 

        3 48 55 50 51 54 

DNA004055 M 11 FAS 1 51 56 49 53 49 

        2 51 57 49 53 54 

        3 53 57 52 51 54 

DNA004059 F 10 FAS 1 53 55 50 53 54 

        2 55 55 56 57 54 

        3 55 57 56 57 55 

DNA004061 F 10 FAS 1 51 54 51 51 51 

        2 51 59 55 53 57 

        3 55 57 56 56 57 

DNA004063 M 10 FAS 1 52 54 54 54 56 

        2 51 55 54 54 55 

        3 51 55 57 52 55 

DNA004064 F 10 FAS 1 52 53 52 55 54 

        2 46 51 48 50 49 

        3 48 51 50 48 49 

DNA004068 M 16 FAS 1 59 59 60 58 59 

        2 63 64 65 64 64 

        3 61 64 63 62 62 

DNA004069 F 10 FAS 1 53 58 55 57 56 

        2 57 61 55 56 56 

        3 53 56 53 53 53 

DNA004072 F 6 FAS 1 56 57 50 55 61 

        2 54 62 57 58 58 

DNA004074 F 10 FAS 1 51 55 50 53 50 

        2 49 53 50 50 52 

DNA004076 F 10 FAS 1 52 60 53 55 55 

        2 57 61 56 57 56 
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DNA004082 M 2 FAS 1 56 58 57 56 55 

        2 58 60 59 57 56 

        3 53 54 55 54 53 

DNA004094 F 11 FAS 1 56 64 55 57 60 

        2 59 65 61 62 62 

DNA004126 M 2 FAS 1 48 55 49 51 49 

        2 49 52 50 52 50 

        3 49 52 50 52 50 

DNA004141 F 2 FAS 1 59 61 57 58 59 

        2 56 61 55 54 58 

        3 59 61 56 58 59 

DNA004168 M 3 FAS 1 54 59 59 55 56 

        2 60 53 59 57 52 

DNA004172 F 16 FAS 1 49 53 50 51 51 

        2 49 50 49 46 48 

DNA004191 F 10 FAS 1 54 53 53 54 51 

        2 55 58 55 52 51 

DNA004193 M 10 FAS 1 51 53 50 51 52 

        2 53 55 52 53 54 

DNA004198 M 10 FAS 1 53 61 54 54 57 

        2 53 60 52 52 52 

        3 50 59 50 52 50 

DNA004200 F 10 FAS 1 53 51 56 55 51 

        2 54 54 54 54 52 

        3 54 57 53 53 52 

DNA004204 M 10 FAS 1 56 59 56 53 57 

        2 52 54 52 52 53 

        3 54 57 54 53 55 

DNA004225 M 10 FAS 1 56 56 55 54 55 

        2 52 52 52 52 51 

        3 57 56 55 56 52 

DNA004227 F 11 FAS 1 51 51 50 49 53 

        2 57 55 54 53 58 

DNA004231 M 11 FAS 1 58 59 58 56 58 

        2 55 57 56 53 53 

        3 58 59 58 56 58 

DNA004233 F 10 FAS 1 57 57 56 55 57 

        2 59 60 59 58 61 

        3 59 60 58 57 61 

DNA004241 F 10 FAS 1 59 59 55 54 62 

        2 58 59 59 58 60 

DNA004246 M 11 FAS 1 54 56 54 53 54 

        2 55 55 56 54 55 

DNA004249 M 11 FAS 1 57 56 56 54 55 

        2 62 59 60 57 57 
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        3 59 57 58 55 56 

DNA004253 M 11 FAS 1 64 64 63 60 63 

        2 61 63 60 57 59 

DNA004258 M ? PFAS 1 58 56 56 53 63 

        2 55 60 59 59 61 

DNA004267 F 1 PFAS 1 57 58 57 56 57 

        2 59 59 63 58 58 

DNA004270 ? ? ? 1 54 56 51 52 55 

        2 50 54 54 53 54 

        3 56 54 50 52 56 

DNA004280 F 11 FAS 1 56 60 56 56 58 

        2 57 58 59 58 57 

DNA004290 M 14 FAS 1 60 58 58 56 60 

        2 55 57 59 56 55 

DNA004292 F 12 FAS 1 53 52 52 52 55 

        2 53 51 54 52 54 

        3 54 51 55 51 54 

DNA004296 M 7 FAS 1 49 50 48 52 53 

        2 48 49 47 50 52 

        3 50 52 49 53 53 

DNA004300 F 7 FAS 1 49 47 49 46 47 

        2 49 47 49 47 48 

DNA004301 M 6 FAS 1 61 62 63 60 63 

        2 57 60 57 55 58 

DNA004304 M 16 FAS 1 50 51 48 50 48 

        2 52 53 50 52 50 

DNA004305 M 4 FAS 1 50 51 51 50 51 

        2 56 55 55 54 53 

        3 54 55 53 54 55 

DNA004308 F 5 FAS 1 51 52 49 49 51 

        2 49 48 49 49 46 

DNA004312 M ? FAS 1 54 53 49 53 47 

        2 53 56 53 53 51 

DNA004313 M ? FAS 1 52 54 55 49 50 

        2 51 55 57 50 51 

DNA004317 M 13 FAS 1 47 48 47 47 48 

        2 46 47 46 46 47 

DNA004325 M 2 FAS 1 56 57 57 56 54 

        2 54 56 53 55 54 

        3 57 57 58 56 56 

DNA004327 M 3 FAS 1 54 55 55 55 53 

        2 55 56 54 56 54 

DNA004331 M 8 FAS 1 56 52 56 56 56 

        2 55 54 54 54 51 

        3 54 54 53 54 51 
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DNA004335 M 2 FAS 1 50 53 50 49 53 

        2 51 56 54 56 52 

        3 55 56 55 55 54 

DNA004337 F 2 FAS 1 51 52 51 51 55 

        2 52 53 52 52 56 

DNA004343 F 10 FAS 1 54 55 53 54 54 

        2 54 56 53 54 55 

        3 55 56 54 55 55 

DNA004354 M 8 FAS 1 54 55 50 54 56 

        2 54 55 51 54 56 

        3 54 54 50 52 54 

DNA004356 M 9 FAS 1 51 51 51 51 51 

        2 52 57 55 52 56 

        3 49 50 48 47 51 

DNA004360 M 10 FAS 1 47 54 48 50 51 

        2 49 48 49 48 49 

        3 49 54 49 50 51 

DNA004365 M 10 FAS 1 58 59 58 58 60 

        2 58 63 58 57 60 

        3 56 60 56 55 57 

DNA004373 F 7 FAS 1 53 50 51 50 53 

        2 49 52 50 50 52 

DNA004378 M 8 FAS 1 51 57 52 53 55 

        2 49 54 49 50 54 

        3 49 51 50 51 54 

DNA004382 M 9 FAS 1 58 59 57 56 59 

        2 54 58 53 54 56 

        3 54 59 50 53 55 

DNA004386 M 8 FAS 1 45 49 46 48 51 

        2 47 49 46 47 47 

        3 49 55 49 51 53 

DNA004390 F 7 FAS 1 51 53 48 54 58 

        2 51 53 49 49 52 

DNA004391 M 7 FAS 1 48 50 49 46 49 

        2 50 50 48 47 50 

? = no information 
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Table 30: Complete data for IG-DMR control samples and runs 

Complete data for IG-DMR control samples and runs 

Controls Gender Age(yrs)  Run Reg 1 Reg2 

      
 

