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Chapter 1

Introduction

In conventional wireless communication, a single transmitting antenna sends information

to a single receiving antenna. While this is effective when a line of sight (LOS) path

is present, obstructions between the transmitter and receiver can severely hamper the

performance of the system. The primary effect of obstructions in the LOS path is that

the signal travelling along the LOS path is attenuated. As a result, the majority of the

total signal power at the receiver is courtesy of the signal travelling along paths that

involve at least one reflection [1].

Since the reflected paths may have a different number of reflecting surfaces and different

path lengths, the phase at which each path’s signal arrives is different. In the ideal

scenario, the phases are all identical, creating constructive interference. This maximises

the signal to noise ratio at the receiver. In the worst case, however, the signals interfere

destructively at the receiving antenna, resulting in a very poor SNR. This phenomenon

is known as multipath fading.

A technique to combat multipath fading is receive diversity, where multiple antennas

are employed at the receiver. The antennas are spaced a minimum of half a wavelength

apart to ensure that the paths are sufficiently uncorrelated [2]. While one receiving

antenna may be experiencing destructive interference, the rest should experience more

favourable conditions. The signals from the antennas can then be combined to recover

the transmitted signal with greater confidence.

The natural extension to receive diversity is transmit diversity. Since additional paths

can be created by adding antennas at the receiver, a similar effect can be achieved by

1



Chapter 1. Introduction 2

adding transmitting antennas. If the same symbol is transmitted over different antennas

in different time slots, it is more likely to be transmitted over a good channel path.

When multiple antennas are employed at both the transmitter and the receiver, it is

called a Multiple Input Multiple Output (MIMO) system. The additional transmit

antennas do not have to be used for diversity, though. Some MIMO schemes utilise

the additional paths to transmit multiple symbols per time slot, increasing the rate and

spectral efficiency of the system [3].

Another technique for error prevention that has been widely used in Single Input Single

Output (SISO) systems is channel coding, more specifically error correction coding.

Error correcting codes transmit parity symbols in addition to the information symbols

to form codewords. When errors occur in either the information or the parity symbols,

the code attempts to recover the transmitted codeword. Additional parity symbols allow

more errors to be corrected per codeword, but this also lowers the rate of the code. A

smaller fraction of the total energy required to transmit the codeword is thus allocated

to transmitting the information symbols.

Not all error correcting codes offer the same error correcting capability, though. The up-

per bound for error correcting capability using conventional decoding is half the number

of parity symbols [4]. Most error correcting codes, however, do not achieve this bound.

One family of codes to achieve this bound is Reed-Solomon codes [5].

In order to correct errors beyond this bound, soft decision (SD) decoding must be

used [6]. In hard decision (HD) decoding, the demodulator only passes the most likely

symbol to the decoder. For SD decoding, however, the demodulator passes reliability in-

formation to the decoder as well. The SD decoder can then place more emphasis on the

most reliable symbols while minimising the effect of the unreliable symbols. Consider

a grossly oversimplified example where the errors in a received codeword all have low

reliability, while the correct symbols have high reliability. A soft decision decoder could

theoretically correct one error for every parity symbol by ignoring all the low reliability

symbols. This special case is analogous to erasure decoding, but a true SD decoder

handles a wide range of reliabilities.
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1.1 Research problem

Transmit diversity and error correction codes typically reduce the number of errors by

lowering the rate at which information symbols are transmitted. Transmit diversity

is achieved by retransmitting symbols or permutations of symbols, which reduces the

overall rate of the system. Higher transmit diversity results in lower error rates at

the demodulator output, since there are independent samples from which to generate

the decision statistics. Error correcting codes essentially spread the information from

k information symbols over n information symbols. Low rate codes are capable of

correcting more errors than high rate codes of the same type, resulting in fewer errors

at the decoder output. Transmit diversity is inversely related to the overall rate of the

system, while code rate is directly proportional to the overall rate.

The research problem is stated as follows:

Investigate the feasibility of using low rate channel codes as an alternative

to transmit diversity in MIMO systems.

The proposed research is to compare two types of MIMO systems with the same overall

rate. The one type of system will use a high rate channel code in conjunction with a low

rate (i.e. high diversity) MIMO scheme, while the other type will use a low rate channel

code with a high rate (low diversity) MIMO scheme. The feasibility of the schemes will

be based on the Es
N0

required to achieve a symbol error rate of 10−4.

1.2 Author’s contribution

The author’s contribution can be divided into programming and analysis. Programming

was performed in MATLAB [7]. The following components were used directly from the

Statistics and Communications toolboxes:

1. Additive white Gaussian noise (AWGN),

2. Systematic Reed-Solomon encoding, and

3. Berlekamp-Massey hard decision Reed-Solomon decoding.
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The remainder of the components were implemented by the author:

1. Guruswami-Sudan list decoding algorithm,

2. Koetter-Vardy multiplicity selection algorithm,

3. VBLAST MIMO encoding and decoding,

4. TBLAST MIMO encoding and decoding,

5. Alamouti STBC encoding and decoding, and

6. Block fading Rayleigh channel.

The author designed the experiments to answer the research problem and generate the

three additional sets of results. All analysis of the results that were generated was also

performed by the author.

This document is structured as follows: Chapter 2 contains the literature survey, includ-

ing discussions on the MIMO channel, MIMO transmission schemes and Reed-Solomon

coding. Chapter 3 outlines the research methodology used to address the research prob-

lem and describes the experimental setup. The results generated in this research are

presented and analysed in Chapter 4. Final conclusions are drawn in Chapter 5.



Chapter 2

Literature Survey

The system can be broadly divided into three areas: the MIMO channel, the MIMO

transmission scheme and the error correcting channel code, as shown in figure 2.1. The

literature survey is correspondingly divided into three sections – the MIMO channel is

discussed in section 2.1. Various techniques of transmitting information over a MIMO

channel are then investigated in section 2.2. Finally, error correction coding is discussed

in section 2.3, including advanced decoding techniques.

Reed-Solomon
Encoder

MIMO
Encoding

MIMO
Channel

MIMO
Decoding

Reed-Solomon
Decoder

Input
Data

Output
Data

Figure 2.1: Simplified block diagram of simulated system

2.1 MIMO channel

When a signal propagates from a transmitter to a receiver, the ideal scenario is when line

of sight is available. The signal remains relatively undistorted and minimally attenuated

due to travelling along a direct path. When there is no line of sight path, the signal is

reflected, refracted and attenuated by various objects.

5
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Under these conditions the signal can arrive at the receiver via several different paths.

These paths can have different attenuations and phase shifts dependent on the objects

encountered and the total path length. The different phase shifts can cause the paths to

interfere with each other either constructively or destructively. When the signals inter-

fere destructively, the received signal to noise ratio drops significantly. This phenomenon

is known as multipath fading [8].

Multipath fading is not to be confused with shadowing, which can also cause very low

SNRs. Shadowing is due to a large obstruction such as a mountain attenuating the signal.

There are no reflected signal paths by which sufficient energy from the transmitter can

reach the receiver. In order to overcome shadowing, either the transmitter or the receiver

must move so that the obstruction no longer blocks the signal. For multipath fading the

transmitter or receiver may only need to move on the order of a single wavelength in

order to eliminate the destructive interference.

Receive diversity is one option for dealing with multipath fading. Multiple antennas

are placed at the receiver, spaced at least half a wavelength apart [2, 9]. Due to the

signal paths having differing angles of arrival, some of the antennas will experience

destructive interference while other antennas will experience constructive interference.

The transmitted symbol can then be recovered from the multiple samples at the receive

antennas using techniques such as maximal ratio combining (MRC) [10].

Multiple antennas can also be employed at the transmitter – this actually exploits the

multipath property of the channel to achieve greater capacity. Provided that the system

is in a rich scattering environment and that the antennas are spaced sufficiently, the

channel path between each pair of antennas is uncorrelated enough to allow an inde-

pendent data stream to be transmitted from each antenna [11]. The additional data

streams can alternatively be used to transmit redundant data streams, thus increasing

transmitter diversity.

Wolniansky and Foschini demonstrated that systems with a very large number of anten-

nas can offer extraordinary capacity [11]. At an average SNR of 21 dB, a single antenna

at the transmitter and receiver offers 1.2 bits/cycle. Using two, four or sixteen antennas

at each end allows capacities up to 7, 19 and 88 bits/cycle. It would thus be ideal to fit

as many antennas into a system as possible.
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Selecting the number of antennas to use for a system is largely limited by the physical

space available in the device. Antennas should be spaced by at least half a wavelength.

If they are closer together, the channel paths become highly correlated and the system

can no longer exploit the multipath properties [11]. At a frequency of 2 GHz, half

a wavelength corresponds to approximately 7 cm. Due to space limitations in user

equipment such as cellphones, two antennas are most common. That said, the WiFi

specification allows for up to four antennas [12, 13], while LTE allows for up to an 8× 8

configuration for download links [14]. In this case cross-polarised antennas are used

to keep channel paths uncorrelated without requiring excessive space [15]. The system

simulated for this research consists of two transmitting and two receiving antennas, as

shown in figure 2.2. The 2× 1 received vector r is given by

r = Hx + n , (2.1)

where H is the 2× 2 channel matrix, x is the 2× 1 transmitted vector and n is the 2× 1

noise vector. The channel matrix H represents the individual paths between antenna

pairs such that

H =

 h11 h12

h21 h22

 ,

where hij is a complex value representing the magnitude and phase shift of the path

from transmitting antenna j to receiving antenna i.

TX1

TX2

RX1

RX2

h11

h21

h12

h22

Figure 2.2: Simplified signal paths for a 2× 2 MIMO system

Objects such as walls reflect the radio waves travelling from the transmitter to the

receiver, causing changes in phase and angle of arrival of the waves. The signal prop-

agates along a slightly different path for each antenna pair. Channel paths are thus of

different lengths and experience different levels of attenuation. The channel entries hij
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are complex numbers indicating the phase and magnitude change introduced by each

of the channel paths. The exact values of the channel entries used in simulations are

determined by the channel model used.

2.1.1 Rayleigh fading model

The Rayleigh fading model [16] was initially developed to model over-the-horizon com-

munications, where scattering is due to the ionosphere and troposphere [8]. In built

up areas, mobile digital communications systems experience large amounts of scattering

due to radio waves reflecting off of buildings. Buildings also often obstruct the line of

sight, resulting in the majority of the received signal power being from reflected waves.

Although the Rayleigh fading model was not explicitly designed for such an environ-

ment, it provides a good approximation of the fading effects [2]. This was verified by

Chizhik et al. [17] by means of measurements taken in Manhattan. The Rayleigh fading

model is also a good approximation of fading in indoor environments, as demonstrated

by Nishimoto [18].

The fundamental property of the Rayleigh fading model is that each channel path is a

Rayleigh distributed random variable. The real and imaginary components of a Rayleigh

random variable are Gaussian distributed with zero mean. Using the rate at which these

random variables change, Rayleigh channels can be classified into one of three categories:

slow fading, fast fading and block fading.

A slow fading channel is characterised by

T0 > Ts [8], (2.2)

where Ts is the time taken to transmit one symbol and T0 is the coherence time of

the channel, or the time during which the channel remains reasonably constant. This

condition can alternatively be stated as

W > fd [8], (2.3)

where W is the bandwidth of the system and fd is the Doppler spread.
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The relationship between the coherence time and the Doppler spread is given by

T0 '
λ/2

V
=

0.5

fd
[8], (2.4)

where V is the relative velocity of the endpoints (or scattering objects) in the direction

that the signal is travelling. Considering a system with a 2 GHz carrier frequency and

endpoints moving at 120 km/h, the coherence time would thus be 2.25 ms. Unless

the transmission rate is slower than about 440 symbols per second, the system will

experience slow fading.

Fast fading occurs when the inequalities in equations 2.2 and 2.3 are reversed. The

channel is not coherent over even a single symbol period, resulting in the baseband

pulse being distorted. This in turn causes synchronisation problems and leads to very

high error rates [8]. Fortunately, as seen in the example above, the end points must

move very fast or the transmission rate must be very slow to cause a channel to be

characterised as fast fading.

