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alone to justify its validity. In the research presented, linear block codes are created using

IIR filters, and the error-correcting capabilities are investigated. The construction of

short codes that achieve the Griesmer bound are shown. The potential to construct long

codes are discussed and how the construction is constrained due to high computational

complexity is shown. The G-matrices for these codes are also obtained from a computer

search, which is shown to not have a Quasi-Cyclic structure, and these codewords have

been tested to show that they are not cyclic. Further analysis has shown that IIR filter

structures implements truncated cyclic codes, which are shown to be implementable
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Chapter 1

Introduction

1.1 Brief History of Error-Control Coding

The significance of communication theory was shown by Shannon to the world in his

famous paper [1], titled ”A Mathematical Theory of Information”, since then he has

been widely regarded as the father of communication theory. Through probability theory,

he showed that there exists a coding scheme with a low probability of error only if

the information rate is less than the channel capacity. This was illustrated using an

error-correcting code (ECC) invented by Hamming, since Hamming was the first person

to introduce the basics of coding theory. In Hamming’s paper [2], he describes a single

ECC and introduces the basics, Hamming weight and Hamming distance which are now

extensively used to describe modern ECCs. At the same time, another person who was

working on error-control codes was Golay, which in his paper [3] generalised for coding

theory what Shannon had concluded in his paper [1].

Research led to the discovery of Cyclic codes which had good algebraic properties. Some

of the best cyclic error correcting codes such as Hamming, Golay, Reed-Solomon [4] and

Bose-Chaudhuri-Hocquenghem (BCH) [5] were discovered. These are all subclasses of

linear block codes. The beauty of such codes is that efficient decoders can be developed

by exploiting their algebraic structure.

Hard-decision decoders exist for many of these codes, for cyclic codes, most of the decoders

are developed based on syndrome decoding, which is derived from the algebraic structure

of the codes. In 1969 Berlekamp and Massey came up with a decoding algorithm for

both Reed-Solomon codes and Bose-Chaudhuri-Hocquenghem codes [6, 7]. With a recent

emergence of Soft-decision decoding for linear block codes, it has shown to improve coding

gain over hard decision decoding [8]. For Reed-Solomon codes, a soft-descion decoder was

1
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created by combining soft information with a list decoder known as Koetter-Vardy and

Guruswami-Sudan algorithm and has shown to improve the coding gain when compared

to hard decision decoding [9, 10]. The drawback to this is that hard decision decoders

are less complex and iterative in nature versus the complexity of soft-decision decoders.

Gallager founded Low-Density Parity Check (LDPC) codes in 1963 [11], but was dis-

regarded due to high computational complexity which was not available then. This

was the case until 1997 when Mackay and Neal [12] showed it again that by using the

soft information to decode these codes, it gave a near Shannon limit performance. The

encoding is based on density evolution and tanner graphs whilst the decoding is based

on belief propagation, which is different from the approach of cyclic codes. This also

reinforces that soft-decision is stronger than hard decision decoding.

Convolutional codes were introduced in 1955 by Elias [13] and was proposed as a good

alternative to block codes. Convolutional codes are used almost exclusively as stream

codes instead of block codes. Initially, Convolutional codes lacked a strong algebraic

explanation and it was Fornay [14] who eventually derived a form of algebraic structure for

analysis. Convolutional codes can be decoded using both a hard decision and soft-decision

approaches, namely Threshold [15] and Viterbi [16] decoding. The Viterbi algorithm

works on the trellis diagram of the convolutional code, which works out the maximum

likelihood path on the Trellis diagram [16].

In the 1990’s Turbo codes were discovered [17] and had a near Shannon limit error-

correcting capability. Turbo codes are a combination of Recursive Systematic Convo-

lutional encoders with an interleaver when combining the output streams from these

encoders. Turbo codes are iteratively decoded with soft information and probability

techniques [17]. Turbo codes entail two fundamental concepts, code that is designed

using random-like properties which are not structural (due to the pseudo-randomness

introduced by the interleaver) and decoding which heavily relies on soft-information

based decoding.

This concludes the section where a brief history of notable error-control codes is introduced,

which paints the context for this research. The following section will discuss the problem

and research statement for this research.

1.2 Problem and Research Statement

The focus in Error-Control coding has always been the development of good codes which

reached the Shannon limit. Error-Control codes are deemed “good” when it is capable of

meeting a high minimum distance with large lengths and information symbols. These
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requirements are hard to meet since an increase in parity will lead to a higher minimum

distance and a lower code rate. Block codes are a form of error correcting codes and

Reed-Solomon codes are some of the most widely used and studied linear block codes

that are defined as “good” error-control codes. Another aspect that contributes to

the preference of Reed-Solomon codes is their ease of construction and decoding. The

drawback to Reed-Solomon codes is that they are designed in a particular field and

constrained to a length and information symbols to achieve a good minimum distance.

There have been approaches to extend the length of Reed-Solomon codes, but this is

confined to a maximum of either a single or double symbols [8]. This is a very significant

practical problem in the field of Error-Control coding. Reed-Solomon codes have been

studied extensively in the past, which led to the use of using Linear Feedback Shift

Registers in its implementation. The structure of a Linear Shift Feedback Register is

analogous of that of a Finite Impulse Response filter. This similarity leads to the research

problem which is stated as:

“Investigate the use of Infinite Impulse Response filters to construct linear

block codes that meet high minimum distance with flexible length and

information symbols which are also easy to decode.”

This research will attempt to investigate if it is possible to construct good block codes,

which are not constrained by a length and number of information symbols by a field

size, by utilising an IIR filter structure. The error correcting capabilities of the codes

constructed from this scheme will be investigated. An existing decoder will be used to

show the ease of which decoding is possible.

1.3 Research Claims and Objectives

The Research objectives are determined based on how they answer the claims hypothesised.

The claims stated for this research are:

• valid codewords can be constructed through an IIR filter structure,

• the constructed codes are linear,

• these codewords are not cyclic codes or non-binary convolutional codes and has no

quasi-cyclic properties,

• the Singleton bound isn’t realistically achievable,

• these codes meet the Griesmer bound for block codes,
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• these codes are decodable using an existing block code decoder.

The sub-questions that are formulated to warrant the claims made are:

• Can valid codewords be constructed using an IIR filter?

• Are these codes linear?

• Are these codes cyclic?

• Can they be defined as non-binary convolutional codes?

• Can Maximum distance separable codes be constructed?

• Do these codes reach the Griesmer bound?

• Are these codes decodable? If so can an existing decoder perform it?

This research attempts to answer these sub-questions and by answering them all evidences

are obtained. These evidences are then used to warrant the claims made to support the

research.

1.4 Author’s Contribution

The author’s contribution is split into two criteria namely, Knowledge contribution and

Programming contribution. The Knowledge contribution discusses the valid contribution

made to the field. The Programming contribution briefly mentions what setup is required

for the experiments to be done. The programming contribution has no significance

towards the research topic at hand. It is merely mentioned as a formality and thus

concludes in this chapter.

Knowledge Contribution: Using IIR filters, it is possible to generate linear block codes

that meet high minimum distance with flexible length and information symbols. These

codes can be decoded using the Parity Transformation Algorithm, which is an existing

decoder for Reed-Solomon codes. A further contribution was made when the algorithm

was modified to work with non-MDS codes thus deeming it an iterative soft-decision

decoder for any block codes.

Programming Contribution: The programming is done in Octave, where it is used

to prototype and to run the simulations. In Octave, the communication package is used

for generating the Galois field and defining the Filter functions. Octave is used because

it is open source and is required to use Message Passing Interface (MPI) to split the

computation across different machines. The packages used on Octave are [18–21]:
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• MPI package

• Signals Package

• Control Package

• Communications Package

1.5 Conclusion

A brief history of error-control codes is introduced to cover the context, from which

the problem and research statement are derived in this research. In conclusion, the

dissertation attempts to answer the research problem, “Investigate the use of Infinite

Impulse response filters to construct linear block codes that meet high minimum distance

with flexible length and information symbols which are easy to decode.” To achieve this,

the research needs to warrant a set of claims. The general overview in which the claims

and warrants are used to answer the research problem is illustrated in figure 1.1.

Figure 1.1: Overview of how claims, sub-questions and evidences contribute to
answering the research problem

1.6 Structure of Dissertation

The dissertation is structured as follows: Chapter 2 contains the Literature Survey, which

includes a discussion on basic algebra, block codes, convolutional codes, filter structures,

decoding algorithm and related work. Chapter 3 contains the research methodology
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and experimental setup adopted to tackle this research problem. Chapter 4 will lay out

the results obtained as well as detailed analysis. Finally, Chapter 5 will conclude the

research.



Chapter 2

Literature Survey

During the transmission of information over a channel, noise can corrupt some of the

information transmitted. Error-Control coding is a practice for combating the receiving

of errors while transmitting information. This approach allows the decoder to reconstruct

the original information without any need of retransmission of information. Before

introducing the different techniques of error-control coding some basic but necessary

field theory is discussed. This chapter introduces the necessary theory required for block

codes, convolutional codes, and related work.

In Section 2.1 the introductory algebraic theory is explored in depth with emphasis on

basic concepts in the field of communication theory. Section 2.2 discusses block codes, in

particular, significance is given to Reed-Solomon codes. A basic introduction to filters

and different filter structures are provided in Section 2.3. Convolutional codes, their

structure, and uses are reviewed in depth in Section 2.4. Section 2.5 explores the Additive

White Gaussian Noise (AWGN) channel whilst Section 2.6 illustrates the Binary Phase

Shift Keying (BPSK) modulation scheme and how soft information is extracted. Section

2.7 analyses the decoders used for the research. Finally, Section 2.8 scrutinizes work

related to the research question and objective.

2.1 Introductory Algebraic Theory

In order to discuss the error-correcting codes some concepts regarding the algebra of

finite fields, polynomial rings, and some basic error-control preliminaries need to be

defined first.

Definition 2.1 A finite field F is defined as a set of finite elements in which two

operations(addition and multiplication) exist. This is such that under the laws of addition

7
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it creates an additive group and when multiplied without zero forms a multiplicative

group [22]. Some of the properties the field must satisfy are:

1. The commutative and distributive laws must hold true i.e. x, y, z ∈ F then

xy+ xz = x(y+ z), xz + zy = (x+ y)z, x+ y+ z = z + y+ a and xyz = zyx must

be true.

2. The associate property must hold true: where x, y, z ∈ F and the operations are

(x+ y) + z = x+ (y + z) and (xy)z = x(yz).