CpG1 CpG2 CpG3 CpG4 CpG5 CpG6 CpG7 CpG8 CpG9 CpG10 

DNA004392 F 25 1 63 64 65 67 66 52 55 56 55 56 

      2 63 64 65 67 66 52 55 50 51 52 

DNA004393 M 19 1 79 83 70 78 85 61 60 54 54 57 

      2 80 84 73 78 87 59 61 56 51 53 

DNA004394 M 20 1 67 69 62 67 67 53 56 51 51 52 

      2 69 71 63 69 68 52 57 50 49 48 

DNA004395 F 26 1 70 72 65 71 72 55 58 54 52 54 

      2 70 72 65 76 75 57 59 54 53 52 

DNA004396 F 25 1 78 80 73 79 79 60 61 54 52 53 

      2 78 80 73 78 78 59 61 58 52 57 

DNA004398 M 19 1 72 75 62 71 71 56 54 55 53 56 

      2 72 75 62 71 71 56 54 55 53 56 

DNA004399 F 21 1 71 72 64 72 72 55 55 51 50 50 

      2 74 79 69 78 79 59 59 51 50 50 

DNA004401 F 22 1 71 73 65 73 74 56 55 51 51 52 

      2 71 73 65 73 74 56 55 51 51 52 

DNA004402 F 21 1 81 85 72 80 85 63 65 52 51 54 

      2 81 85 72 80 85 63 65 52 51 54 

DNA004404 F 25 1 76 77 70 78 79 54 55 53 49 50 

      2 76 77 70 78 79 54 55 53 49 50 

DNA004406 F 22 1 74 78 70 74 75 58 60 52 51 52 

      2 74 72 72 73 74 55 59 52 49 52 

DNA004407 F 24 1 74 75 66 73 74 57 58 50 50 50 

      2 75 76 67 74 75 57 58 50 50 50 

DNA004408 M 24 1 74 73 68 73 76 58 56 57 56 56 

      2 69 73 64 72 74 57 56 57 56 56 
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DNA004410 F 20 1 67 71 57 68 69 53 55 49 49 49 

      2 67 71 57 68 69 53 55 49 49 50 

DNA004411 M 19 1 73 75 67 73 74 55 58 49 49 49 

      2 74 77 71 75 77 58 60 50 49 51 

DNA004412 M 23 1 80 84 72 78 85 62 61 54 51 51 

      2 83 87 72 78 85 61 61 52 51 50 

DNA004413 F 19 1 70 73 65 72 72 55 54 57 55 56 

      2 70 73 65 70 70 57 56 57 55 56 

DNA004414 M 23 1 81 85 76 82 77 61 61 55 54 53 

      2 81 85 76 82 76 60 60 54 54 53 

DNA004415 F 21 1 74 79 74 74 77 58 60 58 53 58 

      2 74 79 74 74 77 58 60 58 53 58 

DNA004418 F 19 1 71 74 68 76 75 56 58 50 50 50 

      2 71 74 68 76 75 56 58 50 50 50 

DNA004420 M 19 1 75 79 69 78 80 57 55 54 54 55 

      2 75 79 69 75 80 58 55 54 51 55 

DNA004421 M 18 1 78 86 69 78 87 58 58 51 51 51 

      2 80 82 71 77 86 60 60 52 53 57 

DNA004422 F 20 1 70 73 63 70 73 54 56 51 49 50 

      2 70 73 63 69 73 55 56 54 52 52 

DNA004425 F 22 1 73 77 70 78 79 58 58 53 54 50 

      2 74 78 67 76 78 60 60 51 53 52 

DNA004426 F 24 1 73 75 66 73 77 58 59 51 53 55 

      2 73 75 66 73 77 58 59 51 53 55 

DNA004428 F 20 1 74 77 72 75 75 58 57 59 58 59 

      2 77 81 67 78 78 61 62 59 58 59 

DNA004429 F 24 1 73 79 66 73 78 57 60 52 53 53 

      2 73 79 66 73 78 57 60 52 53 53 

DNA004431 M 25 1 70 72 68 73 72 55 56 48 49 50 

      2 70 72 68 73 72 55 56 51 50 49 

DNA004434 M 24 1 70 70 65 71 72 54 56 51 51 51 
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      2 70 70 65 71 72 54 56 52 52 52 

DNA004437 M 23 1 81 85 69 76 84 60 57 53 56 52 

      2 79 85 69 76 85 62 59 54 56 51 

DNA004440 M 21 1 78 84 69 76 85 62 59 52 50 54 

      2 76 83 70 76 85 62 59 57 55 57 

DNA004441 M 19 1 65 65 61 65 66 52 55 51 51 49 

      2 65 65 61 65 66 52 55 51 51 52 

DNA004442 M 20 1 69 71 65 72 70 54 57 52 50 51 

      2 69 71 65 72 70 54 57 52 52 49 

DNA004448 M 18 1 72 74 66 68 71 57 56 52 51 51 

      2 71 74 67 68 73 58 61 52 51 51 

DNA004450 F 19 1 71 74 66 73 73 55 57 55 55 55 

      2 71 74 66 73 73 55 57 55 55 55 

DNA004456 M 20 1 69 73 64 68 72 55 50 54 54 54 

      2 70 73 67 70 70 53 54 54 50 54 

DNA004460 M 18 1 67 70 63 68 70 53 55 51 51 50 

      2 67 71 64 69 71 54 64 51 51 50 

DNA004461 F 24 1 66 67 61 67 66 54 54 52 51 52 

      2 66 67 61 67 66 54 54 50 50 50 

DNA004463 M 25 1 70 73 67 72 73 56 58 53 52 55 

      2 70 73 67 72 73 56 58 53 52 55 

DNA004465 F 20 1 71 74 65 72 75 60 56 50 51 50 

      2 71 74 65 72 75 60 56 50 51 50 

DNA004466 F 18 1 68 70 62 67 69 55 54 50 52 52 

      2 69 70 62 68 70 53 55 50 52 52 

DNA004476 M 19 1 76 79 65 74 79 56 55 51 50 50 

      2 76 79 65 74 79 56 55 51 50 50 

DNA004477 F 24 1 65 68 61 65 68 52 54 49 52 52 

      2 66 67 60 66 66 52 52 49 52 52 

DNA004481 F 20 1 72 75 68 73 76 57 57 53 53 55 

      2 67 70 65 68 72 53 57 49 50 51 
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DNA004483 F 19 1 75 79 64 67 81 59 58 56 58 55 

      2 79 80 66 70 81 57 57 56 58 55 

DNA004487 M 20 1 70 74 63 69 71 56 56 52 50 53 

      2 70 74 63 69 71 56 56 52 50 53 

DNA004492 F 21 1 71 76 65 74 75 57 57 54 55 54 

      2 71 74 68 75 74 56 55 55 51 53 

DNA004494 M 20 1 71 70 70 70 71 54 55 53 53 51 

      2 67 72 69 68 71 54 55 53 53 51 

DNA004496 M 18 1 70 72 64 71 73 52 54 50 50 53 

      2 69 69 64 70 69 52 55 50 50 53 

DNA004497 M 19 1 76 78 66 75 81 59 57 50 49 49 

      2 76 78 66 75 81 59 57 50 49 53 

DNA004498 F 24 1 70 72 60 70 74 55 54 50 49 53 

      2 70 72 60 70 74 55 54 52 49 50 

DNA004500 M 18 1 73 76 62 75 76 54 54 52 54 54 

      2 73 76 70 77 75 57 59 51 54 54 

DNA004501 M 18 1 66 74 59 71 70 57 53 53 52 51 

      2 66 70 61 68 69 52 55 50 50 50 

DNA004664 M 22 1 71 76 67 75 75 55 58 52 51 53 

      2 71 76 67 75 75 55 58 52 51 53 

DNA004668 M 22 1 67 71 65 71 69 51 54 51 50 52 

      2 67 71 65 71 69 51 54 51 50 52 

DNA004690 M 24 1 64 66 62 67 65 51 53 51 50 50 

      2 64 66 62 67 65 51 53 51 50 50 
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Table 31: Complete data for case samples for IG-DMR and runs:  