Block fading is a simplifying assumption that is often used in research [19, 20]. Instead of

the channel varying continuously based on the Doppler frequency, the channel is assumed

constant within a fixed time period Tfade, which is much longer than Ts. After every

Tfade, a new channel matrix H is generated which is independent of all previous channels.

The entries hij of the 2 × 2 channel transfer matrix H are independent and identically

distributed Rayleigh random variables. These entries have normally distributed real and

imaginary components that have zero mean and 1√
2

variance [11]. The channel matrix is

also normalised so that E
[
|hij |2

]
= 1 [11]. For the purposes of this research, the channel

is modeled as a block fading Raleigh channel.

The H matrix in a real system would be estimated at the receiver by means of a training

sequence or some other channel estimation method [21–24]. This research does not

focus on channel estimation or errors in channel estimation. It is thus assumed that the

receiver has perfect channel state information (CSI), i.e. the receiver has knowledge of

the exact values of all the entries in H.

If some feedback system were employed to allow the transmitter to have CSI, the trans-

mitting power at each antenna could be adjusted to compensate for certain paths having

low gain. In this research it it is assumed that no feedback is available, and hence the
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transmitter has no CSI. This means that all transmitting antennas operate at the same

power level.

2.1.2 Interleaving

When the channel paths are highly correlated the system becomes underdetermined.

For example, consider the case where

H =

 1 1

1 1

 .

The set of equations defining the received vector will then be

r1 = x1 + x2 + n1 , and (2.5)

r2 = x1 + x2 + n2 . (2.6)

Two noisy copies of the same linear combination of the two transmitted symbols are

received. Due to the underdetermined nature of this system, it becomes highly likely

that the demodulator will output errors.

When using block fading, a correlated channel matrix causes many errors to occur –

an entire fading block could consist solely of errors. This burst of errors would be

concentrated within a few error correcting codewords if no interleaver is used. This

would result in these codewords containing more errors than the error correction code

can correct, resulting in decoding failures.

In order to avoid having large bursts of errors within a single codeword, a block inter-

leaver is used to spread the codewords across multiple fading blocks. The interleaver is

designed such that no fading block contributes more than one symbol to any given code-

word. This is analogous to a very large interleaver being used in slow fading Rayleigh

channels [25]. A diagram of the interleaver is shown in figure 2.3.

The properties of a MIMO channel experiencing multipath fading were discussed in this

section. In the next section we introduce various approaches to transmitting information

across such a channel.
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Codeword 1

Codeword 2

Codeword 3

Transmission order

Codeword Length

Block
fade
length

Figure 2.3: Interleaver structure showing ordering of transmitted symbols

2.2 MIMO transmission schemes

MIMO systems generally offer benefits in three categories: diversity, spectral efficiency

and beamforming [26]. Increased diversity improves the robustness of the system by

transmitting each symbol over more than one antenna in separate time slots, mitigating

the effect of multipath fading and noise. Higher spectral efficiency, on the other hand,

improves overall throughput of the system without increasing the required bandwidth.

This is done by transmitting unique symbols over each antenna in all time slots. A

third technique, beamforming [27], differs from the previous two categories in that the

same symbol is transmitted over multiple antennas in a single time slot. The phases at

each antenna are adjusted so that the signals interfere constructively in the intended

direction of transmission. This increases the received SNR without increasing the overall

transmitted power, and may be used when signal strength is low due to the transmitter

and receiver being far apart.

In MIMO schemes that offer diversity or increased spectral efficiency, symbols are trans-

mitted coherently, while in beamforming systems a phase shift is introduced. Beam-

forming systems will not be considered in this research. Unfortunately it is not possible

to maximise both diversity and spectral efficiency within a single MIMO scheme. A

high rate scheme, which transmits many symbols per time slot, would provide very good

spectral efficiency at the cost of diversity. A low rate scheme on the other hand would

require more time slots to transmit the same amount of data, lowering its spectral effi-

ciency but providing very good diversity. Many different MIMO schemes exist which are
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designed to achieve one of three things: maximum diversity, maximum spectral efficiency

or a trade-off between the two [3, 28–30].

The primary purpose of this research is to investigate the impact of changing the MIMO

scheme rate RM and error correcting code rate RE while keeping the overall system

rate R = RMRE constant. The two extremes in terms of MIMO scheme rate are thus

investigated, i.e. maximum rate and maximum diversity schemes. Hybrid schemes which

attempt to balance these two parameters were not investigated.

VBLAST and TBLAST are examples of maximum rate MIMO schemes – they are

discussed in sections 2.2.1 and 2.2.2. The Alamouti STBC is an orthogonal space-time

block code which offers maximum diversity. It is described in section 2.2.3.

2.2.1 VBLAST

One of the earliest MIMO schemes was the Diagonal Bell Laboratories Layered Space-

Time architecture (DBLAST), developed by Foschini [9]. It consists of a structure

where symbol transmission slots are diagonally layered so that each successive symbol is

transmitted on a different antenna. Decoding is also performed on one diagonal layer at

a time, which means that the contribution from already decoded layers can be cancelled.

Although it offers some diversity, nT (nT−1)
2 symbol slots are unusable at both the start

and the end of a transmission block.

Wolniansky, Foschini et al. proposed an alternative MIMO scheme termed Vertical Bell

Laboratories Layered Space-Time architecture (VBLAST) [3]. Instead of performing

decoding in diagonal layers, decoding is performed on vertical layers. This eliminates

the unusable triangle of transmission slots at the start and end of blocks. This structure

offers no diversity, and hence does not allow for cancelling of already decoded layers.

VBLAST can be applied to any number of transmitting antennas, nT . Transmission

involves demultiplexing the input stream into nT independent substreams. Symbols

from each substream are then transmitted coherently by the nT antennas. The scheme

does not require inter-substream coding, although conventional error control coding may

be applied to the input stream. Table 2.1 shows an example of the VBLAST scheme for

two transmitting antennas.
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Table 2.1: VBLAST transmission over two antennas

t1 t2 t3 · · ·
TX1 x0 x2 x4 · · ·
TX2 x1 x3 x5 · · ·

The nR receiving antennas operate in a co-channel fashion, receiving the superimposed

signals from all nT transmitting antennas. The received vector r of length nR is thus

r = Hx + n , (2.7)

where H is the nR×nT channel transfer matrix, x is the nT × 1 transmitted vector and

n is the nR × 1 AWGN noise vector.

VBLAST decoding involves decoding a single symbol at a time. Symbols that have not

yet been decoded are treated as if they are zero – this is known as zero forcing (ZF)

nulling [3]. Zero forcing is done by choosing a weight vector of length nR notated wi,

where 1 < i < nT , such that

wi(H)j = δij , (2.8)

where (H)j is the jth column of H and δij is the Kronecker delta. The product of the

two vectors should thus be equal to 1 only when i = j, and zero otherwise. The weight

vector wi is thus the ith row of G, the Moore-Penrose pseudo-inverse [31] of H.

Multiplying the received vector r by the weight vector wi gives the decision statistic yi:

wir = wiHx + win (2.9)

∴ yi = xi + win . (2.10)

This approach is known as zero forcing, since each symbol is decoded using the as-

sumption that no other symbol contributes to the received vector. While zero forcing

is effective for handling the contribution of undecoded symbols, it is a suboptimal ap-

proach when some symbols are already known. In this case, a technique called decision

feedback is applied. Once a symbol has been decoded, its contribution to the received

vector is cancelled instead of nulled. This is performed by quantising the symbol to

the nearest constellation point and then subtracting the expected contribution of that

symbol from the received vector.
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If this symbol was incorrectly decoded, i.e. quantised to the incorrect constellation point,

the error is likely to propagate to the subsequent symbols as well. It is thus important to

order the decoding such that the symbols with the largest contribution to the received

vector are decoded first. From equation 2.7 it is intuitive that the column of H with the

largest norm will correspond to the symbol with the largest contribution to the received

vector. The formal criteria for selecting the decoding order is to decode the symbol with

the highest post-detection SNR first [3].

The post-detection SNR (ρ) of the ith symbol is

ρi =
E
[
|xi|2

]
σ2||wi||2

[3]. (2.11)

Since wi is the ith row of G and the symbols xi are equiprobable, the symbol order is

determined by selecting the row of G with the smallest norm.

Cancelling is performed in three steps: quantising the decoded symbol, removing its

contribution from the received vector and updating the H matrix. Quantising is simply

mapping the decoded point yki to the nearest valid point from the QAM constellation of

interest, x̂ki . The received vector is adjusted, assuming that the decoded symbol passed

through a noiseless channel:

r = r− x̂ki(H)ki , (2.12)

where (H)ki is the kith column of H. To reflect the fact that the received vector no

longer includes the contribution of the kith symbol, Hki is then set to zero. Since H

changes, Gi+1 is also updated by taking the pseudo-inverse of the new H. This process

is repeated until all of the symbols have been decoded.

Algorithm 1 provides a summary of the steps involved in VBLAST decoding. Each step

is explained below.

1. i is a loop variable which limits the number of iterations to the number of symbols,

which is also the number of transmitting antennas.

2. The first version of the received vector is the actual received vector.

3. The first version of G is initialised to the Moore-Penrose pseudo-inverse of H.

4. The first symbol to be decoded k1 is chosen based on the row of G1 with the

smallest norm.
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Algorithm 1: VBLAST decoding algorithm (from [3])

Data: Channel matrix H and received vector r
Result: Decoded QAM symbols x̂

1 i = 1
2 r1 = r
3 G1 = H+

4 k1 = argmin
j
||(G1)j||2

5 while i ≤M do
6 wki

= (Gi)ki
7 yki = wki

ri
8 x̂ki = Q(yki)
9 ri+1 = ri − x̂ki(H)ki

10 Gi+1 = H+
ki

11 ki+1 = argmin
j /∈{k1···ki}

||(Gi+1)j ||2

i = i+ 1
end

5. The loop exits once all symbols have been decoded.

6. The kith weight vector for zero forcing nulling is set equal to the row of Gi corre-

sponding to the symbol to be decoded.

7. The kith decision statistic is set equal to the product of the kith weight vector and

the current received vector.

8. The decision statistic is quantised to the QAM constellation to give the decoded

symbol x̂.

9. The new version of the received vector is generated by subtracting the contribution

of the decoded symbol.

10. The new version of G is generated by taking the inverse of H where columns k1

to ki have been set to zero.

2.2.2 TBLAST

Turbo-BLAST, or TBLAST, was developed in 2000 by Sellathurai and Haykin [32]. The

design objective of TBLAST was to offer improved handling of co-antenna interference

(CAI) compared to VBLAST. Even when determining the order of decoded symbols

using the post-detection SNR, the likelihood of VBLAST correctly detecting the first

symbol is compromised by the interference from symbols which are yet to be decoded.
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From a transmission perspective, TBLAST and VBLAST operate identically. Inde-

pendent symbols are transmitted simultaneously over all nT antennas. The primary

difference between TBLAST and VBLAST is in the way that symbols are recovered.

VBLAST operates on a single symbol at a time, multiplying the received vector by the

inverse of the channel matrix and then cancelling decoded symbols. TBLAST, on the

other hand, makes use of maximal ratio combining (MRC) and iteratively cancels the

co-antenna interference.

The decision statistic for the ith symbol contains contributions from three different

sources: the desired signal, the contribution from simultaneously transmitted unwanted

symbols (CAI) and noise, as shown below.

ŷi =

desired︷ ︸︸ ︷
HH
i Hixi +

CAI︷ ︸︸ ︷∑
j 6=i

HH
i Hjxj +

noise︷ ︸︸ ︷
HH
i n . (2.13)

If the interfering symbols are known, however, the CAI term of equation 2.13 can be

cancelled out completely. Since the actual symbols transmitted cannot be known with

complete certainty, the expectation of the symbol E[xi] is used. The expectation is

calculated using

E[xi] =
∑
xi∈Q

xiP (xi) , (2.14)

where Q is the set of constellation points of the modulation scheme.