3. The addition and multiplication operations must be closed i.e. x, y ∈ F such that

x+ y ∈ F and xy ∈ F.

4. The field must have an additive and multiplicative identity such that given x, 1, 0 ∈ F
then x+ 0 = x and x · 1 = x.

5. Additive and Multiplicative inverses must exist for all elements in the field i.e.

x, 1, 0 ∈ F has x+ (−x) = 0 and x · x−1 = 1. The exception to this is for element

zero, where it does not have a multiplicative inverse.

Error-control coding is interested in a particular finite field known as the Galois Field.

Definition 2.2 A Galois Field (GF) is a Finite Field with finite number of elements

which is derived from the powers of prime numbers and is denoted as Fpr .

A GF field is said to have an order of q where q = pr, p is the prime number and r is

the order of power of the prime number( r ∈ N and r ≥ 1 ). The order of the field also

indicates the number of elements in the finite field. A GF field with an order q is also

represented as GF (q). There are specific Galois fields when r = 1 the field is called a

prime field GF(p)(where q = p1) [22].

Each element within the GF field is represented in terms of a polynomial with degree

less than or equal to r − 1 and coefficients from GF (p), the prime field. For a prime

Galois field the addition and multiplication is done in terms of modular arithmetic i.e

a, b ∈ Fp where a+ b = (a+ b)mod(p) and (a · b) = (a · b)mod(p) which insures the field

is closed under addition and multiplication [22, 23].

Definition 2.3A Polynomial ring is the set of polynomials in Fq[x] of degree less than

some polynomial f(x), where addition and multiplication of those set of polynomials

will be modulo f(x). This is very similar to a field but the difference is that it is in

terms of polynomials with factors that lie in GF (q). A ring of polynomials over f(x)

is denoted as Fq[x]/f(x) and the number of elements contained is qdeg(f(x)). Suppose



Chapter 2. Literature Survey 9

if a(x), b(x) ∈ Fq[x] and the deg(a(x)) < deg(f(x)), deg(b(x)) < deg(f(x)) then the

polynomial f(x) is deemed reducible over the ring Fq[x] [22, 24].

Definition 2.4 An irreducible polynomial f(x) in a field F is a polynomial which does

not contain factors that are present in that field F [24].

Definition 2.5 A primitive polynomial p(x) of some degree r is the minimal polynomial

of some primitive element of GF (pr). It has the following properties [22, 24]:

1. A primitive polynomial always has a non-zero constant term.

2. An irreducible polynomial f(x) over GF (p) with degree r can be a primitive

polynomial p(x) if and only if it divides xn − 1 where n is the smallest possible n

in which it divides and n = pr − 1.

A GF(8) field can be constructed using the irreducible polynomial f(x) = X3 +X + 1

where the elements are expressed in terms of powers of α and the polynomials expressed

in terms of indeterminate x [24].

Table 2.1: Various Reperesentations of elements in GF(8)

Powers of α Polynomials in x Binary Representation Decimal Representation

0 0 000 0

α0 = 1 1 001 1

α1 x 010 2

α2 x2 100 4

α3 x+ 1 011 3

α4 x2 + x 110 6

α5 x2 + x+ 1 111 7

α6 x2 + 1 101 5

This concludes the introductory algebraic theory necessary to understand block codes

and convolutional codes. The following section will introduce block codes, namely

Reed-Solomon codes and will cover its construction and theory in detail.

2.2 Linear Block Codes

This section focuses on linear block codes which falls under a category of error-control

coding. A block code is defined in terms of (n, k) where n is the length of the codeword,

k is the number of information bits, and n− k the number of parity bits. Intuitively it
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can be stated that block codes are constrained to a particular length [22–24]. The rate

of a block code is calculated as

R =
k

n
. (2.1)

Definition 2.6 A Generator matrix with dimension k × n exists for linear block codes

which is expressed as 
g1,1 g1,2 · · · g1,n

g2,1 g2,2 · · · g2,n
...

... · · ·
...

gk,1 gk,2 · · · gk,n

 . (2.2)

This is also known as the encoder and the codewords (c) are formed by multiplying the

messages (m) with the encoder (G), c = mG.

Definition 2.7 A Parity Check matrix H also exists, which is commonly used as an

alternate description to a linear block code. The parity check matrix (n − k) × n is

defined as 
h1,1 h1,2 · · · h1,n

h2,1 h2,2 · · · h2,n
...

... · · ·
...

hn−k,1 hn−k,2 · · · hn−k,n

 . (2.3)

A codeword c is only a valid codeword if it satisfies the condition that cHt = 0.

Definition 2.8 Hamming weight for a vector c is the maximum number of non-zero

elements contained within the vector [22–24].

Definition 2.9 The Hamming distance between two vectors c and v is the number of

positions in which both vectors are different [22–24].

Definition 2.10 The Minimum distance is the minimum Hamming distance between

any two codewords of a codebook C, it is denoted as dmin [22–24].

One of the most important characteristics of an error correcting code is the minimum

distance of the code, as this directly relates to the error correcting capability of the code.

The minimum distance of a code is directly proportional to the minimum number of

errors that the code can detect. In theory a code with a minimum distance dmin can

detect upto dmin − 1 errors [24].

Definition 2.11 The Singleton Bound is the measurement of minimum distance obtain-

able by a maximum distance seperable(MDS) linear block code [22–24]. For a block code

(n, k), and codeword c ∈ C over GF (q) with a dmin, the Singleton bound implies that
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[25],

qk ≤ qn−dmin+1 (2.4)

such that

k ≤ n− dmin + 1 (2.5)

which can be transposed and simplified with dmin as the subject of the formula

dmin ≤ n− k + 1. (2.6)

Going from equations 2.4 to 2.5 it can be noted that the field size is completely ignored.

It is true that only MDS codes can achieve the Singleton bound, but it also does not

indicate how large the field size q should be for those codes to exist, therefore it can be

concluded that the Singleton bound does not take into account the field size and it is

one of the major drawbacks [25]. From this the maximum number of errors a block code

will correct is determined as

e =
dmin − 1

2
. (2.7)

Definition 2.12 The Griesmer Bound is the measurement of minimum distance obtain-

able by a linear non-MDS codes. For example, a block code (n, k) with a Hamming

distance of d the Griesmer bound is defined as

n ≥
k−1∑
i=0

[
d

qi

]
. (2.8)

The Singleton bound is always the maximum achievable distance for a block code. But

the draw back to the Singleton bound is that it does not take into account the field size.

Therefore in higher fields and larger lengths n, for a block code, the Singleton bound

is considered to be unrealistic to achieve in nature. Therefore the Griesmer bound is

used as an alternative distance bound that is achievable for linear block codes. For the

derivations and comparisons refer to reference [25].

The comparison between the Singleton and Griesmer bound is depicted in Figure 2.1 for

a block code in GF (4) where the information symbols are k = 3 and k = 4 for varying

block lengths n. From Figure 2.1 it can be seen that for an increased k symbol the

margin of difference between the bounds are still the same, thus it is independent of the

relation of k. This indicates that if n is sufficiently larger than k then it holds that the

Griesmer bound will always be realistically achievable.
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Figure 2.1: Minimum distance dmin vs Block Length n for Singleton and Griesmer
bounds for various k values

2.2.1 Cyclic Codes

Cyclic codes forms part of a subclass of codes within linear block codes. They are studied

due to their relative ease for implementation using Linear Shift Feedback Registers

(LSFR) and because of strong algebraic properties which help in encoding and decoding

[22–24]. This section will briefly introduce their algebraic definition. Suppose a codeword

vector c exists containing n elements

(c0, c1, · · · cn−1) , (2.9)

if another vector c1 contains

(cn−1, c0, · · · cn−2) , (2.10)

and if both c and c1 are ∈ C then the codeword vector c1 is considered a cyclic shift of c.

The equivalent polynomial representation of the codeword c (2.9) is

c(x) = c0 + c1x
1 + · · ·+ cn−1x

n−1. (2.11)

This representation will always confine a codeword polynomial to a maximum degree less

than or equal to n−1. To indicate the cyclic shift in (2.10) the polynomial representation

is

xc(x)mod(xn − 1) = cn−1 + c0x
1 + · · ·+ cn−2x

n−1. (2.12)

From this it can be inferred that a cyclic shift is the multiplication of c(x) and x in the

polynomial ring Fq[x]/xn − 1 [22–24].
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Theorem 2.1 The generator polynomial for a cyclic code is represented as

g(x) = g0 + g1x
1 + · · ·+ glx

l (2.13)

where g0 will always be 1 assuming GF (2).

Proof. By assuming that g0 = 0, then

g(x) = g1x
1 + · · ·+ glx

l = x(g1 + g2x
1 + · · ·+ glx

l−1). (2.14)

By referring to equation (2.12), it is seen that (2.14) is a cyclic shift of some generator

polynomial, xg(x), and thus it can be concluded that g0 6= 0 [24].

Theorem 2.2 Provided that a generator polynomial in the form of (2.13) exists, there

exists another polynomial b(x) that has a degree of n − 1 or less and is a multiple of

(2.13).

Proof. Assume that there exists a codeword polynomial v(x) over GF (2) with a degree

of n− 1 or less. If that v(x) is presumably a multiple of g(x),

v(x) = (q0 + q1x
1 + · · ·+ qn−1−lx

n−1−l)g(x) (2.15)

Now it can be shown that (2.15) is an addition of various multiples of g(x) and all of

it is contained within the Codebook C. This shows that any polynomial with a degree

n − 1 or less is a subset in C. Through division of v(x) by g(x) the whole set can be

expressed in terms of quotients and remainders as

v(x) = q(x)g(x) + r(x). (2.16)

From (2.15) we can conclude that v(x) = q(x)g(x) therefore r(x) = 0, thus proving that

v(x) is completely divisible by g(x) due to being multiples [24].

Cyclic codes are encoded using the Generator matrix (G-matrix) described earlier in

(2.2). That can also be achieved by implementing a circuit that is a linear n− k shift

register with feedback, also known as a Linear Shift Feedback Register (LSFR). This

circuit is shown in Figure 2.2 and a three step process is involved to get the equivalent

encoding of a G-matrix. So, what the encoding circuit achieves mathematically is that

once a message polynomial u(x) is multiplied by Xn−k, it is then divided by a generator

polynomial g(x) to obtain a remainder polynomial b(x). This is combined to form the
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codeword polynomial b(x) +Xn−ku(x). The circuit achieves this in the following three

step process:

1. Activate the gate and feed in the input sequences simultaneously into the registers.

By shifting all the input sequences from the front is equivalent to multiplying u(x)

by Xn−k. As soon as all the messages have been fed the remaining n − k digits

form the remainder and are the parity-check digits.