Complete data for case samples for IG-DMR and runs 

Sample ID Gender Age(yrs) Phenotype Run Reg 1 Reg2 

        
 

CpG1 CpG2 CpG3 CpG4 CpG5 CpG6 CpG7 CpG8 CpG9 CpG10 

DNA003985 F 9 FAS 1 71 76 67 70 75 56 54 52 54 53 

        2 75 80 67 75 78 60 57 52 54 53 

DNA003989 F 9 FAS 1 74 77 70 76 78 60 60 50 52 52 

        2 74 77 70 76 78 60 60 50 52 52 

DNA003991 F 12 FAS 1 74 76 67 76 79 60 58 57 60 56 

        2 74 76 67 76 79 60 58 57 60 56 

DNA004010 M 9 FAS 1 74 78 69 75 78 57 57 53 53 54 

        2 74 78 69 75 78 57 57 53 53 54 

DNA004012 F 9 FAS 1 75 78 69 74 80 57 58 52 51 49 

        2 75 78 69 74 80 57 58 52 51 49 

DNA004013 M 9 FAS 1 75 78 74 79 79 62 58 53 52 53 

        2 75 78 74 79 79 62 58 53 52 53 

DNA004017 F 9 FAS 1 71 73 66 70 74 55 56 52 50 51 

        2 71 77 65 72 75 56 56 52 50 51 

DNA004021 M 9 FAS 1 74 77 69 75 80 59 59 54 51 53 

        2 74 77 69 75 80 59 59 54 51 53 

DNA004024 F 7 FAS 1 75 77 69 75 78 57 59 50 50 50 

        2 75 77 69 75 78 57 59 50 50 50 

DNA004029 F 9 FAS 1 81 84 78 79 88 61 61 55 54 57 

        2 81 84 78 79 88 61 61 55 54 57 

DNA004032 M 10 FAS 1 68 72 65 69 69 53 57 50 50 52 

        2 67 70 64 69 69 53 57 50 50 52 

DNA004035 M 9 FAS 1 73 76 66 73 77 55 57 50 50 51 

        2 74 76 71 74 77 60 58 50 50 51 

DNA004042 F 9 FAS 1 71 74 67 74 75 56 56 51 52 51 

        2 72 76 67 73 77 59 57 49 51 50 
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DNA004052 M 10 FAS 1 71 75 64 71 77 57 54 55 54 53 

        2 73 73 68 77 76 58 56 53 54 54 

DNA004053 F 11 FAS 1 69 72 64 69 72 55 54 50 49 49 

        2 67 67 59 66 69 51 54 49 49 50 

DNA004055 M 11 FAS 1 74 76 69 74 74 56 60 50 49 50 

        2 73 77 69 77 76 58 57 50 49 50 

DNA004059 F 10 FAS 1 67 68 60 67 67 55 55 50 50 50 

        2 66 66 62 67 66 52 50 50 50 50 

DNA004061 F 10 FAS 1 69 74 63 70 72 56 57 53 54 53 

        2 64 70 62 69 70 54 53 53 54 53 

DNA004063 M 10 FAS 1 68 71 62 68 72 55 58 51 51 49 

        4 69 72 66 68 71 55 55 51 51 50 

DNA004064 F 10 FAS 1 66 72 64 68 72 55 58 55 55 53 

        2 69 70 64 71 72 51 56 55 55 53 

DNA004065 M 8 FAS 1 77 83 68 75 87 58 58 51 53 52 

        2 77 83 68 75 87 58 58 55 54 54 

DNA004068 M 16 FAS 1 68 69 61 67 67 53 55 53 52 53 

        2 68 69 61 67 67 53 55 53 52 53 

DNA004069 F 10 FAS 1 66 69 66 69 69 52 52 50 50 50 

        2 66 69 64 68 68 52 52 50 50 50 

DNA004072 F 6 FAS 1 70 69 65 71 73 56 57 52 53 52 

        2 70 69 65 71 73 55 55 52 53 52 

DNA004074 F 10 FAS 1 77 79 64 76 79 56 57 51 51 51 

        2 73 75 68 74 77 57 58 50 50 48 

DNA004076 F 10 FAS 1 75 78 67 73 80 59 56 54 56 56 

        2 72 75 69 73 79 59 57 54 56 56 

DNA004082 M 2 FAS 1 74 79 69 76 82 62 60 54 54 55 

        2 74 79 69 76 82 62 60 54 54 55 

DNA004094 F 11 FAS 1 78 81 66 73 85 66 61 58 63 60 

        2 78 81 66 76 82 62 60 58 60 56 

DNA004126 M 2 FAS 1 77 86 64 71 90 62 58 64 65 58 
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        2 79 84 62 76 89 66 59 59 63 58 

DNA004141 F 2 FAS 1 75 75 61 69 84 60 60 61 60 58 

        2 78 81 67 70 85 65 58 64 62 55 

DNA004157 F 1 FAS 1 54 74 50 66 75 50 54 53 54 56 

        2 54 74 50 66 75 50 54 53 54 56 

DNA004161 F 5 FAS 1 76 77 68 69 69 62 64 60 60 60 

        2 76 77 68 69 69 62 64 60 60 60 

DNA004168 M 3 FAS 1 79 81 64 74 85 60 60 57 55 54 

        2 75 77 67 68 83 60 65 57 55 54 

DNA004172 F 16 FAS 1 67 67 63 68 68 53 55 50 50 50 

        2 68 69 65 71 70 56 59 50 50 50 

DNA004191 F 10 FAS 1 77 80 71 79 82 55 59 50 52 53 

        2 76 77 70 77 85 56 55 53 53 54 

DNA004193 M 10 FAS 1 76 79 70 75 78 60 55 50 50 51 

        2 76 79 70 75 78 60 55 50 50 51 

DNA004198 M 10 FAS 1 73 73 67 71 71 50 50 51 50 50 

        2 73 74 66 73 74 53 56 51 50 50 

DNA004200 F 10 FAS 1 85 87 67 73 86 59 58 59 60 57 

        2 78 82 71 72 86 60 59 61 61 59 

DNA004204 M 10 FAS 1 65 68 62 67 68 52 53 49 50 49 

        2 65 68 62 67 68 52 53 49 50 49 

DNA004225 M 10 FAS 1 74 79 71 76 78 59 59 57 56 55 

        2 73 76 68 73 82 59 63 53 53 53 

DNA004227 F 11 FAS 1 72 77 67 72 77 57 60 50 49 51 

        2 72 76 68 72 76 57 57 52 51 51 

DNA004231 M 11 FAS 1 72 77 68 72 77 54 57 50 50 50 

        2 72 75 67 74 76 52 53 50 50 50 

DNA004233 F 10 FAS 1 67 71 65 68 70 55 55 55 55 52 

        2 65 68 63 68 71 56 54 55 54 53 

DNA004241 F 10 FAS 1 79 83 73 75 85 58 57 58 52 53 

        2 79 83 76 78 86 57 58 55 50 52 
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DNA004246 M 11 FAS 1 67 69 61 68 69 53 56 54 54 53 