Equation 2.13 can then be rewritten as

ŷi = HH
i Hixi +

∑
j 6=i

HH
i Hj (xj − E[xj ]) + HH

i n . (2.15)

The decision statistics and the expectations are iteratively calculated. Once the num-

ber of iterations becomes large, E[xj ] approaches xj , therefore (xj − E[xj ]) → 0. The

CAI term from equation 2.13 thus becomes zero, effectively cancelling the co-antenna

interference.

2.2.3 Alamouti STBC

Space-time block codes, or STBCs, provide transmit diversity by transmitting different

symbols on each antenna, but then transmitting a permutation of those symbols in
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subsequent time slots. Symbols and their permutations are typically not transmitted

over the same antennas, thus spreading symbols across multiple signal paths. For a

given symbol x, the typical permutations that can be transmitted are x, −x, x∗, −x∗

and scalar multiples of these permutations, where x∗ denotes the complex conjugate

of x.

One of the advantages of STBCs is that they result in additional equations from which

to generate the decision statistics. For example, if the channel is highly correlated as

discussed in section 2.1.2, other schemes may only effectively have one equation from

which to recover two unknowns. The transmit diversity provided by an STBC will, on

the other hand, produce additional equations to resolve the unknowns. These additional

equations constitute the transmit diversity.

The main properties of STBCs are diversity, orthogonality and rate. High rate codes

typically have low diversity and are unlikely to be orthogonal. Orthogonal codes are

desirable because they offer full diversity and allow low complexity decoding [33]. A

trade-off therefore has to be made when designing STBCs to achieve a balance between

these properties.

The diversity is an indication of the number of unique samples available to the receiver

regarding a specific symbol. Each receiving antenna contributes one unique sample

irrespective of the MIMO scheme used. The transmitting antennas contribute at most

one unique sample per antenna. Full diversity is thus equal to nTnR.

In order to formally define the diversity of an STBC, it is necessary to first introduce

some notation. The symbol transmitted from antenna i at time slot t is given as xit, i =

1, 2, · · · , nt. Considering an STBC which occupies l time slots, the transmitted codeword

can be represented as

x =


x1

1 x2
1 · · · xn1

x1
2 x2

2 · · · xn2
...

...
. . .

...

x1
l x2

l · · · xnl

 . (2.16)
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The receiver attempts to decode the received symbols to produce the expected trans-

mitted codeword

x̂ =


x̂1

1 x̂2
1 · · · x̂n1

x̂1
2 x̂2

2 · · · x̂n2
...

...
. . .

...

x̂1
l x̂2

l · · · x̂nl

 . (2.17)

It was shown in [33] that the diversity achieved by an STBC is

min
x,x̂∈C, x 6=x̂

(rank (B (x, x̂)))× nR , (2.18)

where B(x, x̂) is

B(x, x̂) =


x̂1

1 − x1
1 x̂1

2 − x1
2 · · · x̂1

l − x1
l

x̂2
1 − x2

1 x̂2
2 − x2

2 · · · x̂2
l − x2

l
...

...
. . .

...

x̂nT1 − x
nT
1 x̂nT2 − x

nT
2 · · · x̂nTl − x

nT
l

 . (2.19)

The maximum rank of B that the STBC can achieve across all codeword combinations

is naturally min(nT , l). This confirms that the maximum diversity that an STBC can

achieve is nTnR.

Orthogonality is a desirable feature in STBC construction, as it ensures that the B

matrix has full rank and is easy to decode [33]. The STBC will thus have full diversity

and will eliminate inter symbol interference (ISI). An STBC is orthogonal if the dot

product of all pairs of columns is equal to zero.

The rate of an STBC is the number of information symbols that it transmits per time

slot. An STBC transmitting four symbols across four antennas in eight time slots will

have a rate of 0.5, while an STBC transmitting two symbols across two antennas in two

time slots will have a rate of 1.

Due to construction constraints, no orthogonal rate 1 codes exist for systems with more

than two antennas. Tarokh, Jafarkhani and Calderbank [33] showed that generalised

orthogonal STBC designs exist that achieve rate 0.5 for any number of antennas. In

the same paper they also presented rate 0.75 orthogonal STBCs for three and four

transmitting antennas.
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Quasi-orthogonal STBCs sacrifice full orthogonality to achieve higher rates [34]. Each

column only needs to be orthogonal to a subset of the other columns rather than all

columns. Several quasi-orthogonal STBCs have been developed, balancing diversity, rate

and decoding complexity [34–36].

A noteworthy STBC for a 2 × 2 antenna system was proposed by Siavash Alamouti

in [28]. It is of particular interest since it achieves orthogonality while maintaining a

rate of 1, transmitting two symbols in every two time slots. Since the code is orthogonal,

the diversity of the Alamouti scheme is nTnR = 4, i.e. full diversity is achieved. The

structure of the Alamouti STBC is given in table 2.2.

Table 2.2: Alamouti encoding scheme

t1 t2
TX Antenna 1 x1 −x∗2
TX Antenna 2 x2 x∗1

The transmitted symbols pass through the channel and are received by two antennas,

as shown in table 2.3.

Table 2.3: Received symbol notation

t1 t2
RX Antenna 1 r1 r3

RX Antenna 2 r2 r4

Combining the definition for the channel matrix

H =

 h11 h12

h21 h22

 ,

and the equation for the received vector r = Hx + n, the expressions for the individual

received symbols can be derived:

r1 = h11x1 + h12x2 + n1 , (2.20)

r2 = h21x1 + h22x2 + n2 , (2.21)

r3 = −h11x
∗
2 + h12x

∗
1 + n3 , and (2.22)

r4 = −h21x
∗
2 + h22x

∗
1 + n4 . (2.23)
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The Alamouti scheme uses maximal ratio combining (MRC) to generate the decision

statistics yi for the recovered symbols. MRC generates a decision statistic by summing

all samples multiplied by the complex conjugate of the relevant entry from the channel

matrix. This technique causes the channel paths with the least attenuation to have the

greatest contribution to the decision statistic. The decision statistics are thus

y1 = h∗11r1 + h∗21r2 + h12r
∗
3 + h22r

∗
4 , and (2.24)

y2 = h∗12r1 + h∗22r2 − h11r
∗
3 − h21r

∗
4 . (2.25)

Substituting in equations 2.20-2.23, the following expressions are obtained:

y1 =
∑
i,j

|hij |2x1 + h∗11n1 + h∗21n2 + h12n
∗
3 + h22n

∗
4 , and (2.26)

y2 =
∑
i,j

|hij |2x2 + h∗12n1 + h∗22n2 − h11n
∗
3 − h21n

∗
4 . (2.27)

The decision statistics are then passed to a maximum likelihood (ML) decoder. The ML

decoder selects the output symbol y1 = sa if∑
i,j

|hij |2 − 1

 |sa|2 + d2(y1, sa) ≤

∑
i,j

|hij |2 − 1

 |sb|+ d2(y1, sb) ∀ a 6= b ,

(2.28)

where d2(a, b) is the square of the Euclidean distance between points a and b. The

output symbol y2 is selected by the ML decoder in the same way.

This concludes the discussion on MIMO transmission schemes and the associated decod-

ing methods. The following section describes channel coding techniques for correcting

errors produced by the MIMO decoding.

2.3 Reed-Solomon error correcting codes

2.3.1 Introduction

When transmitting information across a noisy channel, some corruption of the informa-

tion may occur. Channel coding involves transmitting additional symbols, called parity,
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which allow the receiver to detect or even correct the errors. If errors are simply de-

tected, the receiver would have to request that the information be retransmitted. Error

correction, on the other hand, allows the receiver to reconstruct the original information

without any retransmission.

If the number of parity symbols is given as p, a code can reliably correct at most p
2

errors, while it can detect at most p errors [37]. Most codes, however, do not achieve

these bounds.

Reed-Solomon (RS) codes are class of non-binary error correcting codes developed by

Irving Reed and Gustave Solomon in 1960 [5]. They are one of the few types of codes

to achieve these bounds. Since it is a non-binary code, each symbol in the codeword

consists of more than one bit. RS codes have many applications ranging from optical

and magnetic storage to wired and wireless communication [38, 39].

2.3.1.1 Algebra background

In order to discuss construction and decoding of Reed-Solomon codes, some concepts

relating to the algebra of finite fields must first be defined.

Definition 2.1. A field F is a set of elements on which the operations addition, multipli-

cation and their inverses work in a way analagous to the way it works for real numbers.

Additionally, the field must have the following properties for both the addition and

multiplication operators:

1. It must be closed under the operation: for a, b ∈ F, a+ b ∈ F and a · b ∈ F.

2. It must have an additive and multiplicative identity, denoted 0 and 1 respectively:

a+ 0 = a; a · 1 = a.

3. Every element must have an additive inverse, and every element other than 0 must

have a multiplicative inverse: There exists b such that a+ b = 0 ∀ a ∈ F and there

exists c such that a · c = 1 ∀ a ∈ F, a 6= 0.

4. Operations must be associative: (a+b)+c = a+(b+c) and (ab)c = a(bc) ∀ a, b, c ∈

F [37].
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The set of real numbers (R) is thus a field, but integers (Z) is not, since not all elements

have a multiplicative inverse.

Definition 2.2. A finite field or Galois field, denoted Fpm , is a field which contains a

finite number of elements [37].

The number of elements in a Galois field is called the cardinality, and is of the form pm,

where p is prime and m is a natural number. A Galois field of order pm can also be

represented as GF(pm). When m = 1, the field is called a prime field. All multiplication

and addition in a prime field is performed by applying the modulo p operation.

For prime extension fields, where m > 1, elements are represented as polynomials of

degree m − 1 with coefficients from GF(p). The value of the polynomial is defined as

f(x)|x=p. Addition of polynomials is performed by adding coefficients in GF(p).

Definition 2.3. An irreducible polynomial is a polynomial with coefficients in F which

cannot be factorised into two or more non-constant polynomials with coefficients which

are also in F [37].

A trivial example of an irreducible polynomial in the field of real numbers is f(x) = x2+1.

Although it can be factorised into (x + i)(x − i), the coefficients of the factors are not

in the field of real numbers.

Definition 2.4. A primitive polynomial P (x) of degree m is an irreducible polynomial

which satisfies the condition that the smallest integer for which P (x) divides xn + 1 is

n = pm − 1 [37].

When constructing a Galois field Fpm , a primitive polynomial P (x) of degree m is se-

lected. Polynomial multiplication is performed modulo P (x). For example, if

P (x) = x3 + x+ 1

in the field F23 then

x× x2 = x3 modP (x) = x+ 1 .

For simpler notation when performing multiplication, elements of the field can be rep-

resented as powers of α, where α = p. Multiplication can then be performed by adding

exponents of α modulo pm.
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2.3.1.2 Error control coding fundamentals

Error correcting codes fall into two categories: block codes, which have a fixed codeword

length, and convolutional codes, which operate on a continuous stream of data. Block

codes encode messages of length k symbols into codewords consisting of n symbols, and

thus have a rate of R = k
n . Convolutional encoders also produce n symbols for every k

symbols in the input stream, but the output is a continuous stream rather than a series

of codewords.

The symbols which make up a code are drawn from an alphabet A, which has cardi-

nality q. In the case where the alphabet is a Galois field, A = GF(pm) and q = pm.

In addition to defining a code as having a block or convolutional structure, it can also

be classified according to the cardinality of the alphabet. Binary codes use an alphabet

with a cardinality of two, since the only elements in the alphabet are 0 and 1. Alphabets

of non-binary codes have higher cardinalities, defined by the field which is used for the

code.

An important property of an error correcting code is the minimum distance of the code,

as this defines the error correcting capability of the code.

Definition 2.5. The Hamming weight of a vector is the number of non-zero entries in

that vector [37].

Definition 2.6. The Hamming distance between two vectors u and v, denoted d(u,v)

is the number of positions in which u and v differ [37].