2. Disconnect the feedback by switching off the Gate.

3. With the aid of a switch combine the parity-check digits (b0, b1, · · · , bn−k−1), with

the message sequence to create the codeword sequence.

b bb b

Gate

gn−k−1

bn−k−1 +

Message Xn−ku(x)

Parity-check digits

Codewords

+

++

++

+

b0 b1 b2

Figure 2.2: Encoding circuit for (n,k) cyclic code with a generator polynomial of
g(x) = 1 + g1X

2 + · · ·+ gn−k−1X
n−k−1 +Xn−k [24]

2.2.2 Reed-Solomon Codes

Reed-Solomon (RS) codes are a subset of cyclic codes and the most widely used linear

block code. RS codes meet the Singleton bound under the following conditions

1. n ≤ q − 1,

2. the parity bits must be n− k

From these conditions it is easy to derive that the most number of errors a code will

correct is

e =
n− k

2
. (2.17)

By combining (2.17) with equations (2.6) and (2.7), the Singleton bound can be expressed

in terms of the maximum number of errors to correct as

dmin = 2e+ 1. (2.18)
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It is more logical to design a code by determining the number of errors it requires to

correct and thus leading to a logical approach for creating the appropriate RS code. The

generator polynomial for a RS code is given as

g(x) = (x− α)(x− α2)...(x− αn−k). (2.19)

A generator matrix G with dimensions k × n, which contains linearly independent

codewords exist for RS codes. Following that the parity-check matrix also exists from the

G matrix with the dimensions (n− k)× n. Due to the existence of linearly independent

rows in the G matrix it can be said that all codewords formed are a combination of those

rows. The total number of codewords from such combinations are calculated as qk. The

systematic form of the generator matrix is shown as

G =
[
Ik P

]
, (2.20)

where Ik is an (k × k) identity matrix and P is the (k × (n− k)) parity matrix [22, 24].

This property holds true for any linear block code (n, k). Following this approach the

parity check matrix H is constructed as

H =
[
P ′ In−k

]
, (2.21)

where P ′ stands for the transposed (n− k)× k parity matrix and the (n− k)× (n− k)

identity matrix In−k [22, 24]. Another approach based on the Vandermonde matrix also

exists to generate the H matrix. Assuming β is a primitive element of GF (q) for a RS

code with (n, k, dmin) the H matrix is constructed as

H =


1 β · · · βn−1

1 β2 · · · β2(n−1)

...
... · · ·

...

1 β(dmin−1) · · · β(dmin−1)(n−1)

 . (2.22)

2.2.3 Quasi-Cyclic Codes

This section introduces Quasi-Cyclic (QC) codes, a formal definition and an example

is discussed in this section. The discussion is kept brief due to the research not being

focused on QC codes, but an understanding is necessary to draw conclusions in later

chapters.
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Definition 2.11 Let a block code be defined as (sn, ak), where s, n, a and k are all

positive real numbers with the condition that ak < sn. Assuming this codebook C is in

GF (q), the rules required to be a QC code are:

1. Every codeword has s sections of n bits.

2. Cyclic shift of those s sections of a codeword leads to codewords within C

An interesting insight is that if s = 1 and a = 1 we have a block code (n, k) which is a

normal cyclic code. Therefore it can be concluded that cyclic codes are a subclass of QC

codes. For example, a QC code in GF (2), where 1 ≥ a < s, the generator matrix of that

code consists of a× s sets of n× n circulant matrices. A circulant matrix is where each

row of the matrix is a right cyclic shift of the previous row, the next column will be a

downward shift of the previous column. The systematic G matrix of QC code (sn, ak) is

given as

G =


G0,0 G0,1 . . . G0,s−a−1 I O . . . O

G1,0 G1,1 . . . G1,s−a−1 O I . . . O
...

...
...

...
...

...
...

Ga−1,0 Ga−1,1 . . . Ga−1,s−a−1 O O . . . I

 , (2.23)

where Gw,m is a circulant n× n matrix with 0 ≥ w < a and 0 ≥ m < s− a. Where there

is an I it represents an identity matrix and O is a zero matrix. Note that all of these

matrices are circulant with dimensions n× n [26].

2.3 Filter Structures

Filter Structures are of great importance in Signal processing. The two most commonly

implemented filters are namely, the Finite Impulse Response (FIR) and the Infinite

Impulse Response (IIR) filters. The significance of introducing filter structures from

signal processing is to highlight its use in coding theory. Convolutional codes are codes

which have implementation of such filter structures and are introduced in the following

section. The subsections below introduce the structural and mathematical definitions of

these filters.

2.3.1 FIR filter

A Finite Impulse Response filter produces an impulse response which will terminate after

a certain period of time Tp, this is achieved because it does not have feedback. From this

it can be inferred that the transfer function is dependent only on the delay or memory
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operators as the signal traverses through time.The structure of an FIR filter is illustrated

in Figure 2.3 [27, 28]

Z
−1 Z

−1
Z

−1 Z
−1

++++

b0 b1 b2 b3 bN−1

bbb

Figure 2.3: Direct Form I structure for an FIR filter

The transfer function is mathematically represented as

T (z) = b0 + b1z
−1 + b2z

−2 + · · ·+ bN−1z
−(N−1), (2.24)

where N − 1 is the order of the filter and is represented in the z-domain which is where

it is commonly analysed in.

2.3.2 IIR filter

Infinite Impulse Response (IIR) filters produces an impulse response which does not

terminate after a period of time Tp, and it carries on infinitely. The structure of an IIR

filter is provided in Figure 2.4 [27, 28]

Figure 2.4: Direct Form I structure for an IIR filter
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The traditional transfer function, where a0 = 1 is given as

T (z) =
b0 + b1z

−1 + b2z
−2 + · · ·+ bN−1z

−(N−1)

1 + a1z−1 + a2z−2 + · · ·+ aM−1z−(M−1)
, (2.25)

where N − 1 is the order of the feed-forward side and M − 1 is the order of the feedback

side. From this it can be seen that the output of the filter plays an important role in

the form of feedback which influences the future of outputs. Equation 2.25 can also be

expressed in terms of a rational function and power series as

t(z) =
b(z)

a(z)
=

∑N−1
i=0 biz

i∑M−1
j=0 ajzj

=

∑N−1
i=0 biz

i

1 +
∑M−1

j=1 ajzj
, (2.26)

where tj are coefficients of the power series in terms of z. The transfer function in

equation 2.25 is derived from the following difference equation

y[n] =
1

a0

N−1∑
i=0

bix[n− i]−
M−1∑
j=0

ajy[n− j]

 , (2.27)

where y[n] is the discrete output signal, x[n] the discrete input signal, N − 1 the order

of the feed-forward side, M − 1 the order of the feedback side, bi the coefficients of the

feed-forward side, and aj the coefficients of the feedback side.

Octave implements a direct form II transposed model for the filter function. The direct

form transposed II depicted in Figure 2.5 looks different from Figure 2.4. The structure

indicates that coefficients a1 and a2 are both negative, this is due to the difference

equation shown in 2.27. This subtraction exists in the normal field, but in the Galois

field subtraction and addition are the same process. The transfer function (2.25) for

both the structures is the same and this is shown in [29, 30].

+

+

+b0

b1

b2

−a1

−a2

y[n]x[n]

Z
−1

Z
−1

Figure 2.5: Structure of Direct Form II IIR filter structure

The filter structure in Figure 2.5 assumes a0 = 1 and because 1 is a multiplicative

identity, it does not need to be represented in a block in the diagram. To understand how
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the direct form II filter structure is implemented, Algorithm 1 will illustrate it better.

Algorithm 5 only shows the logic for the filter structure in Figure 2.5 and explains how

the logic can be scaled for larger numbers of coefficients.
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Input: 1. Row vector of filter coefficients for the numerator
Input: 2. Row vector of filter coefficients for the denominator
Input: 3. Row vector which contains the message
Output: Row vector which contains the codeword

4. Set the coefficients for
[
b0 b1 b2 · · · bM

]
, for the filter from row vector for

numerator

5. Set the coefficients for
[
a0 a1 a2 · · · aM

]
, for the filter from row vector for

numerator

6. InputAccumulator=0

7. OutputAccumulator=0

8. Summer1=0

9. Summer2=0

FOR (Index=0, Index < Length of the message, Index++)

The feedback side Logic

10. InputAccumulator = Message value at current Index
11. InputAccumulator = InputAccumulator - (a1× Summer1)
12. InputAccumulator = InputAccumulator - (a2× Summer2)

Repeat this logic to the number of summers and an

The feed forward side logic

13. OutputAccumulator = Message value at current index ×b0
14. OutputAccumulator = OutputAccumulator + (b1× Summer1)
15. OutputAccumulator = OutputAccumulator + (b2× Summer2)

Repeat this logic to the number of summers and an

16. Summer2 = Summer1
17. Summer1 = InputAccumulator

18. Output value at current Index = OutputAccumulator

END

19. The codeword row vector will be the accumulation of the output values
Algorithm 1: Pseudo code for Direct form II IIR filter structure
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2.4 Convolutional Codes

Convolutional codes and their necessary theory can be found in detail from reference [31].

The authors of these references have done well to introduce the theory of convolutional

codes. This section contains a basic introduction to convolutional codes and their different

types. The focus will be spent more on understanding the distance bounds for these codes.

A detailed introduction to cyclic convolutional codes are also covered. The significance

of this chapter is to draw insight from the understanding of convolutional codes to the

filter structures.

Convolutional codes unlike block codes introduced earlier have a different structure,

(n, k,K) the parameter n is the length of the code, k is the information bits and K is

the constraint length. Convolutional codes are defined by their rate shown below as

R =
nd
ne
, (2.28)

where nd is the number of input streams and ne is the number of output streams. This

equation is valid if and only if it satisfies the condition ne ≥ nd. Before the different

structures are introduced the basic layout of a convolutional code needs to be introduced.

Suppose u1 is the input stream and contains values from GF (2), which is a binary field.

Then from some initial time onwards you would have some input starting at t0 and the

input stream can be presented as

u1 =
{
u1t0 , u

1
t1 , ..., u

1
tf
, ...
}

(2.29)

From (2.29) we know that the first input stream started at some time t0 and then went

onto some time tf , in practice the input stream is infinitely long. Depending on the rate

of the convolutional code you will have different output streams, this is illustrated below

for the output stream of a 1
2 rate encoder as

v1 =
{
v1t0 , v

1
t1 , ..., v

1
tf
, ...
}
, (2.30)

v2 =
{
v2t0 , v

2
t1 , ..., v

2
tf
, ...
}
, (2.31)

where these streams are combined as:

v =
{
v1t0v

2
t0 , v

1
t1v

2
t1 , ..., v

1
tf
v2tf , ...

