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            ABSTRACT  
 

The use of synthetic chemical pesticides has several negative implications for the Agricultural 

industry, which include the development of resistance to the insecticides, crop contamination and 

the killing of non-target insects.  This has brought many scientists in the field of nematology and 

entomology to investigate biological control agents which can help solve identified challenges and 

these biocontrol agents have also included entomopathogenic nematodes.  The majority of 

entomopathogenic nematodes species that have been isolated belong to Heterorhabditids and 

Steinernematids which act as vectors for insect pathogenic bacteria species belonging to the genera, 

Photorhabdus and Xenorhabdus, respectively.  However, other species of nematodes, one of which 

includes a strain of Caenorhabditis briggsae, have also been shown to act as a vector for an insect 

pathogenic strain of Serratia marcescens.  Oscheius sp. TEL-2014 EPNs have been observed to act 

as vectors for insect pathogenic bacteria belonging to the genus Serratia.  In this study a novel 

insect pathogenic Serratia sp. strain TEL was isolated from the gut of infective juveniles belonging 

to a species of Oscheius sp. TEL-2014.  Next generation sequencing of the bacteria was conducted 

by generating genomic DNA paired-end libraries with the Nextera DNA sample preparation kit 

(Illumina) and indexed using the Nextera index kit (Illumina).  Paired-end (2 × 300 bp) sequencing 

was performed on a MiSeq Illumina using the MiSeq reagent kit v3 at the Agricultural Research 

Council Biotechnology Platform.   Quality control and adapter trimming was performed and the 

genome was assembled using SPADES.  19 contigs were generated with an average length of 

301767 bp and N50 of 200,110 bp.   The genome of the Serratia sp. TEL was found to be 5,000,541 

bp in size, with a G+C content of 59.1%, which was similar to that of other Serratia species 

previously identified.  Furthermore, the contigs were annotated using NCBI Prokaryotic Genome 

Automatic Annotation Pipeline.  Features of the annotated genome included  protein encoding 

sequence or genes, rRNA encoding genes, tRNA encoding genes, ncRNA sequences and repeat 

regions.  4,647 genes were found and 4,495 were protein-coding sequences (CDS). The genome 

contains 36 pseudo genes, 2 CRISPR arrays, 13 rRNA genes with five operons (5S, 16S, 23S), 88 

tRNAs genes, 15 ncRNA sequences and 9 frameshifted genes.  Several genes involved in virulence, 

disease, defense, stress response, cell division, motility and chemotaxis were identified.  This 

genome sequence will allow for the investigation of identified genes and that will be critical in 

furthering the understanding of the insect pathogenicity of Serratia sp. strain TEL.  Furthermore, it 

will provide additional genomic insights about the insect-nematode interactions and thus help us 

improve their ability to be used as biological control agents in agricultural industries.  Oscheius sp. 

TEL-2014 was tested for its entomopathogenicity and it was found that this species was able to 

infect and kill two model insects Galleria mellonella and Tenebrio molitor.  This new nematode 
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species brought 100% mortality within 72 h post-exposure in G. mellonella and whereas, within 96 

hours in T. molitor.  Following morphometrics analysis of Oscheius sp. TEL-2014 it was concluded 

that this nematode is described as a novel entomopathogenic nematode species based on its 

morphometrics and 18S rRNA gene sequence originality.  Whole genome sequencing of Oscheius 

sp. TEL-2014 inbred lines (7 and 13) was performed using Illumina Hiseq sequencing system and 

paired ends library preparation protocol.  Sequencing reads assembled on Velvet resulted in 

generation of 75965 contigs (line 7) and 53190 contigs (line 13).  Gene prediction tools showed that 

proteins involved in gene expression and DNA replication are present in Oscheius sp. TEL-2014.  

The draft genome of Oscheius nematodes will support the improvement and initiation of further 

studies intended to help us understand the molecular and metabolic processes in this genus. 
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CHAPTER 1       
               

     Literature Review 

                                                

1. Introduction	
 

1.1 Entomopathogenic nematodes and taxonomy 

 

Nematodes are microscopic worms commonly known as eelworms or roundworms (Flint et al, 

1998).  Entomopathogenic nematodes belong to the Animal Kingdom, Phylum Nematoda, Class 

Chromadorea, Order Rhabditida, Family Rhabditinae which is a species rich (Blaxter et al., 1998).  

Together with the Phyla Mollusca and Arthropoda, nematodes are one of the most abundant groups 

of animals.  As invertebrates they are multicellular, triploblastic, pseudocoelomic, non-segmented, 

bilaterally symmetrical, colourless, slender worms which exist almost everywhere in nature. 

Anatomically nematodes have a tubular shaped body structure which is covered with a tough, 

elastic, flexible and complex outer cuticular integument. The cuticle consists of many layers of 

proteinaceous fibres (Flint et al, 1998).  Beneath the cuticle is a hypodermis and a layer of 

longitudinal muscles (they do not have circular muscular system).  The longitudinal muscles 

surround the pseudocoelomic body cavity which functions as a hydrostatic skeleton. The action of 

the longitudinal muscle against the hydrostatics skeleton results in the generation of the typical 

whip-lash motion of nematodes. The nervous system consists of a circumpharyngeal nerve ring with 

ventral and dorsal nerve cords running the length of the body.  Nerves extending from the 

circumpharyngeal ganglia also enervate the mouth, lips and anterior sense organs. 

 

Nematodes are very diverse, with entomopathogenic nematodes (EPNs) receiving a lot of interest in 

nematological and entomological studies because of their ability to infect and kill insects (Hatting et 

al., 2009).   EPNs reside naturally in the soil and are obligate parasites of a wide variety of different 

insect species.   They have evolved a symbiotic relationship with insect pathogenic bacteria (Malan 

et al., 2006).   There are three genera of EPNs which have been identified and reported so far; 

Heterorhabditis, Steinernema, and the newly discovered   Oscheius genus.  Their ability to kill 

insects is due to their symbiotic association with pathogenic bacteria belonging to the genera 

Photorhabdus, Xenorhabdus, and Serratia, respectively (Abebe et al, 2010; Adams et al., 2006; 

Torres-Barragan et al, Pervez et al, 2013).  
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EPNs have a broad host range and express several differences with respect to the types of host they 

infect, symptoms they cause, reproduction and infectivity (Alia et al., 2014).  Other variations are 

seen in their ability to tolerate desiccation, osmotic stress, extreme temperature tolerance, ultra 

violet radiation tolerance and response to lack of oxygen (Grewal et al, 2006). 

 

1.2 EPNs as biological control agents 

 

The application of synthetic chemical pesticides to control insect pests in agricultural industries is 

linked with various disadvantages which include crop contamination, non-specific killing of 

beneficial insects, chemical resistance development in insects and human health related issues 

identified since the 1960’s and 1970s (Smart, 1995).  In order to minimise chemical contamination 

of crops and nonspecific insect death, biological control agents of insects were identified and 

studies to isolate and characterise more species are presently being conducted.  EPNs were found to 

be the most suitable natural enemies of problematic insects because they impose no risk to humans 

and other related vertebrates (Athanassiou et al., 2010; Campos-Herrera et al., 2012).  EPNs may be 

used for controlling insect pests in small-scale and large-scale farming, forestry and diverse 

agricultural industries and even in home gardens.  The Agricultural Research Council (ARC) in 

South Africa has identified several problematic insect pests which destroy leaves and stems of 

plants.  For example, the maize aphid feeds on leaves and thus causing damage of the plant.  This is 

mainly observed in summer and winter rainfall seasons throughout the country.  Another example 

identified by the ARC is the aphid which parasitizes wheat harvested under irrigation in the entire 

country and in dry lands of Western Cape during the rainfall season.  These bugs are still controlled 

by chemical insecticides but alternatively, EPNs were tested for their potential to kill them.  

Heterorhabditis bacteriophora was identified as one of the biological control agents which may be 

to control Ceratitis capitata however, the EPNs potential were tested only under laboratory 

conditions and found to be also effective in causing mortality of these bugs (Malan et al, 2009).  

Heterorhabditis zealandica was tested for its ability to control Planococcus citri, the citrus 

mealybug (Sonnica et al, 2012). 

 

EPNs are selected as biological agents based on their ability to locate, distinguish and invade insect 

hosts in the soil using foraging strategies such as ambushing (on soil surface) and cruising (into the 

soil)  (Koppenhofer et al, 2006).  Information on the foraging behaviour of nematodes is thus also 

useful in developing and improving their application in environments and industries where they are 
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needed as biocontrol agents, also bearing in mind appropriate application technology (Dillion et al, 

2006; Shapiro-Ilan et al, 2006). 

 

1.3 EPNs life cycle 

 

 

Fig. 1 Characteristic EPNs life cycle  

The infective juveniles (IJs) of EPNs are free-living, soil dwelling and capable of infecting and 

killing susceptible insects.  IJs enter the insect host through the mouth, anus or any other natural 

opening and then release symbiotic bacteria into the hemocoel of the insect (Adams et al., 2006).  

During the infection process it has been observed that Steinernema IJs mature into either feeding 

males or amphimictic females, while Heterorhabditis and Oscheius IJs develop into hermaphrodites 

later producing males, hermaphroditic females, and amphimictic females in the second generation 

(Nguyen et al, 1996; Pervez et al, 2013; Zhang et al., 2008).  These pathogenic bacteria belonging 

to the Enterobacteriaceae secrete toxins and targeted immune depressors that suppress  the insect’s 

immune system resulting in death with 24-48 hours (Adams et al., 2006).  Due to favourable 
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nutrition conditions, nematodes continue to proliferate inside the insect cadaver feeding on bacteria 

and later emerge following nutrient depletion into the soil to search for new hosts to infect (Sandhu 

et al, 2006; Shapiro-Ilan et al., 2012). 

 

1.4   Oscheius genus 

 

In 1976 the Oscheius genus was established as a subgenus of Rhabditis (Andrassy, 1976) and   

Oscheius insectivorus was identified as a type of species falling under the Oscheius genus.  The O. 

insectivorus species was however not reported to have a symbiotic relation with pathogenic 

bacteria.  The Oscheius genus was also put into a compartment with the family Rhabditidae 

(Sudhaus, 1976).  As the taxonomic investigations continued, the Oscheius genus was 

acknowledged as an independent genus (Tabassum et al, 2002) and later (Ali et al, 2011) supported 

the recognition of   Oscheius as an autonomous genus; however the evidence to these findings were 

not clearly stated.  Examples of described Oscheius species include O. maqbooli (Tabassum et al, 

2002), O. shamimi (Tahseen et al, 2006), O. carlianonsis (Weinin et al, 2012) and O. amsactae (Ali 

et al, 2011).  Not all nematodes belonging to the Oscheius genus are described as entomopathogenic 

(Pervez et al, 2012).   

 

Non-EPNs Oscheius species have been used in several laboratories for vulval developmetal studies 

(Sommer, 2000).  Oscheius species were found to be different from Caenorhabditis species which 

are closely related C. briggsae.  One of the reasons highlighted for the dissimilarities include 

observations made on variants in vulva patterning and development due to variations that occurred 

at genetic level (Delattre et al,2001) as seen in  Oscheius sp. CEW1 (Sommer, 2000).   

 

The Oscheius sp. CEW1 was identified as the third Oscheius species used for developmental 

biology and genetics studies alongside C. elegans and Pristionchus pacificus (Sommer, 2000).  This 

information also supports some differences in morphological features and phylogenetic history as 

shown in chapter 2 of the research.  Even though the Oscheius genus shares some common 

morphological and genetic features with C. elegans, this study further aims to introduce a novel   

Oscheius species, characterise it and take first steps at identifying genetic features by utilizing next 

generation sequencing and genome annotation.  It is important to also bear in mind that C. elegans 

are free-living soil nematodes but not entomopathogenic like nematodes belonging to 

Heterorhabditis and Steinernema which have a free-living infective juvenile stage (Shapiro-Ilan et 

al, 2014).  It has been stated that some nematodes within the   Oscheius genus also have this free-



20 
 

living infective juvenile stage which carries pathogenic bacteria belonging to the Serratia genus and 

therefore qualifying these worms as entomopathogenic.  However, note that not all 

entomopathogenic Oscheius nematodes have symbiotic relations with Serratia bacteria only.  For 

example Oscheius Carolinensis was found to be associated with four bacteria, Serratia marcescens 

found on its cuticle and caused the nematodes to be entomopathogenic.  The Enterococcus mundti 

was found to also cause pathogenicity however, Achromobacter xylosoxidans was unable to cause 

death in the model insects tested.  Lastly Providencia rettgeri was found mainly in mechanically 

homogenised surface sterilized nematodes and also caused some mortality of model insects (Torres-

Barragan et al, 2011).  In quest to study properties of the novel nematode species isolated in this 

study the entomopathogenic potential of Oscheius sp. TEL-2014 (Nematoda: Rhabditidae), was 

tested on two model insects larvae Galleria mellonella and Tenebrio Molitor also referred to as the 

greater wax moth larvae and yellow wheat larvae, respectively.  Outcomes of the investigation are 

discussed in chapter 2 and the EPNs association with bacteria is described in chapter 3. 

 

Recent discoveries and reports show that a small number of   Oscheius species have been described 

as EPNs and examples include O. carlianonsis (Weinin et al. 2010), O. siddiqii, O. niazii 

(Tabassum et al, 2010) and O. amsactae (Ali et al. 2011) as listed in (Pervez et al, 2012).  In our 

study, we also report a new Oscheius species and found to have association with insect pathogenic 

Serratia. 

 

The genus Serratia comprises of several species which have varying lifestyles and thus exist as 

insect pathogens, human pathogens, some are free-living in the soil, and some are associated with 

plants and fungi.  Serratia species may further be classified as opportunistic pathogens and obligate 

intracellular endosymbionts (Burke et al, 2011).  The majority of species belonging to Serratia were 

found to produce powerful extracellular enzymes such as lipases, proteases, nucleases and 

hemolysin (Braun et al, 1980).  Similar active extracellular enzymes were identified in insect 

pathogenic bacteria belonging to the genus Xenorhabdus and Photorhabdus associated with 

entomopathogenic nematodes Steinernema and Heterorhabditis, respectively (Burnell et al, 

2000;Bennett et al, 2005). 

Serratia have made successful relationships with some nematodes belonging to Caenorhabditis and   

Oscheius species (Abebe et al, 2010; Abebe et al, 2011).  For example, Serratia species SCBI 

associated with Caenorhabditis briggasae isolated from South Africa in the KwaZulu Natal 

province was found to have entomopathogenic potential as it caused mortality of the insect larvae 
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Galleria mellonella.  Another example includes Serratia marcescens DB11 which was identified 

and established as pathogenic to invertebrates (Abebe-Akele et al, 2015).  

Our study took a genomics approach to explore whole genomic DNA of Serratia isolated from   

Oscheius species collected from Suikerbosrand Nature Reserve near Johannesburg in South Africa.  Next 

generation sequencing was used to sequence the genome of the bacteria and nematodes and several 

bioinformatics tools were employed for genome quality control, assembly and annotation. 

1.5 The EPNs genome 

While nematodes have a fairly basic and simple anatomical structure they have a similar number of 

protein coding genes (approximately 20 000) when compared with the more anatomically complex 

vertebrates. They have been reported to contain many novel genes which are peculiar to their 

specific genera and this diversity at molecular level has become apparent across all the sequenced 

genomes of the different nematode genera including Heterorhabdistis, Steinernema and Oscheius.  

Caenorhabditis elegans has 6 chromosomes and its full or complete genome sequence size is 100.2 

Mb (Mitreva et al, 2005).  Previously, a cDNA-sequencing project of the EPNs Heterorhabditis 

bacteriophora was reported in 2006 in which 1246 expressed sequence tags were found and 

annotated resulting in 1072 useful ESTs and further categorised by function using Caenorhabditis 

elegans as a reference genome (Hao et al,2010; Sandhu et al, 2006). 

1.6  Why next generation sequencing? 

Sequencing is simply defined as finding the sequence of DNA or RNA molecules.  In 1958, Fred 

Sanger sequenced proteins and later in 1980 he successfully sequenced RNA.  This is how the 

Sanger sequencing method got enormous attention in the scientific market and elicited interest to 

sequence genomic DNA of several organisms such as tomatoes, mice, fruit flies and the human 

whole genome.  It took about 11 years to complete sequencing the human genome at the high cost 

of 2.7 billion dollars using Sanger sequencing.  The diagram below shows a typical Sanger 

sequencing workflow which was widely used to sequence short genomic regions and whole 

genomes.  The method is still used today and it is effective for sequencing of short fragments of 

DNA. 
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Fig. 2 Overview of Sanger sequencing workflow (image courtesy of en.wikipedia.org) 

Today next generation sequencing (NGS) tools have made it possible to sequence human genomes 

in about 24 hours.  Next generation sequencing has the capacity to process millions of reads in 

parallel rather than the Sanger methods which processes 96 sequence reads at a time.  This has great 

cost implications because NGS can be performed at low costs and quicker.  For example, 454 by the 

company Roche can sequence approximately 1 million reads per run with a read length of up to 

1000bp and Hiseq by Illumina can sequence nearly 0.5 billion reads per run each with a read length 

of 100-150bp in just a few hours or weeks depending on the size of the genome. 
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Fig. 3 Next generation sequencing general workflow.   

Each system works differently, but they have some similar steps which include shearing of target 

DNA into small pieces, binding individual fragments to a solid surface, amplifying each molecule 

into a cluster,  copying one base at a time and detecting various signals for A, C, T, and G bases as 

seen in fig. 3. 

The power to sequence large genomes at affordable costs and less time motivated our study to take 

a genomics approach and sequence whole genomes of entomopathogenic nematodes and their 

associated symbiotic bacteria. In our research, we therefore generated the following aims and 

objectives:  

1) To isolate, identify and characterise a novel nematode species 

2) To isolate and identify bacteria associated with the nematode 

3) Morphological analysis of nematodes using light microscopy and scanning electron 

microscopy 

4) To perform phylogenetic analysis of the nematodes’ 18S rDNA region 

5) To perform phylogenetic analysis of the bacteria 16S rDNA region 

6) To test the nematodes pathogenicity  

7) To investigate the location of the pathogenic bacteria, whether they dwell in the nematode or 

on the surface of the nematode and test efficacy of surface sterilised nematodes 

8) To perform inbreeding of nematodes  

9) To sequence the whole genomic DNA of an insect pathogenic strain of bacteria associated 

with the identified nematodes species 

10) To sequence whole genomic DNA of novel nematodes species  

11) To assemble the bacteria genome 
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12) To assemble the nematodes genome 

13) To mask repeats on sequenced and assembled nematodes genome 

14) To annotate the genome of bacteria 

15) To annotate the genome of nematodes using bioinformatics tools for gene prediction  

 

The above aims and objectives were designed bearing in mind that bioinformatics will be extremely 

essential in whole genome data analysis and determining the meaning of the results obtained.  

Sequencing may be seen as a read-out for diverse types of experiments which are conducted in the 

laboratory. The challenge for some biologists is learning how to use informatics tools for NGS and 

also choosing suitable tools for analysis.  Bioinformatics tools change promptly whereby new file 

formats, new data types and new methods are developed to cater for people in the science 

community who demand high-quality computational tools for sequencing, genome assembly and 

annotation.  Bioinformatics tools are needed for aligning sequenced reads to available reference 

genome(s), de novo assembly of the sequence, quality control and genome annotation. 

In this study, it was anticipated that de novo assembly methods will be used because one of the 

objectives included sequencing of a novel nematode species and its bacterial symbioint.   De novo 

sequencing encompasses assembling overlapping reads to form contiguous sequence of DNA and it 

is usually performed if there is no available reference genome or genomic information available.  

Examples of assembly tools include SPADES for prokaryotic genomes and VELVET, SOAP DE 

Novo and ALLPATHS usually used for eukaryotic genomes. 

Prior genome assembly, a critical step is taken to check the quality of the sequenced reads mainly 

because it is expected that sequencing machines may make mistakes especially on the ends of the 

sequence.  Quality control tools were developed to ensure that sequenced data is of good quality to 

ensure meaningful downstream analysis.  An additional step called trimming may be used were 

necessary to clip off poor quality reads.  For example, FASTQC tool is generally used for quality 

control and it may be used to rescue bad quality data and thus avoiding having to sequence the 

genome again.  Once the sequences are of good quality, they may be annotated to identify features 

on the genome using specific annotation tools and biological knowledge already existing in explicit 

genome databases.  Sequence features which may be revealed by annotations tools include 

transcribed regions (mRNA, tRNA and rRNA), structural regions (promoter, introns and exons), 

conserved regions and repeats.  

Gene finding or gene prediction is also important in this study to help us predict exon structures for 

the primary transcript of a gene.  In less complicated gene prediction process, genes are simply 
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identified and may be linked to their specific function if the information is readily available in 

annotation databases.  Examples tools include Gene finder, Augustus and Glimmer and may be used 

define coding segments of the sequenced genome. 

This research embarked on a journey to isolate and identify entomopathogenic nematodes and 

characterise them using molecular and morphological methods, identify bacteria associated with the 

nematodes and test them for their insect pathogenic capabilities.  Multiple sequence alignment and 

phylogenetic analysis of the nematode and bacteria was conducted using 18S rDNA and 16S rDNA 

sequences respectively to study evolutionary relations of the isolates.  Powerful and new sequencing 

technology and methods were used to sequence whole genomes of the identified nematodes and 

symbiotic bacteria, followed by bioinformatics applications to analyse the sequenced genome.  

Nematodes were also surface sterilised to confirm the location of pathogenic.  Outcomes of this 

study may have implications on the possibility of using this nematode species as an effective 

biological control agent; however more studies will need to be conducted to come to such 

conclusions.  
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    CHAPTER 2 
 

Oscheius sp. TEL-2014 (Nematoda: Rhabditidae), a potential 

entomopathogenic nematode isolated from a grassland in South Africa 

Abstract 

 

Oscheius sp. TEL-2014 was recoverd from a soil sample collected from grassland at the 

Suikerbosrand Nature Reserve near Johannesburg in South Africa using the Galleria bait 

method.  Morphological studies with light and scanning electron microscopy, also including 

molecular analyses of the 18S rDNA gene was performed and revealed that this a novel 

species, described herein as Oscheius sp. TEL-2014.  Amplification and Sanger sequencing 

of the 18S ribosomal DNA placed the nematode in genus Osheius.  The 18S rDNA was 

deposited on NCBI Genbank and assigned the accession number, KM492926.  The new 

species is characterised by various traits including its original 18S rDNA sequence, six lips 

and didelphic reproduction. The adult male was diagnosed by the presence of six lips, labial 

papillae on the head and amphidial openings.  Males were also characterised by the presence 

of spicules towards their posterior end and short blunt tails.  Females were distinguished by a 

didelphic reproductive system, a vulva opening, a body with irregular ridges and long pointed 

tails.  The males closely resemble O. andrassyi but were shorter in length (vs. L= 1601μm), 

the pharynx length was longer (vs.L=191 μm), lines (vs. = 4) and male body posture was 

slightly curvilinear in some adults.  The females resembled O. carolinensis but had shorter 

body length (vs.L=1728 μm) and a longer pharynx (vs.L=247 μm).  The infective juvenile 

body width was thin and had a cuticle sheath.  Entomopathogenicity of this nematode was 

confirmed against model insect hosts Galleria mellonela and Tenebrio molitor larvae.  The 

infective juveniles of this new species are able to invade both model insect larvae and cause 

mortality within 24-72 hours after inoculation under laboratory conditions.  These infective 

juveniles act as vectors for an insect pathogenic bacteria causing death of model insects used.      

 

Keywords: Entomopathogenic nematodes; Oscheius species, description, molecular, 18S 

rDNA sequencing, morphology 

 



31 
 

2. Introduction	

The majority of entomopathogenic nematodes (EPNs) species that act as vectors for insect 

pathogenic bacteria belong to the families of Steinernematidae and Heterorhabtidae.  These 

EPNs have evolved special symbiotic relationships with enterobacteria belonging to families 

of Xenorhabdus and Photorhabdus, respectively. The recently identified nematodes 

belonging to the genus   Oscheius such as Oscheius carolinensis have been reported to act as 

vectors for insect pathogenic bacteria belonging to the genus Serratia (Torres-Barragan et al, 

2011).  In 2013, four species belonging to the genus   Oscheius such as O. carlianonsis, O. 

siddiqii, O. niazii and O. amsactae were reported as EPNs (Pervez et al, 2013).  Further 

studies on O. carolinensis showed that this nematode is associated with insect pathogenic 

strain of Serratia marcescens, which was found to be localized on the cuticle of the 

nematodes and subsequently identified as the main bacteria causing entomopathogenecity.  

Providencia rettgeri, mainly found in the ground-up homogenate of surface sterilized 

nematodes also contribute to insect pathogenicity of O. carolinensis (Torres-Barragan et al, 

2011). 

Like steinernematids and heterorhabditids the above species from the genus   Oscheius also 

behave like EPNs in that they are capable of foraging for and locating their insect hosts in 

soil. Their symbiotic relationships with insect pathogenic bacteria are similar to that of 

steinernematids and heterorhabditids. The insect pathogenicity of certain strains of Serratia 

marcescens have been well established, and they are able to cause mortality within 24-48 

hours of invading the hosts (Ye et al., 2010).  These nematodes appear to have all the 

attributes of conventional EPNs and could also be used as biological control agents of insect 

pests;  because they proliferate at a high rate, are cost effective in terms of production and 

they are not harmful to humans and plants (Torres-Barragan et al, 2011). 

Other features that entomopathogenic Oscheius nematodes share with steinernematid and 

heterorhabditids include similar life cycle stages such as the non-feeding infective juveniles 

that is able to function as a vector for insect pathogenic bacteria belonging to the 

genus Serratia.  These dauer larvae are able to withstand unfavourable conditions and are 

also referred to as third stage infective juveniles (IJs) because they exhibit a second stage 

cuticle which enables them to persist in the soil through anhydrobiosis until they infect new 

host and continue their life cycle (Ye et al., 2010).  Unlike the other nematode developmental 
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stages that take place within the infected insect host, the IJs have the capacity to resist and 

tolerate harsh environmental conditions (Ma et al, 2013).    

 

Fig. 1 A typical life cycle of entomopathogenic nematodes. 

Here we report a novel entomopathogenic nematodes species Oscheius sp. TEL-2014 

recently isolated from Suikerbosrand Nature Reserve near Johannesburg in South Africa. 

