
PROSPECTIVE MATHEMATICS TEACHERS’ TECHNOLOGICAL 

PEDAGOGICAL CONTENT KNOWLEDGE OF GEOMETRY IN A 

GEOGEBRA-BASED ENVIRONMENT 

 

 

 

 

 

KIM AGATHA RAMATLAPANA 

 

 

 

 

 

A thesis submitted to the School of Education, Faculty of Humanities, University of the 

Witwatersrand, Johannesburg in fulfilment of the requirements for the degree of 

 

 

 

 

 

Doctor of Philosophy 

January 2017 

 

 

 

 

 

SUPERVISOR: Prof. MARGOT BERGER 

CO-SUPERVISOR: Dr. MARGUERITE MIHESO-O‘CONNOR 

  



ii 

 

DECLARATION  

 

I declare that this thesis is my own unaided work except as indicated in the acknowledgements. It 

is submitted for the Doctor of Philosophy degree at the University of the Witwatersrand, 

Johannesburg. It has not been submitted before for any degree or examination in any other 

university.  

 

 

…………..……………       ……………………… 

Signed          Date 

 

  



iii 

 

DEDICATION 

 

 

 

To Lethabo Kimberly, the beautiful sunshine in my life 

 

To everyone to whom I owe for being “me” 

 



iv 

 

ABSTRACT 

This research study focused on exploring prospective teachers‘ knowledge of geometric 

reasoning in teacher preparation. Premised on the claims that learning mathematics is profoundly 

influenced by the tasks, by the learning context and by the tools that are used in mathematics 

instruction, mathematics prospective teachers‘ technological pedagogical content knowledge was 

examined. The technological pedagogical content knowledge (TPACK) framework was 

employed to study the prospective teacher‘s knowledge of circle geometry as proposed by 

Mishra & Koehler (2006). The main focus of the research was on investigating the empirical and 

theoretical questions of what characterizes aspects of prospective teachers‘ technological 

pedagogical content knowledge. These aspects were geometry content knowledge (CK), 

geometry pedagogical content knowledge (PCK) and geometry technological content knowledge 

(TCK). This exploratory multiple case study explores the TPACK of six mathematics 

prospective teachers enrolled in a second-year undergraduate mandatory mathematics 

methodology course in an urban South African university. Data was collected through 

prospective teachers‘ (PTs) responses to circle geometry tasks, interviews and screen cast 

recordings. Rubrics were employed as analytical tools. Duval‘s (1995) cognitive apprehensions 

and processes were engaged as interpretative tools to understand how the PTs responded to the 

CK, TCK and PCK tasks.  The results suggest that prospective teachers‘ circle geometry 

technological pedagogical content knowledge constructed in a GeoGebra-based environment is 

characterized as weak emanating from weak geometry content knowledge (CK), weak 

technological content knowledge (TCK) and weak pedagogical content knowledge (PCK). The 

study has shown that a weak geometry CK was evidenced from the participating PTs‘ weak 

display of cognitive apprehensions and geometry reasoning processes. This study contributes to 

the current debates on teacher professional knowledge and on an understanding of frameworks 

for which teacher knowledge can be premised in South Africa. A model was developed for 

classifying and describing forms of mathematics connections in geometry knowledge at teacher 

preparation level.   
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CHAPTER 1 

INTRODUCTION AND FORMULATION OF THE PROBLEM 

 

1.0 Introduction 

The purpose of this multiple case study was to explore and characterize aspects of 

prospective teachers‘ technological pedagogical content knowledge of geometry, constructed 

within a GeoGebra-based environment. The major focus of this chapter will be to formulate 

the problem of the study by providing a description of the study background, rationale, and 

statement of the problem. Further, the research questions that guided the study, as well as the 

structure of the thesis are outlined.  

 

1.1 Background to the study 

Understanding teacher competences has been the focus of research for some time. The issue 

of teachers‘ knowledge of teaching for high learner achievement has contributed to the 

conceptualization of the term teacher knowledge (Beswick & Watson, 2012). Through the 

works of Shulman (1986, 1987); Hill, Ball, and Schilling (2008) and Ball, Thames and Phelps 

(2008) various categories of teacher knowledge have emerged. Among the dominant 

categories of knowledge are content knowledge and pedagogical content knowledge, of 

which numerous studies have been done to establish an understanding of what the teacher 

needs to know to be able to successfully teach a subject. Within mathematics knowledge, 

there is an interplay between mathematics content knowledge and mathematics pedagogical 

content knowledge. For instance, there are various aspects that teachers and teacher educators 

need to consider to successfully teach geometry. Teaching geometry involves an 

understanding and appreciation of the history and cultural context of geometry, knowing how 

to recognize interesting geometrical problems and theorems, and geometry content 

knowledge, competence and proficiency (Jones, 2000; Jones, Lagrange, & Lemut, 2001). As 

such, I sought to investigate the prospective teachers‘ understandings as learners and teachers 

of geometry relating to content knowledge, pedagogical content knowledge and technological 

pedagogical content knowledge. Moreover, the introduction of technology to mediate the 
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learning and teaching of mathematics has illuminated the crucial role of tools that impact on 

the understanding of mathematics. 

 

Over the years, technology in education has had a great impact on the teaching and learning 

milieu. The rapid developments of new technology-based tools have gained widespread 

acceptance and use in the teaching and learning discourses.  The USA National Council of 

Teachers of Mathematics (NCTM) has acknowledged the influential role of information and 

communication technology tools in teaching and learning of mathematics by developing 

standards that incorporate technology integration in mathematics (National Council of 

Teachers of Mathematics, 2000). It has been argued that technology has empowered learners 

through democratization of knowledge, participatory learning, authentic learning and 

multimodal learning (Lemke & Coughlin, 2009). 

 

Despite the diversity in technology-based learning environments, questions have emerged 

about how technology can be integrated into mathematics teacher education. The 

development of prospective teachers‘ mathematical thinking processes is a major goal of any 

mathematics teacher education programs. Moreover, technology tools can be used to foster 

mathematical thinking processes such as conjecturing, justification, and generalization and so 

it is imperative that attention should be paid to prospective teacher (PT) learning and 

preparation to teach in technology-based environments. Teacher education programmes are 

proposing that undergraduate courses in mathematics for PTs integrate technology into 

teaching with activities that promote mathematical thinking (Adler & Davis, 2006). These 

activities should enhance PTs‘ thinking by developing mathematics habits of mind such as 

meta-cognitive skills and problem solving skills. Technology environments may boost 

mathematical thinking through visualization and abstraction. 

 

The mandate of Mathematics Education programs is to deliberately ensure that they provide 

formal learning situations which prepare PTs to teach school mathematics as well as to 

develop classroom activities to address weak content knowledge that prospective teachers 

may display in teacher education programs (Peressini & Willis, 2004). Hence, the courses in 

these programs should include tasks that prompt mathematics thinking and reasoning, and 

that promote both teacher content knowledge and pedagogical content knowledge.  Tasks for 

mathematics teacher education should, as pointed out by Bartolini Bussi and Maschietto 
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(2008, p. 206), ―make PTs capable of planning and running effective classroom activities‖. 

There is a gap in literature that focuses on prospective teachers with weak or no geometry 

content knowledge and pedagogical knowledge for teaching geometry in a technology-based 

environment. The study addressed that gap by examining what characterizes the prospective 

teachers‘ pedagogical content knowledge for teaching circle geometry with GeoGebra 

(technological pedagogical content knowledge). The PTs‘ circle geometry knowledge was 

developed within a secondary mathematics methodology course. The focus of the study was 

on the mathematical thinking processes of the prospective teachers as they learned or re-

learned school geometry in the GeoGebra based environment.  

 

Very little research exists that explores the complexities of South Africa‘s prospective 

teachers‘ geometry content and pedagogical content knowledge.   Mathematics Education 

programs need to focus on both the PT as a learner of geometry and the PT as a teacher of 

geometry. In South Africa, some PTs lack prior knowledge of geometry because they have 

never learnt geometry at school. So there is a need to address both the content and the 

pedagogical aspects of PTs‘ knowledge of geometry (De Villiers, 1997; van der Sandt, 2007; 

van der Sandt & Nieuwoudt, 2005). 

 

The advent of new technologies has transformed the roles of the teacher, the student and the 

learner. Research has identified that limited technology knowledge and skills and technology 

pedagogical knowledge is a challenge for teachers who are confronted by the difficulty of 

integrating technology in a typical classroom (Hew & Brush, 2007). On the other hand, most 

learners and higher education students are proficient in using technologies such as mobile 

technologies. Some of the current cohorts of school learners are ‗digital natives‘ whereas 

their teachers are ‗digital immigrants‘. These terms were coined by Prensky (2001a) and both 

terms have spurred debate among technology integration researchers. Thinyane (2010) in her 

investigation into South African first year students has argued that students who qualify for 

the digital native title as defined by Prensky (2001a), do not all act and use technology in the 

manner that Prensky describes. Most current South African students (of the same age as 

many digital natives) lack experience in using technology. Many South Africa (SA) students 

are not digital natives in the Prensky sense; rather, although they may have some experience 

with mobile telephones they are newcomers to the use of many technological tools, such as 

computers. 
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Therefore, researchers and educators alike cannot ignore technology, the moving target. 

University students are currently faced with a demand for technology skills in undergraduate 

and graduate courses. Since most universities have technology resources where students have 

almost unlimited access to integrating technology into course offerings implies that students 

should be competent in technology usage. 

 

Various university programs incorporate the use of technology, with no exception of 

mathematics education methodology courses as no exception. Methodology courses provide a 

meaningful context for technology integration where technology pedagogical content 

knowledge (TPACK) can be developed. A study by Angeli (2005 p. 394) suggests that 

preparing technology-competent teachers in teacher education programs is a ―challenging and 

difficult issue that needs to be systematically planned and carefully considered‖. The problem 

in South Africa is confounded by the fact that some of the PTs have never studied geometry 

at school and so need to learn the content as well. In addition, many of these students are not 

proficient with technology.  

 

1.2 Rationale for the study 

In my endeavour to pursue my interest in technology integration in mathematics learning, I 

examined PTs learning and re-learning mathematics and learning to teach mathematics with 

technology, specifically the GeoGebra software. As mediators of mathematics learning PTs 

should experience technology first if they are to incorporate it into classroom mathematics 

teaching and learning.  It is worth noting that teachers‘ beliefs in mathematics influence their 

decisions on pedagogical practices. It is essential to understand the beliefs that influence 

teachers‘ decision to use technology as these may be barriers to using technology for 

instruction (Hew & Brush, 2007). In the same light, more research is needed in order to 

understand and improve mathematics learning in technological environments; particularly, 

what processes and actions should be illuminated and addressed when dealing with 

technological artefacts in mathematics instruction. In their study on South African teachers‘ 

use of dynamic geometry software in high school classrooms, Stols and Kriek (2011) found 

that teachers‘ behaviour towards dynamic geometry is influenced by the perceived usefulness 

of technology in the classroom. Teachers‘ perspectives on teaching and learning mathematics 
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in technology-rich environments should be illuminated and explored at teacher preparation 

level. Niess (2005) reiterates that teachers‘ decisions to implement technology into their 

teaching practice rests on their knowledge of technology, knowledge of mathematics, and 

knowledge of teaching.  

 

The objective of this study was to examine PTs‘ knowledge within the context of school 

geometry content and pedagogical tasks developed in a GeoGebra-based environment. The 

PTs were enrolled in an urban university in South Africa. GeoGebra, like any dynamic 

mathematics software was preferred because of its roles in enhancing mathematics teaching, 

providing a foundation for deductive and inductive reasoning and enabling opportunities for 

creative thinking (Sanders, 1998). GeoGebra allows the user to dynamically construct, draw, 

visualize and adjust geometric objects from different perspectives using the drag mode. 

GeoGebra is an open-source software and that is an important consideration in a developing 

economy like South Africa. The Dynamic Geometry Environments (DGE) are known for 

developing visual skills which allow for experimental exploration of properties of figures and 

different orientations (Goldenberg & Feurzerg, 2008; Laborde, 2000; Mogetta & Jones, 

1999). The use of DGE has contributed to geometry resurfacing in many countries‘ curricula. 

For instance, the inclusion of geometry in the 2012 Curriculum Assessment and Policy 

Statements (CAPS) curriculum of South Africa is an indication that South Africa recognizes 

the role of geometry in the curriculum.  De Villiers (1996) attributes the past failure of 

traditional geometry education in South Africa to a curriculum presented at a higher cognitive 

level than those of the learners.   

 

Goldenberg, Scher and Feurzerg (2008, p. 81) concur with Laborde (1992) that ―geometry on 

a computer is different from geometry on a paper‖. In a dynamic geometry environment 

completing constructions and investigating its properties enhances students reasoning 

processes or knowledge in action by focusing on invariant properties while dragging elements 

of the figure (Mogetta & Jones, 1999; Owens & Outhred, 2006). DGE allow users to test 

geometric conjectures and to present dynamic illustrations of relationships or theorems but it 

cannot generate proofs of theorems. The implication is that DGE as a tool for learning 

geometry content knowledge has constraints and affordances. Geometry tasks developed in a 

technology-rich environment should be examined for their potential to develop PTs‘ 

mathematical knowledge. This knowledge is often found to be weak for learners in South 
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Africa (de Villiers, 1996). It is through the exploration with several tasks that inferences are 

made, deductions are drawn and techniques for solving such tasks are developed. Laborde 

(2001) posits that tasks developed in a DGE are either facilitated by technology or changed 

by the technology. Notwithstanding the role of technology in task development, it is 

imperative to understand the relationship between the teacher, student, task and technology. 

Olive et al ( 2010) contend that mathematical knowledge emerges through this interaction 

which is best understood in terms of a didactical tetrahedron, where teacher, student, task and 

technology are at the vertices of the tetrahedron. 

 

One important justification for my study is the critical role and the potential that technology 

has on the teaching and learning of mathematics. As teacher educators we need to identify 

areas that advance mathematics knowledge for teaching, particularly paying attention to the 

promotion of the processes of instrumentation and instrumentalization when dealing with 

technologies to mediate learning in the mathematics classroom. I concur with Niess (2006) 

that teacher educators need to find means of addressing the question: What do teachers need 

to know and be able to do and how do they need to develop this knowledge for teaching 

mathematics in the 21
st
 century? The epistemic goal of this study is to characterize aspects of 

PTs‘ technological pedagogical content knowledge and contribute to the knowledge and 

understanding of mathematics learning and teaching processes in technology environments. I 

reiterate that PTs in South Africa are learners of geometry and future teachers of geometry. 

Most PTs have not learnt geometry at school, with or without technology. The PTs are faced 

with the challenge of the technology infused environment which requires that they develop 

their technology content knowledge (TCK) and technological pedagogical content knowledge 

(TPACK) and their mathematical knowledge.  As such, a deliberate move was made to 

specifically pay attention only to the TPACK constructs that have content (C) as the common 

denominator. It was deemed necessary to consider C since content knowledge is very weak 

among PTs and considering that CK necessary, albeit not sufficient. 

 

1.3 Statement of the problem 

It is evident that prospective teacher education has been under-researched in South Africa 

(Adler, 2004). Teacher educators require an in-depth understanding of the mathematical 

thinking of their students. This study was aimed at contributing towards the development of 
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knowledge relating to mathematics PT learning and specifically contributes to the body of 

research into the teaching of mathematics PTs in methodology courses and mathematics 

knowledge for teaching as a research area. The pragmatic goal of this research was to explore 

ways of understanding the development of PT technology content knowledge, mathematical 

content knowledge and pedagogical content knowledge. This was achieved by means of PTs 

engaging with tasks that elicited visualization, construction and reasoning processes. It is 

through the observation and analysis of this engagement involving the use of the 

technological tool, GeoGebra, that I ultimately examined aspects of PTs‘ technological 

pedagogical content knowledge of circle geometry. The field of geometry was preferred 

largely for its potential for the advancement of mathematical meaning-making processes. I 

focused on circle geometry because learning circle geometry provides opportunities for the 

development of deductive reasoning, particularly within the context of proving theorems. 

Mathematics Education in South Africa needs an intervention for teachers who have never 

been exposed to school geometry. In the past two decades geometry has been in and out of 

the South African mathematics curriculum, implying that some learners were exposed to 

geometry whereas others were not. At the same time, teachers are not sufficiently prepared to 

teach geometry. Nakin (2003) exposes that the mathematics syllabi (between 1996 and 2000) 

of the six (6) Universities in South Africa in his study reflected an under-emphasis on 

geometry knowledge. This is attributed to the void impacted by the weak nature of or lack of 

school geometry knowledge. University graduates are thus often not prepared for the teaching 

of geometry in the schools. 

 

The entire study took place within the context of PTs who mostly had weak mathematical 

understandings (Pournara, 2009) and weak technology skills (many PTs never used 

computers before coming to university). Bearing this in mind, re-learn school mathematics 

was integrated in the teacher preparation program. Using GeoGebra, PTs were provided with 

the experience of learning mathematics with technology; hopefully this helped them  

understand the value of a dynamic environment like GeoGebra for their own students to 

discover mathematics (Sherman, 2010). It is the intention of this study to inform mathematics 

teacher educators as they develop methodology courses for PTs of Mathematics Education 

programs. 
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1.4 Research questions 

This study focused on the empirical questions of what characterizes prospective teachers‘ 

geometry content knowledge, geometry pedagogical content knowledge and geometry 

technological content knowledge in the context of a GeoGebra-based environment. These 

types of knowledge are different aspects of the PTs technological pedagogical content 

knowledge.  

 

The study was guided by the following research question:  

What characterizes aspects of prospective teachers‘ circle geometry technological 

pedagogical content knowledge? In particular,  

1. What geometry content knowledge (CK) do the PTs display?  

2. What technological content knowledge (TCK) do the PTs display? 

3. What pedagogical content knowledge (PCK) do the PTs display? 

 

1.5 Definitions of terms 

The work proposed in the study necessitated operationalization of terminologies to suit the 

context of study. 

 Cognitive apprehensions are several ways of looking at a drawing or visual stimulus 

(Duval, 1995). 

 Comprehension of geometry involves three cognitive processes; the visualization 

process, construction process and reasoning process (Duval, 1998)  

 Content Knowledge (CK) is teachers‘ subject matter knowledge.  

 GeoGebra is an open source software that incorporates geometry, algebra and 

calculus in a fully connected DGS environment, by combining the basic features of 

DGS and Computer Algebra Systems (Hohenwarter & Fuchs, 2004). 

 GeoGebra-based tasks are tasks for which the GeoGebra facilitates exploration and 

analysis (e.g., identifying relationships through dragging) 

 A geometric construction is defined in this study as a drawing of a figure satisfying 

given conditions using GeoGebra. The product of the construction is referred to as a 

GeoGebra-based construction.  

 A diagram is a visual representation of a figure. 
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 Making mathematical connections is the ability to recognize and make linkages 

between and among mathematical ideas.  

 Mathematics tasks are what learners are asked to do to initiate an activity, the purpose 

of which is to stimulate thinking and reasoning (Mason & Johnston-Wilder, 2006).  

 Pedagogical Knowledge (PK) is teachers‘ deep knowledge about the processes and 

practices or methods of teaching and learning.  

 Pedagogical Content Knowledge (PCK) is knowledge of pedagogy that is applicable 

to the teaching of specific content. 

 Preparation-based mathematical connections are connections that are made in the 

context of teacher preparation where the prospective teachers are both learners and 

future teachers of geometry. 

 Technology refers to the computer as an artefact through which knowledge for 

teaching and learning mathematics may be advanced (de Vries, 2005). 

 Technological Content Knowledge (TCK) is knowledge needed to understand which 

specific technologies are best suited for addressing subject-matter learning in their 

domains and how the content dictates or perhaps even changes the technology—or 

vice versa. 

 Technological Pedagogical Content Knowledge (TPACK) is professional knowledge 

that teachers need to meaningfully incorporate pedagogy and technology within the 

content they teach (Koehler & Mishra, 2009: 9) 

 Visual explanation is a description of that which can be visualized. 

 

1.6 Structure of the thesis  

This section presents a synopsis of the chapters of this thesis.  

 

Chapter 1: Introduction and formulation of the problem 

This introductory chapter provides a background to the study of PTs‘ mathematical 

knowledge. The background of the study situates the study within the area of mathematics 

teacher knowledge. The premise for this study as elaborated in this chapter is that it is 

imperative that attention should be paid to prospective teacher learning and preparation to 
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teach in technology-based environments. I propose that there is a gap in literature that focuses 

on prospective teachers with weak geometry content knowledge and pedagogical knowledge 

for teaching geometry in a technology-based environment. The rationale for the study as 

presented in the chapter is that very little research exists that explores the complexities of 

South Africa‘s prospective teachers‘ geometry content and pedagogical content knowledge.   

Mathematics Education programs need to focus on both the PT as a learner of geometry and 

the PT as a teacher of geometry. One important justification for my study is the critical role 

and the potential that technology has on the teaching and learning of mathematics. The 

objective of this study was to examine PTs‘ knowledge in the context of school geometry 

content and pedagogical tasks developed in a GeoGebra-based environment. The epistemic 

goal of this study is to characterize aspects of PTs‘ technological pedagogical content 

knowledge and to contribute to the knowledge and understanding of mathematics learning 

and teaching processes in technology environments. The PTs are faced with the challenge of 

the technology infused environment which requires that they develop their technological 

pedagogical content knowledge. 

 

Chapter 2: Literature review and theoretical framework 

The chapter explores theoretical and empirical insights emanating from the discussion on 

teacher knowledge constructed in teacher preparation program that incorporates the use of 

technology. The structure of the chapter is such that it reviews the debates, claims, theories 

about teacher knowledge, prospective teacher technological pedagogical content knowledge 

constructed in teacher preparation and knowledge of geometry in the context of technology 

knowledge and pedagogical knowledge. It is argued in the chapter that integrating technology 

requires teachers to experience specific content areas in relation to specific technological 

tools. The research gap identified by this study is presented as a summary and conclusion of 

the chapter. 

 

Chapter 3: Methodology 

In this chapter, I discuss the methodological approach adopted in this study for exploring 

aspects of prospective teachers‘ technological pedagogical content knowledge of geometry 

constructed within a GeoGebra-based environment. An elaboration of the research design, 
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data collection procedures and analysis is presented. This exploratory multiple case study 

described in the chapter was done by making inferences on how six participating PTs‘ think 

as they responded to the circle geometry tasks. A description of the participating PTs enrolled 

in a second-year undergraduate mandatory mathematics methodology course is elaborated. A 

detailed account of strategies employed to collect and analyse the data is provided. Rubrics 

were employed as analytical tools. These research tools were pilot tested to inform the major 

study. 

 

Chapter 4: Analytic framework  

The discussion in this chapter is focused on the analytical framework that I employed as a 

lens to explore aspects of prospective teachers‘ technological pedagogical content knowledge 

(TPACK) constructed in a GeoGebra-based environment. The major focus of this chapter is 

to interrogate how the TPACK theoretical framework was engaged as a frame of reference 

for analysing data. Inductive analysis was employed to develop the framework for data 

analysis as it emerged from an amalgamation of the TPACK theoretical framework and 

Duval (1998) cognitive apprehensions analytical framework for geometric reasoning. The 

study expanded the Duval analytical framework by extending it to include an analysis of 

teacher knowledge.  In this chapter, the two frameworks which were used as lenses for 

deconstructing the tasks as a precursor to developing analytical rubrics for scoring the PTs‘ 

response to the tasks is explained. A description of the coding developed for the CK, PCK 

and TCK knowledge constructs is presented. 

 

Chapter 5: Deconstruction of the tasks and rubrics 

In this chapter my discussion is focused on the tasks utilized in the study and the analytical 

rubrics designed to examine the PTs‘ responses to the tasks. The tasks were designed to elicit 

technological pedagogical content knowledge (TPACK) constructs. In this chapter, I 

demonstrate how I deconstructed the tasks to provide a description that elaborates the critical 

components of the sub-tasks, the expectations of each sub-task and the TPACK construct that 

each sub-task tested. It also displays how the deconstruction of the tasks which is followed by 

a description of the rubrics were employed to qualify the responses to each task. The analytic 

rubrics were designed to capture TPACK-related evidence. 
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Chapter 6: Analysis by TPACK component: Prospective teachers’ geometry knowledge 

(CK) 

This chapter presents the results and findings relating to the aspect of content knowledge 

(CK) construct of the technological pedagogical content knowledge (TPACK). Both 

quantitative and qualitative analysis of the rubric scores of the individual cases‘ responses to 

the CK tasks is presented. Throughout this chapter and the subsequent two chapters, I discuss 

the trends within and across tasks and presented exemplary PTs‘ responses to written tasks 

and interview excerpts. In investigating ‗what CK do the PTs display?‘ I have examined what 

the PTs‘ identified and recognized in the perceived figure and studied the types of 

connections that PTs made between representations, properties and theorems. In this chapter, 

I present and discuss the CK findings by using the PTs‘ responses (both from written tasks 

and from interviews). I bring forth what I considered prominent, absent or assumed by PTs 

within and across the CK tasks.  

 

Chapter 7: Analysis by TPACK component: Prospective teachers’ geometry 

technological content knowledge (TCK) 

This chapter presents the results and findings relating to the aspect of technological content 

knowledge (TCK) construct of the technological pedagogical content knowledge (TPACK) 

framework in response to the second research question ‗What technological content 

knowledge does the PTs display about GeoGebra-constructed geometric diagrams?‘ Both 

quantitative and qualitative analysis of the rubric scores of the individual PTs‘ responses to 

the TCK tasks and the PTs‘ scores across each task is presented. In this chapter, I present and 

discuss the TCK findings by using the PTs‘ responses (from screen cast recordings of the 

tasks and from interviews) to bring forth what I consider prominent, absent or assumed by 

PTs within and across the CK tasks. 

 

Chapter 8: Analysis by TPACK component: Prospective teachers’ geometry 

pedagogical content knowledge (PCK) 
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This chapter focuses on discussing the results and findings relating to the aspect of 

pedagogical content knowledge (PCK) construct of the technological pedagogical content 

knowledge (TPACK) framework in response to the third research question ‗What 

pedagogical content knowledge do the PTs display?‘ As in the preceding chapters, both 

quantitative and qualitative analysis of the rubric scores of the individual PTs‘ responses to 

the PCK tasks and PTs‘ scores across each task is presented. An overview of how the 

pedagogical content knowledge construct was conceptualized in the study and a description 

of the analytical framework employed to interpret the responses to the PCK tasks is 

articulated. In this chapter, I present and discuss the PCK findings by using the PTs‘ 

responses (both from written tasks and from interviews). I bring forth what I consider 

prominent, absent or assumed by PTs within and across the PCK tasks. 

 

Chapter 9: Summary of findings and conclusions  

In this concluding chapter, I present a discussion of findings pertaining to aspects of 

prospective teachers‘ circle geometry technological pedagogical content knowledge. The 

findings from the research questions are interpreted with the discussion located within 

existing literature and Mathematics Education practices. A synthesis of the interplay of CK 

within the TCK and PCK constructs is explored to reveal the PTs‘ TPACK. The chapter ends 

by pronouncing the study‘s contribution, limitations and recommendations. 
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CHAPTER 2 

LITERATURE REVIEW AND THEORETICAL FRAMEWORK 

2.0 Introduction 

In this chapter I review literature related to the theoretical framework and the empirical 

studies that guided and informed this research study. The technological pedagogical content 

knowledge (TPACK) framework and its constructs are discussed in the context of 

mathematics teaching practice and teacher preparation. Relevant literature associated with the 

integration of the three knowledge domains of content knowledge, technology knowledge and 

pedagogical knowledge within the dynamic geometry environments in teacher preparation is 

questioned and discussed. Gaps of prospective teacher knowledge constructed in the contexts 

of re-learning school geometry, learning geometry with technology and planning to teach 

geometry with technology are identified. Since the TPACK framework is at the centre of this 

research, the literature reviewed directly relates to the theoretical framework, rendering it 

necessary to present a synthesis of both the literature review and the theoretical framework. 

 

2.1 Integrating technology into mathematics teaching and learning 

Technology in the teaching and learning of mathematics has been studied in several 

developmental research projects globally. Studies of computer use in school mathematics 

have largely examined innovations linked to developmental research projects. Many of these 

studies have investigated teacher participation and computer use in these developmental 

projects against the background of computer-based resources. For example, use of diverse 

interactive video materials to support a range of mathematical tasks at secondary level in 

England (Phillips & Pead, 1995), using GeoGebra to teach upper secondary level 

mathematics (Lu, 2008), and the influence of dynamic geometry software on plane geometry 

problem solving strategies (Aymemi, 2009). Jaworski (2010) studied the challenges of using 

GeoGebra as a tool directed at generating conceptual understanding through exploration and 

inquiry for undergraduate mathematics students. Niess (2005) investigated the development 

of prospective mathematics teachers‘ technological pedagogical content knowledge (TPACK) 
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in a subject specific, technology integrated teacher preparation program. Collaboration and 

partnerships on projects and studies on technology in mathematics in higher education have 

recently been on the rise, with developing the use of technology to support teaching and 

learning being identified as a priority in most of these projects. 

 

Although the technology community has advanced the benefits of integrating technology in 

education, there are discerning voices that have cautioned learning in technology-based 

environments. For example, research has shown that technology tools can engage students in 

authentic learning opportunities that enhance the development of basic and higher-order skills 

but United Nations Educational, Scientific, and Cultural Organization (UNESCO, 2008) 

warns that the success to integrate lies in the ability of the teacher to effectively integrate 

technology into classroom lessons. Drijvers and Trouchè (2008) have acknowledged the 

double jeopardy of teaching and learning mathematics in a technology-based environment, 

given the complexities of teaching and learning and the complexities of use of the technology 

tool. Mathematics teachers should be knowledgeable about mathematics content and 

pedagogy, in relation to technology integration in learning. Drijvers and Trouchè (2008, p. 

364) elucidate on the double reference phenomenon which is the double interpretation of 

tasks by teachers and learners giving an example where ―tasks that address mathematical 

concepts may be perceived to address how the computer environment would deal with such a 

task.‖  

 

It goes without saying that technology may change the use, teaching and learning of 

mathematics. The new technology has not only made calculations and graphing easier, it has 

changed the very nature of the problems which are important to school mathematics and the 

methods mathematicians use to investigate them (National Council of Teachers of 

Mathematics, 1989). However, Dick (2008) warns that to facilitate mathematics learning, 

technology tools should conform to pedagogical fidelity, mathematical fidelity and cognitive 

fidelity. That is, technology tools should support the development of pedagogy, mathematics 

and cognitive development of concepts. Even several decades ago, scholars such as Salomon, 

Perking & Globerson (1991) argued that technology tools have changed the balance between 

accessing prior knowledge and constructing new knowledge with the scale tipped towards 

construction of new knowledge.   
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I understand integrating technology into the learning discourse as using technology within the 

existing curriculum.  This implies that curriculum should be flexible in order to incorporate 

technology-based tools so that new learning environments that engage learners in 

constructivist approaches to learning may be developed. However, a simple combination of 

hardware and software will not make integration naturally follow (Earle, 2002). Needless to 

say, the essential role of technology in education is that ―technology environments allow 

teachers to adapt their instruction and teaching methods to their students‘ needs‖ (NCTM, 

2000:24). It is imperative to acknowledge that the role of the teacher changes in technology 

environment to that of a technology mediator.  To mediate learning in a technology 

environment, NCTM (2000:25) ―teachers select or create mathematical tasks that take 

advantage of what technology can do efficiently and well-graphing, visualizing, and 

computing‖.  

 

Various research studies have been done on the integration of technology into mathematics 

teaching and learning. Isikal and Askar (2005) examined the effectiveness of spreadsheets 

and dynamic geometry software on mathematics achievement and mathematics self-efficacy. 

The results showed that using technology effectively as a learning tool improved students‘ 

mathematics achievement. The major benefit of integrating technology into teaching and 

learning of mathematics is that technology provides opportunities to engage students with 

different mathematical tasks and activities so as to develop mathematical skills and levels of 

understanding (Hollebrands, 2007). Further, it helps learners to ―visualize certain math 

concepts better and add new dimensions to the teaching of mathematics‖ (Van Voorst, 

1999:2). Studies have shown that teachers experience barriers in the integration of ICT into 

the classroom. Some of the barriers are lack of TPACK, lack of software, teacher resistance, 

and lack of vision as to how to integrate ICT in instruction (Jones, 2004; Snoeyink & Ertmer, 

2001). Nonetheless, Hollebrands, Laborde, and Sträβer (2008) assert that teacher experiences 

with technology-based environments have been found to improve teacher knowledge of 

mathematics. This improvement is largely due to the four-stage processes proposed by Zbiek 

& Hollebrands (2008) namely: stage 1- teachers learn the technology, stage 2- teachers learn 

to do mathematics with technology, stage 3- teachers use technology with students, and stage 

4- teachers attend to student learning in the context of technology.  The participants of the 

study are prospective teachers who are both learners of technology and are learning to do 
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mathematics with technology. Therefore, my study involved Zbiek & Hollebrands (2008) 

stages 1 and 2. 

2.2 Technology and mathematics teacher education 

The focus of teacher education is to prepare and develop teachers through robust programmes 

aimed at enhancing teacher professional knowledge. However, new trends in education are 

emphasizing the importance of learning with technology instead of learning from technology 

(Jonassen & Crismond, 2008). A study by the National Assessment of Educational Progress 

(NAEP) (1996) revealed that teachers who received training in the area of instructional 

technology are more likely, than those who had not, to use computers effectively. Teacher 

education programs should not just prepare teachers to handle software and other digital 

tools, but must relate the technology to mathematics content knowledge (CK), teacher 

pedagogical knowledge (PCK) and technology, pedagogy and content knowledge (TPACK).  

The types of teacher development programs have an effect on decisions that teachers make 

about use of technology for teaching purposes. Lederman and Neiss (2000) purport that 

teacher preparation programs often emphasize learning about technology instead of learning 

about integration of technology into classroom teaching.  

 

I regard mathematics teacher education programs to be channels for producing teachers who 

are prepared to integrate technology into the mathematics classroom. It is through the 

intervention of mathematics teacher educators that PTs can make informed decisions on 

teaching in a technology-rich environment. According to the International Society for 

Technology in Education (2000), the challenge is for teacher education programs to produce 

and develop computer literate teachers who are confident in their ability to appropriately 

choose and incorporate instructional technology into their classroom teaching. Teacher 

educators should advocate for programs that emphasize the ability of teachers to make use of 

technology by effectively integrating technology into teacher education programs.  

 

Research on the use of technology in education has prompted teacher educators to prepare 

teachers ‗who can utilize technology as an essential tool for developing a deep understanding 

of the subject-matter and the pedagogy  (Drier, 2001:173).  Teachers need to master the new 

technologies as these evolve rapidly. Digital technology usage in some schools in South 

Africa can be seen as a step into taking advantage of availability of learning artefacts, but this 
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study raises the question of teacher ability to infuse these artefacts into teaching practices. 

The rapid development of new technologies has reduced the life span of current technologies, 

requiring that users need to keep up with these developments. Mathematics educators have 

shown interest in incorporating DGE‘s within their undergraduate PTs‘ programmes. For 

instance, Angeli (2005) assessed PTs‘ technology competency in science PCK. Studies have 

examined PTs‘ experiences in technology-enhanced programs. Haciomeroglu, Bu and 

Haciomeroglu (2010) observed PTs participation in GeoGebra-based activities in a teacher 

education course. These studies bring forth the need for teacher educators to acknowledge the 

crucial role that technology has on teacher education and in understanding teaching and 

learning in different discourses. This study realised the dearth of research in technology 

integration in mathematics teacher education in South Africa. South African PTs are re-

learning mathematics and are learning to teach mathematics with technology in line with the 

South Africa education system that endeavours to shift from a typical traditional classroom 

into a technology-rich classroom. In 2014 the Department of Basic Education rolled out a 

pilot project for using tablets in the Gauteng schools in pursuit of a paperless classroom. As 

mentioned in Chapter 1, as mediators of mathematics learning PTs should experience 

technology first if they are to integrate technology into classroom mathematics learning.  

Mathematics teacher education programs need to prepare PTs so that they are able to consider 

the mathematics content, the technology in use and the pedagogical methods employed in 

teaching the content. PTs are expected to integrate both mathematical knowledge and 

knowledge about the technology tools in mathematics teacher preparation within 

methodology courses. In such programs, knowledge is derived from experience for which I 

conjecture that teacher knowledge is influenced and framed by teacher practical experiences 

with tools.  

2.3 Theoretical framework: Technological pedagogical content knowledge (TPACK)  

Various researchers have acknowledged the complexities of integrating technology in 

teaching and learning  (Angeli & Valanides, 2009; Artigue, 2002; Drijvers & Gravemeijer, 

2005; Guin & Trouche, 1999;  Laborde, Kynigos, Hollebrands & Strässer, 2006; Niess, 2005; 

Trouche, 2004). The complexities of integrating technology in teaching have led researchers 

to advance various models of integrating technology in Mathematics Education. Wang (2008) 

proposed a generic model, consisting of pedagogy, social interaction and technology. Niess et 

al. (2009) proposed a framework that describes and guides the process of teachers‘ learning 
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as teachers develop their TPACK. According to Christou, Jones, Mousoulides and Pittalis 

(2006) solid theoretical frameworks that provide reliable innovative reference models are 

essential in informing the design of technology-rich learning environments. I bring forth two 

frameworks that are aligned with the crux of my study; the instrumental approach to the use 

of technological tools in teaching and learning, and the technological pedagogical and content 

knowledge framework. The instrumental approach and the TPACK are considered 

appropriate lenses for the study of prospective secondary mathematics teachers‘ knowledge 

development as they work on a set of GeoGebra tasks where such tasks are designed to 

advance both mathematics knowledge and technology knowledge.  To understand the kind of 

knowledge teachers need within computerized environments, it is necessary to understand 

teachers‘ experiences as they relate to technology, that is, their instrumental genesis. I concur 

with Haspekian (2005:133) who argues that ―from a teaching point of view, integrating a tool 

requires that the teacher simultaneously takes into account the different dimensions: the tool‘s 

features, the instrumented techniques and the concepts involved‖. Instrumental genesis 

acknowledges that instruments have a profound effect on the cognitive functioning of the 

user. According to Lagrange (2005), the cognitive structure is made of knowledge about the 

artefact and mathematical knowledge related to the domain of use. 

 

It is essential to deliberate on literature related to the instrumental approach since it has a link 

to the teacher technological content knowledge (TCK), one of the TPACK constructs that are 

of interest in this research study.  Premised on the Mishra and Koehler (2006) contention that 

PTs should know mathematics content and the manner in which content can be changed by a 

technology tool, the instrumental approach and TPACK provide a platform for examining 

teacher technology pedagogical content knowledge for teaching geometry. The instrumental 

approach, although back-grounded in this study, appropriately lends a critical view of the 

potentialities and constraints of GeoGebra for teaching and learning purposes in teacher 

education programs. For example, in their study which used the perspective of the 

instrumental approach, Drijvers and Gravemeijer (2005, p. 186), found that ―students can 

only understand the logic of a technical procedure from a conceptual background‖. My study 

investigated PTs‘ TCK and the findings corroborated  Drijvers and Gravemeijer‘s (2005) 

argument that users who have technical difficulties are more likely to have little or no 

grounded mathematical conceptual background.  
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The instrumental approach is a foundational theoretical framework for studying the use of 

technology tools (Guin & Trouche, 1999; Heid, 2002; Lagrange, 1999).  This framework has 

been applied in studies on computer algebra systems (CAS) and dynamic geometry systems 

(DGS). Research on technology integration has revealed that mathematical knowledge is 

linked to knowledge of how to use the tool (Artigue, 2002; Laborde, 2003; Lagrange, 1999). 

The instrumental approach was developed by Vèrillon and Rabardel (1995). It resonates with 

Vygotsky‘s notion on tool use, in which tools are considered mediators of human activity. 

The approach has been applied by French mathematics educators such as Artigue (2002), 

Haspekian (2005); Kieran and Drijvers (2006); and Drijvers and Trouchè (2008) in their 

research on the integration of technology into the learning of mathematics.  

 

The approach provides a psychological and socio-cultural framework for learning processes 

in a technological environment where it is understood that tools mediate between the human 

activity and the environment. It is an approach through which researchers can make sense of 

learners‘ use of technological tools and the potential impact of tool use on learners‘ mental 

processes in the context of mathematical activities. The instrumental approach involves three 

constructs, namely: the instrument, subject and object of activity. The instrumental approach 

has been utilized by various researchers such as Haspekian (2005) who studied the 

integration of spreadsheets into mathematics learning. Drijvers and Gravemeijer (2005) 

investigated the relationship between computer algebra use and algebraic thinking using the 

instrumental approach perspective, concluded that users who have technical difficulties are 

more likely to have no grounded mathematical conceptual background.  

 

Researchers are in unison that the process of the instrumental genesis, which is described as a 

two way learning process in the technological environment, is a complex process that is 

dialectic (Artigue, 2002; Guin & Trouche, 1999). Instrumental genesis (hereafter referred to 

as IG) simply involves the two processes through which the subject acts on the instrument 

and the instrument acts on the subject‘s thinking. Hoyles and Noss (2003) refer to the process 

of IG as a relationship between tool and learner where the tool shapes the thinking of the 

learner, but the tool is also shaped by the learner thinking. IG has two processes; 

instrumentation and instrumentalization. These processes occur simultaneously in an 

interrelated two way direction.  
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Instrumentation is a subject-oriented process through which the subject conceptualizes the 

task through the effects of using the tool. The subject understands the task through the use of 

the instrument by developing techniques and schemes through the use of the tool. The tool 

shapes the actions of the subject. It is the process through which the potentialities or the 

constraints of the artefact are exposed (Artigue, 2002; Guin & Trouche, 1999; Trouche, 

2004). For instance in relation to this study, if the structure of GeoGebra constrains the PT 

when solving a geometry problem, then the PT must change the activity or the execution 

techniques according to the structure of GeoGebra.  

 

Instrumentalization is when the subject uses the instrument in specific ways. 

Instrumentalization is the construction of schema oriented towards the instrument, that is, the 

appropriation and transformation of the instrument by the subject. Compared to 

instrumentation, the instrumentalization process is artefact-oriented. The instrument becomes 

the means to solve the mathematical problem. Laborde (2003) contends that the use of the 

tool changes the way to do mathematics with a specific appropriation of the tool required. 

Monaghan (2003, p. 6) defines appropriation as ―an everyday word associated with making 

something your own‖. 

 

Researchers in the field of technology integration in teaching and learning employ the 

technological pedagogical content knowledge (TPACK) framework to study the development 

of teacher knowledge about technology integration (Lee & Hollebrands, 2008; Mishra & 

Koehler, 2006; Niess, 2005). Mishra and Koehler (2006) developed TPACK framework 

drawing from Lee Shulman‘s (1986) pedagogical content knowledge (PCK) framework. 

Teacher knowledge for technology integration is built on the interaction among three bodies 

of knowledge: domain-specific content knowledge, pedagogical knowledge, and technology 

knowledge (see Figure 2.1). For instance it is necessary to understand mathematical concepts 

and their inter-relationships so as to determine how these can be represented within the 

mathematics software. Confrey and Maloney (2008) further emphasize that teachers‘ content 

knowledge is transformed in the context of problem solving and multiple representations of 

concepts. TPACK focuses on the knowledge needed to teach well with technology.  
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Figure 2.1: TPACK framework and its knowledge components  

 

The technological pedagogical content knowledge (TPACK) framework is a prerequisite to 

effective integration of technology in education. Mishra and Koehler (2006) explicate that 

TPACK is the interaction of these bodies of knowledge, both theoretically and in practice, to 

produce the types of flexible knowledge needed to successfully integrate technology use into 

teaching. Mishra and Koehler (2006, p. 63) describe the knowledge constructs as follows: 

 

Content Knowledge (CK) is teachers‘ knowledge about the subject matter that includes 

knowledge of concepts, theories, ideas, organizational frameworks, knowledge of evidence 

and proof, as well as established practices and approaches toward developing such 

knowledge.  

Pedagogical Knowledge (PK) is teachers‘ deep knowledge about the processes and practices 

or methods of teaching and learning. It includes knowledge about techniques or methods used 

in the classroom; the nature of the target audience; and strategies for evaluating student 

understanding. 

Technological Knowledge (TK) is the knowledge about various technologies, requires a 

deeper, more essential understanding and mastery of certain ways of thinking about and 

working with technology. 
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Pedagogical Content Knowledge (PCK) is knowledge of pedagogy that is applicable to the 

teaching of specific content. It covers the core business of teaching, learning, curriculum, 

assessment and reporting, such as the conditions that promote learning and the links among 

curriculum, assessment, and pedagogy. 

Technological Content Knowledge (TCK) is knowledge needed to understand which specific 

technologies are best suited for addressing subject-matter learning in their domains and how 

the content dictates or perhaps even changes the technology—or vice versa. 

Technological Pedagogical Knowledge (TPK) is the knowledge needed for a deeper 

understanding of the constraints and affordances of technologies and the disciplinary contexts 

within which their function is needed. 

Technological Pedagogical Content Knowledge (TPACK) is the desirable knowledge needed 

for effective teaching with technology, requiring an understanding of the interactions among 

content, pedagogy, and technology knowledge on the basis in which these domains and 

contextual parameters interrelate. It is the intersection of the three knowledge domains that 

teachers need to implement the curriculum whilst supporting learner thinking and learning 

with technologies for specific content.  

 

In the context of this study, the TPACK framework constructs were defined in this manner: 

CK is PTs‘ knowledge about circle geometry that includes knowledge of concepts, theorems 

and proofs; PK is the PTs‘ knowledge about the processes and practices or methods of 

teaching and learning  geometry; TK is the knowledge about GeoGebra, that requires a 

deeper, more essential understanding and mastery of certain ways of thinking about and 

working with GeoGebra; PCK is knowledge of pedagogy that is applicable to the teaching of 

circle geometry; TCK is knowledge needed to understand how GeoGebra is best suited for 

addressing learning circle geometry; TPK is knowledge needed for a deeper understanding of 

the constraints and affordances of GeoGebra for teaching circle geometry; TPACK is the 

knowledge needed for teaching circle geometry with GeoGebra effectively. 