}
. (2.32)
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To express the convolutional code in terms of a polynomial, it must firstly be expressed in

terms of an indeterminate D. In a polynomial ring Fq[D] there are infinite q polynomials,

where q are the coefficients of the polynomials. So a (nd, ne) convolutional code C is an

ne-dimensional subspace of Fq(D)nd [32]. The encoding aspect of convolutional encoders

are represented as generator matrices as done in block codes. For analysis purposes

the input sequence is converted to a polynomial form x(D), the polynomial transfer

function matrix G(D) (with dimensions nd × ne) and finally the codeword y(D). This is

mathematically illustrated as

y(D) = u(D)G(D). (2.33)

The indeterminate D is also known as a delay operator or memory, this is adapted from

a signal processing theory. The total number of delay blocks present directly relates

to the maximum power of the equations formed. There are many generator matrix

structures for convolutional encoders and can be extensively studied from references

[24, 31]. Convolutional codes in practice are used by passing information bits as streams

to the encoder to obtain the output codeword sequence. There are fundamentally two

different ways to encode convolutional codes namely, feed-forward and feedback approach,

and these approaches are introduced in the next two sections.

2.4.1 Feed-forward Convolutional Codes

This section discusses the feed-forward convolutional encoders. The architecture of the

feed-forward encoder is provided in Figure 2.6. The structure for a rate 1
2 Feed-forward

convolutional encoder is shown below

U
D D

+ +

+

V1

V2

Figure 2.6: Rate 1/2 Feed-forward Convolutional Encoder

As shown above this is analogous to an FIR filter shown in Figure 2.4. The transfer

function matrix for Figure 2.6 is

G(D) =
[
1 +D +D2 1 +D2

]
. (2.34)
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Suppose the input is u(D) then based on 2.34 the output for V 1 is

V 1(D) = u(D)(1 +D +D2), (2.35)

and for V 2

V 2(D) = u(D)(1 +D2). (2.36)

The G-matrix presented in equation 2.34 is obtained from the transform domain and the

time domain version of the G-matrix is presented as

G =


g00g

1
0 g01g

1
1 g02g

1
2 · · · g0Mg

1
M

g00g
1
0 g01g

1
1 · · · g0M−1g

1
M−1 g0Mg

1
M

g00g
1
0 · · · g0M−2g

1
M−2 g0M−1g

1
M−1 g0Mg

1
M

. . .
. . .

 (2.37)

where M is total number of memory blocks or delay operators and the blank areas are

all zeros. This matrix is a semi-infinite matrix because it is dependent on the arbitrary

length of the input stream u1. If the input stream has a fixed length L then the number

of rows present in the time domain G-matrix is also L.

2.4.2 Feedback Convolutional Codes

An example of a feedback convolutional encoder is provided in Figure 2.7. It is evident

that the encoding structure varies from feed-forward when compared to Figure 2.6. The

transfer function matrix for the this encoder is given as:

G(D) =
[
1 1+D2

1+D+D2

]
. (2.38)

They are widely known as recursive systematic convolutional codes, and mostly are en-

coded in a systematic format. Communication theory states that a feedback convolutional

encoder can be used to implement feed-forward convolutional encoders. It is relevant to

know that there are many different approaches for creating the encoder matrices and

can be studied extensively from [24, 31]. The transfer function matrix is different from

the one provided in (2.34). Assuming the input is assumed to be a rational function

u(D) = 1 +D +D2, then the outputs are obtained as

V 1(D) = u(D)(1) = 1 +D +D2, (2.39)

and

V 2(D) = u(D)(
1 +D2

1 +D +D2
) = 1 +D2, (2.40)
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from which it has been shown to be the same as (2.35) and (2.36).

Figure 2.7: Rate 1/2 Feedback Convolutional Encoder

2.4.3 Distance Bounds

An important aspect of error-control coding is the ability to correct errors, and this is

dependent on the dmin (minimum distance) of the codeword. Convolutional encoders

from theory are regarded as linear block codes but are in practice used as stream codes.

Various studies and explanations are proposed for distance bounds for convolutional

codes [25] . The distance bounds can be separated into two categories, namely as a

property of the encoder or of the codeword [31]. What is relevant for this research is

the distance bounds associated with the codewords. The distance bounds that are most

relevant are the Griesmer and Singleton bounds.

2.4.4 Other forms of Non-binary Convolutional Codes

The authors [33] discusses the different types of non-binary convolutional codes and their

practical implementations. In order to decode Convolutional codes, its state diagram

and trellis diagram is necessary as it leads to the Viterbi decoding algorithm [33]. From

this extended a Trellis Coded Modulation (TCM) approach in which convolutional codes

were combined with a modulation process [33]. There are two types, namely: Ring-TCM

and Space-TCM codes. Further details will not be pursued since these codes serve no

purpose to the research at hand.
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2.5 Additive White Gaussian Noise Channel

This section covers the basic of the channel model of Additive White Gaussian Noise

(AWGN), the channel adds White Gaussian noise to the transmitted signal.The mathe-

matical description of this channel is

r(t) = T (t) +N(t) (2.41)

where r(t) is the received signal, T (t) is the transmitted signal and N(t) is the noise

added to the signal. N(t) is generally classified as white Gaussian noise with a spectral

power density of N0/2. White Gaussian Noise has a probability density function modelled

as

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , (2.42)

where µ is a mean of zero and σ2 = N0
2 [34]. AWGN channel model is generally used to

study deep space communication channels, and thus is deemed a very simple channel

model of which is illustrated below [34]

T(t) r(t)

N(t)

Figure 2.8: AWGN channel model

2.6 Binary Phase Shift Keying Modulation Scheme

The Binary Phase Shift Keying (BPSK) modulating scheme is briefly discussed in this

section. The modulation scheme used for the transmission is BPSK and the bit error

rate (BER), known as the probability of a bit error in demodulation (deemed as p in the

equation) of the uncoded output from the AWGN channel is given as [34]

p = Q

(
2εb
N0

)
(2.43)

whereby εb is the energy per bit. Assuming that a codeword c ∈ C is transmitted over the

AWGN channel with a two-sided spectral power density of N0
2 using BPSK-modulation

scheme with a signal energy of unity, a prior probability (APP) is calculated during
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demodulation of the received sequence to obtain the soft-information from the channel

[26]. A binary expansion of the codeword c is conducted and a new codeword sequence

c∗ is generated before transmission. Suppose the codeword c contains symbols which

are of GF (q), where q = pr, then for every element α ∈ GF (q) the binary expansion is

represented as an r-tuple (γ0, γ1, · · · , γr−1) which is contained in GF (2). For example a

codeword vector of length N , c = (c0, c1, c2, . . . , cN−1) ∈ GF (q) will have the following

binary expansion form

c∗ = ((c0,0, c0,1, . . . , c0,r−1), (c1,0, c1,1, . . . , c1,r−1), . . . , (cN−1,0, cN−1,1, . . . , cN−1,r−1)).

(2.44)

The BPSK modulation characterises the transmitted signal sequence as a bipolar sequence

with +1 representing the binary bit 1 and -1 representing the binary bit 0. From this

characterization the prior probabilities are calculated during the demodulation of received

signal. The APP is also know as the likelihood ratio and is given as

l(xi|y) ≡ Pr(xi = 0|y)

Pr(xi = 1|y)
, (2.45)

where x is the transmitted sequence (x = [x0, x1, . . . , xN−1]) and y is the received

sequence (y = [y0, y1, . . . , yN−1]) both with a length N . This equations assumes that a

specific bit from x equals 1 given y when there is no corruption due to noise. From this

the formal equation for calculating the probability that the received i− th bit being a 1,

yi,k, given the channel output xi,k is

p1yi,k =
1

1 + e
(
4xi,k
N0

)
; (2.46)

where 0 ≤ i < N and 0 ≤ i < r (q = pr). From this to calculate the probability of the

received bit being 0 is simply

p0yi,k = 1− p1yi,k . (2.47)

After evaluating the probability of each received bit, it is now necessary to compute the

probability of the symbol. So the probability of the i− th symbol, αi is

Pαii =
r−1∏
k=0

pγkyi,k , (2.48)

where it is the pi- product of the posterior probability of all the individual bits (γ0, γ1, · · · , γr−1)

that comprise the symbol αi ∈ GF (q) [26].
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2.7 Decoding

For Linear Block-codes such as Reed-Solomon codes there exists an efficient hard decision

decoder (HDD) such as Berlekamp-Massey [6]. It is common knowledge that by performing

HDD a penalty of 2-3dB coding gain is paid for in AWGN channel because HDD quantises

real-valued information, thus ignores the information from the channel [8]. There are

many soft decision decoders (SDD) that take in real-valued quantised information and

creates a reliability matrix which in turn improves the coding when it comes to decoding.

For example for RS codes one of the most popular SDD is known as the Koetter and

Vardy (KV) decoder which is used in conjunction with a list decoder, Guruswami and

Sudan (GS) which provides a coding gain with respect to HDD [9, 10]. In this dissertation,

for the research conducted it is irrelevant to go into further detail about the GS and KV

algorithm. Therefore the SD decoder used for this research is introduced in the next

section.

2.7.1 Parity-Check Transformation Algorithm

The Parity-Check Transformation Algorithm (PTA) decoder is a soft-decision decoder

designed to exploit the parity check equation of a linear block code. This algorithm

tries to satisfy the syndrome checks based on the soft-information provided to it. This

is a symbol level iterative SDD [35]. Ogundile et al has shown that for RS codes PTA

outperforms KV-GS SDD, of which the latter was designed specifically for RS codes [35].

PTA can be broken down into two main stages namely the reliability matrix updating

stage and the syndrome-check satisfying stage. For PTA to work it is imperative that

the parity matrix, defined as the H matrix, and the reliability matrix (denoted as β) are

both provided initially. The operations of PTA are as follows

1. Obtain a Parity Check Matrix (H) in systematic form.

2. Obtain the Reliability Matrix β, this varies according to the modulation scheme

used. The β matrix has to be of a special format such that, for an (n,k) block code

in GF (q) the β matrix has to have the dimensions q × n.

3. From the β matrix now find the highest reliability for each columns and populate

a row vector of n highest reliability information hr.