Light and electron scanning microscopy was employed for morphological characterisation of 

the adult nematodes and infective juveniles. Its 18S rDNA sequence was deposited into NCBI 

GenBank and assigned this accession number KM492926.    

2. Materials	and	methods	

2.1 Isolation of the nematodes 

Soil samples were collected from Suikerbosrand Nature Reserve near Johannesburg in South 

Africa.  They were collected to a depth of 15 cm and were placed into 1 L rectangular plastic 

tubs.  The EPNs were isolated by baiting the soil collected with ten Galleria mellonella 
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larvae per tub (Bedding and Akhurst 1975).  Infective juveniles that emerged from dead 

insect larvae were collected by using a modified White trap method (Kaya and Stock 1997). 

 

2.2 Morphological analysis by Olympus light microscope  

The Olympus light microscope was used to photograph the internal structures of adult males, 

adult females and IJs.  Nematodes taken from White traps and lipid agar plates were killed in 

60 °C hot water.  Nematodes were placed in a Petri dish in 1ml distilled water and 3-4ml of 

triethnolamine formaldehyde (TAF) was added and left at room temperature for 24 hours, 

(recipes for the solutions used are in Appendix 1).  TAF was replaced with TAF with double-

strength TAF and store at 4°C to relax nematodes for one hour.  TAF was added again to 

allow fixative to infiltrate for at least 24 hours and then most of the fixative was removed.  

This was then followed by processing nematodes with pure glycerine where fixed nematodes 

were transferred to a clean Petri dish containing 0.5ml of solution I which was allowed to 

slowly evaporate and stored at room temperature for 12 hours in an uncovered Petri dish.  

Solution II was added to the Petri dish with nematodes and left partially opened to allow for 

slow ethanol evaporation and thereafter it was placed in an oven preheated to 40°C for 3 

hours making sure that nematodes do not dry out.  Nematodes were then mounted on glass 

slides carefully to avoid crushing them before analysis under the microscope. 

2.3 Morphological analysis by scanning electron microscopy  

Lipid agar plates 

Lipid agar plates contain tributyrin which is a substrate.  If bacteria cultured on these plates are 

able produce the exoenzyme lipase it will have the potential to digest or hydrolyze the 

triglycerides/lipids in the tributyrin.  This process results in development of clear zones around 

the growing colonies on the media.  Lipid agar plates where used because they were ideal for 

growing lawns of symbiotic bacteria which were used to support growth of the nematodes.  

This method was also used to confirm that the isolated bacteria are a symbiont of the   

Oscheius nematodes by stimulating nematodes growth and reproduction.  The objective of 

using this medium was also to allow IJs to grow into adults nematodes under suitable 

conditions.  Lipids and glucose are some of the most imperative nutrients necessary for 

nematode growth, reproduction and bacterial proliferation (Gil et al., 2002).  This is why the 

lipid agar media used was composed of honey (glucose), yeast extract, nutrient agar, cod liver 
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oil (lipids), and MgCl2.6H2O as seen Appendix 1.  Some of these ingredients were also used 

in lipid media in studies conducted by (Shapiro-Ilan et al, 2002).   

EPNs were suspended with sterile distilled water and 1ml of EPNs was collected directly 

from lipid agar plates and transferred into 1.5ml Eppendorf tubes and heat-killed at 80°C for 

5 minutes.  EPNs were rinsed with Ringer solution three times with 5 minutes between each 

rinse. EPNs were then fixed in 8% glutaraldehyde overnight (glutaraldehyde 25% EM grade, 

diluted in Ringers solution).  EPNs were further rinsed with distilled water three times and 

dehydrated with 30, 50, 70, 90, 95, and 100% ethanol at 10 minutes interval sequentially.  

Each sample was allowed to air dry overnight and mounted on SEM stubs, coated with 

carbon and palladium, then scanned using FEI QUANTA 200 scanning electron microscope 

fitted with a digital camera. 

2.4 Measurements 

Fresh IJs and adult nematodes prepared using the method in 2.3 were placed on clean slides 

then covered gently with cover slips.  The IJs were then viewed under an Olympus light 

microscope connected to a digital camera and images were captured. 10 males, 10 Females 

and 10 IJs were measured.  Morphometric table was generated based on the mean and 

standard deviation statistical calculations.      

 

The following abbreviations were used: 

BL  Body length   

GD Greatest diameter 

AEP Distance from anterior end to excretory pore 

PL Pharynx length 

CL Corpus length 

IL Isthmus length 

PVD Pharyngeal-intestinal valve diameter 

TBD Terminal bulb diameter 

AGL    Length of anterior gonad 

PGL Length of posterior gonad 

RAL Rectal length 

ABD Anal body width 

TL Tail length 
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SL Spicule Length  

CT Cuticle thickness 

2.5   Molecular identification of EPNs by 18S rDNA Sanger sequencing 

Genomic DNA was extracted from nematodes using the protocol from the Puregene® DNA 

Purification Kit, Gentra systems 2003.  PCR amplification of 18S rDNA ITS region was 

performed. The following universal primers were used: forward primer; TW81 (5’-

GCGGATCCGTTTCCGTAGGTGAACCTGC -3’, Tm: 71.94 ºC), and reverse primer; AB28 

(5’- GCGGATCCATATGCTTAAGTTCAGCGGGT-3’, Tm: 68.87 ºC).  Initial denaturation 

before cycling: 94°C for 5 minutes followed 25 cycle amplification series: denaturation at 

95°C for 60 seconds, annealing at 64°C for 60 seconds, extension at 72°C for 120 seconds 

and final extension after cycling: 72°C for 10 minutes.  PCR products were sequenced using 

Sanger sequencing method at Inqaba Biotechnical Industries (Pty) Ltd; South Africa using 

the above PCR primers.  NCBI nucleotide database BLASTn tool was used identify the 

unknown sequences of EPNs.  The 18S rDNA sequence for Oscheius sp. TEL-2014 

(KM492926) was edited to derive the consensus using Bioedit sequence alignment editor.  

Phylogenetic analyses was done using the following:   Oscheius carolinensis (FJ547241),   

Oscheius sp. MCB (KF684370), Heterorhabditidoides chongmingensis (KF500235), 

Oscheius myriophilus strain JU1386 (KP792651), Oscheius sp. KAT-2015 (KR119081), 

Rhabditis sp. Tumian-2007 (EU273598), Oscheius sp. BW282 (AF082994), Oscheius 

insectivore (AF083019), Oscheius sp. Pak.S.N.10 (KT878513), Oscheius tipulae CEW1 

(KP792649), Oscheius chongmingensis Tumian (EU273598), Oscheius dolichura LDY30 

(M355811), Oscheius guentheri SB133 (EU195996), Oscheius dolichuroides DF5018 

(AF082998), Oscheius sp.DF5000 (AF082995) were obtained from NCBI GenBank database 

and Caenorhabditis elegans (Z92784) sequence was used to root the tree.  Sequences were 

aligned first using MUSCLE on MEGA 6 software.  The evolutionary history of the aligned 

sequences was centred on the analysis of 18S rDNA ITS region inferred by using the 

Maximum Likelihood method based on the Tamura-Nei model in MEGA6.   The bootstrap 

consensus tree inferred from 1000 replications and the tree is drawn to scale, with branch 

lengths measured in the number of substitutions per site (next to the branches).   
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2.6 Entomopathogenecity of    Oscheius sp. TEL-2014 

  

Nematode entomopathogenicity was evaluated using sixth instar stage of G. mellonella and T. 

molitor, respectively.  For evaluated nematode infectivity G. mellonella and T. molitor larvae 

were each placed in 90 mm plastic Petri dishes containing sterile 40g of sandy loam soil, 

replicated four times for each larval species with each plate containing five larvae.  The soil 

had an initial moisture content of 8% (w/w) and each plate was inoculated with 100 IJs 

suspended in 1 ml of sterile distilled water.  The time interval for the onset of larval mortality 

after inoculation with IJs was monitored and recorded.  Insect cadavers were placed on 

White-traps to monitor and recover the emerging IJs.   

 

3. Results	and	discussion	
 

Oscheius sp. TEL-2014 

(Fig. 2-4) 

 

Measurements 

(See Table 1) 

 

Description  

 

Infective juveniles and adults of Oscheius sp. TEL-2014 have a finely annulated cuticle 

covering the body as shown in Fig. 2 and Fig 3.  Scanning electron microscopy images in Fig. 

5 show 6 unconnected lips with labial papillae and amphidial opening.  The lateral field has 

irregular ridges which are visible on the anterior and posterior regions of the male and female 

adult nematodes.  The corpus is tubular and occupies 30-40% of the pharynx length.  The 

terminal bulb is present in males and females including IJs and has well-developed 

pharyngeal-intestinal valve. The isthmus forms 10–15% of pharynx length. 

 

Male 

 

The body is straight and some curved upon fixation.  The testis is present on the posterior arm 

gonad.  The body length is shorter than the female and it is covered with a thick cuticle layer.  
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Genital papillae were not observed. Spicules are thin and the tails are short and have blunt 

ends.  

 

Female 

 

The body of the adult female straightened after fixation.  The reproductive system is 

didelphic. The uterus is well-developed. Endotokia matricida or intra-uterine birth causing 

maternal death was observed in most of the mature adult females.  

 

Juvenile 

 

Body is thin and covered by a thin cuticle layer.  The pharynx was clearly visible comprising 

corpus, isthmus, terminal bulb and underdeveloped pharyngeal-intestinal valve.  

Reproductive structures are not observed.   

 

Comparison and remarks 

 

The female body length is longer than the male.  The pharynx is longer in females than in 

males. In both sexes the pharynx is comprised of a corpus and an isthmus.  The males closely 

resemble O. andrassyi but differs in smaller length (vs. L= 1601μm), the pharynx length was 

longer (vs.L=191 μm lines (vs. = 4) and male body posture is slightly curvilinear in some 

adults (Pervez et al, 2012).  The females resemble O. carolinensis but differ in smaller body 

length (vs.L=1728 μm and a longer pharynx (vs.L=247 μm (Pervez et al, 2012). 

 

3.1 Morphological analysis by compound light microscopy and Olympus 
light microscopy  
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Fig. 2 Light photograph of the Oscheius sp. TEL-2014: Left: anterior region showing the 

pharynx of a female nematode, centre: mid-body showing IJs in the 3 fold stage of 

development and right: Mid-body showing the egg and some infective juveniles and bottom: 

posterior region showing the tail.  A BX 63 Olympus light microscope was used under DIC 

settings. 
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Fig. 3 Photographs of an Oscheius sp. TEL-2014 adult female showing A- Endotokia 

matricida which is an intra-uterine birth instigating maternal death (Stefan-Andreas and Ralf-

Udo, 1999)     

3.2 Morphological analysis by scanning electron microscopy  
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Fig. 4 Morphology of male Oscheius sp. TEL-2014 nematode.  A: Anterior showing lateral 

ridges, B: Head showing six lips, labial papillae (lp) and amphidial opening (a), C: posterior 

of male showing the lateral ridges and D: male tail. 

 

3.3 Measurements of    Oscheius sp. TEL-2014 

 

Measurements of various characters of the males, females and IJs of   Oscheius sp. TEL-2014 

are given in Table 1. 
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Table 1 

Morphometrics of infective-stage juveniles of Oscheius sp. TEL-2014 and all measurements 

are done in μm presented as mean +/- SD (range). 

 

Character Holotype 
male 

Male Female Infective juvenile 

n 1 10 10 10 

Body 
length 

1874.45 
1844.185+/-

70.619(1689.25-1954.14) 

3807.671+/-
5709.163(1996.58-

20056.22) 

510.71+/19.179 
(488.02-535.36) 

Greatest 
diameter  

108.63 108.364+/0.582(107.12-
109.32) 

158.768+/-
2.098(154.25-161.24) 

44.185+/2.279(40.3-
46.96) 

AEP 40.92 40.198+/0.531(39.24-
40.99) 

48.791+/-0.689(47.69-
49.89) 

10.547+/0.288(9.99-
10.9) 

Pharynx 
length  

156.44 155.447+/1.432(152.87-
157.9) 

169.457+/-
0.798(168.36-170.97) 

164.917+/2.747(160.3-
168.45) 

Corpus 
length  

79.88 79.321+/1.323(76.33-
81.65) 

86.438+/-0.744 (85.56-
87.96) 

66.426+/-4.844(60.1-
71.36) 

Isthmas 
length 

76.56 
75.955+/-1.071(74.11-78.3) 

82.64+/-1.00(82.64-
81.64) 

42.347+/-2.142(40-
45.67) 

PVD 52.69 
52.103+/-1.091(50.44-54.3) 

60.332+/-1.038(58.9-
62.54) 

14.708+/0.717(13-
15.39) 

TBD 58.62 
58.268+/0.997(56.12-60.1) 

66.411+/-0.986(64.59-
68.1) 

21.478+/-1.46(19.3-
23.48) 

AGL 356.55 356.719+/-0.96(355.98-
358.69) 

412.335+/-
1.521(409.2-414.89) 

154.61+/-
11.141(140.2-165.95) 

PGL 352.46 351.914+/-1.379(350.14-
355.3) 

409.88+/-5.08(409.88-
405.08) 

164.915+/3.582(160.2-
169.25) 

RAL 76.96 76.242+/1.345(74.21-
79.36) 

88.468+/0.968(87.25-
90.57) 

31.399+/-1.321(29.9-
33.9) 

Distal 
gonad 
length 

79.68 
79.129+/-1.194(76.22-

80.55) 
90.637+/-1.464(89-

93.89) 
41.342+/- 1.291(39.2-

42.9) 

ABD 46.25 
46.566+/-0.895(45.12-48.3) 

54.846+/-1.404 (53.98-
58.31) 

34.135+/1.323(32.5-
36.45) 

Tail length  60.5 
60.556+/-2.041(55.9-63.7) 

87.673+/-1.222(86.89-
90.58) 

21.96+/-1.262(19.99-
23.51) 

Spicule 49.62 48.555+/-0.774(47.02-
49.62) 

  

CT 28.56 
8.324+/-0.432(7.6-8.9) 

7.551+/-0.682(6.84-
8.97) 

3.56+/-1.75(3.25-
10.00) 
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Table 2 

Comparative morphometrics of O. sp TEL-2014 with other known species of Oscheius (all 

measurements in µm). 

  O. sp TEL-2014 
O. 

shamimi 
O. 

columbiana 
O. 

necromena  
O. amsactae n. 
sp. 

Female 

 L  1996.58-
20056.22 

760–1524 923–1805 830–1500 658.1–786.1 

 b   4.2–6.3 5.2–8.0 4.2–6.3 4.1–4.9 

 c   6.8–13.8 8.3–10.0 9.7–13.9 8.9–12.1 

Stoma length 39.24-40.99 19–23 21–28 14–18 15.8–18.1 

Stoma width  4.6–5.7 4.5 4.5 3.5–3.9 

 abd 53.98-58.31 21–32 22–38 45 15.8–17.4 

Male 

 L  1689.25-1954.14 938–1118 665–1163 671–950 594–804 

 b   5.1–5.5 3.9–5.4 4.3–5.0 4.0–5.1 

 c   25.1–31.1 13–16 11.5–17.6 10.7–17.8 

 Spicule 
length 

47.02-49.62 53–67 42–68 34–44 30.8–35.5 

 abd 45.12-48.3 22–28 16–24 12–23 13.4–16.5 
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Table 3 

General morphology of entomopathogenic nematodes  Heterorhabditis adopted from 

(Nguyen and Smart, 1996) compared with  Oscheius sp. TEL-2014. 

Heterorhabditis    Oscheius (In this paper) 

Adult Female and 
hermaphrodites 

Adult Males Adult 
Females 

Adult Males 

Anterior region 
(Head) 

Posterior region Anterior region  

oesophagus 
without 
metacorpus, 
and enlarged 
basal bulb 

Single testis; 
Bursa 
peloderan 
usually has  
9 pairs of 
genital 
papillae  

 

Six lips, 6 labial papilla, and 
amphidial opening present. 
Pharynx with corpus, 
isthmas,terminal bulb and 
pharyngeal-intestinal valve 

 

 

 
Posterior region 

(Tail) 
Posterior region Posterior 

region 
Posterior 
region 

Pointed tail, 
females have 
ovaries, 
hermaphrodites 
have ovotestis 
and amphidelphic 
have a vulva 
median 

Spicules present, 
sometimes 
curved, paired 
or separated. 

Blunt tail in 
males 

Pointed tail, 
vulva 
present, 
ovaries 
present and 
vulva flap  

Spicules 
present, 
sometimes 
curved, blunt 
tail and short 
body. 

Additional characteristics 

Gubernaculum present 

Fat bodies 

Additional characteristics 

 

Fat bodies 

Infective juvenile (3rd stage) Infective juvenile (3rd stage) 

Pointed tail, 2 cuticular sheaths 
covering the IJ, mouth and anus 
closed, immature oesophogus.  
Symbiotic bacteria in intestine 
present 

Head has a mouth and a 
pharynx with 
underdeveloped pharyngeal-
intestinal valve 

Symbiotic bacteria in 
intestine present  
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3.4 Molecular identification of EPNs by 18S rDNA Sanger sequencing 

 

The 18S rDNA sequence was assigned the accession KM492926 by Genbank, National 

Centre of Bioinformatics Information (NCBI). 

 

Direct link to deposited data: 

http://www.ncbi.nlm.nih.gov/nuccore/KM492926 

 

3.5 Phylogenetics 

 

 

Fig. 5 The evolutionary history of several species of   Oscheius was centred on the analysis of 

18S rDNA ITS region inferred by using the Maximum Likelihood method based on the 

Tamura-Nei model.   The bootstrap consensus tree inferred from 1000 replications and tree is 

drawn to scale, with branch lengths measured in the number of substitutions per site (next to 

the branches).  Evolutionary analyses were conducted in MEGA6.   

 

 EU273598 Rhabditis sp. Tumian-2007

 EU273598.1 Oscheius chongmingensis Tumian

 KF500235 Heterorhabditidoides chongmingensis FUMN101

 KR119081 Oscheius sp. KAT-2015

 KT878513.1 Oscheius sp. Pak.S.N.10

 KP792651 Oscheius myriophilus strain JU1386

 KM492926 Oscheius sp. TEL-2014

 KF684370 Oscheius sp. MCB

 FJ547241.1 Oscheius carolinensis

 KP792649.1 Oscheius tipulae CEW1

 HM355811.1 Oscheius dolichura LDY30

 EU195996.1 Oscheius guentheri SB133

 NR 000053 Caenorhabditis elegans

 AF082994 Oscheius sp. BW282

 AF083019 Oscheius insectivora

 AF082998.1 Oscheius dolichuroides DF5018

 AF082995.1 Oscheius sp.DF5000

0.075

0.180

0.087

0.064

0.002

0.000

0.007

0.008

0.019

0.075

0.005

0.355

0.000

0.003

0.007

0.017

0.010

0.545

0.083

0.021

0.027

0.363

0.361

0.530

0.051

0.006

0.042

0.142

0.035

0.0480.138

0.047

0.2
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Table 4 

Time to host death, time to nematode emergence after host death, and numbers of adults and 

juveniles emerged from host after inoculation with    Oscheius sp. TEL-2014 nematodes (100 

per host larva).  Each value represents the mean +/- standard error 

Host name Time to host death Time to nematode emergence 

after host death 

IJs emerged 

G. mellonella 62.4+/-9.6  26+/-2 842+/-252 

T. molitor 51.8+/-6.0   46+/-4 2450+/-56 

 

Mortality rate was greater in G. mellonella than in T. molitor.  However, in a study conducted 

by (Torres-Barragan et al, 2011) they found that O. carolinensis took longer to lead to 

mortality of Galleria however; juveniles yield from this species was higher

 

Fig. 6 Percent mortality caused by Oscheius sp. TEL-2014 on two different species of insects, 

G. mellonella and T. molitor. 
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In addition, this new species is capable of killing G. mellonella and T. molitor within 48–96 

hours under laboratory conditions.  Results indicated that, Oscheius sp.TEL-2014 is 

pathogenic to both model insects. The nematodes started killing insect larvae within 48 hours 

causing about (47-50%) mortality.  Furthermore, they brought 100% mortality within 72 h 

post-exposure in G. mellonella and whereas, within 96 hours in T. molitor.   

 

Oscheius sp. TEL-2014 is was described as a novel entomopathogenic nematode species 

based on its morphometrics and 18S rRNA gene sequence originality.  Further studies need to 

be conducted to investigate entomopathogenecity mechanisms and efficacy in greater detail 

so that the nematode may be assigned or recommended as biopesticide for controlling 

specific problematic insects especially in Agricultural industries.  
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                      CHAPTER 3 
 

Comparison of Oscheius sp. TEL-2014 18S rDNA sequence to other 

entomopathogenic nematodes famalies using sequence alignment tool 

Abstract 

The 18S ribosomal DNA internal transcribed spacer region of entomopathogenic nematodes    

Oscheius sp. TEL-2014 isolated from South Africa was compared to other nematodes species 

belonging to the following five genera, Oscheius, Steinernema, Heterorhabditi, Rhabtiditis 

and Caenorhabditis. Comparative analyses and alignment of the 18S rDNA ITS region shows 

that Oscheius sp. TEL-2014 does not share 100% sequence similarity with other   Oscheius 

species and other nematodes in related genera.  In support of this observation, the percentage 

identity matrix shows that the sequences are not 100% similar to each other and thus 

suggesting variation amongst the Oscheius, Steinernema and Heterorhabditis species.  

Molecular Phylogenetic analysis by Maximum Likelihood methods between these nematodes 

amplified by TW81 forward primer and AB28 primer shows that  Oscheius sp. TEL-2014  is 

closely related to Oscheius myriophilus and branches from different arms compared to the 

rest of the isolates.  These observations support the uniqueness of the Oscheius sp. TEL-2014 

18S rDNA sequence and thus provide evidence that this isolate is indeed a novel species.  

 

Keywords: Entomopathogenic nematode, Oscheius sp. TEL-2014, sequence alignment, 18S 

rDNA, phylogeny and nucleotide composition 

1. Introduction	
 

 Entomopathogenic nematodes (EPNs) are soil dwelling and found in diverse habitants 

(Eustachio et al, 2008).  They have a broad host range and thus have great potential as 

biological control agents for several economically important insect crop pests (Grenier et al, 

1995).  Within the Steinernema, Heterorhabditis and   Oscheius genera, there are numerous 

species which may share similarities and some differences in terms of infectivity, host range, 

infection symptoms or symptomology, structure, reproduction, environmental conditions 

preference, defence and infection mechanisms (Bastidas et al, 2014; Campos-Herrera et al, 

2012).  Slight sequence variations in the 18S rDNA may also be correlated to the other 
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genetic differences arising from speciation amongst these nematodes which are linked to 

unique species specific adaptive and morphological characteristics.  

EPNs are found in diverse environments throughout the world (Grenier et al, 1995) and their 

classification has been simplified by employing molecular identification techniques such as 

the PCR amplification and sequencing of the internal transcribed spacers between 18S and 

28S ribosomal DNA.  The coding regions of 18S and 28S rDNA are highly conserved among 

EPNs species however the ITS regions contain genetic polymorphism arising from mutations 

such as deletions, insertions and translocations (Hillis et al, 1991).  The nucleotide sequences 

of the ITS regions can be used as reliable genetic finger prints to identify nematodes species.  

Multiple alignments of the 18S rDNA ITS regions provide quantitative genetic or 

evolutionary distance data for establishing the phylogenetic affinities for EPNs species 

belonging to the same genus.  In this study the alignment of 18S rDNA sequence data for 

EPNs selected species belonging Oscheius, Steinernema, Heterorhabditis, Rhabtiditis and 

Caenorhabditis genera was undertake establish the phylogenetic relationship  of the newly 

isolated    Oscheius sp. TEL-2014.  From the phylogenetic analysis the inferred evolutionary 

relationship between the new   Oscheius species with the other EPNs species was 

demonstrated. 

2. Materials	and	methods	

2.1  18S rDNA Sequence alignment   

 

The NCBI accession numbers and species names for the sequences used were:   Oscheius sp. 

TEL-2014 (KM492926), Oscheius carolinensis (FJ547241.1),  Oscheius myriophilus JU1386 

(KP792651), Oscheius sp. MCB (KF684370), Oscheius sp. KAT-2015 (KR119081), 

Rhabditis sp. Tumian-2007 (EU273598), Heterorhabditidoides chongmingensis FUMN101 

(KF500235), Oscheius sp. BW282 (AF082994), Oscheius insectivore (AF083019), 

Caenorhabditis elegans (NR_000053), Heterorhabditis bacteriophora (KJ938576) and 

Steinernema khoisanae (KM275351). 
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The multiple sequence alignment was done using MEGA 6.  Parameters used include DNA 

weight matrix set to IUB, with a gap open of 10, gap extension of 0.20, gap distance  of 5, no 

gap end was included and the clustering used was neighbour joining.  

ClustalW2 multiple sequence alignment tool was used to align Oscheius sp. TEL-2014 and 

other nematodes.  Clustal W2 alignment tool is suitable for medium alignments.  Slow 

Pairwise alignment was used with the following parameters: DNA weight matrix set to IUB, 

gap open of 10 amd gap extension of 0.1.  The output options were set to Clustal w/ numbers 

or FASTA format and the order of the alignment was set to align.  MEGA6 was employed to 

determine the base frequencies for each sequence as well as an overall average, to show the 

nucleotide composition. 

2.2 Phylogenetic analysis 

Sequences were aligned by using MUSCLE on Mega 6 before generating phylogenetic trees.  

Maximum Likelihood method based on the Tamura-Nei model was used to construct the 

trees. 