        2 67 70 64 69 69 54 55 52 53 52 

DNA004249 M 11 FAS 1 71 73 69 71 74 57 58 52 51 52 

        2 71 73 65 71 73 56 56 51 53 53 

DNA004253 M 11 FAS 1 68 70 64 69 71 53 56 51 50 50 

        2 65 70 63 69 70 53 56 51 49 52 

DNA004258 M ? PFAS 1 76 80 61 63 81 59 57 65 62 60 

        2 78 83 65 68 85 58 60 61 60 56 

DNA004267 F 1 PFAS 1 80 89 69 76 90 65 61 65 68 63 

        2 85 88 66 74 91 67 60 65 69 61 

DNA004270 ? ? ? 1 84 85 63 73 91 63 56 65 62 63 

        2 81 88 69 75 92 64 59 66 67 63 

DNA004280 F 11 FAS 1 79 82 76 79 86 60 61 52 50 53 

        2 78 81 77 81 84 61 61 54 51 52 

DNA004290 M 14 FAS 1 69 69 60 67 70 55 55 52 54 52 

        2 69 69 60 67 70 55 55 52 54 52 

DNA004292 F 12 FAS 1 67 71 64 69 71 55 55 51 51 51 

        2 70 72 67 71 73 56 57 51 51 50 

DNA004296 M 7 FAS 1 69 69 63 68 73 57 57 49 51 50 

        2 71 74 64 71 74 56 56 49 51 50 

DNA004300 F 7 FAS 1 71 77 65 72 79 55 57 51 51 50 

        2 71 75 67 73 77 58 59 52 49 50 

DNA004301 M 6 FAS 1 81 87 71 77 88 63 59 54 50 55 

        2 80 86 70 77 91 65 60 54 54 55 

DNA004304 M 16 FAS 1 80 82 70 76 85 59 59 50 52 52 

        2 78 82 70 78 85 59 58 50 52 52 

DNA004305 M 4 FAS 1 74 76 69 74 80 56 57 52 57 55 

        2 75 75 67 76 79 60 57 52 55 55 

DNA004308 F 5 FAS 1 80 77 75 80 85 61 60 50 51 52 

        2 78 82 71 78 86 66 63 51 53 53 

DNA004312 M ? FAS 1 69 74 63 72 74 57 55 50 49 52 
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        2 69 78 66 74 77 57 55 52 51 51 

DNA004313 M ? FAS 1 70 74 67 73 75 58 56 49 52 51 

        2 71 74 68 72 74 56 57 49 51 51 

DNA004317 M 13 FAS 1 66 70 60 66 71 52 52 50 51 49 

        2 66 70 60 66 71 52 52 50 51 49 

DNA004325 M 2 FAS 1 73 79 66 70 84 56 54 52 52 52 

        2 72 80 67 70 83 57 55 54 54 53 

DNA004327 M 3 FAS 1 79 83 67 75 86 56 54 58 57 55 

        2 76 83 70 77 86 61 60 53 52 52 

DNA004331 M 8 FAS 1 80 53 75 84 87 64 61 55 55 55 

        2 78 51 74 81 88 64 59 53 55 55 

DNA004335 M 2 FAS 1 74 79 62 69 82 59 55 50 54 51 

        2 74 79 62 69 80 59 55 50 54 51 

DNA004337 F 2 FAS 1 83 86 69 75 89 63 60 55 58 58 

        2 84 89 73 79 90 60 60 55 58 58 

DNA004343 F 10 FAS 1 71 72 65 72 75 57 56 51 52 51 

        2 68 71 64 71 71 60 55 50 49 50 

DNA004348 F 10 FAS 1 72 75 64 72 74 56 56 52 49 54 

        2 72 75 64 73 74 59 58 53 52 51 

DNA004350 F 8 FAS 1 69 71 62 72 73 56 59 56 55 57 

        1 71 73 63 72 73 56 57 55 54 56 

DNA004354 M 8 FAS 1 75 81 71 79 81 59 58 53 54 50 

        2 75 81 71 79 81 59 58 52 52 55 

DNA004356 M 9 FAS 1 72 76 67 71 75 55 52 54 51 49 

        2 73 75 68 73 72 56 52 55 54 52 

DNA004360 M 10 FAS 1 73 76 69 73 83 58 57 52 54 50 

        2 78 74 73 76 80 60 59 51 50 50 

DNA004365 M 10 FAS 1 72 76 69 71 73 57 56 50 53 50 

        2 72 76 69 72 76 59 58 51 52 50 

DNA004370 F 11 FAS 1 68 71 65 69 71 56 55 50 51 50 

        2 68 71 65 69 71 56 55 50 51 50 
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DNA004373 F 7 FAS 1 67 70 63 71 70 55 53 55 51 50 

        2 68 71 66 68 69 53 53 53 53 49 

DNA004375 M 8 FAS 1 74 74 68 72 76 57 58 52 50 50 

        2 72 74 68 75 76 57 57 54 54 47 

DNA004378 M 8 FAS 1 76 78 68 76 79 55 60 50 49 52 

        2 76 78 68 76 79 55 60 56 54 56 

DNA004380 M 8 FAS 1 66 71 62 71 72 57 55 61 60 59 

        2 67 70 62 68 72 55 55 56 57 55 

DNA004382 M 9 FAS 1 70 71 63 70 71 56 54 54 50 53 

        2 66 68 60 68 68 55 52 54 50 53 

DNA004384 F 6 FAS 1 71 79 64 71 78 55 57 55 53 53 

        2 71 79 64 71 78 55 57 50 53 53 

DNA004386 M 8 FAS 1 83 86 74 87 87 61 60 53 49 49 

        2 85 87 76 88 88 64 59 53 50 51 

DNA004388 M 6 FAS 1 71 69 66 64 74 59 60 53 51 53 

        2 71 69 66 64 74 60 57 52 55 50 

DNA004390 F 7 FAS 1 81 83 67 78 87 61 58 60 57 59 

        2 83 83 67 78 88 61 59 52 55 56 

DNA004391 M 7 FAS 1 81 89 72 79 88 62 62 52 57 56 

        2 81 89 72 80 88 59 61 52 52 53 

? = no information 
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Table 32: Complete data for KvDMR1 control samples and runs:  

Complete data for KvDMR1 control samples and runs 

Controls Gender Age(yrs)  run Methylation % 

      
 

CpG1 CpG2 CpG3 CpG4 CpG5 CpG6 CpG7 

DNA004392 F 25 1 62 62 60 60 60 58 62 

      2 57 63 60 59 63 61 64 

DNA004393 M 19 1 63 63 61 59 60 60 63 

      2 60 62 59 62 60 61 65 

DNA004394 M 20 1 55 62 58 58 61 58 69 

      2 58 62 58 60 61 60 65 

DNA004395 F 26 1 63 60 61 61 64 60 63 

      2 59 62 62 61 65 61 63 

DNA004396 F 25 1 61 62 63 62 65 61 64 

      2 62 65 60 61 63 62 62 

DNA004398 M 19 1 57 63 59 60 57 56 63 

      2 59 63 58 60 63 60 60 

DNA004399 F 21 1 57 62 58 60 60 58 63 

      2 59 63 58 59 60 61 63 

DNA004401 F 22 1 52 52 49 50 50 52 53 

      2 54 51 50 51 51 53 55 

DNA004402 F 21 1 59 61 56 58 59 59 61 

      2 56 57 59 57 57 57 60 

DNA004404 F 25 1 62 61 58 59 59 61 61 

      2 65 59 57 60 59 62 63 

DNA004406 F 22 1 56 62 57 58 60 59 61 

      2 57 61 53 60 59 58 59 

DNA004407 F 24 1 62 62 58 59 61 61 57 

      2 58 59 59 60 58 61 63 

DNA004408 M 24 1 59 59 58 59 63 60 64 

      2 59 60 53 58 58 57 58 
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DNA004410 F 20 1 62 61 55 55 58 58 57 