 

Harris, Mishra and Koehler (2009) stress that TPACK is professional knowledge that 

teachers need to have in order to  meaningfully incorporate pedagogy and technology within 

the content they teach. Koehler and Mishra (2009, p. 9) elaborate that this professional 

knowledge is about effective teaching with technology, requiring an understanding of the 

representation of concepts using technologies; pedagogical techniques that use technologies 
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in constructive ways to teach content; knowledge of what makes concepts difficult or easy to 

learn and how technology can help redress some of the problems that students face; 

knowledge of students‘ prior knowledge and theories of epistemology; and knowledge of 

how technologies can be used to build on existing knowledge to develop new epistemologies 

or strengthen old ones. 

 

The TPACK framework acknowledges the complexities involved in understanding the 

relationship between technology, pedagogy and content (Harris & Koehler, 2009; Koehler & 

Mishra, 2009; Mishra & Koehler, 2006). The teacher knowledge phenomenon is drawing 

much debate, with various studies utilizing different approaches to measure the TPACK 

construct. Although there are quite a substantial number of research studies on TPACK, the 

framework is still under-researched, with questions raised on how to measure this 

phenomenon (Angeli & Valanides, 2009; Graham, 2011, Koehler & Mishra, 2009).  Koehler 

and Mishra (2009) stress that to understand TPACK, one should view the three knowledge 

domains not in isolation but as interrelated. Classroom observations, interviews and 

document analysis are among the various techniques employed to study TPACK in relation to 

teacher proficiency in technology, technology adoption, perceptions, evaluation, and 

technology infused within a course (Angeli & Valanides, 2009; Koehler & Mishra, 2005; 

Koehler & Mishra, 2009; Schmidt & Shin, 2009). 

 

Critics of the TPACK framework contest the definition and clarity of the TPACK construct 

based on the argument that TPACK is developed from the PCK concept, which took 

researchers decades to define (Angeli & Valanides, 2009; Archamboult & Barnett, 2010; 

Graham, 2011) and is still undergoing development. Graham (2011) contends that the lack of 

a more precise definition of the framework has major implications for understanding and 

measuring the TPACK constructs.  For example, when defining the technological content 

knowledge construct some association with pedagogical knowledge is made although 

pedagogical knowledge has no link with technological content knowledge (Graham, 2011). 

The integrative approach towards understanding the TPACK framework dictates that TPACK 

should be understood as a combination of various types of knowledge. Such an approach 

suggests that the TPACK constructs cannot be viewed in isolation. Perhaps such lack of the 
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precise definition of TPACK and its constructs creates the fuzziness of boundaries between 

the constructs. 

Despite the fuzziness of the framework, I concur with Archamboult and Barnett (2010) who 

caution that researchers need to understand the relationship between the three domains of 

content, technology and pedagogy, acknowledging the complexities of these knowledge 

domains. TPACK provides a comprehensive frame for understanding the integrated system of 

thinking in investigating teacher knowledge. There is well documented research on the 

development of TPACK for teachers in practice but less is known about TPACK in the 

teacher education discourse and specific disciplines. I present in the next sections arguments 

for content knowledge (from a geometry cognitive point of view), pedagogical content 

knowledge and technological content knowledge in teacher preparation. 

 

2.4 Geometry content knowledge (CK) construct 

According to the TPACK framework, content knowledge (CK) is the knowledge of concepts, 

facts, and principles of the subject matter. The term ―geometry content knowledge‖ is 

conceptualized in this study as a prospective teacher‘s ability to relate to diagrams, figural 

properties and theorems. The following sections discuss CK in terms of connections in 

geometry and understanding geometry from a cognitive perspective. The argument is based 

on the role of connections within the geometry structures and on Duval‘s (2006) conception 

that in order to understand learners‘ knowledge acquisition, one needs to analyse what 

learners produce in the process of learning mathematics (geometry). 

 

Connections in geometry 

Geometry ideas are organized in connected structures and this study contends that PTs‘ 

understanding and appreciation of the connectedness of the geometry concepts, knowing how 

to recognize interesting geometrical problems and theorems, can provide insight into their 

geometry CK and their ability to formulate and make deductions using geometry ideas. For 

instance, Koedinger and Anderson (1990) posit that strong competency in geometry can be 

recognized by the ability to use diagrammatic configurations to infer appropriate geometry 

CK in problem solving. Making mathematical connections is the ability to recognize and 

file:///F:/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/limit%20car%20rental/i
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make linkages between and among mathematical ideas. Being able to make mathematical 

connections depends on a view of mathematics as a coherent structure comprising interrelated 

concepts. I am of the view that to understand or investigate one‘s knowledge of geometry, the 

descriptions of the forms of connections made in the geometry CK tasks reveal proficiency in 

geometry. In order to facilitate mathematical understanding and creative thinking, teachers 

should design good mathematical tasks that are used to achieve a variety of goals (Vale & 

Pimentel, 2011). The role of CK tasks is to stimulate students‘ cognitive processes (Hiebert & 

Wearne, 1993), initiate fruitful mathematical activity (Mason & Johnston-Wilder, 2006) and 

provide genuine learner engagement (Watson & Sullivan, 2008). But how are these 

connections identified, defined and classified? Literature on connections in mathematics is 

vast but I draw on the work of Businskas (2008) and Mhlolo (2012) about how mathematics 

teachers conceptualize mathematical connections in their practices. Businskas (2008) 

investigated and developed a model to describe and classify teachers‘ conceptions of 

mathematical connections they made when teaching different mathematics topics. Businskas‘ 

(2008:154) categories of mathematical connections are: 

1. Different representations: connections made when the same concept is represented in two 

or more ways 

2. Implications: connections made when one concept leads to another in a logical form, IF 

... THEN... 

3. Part-whole relationships: connections made when one concept is linked to another in 

some sense of part and whole.  

4. Procedures: connections made when an algorithmic procedure is associated with a 

particular concept. 

5. Instruction-oriented connections: connections made when mathematical objects are linked 

because they share some pedagogical purpose. 

 

Deliberations on mathematics connections tend to dominate discussions of how mathematical 

connections are viewed within the mathematics education discourse. Ma (1999) maintains 

that connections link together concepts to a specific mathematical notion, which she refers to 

as concept knots. Businskas‘ (2008) conception of mathematical connections as constructed 

by the learner is of particular interest in that when viewed in this manner connections reveal 

how behaviours and thought processes are constructed and organized. Mhlolo (2012) 

developed a tool for identifying mathematical connections based on Businskas‘ (2008) 
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classifications connections made by teachers in practice. Although Businskas (2008) and 

Mhlolo (2012) bring forward evidence of understanding connections made by teachers in 

practice, I maintain that connections should be explored in teacher preparation as well. Both 

researchers studied the connection across mathematics content areas, but my study focuses 

only on geometry. As mentioned earlier, geometry is organized according to structures. I 

raise some questions relating to connecting geometry ideas in teacher preparation and it is 

through such interrogations that this study developed categories of connections made by PTs 

when working with geometry tasks (see Chapter 6). How can connections made by 

prospective teachers when responding to geometry tasks be classified and characterized? 

What type of connections do the PTs employ to identify and describe geometric properties, 

theorems and representations? What do these mathematics connections reveal about PTs‘ 

geometry CK? 

 

Adler (2004), a renowned researcher in mathematics teacher professional knowledge, 

strongly puts forward that opportunities should be made available for PTs to re-learn school 

mathematics in South Africa. This call is based on the contention that PTs‘ CK is weak 

(Pournara, 2009). Goos (2013) argues that school mathematics CK acquired at school is 

inadequate and should be revisited during teacher preparation. Yet again, the history of 

geometry knowledge in the post-apartheid South African school curriculum portrays a void 

impacted by the weak and lack of school geometry CK. This study identified the need to 

understand PTs‘ mathematics knowledge that is constructed in the contexts of learning or re-

learning school geometry, learning geometry with technology and planning to teach geometry 

with technology. As mentioned in Chapter 1, very little research exists that explores the 

complexities of South Africa‘s prospective teachers‘ geometry CK and pedagogical content 

knowledge. Mathematics Education programs need to focus on both the PT as a learner of 

geometry and the PT as a teacher of geometry. It is well documented that South African 

Grade 12 learners have weak geometry CK (Atebe 2008; Feza & Webb 2005, Luneta, 2014). 

Whereas Nakin (2003), Padayachee, Boshoff, Olivier and Harding (2011) and Jansen and 

Dardagan (2014) provide evidence that undergraduates (engineering) are underprepared for 

university mathematics, there is not much mentioned about mathematics PTs. In South 

Africa, some PTs lack prior knowledge of geometry because they have never learnt geometry 

at school. So there is a need to address how the PTs learn the geometry content and the 
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pedagogical aspects of PTs‘ knowledge of geometry (De Villiers, 1997; van der Sandt, 2007; 

van der Sandt & Nieuwoudt, 2005). 

 

Geometric cognitive processes and apprehensions 

Several frameworks for geometrical reasoning were proposed by research studies in the 

1990‘s that aimed at understanding the processes of teaching and learning geometry. Jones 

(1998) suggests the van Hiele‘s (1986) model of thinking in geometry, Fischbein‘s (1993) 

theory of figural concepts, and Duval (1995) cognitive apprehensions for geometric 

reasoning. The van Hiele (1986) model is prominent among studies on geometry knowledge 

in South Africa. For example van der Sandt (2007), van der Sandt and Nieuwoudt (2005), 

Atebe (2008) and Luneta (2014) employed the van Hiele model of geometry thinking to study 

geometry knowledge at primary, secondary and tertiary education. The Duval model is of 

particular interest for this study as it is more concerned with understanding the development 

of cognitive processes as revealed when solving geometry problems (Duval, 1998, 2007). 

Duval (1995) suggests an analytic theory for analysing thinking processes involved in a 

geometric activity. Several studies refer to this theory (Torregrosa and Quesada, 2008: 

Gagatsis et al., 2010).  

 

In its endeavour to promote mathematical understanding, teacher preparation should discuss 

possible ways of exploring learning using tasks developed in different contexts. Shimizu, 

Kaur, Huang and Clarke (2010, p. 4) suggest that ―attention should be given to the analysis of 

cognitive demands enacted by tasks‖. In addition, Duval (1995), Laborde (2004) and 

Gagatsis et al. (2010) note that geometry tasks require an interaction with diagrams and the 

use of visualization to perceive the figures and their properties. How do the PTs appropriate 

their geometry knowledge in the context of integration of technology in teacher preparation? 

That is, teacher preparation should prepare PTs competent enough to visualize, construct and 

reason to reflect their knowledge and understanding of geometric processes. Diagrams, as 

representations, are a means to reasoning in geometry (Duval, 1995; Herbst, 2004; Laborde, 

2004). Theoretically, geometry develops mathematical processes such as analytical, visual 

and logical thinking (Jones, 1998; Laborde, 2004; Duval, 2006; Goos, et al., (2010). 

According to Duval (1998: 38-39), from the cognitive point of view, learning geometry 

involves three cognitive processes; visualization, construction and reasoning (see Figure 2.2). 
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These cognitive processes can occur separately or simultaneously in a geometric activity or 

task. According to Torregrosa and Quesada (2008: 321) students ―must coordinate the 

various cognitive processes and representational registers either from a mathematical or from 

a cognitive viewpoint in order to construct proofs in problem-solving‖. 

 

Figure 2.2: interactions of cognitive processes (Duval, 1998) 

 

Figure 2.2 shows how the cognitive processes are connected. The arrows indicate how the 

processes support each other. Given a GeoGebra-based task like Task 1(c), (see Chapter 4), 

the construction process will require the three processes. Arrows 1, 3, 4 indicate that 

visualization of the figure through perceptual apprehension can be supported through 

reasoning about deconstructing the figure and its figural units; reasoning about the properties 

will support the construction with the GeoGebra construction tools. Arrow 2 shows that 

reasoning is not always supported by visualization. That is, what is seen does not always 

correspond with reasoning. Arrows 5A and 5B suggest that reasoning can possibly be 

independent of the other cognitive processes. The cognitive processes explained are: 

 

Visualization processes: Several definitions of visualization are presented. According to 

Hershkowitz, Ben Haim, Holes, Lappan, Mitchelmore, and Vinner (1990:75) visualization is 

―the ability to represent, transform, generalize, communicate, document, and reflect on visual 

information‖. Similarly, Presmeg (1997:304) purports that it is ―the process involved in 

1 
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CONSTRUCTION 

(Using tools: ruler, compass or DGE) 

(Identification of gestalts and configurations in 2D or 3D) 
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(A: Speech for naming, describing or argumentation) 
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constructing and transforming visual mental image‖. Whereas Duval (2002:322) refers to 

visualization as ―the cognitive activity that is intrinsically semiotic, that is, neither mental nor 

physical…There is no understanding without visualization‖. Further on, Duval (1999:13) 

explains that the visualization process ―shows relations or, better, organization of relations 

between representational units‖. Duval (1998) explains that the visualization processes 

involve space representation of a statement, heuristic explorations and verifications.  

 

Construction processes: The processes involve actions where ―geometrical configurations 

can be constructed according to restricted tools and mathematical properties of the 

represented objects‖ (Duval, 2002:232). 

 

Reasoning relates to the discursive processes to extend knowledge, for proof and 

explanations (Duval, 1998:38). To reach a logical conclusion one needs to reason 

mathematically (geometry reason inclusive). Discursive processes include explanations of 

figural or geometric processes, using speech through descriptions and argumentations. 

 

In recent years, interest in understanding visualization and reasoning in geometry has risen 

with much focus on figural representations. Several studies are built on Duval‘s (1995) notion 

of apprehensions which links the cognitive processes within a geometrical situation. 

Originally, Duval used the term ―grasp‖ of a geometric context,  but ―grasp‖ was later 

modified to ―apprehension‖ of not only a geometric context but of a geometry figure or a 

visual stimulus. Duval‘s (1995) cognitive apprehension theory was utilized in this study 

aiming at understanding the PTs‘ visualization, construction and reasoning processes when 

making connections between representations, properties and theorems. The cognitive 

apprehensions are: perceptual, sequential, operative and discursive. See Chapter 5 for an 

elaboration of how the apprehensions were conceptualized in this study as an interpretative 

tool for understanding PTs thinking about geometry. Duval (1995) brought forward the four 

apprehensions to analyse and explain learner proficiency and/or competence when relating 

with figural representations. What are these apprehensions and how do they relate to the 

cognitive processes? 

 

Perceptual apprehension: involves that which is recognized and discriminated at a glance in 

a figural representation. It is linked to the visualization process. 
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Discursive apprehension: the organized description of that which is perceived. For example, 

learners describe that which they can see. It involves connections between the identified 

configurations and mathematical principles through speech, discursive statements, language, 

symbols, etc. Charalambos (1997: 2093) contend that  

 

“the mathematical properties in a figure cannot be defined of a simple visual 

confirmation. A figure is examined according to a “denomination” (We consider one 

...), explanation, or a supposition which determine some properties precisely”.  

 

The discursive apprehension is linked to the reasoning process. In this study, discursive 

apprehension is conceptualized as (a) the ability to connect configuration(s) with circle 

geometric principles, (b) the ability to provide good descriptions, explanations, 

argumentations, deductions, use of symbols, and reasoning depending on statements made on 

perceptual apprehension, and (c) the ability to describe figures through geometric 

language/narrative texts (Duval, 1995).  

 

Sequential apprehension: relates to the cognitive process of construction but can also provide 

a basis for reasoning. It involves the sequence of construction of a figure or description of its 

construction relying on the mathematical and technical constraints of the construction tool. 

To sequentially apprehend a construct suggest the ability to describe or identify the order in 

which the figure was constructed depending on the mathematical properties of the 

configuration and the technical limits of the tool (see Figure 2.2). 

 

Operative apprehension: when working with geometric objects, one can physically or 

mentally operate them through re-orientation, splitting into sub-figures or transforming the 

figure. The mereologic, optical and place way modifications are distinctive ways in which 

figures can be modified in this apprehension. Splitting or combining a figure and/or sub-

figures is referred to a mereologic modification whereas optical and place way modifications 

are varying the size of a figure and varying its orientation. It is linked to visualization and 

reasoning processes. 
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Charalambos (1997); Jones (1998); Torregrosa and Quesada (2008); Chiang (2012) and Or 

(2013) are among scholars that have employed Duval‘s (1995, 1998) theory and opine that 

apprehensions intervene simultaneously or successively.  For example, Duval (1995: 155) 

stresses that ―operative apprehension does not work independently of the others, particularly 

of discursive apprehension‖. Both the perceptual apprehensions and the discursive 

apprehensions are required in the reasoning process of making connections between 

properties and theorems. There are situations where visualization is entrenched in the 

discursive process. I also base my rationale for the understanding of connections by 

acknowledging the position made by Torregrosa and Quesada (2008:2) that ―discursive 

apprehension is the cognitive activity which produces a connection between the identified 

configuration and certain mathematical principles (definitions, theorems, axioms, etc.)‖. My 

study employed Duval (1995, 1998) cognitive theory to characterize PTs‘ geometry CK. 

 

2.5 Technological content knowledge (TCK) construct 

Globally, technology integration is widely accepted as a tool for mathematics learning and 

teaching particularly in contexts which are based on constructivist pedagogical model. 

Researchers such as Kaput (1992); Laborde, Kynigos, Hollebrands, & Strässer (2006); Kaput, 

Hegedus, & Lesh (2007); Heid & Blume (2008) have studied the use of technology in 

teaching and learning. The broad area of agreement in research is the potential role that 

technology has on learner achievement and the enhancement of mathematics learner thinking. 

The most common findings are that teachers are either reluctant to use technology or use it 

ineffectively. The reluctance of practicing teachers to integrate technology into teaching 

mathematics after undergoing professional development has recently led researchers to 

expose the complexities of the phenomenon (Drijvers, Doorman, Boon, Van Gisbergen, S. & 

Gravemeijer, 2007; Steketee, 2005). This exposure has been emphasized through focusing 

research on designing and examining technology-based activities that are purported to 

enhance mathematical thinking.  Attention has and is been paid to the PT education 

programs. I concur with Angeli (2005 ) that the task of preparing PTs to become technology 

competent is difficult and requires many efforts aiming at providing them with ample 

opportunities during their education to develop the competencies needed to be able to teach 

with technology. Researchers acknowledge that mathematics methodology courses provide a 
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meaningful context within which the integration of technology can be pedagogically situated 

in the teaching of subject matter (Angeli, 2005; Li, 2005; Niess, 2005). 

 

Technological content knowledge (TCK) is the understanding of how both technology and 

mathematics content both aid and limit each other and address knowledge of how to represent 

content with emerging technology without considering a pedagogical context. According to 

Cox and Graham (2009) TCK is concerned with how content is represented with technology 

devoid of pedagogical context. Of all the seven constructs of the TPACK framework, TCK is 

the least researched (Hofer & Harris, 2012). However, I bring in assertions by Artigue 

(2002), Guin and Trouche (1999) and Trouche (2004) from the instrumental genesis point of 

views, that a display of TCK exposes the potentialities or the constraints of the artefact.  For 

instance in relation to this study, if the structure of GeoGebra constrains the PT when solving 

a geometry problem then the PT must change the activity or the execution of techniques 

according to the structure of GeoGebra. 

 

In their research on the link between research and software development, Sarama and 

Clement (2008:115) proposed that for any software to encourage mathematical thinking, its 

―learning trajectories should be based on models of cognition that have three components: 

goals, the developmental sequence specifying levels for goal attainment and instructional 

activities that facilitate learner growth‖. Laborde, Kynigos, Hollebrands, and Strässer (2006) 

further emphasize the importance of the interactions between students, instructors, tasks and 

technology in DGE.  

 

Technology has been employed to enhance understanding of concepts in various domains of 

mathematics. According to Highfield and Goodwin (2008) geometry, algebra and calculus 

have been well researched as domains exploiting the potential affordances of technology. 

Technology used for teaching and learning calculus addressed gaps from the traditional 

approach through the conception of ―dynamic approaches to numerical, symbolic, and 

graphical approaches, culminating in theories ranging from formal epsilon-delta analysis, 

which banished infinitesimals, to nonstandard analysis‖ (Tall & Piez, 2008:208). In their 

analysis of projects that investigated the use of technology in learning of rational number 

concepts, Olive and Lobato (2008:36) concluded that ―technological environments have 

contributed to a significant expansion between conceptual analysis of rational numbers and to 
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an understanding of relationship between children‘s whole number and rational number 

knowledge‖. In relation to algebra and technology, Heid and Blume (2008) contend that 

technology-based algebra curricula affect processes of mathematical activity, algebra content, 

and algebraic concepts and procedures. Heid and Blume (2008:423) suggest that approaches 

to teaching geometry within technology environment have changed the focus of the 

―traditional analytic and sequential approach of non-technological Euclidean geometry 

courses‖. Laborde (2003) contends that the use of the tool changes the way to do mathematics 

with a specific appropriation of the tool required. Monaghan (2003:6) defines appropriation 

as ―an everyday word associated with making something your own‖. The approach to 

geometry tasks instruction ―should enable students to effectively, meaningfully and 

purposefully employ geometry conceptual systems‖ (Battista, 2008:134). 

 

Dynamic Geometry Environments (DGE) in mathematics education were popularized in the 

1990‘s, with the evolution of Dynamic Geometry Software (DGS) like Cabri, Geometer 

SketchPad and GeoGebra in 2004. The DGE provide a platform for users to create, 

manipulate geometric constructions and explore underlying relationships in geometry 

conceptual systems. However, Aymemi (2009:8) contends that it is ―argued that dynamic 

geometric environments tend to promote some types of empirical justifications and inhibit 

formal justifications‖. Initially DGE were regarded as tools for geometry but with time this 

progressed to their use for interactive geometry which is believed to have an impact on 

student learning in various domains (Goldenberg & Feurzerg, 2008). I take the instance of the 

use of dragging. Dragging, which is the main defining feature of DGS, allows for navigation 

and exploration of geometry concepts through multiple representation and interpretation. 

Research studies on dragging indicate that instrumentation processes address the critical 

relationship between drawing and figure, between spatial and theoretical representation. 

 

GeoGebra description 

GeoGebra is a free and open source software (FOSS) developed in 2004 by Markus 

Hohenwarter to support teaching and learning of mathematics. It incorporates geometry, 

algebra and calculus in a fully connected DGS environment, by combining the basic features 

of DGS and Computer Algebra Systems (CAS). GeoGebra offers two representations of 

objects through the algebra window and geometry window (see Figure 2.3). For any 
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manipulation on the geometry representation there is a simultaneous change in the algebraic 

representation and vice versa. Among the attributes of GeoGebra are the ability (a) to specify 

the geometrical relationships between objects created on the computer and original 

constructions; (b) to provide visualization of different representations; (c) to be used in 

investigations to discover mathematics; (d) to be used for preparing teaching materials; and 

(e) to be used as a cooperation, communication and representation tool (Hohenwarter & 

Fuchs, 2004). Just like any other DGS, constructions within GeoGebra can be directly 

manipulated by using the ‗drag mode‘ operation for exploration of conjectures. 

 

 

Figure 2.3: GeoGebra window 

 

Research studies on the use of GeoGebra as a tool in the teaching and learning environment 

have been documented, focusing more on mathematics at middle and high school and on 

teacher professional development than on prospective teacher education. Learning school 

mathematics with technology is widely researched as compared to learning and teaching 

mathematics with technology at teacher preparation level. Lu (2008) investigated English and 

Taiwanese upper-secondary teachers‘ conceptions and practices regarding GeoGebra. His 

findings were that, to integrate GeoGebra into their teaching practices, teachers employed a 

wide variety of strategies in their preparation for teaching materials, presentation of 
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mathematical content and concepts, classroom activities for interaction with pupils and 

investigation of mathematics.  

 

GeoGebra has been praised as a tool for providing learners and teachers with a platform to 

enhance the visualization and reasoning processes. Studies by Guvan (2012); Bhagat and 

Chang (2015) have revealed the usefulness of GeoGebra as an effective tool for learning 

geometry. But the knowledge needed to use this technological tool requires, as suggested by 

Mogetta, Olivero, and Jones (1999: 99), ―tackling a problem using dynamic geometry 

software involves interpreting the problem in terms of the menu items available within the 

software environment‖.  

2.6 Pedagogical content knowledge (PCK) construct 

Understanding teacher knowledge has been in the forefront of many educational research 

fields. For the last two decades, researchers have developed models for understanding this 

phenomenon. Shulman (1986) referred to three dimensions of teacher knowledge; content 

knowledge, generic pedagogy knowledge and pedagogical content knowledge. Pedagogical 

content knowledge (PCK) is the knowledge of pedagogy applicable to the teaching of 

specific mathematics content. Drawing from Shulman‘s (2006) definition, PCK comprises 

knowledge of mathematics content; knowledge of mathematics curriculum; and knowledge of 

teaching.  

 

Various models of PCK have been developed. Cochran, De Ruiter and King (1993) proposed 

a model with four components; pedagogy, subject matter content, student characteristics, and 

the environmental context of learning.  Ball, Thames and Phelps (2008) proposed a PCK 

model that partitioned Shulman‘s (1987) model into knowledge of content and students, 

knowledge of content and teaching, and knowledge of curriculum. Grossman (1990) 

contended that the four components of PCK are: knowledge and beliefs about the purposes 

for teaching a subject; knowledge of students‘ understanding, conceptions and 

misconceptions of particular topics in a subject matter; knowledge of curriculum and 

curriculum materials; and knowledge of instructional strategies and representations for 

teaching particular topics.  
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It is clear from the discussion above that teacher knowledge is multidimensional. The 

difficulty to discern the different knowledge constructs is brought about by the complex web 

of relationships between knowledge constructs. For instance, Ball et al. (2008) propose the 

partitioning of the CK and PCK. Ball et al. (2008) categorize CK into three domains; 

common content knowledge, specialized content knowledge and horizontal content 

knowledge. Koehler and Mishra (2005) developed TPACK to acknowledge the relationships 

between content, pedagogy and technology and the contexts in which they function. Rollnick, 

Bennett, Rhemtula, Dharsey and Ndlovu (2008) proposed a model of four domains of teacher 

knowledge that interact to produce PCK for the manifestation of teacher knowledge. The four 

domains are: knowledge of subject matter, general pedagogical knowledge, knowledge of 

students and knowledge of context.  

 

The models referred above provided lenses for understanding professional teacher knowledge 

(teachers in practice) rather than on teacher education (teacher preparation). Going back to 

Shulman‘s (1986) definition of PCK and the definitions brought forward subsequently by the 

likes of Baumert and Kunter (2006) and Gess-Newsome (2013), one cannot help realize that 

reference about PCK is made to practicing teachers in the context of enactment of teacher 

specific PCK than on prospective teachers. I differ with Loughran, Mulhall and Berry (2004) 

who argue that studies about prospective teachers provide insufficient knowledge about PCK. 

I bring forward a strong contention that if PCK is described as a merging together of content 

knowledge and pedagogical knowledge, then PTs‘ PCK and even PTs‘ TPACK can be 

defined and characterized. 

 

But how has PCK been studied in different contexts? Science education has been in the 

forefront in the last two decades with research focussing on understanding of teacher 

pedagogical content knowledge scholarship. Park (2005) examined the nature and 

development of PCK of science teachers in their interaction with gifted learners. She 

employed different approaches to understand the role that learners play in organizing, 

developing and validating teachers‘ PCK. Magnusson et al. (1999) developed the PCK 

components‘ model of which researching knowledge about students‘ understanding of 

specific science topics became popular among science teaching research. For example see 

studies by Rollnick, Bennett, Rhemtula, Dharsey and Ndlovu (2008), Park and Oliver (2008), 

Gess-Newsome (2013).  
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Mathematics education has also followed suit in an effort to conceptualize mathematics 

knowledge by striving to understand the mathematics content knowledge and mathematics 

teaching instructional practices. For example, Ma (1999) concentrated on the profound 

understanding of fundamental mathematics; Adler and Davis (2006) made much 

accomplishment on the QUANTUM project which focused on understanding what and how 

mathematics for teaching is constituted in mathematics teacher education; Hill, Schilling and 

Ball (2004) researched on frameworks for mathematics knowledge for teaching; the 

COACTIV project by Baumert et al. (2006) terms of reference was to comprehend CK and 

PCK in processes of learning and instruction. 

 

Content knowledge is premised to be a source of pedagogical content knowledge (Grossman, 

1990; Kind, 2009). Several mathematics education studies contend that there is a correlation 

between CK and PCK (Brunner et al., 2008; Baumert et al, 2010; Tepner and Dollny, 2014; 

Evens, Elen and Depaepe, 2015) with CK as a pre-condition for developing PCK. 

Kleickmann et al (2013) examined the effect of CK and PCK on instructional practices by 

comparing the CK and PCK of mathematics teachers. 

 

Debates on the above-mentioned studies argue that the CK and PCK constructs can be 

viewed as separate or mixed entities. Kahan, Cooper, and Bethea (2003) argue that although 

CK is a prerequisite for teaching, there is no guarantee that one with good CK had strong 

PCK.  Hill, Schilling, and Ball (2004) acknowledge this by suggesting a merging of these 

bodies of knowledge into what they refer to as ―mathematics knowledge for teaching‖ or 

MKT. Hill et al. (2008) demonstrate that the quality of instruction is determined by MKT, a 

notion that is supported by Brownlee, Purdie and Boulton-Lewis (2001). I pose the question: 

how then can PTs‘ knowledge be characterized when CK and PCK are developed in the 

context of teacher preparation? Ramatlapana and Berger (2013) studied PCK of PTs 

developing lesson plans.  The findings revealed that although PTs lacked pedagogical 

experience, they acknowledged that planning must reflect teacher knowledge of teaching 

strategies and especially the strategies for representing the content. 

 

The investigations on the nature of PCK have culminated into complex and varied 

approaches to examining PCK. Of interest to this study is the analytical lenses employed to 
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analyse PCK of mathematics teachers in qualitative design studies. Qualitative evidence-

based studies have illuminated the existence of PCK in relation to CK but there is abundant 

evidence in quantitative studies that measured mathematics teachers‘ PCK. The most 

prominent tools used to capture instances of PCK in science education studies are the Content 

Representation (CoRe) and a Pedagogical and Professional-experiences Repertoires (PaP-

eRs) developed by Loughran, Berry and Mulhall (2006). Content Representation (CoRe) 

codifies the teacher‘s understanding and representation across the specific content whereas 

Pedagogical and Professional-experiences Repertoires (PaP-eRs) is employed as a tool for 

reflecting on the teaching of the specific content.  

 

With regards to the tools for measuring mathematics teachers‘ PCK, I draw upon Chick, 

Baker, Pham and Cheng (2006) framework which is of interest to this study. Earlier in this 

chapter, I have relayed and explicated how complex and multi-faceted teacher knowledge is. 

Hence, I collude with Chick et al. (2006) in their proposal to fuse the various components of 

PCK suggested by Shulman (1986, 1987), Ball (2000) and Ma (1999) and produce a solid 

framework for understanding teachers‘ PCK. Drawing from these PCK, Chick et al (2006) 

classify the various facets of mathematics teachers‘ PCK as;  

 

(i)  the clearly PCK: content and pedagogy are considered intertwined with 

components of this category including knowledge of teaching strategies, student 

thinking, curriculum and resources; 

(ii) the content knowledge in a pedagogical context: geared towards mathematics 

content for teaching. The components of this category are Profound 

Understanding of Fundamental mathematics (PUFM), deconstructing content to 

key components, mathematical structure and connections  procedural knowledge  

methods of solution; and  

(iii) the pedagogical knowledge in the content context: focuses on generic pedagogy 

applied for specific content. The components of this category are goals for 

learning, getting and maintaining learner focus, classroom techniques and  

integrating technology 

 

Chick et al (2006) acknowledge that there is an overlap among the components. Maher, Muir 

and Chick (2015) utilized the framework to examine PCK in secondary school mathematics 
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lessons. Their findings were consistent with those of my study as there were indications that 

the PCK categories espoused in this framework were ―often inextricably linked‖. See 

Chapter 4 for how the Chick et al (2006) PCK framework was conceptualized for this study.  

2.7 Chapter summary 

It is perceived that teachers need specific type of knowledge to enable the integration of 

technology in teaching and learning (Schmidt & Shin, 2009). Moreover, I argue that 

integrating technology requires teachers to experience specific mathematics content domains 

in relation to specific technological tools. Thus it remains a matter of serious concern that 

there is need to explore how PTs construct their mathematical knowledge as they engage with 

technology. Several studies have employed the instrumental approach within the context of 

computer algebra software (Bretscher, 2010; Drijvers & Gravemeijer, 2005). There is need 

for undertakings that reveal the PTs‘ knowledge within the DGE context. More specifically 

how do DGE tools such as GeoGebra influence the teacher content and pedagogical 

knowledge of school geometry in teacher preparation programs? How is PTs‘ knowledge of 

circle geometry transformed as they work on tasks developed within a GeoGebra-rich 

environment? How is knowledge constructed in the contexts of re-learning school 

mathematics, learning mathematics with technology and planning to teach mathematics with 

technology? What characterizes such knowledge? The latter questions summarizes the 

arguments presented in this chapter that PT mathematics knowledge constructed in 

technological environments (DGE) is underexplored in research literature and is 

underrepresented in the mathematics teacher preparation milieu.  

 



 

41 

 

CHAPTER 3  

METHODOLOGY 

3.0 Introduction  

This chapter provides the methodology employed in this study to explore aspects of 

prospective teachers‘ technological pedagogical content knowledge of geometry in the 

context of a GeoGebra-based environment. An outline of the justifications and descriptions of 

the research design and approaches, data generation strategies, data analysis procedures and 

ethical considerations that were used to examine participating PTs‘ circle geometry 

knowledge exhibited through the implementation of circle geometry tasks are articulated.  

3.1 Research approaches and design 

Any research design should be informed by philosophical and theoretical assumptions. This 

constitutes the research paradigm. The research paradigm in turn informs the methodology 

and the research design. The epistemological basis of this research was underpinned by the 

constructivist perspective, which postulates that learners construct knowledge and meaning 

from the experiences they are engaged with. Technology is often associated with human 

intervention with artefacts or tools, strongly suggesting that technology affects knowledge 

construction, teaching and learning. Premised on the contention by Mishra and Koehler 

(2006) that TPACK is not static but rather is flexible and socially constructed, this study 

adopted the social constructivist perspective. In the social constructivist approach, meanings 

(which are context bound) are constructed through multiple social interactions with the social 

world. Hence, teaching and learning are culturally and contextually bounded.  It is incumbent 

upon the researcher to understand and interpret the meanings and knowledge of the 

participants as they engage with the reality about the social world (Crotty, 1998; Robson, 

2011). The key proponents of social constructivism are Piaget and Vygotsky although their 

conceptualization of the paradigm differs. According to Piaget, learning is a process of 

continuous interactions between the learner and the environment.  One the other hand, 

Vygotsky (1978) contends that a learners‘ cognitive development is influenced by their 

social-cultural-technological environment (Kivunja, 2014). Further on, Vygotsky (1978) 
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mentions that in order to facilitate the construction of knowledge human action is mediated 

by tools and semiotics. Such knowledge is acquired through participation and engagement. 

Premised on the principles of social interaction and mediation through use of tools, it is the 

view of this study that knowledge is generated through the understanding of learning 

experiences of prospective teachers. 

This study is premised on two claims held by social constructivists. First, that learning 

mathematics is profoundly influenced by the tasks, by the learning context and by the tools 

that are used in mathematics instruction. Second, that mathematical knowledge is developed 

through the relation produced by the interaction between content, pedagogy and technology 

knowledge. Knowledge acquisition is considered an active process of mental construction, 

modification or transformation of knowledge by an individual. An interpretative approach 

was suited for this study, specifically due to the assumption that knowledge is developed 

through social constructions with tools and shared meanings (Walsham, 1995) where 

individual‘s subjective experiences (epistemology) are realized. The implication is that reality 

is accessed through social constructions with tools and shared meanings (ontology).  

The rationale for the adoption of the qualitative case study approach was that, this study 

aimed at capturing insights relating to ways in which prospective teachers‘ construct 

knowledge of circle geometry. It was not the intention of this study to measure variables or 

test hypotheses about PTs‘ knowledge as proposed in the positivist approach. Based on Yin‘s 

(1994:13) position that a case study design allows for a study to empirically ―examine 

phenomena within its real-life context where boundaries between phenomenon and context 

are not clearly evident‖, this study utilized a case study design. I intended to explore PTs‘ 

thinking processes (phenomena) in learning geometry within a mathematics teacher education 

program (context). This study did not strive to measure the performance of the PTs‘ 

knowledge of circle geometry but to characterize their knowledge. To do this, I focused on 

gaining insight into these teachers‘ thinking processes as they responded to the circle 

geometry tasks. As such, the nature of the inquiry was appropriately suited to the case study 

design. 

Teacher knowledge is multidimensional. The difficulty of discerning the different knowledge 

constructs is brought about by the complex web of relationships between the knowledge 

constructs. Hence, multiple cases within mathematics knowledge development can be 
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examined through the case study approach to seek a range of sources of evidence of the 

knowledge constructs. I employed an exploratory multiple case study design. The case in this 

study is the TPACK of a participating mathematics PT. The study was perceived to be an 

exploratory multiple case study because it allowed for a deeper and detailed exploration of 

the PTs‘ TPACK, which as stated above, is complex. A variety of lenses into the various 

TPACK constructs were employed to study the multiple facets of teacher knowledge, 

implying that the case study was classified as an embedded case study. The rationale for a 

multiple case design was that mathematics knowledge development within a technology 

environment is influenced by the different components of PTs‘ technological pedagogical 

content knowledge (TPACK) and the use of the GeoGebra tool.  The multiple cases were the 

different TPACKs (CK, TCK and PCK) of the different participating PTs.   

 

The unit of analysis for this study was each participating PTs‘ technological pedagogical and 

content knowledge (TPACK). Since the study was an embedded case study, there were sub-

units of analysis to be explored individually which were to be drawn together to reveal the 

participating PTs‘ TPACK. The sub-units of analysis were the participating PTs‘ circle 

geometry content knowledge (CK), the participating PTs‘ circle geometry pedagogical 

content knowledge (PCK) and the participating PTs‘ circle geometry technological content 

knowledge (TCK). A decision was made to focus on the TPACK construct that had content 

(C) as the common denominator. The critical interest of this study was to examine how the 

participating PTs‘ content knowledge which was purported to be weak manifested within the 

TPACK constructs. As mentioned in Chapter 2, a deliberate move was made to specifically 

pay attention only on the TPACK constructs which had content (C) as the common 

denominator. It was deemed necessary to consider C since content knowledge was very weak 

among PTs and considering that development of CK is a necessary, albeit not sufficient 

among PTs. 

 

3.2 Research participants 

This study purposefully focused on gaining in-depth understanding of the aspects of the PTs‘ 

TPACK with regard to circle geometry. The PTs were the primary participants for this case 

study. The PTs were enrolled in a second-year undergraduate mandatory mathematics 

methodology course that the researcher taught at an urban South African university. See a 
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description of this course in Section 3.3 and Appendix B for the course outline. An open 

invitation was extended to all sixty-five (65) students to partake in the study in 2013. There 

was a verbal invitation extended during the geometry module lectures and an invitation 

through SAKAI, an eLearning platform. The invitation explained the purpose, procedures and 

intentions of the study (See Appendix A). Emphasis was made that under no circumstances 

would the students be coerced into participating in the study. Although the invitation was 

extended to all the students in the course, I intended to focus on a sample to pilot the tasks 

and the use of the screen-casting software, UltraVNC Addons, to record the PTs‘ interactions 

within GeoGebra. See Section 3.5 for an elaboration on the piloting exercise.  

 

Only ten (10) out of sixty-five (65) students voluntarily agreed to partake in the study. The 

sample size of the participants (herein referred to as PiPTs) was considered manageable in 

terms of tapping into the insight of their geometric thinking as reflected in their responses to 

circle geometry tasks. No consideration was given to the PiPTs‘ performance in geometry 

and gender differences. Enrolment in the course was a critical criterion for participation. 

 

I designed the tasks, facilitated the administration of tasks and conducted individual 

interviews a week after the implementation of the tasks. There were two categories of tasks, 

written tasks and GeoGebra-based tasks. See Chapter 5 for task design and descriptions. The 

researcher met with the PiPTs individually and distributed both tasks. It is at this meeting that 

instructions on how to complete the tasks and any further clarification regarding the nature of 

the tasks were discussed with each participant.  The PiPTs were assigned written tasks to be 

completed at their own leisure. The intension was to source as much knowledge from the 

participants. The participants were specifically told that the tasks were not some sort of a test 

but a tool for capturing their content knowledge. The participants were instructed not to seek 

assistance when solving the tasks. With regard to the GeoGebra-based tasks, the participants 

individually worked on the tasks on the researcher‘s computer. The PiPTs‘ GeoGebra 

constructions were recorded using the screen-casting software, UltraVNC Addon, which was 

downloaded onto the researcher‘s computer.  

For the main study, a call was made to the second year mathematics methodology 2014 

student cohort. The intention was to employ a convenience sampling approach to identify the 

sample of the study. The approach to sampling dictated that I select the convenient sampling 
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technique. Convenience sampling is a non-probability sampling technique. It was convenient 

for me to study the population that was easily accessible (students in my course). I was 

interested in learning about the mathematics student teacher preparation in the methodology 

course. I acknowledge the bias linked to the convenience sampling technique such as under-

representation or over-representation of the population. To address the bias, I deliberately 

openly invited participation from all the students in the course to afford them the chance of 

participation and utilized the participants that were readily available. I also acknowledge that 

compared to a probability sampling technique, convenience sampling might have left out 

individuals who could have provided a richer understanding of the study phenomenon. I also 

acknowledge the inherent bias in convenience sampling that delimits the ability to make 

generalisations from the sample to the population of study. 

The same procedure as in the pilot was conducted for both the selection of the main study 

participants and the collection of data. An invitation to partake in the study was put forward 

and only ten (10) out of sixty (60) students showed interest in participating in the study. 

Following informal discussion about the nature of the study, four out of these ten students 

decided to withdraw from the study. The tasks from the pilot study were re-designed and 

implemented by the final six (6) participants. I refer to these six participants as the 

participating PTs throughout this report. The demographics of the participants are presented 

in Table 3.1. The participants had the general characteristics of the population. The students 

in the course enrolled for two methodology courses. They either majored or sub-majored in 

any of the two subjects: Mathematics or Natural Science or Life Sciences All the 

participating PTs majored in Mathematics with Natural Science as their sub-major. The class 

average for Mathematics 1 and Methodology 1 were 65% and 68% respectively. 
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Table 3.1: case study PTs demographics 

PT 1 
Major teaching 

subject 

Sub-major teaching 

subject 

Year 1 marks 

Mathematics 1 Methodology 1 

Nkosi Mathematics Natural Science 79 86 

John Mathematics Natural Science 73 65 

Wisdom Mathematics Natural Science 60 62 

Lesedi Mathematics Natural Science 63 64 

Bonolo Mathematics Natural Science 55 75 

Thabiso Mathematics Natural Science 62 68 

 

The role of the researcher 

 

I reiterate that knowledge which is constructed through mediation with tools and semiotics is 

acquired through participation and engagement. My role in the study was that of a 

participant-researcher. Adopting the case study dictated that I understand prospective teacher 

knowledge within its natural settings (within the methodology course). Owing to the 

contextual conditions I was positioned with dual roles of (i) the course convener and (ii) the 

researcher. As the convener of the course, my objective was not to study my own practice but 

to get an insight into my students‘ knowledge of teaching and learning school geometry. In 

other words, I had to contribute to the realization of the objectives of the course. The course 

acknowledged that the prospective teachers should be considered as both learners of 

geometry and teachers of school geometry. The course was developed with the intention of 

developing teacher knowledge of content, pedagogy and technology. As the researcher I had 

a second role of contributing to knowledge about PTs‘ learning within their local context. To 

understand prospective teacher tacit knowledge, it was crucial that I study this knowledge as 

a participant within the social context. I acknowledge the criticisms towards participation-
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observation. There are sources of bias relating to the positionality of the researcher. The lack 

of the researcher‘s objectivity may have influence over the participants‘ behaviours and the 

research may have an influence of the researcher‘ own beliefs. To deal with the ethical 

dilemma, participants were assured that their participation would not have an influence in 

their performance in the course. See Section 3.8 for further deliberation on ethical 

considerations. I have made several attempts to maximize the robustness of the research 

methodology; triangulation of data sources, incorporated evidence of PTs vignettes, 

synthesized with findings from the literature and objectively analysed the evidence by 

looking at within and across the cases. 

3.3 Description of the Methodology Course: the study location 

This Bachelor of Education (B.Ed) second year Mathematics Education course was 

specifically designed for mathematics major prospective teachers (PTs) preparing to teach the 

secondary school mathematics phase, referred to as Further Education and Training (FET)
2
.  

See Appendix B for the course outline. To enrol for B.Ed. mathematics programme, the 

minimum entry requirement is set at 65% pass for mathematics Matric examination. This 

requirement is lower than those of other degrees involving Mathematics courses at this 

institution and so, many B.Ed PTs might not be considered as mathematically able, nor as 

having mathematical potential (Pournara, 2009).  Students enrolled in this course met two 

hours a week and must have passed a mathematics content course in first year and a first year 

secondary mathematics methodology course. The mathematics content course, referred to as 

Mathematics 1, aimed at deepening and broadening the PTs‘ mathematical knowledge of 

algebra, functions, trigonometry and geometry. The geometry module focused on shapes and 

their properties (lines, points, triangles, and quadrilaterals), geometrical constructions, 

congruencies and similarities.  Technology was integrated into the course as a means of 
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exploring and communicating mathematical ideas (du Plessis and Parshotam, 2013). The first 

year mathematics methodology course focused on algebra and functions. The aim of the 

course was to provide PTs with the necessary background and insight into how to use and 

implement various teaching and learning strategies in the teaching and learning of 

mathematics in different classroom settings (Lampen, 2013).  

 

This research study is located within the second year methodology course. The second year 

mathematics methodology course was theoretically and practically oriented to develop PTs‘ 

didactical knowledge, and it incorporated aspects of mathematics teaching that challenged 

PTs‘ mathematical thinking around geometry (see Appendix B). In order to pass this course, 

PTs were expected to demonstrate in relation to learning geometry, the ability to vis-à-vis:  

 

 understand theories for learning and teaching geometry 

 identify and select appropriate teaching strategies for given scenarios for learning 

geometry; 

 select and design appropriate mathematics geometry learning materials for learners; 

 integrate technology in teaching geometry (e.g. GeoGebra, Word, Sketch Pad) 

 assess learners' written work on geometry and suggest appropriate remediation; 

 relate learners' geometry misconceptions to appropriate theoretical ideas; 

 reflect critically on their own practice as a school geometry teacher and relate this to 

issues dealt with in the course; 

 engage competently with the geometry content covered in the course (Ramatlapana, 

2011) 

 

All students in the course were introduced to GeoGebra in their first year of study. GeoGebra 

was integrated into the second year methodology course structure. A learning trajectory was 

developed that engaged students in activities that were directed to enhancing their geometry 

content knowledge, geometry pedagogy content knowledge and knowledge of learning 

geometry with GeoGebra (Appendix B). The activities in the course included learning or re-

learning circle geometry content, lesson plans‘ development and presentations of lessons 

activities on teaching circle geometry theorems with GeoGebra.  Figure 3.1 presents an 

example of an assessment on teaching circle geometry towards the development of CK, PCK 

and TCK. 
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Lesson study is a process which includes planning a lesson, teaching and observing 

the lesson, debriefing the lesson, and revising the lesson. 