2.3 Percentage identity matrix  

Percentage identity matrix was created using Clustal2.1 web based and accessible on 

http://www.ebi.ac.uk/Tools/msa/ 

3. Results	and	Discussion	
 

3.1  Nucleotide composition 
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Table 3 

Nucleotide composition of the 18S rDNA of   Oscheius sequences 

 Accession number, organism 

T(U) C A G Total 

KM492926,    Oscheius sp. TEL-2014 30.0 24.1 19.1 26.8 800.0 

FJ547241,   Oscheius carolinensis 28.0 24.6 19.6 27.9 1176.0 

KP792651,   Oscheius myriophilus 

JU1386 28.6 24.5 19.7 27.2 1018.0 

KF684370,   Oscheius sp. MCB 29.4 24.4 18.8 27.5 816.0 

KR119081,   Oscheius sp. KAT-2015 30.4 22.6 21.1 25.9 858.0 

AF082994,   Oscheius sp. BW282 26.2 21.1 26.4 26.3 1709.0 

AF083019,    Oscheius insectivore 26.6 20.8 26.4 26.2 1715.0 

Avg. 28.0 22.8 22.5 26.7 1156.0 

 

The nucleotide composition shows that the 18S rDNA of   Oscheius sequences are of varying 

length and contain unequal numbers of the adenines, thymines, cytocines and guanines.  
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Table 4 

Nucleotide composition of the 18S rDNA of   Oscheius sequences and other related species 

belonging to unique genera 

Accession number: Organism 

T(U) C A G Total 

NR000053, Caenorhabditis elegans 27.4 20.4 25.7 26.5 1754.0

KR119081,   Oscheius sp. KAT-2015 30.4 22.6 21.1 25.9 858.0 

KP792651,   Oscheius myriophilus JU1386 28.6 24.5 19.7 27.2 1018.0

KM492926,    Oscheius sp. TEL-2014 30.0 24.1 19.1 26.8 800.0 

KM275351, Steinernema khoisanae 35.7 17.4 22.3 24.6 826.0 

KJ938576, Heterorhabditis bacteriophora 29.1 19.9 26.0 25.0 849.0 

KF684370,   Oscheius sp. MCB 29.4 24.4 18.8 27.5 816.0 

KF500235, Heterorhabditidoides chongmingensis 

FUMN101 32.3 22.3 18.7 26.7 815.0 

FJ547241,   Oscheius carolinensis 28.0 24.6 19.6 27.9 1176.0

EU273598, Rhabditis sp. Tumian-2007 30.6 22.3 20.2 26.9 1017.0

AF083019,   Oscheius insectivore 26.6 20.8 26.4 26.2 1715.0

AF082994,   Oscheius sp. BW282 26.2 21.1 26.4 26.3 1709.0

Avg. 28.9 21.9 22.7 26.5 1112.8

 

There are differences noted especially on the Caenorhabditis elegans and    Oscheius sp. 

TEL-2014 in terms of sequence length and nucleotide arrangement.  This may support 

previous investigations on comparative genetics, evolution and phylogenetics of the 

nematodes (Sommer, 2000).  Reasons for the differences observed may be further 

investigated in future studies which will help us to understand why the variations are present. 

3.2 18S rDNA sequence alignment 



53 
 

 

Fig. 1 A portion of the alignment of 18S rDNA region between   Oscheius species and other 

nematodes using Muscle alignment tool on Mega 6. Green: Adenine, Red: Thymine, Blue: 

Cytosine and Purple: Guanine.  The sequences are in the order specified in the methods 

section 2.1. 

 

 

 

Fig. 2 A portion of the alignment of 18S rDNA ITS region between  Oscheius species and 

other nematodes using Muscle alignment tool on Mega 6. Green:Adenine, Red: Thymine, 

Blue: Cytosine and Purple: Guanine.  The sequences are in the order specified in the methods 

section 2.1. 
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Fig. 3 Alignment of the 18S rDNA sequences for species    Oscheius sp. TEL-2014 

(KM492926),   Oscheius carolinensis (FJ547241.1),   Oscheius myriophilus JU1386 

(KP792651),   Oscheius sp. MCB (KF684370),   Oscheius sp. KAT-2015 (KR119081), 

Rhabditis sp. Tumian-2007 (EU273598), Heterorhabditidoides chongmingensis FUMN101 

(KF500235),   Oscheius sp. BW282 (AF082994),   Oscheius insectivore (AF083019), 

Caenorhabditis elegans (NR_000053), Heterorhabditis bacteriophora (KJ938576) and 

Steinernema khoisanae (KM275351).   Nucleotide sequences used for comparison were taken 

from have NCBI GenBank database.  CLUSTAL multiple sequence alignment by MUSCLE 

(3.8).  * (asterisk) indicates positions which have a single, fully conserved residue, - (hyphen) 

indicates gaps or no match between the sequences. 
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Fig. 4 Alignment of the 18 S rDNA sequences for 7 species   Oscheius nematodes.  These 

nucleotide sequences were taken from have NCBI GenBank database:   Oscheius carolinensis 

(FJ547241.1),   Oscheius myriophilus JU1386 (KP792651),   Oscheius sp. MCB (KF684370),   

Oscheius sp. KAT-2015 (KR119081),   Oscheius sp. BW282 (AF082994),   Oscheius 

insectivore (AF083019) to be compared to    Oscheius sp. TEL-2014 (KM492926).  

CLUSTAL multiple sequence alignment by MUSCLE (3.8).  Diverse matrices are chosen by 

Clustal W online software by EMBL-EBI as the alignment proceeds, depending on the 

different divergences at each stage (Larkin et al, 2007). 
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Fig. 5 Representative portion of conserved regions within the species of Oscheius, 

Heterorhabditis, Steinernema, Rhabditis and Caenorhabditis 

 

 

Fig. 6 Representative portion of variable regions within the species of Oscheius, 

Heterorhabditis, Steinernema, Rhabditis and Caenorhabditis 

 

Fig. 7 Representative portion of conserved regions within the species of Oscheius, 

Heterorhabditis, Steinernema, Rhabditis and Caenorhabditis 
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Fig. 8 Representative portion of variable regions within the species of Oscheius, 

Heterorhabditis, Steinernema, Rhabditis and Caenorhabditis 

3.3 Phylogenetic analysis 

 

 

 

Fig. 9 the evolutionary history of species of Oscheius, Heterorhabditis, Steinernema, 

Rhabditis and Caenorhabditis was centred on the analysis of 18S rDNA ITS region was 

inferred by using the Maximum Likelihood method based on the Tamura-Nei model 
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3.4 Percentage identity  

 

 

Fig 11 Percent Identity Matrix - created by Clustal2.1 

 

Fig 12 Percent Identity Matrix - created by Clustal2.1 

 

Nematodes genome regions just like most eukaryotic genomes may have skewed nucleotide 

composition due to mutations or presence of repeats. 

4. Conclusion	
 

The sequence 18S rDNA alignments support that Oscheius sp. TEL-2014 is a novel species 

based on the originality of its 18S rDNA sequence which does not have 100% sequence 

identity with other nematodes belonging to Oscheius, Heterorhabditis, Steinernema, 

Rhabditis and Caenorhabditis used for sequence comparison in the study. 

The investigation demonstrated that even if nematodes species belong to the same or related 

genus, the 18S rDNA sequence may contain variations. Factors such as deletions, 

translocations and insertions may have contributed to the genetic variations as seen in fig. 6 

and 8 showing variable regions however fig. 5 and 7 showed conserved regions within the 

species of Oscheius, Heterorhabditis, Steinernema, Rhabditis and Caenorhabditis suggesting 

a degree of sequence identity. Other factors that may influence these differences include 

climate type and soil type the nematodes reside in (Griffiths et al, 2006).   
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The 18S rDNA sequence may be useful for phylogenetic studies (Zhu et al, 1998).     

Oscheius sp. TEL-2014 was found to be closely related to   Oscheius myriophilus and not 

closely related to   Oscheius sp. BW282,   Oscheius insectivore, Caenorhabditis elegans 

based on phylogenetic analyses and observations made on sequence alignments. 
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            CHAPTER 4 
 

Investigating the pathogenicity of surface sterilised entomopathogenic 

nematode    Oscheius sp. TEL-2014 

 

Abstract 

An entomopathogenic nematode Oscheius sp. TEL-2014 was recently isolated from a 

grassland in Suikerbosrand Nature Reserve near Johannesburg in South Africa.  The 

nematode has a symbiotic relationship with an insect pathogenic bacteria identified as 

Serratia sp. strain TEL which is a gram negative, rod shaped Enterobacteria. The 

pathogenicity of Oscheius sp. TEL-2014 following surface sterilization at varying time 

periods, 0 min (sterile water treatment), 30 min, 60 min, 90 min, 120 min, 150 min and 180 

min in 0.1% sodium hypochlorite solution was investigated.  Serratia sp. TEL were isolated 

from surface sterilised nematode’s haemocoel and tested without the nematode for its 

entomopathogenecity. Whole genome sequencing, assembly and annotation of Serratia sp. 

TEL was performed and 19 contigs were generated with an average length of 301 767 bp and 

N50 of 200 110 bp.    The genome of the Serratia sp TEL was found to be 5 000 541 bp in 

size and contained a total of 4 618 coding regions and 103 for RNAs.  This nematode was 

able to invade Galleria mellonella larvae, releasing bacteria into the larvae’s gut, causing 

20% mortality within 24 hours after being surface- sterilised for 30-60 minutes.  Within72 

hours 100% larval mortality was observed in all NaClO treated nematodes.  Furthermore; 

bacterial growth rate was measured for 24 hours and optical density (OD) readings were 

taken every hour using a spectrophotometer at 600nm wavelength. After 7 hours of culturing 

the bacteria in Luria Broth, the media changed from yellow to red due to phase I bacteria 

releasing pigments.  Additional studies are needed to investigate compounds secreted by 

Serratia sp. TEL which contributes to the entomopathogenecity of the nematode. This 

information will increase our understanding of the potential of   Oscheius sp. TEL-2014 as an 

effective biological control agent. 

 

Keywords: Entomopathogenic nematodes; Serratia, Oscheius, insect pest, pathogenicity, 

biological control 
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1. Introduction	
 

Entomopathogenic nematodes (EPNs) are soil dwelling insect-killing microscopic worms 

which have become popular in pest management projects across the world (Torres-Barragan 

et al, 2011).  In their guts, they carry insect pathogenic symbiotic enterobacteria that are able 

to produce lethal toxins that can kill an insect within 48-72hours after infection, (Malan et al, 

2006).  EPNs belonging to Heterorhabditis, Steinernema, and the Oscheius genus have a 

symbiotic association with Photorhabdus, Xenorhabdus, and Serratia bacteria respectively 

(Stuart et al, 2006; Torres-Barragan et al, 2011; Zhang et al, 2008).   Not all species of 

bacteria belonging to the  genus Serratia have been shown to have fatal effects on insects 

(Kwak et al, 2015).  S. marcescens is an example of an insect pathogenic nematode belonging 

to the Serratia genus which is very effective and able to rapidly kill insects (Abede et al 

2010; Ishii et al, 2014).   

 

The free-living  non-feeding stage of EPNs refered to as injective juveniles (IJs) or dauer 

stage are able to invade the body of susceptible insects by entering through the mouth, anus 

or by any  of the other natural openings.  The pathogenic bacteria may be classified according 

to external larval symptoms they cause during infection after being released by the nemotode 

into the hemocoel of the infected insects (Park et al, 2004).  Once they have been released 

into the hemocoel they excrete toxins and immune depressors, the latter are involved in 

blocking the activity of phospholipase A2 of the insect (Ji et al, 2004).  IJs then proliferate 

because of the nutritional benefits within the cadaver and later emerge into the soil in search 

of new hosts to infect, (Serwe-Rodriguez et al, 2004).   

 

A study on Oscheius nematodes revealed that Serratia marcescens bacteria were found on the 

cuticle of Oscheius Carolinensis and mainly contributed to their entomopathogenicity by 

killing the fourth-instar Helicoverpa zea larvae.  The second bacterial species identified in 

their investigation was Enterococcus mundti also residing on the cuticle of the nematodes and 

was found to also cause pathogenicity however Achromobacter xylosoxidans was unable to 

cause death in the model insects they used.  Providencia rettgeri was found primarily in 

crushed surface sterilized nematodes and also caused some mortality of model insects 

(Torres-Barragan et al, 2011). 
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 In our study we investigate the pathogenicity of surface sterilised entomopathogenic 

nematode  Oscheius sp. TEL-2014 and thus identify bacterial species which may be involved 

in causing pathogenicity.   Based on previous reports, Serratia bacteria is found on the 

surface of   Oscheius nematodes and thus if the nematodes are surface sterilised, their ability 

to cause insect larvae death will decline or discontinue.  However, it must be taken into 

account that other bacterial species which may belong to different family or genus may also 

be involved in the entomopathogenicity as seen in aforementioned reports which showed that 

the combination of P. rettgeri with S. marcescens instigated death of insect larvae. 

 

We therefore hypothesize that Serratia bacteria are found on the surface of infective juveniles 

based on observations made in prior studies which tested the hypothesis of Serratia’s location 

‘in’ or ‘on’ the IJs. In our study we similarly test the hypothesis on the newly isolated 

nematode species. 

 

2. Materials	and	methods	
 

2.1 Isolation of bacteria from sterile and homogenised nematodes (Kaya et 
al, 1997) 

Fresh infective juveniles were collected from White-traps and transferred into clean Falcon 

tubes and allowed to settle.  The excess water was removed and the settled EPNs were re-

suspended in 10ml of 0.1% sodium hypochlorite (NaClO) and left for 1 hour.  The IJs were 

transferred into 10ml fresh 0.1% NaClO solution and left for a further 3 hours.  IJs were then 

rinsed twice with Ringer’s solution under a laminar flow hood.  Sterile IJs were carefully 

suspended in 1ml of sterile nutrient broth in a micro tube and crushed with a small sterile 

plastic pestle.   The homogenate was aseptically transferred into a sterile McCartney bottles 

with about 10ml of Nutrient Broth.  Bacteria were grown in the dark on a shaker for 24 hours 

at 25°C. In order to allow colony growth the bacteria from the Nutrient Broth was streaked on 

McConkey and NBTA streak plates and incubated at 25°C for 24hours in the dark. Pink or 

red colonies were isolated and plated on fresh MacConkey and NBTA streak plates and the 

pure cultures were used for further analysis.  

2.2 Pathogenecity of surface sterilised nematodes and isolation bacteria 
using selective media 
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Fresh infective juveniles (IJs) were collected from White traps and sterilised with 5ml of 

0.1% sodium hypochlorite solution for 0min (control, treated with sterile distilled water), 

30min, 60min, 90min, 120min, 150min and 180 min in separate 10ml Falcon tubes.  IJs in 

each Falcon tube were then rinsed twice with sterile distilled water.  Sterile sandy loam soil 

was distributed into 28 x 90mm Petri dishes, 4 for each treatment, with 10% soil moisture and 

inoculated with 500 IJs immersed in 1ml of sterile distilled water. Ten Galleria Mellonella 

larvae were added in each petri dish and incubated at 25°C. Mortality percentage was 

recorded daily and experiments were repeated 4 times.  Dead larvae were dry in the air in 

empty Petri dishes for 24 hours at room temperature and before been placed on White traps to 

test if any IJs could be recovered from larvae originally infected with sterilized nematodes, i.e 

sterilized with different concentrations of sodium hypochlorite.  Furthermore, surface-

sterilised nematodes for each sterilization time period were each transferred into sterile 1.5 ml 

micro-centrifuge tube and homogenised under a laminar flow using a sterile plastic pestle.  

One ml of fresh nutrient broth in a sterile 1.5 ml micro-centrifuge tube was inoculated with 

100μl of the homogenate.  The homogenate was then transferred 10 ml sterile Nutrient Broth 

medium in a sterile McCartney bottles.  The bacteria were allowed to multiply in the dark on 

a shaker at 130rpm for 24 hours at 25°C. After 24 hours, the bacterial were streaked onto 

NBTA and MacConkey agar plates and incubated in the dark for 24 hours at 25°C. 

2.3 Pathogenicity of Infective juveniles which are not surface sterilised and 
identification of associated bacterial isolates using Sanger sequencing 
and Illumina 16S rDNA-based metagenome sequencing  

Colonies were obtained from nematodes which newly emerged from a cadaver which was 

sterilised with 100% ethanol and flame.   The water in the White-traps was sterilised and IJs 

were collected aseptically under a laminar fume hood.  16S rDNA-based metagenome 

analysis of IJs which were not surface sterilised was performed to detect any bacterial species 

on the surface of the nematode.  Bacteria identified were separately cultured and used to 

inoculate healthy insect larvae.  To confirm the identity of each isolate, colony PCR was 

employed to amplify the 16S rDNA, followed by Sanger sequencing was used to sequences 

the conserved region.  Sequencing results were subjected to NCBI BLAST to find the identity 

of the unknown isolated colonies.  Once the colonies or bacterial isolates were identified, 

they were tested for their pathogenicity.  



65 
 

BD BBL Prompt inoculation system was used.  Prompt inoculation tubes and inoculation 

wands were aseptically removed from the kit box.  The tip of the wand was held 

perpendicular to the agar surface and 3 bacterial isolates colonies which were greater than 

1mm in diameter were touched.  As reference, the tip of the wand is 2mm in diameter.  For 

colonies less than 1mm, ten colonies were touched with the tip, avoiding dragging the tip and 

penetrating the agar.  The colonies for each isolate were transferred to a sterile tube by 

sealing the wand into the tubes provided which contained saline.  The tubes with colonies 

were agitated with on a vortex for 10 seconds to release the bacterial cells from the wand tip. 

When the colonies were not properly released from the wand, the tip was left in the solution 

for 5 minutes and then agitated again using a vortex.  Each tube contained approximately 

1.5x108 CFU/mL (colony forming units per mL).  Insect mortality was tested using: bacterial 

isolate no. 1, isolate no. 2 and isolate no. 3.  G. mellonella 10 larvae were inoculated with 

100µl of 1.5x108 CFU/mL using a sterile syringe.  The larvae were put into clean Petri dishes 

and stored at room temperature, approximately 25°C and monitored for mortality within 24 

hours. 

2.4 Selection of bacterial from MacConkey Agar and NBTA plates and 
confirmation of endosymbionts 

Phase I bacteria were obtained by selecting green or blue-green colonies from NBTA agar 

plates and red colonies from MacConkey agar plates (selective media recipe in appendix 2).  

The selected colonies were incubated in 1.0 ml sterile Nutrient Broth in 1.0 ml sterile 

Eppendorf tubes for 4 hours at 25°C.   Lipid agar plates were inoculated with the 1.0 ml 

Nutrient Broth culture and incubated at 25°C for 24hours until a bacterial lawn was 

established.   After the serial dilution of sterilized IJs their numbers were counted in 100 μl 

droplets under a light microscope by a dilution series.   One ml aliquots of sterile IJs was 

added to Lipid Agar bacterial lawns at concentration of about 50-100 IJs/ml. IJs which grew 

and multiplied on the bacterial lawns in the lipid agar plates confirmed that the unknown 

bacterial isolated from the sterilized IJs could support nematode growth.  

2.5 Genomic extraction from bacteria 

The bacterial genomic DNA was extracted using ZR Bacterial DNA Kit, # D6005.  Bacteria 

were grown on NBTA and Mc Conkey plates.  An isolated bacterial colony was picked and 

suspended in a ZR BashingBeadTM Lysis tube and agitated at maximum speed for 5minutes.   

This aided in gently breaking down the bacterial wall in order to release nucleic material.  
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The ZR BashingBeadTM Lysis tube was centrifuged at 10 000 rpm for 1 minute.  Up to 

400μl of the supernatant was transferred into a Zymo-Spin TM IV Spin Filter in a collection 

tube and centrifuged at 7000 rpm for 1 minute.  1200μl of Fungal/ Bacterial DNA binding 

buffer was added to the filtrate in the collection tube and transferred 800μl of the mixture to a 

Zymo-SpinTM II column in a collection tube and centrifuged at 10000rpm for 1 minute.  The 

flow was discarded from the collection tube and 200μl DNA Pre-Wash Buffer was added to 

the Zymo-SpinTM II column in a new collection tube and centrifuged at 10000rpm for 1 

minute.  500μl of Bacterial DNA Wash Buffer was added to the Zymo-SpinTM II column 

and centrifuged at 10000rpm for 1 minute.  The Zymo-SpinTM II Column was transferred to 

a clean 1.5 ml microcentrifuge tube and added 100μl DNA Elution Buffer directly to the 

column matrix.  The tube was centrifuged at 100000rpm for 30 seconds to release the DNA 

from the matrix.  The DNA was stored at 4°C to be used for further analysis. 

 

2.6 PCR amplification of the 16S rDNA region and sequencing 

The 16S rDNA region was amplified using 25 µl of PCR master mix, 22 µl Nuclease free 

water, 1 µl Forward primer EUB968, 1 µl Reverse primer UNIV1382 and 1 µl DNA 

concluding a total volume of 50µl in a PRC tube.  EUB968 forward primer5’-

ACGGGCGGTGTGTC-3’ Tm (°C) =62 and UNIV1382 reverse primer 5’-

AACGCGAAGAACCTTAC-3’ Tm (°C) =66 were used. Samples were mixed gently, 

making sure that no air bubbles were formed as they can inactivate the enzymes (DNA 

polymerase) in the master mix.  The following conditions were used to amplify the 16S 

rDNA region of the bacterial isolate, initial denaturation before cycling 95 ºC for 3 minutes, 

35 cycle amplification series: denaturation at 94ºC for 30 seconds, annealing at 60ºC for 45 

seconds, extension at 72ºC for 90 seconds and final extension after cycling: 72ºC for 7 

minutes.  Agarose gel electrophoresis was used to confirm the quality of PCR.  Amplified 

DNA fragments were sent to Inqaba Biotechnical Industries (Pty) Ltd; South Africa for 16S 

rDNA sequencing using the same primers employed in the PRC.  For identification purposes, 

a basic local alignment tool by the national centre for biotechnology information (NCBI-

BLAST) was used to search for sequences which have a high affinity and maximum identity 

percentage to the unknown bacterial species. 

2.7 Whole genome sequencing of the identified bacterial symbiont  
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Genomic DNA paired-end libraries were generated with the Nextera DNA sample 

preparation kit (Illumina) and indexed using the Nextera index kit (Illumina).  Paired-end (2 

× 300 bp) sequencing was performed on a MiSeq Illumina using the MiSeq reagent kit v3 at 

the Agricultural Research Council Biotechnology Platform.   Quality and adapter trimming 

was performed with Fastq-mcf toolkit.  The genome was assembled using SPADES and the 

contigs were annotated using NCBI Prokaryotic Genome Automatic Annotation Pipeline. 

2.8 Sequence alignment and Phylogenetic analysis 

Serratia sp. Strain TEL-2014 was edited to remove unknown bases using Bioedit sequence 

alignment editor.  10 more sequences were obtained from NCBI GenBank database where 

Photorhabus and Xenorhabdus sequences were used to root the tree.  Sequences were aligned 

first using MUSCLE on MEGA 6 software.  The gap penalties were set to the following: gap 

open= -400 and gap extend = 0.  The evolutionary history of the aligned sequences was 

centred on the analysis of 18S rDNA ITS region inferred by using the Maximum Likelihood 

method based on the Tamura-Nei model conducted in MEGA6.   The bootstrap consensus 

tree inferred from 1000 replications and tree is drawn to scale, with branch lengths measured 

in the number of substitutions per site (next to the branches).   

 

2.9  In vitro bacterial culture for determining the growth curve 

 

A 500ml flask containing Luria Broth was inoculated with a single bacterial colony grown on 

NBTA agar and incubated at 25°C on an orbital shaker for 130rpm for 24 hours. The 

absorbency was measured at 600nm hourly for 24 hours. 

2.10 Gram staining 

Heat-fix smears on microscope slides were prepared using colonies grown on NBTA agar.  

The slide was flooded with crystal violet for 60 seconds.  Excess dye was poured off the slide 

and washed gently under running tap water and drained the slide against a paper towel.   

The smears were exposed to Gram's iodine for 60 seconds and washed with tap water and 

drained carefully without blotting.  The slide was then washed with 95% alcohol for 30 

seconds and rinsed with tap water at the end of the 30 seconds to stop the 

decolourization.  The slides were counterstained with 0.25% safranin for 30 seconds, washed 
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and dried.  The slides were then viewed under a light microscope at 100X oil immersion 

objective. 

2.11 Gram reaction of Serratia sp. TEL 

A potassium hydroxide (KOH) String Test was done on Serratia sp. strain TEL. A drop of 

KOH was placed on a slide and mixed with colonies from on NBTA and McConkey agar 

plates which were incubated for 24 hour.  The reaction was evaluated after 1 minutes by 

using a sterile toothpick to check if the colonies create a stringy reaction or not.  A gram-

negative reaction is indicated by stringy mixture while gram-positive cells will not produce a 

viscous mixture.  

2.12 Spore stain of Serratia sp. TEL 

Spore stains are usually done for crystal producing, Gram-positive bacteria.  Smears of the 

bacteria were prepared on the slide, allowed to air dry and heat fixed.  The smears were 

flooded with malachite green and placed over a beaker containing boiling water for 2-3 

minutes as demonstrated on figure 1.   The stain was not allowed to boil or evaporate.  The 

slides were removed, allowed to cool and rinsed under tap running water.  The smears were 

stained with safranin for 30 seconds and washed with tap water.  The slides were blot dry and 

examined under oil immersion. 

 

Fig. 1 Spore staining procedure 

2.13 Statistical analysis 
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Descriptive statistics were used to calculate the mean and standard deviation of the IJs 

emerged from one dead larvae and time for IJs emergence values 

3. Results	and	Discussion	
 

3.1 Isolation of bacteria from sterile and homogenised nematodes (Kaya et 
al, 1997) 

 

Fig. 2 Phase I colonies obtained from sterile and homogenised    Oscheius sp. TEL-

2014nematodes.  Left: green circular colonies on NBTA selective media.  Right: red 

and pink circular colonies when grown on McConkey media and inculated at 25°C 

for 24-96hours 

 

 

Fig. 3 Bacteria isolated from the hemocoel of sterile nematodes showing phase II 

variants on NBTA (left) and McConkey agar plate (right). 
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MacConkey agar was used to isolate gram negative bacteria with a potential to ferment 

lactose, thus dropping the pH of the media resulting in the growth of red/pink colonies which 

may be suspected to be associated with the EPNs (Kaya et al, 1997).  Bromothymol Blue 

agar was used to also isolate gram negative bacteria and which have the potential to absorb 

bromothymol blue thus also resulting in blue- green colonies with a red centre.  Bacteria can 

occur in two phases, phase I and phase II which may enable one to identify the desired 

bacterial species and characterise them on by simple streaking on to MacConkey and NBTA 

agar plates which are greatly used in selecting bacteria according to lactose fermentation and 

ability to absorb bromothymol blue and reduction of triphenyltetrazolium chloride (TTC) 

which results in a red colour of colony surrounded with clear zones seen mostly in 

Xenorhabdus species (Kaya et al, 1997). 