Definition 2.7. The minimum distance, denoted dmin, is the minimum Hamming dis-

tance between any two codewords of a code C.

dmin = min{d(u,v) : u,v ∈ C,u 6= v} (2.29)

[37]

The minimum distance of a code defines the number of errors that the code can reliably

detect or correct. Since no codewords differ in fewer than dmin locations, all error

patterns of weight no larger than dmin − 1 will result in an invalid codeword. A code

with minimum distance dmin is thus capable of reliably detecting up to dmin − 1 errors

in a codeword.
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The upper bound on the minimum distance of a code is given by the Singleton bound [4]:

Definition 2.8. The Singleton bound states that a q-ary code of length n and minimum

distance dmin can have at most Aq codewords, where

Aq ≤ qn−dmin+1 . (2.30)

The number of codewords in a code is also limited by k, the number of information

symbols in a code, since Aq ≤ qk. The upper bound for the minimum distance of an

(n, k) code can thus be determined as follows:

qk ≤ qn−dmin+1 (2.31)

∴ k ≤ n− dmin + 1 (2.32)

∴ dmin ≤ n− k + 1 . (2.33)

Codes that achieve this bound with equality, i.e. dmin = n− k+ 1, are called Maximum

Distance Separable (MDS). Some trivial codes achieve this bound, such as the (n, n)

code, which is essentially an uncoded system. A non trivial class of codes that are MDS

are Reed-Solomon codes [5]. Since RS codes can correct the largest number of errors for

a given rate code, they are well suited to this research.

2.3.2 Reed-Solomon encoding

The original encoding technique proposed by Reed and Solomon was to consider the

message to be the k coefficients of a polynomial in Fq with degree k − 1.

m(x) = m1 +m2x+ · · ·+mkx
k−1 mi ∈ Fq (2.34)

The codeword is generated by sampling the message polynomial m(x) at n = q − 1

points:

c =
(
m(x1), m(x2), · · · , m(xn)

)
. (2.35)
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This structure allows algebraic decoders to recover the message polynomial by means

of interpolation. It is generally preferable, however, to use a systematic code so that

the codeword contains a copy of the message. In the event of a decoding failure, the

decoder can return the message portion as it was received. Although some of the message

symbols may contain errors, this avoids losing the entire message.

One way of achieving a systematic code structure is to find a polynomial p(x) such that

(
p(x1), p(x2), · · · , p(xk)

)
= (m1, m2, · · · , mk) ,

where mi is the ith message symbol. Encoding p(x) thus yields a systematic codeword

which contains m. An algebraic decoder will, however, produce p(x). This polynomial

must then be re-encoded to produce the original message symbols.

2.3.3 Reed-Solomon decoding

Reed-Solomon decoders can be divided into two categories based on the type of input:

hard decision decoders and soft decision decoders. The difference between the two is

that soft decision decoders take the reliability of each symbol into account whereas hard

decision decoders do not.

2.3.3.1 Hard decision

The input to a hard decision decoding algorithm is a vector of length n with elements

taken from Fn+1. By definition, a hard decision decoding algorithm can correct t =⌊
dmin−1

2

⌋
errors. Since no codewords are within a Hamming distance of dmin of each

other, at most one codeword will be within a distance of t of any received vector. When

more than t errors occur, one of two things can happen: either a non-causal codeword is

within a distance of t from the received vector, or no codewords are within this distance.

These conditions are known as a decoding error and decoding failure respectively. Since

Reed-Solomon codes have the property that dmin = n − k + 1, they can correct up to

t =
⌊
n−k

2

⌋
errors.

Hard decision decoding algorithms such as Berlekamp-Massey and the Euclidean de-

coding algorithm only differ in complexity, not decoding performance [37]. As such,
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the particular implementation of hard decision decoding is not of particular interest to

this research. The MATLAB implementation of the Berlekamp-Massey decoding algo-

rithm [40] is used for hard decision simulations.

2.3.3.2 Soft decision

When hard decision decoding is used, the demodulator provides no reliability information

to the decoder. All input values to the demodulator are essentially quantised to the

nearest constellation point. Quantisation converts analogue values to digital values,

which causes loss of information. To visualise this loss of information, compare two

received points on a constellation diagram, as depicted in figure 2.4. The first point, x1

is located very close to constellation point 13, while the second point is near the decision

boundary between 13, 15, 9 and 11.

Intuitively, the likelihood that the causal symbol for x1 was 13 is very high. The likeli-

hood that the causal symbol for x2 was 13, however, is only marginally greater than the

likelihood that it was 9, 15 or 11. A hard decision approach would quantize both points

to 13, despite the very low likelihood that x2 = 13.

Soft decision decoding makes use of the likelihood information as part of the decoding

process. When attempting to construct a codeword, the decoder can thus place more

emphasis on reliable symbols while marginalising or even ignoring unreliable symbols.

The Guruswami-Sudan (GS) algorithm [41] with the Koetter-Vardy (KV) extension [42]

is a soft decision decoding algorithm which uses symbol reliability information as input

and produces a list of potential messages.

2.3.3.3 Guruswami-Sudan algorithm

Conventional decoding algorithms such as the Berlekamp-Massey algorithm [43] produce

a single output message or codeword per received vector. This is an effective approach

to decoding when the number of errors e < dmin
2 , as it is within the error correcting

capability of the code. There is thus only one codeword within a Hamming distance of

e from the received vector. When e ≥ dmin
2 , however, there can be multiple codewords

within a Hamming distance of e. To recover the original message it is thus necessary for

the decoder to return more than one output - this is known as list decoding.
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Figure 2.4: 16-QAM constellation with one reliable and one unreliable symbol

The Guruswami-Sudan algorithm1 [41] is a list decoding algorithm. The approach used

in the GS algorithm is to consider the received vector as a set of noisy samples of a

polynomial. The algorithm then generates a bivariate polynomial Q(x, y) by interpo-

lating the samples. Finally the bivariate polynomial is factorised into factors of the

form (y − fi(x)), where fi(x) are the canditate message polynomials in the list. If

fi(x) = m(x) for some value of i, decoding was performed successfully.

The GS algorithm forms part of a flow of information, starting at the demodulator

and ending when a single output message has been calculated. This is represented in

figure 2.5.

The first step in the GS algorithm is to select the sample points to be used for interpo-

lating the polynomial. The codeword c was generated by evaluating the message m(x)

at n points (α1, α2, · · · , αn). Given a bivariate polynomial Q(x, y) which has y-roots of

the form y = m(x), Q(x, y) will thus have (x, y) roots at (αi, ci).

1The tutorial paper by McEliece [44] was of invaluable help when implementing the GS algorithm.
The theorems and definitions presented in this section are based on the same paper.
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Figure 2.5: Flow diagram from demodulator output to final output message

The analogue received vector r must be converted into y values to be passed to the

interpolation algorithm. A simple approach is to use a hard decision demodulator to

demodulate r into (β1, β2, · · · , βn), where βi is the symbol in F which is closest to ri. An

advanced technique which also passes the soft information to the decoder is discussed

in section 2.3.3.4.

Interpolation

In order to define the nature of the interpolated polynomial, it is necessary to first define

the degree of a bivariate polynomial.

Definition 2.9. The (u, v) weighted degree of a monomial xiyj is defined as ui+ vj.

The sampled points which must be interpolated are of the form (αi, βi). The inter-

polation algorithm constructs a polynomial Q(x, y) of minimum (1, k − 1) degree with
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zeroes at (x = αi, y = βi). In order to improve the accuracy of the interpolation, the

multiplicity of each of the zeroes can be increased to be greater than one. A zero of

multiplicity m will thus mean that the curve Q passes through that point m times.

Guruswami and Sudan demonstrate in [41] that the error correcting capability t is a

monotonically increasing function of m, with some limit tGS . The value of m that

achieves tGS is dependent on the codeword length n and the message length k, but the

exact relationship is not stated. The error correcting bound is given as

tGS = n− 1−
⌊√

(k − 1)n
⌋
. (2.36)

The difference between this error correcting bound and the hard decision decoding bound

of
⌊
n−k

2

⌋
is visualised in figure 2.6.
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Figure 2.6: Comparison of the error correcting bounds for the Guruswami-Sudan and
Berlekamp-Massey algorithms. Codeword length n = 15.

Using the same multiplicity m for all the received symbols is, however, not optimal.

Certain symbols may have lower reliability and the interpolated polynomial need not

pass through these points as many times. By optimally selecting the multiplicities for

each symbol, performance exceeding the bound given in equation 2.36 can be achieved.

One algorithm for selecting multiplicities is the Koetter-Vardy algorithm [42], which is

discussed in section 2.3.3.4.
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When using the same multiplicity for all symbols, the interpolated polynomial Q(x, y)

has y-degree equal to m. This means that there are m factors of the form (y − fi(x))

where the degree of fi(x) is at most k − 1. The polynomials fi(x) where 0 ≤ i ≤ m are

the recovered messages, of which one of them is ideally equal to m(x).

In order to interpolate a polynomial, the constraints which define the polynomial have

to be stipulated. If (x = αi, y = βi) is a root of Q(x, y), it is clear that Q(αi, βi) = 0.

If the root has multiplicity m, the curve described by Q(x, y) passes through (αi, βi) a

total of m times. It is thus not sufficient to only require that Q(αi, βi) = 0.

For a single variable polynomial with a root x = α of multiplicity m the first m − 1

derivatives also satisfy the equation

diy

dxi

∣∣∣∣
x=α

= 0 . (2.37)

An example using real numbers was developed to illustrate the relationship between

higher multiplicity roots and derivatives. The equation y = (x + 2)3 in R has the root

x = −2 with a multiplicity of 3. Figure 2.7 shows y and the first two derivatives of y

with respect to x. It is clear from the graph that y = dy
dx = d2y

dx2
= 0 only where x = −2.

All higher order derivatives are constant and equal to zero. For a root of multiplicity 3,

the zeroth, first and second derivatives are equal to zero at x = −2.

The proof for the constraint in equation 2.37 is based on two theorems by Hasse [45].

Theorem 2.10 handles the single variable polynomial case, while theorem 2.11 extends

similar logic to the bivariate polynomial.

Theorem 2.10. If Q(x) =
∑
i
aix

i ∈ F[x], then for any α ∈ F, we have

Q(x+ α) =
∑
r

Qr(α)xr , (2.38)

where

Qr(x) =
∑
i

(
i

r

)
aix

i−r , (2.39)

which is the rth Hasse derivative of Q(x) (from [44]).
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Figure 2.7: Relationship between root multiplicities and derivatives

Theorem 2.11. Let Q(x, y) =
∑
i,j
ai,jx

iyj ∈ F[x, y] where F is a finite field. For any

(α, β) ∈ F 2,

Q(x+ α, y + β) =
∑
r,s

Qr,s(α, β)xrys , (2.40)

where

Qr,s(x, y) =
∑
i,j

(
i

r

)(
j

s

)
ai,jx

i−ryj−s . (2.41)

Note that the binomial distribution must be performed modulo p, where p is the charac-

teristic of the field F (from [44]).

Corollary 2.12. The polynomial Q(x, y) has a zero of multiplicity m at (α, β) if and

only if

Qr,s(α, β) = 0 ∀ r, s such that 0 ≤ r + s < m (from [44]). (2.42)

Corollary 2.12 thus defines the constraints that the interpolated Q(x, y) has to satisfy.

In order to express the bivariate polynomial Q(x, y) in a uniform manner, it is necessary

to define the order in which the monomial terms are arranged.

Definition 2.13. (u, v)-revlex order is an ordering of monomials in ascending (u, v)

weighted degree. Where two monomials have equal (u, v) degree, the monomial with the

lower (0, 1) degree comes first in the revlex ordering.
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In order to achieve a list length of at most L, the polynomial Q(x, y) should be of

the form (y − m̂1(x))(y − m̂2(x)) · · · (y − m̂L(x)). Since m̂i(x) consists of monomials

up to xk−1, each factor of Q(x, y) consists of the monomials up to and including y in

(1, k − 1)-revlex order. Q(x, y) thus consists of the monomials up to and including yL

in (1, k − 1)-revlex order.