 

You will create one mathematics lesson plan, in collaboration with your group 

members.  

Design and present a 20 minute GeoGebra-based Grade 11 lesson on teaching circle 

geometry theorems. The lesson should incorporate ideas discussed during lectures. 

Technology based (GeoGebra, etc.) 

 

 

The lesson plan should provide details and justifications for the sequence of questions 

and activities, key concepts that you want to communicate, misconceptions and 

common errors that you want to address. 

 

Following feedback from the presentation, you will submit a revised lesson plan. The 

original lesson plan should be submitted prior to teaching the lesson. The revised 

lesson plan should be submitted a week after your presentation. All submissions 

should be online. A rubric for marking the lesson plans is posted on SAKAI. 

Figure 3.1: Assignment 1 

3.4 Data collection methods  

A case study employs multiple techniques of data collection. Multiple sources of data sets are 

encouraged in a case study as they provide rigorous and empirically and theoretically 

grounded evidence and support triangulation of results (Cobb & Schauble, 2003). Yin (2003) 

advocates for the use of multiple sources of evidence to ensure construct validity.  That is, do 

the sources of evidence measure what they are supposed to measure? In line with this 

rationale, the data generation instruments that were employed in the study were written tasks, 

GeoGebra-based tasks and interviews. These data generation strategies were employed in the 

piloting of the tasks and in the major study. The descriptions in the next section demonstrate 

that attention was paid to the design and procedures for administering each instrument.  

 

3.4.1 Written tasks  

Mathematics tasks are used as tools in research in Mathematics Education. To solicit case 

study PTs‘ knowledge of teaching and learning circle geometry, participating PTs were 

presented with tasks.  A presumption was made that solutions to the tasks displayed the PTs‘ 

thinking. Therefore attention was given to task design, acknowledging the influence that 

piloting of tasks had on the implementation and the findings of the study. The participating 
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PTs were assigned four major tasks with sub-tasks which were either categorized as written 

or GeoGebra-based tasks. The participating PTs had access to both these types of tasks prior 

to submission. Refer to Table 3.3 for task specifications. The activities of the written tasks 

focused primarily on eliciting the three knowledge domains of pedagogy, content and 

technology in the context of circle geometry. See Chapter 5 for the design and descriptions of 

the tasks and Appendix C for the tasks and memoranda for tasks. The pedagogical tasks or 

subtasks comprised questions on the teaching of circle geometry. The content tasks were 

about solving circle geometry problems. The technological tasks were about using GeoGebra 

to construct and/or interpret GeoGebra-constructed geometric diagrams. The participating 

PTs were given a week to individually work on the tasks. The intention was to source as 

much rich responses as I could possibly get on the written work. The written work was done 

prior to the screen recorded GeoGebra-based tasks.  

 

3.4.2 Screen recorded GeoGebra-based tasks 

The study intended to explore teacher knowledge developed in a technology-rich 

environment. Due to the complex nature of learning in a technology-rich environment, it was 

not easy to observe individual participating PTs performing the tasks. The use of screen-

recorded GeoGebra-based tasks was best suited to explore the participating PTs‘ content 

knowledge (CK) in relation to the GeoGebra tool. That is, participating PTs‘ technological 

content knowledge (TCK) was examined when PTs responded to circle geometry tasks that 

incorporated the use of technological tool. Among the four major written tasks were 

GeoGebra-based sub-tasks. See Table 3.3 for task specifications. The GeoGebra-based tasks 

were technological-based tasks that required the use of GeoGebra to construct and/or 

interpret GeoGebra-constructed geometric diagrams. A week after being given the GeoGebra 

based tasks, the participating PTs solved the GeoGebra-based tasks on researcher‘s computer 

in her office. The PTs‘ worked on the GeoGebra-based tasks outside lecture time. 

 

Screen recording is highly recommended for this type of study because, as advocated by 

McDougall and Karadag (2008), it captures actual computer work activity by tracking the 

user‘s thinking processes. It allows the researcher to track the movements of the cursor 

during the construction process, record the elements of interest and explore the activities and 

interactions without disturbing the participating PT‘s attention to the task. The cursor 
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movements can then be exported as videos or frames. See Figure 3.2 which displays a snap-

shot of a video screen recording of Lesedi working on Task 1 (c). On the bottom right side of 

the Figure 3.2 the cursor is on Delete option in the dropdown menu to show that at 02:54 

Lesedi selected the Delete option with the intent to delete point D. 

 

 

Figure 3.2: A snap-shot of Lesedi‘s video screen recording of Task 1 (c) 

 

As mentioned earlier, the screen-casting software, UltraVNC Addon, was used to capture the 

work. The participating PTs‘ work was captured (recorded) whilst they were working on the 

tasks in the GeoGebra platform. The captured work was converted to video recordings. For 

example, the screen-recording for all the participating PTs on Task 1 (c) was between 4 

minutes and 20 minutes long.  
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3.4.3 Semi-structured interviews  

The study employed 90 to 120 minute semi-structured interviews as a means to probe into 

PTs‘ responses to the written tasks and the GeoGebra-based tasks (see Appendix C). Semi-

structured interviews were preferred because they are flexible in approach to gaining insight 

into PTs‘ thinking and to tap into their circle geometry knowledge. The participating PTs 

were individually interviewed three days after the completion of the GeoGebra-based tasks. 

This time period gave me the opportunity to acquaint myself with the PTs‘ scripts of the 

written tasks and the screen recordings videos of GeoGebra-based tasks in preparation for the 

interview. The interview focused on the participating PTs‘ explanations about the solution 

processes for all the tasks. The interviews were designed to encourage participating PTs to 

generate narratives on their experiences relating to implementation of the tasks. The semi-

structured interviews allowed the researcher and the participants to engage in a dialogue 

allowing for probing of responses by the interviewer. The one to one interview included 

playback of the video of screen-cast recording episodes where the participating PTs described 

their thinking to the researcher. The interviews were employed as a means of data 

triangulation that aimed at displaying participating PTs‘ knowledge of geometry content, 

knowledge of pedagogy and knowledge of technology. The interview also focused on the 

participating PTs‘ response to the tasks as reflected in the participating PTs‘ written scripts. It 

involved narrating of participating PTs‘ thinking during the process of answering each task.  

Questions like ―take me through the solution to the task‖ to solicit participating PTs‘ response 

to the tasks; ―what were you thinking when you wrote this answer?‖ to focus on participating 

PTs‘ thinking about the tasks; and ―why did you delete the segment‖ to focus on participating 

PTs‘ interaction with GeoGebra, were used to probe the participating PTs thinking processes. 

Audio-recording of the interviews was conducted to assist the researcher to store the data in 

its original form for the analysis at a later stage.  

 

3.5 The pilot study 

The pilot study was guided by Sierpinska‘s (2004) position that the design, analysis and 

empirical testing of mathematical tasks, whether for the purposes of research or teaching is 

considered essential in mathematics teaching and learning. I focused on an intact group of 

PiPTs to pilot both written tasks and GeoGebra-based tasks. The piloting exercise was 
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intended to inform the design, reliability and construct validity of the tasks and the use of the 

screen-cast recorder. Attention was paid to the tasks and the screen-cast recorder because 

these were the intended data collection instruments that the study would use as a means to get 

insight into the PiPTs‘ knowledge of teaching and learning of circle geometry. The design of 

the tasks was informed by the objective of the study: to characterize participating PTs‘ 

TPACK. As such, the tasks were designed to address all the constructs of the TPACK 

framework. The tasks that elicited CK, PCK and PK were written tasks whereas the tasks 

which elicited TK, TPK, TCK and TPACK were GeoGebra-based since they incorporated the 

technology knowledge domain. There were six tasks designed to elicit the TPACK constructs 

as illustrated in Table 3.2. The matrix shows that the tasks elicited at least one construct. For 

example, five tasks elicited the CK construct whereas Task 6 elicited all the constructs.  
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Table 3.2: Matrix for tasks specifications in pilot 

Nature of 

 the task 

  

TPACK  

construct  

that the  

tasks  

focuses on 

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 

(a) 

 

(b) (c) (d) (a) (a) (b) (a) (b) (a) (b) (c)   

Written 

 tasks 

CK √ √   √ √ √ √ √ √  √ √ 

PK       √    √  √ 

PCK       √    √  √ 

GeoGebra- 

based  

tasks 

TK   √  √  √  √   √ √ 

TCK   √ √ √  √  √   √ √ 

TPK       √      √ 

TPACK       √      √ 

Note: √ means that the task elicits the TPACK construct 
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As mentioned already, the question items and format of the tasks were scrutinized for 

construct validity. Were they measuring what they were supposed to measure? The rigorous 

scrutiny of the tasks also provided an opportune moment to develop and refine the analytical 

rubrics for the major study.  

 

3.5.1 Modifications to Tasks 

As previously mentioned, the exploration of the participating PTs‘ knowledge of circle 

geometry was done by probing into the participating PTs‘ thinking displayed in the 

participating PTs solutions to the TPACK tasks. These tasks were deliberately designed to 

elicit the TPACK knowledge constructs. A reflection on the pilot tools revealed that there 

were faults in the task design. Some tasks were not explicit in terms of the TPACK construct 

intended to elicit whilst other tasks were struck off (see Table 3.3). To better discern 

participating PTs‘ TPACK, the critical components of the tasks were addressed. The structure 

of some questions was revised as evident in Task 1. Figure 3.3 (see also Appendix C) shows 

a comparison of responses to Task 1 of a PiPT and that of a participating PT. Some critical 

components of the tasks before piloting were found wanting since there was a lack of 

explicitness in the item descriptions and in what the expectation of the questions were. The 

sub-tasks of Task 1 were either re-constructed or deleted. For example Task 1 (b) was 

rephrased with the change stemming from the ambiguity of the meaning of the terms ‗special 

cases‘ and ‗general cases‘.  
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Task 1 before pilot (PiPT script) Task 1 after pilot (participating PT script) 

 

 

Figure 3.3: Comparison of Task 1 with PTs‘ responses before and after the pilot study 

 

 

Piloting informed the focus of the study and the study procedures. One challenge that I 

encountered during the process of collecting pilot data was the PiPTs not responding to all 

the tasks as required. All data was considered valuable particularly since the tasks elicited 

different knowledge constructs, so it was of great importance to have responses for all the 

tasks. There was a huge amount of data collected from the PiPTs who could not fully 

comprehend the tasks. A decision was made to cut down on the tasks so that data collected 

could be manageable during the analysis process. See Table 3.3 for task specifications after 

piloting. As such, a deliberate move was made to specifically pay attention only to the task 

that focused on the TPACK constructs that have content (C) as the common denominator. It 

was deemed necessary to consider C since content knowledge was found to be weak among 
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South African PTs and considering that CK was a necessary, albeit not sufficient, aspect of 

maths teaching (see Chapter 1 and Chapter 2). 

 

             Table 3.3: Matrix for tasks specifications after piloting 

Nature of  

the task 

TPACK construct 

that tasks elicit 

Task 1 Task 2 Task 3 Task 4 

 (a) (b) (c) (a) (b) (a) (b) (a) 

written  

tasks 

CK √ √   √   √ √  

PCK          √      

GeoGebra-

based tasks 

TCK      √         

  

√ 

Note: √ means that the task elicits the TPACK construct 

 

3.6 Reliability and validity of the Data  

The rigor of qualitative research is meant to generate and sustain the readers‘ trust and 

confidence in the research findings (Opie, 2004). Claims made in a case study should be 

authentic and credible by ensuring that the research instruments are valid and reliable. I 

needed to confirm that the tasks as the main tools for the study were testing what they were 

intended to test and if inferences about the participating PTs‘ TPACK made from the 

participating PTs‘ performance scores were valid. The validity of the tasks was achieved by 

looking for content and construct related evidence. I employed rigorous task analysis to 

ensure the validity of the tasks. 

 

Aided by critical readers, the tasks were checked for the validity and reliability of inferences 

made through use of rubrics. The critical readers were both the supervisors of this study. The 

components of the task items were critically assessed if they elicited the TPACK construct 

that were supposed to be testing. Section 3.5.1 provides evidence that tasks were modified 

after a rigorous task analysis during the piloting stage. The analytical rubrics (see following 

section) were employed to analyse the tasks both in the pilot and major study. The criteria for 

the rubrics were rigorously scrutinized for construct validity by the critical readers. Construct 

validity refers to the extent to which the assessment tool claims to measure a construct. The 

use of written tasks, screen recording and interviews were considered as multiple sources of 
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data collection that could enhance reliability and validity. In this study the rationale for 

focusing on participating PTs‘ performance scores and explanation or descriptions of their 

thinking when responding to the tasks was seen as a measure to ensure that the tasks assessed 

participating PTs‘ TPACK.  

3.7 Data Analysis  

Often TPACK development has been studied through the use of Likert-type scales, 

appropriating the use of pre- and post-tests to measure the development. Acknowledging the 

weaknesses of the Likert instrument and taking into consideration the design of the study, I 

decided to employ the use of rubrics to analyse participating PTs‘ responses. This analytical 

method used grounded theory approach in developing the descriptions of the rubrics. 

Clement, Chauvot, Philipp and Ambrose (2003) contend that rubrics serve a dual purpose (i) 

providing insights into written responses and (ii) use of numerical scores to statistically 

analyse responses. A rubric is a guideline that describes the characteristics of the different 

levels of performance used in scoring or judging a performance. An analytic rubric was 

preferred because it allowed for different levels of achievement of performance criteria to be 

determined.  

 

The participating PTs responses were scored according to the analytic rubric that I designed 

to capture TPACK-related evidence.  The rubrics are referred to in this study as the TPACK 

rubrics. The development of the TPACK rubrics was drawn from Miheso-O‘Connor (2011), 

who employed the use of rubrics to measure pedagogical content knowledge proficiency in 

teaching mathematics. As such, the design of the rubrics was guided by the question ―What 

would the participant need to know or be able to do to successfully respond to this task?‖ The 

TPACK rubrics used specific scores based on a five-point qualitative scale (ranging from 0 to 

4) to capture the participating PTs‘ proficiency in the three main knowledge domains of 

content, pedagogy and technology and to provide insights into the participating PTs‘ 

responses. To generate the descriptions, I conducted an item analysis of each task according 

to the criteria that I developed from the two sources of evidence:  TPACK constructs as 

conceptualized in the study and Duval (1995) cognitive apprehensions on geometry 

reasoning. Each task was first categorized according to the Duval‘s geometry cognitive 

apprehension and the TPACK construct that it was testing. Then, the process of developing 

categories for the descriptions or criteria for each performance level followed. The categories 
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in rubrics were not exhaustive. The process started off with developing broad categories 

which were then refined inductively from the data suggesting that rubrics emanated from the 

categories of all the actual responses.  

 

The TPACK rubrics had to be specific and explicitly address the expectations of the tasks, 

implying that the constructed rubrics were to be a guideline to analysing the participating 

PTs‘ responses. The descriptions were built from the expected ideal solutions of each task. 

That is, each rubric was specifically designed for a specific task.  I utilized a five-point 

qualitative scale ranging from a score of 0 for non-response and/or incorrect response to a 

score of 4 for a correct response. The description for level 4 was based on the ideal correct 

solution, where all traits in the description were realized. In some instances, examples had to 

be given as a guide for some descriptions to clarify where certain responses would fit. The 

rubrics were scrutinized for both content and construct validity in the pilot study. See chapter 

4 for further descriptions of the rubrics and coding of responses. A rubric was developed for 

each of the sub-tasks resulting in 8 rubrics for the major study (out of the original 13 rubrics 

used in the pilot study). An analysis of the tasks was essential in determining the reliability 

and validity of the items. A robust evaluation of the quality of items was expected to 

strengthen the arguments about what characterizes aspects of participating PTs‘ TPACK for 

learning teaching geometry in a technology-based environment.  

 

Inter-rater Reliability of rubrics 

Inter-rater reliability was considered when establishing the reliability and consistency of 

rubric scoring. A second rater was employed to assist in scoring the responses. The rubrics of 

the pilot study were rigorously revised before and after piloting several times with critical 

readers. I took into consideration before the pilot exercise that constructing rubric 

descriptions without the data at hand should be flexible to accommodate all possible 

responses. The development of rubrics was a lengthy process that required a negotiation that 

would cater for all possible strategies for the solutions. Distinguishing between cases required 

a negotiation between the theoretical and the practical. This process necessitated mediation 

between item analysis of the tasks and descriptions of the TPACK rubrics that focused on the 

TPACK constructs. The tasks and the rubrics were rigorously tested for coherence, reliability, 

and validity during this process. To test for validity and reliability I ensured that the 
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descriptions were explicit and appropriate for each level. There was also a need for coherence 

between the expectation of the task and the TPACK rubric descriptions. The task item 

analysis process involved examining item format, item performance scoring and item 

wording. This effort resulted in improvements in the performance level criteria and the 

holistic scoring of the rubrics and the elimination of some sub-tasks from the pilot study.   

 

Analysis of tasks 

The TPACK rubrics were employed to analyse both written and GeoGebra-based tasks. The 

overall possible score of the participating PTs‘ responses for the modified tasks ranged from 

0 to 32 based on the performance levels 0 to 4 of the scoring rubrics. The objective of this 

study was to characterize participating PTs‘ knowledge of geometry in terms of PCK, TCK 

and CK.  To do this required qualifying the nature of the aspects of TPACK that the 

participating PTs displayed. In determining the participating PTs‘ competence in knowledge 

of geometry, I aligned the levels of coding for the quality of the knowledge displayed to the 

performance levels of the rubrics. Table 3.4 shows how the quality of knowledge was linked 

to performance levels. The quality of the performance levels were categorized as poor for 

level 0, nearly acceptable for level 1, acceptable for level 2, definitely acceptable for level 3 

and high for level 4. However, the quality of participating PTs‘ TPACK was categorized as 

faulty, partial or adequate. 

 

Table 3.4: linking quality of knowledge with performance levels  

Quality of  

PTs‘ TPACK 

TPACK rubrics performance 

levels 

quality of the performance 

levels category 

0 

(faulty) 

                        0 Poor 

1 

(partial) 
                       {

 
 

 nearly acceptable 

acceptable 

2 

(adequate) 
                       {

 
 

 definitely acceptable 

high 

 

A quantitative summary of scores for the responses for each case (TPACK construct) was 

presented. Descriptive statistics were used to analyse the participating PTs‘ performance 

scores within and across the tasks for each case. Frequencies of scores were used to interpret 

the patterns of responses. Duval‘s (1995) analytical theory of cognitive apprehension was 
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employed to understand the participating PTs‘ visualization, construction and reasoning 

processes. That is, Duval (1995) cognitive apprehensions and cognitive processes were used 

to interpret participating PTs‘ responses to all tasks. As an example, see Section 6.4 for an 

elaboration of how the cognitive processes were linked to cognitive apprehensions to 

determine forms of connections. 

The interviews were audio recorded and transcribed. The interview transcriptions were used 

as a means of triangulating the rubric scores and getting insight into the written responses and 

substantiate trends illuminated by the performance scores. Two outputs were produced from 

the GeoGebra-based tasks; (i) a GeoGebra file of the construction, and (ii) screen cast video 

recording of the construction process. In the case of the GeoGebra file, the PTs‘ constructions 

as represented in the GeoGebra algebraic view, the graphic view and the construction 

protocol were analysed for evidence of TCK. The screen cast video recordings were analysed 

in two ways; (i) frames or snap-shot captured, and (ii) tracking the movements of the cursor 

and keyboard entries. The screen cast video recordings of the GeoGebra-based tasks were 

also transcribed with codes developed according to the Duval (1995) cognitive apprehensions 

and cognitive processes. 

3.8 Ethical Considerations  

This study strived to abide by the ethical considerations for research conducted in South 

Africa and ensured that ethical procedures were followed to protect and respect the rights of 

the participants. Ethical clearance to conduct the research was sought from the Head of 

School in the university and obtained from the School of Education Human Ethics 

Committee. Detailed information on the research and the research process was provided to 

the participants. The participants were accorded the opportunity to view their marked scripts; 

the screen cast video recordings and audio-recorded interviews. Written and verbal informed 

consent was obtained from the participants prior to the start of the study. Confidentiality and 

anonymity were maintained before and throughout the study, with a leeway for participants‘ 

to withdraw from the study at any time. The researcher assured the participants that 

participation in the study would not have any effect on their performance in the course. It was 

necessary to deal with any conflicts that might arise from issues of lecturer-student power-

related tensions. The researcher and the participants engaged in a relational dialogue where 

clarity was given on the benefit of the study to the researcher, the participant and the 
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methodology course. The dialogue offered opportunities for better understanding of the 

prospective teacher knowledge construction. 

 

3.9 Chapter summary  

This chapter sought to present the methodological approach adopted for exploring aspects of 

the six participating PTs‘ TPACK. An elaboration of the research design, data collection 

procedures and analysis were presented. This exploratory multiple case study described in the 

chapter sought to explore aspects of prospective teachers‘ technological pedagogical content 

knowledge of geometry constructed within a GeoGebra-based environment. The exploration 

was done through examining PTs‘ thinking processes as they responded to the circle 

geometry tasks. Data was collected through responses to tasks, interviews and screen cast 

recordings. Rubrics were employed as analytical tools. 
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CHAPTER 4 

FRAMEWORK FOR ANALYSING PTs’ GEOMETRY 

TECHNOLOGICAL PEDAGOGICAL CONTENT KNOWLEDGE  

 

4.0 Introduction  

In this chapter I will focus my discussion on the analytical framework that I employed as a 

lens to explore aspects of prospective teachers‘ technological pedagogical content knowledge 

(TPACK) constructed in a GeoGebra-based environment. The major focus of this chapter 

will be to interrogate how the TPACK framework was engaged as a frame of reference for 

analysing data for the study. I will elaborate on how using the inductive approach, a 

framework for data analysis emerged from an amalgamation of the TPACK framework and 

Duval‘s (1998) cognitive apprehensions‘ analytical framework for geometric reasoning. The 

study expanded the Duval analytical framework by extending it to include an analysis of 

teacher knowledge. The two frameworks were used as lenses for deconstructing the tasks as a 

precursor to developing analytical rubrics for scoring the PTs‘ response to the tasks. Refer to 

Chapter 5 for the elaboration on how the tasks were deconstructed. The purpose of 

developing the frameworks was to provide an analytical tool to be employed in analyzing the 

PTs‘ geometry knowledge. Further on, a description of the coding developed for the CK, 

PCK and TCK knowledge constructs is articulated. Throughout the chapter, I use Task 1 to 

show how the analytic tools were put into action in the coding process. 

 

4.1 The TPACK as a conceptual framework  

As mentioned in Chapter 3, this study was premised on the claims that, firstly, learning 

mathematics is profoundly influenced by the tasks, by the learning context and by the tools 

that are used in mathematics instruction. This claim is extended to all domains of 

mathematics. I contend that PTs‘ geometry thinking is profoundly influenced and framed by 

PTs‘ practical experiences with tasks, tools and the PTs‘ learning context. Secondly, that 
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PTs‘ geometry knowledge is developed through the interactions between content, pedagogy 

and technology knowledge. See Figure 4.1 for the conceptual framework. 

 

 

Figure 4.1: conceptual framework     

 

The technological pedagogical content knowledge (TPACK) is a prerequisite to effective 

integration of technology in education. Mishra and Koehler (2006) explicate that TPACK is 

the interaction of content, pedagogy and technology bodies of knowledge, both theoretically 

and in practice, to produce the types of flexible knowledge needed to successfully integrate 

technology use into teaching. I employed the technological pedagogical content knowledge 

(TPACK) framework to study the teacher knowledge of circle geometry as proposed by 

Mishra & Koehler (2006). See a detailed elaboration about TPACK in Chapter 2.  

 

4.2 The TPACK as an Analytical Framework  

The first point of analyzing the PTs‘ responses to the tasks was to conceptualize the TPACK 

constructs according to the context of my study. Drawing from Mishra and Koehler (2006, p. 

 TPACK 

PTs‘ knowledge of 

geometry 

Tools  
Learning Tasks  

PTs‘ geometry thinking  
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63) descriptions of the TPACK constructs, and through inductive analysis, I developed an 

analytical tool to describe the knowledge constructs  as they relate to my study (CK, TCK 

and PCK). Table 4.1 presents the TPACK analytical framework I developed for analyzing 

PTs‘ knowledge. The table shows how the constructs were conceptualized with 

corresponding evidence of each construct. Mishra and Koehler (2006, p. 63) describe content 

knowledge (CK) as the ―teachers‘ knowledge about the subject matter that includes 

knowledge of concepts, theories, ideas, organizational frameworks, knowledge of evidence 

and proof, as well as established practices and approaches toward developing such 

knowledge‖. CK was contextualized in this study as the PTs‘ knowledge of circle geometry 

concepts, theorems and proofs. The indicators for this construct acknowledge how the 

knowledge about circle geometry is organized and presented. For example, the PT is regarded 

as exhibiting knowledge of circle geometry when a connection is made between properties, 

theorems and representations.  

 

Table 4.1: TPACK analytical framework 

TPACK 

constructs 

This construct as conceptualized in the 

study is about…  

Indicators for the construct (the PT exhibits 

this knowledge when the PT...) 

CK knowledge of circle geometry concepts, 

theorems and proofs. 

 

identifies and recognizes in the perceived 

figure several sub-figures;  

makes connections between geometry 

representations, properties and theorems;  

provides justifications to organize and connect 

circle geometry concepts, theorems and proofs. 

 

TCK 

 

knowledge of how GeoGebra and circle 

geometry influence and constrain one 

another; 

knowledge of how circle geometry can be 

changed by GeoGebra.  

  

 

uses GeoGebra to make connections between 

concepts(pragmatic role of GeoGebra); 

recognizes  how GeoGebra is used within the 

understanding of geometry; 

identifies aspects of circle geometry in 

GeoGebra constructions (epistemic role of 

GeoGebra); 

produces  and describes a construction of a 

diagram with GeoGebra; 

configures and re-configures diagrams with 

GeoGebra. 

 

PCK 

 

 

knowledge of learner circle geometric 

thinking; 

knowledge of pedagogy that is applicable 

to the teaching of circle geometry; 

knowledge of circle geometry 

representations. 

 

evaluates  learner geometric thinking; 

describes teaching strategies; 

provides and uses multiple representations; 

explains geometry knowledge in meaningful 

ways; 

addresses any shortcomings or misconceptions. 
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Mishra and Koehler (2006, p. 63) describe technological content knowledge (TCK) as the 

―knowledge needed to understand which specific technologies are best suited for addressing 

subject-matter learning in their domains and how the content dictates or perhaps even 

changes the technology—or vice versa‖. In this study, TCK is defined as the knowledge of 

how GeoGebra and circle geometry influence and constrain one another and how circle 

geometry knowledge can be changed by GeoGebra. The indicators for this construct 

acknowledge that technology has an influence on subject-matter, which is referred to as 

content knowledge in this study. For example, the PT exhibits circle geometry technical 

content knowledge when the pragmatics and heuristic roles of GeoGebra are evident in the 

response. 

 

Mishra and Koehler (2006, p. 63) describe pedagogical content knowledge (PCK) as  

 

“The knowledge of pedagogy that is applicable to the teaching of specific content. It 

covers the core business of teaching, learning, curriculum, assessment and reporting, 

such as the conditions that promote learning and the links among curriculum, 

assessment, and pedagogy”.  

 

However, I defined PCK as (i) the knowledge of what makes circle geometry concepts 

difficult or easy to learn, (ii) knowledge of learner circle geometric thinking, (iii) knowledge 

of pedagogy that is applicable to the teaching of circle geometry, and (iv) knowledge of circle 

geometry representations. The indicators for this construct acknowledge that pedagogy has an 

influence on content knowledge. For example, the PT exhibits circle geometry PCK when 

there is evidence in the response that the PT evaluates learner geometric thinking, describes 

teaching strategies, provides and uses multiple representations, explains geometry knowledge 

in meaningful ways, and addresses any shortcomings or misconceptions. 

4.3 The Duval (1995) analytical framework for cognitive apprehensions 

The second point of analysing the PTs‘ responses to the tasks was to conceptualize the 

cognitive apprehensions as interpretative tools for the TPACK constructs.  Duval‘s (1995) 

cognitive apprehensions were employed as interpretative tools to discuss how the PTs 

responded to the CK, TCK and PCK tasks. The tasks were classified as cognitive questions 

since they focused on PTs‘ circle geometry knowledge and its conceptions. Duval (1995) 
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describes apprehensions as several ways of looking at a drawing or visual stimulus. Table 4.2 

presents Duval‘s analytic framework for the four cognitive apprehensions. The cognitive 

apprehensions are perceptual, discursive, operative and sequential apprehensions. The table 

illustrates how each apprehension was categorized to characterize geometry knowledge 

which in this study is the PTs‘ ability to relate to diagrams, figural properties and theorems. 

 

Table 4.2:  Duval (1995) analytical framework for cognitive apprehension as conceptualized 

in this study  

category Description of category (the apprehension is 

characterized as the …) 

Indicators for apprehensions (the PT 

exhibits this type of apprehension 

when the PT….) 

Perceptual 

apprehension 

 

 ability to identify at first glance figures 

and recognize in the perceived figure 

several sub-figures. 

 lists figures/shapes. 

 labels the figures/shapes. 

Sequential 

apprehension 
 ability to organize or produce a 

construction of a figure, depending on 

the technical affordances and constraints 

of GeoGebra and knowledge of 

geometrical properties. 

 ability to describe a construction of a 

figure, depending on the technical 

affordances and constraints of GeoGebra 

and knowledge of geometrical 

properties. 

 Produces a GeoGebra 

construction protocol. 

 

Discursive 

apprehension 

 

 

 ability to connect configuration(s) with 

geometric principles. 

 ability to provide good description, 

explanation, deduction, use of symbols, 

reasoning depending on statements made 

on perceptual apprehension. 

 ability to describe figures through 

geometric language/narrative texts. 

 

 describes the various ways to 

model or illustrate the theorem. 

 demonstrates the ability to 

provide an explanation of the 

concept or the procedure for the 

proof. 

 provides an explanation of 

general or specific instructional 

strategies for teaching the tan-

chord theorem. 

 

Operative 

apprehension 

 

 

 ability to perform operations on the 

figure or its subfigure, either mentally or 

physically 

 ability to introduce several strings of 

figures from a given figure 

(configuration)  

 ability to modify the figure that appeared 

at the first glance (reconfiguration)  

 

 describes a theorem with 

geometric reasoning. 

 links the theorem to information 

given in the diagram. 

 detailed description with clear 

explanation that modifies the 

figure that appeared at the first 

glance. 

 

Within this study, perceptual apprehension was described as the ability to identify and 

recognize figures at a glance. Evidence for the perceptual apprehension was realized when 
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the PTs listed and labeled figures perceived from a diagram. A GeoGebra construction 

protocol was evidence that the PT sequentially apprehended the figure to produce or describe 

a construction on the GeoGebra user interface. Producing a construction protocol depended 

on the technical affordances and constraints of GeoGebra and the PT‘s own knowledge of 

geometrical properties. To discursively apprehend a diagram indicates an ability to make 

connections between the configurations and geometry principles. The connections are evident 

through geometric language/narrative texts displayed within good descriptions, the 

appropriate use of geometry symbols and reasoning made through perceptual apprehension. 

An example of an indicator for this apprehension is when a PT describes the various ways to 

model or illustrates the theorem; this was considered as evidence of a discursive 

apprehension. The ability to configure and reconfigure a diagram is a description of operative 

apprehension category. Evidence of the operative apprehension was when the PT modified 

the figure. 

 

As mentioned earlier, I expanded the Duval (1995) analytical framework for cognitive 

apprehension by extending it to include an analysis of teacher knowledge. Table 4.3 shows 

how the cognitive apprehensions were linked to the TPACK constructs in the process of 

interpreting the PTs‘ responses for each task. To understand the linkage, an explanation of 

what is involved for the comprehension of geometry is necessary.  According to Duval 

(1998), there are three cognitive processes involved in the teaching and learning of geometry; 

the visualization process, construction process and reasoning process. Duval (1998) posits 

that these processes are linked to the cognitive apprehensions in that geometry thinking 

comprises of visualization of geometry objects, construction of geometry objects and 

reasoning about geometry objects. For example, a perceptual apprehension requires one to 

visually process geometry objects, suggesting that to perceive an object one must recognize 

and identify its configurations. Sequential apprehension entails a process of detailing the 

procedures for producing or describing a geometry construction according to the restrictions 

of a tool. These apprehension processes are dependent on reasoning about the geometric 

objects. Hence, tasks that elicit the TPACK constructs can be interpreted through the use of 

cognitive apprehensions. 
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Table 4.3:  specification of the apprehensions in the TPACK constructs within the tasks  

Nature of  

the task 

TPACK construct 

that tasks elicit 

Task 1 Task 2 Task 3 Task 4 

 (a) (b) (c) (a) (b) (a) (b) (a) 

written  

tasks 

CK PA
 

DA
 

  DA   DA DA  

PCK          DA      

 

GeoGebra-

based tasks 

 

TCK 

      

SA
 

        

  

 

SA 

Note: PA means perceptual apprehension; DA means discursive apprehension; SA means sequential 

apprehension 

 

Table 4.3 shows that the CK and PCK tasks were interpreted using the perceptual 

apprehension (PA) and discursive apprehension (DA) whereas sequential apprehension (SA) 

was utilized to interpret the TCK tasks. All the written tasks (CK and PCK) required the PTs 

to make visual interpretations and to reason deductively whilst the GeoGebra-based tasks 

(TCK) required the use of GeoGebra to construct and/or interpret GeoGebra-constructed 

geometric diagrams. Duval (1995) emphasizes that the apprehensions can be used separately 

or simultaneously. For example, sequential apprehension in some cases might involve 

operating on the diagram (operative apprehension), suggesting that OA was back-grounded. 

Hence the apprehensions illustrated in Table 4.3 are those that were considered to be 

dominant when the PTs interacted with the diagrams and/or with GeoGebra. 

4.4 Analysing CK 

The CK construct was conceptualized in the study as the knowledge of circle geometry 

concepts, theorems and proofs. The objective of the study was to characterize the CK that the 

PTs displayed. Therefore, the coding for CK was drawn from two categories: (i) identifying 

and recognizing in the perceived figure several sub-figures, (ii) making connections between 

geometry representations, properties and theorems. These categories were considered 

appropriate since they could be classified as mathematics processes of making connections, 

representations and reasoning.  

 

Identifying and recognizing in the perceived figure several sub-figures category 

As mentioned in Section 4.3, cognitive apprehensions were employed to interpret PTs‘ 

TPACK construct. This category was coded under the cognitive category of perceptual 

apprehensions. Listing and labelling codes were developed for perceptual apprehension.  The 
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themes employed for listing and labelling of figures were identified.  These themes were (i) 

systematized listing and labelling according to shapes, (ii) unsystematic listing and labelling, 

and (iii) systematic listing and labelling of triangles.  

 

There were five sub-tasks tasks that elicited visualization and reasoning within the CK 

construct. To illustrate how the CK tasks for this category were analysed, I use Task 1(a) as 

an example (see Section 6.3). The PTs exhibited knowledge of CK when they identified and 

recognized in the perceived figure several sub-figures. This evidence of CK was coded 

according to Duval‘s cognitive apprehensions as a perceptual apprehension. Further on, the 

response was demarcated into two sub-themes. What was perceived at a glance was examined 

as to whether it was systematically or unsystematically presented. The first sub-theme was to 

determine if the identified figures were systematically or unsystematically presented. That is, 

was there any system used to identify the figures? The second sub-theme was the system of 

labeling. I determined whether labeling was systematic or unsystematic.   

 

Making connections between geometry representations, properties and theorems category 

This category was coded under the perceptual and discursive apprehensions. The cognitive 

processes required for making connections in the context of this study were visualization and 

reasoning. Perceptual apprehensions followed by discursive apprehensions are required in the 

process of making connections between representations, properties and theorems. I 

conceptualize mathematics connections as a tool that the PT uses to organize and describe 

their thinking when dealing with circle geometry. Hence, the types of connections that PTs 

made when interacting with geometry tasks shed light into the CK the PTs display.  

 

Whereas Businskas (2008) and Mhlolo (2012a, 2012b) refer to practice-based mathematical 

connections, in this study I referred to these connections as teacher preparation-based 

mathematical connections because these connections are made in the context of teacher 

preparation where the prospective teachers are both learners and future teachers of geometry. 

For this study, I based my analysis on the PTs as learners of geometry. Drawing from 

Businskas (2008) and Mhlolo (2012a, 2012b) and through grounded analysis, I developed 

categories to describe the types of connections that PTs make. See Table 4.4 for the 

categories for the types of connections. I used inductive analysis to determine the categories 
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of connections basing this on the expectations of the tasks, the geometry concepts within the 

tasks and the forms of connections. Further on, the forms of connections were demarcated 

into sub-themes: visual, systematic organization, implications and theorem application 

connections. 

 

Table 4.4: categories for types of connections 

Cognitive 

processes 

Forms of connections Indicators (we know this when there is use of …) 

Visualization/ 

reasoning 

Visual connections words, symbols and figures to make connections between 

and among different representations. 

Visualization/ 

reasoning 

Systematic organization 

connections 

words, symbols, propositions, figures and figurative units 

to organize geometric concepts or objects e.g. organizing 

geometric objects in terms of general and special cases. 

Reasoning Implication connections properties, theorems, justifications and definitions to make 

logical connections between different geometric statements. 

Visualization/ 

reasoning 

Theorem application 

connections 

a specific theorem A to solve problem B. 

 

As mentioned earlier, to explore PTs‘ knowledge of circle geometry, I probed into the PTs 

thinking displayed in the PTs solutions. Table 4.4 indicates that the forms of connections are 

drawn from the PTs cognitive processes. Each form of connection had specific indicators. As 

such, an example for the categories for the form of connections termed ‗visual connections‘ 

was among three different types of representations: verbal, figural and symbolic. An 

illustration of situations of responses for each form of connection is given in each description. 

The coding for each form of connection is discussed below.  

 

Coding the connections 

 

In Chapter 5, I discuss how I deconstructed the tasks using the following three components: 

(a) the critical components of the task, (b) the ideal actions required in completing the task, 

and (c) the CK construct(s) intended to be addressed by the task or the sub-tasks.  This action 

was essential for the rigorous item analysis exercise that paved the way for building the 

rubrics used to summarize the PTs‘ responses to the tasks as seen in Section 6.2.1. I then 

pegged the forms of connections to the performance levels of the rubrics for the tasks. See 

Table 4.5 for an interpretation of how the quality of connections was linked to the rubrics 

performance levels. In determining the PTs‘ competence in knowledge of geometry, I aligned 

the levels of coding for the quality of the connections to the performance levels of the rubrics. 
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That is to say, I pegged the quality of connections (levels 0, 1, 2) with the performance levels 

of the rubrics (levels 0, 1, 2, 3, 4). In so doing, levels 3 and 4 of the performance rubrics were 

classified as level 2 of the quality of connections. Levels 2 and 1 of the performance were 

classified as level 1 of the quality of connections. Level 0 was classified as level 0 of the 

quality of connections.   

 

Table 4.5: linking quality of connections with performance levels  

Quality of connection  levels Rubrics performance levels CK competence 

0 

(faulty) 

                         0 Poor 

 

1 

(adequate) 
                          {

 
 

 nearly acceptable 

acceptable 

2 

(strong) 
                          {

 
 

 definitely acceptable 

High 

 

The quality of connections within the tasks coded level 0 was classified as faulty knowledge 

of the relevant circle geometry, level 1 as adequate knowledge of the relevant circle 

geometry and level 2 as strong knowledge of the relevant circle geometry. A connection in 

the faulty category indicates that the PT shows poor understanding of the specific aspect of 

circle geometry. A connection in the adequate category indicates that the PT shows an 

adequate understanding of the specific aspect of circle geometry. A connection in the strong 

category indicates that the PT has good understanding of the specific aspect of circle 

geometry.  

 

To illustrate how the CK tasks for ‗making connections‘ category were analysed, I will again 

use the coding for visual connections category as an example (see Table 4.6). The PTs 

exhibited knowledge of CK when they made connections between geometry representations, 

properties and theorems. As mentioned earlier, forms of connections were identified as 

visual, systematic organization, implications and theorem application connections with each 

form of connection having specific indicators. Table 4.6 presents analysis of visual 

connections made between two different types of representations: verbal and figural registers. 

In this case, the PTs had to make connections between the figural register and the verbal 

register.  
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Table 4.6: visual connections made between the verbal and figure(s) registers 

 PT 

  

verbal and figure(s) 

Task 1 Task 2 Task 3 

(a) (b) (a) (a) (b) 

Nkosi 1 1 2 1 2 

John 2 2 2 1 2 

Wisdom 1 2 2 2 2 

Lesedi 1 1 2 2 2 

Bonolo 2 1 0 1 2 

Thabiso 1 2 0 1 2 
Note: 0, 1, 2 denote quality of connections levels  

 

A connection that qualifies to be at level 2 provides an explicit link between the figure and its 

verbal description as presented in the task.  A visual connection scaled at level 2 is for 

responses that score at performance level 3 or 4 in the analytic rubrics. The PT would have 

identified a figure from the diagram and from its verbal description as given in the task.  A 

verbal description with detailed properties of the figure identified, clearly illustrates that the 

description articulates that which was perceived. Using Task 1 (a) as an example, a response 

such as ‗ΔABM →right-angled triangle‟ shows that a figure (triangle) was identified from the 

diagram, labelled for specificity (ΔABM) and described using its properties (right-angled 

triangle). This connection was classified as a strong connection. 

 

A connection that qualifies to be at level 1 provides a less explicit link between the figure and 

its verbal description as presented in the task.   Level 1 visual connection between the verbal 

and figural register is pegged at analytic rubrics performance level 1 or 2. A verbal 

description with less detailed properties of the figure identified does not illustrate that which 

was perceived. For example, a response such as ‗Isosceles triangle‟ provides less details of 

what is seen. It is not specific as to which triangle is being referred to. This connection was 

classified as an adequate connection.  In contrast, a level 0 visual connection between verbal 

and figural registers is assigned to a poor response in terms of performance rubrics. The PTs‘ 

response at this level displays faulty knowledge of the relevant circle geometry. Analysis of 

the quality of connections is presented in Chapter 6 (Section 6.4). Each category was coded 

specific to the indicators. A description of the coding for each form of connection was 

presented according to the indicators. 
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4.5 Analysing TCK 

The TCK construct was conceptualized in the study as the knowledge of how circle geometry 

concepts may be represented with GeoGebra, the knowledge of how GeoGebra and circle 

geometry influence and constrain one another and the knowledge of how circle geometry can 

be affected by the use of GeoGebra. The objective of the study was to characterize the TCK 

that the PTs displayed. Therefore, the coding for TCK was drawn from two categories: (i) 

construction of geometric diagrams with GeoGebra, (ii) verbal description of geometrical 

diagram constructed with GeoGebra. These categories were coded under the perceptual and 

sequential apprehensions. The cognitive processes linked to these apprehensions are the 

construction and reasoning processes. 

 

Construction of geometric diagrams with GeoGebra category 

This category was classified as the construction process of the cognitive processes. The 

ability to correctly produce a construction with GeoGebra was an indicator for PTs‘ TCK. 

Sequential apprehension guided the analytical process for the PTs‘ constructions. To 

characterize the PTs‘ TCK in this category, I examined their GeoGebra files and screen-cast 

recordings for the process used to construct the figure with GeoGebra. In the GeoGebra file, I 

focused on the output of the GeoGebra algebraic view for text inputs of the construction 

processes, the output of graphic view for the geometric representations of the construction 

and the construction protocol for the step-by-step construction processes. The screen-cast 

recording provided a visual process of the actions made during the construction process. 

 

The algebraic view contains the numeric and algebraic representations of free and dependent 

constructed objects.  To analyse the algebraic view, the number of outputs were identified 

and then classified according to object type. On the other hand, the graphic view contains 

geometric representations objects. These can be drawn or created and modified using the 

construction tools. To analyse the graphic view, the objects drawn were identified. The codes 

for analysing the construction protocol were the order of construction and the number of steps 

taken to construct of the geometric objects. Screen recording captured the actual construction 

process by tracking the movements of the cursor and the PTs‘ interaction with the GeoGebra 

construction tools and the GeoGebra menu. To understand the construction process, I 
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analysed the actions of the cursor as the PTs were constructing the objects. Codes for the 

actions and the time taken to complete the construction were determined. 

 

Verbal description of geometrical diagram constructed with GeoGebra category 

This category was coded under the cognitive perceptual and discursive apprehensions. 

Discursive apprehension guided the analytical process for the PTs‘ descriptions. The ability 

to verbally describe errors in a GeoGebra-based construction was an indicator for PTs‘ TCK 

in this category. To respond to the task that featured in this category, the PTs interacted with 

a learner‘s GeoGebra file to discursively identify and describe the errors in the GeoGebra-

constructed diagram. There were five themes developed from the statements of the 

description with each addressing what the PTs could or could not describe. These themes 

were based on all four apprehensions as described in Table 7.6. 

4.6 Analysing PCK 

The PCK construct was conceptualized in the study as the prospective teachers‘ knowledge 

about teaching circle geometry. The objective of the study was to characterize the type of 

PCK that the PTs‘ have. The cognitive process linked to this apprehension is the reasoning 

process. The PCK tasks elicited knowledge of geometric reasoning in teacher preparation 

with the hope of establishing the PTs‘ geometric reasoning skills in pedagogical contexts. 

The descriptions were to reveal a discursive apprehension of connections between 

configurations and mathematical principles through narratives 

 

I employed the Chick, Baker, Pham, & Cheng (2006) model to analyse the types of PCK that 

the PTs exhibited in a hypothetical mathematics learning environment for teacher-

preparation. Chick et al. (2006) framework unpacks how PCK is evident in teaching. Table 

4.7 shows the three PCK categories with indicators for each sub-category. The Chick et al. 