Table 1 

Summary of the isolated bacteria from EPNs characterised according to phase variants of 

described by (Kaya et al, 1997)  

                                     

                                     

Photorhubdus Xenorhabdus Serratia sp. TEL 

(In this chapter) 

Phase I: 

McConkey colony 
phase, colour and 
shape 

pink and red, circular 
colonies 

pink and irregular 
and some circular 
colonies 

Red and pink, 
circular colonies 

Phase I 

NBTA colony phase, 
colour and shape 

green/red colonies 
surrounded by a clear 
zone 

green/red colonies 
surrounded by a clear 
zone 

 

green colonies 
surrounded by a clear 
zone 

Phase II: 

McConkey colony 
phase, colour and 
shape 

Yellow/brown flat 
and irregular colonies

Yellow/brown flat 
and irregular colonies

Yellow/brown 
irregular colonies 

Phase II: 

NBTA colony phase, 
colour and shape 

Reddish-brown 
colonies 

Reddish-brown 
circular and some 
irregular colonies 

Red irregular 
colonies and some 
circular 
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In this study, it has been observed that Serratia sp. TEL forms green circular colonies when 

grown on NBTA selective media and, red and pink circular when grown on McConkey media 

and inculated at 25°C for 24-96hours.  After 96 hours, bacterial colonies started to enter 

phase II/secondary phase whereby red irregular colonies grew on NBTA and then only light 

pink, almost cream white irregular colonies grew on McConkey. These observations were 

interesting and so far there has not been any other report for Serratia associated with EPNs 

going into a secondary phase as with Xernorhabdus and Photorhabdus. Characteristics of 

Xernorhubdus and Photorhubdus which are bacterial symbionts of the entomopathogenic 

nematodes Heterorhabditis and Steinernema are summarised in Table 1. 

3.2 Molecular identification 

The 16S rDNA had high affinity to a novel Serratia species which was registered on 

GenBank NCBI as Serratia sp. TEL allocated the accession number KP711410.  The 

nematode Oscheius sp. TEL-2014 from which the bacteria was isolated from has the 

accession KM492926 on Genbank. 

Direct links to deposited data: 

http://www.ncbi.nlm.nih.gov/nuccore/KP711410 

http://www.ncbi.nlm.nih.gov/nuccore/KM492926 

3.3 Whole genome sequencing, assembly and annotation 

19 contigs were generated with an average length of 301767bp and N50 of 200,110 bp.    The 

genome of the Serratia sp. TEL was found to be 5,000,541-bp in size, with a G+C content of 

59.1%.  Prokaryotic Genome Automatic Annotation Pipeline was used to annotate the 

genome as described in (Lephoto et al, 2015).  Moreover the functional annotation was 

carried out by RAST (Rapid Annotation using Subsystem Technology) hosted by Fellowship 

for Interpretation and several subsystems were identified (Lephoto and Gray 2015).  The 

virulence, disease and defence subsystem was also found and contains 119 genes which may 

contribute to pathogenicity of the bacteria carried by the entomopathogenic nematode    

Oscheius sp. TEL-2014.  Further investigation of this subsystem may provide some insights 

on the mechanism of infection highlighting proteins involved in pathogenicity. 

3.4 Pathogenicity of surface-sterilised nematodes 
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Oscheius sp. TEL-2014 that had been surface sterilized for at varying time periods, 0min 

(control, treated with sterile distilled water), 30min, 60min, 90min, 120min, 150min and 180 

min in 0.1% sodium hypochlorite solution resulted in 100% mortality of G. mellonella larvae.  

100% mortality of the larvae was also achieved with the control treatment where the 

nematodes were not surface sterilised.  However, as the length of surface sterilisation 

increased, the percentage of larvae in which IJs were recovered gradually dropped (Table 2).  

The remaining cadaver where dissected all were found to have IJs.  Even if surface sterilised 

IJs had the ability to penetrate into the G. mellonella, nematodes performance declined as the 

exposure time in 0.1% NaClO increased. 
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Fig. 4 Galleria mellonella percentage mortality caused by Oscheius sp. TEL-2014 treated 

with 0.1% sodium hypochlorite solution for different periods of time. 

This Oscheius sp. TEL-2014 was able to invade Galleria mellonella larvae, release the 

bacteria into the larvae’s gut and cause 20% mortality within 24 hours when surface- 

sterilised for 30-60 minutes and 100% larvae mortality is observed within 72 hours.  

However, as the length of surface-sterilisation time increases (90-180) minutes, the 10-20% 

mortality is observed in 48 hours. 100% larvae mortality is observed by day 6 when surface- 
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sterilised for 90-120 minutes and by day 7 for 150-180 minutes.  These results show that the 

virulence of the bacteria decreases with an incline in the amount of time the nematodes are 

exposed to 0.1% sodium hypochlorite solution.  In a study conducted in 2011, Oscheius 

carolinensis IJs taken from cadavers surface-sterilised for 1 minute using 1% NaClO and 

used to infect Galleria mellonella larvae and in their results, 100% insect mortality was 

reported (Torres-Barragan et al, 2011).  These results prove bacteria involved in the mortality 

of the insects are found inside the nematodes not on the surface of the nematodes.  This 

implies that the hypothesis stated in the investigation is rejected based on the results obtained. 

Table 2 

Time to host death, time to nematode emergence after host death, and numbers of adults and 

juveniles emerged from host after inoculation with Oscheius sp. TEL-2014 nematodes (100 

per host larva). The IJs emerged from one dead larvae and time for IJs emergence values 

represent the mean +/- standard error. 

 

Treatment (length of 

nematode surface sterilisation 

in minutes) 

IJs Emerged 

from dead 

larva 

Percentage (%) of 

larvae in which IJs 

were recovered 

Time for IJ 

emergence (in 

days) 

0 850+/-76.7 100 2+/-0.05 

30 720 +/-54.1 100 2+/-0.049 

60 680 +/-28.3 100 4+/-0.197 

90 590 +/-24.4 70 4+/-0.2 

120 225+/-15.5 40 5+/-0.32 

150 65+/-10.2 30 6+/-0.34 

180 50+/-8.12 10 7+/-0.35 

 

Our findings are not supported by some of the previous studies done on Oscheius 

Carolinensis which had relations with four bacteria.   

In our study, surface sterilised nematodes performed well in causing mortality of G. 

mellonella insect larvae while in previous studies surface sterilised O. carolinensis nematodes 

did not successfully cause mortality of target insect hosts. 
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The combination of P. rettgeri with S. marcescens caused mortality of insect larvae however 

it was reported that further studies need to be conducted in order to confirm and describe the 

relationship and role of between O. carolinensis and S. marcescens (Torres-Barragan et al, 

2011) 

 

 

Fig. 5 Infection symptoms recorded for each treatment after 24 hours of inoculating G. 

mellonella larvae surface-sterilised Oscheius sp. TEL-2014. A=0min, B=30min, C=60min, 

D=90min, E=120min, F=150min and 180min.  It is evident that as the length of surface 

sterilisation time increases, the larva displays less infection symptoms. 

3.5 Pathogenicity of Infective juveniles which are not surface sterilised and 
identification of associated bacterial isolates using Sanger sequencing 
and Illumina 16S rDNA-based metagenome sequencing  
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Table 3 

Sanger sequencing results which are also support the Illumina 16S rDNA-based sequencing  

Bacterial isolate Species identified  

1 Citrobacter freundii 

2 Serratia species 

3 Uncultured Klebsiella 

 

 

 

 

 

Fig. 6  Sunburst Classification Chart.  This sunburst chart shows the relative abundance of the 
classification results within each taxonomic level.  The bacterial species identified using 
Illumina 16S rDNA-based metagenome analysis were obtained from infective juveniles not 
surface sterilised.   
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Surface sterilised nematodes were able to infect and cause mortality of the insect larvae 
which indicates that the Serratia species isolated from the gut of the nematode was 
pathogenic.   

 

Fig. 7  Mortality observed when 10 insect larvae per bacterial isolate were inoculated with 
bacterial isolate no. 1, which was identified as Citrobacter freundii, isolate no. 2 Serratia sp 
and isolate no. 3 Uncultured Klebsiella.  Mortality was monitored over 24 hours. 

No death or any signs of infection were observed in insect larvae inoculated with Citrobacter 
freundii and Uncultured Klebsiella after 24 hours, while all 10 larvae died within 24 hours of 
infection by the Serratia species. 

 

3.6 Phylogenetic analysis 
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Fig. 8 the evolutionary history of several species of Serratia and other selected sequences 
was centred on the analysis of 16S rDNA ITS region inferred by using the Maximum 
Likelihood method based on the Tamura-Nei model.   The bootstrap consensus tree inferred 
from 1000 replications and tree is drawn to scale, with branch lengths measured in the 
number of substitutions per site (next to the branches).   

 

 

Fig. 9 the evolutionary history of several species of Serratia sequences only was centred on 
the analysis of 16S rDNA ITS region inferred by using the Maximum Likelihood method 
based on the Tamura-Nei model.    
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3.7 Bacterial growth curve 
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Fig. 10 Serratia sp. TEL grown in Luria Broth.  Bacterial growth rate was measured for 24 
hours and optical density (OD) readings were taken every hour using a spectrophotometer at 
600nm wavelength.  

Interestingly, unique colour changes occurred in the Luria Broth inoculated with Serratia sp. 

TEL when the growth rate was determined.  After 7 hours of culturing the bacteria in Luria 

Broth, the media changed from yellow to red due to phase I bacteria releasing pigments.  

Colour changes made on the selective media also show that the Serratia bacteria in this study 

grows into red colonies after 24 hours incubation at 25C on McConkey agar plates and green 

on NBTA agar plates when they are in Phase I.  As they enter Phase II, colonies change from 

red to some yellow and mostly brown colonies on McConkey agar plates and change from 

green to red on NBTA agar plates. 
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Fig. 11 Oscheius sp. TEL-2014 has evolved a mutualistic relationship with Serratia sp. TEL 

(pointed with black arrow) which is responsible for the infection of target insects. This 

female nematode going though endotokia metricida (Intra-uterine birth instigating maternal 

death) also released intestinal bacteria and infective juveniles.  The length of the bacterial cell 

= 2.028µm. 

3.8 Gram stain 

 

Fig. 12 Serratia sp. TEL is gram negative, rod shaped cells. 



80 
 

Serratia sp. TEL is gram negative, rod shaped enterobacteria.  Serratia marcescens is the 

main representative of the genus Serratia and has been reported to possess red pigmentations 

which are also seen on insect’s larvae within 48 hours of infection.  The same may be said 

with Serratia sp. TEL, as some insect cadaver were maroon after infection, while some only 

had dark black spots on their bodies as seen in fig. 5. 

3.9 Grams reaction 

 

 

Fig. 13 Serratia sp. TEL is gram negative for the gram’s reaction.  The gram reaction helps to 

determine if bacteria is gram-positive or gram-negative.  Grams reaction method adopted 

from (Gustav, 2015). 

3.10 Spore stain  
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Fig. 14 Spore stain was done to verify if Serratia sp. TEL produces spores. A (positive 

control): Bacillus thuringiensis which is a gram-positive bacterium. B. thurengiensis forms 

crystals during sporulation and B: Serratia sp. TEL showing no spores. 

4. Conclusions	
 

This study provides evidence that a newly isolated and identified entomopathogenic 

nematode Oscheius sp. TEL-2014 has a symbiotic relationship with pathogenic 

enterobacteria Serratia sp. TEL which was isolated from all surface-sterilised IJs and 

therefore resides inside the nematodes.  One previous study had shown that Serratia bacteria 

were found on the surface of the nematode’s cuticle and responsible for causing death of 

insect larvae. 

Based on outcomes from this study it would appear that Oscheius sp. TEL-2014 relationship 

with Serratia sp TEL bacteria allows the nematode to be categorised as an entomopathogen 

because of their ability to cause insect mortality. 
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    CHAPTER 5 
 

Whole genome sequencing, assembly and annotation of Serratia sp. TEL 

Abstract 

Bacteria belonging to the genus Serratia are gram-negative and rod shaped.  Some species in 

this genus have evolved a symbiotic association with a number of species of nematode 

belonging to the genus Oscheius nematodes. So far all species of Oscheius that have a 

symbiotic association with bacteria belonging to the genus Serratia also display virulence and 

pathogenicity against a range of different insect hosts.  The bacteria exist as an endosymbiont 

in non-feeding infective juveniles of a number of   Oscheius species. The infective juveniles 

acting as vectors for the bacteria can locate, infect and release the bacteria into the hemecoel 

of the target insect.  In this respect they are behaving in manner that is functionally equivalent 

to the entomopathogenic behaviour that is typical of steinernematids and heterorhabditids. 

Based on these observations there are grounds for including those species of Oscheius which 

demonstrate similar insect infecting behaviour into the functional group of nematodes that 

have been characterized as ‘EPNs’. These nematodes are therefore referred to as 

entomopathogenic nematodes.  Whole genome sequencing of bacteria Serratia sp TEL 

(GenBank accession number KP711410) associated with Oscheius sp. TEL-2014 (GenBank 

accession number KM492926) was performed and a genome draft was obtained.  The 

sequenced genome was assembled using SPADES assembly programme which generated 19 

contigs with an average length of 301,767 bp and an N50 of 200,110 bp.  The genome size of 

the isolate is 5,000,541 bp with a G+C content of 59.1%.  The genome was annotated using 

NCBI Prokaryotic Genome Automatic Annotation Pipeline (PGAAP) and the annotation 

method utilized was best-placed reference protein set; GeneMarkS+.   Additionally, the 

functional annotation was carried out by RAST (Rapid Annotation using Subsystem 

Technology). The annotation on RAST revealed that this species contains 542 subsystems 

and 4647 genes. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the 

accession number LDEG00000000. 

Keywords: Entomopathogenic nematode; Serratia species, whole-genome sequencing, 

genome assembly, genome annotation 
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1. Introduction	
 

Bacteria belonging to Serratia are gram-negative and are found in diverse environments 

which include soil, water, digestive tracts of nematodes and other animals all over the world.  

Members of the Serratia genus are known to secrete various extracellular enzymes and 

secondary metabolites which assist them to survive and persist in certain environments 

(Lephoto et al, 2015).  The Serratia genus includes species that are insect-pathogens, plant-

pathogens, nematode pathogens and human pathogens.  However, it is rare to find a species 

or strain of bacteria in this genus which has evolved a symbiotic association with any 

invertebrate which is able to functions as its vector for transmitting it to a susceptible insect 

host which it can infect. Recent findings have confirmed the occurrence of such symbiotic 

associations with Serratia marcescens in C. briggsae and in some Oscheius species, 

confirming the existence of the entomopathogenic nematodes in addition to the 

Steinernematids and Heterorhabditids (Abebe et al, 2010).  The Serratia-Oscheius-insect 

tripartite relationships share many similar symbiotic features with the more familiar bacteria-

nematode-insect relationship that we see in the Photorhabdus-Steinernema-insect and 

Xernorhabdus-Heterorhabditis-insect tripartite symbiotic associations. Serratia produces 

lytic enzymes which is a common trait seen in this genus (Torres-Barragan et al, 2011).  

These enzymes represent components of a chemical attack and defence system. They play a 

role in virulence and defence against competitors. The also play a role in virulence against 

susceptible hosts and for overcoming the hosts immune defence systems.  Furthermore, most 

of the Serratia bacteria secrete secondary metabolites and other biomolecules with 

antibacterial activity necessary to assist with survival and interspecies competition in 

polymicrobial habitats/environments. Adhesion to various surfaces is also a characteristic of 

many Serratia bacteria (Peterson and Tisa, 2013). 

Serratia has the ability to cause disease in various insects and cause lethal infections when 

they have invaded the hemocoel of the insect host.  Serratia spp targets the hemocytes by 

attacking them through the secretion of toxins.  Cytotoxicity towards mammalian cells has 

been attributed to hemolysis activity but the mechanism of hymocytic destruction is less 

clear.  Insect pathogenic bacteria found on the surface of the nematodes or colonised in their 

gut cause mortality upon entry into the insect’s hemocoel.  The bacteria carry powerful 

immune depressors and proteins with insecticidal and proteolytic activity which results in the 
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death of the insect host.  Host death is followed by a proliferation of both the bacteria and 

nematodes in the cadaver.  The nematodes go through several stages of development and 

generations until the nutrients have been depleted in the host cadaver. On depletion of the 

nutrients the infective juveniles leave the insect cadaver.  These infective juveniles are able to 

survive and persist in the soil for extended periods through anhydrobiosis, and when 

conditions become favourable the able to recover and infect new hosts (Pervez et al, 2013). 

There are some Serratia strains that express proteases which contribute to their virulence 

such as the metaloprotease secreted by S. marcescens HR-3 (Pr596) which has been shown to 

exhibit insecticidal activity and proteolytic activity.   This protein has led the bacterial strain 

to be recommended as a biological control agent against of locust.  S. marcescens is an 

effective chitin degrader due to the chitinases they secrete which contributes to the bacteria 

virulence and pathogenicity towards insects.  Some Serratia species are externally associated 

with nematodes and are linked with pathogenicity to insects, for example S. marcescens 

Bizio’s is found on the surface of Steinernema carbocapsae.  In addition,   Oscheius 

chongmingensis was also reported to be a true entomopathogenic nematode in a symbiotic 

relationship with Serratia nematodiphila which is a gram-negative, red pigmented and 

fluorescent bacterium (Peterson and Tisa, 2013).     

Next generation sequencing (NGS) has become more affordable in recent years and this 

economic fact has encouraged many scientists to make greater use of genomic data to explain 

certain biological processes.  This includes sequencing of the genomes of novel species 

without reference genomes, for example the Illumina sequencing technology is a good 

example of next generation sequencing.  Illumina sequencing services are now done for as 

little as 20$ for Miseq and 60$ for Hiseq at some institutions in Australia.   

When raw genomic data has been obtained by the researcher, it is important to check for any 

sequencing mistakes in the data, for example too may duplicates or overrepresented 

sequences which may result from biases in the chemical reactions during the NGS process of 

sequencing by synthesis.  Trimming of poor or low quality reads is one of the quality control 

methods vastly used prior to assembly of genomes and annotation (Salzberg, 2012).   

The availability of high through-put NGS systems has facilitated the production of the draft 

whole genome sequence for the bacteria Serratia sp. TEL (GenBank accession number 

KP711410) which is symbiotically associated with    Oscheius sp. TEL-2014 (GenBank 

accession number KM492926). Using the genetic information derived from results of genome 
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annotation of Serratia the different groups of genes that possibly play a role in Serratia- 

Oscheius relationship have been reviewed. 

2. Materials	and	Methods	
 

2.1 Isolation of bacteria 

The protocol used here has been described by (Lephoto et al, 2015). Healthy Galleria 

mellonella larvae were infected with Oscheius sp. TEL-2014 infective juveniles (IJs) and 

after 3 days the insect cadavers were placed on White-traps to recover the IJs under a sterile 

laminar flow cabinet. These IJs were collected and treated with 0.1% of sodium hypochloride 

for 4 hours and the solution was removed by rinsing the IJs with sterilized distilled water.  

Sterilized IJs were finely mashed with a sterile plastic pestle after they had been allowed to 

sediment in a sterile 50 ml Falcon tube.  Inoculants consisting of serially diluted 

homogenized tissue extracts were streaked on sterile nutrient bromothymol blue agar 

(NBTA) and McConkey agar selective media using a sterilized inoculation loop flamed for 

each streaking of dilution series on the plate.  The agar plates were sealed with Parafilm to 

prevent or reduce the risk of contamination and they were incubated at 25oC for 24 hours 

according to Kaya and Stock, 1997.  Single colonies from each agar plate were sub-cultured 

for species identity verification steps.  These colonies were grown in 1 ml of sterile Luria 

Broth at 25oC for 24 hours and 100µl of each culture was spread on sterile lipid agar plates 

and also grown at 25oC overnight.  The resulting bacterial lawns were inoculated with surface 

sterilized IJs.  All the lipid agar plates with cultures which supported EPNs growth were then 

used for the molecular 16S rDNA species identity procedure. 
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Fig. 1 NBTA and McConkey agar selective media for isolation of symbiotic bacteria from    

Oscheius sp. TEL-2014. 

2.2 Bacterial DNA extraction  

Genomic DNA was isolated from freshly cultured pure solid bacterial colonies as seen in fig. 

1 using the ZR fungal/bacterial DNA MiniPrep kit (Zymo Research, catalog #D3050).     

2.3 Agarose gel electrophoresis 

To verify the integrity and quality of the genomic DNA, a 1% agarose gel was prepared and 

ran at 50 volts for 45 minutes in 1X TBE buffer. The ingredients are on appendix 2. 

2.4 Polymerase chain reaction 

Procedure briefly described on (Lephoto et al, 2015).  A polymerase chain reaction was used 

for the amplification of the 16S rDNA gene which is widely conserved in many bacterial 

species. EUB968 forward primer 5′-ACGGGCGGTGTGTC-3′ Tm (°C) = 62 and UNIV1382 

reverse primer 5′-AACGCGAAGAACCTTAC-3′ Tm (°C) = 66 were used for the PCR and 

short read Sanger sequencing of this DNA region at Inqaba Biotech, South Africa.  Bioedit 

and FinchTV software were used to access the quality of the sequence obtained and also 

remove low quality regions on both ends of the sequence and unknown bases were also 

trimmed out.  The cleaned sequence was subjected to NCBI BLAST under the default 

settings for highly similar alignments.  The unknown sequenced best aligned with a novel 

Serratia bacterial species which was then registered on NCBI Genbank assigned the name 

Serratia sp. TEL.  The Genbank accession number is KP711410.  The sequence information 

may be accessed on: http://www.ncbi.nlm.nih.gov/nuccore/KP711410 
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2.5 Whole genome sequencing: Library preparation 

 Genomic DNA paired-end libraries were generated with the Nextera DNA sample 

preparation kit (Illumina) and indexed using the Nextera index kit (Illumina). Paired-end (2 × 

300 bp) sequencing was performed on a MiSeq Illumina using the MiSeq reagent kit v3 at the 

Agricultural Research Council (ARC) Biotechnology Platform.  Miseq sequencing system 

was used because it is faster and good for small genomes. 

2.6 Quality control 

Quality and adapter trimming was performed with fastq-mcf toolkit.  Low quality reads were 

cleaned out of the genome and the nextera adapter sequences were removed from the genome 

as well prior assembly. Another quality control report was generated to access the quality of 

the data after trimming and to ensure that all adapter sequences have been removed.  Brief 

explanatory guidelines and examples of the quality control report are attached in appendix 2. 

2.7 Genome assembly 

The genome was assembled using SPADES  

 

Fig. 2 An example of the script used to run a SPADES genome assembly 

2.8 Genome annotation 

The contigs were annotated using NCBI Prokaryotic Genome Automatic Annotation Pipeline 

(PGAAP) and the annotation method employed was best-placed reference protein set; 

GeneMarkS+ shown in fig. 3.   The functional annotation was carried out by RAST (Rapid 

Annotation using Subsystem Technology) hosted by Fellowship for Interpretation. 
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Fig. 3 Annotation pipeline from NCBI which was used to annotate Serratia sp TEL.  The 

diagram was adopted from (http://www.ncbi.nlm.nih.gov/genome/annotation_prok/process/) 

3. Results	and	discussion	
 

 

 

 

 

 

 

 

 

 

 



91 
 

Table 1 

Summary of the Serratia sp. TEL genome sequencing, assembly and annotation (Lephoto and 

Gray, 2015) 

Description  

Organism Serratia sp.  

Strain TEL 

GenBank accession number KP711410 

Sequencer or array type  Illumina MiSeq 

Quality control tool Fastq-mcf toolkit 

Genome assembler SPADES de novo 

Number of contigs 19 contigs 

Average contig length 301,767 bp 

N50 200,110 bp  

Genome annotation tools RAST and  PGAAP 

Whole genome  DDBJ/EMBL/GenBank LDEG00000000 

Size of genome 5,000,541 bp 

Number of subsytems 542 

G+C content 59.1% 

Number of genes   4,647 

Entomopathogenic nematode (vector) Oscheius sp. TEL-2014 

Genbank accession number KM492926 

Sample source location Grassland in Suikerbosrand Nature Reserve 
near Johannesburg in South Africa 
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Table 2 Serratia sp. TEL genome assembly results showing contigs length.  19 contigs were 

generated from the assembly and the smallest contig length was 1868bp and the longest was 

232,434bp. 

contigs Length of contig 

1 1,868 

2 4,506 

3 5,552 

4 30,700 

5 373,610 

6 613,447 

7 671,070 

8 83,051 

9 840,889 

10 120,220 

11 123,757 

12 124,218 

13 150,719 

14 845,737 

15 156,082 

16 182,591 

17 217,529 

18 222,561 

19 232,434 
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Table 3 

Comparison of physical parameters of Serratia sp. TEL genome draft with two Serratia 
genomes 

Feature Organism   

 Serratia sp. 
TEL 

Serratia sp. 
SCBI 

Serratia Db11 

Genome size (MB) 5.05 5.04 5.12 

GC (%) content 59.1 59.3 59.1 

Number of genes or predicted 
ORFs 

4,647 4599 4736 

Pseudogenes 36 N/A N/A 

rRNA genes 13 7 7 

tRNA genes 88 84 88 

Non-coding RNAs 15 N/A N/A 

Frameshifted genes 9 N/A N/A 

 
Physical properties for Serratia sp. TEL were obtained by the using the NCBI Prokaryotic 
Genome Automatic Annotation Pipeline. 
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Fig. 4 Circular representation of the aligned genomes comparison of Serratia sp. TEL to two 

references: Serratia marcescens Db11 and Serratia proteamaculans.   

The percentage of sequence identity is represented in colours visible on the circle and shown 

in fig 6. 
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Fig. 5 Circular representation of the aligned genomes comparison of Serratia sp. TEL to two 

references:  Photorhabdus asymbiotica subsp. asymbiotica and Photorhabdus luminescens 

subsp. laumondii TT01   

 

 

 

.  
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Fig. 6 Percent protein sequence identity  

The percent protein sequence identity in fig. 6 was used as a colour coded reference for 

sequence comparison of the genomes in fig 4 and 5 in the circular representation of the 

compared genome.  

 

 

 

Fig. 7 Dot plot comparing of Serratia sp. TEL genome to Photorhabdus asymbiotica subsp. 

asymbiotica genome.   

Genome sequence similarity is seen where the dots are closely packed and differences are 

symbolised by scattered dots which do not merge.  Bacteria compared in fig. 7 and fig. 8 

belongs to two different genera namely Serratia and Photorhabdus. 
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Fig. 8 Dot plot comparing of Serratia sp. TEL genome to Photorhabdus luminescens subsp. 

laumondii TT01 genome.   
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Fig. 9 Dot plot comparing of Serratia sp. TEL genome to Serratia marcescens Db11 genome.  