4. Populate two vectors namely R and U , where R is a row vector which has the

dimensions 1× k and U has the dimensions 1× (n− k). R is known as the reliable

index matrix, where it contains the indices of k highest reliabilities from hr. U will
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be the unreliable index matrix which contains the n-k lower reliability indices. It

must be noted that U and R should have the indices sorted in an ascending order.

5. Create an H i matrix which now contains the transformed systematic H matrix

in such a way that the matrix has identity columns at the same indices within

U and parity columns at the indices in R. This is done by following the method

introduced in [36].

6. Compute the syndrome using H i, from this operations n-k parity check equations

are obtained. With equations either having equal to 0 or some symbol.

7. If all of the parity check equation is satisfied to be 0, then PTA stops. If some

of the equations are unsatisfied then the reliability in the indices contained in U

is modified by δ and the indices in R by δ
2 . This updates the reliability matrix β

which is fed back to the decoder.

8. Process is carried on until all the syndrome checks are satisfied or the stopping

condition is reached.
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Input: 1. Parity Check Matrix H (n− k)× n
Input: 2. Reliability matrix β (q × n)
Output: Decoded Codeword C1

3. Populate hr row matrix

4. The highest k reliability indexes in hr now populate R vector. The rest of the indexes
populate the U vector.

5. Adapt the H matrix using the indexes in U. Populate a sub matrix Hsm and insert
columns from the systematic H matrix which have the same indexes in U,
Hsm = H(:, U). Then compute H i = H−1sm ×H.
r= Received Vector which is the symbols chosen from the β matrix with the highest
reliability.
Exit = false
delta = some value

WHILE (Exit==false)
6. Compute the syndrome by:
For length of H i multiply the elements in each row to the
elements from r vector. Also keep track of the indexes of the
non-zero elements of each row of H i.

7. If all the syndrome values ==0
then Exit = true.

Else

IF syndrome value = 0 the indexes which participated are
modified in the β matrix by the delta value as:

If the index is in U
Add by delta

Else

Add by delta
2

IF syndrome value 6= 0 the indexes which participated are
modified in the β matrix by the delta value as:

If the index is in U
Subtract by delta

Else

Subtract by delta
2

8. REPEAT

C1= Received Vector which is the symbols chosen from the β matrix with the highest
reliability.

Algorithm 2: PTA Algorithm
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2.8 Related Work

There are many works done in terms of creating MDS codes. According to [37, 38] a

Pseudocyclic code is defined as a codeword vector c

c = {c0, c1, · · · cn−1} , (2.49)

with a pseudocyclic shift such as

c = {acn−2, c0, · · · cn−2} , (2.50)

where a is some element within GF (q). By following this definition it can be seen that

cyclic codes are a subset of pseudocyclic codes. MDS pseudocyclic codes are studied

and classified in [37, 38]. In [37] the authors present proofs which indicate that there

exists pseudocyclic block codes with length q − 1 and q + 1. This proof also validates

that these codes are extensions of BCH codes. In which they indicate that although

there exists pseudocyclic MDS codes at various values of n and k, these codes are not

cyclic codes which are subsets of pseudocyclic codes. In [38] the authors also prove that

such pseudocyclic codes exists which are extensions of RS codes. The ones notable are

extended and doubly extended RS codes. In [39] an extended RS code is defined as a

block code (n, k) over a GF (q) where n = q and dmin = n − k + 1 = q − k + 1. The

extended RS code is obtained by adding an extra parity digit, assuming β to be the

primitive element the G matrix is expressed as

G =



1 1 1 · · · 1 1

1 β β2 · · · β(q−2) 0

1 β2 β4 · · · β(q−2)2 0
...

...
... · · ·

... 0

1 β(k−1) β2(k−1) · · · β(q−1)(k−1) 0


. (2.51)

The work in this research paper states that there exists an extended RS code (q, k, dmin =

q − k + 1) if and only if q is prime which then has an equivalent cyclic code defined as

(x− 1)q−k [39]. The work also states that if q is not prime then there will be no MDS

codes of length q and dimensions 2 ≤ k ≤ q − 2 [39]. Further theorems and proofs are

provided in [39]. The process of adding an extra column is known as code extending and

the vice versa is known as code puncturing. Code puncturing is when from a generator

matrix the last column is deleted to form punctured codes. By puncturing or extending

the only changes made are to the length n and redundancy (n − k), and not to the

dimensions k of the code.
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Heegard et al in [40] introduced a new class of algebraic block codes termed FIR Parity

Check Codes (FIRPCC) using FIR filters which can be expressed in terms of syndromes.

The implementation is described as an FIR filter structure, it is implemented through

the aid of an IIR filter. The process implemented by Heegard et al are

• Concatenate the codewords,

• Implement an FIR or Sliding window,

• The syndrome that is obtained through the filter output is passed through a

syndrome detector circuit.

This approach was primarily created for synchronization and error detection. In order

to understand this fully some basics need to be presented. From (2.3) we obtain the

parity-check matrix H, and from block code theory we know that a codeword is a valid

codeword when it satisfies the condition cHt = 0. The syndrome of the linear block code

can be explained as cHt = S. Note that this will always be zero if the codeword is valid.

This leads to the premise that if there is a non-zero syndrome then the codeword is not

valid and thus it can be claimed such that the codeword has an error in it.

Concatenating the codewords: Once a codeword polynomial is generated (prior

to transmission by some other error control code) c(x), with p terms (which has the

structure shown in (2.11)) it is then concatenated with some input sequence

w(x) =
∞∑
i=0

ci(x)xip, (2.52)

where ci(x) is the codeword sequence from the codeword polynomial. This is basically a

string of codewords where multiples of p shows the starting point of one codeword.

Implementing the FIR filter: In order to show this process a basic example of a

periodic sequence and power series needs to be examined. Let r(x) be some binary

polynomial such that

r(x) = 1 + r1x
1 + r2x

2 + · · ·+ rp−1x
p−1. (2.53)

If this is a binary polynomial it is accurate to even describe it as a polynomial with

coefficients in GF (2) as shown in (2.11). This polynomial can be expressed as a power

series such that
1

r(x)
= r−1(x) = r∗(x) =

∞∑
i=0

Rix
i, (2.54)

where Ri are coefficients in the binary domain(i.e wither 1 or 0). This power series is

bounded by the condition r(x)r∗(x) = 1. The power series r∗(x) can be represented as a
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periodic sequence as

r∗(x) = r∗P (x)

∞∑
j=0

xjP =
r∗P (x)

1− xP
, (2.55)

where P is the fundamental period of r(x) and r∗P (x) =
∑P−1

i=0 Rix
i is the truncated

version of the power series in (2.54). The question that needs to be asked is “what

relevance does this have ?” The answer is that if r(x) is a primitive polynomial in GF (2)

then the power series is periodic of P ≤ 2p−1 − 1. From this it is valid to claim that

r(x) represented as a power series in (2.54) is a pseudorandom sequence.The difference

equation for an IIR filter is provided in (2.27), this equation can be rewritten as a power

series as

y[n] =

∞∑
j=0

djx[n− j]. (2.56)

For further mathematical proof the reader is advised to read through reference [40]. At

this point the relationship between power series and filter difference equation is shown.

The filter implemented has the following structure

hd+1(x) =
m(x)− xd+1n(x)

r(x)
, (2.57)

where r(x) is the recursive polynomial, m(x) and n(x) are both some polynomial which

are chosen based on some criteria. Note all these polynomials are chosen in GF (2) by

Heegard et al in their paper [40]. The difference equation for 2.57 is written as

y[n] =

deg(m(x))∑
i=0

Mix[n− i]−
deg(n(x))∑
j=0

Njy[(n− (d+ 1))− j]
p−1∑
l=1

Rly[n− l]

 , (2.58)

where the first and second summations are the power series representation of the poly-

nomials m(x) and xd+1n(x) which has terms till the maximum degree of powers the

respective polynomials contain, and finally the last summation is (2.54) which is the

equivalent truncated power series till the maximum power of the recursive polynomial

r(x). What (2.57) and (2.58) achieve is it extracts the polynomial coefficients of degree d

from the infinite series of r(x) thus forming a subsequence of finite terms. This approach

makes hd+1(x) appear as an FIR filter although it uses the structure of an IIR filter. To

implement this Heegard et al [40] chose an r(x) which was a primitive polynomial and

then solved for hd+1(x) where appropriate m(x) and n(x) were chosen for the length of

d+ 1 bits.

The Syndrome Calculator: The concatenated sequence is then passed through the

filter implemented. Heegard et al [40] were trying to answer the problem of synchroniza-

tion and error-detection. They achieved synchronization by passing w(x) from (2.52)

through the filter. By applying this technique they also exploit the properties of the
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syndrome detection. It is known that a syndrome can be calculated as S = cHt, this is

known as a coset of the linear block code. In practice it is possible to encode on this

coset of a linear block code. This can be achieved as c = mG+ σ, where σHt = S. From

this theory the syndrome sequence obtained is

S(x) = hd+1(x)w(x) =
∞∑
i=0

(yi(x) + xds(x)xip), (2.59)

where yi(x) is some output from the filter and s(x) is the syndrome of the codeword c(x).

The Syndrome sequence is then passed on to the syndrome detector circuit. This circuit

basically contains p− d parity bits which then will have coefficients from s(x) shifted

into it to establish a desired sync pattern. For further enquiries the reader is advised to

read Heegard et al [40].

The theory covered in this section will be used to test the block codes constructed, in this

research, in order to prove its error correcting characteristics. The PTA algorithm will

be used to decode the block codes constructed from the filter structure. In conclusion

the use of filter structures in error-control coding to detect errors is discussed here. This

will be the necessary foundation to show how IIR filter structures are used to construct

linear block codes.
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Methodology

3.1 Introduction

The methodology adopted for this research must answer the claims made to support the

research problem which is to

“Investigate the use of Infinite Impulse Response filters to construct linear

block codes that meet high minimum distance with flexible length and

information which are also easy to decode.”

The methodology must be able to prove the existence of block codes with high minimum

distance which are constructed from an IIR filter structure. The methodology must also

scrutinize the structure and error-correcting capabilities of the code.

This chapter is structured as follows: Section 3.2 will provide the overview of the research

methodology implemented. Section 3.3 will go in depth on the specifics of irreducible

polynomials that was used to implement the filter functions. Section 3.4 will elaborate

on how the message books were generated and the following section 3.5 illustrates the

different types of codebooks generated. The evaluation of the distance bounds for the

codeword are covered in section 3.6 and finally section 3.7 covers the investigation of the

periodic nature of the codewords generated.