(2006) framework was modified and adapted as an analytical tool for PTs‘ PCK. 
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Table 4.7: A modified Chick, Baker, Pham, & Cheng (2006) framework for analysing PCK 

PCK Category Evident when the PT … 

Clearly PCK 

Teaching Strategies  

 

Learner Thinking 

 

Learner Thinking-

Misconceptions 

 

Cognitive Demands of Task 

Appropriate and Detailed 

Representations of Concepts 

Explanations  

Knowledge of Examples 

 

Knowledge of GeoGebra 

 

Curriculum Knowledge 

Purpose of Content Knowledge 

 

Discusses or uses general or specific strategies or approaches for 

teaching the proof of the tan-chord theorem 

Discusses or addresses learner ways of thinking about the proof 

of the tan-chord theorem 

Discusses or addresses learner misconceptions about the proof 

of the tan-chord theorem 

Identifies aspects of the task that affect its complexity 

Describes or demonstrates ways to model or illustrate the proof 

of the tan-chord theorem  

Explains the proof of the tan-chord theorem 

Uses an example that highlights the proof of the tan-chord 

theorem 

Discusses/uses GeoGebra to support teaching of proof of the 

tan-chord theorem 

Discusses how the tan-chord theorem fit into the curriculum 

Discusses reasons the tan-chord theorem being included in the 

curriculum or how it might be used 

PCK Category Evident when the PT … 

Content Knowledge in a 

Pedagogical Context 

Profound Understanding of 

Fundamental 

Mathematics (PUFM) 

Deconstructing Content to Key 

Components 

 

Mathematical Structure and 

Connections  

Procedural Knowledge  

Methods of Solution 

 

 

Exhibits deep and thorough conceptual understanding of 

identified aspects of the proof of the tan-chord theorem 

 

Identifies critical mathematical components within the tan-chord 

theorem that are fundamental for understanding, applying  and 

proving of the tan-chord theorem 

Makes connections between the tan-chord theorem and other 

circle geometry concepts 

Displays procedural skills for proving the tan-chord theorem  

Demonstrates a method for proving the tan-chord theorem 

PCK Category Evident when the PT … 

Pedagogical Knowledge in a 

Content Context 

Goals for Learning  

Getting and Maintaining Learner 

Focus 

Classroom Techniques 

Integrating technology 

 

 

Describes a goal for learners‘ learning 

Discusses or uses strategies for engaging learners 

 

Discusses or uses generic classroom practices 

Discusses or uses GeoGebra as a pedagogical tool  

 

Based on the notion that teacher knowledge is multi-faceted, Chick et al. (2006) developed a 

framework that fused together elements of PCK as proposed by various PCK researchers. 

Among these researchers are Shulman (1986, 1987), Ball (2000) and Ma (1999). Chick et al. 

(2006) trimmed the elements of PCK into three categories; (i) Clearly PCK, (ii) Content 

Knowledge in a Pedagogical Context, and (iii) Pedagogical Knowledge in a Content Context. 

These categories were adapted and modified for this study as proposed in Table 4.7. 



 

77 

 

 

In line with the Chick et al. (2006) model, the attributes of the PCK were modified into three 

categories: (i) the ability to demonstrate how pedagogy and circle geometry are intertwined, 

(ii) the ability to deconstruct circle geometry knowledge in a pedagogical context, and (iii) 

the ability to describe pedagogical knowledge in the context of circle geometry. These 

categories were coded under the discursive apprehension. Coding was determined for the 

various PCK sub-categories as displayed in Table 4.7. The PCK construct was analysed 

qualitatively and quantitatively. A deductive approach was utilized to classify the main 

categories. The process required establishing whether a specified sub-category was evident in 

the description; it was coded as a ‗yes‘ if evident or ‗no‘ if not evident. The patterns of the 

attributes for each PCK main category were then interpreted as a response to the type of PCK 

that the PTs displayed.  

 

4.7 Chapter summary  

In this chapter my discussion was focused on the frameworks employed in the study. The aim 

of the study was to characterize aspects of prospective teachers‘ technological pedagogical 

content knowledge (TPACK) constructed in a GeoGebra-based environment. The 

amalgamation of the Duval‘s (1995) framework for analysing PTs‘ apprehensions and Mishra 

and Koehler (1986) TPACK framework were found to be useful for exploring aspects of 

prospective teachers‘ circle geometry technological pedagogical content knowledge. The 

description of the frameworks was followed by a description of the themes and categories, 

and as well as the coding that was informed by the analytic framework and the interpretative 

framework. I elaborated on how the Chick et al. (2006) PCK framework was conceptualized.  
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CHAPTER 5 

DECONSTRUCTION OF THE TASKS AND RUBRICS  

5.0 Introduction 

The purpose of this case study was to explore aspects of prospective teachers‘ technological 

pedagogical content knowledge of geometry in the context of a GeoGebra-based 

environment. The major focus of this chapter is to describe and discuss the tasks and rubrics 

utilized in the study. The deconstruction of the tasks precedes the descriptions of the rubrics 

for each task.  

5.1 Features of the tasks 

In terms of TPACK, mathematics teacher knowledge for technology integration is built on 

the interaction of content knowledge, pedagogical knowledge, and technology knowledge.  

The tasks selected for this study had elements of these three bodies of knowledge. Although 

the main emphasis of the tasks was to intertwine content, pedagogy and technology, I 

designed the tasks according to Stylianides & Stylianides (2010) and Biza, Nardi, & 

Zachariades‘ (2007) recommended features of mathematics pedagogy and content tasks for 

PTs. The technology tasks were planned with reference to Laborde‘s (2001) recommended 

features. See Appendix C for the tasks and memoranda for tasks. 

 

Stylianides & Stylianides (2010) propose that the nature of mathematics tasks for preparing 

teachers should engage participants in mathematics content, link mathematical ideas 

suggested by theory or research, and engage participants in mathematical activity from the 

perspective of a teacher of mathematics. Similarly, Biza, Nardi, & Zachariades (2007) 

suggest that the structure of tasks should explore (i) subject-matter knowledge, (ii) types of 

pedagogy and, (iii) types of didactical practice that describe feedback to learner‘s response. 

 

The technological features of the tasks were structured as suggested by Laborde (2001: 293). 

He categorizes tasks in a dynamic geometry environment as   
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(1) tasks for which the technology facilitates but does not change the task (e.g., 

measuring and producing figures); (2) tasks for which the technology facilitates 

exploration and analysis (e.g., identifying relationships through dragging); (3) tasks 

that can be done with paper-and-pencil, but in which new approaches can be taken 

using technology (e.g., a vector or transformational approach); and (4) tasks that 

cannot be posed without technology (e.g., reconstruct a given dynamic diagram by 

experimenting with it to identify its properties – the meaning of the task comes 

through dragging). For the first two types, the task is facilitated by the technology; for 

the second two, the task is changed by technology. 

 

The tasks comprised of a series of content-based and pedagogical-based questions involving 

typical problems at the level of South African Grade 11 geometry. I reiterate that attention 

was paid to the CK, TCK and PCK constructs of the TPACK framework. The knowledge 

competencies drawn from the TPACK framework that the participants were expected to 

demonstrate in response to the proposed tasks were: 

 

 Demonstrate the  skills and understanding for interpreting mathematics learner 

thinking (PCK) 

 Demonstrate pedagogical skills for planning to teaching school geometry (PCK) 

 Demonstrate an understanding of grade 11 Euclidean geometry theorems and proofs 

with application of different approaches to the proofs in a GeoGebra-based 

environment (CK and TCK) 

 Demonstrate an understanding of use of GeoGebra
 
in solving circle geometry tasks.  

(TCK) 

5.2 Deconstructing tasks 

In deconstructing the tasks, I addressed three components: (a) the critical components of the 

task, (b) the actions required to complete the task, and (c) the TPACK construct(s) addressed 

by the task or the sub-tasks. Table 5.1 provides a description of how the TPACK constructs 

were operationalized in this study.  
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Table 5.1: Knowledge constructs as operationalized in the tasks 

TPACK 

constructs 

Is present when the PT demonstrates…. 

CK knowledge of circle geometry concepts, theorems and proofs 

TK 

 

understanding and mastery of certain ways of thinking about and working with 

GeoGebra 

PK processes and practices or methods of teaching and learning circle geometry 

TCK knowledge of how GeoGebra and circle geometry influence and constrain one another 

knowledge of how circle geometry can be changed by GeoGebra  

knowledge of how GeoGebra can be used to facilitate the learning of circle geometry 

PCK 

 

knowledge of what makes concepts difficult or easy to learn 

knowledge of student thinking 

knowledge of pedagogy that is applicable to the teaching of circle geometry 

TPK knowledge of the constraints and affordances of GeoGebra in teaching circle geometry 

TPACK knowledge of the interplay between teaching circle geometry with GeoGebra using 

appropriate pedagogical strategies  

 

  

I have employed the TPACK constructs and Duval‘s (2004) apprehension and cognitive 

perspectives of geometric reasoning as a lens for deconstructing the tasks. Duval‘s four 

cognitive apprehensions of ‗perceptual‘, ‗sequential‘, ‗discursive‘ and ‗operative‘ provided a 

framework for understanding geometric reasoning, visualization and construction processes 

utilised when the PTs responded to the tasks. See Chapter 2 for an elaboration of cognitive 

processes. 

 

As mentioned in Chapter 3, the PTs responses were scored according to the analytic rubrics 

designed to capture TPACK-related evidence. I utilized five-point qualitative scale analytical 

rubrics basing on the PTs‘ responses to the tasks. An analytic rubric was preferred because it 

allowed for different levels of achievement of performance criteria to be determined. The 

different levels incorporated PTs‘ thinking in relation to the cognitive apprehensions and the 

TPACK constructs. I used a reverse method in determining the descriptions or criteria 

starting with performance level 4 building down to performance level 0. The description for 

level 4 was based on the ideal correct solution, where all traits in the description were 

realized. The rubrics had to be specific and explicitly address the expectations of the tasks. 

The descriptions developed were built from the expected ideal solutions devised in the 

memorandum. In some instances, examples had to be given as a guide for some descriptions 

to make clear where certain responses would fit. 
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In designing the rubrics, I was guided by the question ―What would the participant need to 

know or be able to do to successfully respond to this task?‖ The rubrics were developed 

through inductive and deductive processes by capturing the PTs‘ performance in the three 

main knowledge domains of content, pedagogy and technology. As I indicated in Chapter 3, I 

started off with broad categories and these were then refined so that all data could be 

categorised.  To generate categories and codes, I read through and grouped all the responses 

for each task and sub-task according to the descriptors. See Section 4.3 for an explanation of 

how the TPACK construct and cognitive apprehensions informed the grouping of the 

responses. The three sources of evidence for the descriptors were:  TPACK constructs as 

conceptualized in the study and the Duval (1995) model of apprehensive and cognitive 

perspectives on geometry reasoning. Each task was first categorized according to the Duval‘s 

geometry apprehension and the TPACK construct that it is testing. 

 

5.2.1 Deconstructing Task 1 

Task 1 comprised a series of content-based and technology-based questions involving typical 

problems based on Grade 11 geometry level, requiring the participants to identify, describe 

and construct geometrical objects. The purpose of the task was to provide a platform from 

which I, as a researcher, can infer the participants‘ knowledge of geometry properties, 

generalities, or theorems.
 
 See Figure 5.1 for Task 1 and Appendix C for Task 1 and its 

memorandum. The major purpose of the task was to provide opportunities for application of 

the cognitive apprehensions and cognitive processes for geometric reasoning.  
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The diagram below shows a circumscribed circle with centre S. Triangle ABC has AB 

= AC. Angle A is acute and AB is extended to K. AS extended cuts BC at M and  the 

circle at H. BE bisects   ̂   BE meets AS produced at E. AB when produced, is 

perpendicular to EK. 

 
(a) Write down and label all the geometric figures that you see in the above 

diagram. E.g. ΔABC 

(b) Which triangles are congruent? Explain. 

(c) Use GeoGebra to construct the figure.  

Figure 5.1: Task 1 

 

The critical components of the task  

The mathematical object of the task was to compose and decompose figures within a given 

diagram using an understanding of geometrical concepts and spatial representations derived 

from the figure. Task 1 was based on the argument by Gagatsis, Deliyianni, Elia, Monoyiou 

and Michael (2010:37) that ―geometrical figures are simultaneously concepts and spatial 

representations‖. This argument suggests that ―diagrams in two-dimensional geometry play 

an ambiguous role: on the one hand, they refer to theoretical geometrical properties, while on 

the other, they offer spatio-graphical properties that can give rise to a student‘s perceptual 

activity‖ (Laborde, 2004:1). The major purpose of this task was to make a mathematical 

argument when interacting with the diagram. Herbst (2004) argues that interacting with 

diagrams provides an opportunity to make reasoned conjectures. The task required the 

visualization, construction and reasoning processes to be enacted. The task required a 

perceptual apprehension of the diagram in order to identify and discriminate the figures from 

a given diagram 
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The action required to complete the task 

The task required the PTs to make visual interpretations, to reason deductively and to do 

constructions. The task provided an opportunity to explore the PTs‘ prior knowledge 

regarding definitions, properties, theorems and constructions of geometric figures, deductions 

that could be made about these figures and the ability to transform a static drawing to a 

dynamic construction. Tasks 1(a) and (b) examined the ability to discriminate and recognize 

in the perceived figure several sub-figures and as such this task was concerned with 

examining the PTs‘ visual spatial ability:  the mental ability to manipulate objects and their 

parts in a two dimensional space. Task 1(b) solidified the deductions made in (a). Tasks 1(a) 

required a perceptual apprehension. Tasks 1(b) required a discursive apprehension. Tasks 

1(c) required a sequential apprehension. Task 1 (c) provided the PTs with opportunities to 

explore construction strategies and to solidify the idea that these constructions were based on 

geometric properties identified in (a) and (b). In this task PTs invented strategies for 

constructing a perpendicular bisector, a cyclic quadrilateral, isosceles triangle, etc., by 

building more sophisticated GeoGebra constructions, such as inscribing an isosceles triangle 

in a circle. 

 

The TPACK construct(s) addressed by the task 

The task comprised content-based and technology-based questions. The task was testing the 

TPACK constructs of CK and TCK. Tasks 1 (a) and (b) examined the CK that required 

geometry competences. A conceptual understanding of aspects of circle geometry should be 

identified by making connections between concepts. Task 1(a) required perceptual 

apprehension of the figure in order to identify sub-figures. Task 1(b) required a discursive 

apprehension of the figure in that the PPTs needed to give justifications as to why the 

relevant triangles were congruent.   Task 1(c) examined the TCK that requires competence to 

use GeoGebra to mediate geometry proficiency. Task 1(c) required sequential apprehension 

to deal with the knowledge of how to represent circle geometry properties within a GeoGebra 

environment. The PT was required to identify the geometrical relationships between the 

objects created in the dynamic and static environments. To successfully do the identification, 

PTs needed to visualize the different configurations of the figures and use GeoGebra 

construction tools such as the ‗drag mode‘ tool to sequentially explore the conjectures. 
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The rubrics for Task 1 

Task 1 (a) 

This task tested PTs‘ geometry content knowledge. The PTs were required to ―write down 

and label all the geometric shapes/figures that you see in the above diagram‖. To avoid 

misunderstandings, an example was indicated to lead the respondent towards the expected 

answer.  In performance levels 4 – 1, the descriptions reflect that the PT correctly identified 

and labelled the figures mentioning at least the three figures. See Table 5.2 for rubrics for 

Task 1(a). Although I expected the PTs to know the basic figures i.e. circle, triangle, 

quadrilaterals, level 1 catered for responses that mentioned two (2) figures correctly 

regardless of the type of figure. I considered that labeling could be a constraint to some 

respondents. There are at most 17 figures that one can recognize in the perceived figures and 

several subfigures so an interval of number of figures had to be determined for the 4 levels. 

As noted earlier, the lowest number of figures should be 3 and the maximum for a response 

that considered the figures built from the three basic figures is 17. However, an exceptional 

case would be an inclusion of semi-circles and circle segments. This statement qualifies the at 

most 17 figures identified.  

 

Table 5.2: rubrics for Task1 (a) 

level Description 

0 No shape/figure identified  

1 Correct identification and labelling of  3 figures even if similar e.g. all triangles 

2 Correct identification and labelling of 4 - 9 figures with three major shapes :circle, triangle, 

quadrilaterals inclusive 

3 Correct identification and labeling of 10 - 16 figures including three major shapes :circle, 

triangle, quadrilaterals inclusive 

4 Correct identification and labeling of at most 17 figures including three major shapes :circle, 

triangle, quadrilaterals inclusive 

 

Task 1(b) 

This task tested PTs‘ geometry content knowledge. The PTs were required to show and 

explain ―which triangles are congruent‖.  In levels 4 – 1, the descriptions reflect that the PT 

correctly identified the congruent triangles based on the recognition that AH was given as the 

diameter of the circle. See Table 5.3 for rubrics for Task 1(b). The mathematical statement 

given in the responses for these levels should reflect both the visualization and reasoning 

process.  However, a correct identification or configuration of the diagram to show 
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congruency may not necessarily be aligned with the correct reasoning or explanations. As 

such, the explanations were coded with respect to the levels as correct, incomplete correct, 

faulty, and no explanations. For instance, level 3 differs with level 4 in that the level 3 

response provides a correct but incomplete explanation.  

 

Table 5.3: Rubrics for Task 1(b) 

level Description 

0 incorrect identification of pairs of congruent ∆s or no response  

1 Correct identification of 3 pairs of congruent triangles; no explanations 

2 Correct identification of 3 pairs of congruent triangles ; Faulty explanations 

3 Correct identification of 3 pairs of congruent triangles ;  incomplete  correct explanations 

4 Correct identification of 3 pairs of congruent triangles. Correct explanations using geometric 

reasoning, recognizing in reasoning that AH is diameter. 

 

Task 1(c) 

This task tested PTs‘ geometry technological content knowledge (TCK). The PTs were 

required to ―Use GeoGebra to construct the diagram‖. In this task there was interplay 

between knowledge of GeoGebra and geometry knowledge. The intention was for the 

descriptions to capture both knowledge of GeoGebra and geometry knowledge. The response 

for the task required a proper use of GeoGebra, suggesting that in constructing the diagram 

with GeoGebra, there were three possibilities; a correct construction, an incorrect 

construction or no construction, See Table 4.4 for rubrics for Task 1(c). A level 4 description 

reflected a correct construction at a glance, suggesting that during the construction process, a 

complete exploitation of the affordances of GeoGebra was realized, resulting in a short 

concise sequence of construction. A level 3 description showed a correctly constructed 

diagram but using a long sequence of construction. A level 2 description was for an incorrect 

disjointed construction that indicated less exploitation of affordances of GeoGebra. At this 

level there was no systematic approach to the construction with a possibility of disorientation 

when a point was dragged. A systematic approach would optimally use GeoGebra as a 

dynamic geometric tool. At level 1 an attempt to construct was made but did not necessarily 

produce the required diagram, reflecting some technical knowledge but lack of geometry 

knowledge.  
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Table 5.4: Rubrics for Task 1(c) 

level Description 

0 Inability to use GeoGebra  

1 Some figure drawn, missing other details e.g. ∆ABC not isosceles 

2 incorrect disjointed construction, less dependent on GeoGebra, no systematic approach to 

construction, possibility of disorientation when point is dragged 

3 Correct construction at a glance, complete dependent on GeoGebra, long sequence of 

construction 

4 Correct construction at a glance, complete dependent on GeoGebra, short sequence of 

construction  

 

5.2.2 Deconstructing Task 2 

Task 2 was a content-based and pedagogical-based question. See Figure 5.2 for Task 2 and 

Appendix C for Task 2 and its memorandum. The content-based sub-question involved a 

typical problem based on a Grade 11 geometry level, requiring the participants to prove a 

circle geometry theorem in several ways. The pedagogical-based question required 

knowledge and skills in applying this kind of task in a mathematics classroom situation. 

 

In the diagram below O is the centre of the circle. GH is a tangent to the circle at T. 

J and K are points on the circumference of the circle. TJ, TK and JK are joined. 

 
 

 

(a) Prove the theorem that states that  ̂    ̂   using four different methods (four 

constructions) 

(b) How would you handle this problem in a classroom environment? 

Figure 5.2: Task 2 
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The critical components of the task 

The critical component of the task was the ability to ―do proofs‖ and recognize the multiple 

methods of proving the tan-chord theorem. The PT needed to understand and have knowledge 

of producing statements with reasoning to connect the statements to a conclusion in the 

process of providing a proof. The PT was expected to provide a logical argument by 

producing a sequence of statements with justified reasons. The multiple methods required the 

PTs to recognize how other Euclidean geometry theorem were prerequisites of the tan-chord 

theorem, suggesting that to be able to produce multiple methods of the proof requires 

remembering theorems and knowing how to link and apply them to the tan-chord theorem. 

The pedagogical aspect of the task acknowledged that the PT should have knowledge of 

modelling the various instructional strategies applicable in teaching of proofs. The PT must 

demonstrate the ability to provide an explanation of the proof. Generally, the task required a 

discursive apprehension. The task required both visualization and reasoning processes.  

 

The actions required to complete the task 

The task required multiple methods of proving the same theorem. It required a recall and an 

application of known theorems, definitions, and postulates to construct and justify specific 

statements for a particular method. To complete the task required a demonstration of the 

ability to provide an explanation of the proof. Task 2(a) and Task 2(b) required a discursive 

apprehension of the figure using knowledge of the theorem proof.  

 

The TPACK construct(s) addressed by the task 

Task 2(a) elicited CK by requiring four methods of proofs of the tan-chord theorem whereas 

Task 2(b) elicited PCK by necessitating an explanation of this technique in the classroom 

situation. Each method allowed the PTs to provide a representation of statements with 

reasons and a construction that was linked to these statements. The ideal response to Task 

2(b) should describe or demonstrate the various ways to model or illustrate the theorem. The 

demonstration should encompass the ability to provide an explanation of the concept or the 

procedure for the proof. The demonstration should discuss or utilize the general or specific 

instructional strategies for teaching the tan-chord theorem. 
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The rubrics for Task 2  

Task 2 (a) 

Task 2(a) required the PT to provide four different proofs of the tan-chord theorem by 

producing statements with reasons.  Task 2(a) tested CK regarding proficiency in knowledge 

of circle theorems. Of note is the realization that good knowledge of the proof of the tan-

chord theorem requires knowledge of several other circle geometry theorems.  See Table 5.5 

for rubrics for task 2 (a). The description for performance level 4 required all the correct four 

methods of proofs and statements, namely; (i) proof by congruency and proof by using these 

theorems (ii) angles in the same segment theorem, (iii) angles subtended at the centre and 

circumference theorem, and, (iv) equal tangents theorem. A correct response showed a 

construction of T1 + T2 = 90º, a construction of tan ┴ diameter/radius with all constructions 

supported by correct geometric reasoning and statements. The PTs had to construct T2, which 

was not illustrated in the diagram, in order to justify the tangent-chord theorem. A level 3 

performance had the same description as level 4 except that the PT provided three correct 

methods of the proof. The criteria for level 2 catered for a response that provided a 

construction of 1 or 2 correct methods of proof with correct geometric reasoning and 

statements, suggesting that if, for instance, 1 proof with correct statements was provided then 

it was categorized as a level 2 performance. However, if 1 proof was provided  with not all 

but some correct statements and flawed construction of T1 + T2 = 90º then it was categorized 

as a level 1 performance. 

 

Table 5.5: Rubrics for Task 2(a) 

level Description 

0 No construction of proof  

1 construction of 1 proof using any one of the methods; flawed construction of proof that T1 + 

T2 = 90º; correct construction of tan ┴ diameter/radius, some correct geometric reasoning and 

statements to re-think of how to explain the T1 and T2 and the tan perpendicular to diameter 

2 construction of 1 or  2 correct methods proofs; correct construction of T1 + T2 = 90º; correct 

construction of tan ┴ diameter/radius, correct geometric reasoning and statements 

3 construction of  3 correct methods of proofs; correct construction of T1 + T2 = 90º; correct 

construction of tan ┴ diameter/radius, correct geometric reasoning and statements 

4 construction of  4 correct  proofs using four methods :congruency and three theorems (<s in 

same segment, <s subtended at the centre and circumference, equal tangents); correct 

construction of T1 + T2 = 90º; correct construction of tan ┴ diameter/radius;  correct geometric 

reasoning and statements 
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Task 2(b) 

Task 2 (b) required the PT to situate the task of providing four different proofs of the tan-

chord theorem in the classroom teaching environment.  Task 2(b) tested the PCK relating to 

proficiency in knowledge of teaching circle theorems. The PT was expected to demonstrate 

the ability to explain the theorem using different representations and teaching strategies. See 

Table 5.5 for rubrics for task 2 (b). At level 4 the PT displayed the ability to give a 

description of how to do the correct constructions of the proof with correct geometric 

reasoning and statements and provided detailed description of at least two teaching strategies.  

Categories for level 3 description required the PT to discuss at least one correct solution of 

the proof and a description of one teaching strategy. However, if the discussion and the 

description were not detailed then the criterion was allocated as a level 2 performance. The 

criteria for a level 1 performance was a response that demonstrated  flaws in its explanation 

or  demonstrating a minimal understanding of the theorem whilst level 0 response illustrated 

an unsatisfactory effort to describe the method for classroom environment. 

 

Table 5.6: Rubrics for Task 2(b) 

level Description 

0 effort to describe method for classroom unsatisfactory 

1 Flawed explanation that demonstrates a minimal understanding of the theorem.  

2 discussing one possible correct instructional method; one teaching strategy mentioned but 

not detailed 

3 discussing at least one possible correct solution; detailed description of one teaching 

strategy e.g. question and answer 

4 Ability to give a description of how to do the correct constructions with correct geometric 

reasoning provided; discussing possible solutions; detailed description of at least two 

teaching strategy with clear demonstration of the need for the practical approach 

 

5.2.3 Deconstructing Task 3 

Task 3 was a content-based question. See Figure 5.3 for Task 3 and Appendix C for Task 3 

and its memorandum. The content-based (CK) sub-questions involved typical problems based 

on a Grade 11 geometry level, requiring the PT to display knowledge, application and 

interpretation of a task involving ‗angles in the same segment subtended by same chord/arc at 

the circumference theorem‘.  
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Suppose question 1 below was part of a geometry lesson: 

 

Question 1 

In the diagram below, L, Q, N and E are points on the circumference.  

Which of the angles are equal? 

 
 

(a) What are the main mathematical ideas in the question 1 above?  

(b) Produce a solution to the question. 

Figure 5.3: Task 3 

 

The critical components of the task 

There were two components to Task 3; (i) the ability to understand the mathematical ideas in 

question 1, and (ii) producing the solution to the question ―which of the angles are equal?‖ 

The critical issue in addressing the components of the task was the ability to discursively 

apprehend the diagram. That is, the PT needed to make a connection between the 

configuration(s) and the geometric principles of the diagram in order to provide the 

mathematical idea behind the question of the diagram and make interpretations about the role 

of the diagram in understanding the theorem. The task required both the visualization and 

reasoning process to be enacted.  

 

The actions required to complete the task 

The task required the PT to recognize that a figure could depict various relations of an object 

in relation with other objects. The PT needed to apprehend in the figure the relationship 

between the common chord, segments and angles (a perceptual apprehension). A discussion 



 

91 

 

about question 1 should focus on the relationship between the angles subtended by the same 

chord whether in the same segment, different segments or not inscribed. A PT with a good 

knowledge of this relationship would be able to dispel any misconceptions related to the 

theorem. The PT was required to produce a solution to the question which required 

knowledge of the theorem. Task 3(a) required an explanation of the ideas that were 

foregrounded by question 1. The ideas should include the angle in the same segment theorem, 

its converse and misconceptions. Task 3(b) required a solution of question 1. 

 

The TPACK construct(s) addressed by the task 

Task 3 comprised content-based questions. The task elicited the TPACK construct of CK. 

Tasks 3 (a) and (b) examined the CK that required geometry competences. A conceptual 

understanding of aspects of circle geometry should be reflected when PTs make conjectures 

between concepts, to answer the question relating to understanding and recognition of a circle 

geometry theorem. The respondent must provide a description that demonstrates knowledge 

of angles in same segment theorem and its converse. Statements should be justified by 

appropriate reasoning. The response must address misconceptions of the theorem.  

 

The rubrics for Task 3 

Task 3 (a) 

An ideal response required an explanation of the ideas that were foregrounded by question 1.  

A level 4 performance displayed a correct description of the angle in the same segment 

theorem and its converse with correct geometric reasoning. See Table 5.7 for rubrics for Task 

3(a).  The components of the description encompassed the key words: same segment, 

subtended by same chord/arc, inscribed, angles on circumference. The discussion about the 

idea included a mention of the angles that sought to address possible misconceptions of the 

theorem. A detailed description of the diagram provided clear reference to the positions of the 

points in relation to the chord that subtends all the angles. However, when reference was 

made only to  ̂  ̂ , and  ̂ then the description was pegged as a level 3 criteria. Further, the 

description was brought down to level 2 when the converse was not mentioned. A level 1 

performance described a response that had a flawed explanation that demonstrated a minimal 

understanding of the theorem. A flawed explanation would include M because it was on the 
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same segment as L, Q, and M or include E because it was on the circumference (inscribed).  

An unsatisfactory description and/or an explanation that included V as satisfying the 

condition for the theorem were pegged at level 0.  

Table 5.7: Rubrics for Task 3(a) 

level Description 

0 effort to describe the diagram unsatisfactory; explanation includes V or all points  

1 flawed explanation that demonstrates a minimal understanding of the theorem such as including 

M, E 

2 correct description of the angle in the same segment theorem with correct geometric reasoning 

and no mention of its converse; detailed description of the diagram with clear reference to the 

positions of the points in relation to the chord that subtends  ̂  ̂ , and  ̂ 

3 correct description of the angle in the same segment theorem and its converse with correct 

geometric reasoning; detailed description of the diagram with clear reference to the positions of 

the points in relation to the chord that subtends  ̂  ̂ , and  ̂ 

4 correct description of the angle in the same segment theorem and its converse with correct 

geometric reasoning; discussing possible misconceptions; detailed description of the diagram 

with clear reference to the positions of the points in relation to the chord that subtends all the 

angles 

 

Task 3 (b) 

In levels 4 – 1, the descriptions reflect that a solution that the PT provided should be justified. 

See Table 5.8 for rubrics for Task 3(b).  Justification in this context involves the correct use 

of terms explicitly given in the theorem.  However, I noted that a correct identification of the 

equal angles might not necessarily be aligned with the correct justification. As such, the 

justifications were coded with respect to the levels as correct, incomplete correct, faulty, and 

no justification. For instance, level 3 differed with level 4 in that the level 3 response 

provided a correct but incomplete justification. A level 4 described an ideal response where 

the PT provided a correct identification that  ̂   ̂   ̂   with justifications using geometric 

reasoning and /or recognizing in reasoning around the common chord. Across the PTs, their 

justifications explicitly stated the key essential words: same segment, same segment, 

subtended by same chord/arc, inscribed, angles on circumference. The criteria for a level 2 

description was (i) faulty justifications, (ii) with inclusion of E in the justification, (iii)  

and/or only used the chord in justification, (iv) and/or the same segment was not considered 

in the justification. 
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Table 5.8: Rubrics for Task 3(b) 

level Description 

0 incorrect identification that  ̂   ̂   ̂ or no response , or inclusion of M, V 

1 Correct identification that ̂   ̂   ̂. no  justifications 

2 Correct identification that ̂   ̂   ̂. Faulty justifications, inclusion of E, using chord in 

justification; same segment not considered 

3 Correct identification that ̂   ̂   ̂. incomplete correct justifications  

4 Correct identification that ̂   ̂   ̂. Correct justifications using geometric reasoning, 

recognizing in reasoning the common chord, key words explicitly stated 

 

5.2.4 Deconstructing Task 4 

Task 4 was a technological content knowledge-based (TCK) question. See Figure 5.4 for 

Task 4 and Appendix C for Task 4 and its memorandum. The task required the knowledge 

and skills to interpret learner thinking during a construction of a diagram transformed from a 

verbal description to a GeoGebra construction. See Appendix C for Task 4 description and a 

screen-shot of Jane‘s construction. The technological content knowledge-based sub-question 

required knowledge and skills to utilize GeoGebra when identifying learner errors in the 

constructed diagram.  

 

Jane used GeoGebra to construct a diagram using the description below: 

 

AB is a vertical diameter of a circle with centre O. 

P is any point on the circle closer to A than B. 

The perpendicular to AB at O meets AP produced at M. 

OM and BP intersect at K. 

BM cuts the circle at T. 

Draw radius OP. 

 

Attached is Jane‘s GeoGebra construction of the diagram. Click here for the GeoGebra file. 

(a) What is wrong with Jane‘s construction? (hint: use drag mode, construction 

protocol) 

Figure 5.4: Task 4 

 

 

file:///E:/chapter%204%20data%20presentation/Task4%20Jane's%20construction.ggb
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The critical components of the task 

The main characteristics of the task was the interpretation of a construction resulting from a 

production of a diagrammatic version of objects mentioned in verbal descriptions with the aid 

of a technological tool, GeoGebra. The critical components of the task were the recognition 

or understanding of the key geometric concepts that a learner would use to transform a verbal 

description into a graphical representation. There is interplay of various domains of 

knowledge to perform this task as suggested by Weiss & Herbst (2007).  

 

The actions required to complete the task 

The errors to be recognized in the construction of the diagram were; (i) M is constructed as 

arbitrary point, (ii) OM drawn is independent of AB, and (iii) the order of construction of P is 

incorrect. The task required the ability to confirm that the description as provided in the 

learner‘s construction was correct. This confirmation involved manipulation of the 

constructed figure instead of just inspection. The PT was expected to analyse the construction 

through the dragging mode to check the robustness of the construction to confirm the 

properties in the construction and determine what changed and what stayed the same. The 

PTs were to provide a description that demonstrated knowledge of geometry definitions 

and/or properties of these geometric words (perpendicular, vertical diameter, intersects, 

produced, closer to than), knowledge of how the properties of a diagram aided in the 

construction of a diagram, the disposition to translate statements to a diagrammatic register, 

and the knowledge of a construction procedure. The task required all four apprehensions and 

cognitive processes to be enacted.  

The TPACK construct(s) addressed by the task  

The TPACK construct addressed in Task 4 was technological content knowledge (TCK). 

Task 4 (a) examined the TCK that required competences in geometry and use of GeoGebra. 

The task examined the PTs‘ conceptual understanding of geometry properties in a GeoGebra 

environment where a learner was expected to produce a diagram bound by a specification that 

transformed a verbal description into a graphical representation. The PT‘s knowledge of 

GeoGebra affordances and constraints would be explicit in the descriptions of the learner‘s 

errors in the constructed diagram.  
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The rubrics for Task 4 

Task 4 (a) 

This task elicited PTs‘ geometry technological content knowledge (TCK). The PTs were 

required to identify ―what is wrong with Jane‘s construction?‖ In this task there was interplay 

between knowledge of geometry definitions and/or properties, knowledge of how the 

properties of a diagram aided in the interpretation of a diagram, the disposition to translate 

statements to a diagrammatic register, and the knowledge of a construction procedure. See 

Table 5.9 for rubric for Task 4(a). The interplay suggests that all the Duval‘s four cognitive 

apprehensions of  geometric reasoning are required in diagnosing the errors in the learner‘s 

construction; the perceptual ability to recognize the errors, the sequential organization of the 

construction, the description of the learner‘s errors through a discursive apprehension of the 

figure and the operating on the figure to ascertain the learner‘s errors.  

 

The description for a level 4 performance was a response that was informed by the PT‘s own 

construction to ascertain the correctness or errors that Jane could have made. Such a response 

reflected an ability to give a detailed description of errors in Jane‘s construction supported by 

correct geometric reasoning. The PT‘s reasoning was centred on the recognition that in the 

figure, OM is not perpendicular to AB. The PT should have used the drag mode and/or used 

the navigation bar to check the correctness of Jane‘s construction. The criterion for level 3 

was for a response that ascertained the errors by only working from Jane‘s construction, 

instead of comparing with their own construction.  If the reason why OM was not 

perpendicular to AB was not given in the response, then the response was regarded as a level 

2 criterion. The criterion for level 1 was a response that, indicated that only through a 

perceptual apprehension, identified that   ̂      as seen in the diagram. 
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Table 5.9: Rubrics for Task 4(a) 

level Description 

0 No response 

1 recognize as given in the construction that   ̂      

2 Use of the drag mode to check the correctness of the Jane‘s construction; use of navigation bar; 

no justification  why OM is not perpendicular to AB 

3 ability to give a detailed description of errors in Jane‘s construction with correct geometric 

reasoning provided; Use of the drag mode to check the correctness of the Jane‘s construction; use 

of navigation bar; gives reasons why OM is not perpendicular to AB 

4 Constructed own diagram, ability to give a detailed description of errors in Jane‘s construction 

with correct geometric reasoning provided; Use of the drag mode to check the correctness of the 

Jane‘s construction; use of navigation bar; gives reasons why OM is not perpendicular to AB 

 

5.3 Chapter summary 

In this chapter my discussion was focused on the tasks utilized in the study. The aim of the 

study was to characterize aspects of prospective teachers‘ technological pedagogical content 

knowledge (TPACK) constructed in a GeoGebra-based environment. I deconstructed the 

tasks and provided a description that elaborated the critical components of the sub-tasks, the 

expectations of each sub-task and the TPACK construct that each sub-task tested. The 

cognitive processes and cognitive apprehensions enacted in each task were discussed. The 

deconstruction of the tasks was followed by a description of the rubrics employed to qualify 

the responses to each task.  
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 CHAPTER 6 

ANALYSIS BY TPACK COMPONENT: PROSPECTIVE TEACHERS’ 

GEOMETRY CONTENT KNOWLEDGE 

 

6.0 Introduction 

In Chapter 4, I presented the analytic framework proposed to examine the TPACK aspects of 

CK, TCK and PCK. This chapter presents the data analysis relating to the aspect of content 

knowledge (CK) construct of the technological pedagogical content knowledge (TPACK) 

framework in response to research question 1: 

 

What circle geometry knowledge do the PTs display?  

 

The chapter begins by providing an overview of how the sub-unit of analysis (the content 

knowledge (CK) construct) was conceptualized in the study (Section 6.1). A discussion of the 

descriptive summary and the quantitative analysis of the rubric scores of all the participating 

PTs‘ responses to the CK tasks follows (Section 6.2). Further, an inductive analysis of the 

PTs‘ visualization (Section 6.3) and reasoning (Section 6.4) competencies employing the 

Duval‘s (1995) cognitive apprehensions is articulated. For each section, I provide the overall 

results in a tabular form, followed by a discussion of the overall results for all the 

participants. Each section is concluded by a summary of findings. When discussing the 

results explicitly, I refer to Nkosi, Wisdom and Lesedi, whose responses were considered rich 

in detail and typical of other responses. Throughout this chapter and the subsequent two 

chapters, I discuss the trends across and within each task and present participating PTs‘ 

responses (Nkosi, Wisdom and Lesedi) to written tasks and interview excerpts to support the 

findings. However, there are instances that required examples of responses of the three other 

PTs to strengthen the arguments.  
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6.1 Sub-unit of analysis: PTs’ geometry content knowledge (CK) 

The sub-unit of analysis for this chapter was the participating PTs‘ geometry content 

knowledge (CK) displayed in the CK tasks.  The CK construct was conceptualized in the 

study as the knowledge of circle geometry concepts, theorems and proofs (see Section 5.2). 

Knowledge of geometry required for the successful completion of the CK tasks required two 

main thinking processes: (i) identifying and recognizing figures, (ii) making connections 

between geometry representations, properties and theorems. The exploration of the 

participating PTs content knowledge of circle geometry was done by probing into the PTs 

thinking displayed in the participating PTs solutions to the TPACK tasks that were 

deliberately designed to elicit the TPACK knowledge constructs. I employ the argument that 

geometry thinking requires the processes of visualization, construction and reasoning (Duval, 

1998).  

 

Geometry knowledge in this study included a student‘s ability to relate to diagrams, figural 

properties and theorems. Diagrams, as representations, are a means to reasoning in geometry 

(Duval, 1995; Herbst, 2004; Laborde, 2004). I employ Duval‘s (1995) cognitive 

apprehensions as interpretative tools to discuss how the participating PTs responded to the 

tasks. As mentioned in Chapter 3, 4 and 5, these cognitive apprehensions are perceptual, 

discursive, operative and sequential apprehensions. I use these apprehensions to analyse how 

the participating PTs interact with diagrams acknowledging that variation of diagrams induce 

different levels of proficiency in geometry. The CK tasks elicited visualization and reasoning, 

so I deliberately established the participating PTs‘ visualization and reasoning skills.  To 

understand the participating PTs‘ visualization and reasoning processes in responding to 

circle geometry tasks, I was guided by the following sub-questions. 

 

(1) What do the PTs identify and recognize in the perceived figure? 

(2) What types of connections do the PTs make between representations, properties and 

theorems? 

 

Sub-question 1 relates to visualization whereas sub-question 2 relates to reasoning. In 

deliberating on the sub-questions aimed at measuring the participating PTs‘ CK and aided by 

evidence from the quantitative analysis, I use the PTs‘ responses (derived from interviews 
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and written answers to tasks) to provide insights into what I consider prominent, absent or 

assumed CK knowledge of participating PTs within and across the CK tasks. Answers to 

these questions are provided as summaries at the end of Section 6.3 and Section 6.4. 

6.2 Analysis of Rubric Scorings of CK tasks  

The tasks in which CK was foregrounded were Task 1(a), Task 1(b), Task 2(a), Task 3(a) and 

Task 3(b). The responses to the written tasks were scored using rubrics. As described in 

Chapter 5, rubrics were used as a tool to measure the participating PTs‘ CK. The rubrics used 

specific scores based on a five-point qualitative scale (performance level 0 to performance 

level 4) to capture the participating PTs‘ proficiency in the three main knowledge domains of 

content, pedagogy and technology. For each rubric the quality of the performance levels were 

categorized as follows: level 0 as poor, level 1 and level 2 as adequate, and  level 3 and level 

4 as good knowledge of geometry. See Table 4.5 in Chapter 4 for the coding of quality of 

connections and performance levels. 

 

6.2.1 Analysis of PTs’ performance across CK tasks 

A summary of the scores for the cases is presented in Table 6.1. The table presents data of six 

PTs; Nkosi, John, Wisdom, Lesedi, Bonolo and Thabiso. There were five (5) tasks examining 

CK, giving an overall mark ranging from 0 to 20. The overall mark was essential in 

determining the overall CK performance score for each participating PT. The frequencies of 

the rubric scores are included in the discussion to indicate the scoring pattern of PTs‘ 

performance level across the tasks. The mean and standard deviation are provided to interpret 

the individual PT‘s scores. Refer to Chapter 5 for rubrics for each task. 

I will use Nkosi as an example to illustrate the scoring patterns as presented in the Table 6.1. 

An account of Nkosi indicates that he attempted all the tasks with performance scores ranging 

between performance levels 1 and 3. This implies that the qualities of his responses were 

scored either adequate or strong. The classification of the five tasks that he attempted 

indicates that Task 1(b) and Task 3(b) each scored 1, Task 2(a) scored 2 and Task 1(a) and 

Task 3(a) each scored 3. The frequency distribution provides an account of scoring across all 

the performance levels of the rubrics. Nkosi‘s frequencies suggest that his CK competence is 

between adequate and strong.  
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Table 6.1: Scoring of PTs responses across and within the CK tasks 

PT 

Rubric scores /4 for each sub-task Summary across the tasks 

Task 1 Task 2 Task 3 mark /20 % Mean  

( ̅     ) 

SD 

(SD=0.205) 

(a)  (b)  (a) (a) (b) 

 Nkosi 3 1 2 3 1 10 50 2 1 

 John 2 4 2 3 1 12 60 2.4 1.14 

 Wisdom 3 3 2 3 2 13 65 2.6 0.548 

 Lesedi 3 2 2 4 4 15 75 3 1 

 Bonolo 2 3 1 1 2 9 45 1.8 0.837 

 Thabiso 2 3 1 2 3 11 55 2.2 0.837 

  Summary 

within the 

tasks 

  

 mark /24 15 16 10 16 13 

 

% 63 67 42 67 54 

Mean  2.5 2.667 1.667 2.667 2.167 

SD 0.548 1.033 0.516 1.033 1.169 

Note: 1, 2, 3, 4 denote performance level score 
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The distribution of scores ranged from 1 to 4 as expected. Looking across the unit of analysis, 

the following was observed: six PTs scored a 1, two PTs scored a 4 with Lesedi scoring two 

of the 4‘s. Scores 2 and 3 were the most prominent scores to be attained by the PTs across all 

the tasks. A score of 4 as reflected in Table 1 suggests that John and Lesedi are the only PTs 

to provide model answers.  John answered Task 1 (b) correctly; Lesedi answered Task 3 (a) 

and Task 3(b) correctly. Bonolo had the lowest overall mark of 45% and Lesedi scored the 

highest overall mark of 75%.   

  The overall mean and standard deviation were 2.3 and 0.205 respectively, suggesting that 

three PTs (John, Wisdom and Lesedi) scored above the mean and rest of the PTs scored 

below the mean (between 1.8 and 2.2). For example, Thabiso‘s overall mark and mean were 

55% and 2.2 respectively, which is slightly below the overall mean score of 2.3. Of the 30 

responses, 13 (43.3%) displayed strong geometry CK competence while 17 (57.7%) 

displayed adequate geometry CK competence.  

6.2.2 Analysis of PTs’ performance within CK tasks 

Reference is made to the summary of the participating PTs‘ scores across each task as 

presented in Table 6.1 above. The analytical rubrics were employed to qualify the responses 

to each task. A general overview of the table indicates that all the five tasks were attempted, 

with 1 as the lowest score and 4 as the highest performance score attained in a task. Task 1 

(a) is the only task that was not scored at 1 whilst Task 1(b), Task 3(a) and Task 3(b) were all 

scored at performance level 4 by two PTs (John and Lesedi).  