Example 2.1. Consider a message of length 3 in GF(8), using a primitive root satisfying

α3 = α+ 1. Since k = 3, the monomial order used is (1, 2)-revlex. Q(x, y) will be of the

form

a1 + a2x+ a3x
2 + a4y + a5x

3 + a6xy + a7x
4 + a8x

2y + a9y
2 . (2.43)

Suppose that the polynomial Q(x, y) to be interpolated has (x, y) roots (α2, 1), (1, α3),

(α3, α2), (α4, α6), (α5, α6), (α, α5) and (α6, α5), and that all roots have multiplicity 1,

except for (α2, 1) which has multiplicity 2. The constraints imposed by roots with multi-

plicity 1 are that Q(x, y)|(αi,βi) = 0. The root with multiplicity 2 imposes the constraints

Q(α2, 1) = Q0,1(α2, 1) = Q1,0(α2, 1) = 0. The basic form of Q and its mixed partial

derivatives is shown in equation 2.44.

Q0,0(x, y) = 1 + x + x2 + y + x3 + xy + x4 + x2y + y2

Q1,0(x, y) = 1 + x2 + y

Q0,1(x, y) = 1 + x + x2

(2.44)

Substituting in the values for the roots gives

1 x x2 y x3 xy x4 x2y y2

Q0,0(α2, 1) 1 α2 α4 1 α6 α2 α α4 1

Q0,1(α2, 1) 0 0 0 1 0 α2 0 α4 0

Q1,0(α2, 1) 0 1 0 0 α4 1 0 0 0

Q0,0(1, α3) 1 1 1 α3 1 α3 1 α3 α6

Q0,0(α3, α2) 1 α3 α6 α2 α2 α5 α5 α α4

Q0,0(α4, α6) 1 α4 α α6 α5 α3 α2 1 α5

Q0,0(α5, α6) 1 α5 α3 α6 α α4 α6 α2 α5

Q0,0(α, α5) 1 α α2 α5 α3 α6 α4 1 α3

Q0,0(α6, α5) 1 α6 α5 α5 α4 α4 α3 α3 α3

. (2.45)
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Equation 2.45 is the constraint matrix A, which forms the input to the Feng-Tzeng

interpolation algorithm. The Feng-Tzeng (FT) algorithm [46] has complexity O(m3)

and is detailed in algorithm 2. The purpose of the Feng-Tzeng algorithm is to find the

largest L for which the first L columns of A are linearly independent. The output of

the FT algorithm is a length L+ 1 vector cs for which

L+1∑
i=1

csiA
(i) = 0 ,

where A(i) denotes the ith column of A. This vector is the list of coefficients of the

interpolated polynomial Q(x, y) in (1, k − 1)-revlex order.

Algorithm 2: Feng-Tzeng Interpolation Algorithm (adapted from [44])

Input: Constraint matrix A with dimensions v × w
Output: cs, the coefficients of Q(x, y) in (1, k − 1)-revlex order
s = 0
repeat

3 s = s+ 1
4 r = 0

5 b = [b1, b2, · · · , bw], bi =

{
1 i = s
0 i 6= s

6 columnblocked = false
repeat

8 r = r + 1
9 ∆ = ar.b

if ∆ 6= 0 then
if there is a u < s such that ρu == r then

12 b = b− ∆
δu

cu
else

14 ρs = r
δs = ∆
cs = b
columnblocked = true

end

end

until r ≥ v or columnblocked == true

until columnblocked == false
cs = b

The steps in the Feng-Tzeng algorithm are explained as follows:

3. The outer loop counter s specifies which row of the output matrix is being gener-

ated.
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4. The inner loop counter r tracks the current row of A

5. b, a starting estimate for cs, is initialised to be orthogonal to all previous values

of c

6. Both loops terminate based on whether a b has been found which is orthogonal

to a previously unused row of A. It is initially false.

8. The inner loop counter, which points to rows of A, is incremented

9. ∆ checks whether b is orthogonal to the rth row of A

12. If the vectors were not orthogonal and the inner loop had previously terminated

on the current row, modify b so that it becomes orthogonal to ar

14. If the inner loop had not previously terminated on the current row, save the row

number, ∆ and b.

The following example demonstrates the functioning of the Feng-Tzeng algorithm.

Example 2.2. Using the constraint matrix A from example 2.1, the Feng-Tzeng algo-

rithm generates C, with rows cs.

C =



1 0 0 0 0 0 0 0 0

α2 1 0 0 0 0 0 0 0

α4 0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0

α4 α4 1 0 1 0 0 0 0

0 0 α5 α2 α3 1 0 0 0

1 α5 α2 α4 α6 α2 1 0 0

0 0 α2 α6 α4 α α3 1 0

0 0 α2 α6 α6 α3 α2 α4 1



The final row of C comprises the coefficients of Q(x, y) in (1, 2)-revlex order, thus the

interpolated polynomial is

Q(x, y) = α2x2 + α6y + α6x3 + α3xy + α2x4 + α4x2y + y2 .
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Factorisation

Once the bivariate polynomial Q(x, y) has been constructed it must be factorised to

isolate the factors
∏
i

(
y − m̂i(x)

)
. The Roth-Ruckenstein (RR) algorithm performs

factorisation by recursively finding coefficients of potential factors. It is described in

algorithm 3. The approach used is to extract one coefficient of m̂i(x) at a time, recursing

to create a tree where the branches are the coefficients. The method used for extracting

the coefficients is explained by the following two theorems.

Definition 2.14. If xm | Q(x, y) but xm+1 - Q(x, y),

〈〈Q(x, y)〉〉 , Q(x, y)

xm
.

Theorem 2.15. If (y − f(x)) | Q(x, y) then y = f(0) is a root of the equation

〈〈Q(0, y)〉〉 = 0 .

Proof. From the definition of 〈〈·〉〉, Q(x, y) = xm〈〈Q(x, y)〉〉 for some m ≥ 0. If
(
y−f(x)

)
divides Q(x, y) then it will also divide 〈〈Q(x, y)〉〉, and thus

〈〈Q(x, y)〉〉 =
(
y − f(x)

)
T (x, y)

for some polynomial T (x, y). Thus, y = f(0) is a root of the equation 〈〈Q(0, y)〉〉 = 0

(from [44]).

Theorem 2.15 is sufficient for extracting the constant term, but an induction based

approach is necessary to extract the rest of the coefficients. The initial conditions are [44]

f0(x) = f(x) and (2.46)

Q0(x, y) = 〈〈Q(x, y)〉〉 . (2.47)

Induction is done as follows for i ≥ 1:

fi(x) =
(
fi−1(x)− fi−1(0)

)
/x = ai + · · ·+ avx

v−i (2.48)

Ti(x, y) = Qi−1(x, xy + ai−1) (2.49)

Qi(x, y) = 〈〈Ti(x, y)〉〉 . (2.50)
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Theorem 2.16. Given f(x) of the form a0+a1x+· · ·+avxv, Q(x, y) and the definitions

in equations 2.46 to 2.50. For any i ≥ 1,
(
y − f(x)

)
| Q(x, y) iff

(
y − fi(x)

)
| Qi(x, y)

Proof. The proof consists of two parts: proving that for i ≥ 1,
(
y− f(x)

)
| Q(x, y) →(

y − fi(x)
)
| Qi(x, y) and vice versa.

First, assume
(
y − fi(x)

)
| Qi(x, y). Since Ti(x, y) = xmQi(x, y),

(
y − fi(x)

)
| Ti(x, y) and(

y − fi(x)
)
| Qi−1(x, xy + ai−1) .

Therefore, for some U(x, y),

Qi−1(x, xy + ai−1) =
(
y − f(x)

)
U(x, y) .

Substituting in y = y−ai−1

x ,

Qi−1(x, y) =

(
y − ai−1

x
− f(x)

)
U

(
x,
y − ai−1

x

)
.

Multiplying by a sufficiently large power of x

xLQi−1(x, y) =
(
y − fi−1(x)

)
V (x, y)

for some polynomial V (x, y). Thus
(
y−fi−1(x)

)
| Qi−1(x, y), which constitutes the first

part of the proof.

For the second part of the proof, assume
(
y − fi−1(x)

)
| Qi−1(x, y). Then

Qi−1(x, y) =
(
y − fi−1(x)

)
U(x, y)

for some U(x, y). Substituting in the definition of Ti(x, y) from equation 2.49

Ti(x, y) =
(
xy + ai−1 − fi−1(x)

)
U(x, xy + ai−1)

= x
(
y − fi(x)

)
U(x, xy + ai−1) .

This proves that
(
y− fi(x)

)
| Ti(x, y), and thus

(
y− fi(x)

)
| Qi(x, y) as well (from [44]).
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The corollary to this theorem allows extracting coefficients one at a time

Corollary 2.17. If
(
y − f(x)

)
| Q(x, y) then y = ai is a root of the equation

Qi(0, y) = 0 ∀ 0 ≤ i ≤ v .

Proof. By Theorem 2.16,
(
y − fi(x)

)
| Qi(x, y) for all i ≥ 0. Substituting x = 0 yields

the required result, since fi(0) = ai (from [44]).

Algorithm 3: Roth-Ruckenstein Factorisation Algorithm (adapted from [44])

Input: Q(x, y), the interpolated polynomial, and D, the desired degree of m̂i(x)
Output: m̂i(x), the potential decoded messages
Initialise: π1 = 0, d1 = −1, Q1(x, y) = Q(x, y) t = 2;u = 1
begin DepthFirstSearch(u)

3 if Q(x, 0) == 0 then
Output m̂[u](x)

5 else if du < D then
6 R = Roots

(
Qu(0, y)

)
for α ∈ R do

8 v = t, t = t+ 1
9 πv = u, dv = du + 1, coeffv = α

10 Qv(x, y) = 〈〈Qu(x, xy + α)〉〉
11 DepthFirstSearch(v)

end

end

end

The notation used in algorithm 3 is as follows:

• πu – the parent node of node u

• du – the degree of node u, i.e. the distance to the root node

• coeffu – the polynomial coefficient represented by node u

• m̂[u](x) – the polynomial coefficients coeffux
du+coeffπux

dπu + · · ·

The algorithm generates a tree of coefficients – the path from the root to the tip of

the tree is the list of coefficients in m̂(x). Line 3 is the terminating condition in the

event that a valid factor has been found. The condition in line 5 causes the algorithm

to continue until the degree of the factorised polynomial is D. The tree branches out
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Table 2.4: Data generated at each recursion step

u πu Roots degu Coeffu
1 - {0, 5} -1 -

2 1 0 0 0

3 2 3 1 0

4 3 - 2 3

5 1 3 0 5

6 5 5 1 3

7 6 - 2 5

u = 1

u = 2

u = 3

u = 4

u = 5

u = 6

u = 7

0 5

0

3

3

5

Degree -1

Degree 0

Degree 1

Degree 23x2

0x

0

5x2

3x

5

Start

Figure 2.8: Tree representation of Roth-Ruckenstein output

whenever more than one root is found in line 6. Lines 8-10 store the current node values

and adjust the indices to point to the next node.

Example 2.3 illustrates the Roth-Ruckenstein algorithm.

Example 2.3. The bivariate polynomial from example 2.2 is used, thus

Q(x, y) = α2x2 + α6y + α6x3 + α3xy + α2x4 + α4x2y + y2 .

Table 2.4 shows the results generated for each recursion. The two potential messages are

thus 0+0x+3x2 and 5+3x+5x2. An alternative representation is to view the recursion

as a tree, as shown in figure 2.8. Each branch of the tree is a canditate message m̂i. In

this case, the message on the left corresponds to the transmitted, or causal, codeword.

Up to this point we have been unconcerned with how the input to the GS algorithm

is obtained. The original approach was to only use the hard demodulated symbols as
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potential roots and to increase the multiplicity evenly across all roots [41]. We now look

at an alternative technique that turns the GS algorithm into a soft-input list decoder,

offering further performance improvements.