Sequence similarity is observed along the genome sequences of the two bacterial species.  

This was expected because both bacteria belong to the genus Serratia. 
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Fig. 10 Dot plot comparing of Serratia sp. TEL genome to Serratia proteamaculans genome.  

A great degree of sequence similarity is observed along the genome sequences of the two 

bacterial species.  This was expected because both bacteria belong to the genus Serratia. 
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Fig. 11 The distribution of subsystems 

What is a subsystem? 

A subsystem in genomics is defined as a set of genetic functional roles which cooperate or 

work together in facilitating or driving a wide diversity of different biological processes.  The 

word subsystem may be assumed as a comprehensive term for a given signal transduction, 

metabolic or biosynthetic pathway. Most pathways represent functional and structural 

adaptations or responses to the internal and external environment of the organism.   RAST 

annotation software uses the term subsystems to group genes which work together to bring 

about a specific role, adaptation or function in an organism.    

RAST annotation software tool identified a total of 4618 genes and 103 RNA encoding genes 

in Serratia sp. TEL genome.  This annotated genome was found to have 542 subsystems each 

playing its specific role in this bacterium.  This chapter discusses the virulence, defence and 

disease subsystem which contains genes in involved in cell adhesion to other cells or 

surfaces.  Other subsystems will also be briefly discussed to support some of the physical 

observations made in the study. 



101 
 

The virulence, defence and disease subsystem 

It is interesting to note that the virulence disease and defence subsystem contains 119 genes 

which may be implicated in the pathogenicity of Serratia sp. TEL.  Table 4 summarises the 

role of these genes which are also briefly described in (Lephoto and Gray, 2015). 

Table 4 

Category: Virulence, disease and defence gene family obtained from RAST. 

 
Subcategory subsystem Role 
Adhesion Mediator of hyperadherence 

YidE in Enterobacteria and its 
conserved region 

16 kDa heat shock protein 
B 

Adhesion Mediator of hyperadherence 
YidE in Enterobacteria and its 
conserved region 

Mediator of 
hyperadherence YidE 

Adhesion Mediator of hyperadherence 
YidE in Enterobacteria and its 
conserved region 

16 kDa heat shock protein 
A 

Adhesion Mediator of hyperadherence 
YidE in Enterobacteria and its 
conserved region 

Uncharacterized protein 
YidR 

Adhesion Mediator of hyperadherence 
YidE in Enterobacteria and its 
conserved region 

Outer membrane 
lipoprotein YidQ 

Bacteriocins, 
ribosomally synthesized 
antibacterial peptides 

Tolerance to colicin E2 Conserved uncharacterized 
protein CreA 

Bacteriocins, 
ribosomally synthesized 
antibacterial peptides 

Tolerance to colicin E2 Two-component response 
regulator CreC 

Bacteriocins, 
ribosomally synthesized 
antibacterial peptides 

Tolerance to colicin E2 Inner membrane protein 
CreD 

Bacteriocins, 
ribosomally synthesized 
antibacterial peptides 

Tolerance to colicin E2 Two-component response 
regulator CreB 

Bacteriocins, 
ribosomally synthesized 
antibacterial peptides 

Colicin V and Bacteriocin 
Production Cluster 

Folylpolyglutamate 
synthase (EC 6.3.2.17) 

Bacteriocins, 
ribosomally synthesized 
antibacterial peptides 

Colicin V and Bacteriocin 
Production Cluster 

Amidophosphoribosyltrans
ferase (EC 2.4.2.14) 

Bacteriocins, 
ribosomally synthesized 

Colicin V and Bacteriocin 
Production Cluster 

Colicin V production 
protein 
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antibacterial peptides 
Bacteriocins, 
ribosomally synthesized 
antibacterial peptides 

Colicin V and Bacteriocin 
Production Cluster 

Dihydrofolate synthase 
(EC 6.3.2.12) 

Bacteriocins, 
ribosomally synthesized 
antibacterial peptides 

Colicin V and Bacteriocin 
Production Cluster 

Acetyl-coenzyme A 
carboxyl transferase beta 
chain (EC 6.4.1.2) 

Bacteriocins, 
ribosomally synthesized 
antibacterial peptides 

Colicin V and Bacteriocin 
Production Cluster 

DedA protein 

Bacteriocins, 
ribosomally synthesized 
antibacterial peptides 

Colicin V and Bacteriocin 
Production Cluster 

DedD protein 

Bacteriocins, 
ribosomally synthesized 
antibacterial peptides 

Colicin V and Bacteriocin 
Production Cluster 

tRNA pseudouridine 
synthase A (EC 4.2.1.70) 

Resistance to antibiotics 
and toxic compounds 

The mdtABCD multidrug 
resistance cluster 

Multidrug transporter 
MdtC 

Resistance to antibiotics 
and toxic compounds 

The mdtABCD multidrug 
resistance cluster 

Response regulator BaeR 

Resistance to antibiotics 
and toxic compounds 

The mdtABCD multidrug 
resistance cluster 

Multidrug transporter 
MdtB 

Resistance to antibiotics 
and toxic compounds 

The mdtABCD multidrug 
resistance cluster 

Probable RND efflux 
membrane fusion protein 

Resistance to antibiotics 
and toxic compounds 

The mdtABCD multidrug 
resistance cluster 

Sensory histidine kinase 
BaeS 

Resistance to antibiotics 
and toxic compounds 

The mdtABCD multidrug 
resistance cluster 

Multidrug transporter 
MdtD 

Resistance to antibiotics 
and toxic compounds 

Lysozyme inhibitors Membrane-bound 
lysozyme inhibitor of c-
type lysozyme 

Resistance to antibiotics 
and toxic compounds 

Lysozyme inhibitors Inhibitor of vertebrate 
lysozyme precursor 

Resistance to antibiotics 
and toxic compounds 

Multiple Antibiotic Resistance 
MAR locus 

Multiple antibiotic 
resistance protein MarC 

Resistance to antibiotics 
and toxic compounds 

Copper homeostasis Cytochrome c heme lyase 
subunit CcmF 

Resistance to antibiotics 
and toxic compounds 

Copper homeostasis Cytochrome c heme lyase 
subunit CcmH 

Resistance to antibiotics 
and toxic compounds 

Copper homeostasis Copper-translocating P-
type ATPase (EC 3.6.3.4) 

Resistance to antibiotics 
and toxic compounds 

Copper homeostasis Blue copper oxidase CueO 
precursor 

Resistance to antibiotics 
and toxic compounds 

Copper homeostasis Copper resistance protein 
D 

Resistance to antibiotics 
and toxic compounds 

Copper homeostasis Copper resistance protein 
C precursor 
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Resistance to antibiotics 
and toxic compounds 

Cobalt-zinc-cadmium resistance DNA-binding heavy metal 
response regulator 

Resistance to antibiotics 
and toxic compounds 

Cobalt-zinc-cadmium resistance Cobalt-zinc-cadmium 
resistance protein 

Resistance to antibiotics 
and toxic compounds 

Cobalt-zinc-cadmium resistance Cobalt-zinc-cadmium 
resistance protein CzcD 

Resistance to antibiotics 
and toxic compounds 

Cobalt-zinc-cadmium resistance Cobalt-zinc-cadmium 
resistance protein CzcA 

Resistance to antibiotics 
and toxic compounds 

Cobalt-zinc-cadmium resistance Zinc transporter ZitB 

Resistance to antibiotics 
and toxic compounds 

Cobalt-zinc-cadmium resistance Transcriptional regulator, 
MerR family 

Resistance to antibiotics 
and toxic compounds 

Cobalt-zinc-cadmium resistance Cation efflux system 
protein CusA 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance, Tripartite 
Systems Found in Gram 
Negative Bacteria 

Outer membrane 
component of tripartite 
multidrug resistance 
system 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance, Tripartite 
Systems Found in Gram 
Negative Bacteria 

Membrane fusion 
component of tripartite 
multidrug resistance 
system 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance, Tripartite 
Systems Found in Gram 
Negative Bacteria 

Inner membrane 
component of tripartite 
multidrug resistance 
system 

Resistance to antibiotics 
and toxic compounds 

Streptothricin resistance Streptothricin 
acetyltransferase, 
Streptomyces lavendulae 
type 

Resistance to antibiotics 
and toxic compounds 

Resistance to fluoroquinolones DNA gyrase subunit B (EC 
5.99.1.3) 

Resistance to antibiotics 
and toxic compounds 

Resistance to fluoroquinolones DNA gyrase subunit A 
(EC 5.99.1.3) 

Resistance to antibiotics 
and toxic compounds 

Resistance to fluoroquinolones Topoisomerase IV subunit 
B (EC 5.99.1.-) 

Resistance to antibiotics 
and toxic compounds 

Resistance to fluoroquinolones Topoisomerase IV subunit 
A (EC 5.99.1.-) 

Resistance to antibiotics 
and toxic compounds 

Arsenic resistance Arsenical resistance 
operon repressor 

Resistance to antibiotics 
and toxic compounds 

Arsenic resistance Arsenic efflux pump 
protein 

Resistance to antibiotics 
and toxic compounds 

Arsenic resistance Arsenate reductase (EC 
1.20.4.1) 

Resistance to antibiotics 
and toxic compounds 

Copper homeostasis: copper 
tolerance 

Secreted protein, 
suppressor for copper-
sensitivity ScsC 



104 
 

Resistance to antibiotics 
and toxic compounds 

Copper homeostasis: copper 
tolerance 

Suppression of copper 
sensitivity: putative copper 
binding protein ScsA 

Resistance to antibiotics 
and toxic compounds 

Copper homeostasis: copper 
tolerance 

Magnesium and cobalt 
efflux protein CorC 

Resistance to antibiotics 
and toxic compounds 

Copper homeostasis: copper 
tolerance 

Membrane protein, 
suppressor for copper-
sensitivity ScsB 

Resistance to antibiotics 
and toxic compounds 

Copper homeostasis: copper 
tolerance 

Copper homeostasis 
protein CutE 

Resistance to antibiotics 
and toxic compounds 

Copper homeostasis: copper 
tolerance 

Membrane protein, 
suppressor for copper-
sensitivity ScsD 

Resistance to antibiotics 
and toxic compounds 

Copper homeostasis: copper 
tolerance 

Copper homeostasis 
protein CutF precursor 

Resistance to antibiotics 
and toxic compounds 

Copper homeostasis: copper 
tolerance 

Periplasmic divalent cation 
tolerance protein CutA 

Resistance to antibiotics 
and toxic compounds 

Beta-lactamase Beta-lactamase class C and 
other penicillin binding 
proteins 

Resistance to antibiotics 
and toxic compounds 

Beta-lactamase Beta-lactamase (EC 
3.5.2.6) 

Resistance to antibiotics 
and toxic compounds 

Beta-lactamase Metal-dependent 
hydrolases of the beta-
lactamase superfamily I 

Resistance to antibiotics 
and toxic compounds 

Resistance to chromium 
compounds 

Chromate transport protein 
ChrA 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance Efflux 
Pumps 

RND efflux system, 
membrane fusion protein 
CmeA 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance Efflux 
Pumps 

RND efflux system, outer 
membrane lipoprotein 
CmeC 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance Efflux 
Pumps 

Multi antimicrobial 
extrusion protein 
(Na(+)/drug antiporter), 
MATE family of MDR 
efflux pumps 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance Efflux 
Pumps 

Transcription repressor of 
multidrug efflux pump 
acrAB operon, TetR 
(AcrR) family 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance Efflux 
Pumps 

RND efflux system, inner 
membrane transporter 
CmeB 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance Efflux 
Pumps 

Multidrug-efflux 
transporter, major 
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facilitator superfamily 
(MFS) (TC 2.A.1) 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance Efflux 
Pumps 

Macrolide export ATP-
binding/permease protein 
MacB (EC 3.6.3.-) 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance Efflux 
Pumps 

Acriflavin resistance 
protein 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance Efflux 
Pumps 

Membrane fusion protein 
of RND family multidrug 
efflux pump 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance Efflux 
Pumps 

Macrolide-specific efflux 
protein MacA 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance Efflux 
Pumps 

Type I secretion outer 
membrane protein, TolC 
precursor 

Invasion and 
intracellular resistance 

Mycobacterium virulence operon 
involved in protein synthesis 
(SSU ribosomal proteins) 

SSU ribosomal protein S7p 
(S5e) 

Invasion and 
intracellular resistance 

Mycobacterium virulence operon 
involved in protein synthesis 
(SSU ribosomal proteins) 

Translation elongation 
factor G 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance Efflux 
Pumps 

Membrane fusion protein 
of RND family multidrug 
efflux pump 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance Efflux 
Pumps 

Macrolide-specific efflux 
protein MacA 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance Efflux 
Pumps 

Type I secretion outer 
membrane protein, TolC 
precursor 

Invasion and 
intracellular resistance 

Mycobacterium virulence operon 
involved in protein synthesis 
(SSU ribosomal proteins) 

SSU ribosomal protein S7p 
(S5e) 

Invasion and 
intracellular resistance 

Mycobacterium virulence operon 
involved in protein synthesis 
(SSU ribosomal proteins) 

Translation elongation 
factor G 

Invasion and 
intracellular resistance 

Mycobacterium virulence operon 
involved in protein synthesis 
(SSU ribosomal proteins) 

Translation elongation 
factor Tu 

Invasion and 
intracellular resistance 

Mycobacterium virulence operon 
involved in protein synthesis 
(SSU ribosomal proteins) 

SSU ribosomal protein 
S12p (S23e) 

Invasion and 
intracellular resistance 

Mycobacterium virulence operon 
involved in DNA transcription 

DNA-directed RNA 
polymerase beta' subunit 
(EC 2.7.7.6) 

Invasion and 
intracellular resistance 

Mycobacterium virulence operon 
involved in DNA transcription 

DNA-directed RNA 
polymerase beta subunit 
(EC 2.7.7.6) 
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Invasion and 
intracellular resistance 

Mycobacterium virulence operon 
possibly involved in quinolinate 
biosynthesis 

Quinolinate synthetase (EC 
2.5.1.72) 

Invasion and 
intracellular resistance 

Mycobacterium virulence operon 
possibly involved in quinolinate 
biosynthesis 

Quinolinate 
phosphoribosyltransferase 
[decarboxylating] (EC 
2.4.2.19) 

Invasion and 
intracellular resistance 

Mycobacterium virulence operon 
possibly involved in quinolinate 
biosynthesis 

L-aspartate oxidase (EC 
1.4.3.16) 

Invasion and 
intracellular resistance 

Mycobacterium virulence operon 
involved in protein synthesis 
(LSU ribosomal proteins) 

LSU ribosomal protein 
L35p 

Invasion and 
intracellular resistance 

Mycobacterium virulence operon 
involved in protein synthesis 
(LSU ribosomal proteins) 

Translation initiation factor 
3 

Invasion and 
intracellular resistance 

Mycobacterium virulence operon 
involved in protein synthesis 
(LSU ribosomal proteins) 

LSU ribosomal protein 
L20p 

 

Within the virulence, defence and disease subsystem, there are 5 genes involved in adhesion 

and 12 encoding for bacteriocins, ribosomally synthesised antibacterial peptides.  This 

subsystem also contains 88 genes which are responsible for resistance to antibiotics and 

production of toxic compounds such as lysozyme inhibitors, beta-lactamase as listed in table 

4.  

The Serratia sp. TEL genome was found to contain genes encoding for pigments; specific 

genes encoding enzyme for pigments biosynthesis were not present in the annotation.   

 

Fig. 12 colour change observed in Galleria mellonella insect larva when infected by    

Oscheius sp. TEL-2014 within 48 hours. A: healthy lava and B: brown infected larva. 
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The brown colour changes observed when Galleria mellonella is infected by Oscheius sp. 

TEL-2014 is due to the production pigments.  These pigments are characteristic of the 

presence of Serratia sp. TEL as demonstrated in fig. 12. 

The cell wall and capsule subsystem 

The cell wall and capsule subsystem is encoded for by 213 genes in which 37 of these genes 

code for capsular an extracellular polysaccharides.  Serratia sp. TEL was found to be gram-

negative based on the gram stain test.  RAST also confirms that this species has 75 proteins 

forming the gram-negative cell wall components and 0 genes encoding for gram-positive cell 

wall components.  These gram-negative components include genes for lipopolysaccharide 

assembly, lipid A modifications, and inner membrane protein YhiD.   

The cell division and cell cycle subsystem  

The cell division and cell cycle subsystem has 36 genes with 24 of them responsible for 

bacterial cytoskeleton, 5 genes for chromosome condensation and some for the 

macromolecular synthesis operon.  There were no coding regions identified for the 

checkpoint formation.  This subsystem is of great importance as it may in also ultimately 

provide some understanding for factors influencing the proliferation of these bacteria, and 

also with reference to its growth rate during the EPNs life cycle, and insect host infection.  

All these aspects need to be further investigated in future studies. 

The regulation and cell signalling subsystem  

The regulation and cell signalling subsystem are comprised of 168 genes.  There are 5 genes 

that are linked to ppGpp metabolism.  It was previously highlighted that most pathogenic 

bacteria symbiotically associated with EPNs secrete antimicrobial compounds such as 

xenocoumacins, indoles and dithiolopyrrolones.  These antibacterial compounds were 

postulated to inhibit protein and RNA synthesis by amplifying production of guanosine-30, 

50-bispyrophosphatase (ppGpp), a regulatory protein (Ji et al, 2004).  The metabolites of 

these insect-killing bacteria have applications in medicine and agriculture. 

Stress response subsystem 

According to the results generated from RAST, Serratia sp. TEL has proteins linked to 

dormancy.  A stress response subsystem was found to contain osmotic stress genes, oxidative 
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stress genes, acid stress proteins, cold shock, heat shock and detoxification genes but no 

desiccation tolerance genes.   

Additionally, the NCBI Prokaryotic Genome Automatic Annotation Pipeline (PGAAP) and 

the annotation method also recognized CDS; rRNA; tRNA; ncRNA and repeat regions 

features.   4,647 genes were found and 4,495 out of the total were protein-coding sequences 

(CDS) while RAST found 4618 coding regions.  According to PGAAP there are 36 pseudo 

genes, 2 CRISPR Arrays, 13 rRNA genes with five operons (5S, 16S, 23S), 88 tRNAs, 15 

non-coding RNA (ncRNA) and 9 frameshifted genes are present in the genome.   

4. Conclusion	
 

The draft genome sequence Serratia sp. TEL will allow for the investigation of all the 

identified genes and subsystems and will be imperative in furthering the understanding of 

their pathogenicity against insects.  
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CHAPTER 6 
 

Analysis of the bacterial biodiversity of hemocoel isolated from Gallaria 

Mellonella infected with Oscheius sp. TEL-2014 using 16S rDNA Based 

Metagenomics. 

Abstract 

Through continuous natural selection entomopathogenic nematodes have successfully 

evolved strategies to remain virulent by overcoming the immune defence systems of their 

insect hosts.    In this study we analysed the hemolyph of Galleria Mellonella infected by   

Oscheius nematodes using 16S rDNA based metagenomics.  We also aimed to confirm the 

presence of Serratia bacteria and possibly other bacterial species present in   Oscheius 

nematodes.  The 16S rDNA region was sequenced using Illumina miseq sequencer and 

analysed the results using Miseq Reporter Software by Illumina.  Results grouped the total 

reads obtained from the sequencing according to taxonomic levels and show that Serratia 

bacteria are present in the infected insect hemolymph and absent in uninfected insect larvae.  

96% of the identified bacteria belong to the genus Serratia; supporting previous studies 

which have proved that entomopathogenic   Oscheius nematodes have a relationship with 

Serratia bacteria.   

Keywords: Entomopathogenic nematodes, 16S rDNA and metagenomics. 

1. Introduction	
Entomopathogenic nematodes (EPNs) have evolved unique relationships with virulent insect 

pathogenic bacteria which they carry in their gut (Alia et al, 2014).  These infectious bacterial 

species use EPNs as vectors to enter the target insect host’s hemolymph and destroy the 

hemocytes of the insect.  Powerful toxins and immune depressors are secreted by the bacteria 

which help to facilitate the infection of the host which ultimately results in the death of the 

host.  A representative life cycle of EPNs also highlights the exploitation of the nutrients that 

are made available in the dead insect host for both the symbiotic bacteria and the infective 

juveniles thereby making possible their proliferation as shown in fig. 1.  Once the nutrients 

reservoirs become depleted, the non-feeding dauer stage of nematodes are released into the 

soil where they either persist or search for new hosts to infect (Park et al, 2011 and Dillman 

et al, 2012). 
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Fig. 1 Life cycle of entomopathogenic nematodes 

(Image adopted from: http://www.djpark.org/xenorhabdus-nematophila.html) 

Several metagenomic studies have been conducted to investigate the biodiversity of 

prokaryotic communities from specific environments using 16S rDNA sequences (Zeisel et 

al, 2013).  Our study attempts to investigate bacterial communities present in the hemolyph 

of Galleria mellonella infected with EPNs Oscheius sp. TEL-2014 isolated from South 

Africa.  

Next generation sequencing techniques were used to analyse sequence reads generated by 

16S rDNA polymerase chain reaction which was followed by Illumina miseq sequencing. 

Results from our study support the information previously stated about Oscheius EPNs, 

showing that these EPNs have established symbiotic associations with Serratia which 

proliferate in the insect cadaver and thus considered to be necromenic acquaintances of 

insects (Ye et al, 2010).   

2. Materials	and	methods	

2.1 Surface sterilisation of nematodes (Kaya et al, 1997) 

Fresh infective juveniles were collected from White-traps and transferred into sterile falcon 

tubes and allowed to sediment.  The excess water was removed and the EPNs sediment was 
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re-suspended in 10ml of 0.1% sodium hypochlorite (NaClO) and left for 1 hour.  IJs were 

transferred into 10ml fresh 0.1% NaClO solution and sterilised for a further 3 hours.  Lastly, 

IJs were rinsed twice with sterile Ringer’s solution under a laminar flow. 

2.2 Description of samples prepared for metagenomic analysis. 

Infected Galleria Mellonella 

Wax moth larvae were inoculated with surface sterilised infective juveniles and the infection 

was done on sterile coarse river sand with 8% moisture content to facilitate movement of IJs 

towards the insect larvae.  After 72 hours, the hemocoel of the dead larvae was aseptically 

extracted and added to a sterile Eppendorf tube with 0.5ml of sterile nutrient broth.  NBTA 

and McConkey agar plates were streaked with the fresh inoculum and incubated at 25 ̊C for 

24 hours.  Genomic DNA was isolated from freshly cultured pure bright green colonies and 

pink solid bacterial colonies using the ZR fungal/bacterial DNA MiniPrep kit (Zymo 

Research), protocol provided in appendix. 

Uninfected Galleria Mellonella 

Uninfected larvae hemocoel was extracted and grown on NBTA and McConkey agar plates 

and incubated at 25 ̊C for 24 hours.  Genomic DNA was also extracted from solid colonies 

obtained using similar protocol as above. 
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2.3  Metagenomic sequencing using illumina Miseq system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Illumina workflow for 16S rDNA based metagenomic sequencing.   

The part of the 16S rDNA region amplified is about 400bp however,  illumina sequencing 

generates a huge amount of reads is in order obtain deep coverage which makes it possible to 

find 1 specific bacterial species in 100 or more.  The Miseq Reporter Software was used to 

analyse the metagenomic data and details of the software are found on 

http://www.illumina.com/systems/miseq/software/miseq-reporter.html 

3. Results	and	discussion	
 

3.1 Galleria mellonella infected with Oscheius sp. TEL-2014 
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Sequencing statistics show that a total of 164, 153 reads were generated with only 149, 903 

reads passing the quality filtering resulting in 91.3 % of good quality reads.  The reads were 

classified to taxonomic level: kingdom, phylum, class, order, family, genus and species.   

 

Fig. 3 Sunburst Classification Chart.  This sunburst chart shows the relative abundance of the 
classification results within each taxonomic level.    

 

Fig. 4 Top 20 classification results by taxonomic level.  This bar chart shows the relative 

abundance of the top 20 classification results within each taxonomic level. 
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Fig. 5 Classification rate by taxonomic level 
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Fig. 6 Pie charts A-B shows all classifications above 3.5% abundance.  The classifications are 

grouped according to taxonomic level i.e. kingdom, phylum, class, order, family, genus and 

species. 

Top kingdom classification results by taxonomic level show that 99.02% of the reads aligned 

to bacteria, 0.98% aligned to unclassified at kingdom level.  Top phylum classification results 

revealed that 98.65% of the reads are under the Proteobacteria phylum; however 1.09% was 

unclassified at phylum level.  The “other” category in the top phylum pie chart is the sum of 

all classifications with less than 3.5% abundance.  98.32% of the reads classified the isolated 

bacterial DNA as Gammaproteobacteria under top class classification results and about 

1.23% was unclassified at class level.  

Based on the top family classification outputs, 97.75% of the total reads was classified as 

Enterobacteriaceae and 1.67% was unclassified at family level.  The classification by genus 

level indicates that 96.0% of the reads align to the Serratia which significantly maintain 

findings in chapter 3 whereby Serratia sp. TEL was isolated from the gut of surface sterilised    
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Oscheius sp. TEL-2014 infective juveniles and thus recognised as a pathogenic symbiotic 

bacteria residing in these EPNs.  Interestingly, under species level 84.98% of the total reads 

were classified as Serratia entomophila, 8.18% as Serratia marcescens and 5.68% was 

unclassified at species level.  A full summary of the taxonomic levels classification results is 

included in the supplementary information section. 

3.2 Galleria mellonella uninfected with Oscheius sp. TEL-2014 

The sequencing statistics show that a total of 117,596 reads were generated with only 

108,236 reads passing the quality filtering resulting in 92.0 % of good quality reads.  The 

reads were classified to taxonomic level: kingdom, phylum, class, order, family, genus and 

species.   

 

 

Fig. 7 Sunburst Classification Chart.  This sunburst chart shows the relative abundance of the 
classification results within each taxonomic level. 
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Fig. 8 Top 20 classification results by taxonomic level.  This bar chart shows the relative 

abundance of the top 20 classification results within each taxonomic level. 

 

 

Fig. 9 Classification rate by taxonomic level 
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Fig 10. Pie charts A-B show all classifications above 3.5% abundance in the identified 

taxonomic levels. 