The percentage mark for each task, as attained by the participating PTs ranged between 42% 

and 67%. Task 2 (a) had the lowest mark of 42%. The scores for Task 2(a) ranged between 1 

and 2 with four of the participating PTs attaining a 2. The mean and SD of Task 2 (a) are 

1.667 and 0.516 respectively, confirming that the quality of responses for this task was poor 

and hence there was a slim variation between scores in this task. The mean and SD of both 

Tasks 1(b) and 3(a) were 2.667 and 1.033 respectively, confirming that the quality of 

responses for these tasks was strong. There was a variation between scores in these tasks with 

each task realizing a model score of 4 and reflecting that four of the six PTs‘ scoring was 

strong.   
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 Although Tasks 1(b) and 3(a) both received the highest percentage mark, only two PTs (John 

and Lesedi) answered one of these tasks correctly performing at level 4. Since Task 1(a) and 

Task 3(b) provided contrasting trends, I use these as examples to explain the characteristics 

of performance for each task as displayed in the table. The overall mark for Task 1 (a) was 

63%, with scores ranging from adequate (score 2) to strong (score 3). This demonstrates that 

none of the responses reflected poor performance. The classification of the score of the PTs‘ 

responses to Task 1 (a) are; 3 PTs scored 2 (adequate) and 3 PTs scored 3 (strong).  The mean 

is 2.5 and SD is 0.548 suggesting that there was not much variation in performance within 

this task. On the other hand, the overall mark for Task 3 (b) was 54%, with scores ranging 

from adequate (score 1) to strong (score 4). That is, none of the PTs‘ scored 0 (poor). The 

classification of the scores of the PTs‘ responses to Task 3 (b) are; 2 PTs scored 1 (partial) 

and 2 PTs scored 2 (partial), 1 PT scored 3 (adequate), 1 PT scored 4 (adequate). The mean is 

2.167 and SD is 1.169 suggesting that there was a great variation in performance within this 

task as compared to the other four tasks.  

 In general, focusing on the frequencies of the scores attained across the tasks, the most 

frequent scores were 2 and 3 as shown in Table 6.2.  

 Table 6.2: frequencies of scores across the tasks 

 
 Frequency of scores across each performance level 

0 1 2 3 4 

 Task 1 
 (a) 0 0 3 3 0 

 (b) 0 1 1 3 1 

 Task 2  (a) 0 2 4 0 0 

 Task 3 
 (a) 0 1 1 3 1 

 (b) 0 2 2 1 1 

 

The frequencies in Table 6.2 present the occurrences of scores attained by the number of PTs 

in relation to each task. For instance, the performance scoring pattern of Task 1(a) reflects 

that of the six participants in the study, three PTs scored at performance level 2 and three PTs 

scored at performance level 3. The trends in the scores suggest that half of the PTs performed 

at level 3 or higher in Tasks 1(a), 1(b) and 3(a) whereas 5 or more PTs performed at level 2 

or less in Task 2 and 3(b). Task 2(a) is the only task which the PTs did not score higher than 

level 2. Frequency of performance scores across the tasks strongly indicates that the PTs 

performance in circle geometry can be classified as between adequate and strong. However, 
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this statement can be qualified by an in-depth analysis of the performance of each task based 

on the answers to the two sub-question stated above. 

 

Section 6.2 Summary of quantitative findings within and across CK tasks 

The rubric scores attained by the participating PTs were quantitatively analysed within and 

across the tasks.  Section 6.3 provides a summary of descriptive statistics of the sub-unit of 

analysis. The summary showed that overall variation of scores is low, suggesting that the PTs 

had similar abilities with below than acceptable knowledge of circle geometry knowledge. 

The conclusion is based on the contention that the expected average performance for the CK 

tasks should be 4 but the attained average is 2.3, signifying below expected knowledge levels 

of circle geometry. The rubric scores in the descriptive summary in this section provide 

statistical features of the participating PTs‘ individual performance. However, an 

interpretation of the scores within and across the tasks in Section 6.3 would bring forward an 

insight into the participating PTs‘ CK. 

6.3 Sub-question 1: Identifying and recognizing the perceived figures  

Generally, working with geometry tasks requires an interaction with diagrams and the use of 

visualization to perceive the figures and their properties. The PTs should have the 

competence to visualize and reason to reflect their knowledge and understanding of geometry 

(Duval, 1995; Gagatsis et al., 2010; Laborde, 2004). The commonality of the CK tasks was 

that all the tasks required cognitive apprehensions to deal with the knowledge of circle 

geometry properties and theorems. Apprehension in this context refers to the several ways of 

looking at a drawing or visual stimulus (Duval, 1995). The major focus of the interaction 

with the diagram was to identify and describe concepts as perceived in the diagrams. For 

instance, Task 1(a) particularly required a perceptual apprehension of the diagram in order to 

identify and describe figures with similar or contrasting properties.  Task 1(a), Task 1(b) and 

Task 3(a) evoked perceptual apprehension. See Section 4.4 for the conceptualization of 

perceptual apprehension. The findings of the participating PTs‘ responses to each task 

embedded within this sub-question are presented. The discussion that follows will apply for 

all the findings that answer the sub-question ―What do the PTs identify and recognize in the 

perceived figure?‖ This section discusses the visualization process whilst the reasoning 

processes discussion will follow in Section 6.4. 
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Results for Task 1 

Task 1(a) required a perceptual apprehension of the diagram. The PTs were expected to 

identify and discriminate the figures from a given diagram. To do this required reflecting on 

an understanding of geometrical concepts and spatial representations derived from the figure 

(see Task 1 in Section 5.2.1 and Appendix C). The task provided an opportunity to explore 

the PTs‘ prior knowledge regarding definitions, properties and theorems. Generally, this task 

was concerned with examining the participating PTs‘ visual spatial abilities by listing and 

labelling that which they can identify. 

 

The figures that the participating PTs were expected to recognize and identify were circle, 

semi-circle, segments, triangles and quadrilaterals.  I expected the PTs to specifically identify 

a circle, 2 semi-circles, 8 segments, 6 single triangles, 5 compound triangles made up of two 

single triangles, 1 compound triangle made up of three single triangles, 1 compound triangle 

made up of four single triangles and 3 quadrilaterals (see Table 6.3). The identifications 

indicated that the PTs could see a circle, a semi-circle, triangles, quadrilaterals and others. A 

summary of the Table 6.3 shows that half of the PTs did not see a circle, 5 out of 6 

participating PTs saw single triangles, only one PT could not identify compound triangles 

comprising 2 single triangles, half of the PTs saw compound triangles comprising 3 single 

triangles, 4 out of 6 PTs identified compound triangles comprising 4 single triangles, only 

one PT saw the semi-circle and all PTs failed to see circle segments but were able to 

recognize quadrilaterals. The total numbers of figures identified by each PT were between 5 

and 14 figures with triangles featuring most prominently. The triangles were seen by all the 

PTs. 
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 Table 6.3: PTs‘ identification of figures (perceptual apprehension) 

 PT  Number of observed figures that PTs identified 

 Circle 

E=1 

 Single 

triangle 

E=6 

 

 compound triangles comprising of … Semi-circle 

E=2 

Segment 

E=8 

Quads 

E=3 

 

others Total 

figures 

Identified 

E=27 

2 

single 

triangles 

E=5 

3  

single 

triangle 

E=1 

4   

single 

triangle 

E=1 

Nkosi 1 5 1 0 1 0 0 2  10 

John 0 5 1 1 0 0 0 1  8 

Wisdom 1 6 4 1 1 0 0 1  14 

Lesedi 0 5 2 1 1  0 0 3 1 13 

Bonolo 0 0 3 0 1 0 0 1  5 

Thabiso 1 1 0 0 0 1 0 1 2 6 

 Note: E is the number of figures expected to be identified;  
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I use responses by Nkosi and Lesedi, who both scored a 3 to illustrate how the figures were 

identified. Nkosi identified 10 figures: a circle, 5 single triangles, 1 compound triangle made 

up of two single triangles, 1 compound triangle made up of four single triangles and 2 

quadrilaterals.  Lesedi identified 13 figures: 5 single triangles, 2 compound triangles made up 

of two single triangles, 1 compound triangles made up of three single triangles, 1 compound 

triangle made up of four single triangles, 3 quadrilateral and 1 non-existing figures.  

 

An in-depth analysis of the PTs‘ responses was essential in determining and understanding 

the techniques employed for listing and the type of figures identified.  Listing the figures 

reflects a visual explanation of the perceptive process. Duval (1995) suggests that there are 

specific laws by which one organizes what one visualizes. This implies that to list the figures 

the PTs had to mentally deconstruct the diagram and such deconstruction required perceptual 

apprehension. Interviews were used to determine the PTs‘ thinking in their decision to list the 

figures. Nkosi, Wisdom and Thabiso recognized the circle and the larger triangle among all 

the figures in the diagram. These three participating PTs are singled out because they were 

the only ones to list the circle. The excerpt below provides a strategy that sheds light on why 

Wisdom recognized a circle and its role in the construction of the diagram:   

    

 Kim: tell me when you started drawing this did you, did it matter what you started with the 

triangle or the circle. Or you assumed that you had to start with the circle? 

 Wisdom: I had to start with a circle 

 Kim:  why? 

Wisdom: because everything is being done inside the circle   

 Kim: inside the circle? 

Wisdom: yah 

 

Wisdom is singled out because he provided a unique response in which he demonstrated that 

the circle was the most prominent figure that he recognized. That is all other figures were 

drawn relative to the circle. Were the triangles listed common for the participating PTs? 

There is an indication that the PTs saw single triangles much more than other figures. It 

shows that Wisdom identified all the 6 single triangles whilst three PTs (Nkosi, John and 

Lesedi) listed 5 of the 6 triangles. I noted that Thabiso could not recognize the larger triangle 
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but is the only PT that identified the semi-circle. The PTs had to reconfigure the triangles by 

regrouping the single triangles into compound triangles.  

 

Clearly, in the process of identifying the figures, the participating PTs reconfigured some 

figures. It seems the PTs could see the single triangles except for Bonolo who recognized the 

reconfiguration but no single triangles. It is not clear what strategy was used for listing the 

single triangles; as such it was difficult to describe the strategy that was used for identifying 

the single triangles that were left out. Although the participating PTs could identify single 

triangles, they had difficulty in discriminating the diagram to see the compound triangles. Of 

the seven triangles that were compound, five PTs could identify 4 or less compound triangles. 

However, the participating PTs who identified four compound triangles could easily identify 

single triangles but missed triangles BME and BHC and quadrilateral BKEM. The 

participating PTs inability to recognize and identify compound triangles confirms Duval‘s 

(1995) observations where he ascertains that reconfiguration that involves the use of one 

figure twice has a potential to inhibit visibility of reconfiguration. He claims that learners are 

of the view that two or more triangles stuck together will not be triangles unless you judge 

them individually.  

 

 Duval (1995) makes clear that visibility of the reconfigurations occurs most prominently 

where the combination of the figures forms a familiar shape. It is evident that the 

participating PTs recognized the quadrilaterals at a glance because the PTs listed at least one 

quadrilateral and gave specifications of the type of quadrilateral. All the PTs recognized 

quadrilateral ABHC from a reconfiguration of the triangles ABH and ACH. It is interesting to 

note that the PTs deduced from knowledge of quadrilaterals and their propositions that there 

was a cyclic quadrilateral conforming to the features of a kite but failed to mention the circle 

(half of the PTs). 

 

In determining the characteristics of the participating PTs‘ knowledge of geometry, a 

convincing argument to situate the PTs‘ understanding of geometrical concepts and spatial 

representations derived from a diagram was necessary. The variation (0.548) between the 

participating PTs responses for this task suggests that in some situations there was 

commonality in thinking. The participating PTs did not recognize that within the diagram, 

there were figures that were enclosed by the arcs and chords. Three out of six PTs did not 
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mention the circle. Thabiso stands out as the only PT that identified a semi-circle and none of 

the PTs identified the segments. Could it be that the definition of figures refers to the figures 

classified only under the ordinary shapes or polygon? Thabiso listed an isosceles triangle and 

the scalene triangle. This participating PT could see the big shapes but not small figures.  

 

The task required the participating PTs to list and label figures that they could identify. 

Labelling generally was a follow-up of listing in that PTs had to label what they listed. The 

table presents evidence of labelling or not labelling in relation to listing. All the PTs except 

Thabiso were able to label what they could identify. Of the six figures that Thabiso identified, 

he labelled only two triangles. I established two categories for labels: labelling of triangles 

and quadrilaterals and labelling of the circle. Labelling of triangles and quadrilaterals was 

further split into clockwise and anti-clockwise. Table 6.4 reveals that of the 10 figures that 

Nkosi labelled, 4 figures were labelled clockwise, 5 anti-clockwise, the circle was listed and a 

system was followed in listing or labelling. Lesedi‘s 5 figures were labelled clockwise, 7 anti-

clockwise, the circle was not listed and a system was followed in listing or labelling. 

Although Thabiso identified 6 figures he failed to provide labels for 4 of these figures in spite 

of the diagram being fully pre-labelled. 

 

 Table 6.4: PTs labeling of figures 

 

 

 PT 

 Labels   

 Labeling system for triangles and 

quadrilaterals 

 Labeled 

Circle  

 systematic 

Listing  

 Number of 

 Figures 

identified  clockwise  Anti-clockwise 

Nkosi 4 5 Yes Yes 10 

John 6 2 n/a No 8 

Wisdom 10 3 Yes Yes 14 

Lesedi 5 7 n/a Yes 12 

Bonolo 5 0 n/a No 5 

Thabiso 2 0 No No 6 
Note: n/a means not applicable  

 

In listing the figures, the participating PTs‘ thinking varied in their responses. The variations 

for listing were (i) systematized listing according to shapes, (ii) unsystematic listing, and (iii) 

systematic listing of triangles. The PTs who listed the figures systematically presented the 

greatest number of figures. Perhaps there is a link between identification and knowledge of 

figures? For example, Wisdom and Nkosi listed systematically according to shapes. Due to 
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the systematic listing of triangles, Wisdom identified more figures than Nkosi. Although 

Lesedi did not list according to the types of shape, she had a system for listing triangles. In 

general, a coordinated system of labeling was observed. Those PTs who used both clockwise 

and anticlockwise had the highest listings.   

 

Task 1(a) was concerned with examining the participating PTs‘ visual ability to manipulate 

objects and their parts in a two dimensional space.  Table 6.4 illustrates that the participating 

PTs could identify certain geometric figures and their properties. They were able to see 

figures as single entities rather than as a configuration of these single entities. From this 

observation, it can be inferred that the participating PTs had difficulty identifying the figures 

through reconfiguration. Duval (1995, p.155) suggests that ―seeing requires discerning the 

original figure to allow reconfiguration‖. That is, although this task elicited perceptual 

apprehension, there was an overlap of different apprehensions. Reconfiguration necessitated 

an operative apprehension in order to identify the figures.  The participating PTs‘ perceptual 

apprehension of the diagram is weak due to their failure to recognize and discriminate all the 

figures and sub-figures through mental modification of the diagram.   

 

Task 1(b) required the participating PTs to identify the congruent triangles in the diagram 

(see Section 5.2.1 and Appendix C). To accomplish the tasks required that both visualization 

and reasoning processes be enacted. The element of identification requires a visual 

observation and as such, a perceptual apprehension of the diagram precedes participating 

PTs‘ reasoning for the triangles that are purported to be congruent. The task required a 

discursive apprehension of the diagram in order to identify and describe the perceived 

congruent triangles. In this apprehension, the PT needed to connect the configurations of the 

figure with the properties of such figures in order to provide an argument as to why the pairs 

of triangles identified were indeed congruent. The statements that were provided by the 

participating PT described their perceptual apprehension. The reasoning statements also 

described the perceived figure through use of geometric language and symbols. Reasoning 

and connections are discussed later in this chapter.  

 

There were four pairs of congruent triangles that the participating PTs were expected to 

identify. Table 6.5 provides a summary of the PTs‘ identification of the congruent triangles 

and the performance scores attained for this task. The classification of the score of the PTs‘ 
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responses to Task 1 (b) were: one PT scored a 1, one PT scored a 2, 3 PTs scored a 3 and 1 

PT scored a 4. The scoring of this task indicates that all the PTs correctly identified at least 

one pair of congruent triangles but differed in the number of identified pairs of triangles. See 

Chapter 5 and Appendix C for the memorandum where an explanation for the pairs of 

congruent triangles is given. The numbers of identified congruent triangles in the 

participating PTs‘ responses as shown in Table 6.5 are: Bonolo identified 1 pair of congruent 

triangles, Thabiso identified 2 pairs of congruent triangles, Nkosi, Wisdom and Lesedi 

identified 3 pairs of congruent triangles and John identified 4 pairs of congruent triangles. 

   

 Table 6.5: PTs‘ identification of congruent triangles (sequential apprehension) 

PT  Identification made on perceptual apprehension  Rubric 

score  Order of listing of pairs of congruent triangles 

∆ABH ≡ ∆ACH (1)        ∆ABM ≡ ∆ACM (2)         ∆MBH ≡ 

∆MCH (3)         ΔKBE ≡ ΔMBE (4) 

 No. of 

triangles 

listed 

 Nkosi  1 → 2 → 3  3  3 

 John  1 → 2 → 3→ 4  4  4 

 Wisdom  1 → 2 → 3  3  3 

 Lesedi  1 → 2 → 3   3  2 

 Bonolo  1   1  1 

 Thabiso  1 → 3  2  3 

 

An in-depth analysis of the participating PTs‘ responses was essential in determining and 

understanding the techniques employed for listing the figures identified.  Listing the figures is 

a visual explanation of the perceptive process. That is, one can list that which they can 

visualize. Duval (1995) suggests that there are specific laws in which one organizes what 

they visualize. To list the figures, the participating PTs had to mentally deconstruct the 

diagram and such deconstruction required perceptual apprehension. Basing on the assertion 

by Mason & Johnston-Wilder (2006) that congruence is a property involving the relationship 

between two objects, the PTs had to determine a specific technique for identifying the 

perceived congruent triangles. 

 

The participating PTs‘ competence with respect to knowledge of properties of the triangles, 

knowledge about angles and triangle theorems was reflected in the participating PTs‘ ability 

to shift between the given verbal description and the diagrammatic representation. The 

shifting was essential to fit the properties that were not specified in the verbal description but 

could be implied in the diagram. For instance, the congruency in the task had to be 

determined based on the circumscribed triangle ABC as the first point of reference whilst 
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noting that AH was the diameter even though it was not stated in the verbal description. Upon 

establishing this fact,  the PT had to note that the order of listing, as explained in Chapter 5, 

the congruent triangles is for ∆ABH ≡ ∆ACH as congruent pair (1) followed by ∆ABM ≡ 

∆ACM as congruent pair (2) followed by ∆MBH ≡ MHC as congruent pair (3) then ΔKBE ≡ 

ΔMBE as congruent pair (4).  This means that to identify pair (2) required establishing the 

congruence of ∆ABH and ∆ACH. The congruency of pair (3) required recognition of pair (1) 

and pair (2). All the PTs identified the pairs of congruent triangles in this order except for 

Thabiso who skipped pair (2) by identifying pairs (1) and (3). John identified all the four 

pairs of congruent triangles in the right order.  

 

 Table 6.6: PTs‘ identification of congruent triangles 

PT  Identification made on perceptual apprehension 

 Triangles identified in 1 (a) that are 

  among the congruent triangles in 1 (b) 

   triangles not identified 

Nkosi  ΔAMB, ΔCHM, ΔBHM, ΔBEK,  ΔMBE, ∆ABH, ∆ACH, ∆ACM 

John  ΔABM, ΔAMC, ΔBME, ΔBKE,  

   ΔBMH,  ΔCMH  

 ∆ABH , ∆ACH  

Wisdom  ΔBMH, ΔABH, ΔBKE, ΔABM,  

  ΔAMC, ΔAHC, ΔCMH 

 ΔMBE  

 Lesedi  ΔABH, ΔACH, ΔBME, ΔABM,  

 ΔACM, ΔBMH, ΔCMH 

 ΔKBE  

 Bonolo  ΔABH,  ΔAHC  ∆ABM, ∆ACM, ∆MBH, ∆MHC, 

ΔKBE, ΔMBE  

Thabiso  ΔABM  ∆ABH, ∆ACH, ∆ACM, ∆MBH, 

∆MHC, ΔKBE, ΔMBE  
Note: Expected to identify ΔAMB, ΔCHM, ΔBHM, ΔBEK, ΔMBE, ∆ABH, ∆ACH, ∆ACM 

 

Further analysis was done to provide insights into the participating PTs‘ reasoning in relation 

to the visualization process. Drawing on Duval‘s (1995) suggestion that there are specific 

laws in which one organizes what they visualize, I decided to explore if there was a link 

between the figures identified in Task 1(a) and the way these figures were organized to 

identify the congruent triangles. Do the triangles that the participating PTs perceive influence 

the way they organized the triangles to identify congruent triangles? Table 6.6 illustrates how 

the PTs identified the congruent triangles. As noted above relating to Task 1 (a), the 

participating PTs saw single triangles much more than other figures and this in some way 

might have affected their ability to recognize congruent compound triangles. Among the list 

of congruent triangles were compound triangles ∆ABH, ∆ACH and ΔMBE. These triangles 

were not seen by half of the participating PTs. The triangle that was least identified was 

ΔMBE. Most of the listed congruent triangles were not identified in Task 1(a). For instance, 
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John identified only 7 of the 13 triangles in Task 1 (a) but identified all the 4 pairs of 

congruent triangles, indicating that some of the identified congruent triangles were not 

mentioned in Task 1(a). Thabiso, on the other hand, identified only 1 of the 13 triangles in 

Task 1(a) but recognized 2 pairs of congruent triangles. Although only four of the six PTs 

provided reasons for their identifications, these findings confirm that the PTs understood the 

meaning of congruency. I suggest that the PTs relied on their knowledge of congruency and 

geometric properties rather than on their visual perception to judge whether the identified 

triangles were indeed congruent.  

 Results for Task 2 

As mentioned in Section 5.2.2, the critical component of the Task 2 was the ability to ―do 

proofs‖ and recognize the multiple methods of proving the tan-chord theorem. The 

participating PTs were to produce statements with reasoning to connect the statements to a 

conclusion in the process of providing a proof. Task 2 required reasoning but not necessarily 

visualization processes to be enacted. Therefore, discussion relating to Task 2 is presented in 

section 6.4.  

 Results for Task 3 

Accomplishing the task required enactment of both the visualization and reasoning processes 

(see Task 3 in Section 5.2.3 and Appendix C). Task 3(b) solution required an enactment of 

what was recognized in Task 3(a), and as such, only the results of Task 3(a) are discussed 

under this category.  Task 3(a) required the PT to explain the critical components in a 

geometry question. The idea that the participating PT brings forward should reflect an 

understanding and recognition of a circle geometry theorem (angles subtended on the 

circumference by the same chord in the same segment are equal). In interpreting the 

geometry question, the participating PT should recognize that a figure can depict various 

relations of an object in relation to other objects (see Section 5.2.3). The task required a 

discursive apprehension, meaning that it required making connections between 

configuration(s) and the geometric principles of the diagram in order to provide the 

mathematical idea behind the question.    

Reference is made to Table 6.1 above. There were some variations between scores in this task 

with 4 of the 6 PTs scoring a 3 or better. The variation of the score of the PTs‘ responses to 
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Task 3 (a) are one PT scored a 1, one PT scored a 2, three PTs scored a 3 and one PT scored a 

4.  The discussion of the PTs responses to this task is confined to the identification and 

descriptions of the perceived figures as reflected in the reasoning in the statements. Table 6.7 

below provides a summary of the participating PTs‘ identification of circle geometry 

concepts of the angles, chord and segment and the participating PTs‘ performance scores 

attained for this task. The concepts were identified from the written statements that explained 

the ‗main mathematical ideas‘. For instance, Nkosi responded that “This shows that angles 

on the same segment are equal, only if they are on the circumference”. This statement 

presupposes that Nkosi identified all the angles by use of only if. Therefore Table 6.7 coding 

reflects that Nkosi considered from the diagram the inscribed angles, the angles within the 

circle and the angles outside the circle. He mentioned the segment but omitted the same side 

of the chord. Lesedi, on the other hand, responded that ―To address the misconception that 

angles that are equal and subtended by the same chord have to be on the same circumference 

not inside the circle or outside the circle". Lesedi identified all the angles in relation to the 

chord, although she is not explicit about the segment which she refers to as the ‗same 

circumference‘. Lesedi mentions the misconceptions that are depicted by the figures, 

indicating that the description is drawn from perceptually apprehending the diagram.  

 Table 6.7: PTs‘ identification of concepts in the task 

 

 

 PT 

 Identification made on perceptual apprehension  Rubric 

score  Angles  Chord  Segment 

 Inscribed Within the 

circle 

 Outside 

the circle 

  

Nkosi X X X  X 3 

John X X X X  3 

Wisdom X X X X  3 

Lesedi X X X X X 4 

Bonolo X   X  1 

Thabiso X   X  2 

  

 

 The scoring of this task indicates that all the PTs identified the correct theorem. However, 

the response statement about the concepts of the theorem differed across the PTs. Table 6.7 

shows that, in general, all the participating PTs at a glance saw that in the diagram there were 

angles inscribed on the circle, angles within the circle, angles outside the circle, a chord and 

segment. All the PTs except Bonolo and Thabiso recognized the inscribed angles and 

acknowledged the other angles. Four PTs did not mention the segment and failed to identify 
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those angles within the circle and outside the circle that were fulfilling the conditions for the 

converse of the theorem.   

 

Section 6.3 Findings: What do the participating PTs identify and describe in the 

perceived figures? 

Section 6.3 presented and analysed what the participating PTs could identify and describe in 

the perceived figures. The analysis focused on the PTs‘ competence to identify and describe 

that which they could visualize and reason about. Perceptual apprehension was employed to 

interpret how the PTs listed, labeled and described the figures. To examine what the 

participating PTs identify and recognize in perceived figures, I made judgments on ‗what 

could the PTs see‘ and ‗what could the PTs not see?‘  Tasks 1(a), 1(b) and 3(a) were analysed 

to understand PTs‘ competence relating to the identification and description of perceived 

figures. Refer to Chapter 5 for an elaboration of tasks deconstruction. In Tasks 1(a) and (b), 

the participating PTs‘ competence on knowledge of properties of the triangles was reflected 

in most participating PTs‘ ability to shift between the verbal description and the 

diagrammatic representation. The results showed that when interacting with the diagram, the 

participating PTs had difficulty in discriminating the diagram to see the compound triangles 

and yet were able to recognize the quadrilaterals at a glance because the combination of the 

triangles formed a familiar shape. The participating PTs could not recognize that within the 

diagram, there were figures that were enclosed by the arcs and chords. The participating PTs‘ 

perceptual apprehension of the diagram is regarded as weak if they fail to recognize and 

discriminate all the figures and sub-figures. Although the participating PTs were able to see 

and name what they recognized, they were able to see figures as single entities rather than as 

a configuration of these single entities. The results however strongly indicate that the 

participating PTs understood the meaning of congruency and  that they relied on their 

knowledge of congruency rather than on their visual perception to judge whether the triangles 

identified were indeed congruent or not.  

 

In Task 1(a) and (b), the participating PTs‘ perceptual apprehension of the diagram was 

considered as weak since they failed to recognize and discriminate all the figures and sub-

figures. Although the participating PTs were able to see and name what they recognized, they 

were more likely to see figures as single entities rather than as a configuration of these single 
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entities. Further the PTs‘ perceptual apprehension had an impact on the discursive 

apprehension in Task 3. There were indications that participating PTs had the ability to 

identify the correct theorem although the ability to identify all the concepts of the theorem 

differed across the participating PTs.  

 

6.4 Sub-question 2: Making connections between geometry representations, properties 

and theorems category.  

In this section an in-depth understanding of the specific forms of connections that 

participating PTs made when solving circle geometry tasks and the answers to the sub-

question ―What types of connections do the PTs make between representations, properties 

and theorems?‖ has been sought.  In describing the forms of connections for proficiency in 

geometry in the CK tasks, I draw on the work of Businskas (2008) and Mhlolo (2012) about 

how mathematics teachers conceptualize mathematical connections in their practices. Refer 

to Section 2.4 in Chapter 2 for a discussion on mathematical connections and Section 4.4 in 

Chapter 4 for a discussion around analysing the connections made between representations, 

properties and theorems in this study. I conceptualize mathematics connections as a tool that 

the PT uses to organize and describe their thinking when dealing with circle geometry. I 

adapt Businskas (2008) types of practice-based mathematical connections made through 

different representations, part-whole relationships, implications and procedures to 

describe the prospective teacher preparation-based mathematical connections made through 

geometric representations, properties and theorems. These comprise:  

 Visual connections made through use of different representations of geometrical 

objects 

 Systematic organization connections made through the structure of geometric 

properties and theorems 

 Implication connections made through logical reasoning with geometric properties 

and theorems 

 Theorem application connections made through the application of theorem(s) to make 

conjectures when dealing with specific circle geometry problems. 

 

An example of situations of a response for each form of connection is given in each 

description. See below for a further description of the categories and the discussions and 
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analysis for each form of connection. I present an analysis of each form of connections within 

each task followed by examples of each form of connection and its coding. As mentioned 

earlier, I discuss the tables to get a general idea of all the participating PTs‘ responses but 

refer to responses by Nkosi, Wisdom and Lesedi when discussing the results explicitly. 

However, there are occasions where exemplary responses from other PTs are presented. 

 

6.4.1 Visual connections 

 I contend that the visualization process evokes visual connections to be made between and 

among different representations of geometric notions. A visual connection displays an 

organization of relations between and among representations within the visualization process. 

Duval (1995) contends that access to mathematical objects is through their semiotic 

representations where there is a link between the different registers of semiotic 

representation. He contends that semiotic representations show relations or organization of 

relations between representational units. Guided by the conceptualization of the terminology 

‗different representations‘  and ‗different registers‘ as espoused by Duval (1999), I classified 

the different forms of semiotic representations as verbal, figural and symbolic registers (see 

Figure 6.1) and categorized the connections between and among these registers as visual 

connections. Refer to Table 4.4 in Chapter 4 for the indicators for visual connections. These 

were connections made between the verbal and figure(s), connections made between symbols 

and figures, connections made between different figures, and connections made between 

definitions and figure(s). For example, to identify figures in Task 1(a), Lesedi‘s response in 

Figure 6.1 shows connections between and among verbal, figural and symbolic registers. 

 

 Kite ABHC – Cyclic quadrilateral 

 ΔABH                     ΔBHE      ΔBKH 

 ΔACH                    ΔBME 

 ΔAKE (right angled triangle) 

 ΔABM 

 ΔACM 

 ΔBMH 

 ΔCMH 

 Cyclic quadrilateral KBME 

 Cyclic quadrilateral KBHE 

Figure 6.1: Lesedi‘s response to Task 1 (a) 
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 For instance, ―Kite ABHC – Cyclic quadrilateral‖ shows that when identifying the figures, 

Lesedi shifted between the verbal descriptions of the diagram (verbal register), the different 

configurations within the figure (figural register) and concluded that ABHC is not only a kite 

but a cyclic quadrilateral as well. She appropriately made a symbolic representation of the 

kite (ABHC) (symbolic register).  However, her score of 1 for visual connections made 

between the figural register and the verbal register suggests that she was not explicit in her 

description of the rest of the figures that she identified. 

The next two sections present discussion of visual connections made between the verbal and 

figural registers, and connections made between symbols and figural registers. The visual 

connections were more pronounced in these categories. 

 

6.4.1.1 Visual connections made between the verbal and figural register     

 Reference is made to Table 6.8. As mentioned in Section 6.4.1, visual connections were 

made between different registers. In this case, the participating PTs had to make connections 

between the figural register and the verbal register. When responding to tasks, the 

participating PTs had to make a transition from verbal register to figural register. 

 Table 6.8: Connections made between the verbal and figural registers 

  PT 

  

 verbal and figural registers 

 Task 1  Task 2  Task 3 

(a) (b) (a) (a) (b) 

Nkosi 1 1 2 1 2 

 John 2 2 2 1 2 

 Wisdom 1 2 2 2 2 

 Lesedi 1 1 2 2 2 

 Bonolo 2 1 0 1 2 

 Thabiso 1 2 0 1 2 
Note: 0, 1, 2 denote quality of connections levels  

 

 Table 6.8 shows that in the verbal and figural registers category, more strong connections 

were made than weak and faulty connections. The results concur with Duval‘s (1995, 1999) 

arguments that the connections that the participating PTs made between different 

representations strongly suggest coordination between their verbal registers and figural 

registers.  
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 Results for Task 1 

To illustrate the coding for this category of connections, I present examples and meanings of 

codes 2 and 1. Table 6.8 shows that in Task 1(a) two PTs (John and Bonolo) made level 2 

connections in this category. Figure 6.2 illustrates John‘s response to Task 1 (a). John‘s 

response is considered exemplary as compared to that of other PTs  

 

 ΔABM →right-angled triangle 

 ΔAMC →right-angled triangle 

 ABHC – quadrilateral – kite (cyclic quadrilateral) 

 ΔBME- right-angled triangle 

 ΔBKE - right-angled triangle 

 ΔABE- isosceles triangle 

 ΔBMH-  right-angled triangle 

 ΔCMH - right-angled triangle 

 ABHC – quadrilateral – kite (cyclic quadrilateral) 

 Figure 6.2: John‘s response to Task 1 (a) 

 

John‘s response was scored 2 because he provided an explicit link between the diagram and 

his verbal description of it. Not only did he identify the triangles (figural register) from the 

diagram and from the verbal description given in the task, he also provided a verbal 

description with detailed properties of the figure identified (verbal register). The response 

also shows a connection to the symbolic register but this is not mentioned as the focus is only 

on verbal and figural registers.  In contrast, in Figure 6.1, Lesedi provided a less detailed 

description of what is seen. As such Lesedi‘s connections in Task 1 (a) were scored at 1. 

Listing and labelling the geometric figures require a connection between the verbal registers 

and figural registers but Lesedi‘s response above clearly illustrates a weak connection 

between these registers. 

 

Compared to Task 1 (a), half of the PTs made strong connections in Task 1 (b), which does 

not come as a surprise because as presented in Table 6.1, more than half of the PTs 

performed at level 3 or above. These PTs gave a correct identification of at least 3 pairs of 

congruent triangles but with incomplete explanations. The frequency of scores indicate that 

John and Wisdom both had the highest scores for making strong connections (level 2) 

between the verbal representation and the figural representation. The excerpt below about 

Task 1 shows that to confirm his interpretation of the diagram, Wisdom made connections 

between verbal registers and figural registers.   
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Wisdom: Okay, its like this, its like this and what I have done I had to go back to the 

description of the words to confirm (that). Okay, yah absolutely, this line at K 

was produced at AB which is at A. So this is like a confirmation of the words 

that I had to confirm - that did I draw what I am supposed to draw? 

 

 The excerpt refers to Wisdom‘s interaction with Task 1. Wisdom indicates that he made shift 

between the verbal representation and the figural representation in order to identify the 

figures and confirm the congruency. It clearly shows that to confirm his interpretation of the 

diagram, Wisdom made connections between verbal registers and figural registers. 

Results for Task 2  

The performance scores for Task 2(a) ranged between 1 and 2 with four of the participating 

PTs attaining a 2, indicating that the quality of responses for this task was poor. See the PTs‘ 

performance scores in Table 6.1. However, a deliberate decision was made to interpret the 

visual connections within those poor scores. The visual connections between the participating 

PTs‘ verbal registers and figural registers for this task ranged between 0 and 2, suggesting 

that the connections varied between faulty and strong. Nkosi, John, Wisdom and Lesedi made 

strong connections. For example, see Nkosi‘s response in Figure 6.3. Nkosi operatively 

apprehended the diagram in order to make connection between the geometric principles and 

the identified configurations. 

 
Draw a diameter that passes point T till the circumference 

Let   ̂    

  ̂     (Tangent  radius) 

  ̂                        

J2 = T2 (  in same segment) 

T1 + T2 = J1+ J2 =     
Therefore J1=T1 

Figure 6.3: Nkosi‘s response to Task 2 (a) 
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Bonolo and Thabiso were the only PTs that registered a score of 0 in Task 2 (a), 

demonstrating that faulty competence in the knowledge of circle geometry is linked to lack of 

coordination between their verbal registers and figural registers. Thabiso contends that 

 

Thabiso: well,  I can produce, eh .. different diagrams to show the theorem .. but I 

cannot prove this theorem, I don‟t know how…I can identify equal angles. 

 

Thabiso‘s response above clearly illustrates a weak connection between these registers. 

 

Results for Task 3 

From Table 6.8, we see that all the participating PTs made stronger connections in Task 3 (b) 

than Task 3 (a) in in terms of connecting the figure with the verbal registers. To illustrate the 

coding for this task, I present Task 3 (a) which presents a less detailed description of what is 

seen. As such Thabiso‘s connections in Task 3 (a) were scored at 1 (Figure 6.4). 

 

Angles on the circumference subtended 

by the same chord are equal 

Figure 6.4: Thabiso‘s response to Task 3 (a) 

 

Task 3 (a) required a visual explanation of all objects in the figural register, suggesting that 

the participating PT was expected to organize the figure in order to verbally describe it. 

Thabiso provided a generic description of the ‗angle in the same segment‘ theorem that did 

not specifically describe the figure as presented in the task.  In contrast, refer to Figure 6.8 for 

Lesedi‘s response to the task. There were strong indications in Lesedi‘s response that in 

solving Question 1 in Task 3, Lesedi made a connection between the figure and its verbal 

description. However, this response did not make explicit the connections between the 

symbols and figure as will be explained in Section 6.5.1.2.  

 

6.4.1.2 Visual connections made between symbols and figures  

Reference is made to Table 6.9. As mentioned in Section 6.4.1, visual connections were made 

between different registers. In this case, the participating PTs had to make a connection 
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between the symbolic registers and the figural registers. Table 6.9 shows the levels of 

connections by task. 

 

Table 6.9: Connections made between symbols and figure(s) 

 PT 

  

Symbols and figures 

Task 1 Task 2 Task 3 

(a) (b) (a) (a) (b) 

Nkosi 1 0 2 0 2 

John 2 2 2 0 2 

Wisdom 1 2 1 2 2 

Lesedi 2 0 2 0 2 

Bonolo 1 1 0 0 2 

Thabiso 1 2 0 0 0 

 

The classification of the scores of the participating PTs‘ connections demonstrates that the 

most frequent scoring was at level 2 and 0, implying that most connections were strong or 

faulty connections rather than weak. John made most strong connections whilst Thabiso 

made the most faulty connections between symbols and figure(s). It is most evident in Task 

1(b), Task 3 (a), and Task 3(b) that the PTs have difficulty with making connections between 

symbols and figures.  

Results for Task 1 

To illustrate the coding for this category of connections I present examples and meaning of 

code 0, a faulty connection. The participating PTs responses to Task 1 (b) indicate that 

through abstraction, all the participating PTs identified the pairs of congruent triangles but 

some did not appropriately use the congruency symbols and correct description of the 

triangles.  Figure 6.5 shows Nkosi‘s response to this task. 

 

Δ ABM and ΔACM  

Δ ABH and ΔACH 

ΔBMH and ΔCHM 

Figure 6.5: Nkosi‘s response to Task 1 (b) 

 

In response to the task, the participating PT was expected to provide a mathematical 

statement that reflected correct identification or configuration of the triangles to show 

congruency and to give reasons. Nkosi‘s response shows that he identified the congruent 

triangles but used ―and‖ instead of the congruency symbols ― ‖ or ― ‖. The use of the 



 

122 

 

connector ―and‖ is considered inappropriate. The third pair of the purported ―congruent‖ 

triangles was as a matter of fact not appropriately labelled to conform to the congruency 

principles. Nkosi also gave no justifications as to why triangles were congruent. On the other 

hand, Lesedi (see Figure 6.6) identified the congruent triangles but used ―III” instead of the 

congruency symbols ― ‖ or ― ‖. Her justifications were also faulty. 

 

ΔABH III ACH   (SSS) 

ΔABM III  ACM  (SSS) 

ΔBMH III  MHC  (SSS 

Figure 6.6: Lesedi‘s response to Task 1 (b) 

 

The connections between symbolic registers and the figural registers made by Nkosi and 

Lesedi were classified as faulty. I noticed that this was in contrast with the strong connections 

they made between verbal and figural representation. 

 

Results for Task 2 

Scoring levels in Table 6.2 indicate that there were more strong connections made between 

symbolic registers and the figural registers in Task 2(a). Three of the six participating PTs‘ 

connections were scored at 2 indicating that strong connections were made between the 

symbolic registers and the figural registers. Refer to Figure 6.3 that displays Nkosi‘s response 

to Task 2(a). As demonstrated in Section 6.4.1.1 the configurations in his response strongly 

suggest an operative apprehension. There is evidence of connections being made between the 

symbolic registers and the figural registers. There is a transformation of the figure by splitting 

into sub-figures whilst ensuring the correct use of symbols to identify such reconfigurations. 

On the one hand, Wisdom‘s response in Figure 6.7 was scored at 1 since there was use of 

incorrect symbolic registers in conjunction with correct figural registers. It clearly illustrates 

that there was a weak connection between these registers. 
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Since AB is perpendicular to CD, we draw in the radii AB and AF. Since 

the tangent is perpendicular to the radius,  

  ̂        ̂  

= ½(       ̂    ̂ ) 

= ½(   ̂ ) 

=   ̂  

Figure 6.7: Wisdom‘s response to Task 2 (a) 

 

Results for Task 3 

As mentioned in Section 6.4.1.1, the participating PTs made more faulty connections in Task 

3 (a) than Task 3 (b). Task 3 (a) was dominated by the participating PTs‘ faulty connections 

except for Wisdom who made strong connections. The task required an interpretation of the 

ideas put forth by the geometry question. The participating PTs explanations were mostly 

verbal descriptions of the theorem without explicit reference to particular symbols. For 

example, Lesedi‘s response in Figure 6.8 was; 

 

To address the misconception that angles that 

are equal and subtended by the same chord have 

to be on the same circumference not inside the 

circle or outside the circle 

Figure 6.8: Lesedi‘s response to Task 3 (a) 

 

Although her response was correct, Lesedi did not use symbols to identify the specific angles, 

chord and arc that she was referring to. The use of symbols in explanations exposes the 

respondent‘s thinking and understanding of the concepts. In contrast, Figure 6.9 displays 

Wisdom‘s response which is more explicit. 

 

Angles that touch the circumference, which are subtended by 

the same cord are equal. For example in the diagram above, 

 ̂   ̂   ̂ . All these angles are subtended by the same cord 

x and y and touches the circumference. 

Because shows different angles being subtended by the same 

cord   ̅̅ ̅   Some of these angles touches the circumference 

like  ̂ ,  ̂ ,  ̂ ,  ̂ , and other angles are not/don‟t touch 

the circumference e.g.    ̂ ,   ̂  

Figure 6.9: Wisdom‘s response to Task 3 (a) 
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Wisdom makes direct reference to the perceived objects.  Despite that there were errors in his 

work (for example, not mentioning that angles have to be in same segment), Wisdom‘s 

cognitive processes are clearly articulated. The PTs were successful in making connections 

between the symbols and figures in Task 3(b) (see Table 6.9). This was evidenced by their 

ability to provide specific symbols that clearly illustrated the angle in the segment theorem. 

The PTs were able to apprehend the diagram by connecting the identified symbolic 

representation of the angles with the figural representation. I conclude that the PTs 

overlooked the underlying symbolic registers when making visual connections. 

 

6.4.2 Systematic organization connections  

I use the work of Duval (1995, 1999) to argue that the cognitive processes of visualization 

and reasoning are essential in understanding geometric thinking. Duval (1995, 1999) posits 

that the use of different registers and movements within registers promotes understanding of 

mathematical concepts. I suggest that this implies the importance of some kind of structure to 

systematically organize the relationships within the different registers (words, symbols, 

propositions). Refer to Table 4.4 in Chapter 4 for the indicators for systematic organization 

connections. For example, to prove congruency in Task 1(b), Nkosi‘s response in Figure 6.3 

shows a systematic organization of the geometric concepts or objects (words, symbols, 

propositions). The sequencing of the steps indicates a deliberate organization of thoughts. 

Nkosi makes a conjecture that ΔABH and ΔACH are congruent. He then provides reasoning in 

a logically organized structure in an explanation that connects words, symbols and 

propositions to prove congruency. 

 

I argue that making connections is a requirement for the systematic organization of geometric 

concepts or objects. The categories for the systematic organization connections were 

classified as connections between (i) figures and figural units, (ii) between properties and 

theorems, and (iii) between definitions and properties. A figure is composed of figural units. 

For example, line segments and points are figural units of a triangle.  

 

What follows in the next two sub-sections is a discussion of the connections made between 

figures and figural units and connections made between properties and theorems. I 



 

125 

 

deliberately chose these two forms of connections because all the CK tasks elicited 

knowledge to organize geometric objects in terms of general and special cases about figures, 

properties and theorems. The systematic organization connections were more pronounced in 

these categories. 

 

6.4.2.1 Systematic organization connections made between the figure(s) and figural 

units 

Reference is made to Table 6.10. As mentioned in Section 6.4.2, some kind of structure was 

needed to organize the relationship between the figural registers. In this case, the 

participating PTs had to make connections between the figures and figural units. Table 6.10 

shows the levels of connections by each task. 

 

Table 6.10: Connections made between figures and figural units 

 

Figures and figural units 

 PT Task 1 Task 2 Task 3 

 

(a) (b) (a) (a) (b) 

Nkosi 2 1 2 1 1 

John 1 2 2 1 1 

Wisdom 2 2 0 2 1 

Lesedi 1 1 2 1 1 

Bonolo 1 1 1 1 1 

Thabiso 1 1 1 1 1 

 

The classification of the scores of the participating PTs‘ connections demonstrates that the 

most frequent scoring was at level 1, implying that most of the connections between figures 

and figural units were weak. The table reflects that in the figures and figural units category of 

the systematic organization connections, more weak connections were realized than the 

strong and faulty connections in the figural registers. Overall, Wisdom made most strong 

connections whilst Bonolo and Thabiso made the weak connections in all the tasks.  

 

Results for Task 1 

As mentioned earlier, Task 1(a) examined the PTs‘ visual explanation abilities. The task 

required the listing and labelling of identified figures and as such, the participating PT‘s 

organizational abilities were illuminated. Table 6.10 shows that Nkosi and Wisdom made 
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strong connections between figures and figural units as revealed by the manner in which the 

figures identified were organized.   

 

To illustrate the coding for this category of connections, I present examples and meaning of 

code 2, a strong connection. A strong systematic organization connection must reveal a 

deliberate systematic sequencing of figures, properties and theorems. A systematic 

organization between the figures and figural units is evident when there is a logical 

organization of figures and their figural units. Figure 6.10 displays an excerpt of Wisdom‘s 

response to Task 1 (a). 