2.3.3.4 Koetter-Vardy algorithm

The Koetter-Vardy algorithm [42] is a technique for optimally selecting multiplicities of

roots for the Guruswami-Sudan algorithm. The input to the algorithm is a ||A|| × n

matrix P which contains entries pij . The value of each pij is the probability that the jth

element of the codeword is equal to the ith symbol in the alphabet. Bayes’ theorem [47]

can be used to determine the entries in the probability matrix. Given a transmitted

codeword x with entries from A and a complex valued received vector y,

P (xj = ai|yj) =
P (yj |xj = ai)P (xj = ai)

P (yj)
(2.51)

∴ pij =
P (yj |xj = ai)

P (yj)
. (2.52)

Equation 2.52 holds provided xj is uniformly distributed across A. The denominator

essentially normalises the probabilities so that

||A||∑
i=1

P (yj |xj = ai)

P (yj)
= 1 . (2.53)

The numerator of equation 2.52 is the likelihood of the channel introducing noise to

cause yj to be a Euclidean distance of nj from xj . In an AWGN channel this will be

derived from the Gaussian distribution.

The output of the algorithm is the multiplicity matrix M , which is of the same size as

P . The entries mij are the multiplicity of the root (αj , qi), where qi is the ith symbol

in the alphabet.

The multiplicity matrix is initially zero, but the entry corresponding to the largest pij

is iteratively increased, while simultaneously scaling down pij . If this iterative process

is repeated indefinitely, the final M matrix will be proportional to the initial P matrix.
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The stopping condition is based on the relationship between the cost C of the multiplicity

matrix and the desired length of the output list of potential messages, L. A multiplicity

matrix with a cost exceeding Cmin will result in an output list length up to L.

The cost of the matrix is defined as

C =
1

2

∑
i,j

mij(mij + 1) . (2.54)

An intuitive explanation to the cost is that it is initially zero, but incrementing mij

causes C to increase by the new value of mij .

The minimum cost Cmin for a chosen list length L is given as the smallest cost which

satisfies the following conditions [42]:

L ≤
⌊

∆1,k−1(C)

k − 1

⌋
, (2.55)

where ∆1,k−1(C) , min{δ ∈ Z : N1,k−1 > C} (2.56)

and N1,k−1 ,

⌈
δ + 1

k − 1

⌉(
δ − k − 1

2

⌊
δ

k − 1

⌋
+ 1

)
. (2.57)

Algorithm 4: Koetter-Vardy algorithm (from [42])

Data: Probability matrix P

Result: Multiplicity matrix M

initialise M = 0, C = 0;

while C < Cmin do

(i, j) = argmax
i,j

(pij);

pij =
pij

mij+2 ;

mij = mij + 1;

C = C +mij ;

end

It is demonstrated in [42] that this extension to the GS algorithm introduces a significant

gain over the Guruswami-Sudan bound for all list lengths greater than two. This can be

ascribed to the fact that low reliability symbols will have few or zero factors, which causes

the decoder to behave similarly to an errors and erasures decoder. The KV extension

to the GS algorithm increases the number of errors that can be corrected, but there is
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no fixed bound for the error correcting capability. Justesen [48] derived expressions for

the error correcting capability under several common conditions. He showed that the

greatest increase over the hard decision bound was found in three cases: low code rate,

subsets of symbols having a large difference in reliability, and when there are very few

alternative transmitted symbols.

In summary, the MIMO channel and transmission schemes were investigated along with

Reed-Solomon error correction coding and soft decision decoding techniques. In the

following chapter, these components will be combined to form a simulated system which

can be used to address the research problem.



Chapter 3

Research Methodology

The research methodology was developed so as to satisfy the goals of the research prob-

lem, which is to

Investigate the feasibility of using low rate channel codes as an alternative

to transmit diversity in MIMO systems.

The experimental setup must thus be capable of comparing two types of MIMO systems

with the same overall rate. The one type of system will use a high rate channel code

in conjunction with a low rate (i.e. high diversity) MIMO scheme, while the other type

will use a low rate channel code with a high rate MIMO scheme.

3.1 Experimental setup

The research is performed using simulations run in MATLAB [7]. Feasibility of systems

is determined by comparing the symbol error rate of the systems across a range of signal

to noise ratios. A system is considered infeasible if it performs more than 1 dB worse

than the best performing system.

The mimimum number of symbol errors required for each data point is chosen to be

proportional to the number of information symbols in each codeword, k. This produces

reasonably consistent graph smoothness across all code rates. Due to the increased

complexity of soft decision decoding, Guruswami-Sudan simulations are limited to 15k

symbol errors while Berlekamp-Massey simulations are limited to 100k symbol errors.

42
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The MIMO configuration used has two transmitting and two receiving antennas. Due

to space limitations in end user equipment, MIMO schemes with two or at most four

transmitting and receiving antennas are most common [12–14]. A Rayleigh fading chan-

nel is used as this models a rich scattering environment, as encountered in indoor and

heavily built up environments [2, 8].

Three different MIMO schemes are simulated: one system with rate 1 and two systems

with rate 2. The rate 1 scheme is the Alamouti scheme [28], which is an orthogonal space

time block code (STBC) specifically designed for 2× 2 systems. The rate 2 schemes are

VBLAST [3] and TBLAST [32], which have identical transmission structures but differ

in the decoding algorithm.

The system uses 16-QAM modulation. Reed-Solomon channel coding [5] is used with a

symbol size of four bits so that each modulation symbol maps to a single code symbol. To

achieve the longest possible codewords given the size of the symbol space, the codeword

length is n = 15. The message size is k = 5 for the low rate code, while the high rate

simulations are performed using k = 9 and k = 10.

Both hard and soft decision decoding are implemented – the hard decision decoding is

implemented using the Berlekamp-Massey algorithm [40, 43]. Soft decision decoding is

used since it can decode beyond the conventional error correcting ability of the code

and is particularly suited to low rate codes [41]. The Guruswami-Sudan algorithm [41]

is used along with the Koetter-Vardy algorithm [42] for soft decision decoding.

The four comparisons listed below are made, with the final one being the primary ob-

jective of the research.

1. The optimal RS code rate for each of the MIMO schemes as well as a SISO AWGN

channel.

2. VBLAST vs. TBLAST at various coding rates.

3. Hard decision decoding vs. soft decision decoding for all three MIMO schemes,

using both high and low rate codes.

4. High rate MIMO with low rate channel code vs. low rate MIMO with high rate

channel code.
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All comparisons are plotted as Symbol Error Rate vs.
Es
N0

, i.e. the fraction of the message

symbols which are incorrectly decoded at the receiver against the ratio of the energy

per transmitted information symbol and the noise spectral density. Using
Es
N0

as the

controlled variable allows a fair comparison to be made between codes having different

rates.

3.2 System description

The simulated system consists of an input data stream, Reed-Solomon encoding, 16-

QAM modulation, interleaving, MIMO encoding, block fading Rayleigh channel with

AWGN, followed by MIMO decoding, deinterleaving, demodulation and Reed-Solomon

decoding.

Reed-Solomon
Encoder

16QAM
Modulator

Interleaver
MIMO
Encoding

Rayleigh
Channel

AWGN

MIMO
DecodingDeinterleaver

16QAM
Demodulator

Reed-Solomon
Decoder

Input
Data

Output
Data

Figure 3.1: System Overview

3.2.1 Reed-Solomon

To align Reed-Solomon symbols to modulation symbols, RS symbols are chosen to have

a size of 4 bits. This limitation on the number of elements in the RS symbol alphabet

restricts the RS codewords to a maximum length of n = 15. Longer codes generally

perform better than short codes, so codewords are generated at the longest possible

length, i.e. 15. The message length k is adjusted depending on the simulation: hard

and soft decision decoding is compared using both (15, 9) and (15, 5) codes. In order to

compare high diversity (low rate), high RS rate systems to low diversity (high rate), low
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RS rate systems: (15, 10) codes over a rate 1 MIMO scheme are compared to (15, 5) RS

codes over a rate 2 MIMO scheme.

Reed-Solomon codes with odd values of n−k, such as the (15, 10) code, are not typically

used as error correcting codes. This is because increasing k by one will offer the same

conventional error correcting capability but higher rate. However, since soft decision

decoding is performed in this case, the conventional error correcting capability does not

impose a hard limit on the error correcting capability and there is no penalty for using

odd n− k.

Systematic Reed-Solomon encoding is used, allowing a noisy estimate of the message to

be extracted even when a decoding failure occurs. The Reed-Solomon subsystem can be

set up to either perform hard or soft decision (HD or SD) decoding. The Berlekamp-

Massey algorithm is used for HD decoding. For SD decoding, the Guruswami-Sudan

(GS) algorithm [41] is used in conjunction with the Koetter-Vardy algorithm [42] for

selecting multiplicities of roots. The maximum output list length parameter for the KV

algorithm is set to 4 – this outperforms the bound on the GS algorithm while maintaining

moderate complexity.

SD decoding outputs a list of messages – only the most likely message is considered for

error rate analysis. The most likely message is selected as follows: all messages on the list

are re-encoded and modulated to give the expected transmitted vector. The Euclidean

distance between the transmitted vector and the received vector is then measured. The

message which results in the minimum total distance is selected as the most likely

message. If the decoder fails to produce any candidate messages, the systematic portion

of the received vector is output as the most likely message.

All error analysis is performed using symbol error rate, i.e. the fraction of symbols from

the transmitted message which are decoded erroneously. When the decoders fail to

decode the received vector, the systematic portion of the received vector is output as

the most likely message.

Using k = 10 is preferable for the high rate simulations, as this results in exactly double

the code rate of a k = 5 system. For hard decision decoding, however, a (15, 10)

code has the same error correcting capability as a (15, 11) code, but with a lower rate.
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Soft decision decoding simulations thus use (15, 10) codes while hard decision decoding

simulations use (15, 9) codes.

3.2.2 MIMO schemes

The MIMO antenna arrangement for this research is a 2×2 system, i.e. two transmitting

and two receiving antennas. Due to space limitations in devices, this is one of the more

common MIMO configurations [12–14]. Three MIMO encoding schemes are considered:

the VBLAST scheme [3], the TBLAST scheme [32] and the Alamouti scheme [28].

The VBLAST scheme transmits an independent symbol over each antenna during each

time slot. For a 2×2 system, VBLAST thus transmits two symbols per time slot, which

means it is a rate 2 scheme. Decoding is performed by decoding the transmitted symbol

with the highest contribution to the received vector first, based on the trained channel

matrix. The other symbol is nulled for the first step, i.e. assumed to be equal to zero.

The first symbol is quantised to the nearest value from the modulation constellation,

following which its contribution is cancelled from the received vector. The second symbol

is then decoded. The VBLAST scheme has been discussed in more detail in section 2.2.1.

Quantising the decoded symbols (soft values) to constellation points (hard output) is

an inherent part of the VBLAST algorithm. In order to use a soft input Reed-Solomon

decoding algorithm, the VBLAST algorithm was adapted to provide a soft output. The

final symbol to be decoded is the only symbol for which the decision statistic is generated

with full knowledge of the rest of the symbols. The soft value for this symbol is thus

simply the decision statistic before the quantisation step. For the symbols that were

decoded with only partial knowledge of the co-antenna interference, the known symbols

must be substituted back into the original received vector and G matrix to recover a

true soft output (algorithm 1 lines 9 and 7).

Turbo-BLAST, or TBLAST, was developed by Sellathurai and Haykin to minimise the

effects of co-antenna interference (CAI). The transmission works identically to VBLAST,

so it is also a rate 2 scheme for a 2 × 2 system. Decoding is performed by iteratively

estimating the values for all symbols in the received vector, based on the previously

estimated values of the other symbols. As the number of iterations becomes large, the

symbol estimates approach the actual values. Since each symbol’s estimate is generated
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Table 3.1: Alamouti STBC structure

t0 t1
TX1 x0 −x∗1
TX2 x1 x∗0

using knowledge of other symbols’ estimates, the impact of CAI is minimised. See

section 2.2.2 for a more thorough introduction to TBLAST.