      2 62 61 55 56 59 56 55 

DNA004411 M 19 1 61 57 58 57 55 58 55 

      2 61 57 57 57 56 55 55 

DNA004412 M 23 1 61 63 60 60 62 60 58 

      2 60 64 60 60 62 60 58 

DNA004413 F 19 1 58 59 55 57 56 50 58 

      2 57 57 56 56 56 55 58 

DNA004414 M 23 1 64 61 59 62 60 62 63 

      2 61 66 59 62 64 63 64 

DNA004415 F 21 1 65 63 57 57 60 58 59 

      2 62 62 59 61 60 62 62 

DNA004418 F 19 1 55 58 58 57 59 56 60 

      2 58 60 55 58 57 61 62 

DNA004420 M 19 1 55 62 56 56 61 56 55 

      2 59 61 56 56 59 57 55 

DNA004421 M 18 1 59 60 62 62 63 59 64 

      2 60 64 61 60 63 60 62 

DNA004422 F 20 1 61 57 57 57 58 56 59 

      2 58 59 59 59 58 59 59 

DNA004425 F 22 1 59 60 54 56 58 53 57 

      2 59 60 55 56 59 55 57 

DNA004426 F 24 1 58 60 56 58 61 54 59 

      2 59 57 59 58 59 56 58 

DNA004428 F 20 1 58 62 61 62 66 60 63 

      2 57 66 57 58 63 61 60 

DNA004429 F 24 1 56 59 57 56 59 55 59 

      2 58 63 57 58 59 56 58 

DNA004430 M 18 1 55 60 57 58 60 56 59 

      2 57 58 56 58 58 57 61 

DNA004431 M 25 1 61 62 57 59 59 58 60 
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      2 56 63 56 58 61 57 60 

DNA004437 M 23 1 61 58 57 58 58 55 58 

      2 57 64 57 57 60 56 58 

DNA004440 M 21 1 59 66 58 60 65 57 60 

      2 59 61 58 59 62 57 59 

DNA004441 M 19 1 62 62 56 57 60 57 57 

      2 59 60 56 58 58 58 59 

DNA004442 M 20 1 56 62 59 59 56 58 61 

      2 60 63 58 58 56 57 61 

DNA004448 M 18 1 61 64 55 56 60 59 58 

      2 60 64 57 58 59 59 61 

DNA004450 F 19 1 55 64 57 59 62 56 59 

      2 58 59 58 59 59 57 61 

DNA004456 M 20 1 59 64 54 56 60 54 57 

      2 54 62 57 59 62 55 60 

DNA004460 M 18 1 60 66 59 60 61 62 64 

      2 58 61 59 61 57 61 63 

DNA004461 F 24 1 60 67 59 61 62 61 64 

      2 59 62 57 60 57 59 61 

DNA004463 M 25 1 59 66 54 58 62 62 62 

      2 57 62 55 57 58 60 60 

DNA004465 F 20 1 57 61 57 58 60 57 59 

      2 60 62 55 59 61 57 61 

DNA004466 F 18 1 60 67 60 62 62 59 64 

      2 60 66 59 62 59 64 64 

DNA004476 M 19 1 59 66 58 60 61 61 60 

      2 64 63 59 60 60 66 64 

DNA004477 F 24 1 62 64 56 58 59 60 61 

      2 63 64 58 59 58 64 59 

DNA004481 F 20 1 60 60 55 57 57 57 58 

      2 55 62 57 57 61 56 62 
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DNA004482 F 19 1 54 60 57 60 57 60 63 

      2 52 60 56 56 58 57 59 

DNA004483 F 19 1 56 59 56 58 57 59 59 

      2 59 58 56 57 57 58 60 

DNA004487 M 20 1 59 61 58 60 58 64 62 

      2 61 63 57 59 59 63 60 

DNA004492 F 21 1 59 62 58 60 58 64 61 

      2 56 66 58 61 63 61 62 

DNA004494 M 20 1 62 63 60 62 58 63 62 

      2 57 65 57 59 60 60 59 

DNA004496 M 18 1 56 55 56 56 55 56 58 

      2 57 57 57 58 58 58 59 

DNA004497 M 19 1 57 63 56 57 60 57 57 

      2 53 59 52 53 55 52 54 

DNA004498 F 24 1 55 60 56 59 59 54 59 

      2 58 62 55 58 57 57 61 

DNA004500 M 18 1 51 53 51 53 56 51 54 

      2 54 56 53 54 54 52 55 

DNA004501 M 18 1 57 59 56 58 54 56 61 

      2 61 60 56 57 58 59 59 

DNA004690 M 24 1 61 64 57 58 61 60 63 

      2 59 59 57 60 57 58 62 
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Table 33: Complete data for KvDMR1 case samples and runs:  

Complete data for KvDMR1 case samples and runs 

Cases Gender Age(yrs) Phenotype   Methylation % 

        run CpG1 CpG2 CpG3 CpG4 CpG5 CpG6 CpG7 

DNA003985 F 9 FAS 1 57 59 57 58 57 60 59 

        2 62 59 58 59 57 59 62 

DNA003989 F 9 FAS 1 62 63 58 59 59 63 60 

        2 59 60 62 63 61 63 62 

DNA003991 F 12 FAS 1 55 60 58 57 63 57 58 

        2 55 62 56 57 59 55 59 

DNA004010 M 9 FAS 1 59 62 56 58 59 58 58 

        2 63 63 58 60 59 63 60 

DNA004012 F 9 FAS 1 57 59 57 57 61 56 59 

        2 62 64 57 58 62 57 57 

DNA004013 M 9 FAS 1 63 62 61 61 60 64 61 

        2 62 62 61 61 59 63 60 

DNA004017 F 9 FAS 1 61 63 59 58 62 60 58 

        2 59 63 58 60 59 60 61 

DNA004021 M 9 FAS 1 57 59 58 60 57 61 62 

        2 62 62 57 59 58 58 57 

DNA004024 F 7 FAS 1 59 60 59 60 58 61 63 

        2 63 64 58 59 61 60 58 

DNA004029 F 9 FAS 1 58 60 57 58 58 59 58 

        2 54 60 55 55 58 54 56 

DNA004032 M 10 FAS 1 57 58 57 57 58 56 60 

        2 54 60 58 58 60 56 60 

DNA004035 M 9 FAS 1 58 62 56 57 60 56 61 

        2 57 65 55 56 58 60 59 

DNA004042 F 9 FAS 1 60 61 59 60 60 58 60 

        2 61 62 59 60 59 60 61 

DNA004052 M 10 FAS 1 62 63 60 59 61 62 57 

        2 58 59 58 58 58 56 57 

DNA004053 F 11 FAS 1 58 58 55 58 59 56 58 

        2 58 60 56 58 58 57 61 
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DNA004055 M 11 FAS 1 59 64 58 59 61 59 60 

        2 59 61 59 60 60 58 60 

DNA004059 F 10 FAS 1 58 60 58 58 58 57 60 

        2 60 62 54 55 58 58 60 

DNA004061 F 10 FAS 1 61 64 58 59 62 59 61 

        2 59 58 58 59 57 59 61 

DNA004063 M 10 FAS 1 58 60 58 59 60 59 61 

        2 63 65 59 59 59 58 61 

DNA004064 F 10 FAS 1 61 64 55 57 60 57 60 

        2 59 63 58 59 61 58 58 

DNA004065 M 8 FAS 1 63 67 58 60 64 61 60 

        2 57 63 59 59 59 61 61 

DNA004068 M 16 FAS 1 61 62 55 57 60 57 57 

        2 59 63 55 58 59 58 60 

DNA004069 F 10 FAS 1 55 61 56 56 61 55 60 

        2 56 62 54 56 60 54 57 

DNA004072 F 6 FAS 1 62 64 60 60 65 60 64 

        2 67 70 60 61 65 62 63 

DNA004074 F 10 FAS 1 56 61 57 58 60 59 60 

        2 57 64 58 60 60 57 60 

DNA004076 F 10 FAS 1 61 63 59 59 59 61 62 

        2 61 65 59 60 62 58 59 

DNA004082 M 2 FAS 1 58 63 55 55 59 56 56 

        2 57 59 57 58 58 57 58 

DNA004094 F 11 FAS 1 60 60 60 60 59 62 60 

        2 59 62 56 60 60 57 56 

DNA004126 M 2 FAS 1 57 59 57 59 57 61 60 

        2 61 63 58 59 57 61 57 

DNA004141 F 2 FAS 1 61 63 59 59 58 61 62 

        2 60 63 62 62 61 61 62 

DNA004146 F 2 FAS 1 61 62 61 58 61 64 64 

        2 65 63 59 61 62 63 64 

DNA004157 F 1 FAS 1 65 63 60 62 61 62 62 

        2 61 63 55 58 60 58 59 
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DNA004161 F 5 FAS 1 64 68 64 64 61 67 64 