At kingdom classification level, 99.64% of the total reads was classified as bacteria and only 

about 0.35% was unclassified.  In the uninfected insect host, 69.37% of the reads was 

grouped under Proteobacteria, 27.42% Firmicutes and 2.47% was Actinobacteria under top 

phylum classification level and only 0.57% of the reads was unclassified. Top class 

classification results indicated that 41.39% was Alphaproteobacteria, 27.46% 

Betaproteobacteria, 27.38% Bacilli, 2.47% Actinobacteria and 0.82% was unclassified.   

Top order classifications have a cocktail of bacteria in which 41.24% was Rhizobiales, 

27.42% Burkholderiales, 27.21% Bacillales, 2.46% Actinimycetales, a minor percentage of 

0.06% was Enterobacteriales and only 1.06% was unclassified.  Brucellaceae 38.79%, 

Alcaligenaceae 27.05% and 27.03% Planococcaceae were identified under top family 

classification and top genus classification results showed 27.02% of the total reads 

categorized as Lysinibacillus, 26.54% Achromobacter and 22.93% Ochrobactrum.  Lastly, 

the species classification showed that 19.52% of the reads was unclassified at species level, 

14.06% Pseudochrobactrum, 12.38% Ochrobactrum thiophenivorans, 8.82% Lysinibacillus 

parviboronicapiens, 8.38% Achromobacter insolitus, 8.00% Lysinibacillus fusiformis, 7.53% 

Ochrobactrum pseudogrignonense and 5.26% Achromobacter peichaudii. 

4. Conclusion	
Findings support that Ocheius nematodes have a symbiotic relation with bacteria belonging to 

the Serratia genus as reported in (Lephoto et al, 2015; Petersen et al, 2013 and Torres-

Barragan et al, 2011).  16S rDNA Based Metagenomics sequencing may be considered as a 

reliable tool for studying the biodiversity and taxonomic levels of hymolyph samples 

collected from insect larvae infected with    Oscheius sp. TEL-2014. 
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                CHAPTER 7 
 

Virulence, disease and defence subsystem, discussing proteins and domains 

involved in adhesion established from genome annotation of Serratia sp. 

TEL. 

 Abstract 

The virulence, disease and defence subsystem was identified from the annotation of insect 

pathogenic strain of Serratia sp. TEL genome using Rapid Annotation using Subsystem 

Technology (RAST) hosted by Fellowship for Interpretation.  This bacterial strain isolated 

from    Oscheius sp. TEL-2014, an entomopathogenic nematode, has a total of 4618 coding 

regions, 103 RNAs carried and contains 119 genes which may contribute to pathogenicity. 

Genes encoding the adhesins were also identified.  Adhesins are a type of virulence factors 

and have been shown to be involved in bacterial pathogenicity in several species of bacteria.  

The ability of a bacterium to attach to specific surfaces and cells is a critical step in its 

pathogenicity.  In this chapter we explore 5 adhesion groups of genes encoding for the 

mediator the hyperadherence in Serratia sp. TEL. 

Keywords 

 

Entomopathogenic nematodes, whole genome sequencing, genome annotation and adhesion 

proteins 

1. Introduction	
 

Serratia sp. TEL which belongs to the family of Enterobacteriaceae, is a gram negative, 

motile and non-spore forming (Lephoto et al, 2015).  This bacterium was isolated from the 

gut of surface sterilised infective juveniles of Oscheius sp. TEL-2014 which is an 

entomopathogenic nematode (EPNs).  Several strains of Serratia marcescens belonging to the 

Serratia genus have been found to be insect pathogens and also pathogens of specific 

mammals (Abebe et al, 2011; Ishii et al, 2014).   This particular strain of Serratia marcescens 

was observed to produce brown-pigments unlike other pathogenic Serratia species which 

produce red-pigments such as S. nematodiphila DSM2140T strain and S. marcescens (Ishii et 

al, 2014). Bacteria belonging to the genera Photorhabdus and Xenorhabdus have already 



123 
 

been confirmed to be insect pathogenic endosymbionts associated with Heterorhabdistis and 

Steinernema, respectively.  These two species of bacteria have demonstrated pathogenicity to 

a wide host range of susceptible insects that are crop pests.  However, not all bacteria 

belonging to the genus Serratia are pathogenic towards insects (Kwak et al, 2015).  Several 

studies have reported that nematode species other than steinernematids and heterorhabditids 

were capable of acting as vectors of insect pathogenic bacteria belonging to the genus 

Serratia (Alberti et al, 1990; Forst et al, 1997).  Here we report on the genomics of an insect 

pathogenic strain of Serratia marcescens. A new EPNs,  Oscheius sp. TEL-2014 has been 

confirmed to act as vector of these bacteria.   

 

Various species of entomopathogenic nematodes (EPNs) express different virulence and 

infection symptoms against specific insects which have been widely discussed in the field of 

entomology and nematology (Ansari et al, 2008).   In this chapter we discuss genes involved  

in the insect pathogen Serratia sp. TEL which include those playing a role in the virulence, 

defence and disease subsystem, and particularly the adhesion genes encoding for mediator of 

hyperadherence, as revealed by Rapid Annotation Subsystem Technology) hosted by 

Fellowship for Interpretation (RAST). 

 

2. Materials	and	methods	
 

Whole genome shotgun sequencing on Serratia sp. TEL was conducted. Genomic DNA 

paired-end libraries were generated with the Nextera DNA sample preparation kit (Illumina) 

and indexed using the Nextera index kit (Illumina). Paired-end (2 X 300 bp) sequencing was 

performed on a MiSeq Illumina using the MiSeq reagent kit version 3 at the Agricultural 

Research Council Biotechnology Platform (Lephoto et al, 2015). The genome annotation was 

performed using RAST and the mediator of hyperadherence found in the virulence, disease 

and defence subsystem will be discussed below. 

 

3. Results	and	discussion	
 

The annotation of Serratia sp. TEL on RAST showed that this bacterium has 542 subsystems 

of which one of them is involved in virulence, disease and defence.  This subsystem contains 

119 genes which may contribute to pathogenicity of the bacteria towards insects. 
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Fig. 1 comparative analyses of genomic regions found in various bacteria species. A: 16 kDa 

heat shock protein B found in Serratia sp. TEL to Serratia marcescens, Salmonella enterica 

subsp. enterica and Escherichia coli K12.  B: Mediator of hyperadherence YidE found in 

Serratia sp. TEL to Serratia marcescens, Salmonella enterica subsp. enterica and 

Escherichia coli K12.  C: 16 kDa heat shock protein A found in Serratia sp. TEL to 

Escherichia coli K12 and Salmonella enterica. D: Uncharacterized protein YidR found in 

Serratia sp. TEL. Serratia marcescens, Photorhabdus asymbiotica, Salmonella enterica 

subsp. Enterica and Escherichia coli K12. E: Mediator of hyperadherence YidQ in Serratia 

sp. TEL and Photorhabdus asymbiotica.   

The chromosomal region of the focus gene (top) is compared with four similar organisms. 

The graphic is centered on the focus gene, which is red and numbered 1. Sets of genes with 

similar sequence are grouped with the same number and colour. Genes whose relative 

position is conserved in at least four other species are functionally coupled and share grey 

background boxes. 

Fig. 5 Conserved domains in heat shock protein A and heat shock protein B of Serratia sp 

TEL showing specific hits, non-specific hits, super-families and multi-domains 

The specific roles and description of each domain was found on the RAST linked NCBI 

database for conserved domains. One of the specific hits that came up was for alpha-

crystallin domain (ACD) found in the Escherichia coli inclusion body-associated proteins 

IbpA and IbpB, and other similar proteins. IbpA and IbpB are 16 kDa small heat shock 

proteins (sHsps).  sHsps are molecular chaperones that suppress protein aggregation and 

protect against cell stress, and are generally active as large oligomers consisting of multiple 

subunits.  IbpA and IbpB are produced during high-level production of various heterologous 

proteins, specifically human prorenin, renin and bovine insulin-like growth factor 2 (bIGF-2), 

and are strongly associated with inclusion bodies containing these heterologous proteins. 
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IbpA and IbpB which work as an integrated system to stabilize thermally aggregated proteins 

in a disaggregation competent state. The chaperone activity of IbpB is also significantly 

elevated as the temperature increases from normal to heat shock. High temperatures results in 

the disassociation of 2-3-MDa IbpB oligomers into smaller approximately 600-kDa 

structures. This elevated activity seen under heat shock conditions is retained for an extended 

period of time after the temperature is returned to normal.  IbpA also forms multimers. 

Non-specific hits included PRK11597heat shock chaperone IbpB; Provisional, Hsp20/alpha 

crystallin family; HSP20 family involved in posttranslational modification, protein turnover 

and with chaperones. The multi-domain IbpA Molecular chaperone IbpA was also identified. 

 

Fig. 3 Alignment of Serratia sp TEL compared to other domains in the Conserved domains 

database on NCBI 
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Fig. 4 Conserved domains in Mediator of hyperadherence YidE of Serratia sp TEL showing 

specific hits, non-specific hits, super-families and multi-domains. 

The specific domain found and shown in fig.4 is aspartate-alanine antiporter 

AspT/YidE/YbjL antiporter duplication domain. The figure also shows TrkA which is a 

domain involved in potassium uptake in the cell. Other specific hits include the TrkA-C 

domain and its exact function is unknown.  Some of the multi-domains predicted are 

PRKO3818 (a putative transporter), YbjL (uncharacterized membrane protein) and aspartate-

alanine antiporter.  All members of the seed alignment for this model are asparate-alanine 

anti-transporters (AspT) encoded next to the gene for aspartate 4-decarboxylase (AspD), 

which converts asparate to alanine, releasing CO2. The exchange of Asp for Ala is 

electrogenic, so the AspD/AspT system confers a proton-motive force.  

 

 

Fig. 6 Conserved domains in Uncharacterized protein YidR of Serratia sp. TEL showing 

specific hits, non-specific hits, super-families and multi-domains 

The specific alignment hit here is a protein of unknown function (DUF3748) which is 

approximately 120 amino acids in length.  This domain family is originates in bacteria and 

eukaryotes (Adindla et al, 2004).  Also shown in fig. 5 is the tol-pal system beta propeller 

repeat protein TolB. RAST annotation shows that members of this protein family are the 

periplasmic proteins of Gram-negative bacteria.  TolB is part of the Tol-Pal (peptidoglycan-
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associated lipoprotein) multiprotein complex, comprising five envelope proteins, TolQ, TolR, 

TolA, TolB and Pal, which form two complexes. The TolQ, TolR and TolA inner-membrane 

proteins interact via their transmembrane domains. The beta-propeller domain of the 

periplasmic protein TolB is responsible for its interaction with Pal. TolB also interacts with 

the outer-membrane peptidoglycan-associated proteins Lpp and OmpA. TolA undergoes a 

conformational change in response to changes in the proton-motive force, and interacts with 

Pal in an energy-dependent manner. The C-terminal periplasmic domain of TolA also 

interacts with the N-terminal domain of TolB. The Tol-PAL system is required for bacterial 

outer membrane integrity. E. coli TolB is involved in the tonB-independent uptake of group 

A colicins (colicins A, E1, E2, E3 and K), and is necessary for the colicins to reach their 

respective targets after initial binding to the bacteria. It is also involved in uptake of 

filamentous DNA.  Study of its structure suggests that the TolB protein might be involved in 

the recycling of peptidoglycan or in its covalent linking with lipoproteins. The Tol-Pal system 

is also implicated in pathogenesis of E. coli, Haemophilus ducreyi, Salmonella enterica and 

Vibrio cholerae, but the mechanism(s) is blurred.  

 

Fig. 7 Conserved domains in Mediator of hyperadherence YidQ of Serratia sp. TEL showing 

specific hits, non-specific hits, super-families and multi-domains. 

A hypothetical protein, uncharacterized conserved protein with an unknown function was 

found.  Protein of unknown function (DUF1375) is present in Mediator of hyperadherence 

YidQ and belongs to a family consisting of several hypothetical, putative lipoproteins of 

around 80 residues in length. Members of this family seem to be specific to the Class 

Gammaproteobacteria. The function of this family is unknown. 

The annotation further revealed that the virulence, disease and defense subsystem has 12 

genes that encode for bacteriocins, ribosomally synthesized antibacterial peptides and within 

this group 4 genes are involved in tolerance to colicin E2 and 8 genes encode for colicin V 

and bacteriocin production cluster. 88 genes involved in resistance to antibiotics and toxic 

compounds were also identified.  The mdtABCD multidrug resistance cluster has 6 genes for 

which 2 encode for lysozyme inhibitors, 1 gene for multiple antibiotic resistance MAR locus, 
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8 genes encoding for copper homeostasis and 10 cobal-zinc-cadium resistance genes. 8 genes 

coding for multidrug resistance, tripartite systems found in gram-negative bacteria, 1 

streptotretothricin resistance genes, 4 resistance to fluoroquinolones and 6 arcenic resistance 

genes. Copper homeostasis: copper tolerance is coded for by 9 genes and beta-lactamase by 

coded for by 5 genes.  2 genes code for resistance to chromium compounds and 26 genes for 

multidrug resistance efflux pumps.  Moreover, 14 genes are involved in invasion and 

intracellular resistance, with 5 encoding for mycobacterium virulence operon involved in 

protein sysnthesis (SSU ribosomal proteins), 2 mycobacterium virulence operon involved in 

DNA transcription, 4 genes encoding for mycobacterium virulence operon possibly involved 

in quinolinate biosynthesis and 3 mycobacterium virulence operon involved in protein 

synthesis (LSU ribosomal protein). 

More investigations need to be conducted to understand the role and contribution of these 

domains in Serratia sp TEL pathogenicity, also exploring their functions. 

4. Conclusion	
 

Knowing the presence of proteins and domains involved in virulence, disease and defence is 

crucial for further understanding the infection mechanism of S. sp. TEL and its importance or 

contributions it may have in pest control.  The existence of these adhesion proteins as 

revealed by the RAST genome annotation may give clues about the pathogenicity of this 

bacterial strain. 
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                                 CHAPTER 8 
 

Whole genome sequencing, assembly and partial annotation of a novel 

Entomopathogenic nematode    Oscheius sp. TEL-2014  

Abstract 

The fact that entomopathogenic nematodes (EPNs) have demonstrated potential as biocontrol 

agents of insect pests has generated strong incentives to isolate and characterise novel EPNs 

species. The hazardous environment impacts and the unsustainability of synthetic chemical 

insecticides due to the evolution of insect pest resistance provides an additional incentive for 

developing biocontrol agents based on EPNs for insect pest control. These incentives have 

also played a role in motivating the development of a new wave of genomic research into the 

molecular genetic basis of the bacterial-EPN-insect tripartite relationship. This research has 

become increasingly feasible as a result of the advances that have been made in the next-

generation sequencing whole genome shotgun sequencing technologies. Whole genome 

sequencing, sequence assembly and genome annotation have become the necessary steps for 

increasing our understanding of the molecular genetics underlying the bacterial-EPN-insect 

tripartite relationships. This chapter also explores genome assembly and annotation of    

Oscheius sp. TEL-2014 EPNs partially wild type population (line 7) and the inbred line 13. 

Whole genome sequencing was performed on Illumina Hiseq sequencing system and paired 

end library preparation was used.  The quality of the reads was checked using fastq software 

and trimming of poor quality reads and removal of Nextera adaptors was done using 

trimmomatic.  The genomes were then assembled on Velvet and 75965 contigs (line 7) and 

53190 contigs (line 13) were generated.  Gene prediction tools revealed the presence of 

proteins involved in gene expression and DNA replication in nematodes.  The draft genome 

of   Oscheius nematodes will serve as a foundation for future studies aimed at understanding 

molecular and metabolic processes in this genus. 

 

Keywords: Entomopathogenic nematode;   Oscheius species, whole-genome sequencing, 

genome assembly, genome annotation 
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1. Introduction	
 

1.1 Entomopathogenic nematodes  

 

Nematodes are the most profuse animals on earth and entomopathogenic nematodes have 

received a lot of attention in science research because of their ability to be used as biological 

control agents of insect pests (Zhang et al., 2008).   The potential of EPNs to be used as 

effective biological control agents has been investigated globally as more researchers aim to 

eliminate the use of synthetic chemical pesticides to manage harmful insect pests targeting 

and damaging various crops (Stuart et al, 2006). 

 

Entomopathogenic nematodes are insect killing microscopic worms with the ability to invade 

insect host, elicit infections and cause death within 24-48 hours depending on the species. 

(Hazir et al, 2003).  They carry virulent and pathogenic bacteria which use them as vectors to 

reach the insect’s hemocoel, secrete antimicrobials and immune depressors with the goal to 

ultimately lead to death of the host (Malan et al., 2006). Great steps have been taken to 

isolate, identify and characterise more EPNs and test them for their entomopathogenecity.  In 

this study we shift gears to genomics and use next-generation sequencing and bioinformatics 

tools to explore the genome of novel EPNs    Oscheius sp. TEL-2014. 

 

1.2 What is inbreeding? 

Inbreeding is linked with inclined homozygosity because relatives mate with each other.  A 

wild type population is therefore expected to have more heterozygosity as a result of variable 

organisms mating, which are not closely related.  Inbreeding may be defined differently 

depending on the size of the population and also based on the nature of the reference 

population usually used in inbreeding and genetic studies to calculate inbreeding resulting in 

various biological consequences.  

The study therefore also attempts to find any differences or similarities in terms of genome 

assembly and repetitive sequences in wild type population and inbred line genomes.   
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1.3 Nematode genome 

About 1200 whole genomes of organisms were absolutely sequenced by the year 2010, 

approximately 1,000 bacteria, 80 archaea, and 124 eukaryotes. Whole genome sizes are 

different from organism to organism.  Bacteria genome size ranges from one to six million 

base pairs and animals such as nematodes have genome sizes which may be greater than 100 

million base pairs.  This also implies that the number of genes will vary. 

 

The availability of nematode information resources such as Wormbase which contain 

Caenorhabditis elegans complete genomes also containing homologous genes recognized 

among various species of nematodes has made it possible for more researchers to work on 

gene annotations and comparative genomic studies (Zhou et al, 2015).  Genomes of 

nematodes belonging to the Caenorhabditis have been fully sequenced, assembled and 

annotated. C. elegans are an example of nematodes which their genome has been intensively 

studied and its now about 41 years since Sydney Brenner reported forward genetic screens of 

these worms (Hu, 2014).  C. elegans are free-living microscopic worms with a genome size 

of 100.3Mb.  This genome was identified to have over 20 000 protein coding regions and 

over 3000 RNA genes using specific bioinformatics tools and functional genomics 

investigation tools.  Interestingly, the genome was found to have small number of introns, 

and there was one gene per 4.9kb contributing to the genome compactness compared to other 

animals or eukaryotic genomes which have also been fully sequenced.  The central core of 

the autosomes is a compartment for conserved genes and housekeeping genes, while 

duplicated regions, new genes and repeats were observed to reside on the arms of the 

autosomes.  It was further highlighted that the X (sex chromosome) had a uniform 

distribution of repeats and genes (Whitton et l, 2004). 

 

Caenorhabditis briggsae, a nematode with a symbiotic relationship with bacteria pathogenic 

to insects, Serratia marcescens (Abebe et al, 2011) was also sequenced and its genome 

contains over 4000 chromosomal aberrations or reorganizations like inversions, 

translocations and transpositions mostly within the chromosome.  These findings were 

supported by phylogenetic comparison of this group of worms to C. elegans and it appeared 

that Caenorhabditis briggsae last had a mutual ancestor 100 million years ago and this 

accounts for its increased rate of chromosomal evolution.  Nematodes belonging to the 

recently identified   Oscheius genus also have symbiotic relationships with insect-killing 
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Serratia bacteria particularly carried in the free-living stage of these worms (Abebe et al, 

2010).  The C. elegans genome ws superlative as a reference for gene prediction in    

Oscheius sp. TEL-2014 mainly because it has provided so much knowledge about genetics, 

developmental biology and cell biology (Wilson, 1999).  This was all made possible by 

understanding the whole genome sequence composition, structure and location of coding and 

non-coding regions, protein coding regions, the number of genes and their functions.   

 

1.4 Why whole genome sequencing?  

 

Whole genome sequencing and annotation of genomes has become a powerful approach in 

understanding on several aspects concerning nematodes development, reproduction, and 

infectivity, genetic and metabolic processes in these microscopic insect-killing worms.  This 

method has also assisted many researchers to find repeats, predict genes, identify open 

reading frames and perform functional studies using new sequencing and bioinformatics 

technology.  For example, the genome of Caenorhabditis elegans has been fully sequenced 

and assembled, with available information on genome annotation on the Wormbase database. 

This then allows us to sequence novel EPNs belonging to a recent genus,   Oscheius and 

employ genomics and bioinformatics tools to identify genes existing in    Oscheius sp. TEL-

2014.  

 

Sequencing technology has improved over the past decade allowing whole genome 

sequencing projects to be swiftly completed.  These sequencing tools are able to generate 

millions or even billions of short reads within a short period of time.  In some cases, de novo 

assembly protocols are employed to generate contigs.  The quality of the assembly depends 

on several factors which include the initial quality of the reads, the type of assembler selected 

to assemble a particular genome (Salzberg, 2012). 

In whole genome sequencing related studies, data cleaning is the most imperative step that 

needs to be done before assembling the genome.  Errors that occur during the sequencing 

process affect how the data is assembled.   Quality control software readily available online 

such as Quake, fastqc and fast-mcf may be used for improving the quality of data prior 

further analysis.  Cleaning of data may improve the N50 contig value and thus contributing to 

achieving high quality assembly which one may anticipate to use with ease for downstream 
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analysis.  Some assemblers contain error corrections steps which add an extra advantage to 

achieving good data.   N50 value is the size of the minimum contig length “such that 50% of 

the genome is contained in contigs of size N50 or larger” as defined by Salzberg, 2012. 

Once data cleaning has been successfully achieved, the genome is assembled to generate 

contigs which will be annotated to identify present genes.  This is accomplished by using 

tools to align the de novo genome to reference genomes exiting in specific nematodes genes 

databases.  

1.5 Genome features 

Most eukaryotic genomes have been found to contain a huge amount of non-coding DNA 

which has been previously referred to junk DNA however, a small proportion of the genome 

encodes for proteins and functional RNA. 

 

The genome of an organism is made up of various sequence features. There are transcribed 

regions such as mitochondrial RNA, transfer RNA and ribosomal RNA.  There are structural 

regions such as introns, exons, open reading frames (ORF) and untranslated regions (5’ UTR 

and 3’UTR). There are structures in genomes which may be similar across species of certain 

types of organisms such as orthologs.  The genome may also contain transposable elements 

and repetitive elements. 

 

During the process of genome annotation studies, they have looked at the transcription 

features of a genome.  These features include promoter elements which are critical in gene 

expression.  There mRNA features such as introns and exons and translation features such as 

the start codon which is the translation start site and UTRs. 

 

1.6 Repeats 

 

Genomes of different organisms have repetitive sequences which occur in diverse types and 

have variable functions and found of different positions in the genome.  Repetitive DNA is 

present in numerous duplicates in a genome.  There are tandem repeats which have been 

defined as an arrangement of two or more nucleotides which have been recurring where the 

repetitions are directly adjacent to each other.   Repeat sequences may be masked or basically 
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marked in a genome as opposed to permanently removing them and eliminating them from 

downstream analysis.  Programs have been developed to find tandem repeats and examples 

include Tandem and Tandem Repeats Finder.  Other bioinformatics programs such as Repeat 

masker and Repeatscout are able to search for different types of repeats in a genome. 

 

Repeats having different features can be divided or classified into groups.  There are 

transposable elements (TEs) which are scattered in a genome, transposons and 

retrotransposons.  Other types of repetitive DNA include simple DNA sequences which are 

basically composed of numerous copies of tandemly repeated short sequences which are also 

referred to as short tandem repeat (STR).  These STRs may be found in variable locations 

within the genome and may be different amongst organisms.   

 

Moderately repetitive DNA sequences such as short interspersed elements (SINEs) and long 

interspersed elements (LINEs) are grouped under the DNA category of sequences with 

unknown function.  Some genomes also contain highly repetitive DNA sequences which 

include minisatellites, microsatellites and telomeres.  

 

1.7 Gene prediction  

 

Gene prediction methods are used to predict genes, open reading frames (which lack stop 

codons), and exons, coding and non-coding sequences.  An example of gene prediction tools 

includes AUGUSTUS which was used in this project to predict genes and the output was 

generated in a ggf format.  This program is used for ab initio gene prediction and strives to 

identify exons, ORFs, coding sequences, start and stop codon sites, splice site consensus 

sequences. 

The genomics approach will allow us to develop some degree of understanding the molecular 

foundation of EPNs isolated in this study and predict genes using gene prediction tools.  The 

aim of this study is therefore to identify genes and gene families found in the newly isolated 

EPNs    Oscheius sp. TEL-2014 wild type population and inbred line obtained through 

inbreeding. 
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2. Materials	and	methods	
 

2.1 Nematodes inbreeding  

Nematodes were collected from White-traps petri dished and surface sterilised for 3 hours 

with 0.1% sodium hypochlorite in sterile 50ml Falcon tubes.  They were allowed to sediment 

and the sterilisation solution was removed.  This was followed by rinsing of the nematodes 3 

times with sterile Ringer’s solution.  Pure cultures of symbiotic bacteria Serratia sp. TEL 

grown on NBTA media were used to prepare bacterial lawns to aid EPNs growth and 

reproduction.   Lipid agar plates were inoculated with the 1.0 ml Nutrient Broth culture and 

incubated at 25°C for 24hours until a bacterial lawn was established. The solution was 

removed and the nematodes were transferred to sterile lipid agar plates with bacterial lawns 

and grown at 25°C for 72 days with the plates facing upwards.  The plates were viewed under 

a compound microscope under a laminar flow to monitor EPNs growth.  

 

 A wild population of EPNs was isolated from its natural environment with the assumption 

that the population collected has high heterozygosity.  A factor to consider is that when the 

EPNs were recovered from the soil using the bating technique, mating patterns may have 

been affected especially as nematodes emerged from the dead insect larvae into the water 

placed in the White trap.    Nematodes were then surface sterilised and transferred to a lawn 

of Serratia bacteria grown on lipid agar plate and allowed to mate over a period of 7 days.  