3.2 Overview of Research Methodology

The methodology focuses on four sections namely, construction of the codeword, extraction

of the G-matrix, testing for cyclicity, evaluation of the distance bounds and the decoding

34
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of the codewords. The overview of the research methodology is provided in figure 3.1.

This will attempt to answer the sub questions formed to warrant the claims made to

support the research problem statement.

Code Construction Test for Cyclicity Extract G-matrix Distance measurements Decoding

Methodology

Figure 3.1: Overview of Research Methodology

3.3 Code Construction

The codes are constructed through the use of an IIR filter structure. The filter structure

acts as an encoder, which receives a message of a particular block length and then

produces an output codeword. The codewords are then combined to form a codebook.

The IIR filter structure is constructed from appropriate coefficients which belong to the

Galois field chosen. The processes followed to construct a codebook is shown in Figure

3.2, which is examined in detail in the following subsections.

Generate Message Book

Implement IIR filter

Generate Codebook

Passing messages

Combining codewords

Appropriate Coefficients

Various Combinations of Coefficients

Figure 3.2: Code Construction Processes

3.3.1 Generate Message book

The messages will have a length of n, out of which k consecutive symbols will be the

information and the remainder will be parity, thus rendering it in the systematic format.

The message books vary depending on the number of information symbols that are

required and can be represented mathematically as qk, where q is the Galois field size
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used and k the number of information symbols. Algorithm 3 illustrates the pseudo code

on how the message book is generated.

Input: 1. Desired Length of block code n
Input: 2. Desired Rate of block code k
Input: 3. Desired Galois Field Size q = pr

Output: Message book Mb

4. Preallocate matrix with dimensions (qk)× n

5. Create a sub matrix with dimensions (qk)× k

6. Generate permutations for all values ranging from 0− (q − 1), the number of
permutations depends on the size of k

7. Fill the sub matrix (qk)× k with all the permutations

8. Populate sub matrix into the initial matrix (qk)× n

9. The big matrix is the message book, where k subsequent symbols will contain
information from the permutations and the rest n− k symbols will be zero representing
parity bits

Algorithm 3: Pseudo code for creating the Message book

Two sets of fields are used for this research, q = 4 and q = 8. The higher field size is

used to prove MDS codes exist and is easier to computationally work with on shorter

lengths. A smaller field size is used when working with a larger length in order to meet

the Griesmer bound and to ease the computational operations. The information symbol

starts at a minimum of 3 and is increased till 5, these ranges are chosen due to the

computational complexity, which increases by a factor of q. The field chosen for this is

q = 4, GF (4) and the number of messages range from 64(k = 3) to 1024(k = 5). For

GF (8), k will remain at 3 since it is a shorter code with combinations of 512. The reason

for choosing these values and how it affects the computational complexity is explained in

the sections below.

3.3.2 Filter Implementation

The filter is implemented using the built in function of Octave. The filter transfer function

requires two sets of inputs which can be expressed as

Tr =

[
b0 b1 b2 · · · bM

]
[
a0 a1 a2 · · · aM

] , (3.1)
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where aj and bj ∈ GF (q), j ∈ {0, 1, 2, · · · ,M} and M is the number of memory blocks.

The constraints for constructing the filters are

• The numerator must contain at least one non-zero coefficient, i.e. bj , j ∈ {0, 1, 2, · · · ,M}
where it must have at least one bj that is ≥ 1.

• The denominator must always have an a0 such that a0 ∈ GF (q) and a0 ≥ 1.

From the constraints the number of combinations for Tr is worked out as the product

of the number of memory blocks in the numerator (is worked out as qM+1) and the

number of memory blocks for the denominator (is qM × (q − 1)). In GF (4) with M = 3

the number of filter transfer functions are 44 × (43 × (3)) = 49344 and for M=5 it

is 46 × (45 × (3)) = 12582912. For GF (8) with M = 3 and M = 4 the number of

combinations are 229376 and 14680064 respectively.

3.3.3 Generate Coefficients

The coefficients are constrained in relation to the maximum number of memory blocks

that are used for the filters. From Chapter 2, Figure 2.4 and from (2.25), it can be

seen that the number of memory blocks are 2 and the number of coefficients are 3. The

coefficients can be represented as a row vector

L =
[
l0 l1 l2 · · · lM

]
, (3.2)

where li ∈ GF (q), i ∈ {0, 1, 2, · · · ,M} and M is the number of memory blocks and M +1

the number of coefficients. To work in GF (4), taking into consideration computational

complexity and the constraints, the number of coefficients ranges from 4 to 6, and for

GF (8) are 3 and 4. For a memory block of 4 the number of combinations(number

of vectors) are 44 = 256 and for 6 is 46 = 4096(in GF (8) for 3 is 83 = 512 and 4 is

84 = 4096).

3.3.4 Generate Code book

For each filter transfer function that is implemented, all the messages contained within

the message book is passed through the filter and the codewords that come out are

combined to form a code book. The codebook will have the same dimensions and length

as the message book.
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3.4 Extracting the G-matrix

The G-matrix is extracted from the codebook through a computer search. The G-

matrix is constructed by extracting codewords that are in the systematic format. The

codewords are selected based on how they form an identity matrix in the structure. The

approach taken to determine the appropriate codewords to form the G-matrix is covered

in Algorithm. The G-matrix is extracted to test for linear independence and compared

to the structure of quasi-cyclic codes.

Input: 1. (qk × n) Codebook containing the codewords
Output: k × n Systematic Generator Matrix

While GenratorMatrixFound != True

2. Extract the codeword at the CodewordIndex

FOR (i =0; i < length of codeword; i++)
3. Search for the systematic first 3 symbols

4. If found, populate the Generator Matrix.

5. If found, increment the GeneratorMatrixIndex

END
6. If GeneratorMatrixIndex = k, then set GeneratorMatrixFound = True

END
7. Output the Generator Matrix.
Algorithm 4: Pseudo code for extracting a systematic G-matrix from the Codebook

3.5 Test for Cyclicity

The codebook is used to test for cyclicity. For cyclic codes, any cyclic shift of a codeword

is present in the codebook. The pseudo code is provided in Algorithm on how the test

for cyclic shift is done.

3.6 Distance Measurement

The distance measurement is conducted for both Griesmer and Singleton bounds. This

is done by iteratively working out the Hamming distance of all the non-zero codewords

contained within the codebook and then choosing the lowest hamming distance found.

This becomes the distance profile for the codebook, which has a transfer function

associated with it. The association is such that the codebook contains codewords created
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Input: 1. (qk × n) Matrix containing the codewords
Output: Column vector containing number of times the cyclic shift was true

While CodewordIndex != End of Codeword matrix

2. Extract the codeword at the CodewordIndex

FOR (i =0; i < length of codeword; i++)
3. Shifted codeword = Circular Shift the first element of the codeword by ith place

4. Find Shifted Codeword in Codebook
5. If found increase the counter.

END
6. Populate a column vector with the number of times the circular shifts of the codeword
was found

7. Output the column vector.
Algorithm 5: Pseudo code for Direct form II IIR filter structure

by the IIR filter with a particular transfer function. A distance profile is created for

each transfer function which then is used to create codes that achieve the Griesmer and

Singleton bounds.

3.7 Decoding

In order to truly show the validity of the codewords constructed from the filter structures,

the codes need to be decoded by an existing decoder. A comparison is also drawn from

comparing MDS codes created from the filter structure to another MDS code, namely

Reed-Solomon codes. The decoding methodology focuses on implementing a simulated

system that ranges from the encoding of messages to the decoding of codewords. The

simulated system consists of the following: the Input messages are encoded using the

filter structure, then transmitted through a modelled BPSK modulation scheme, with

an AWGN model simulating a real valued noise model, alongside a demodulator which

finally passes the codewords to the PTA decoder to decode the codewords. A brief layout

of the system is provided in Figure 3.3 The Monte Carlo test is conducted on this system

to generate the decoding performance of the decoder on the codewords. The test will

give a distribution for the comparison of the Symbol Error Rate (SER) vs Signal to Noise

Ratio (SNR).
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Encoder BPSK Modulator

AWGN

BPSK DemodulatorDecoder

Input Message Codeword Binary Codeword Transmitted Codeword

Nosiy CodewordOutput Message

Binary Converter

Figure 3.3: Sytem Layout

3.7.1 Encoder

The encoder is of two types, Reed-Solomon or the Filter Implementation, which is chosen

to compare the two in terms of error-correcting capabilities. The encoder will encode

messages in GF (8) and illustrates the comparison of MDS and Non-MDS block codes as

given in Table 3.1. The messages will be passed in a systematic format and thus it will

be encoded in a systematic format. The codeword that comes from the encoder will be

converted to binary as shown in (2.44).

Table 3.1: Encoders used for various Block codes based on Distance Criteria

Block Code Distance Criteria Block Code Type

(7,3) MDS Reed-Solomon
(7,3) MDS Filter Type
(7,3) Non-MDS Filter Type
(8,4) MDS Filter Type
(8,4) Non-MDS Filter Type

3.7.2 Modulation and Noise models

A modelled BPSK modulation scheme is used alongside a demodulator, which is known

as a BPSK detector. The real valued noise is modelled based on an AWGN channel and

this simulates the transmission of information on an AWGN noise infused channel (refer

to chapter 2 for further detail on BPSK and AWGN noise).

3.7.3 Decoder

The decoder implemented uses the PTA algorithm. The PTA decoder is an iterative

symbol level soft-decision decoder. The algorithm works primarily on adapting parity

check matrix to decode the codeword. The algorithm for PTA provided in chapter 2 only
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works on MDS codes , namely Reed-Solomon. The drawback for the PTA algorithm

is that it fails to decode Non-MDS codes. The reason behind this failure is that any

sub-matrix of a non-MDS code is rank deficient, thus invertible.