        2 60 65 62 64 65 62 64 

DNA004166 M 2 FAS 1 72 73 64 65 69 70 65 

        2 68 70 62 65 67 67 66 

DNA004168 M 3 FAS 1 64 70 62 63 63 67 67 

        2 66 68 64 65 66 67 67 

DNA004172 F 16 FAS 1 61 64 56 58 62 58 59 

        2 59 59 60 60 58 58 61 

DNA004191 F 10 FAS 1 61 65 61 61 63 61 65 

        2 65 70 60 62 66 64 64 

DNA004193 M 10 FAS 1 59 64 59 60 61 60 63 

        2 57 61 57 58 62 56 60 

DNA004198 M 10 FAS 1 61 61 59 61 59 60 64 

        2 58 61 60 60 61 58 62 

DNA004200 F 10 FAS 1 61 61 60 59 61 61 60 

        2 65 67 57 58 64 60 60 

DNA004204 M 10 FAS 1 60 63 60 60 62 63 62 

        2 58 64 60 61 65 60 63 

DNA004225 M 10 FAS 1 65 69 60 62 65 61 61 

        2 60 66 59 62 67 59 65 

DNA004227 F 11 FAS 1 58 62 58 57 58 56 61 

        2 62 62 57 58 58 59 62 

DNA004231 M 11 FAS 1 62 65 56 58 62 59 59 

        2 68 66 60 62 62 64 66 

DNA004233 F 10 FAS 1 59 65 60 60 65 59 64 

        2 62 65 58 60 61 64 63 

DNA004241 F 10 FAS 1 62 62 56 58 59 57 59 

        2 61 64 56 58 59 57 61 

DNA004246 M 11 FAS 1 58 59 56 59 57 56 60 

        2 61 59 56 59 58 59 61 

DNA004249 M 11 FAS 1 58 59 57 59 57 58 59 

        2 56 62 56 58 60 58 60 

DNA004253 M 11 FAS 1 57 58 55 58 56 53 60 

        2 57 57 56 55 59 53 56 
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DNA004258 M ? PFAS 1 56 60 56 59 57 56 59 

        2 60 59 57 59 56 56 58 

DNA004267 F 1 PFAS 1 58 59 58 57 56 59 59 

        2 56 62 54 57 56 59 60 

DNA004270 ? ? ? 1 56 62 53 56 59 54 59 

        2 58 62 53 57 55 57 59 

DNA004280 F 11 FAS 1 53 60 58 58 59 54 61 

        2 52 60 57 57 60 55 58 

DNA004290 M 14 FAS 1 58 59 56 58 56 56 58 

        2 57 61 54 56 57 56 57 

DNA004292 F 12 FAS 1 61 61 56 57 59 56 59 

        2 61 59 57 59 57 54 55 

DNA004296 M 7 FAS 1 60 63 56 57 60 56 58 

        2 60 58 57 57 57 56 58 

DNA004300 F 7 FAS 1 55 62 56 56 60 55 58 

        2 57 62 56 57 60 55 59 

DNA004301 M 6 FAS 1 63 59 57 57 57 54 59 

        2 61 61 55 56 59 56 59 

DNA004304 M 16 FAS 1 61 62 57 57 57 59 57 

        2 61 62 57 58 61 58 59 

DNA004305 M 4 FAS 1 62 61 54 56 58 57 57 

        2 57 59 58 58 55 59 58 

DNA004308 F 5 FAS 1 59 60 57 59 57 59 59 

        2 56 61 57 56 55 58 58 

DNA004312 M ? FAS 1 60 60 55 55 54 54 58 

        2 60 60 55 57 54 54 58 

DNA004313 M ? FAS 1 54 62 54 56 56 57 61 

        2 57 57 55 55 56 55 58 

DNA004317 M 13 FAS 1 59 61 56 56 56 57 57 

        2 58 61 54 57 56 59 57 

DNA004325 M 2 FAS 1 54 58 56 57 57 56 59 

        2 56 58 55 55 56 55 56 

DNA004327 M 3 FAS 1 55 56 56 55 58 56 55 

        2 56 57 57 57 57 56 59 
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DNA004331 M 8 FAS 1 62 55 57 56 57 55 58 

        2 62 56 56 55 56 55 55 

DNA004335 M 2 FAS 1 58 59 60 59 58 59 61 

        2 56 57 56 56 58 55 58 

DNA004337 F 2 FAS 1 57 58 56 58 55 56 58 

        2 57 56 56 55 57 54 58 

DNA004343 F 10 FAS 1 63 62 56 58 57 58 61 

        2 60 60 54 56 56 56 56 

DNA004348 F 10 FAS 1 58 63 55 55 57 57 57 

        2 58 57 56 56 54 55 55 

DNA004350 F 8 FAS 1 58 58 58 58 57 56 60 

        2 60 60 57 57 58 56 59 

DNA004354 M 8 FAS 1 59 57 54 55 56 54 56 

        2 59 59 54 55 55 54 56 

DNA004356 M 9 FAS 1 60 57 56 56 56 53 57 

        2 60 57 56 54 54 53 55 

DNA004360 M 10 FAS 1 58 59 54 54 57 57 55 

        2 57 61 56 55 57 57 56 

DNA004365 M 10 FAS 1 59 63 54 56 57 54 57 

        2 58 58 55 56 57 55 56 

DNA004370 F 11 FAS 1 59 60 54 55 58 54 57 

        2 56 59 55 55 57 55 54 

DNA004373 F 7 FAS 1 61 61 56 58 57 59 58 

        2 56 57 56 56 55 56 57 

DNA004375 M 8 FAS 1 54 61 54 55 59 58 55 

        2 54 61 54 55 59 58 55 

DNA004378 M 8 FAS 1 55 59 58 58 60 57 59 

        2 59 59 57 58 58 56 57 

DNA004380 M 8 FAS 1 67 65 59 57 67 63 65 

        2 66 61 61 60 64 59 64 

DNA004382 M 9 FAS 1 54 57 56 56 56 52 57 

        2 59 57 56 54 55 53 56 

DNA004384 F 6 FAS 1 61 59 53 55 56 55 56 

        2 61 58 54 54 55 56 56 
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DNA004386 M 8 FAS 1 56 61 56 56 57 56 58 

        2 58 61 59 59 61 56 59 

DNA004388 M 6 FAS 1 67 70 66 65 69 63 67 

        2 70 69 63 66 67 64 65 

DNA004390 F 7 FAS 1 62 63 56 57 61 56 58 

        2 60 61 57 58 59 55 57 

DNA004391 M 7 FAS 1 55 58 58 57 60 62 58 

        2 60 61 58 56 60 60 57 

? = no information 
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Table 34: Complete data for PEG3 DMR control samples:  