This step may have gradually affected the genetic composition of the nematodes.  The first 

inbred line was obtained from taking one pregnant female with evidence of stage 2 

nematodes in its body and transferring it into a new lipid agar plate containing a Serratia 

bacteria lawn to support growth of the   Oscheius nematodes.  From each successful line, the 

same procedure was done obtain the next inbred lines.  The highest inbred line was line 13 

and on this stage nematodes were unable to continue growing. 

 

1 adult female with IJs inside its body was quickly transferred to a sterile lipid agar plate with 

the bacterial lawn before endotokia matricida began.  The plate was incubated at 25°C for 7 

days and the same process was repeated until the 13th inbred line was obtained.  After this 

line, IJs stopped growing and the inbreeding procedure was therefore halted.  Wild type 

population and line 13 were used for further analysis in the study.  
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2.2 Genomic DNA extraction from nematodes  

 

Entomopathogenic nematodes were collected from freshly prepared White traps and surface 

sterilised with 0.1% sodium hypochlorite for 3 hours in sterile 1.5 ml Eppendorf tubes.   

The nematodes were rinsed three times with sterile distilled water under sterile conditions in 

a laminar flow hood.  Whole genomic DNA was extracted from the sterile nematodes using a 

protocol adopted from Puregene® DNA Purification Kit, Gentra systems 2003.  Nematodes 

were centrifuged at 13000 rpm for 3 minutes and placed on ice for at least 30 seconds and the 

supernatant was carefully discarded.  600μl cell lysis solution and 3μl of proteinase K 

solution were added and the tubes were inverted gently 50 times.  Samples were incubated at 

55˚C for 3 hours to allow cell lysis.  3μl of RNase A solution was added into the cell lysate, 

and inverted 25 times then incubated at 37˚C for 30 minutes. Tubes were cooled to room 

temperature (approximately 25˚C) and 200μl of protein precipitation solution (Recipe 

available in Puregene® DNA Purification Kit, Gentra systems 2003) was added to the RNase 

A treated cell lysate and mixed with a vortex at high speed for 30 seconds.  The tubes were 

centrifuged at 13000 rpm for 3 minutes and a tight protein pellet was formed.  The 

supernatant containing the DNA was poured into a sterile 1.5ml centrifuge tube containing 

600μl 100% isopropanol and then inverted gently 50 times. Tubes were centrifuged at 13000 

rpm for 1 minute; the DNA was visible as a white pellet. The supernatant was poured off and 

drained the tube on clean absorbent paper.  600μl of 70% cold ethanol was added into the 

tubes and inverted to wash the pellet gently.  Tubes were centrifuged at 13000 rpm for 1 

minute and the ethanol was removed carefully.  Eppendorf tubes were inverted and drained 

on an absorbent paper again and allowed to air dry for 10-15 minutes. 100μl of DNA 

hydration solution (Recipe available in Puregene® DNA Purification Kit, Gentra systems 

2003) was added and the DNA was rehydrated by incubating the sample 1 hour at 65˚C and 

then stored at 4˚C.  

2.3 Gel electrophoresis 

 

0.5% agarose gel was prepared in order to confirm the quality and integrity of the extracted 

DNA. 0.25g of agarose power was dissolved in 50ml of 1XTBE buffer and 1μ of ethidium 

bromide was added and mixed gently. The gel was left to solidify at room temperature (25˚C) 

with the well comb inserted. For each 20μl sample, 5μl of loading dye was added and then 
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samples were run on the gel for 40 minutes at 90 volts immersed in 1XTBE, with constant 

current.  

2.4 Polymerase chain reaction amplification of nematode ITS rDNA region  

 

A polymerase chain reaction was employed to amplify the 18S rDNA region using TW81 

Forward Primer 5’-GCGGATCCGTTTCCGTAGGTGAACCTGC -3’, Tm (°C) = 71.94 and 

AB28 Reverse Primer 5’-GCGGATCCATATGCTTAAGTTCAGCGGGT -3’, Tm (°C) = 

68.87.  1% agarose gel was prepared in order to confirm the presence of the desired amplified 

region. 0.5g of agarose power was dissolved in 50ml of 1XTBE buffer and 1μ of ethidium 

bromide was added and mixed gently. The gel was left to solidify with the well comb 

inserted. For each 10μl sample, 2μl of 6X loading dry was added and then samples were run 

on the gel for 30minutes at 90 volts immersed in 1XTBE, with constant current. The same 

primers were used for the sequencing of this gene. The sequence obtained was subjected to 

NCBI BLAST under the default settings to identify similar sequences.  The analysis revealed 

that among all the matching for the 18S rDNA gene sequences, our sequence had a high 

similarity (84%) to a novel Oscheius species which identified our isolate as a member of the 

genus Oscheius. 

2.5 Next generation sequencing  

Illumina Nextera protocol was used for paired-end library preparation and sequencing.  

(Illumina proprietary, catalog # FC-132-9001DOC, Part # 15035209 Rev. C, January 2013) 

Genomic DNA paired-end libraries were generated with the Nextera DNA sample 

preparation kit (Illumina) and indexed using the Nextera index kit (Illumina). Paired-end (2 × 

125 bp) sequencing was performed on a HiSeq 2500 using the Illumina SBS v4 chemistry at 

the Agricultural Research Council (ARC) Biotechnology Platform, Pretoria, South Africa.   

Mate-pair and paired ends library preparation 

Sample preparation was prepared over 2 days as shown in fig. 1.  The tagmentation reaction 

(DNA sample is simultaneously fragmented and tagged with a biotinylated mate pair junction 

adapter) followed by strand displacement reaction (uses a polymerase to fill this gap and 

ensure that all fragments are flush and ready for circularization)  and circularisation steps 

were done on day 1.  
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Fig. 1 Nextera Mate Pair sample preparation procedure 

 

 On day 2 exonuclease digest was done (any linear molecules still remaining in the 

circularization reaction are removed by DNA exonuclease treatment, this treatment leaves the 

desired circular molecules intact), followed by shearing the circularised DNA (approximately 

300–1000 bp).  Bead purified biotinylated ‘mate-pair’ fragments were generated.  During this 

step the sheared DNA fragments that contain the biotinylated junction adapter (mate pair 

fragments) are purified by means of binding to streptavidin magnetic beads, and the 

unwanted, unbiotinylated molecules are removed through a series of washes.  The end repair 

step which converts the overhangs resulting from the DNA shearing step into blunt ends 

using an End Repair Mixadaptors was done followed by A-tailing (a single ‘A’ nucleotide is 

added to the 3’ ends of the blunt fragments to prevent them from ligating to one another 

during the adapter ligation reaction).   
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Fig. 2 Nextera Mate Pair workflow adopted from Illumina sequencing technology. 

 

The adaptor ligation step ligates TruSeq indexing adapters to the ends of the DNA fragments, 

preparing them for PCR amplification and subsequent hybridization onto a flow cell. The 

adapter ligation reaction was carried out on-bead, and the DNA remains bound to the beads 

throughout this reaction and subsequent bead wash steps.  DNA polymerase chain reaction 

used to enrich for the mate pair fragments that have TruSeq DNA adapters on both ends. The 

template material is bound to the streptavidin beads; however the resulting PCR amplified 

copies are not biotinylated and are not bound to the beads.  Lastly the DNA fragments were 

clustered and sequenced as shown schematically in fig. 2. 
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Paired-end sample preparation 

 

Libraries of genomic DNA for paired‐end sequencing on the Illumina sequencing platform 

were prepared using the Illumina sample preparation kit (ILLUMINA PROPRIETARY 

Catalogue # PE-930-1001 Part # 1005063 Rev. E February 2011).  The protocol was used to 

add adapter sequences onto the ends of DNA fragments in order to generate sequencing 

library format shown in fig. 3. 

 

Fig3. Sequencing Library after Paired‐End Sample Preparation 

 

Libraries of DNA fragments were prepared by using 50 ng of starting DNA which was put 

into a tagmentation reaction.  Purified genomic DNA extracted from entomopathogenic 

nematode Oscheius sp. TEL-2014 and fragmented by hydrodynamic shearing which 

produced phosphorylated blunt-ended DNA fragments <800bp as summarised in fig. 4.  In 

preparation for ligation to an adaptor containing a single-base ‘T’ overhang, a single ‘A’ 

nucleotide was added to the 3’ ends of the blunt-ended DNA fragments.   
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Fig. 4 Paired‐End Sample Preparation Workflow 

 

This was followed by ligation of paired-end adaptors which at both ends they put together 

different sequences at the 5’ and 3’ end of each strand in the genomic fragment.  Ligation 

products were purified and desirable sizes were selected by agarose gel electrophoresis.  The 

selected DNA fragments are amplified by polymerase chain reaction in order to enrich for 

fragments that had adaptors on both ends.  As a result, a genomic DNA library is obtained 

and is further purified and the fragments of interest are selected by agarose gel 

electrophoresis and thus a validated library was produced followed by sequencing. 

 

Illumina genome analyser  

 

The Hiseq sequencing system at the Agricultural research council, Pretoria, South Africa was 

used for next-generation sequencing of the nematodes samples summarised in the table 

below.  Hiseq was employed because is suitable for sequencing large whole genomes.  A 

description of the system is available at the following link: 

http://www.illumina.com/Documents/systems/hiseq/datasheet_hiseq_systems.pdf 
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Table 1 

Summary of EPNs Oscheius sp. TEL-2014 GenBank accession (KM492926) samples 
sequenced, sequencing system and library preparation method used 

 

 Description  Sequencing system  Library preparation 
method 

    

    

1 

 

Inbred nematodes 
(Line 7/partially wild 
type) 

Homozygous alleles 
expected 

 

       HiSeq  Paired ends 

 

2 

 

Inbred nematodes 
(Line 13) 

Homozygous alleles 
expected 

       HiSeq  Paired ends 

 

 

2.6 Quality control  

 

 

Fig. 5 Script used for generating a quality control report using FastQC version 0.11.3 

(Andrews, 2015).  See appendix for reports and interpretation of the reports. 
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Trimming of poor quality regions on the reads and removing adaptors 

 

 

Fig. 6 Script used for trimming of adaptor sequences from the raw sequence reads using 

Trimmomatic version 0.32 (Bolger et al, 2014).  The reports are in the appendix. 

 

2.7 Genome assembly 

 

An assembly may be tested for its precision by aligning it to a suitable complete reference 

genome (Salzberg, 2012).  In this study, de novo assembly was used to assemble the genomes 

of the newly isolated species. 

The sequences of each samples described in Table 1 were assembled using Velvet version 

1.2.10 (Zerbino and Birney, 2013).  The workflow in fig. 7 summarises steps taken to 

assemble the genomes and generate contigs. 
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Fig. 7 Assembly workflow used to for assembly of Oscheius sp. TEL-2014 genome 

sequences.  

 

Trimmed reads saved in a zipped format (fastq.gz) were unzipped on the command line.  The 

reads were then shuffled using a perl script on Velvet.  Shuffling basically puts the forward 

read and the reverse read into one file.  This is followed by a test assembly where Kmer of 21 

was used and all other parameters i.e. coverage cut-off, expected coverage and insert length 

were set to automatic or default parameters.  This test assembly is done to determine suitable 

parameters for the final assembly.   
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Fig. 8 Plot used to determine the expected coverage which is used in the final assembly step 

in Velvet assembler  

 

The test assembly includes a graph generated using a velvet script to determine the assembly 

as shown in Fig 8 and the highest peak on the graph represented the expected coverage.  

Another script is used to predict values for the other parameters.  Velvet h was run to prepare 

the reads for final assembly and then velvet h was finally employed to achieve the concluding 

assembly.  It is important to note that the k-mers values ranging from 21-59 were used for the 

test assembly and after running several tests, it was found that K-mer value of 49 was best 

suited for the data.  From observations made during this process, the higher the k-mer, the 

better the assembly and also hypothetically the better the N50 value. 

 

2.8 Assembly statistics 

 

QUAST version 3.1 (Gurevich et al, 2013) was used for the assessment of the assembly  
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Assembly quality check 

 

BUSCO version 1.1 (Simão et al, 2005) was used to assess the completeness of the assembly 

by aligning the contigs to the reference genome.  BUSCO coverts DNA sequences into 

protein sequences and compared them with proteins of other nematodes in databases.  This 

program will give a brief report to categorise the query gene into these sections: C= complete, 

PC= partially complete, D= duplicated, F= fragmented, M= missingness. 

 

Further cleaning of contigs 

 

An in-house bash-script was used to extract all the contigs less than 200bp which were 

removed to meet the requirements of depositing whole-genome shortgun project at Genbank. 

 

Fig. 9 Bash script used to remove all contigs less than 200bp from the nematodes genome. 
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2.9 Genome annotation 

 

 

 

 

Fig. 10 A typical genome annotation pipeline: building a pipeline for eukaryotes 

Diagram adopted from (http://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/) 

 

The genome was sequenced and the quality of the reads was checked and corrected using 

FASTQC and Trimmomatic, repetitive DNA sequences were masked and identified using 

Repeat Masker version 3.3.0 (Smit et al, 2006).  Augustus (Stanke et al, 2004) and BLASTx 
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were used for gene prediction and protein coding DNA identification followed by protein 

identification using SwissProt. 

Repeat Masking 

 

 

Fig. 11 a bash script used for masking repetitive DNA sequences using Reapeat Masker 

 

Gene prediction 

 

NCBI BlastX was used to search a protein database by means of a translated nucleotide 

query. 

Augustus was used also to predict genes (Open reading frames) which the output was 

obtained in a gff file. 

 

GFF format (http://www.ensembl.org/info/website/upload/gff.html) 

 

This format is comprised of 9 columns.  Column 1=source, 2=software used, 3=feature 

annotated, 4=start site, 5=end site, 6=score, 7=DNA strand, 8=phase, 9 attribute 
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Fig. 12 A blastx bash script used to predict translated proteins.  Results were generated with 

protein IDs which were mapped to protein names on Uniprot 

 

AUGUSTUS 

 

 

Fig. 13 an Augustus bash script used for gene prediction. 
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3. Results	and	discussion	
 

3.1 Assembly and sequence analysis of the Oscheius sp. TEL-2014  

The Osheius basothoensis genome drafts in this study show 44% completeness when using 

kmer 29 for line 13 and 25%completeness for line 7 when using kmer 25 according to 

BASCO software. The genome might contain some amount of novel genes and genomic 

regions which have not been identified in the available reference genomes which BASCO 

could not align the novel sequences to C. elegans. 

Two paired-ends libraries were sequenced and assembled where 75 965 contigs (line 7) and 

53 190 (line 13) were generated.  The total sequencing length or genome size was found was 

122 785 442 bp line 7 and 123 752 189 bp line 13.  Table 3 shows that the N50 of line 7 is 1 

397 and table 4 shows that the N50 contig length, N50 value for line 13 was 3 019.  The GC 

content of the nematodes was slightly different 43.56% (line 7) and 42.24% (line 3). 

 

Fig. 14 Plot used to determine the expected coverage which is used in the final assembly step 

in Velvet assembler. Plot 1: partial wild type nematodes, 2: inbred line 13 nematodes.  The 

heighted peak was used as the coverage value for genome assembly. 
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Table 2 

Summary of the    Oscheius sp. TEL-2014 genome sequencing, assembly and annotation 

specifications 

Description Line 7 inbred Line 13 inbred 

Organism    Oscheius sp. TEL-2014    Oscheius sp. TEL-2014 

GenBank accession number KM492926 KM492926 

Sequencer or array type  Illumina HiSeq Illumina HiSeq 

Quality control tool Fastq-mcf toolkit Fastq-mcf toolkit 

Genome assembler Velvet Velvet 

Genome annotation tools BLASTn, AUGUSTUS BLASTn, AUGUSTUS 

WGSsubmission ID  

BioProject number 

BioSample 

Aceesion Number 

SUB1181822 

PRJNA301782 

SAMN04259800 

SUB1181822  

SUB1158461 

PRJNA300865 

SAMN0423.445 

LNBV00000000 

Number of genes predicted 

using all six reading frames 

 49947  49947 

Sample source location Grassland in Suikerbosrand Nature Reserve near 

Johannesburg in South Africa 

 

This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank 

under the accession LNBV00000000. The version described in this paper 

is version LNBV01000000. 
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Quast reports for assembly statistics  

 

More information is deposited in the link below: 

 

file:///C:/Users/Tiisetso/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files

/Content.IE5/MXXOJHO1/report.html 

 

 

Fig. 15 Cumulative length plot representing the number of contigs generated for line 7 
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Fig. 16 GC content plot for line 7 

 

 

Fig. 17 Plot showing contig length generated by Quast program in line 7 
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Table 3 

 

Assembly statistics for line 7 

 

Description  

# contigs (>=0 bp) 24 7028 

# contigs (>= 1000bp) 33309 

Total length (>= 0bp) 122785442 

Total length (>=1000bp) 63426717 

#contigs 75965 

Largest contig 42897 

Total length 93641262 

GC (%) 43.56 

N50 1397 

N75 871 

L50 19167 

L75 40610 

# N’s per 100kbp 78.82 
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Fig. 18 Cumulative length plot representing the number of contigs generated for line 13 

 

 

Fig. 19 GC content plot for line 13 
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Fig. 20 Plot showing contig length generated by Quast program in Line 13 

 

Table 4 

Assembly statistics for line 13 

Description  

# contigs (>=0 bp) 145402 

# contigs (>= 1000bp) 32787 

Total length (>= 0bp) 123752189 

Total length (>=1000bp) 95866266 

#contigs 53190 

Largest contig 146289 

Total length 110599558 

GC (%) 42.24 

N50 3019 

N75 1486 

L50 9029 

L75 22193 

# N’s per 100kbp 163.41 
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3.2 Repetitive DNA 

 

Transposable Elements (TEs) receive a lot of attention in genome studies because of their 

potential to multiply within the genome using variable self-copying mechanisms.  This 

potential allows them cause mutations which may cause structural changes in DNA and 

hence they able to function as agents of genetic variation and gene evolution in most 

eukaryotic genomes.  Transposable elements are found in genomes of various organisms with 

varying genome sizes (Kapitonov et al, 2009).  For example, the pufferfish has a genome size 

of about 300Mb and 2.7% of its genome is made up of TEs (Gau et al, 2014).  In our study 

the nematode’s genome size is around 120Mb; 3.21% in line 13 and 2.71% in line 7 is made 

up of TEs.  Interestingly, 45% of the large human genome of about 3000Mb is composed of 

TEs.  Transposable elements therefore affect genome gene density, genome sizes and genome 

structure (Metcalfe et al, 2012). 

 

There are two major classes of TEs: retrotransposons (class I) and DNA transposons (class 

II).  The classification of these TEs is centred on their replication mechanisms.  

Retrotransposons (class I) and DNA transposons (class II) have dissimilar transposition 

mechanisms.  Class I uses an RNA intermediate and class II uses DNA intermediate for 

transpositions.  Class I TEs are present in greater quantities compared to class II TEs because 

their replication mechanism is different (de la Chaux et al, 2011). 

DNA transposons have inverted repeats at the 5' and 3' end and are able to insert at recipient 

sites within the host genomic that are demarcated by direct repeats of nucleotides.  DNA 

transposons move about from site to site within the host genome by means of a mechanism 

referred to as cut-and-paste.  This cut-and-paste mechanism results in the DNA transposon 

being literally removed from one region on the genome and assimilated into another (Muñoz-

López et al, 2010). 

In the case of retrotransposons the transposition mechanism involves the transcription of the 

retrotransposon into an RNA intermediate which is then reversed transcribed into double 

stranded DNA which is then inserted into sites within the host genome. This process of 

transposition involving only retrotransposons has been referred to as the copy and paste 
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mechanism. In this manner multiple copies of retrotransposons are replicated in the host 

genome. 

Mobile transposons have facilitated gene duplication, exon duplication and exon shuffling; 

and in this manner they have contributed to the evolution of genome through the generation 

new genes and gene duplication.   

DNA transposons (Class II) have been used in other studies to detect genes and pathways 

involved in pathogenesis of pathogens.  DNA transposons may thus provide clues on the 

pathogenesis of entomopathogenic nematodes in future studies confirm this with detailed 

investigation strategies and suitable tools for studying TEs (Metcalfe et al, 2014). 

In summary, transposable elements are described as mobile DNA sequences or mobile 

genetic elements that possess the genetic capability to move from one location to another in a 

genome (Havecker et al, 2004).  They make up a huge percentage of various organisms 

genomes but the value may vary from one genus or species to another.  They have been 

observed to make up about 12% of C. elegans genome and in our study they make up 2.71% 

to 3.12 % of the   Oscheius nematodes’ genome.  TEs mount up overtime and continue to 

rearrange genomes through their transposition or mobilisation. 

A total of 2878544 bp (line 7) and 3772068bp (line 13) sequences were identified as 

repetitive sequences, which accounted for 2.71% and 3.21%, of the total genome of    

Oscheius sp. TEL-2014 respectively.  Repeat Masker analysis showed 1.14 % (line 7) and 

1.78% (line 13) of the genome matched simple repeats as shown in table 6 and table 8.  The 

most abundant repeats were the retroelements compared to DNA transposons. 

The results showed retroelements and simple repeats were the major repetitive sequences in 

both   Oscheius genomes.  The high diversity of retrotransposons has been observed in 

genomes of C. elegans (Gau et al, 2014).  Repeat Masker results before and after removing 

contigs less than 200bp are shown as evidence that repeats are present in the genomes even 

after short sequences have been removed to fulfil the requirements of submitting WGS 

project on NCBI. 
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Masking repeats BEFORE removing contigs less than 200 bp 

Table 5 

 

Partial wild population (line 7) of   Oscheius nematodes contigs file containing 247028 

sequences.  The total size of the genome found by Repeat Masker is 122785442bp 

(122780769bp excluding N/X-runs).  The GC level is 43.22 %.  The number of bases masked 

is 3330582bp (2.55 %) 

================================================== 
               number of      length   percentage 
               elements*    occupied  of sequence 
-------------------------------------------------- 
Retroelements          935        98758 bp    0.08 % 
   SINEs:                3          176 bp    0.00 % 
   Penelope            834        84155 bp    0.07 % 
   LINEs:              850        86990 bp    0.07 % 
    CRE/SLACS            0            0 bp    0.00 % 
     L2/CR1/Rex         11         1949 bp    0.00 % 
     R1/LOA/Jockey       0            0 bp    0.00 % 
     R2/R4/NeSL          2          617 bp    0.00 % 
     RTE/Bov-B           3          269 bp    0.00 % 
     L1/CIN4             0            0 bp    0.00 % 
   LTR elements:        82        11592 bp    0.01 % 
     BEL/Pao            41         2767 bp    0.00 % 
     Ty1/Copia           0            0 bp    0.00 % 
     Gypsy/DIRS1        41         8825 bp    0.01 % 
       Retroviral        0            0 bp    0.00 % 
 
DNA transposons        195        15864 bp    0.01 % 
   hobo-Activator        6          356 bp    0.00 % 
   Tc1-IS630-Pogo       78         5888 bp    0.00 % 
   En-Spm                0            0 bp    0.00 % 
   MuDR-IS905            0            0 bp    0.00 % 
   PiggyBac              9          606 bp    0.00 % 
   Tourist/Harbinger     2          231 bp    0.00 % 
   Other (Mirage,        0            0 bp    0.00 % 
    P-element, Transib) 
 
Rolling-circles          0            0 bp    0.00 % 
 
Unclassified:           61         5328 bp    0.00 % 
 
Total interspersed repeats:      119950 bp    0.10 % 
 
 
Small RNA:             861        60141 bp    0.05 % 
 
Satellites:             27         3267 bp    0.00 % 
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Simple repeats:      16874      1496386 bp    1.22 % 
Low complexity:      17997      1665697 bp    1.36 % 
================================================== 
 
*Most repeats fragmented by insertions or deletions have been counted as one element. 

 The query species was assumed to be caenorhabditis.  RepeatMasker version open-3.3.0 

default mode runs with rmblastn version 2.2.23+.  RepBase Update 20150807, RM database 

version 20150807. 

 

LINEs which are interspaced nuclear elements have been classified into CR1 and L2 clades. 

(Havecker et al, 2004). 

Protein-coding non-TE sequences are present in small proportions in the majority of 

eukaryotic genomes and have been observed to be the most stable (Gau et al, 2014).  

Repetitive DNA sequences are present in large proportions and often TEs, and thus 

considered as highly dynamic (Metcalfe et al, 2012) 

 
Penelope 

Penelope transposable elements belong to the retrotrasposon class and were found to be 

responsible for causing mutations in Drosophila virilis during hybrid dysgenesis leading to 

hybrid dysgenesis syndrome reported in 1997 and since then they were identified as the only 

mutagenic elements within the retrotrasposon class (Evgen’ev et al, 2005).  Penelope 

elements are found in eukaryotes and are also referred to as Penelope-like elements and they 

PLE have been established as a unique and new class of eukaryotic retroelements (Arkhipova 

et al, 2006). Penelope elements are present in both lines of the   Oscheius nematodes. 
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Masking repeats AFTER removing contigs less than 200 bp 

Table 6 

Partial wild population (line 7) of   Oscheius nematodes contigs file containing 133173 

sequences.  The total size of the genome found by Repeat Masker is 112697346bp 

(112692673 bp excluding N/X-runs).  The GC level is 43.20 %.  The number of bases 

masked is 2878544 bp (2.71 %) 

 
================================================== 
               number of      length   percentage 
               elements*    occupied  of sequence 
-------------------------------------------------- 
Retroelements          906        96380 bp    0.09 % 
   SINEs:                3          176 bp    0.00 % 
   Penelope            829        83665 bp    0.07 % 
   LINEs:              844        86438 bp    0.08 % 
    CRE/SLACS            0            0 bp    0.00 % 
     L2/CR1/Rex         11         1949 bp    0.00 % 
     R1/LOA/Jockey       0            0 bp    0.00 % 
     R2/R4/NeSL          2          617 bp    0.00 % 
     RTE/Bov-B           2          207 bp    0.00 % 
     L1/CIN4             0            0 bp    0.00 % 
   LTR elements:        59         9766 bp    0.01 % 
     BEL/Pao            36         2522 bp    0.00 % 
     Ty1/Copia           0            0 bp    0.00 % 
     Gypsy/DIRS1        23         7244 bp    0.01 % 
       Retroviral        0            0 bp    0.00 % 
 
DNA transposons        172        14218 bp    0.01 % 
   hobo-Activator        5          313 bp    0.00 % 
   Tc1-IS630-Pogo       64         4725 bp    0.00 % 
   En-Spm                0            0 bp    0.00 % 
   MuDR-IS905            0            0 bp    0.00 % 
   PiggyBac              9          606 bp    0.00 % 
   Tourist/Harbinger     2          231 bp    0.00 % 
   Other (Mirage,        0            0 bp    0.00 % 
    P-element, Transib) 
 
Rolling-circles          0            0 bp    0.00 % 
 
Unclassified:           58         5106 bp    0.00 % 
 
Total interspersed repeats:      115704 bp    0.10 % 
 
 
Small RNA:             716        50838 bp    0.05 % 
 
Satellites:             26         3170 bp    0.00 % 
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Simple repeats:      13050      1288631 bp    1.14 % 
Low complexity:      14750      1434899 bp    1.27 % 
================================================== 
 
 
Retrotransposons have been further subdivided into LTR retrotransposons and non-LTR 

retrotransposons based on the presence of long terminal repeat sequences (Piednoël et al, 

2011).  Non-LTR retrotransposons were not identified in    Oscheius sp. TEL-2014 in both 

the wild type and inbred line according to results obtained from using Repeat Masker.  The 

program also found a number of unclassified repeats in both nematodes lines which may be 

hypothesised to account for non-LTR retrotransposons. 