It is a well known theory that for (n, k) linear block codes there exists n − k linearly

independent rows in the H-matrix (refer to Chapter 2). For MDS codes any sub matrix of

the H-matrix will also be linearly independent. Suppose an s× s sub matrix is extracted

from the H-matrix, it will have s independent rows and is also deemed as full rank. Step

5 of adapting the H-matrix for PTA depends on that property [36]. This is not true for

Non-MDS codes, although the H-matrix is full rank and has n− k linearly independent

rows, the sub matrix will not always be full rank. The original algorithm found the

adapted H-matrix by multiplying the systematic H-matrix with the inverse of the sub

matrix. In the case that it is not full rank the matrix cannot be inverted. By applying the

Moore-Penrose algorithm it is possible to find a pseudo inverse of the sub matrix, but this

fails if the sub matrix is rank deficient as well as symmetric, where a symmetric matrix

A is defined as A = AT , where AT is the transpose of the A matrix. There are methods

to invert such matrices, such as Cholesky decomposition, and from [41] an approach was

taken to find the inverse of a sub matrix that is also symmetric and rank deficient. This

holds true in the field of Natural numbers and Complex numbers and failed to provide a

solution for Galois Field arithmetic. Both approaches are not applicable because after

finding the pseudo inverse of the sub-matrix it needs to be multiplied back into the

H-matrix, and this should result in a sparse adapted H-matrix but the pseudo inverse

makes it more dense. Therefore the implemented modified method evaluates the adapted

H-matrix as follows:

1. Create a matrix Ht which will have the columns of the systematic H-matrix

organised in the indices contained U and R.

2. Perform Gaussian elimination on Ht and obtain a row reduced form.

3. H i is now the sorted columns of the row reduced form of Ht

This modification makes the adapted H-matrix more sparse and because it relies on Gaus-

sian elimination it will successfully execute on rank deficient matrices. This modification

makes PTA applicable to both MDS and Non-MDS codes.

3.7.4 Monte Carlo Simulation

This experiment is conducted based on the Monte Carlo simulation. This is done 10000

times for SNR values ranging from 0 to 12dB. For each SNR value it sums up the total



Chapter 3. Methodology 42

of Symbol Error Rate (SER) and a semi-log plot is done to show that it forms a waterfall

model.



Chapter 4

Results

The main objective of this research is to investigate the construction of block codes

using the IIR filter structure. Error-control codes are classified as good ones based on

a combination of factors such as ease of construction, achievable minimum distance

and ease of decodability. The block codes generated from these filter structures are

analysed with respect to their construction, distance profiles and decodability using

an existent decoder. From the results several conclusions are drawn that validate the

research problem.

Chapter 4 is structured in the following way: Section 4.1 discusses the results obtained

from the construction of the codes; Section 4.2 presents the analysis of the filter structures;

Section 4.3 illustrates the distance bounds achieved and finally Section 4.4 depicts

the results obtained from decoding the codewords constructed through the IIR filter

structures.

4.1 Results of the construction

The codes are constructed using the transfer function described in 2.25 for the filters. As

shown in Chapter 3 equation (3.1), the codes are constructed with the coefficients found

through the computer searches. A polynomial representation of these coefficients are

used to explain the results. The construction of these codes are done in GF (8) and done

for various lengths and distance bounds. The following subsections are split in terms

of (7,3), (8,3) and (8,4) block codes. Each section will address codes that are MDS and

Non-MDS. Under these sections are the G-matrices for these codes that is obtained from

the computer searches.

43



Chapter 4. Results 44

4.1.1 (7,3) codes

The block codes are constructed using the IIR filter structure, with the parameters n = 7

and k = 3. The coefficients chosen for the filter structure were found using computer

searches. This section will illustrate how block codes can be created from the filter

structure that are both MDS and Non-MDS codes.

4.1.1.1 MDS

Three random codes that achieve the Singleton bound were chosen to illustrate the

systematic G-matrix formed. These three examples are IIR filters implemented with the

maximum number of coefficients being 4 and achieved minimum distance of 5. Example 1

will have the first coefficients of the numerator and the denominator the same. Example

2 will have the first coefficient in the denominator as 1 and the final coefficients the

same. Example 3 will have two distinct first and last coefficients in the numerator and

denominator.

Example 1: The decimal and power representation (in terms of the primitive element

α, refer to table 2.1) of the elements in the transfer function are presented below

Tr =

[
7 7 7 1

]
[
7 5 4 4

] ⇒ Tr =

[
α5 α5 α5 1

]
[
α5 α6 α2 α2

] .
The algebraic representation of the transfer function is given as

Tr(x) =
7 + 7x+ 7x2 + x3

7 + 5x+ 4x2 + 4x3
⇒ Tr(x) =

α5 + α5x+ α5x2 + x3

α5 + α6x+ α2x2 + α2x3
.

The systematic G-matrix formed from this structure is

G =


1 0 0 5 2 1 6

0 1 0 4 2 6 5

0 0 1 3 1 1 5

⇒ G =


1 0 0 α6 α 1 α4

0 1 0 α2 α α4 α6

0 0 1 α3 1 1 α6

 .

Example 2: The second structure has a transfer function of

Tr =

[
3 4 5 4

]
[
1 1 4 4

] ⇒ Tr =

[
α3 α2 α6 α2

]
[
1 1 α2 α2

] ,
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and has a polynomial representation of

Tr(x) =
3 + 4x+ 5x2 + 4x3

1 + 1x+ 4x2 + 4x3
⇒ Tr(x) =

α3 + α2x+ α6x2 + α2x3

1 + x+ α2x2 + α2x3
.

The systematic G matrix is obtained as

G =


1 0 0 1 7 4 1

0 1 0 5 3 3 6

0 0 1 4 3 4 5

⇒ G =


1 0 0 1 α5 α2 1

0 1 0 α6 α3 α3 α4

0 0 1 α2 α3 α2 α6


.

Example 3: The transfer function represented in terms of coefficients are:

Tr =

[
3 1 4 1

]
[
5 5 6 6

] ⇒ Tr =

[
α3 1 α2 1

]
[
α6 α6 α4 α4

] ,
followed by the algebraic representation

Tr(x) =
3 + 4x+ 5x2 + 4x3

1 + 1x+ 4x2 + 4x3
⇒ Tr(x) =

α3 + α2x+ α6x2 + α2x3

1 + x+ α2x2 + α2x3
.

A systematic G matrix is obtained as

G =


1 0 0 5 2 1 6

0 1 0 4 2 6 5

0 0 1 3 1 1 5

⇒ G =


1 0 0 1 α5 α2 1

0 1 0 α6 α3 α3 α4

0 0 1 α2 α3 α2 α6

 .
Examples 1-3 shows that to obtain block codes with the MDS property the coefficients

play no significant role, they are independent of the value of coefficients. From here on

out for different lengths of codes only one example will be illustrated.

4.1.1.2 Non-MDS

This section will provide an example of a Non-MDS (7, 3) block code with a minimum

distance of 4. The transfer function represented in terms of coefficients are:

Tr =

[
1 7 7 4

]
[
7 5 0 4

] ⇒ Tr =

[
1 α5 α5 α2

]
[
α5 α6 0 α2

] ,
followed by the algebraic representation

Tr(x) =
1 + 7x+ 7x2 + 4x3

7 + 5x+ 4x3
⇒ Tr(x) =

1 + α5x+ α5x2 + α2x3

α5 + α6x+ α2x3
.
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A systematic G matrix is obtained as

G =


1 0 0 3 3 2 5

0 1 0 1 6 5 7

0 0 1 5 6 5 2

⇒ G =


1 0 0 α3 α3 α α6

0 1 0 1 α4 α6 α5

0 0 1 α6 α4 α6 α

 .

4.1.2 (8,3) codes

This section will show that by extending the length of the block code to n = 8, it is still

possible to construct codes using the IIR filter structure that are MDS and Non-MDS.

4.1.2.1 MDS

An MDS code with a minimum distance of 6 is presented here. The transfer function is

provided

Tr =

[
5 7 6 7

]
[
7 7 1 5

] ⇒ Tr =

[
α6 α5 α4 α5

]
[
α5 α5 1 α6

] ,
followed by it’s algebraic representation

Tr(x) =
5 + 7x+ 6x2 + 7x3

7 + 7x+ x2 + 5x3
⇒ Tr(x) =

α6 + α5x+ α4x2 + α5x3

α5 + α5x+ x2 + α6x3
.

The G matrix is given as

G =


1 0 0 3 6 4 7 6

0 1 0 1 7 1 2 3

0 0 1 4 7 6 4 4

⇒ G =


1 0 0 α3 α4 α2 α5 α4

0 1 0 1 α5 1 α α

0 0 1 α2 α5 α4 α2 α2

 .

4.1.2.2 Non-MDS

An (8,3) code with a minimum distance of 5 is presented here, and the transfer function

is

Tr =

[
4 6 2 0

]
[
4 2 6 1

] ⇒ Tr =

[
α2 α4 α 0

]
[
α2 α α4 1

] ,
followed by it’s algebraic representation

Tr(x) =
4 + 6x+ 2x2

4 + 2x+ 6x2 + x3
⇒ Tr(x) =

α2 + α4x+ αx2

α2 + αx+ α4x2 + x3
.
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The G matrix is given as

G =


1 0 0 5 6 1 2 4

0 1 0 0 5 6 1 2

0 0 1 2 4 6 1 3

⇒ G =


1 0 0 α6 α4 1 α α2

0 1 0 0 α6 α4 1 α

0 0 1 α α2 α4 1 α3

 .

4.1.3 (8,4) codes

In this section both the length and rate are increased to n = 8 and k = 4, when compared

to (7, 3). The results show that it is still possible to construct block codes using the IIR

filter structure to produce codes that are MDS and Non-MDS.

4.1.3.1 MDS

With the number of coefficients being 4 there was no (8,4) MDS code found from the

search. By increasing the coefficients to 5 an (8,4) MDS code was found. This code is

represented as an FIR filter. This (8,4) code has a minimum distance of 5. The transfer

function represented in terms of coefficients are:

Tr =
[
5 1 4 5 6

]
⇒ Tr =

[
α6 1 α2 α6 α4

]
followed by the algebraic representation

Tr(x) = 5 + x+ 4x2 + 5x3 + 6x4 ⇒ Tr(x) = α6 + x+ α2x2 + α6x3 + α4x4.

The corresponding systematic G matrix is

G =


1 0 0 0 3 4 1 5

0 1 0 0 2 7 2 3

0 0 1 0 7 7 5 5

0 0 0 1 2 3 1 7

⇒ G =


1 0 0 0 α3 α2 1 α6

0 1 0 0 α α5 α α3

0 0 1 0 α5 α5 α6 α6

0 0 0 1 α α3 1 α5

 .