Complete data for PEG3 DMR control samples 

Sample ID Gender Age(yrs)  Run Methylation % 

        CpG1 CpG2 CpG3 CpG4 CpG5 CpG6 CpG7 

DNA004392 F 25 1 43 38 38 38 30 34 33 

      2 45 37 35 43 30 30 33 

DNA004393 M 19 1 50 43 42 43 36 38 37 

      2 49 39 41 46 32 35 37 

DNA004394 M 20 1 44 40 46 42 37 36 39 

      2 45 40 46 38 35 38 41 

DNA004395 F 26 1 47 40 40 45 32 33 37 

      2 52 39 43 41 34 35 33 

DNA004396 F 25 1 48 49 44 39 35 37 37 

      2 51 43 45 43 34 37 39 

DNA004398 M 19 1 49 45 43 43 36 34 36 

      2 47 46 40 46 42 39 39 

DNA004399 F 21 1 57 55 54 54 44 45 46 

      2 56 58 58 53 47 44 50 

DNA004401 F 22 1 53 47 47 50 42 44 43 

      2 53 52 47 54 43 50 42 

DNA004404 F 25 1 55 51 50 55 40 41 39 

      2 49 51 48 49 38 41 40 

DNA004406 F 22 1 50 45 44 49 36 35 35 

      2 46 44 40 47 33 35 38 

DNA004407 F 24 1 45 37 42 37 39 39 36 

      2 50 42 42 39 39 39 36 

DNA004408 M 24 1 48 43 47 45 41 53 40 

      2 48 43 47 45 41 53 40 

DNA004411 M 19 1 53 44 48 51 41 45 47 

      2 53 45 48 51 41 43 47 
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DNA004412 M 23 1 51 43 40 40 32 33 35 

      2 51 39 43 45 32 35 34 

DNA004413 F 19 1 45 38 36 39 34 35 36 

      2 46 37 42 43 37 39 35 

DNA004414 M 23 1 61 54 55 57 48 44 48 

      2 58 54 55 54 47 48 48 

DNA004415 F 21 1 53 51 53 48 43 40 48 

      2 50 51 53 49 43 40 48 

DNA004418 F 19 1 50 37 39 43 38 39 39 

      2 50 39 41 43 38 39 39 

DNA004420 M 19 1 54 47 45 52 41 44 41 

      2 54 46 46 52 42 44 43 

DNA004421 M 18 1 59 60 54 55 45 46 49 

      2 59 60 54 55 45 46 49 

DNA004422 F 20 1 47 51 47 47 45 46 49 

      2 48 52 48 46 45 46 49 

DNA004425 F 22 1 45 40 40 45 37 37 38 

      2 43 44 44 46 39 37 41 

DNA004426 F 24 1 53 49 48 48 44 41 44 

      2 53 49 48 48 44 41 44 

DNA004428 F 20 1 52 47 45 47 44 40 42 

      2 54 43 45 48 38 38 38 

DNA004429 F 24 1 50 48 53 52 46 48 45 

      2 54 49 53 52 46 48 45 

DNA004431 M 25 1 55 46 52 48 45 42 44 

      2 54 45 52 48 45 42 44 

DNA004434 M 24 1 49 45 43 46 35 30 36 

      2 48 45 43 45 35 30 35 

DNA004437 M 23 1 44 40 39 40 38 32 33 

      2 41 39 37 39 33 32 32 
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DNA004440 M 21 1 50 45 46 47 39 38 38 

      2 48 44 43 46 35 35 38 

DNA004441 M 19 1 49 42 45 40 36 38 37 

      2 44 38 39 40 31 34 34 

DNA004442 M 20 1 48 47 46 40 37 40 40 

      2 46 47 44 40 39 42 39 

DNA004448 M 18 1 43 39 43 40 33 37 33 

      2 41 38 36 40 30 32 32 

DNA004450 F 19 1 43 38 40 40 32 37 34 

      2 41 36 38 40 32 37 34 

DNA004463 M 25 1 49 45 46 50 39 41 43 

      2 51 45 48 49 38 42 39 

DNA004465 F 20 1 48 53 46 53 44 44 42 

      2 48 50 45 51 44 44 41 

DNA004466 F 18 1 57 53 50 49 48 44 49 

      2 54 52 49 48 48 42 47 

DNA004476 M 19 1 53 46 47 51 40 37 44 

      2 53 48 47 47 41 37 42 

DNA004477 F 24 1 45 44 43 45 40 36 40 

      2 44 40 40 43 35 35 40 

DNA004481 F 20 1 55 53 50 48 38 42 49 

      2 56 51 50 46 40 42 45 

DNA004482 F 19 1 59 57 57 53 47 49 42 

      2 56 54 51 50 46 44 45 

DNA004483 F 19 1 50 46 47 45 39 42 42 

      2 50 44 42 41 33 38 41 

DNA004487 M 20 1 59 51 52 57 43 46 48 

      2 54 49 47 54 38 43 43 

DNA004492 F 21 1 52 47 47 47 41 40 40 

      2 48 48 48 50 39 44 46 
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DNA004497 M 19 1 64 60 60 60 51 48 50 

      2 60 55 54 57 50 48 50 

DNA004498 F 24 1 51 52 54 51 44 42 46 

      2 56 52 52 56 44 45 47 

DNA004500 M 18 1 51 51 49 51 44 40 46 

      2 52 54 52 52 47 41 50 

DNA004501 M 18 1 42 36 36 40 30 32 33 

      2 44 34 33 37 30 33 31 

DNA004664 M 22 1 48 47 44 48 37 40 41 

      2 50 42 44 50 34 35 36 

DNA004668 M 22 1 43 44 44 47 34 38 36 

      2 43 44 44 47 34 38 36 

DNA004690 M 24 1 42 41 38 38 33 35 37 

      2 40 39 38 41 33 34 33 
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Table 35: Complete data for PEG3 DMR case samples and runs:  

Complete data for PEG3 DMR case samples and runs 

Sample ID Gender Age(yrs)  Phenotype  Run Methylation % 

        
 

CpG1 CpG2 CpG3 CpG4 CpG5 CpG6 CpG7 

DNA003985 F 9 FAS 1 47 48 40 45 38 40 39 

        2 53 49 46 49 38 42 37 

DNA003989 F 9 FAS 1 44 40 28 29 35 23 34 

        2 44 39 30 34 30 27 31 

DNA003991 F 12 FAS 2 44 40 29 32 34 30 33 

        2 39 39 31 27 32 25 32 

DNA004010 M 9 FAS 1 50 47 46 47 40 41 40 

        2 49 43 46 42 39 37 34 

DNA004012 F 9 FAS 1 49 42 39 40 34 34 36 

        2 50 44 39 42 34 35 36 

DNA004013 M 9 FAS 1 40 34 33 35 30 31 33 

        2 40 34 33 36 29 31 33 

DNA004021 M 9 FAS 1 50 51 49 47 40 42 41 

        2 47 47 49 47 42 45 41 

DNA004024 F 7 FAS 1 44 40 38 41 37 36 36 

        2 48 41 38 42 36 39 36 

DNA004029 F 9 FAS 1 40 40 39 39 34 35 36 

        2 42 37 38 40 32 33 33 

DNA004032 M 10 FAS 1 40 40 34 42 30 32 32 

        2 40 36 33 40 26 27 27 

DNA004035 M 9 FAS 1 50 41 39 45 30 32 36 

        2 47 37 39 45 29 37 30 

DNA004042 F 9 FAS 1 40 37 34 42 28 32 29 

        2 45 41 39 46 33 36 33 

DNA004052 M 10 FAS 1 50 43 44 45 33 36 36 

        2 47 42 45 42 34 34 35 
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DNA004053 F 11 FAS 1 37 34 34 35 25 29 35 