 

ΔBEH  

ΔABE  ΔBMH  

ΔAKE  ΔBCH 

ΔABH  ΔBKE 

ΔABM  ΔBHE 

ΔAMC  ΔCBH 

ΔAHC  ΔCMH 

Circle at centre S with points B, H, C and A at the circumference.  

Cyclic quad ABHC 

Figure 6.10: Wisdom‘s response to Task 1 (a) 

 

Wisdom strategized when listing and labelling. The excerpt shows that he identified the basic 

shapes and then used the figural units to list the subsets of the basic shapes. It is because of 

this strategy that amongst the participating PTs, he was able to identify the highest number of 

figures and figural units as displayed in Table 6.10. 

Results for Task 2  

As mentioned in Section 4.4 in Chapter 4, a systematic organization is evident when words, 

symbols, propositions, figures and figurative units are used to organize geometric concepts or 

objects. Table 6.10 shows that there were more level 2 connections than level 1 and 0 that 

were realized between figural and figural units in Task 2(a). Nkosi, John and Lesedi 

connections were categorized as level 2 because there were considered as strong connections 

between figures and figural units. For instance, Lesedi made strong connections between the 
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objects. Figure 6.11 displays Lesedi‘s organization of geometric objects in terms of properties 

and theorems.  

 

Construct a diameter (perpendicular to the tangent) 

 ̂   ̂      (rad ┴ tan) 

Construct a chord (JI) 

 ̂         (angle in a semi-circle) 

   ̂   ̂   ̂     (both     
But  ̂         (angle in the same segment) 

   ̂   ̂   
   ̂    ̂   

Figure 6.11: Lesedi‘s response to Task 2 (a) 

 

In order to organize her thoughts, Lesedi starts by de-configuring the figure to systematically 

make a connection between configurations and sub-configurations and to be able to identify 

the properties and theorems related to configurations. Wisdom‘s response was classified as 

level 0 connections since it was categorized as a faulty connection. Although there is 

evidence of operative apprehension, the statement and thoughts display that faulty 

connections were a result of a weak sequential apprehension.  

Results for Task 3 

All the PTs made weak connections between the figures and figural units in Task 3 (a) and 

Task 3 (b) except Wisdom who attained a level 2 score in Task 3 (a). Figure 6.12 presents an 

excerpt from Lesedi‘s response to Task 3 (b): 

 

  ̂   ̂ (angles in same segment) 

  ̂   ̂ (angles in same segment) 

Figure 6.12: Lesedi‘s response to Task 3 (b) 

 

Lesedi‘s score of 1 indicated an inadequate understanding of the connection between sets of 

equivalent entities. She was able to recognize the theorem applicable for the task and 

identified the equal angles but could not make a deduction that connects   ̂  and   ̂. 

 

I conclude that the analysis of connections made between figures and figural units is weak. 

This finding concurs and brings insight into what was concluded in the sub-research question 
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1. The major finding was that the participating PTs‘ perceptual apprehension of the diagram 

was weak due to their failure to recognize and discriminate all the figures and sub-figures 

through mental modification or organization of the diagram.   

 

6.4.2.2 Systematic organization connections made between the properties and 

theorem(s)  

Reference is made to Table 6.11. As mentioned in Section 6.4.2, some kind of structure was 

needed to organize the relationship between the figural registers. In this case, the 

participating PTs had to make connections between properties and theorem(s). The table 

below shows the levels of connections by task. 

 

Table 6.11: Connections made between properties and theorem(s) 

 

Properties and theorems  

PT Task 1 Task 2 Task 3 

 

(a) (b) (a) (a) (b) 

Nkosi 2 1 2 1 1 

John 2 2 2 1 1 

Wisdom 2 2 1 2 1 

Lesedi 2 1 2 2 1 

Bonolo 2 2 0 1 1 

Thabiso 2 2 0 1 1 

 

The classification of the scores of the PTs‘ connections demonstrates that the most frequent 

scoring was at level 2 and 1, implying that most connections varied between strong and weak 

connections rather than faulty connections. Moreover, strong connections made an edge over 

weak connections.  

 

Results for Task 1 

Task 1 (a) demonstrates that although the participating PTs had a weak apprehension of the 

diagram they in fact had knowledge of properties of geometric figures and theorems. 

Identifying figures required knowledge of theoretical geometrical properties of the figures 

and theorems. All the participating PTs attained level 2 connections in Task 1 (a). Evidence 

indicates that the PTs had knowledge of the characteristics of the identified figures, which 

they were able to identify using definitions and theorems. For example, other than the basic 
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figures, all the participating PTs identified the cyclic quadrilaterals, the kite and congruent 

triangles in Task 1 (b). However, the same cannot be said about Task 3.  

 

Results for Task 2 

The table shows that in the properties and theorem(s) category of the systematic organization 

connections, Bonolo and Thabiso made faulty connections in Task 2 when proving the tan-

chord theorem. Thabiso confirms that ―I cannot prove the theorem”. This finding is 

consistent with the findings on these two participating PTs‘ weak ability to make connections 

between verbal and figural representation. I therefore make a claim that weak competence in 

linking figures with verbal descriptions suggests lack of knowledge of geometric properties. 

John, Wisdom and Lesedi realized the most level 2 connections. 

 

Results for Task 3 

To illustrate the coding for this category of connections, I present an example and meaning of 

code 1, a weak connection. I will make reference to John‘s exemplary response. Figure 6.13 

displays John‘s response to Task 3 (a). 

 

For angles subtended by the same chord to be equal 

they must be angles which touches the circumference 

of the circle. These angles have to be on the 

circumference of the major circles. 

Figure 6.13: John‘s response to Task 3 (a) 

 

The highlighted phrases provide inappropriate descriptions and definitions of the angles in 

the same segment theorem and related misconceptions. John gives the converse of the 

theorem by relating properties of angles to the location of these angles in the circle in a 

systematically organized manner. However, the statement is incoherent with inappropriate 

descriptions and definitions of the angles. 

In general, connections made between the systematic organization of geometrical properties 

of the figures and theorems for Task 3 (a) and Task 3 (b) were found to be weak. I consider 

the discursive apprehension of most participating PTs for both Task 3 (a) and Task 3 (b) to be 

poor as a result of the poorly done connection of properties in the ―angle in the same 
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segment‖ theorem. The weak competence was portrayed from the definitions and language 

used to describe the perceived figure (see Figure 6.13). The excerpts below shed light on 

John‘s reasoning about the descriptions of the mathematical situations.  

 

Excerpt 1 

John: then I noticed that when you do others, it starts to make sense may be its English, the 

problem is English. …. 

Kim: oh, ok, let me understand the sentence, you didn‟t interpret it mathematically, that 

was the problem. 

John: yah, the mathematical language. 

 

Excerpt 2 

John: and IM, it‟s a cyclic quad. Theory of tangent is the same theory that we had that when 

it‟s on the circumference, I don‟t know how to say it but then this angle will be equal to… 

Kim: equal X? 

 

My judgment about these excerpts is that the difficulty in describing figures through 

geometric language/narrative texts as stressed by Duval (1995) hindered the PTs‘ ability to 

change from figural registers to verbal registers. The participating PTs have knowledge of 

circle geometry properties and theorems but they lack knowledge to appropriately 

systematically organize geometric language to describe the properties and theorems. 

 

6.4.3 Implications connections  

The discursive apprehension is the inability to establish a logical relationship between the 

mathematical principles and the identified configurations. The logical relationship suggests 

that connections between and within properties, definitions and theorems are developed and 

enhanced through descriptions, explanations and argumentation. The process ultimately leads 

to deductive reasoning where there is use of connectors such as the ―let‖, ―if-then‖ and 

―therefore‖. Implications are made in connecting the premise and the conclusion. Refer to 

Table 4.4 in Chapter 4 for the indicators for implications connections. For example, to prove 

a theorem in Task 2, Nkosi‘s response in Figure 6.3 in Section 6.4.1.1 illustrates an implicit 
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use of the terms or notions of ―let‖, ―equivalence‖ and ―therefore‖ to connect the geometric 

principles and the identified configuration in a logical argument that leads to a conclusion. 

 

Thus the discursive apprehension is relevant to implication connections. These forms of 

connections involve cognitive processes of reasoning. The connections made through 

implications establish the logical relationship between the mathematical principles and the 

identified configurations. The logical relationship suggests that connections made between 

and within properties, definitions and theorems are developed and enhanced through 

descriptions, explanations and argumentation.  

 

What follows in the next two sections is a discussion of the connections made between 

definitions and figure(s) and connections made between properties and justifications. The 

implication connections were more pronounced in these categories. 

 

6.4.3.1 Implication connections made between the definitions and figure(s)  

Reference is made to Table 6.12. As mentioned in section 6.4.3, implication connections 

were made between and within properties, definitions and theorems. In this case, the 

participating PTs had to make a connection between definitions and figure(s). The table 

below shows the levels of connections made between definitions and figure(s) within tasks. I 

conceptualize definitions in this study as verbal descriptions of geometric objects or figures.  

 

Table 6.12: Connections made between definitions and figure(s) 

 

Definitions and figure 

PT Task 1 Task 2 Task 3 

 

(a) (b) (a) (a) (b) 

Nkosi 1 1 2 2 1 

John 2 2 2 2 1 

Wisdom 1 1 2 2 1 

Lesedi 2 1 2 2 1 

Bonolo 1 2 0 1 1 

Thabiso 1 1 0 1 1 

 

Findings in Table 6.12 reveal that in the definitions and figure(s) category of the implication 

connections, the most frequent scoring was at level 2 and 1. That is, most connections were 

strong or weak rather than faulty. Moreover, weak connections made an edge over strong 
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connections. John made most strong connections whilst levels of connections varied for the 

other participating PTs.  

Results for Task 1 

In both Task 1 (a) and Task 1 (b) logical conclusions were determined by the way the 

participating PTs characterized the figures. There were more weak connections than strong 

connections made between definitions and figure(s) in these two tasks. For example, in Task 

1 (b), defining congruency means describing and relating the characteristics or properties of 

figures precisely. In other words, descriptions and explanations reveal connections made 

when making deductions. In Task 1 (b) a strong connection (level 2) is revealed by a 

meaningful description of the identified congruent triangles through the use of appropriate 

symbols, a correct order of labelling the congruent triangles and appropriate justifications. 

For example, Nkosi‘s response in Figure 6.5 in Section 6.4.1.2 demonstrates a logical 

conclusion that correctly characterized the congruent triangles. The connections were 

classified as strong connections. 

Results for Task 2 

Task 2 (a) responses revealed that participating PTs had faulty and strong knowledge of the 

tan-chord theorem. Bonolo and Thabiso made faulty connections in Task 2 when proving the 

tan-chord theorem. These two participating PTs provided different diagrammatic 

representations of the theorem. Figure 6.14 illustrated Bonolo‘s response of the proof. Bonolo 

provided a sketch that did not conform to the characteristics of the diagram in the task. For 

instance, circle S is not a perfect circle; DC and BC are not tangent to the circle.  

 

Figure 6.14: Bonolo‘s response to Task 2 (a) 
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The faulty connections that Bonolo and Thabiso made when apprehending the diagrams 

probably contributed to the weak connections between the properties of figures and the 

theorems. 

 

Nkosi, John, Wisdom and Lesedi displayed strong knowledge of definitions of figures and 

figural units in Task 2 (a) and Task 3 (a) and were able to establish logical relationships 

between representations, properties and theorems. Figure 6.3 displays Nkosi‘s response to 

Task 2 (a). Nkosi starts by making propositions about the reconfiguration. He demonstrates 

implications made when making connections between the premise and the conclusion. Nkosi 

demonstrates the use of ―let”, ―equivalence‖, ―therefore‖ and symbols in connecting the 

geometric principles and the identified configuration in a logical argument that leads to 

conclusion. Nkosi reconfigured the diagram to guide in the construction of the proof. This 

gesture was common among the participating PTs as reflected in Wisdom‘s excerpt below 

that makes reference to Task 2. I needed to get insight into the reasoning about making 

constructions before the proving processes.  

 

Kim: yah, so what challenges do you think they will meet when constructing the 

proofs? 

Wisdom: aah I think that different proofs require different constructions so if learners 

do not know the different proofs obviously they will have a challenge when 

constructing the different ...aah... shapes because first they will have to prove 

that yah I can do it this way so this way I need this kind of a diagram, so if 

they don‟t know different ways to proof they will have difficulties constructing 

it. So basically they need four different ways of how to prove a theorem 

precisely because the more they know its easy to construct that diagram. 

 

Results for Task 3 

Task 3 (b) was a follow up of Task 3 (a).  Task 3 (b) required the participating PT to provide 

a correct identification of equal angles  with justifications using geometric reasoning about 

the ‗angle in the same segment theorem‘.  The participating PTs responses were limited in the 

identification of the angles and justifications.  The connections made by all the PTs between 
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the definitions and figure(s) were coded at level 1 implying that the use of symbols and the 

identification of angles displayed weak knowledge of the theorem. 

 

6.4.3.2 Implication connections made between the properties and justification(s) 

Reference is made to Table 6.13. As mentioned Section 6.4.3, implication connections were 

made between and within properties, definitions and theorems. In this case, the participating 

PTs had to make a connection between properties and justification(s). The table below shows 

the levels of connections made between properties and justification(s) within tasks. See 

Figure 6.16 for an example of connections that Bonolo made between properties and 

justifications. 

 

Table 6.13: Connections made between properties and justification(s) 

 

Properties and justifications 

  

 

Task 1 Task 2 Task 3 

  

 

(a) (b) (a) (a) (b) 

Nkosi   1 2 1 1 

John   2 2 1 1 

Wisdom   2 2 2 2 

Lesedi   1 2 2 2 

Bonolo   2 1 1 1 

Thabiso   2 1 1 1 

 

Justification in this study is conceptualized as communicating a link between the properties 

and theorems. The communication should reflect knowledge of properties of geometric 

objects in a logical relationship. For example, justifying congruency means making 

deductions by describing and relating the characteristics or properties of figures.  

 

The table shows that in the properties and justification(s) category of the implication 

connections, scoring was at level 2 and 1 throughout all tasks, implying that connections 

made indicate that the participating PTs‘ knowledge of circle properties and justification(s) is 

weak or better. The table shows that, generally, the participating PTs made the same numbers 

of strong connections as compared to weak connections. There were no faulty connections 

registered. Wisdom made the strongest connections while Nkosi, Bonolo and Thabiso made 

the weakest connections.  
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Results for Task 1 

Task 1 (a) was excluded from this category because the task did not explicitly require 

participating PTs to make justifications on the perceived figures. Task 1 (b) required the PTs 

to connect the configurations of the figure with the properties of such figures in order to 

provide a justification for congruency. The justifications provided by the participating PTs 

indicate that more connections were made at level 2 as compared to level 1.The justifications 

were linked to strong knowledge of deductions about properties of figures and definitions. 

Figure 6.15 is an excerpt from Bonolo‘s response to Task 1 (b) showing the level 2 

connections. 

 

ΔABH and ΔACH are congruent 

  ̂    ̂ , angle on a semi-circle = 90° 

side AH = shared side 

AB = AD  

therefore SAS 

Figure 6.15: Bonolo‘s response to Task 1 (b) 

 

Bonolo makes a proposition about the two congruent triangles ΔABH and ΔACH. Then, in a 

logical manner, he organizes his thinking around some deductive system of axioms, 

properties and theorems. 

 

Bonolo: I must ah ah visualize the triangles first. Do they look the same? 

 Kim:  what do you mean, the same?  

Bonolo: in terms of mirror reflection. 

Bonolo: ahhh. It‟s a kite. They share the same properties… in the semi-circle  

 

Implication statement in Bonolo‘s working is prominent in the last statement ―therefore 

SAS‖. The postulate justifies the congruency of the identified triangles. 

 

A level 1 response displayed a less explicit justification for congruency. A response by 

Lesedi was classified in this category.  
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Kim: explain which triangles are congruent. Can you tell me… how you got this 

(referring to the written answers)  

Lesedi: I said triangle ABH is congruent to triangle ACH because this side is equal to 

this side; and then this distance is equal to this distance; and then they both 

share the equal side AH 

Kim:  how do you know that BH is equal to HC? 

Lesedi: ahh, because they say AB is equal to AC so I saw that this side is equal to this 

side and then the ray (AE) is the angle bisector of angle A 

Lesedi: the reason is the same for all the triangles; equal sides and share common 

side, because of the isosceles triangle. 

 

The dialogues above give an insight into Lesedi‘s thinking when responding to the task. Her 

written response shows listing of three pairs of what she considers congruent triangles, all 

connected by an inappropriate congruency symbol. Her verbal explanation suggests that she 

had some knowledge of congruency but did not correctly justify the geometric facts that she 

mentioned from the perceived figures. 

 

Results for Task 2 

 

The participating PTs‘ responses to Task 2 (a) should reflect understanding of various circle 

theorems (see Section 5.2.2 for Task 2). A strong perceptual apprehension of the figure 

illustrates that the statement  ̂    ̂   can only be verified by proving the tan-chord 

theorem. Herbst and Miyakawa (2008: 469) contend that ―a proof may tell us why the 

statement is true, as well as what ideas that statement connects or requires by virtue of being 

true or in order to be true‖. 

 

The justifications of the proof should reflect its logical structure linked to geometric facts 

about the theorem. Task 2 (a) required the PT to show multiple methods of the proof but the 

participating PTs provided only one method. Therefore the overall performance score for this 

task was the lowest. The reasons for producing one method of the proof was expressed by 

John that 
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John: yes, the problem is the logic behind this there is so many pieces of theorems 

and you don‟t know how to put it in order.  

 

Moreover, an in-depth analysis of the method that was provided indicates that more 

connections were made at level 2 as compared to level 1, suggesting that the participating 

PTs made strong connections between properties and justifications.  Four of the six PTs‘ 

made level 2 connections, demonstrating a complete understanding of this method of proof. 

Nkosi, John and Lesedi used method 2 of the memorandum while Wisdom used method 4 of 

the memorandum.  See John‘s response to this task in section 6.4.3.1.  All the four PTs 

executed a logically structured justification for the application of the tan-chord theorem in the 

perceived figure. In each response, a proposition is given after a reconfiguration of the 

diagram is done. Then a formal argument is established to validate that  ̂    ̂  .  This 

cannot be said about Bonolo and Thabiso. They provided reconfigurations of the diagram but 

failed to make an argument to validate that the two angles are equal.  See Thabiso‘s response 

in Figure 6.16. Thabiso provided four different scenarios to illustrate, and identified the 

congruent angles of the theorem but did not provide a proof to justify why the angles were 

congruent. The connections that Bonolo and Thabiso made were coded at level 1. 

 

 

Figure 6.16: Thabiso‘s response to Task 2 (a) 

Results for Task 3 

The critical components of Task 3 (see Figure 5.3) were the ability; (i) to understand the 

mathematical ideas in question 1, and (ii) to produce the solution to the question: ―which of 

the angles are equal?‖ The participating PT must apprehend in the figure the relationship 

between the segments, chord and angles and relate to the angle in the same segment circle 

geometry theorem. In this apprehension, the PT should focus on the perceived relationship 
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between the angles subtended by the same chord either in the same segment, different 

segments or not inscribed. The response statements about the mathematical idea should 

reflect that the PTs identified angles, segments and chord in the geometry question. A 

response provided by the PTs should reflect a perceptual apprehension of the diagram in the 

geometry question in order to make a discursive statement. In responding to Task 3, the PT 

were expected to give justifications that explicitly stated the key essential words; same 

segment, subtended by same chord/arc, inscribed, angles on circumference, converse and 

misconceptions. The PTs were expected to express the theorem in natural language. To 

accomplish the tasks required a clearly organized convincing logical argument reflecting 

knowledge of the theorem.  

 

As mentioned earlier, justification should reflect knowledge of properties of geometric 

objects in a logical relationship. Table 6.14 shows that in Task 3 more connections were 

made at level 1 as compared to level 2, indicating that even though at a glance, the 

participating PTs recognized the idea depicted in the question they could not logically 

communicate this idea. For instance, when looking at Nkosi‘s response in Figure 6.17, he 

identified the theorem that was depicted in the question but the argument showed a flawed 

description of the conditions for the theorem to apply in any situation. The connections that 

Nkosi made were coded at level 1. 

 

This shows that angles on the same segment 

are equal, only if they are on the 

circumference 

Figure 6.17: Nkosi‘s response to Task 3 (a) 

 

 Nkosi gave the connector ―only if‖ as a justification for the equivalent angles but failed to 

emphasize that the angles should be subtended by the same arc or chord. However, Nkosi 

correctly identified the equal angles as   ̂   ̂   ̂ but did not provide a justification for this.  

Overall, when making connections between and within properties, definitions and theorems, 

there is a strong indication that PTs can make justification in proofs but are weak in providing 

descriptions and explanations to reveal the connections that are made when making 

deductions. This argument concurs with the finding in the systematic organization section. 
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The PTs portray weak competence of geometric language ability to describe the perceived 

figure.  

 

6.4.4 Theorem application connections  

The forms of connections in this category are those connections that involve recognition of 

which theorem is appropriate to apply to the situation at hand. That is, a connection is made 

when it is acknowledged that theorem A is applicable for solving B. Theorem application 

requires logical reasoning. The reasoning is guided by a premise that leads to a conclusion 

about a specific theorem to apply for a specific case. Refer to Table 4.4 in Chapter 4 for the 

indicators for theorem application connections. For example, to recognize and identify equal 

angles in Task 3 (b), Wisdom‘s response in Figure 6.18 shows the connections made through 

the application of a specific circle geometry theorem to make a statement about the specific 

angles. 

 

 

  ̂   ̂ …. angles are subtended by the same chord. 

 

Figure 6.18: Wisdom‘s response to Task 3 (b) 

 

A theorem is conceptualized in this study as a statement that has been proven about the 

characteristic or property of a geometry object.  The next two sections present a discussion of 

theorem application connections made between properties and theorem(s) and connections 

made between figure(s) and theorem(s). The two forms of connections provided a remarkable 

pattern for theorem application connections. The theorem application connections were more 

pronounced in these categories. 

  

6.4.4.1 Theorem application connections made between the properties and theorem(s)  

Reference is made to Table 6.14. As mentioned in Section 6.4.4, the participating PTs had to 

make a connection between properties and theorem(s). The table below shows the levels of 

connections made between properties and theorem(s) within tasks. 
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Table 6.14: Connections made between properties and theorem(s) 

  Properties and theorem 

 
 PT 

Task 1 Task 2 Task 3 

(a) (b) (a) (a) (b) 

Nkosi 1 1 2 1 1 

John 2 2 2 1 1 

Wisdom 2 2 2 1 1 

Lesedi 1 2 2 1 1 

Bonolo 2 1 1 1 1 

Thabiso 2 2 1 1 1 

 

The table reflects that in the properties and theorem(s) category of the theorem application 

connections, scoring was at level 2 and 1, implying that connections made between properties 

and theorem(s) indicate the participating PTs‘ knowledge of circle properties and geometry 

theorems is weak or better. Moreover, weak connections made an edge over strong 

connections. Wisdom and John made most strong connections whilst Nkosi and Bonolo made 

most weak connections.  

 

Results for Task 1 

When responding to Task 1 (a), the participating PTs made connections between properties 

and theorem in the process of identification. The first point of entry for the participating PTs 

was to define the figures through knowledge of properties of basic geometric objects. A 

further classification of the figures required the use of theorems by making reference to the 

properties of the identified figures. More connections at level 2 than connections at level 1 

were made in this task, indicating that the participating PTs had a strong knowledge of 

theorem(s) applicable in the identification of the properties of geometric objects in the task. 

Nkosi and Lesedi made connections at level 1. Lesedi‘s response in Figure 6.1 shows an 

explicit application of the theorems using the properties of the identified figures. However, 

she made an error by identifying quadrilaterals KMBE and KBHE as cyclic quadrilaterals. 

The vertices of the quadrilaterals are not inscribed, suggesting that the properties for the 

cyclic quadrilaterals do not hold. 

  

Task 1(b) required an identification of congruent triangles, signalling the use of properties of 

triangles that meet the condition for the congruency theorem. Table 6.14 illustrates that the 

participating PTs made strong connections within this category. The explanation or 

justification given by the participating PTs suggests that there were connections made 
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between the properties and the theorem. The congruency theorem was used to identify the 

triangles, resulting into more level 2 connections realized than level 1 connections. This 

result concurs with another interesting finding in this study (section 6.2.1) which indicates 

that most PTs gave a correct identification of at most 3 congruent triangles but with some of 

the correct explanations incomplete in justifying the congruency.   

 

Results for Task 2 

Task 2 (a) required the participating PTs to prove that two angles were equal. To do that 

required an identification and application of the tan-chord theorem. Proving a theorem 

necessitates a logical organization of facts to maintain the truthfulness of the statements. The 

bases of the statements are the definitions, properties, propositions and postulates. The 

responses by Nkosi, John, Wisdom and Lesedi strongly suggest that they recognized that the 

tan-chord theorem should be applied in proving the congruent angles. Although the 

participating PTs provided only one of the four required proofs, they made strong indications 

that they had knowledge of properties appropriate for proving the tan-chord theorem.  

 

Results for Task 3 

Task 3 (a) and Task 3 (b) required the participating PTs to identify a theorem by making 

reference to the diagram. Table 6.15 shows that the PTs‘ connections were at level 1. As 

discussed in the systematic organization connections section earlier, the participating PTs‘ 

understanding in linking figures with descriptions suggests lack of knowledge of geometric 

properties in relation to the ―angle in the same segment‖ theorem. 

 

6.4.4.2 Theorem application connections made between the figures and theorem(s)  

Reference is made to Table 6.16 below. As mentioned in Section 6.4.4, theorem application 

connections were made between and within figures, properties, definitions and theorems. In 

this case, the participating PTs had to make a connection between figure(s) and theorem(s). 

Table 6.15 shows the levels of connections made between figure(s) and theorem(s) within 

tasks. 
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Table 6.15: Connections made between figure(s) and theorem(s) 

 

PT  
figures and theorem 

  
Task 1 Task 2 Task 3 

(a) (b) (a) (a) (b) 

Nkosi 1 1 2 1 1 

John 2 2 2 1 1 

Wisdom 1 1 2 2 1 

Lesedi 1 1 2 1 1 

Bonolo 1 1 1 1 1 

Thabiso 1 1 1 1 1 

 

To illustrate the coding for this category of connections I present an example and meaning of 

code 2, a strong connection. Task 1 (a) required the participating PTs to identify the figures 

using the angle theorems, triangle theorems and circle theorems. This is a form a perceptual 

apprehension. More level 1 than level 2 connections were realized in this task.  John‘s 

response was scored 2 because he provided a more detailed description of what was seen 

indicating that there was a more explicit link between the diagram and the properties relevant 

to the theorem. See Section 6.4.1.1 above for the excerpt from John‘s response in Figure 6.2. 

John identified ―ABHC – quadrilateral – kite (cyclic quadrilateral)‖. I consider this response 

as an attempt to connect the figure to its definition and properties. The response also clearly 

indicates that a further more precise definition of the quadrilateral, that is, the ―cyclic 

quadrilateral‖ demonstrates that figural processing occurred. Compared to John, the other 

PTs were not explicit in their identifications. A mere listing of figures did not provide 

adequate insight into the thinking involved in connecting figures to theorems (cyclic 

quadrilateral theorem, triangle theorems). Their responses were thus classified at level 1. 

 

The classification in Table 6.15 of the scores of the participating PTs‘ connections over all 

tasks demonstrates that the most frequent scoring was at level 1, implying that most of the 

connections between figure(s) and theorem(s) were weak. The table reflects that in the 

figure(s) and theorem(s) category of the theorem application connections, more weak 

connections were realized than the strong and faulty connections. John made most strong 

connections whilst Bonolo made most weak connections.  
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Results for Task 1 

Task 1 (b) dealt with identifying congruent triangles and with providing justifications for 

these identifications.  More level 1 than level 2 connections were realized in this task, 

indicating that the participating PTs made weak connections between figure(s) and 

theorem(s) in the process of identification.  The discussion above has shown that the analysis 

of the participating PTs‘ written responses suggests that the participating PTs had an 

understanding of the congruency concepts. However, I needed to get insight into what figural 

processing occured when making connections between the figure(s) and the theorems. 

Responses by Nkosi, Wisdom, Lesedi, Bonolo and Thabiso were not very explicit in terms of 

linking the figure(s) with theorem(s). John‘s response in Figure 6.19 shows a convincing 

connection between the figure and the theorems. John provided a figure that has been 

extracted from the diagram and a verbal description of the identification and proof of 

congruent triangles. Clearly, the response explicitly highlights that in the figural processing 

John made strong connections between the figure and the triangle and circle theorems. 

 

(a) For  Δ ABH and ΔACH 

  

  ̂    ̂  = 90  (  in semi-circle = 90 ) 

 

AB = AC given 

  reason RHS 

 

Figure 6.19: John‘s response to Task 1 (a) 

 

There was a strong coordination of the figural register with the theorems in John‘s response. 

This did not occur in other PTs‘ responses. The visualization processes illuminated in the 

PTs‘ responses was largely on working with the special relationship between the sides of the 

triangle in order to identify the congruent triangles rather than on applying the triangle and 

circle theorems.  
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Results for Task 2 

Task 2 (a) was concerned with the application of the tan-chord theorem to prove that two 

angles were equal. Table 6.15 shows that connections that Nkosi, John, Wisdom and Lesedi 

made were classified as level 2 connections. These PTs made reference to the figures in order 

to link the figure with the theorem.  The participating PTs proposed a reconfiguration of the 

diagram to pave way for the theorem that could be applied to show that the two angles were 

congruent. For instance, Wisdom states that “Since OT is perpendicular to GH, we draw in 

the radii OT and OK … Since the tangent is perpendicular to the radius”. Wisdom 

acknowledged that the theorem could be applied if the diagram conformed to the conditional 

statements of the theorem. Connections made between the figure(s) and theorem(s) by 

Bonolo and Thabiso were scored at level 1. Bonolo provided figural processing and produced 

three figures which he assumed show that the two angles were equal. Thabiso on the other 

hand provided four similar constructions of the tan-chord theorem that illustrated the two 

congruent angles. See Figure 6.16 for Thabiso‘s response. Bonolo and Thabiso reflect a lack 

of understanding of how to use a construction to visually represent the proof of a theorem. 

Although Bonolo and Thabiso recognized the theorem applicable in this situation, they failed 

to prove the actual tan-chord theorem.  

Results for Task 3 

Task 3 (a) and Task 3 (b) required the PTs to explicitly put forward that the figure illustrated 

a detailed description of the ―angle in the same segment‖ theorem and its converse. A logical 

explanation was essential in determining if in the process of visually apprehending the figure 

the participating PTs concluded that the ―angle in the same segment‖ theorem was applicable 

in this context. The PTs‘ explanation needed to provide a connection between the figure and 

the theorem. Table 6.15 shows that connections that Nkosi, John, Lesedi, Bonolo and Thabiso 

made were classified as level 1 connections. In processing the figure, the PTs were selective 

in their descriptions and appeared to focus only on acknowledging the equal angles. Below is 

an excerpt of Thabiso‘ thinking. 

 

 Kim: what is the idea? 

Thabiso: learners are to make conjectures and prove them…if they are correct also 

come up with a theorem  

Kim: what theorem?  
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Thabiso: the diagram helps to make connections with the task of proving which angles 

are equal that are found in the circumference.  

Thabiso:  I mean that angles on the circumference subtended by the same chord are 

equal 

 

Although Thabiso could identify the theorem, he was not specific about the angles that he 

made reference to. This trend was common across the PTs who scored at level 1. The PTs did 

not provide clear reference to the positions of the points in relation to the chord subtending all 

the angles. Connections made by Wisdom were categorized as level 2 connections. Unlike 

the other PTs who provided an implicit description of the theorem, Wisdom was more 

specific in terms of naming the identified objects. See 6.4.1.2 for Wisdom‘s explanation. In 

his explanation, Wisdom first identified the theorem that was applicable in this situation. He 

then proceeded by explicitly highlighting the concepts, specific angles and properties that 

convincingly showed that he had a good understanding of the ―angle in the same segment‖ 

theorem. In this task, Wisdom reflected a strong discursive apprehension.   I conclude that in 

general, the PTs‘ discursive apprehension of the diagram shows weak connections between 

the figure(s) and the theorem(s). 

Section 6.4 Findings: What types of connections participating PTs made between 

representations, properties and theorems? 

Section 6.4 presented and analysed what types of connections participating PTs made 

between representations, properties and theorems. Perceptual apprehensions followed by 

discursive apprehensions were required in the process of making connections between 

properties and theorems. I also based my rationale for the understanding of connections by 

acknowledging the position made by Torregrosa and Quesada (2008:2) that ―discursive 

apprehension is the cognitive activity which produces a connection between the identified 

configuration and certain mathematical principles (definitions, theorems, axioms, etc.)‖. In 

this study, discursive apprehension was conceptualized as (a) the ability to connect 

configuration(s) with circle geometric principles, (b) the ability to provide good descriptions, 

explanations, argumentations, deductions, use of symbols, and reasoning depending on 

statements made on perceptual apprehension, and (c) the ability to describe figures through 

geometric language/narrative texts (Duval, 1995). See Table 4.2 in Chapter 4 for a 

comprehensive illustration of how the discursive apprehension was conceptualized. 
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An in-depth understanding of the specific forms of connections that PTs made when solving 

circle geometry tasks was sought. The process of making connections between geometry 

representations, properties and theorems as premised in this study was achieved through 

perceptual apprehensions preceded by discursive apprehensions. Inductive analysis was 

employed to determine the categories of connections based on the expectations of the tasks, 

the geometry concepts within the tasks and the forms of connections. 

 

The participating PTs made strong connections between verbal and figure(s) category of 

visual connections, indicating strong coordination between their verbal registers and figural 

registers. The most connections that PTs made between symbols and figures varied between 

faulty and strong connections indicating that the PTs either had difficulty or were efficient in 

connecting symbols and figures. The participating PTs identified the congruent triangles but 

not all participating PTs appropriately used the congruency symbols and the correct 

description of the triangles.  The participating PTs overlooked the underlying symbolic 

representations when making verbal descriptions of the ―angle in the same segment‖ theorem. 

The PTs explanations were mostly without explicit reference to particular symbols.  

 

The participating PTs‘ connections made between figures and figural units category of the 

systematic organization connections reflect a weak competence in linking figures with figural 

units confirming that the participating PTs‘ perceptual apprehensions of the diagram were 

weak. The PTs failed to recognize and discriminate all the figures and sub-figures through 

mental modification or organization of the diagram.  The participating PTs demonstrated a 

strong ability to make connections between properties and theorem(s) but they lacked the 

knowledge to systematically organize geometric language to describe the properties and 

theorems. 

 

The participating PTs‘ connections made between definitions and figure(s) category of the 

implications connections reflect a weak competence in linking the properties of figures to the 

theorems. Despite this observation, some participating PTs were able to establish logical 

relationships between representations, properties and theorems in two tasks. The use of 

symbols and identification of angles displayed weak knowledge of the ―angle in the same 

segment‖ theorem. Generally, the PTs made the same numbers of strong connections as 
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compared to weak connections between the properties and justification(s). Justifications 

provided by the PTs were linked to strong knowledge of deductions that relate to the 

characteristics or properties of figures. However, the participating PTs‘ weak geometric 

language suggests weak abilities to make implication connections during the process of 

making deductions.  

 

The connections made in this category revealed that the participating PTs had strong 

knowledge of theorem(s) applicable to theidentification of properties of geometric objects. 

Some of the explanations or justification given by the PTs either had errors or were correct 

with incomplete explanations. Nonetheless, the participating PTs recognized the specific 

theorem applicable for the specific context(s).  In general, the PTs‘ discursive apprehension 

procedure showed weak connections between the figure(s) and the theorem(s). The PTs‘ 

thinking involved in connecting figures to theorems was not explicit particularly in the 

recognition and identifications of figures, indicating that the participating PTs made weak 

connections between figure(s) and theorem(s) in the process of identification. During figural 

processing, the PTs made reference to the figures in order to link the figure with the theorem. 

However, the participating PTs were selective in their descriptions and appeared to focus on 

properties rather than on applying the triangle and circle theorems.  

6.5 Chapter summary 

The purpose of this investigation was to explore the participating PTs‘ circle geometry 

knowledge by probing the participating PTs‘ thinking displayed in the PTs‘ solutions to the 

TPACK tasks. In investigating ―what CK do the PTs display?‖ I was guided by two 

subsidiary questions. Firstly, I examined what the PTs‘ identified and recognized in perceived 

figures.  Then, I studied the types of connections that participating PTs made between 

representations, properties and theorems. In this chapter I presented and discussed the sub-

unit of analysis, PTs‘ CK, by using the participating PTs‘ responses (both from written tasks 

and from interviews) to bring forth what I considered prominent, absent or assumed by the 

participating PTs within and across the CK tasks. The next chapter presents analysis of the 

sub-unit of analysis of TCK of participating PTs.  
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CHAPTER 7  

ANALYSIS BY TPACK COMPONENT: PROSPECTIVE TEACHERS’ 

GEOMETRY TECHNOLOGICAL CONTENT KNOWLEDGE 

7.0 Introduction 

The previous chapter presented the data analysis and findings relating to the aspect of content 

knowledge (CK) construct of technological pedagogical content knowledge (TPACK). The 

major focus of this chapter is on presenting the results relating to the technological content 

knowledge (TCK) construct of the technological pedagogical content knowledge (TPACK) 

framework in response to research question 2: 

What technological content knowledge do the PTs display about GeoGebra-constructed 

geometric diagrams?  

In line with the previous chapter, I provide an overview of how the sub-unit of analysis (TCK 

construct) was conceptualized in the study (Section 7.1). A descriptive summary and the 

quantitative analysis of the rubric scores of all the participating PTs‘ responses to the TCK 

task will follow (Section 7.2). Thereon, a typological analysis with an inductive sub-analysis 

of the PTs‘ construction (Section 7.3) and reasoning (Section 7.4) competencies employing 

Duval‘s (1995) cognitive apprehensions is articulated. For each section, I provide the overall 

results in tabular forms, followed by a discussion of the overall results for all the participants. 

Each section is concluded by a summary of findings. The discussion of the findings is 

focused on answering the two sub-questions aided by evidence from the quantitative analysis 

presented earlier for each task. Sections 7.3 and 7.4 are focused on Task 1(c) and Task 4(a) 

respectively. When discussing the results explicitly, I refer to responses by Nkosi, Wisdom 

and Lesedi. As mentioned in Section 6.1, I discuss the trends across and within each task and 

present participating PTs‘ responses (Nkosi, Wisdom and Lesedi) to a GeoGebra-based task 

and interview excerpts to support the findings.  
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7.1 Sub-unit of analysis: PTs’ circle geometry technological content knowledge (TCK) 

The sub-unit of analysis for this chapter is the participating PTs‘ circle geometry 

technological content knowledge (TCK).  The TCK construct was conceptualized in the study 

as the knowledge of how circle geometry concepts may be represented with GeoGebra (see 

Section 5.2). In this study, the circle geometry technological content knowledge required for 

the successful completion of the TCK tasks comprised two aspects: (i) construction of 

geometric diagrams with GeoGebra, (ii) verbal description of geometrical diagram 

constructed with GeoGebra. The exploration of the participating PTs‘ TCK was done by 

probing into the participating PTs‘ thinking displayed in the participating PTs‘ solutions to 

the TCK tasks. These tasks were deliberately designed to elicit knowledge of how GeoGebra 

and circle geometry influence and constrain one another and how knowledge of circle 

geometry could be effected by the use of GeoGebra.  

 

Duval‘s (1999) cognitive apprehensions notion is used as interpretative tools to discuss how 

the participating PTs responded to the TCK tasks. These cognitive apprehensions are 

perceptual, discursive, operative and sequential apprehensions. Refer to Section 4.3 for an 

elaboration of the cognitive apprehensions. I use these apprehensions to interpret how PTs 

interacted with GeoGebra when they used GeoGebra to reproduce pencil-and-paper diagrams 

and to describe a GeoGebra constructed diagram. Since the TCK tasks that the participating 

PTs responded to elicited knowledge of GeoGebra constructions and reasoning, I seek to gain 

insight into participating PTs‘ GeoGebra construction skills and geometric discursive skills.  

To understand the PTs‘ construction and the discursive processes in responding to circle 

geometry tasks, I was guided by the following sub-questions 

1) What do the GeoGebra constructions reveal about the participating PTs‘ knowledge 

of circle geometry constructed in a GeoGebra environment? 

2) What types of descriptions do the PTs give about geometrical diagrams constructed 

with GeoGebra?  

A geometric construction is defined in this study as a drawing of a figure satisfying given 

conditions using GeoGebra. The product of the construction is referred to as a GeoGebra-

based construction. A diagram is a visual representation of a figure. 
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7.2 Analysis of Rubric Scorings of TCK tasks  

The tasks that elicited TCK responses were Task 1(c) (for sub-question 1 above) and Task 

4(a) (for sub-question 2 above). See Chapter 5 for the tasks and their descriptions as 

elaborated in Section 5.2.1 and Section 5.2.4 respectively. In this section I present the 

descriptive analysis relating to the performance scoring for individual PTs and the 

performance scoring across and within the two tasks. 

7.2.1 Analysis of TCK scores for individual cases  

Table 7.1 presents data for the six PTs; Nkosi, John, Wisdom, Lesedi, Bonolo and Thabiso. 

There were two (2) tasks testing TCK, each marked out of four. The overall mark was 

essential in determining the overall TCK performance score for each participating PT.  The 

mean and standard deviation are provided to interpret the individual PT‘s scores. The scores 

ranged from the poor performance (score 0) to high performance (score 4). 

Table 7.1: Scoring of the PTs‘ responses across and within the TCK tasks 

PT  

  

Rubric scores   /4 

for each sub-task 
Summary of scoring  across the tasks 

Task 

1(c) 

Task 

4(a) 

mark 

/8 
% 

Mean 

  ̅̅̅̅         

SD 
           

Nkosi 0 4 4 50 2 2.828 

John 0 2 2 25 1 1.414 

Wisdom 0 4 4 50 2 2.828 

Lesedi 0 3 3 37.5 1.5 2.121 

Bonolo 1 1 2 25 1 0.000 

Thabiso 3 2 5 62.5 2.5 0.707 

 Summary 

of scoring  

within 

the tasks 

 

mark 

/24 

4 16 

 % 17 67 

Mean 0.833 2.667 

SD 1.602 1.211 

 

A general observation across the responses shows that the scores ranged between 0 and 4 

across the tasks. Four of the six PTs scored a 0 for Task 1 (c) and, two PTs scored a 2 for 

Task 4 (a).  The observed absent scores were 2 and 4 for Task 1 (c) and 0 for Task 4 (a). A 

score of 4 as reflected in Table 1 indicates that Nkosi and Wisdom provided model answers 

for Task 4 (a).  Across both tasks, Nkosi and Bonolo had the lowest mark of 25% whilst 

Thabiso scored the highest mark of 62.5%.  The overall mean and standard deviation were 
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1.667 and 1.155 respectively, indicating that three PTs (Nkosi, Wisdom and Thabiso) scored 

above the mean and rest of the PTs scored below the mean (between 1.000 and 1.500). For 

example, Lesedi‘s overall mark and mean were 37.5% and 1.500 respectively, indicating a 

performance slightly below the overall mean score of 1.667. Although John and Bonolo had 

the same mean of 1, their standard deviations differed due to the pattern of scoring across the 

two tasks.  

7.2.2 Analysis of PTs’ scores within TCK tasks 

Reference is made to the summary of the PTs‘ scores within each task as presented in Table 

7.1 above.  A general overview of the table indicates that all the two tasks were attempted, 

with 0 as the lowest score and 4 as the highest performance score attained in a task. Four PTs 

(Nkosi, John, Wisdom, Lesedi) scored 0 for Task 1 (c), whilst Task 4 (a) performance scores 

ranged between 1 and 4 with two PTs (Nkosi and Wisdom) attaining performance at level 4.  

Section 7.2 Summary of quantitative findings across and within the TCK task 

Task 1 (c) was scored the lowest at 17% (mean score). The scores for Task 1 (c) ranged 

between 0 and 3. The mean and SD of Task 1 (c) were 0.833 and 1.602 respectively, 

confirming that the quality of responses for this task was poor. Task 4 (a) scored the highest 

mean score at 67%. The mean and SD of Task 4 (a) were 2.667 and 1.211 respectively, 

suggesting that in general the quality of responses for this task was below average.  

The rubric scores in the descriptive summary (see Table 7.1 above) provided descriptive 

analysis of the participating PTs‘ individual performance. The overall performance of the 

participating PTs indicates that the variation of scores was low, suggesting that the PTs had 

similar abilities exhibiting with a weak knowledge of circle geometry TCK. The conclusion is 

based on the contention that the ideal average performance for the TCK tasks should be 4 

(teachers should be able to do tasks without error). The attained average is 1.667 indicating 

poor knowledge of the construction of diagrams with GeoGebra (Task 1 (c)) but adequate 

knowledge to describe a geometrical diagram constructed with GeoGebra (Task 4 (a)).  

7.3 Sub-question 1: Construction of circle geometry diagrams with GeoGebra  

I draw again on the notion that PTs should have the competence to visualize, construct and 

reason to reflect their knowledge and understanding of geometry (Duval, 1995; Gagatsis et 
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al., 2010; Laborde, 2004). Task 1(c) particularly required a perceptual apprehension followed 

by a sequential apprehension in order to construct the diagram in the GeoGebra environment. 

See Section 5.2.1 for a deconstruction of Task 1(c). 

The discussion that follows relates to the findings about Task 1(c). To address the sub-

question ―What do the GeoGebra constructions reveal about the PTs‟ knowledge of circle 

geometry constructed in a GeoGebra environment?‖ I examined what the PTs could or could 

not construct with GeoGebra. 