For TBLAST to produce a hard output, the expected values are quantised to the con-

stellation points. The soft output values, on the other hand, are simply the expected

values for each symbol (equation 2.14).

Neither of the BLAST schemes offer any transmit diversity, only contributing receive

diversity in the form of two receive antennas. The diversity order for both BLAST

schemes is thus 2.

The Alamouti scheme is an orthogonal space-time block code (STBC) which is only

applicable to 2× 2 MIMO systems. It utilises two time slots for every two symbols that

are transmitted, so it is a rate 1 scheme. Table 3.1 shows the structure of the Alamouti

STBC. The decoder uses maximal ratio combining (MRC) to recover the transmitted

symbols. MRC works by multiplying the received vector by the complex conjugate of

the channel matrix to give the decision statistic [10].

The Alamouti scheme offers a transmit diversity of 2 and a receive diversity of 2, yielding

an overall diversity order of 4.

3.2.3 Modulation and channel model

The channel is modelled as a block fading Raleigh channel. The 2 × 2 channel trans-

fer matrix H is comprised of independent and identically distributed Rayleigh random

variables hij . These entries have normally distributed real and imaginary components

that have zero mean and 1√
2

variance [11]. The channel matrix is also normalised so

that E
[
|hij |2

]
= 1 [11]. Following every fading block, a new channel matrix is generated

which is independent of all previous channel matrices.

The H matrix in a real system would be estimated at the receiver by means of a training

sequence. For the purposes of these simulations, however, perfect channel knowledge is
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assumed at the receiver. The transmitter, however, does not have any channel state

information. Both the transmitting antennas thus operate at the same power level.

In order to mitigate the effects of a highly correlated channel matrix, a block interleaver

is used. The size of the interleaver is chosen to be sufficiently large that no two symbols

in a codeword occur within the same fading block.

The modulation scheme used is rectangular 16-QAM. Since one modulation symbol

corresponds to one RS symbol, the ordering of symbols in the constellation (e.g. Gray

coding) is of no consequence.



Chapter 4

Results

The primary objective of this research is to compare MIMO systems with equal overall

rate but differing MIMO rates and error correcting code rates. The data generated in

order to perform this comparison can also be used to draw several other conclusions.

This chapter is structured as follows: to justify the selection of code rates, section 4.1

evaluates a range of rates using each of the MIMO schemes. The preferred high rate

MIMO scheme is then selected by comparing VBLAST and TBLAST in section 4.2.

Section 4.3 analyses the impact of using soft decision decoding with various code rates

over all three MIMO channels. Finally, systems with equal overall rates are compared

in section 4.4, which addresses the research problem.

4.1 Optimal code rates

When performing comparisons between different rate codes, it is important to keep the

total energy transmitted per message symbol constant. Suppose the reference value of

the energy per symbol Es is based on an uncoded data stream. If an (n, k) code were

used and each of the n symbols were transmitted using Es energy, the total energy used

to transmit the stream would be n
k times higher than the reference data stream. It

would thus achieve lower error rates than the reference stream not solely due to the

error correcting code, but also due to the higher signal to noise ratio. When using error

correcting codes it is thus necessary to spread the energy from the reference message

49
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across all the codeword symbols to maintain a fair comparison. Each codeword symbol

is therefore transmitted using k
nEs energy.

It is well known that low rate codes are capable of correcting more errors than high

rate codes due to offering a larger minimum distance. This, however, comes at the

expense of reduced energy per codeword symbol. Reduced energy per codeword symbol

results in more errors that need to be corrected, which counteracts the error correcting

improvement.

The fact that error correction codes offer a gain over uncoded systems indicates that the

error correcting improvement is greater than the energy decrease. This is not true for

all code rates though. Consider a trivial (15, 1) code: the same symbol is transmitted 15

times with an energy of 1
15Es. Theoretical models using MATLAB’s bertool [7] show

that such a code actually performs more than 3 dB worse than an uncoded system in

an AWGN environment. There is therefore a point at which decreasing the code rate

will not provide any further improvements in error rate.

The error rate curves for RS codes of length 15 with HD decoding in a SISO AWGN

channel are shown in figure 4.1. The (15, 9) RS code offers the best performance, but

the (15, 11) and (15, 7) codes offer comparable performance at an SER of 10−4. The

(15, 5) code performs 0.9 dB worse than the (15, 9) code. This state of affairs is not the

case for all channel models, though, as demonstrated below.

The SISO Rayleigh fading channel as implemented in this research causes some fading

blocks to experience a decreased Es
N0

, since the scalar H attenuates the transmitted signal

power. Due to the perfect channel state information available at the receiver, however,

the phase of H has no effect. Due to the attenuated signal, symbols in poor fading

blocks are therefore more likely to be decoded incorrectly. This is expected to result

in lower rate codes exhibiting better performance relative to high rate codes than in

the SISO AWGN case. To verify this, figure 4.2 shows the error rate curves for a SISO

block fading Rayleigh channel. The performance of all code rates is degraded due to the

Rayleigh fading, but the (15, 5) RS code exhibits the best performance, followed closely

by the (15, 7) and (15, 3) codes. The (15, 9) RS code performs 1.9 dB worse than the

(15, 5) code.



Chapter 4. Results 51

6 8 10 12 14 16

10
−4

10
−3

10
−2

10
−1

Es/N0

S
y
m

b
o

l 
E

rr
o

r 
R

a
te

 

 

(15,1), HD

(15,3), HD

(15,5), HD

(15,7), HD

(15,9), HD

(15,11), HD

(15,13), HD

Figure 4.1: Comparison of code rates in an AWGN environment
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Figure 4.2: Comparison of code rates in a SISO Rayleigh environment

Figures 4.3, 4.4 and 4.5 show the results of comparing various rate RS codes using the

Alamouti STBC, VBLAST and TBLAST respectively.

Using the Alamouti scheme, it is evident from figure 4.3 that the (15, 7) RS code achieves

a symbol error rate of 10−4 at the lowest Es/N0. It narrowly outperforms the (15, 9) code

by 0.05 dB. The margin between the (15, 9) and (15, 5) RS codes is 0.4 dB. Comparing
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Figure 4.3: Comparison of code rates in an Alamouti MIMO environment

these results to the equivalent SISO Rayleigh fading results in figure 4.2, the Alamouti

encoding scheme offers approximately a 6 dB improvement in performance of the best

codes rates. The best codes rates for a channel experiencing only AWGN, however,

still outperform the Alamouti scheme in a Rayleigh fading channel by almost 2 dB. This

indicates that the Alamouti scheme counteracts most, but not all, of the negative impact

of Rayleigh fading.

The optimal code rate is not the same for all MIMO schemes, though. When utilising the

VBLAST scheme, as depicted in figure 4.4, the (15, 5) code offers the best performance,

achieving an SER of 10−4 at an Es/N0 of 19.7 dB, closely followed by the (15, 7) code.

The (15, 9) code performs 1.4 dB worse than the (15, 5) code. These results resemble

the results from the SISO Rayleigh fading channel, where the best performing code rate

achieved an SER of 10−4 at an Es/N0 of 19.4 dB. This confirms that the lack of diversity

in the VBLAST scheme causes it to be hampered by Rayleigh fading in a similar fashion

to a SISO system.

The improved performance of low rate RS codes compared to high rate RS codes is ex-

plained by considering the propagation of symbol errors within the VBLAST structure.

When the first symbol in the VBLAST decoding process produces an error, the incorrect
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Figure 4.4: Comparison of code rates in a VBLAST MIMO environment

value is used in the cancelling process. The second symbol is thus decoded using erro-

neous information, dramatically increasing the error probability of the second symbol

as well. This interdependence of symbols results in additional errors, requiring greater

error correcting capability from the channel code. Although the interleaver minimises

the impact of error propagation on single codewords, the effect remains noticeable due

to cross-propagation of errors from different codewords.

The TBLAST scheme, as shown in figure 4.5, exhibits very similar properties to VBLAST;

with the optimal code rate being lower than that for the SISO AWGN channel. Once

again the (15, 5) code performs best, followed by the (15, 7) and (15, 3) RS codes respec-

tively. The (15, 9) code performs 1.7 dB worse than the best performing code.

Errors in the TBLAST scheme do not propagate sequentially from one incorrectly de-

coded symbol to another, but occur when the expected values of both symbols iteratively

tend away from the correct values. This can be caused by either poor signal-to-noise ra-

tio or a spatially correlated channel matrix. Although the error propagation mechanism

is different between the two BLAST schemes, they exhibit very similar behaviour.

Based on the results in this section, the best error rates are achieved using (15, 5) RS

codes with the BLAST based schemes and (15, 7) or (15, 9) codes with the Alamouti

scheme. To achieve the objectives of this research, two code rates must be selected
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Figure 4.5: Comparison of code rates in a TBLAST MIMO environment

such that the RS code rate for the VBLAST scheme is half of the RS code rate for the

Alamouti scheme. Normally, odd values of n − k are not used in Reed-Solomon codes,

as the conventional error correcting capability is

⌊
n− k

2

⌋
. In this research, however,

the Koetter-Vardy soft decision decoding algorithm is used, which is less dependent on

using even values of n− k. A natural selection for two codes where the ratio of rates is

2 is thus the (15, 5) and (15, 9) codes, with (15, 10) codes being used with soft decision

decoding.

4.2 VBLAST vs TBLAST

The two BLAST based schemes use an identical transmission structure, i.e. transmitting

independent streams of information over each antenna. TBLAST offers better perfor-

mance on systems with many transmit and receive antennas, as shown by Sellathurai

and Haykin [32]. This is due to improved handling of co-antenna interference (CAI).

On systems with few antennas, such as the 2× 2 system used in this research, CAI does

not constitute as large a fraction of the total received power. VBLAST is therefore less

likely to erroneously decode the first symbol for systems with few antennas than systems

with many antennas.
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Figure 4.6: Comparison of VBLAST and TBLAST using the Berlekamp-Massey de-
coding algorithm

Figures 4.6 and 4.7 show the performance of the two BLAST based schemes using hard

and soft decision decoding respectively. It is evident that VBLAST and TBLAST offer

similar performance, but VBLAST offers marginally better performance at an error rate

of 10−4 for all four rate/decoding combinations. With hard decision decoding VBLAST

outperforms TBLAST by 0.2 and 0.5 dB for the (15, 5) and (15, 9) codes respectively.

With SD decoding, VBLAST outperforms TBLAST by 0.1 and 0.4 dB for the low and

high rate codes respectively.

Although TBLAST may offer a significant gain for large antenna systems, this per-

formance increase is not evident when there are only two transmitting and receiving

antennas. This is explained by considering the energy contribution of the desired sym-

bol and the co-antenna interference. With two transmitting antennas, the expected CAI

energy is equal to the expected symbol energy, resulting in a signal-to-CAI ratio (SCR)

of 0 dB. With 16 transmitting antennas, the expected CAI energy is 15 times greater

than the expected symbol energy, which is an SCR of -11.8 dB. It is clear that handling

of CAI thus becomes significantly more important when a large number of antennas are

present.

The technique of ordering symbol decoding by post-detection SNR as used in VBLAST
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Figure 4.7: Comparison of VBLAST and TBLAST using a 2× 2 MIMO system and
the Koetter-Vardy decoding algorithm

thus provides slightly more of a benefit than iteratively estimating co-antenna interfer-

ence.

4.3 Soft decision decoding gain

Soft decision (SD) Reed-Solomon decoding can potentially offer an improvement in er-

ror rate performance at the expense of significantly increased complexity. Analysing the

complexity-performance tradeoff is not the objective of this research, but the perfor-

mance increase is quantified in this section.

The asymptotic error correcting capability of the Guruswami-Sudan algorithm sans

Koetter-Vardy is n − 1 −
⌊√

(k − 1)n
⌋
, compared to a hard decision bound of

⌊
n−k

2

⌋
.