        2 37 34 34 35 25 29 35 

DNA004055 M 11 FAS 1 39 41 37 39 28 30 33 

        2 42 39 38 37 24 28 28 

DNA004059 F 10 FAS 1 41 42 38 43 31 33 34 

        2 41 42 38 43 31 33 34 

DNA004061 F 10 FAS 1 47 43 40 41 34 36 36 

        2 48 42 44 41 37 36 37 

DNA004063 M 10 FAS 1 52 48 47 50 37 40 39 

        2 50 45 42 47 35 38 39 

DNA004064 F 10 FAS 1 47 46 43 46 35 39 37 

        2 50 43 46 47 40 39 39 

DNA004065 M 8 FAS 1 44 43 40 41 40 35 35 

        2 47 41 43 40 37 37 37 

DNA004068 M 16 FAS 1 40 43 38 40 36 32 33 

        2 40 43 38 40 36 32 33 

DNA004069 F 10 FAS 1 45 44 40 46 38 36 35 

        2 47 48 44 50 43 40 41 

DNA004072 F 6 FAS 1 44 44 42 42 40 45 38 

        2 44 44 42 42 40 45 38 

DNA004074 F 10 FAS 1 41 42 39 40 38 37 35 

        2 44 45 44 45 40 38 35 

DNA004076 F 10 FAS 1 46 44 40 42 36 33 37 

        2 44 38 37 41 34 32 33 

DNA004082 M 2 FAS 1 46 45 43 43 39 41 37 

        2 41 42 38 38 34 35 35 

DNA004094 F 11 FAS 1 42 37 38 41 34 35 36 

        2 37 41 33 40 33 29 33 

DNA004126 M 2 FAS 1 33 31 26 35 27 30 26 

        2 33 31 26 35 27 30 26 

DNA004146 F 2 FAS 1 47 43 42 46 40 39 40 
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        2 42 38 38 41 35 35 35 

DNA004166 M 2 FAS 1 44 36 27 44 30 30 32 

        2 42 40 30 39 29 30 34 

DNA004168 M 3 FAS 1 51 43 41 44 35 38 37 

        2 50 44 45 47 38 38 37 

DNA004172 F 16 FAS 1 40 37 34 40 27 29 30 

        2 40 36 35 41 26 28 30 

DNA004191 F 10 FAS 1 52 48 44 44 33 34 36 

        2 49 49 42 49 35 38 39 

DNA004193 M 10 FAS 1 47 43 40 42 34 31 37 

        2 41 38 39 40 31 36 36 

DNA004198 M 10 FAS 1 54 51 47 52 37 40 32 

        2 53 49 50 51 39 38 38 

DNA004200 F 10 FAS 1 40 33 33 35 31 27 27 

        2 39 34 34 36 29 31 30 

DNA004204 M 10 FAS 1 42 43 41 39 37 37 36 

        2 45 42 42 44 35 36 37 

DNA004225 M 10 FAS 1 49 43 41 43 32 34 38 

        2 46 45 38 45 36 29 37 

DNA004227 F 11 FAS 1 43 36 34 38 28 29 31 

        2 44 42 39 44 31 35 36 

DNA004231 M 11 FAS 1 45 44 42 44 29 34 32 

        2 51 44 44 44 30 36 36 

DNA004233 F 10 FAS 1 49 42 41 43 32 33 34 

        2 46 36 39 40 26 31 30 

DNA004241 F 10 FAS 1 47 44 39 45 35 37 37 

        2 51 45 45 50 39 42 40 

DNA004246 M 11 FAS 1 47 40 43 45 33 36 37 

        2 44 41 38 42 30 31 33 

DNA004249 M 11 FAS 1 36 33 33 34 25 26 28 

        2 36 34 33 34 25 27 30 
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DNA004253 M 11 FAS 1 42 45 40 50 32 32 35 

        2 45 41 38 47 29 32 30 

DNA004258 M ? PFAS 1 49 43 45 49 37 38 37 

        2 49 43 45 49 37 38 37 

DNA004267 F 1 PFAS 1 41 34 34 38 28 30 28 

        2 41 34 34 38 28 30 28 

DNA004270 ? ? ? 1 49 42 44 42 34 37 36 

        2 44 41 40 43 33 35 35 

DNA004280 F 11 FAS 1 38 38 38 43 29 32 33 

        2 39 38 39 43 30 32 33 

DNA004290 M 14 FAS 1 50 43 41 40 32 33 33 

        2 49 43 42 40 32 33 33 

DNA004292 F 12 FAS 1 46 37 39 43 31 34 35 

        2 46 37 39 43 31 34 35 

DNA004296 M 7 FAS 1 43 36 34 41 31 32 33 

        2 45 41 38 43 37 36 36 

DNA004300 F 7 FAS 1 47 40 44 43 33 37 36 

        2 48 45 43 48 37 38 37 

DNA004301 M 6 FAS 1 40 38 37 38 28 32 32 

        2 35 33 32 34 23 27 26 

DNA004304 M 16 FAS 1 46 43 38 43 35 39 40 

        2 47 41 44 43 34 42 39 

DNA004305 M 4 FAS 1 50 35 49 56 44 48 48 

        2 56 41 53 55 42 42 42 

DNA004312 M ?? FAS 1 41 36 35 37 27 30 33 

        2 45 39 39 40 31 29 34 

DNA004313 M ?? FAS 1 49 49 41 50 36 38 41 

        2 46 43 38 47 33 35 38 

DNA004317 M 13 FAS 1 43 40 42 40 35 30 35 

        2 45 45 43 45 36 36 39 

DNA004325 M 2 FAS 1 42 39 40 38 31 32 32 
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        2 42 34 34 39 32 32 32 

DNA004327 M 3 FAS 1 50 43 47 45 42 40 39 

        2 50 43 44 40 38 36 35 

DNA004331 M 8 FAS 1 39 37 33 40 30 31 33 

        2 41 39 39 39 34 35 33 

DNA004335 M 2 FAS 1 47 42 41 44 37 38 39 

        2 45 41 44 46 33 36 38 

DNA004337 F 2 FAS 1 41 20 32 39 29 29 29 

        2 36 38 32 33 26 28 26 

DNA004343 F 10 FAS 1 42 40 42 44 39 40 42 

        2 46 39 40 43 39 40 42 

DNA004348 M 9 FAS 1 41 39 42 37 31 38 37 

        2 42 40 42 37 36 40 39 

DNA004350 F 8 FAS 1 46 37 39 39 28 30 31 

        2 41 32 37 35 34 31 32 

DNA004356 M 9 FAS 1 51 41 41 46 35 36 37 

        2 51 41 41 46 35 36 37 

DNA004360 M 10 FAS 1 43 42 40 43 33 38 40 

        2 43 43 42 37 34 34 39 

DNA004365 M 10 FAS 1 42 33 35 39 28 32 34 

        2 43 34 36 40 29 33 35 

DNA004370 F 11 FAS 1 42 42 43 42 38 37 38 

        2 45 38 38 45 36 35 37 

DNA004373 F 7 FAS 1 36 36 34 34 28 26 29 

        2 40 39 36 37 32 31 35 

DNA004375 M 8 FAS 1 42 37 40 37 34 35 36 

        2 36 34 37 32 31 29 32 

DNA004378 M 8 FAS 1 36 33 32 39 27 33 32 

        2 36 33 32 39 27 33 32 

DNA004380 M 8 FAS 1 34 32 35 31 30 29 31 

        2 34 32 37 41 25 30 32 
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DNA004382 M 9 FAS 1 51 49 46 42 34 34 35 

        2 51 49 46 42 34 34 35 

DNA004384 F 6 FAS 1 48 41 44 39 34 35 37 

        2 44 44 44 38 33 34 34 

DNA004386 M 8 FAS 1 49 45 46 46 38 42 42 

        2 55 45 45 50 39 42 43 

DNA004388 M 6 FAS 2 51 49 45 45 44 44 42 

        2 51 49 45 45 44 44 42 

DNA004391 M 7 FAS 1 50 49 46 47 40 43 49 

        2 52 52 50 52 45 44 52 

? = no information 
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Appendix F: Published article related to the present study 
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