There are several kinds of TEs and one of them includes Long Terminal Repeats (LTR) 

retrotransposons which are found in eukaryotic genomes. LTR retrotransposons (LTRs) are a 

group of copy and paste transposons, transcribing the TE first into RNA which is then 

reversed transcribed into DNA. LTRs have the potential to cause and generate mutations on 

the genome and further lead to rearrangement of the genome.  This ability allows LTRs to 

contribute to genetic variation and evolution (de la Chaux et al, 2011).  

LTRs have been observed to resemble retroviruses based on their sequence structure and 

composition (Havecker et al, 2004).  There are some LTRs elements which contain the eve 

gene which is also present in retroviruses and said to be crucial for infectivity of the virus 

(Metcalfe et al, 2014).  

As shown in table 5,6,7,8, LTRs are further divided into 4 subclasses. The division is centred 

on sequence resemblance and structural features and sequence composition.  These 

subclasses are BEL/Pao, Ty1/Copia, Gypsy/DIRS1 and Retroviral as seen on table.  In other 

papers they referred to the subgroups as Ty1/Copia, Ty3/Gypsy, BEL/Pao and DIRS.  Results 

generated by Repeat Masker in our study show that BEL/Pao elements are present in larger 

numbers, followed by Gypsy/DIRS1 while the Ty1/Copia and Retroviral elements are not 

present at all.  These findings differ from what other studies have conveyed because they had 

found that the majority of LTRs elements belong to Ty1/Copia and Ty3/Gypsy subclasses 

which were found to be present in almost all eukaryotic genomes.  Previous studies also 

indicated that the other subclasses of LTRs occurred recently and not present in most 

genomes.  Ty1/Copia, Ty3/Gypsy and DIRS are the LTRs subclasses which have been 

reported to exist in almost all eukaryotic genomes (Piednoël et al, 2011). 
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The BEL/Pao subclass is only present in metazoan genomes and existing as second most 

profuse class of LTR retrotransposons in those genomes.  BEL/Pao elements are not found in 

mammals although they are present in a lot phylum including basal metazoans and thus it was 

recommended that BEL/Pao elements arose early in animal evolution (de la Chaux et al, 

2011).  It is captivating to find that the   Oscheius nematodes in our study have the BEL/Pao 

elements.  The BEL/Pao elements are generally 4.2 to 10kb long.  Other studies further 

analysed genome sequences of different organisms and compared their BEL/Pao.  Their 

results showed that Caenorhabditis brenneri, Caenorhabditis briggsae, Caenorhabditis 

elegans, Caenorhabditis japonica and Caenorhabditis remanei have 48, 6, 12, 2 and 46 

BEL/Pao elements, respectively (de la Chaux et al, 2011).  
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Masking repeats BEFORE removing contigs less than 200 bp 

Table 7 

 
Inbred (line 13) of   Oscheius nematodes contigs file containing 145402 sequences.  The total 

size of the genome found by Repeat Masker is 123752189bp (123736215bp excluding N/X-

runs).  The GC level is 42.42 %.  The number of bases masked is 4253249bp (3.44 %) 

================================================== 
               number of      length   percentage 
               elements*    occupied  of sequence 
-------------------------------------------------- 
Retroelements         1402       123995 bp    0.10 % 
   SINEs:                3          176 bp    0.00 % 
   Penelope           1245       106529 bp    0.09 % 
   LINEs:             1263       109396 bp    0.09 % 
    CRE/SLACS            0            0 bp    0.00 % 
     L2/CR1/Rex         11         1933 bp    0.00 % 
     R1/LOA/Jockey       0            0 bp    0.00 % 
     R2/R4/NeSL          3          617 bp    0.00 % 
     RTE/Bov-B           4          317 bp    0.00 % 
     L1/CIN4             0            0 bp    0.00 % 
   LTR elements:       136        14423 bp    0.01 % 
     BEL/Pao            94         5554 bp    0.00 % 
     Ty1/Copia           0            0 bp    0.00 % 
     Gypsy/DIRS1        42         8869 bp    0.01 % 
       Retroviral        0            0 bp    0.00 % 
 
DNA transposons        262        20447 bp    0.02 % 
   hobo-Activator        9          593 bp    0.00 % 
   Tc1-IS630-Pogo       94         7005 bp    0.01 % 
   En-Spm                0            0 bp    0.00 % 
   MuDR-IS905            0            0 bp    0.00 % 
   PiggyBac             12          782 bp    0.00 % 
   Tourist/Harbinger     2          231 bp    0.00 % 
   Other (Mirage,        0            0 bp    0.00 % 
    P-element, Transib) 
 
Rolling-circles          0            0 bp    0.00 % 
 
Unclassified:           62         5556 bp    0.00 % 
 
Total interspersed repeats:      149998 bp    0.12 % 
 
 
Small RNA:            1312        88416 bp    0.07 % 
 
Satellites:             30         3677 bp    0.00 % 
Simple repeats:      48235      2418003 bp    1.95 % 
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Low complexity:      20309      1604720 bp    1.30 % 
================================================== 
 

DNA transposons are categorized into two various families based on Terminal Inverted 

Repeats (TIRs) and Target Site Duplications (TSDs) presence on the sequence.  TIRs are 

found on the transposase gene present in DNA transposons and this gene is flanked by 2 

TIRs.  These TIRs are involved in the excision step of DNA transposons while TSDs are 

implicated during insertion of the element where the target site DNA is duplicated during the 

migration of the transposable element from one position to the next on a genome (Muñoz-

López et al, 2010). 

As seen in table 5,6,7,8, the subclasses of DNA transposons are the hobo-Activator, Tc1-

IS630-Pogo, En-Spm, MuDR-IS905, PiggyBac, and Tourist/Harbinger.  

 

Superfamily Tc1 

The length of a Tc1 element is between   1 and 5 kb and codes for a transposase flanked by 2 

TIRs which their length is between 17 to 1100 bp. One of the sub-classes of the Tc1 elements 

called maT elements (DD37D) was found in C. elegans and C. briggsae (Muñoz-López et al, 

2010). 
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Masking repeats AFTER removing contigs less than 200 bp 

Table 8 

Inbred (line 13) of   Oscheius nematodes contigs file containing 73791 sequences.  The total 

size of the genome found by Repeat Masker is 117481808bp (117465881bp excluding N/X-

runs).  The GC level is 42.26 %.  The number of bases masked is 3772068bp (3.21 %) 

================================================== 
               number of      length   percentage 
               elements*    occupied  of sequence 
-------------------------------------------------- 
Retroelements         1353       120039 bp    0.10 % 
   SINEs:                3          176 bp    0.00 % 
   Penelope           1225       104801 bp    0.09 % 
   LINEs:             1241       107558 bp    0.09 % 
    CRE/SLACS            0            0 bp    0.00 % 
     L2/CR1/Rex         11         1933 bp    0.00 % 
     R1/LOA/Jockey       0            0 bp    0.00 % 
     R2/R4/NeSL          3          617 bp    0.00 % 
     RTE/Bov-B           2          207 bp    0.00 % 
     L1/CIN4             0            0 bp    0.00 % 
   LTR elements:       109        12305 bp    0.01 % 
     BEL/Pao            84         5163 bp    0.00 % 
     Ty1/Copia           0            0 bp    0.00 % 
     Gypsy/DIRS1        25         7142 bp    0.01 % 
       Retroviral        0            0 bp    0.00 % 
 
DNA transposons        231        18338 bp    0.02 % 
   hobo-Activator        8          530 bp    0.00 % 
   Tc1-IS630-Pogo       78         5845 bp    0.00 % 
   En-Spm                0            0 bp    0.00 % 
   MuDR-IS905            0            0 bp    0.00 % 
   PiggyBac             12          782 bp    0.00 % 
   Tourist/Harbinger     2          231 bp    0.00 % 
   Other (Mirage,        0            0 bp    0.00 % 
    P-element, Transib) 
 
Rolling-circles          0            0 bp    0.00 % 
 
Unclassified:           62         5556 bp    0.00 % 
 
Total interspersed repeats:      143933 bp    0.12 % 
 
 
Small RNA:            1187        81062 bp    0.07 % 
 
Satellites:             30         3677 bp    0.00 % 
Simple repeats:      40958      2086080 bp    1.78 % 
Low complexity:      18504      1468441 bp    1.25 % 
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================================================== 
 

Superfamily hobo-Activator (hAT) 

hobo-Activator is found in eukaryotes and its size in length ranges from 2.5 to 

5 kb.  hAT encodes for a transposase flanked by TIRs  which their length is between 5 to 27 

bp (Muñoz-López et al, 2010). 

Superfamily piggybac 

 

piggyBac is a DNA transposon isolated from Cabbage Looper moth  genome and its  

transposition mechanism is similar to that of Tc1 elements. piggyBac length is 2.4kb and 

unlike other described elements they contain 13bp TIRs and  19bp internal inverted repeats  

These elements are also present in human, animals, plants and fungi (Muñoz-López et al, 

2010). 

Simple repeats 

Simple repeats are also known as Simple Sequence Repeats (SSR), Single Tandem Repeats 

or Microsatellites.  They typically consist of di or tri-nucleotide repeats and are found in 

eukaryotes and can originate anywhere in the genome implying that they are interspersed 

repeats (Meng et al, 2015).  These repeats were present in larger percentage in both lines of   

Oscheius nematodes in the study. 

Satellites 

Satellite DNA is the main constituents of functional centromeres and main structural 

components of heterochromatin.  They consist of large quantities of tandem repeats and are 

found in most eukaryotic genomes (Meštrovic´ et al, 2009). 

Low complexity DNA repeats were also identified by Repeat Masker and they are found in 

eukaryotic genomes. 

Repetitive DNA serves various roles in different organisms with varying genome sizes. 

3.3  Protein coding genes 

Prediction of protein-coding genes was performed using Augustus and Blastx.  Augustus 

predicted 49947 in both nematodes lines, among them most of them were complete models 
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with both the start and stop codon, whereas some of the genes where incomplete Open 

reading frames as seen in the ggf files obtained.   Augustus and Blastx findings revealed 

some important proteins and conserved domains crucial for gene transcription and 

translation; some proteins also have a role in DNA replication.  Other proteins have been 

hypothesised to be involved in desiccation tolerance.  Protein names and functions were 

obtained by using BLASTp to align protein sequences generated by Augustus to the protein 

databases on NCBI.  The domain diagrams were obtained from courtesy of NCBI Conserved 

Protein Domain. 

A hypothetical protein CAEBREN_17421 found in Caenorhabditis brenneri was also present 

in the inbred line 13 of    Oscheius sp. TEL-2014.  This protein was isolated from position 1 

(start) to 1249 (end) according to Augustus findings.   

 

Fig.21 a 112 amino acid long hypothetical protein CAEBREN_17421 predicted by augustus 

and blastx.  Image taken from NCBI Blasx. 

WD40 repeat domain was predicted and found on position 5208 (start) to 5385 (end).  This 

protein was identified from Haemonchus contortus also known as Barber pole worm which 

also belongs to the phylum Nematoda, Chromadorea, Rhabditida. 

 

 

Fig. 22 WD40 repeat domain in line 13 of    Oscheius sp. TEL-2014.  Information from NCBI 

Conserved Protein Domain  
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A hypothetical protein Y032_0569g73 found in Ancylostoma ceylanicum (Eukaryota; 

Metazoa; Ecdysozoa; Nematoda; Chromadorea; Rhabditida) 

 

Fig. 23 Helix-loop-helix domain highlighting the specific hits which the Query from line13 of    

Oscheius sp. TEL-2014 contigs had high affinity to. 

The Helix-loop-helix domain is found in specific DNA- binding proteins that act as 

transcription factors.  This domain is 60-100 amino acids long and is present in most 

eukaryotes.  It was predicted in position 1072 (start) to 1145 (end) on the genome. 

Topoisomerase II large subunit originally found in Escherichia phage PBECO 4 was 

predicted to be present I the   Oscheius nematodes genome.  Histidine kinase-like ATPases is 

one of the domains present in this protein. 

 

Fig. 24 TOPRIM superfamily found in line 13 of    Oscheius sp. TEL-2014 

A Histidine kinase-like ATPases was predicted to be present in   Oscheius nematodes.  The 

TOPRIM superfamily also comprises of numerous ATP-binding proteins such as histidine 

kinase, DNA gyrase B, topoisomerases, heat shock protein HSP90, phytochrome-like 

ATPases and DNA mismatch repair proteins.  The heat shock protein HSP90 may be 

hypothesised to be involved in desiccation tolerance of these entomopathogenic nematodes. 

An uncharacterized protein CELE_C24H12.4 originally found in Caenorhabditis elegans was 

predicted to be present in    Oscheius sp. TEL-2014 on position 2795 (start) to 2969 (end).  A 

P-loop_NTPase domain superfamily was identified to be associated with this protein. 
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Fig. 25 A P-loop_NTPase domain superfamily observed in line 13 of    Oscheius sp. TEL-

2014 

One of the specific domain hits on this protein was the Helicase superfamily c-terminal 

domain which is linked with DEXDc, DEAD and DEAH box proteins.  The DEAD-box 

helicases is defined as assorted family of proteins involved in ATP-dependent RNA 

unwinding.  Members of this family are the DEAD and DEAH box helicases. 

Non-specific hits include the DEXDc which belongs to the DEAD-like helicases superfamily 

and Helicase_C which is a helicase conserved C-terminal domain. 

Superfamilies and multi-domains identified are the SrmB which contain the II DNA and 

RNA helicase involved in replication, repair and recombination. 

Provisional domains isolated are PRK11192 domain recommended as an ATP-dependent 

RNA helicase SrmB, PTZ00424 which was reported to be part of the helicase and PLN00206 

classified as a DEAD-box ATP-dependent RNA helicase.  The DECH_helic helicase had no 

specific function or association mentioned. 

A hypothetical protein Y032_0043g788 present in Ancylostoma ceylanicum genome, was 

seen to be present on position 4335(start) to 4335 (end) in the   Oscheius nematodes most 

inbred line genome.  
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Fig. 26 NAD(P) binding domain of glutamate dehydrogenase, subgroup 1 linked with a 

hypothetical protein Y032_0043g788 seen in 13 of    Oscheius sp. TEL-2014 

NCBI Conserved Protein Domain has provided information about the amino acid 

dehydrogenase (DH) is an extensively dispersed family of enzymes that play a role in the 

catalysis the oxidative deamination of an amino acid to its keto acid and ammonia with 

concomitant reduction of NADP+. 

ELFV_dehydrog_N is one of the specific hits simply described as a dimerization domain and 

also known as Glutamate/Leucine/Phenylalanine/Valine dehydrogenase.  The NAD(P) 

binding site was found.  

The ELFV_dehydrog   Glu/Leu/Phe/Val dehydrogenase categorised under superfamilies 

along with NADB_Rossmann. 

Multidomains such as Glutamate dehydrogenase/leucine dehydrogenase (GdhA) have been 

implicated in amino acid transport and metabolism.  PLN02477 which is glutamate 

dehydrogenase was also identified and ELFV_dehydrog, a 

Glutamate/Leucine/Phenylalanine/Valine dehydrogenase.  

Provisional multidoamins such as PTZ00079, a NADP-specific glutamate dehydrogenase and 

PRK14030, glutamate dehydrogenase were found. 
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Fig. 27 Zinc-finger domains in 13 of    Oscheius sp. TEL-2014 

Zinc-finger domains were identified and are involved in gene expression, cell-adhesion and 

protein folding.  The predicted zinc finger protein 271-like is present in Acyrthosiphon pisum 

genome.  This protein is found on position 2196 (start) to 2196 (end) based on the ggf file 

report provided by Augustus. 

A hypothetical protein Y032_0004g2073 found in Ancylostoma ceylanicum (Eukaryota; 

Metazoa; Ecdysozoa; Nematoda; Chromadorea; Rhabditida) was also identified in line 7 of    

Oscheius sp. TEL-2014  

 

 

Fig. 28 Trehalase (EC: 3.2.1.28) is recognized as an enzyme that recycles trehalose to 

glucose.  Trehalose is a biological trademark of heat-shock response in yeast and thus and 

protects it against a variety of stresses.  

The eLRR (extracellular Leucine-Rich Repeat) isolated from Caenorhabditis elegans was 

identified and found in line 7 of    Oscheius sp. TEL-2014  

 

Fig. 29 Leucine rich repeat domains are often seen to have a function in stabilisation protein 

structures 
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A hypothetical protein CAEBREN_28360 found in Caenorhabditis brenneri genome was 

also identified.  This protein may be further hypothesised to be involved in nematodes 

chemotaxis and behaviour. 

 

Fig. 30 Neurotransmitter-gated ion-channel ligand binding domain in line 7 of Oscheius sp. 

TEL-2014.  It has been reported that members of the LIC family of ionotropic 

neurotransmitter receptors are found only in vertebrate and invertebrate animals.  

 

4. Conclusion	and	suggestions	
 

The process of assembling and annotation of genome sequence data is faced with several 

formidable computational challenges. The whole process is limited by the computation power 

and reliability of the various genome assembly tools to generate a finished genome.  Draft 

genomes have been on the rise with the hope to complete and improve the assemblies.  

Sequencing technology continues to undergo rapid development and it is advancing with the 

development of new processes and technologies which will decrease the time taken for raw 

genome sequence data to be generated, assembled and annotated. The read length in Illumina 

has increased from 25bp to 125-300bp over the past few years.  There are several reasons 

which may differ or be the same amongst genome assemblers and they include read length 

differences, N50 value, read counts, error profile and steps taken by the software to try reduce 

errors.  Furthermore, it has been observed that NGS data “sometimes exist as a mixture of 

reads produced by different technologies” (Bradnamy et al, 2013). 

Resequencing whole genome DNA of this organism and assessing the quality of the sequence 

reads obtained followed by a reasonable assembly may improve gene prediction.   Different 

tools may be used to assemble the genome and choose tools which may improve the 

assembly.  There are a number of assembly validation tools which are used especially for de 

novo assembly for example Quast.  Assembly validation is needed when one is dealing with 

highly repetitive data. 

Comparative genomics is one of the reasons sequencing of entomopathogenic nematodes is 

gradually increasing.  Another reason is based on the availability of reference genomes which 
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may be used during genome annotation using gene prediction tools.  These tools are linked to 

databases containing established or manually curated gene models.  The C. elegans genome 

has been fully annotated and may be used as a suitable reference for newly isolated species 

genome annotation.   

The main objective of gene prediction tools is to predict all genes correctly and making an 

effort to include all alternative isoforms.  Nonetheless, these isoforms are not always 

efficiently predicted. In our study, a great number of genes were predicted.  Further studies 

need to be conducted to study functions and homology of genes predicted. 

Studies on inbreeding may further educate us on the important types of this mating 

phenomenon which may contribute to how we define inbreeding.  The first type previously 

reported is pedigree inbreeding which states that an individual organism is considered inbred 

if its parents have a common ancestor.  This is imperative to note because in our study we 

know that both parents are from similar ancestral origin because both parents belong to the 

same genus and species.  The second type is inbreeding as non-random mating which states 

that this type of inbreeding is “relative” to mating occurring randomly within a population.  

Other types force inbreeding to occur because of the limited size of the population and thus 

leading to genetic consequences such as genetic drifting.  These types of inbreeding briefly 

described have given us an idea of the expected outcomes in terms of the genetic composition 

of the most inbred line 13 mainly on just seeing if the genome becomes homozygous than the 

genome of partially wild type nematodes population (line 7) which is hypothesised to be 

heterozygous.  

The genome evidence described in the present study offers a valuable platform for future 

studies of   Oscheius nematodes and possesses momentous importance in the Agricultural 

industries and scientific research. 
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  CHAPTER 9 
 

                                              Research Conclusions 

Oscheius sp. TEL-2014 is described as a novel entomopathogenic nematode species based on 

its morphometrics and 18S rRNA gene sequence originality.   

The whole genome draft of Serratia sp. TEL will allow for the investigation of identified 

genes and will be critical in furthering the understanding of the insect pathogenicity of 

Serratia sp. TEL carried by entomopathogenic nematode  Oscheius sp. TEL-2014. 

Genetic subsystems discussed were highlighted as important because their presence 

contributed to the insect pathogenicity of the bacterial species for which the nematode acted 

as the vector for the location and infection of potential insect hosts. 

Further studies need to be conducted to investigate entomopathogenecity mechanisms and 

efficacy in greater detail so that the nematode may be assigned or recommended as 

biopesticide for controlling specific problematic insects especially in Agricultural industries.  

The draft genome of Oscheius sp. TEL-2014 described creates a foundation for future studies 

of   Oscheius nematodes which will benefit Agricultural industries and scientific research. 
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Appendix 1 
Solutions 

TAF  

8 ml 35% formaldehyde 

2.28 ml triethanolamine 

104 ml distilled water 

Double-strength TAF 

8 ml 35% formaldehyde 

2.28 ml triethanolamine 

52 ml distilled water 

Solution I  

20 ml 95% ethanol  

1 ml glycerine 

79 ml distilled water 

Solution II 

5 ml glycerine 

95 ml 95% ethanol 

Lipid agar medium 

Lipid agar media 

Method adapted from Kaya et al 1997. 

Corn syrup was replaced with honey 

10g honey 
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5g yeast extract 

25g nutrient agar 

2.5ml cod liver oil 

2g MgCl2.6h20 

1 litre of distilled water 

Mix the ingredients well and autoclave at 121oC  and 15psi for 20 minutes.  Pour the media into 

sterile Petri dishes aseptically under a laminar flow system. 

Appendix 2 
 

Selective media EPNs symbiotic bacteria  

 

NBTA selective media  

1 litre nutrient agar  

0.04g triphenyltetrazolium chloride (TTC)  

0.025g bromothymol blue (BTB)  

 

Mix nutrient agar and BTB and autoclave the media at 121˚C and 15 psi for 15 minutes. Add 

TTC, just before pouring into Petri dishes; ensuring that the autoclaved media is less than 

50˚C. TTC will break down if added when medium is too hot. Swirl to mix and dispense into 

sterile Petri dishes and leave to solidify.  

 

McConkey agar selective media  

Composition (g/l) 92  
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20.0g Peptone  

10.0g Lactose  

1.5g Bile Salts  

5.0g Sodium Chloride  

0.03g Neutral Red  

0.0001g Crystal Violet  

13.5g Agar  

 

Weigh out McConkey agar powder and suspend in 1000ml distilled water. Boil whilst stirring 

until completely dissolved and autoclave at 121ºC and 15 psi for 15 min. Cool to 45 – 50ºC. 

Mix properly and dispense into sterile Petri dishes and leave to solidify.  

0.1% jik solution for infective juvenile sterilization  

34ml distilled water  

1ml 3.5% jik  

Autoclave distilled water. Mix jik and distilled water in bottles and autoclave at 121˚C and 15 

psi for 15 min.  

 

Recipe for in vitro culture media  

 

Nutrient Broth  

4.0% (W/V) Canola oil  

25mg/ml glucose  

Weigh out nutrient broth powder and suspend in desired volume of distilled water. Add 

glucose. Mix well and dispense adequate amounts into volumetric flasks. Add 4.0% (W/V) 

Canola oil to each volumetric flask containing nutrient broth and autoclave at 121˚C and 15 

psi for 15 minutes  

5X TBE  

54g Tris base  

27.5g Boric acid  

20ml 0.5M EDTA pH 8.0  

Mix with 1L distilled water and autoclave at 121˚C at 15psi for 20 minutes 

Genomic DNA extraction protocol 
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Bacteria were grown on NBTA and Mc Conkey plates and an isolated bacterial colony was 

picked and suspend in a ZR BashingBeadTM Lysis Tube and vortex at maximum speed for 

5minutes, this aided in gently breaking down the bacterial wall in order to release nucleic 

material. The ZR BashingBeadTM Lysis tube was centrifuged at 10 000 rpm for 1 minute. 

Up to 400μl of the supernatant was transferred into a Zymo-Spin TM IV Spin Filter in a 

Collection Tube and centrifuged at 7000 rpm for 1 minute. 1200μl of Fungal/ Bacterial DNA 

binding buffer was added to the filtrate in the Collection Tube and transferred 800μl of the 

mixture to a Zymo-SpinTM II Column in a Collection Tube and centrifuged at 10000rpm for 

1 minute. The flow was discarded from the Collection Tube and 200μl DNA Pre-Wash 

Buffer was added to the Zymo-SpinTM II Column in a new Collection Tube and centrifuged 

at 10000rpm for 1 minute. 500μl of Bacterial DNA Wash Buffer was added to the Zymo-

SpinTM II Column and centrifuged at 10000rpm for 1 minute. The Zymo-SpinTM II Column 

was transferred to a clean 1.5 ml microcentrifuge tube and added 100μl DNA Elution Buffer 

directly to the column matrix. The tube was centrifuged at 100000rpm for 30 seconds to 

release the DNA from the matrix. The DNA was stored at 4°C to be used for further analysis.  
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Publications 
 

http://ac.els‐cdn.com/S2213596016300174/1‐s2.0‐S2213596016300174‐main.pdf?_tid=46c21ac6‐

c8b6‐11e5‐9123‐00000aacb362&acdnat=1454312270_0222613fed6355d4746bb1a87e4413fb 
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http://genomea.asm.org/content/3/4/e00747-15.full.pdf 
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Supplementary data 
 

Galleria mellonella infected with    Oscheius sp. TEL-2014 
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Galleria mellonella uninfected with    Oscheius sp. TEL-2014 
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