The critical component of Task 1 (c) was the ability to reproduce a pencil-and-paper diagram 

using GeoGebra. The GeoGebra-based construction was expected to reflect the participating 

PTs‘ ability to transform the pen-and-pencil diagram and verbal statements from a static 

environment to a dynamic construction on GeoGebra. When interacting with GeoGebra, the 

participating PTs were expected to do the following, not necessarily in this order: (i) draw a 

circumscribed triangle ABC where AB=AC; (ii) draw line AS which when extended cuts line 

BC at M and the circle at H; (iii) draw line BE which bisects angle CBK; (iv) draw line BE 

which meets line AS produced at E; and (v) draw line AB which when produced is 

perpendicular to line EK.  The PTs‘ constructions produced within the GeoGebra user 

interface were studied for the TCK evidence.  As such, I examined the PTs‘ constructions as 

represented in the GeoGebra algebraic view and the graphic view. The algebraic view 

illustrates the text input in the construction processes whereas the graphic view provides the 

visual component of the construction.  I also examined the participating PTs‘ construction 

protocols for the step-by-step construction processes and the screen-cast recordings. These 

different data sources are discussed in the subsequent sub-sections. Each section is concluded 

by a discussion of findings culminating from the analysis of the sub-sections. 

7.3.1 Analysis of the algebraic view of Task 1 (c) 

One of the affordances of GeoGebra, to both learner and researcher, is the multiple 

representations of an object. A GeoGebra default screen shot shows an algebraic view and 

graphic view (Figure 7.1).  An object can be represented in algebraic form on the algebraic 

view window. The algebraic view contains the numeric and algebraic representations of the 

constructed objects presented in alphabetical order but not necessarily according to the order 

of construction. Table 7.2 shows a summary of the participating PTs‘ constructed objects as 

represented in the algebraic view. The expected number of constructed objects according to 
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the model solution in the graphic view of the ideal construction were: 2 angles, 1 conic 

figure, 3 lines, 8 points, 2 rays and 5 segments.  

Table 7.2: Summary of PTs‘ objects representations on the algebraic view of Task 1 (c)  

 Number of drawn objects represented in algebraic view 

 PT angle E=2 conic  

E=1 

Line 

 E=3 

point  

E=8 

Ray 

 E=2 

segment 

E=5 

Nkosi 1 1 1 11 2 5 

John 1 1 3 8 0 5 

Wisdom 0 1 5 8 0 6 

Lesedi 1 1 1 14 (6) 3 7 

Bonolo 1 1 3 11 (3) 2 8 (2) 

Thabiso 1 1 2  9 (1) 2 7 
Note: (i) number in brackets represents the number of objects deleted in the graphic view but visible in 

algebraic view; (ii) E is the expected number of constructed objects to be represented in the algebraic view  

 

Generally there were variations between the number of expected objects and the actual 

number of objects the participating PTs constructed as seen in the algebraic view. Much 

variation occurred in the number of lines, points and segments presented in the participating 

PTs‘ constructions. The expected number of lines was three but the number of lines that the 

PTs constructed ranged between 1 and 5. The expected number of points in the construction 

was 8 but those of the PTs ranged between 8 and 14. However, some participating PTs 

(Lesedi, Bonolo and Thabiso) had 9 or more points in the graphic view but the results show 

indications that some points were later removed in order to meet the construction process 

requirements. See Figure 7.1 for a display of Lesedi‘s algebraic view and graphic view. 

  

The algebraic view allows for objects to be removed from the window provided these objects 

are free objects that are not dependent on other objects. For instance, Lesedi‘s algebraic view 

showed that she plotted 14 points which she later trimmed to 8. There were also some 

variations realized in the number of segments drawn by the PTs.  
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Figure 7.1: Lesedi‘s Task 1(c) GeoGebra construction 

 

Task 1 (c) required a construction of two angles, acute Angle A and Angle BKE which is 

   . Table 7.2 shows that all the participating PTs except Wisdom constructed only one 

angle, Angle BKE. Wisdom did not construct this or any other angle. The algebraic view 

shows an object when it is constructed in the graphic view. Thus it could be seen that the 

acute Angle A was not constructed but was visible by default in all the constructions. The 

participating PTs did not confirm the acute angle through its measurements. My conversation 

with Nkosi sheds light regarding the failure to construct Angle A. 

Nkosi: I didn‟t consider that…if you just gave me this and don‟t give me the description? 

Kim: Yes 

Nkosi: Yes, I would just look at the diagram. 

Kim:  you‟d just look at the diagram? But suppose you‟d also looked at the description, 

what would you have changed in your construction? 

Nkosi:  the accuracy.  
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Kim:  Because your only concern was the 90 degree 

Nkosi:  yes because that‟s the only one I could see from the diagram 

Kim: suppose it was mentioned in the diagram that AB=AC, would you have made sure that 

they were accurate? 

Nkosi:  yes, then I was going to make sure that they were accurate. 

Since the accuracy of measurements of Angle A was not given in the diagram, the PTs 

concluded that this angle did not warrant due construction but could be visually recognized 

and classified as acute. All the participating PTs constructed one conic figure as expected but 

that could not be said about the lines. The task required a construction of three lines: angle 

bisector BE, angle bisector AE and a perpendicular to AB produced. The participating PTs 

produced between 1 and 5 lines which were not necessarily the required lines. For instance, 

as is discussed in the next section, none of the participating PTs constructed the angle 

bisector BE. Overall, there were two rays in the model diagram. Half of the participating PTs 

constructed the two expected rays whereas John and Wisdom did not construct the rays at all.  

The analysis of the algebraic view strongly indicates that the participating PTs‘ knowledge of 

how circle geometry concepts may be represented with GeoGebra is weak. The GeoGebra-

based constructions revealed that in general, all the expected objects were drawn but did not 

meet all the construction requirements. All participating PTs lacked the competence to 

produce a construction of a figure on GeoGebra by constructing the expected number of 

objects. For example, the construction output on the algebraic view showed that extra points 

were drawn than the required. The variations on the number of objects indicate that the 

participating PTs were focussed on re-producing the diagram on GeoGebra without taking 

into consideration the properties of the objects. I conclude that the participating PTs‘ TCK is 

weak resulting from the inability to organize or produce a construction of a figure by 

transforming geometric statements from a static environment to a dynamic construction 

employing GeoGebra as a construction tool. 

7.3.2 Analysis of the graphic view of Task 1 (c) 

The analysis of the algebraic view provides an overview of the number of objects constructed 

but does not explore how the construction requirements were met. This sections and 
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subsequent sections give an insight into what objects and object properties were constructed 

by the prospective teachers. 

The graphic view of the GeoGebra user interface provides a visual component of the 

construction or drawing. The geometric objects are displayed in this view where the objects 

can be drawn or created and modified using the construction tools. Table 7.3 shows a 

summary of objects the participating PTs constructed in order to meet the construction 

requirements of Task 1 (c) as explained in Section 7.3. 

 

Table 7.3: Summary of PTs‘ objects constructed in the graphic view of Task 1 (c)  

 
construction requirements met 

 PT 

 

 

Circle 

S 

Triangle 

ABC 

Angle 

bisector 

BE 

AB when 

produced, is 

perpendicular to 

EK 

AB = AC 

 

Points A, B, C 

passing dragging 

test 

 

Nkosi           No point 

John           No point 

Wisdom           No point 

Lesedi           No point 

Bonolo           one point 

 (A, B, or C)  

Thabiso           any two points 

(A, B, or C) 

Note:   indicates construction requirement met;   indicates construction requirement not met 

 

Generally, some construction requirements were met to produce the objects. At a glance the 

graphic view shows that all the PTs constructed circle S and triangle ABC. One given 

property of triangle ABC was that AB = AC, implying that triangle ABC was isosceles. Table 

7.3 demonstrates that despite the participating PTs constructing the triangle, their 

construction did not satisfy this property. Only Bonolo and Thabiso constructed the two 

congruent sides AB and AC indicating that these PTs successfully constructed the required 

triangle. Although the algebraic view suggests that the participating PTs constructed at least 

one line, none of these lines could be classified as the angle bisector BE. However, 4 of the 6 

PTs constructed the line perpendicular to AB produced. All the participating PTs struggled to 

construct the perpendicular to AB produced affirming that the PTs could not exploit the 

technical affordance of GeoGebra. 
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7.3.3 Analysis of construction protocols 

The construction protocol of the GeoGebra user interface provides a textual representation of 

the order and steps of construction or drawing of geometric objects. The construction 

protocol was employed to analyse how the constructions and drawings were organized. This 

analysis provides an insight into how the constructions and drawings were sequentially 

apprehended. A sequence has to be followed using GeoGebra in order to make the 

construction. When discussing the findings for the construction protocol, Table 7.2, Table 

7.3, Table 7.4 and Figure 7.2 were the point of reference. When analysing the sequences of 

construction, I draw on Duval‘s (1995) position that the order of construction depends on 

either the mathematical properties that are represented and/or the technical limits of the tools 

which are used.  I considered how the specific properties that should be extracted from the 

static diagram were sequenced in the construction. The order of construction was 

corroborated with the examination of the videos of the screen recording. This strategy was 

essential in addressing the limitations of a construction protocol. A construction protocol 

does not show steps that are deleted during the construction process. The implication is that 

the construction protocol provides some but not complete access into understanding PTs‘ 

geometrical activity. 

The model construction with a short accurate protocol and the points A, B, C passing the 

dragging test was 2 minutes long with 20 construction steps. The model sequence of 

construction depended on the geometric object properties and the GeoGebra construction 

tools. This sequence was ideal in that it provided a short sequence by exploiting the 

affordances of GeoGebra. The sequence of the objects for construction was as follows: (1) 

 ABC where AB=AC; (2) Circle S; (3) AS extended cuts BC at M and circle at H; (4) BE 

bisects   ̂     (5)  AB extended to K. (6) AB produced perpendicular to EK;  (7)  BE meets 

AS produced at E. 

I use Nkosi as an example to illustrate the construction protocol and its constructed diagram. 

See Figure 7.2 for his construction protocol and Figure 7.3 for the GeoGebra construction.  

Figure 7.2 displays Nkosi‘s construction processes. The construction protocol provided a 

detailed account of how Nkosi sequenced the objects which are summarized in Table 7.2. The 

GeoGebra construction protocol provided an insight into how the constructions were 

sequentially apprehended. 
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No. Name Definition Value 

1 Point A   A = (3.76, 1.5) 

2 Point B   B = (-0.38, 2.66) 

3 Circle c Circle through B with centre A c: (x - 3.76)² + (y - 1.5)² = 18.49 

4 Point C Point on c C = (-0.46, 2.35) 

5 Point D   D = (2.4, 1.76) 

6 Ray a Ray through C, D a: 0.59x + 2.86y = 6.43 

7 Point E   E = (3.5, 3.56) 

8 Ray b Ray through C, E b: -1.21x + 3.96y = 9.84 

9 Point F Point on b F = (9.76, 5.48) 

10 Point G   G = (11.86, -1.36) 

11 Line d Line through F, G d: 6.84x + 2.1y = 78.28 

12 Point H Point on c H = (6.08, -2.12) 

13 Segment e Segment [C, H] e = 7.91 

14 Point I Intersection point of c, b I = (6.78, 4.56) 

15 Segment f Segment [I, H] f = 6.72 

16 Point J Intersection point of c, a J = (7.97, 0.62) 

17 Segment g Segment [H, J] g = 3.33 

18 Segment h Segment [J, I] h = 4.13 

19 Angle α Angle between C, F, G α = 90  

20 Point K Intersection point of d, a K = (11.48, -0.11) 

21 Segment i Segment [I, K] i = 6.63 

Figure 7.2: Nkosi‘s Task 1(c) construction protocol created with GeoGebra
4
 

 

The objects as named in the construction protocol correspond with the objects in the 

Algebraic View as seen in Figure 7.3 and Table 7.2. The Algebraic View lists the objects in 

alphabetical order but not necessarily in the order in which they were constructed. Definition 

refers to the description of the geometric properties of object in relation to other objects. For 

example, in Step 3, the Circle C is defined in relation to centre A and point B.  
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Figure 7.3: Nkosi‘s Task 1 (c) GeoGebra construction 

 

Nkosi‘s construction protocol had 21 steps done in 4 minutes 53 seconds. He first constructs 

the circle with centre A through point B. I categorized this action as sequence 1(Table 7.4). In 

sequences 2 and 3, he draws ray a through C and D and ray b through C and E. He constructs 

line d through FD and a segment e through C and H followed by a construction of segment f 

which connects I and H and segment g which connects H and J (sequence 4). In sequence 5 

he makes a manual construction of a 90° angle through C, F and G. Next, he constructs K 

which is the intersecting point of line d and ray a. He finally constructs segment i which 

connects I and K (sequence 6). Nkosi did not construct the angle bisector. He used his own 

labels instead of the labels given in the diagram. 

Table 7.4 considers the sequence of construction, the number of construction steps and the 

time each PT took to construct the diagram.  
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Table 7.4: Summary of PTs‘ construction protocols for Task 1 (c) 

 PT Number 

of  

construction  

steps 

(expected N=20) 

Time  

taken 

to 

construct 

(expected T=02:00) 

Sequencing of construction objects 

Circle 

S 

 

 ABC  

 

AB 

extended 

to K.  

AS 

extended 

cuts BC at M 

and circle at H. 

BE  

bisects 

  ̂    
 

BE  

meets  

AS produced  

at E 

AB 

produced 

perpendicular 

to EK. 

Nkosi 21 04:53 1 5 3 2 - 6 4 

John 20 04:51 1 3 4 2 - 6 5 

Wisdom 20 21:07 1 2 4 3 - 6 5 

Lesedi 27 08:56 1 2 5 3 - 4 6 

Bonolo 25 11:55 1 3 6 2 - 5 4 

Thabiso 22 04:29 1 3 4 2 - 6 5 

Note: N is the expected number of steps; T is the expected time taken to construct; 1, 2, 3, 4, 5, 6 is the order of construction of the objects; - means object not constructed 
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The table shows that the number of construction steps for the five students ranged between 20 

and 27. The time taken, as seen in the screen recording, to construct was not consistent with the 

number of steps. Wisdom produced 20 construction steps as shown in the construction protocol 

but took the longest time to complete the construction, indicating that he took longer to 

manipulate his construction. The recording included the times when the participating PT was 

thinking and not necessarily interacting with GeoGebra.  

The sequence of constructions in Table 7.4 shows that all the participating PTs constructed the 

circle first and BE last. When quizzed on the reasoning about constructing the circle first, 

different versions were given. Nkosi explained that ―because it‟s easier to draw this 

quadrilateral because it‟s a cyclic‖. Wisdom alluded that ―because everything is being done 

inside the circle” he had to start with the circle. Lesedi lamented that; 

Kim:   what was your intention? Why start from the circle, why not the triangle 

Lesedi: I wanted to start with the circle so that I can draw the diameter first.  If I start with the 

triangle first without a circle I wouldn‟t know where my centre will be 

Kim:   your centre be? Oh. Ok. So your concern was the centre? 

Lesedi:  yes 

Clearly Lesedi was thinking about the affordances and constraints of GeoGebra. She is aware 

that GeoGebra does not have a diameter construction tool so one needs to construct a line 

through the centre of the circle in order to draw a diameter. Later on she mentions that “I 

dragged H down, then I had to drag to make sure that the circle pass through centre S”. 

Thabiso provided an exemplary response to Task 1(c) as compared to the other PTs. The 

performance scores in Table 7.1 placed Thabiso‘s score of 3 as the highest of the PTs.  Thabiso‘s 

sequence of construction was the shortest with well executed linking of GeoGebra affordances 

with geometric principles. Although he could not construct the angle bisector, he is the only PT 

that used the perpendicular line construction tool to produce a perpendicular EK.   
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The construction protocol was employed to analyse how the constructions and drawings were 

organized. According to Duval (2002) the construction processes involve actions where 

―geometrical configurations can be constructed according to restricted tools and mathematical 

properties of the represented objects‖ (p.232). This analysis provided an insight into how the 

constructions and drawings were sequentially apprehended. The sequence of construction 

displayed in the participating PTs‘ construction protocol strongly suggests limited knowledge 

relating to the affordances of the GeoGebra tools. A sequence has to be followed using 

GeoGebra in order to make the construction but none of the constructed diagrams the PTs 

produce met the requirements. The drawings/constructions did not pass the drag test with the 

perpendicular EK drawn rather than constructed. None of the PTs constructed the angle bisector, 

suggesting that the point E was not plotted in the correct position. 

7.3.4 Analysis of screen recordings of PTs working on GeoGebra-based tasks 

The PTs were screen-recorded whilst they were performing the construction tasks. Screen 

recording captured the actual construction process by tracking the movements of the mouse and 

the PTs‘ interaction with the GeoGebra construction tools and the GeoGebra menu. I examined 

the transcripts of the videos of the screen cast recordings. As mentioned in Section 7.3.3, the 

screen recording corroborated the construction protocol. I was determined to find a connection 

between the participating PTs‘ knowledge of geometric properties and the affordances and 

constraints of GeoGebra in representing these properties. As such, since the indicators for TCK 

were the ability to produce and describe a construction of a diagram with GeoGebra, the actions 

made during the construction process were employed as analytical tools for the screen 

recordings. A deductive approach was utilized to identify and classify the actions. 
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Table 7.5: PTs‘ actions during the construction process 

  Number of construction actions on GeoGebra    

PT Selects draws inputs Drags deletes renames total 
Time taken to 

construct 

Nkosi 9 9 7 5 0 0 30 04:53 

John 18 10 10 0 4 8 50 04:51 

Wisdom 53 25 22 22 21 0 143 21:07 

Lesedi 23 11 11 5 2 7 59 08:56 

Bonolo 28 14 20 0 16 1 79 11:55 

Thabiso 13 14 6 0 1 7 41 04:29 

 

Select actions 

In order to construct or draw, the participating PTs had to select the tools that were appropriate 

for the construction/drawing of a particular object and/or make selections from the GeoGebra 

menu. I classified each selection as a ‗select action‘. Students should have selected the object 

based on the properties of the objects. On some occasions the PTs selected a wrong construction 

tool. This action was reversed by selecting the un-do icon in the GeoGebra menu. A correct 

construction of the diagram on GeoGebra, according to the memo, required 19 construction tools 

selections. Table 7.5 shows that Nkosi made the least number of selections at 9 in less than 5 

minutes whereas Wisdom had the highest selections at 53 in about 21 minutes.  Table 7.5 

suggests that the PTs who took less time made fewer tools selections. The implications of the 

results from the select actions indicate that the link between the participating PTs‘ knowledge of 

geometric properties and the PTs‘ knowledge of affordances and constraints of GeoGebra in 

representing these properties was questionable.  

Draw actions 

The drawing action focussed on the construction/drawing of segments, lines, rays and circle in 

the graphic view. A correct drawing/construction of the diagram on GeoGebra required 11 

drawing actions. The participating PTs‘ drawing actions were just about the same as the required 



 

164 

 

number of drawing actions except for Wisdom who made 25 drawing actions. Worthy of 

mentioning is that the GeoGebra allows for a selected construction tool to be used several times 

on the graphic view. Therefore the selection actions do not in any way determine the number of 

drawing actions. The results from the draw actions imply that the participating PTs‘ strong 

perceptual apprehension of the static diagram informed their choice of action. Clearly the PTs 

were knowledgeable about the GeoGebra construction tools needed for the construction. 

Input actions 

The input action refers to actions required for plotting the points and inputting the angle in the 

construction. The requirements were that 8 points had to be plotted and an     angle to be 

inserted in the diagram. The participating PTs had either more inputs (John, Wisdom, Lesedi, 

and Bonolo) or fewer inputs (Nkosi and Thabiso). The implications of the results from the input 

actions indicate that there was a disconnection between participating PTs‘ strong perceptual 

apprehension of the static diagram and use of the GeoGebra construction tools to construct the 

dynamic diagram (sequential apprehension). More inputs sign-posted lack of technical skills or 

knowledge to transform geometric properties in a GeoGebra environment.  

Dragging actions 

GeoGebra allows for dragging of objects in the graphic view to show how these objects 

transform. Just like any Dynamic Geometry Environment, dragging a geometric object (e.g. 

point, line) in a GeoGebra interface indicates or confirms whether its properties are maintained 

or not. I called the drag test utilized by the participating PTs the ‗drag action‘. The objects were 

dragged to explore and check if the object maintained the geometric properties and whether the 

dynamic diagram had all the properties of the static diagram. The model construction required at 

least 1 dragging action. In the model construction, the perpendicular EK had to be dragged to 

intersect with angle bisector EB at point E. But Table 7.5 demonstrates that dragging occurred or 

did not occur at all in some constructions. John, Bonolo and Thabiso did not employ the 

dragging affordance of GeoGebra. Nkosi, Wisdom and Lesedi construction recordings show that 

dragging actions were performed. Wisdom had the most dragging actions. Although he was 
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determined to re-produce the static diagram, Wisdom was aware of the potentials of GeoGebra 

for confirming that indeed the construction was correct. He asserts that; 

Wisdom: I wanted to see whether, it would, I wanted to answer this question whether when 

you drag it changes shape so I saw “kuti” eeh if I drag it changes, when you drag 

any point right it changes so I wanted to make sure that it doesn‟t change.  

Clearly, Wisdom wanted to confirm the relationship between the whole figure and its figural 

components in a GeoGebra environment. To accomplish this, the PT required a good knowledge 

of the properties of the diagram. He was not concerned about the time it took him to do the 

construction but instead explored with the drag tool to investigate the geometric objects in the 

GeoGebra platform. The implications of the results from the dragging actions indicate that the 

participating PTs‘ discursive apprehension of the static diagram did not inform their choice of 

action in sequentially apprehending the diagram. Clearly  most PTs were knowledgeable about 

the GeoGebra construction tools needed for the construction as interpreted in the input actions 

but most failed to employ the dragging action to confirm the correctness of their constructed 

diagram. 

Delete actions 

The delete actions were employed to clean up the construction of extra and unwanted objects. 

The objects deleted were lines, angles, points, rays and segments. Wisdom had the most delete 

actions at 21 followed by Bonolo with 16 delete actions. Nkosi made no delete actions.  

Rename actions 

In order to reproduce a pencil-and-paper diagram on a GeoGebra environment the PTs had to 

rename the object labels as given in the static diagram.  GeoGebra assigns name labels to 

construction objects but renaming of labels is permissible. There were 9 input actions expected 

to be performed. Table 7.5 shows that Nkosi and Wisdom used the GeoGebra-assigned labels 

and did not rename the objects. 
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Section 7.3 Findings: What the GeoGebra constructions revealed about the participating 

PTs’ knowledge of circle geometry constructed in a GeoGebra environment? 

Section 7.3 presented and analysed what the GeoGebra constructions revealed about the 

participating PTs‘ knowledge of circle geometry constructed in a GeoGebra environment. 

Sequential apprehension was employed to interpret the participating PTs‘ competence in 

constructing geometry diagrams within a GeoGebra environment. The construction produced 

was expected to reflect the PTs‘ ability to transform the statements from a static environment to a 

dynamic construction employing GeoGebra as a construction tool. I examined what the PTs 

could or could not construct with GeoGebra. Data sources were the GeoGebra algebraic view 

and the GeoGebra graphic view, the GeoGebra construction protocols and the screen-cast 

recordings.  

The GeoGebra algebraic view in the participating PTs‘ constructions showed that, in general, all 

the expected objects were drawn but did not meet all the construction requirements. The 

GeoGebra graphic view showed what PTs constructed in order to meet the construction 

requirements. Generally, not all construction requirements were met to produce the objects. All 

the PTs constructed circle S and triangle ABC. Despite that the participating PTs constructed the 

triangle their constructions did not satisfy the congruent-sides property. Only two participating 

PTs successfully constructed the ‗required‘ triangle.  

The GeoGebra construction protocol provided an insight into how the constructions were 

sequentially apprehended. A short sequence demonstrated less dependence on GeoGebra, 

indicating technical ability in the use of GeoGebra. Dependency on GeoGebra means relying on 

GeoGebra‘s ability to specify the geometrical relationships between objects and their 

configurations. Hence the higher number of construction steps strongly indicated more 

dependence on GeoGebra. Most constructions did not pass the drag test and the perpendicular 

EK was constructed manually by 4 out of 6 participating PTs. This suggests a limitation on the 

knowledge of the affordances of the GeoGebra tools. 
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The screen recording captured the actual construction by tracking the movements of the mouse 

and the participating PTs‘ interaction with the GeoGebra construction tools and the GeoGebra 

menu. The actions or manipulations that the PTs performed in the construction process were 

analysed. The PTs‘ movements of the mouse were tracked as they selected the construction tools 

and the GeoGebra menu from the toolbar.  The participating PTs had to select the tools that were 

appropriate for the construction of a particular object and/or make selections from the GeoGebra 

menu. Of the required 19 construction tools selections, the participating PTs made between 9 and 

53 select actions. Thus the PTs who took less time to construct the diagram made fewer select 

actions. The PTs‘ drawing actions were just about the same as the required number of drawing 

actions except for one PT (Wisdom) who made 25 drawing actions. I noted that the select actions 

were not consistent with the number of draw actions. The PTs had either more inputs than the 

required number of inputs or fewer inputs. The objects were dragged to explore and check if they 

maintained the geometric properties and whether the dynamic diagram was an exact replica of 

the static diagram. The construction recordings show that 3 of the 6 participating PTs performed 

the dragging actions. These actions were mainly to confirm the relationship between the figure 

and its figural units in a GeoGebra environment.  The PTs used the delete actions to clean up the 

construction of extra and unwanted objects. The delete actions ranged between 0 and 21. Since 

GeoGebra assigns name labels to constructed objects, the participating PTs had to rename the 

objects as given in the static diagram. Two participating PTs used the GeoGebra-assigned labels 

and did not rename the objects. 

7.4 Sub-question 2: Description of a geometrical diagram constructed with GeoGebra 

To gain an understanding of the participating PTs‘ reasoning processes about circle geometry 

concepts presented within a GeoGebra environment, this study was guided by the sub-question 

―What types of descriptions do the PTs give about geometrical diagrams constructed with 

GeoGebra?‖ To examine the PTs‘ descriptions about the construction errors in a GeoGebra-

constructed diagram, I was guided by the two questions: (i) what could the PTs describe? (ii) 

What could the PTs not describe?  



 

168 

 

A description of the geometrical diagram constructed with GeoGebra required a discursive 

apprehension of the GeoGebra-constructed diagram. As mentioned in Chapter 6, perceptual 

apprehensions followed by discursive apprehensions are required in the reasoning process of 

making connections between configurations and mathematical principles. The discursive 

apprehension was necessary to describe the diagram through geometric language/narrative texts 

and statements. The statements should reflect the participating PTs‘ perceptual apprehensions: 

how they identified the configurations and the geometric properties that have been translated into 

geometric objects in a GeoGebra environment. 

The discussion that follows relates to the findings about Task 4(a). The critical component of 

Task 4 (a) was the ability to describe errors in a geometrical diagram constructed with GeoGebra 

(see Section 5.2.4 for Task 4). The errors which the PTs identified in Jane‘s construction should 

make reference to the order of construction of P and should emphasize that, in Jane‘s 

construction, M was constructed as an arbitrary point and not dependent on O and A. In Jane‘s 

construction OM was not constructed perpendicular to AB. The expectation of the Task 4(a) was 

that the participating PTs should, when describing the learner errors, demonstrate; (i)  knowledge 

of geometry properties of these geometric words (perpendicular, vertical diameter, intersects, 

produced, closer to than), (ii) knowledge of how the properties of a diagram aid in the 

construction of a diagram, (iii) ability and the disposition to translate statements to a figural 

register, (iv) knowledge of construction procedures and (v) knowledge of dragging process and 

its uses. Table 7.6 shows a summary of the categories of descriptions from written responses that 

the PTs used (even if not explicitly) to identify errors in Jane‘s construction. 
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Table 7.6: Summary of the categories of descriptions used by PTs when discussing Jane‘s errors  

 

  The description given is about 

PT geometry 

properties 

how the 

properties aid in 

the interpretation 

of a GeoGebra 

constructed 

diagram  

Translation of 

verbal to 

diagrammatic 

representations 

construction 

procedures 

Manipulating 

the diagram 

Nkosi           

John           

Wisdom           

Lesedi           

Bonolo           

Thabiso           

Note: yes means Note:   indicates that the type of description is reflected in the PTs‟ response;   indicates that the 

type of description is not reflected in the PTs‟ response  

 

The discussion that follows is that of the five categories of descriptions used in table above.  

 

7.4.1 Geometry properties category 

The PTs‘ description of the errors in Jane‘s diagram must reveal their knowledge of the 

relationship between geometric properties and their representations in the GeoGebra 

environment. Indicators for the knowledge of geometry properties in the description must 

comprise of any if not all of these geometric words: perpendicular, vertical diameter, produced, 

intersects, closer to than. Table 7.6 shows that all the participating PTs made reference to the 

geometric properties as represented in the construction. The most common utterance showed that 

the PTs perceptually recognized that the angle given at the intersection of AB and OM was not 

90˚. For instance, Bonolo indicated that the line “AB is not perpendicular to line OM”. 
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7.4.2 Knowledge of how the properties of a diagram aid in the construction of a diagram 

category 

Task 4(a) required movement from the verbal description to the construction of the diagram as 

per these statements. As such, a connection was required between the properties and the 

GeoGebra constructed diagram. Generally, this category addressed the discursive apprehension. 

The description in this category must reflect the participating PTs‘ understanding of the 

connection made when enacting the properties in a GeoGebra environment. That is, were the 

verbal specification transformed to figural representations? All the PTs‘ descriptions displayed 

this connection. An assertion by Nkosi that ―The perpendicular at O could have been on the 

other side of the circle and never meet PA produced” describes a link between the knowledge of 

properties and its spatio-graphic representation. The statement suggests possible ways of 

constructing the perpendicular to meet the stated requirements. Bonolo‘s description that ―the 

line AB is not perpendicular to line OM” was not very explicit but the statement was informed 

by what was seen in the diagram. 

7.4.3 Ability to translate statements to a diagrammatic register category 

The description should reflect that the participating PT has an understanding of how the diagram 

was constructed using the stated construction requirements. The speech or narrative provided by 

the participating PT should show that the participating PT recognizes the connections that Jane 

made between the verbal statement and diagrammatic registers. Generally, this category 

addressed the discursive apprehension. The use of appropriate geometry language in the 

description reflects on the participating PTs‘ interpretation of the learners‘ understanding of the 

connection between properties and objects as represented in the GeoGebra environment.  

7.4.4 Knowledge of a construction procedure category  

The description in this category should reflect that the participating PT has knowledge of the 

procedures for constructing the diagram. The description must show that the participating PT 

understands what Jane did in organizing the construction on GeoGebra and the errors that were 
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committed in the construction process. Generally, this category addressed the sequential 

apprehension. Only two participating PTs (Nkosi and Lesedi) referred to the procedure for 

construction in their descriptions. For instance, Lesedi responded that “Jane didn‟t use the 

perpendicular construction that is why her angle was not 90˚”. She acknowledged that there 

should be a procedure for the construction. When pressed further for clarification of her 

statement, Lesedi mentions that ―The first mistake that she did was in her sequential construction 

of the perpendicular to .. AB .. does not… is not at O. It is close but this causes the error above. 

All the other constructions are correct”. 

In contrast, the description given by John, Wisdom, Bonolo and Thabiso do not give 

consideration for the construction procedures that Jane followed and that resulted with errors in 

the diagram. Although Thabiso suggests that “It is evident also that AB is not vertical, it is 

skew”, I consider this statement as speculative that is arrived at by visual inspection of the 

diagram. I base this purely from the fact that Thabiso did not operate on the figure in determining 

that AB was not vertical. As seen in the next category, Thabiso did not manipulate Jane‘s 

diagram to ascertain the correctness of the construction.  

7.4.5 Ability to manipulate the diagram through dragging category  

This category is used to explain how the PT operated on the diagram to ascertain that the 

diagram requirements were met on GeoGebra. Generally, this category addressed the operative 

apprehension.  To operatively apprehend a diagram in a dynamic platform involves the 

modification of the figural units, which can be possible through the use of the dragging mode. 

Therefore, dragging is important for this study because it incorporates technological content 

knowledge and technological knowledge of the user. All the participating PTs described at least 

one error in the diagram but only two participating PTs (Nkosi and Wisdom) considered the use 

of the drag test. The drag test was used to determine the correctness of the construction. Nkosi 

states that “If you drag point M around the circle then we see that the construction of Jane will 

not stand”. Wisdom manipulates the diagram and concludes that “When you use a drag mode, 

dragging either point A or B, the diagram changes or lose its intended angles, e.g. “ The 

perpendicular to AB at O meets AP produced at M” constrain becomes invalid when you drag”.  
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Section 7.4 Findings: What types of descriptions do the participating PTs’ give about 

geometrical diagrams constructed with GeoGebra? 

Section 7.4 presented and analysed the types of descriptions that the participating PTs‘ gave 

about geometrical diagrams constructed with GeoGebra.  Inductive analysis was employed to 

develop the categories of the descriptions. Data sources were the written responses and the 

screen-cast recordings. Operative apprehensions followed by discursive apprehensions were 

employed to understand the participating PTs descriptions of GeoGebra constructions. 

In the descriptions, all the PTs made reference to the relationships between geometric properties 

and their representations within the GeoGebra environment. The PTs perceptually recognized 

that the angle given at the intersection of AB and OM is not 90˚. All the participating PTs‘ 

descriptions displayed a connection between the verbal descriptions and the construction of the 

diagram. The participating PTs gave statements that strongly suggested that the descriptions 

were informed by what was seen in the diagram. This means that the PTs displayed knowledge 

of how the properties of the diagram aided them in the construction of the diagram. The 

geometry language used in the description revealed the participating PTs‘ understanding of the 

connection between properties and objects as represented in the GeoGebra environment. This 

notion demonstrates that the participating PTs had the ability to translate written statements 

(verbal register) to a diagrammatic register. The descriptions had to acknowledge that there 

should be a sequential organization of the construction, that is, a procedure for the construction. 

However, only two participating PTs referred to the procedure for construction in their 

descriptions. This indicates that most PTs did not operate on the figure to ascertain the 

correctness of the construction. The participating PTs relied on their perceptual apprehension 

rather than on operatively apprehending the learner‘s diagram. Only two of the six PTs gave 

statements that explain how they operated on the diagram to ascertain that the diagram 

requirements were met on GeoGebra. The use of the drag test to determine the correctness of the 

construction was clearly not taken into consideration.  
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7.5 Chapter summary 

The purpose of this investigation was to explore the PTs‘ technological content knowledge 

within the context of circle geometry by probing into their thinking as displayed in their 

solutions to the TCK tasks. I was guided by two sub-questions in investigating ‗what TCK do the 

PTs display?‘ Firstly, I examined what do the GeoGebra constructions reveal about the 

participating PTs‘ knowledge of circle geometry constructed in a GeoGebra environment. Then, 

I studied the type of descriptions that the PTs gave about a geometric diagram constructed with 

GeoGebra. The findings indicate that the participating PTs‘ sequential apprehension of the static 

diagram in a GeoGebra environment was weak. None of the GeoGebra-based constructions met 

the construction requirements with most PTs unable to execute a correct sequence in order to 

correctly construct the dynamic diagram (Task 1 (c)). In contrast, some of the participating PTs‘ 

description of GeoGebra constructions strongly indicated adequate knowledge of the connection 

between the geometry properties and affordances and constraints of GeoGebra (Task 4 (a)). 

Inductive analysis was employed to categorize the participating PTs‘ descriptions. Refer to 

Chapter 9 for further discussion of the TCK findings.  
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CHAPTER 8   

ANALYSIS BY TPACK COMPONENT: PROSPECTIVE TEACHERS’ 

GEOMETRY PEDAGOGICAL CONTENT KNOWLEDGE  

8.0 Introduction 

The previous chapter presented the data analysis and findings relating to the aspect of 

technological content knowledge (TCK) construct of technological pedagogical content 

knowledge (TPACK). The major focus of this chapter is the presentation of the results relating to 

the aspect of pedagogical content knowledge (PCK) construct of the technological pedagogical 

content knowledge (TPACK) framework in response to research question 3: 

What pedagogical content knowledge do the PTs display?  

The chapter begins by providing an overview of how the sub-unit of analysis (PCK construct) 

was conceptualized in the study and a description of the analytical framework employed to 

interpret the responses to the PCK tasks (Section 8.1). A discussion of the descriptive summary 

and the quantitative analysis of the rubrics scores of the individual participating PTs‘ responses 

to the PCK tasks and PTs‘ scores across each task follows (Section 8.2). Then, a comparison and 

discussion of the individual case PCK findings and the cross-case PCK findings is presented 

(Section 8.2.1). As mentioned in Chapters 6 and 7, I provide excerpts of responses by Nkosi, 

Wisdom and Lesedi to support the findings and only bring the examples of responses of other 

PTs to strengthen the arguments.  Thereon, an inductive analysis of the participating PTs‘ PCK 

employing the Chick, Baker, Pham, & Cheng (2006) model for analysing the types of PCK that 

the participating PTs exhibit is articulated (Section 8.3). For each section, the overall impression 

of the results is provided in a tabular form, followed by a discussion of the overall results for all 

the participants. Each section is concluded by a summary of findings.  
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8.1 Sub-unit of analysis: PTs’ geometry pedagogical content knowledge (PCK) 

The sub-unit of analysis for this chapter is the PTs‘ circle geometry pedagogical content 

knowledge (PCK). The PCK construct was conceptualized in the study as the prospective 

teachers‘ knowledge about teaching circle geometry. To understand the participating PTs‘ PCK, 

I adapted the Chick, Baker, Pham, & Cheng (2006) position about the PCK construct. See 

Chapter 4 for the elaboration of the framework.   

The circle geometry pedagogical content knowledge required for the successful completion of 

the PCK task (Task 2(b)) comprised three thinking processes: (i) the ability to demonstrate how 

pedagogy and circle geometry are intertwined, (ii) the ability to deconstruct circle geometry 

knowledge in a pedagogical context, and (iii) the ability to describe pedagogical knowledge in 

the context of circle geometry. The exploration of the PTs‘ PCK was done by probing the PTs 

thinking displayed in the written descriptions in Task 2(b). The descriptions reveal a discursive 

apprehension of connections between configurations and mathematical principles through 

narratives. Since the PCK tasks that the participating PTs responded to elicited knowledge of 

geometric reasoning in teacher preparation, the objective of the analysis was to establish the PTs‘ 

geometric reasoning skills in pedagogical context. To understand the PTs‘ reasoning processes in 

the descriptions within the PCK task, I was guided by the following sub-question: 

What do the descriptions in Task 2(b) reveal about the type of PCK that the PTs‘ have? 

8.2 Analysis of Rubric Scorings of the PCK task  

Outlined in this section is a presentation of results of the descriptive analysis of the performance 

scoring for individual PTs and the performance scoring within and across this task. A general 

observation across the unit of analysis is that the scores ranged between 2 and 3 across the task. 

8.2.1 Analysis of PCK scores for individual cases 

 Table 8.1 presents data of six PTs: Nkosi, John, Wisdom, Lesedi, Bonolo and Thabiso. As 

mentioned in Section 5.2.2 in Chapter 5, Task 2(b) elicited PCK. The mean and standard 
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deviation are provided to interpret the individual PT‘s scores (see Table 8.1). As mentioned in 

Section 5.2 in Chapter 5 all rubric scores ranged from the poor performance (score 0) to high 

performance (score 4). 

 
Table 8.1: Scoring of the PTs‘ responses to the PCK Task 2(b) 

PT 
Rubric scores /4 for  

Task 2b) 

Nkosi 2 

John 3 

Wisdom 3 

Lesedi 3 

Bonolo 2 

Thabiso 3 

 

mean 2.667 

SD 0.516 

 

Table 8.1 indicates that the participating PTs scores ranged between 2 and 3. See Chapter 5 for 

the criteria for performance levels 2 and 3 of Task 2 (b). Four of the six PTs scored a 3.  The 

observed absent scores were 0, 1 and 4.  Nkosi and Bonolo had the lowest scores of 2 each. The 

criterion for a score of 2 is a response that discusses one correct instructional method and 

mentions one teaching strategy that is not detailed. The overall mean and standard deviation 

were 2.667 and 0.516 respectively, suggesting that four PTs (John, Wisdom, Lesedi and Thabiso) 

scored above the attained mean and two PT (Nkosi and Bonolo) scored below the attained mean. 

For example, Thabiso performed at level 3, which is slightly above the overall mean score of 

2.667.  

Section 8.2 Summary of quantitative findings across and within the PCK task 

The overall performance of the participating PTs indicates that the variation of scores was low, 

suggesting that one could conclude that the participating PTs had similar abilities. The desired 

average performance for the PCK tasks should be 4 but the attained average is 2.667, signifying 

an adequate knowledge about teaching circle geometry. On the rubric descriptions, an average 

score of 2.667 indicates a slightly below adequate performance that signals a description that is 

not rich in details. 
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The rubric scores in the descriptive summary in Table 8.1 provided statistical features of the 

PTs‘ individual performance. However, an interpretation of the scores within the task provides 

an insight into the qualitative implication of the scores of PTs‘ PCK. The next section presents 

the PCK findings to the sub-question supported by evidence from the quantitative analysis 

presented above for each task.  

8.3 Types of PCK that PTs exhibit  

Teacher knowledge encompasses several bodies of knowledge as proposed by various 

researchers such as Shulman (1986),  Grossman (1990), Mishra and Koehler (2006) and Ball et 

al. (2008). All are in agreement that there is a body of knowledge required for teaching, referred 

to as PCK. I employed the Chick, Baker, Pham, & Cheng (2006) model to analyse the types of 

PCK that the participating PTs exhibit in a hypothetical mathematics learning environment for 

teacher-preparation. Refer to Section 4.6 in Chapter 4 for an elaboration on how Chick et al 

(2006) unpacked ways in which PCK is evident in teaching. The next sections elaborate how the 

PCK construct was analysed qualitatively and quantitatively. The descriptions given in the 

responses to Task 2 (b) were used to identify the attributes of the PCK using a modified Chick et 

al. (2006) PCK analytic framework.  

The framework was employed to identify the attributes of the PCK as displayed in the 

participating PTs‘ responses to Task 2 (b). See Section 5.2.2 in Chapter 5 and Appendix C for 

Task 2 description. Task 2 (b) required the PT to situate the task of providing four different 

proofs of the tan-chord theorem in the classroom teaching environment. The participating PTs 

were expected to describe the various ways to model or illustrate the theorem. Their descriptions 

were to demonstrate an ability to provide an explanation of the concept or the procedure for the 

proofs by utilizing general or specific instructional strategies for teaching the tan-chord theorem. 

As such the response to Task 2(b) should have all the elements of the PCK as elaborated in the 

framework.  

A deductive approach was utilized to classify the categories. The process required establishing 

whether a specified sub-category was evident in the description or not. If present, it was coded as 
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a ‗yes‘; if not evident it was coded ‗no‘. I deconstruct the description in Table 8.2 to illustrate 

how the ‗yes‘ and ‗no‘ are used. To illustrate how the coding was done in the ‗Clearly PCK‘ 

category in Table 8.2, I give examples of response by Nkosi who scored at level 2 (Figure 8.1).  

 

I would let the children go through the proof with me and give 

them a chance to try to understand it on their own 

I would also use colours to label similar angles 

For proving of equal angles, I would make sure I go through 

the reason carefully so that they understand better 

Figure 8.1: Nkosi‘s written response to Task 2 (b) 

The sub-categories labelled as ‗yes‘ (in Table 8.2) mean that Nkosi uses a specific strategy for 

teaching the theorem. He intends to incorporate the use of colours as pedagogical tools that 

enable visualization of the concepts. It is through this intention that he makes connections 

between different representations necessary for proving the theorem. Nkosi addresses the learner 

knowledge of thinking about the theorem. That is, providing strategies that ensure that the 

learners are engaged in the understanding of the proof. By such, he describes the generic 

classroom practices for learning within this activity through which learners are the focus of the 

interaction.  

Nonetheless, the ‗no‘ means that there is no evidence that other sub-categories of PCK are 

considered. Nkosi is not explicit in discussing learner misconceptions and the cognitive demand 

of the task. Although he provides ways of illustrating the ‗similar angles‘, neither examples to 

highlight and model the theorem nor situate the theorem in the curriculum are mentioned. There 

is no explanation to demonstrate ways in which the proof is modelled in GeoGebra or otherwise. 

It is not clear if Nkosi has a thorough understanding of the theorem because he does not discuss 

the methods of solution and reasons that he stated.  
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Table 8.2 presents a summary of the PCK attributes as displayed in the participating PTs‘ 

responses. The table is based on Chick et al.‘s (2006) PCK framework. An elaboration of the 

patterns of attributes for each PCK category follows in the next sections. 

 

Table 8.2: Summary of PCK attributes displayed in PTs‘ responses to Task 2 (b) 

PCK  category displayed 
Is the PCK category evident in PT‘s response? 

Nkosi John Wisdom Lesedi Bonolo Thabiso 

Clearly PCK 

Teaching Strategies general Yes Yes Yes No No Yes 

Teaching Strategies specific Yes Yes Yes Yes Yes Yes 

Learner Thinking Yes Yes Yes Yes No Yes 

Learner Thinking-Misconceptions No No No No No No 

Cognitive Demands of Task No No Yes Yes No Yes 

Appropriate and Detailed 

Representations of Concepts 

Yes Yes Yes Yes Yes Yes 

Explanations  No Yes No No No No 

Knowledge of Examples No Yes No No No No 

Knowledge of Resources (GeoGebra) No No Yes No Yes No 

Curriculum Knowledge No No Yes No No No 

Purpose of Content Knowledge No No No No No No 

Content Knowledge in a Pedagogical Context 

Profound Understanding of 

Fundamental Mathematics (PUFM) 

No Yes Yes Yes No Yes 

Deconstructing Content to Key 

Components 

No Yes Yes Yes Yes Yes 

Mathematical Structure and 

Connections 

No Yes Yes Yes Yes Yes 

Procedural Knowledge No Yes Yes Yes Yes Yes 

Methods of Solution No No Yes No No No 

Pedagogical Knowledge in a Content Context 

Goals for Learning No No Yes Yes Yes Yes 

Getting and Maintaining Learner 

Focus 

Yes Yes Yes Yes Yes Yes 

Classroom Techniques Yes Yes Yes Yes Yes Yes 

Integrating technology No No Yes No Yes No 
Note: Yes means PCK sub-category evident; No means PCK sub-category not evident 
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8.3.1 Analysis of Clearly PCK category  

This category of teacher knowledge for teaching content is directed to situations where pedagogy 

and content are ―completely intertwined‖ (Chick et al., 2006:298). The clearly PCK category 

comprised knowledge of teaching strategies, learner thinking, cognitive demand of the task, 

concept representations, resources and curriculum. Reference is made to Table 8.2 to interpret 

the Clearly PCK category. 