The expected benefit of using soft decision decoding thus increases as the code rate de-

creases. The Koetter-Vardy algorithm offers performance exceeding the bound of the GS

algorithm. The exact error correcting capability can however not be easily quantified,

since certain symbol reliability patterns allow more errors to be corrected than others.

The soft decision gain obtained using the KV algorithm is investigated for all three

MIMO schemes using (15, 5), (15, 9) and (15, 10) Reed-Solomon codes. Since a (15, 10)
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code has an error correcting capability of t = 2 while a (15, 9) code has t = 3, the lower

hard decision performance of the former code should result in a larger soft decision gain,

as the SD decoder is not as significantly affected by the odd number of parity symbols as

the HD decoder. Additionally, it is expected that the (15, 5) code will exhibit a larger SD

gain than the higher rate codes due to the higher theoretical error correcting capability.

Figure 4.8 shows error rate performance for the three code rates over an Alamouti

channel with hard and soft decoding. This demonstrates the effect of using soft decision

decoding on RS codes when there are an odd number of parity symbols. At a symbol

error rate of 10−4, the (15, 9) code exhibits a soft decision gain of 0.1 dB, compared

to 0.9 dB for the (15, 10) code – a difference of 0.8 dB. It can thus be concluded that

the soft decision decoder does not suffer as significant a penalty from an odd number of

parity symbols as a hard decision decoder.

When analysing the effect of code rate on soft decision gain, it is thus not practical to

include codes with an odd (n− k). This analysis is therefore performed using only the

(15, 5) and (15, 9) RS codes. Figures 4.8, 4.9 and 4.10 show the performance of the two

selected codes rates in conjunction with the Alamouti, VBLAST and TBLAST schemes

respectively. The soft decision gain for all combinations of the two code rates and three

MIMO schemes is summarised in table 4.1.
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Figure 4.8: Comparison of soft and hard decision RS decoding with the Alamouti
scheme
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Figure 4.9: Comparison of soft and hard decision RS decoding with the VBLAST
scheme

Table 4.1: Summary of soft decision gains at SER = 10−4

(15, 5) (15, 9) Difference

Alamouti 0.2 dB 0.1 dB 0.1 dB

VBLAST -1.9 dB -0.3 dB -1.6 dB

TBLAST -1.8 dB -0.1 dB -1.7 dB

The results in table 4.1 are somewhat unexpected. The soft decision RS decoder offers

very little gain when combined with the Alamouti MIMO scheme, and actually performs

significantly worse when combined with the BLAST based schemes. Additionally, while

the low rate RS code exhibits a small soft decision decoding gain over the high rate code

using the Alamouti scheme, no such gain is evident with the BLAST based schemes.

Soft decision RS decoding in fact performs at least 1.6 dB worse at low rate codes than

high rate codes when using the BLAST based schemes.

These results suggest that the MIMO schemes – in particular VBLAST and TBLAST

– do not generate good quality reliability information. This increases the probability

that the SD decoder will select multiple incorrect candidates for each symbol. There

are subsequently many non-causal codewords in the list of candidate codewords that the

decoder generates, increasing the likelihood of the causal codeword not being selected

or potentially even not in the list.
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Figure 4.10: Comparison of soft and hard decision RS decoding with the TBLAST
scheme

Some results that were generated during the course of the research indicate that this

result may be dependent on the fading channel model used. Using an incorrect imple-

mentation of the Rayleigh fading model, soft decision decoding gains around 1 dB were

observed, with the low rate RS codes offering around 0.5 dB more of an SD gain than

the high rate codes.

The poor performance of the BLAST based systems is explained by considering the

effect of error propagation. Symbol errors in both VBLAST and TBLAST cause the

simultaneously transmitted symbol to have reduced reliability. This negatively impacts

performance since there are fewer reliable symbols that the decoder can select.

Based on the poor performance of soft decision decoding in these results, there is no

justification for using soft decision decoding in the remainder of the research.

4.4 Transmit diversity vs code rate

The primary objective of this research is to investigate the feasibility of using low rate

codes as an alternative to diversity. VBLAST is used as the rate 2 MIMO scheme,

as it was shown in section 4.2 to offer better performance than TBLAST. VBLAST is
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paired with a (15, 5) RS code and is compared to the Alamouti STBC with (15, 10)

RS coding, keeping the overall rate of the two systems constant. Since soft decision

decoding has been ruled out as a viable option in the previous section and the (15, 10)

code doesn’t perform well with hard decision decoding, the performance of the (15, 9)

RS code using the Alamouti scheme is shown as well. These code rates were also shown

in section 4.1 to be optimal or close to optimal for each MIMO scheme. Hard decision

(Berlekamp-Massey) RS decoding is used with all three systems: the results are shown

in figure 4.11.
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Figure 4.11: Comparison of MIMO systems with equal overall rate

As expected, the (15, 10) RS code is hampered by having a lower error correcting ability,

performing about 1.1 dB worse than the (15, 9) RS code. The (15, 9) high diversity

system outperforms the low diversity system by 5.9 dB at a symbol error rate of 10−4.

This is a very large gain – the high diversity system can achieve the same error rates

as the low diversity system while using about four times less power. Low rate error

correcting codes are thus not a feasible alternative to transmit diversity in

the MIMO systems which were evaluated.

It can be concluded from this result that increasing transmit diversity is significantly

more effective than decreasing code rate for the system simulated. Although this con-

clusion can only be drawn under the conditions of this simulation, the magnitude of the
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margin suggests that similar results are likely to be achieved using different channel mod-

els and MIMO schemes. The mechanism by which the high rate system achieves such

good performance is that it reduces the number of symbol errors in the received vector

before it is passed to the Reed-Solomon decoder. The number of pre-decoding symbol

errors eliminated by high diversity exceeds the increase in error correcting capability of

the low rate code by a significant margin.



Chapter 5

Conclusion

The main conclusions that were drawn during this research are summarised in this

chapter, along with recommendations for future work. The results consisted of four

findings:

1. Optimal code rate for various MIMO schemes

2. Preferred high rate MIMO scheme

3. Impact of soft decision decoding

4. Code rate vs. transmit diversity

These findings are summarised in sections 5.1 to 5.4. Finally, recommendations for

future work are discussed in section 5.5.

5.1 Optimal code rates

The symbol error rate performance of (15, k) Reed-Solomon codes was measured on

SISO AWGN, SISO Rayleigh, MIMO Alamouti, MIMO VBLAST and MIMO TBLAST

channels. All odd values of k from 1 to 13 were used. The optimal code rate is the point

at which it becomes more effective to increase the transmit power than to further lower

the code rate.

62
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While the (15, 9) RS code peformed best over the SISO AWGN channel, the addition of

Rayleigh fading favours lower rate codes, with the (15, 5) RS code performing best, albeit

almost 8 dB worse than in a channel without Rayleigh fading. The Alamouti channel

with Rayleigh fading shows similar characteristics to a SISO AWGN channel: the (15, 7)

and (15, 9) RS codes offer the best performance, which is around 2 dB worse than the

best SISO AWGN performance. This indicates that the Alamouti STBC succesfully

mitigates most of the effects of multipath fading, recovering both symbols in a block

even when there is significant spatial correlation.

The various codes behaved somewhat differently when using VBLAST and TBLAST –

in both cases the (15, 5) code (rate 1
3) offered the best performance. The results resemble

those using a SISO Rayleigh channel, both in optimal code rate and performance, which

shows how the lack of diversity makes the BLAST based schemes susceptible to the

adverse effects of Rayleigh fading. The error propagation which occurs in VBLAST and

TBLAST also requires greater error correcting capability than orthogonal schemes such

as the Alamouti scheme.

It can be concluded that the optimal code rate for any given system is somewhat depen-

dent on the properties of the MIMO scheme. Systems with diversity perform best when

combined with high rate codes, while low rate codes are necessary for systems that have

no diversity and that exhibit error propagation.

5.2 VBLAST vs TBLAST

The two BLAST schemes were shown to offer very similar performance. Although

TBLAST may perform better in systems with many antennas, VBLAST was marginally

better with the 2 × 2 antenna system considered in this research. This suggests that

when considering a MIMO systems with few antennas, as used in this research, the

technique of ordering symbols by post-detection SNR is slightly more effective than

trying to iteratively eliminate CAI.
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5.3 Soft decision decoding gain

The least expected result from this research is that soft decision decoding using the

Guruswami-Sudan algorithm with the Koetter-Vardy (GS-KV) algorithm is not guar-

anteed to provide a gain over using hard decision decoding. The SD gain using the

Alamouti scheme was less than 0.2 dB, while the BLAST based schemes performed

worse with the GS-KV algorithm than with hard decision decoding. Considering the

decoding gain reported by [42] and other results generated with invalid channel mod-

els, it can be concluded that the amount of gain provided by the GS-KV algorithm is

dependent on the channel model used.

The poor performance of VBLAST and TBLAST in conjunction with soft decision de-

coding is likely due to the way that errors propagate between simultaneously transmitted

symbols. The error propagation affects the quality of the reliability information that is

passed to the SD decoder, resulting in the poor SD decoding performance.

It was also shown that the soft decision gain when using the (15, 10) code exceeded the

gain when using a (15, 9) code. This indicates that the GS-KV algorithm is therefore

not as severely affected when using an RS code with an odd value of (n− k) as a hard

decision decoder.

5.4 Code rate vs transmit diversity

The research problem was to investigate the feasibility of using low rate channel codes

as an alternative to transmit diversity in MIMO systems. This was done by comparing

the Alamouti STBC in conjunction with a (15, 10) Reed-Solomon code to the VBLAST

scheme with a (15, 5) RS code. The overall rate for the two systems is therefore equal.

The first system (with high transmit diversity) outperformed the second scheme (with

low code rate) by 4.8 dB. This is a very large margin and indicates that low rate codes are

not a feasible alternative to transmit diversity under the conditions that were simulated.

Additionally, the (15, 10) code is hampered by only having an error correcting capability

of 2; if a (15, 9) code is used the margin between the high diversity and low diversity

scheme increases to 5.9 dB. The magnitude of the margin between the two types of
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schemes suggests that it is highly improbable that a different conclusion would be drawn

even under different simulation conditions.

5.5 Recommendations for future work

Considering the large margin between the low rate / low diversity system and the high

rate / high diversity system, recommendations for future work are not intended to be

used to narrow the gap between the two types of systems. The recommendations are

merely areas of interest for future research.

The error propagation encountered in both BLAST schemes may be better handled by

leveraging the burst correction abilities of Reed-Solomon codes. If the size of RS symbols

is selected to be nT times larger than the modulation symbols, every time slot in the

BLAST based scheme will correspond to a single RS symbol. For example, if 16-QAM

(four bits per symbol) is used with a 2×2 MIMO antenna configuration, the RS symbols

should be taken from GF(256) (eight bits per symbol). An error would thus propagate

between the lower 4 bits and upper 4 bits of an RS symbol, but would never affect other

RS symbols. This should reduce the number of errors that the RS code needs to correct,

reducing the likelihood of a decoding failure. A similar technique can be investigated

for the Alamouti STBC, but it is not expected to have as much of an impact.

A few simplifying assumptions were made regarding the channel model. A block fading

Rayleigh channel was used and perfect channel state information was assumed at the

receiver. This made it simple to develop an interleaver which prevents a poor channel

from affecting more than one symbol in a codeword and also eliminated errors due to

incorrect channel estimation. The impact of different channel models on the performance

of the MIMO schemes should be investigated.

The results also suggest that the channel model has a significant impact on the GS-KV

soft decision decoding algorithm. Soft decision decoding performed worse than hard

decision decoding for the BLAST based schemes and only offered a small gain when

combined with the Alamouti scheme. This is unexpected, as prior research [42] using

other channel models indicates significant soft decision gain. The impact of various

channel models on the performance of the GS-KV decoder should be analysed.
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While BLAST based systems do have their place in situations where very high spectral

density is required, it would generally be recommended to focus on MIMO schemes that

incorporate transmit diversity. Increased transmit diversity makes the system much

more resistant to poor channel conditions and results in significantly lower error rates.
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