4.1.3.2 Non-MDS (8,4)

The transfer function represented in terms of coefficients are:

Tr =

[
3 4 5 4

]
[
4 1 1 1

] ⇒ Tr =

[
α3 α2 α6 α2

]
[
α2 1 1 1

] ,
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, followed by the algebraic representation

Tr(x) =
3 + 4x+ 5x2 + 4x3

4 + x+ x2 + x3
⇒ Tr(x) =

α3 + α2x+ α6x2 + α2x3

α2 + x+ x2 + x3
.

he algebraic representation. A systematic G matrix is obtained as

G =


1 0 0 0 1 5 5 7

0 1 0 0 3 7 6 5

0 0 1 0 5 2 2 6

0 0 0 1 2 1 0 2

⇒ G =


1 0 0 0 1 α6 α6 α5

0 1 0 0 α3 α5 α4 α6

0 0 1 0 α6 α α α4

0 0 0 1 α 1 0 α

 .

In conclusion the results present the evidence to the construction of block codes that are

both MDS and Non-MDS for block codes that have the parameters: (7, 3), (8, 3) and

(8, 4). The results also show the existence of G-matrices for all the codes constructed.

These G-matrices are formed through computer searches and are of a systematic structure.

Further analysis of the G-matrices shows that the rows are all independent of each other

thus proving that these codes are linear block codes. If the G-matrices are scrutinized

further it is also evident that none of the matrices has a Quasi-Cyclic G-matrix structure.

This concludes that the codes are not of Quasi-Cyclic structure.

4.2 Analysis of the filter structure

In signal processing it is common theory that a truncated IIR filter to a finite length,

can be represented as an FIR filter. This holds true in Galois fields and the coefficients

of the FIR filter can be represented with the impulse response from the IIR filter. The

IIR filter alongside with its respective FIR filter equivalent in terms of values and powers

of α for various codes are shown below:

(7,3) MDS code

Tr =

[
7 7 7 1

]
[
7 5 4 4

] ⇒ [
1 3 1 1 5 1 7

]

Tr =

[
α5 α5 α5 1

]
[
α5 α6 α2 α2

] ⇒ [
1 α3 1 1 α6 1 α5

]
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Tr(x) = 1 + 3x+ x2 + x3 + 5x4 + x5 + 7x6

Tr(x) = 1 + α3x+ x2 + x3 + α6x4 + x5 + α5x6

(7,3) Non-MDS code

Tr =

[
1 7 7 4

]
[
7 5 0 4

] ⇒ [
4 2 5 2 3 5 6

]

Tr =

[
1 α5 α5 α2

]
[
α5 α6 0 α2

] ⇒ [
α2 α α6 α α3 α6 α4

]

Tr(x) = 4 + 2x+ 5x2 + 2x3 + 3x4 + 5x5 + 6x6

Tr(x) = α2 + αx+ α6x2 + αx3 + α3x4 + α6x5 + α4x6

(8,3) MDS code

Tr =

[
5 7 6 7

]
[
7 7 1 5

] ⇒ [
2 3 5 7 3 3 1

]

Tr =

[
α6 α5 α4 α5

]
[
α5 α5 1 α6

] ⇒ [
α α3 α6 α5 α3 α3 1

]

Tr(x) = 2 + 3x+ 5x2 + 7x3 + 3x4 + 3x5 + 1x6

Tr(x) = α+ α3x+ α6x2 + α5x3 + α3x4 + α3x5 + x6

(8,3) Non-MDS code

Tr =

[
4 6 2 0

]
[
4 2 6 1

] ⇒ [
1 1 4 1 4 7 7 6

]

Tr =

[
α2 α4 α 0

]
[
α2 α α4 1

] ⇒ [
1 1 α2 1 α2 α5 α5 α4

]
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Tr(x) = 1 + x+ 4x2 + x3 + 4x4 + 7x5 + 7x6 + 6x7

Tr(x) = 1 + x+ α2x2 + x3 + α2x4 + α5x5 + α5x6 + α4x7

(8,4) Non-MDS code

Tr =

[
3 4 5 4

]
[
4 1 1 1

] ⇒ [
2 4 2 0 4 4

]

Tr =

[
α3 α2 α6 α2

]
[
α2 1 1 1

] ⇒
[
α α2 α 0 α2 α2

]

Tr(x) = 2 + 4x+ 2x2 + 4x4 + 4x5

Tr(x) = α+ α2x+ αx2 + α2x4 + α2x5

Since the MDS (8, 4) code is generated through an FIR filter there is no need to represent

that structure here. From these FIR structures it can been seen that the number of

coefficients can be less than the length of the codewords generated. Examples of such

structures are the MDS (8,4) code and MDS (8,3) code.

Block codes with some n and k that achieve Singleton bound can be created using the

IIR filter structure. The very same IIR structure can be replaced with an FIR filter

structure to generate the same codewords. The coefficients for the FIR filter structure

can only be used for that particular n and k to achieve that minimum distance. From

the results presented it is seen that for some cases the equivalent FIR requires more

memory blocks to be implemented to mimic the IIR filter.

4.3 Achieved Distance Bounds

The two bounds tested for these codes are the Singleton and Griesmer bounds. The

results from the influence of number of coefficients and increasing minimum distance is

shown in the table 4.1. The results presented are done in GF (4) due to the computational

complexity. The codes in GF (4) have shown to achieve the Griesmer bound and it is

shown that by increasing the number of coefficients in the filter transfer function can

also increase the minimum distance of the codes. From equation 2.8 n ≥ 21 is required

to obtain a dmin = 16. Therefore the table contains code rates of 3
21 , 4

21 and 5
21 . It

can be seen that by increasing the memory blocks the achievable distances of the codes
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improve and tend towards the Griesmer bound. The significance of the memory blocks

are affected more towards a higher rate of code.

Table 4.1: Distance Profile of codes with respect to the rate of the code and number
of Memory Blocks

Memory Blocks dmin for k = 3 dmin for k = 4 dmin for k = 5

4 16 4 4

5 16 13 5

6 16 14 13

4.4 Decoding

The results shows the performance of the PTA algorithm on the codewords constructed

from the IIR filter. A comparison is shown between RS codes and the codes generated

from the filter structure to show that the algorithm is a fair comparison in terms of

decoding. In figure 4.1 the comparison between RS and IIR codes both MDS and

Non-MDS is presented. This confirms the accuracy of the PTA algorithm as well as a

comparison between the codes created from the filter structures and RS codes.

SNR (dB)
3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

S
E

R

10-3

10-2

10-1

100

IIR filter 7771/7544(MDS)
Reed-Solomon
IIR filter 1774/7504 (Non-MDS)

Figure 4.1: Performance of PTA on (7, 3) Reed-Solomon, IIR MDS and IIR Non-MDS
codes.

In Figure 4.1 it shows the comparison of an RS code with dmin = 5, an MDS code

generated from the IIR filter with coefficients forming the transfer function of 7771
7544 with

a dmin = 5 and a non-MDS code with a dmin = 4, which is also constructed from the IIR

filter with the transfer function of 1774
7504 .
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4.4.1 Performance of PTA on codes

In this section the results from PTA on comparing different code rates are presented.

Figure 4.2 depicts the comparison for MDS codes for different rates and figure 4.3 depicts

the comparison for Non-MDS codes for different rates.

SNR (dB)
3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

S
E

R

10-5

10-4

10-3

10-2

10-1

100

(7,3) 7771/7544
(8,3) 5767/7715
(8,4) 51456

Figure 4.2: Performance of PTA on MDS codes for different rates

Evidently it can be stated that for MDS codes PTA performs slightly better with a

higher rate code, as the (8, 4) code has a coding gain of 0.8 dBs to code rate of (8, 3)

code. It shows that codes with a higher minimum distance performs better and this

adheres to the theory of ECC.

SNR (dB)
2 3 4 5 6 7 8 9

S
E

R

10-4

10-3

10-2

10-1

100

(7,3) 1774/7504
(8,3) 4620/4261
(8,4) 3454/4111

Figure 4.3: Performance of PTA on Non-MDS codes for different rates
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For Non-MDS codes it can be seen that PTA performs better for a low rate code. A

coding gain of 1 dB is achieved between (8, 3) and (7, 3) codes.



Chapter 5

Conclusion

The conclusions drawn from the research are summarized in this chapter. The main

objective and conclusion is derived by answering the secondary objectives. The results

are structured as:

1. Construction of codes

2. Decoding of codes

3. Analysis of codes

These are summarised from Sections 5.1 to 5.3 and Section 5.4 discusses future recom-

mendations.

5.1 Construction of codes

Block codes were constructed using filter structures namely, IIR and FIR filters. From

computer searches the generator matrices were obtained. The codes constructed are

linear codes as is evident from the structure of the generator matrix where the rows

were all linearly independent of each other. The generator matrices obtained from the

codes are compared to quasi-cyclic codes and were concluded that they failed to have a

quasi-cyclic structure. The generator matrices are different from the matrices constructed

from Convolutional codes, although the generator matrices still contained the impulse

response of the filter. From these structures Maximum Distance Separable codes were

found. Non-MDS codes were also found and these codes were confirmed to obtain the

Griesmer bound both for shot and long lengths. Results show that by adding more

memory blocks it is possible to get closer to the Griesmer bound for large lengths.

54
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5.2 Decoding of Codes

To confirm that these codes are decodable by block code decoder, a generic soft-decision

decoder is used to decode the codes constructed. The PTA decoder is used to decode

the codewords. The algorithms produced results for MDS codes but failed to decode for

Non-MDS codes. A slightly modified PTA algorithm is used to decode the codes and is

successful. PTA with the modification produced good results and successfully decodes

both MDS and Non-MDS codes.

5.3 Analysis of codes

A further analysis on the structure of the codes generated from IIR filter indicates

that such codes can also be represented by FIR filters with more memory blocks. The

coefficients for the FIR filter can be found from the impulse response of the IIR filter.

Although both the IIR and equivalent FIR filters produce the same code, and in some

instances the memory block required by the equivalent FIR model might be less than or

the same as the IIR filter, it is not scalable. The same IIR filter can produce MDS and

Non-MDS codes, depending on the application, for various lengths without the need to

change the coefficients in the memory blocks, and thus deemed scalable. From this it can

be concluded that using filter structures MDS block codes can be encoded and decoded.

5.4 Future Recommendations

This research was an investigation if it was possible to classify block codes using filter

structures, the conclusion drawn from this research is that such codes exist and can be

decoded. The drawback is that there is no generalised solution in creating such codes

nor is there an optimised computer search algorithm to find such codes from the filter

structures. Therefore the recommendations for future work would be to provide a general

formula for the construction of these codes.

The decoder used is a generic iterative soft-decision decoder, the possible future rec-

ommendation is that maybe devise a decoder that can decode this using the Markov

model or employ a partial state observable decoder. The filters are finite state machines

in which information is preserved therefore it is possible to apply a Markov model to

deterministically determine the next state given an input sequence.
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