 

In general, there were more instances for the ‗no‘ PCK code than the ‗yes‘ PCK code in this 

category. This indicates that there were more elements of PCK absent in cases where pedagogy 

and content are completely intertwined. Nonetheless the participating PTs were explicit in 

exhibiting the need for teaching strategies to approach the theorem in the mathematics classroom 

environment. Aspects of the task were mentioned with a clear demonstration of how the proof 

could be modelled in teaching. Figure 8.2 shows Lesedi‘s response to the task that was scored at 

level 3. 

 

I will start by reminding the learners that an angle in a semi-circle is 90°. And 

remind them about the theorem of tangents and the theorem that angles 

subtended by the same chord are equal. Then give them this activity and ask 

them to construct any necessary lines that will help them in answering the 

questions 

Figure 8.2: Lesedi‘s written response to Task 2 (b) 

 

Lesedi implicitly provided a strategy for teaching the theorem. She attended to learner thinking 

by linking previous knowledge of theorems that were associated with the tan-chord theorem. She 

identified the aspect of the tasks that affected the complexity of the task. Lesedi contends that ―I 

wanted to remind the learners of previous theorems”. She suggested an operative apprehension 

of the diagram by ―asking them to construct any necessary lines” to simplify and modify the 
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figure for easy accessibility and believed that ―using four different methods to prove the theorem 

will accommodate all learners in understanding the theorem”. 

However, this interplay strongly suggests lack of acknowledgement of other PCK facets. This is 

a feature which was common to all the participating PTs. Lesedi did not explicitly contemplate 

the use of pedagogical resources to support understanding. Whilst she required the learners to 

―construct‖, there was no mention of tools for construction.  She did not provide examples to 

highlight the theorem to deal with misconceptions.  

In general, although the participating PTs took learner thinking into consideration, learner 

misconceptions were not addressed. There were no explanations or examples given to highlight 

neither the proof of the theorem nor a mention of how the theorem fitted in the curriculum. Two 

of the six PTs incorporated the use of GeoGebra in their descriptions. 

8.3.2 Analysis of circle geometry knowledge in a pedagogical context PCK category 

The PCK category in this section focuses on knowledge of a particular content area as displayed 

in a pedagogical context. Chick et al. (2006) contend that the teacher must have a deep 

conceptual knowledge of the content and how to deconstruct its key components in a 

pedagogical context. Such deconstruction should reflect teacher knowledge of the content 

structure. 

Table 8.2 demonstrates that in general there were more ‗yes‘ than ‗no‘ codes for the Content 

Knowledge in a Pedagogical Context PCK category. The participating PTs were explicit in 

exhibiting the CK that illustrated an understanding of the theorem in a learning environment. 

Wisdom‘s response for this category, which scored all ‗yes‘ was considered exemplary. Below is 

Wisdom‘s response to the task which was scored at level 3.  
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I would first make sure that learners first understand all their terminologies 

first that are related to the theorem e.g. what is a tangent chord etc. Secondly 

learners at this stage are expected to have proved other theorems because we 

might correlate each to prove this one as well since we are supposed to give 4 

different approaches to this problem 

Figure 8.3: Wisdom‘s written response to Task 2 (b) 

 

The PCK that Wisdom exhibited expressed knowledge of the tan-chord theorem organizational 

structures and an understanding of teaching the theorem.  He suggested a strategy that considered 

the connection between the theorems and the need for the learners to demonstrate knowledge of 

the proof. This response reveals the connection and interplay between the content and pedagogy 

knowledge domains. Connections were made between the critical components of the theorem 

and other circle geometry concepts. Nonetheless, the classroom learning situation depicted, did 

not address the method of proving the theorem. 

8.3.3 Analysis of pedagogical knowledge in the context of circle geometry PCK category 

Chick et al. (2006: 298) refer to this category as the ―teaching knowledge that is applied to a 

particular content area‖. It describes the pedagogical knowledge that the teacher displays when 

teaching circle geometry. 

Table 8.2 demonstrates that in general, there were more ‗yes‘ than ‗no‘ codes for the sub-

categories of the Pedagogical Knowledge in a Content Context PCK category. See Figure 8.2 for 

an excerpt of Lesedi‘s response which was scored at level 3. 

Generally, the participating PTs were explicit in strategically focusing on the learner, learning 

and teaching practices. Nonetheless, the pedagogical knowledge displayed did not address use of 

tool in teaching circle geometry. For instance, Thabiso listed the teaching resources for the 

construction of the theorem but could not discuss how these tools could be incorporated in 
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teaching. Thabiso‘s goal was for learners to understand the relationship between the two angles. 

He demonstrated how he would engage the learners in a geometry learning context, where the 

role of developing construction skills is appreciated.  

Section 8.3 Findings: What do the descriptions in Task 2(b) reveal about the type of PCK 

that the PTs’ have? 

Section 8.3 presented and analysed what the descriptions revealed about the type of PCK that the 

PTs‘ had. In order to characterize the PTs‘ geometry pedagogical content knowledge (PCK), I 

was guided by a sub-question that deliberately established the PTs‘ knowledge for teaching 

geometry. The PCK task that the PTs responded to elicited reasoning skills. Data sources were 

written tasks and interviews. 

 

Task 2 (b) was designed to test the PCK in a teacher-preparation environment. Situating the task 

of providing four different proofs of the tan-chord theorem in the classroom teaching 

environment dictated that the PT discursively apprehended the geometry content in a 

pedagogical environment. A discursive apprehension suggests an ability to provide statements 

based on connections between configurations and geometry principles, narratives, good 

descriptions and appropriate geometry language. These statements were to contain all the 

necessary facets of circle geometry PCK. An in-depth understanding of the types of PCK that 

PTs exhibited was intended to understand the PTs‘ PCK of circle geometry. A modified Chick, 

Baker, Pham, & Cheng (2006) framework was employed to identify the presence and absence of 

the PCK facets demonstrated in the PTs‘ responses. The next paragraphs summarize the three 

categories within which the PCK facets were examined.  

The Clearly PCK category, where pedagogy and content should be completely intertwined 

revealed a lack of acknowledgement of all PCK facets. The PTs were explicit in describing the 

teaching strategies to approach the geometry theorem and demonstrated how the proof could be 

modelled in teaching. However, learner misconceptions, explanations, examples, how the 

theorem fitted in the curriculum and the integration of resources were not mentioned. 
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The Content Knowledge in a Pedagogical Context PCK category revealed that the PTs fore-

grounded content by deconstructing the key components of circle geometry in a pedagogical 

context. The PTs were explicit in exhibiting knowledge of the tan-chord theorem and an 

understanding of teaching the theorem but could not produce the varied methods of proving the 

theorem. This was attributed to weak knowledge of CK as evidenced in Chapter 6. 

The Pedagogical Knowledge in a Content Context PCK category, where PK is fore-grounded in 

a circle geometry context, revealed that the PTs were explicit in strategically focusing on the 

learner, learning and teaching practices but omitted the integration of pedagogical tools in 

teaching circle geometry.  

8.4 Chapter summary  

In this chapter, I presented an analysis of participating PTs‘ PCK. The purpose of this analysis 

was to explore the participating PTs‘ pedagogical content knowledge of circle geometry by 

probing into their thinking as displayed in their solutions to the PCK task. I was guided by a 

subsidiary question to investigate ―what PCK do the PTs‘ display?‘ I inspected and classified the 

PCK that the participating PTs exhibited in a hypothetical mathematics learning environment for 

teacher-preparation using the Chick et al. (2006) PCK framework. A discussion of the 

participating PT‘s CK, TCK and PCK findings follows in the next chapter. 

  

  

 

 



 

185 

 

CHAPTER 9 

SUMMARY OF FINDINGS AND CONCLUSIONS  

 

9.0 Introduction 

The previous four chapters presented the results and findings relating to the participating PTs‘ 

content knowledge (CK), technological content knowledge (TCK) and the pedagogical content 

knowledge (PCK) constructs of technological pedagogical content knowledge (TPACK). In this 

chapter, I summarise the findings in relation to the research questions and give an interpretation 

of these findings in relation to the reviewed literature. Secondly, in the conclusion, I consider the 

focus of the study, its contributions to the broader field of mathematics education, in connection 

with the existing literature. Finally, I present the limitations of the study and then suggest areas 

for further research.  

9.1 Research question 1: What geometry content knowledge do the PTs display?  

In order to characterize the PTs‘ geometry content knowledge (CK), I was guided by two sub-

questions  

1. What do the participating PTs identify and recognize in the perceived figures? 

2. What type of connections do PTs make between geometry representations, properties and 

theorems?  

The overall performance of the participating PTs on the CK tasks indicates that the variation of 

scores was low, with performance scores clustered around performance levels 2 and 3. However, 

performance levels 2 or less were more frequent indicating that the participating PTs had similar 

abilities with partial knowledge of circle geometry. The observed and expected patterns from the 

two sub-questions stated above validate that indeed the participating PTs‘ geometry CK was 

poor.  
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The participating PTs‘ perceptual apprehension was considered weak. The results have shown 

that PTs‘ could not recognize and discriminate all the figures and subfigures through mental 

modification of the diagram. The participating PTs showed weak competence in linking figures 

with figural units. Further the participating PTs‘ perceptual apprehension had an impact on the 

discursive apprehension.  

The forms of prospective teacher preparation-based mathematical connections that PTs made 

between geometric representations, properties and theorems were generally weak. The visual 

connections made between symbolic, verbal and figure(s) representations were strong, indicating 

strong coordination between their verbal registers and figural registers. However, connections 

between the different representations and the properties and theorems were weak for the reason 

that the systematic organization connections, implication connections and theorem application 

connections were all weak. The participating PTs established logical relationships between 

representations, properties and theorems in some tasks but the systematic organization of 

geometric language to describe the properties and theorems was generally weak. The PTs‘ ability 

to connect configuration(s) with circle geometric principles was considered weak. Drawing from 

Duval‘s explication of discursive apprehension, the PTs‘ ―ability to provide good description, 

explanation, argumentation, deduction, use of symbols, reasoning depending on statements made 

on perceptual apprehension, and the ability to describe figures through geometric 

language/narrative texts‖ was weak.  

 

In this study, the analysis for CK was focussed on the perceptual apprehension and discursive 

apprehension with the operative apprehension back-grounded deliberately. Duval (2004) 

contends that in order to analyse any form of visualization ―the existence of several registers of 

representation provides specific ways to process each register‖. This finding confirms Koedinger 

and Anderson‘s (1990) contention that strong competency in geometry can be recognized by the 

ability to use diagrammatic configurations to infer appropriate geometry knowledge in problem 

solving. The participating PTs displayed lack of what Duval (2004) and Gagatsis et al. (2010) 
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refer to as competence in apprehending the geometric figures perceptually. A weak perceptual 

apprehension has a strong link with a weak discursive apprehension.  Duval (1995, 2004, 2006) 

contends that the synergy of processes of visualization, reasoning and construction are essential 

for proficiency in geometry.  Hence, the results show that the participating PTs‘ encountered 

difficulty merging the cognitive processes of the visualization and the reasoning when 

responding to the CK tasks. 

9.2 Research question 2: What technological content knowledge do the PTs display? 

In order to characterize the participating PTs‘ geometry technological content knowledge (TCK), 

I was guided by two sub-questions that deliberately established the PTs‘ knowledge of how 

GeoGebra and circle geometry influence and/or constrain one another and how knowledge of 

circle geometry can be effected by the use of GeoGebra. The TCK tasks that the participating 

PTs responded to elicited PTs‘ GeoGebra construction skills and geometric discursive skills. 

1. What do the GeoGebra constructions reveal about the PTs‘ knowledge of circle geometry 

constructed in a GeoGebra environment? 

2. What types of descriptions do the PTs give about geometrical diagrams constructed with 

GeoGebra?  

The quality of responses for the construction task was poor, with most scores at performance 

level 0. The quality of responses for the description task was adequate, with scores ranging 

between performance level 1 and 4. The participating PTs‘ performance on the construction task 

was faulty in terms of their ability to organize the construction of the diagram with GeoGebra but 

adequate when describing a GeoGebra-constructed geometric diagram. The observed and 

expected patterns from the two sub-questions stated above validate that indeed the PTs‘ 

geometry TCK was considered to be below average. The participating PTs‘ TCK is 

conceptualized in this study as the knowledge of circle geometry in the context of a GeoGebra 

environment. The interplay between the two knowledge domains required that when determining 

the quality of the response, I considered if the PTs‘ incorrect figure was due to weak geometry 

knowledge or to weak knowledge of GeoGebra or both.  
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The constructions revealed that the participating PTs identified and extracted from the static 

figure the objects to be constructed. The required objects were not all constructed as expected 

implying that not all constructions requirements were met. The construction protocol showed 

how the constructions were sequentially apprehended. There was little dependence on GeoGebra 

to organize the construction. Such lack of dependency indicates that the participating PTs did not 

utilize the affordances and constraints of GeoGebra when making connections between the 

construction and geometric principles. The participating PTs‘ had technical constraints and not 

geometrical constraints. They knew the properties and could identify the figures and figural units 

as evidenced in their responses to the CK tasks and in their discussions about the TCK tasks. But 

they did not have the technical knowhow to construct the diagram in GeoGebra.  

 

In the descriptions, all the participating PTs made reference to the relationship between 

geometric properties and their representations in the GeoGebra environment. Their statements 

strongly suggested that the descriptions were informed by what was seen (perceptual) in the 

diagram. However, the descriptions strongly indicated that the PTs did not operate on the figure 

through, for example, dragging to ascertain the correctness of the construction. The failure to do 

this confirms a lack of awareness of GeoGebra technical affordances and constraints. Some 

participating PTs did not advantageously employ features of the technological tool, which 

Artigue, (2007) and Noss, (2001) propose invite the user to undertake an action such as dragging 

upon it. For example, the input actions indicated that there was a dis-connection between 

participating PTs‘ strong perceptual apprehension of the static diagram and use of the GeoGebra 

construction tools to construct the dynamic diagram (sequential apprehension). A third of the 

participating PTs incorporated the use of GeoGebra in their descriptions, which was no surprise 

since the TCK displayed was weak. This confirms that the findings by Harris and Hofer (2011) 

and Harris et al. (2009) that teachers focus on content-based pedagogy rather than on affordances 

and constraints of the technology. 
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Duval‘s four cognitive apprehensions of geometric reasoning were required in the construction 

and description of GeoGebra-based diagrams. The participating PTs‘ inability to produce a 

GeoGebra construction of a pen-and-pencil diagram indicates a weak sequential apprehension. 

The participating PTs‘ descriptions of GeoGebra-constructed figures indicate a weak operative 

apprehension that impacted on the discursive apprehension. As stated above, the PTs did not 

operatively apprehend the figure to inform the descriptions. According to Mogetta, Oliviero and 

Jones (1999: 99) ―undertaking the construction involves making explicit the starting points and the 

relationships between them‖. Hence, the results show that the participating PTs‘ encountered 

difficulty merging the cognitive processes of the construction and the reasoning when responding 

to the TCK tasks.  

9.3 Research question 3: What pedagogical content knowledge do the PTs display? 

In order to characterize the PTs‘ geometry pedagogical content knowledge (PCK), I was guided 

by a sub-question; 

What do the descriptions reveal about the type of PCK that the PTs‘ have? 

The sub-question deliberately established the participating PTs‘ knowledge for teaching 

geometry. The PCK task that the PTs responded to elicited reasoning skills. Data sources were 

written tasks and interviews. 

The overall performance of the participating PTs on the PCK task indicates that the variation of 

scores was low, with performance scores clustered around performance levels 2 and 3. As such 

the PTs were considered to have similar abilities with a below adequate knowledge of circle 

geometry pedagogical content knowledge. The observed and expected patterns from the sub-

question stated above, validate that indeed the participating PTs‘ geometry PCK was weak.  

As stated earlier, the circle geometry pedagogical content knowledge required for the successful 

completion of the PCK task (Task 2(b)) comprised three thinking processes: (i) the ability to 

demonstrate how pedagogy and circle geometry are intertwined, (ii) the ability to deconstruct 

circle geometry knowledge in a pedagogical context, and (iii) the ability to describe pedagogical 
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knowledge in the context of circle geometry. The participating PTs demonstrated that they had 

difficulty blending the content with pedagogy. For example, the participating PTs were able to 

‗deconstruct the content to key components‘ but failed to acknowledge the purpose of the content 

and give explanations about learning the theorem. Furthermore, the responses on the purpose of 

content were in contrast to those of teaching strategies. The indication is that to PTs the teaching 

strategies are of importance rather than the purpose of the content that they teach.  

9.4 Main research question: What characterizes aspects of prospective teachers’ circle 

geometry technological pedagogical content knowledge constructed in a GeoGebra-based 

environment? 

For over a decade, researchers have contended that teacher-preparation programmes have an 

influence on teacher use of technology in practice. For example, Angeli (2005 ) and Crompton 

(2015) contend that preparing PTs to become technology efficient and competent is difficult but 

necessitates providing them with ample opportunities at teacher education. This study served the 

purpose of understanding prospective teachers‘ cognition of circle geometry technological 

pedagogical content knowledge. This understanding was done through the use of written tasks 

and GeoGebra-based tasks to measure PTs‘ levels of geometry competency. That is, tasks were 

used as tools to describe PTs‘ TPACK. Of particular interest was the TPACK constructs of CK, 

TCK and PCK. In examining these constructs or aspects of TPACK, the ultimate objective of the 

study was to determine participating PTs‘ knowledge of geometry, knowledge of geometry in a 

GeoGebra-based environment, knowledge of GeoGebra for teaching and the knowledge to 

responds to learners‘ issues related to geometry when using GeoGebra.  

Although the three previous chapters (Chapters 6, 7, and 8) illustrated how each construct was 

examined, the goal was to ultimately synthesize the results to determine how the PTs‘ TPACK 

could be characterized. Koehler and Mishra (2009) stress that to understand TPACK, one should 

view the three knowledge domains not in isolation but as interrelated. In agreement to Koehler 

and Mishra (2009), Crompton (2015: 242) recommends that TPACK ―involves a number of 

variables, independent of each other and contextually bound, that need to be brought together in 
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order to be effective‖. As elaborated in Chapter 3, the constructs were explored individually but 

were to be drawn together to reveal the PTs‘ TPACK.  

CK and TCK 

My interest in this study was to examine how the participating PTs‘ CK, which is purported to be 

weak, is evident within the TCK and PCK constructs. The study has shown that weak geometry 

CK emanated from participating PTs‘ display of weak cognitive apprehensions and geometry 

reasoning processes. The study has shown that participating PTs with weak circle geometry CK 

had difficulty in perceptually and discursively apprehending diagrams, figural properties and 

theorems in both the static and dynamic spaces. This study has confirmed Duval‘s (2012) claim 

that there is a link between what is seen and what is uttered about that which is seen.  Chapter 6 

provides evidence that the participating PTs encountered difficulty when giving visual 

explanations of what was perceived and difficulty in seeing figures as a configuration of single 

entities. This finding concurs with the claims by Duval (2011) and Michael – Chrysanthou, and 

Gagatsis (2013) that perception can be an obstacle when shifting from configurations and re-

configurations. Clearly, the evidence indicates that if PTs had difficulty mentally modifying the 

figure (operative apprehension) then this was likely to impact on their ability to organize figures 

in both the static and dynamic spaces (sequential apprehension). Chapter 7 provides evidence 

that a weak CK contributed to a weak TCK in terms of merging the geometry principles with 

affordances and constraints of GeoGebra to produce diagrams in a dynamic space. The findings 

conforms to Drijvers and Gravemeijer (2005) argument that users who have technical difficulties 

are more likely to have no grounded mathematical conceptual background.  

Duval (1995) theory on cognitive processes was useful for this study because it shed light into 

the connections that PTs made between registers in different spaces. Fusing the cognitive 

processes of constructions and reasoning shed light into the participating PTs‘ cognition of the 

role of GeoGebra in learning and teaching geometry. There was evidence of the pragmatic and 

epistemic roles of GeoGebra when the participating PTs used GeoGebra to make connections 

both in the static and dynamic spaces. The use of GeoGebra to produce a diagram was weak, 

indicating a weak pragmatic view of the use of the technological tool. On the other hand, the 
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display of the epistemic role of GeoGebra was adequate. This conclusion was supported by the 

participating PTs‘ minimal use of the drag mode to check or verify the conjectures about the 

properties of the configurations.  This finding confirms Hölzl (2001) claims that students mostly 

utilize the drag mode to modify the appearance of the construction than to make heuristic 

explorations of such constructions.  

CK and PCK 

As previously mentioned, the focus of the study was on examining prospective teachers‘ 

knowledge of geometric reasoning in teacher preparation with the hope of establishing the 

participating PTs‘ geometric reasoning skills in pedagogical contexts. This knowledge was 

defined in this study as PTs‘ circle geometry PCK. In examining the participating PTs‘ PCK, I 

employed the Chick et al. (2006) framework to characterize the PTs PCK. As elaborated in 

Section 5.4, this framework was developed, drawing from Shulman‘s (1985:47) contention that 

―to be a teacher requires extensive and highly organized bodies of knowledge‖. These bodies of 

knowledge are the knowledge of content and pedagogy. Drawing from Rollnick et al. (2008: 

1365) definition of PCK as that ―knowledge that teachers create by transforming their content 

into a teachable form‖, this study confirmed the manifestation of CK within PCK. 

Using Chick et al. (2006) PCK framework reveals that PTs‘ CK had influence on their PCK, 

reiterating findings by Baumert et al. (2010) which show that there is a correlation between 

content knowledge (CK) and pedagogical content knowledge (PCK). The patterns of attributes 

displayed by the participating PTs in each PCK category demonstrated weak knowledge needed 

to teach circle geometry emanating from their weak CK. The participating PTs‘ descriptions of 

the hypothetical learning situation revealed a weak discursive apprehension of connections 

between configurations and mathematical principles in the pedagogical context. The 

participating PTs identified specific teaching strategies without considering learner 

misconceptions. Due to weak content knowledge, the PTs could not produce examples to relate 

different methods of solutions, suggesting that there was lack of consideration of knowledge of 

the learner and knowledge of content representation. The knowledge of learner and knowledge of 

content representation are regarded as major components of PCK. 
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The link between the weak CK and PCK was revealed when the participating PTs could not 

provide explanations or examples to highlight either the proof of the theorem or a mention of 

how the theorem fitted in the curriculum. Gal (2005) highlights that teachers with pedagogical 

skills for visual perceptions are well equipped to provide a variety of strategies to deal with 

geometrical objects. I presume that due to the PTs‘ lack of the ability to provide different proofs 

for the tan-chord theorem, they were less likely to provide explanations about the theorem.  

9.5 Conclusion 

In this concluding section, I reiterate the focus of the study, state the themes emanating from the 

findings and elaborate on their contribution to current thinking. The discussion of the study 

contributions and recommendations for further research culminates with limitations of this study.  

9.5.1 The focus of the study  

The argument for this study was that integrating technology in teaching mathematics necessitates 

that teachers (through the use of tasks) experience specific mathematics content areas in relation 

to specific technological tools, particularly at teacher-preparation level. My position is supported 

by Özgün-Koca, Meagher and Edwards (2010:19) who propose that; 

 ―Using advanced technologies in methods classes puts pre-service teachers in the position of 

being learners. This allows them to pay explicit attention to developing their TCK, which in turn 

encourages them to reflect on their PCK and CK‖.  

Chapter 1 brought into light the complexities of mathematics teacher education in South Africa. 

The prominent complexity is that the PTs in South Africa are not only learning technology and 

the teaching of mathematics but they are also re-learning mathematics and sometimes learning 

geometry for the first time. This study has confirmed studies by van der Sandt (2007) and van 

der Sandt (2008) about the inadequacy of content knowledge of mathematics teachers in South 

Africa. Henceforth, the thesis for this study is that  
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Prospective teachers‟ circle geometry technological pedagogical content knowledge 

constructed in a GeoGebra-based environment is characterized as weak. This is a result 

of weak geometry content knowledge (CK), weak technological content knowledge (TCK) 

and weak pedagogical content knowledge (PCK). 

 

9.5.2 Study contributions 

Research on the TPACK is relatively young as compared to other bodies of knowledge 

constructs in the teaching profession. This study made contributions to knowledge, methodology 

and theory of understanding the mathematics teacher professional knowledge at teacher 

preparation level, which is argued to be fluid. 

Methodological contributions 

In this section I offer my reflections on my role as a researcher and teacher educator to share the 

methodological contribution offered by this study. In my quest to understand technology 

integration in mathematics learning, I set out to examine PTs re-learning of mathematics and 

learning to teach mathematics with technology, specifically using GeoGebra software. Of utmost 

importance was to examine what knowledge the PTs should have to be able to teach geometry 

with technology-rich environments like GeoGebra. There is a plethora of research on the 

development of TPACK of practicing teachers with most of these studies focusing on measuring 

the development of TPACK. The common tools for measuring TPACK in these studies are 

observations, interviews, questionnaires and pre/post-tests (Angeli & Valanides, 2009; Koehler 

& Mishra, 2005; Koehler & Mishra, 2009; Schmidt & Shin, 2009). I broke ground and chose a 

different route. I studied and characterized PTs‘ TPACK by focusing on their thinking processes 

when solving geometry tasks that elicited the TPACK construct of interest. The output and 

thinking processes were captured in written tasks and GeoGebra-based tasks. Three contributions 

made were; (i) developing tasks that elicited the TPACK constructs (Chapter 5), (ii) using 

screen-cast recording of PTs‘ thinking processes as they interacted with GeoGebra (Chapter 6), 
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and (iii) developing rubrics that were employed as tools for the analysis of the TPACK 

constructs (Chapter 4). All this suggests that tasks were the determining factor for this study.  

Learning mathematics for understanding requires teachers to have some knowledge of the 

epistemological, cognitive and instructional aspects of school mathematics. 

I developed a model to classify and describe forms of mathematics connections in geometry 

knowledge at teacher preparation.  See Table 9.1. These connections were linked to the geometry 

cognitive processes. 

Table 9.1: categories for types of connections 

Cognitive processes Forms of connections Descriptions of the forms of connections 

Visualization/reasoning Visual connections connections made through use of different 

representations of geometrical objects 

Visualization/reasoning Systematic organization 

connections 

connections made through the structure of 

geometric properties 

Reasoning Implication connections connections made through logical reasoning with 

geometric properties and theorems 

Visualization/reasoning Theorem application 

connections 

connections made through the application of 

theorem(s) to make conjectures when dealing with 

specific circle geometry problems. 

 

In comparison with Businskas‘ (2008) study where teachers were interviewed and were very 

general in talking about mathematical connections, in my study PTs were given tasks to work on 

and their thought processes were examined for mathematical connections. The use of tasks 

contributed to knowledge on how to deal with tasks as tools for research. Refer to the 

modification of tasks in Chapter 3 (Figure 3.3). The explicitness of tasks is essential in ensuring 

that the item description measured what was intended. Content validity is crucial when tasks are 

used as research instruments.  

Contributions to practice 

What knowledge does this study bring to mathematics teacher education? There were three 

contributions realized: (i) contribution to mathematics methodology course design, (ii) 
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contribution to mathematics connections focusing on geometry, and (iii) contribution to the study 

of TPACK at teacher preparation. 

The use of tasks and rubrics shed light into how tasks for mathematics methodology courses 

should be designed. The results have demonstrated that weak PTs‘ knowledge emanates from 

gaps in content knowledge.  The aspects of TPACK constructs examined in this study strongly 

indicate that teacher education programmes should put in place structures that deliberately 

endeavour to develop PTs that are capable of integrating technology in the teaching and learning 

of geometry. The programmes should address the three critical knowledge domains (CK, TCK 

and PCK). Teacher education needs to understand prospective teachers‘ thought processes in 

order to provide them with a meaningful education. 

Learning environments should consider task design as it is premised to influence learner 

activities (Ainley & Pratt, 2002).  Research has demonstrated that activities that utilize 

technology have the potential to influence the acquisition of techniques for solution to tasks and 

a better comprehension of mathematics content (Guin & Trouche, 1999; Hoyles, 2001; 

Lagrange, 1999). Hence the crucial contribution of the use of tasks in this study. 

 Classroom activities should thus address these components (Bartolini Bussi & Maschietto, 

2008).  Mathematics tasks are what learners are asked to do to initiate an activity (Mason & 

Johnston-Wilder, 2006), the purpose of which is to stimulate thinking and reasoning. I consider 

tasks as the backbone of a mathematics activity as they determine the success and failure of 

realizing the objectives of the activity.   

Literature reveals that different types of mathematical tasks prompt different kinds of activities; 

indeed the design of activities and the choice of tool to be used in these activities are significant 

in mathematics learning (Horoks & Robert, 2007; Hoyles, 2001). Doyle (1983, p. 161) argues 

that ―tasks influence learners by directing their attention to particular aspects of content and by 

specifying ways of processing information‖. Drawing from Stein, Grover, and Henningsen 

(1996) suggestion that teachers select and set up the kinds of tasks that reformers agree should 

lead to the development of students' thinking capacities, this study applied this notion to PTs. 
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Solving tasks is embedded within the interaction of mathematical meaning systems of 

symbolism, visual display and language. Geometry is one such area where these meaning 

systems are illuminated and provides an opportunity for teacher concept explanations, 

symbolism and visual display of geometry figures.  

Mathematics tasks and rubrics are also used as tools in research in Mathematics Education. It is 

evident that the design, analysis and empirical testing of mathematical tasks whether for the 

purposes of research or teaching is considered essential in mathematics teaching and learning. 

Sierpinska (2004) analysed research reports from studies on Mathematics Education and 

revealed that 85% of these studies used mathematics tasks as tools for their research, an 

indication of the crucial role that tasks play in research. However, Sierpinska (2004) cautions 

that researchers should substantiate a rationale for task selection if mathematics tasks are 

regarded as tools of research on a par with other research methodological tools. The use of 

rubrics to understand and measure PT knowledge was considered as a contribution to knowledge. 

Theoretical contributions 

The TPACK framework was extremely useful because it shed insight into the difficult problem 

of advancing technology in a teacher learning context that is shrouded by inadequate knowledge 

of mathematics content. Koehler & Mishra (2009: 9) elaborate that TPACK professional 

knowledge is about (i) ―requiring an understanding of the representation of concepts using 

technologies; (ii) pedagogical techniques that use technologies in constructive ways to teach 

content; (iii) knowledge of what makes concepts difficult or easy to learn and how technology 

can help redress some of the problems that students face‖ . The theory also contributed on the 

basis of understanding teacher technology integration which Mishra and Koehler (2006) argue 

has the potential to promote the development TCK and PCK. 

The study adapted Duval‘s analytical framework by extending it to include an analysis of 

knowledge (TPACK) in teacher preparation. See the analytical framework in Chapter 4. The 

rationale for adapting the Duval‘s (1995) analytical framework was that characterising the 

different apprehensions may help in analysing PTs‘ responses to geometry problems. The two 
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frameworks were used as lenses for deconstructing the tasks as a precursor to developing 

analytical rubrics for scoring the PTs‘ responses to the tasks. The TPACK theory contributes 

towards understanding South African mathematics teacher behaviour in technological learning 

environments and in teacher preparation to teach in technological environments. 

Contribution to literature on mathematics teacher education in South Africa 

This study contributes to the current debates on teacher professional knowledge and an 

understanding of frameworks for which teacher knowledge can be premised in South Africa. 

Scholars have pointed the shortcomings of the TPACK framework and continue to develop new 

frameworks that militate against the complex nature of teacher knowledge. Mishra and Koehler 

(2006: 1047) ―believe that any framework, however impoverished, is better than no framework 

at all‖. Graham (2011: 1958) concludes that with reference to the TPACK framework “

theoretical work has not been adequately articulated” whilst Angeli & Valanides (2009), 

Archambault and Barnett (2010) and Graham (2011) suggest a closer inspection of the ‗fuzzy‘ 

boundaries of TPACK constructs. 

The complexities of South Africa‘s prospective teachers‘ geometry content and pedagogical 

content knowledge are articulated in Chapter 1. Various researchers have advanced the 

acknowledgement of how the vacuum created by lack of geometry knowledge in the curriculum 

has marginalised South African students from the development of advanced understanding of 

mathematics (Padayachee et al. 2011; Jansen & Dardagan, 2014). Notwithstanding this, scanty 

research exists that explores South Africa‘s prospective teachers‘ technological pedagogical 

content knowledge in the area of geometry. It was the intention of this study to focus on both the 

PT as a learner of geometry and the PT as a teacher of geometry in order to make a contribution 

to the development of mathematics teacher education programmes. This study premised that 

teachers‘ perspectives on teaching and learning mathematics in technology-rich environments  

should be illuminated and explored at teacher preparation level, hence building on the works of  

Stols and Kriek (2011).  Stols and Kriek (2011) examined South African teachers‘ use of 



 

199 

 

dynamic geometry software in high school classrooms, found that teachers‘ behaviour towards 

dynamic geometry is influenced by the perceived usefulness of technology in the classroom.  

 

9.6 Limitations of the study 

In Chapter 3, I categorically emphasized that the objective of this study was not to measure the 

performance of the PTs‘ knowledge of circle geometry but to characterize their TPACK. The 

critical interest of this study was to examine how the participating PTs‘ content knowledge 

which is purported to be weak manifests within the TPACK constructs. Hence the study was 

limited to certain aspects of TPACK, which are, CK, TCK and PCK. 

The claims made in this case study assumed that the research instruments were valid and reliable. 

The main tools for the study were testing what they were intended to test and inferences about 

the participating PTs‘ TPACK performance scores were considered valid for the PTs that 

participated in this study and the particular tasks. Only a few very specific tasks were used in this 

study. More tasks and different tasks may well have elicited different types and levels of CK. 

This study was limited to a mathematics methodology course offered at a university in Gauteng, 

South Africa. The non-probability sampling technique (convenience sampling) was preferred 

because it allowed me to study the population that was easily accessible (students in my course). 

I acknowledge the bias linked to the convenience sampling technique such as under-

representation or over-representation of the population. The selection of the six primary 

participants of this study was through their willingness and interest to participate in the study that 

provided a platform to reflect on their interest in technology and in learning geometry. The 

choice of participants was to address the bias in convenience sampling that delimits the ability to 

make generalisations from the sample to the population of study. Therefore the findings of this 

exploratory case study are restricted to a small sample, and cannot be generalized to the overall 

population (Yin, 2003).  
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9.7 Recommendations for further research 

Avenues for further study are suggested as follows: 

(i) As mentioned in Section 4.1, this study is premised on the claims that PTs‘ geometry 

knowledge is developed through the interactions between content, pedagogy and 

technology knowledge. The results suggest that prospective teachers‘ circle geometry 

technological pedagogical content knowledge constructed in a GeoGebra-based 

environment is characterized as weak emanating from weak geometry content 

knowledge (CK), weak technological content knowledge (TCK) and weak 

pedagogical content knowledge (PCK). Further research is needed to confirm this 

finding. The direction of the research can be maintained but with a larger sample size 

that has different attributes.  

(ii) This study recommends that teacher perspectives on teaching and learning 

mathematics in technology-rich environments should be explored at teacher 

preparation level. Further research is needed that explores South Africa‘s prospective 

teachers‘ technological pedagogical content knowledge in all domains of school 

mathematics. Further studies are recommended that can address what is considered 

effective TPACK in teacher preparation. 

(iii) Another route recommended for further studies is to explore how the TPACK theory 

can contribute towards understanding South African mathematics teacher behaviour 

in technological learning environments and how teacher education programmes can 

prepare prospective teachers to teach in technological environments. The productive 

use of technology in teacher preparation programmes in South African is under-

researched. Dynamic geometry can provoke curricular change at teacher preparation. 

(iv) This study was delimited to the geometry content area. What are the possible 

challenges and limitations of extending the exploration to other domains of 

mathematics employing similar design?  Further exploration in other mathematics 

areas such as functions, trigonometry and calculus in needed. A study that focuses on, 
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say learning functions with GeoGebra, can highlight complexities that are peculiar to 

the learning and teaching of functions. 

This study set out to investigate PTs‘ knowledge within the context of school geometry content 

and pedagogical tasks developed in a GeoGebra-based environment. The undertaking was 

achieved and in the process several questions for future research were raised in relation to the use 

of tasks as research instruments. What are challenges of task design in the technological 

environment and paper and pencil environment in teacher preparation? What are the challenges 

of developing tasks that develop TPACK at teacher preparation? How does GeoGebra as a DGE 

in learning geometry provide opportunities for engaging in cognitive reasoning? What types of 

tasks developed in a technology-based environment are appropriate for prospective teachers with 

weak content knowledge? I remain asking these questions as I conclude this study.  
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APPENDIX A: PARTICIPANT INFORMATION SHEET 

 

Research Title: Prospective mathematics teachers‘ technological pedagogical content knowledge 

of geometry in a GeoGebra-based environment 

 

You are being invited to take part in my PhD research study. The study is located within the 

EDUC 2198: Secondary Mathematics Methodology course, which is one of the courses you have 

registered for. Before you decide, it is important for you to understand why the research is being 

done and what it will involve. Note that participation in the study is voluntary. Please take time 

to read the following information carefully and discuss it with others if you wish. Please ask if 

there is anything that is not clear or if you would like more information. Take time to decide 

whether or not you wish to take part. Please contact me if you are interested. 

 

Thank you for reading this. 

 

In my endeavour to pursue my interest in technology integration in mathematics learning I want 

to examine the development of PTs‘ technology pedagogical content knowledge by exploiting 

school geometry tasks developed in a GeoGebra-based environment. GeoGebra, like any 

dynamic mathematics software is preferred because of its roles in enhancing mathematics 

teaching, providing a foundation for deductive and inductive reasoning and enabling 

opportunities for creative thinking. As mediators of mathematics learning PTs should experience 

technology first if they are to incorporate it into the classroom mathematics. Through the 

manipulation of GeoGebra, PTs will be provided with the experience of learning mathematics 

with technology to understand the value of a dynamic environment like GeoGebra.  

 

In order to do this research I need volunteer participants to complete written tasks and 

GeoGebra-based tasks. I will screenrecord participants working on the GeoGebra-based tasks in 

my computer, which has the screen-cast software for screen recordings. I invite you to participate 

in this research project by agreeing to be screenrecorded while doing the tasks. I would like all 

sorts of students to participate in this project. I will also want to interview the participants about 

their experiences on working on all the geometry tasks. These interviews will take place outside 

lecture time. I also want to be able to use data from the screen-recording to study how the 

relationship between the student and GeoGebra evolves when solving geometry tasks.   

 

I hope to publish my research in national and international journals and to present my work at 

national and international conferences. You will never be identified in any presentation; indeed if 

you do participate, I will use pseudonyms for you throughout the data collection, analysis 

process and presentation of research.  

 

Please do not feel obliged to participate  there is no penalty or negative consequence if you do 

not. If you do want to withdraw from the research at any point, you may do so without penalty. I 

guarantee you that any data that I collect will have no bearing whatsoever on your grades for any 
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course modules in your B.Ed programme, nor on my attitude to you, nor any other aspect of your 

life at the University of the Witwatersrand now or in the future. Indeed when data is transcribed 

from the audiotapes, written assignments and screen recordings, I will use pseudonyms for you. 

 

If you do accept the invitation to participate  

 I will audiotape and screenrecord you working on GeoGebra-based tasks.  

 I will use data from your written tasks.   

 I will interview you about your experiences on working on the geometry tasks.  

 

Thank you. 
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APPENDIX B: METHODOLOGY COURSE OUTLINE 

       

 

WITS SCHOOL OF EDUCATION 

DIVISION OF MATHEMATICS EDUCATION 

BACHELOR OF EDUCATION 2014 

 

COURSE EDUC 2198 SECONDARY METHODOLOGY: MATHEMATICS 2  

STUDENT GROUP B Ed. (Senior Phase and FET) 

COURSE COORDINATOR Kim Ramatlapana 

CONTACT PERIODS  Monday 5; Friday 4 and 5  

WEBSITE https://cle.wits.ac.za 

 

COURSE OUTLINE 

The aim of this course is to build on your introductory experiences of teaching and learning mathematics. We will 

focus on current trends in teaching and learning maths, both locally and internationally. We will continue to 

challenge our own mathematical thinking at all times. This means there will be lots of mathematics in this course. 

The course will deal with practical and theoretical aspects of mathematics, and the teaching and learning of 

mathematics. Particular attention will be given to the South African context and to the climate of change that 

pervades education in the country at present. The mathematical content dealt with in the course will focus on FET.  

 

The course has links with School Experience and focuses on the following roles of the teacher: 

 Learning mediator 

 Interpreter and designer of learning programmes and materials 

 Assessor 

 

COURSE OUTCOMES 

The aims of this course are that by the end of it you will: 

 Have had a meaningful learning experience which enables you to integrate theory and practice. 

 Understand the structure and nature of the South African Curriculum and Assessment Policy statements for FET 

mathematics  

 Have developed mathematical content knowledge and pedagogical content knowledge 

 Be clear of what is involved in teaching a particular aspect of the mathematics content 

 Become a competent, confident and creative reflective mathematics teacher  

 Be able to critically analyze and evaluate own and others‘ pedagogical practices 

 select and design appropriate mathematics learning tasks for learners in FET 

 assess learners' written work and suggest appropriate remediation   

 relate learners' misconceptions to appropriate theoretical ideas 

 reflect critically on their own practice as a mathematics teacher and relate this to issues dealt with in the course 

 Be able to integrate technology in teaching mathematics 

 

 

The following mathematical content will be explored: 

https://cle.wits.ac.za/
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 Trigonometry 

 Functions  

 Geometry  

 Statistics 

 

 

WORK AND ASSESSMENT PROGRAMME 

 

BLOCK 1:  GEOMETRY 

Week  Activities Homework Assessmen

t 

1  

11-15 FEB 

 

 

Welcome, Introductions, Course outline and expectations; course 

assessment, consent for practice-based research 

-Discussion on the three kinds of knowledge that are crucial for 

teaching school mathematics: 

 Content knowledge;  

 pedagogical content knowledge;  

 technology pedagogical content knowledge 

 

 

 Prepare for Test 

(content) 

 

Reading 

material 

-Ball, Thames & 

Phelps (2008). 

Content 

Knowledge for 

Teaching What 

Makes It 

Special? 

 

Hohenwarter, J. 

and 

Hohenwarte, M 

(2008). 

Introduction to 

GeoGebra. 

http://www.geo

gebra.org/book/i

ntro-en.pdf 

 

2 

18-22 FEB 

 

Focus on  

 Planning to teach a mathematics lesson 

 Teaching a mathematics lesson 

 Content in a mathematics lesson 

 Evaluating a mathematics lesson  

 

 

Content 

 Test 1 

18 FEB 

  3 

 

24-28 FEB 

 

Using technological tools to teach mathematics. 

-Prepare a GeoGebra-based Grade 11 lesson on teaching a circle 

geometry theorem. The lesson plan should provide details and 

justifications for the sequence of questions and activities, key 

concepts that you want to communicate, and common errors that 

you want to address. 

Following feedback from the discussions, modify the lesson script. 

Group 

preparations for 

micro teaching 

 

4 

4-8 MAR 

Teaching circle geometry theorems 

-Van Hiele theory 

  

5  

11-15 

MAR 

Teaching circle geometry theorems 

-Examine geometry tasks and discuss the impact they may have on 

students‘ learning experiences   

 Content 

 Test 2 

11 MAR 

  6 

18-22 

Teaching circle geometry theorems 

 

  

http://www.geogebra.org/book/intro-en.pdf
http://www.geogebra.org/book/intro-en.pdf
http://www.geogebra.org/book/intro-en.pdf
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MAR 

7 

25-29 

MAR 

RESEARCH BREAK   

BLOCK 2:  TRIGONOMETRY 

8 

1-5 

APRIL 

Does language interfere with mathematics learning? Orton (1987)  

9 

8-12 

APRIL 
 

Why do some learners perform better than others? 

Mathematics content area: unit circle 

-Develop conceptual understanding and proficiency of Grade 10, 11 

trigonometry 

Orton (1987) Content 

 Test 3 

8 APR 

10 

15-19 

APRIL 

Mathematics content area: trig ratios 

-Develop conceptual understanding and proficiency of Grade 10, 11 

trigonometry 

  

11 

22-26 

APRIL 

Mathematics content area: trig functions 

-Develop conceptual understanding and proficiency of Grade 10, 11 

trigonometry 

  

12 

29-3 MAY 

Mathematics content area: Pythagorean theorem 

-Develop conceptual understanding and proficiency of Grade 10, 11 

trigonometry 

  

13-15  

8-24 MAY 

SCHOOL EXPERIENCE  

 

  

16 

27-31 

MAY 

Examine TRIGONOMETRY tasks and discuss the impact they 

may have on students‘ learning experiences   

 Assignmen

t 1 

Apr 26 

17 

3-7 JUNE 

Problem solving  

-Watch and analyze a video ―THE EXAM‖ that depicts a problem 

solving situation (teaching and learning dynamics). 

Approaches to mathematics instruction 

  

18 

10-24 

JUNE 

EXAMS  TEST 

19 – 21 

25-12 

JULY 

WINTER BREAK   

BLOCK 3: FUNCTIONS 

22-25 

16-8  

AUG 

SCHOOL EXPERIENCE   

26 

12-16 

AUG 

 

 

Assessment: The Nature of Mathematical Tasks (Functions for 

teaching) 

-Discuss the nature of mathematical tasks and the teacher‘s role in 

instruction.  

-What are the different types of tasks a teacher might design and 

what are the cognitive demands of such tasks?  

-How does the design of the mathematical task encourage or 

constrain thinking?  

Using the Mathematical Tasks Framework (Stein, Smith, 

Henningsen & Silver, 2000) and Stein & Smith (1998) mathematics 

task analysis guide to examine various mathematical tasks and 

discuss the impact they may have on students‘ learning experiences. 

Reading for this 

session: 

-Stein, M.K., 

Smith, M.S., 

Henningsen, 

M.A. & Silver, 

E. (2000). 
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27 

19-23 

AUG 

 

Mathematics content area: Functions for teaching 

-Consider and analyze Grade 10-12 function tasks 

-Developing memo for tasks; provide justification for mark 

allocation 

 Content 

 Test 4 

19 AUG  

28 

26-30 

AUG 

Teaching the slope of a function   

29 

2-6 SEPT 

RESEARCH BREAK   

30 

9-13 SEPT 

 

 

STATISTICS 

What does it mean to do statistics 

-Mathematics content area: 

Statistics for teaching 

-Develop conceptual understanding and proficiency of statistics 

-Draw upon misconceptions in learning statistics 

-Examine statistics tasks and discuss the impact they may have on 

students‘ learning experiences  Developing concepts of data 

analysis 

  

31 

16-20 

SEPT 

Reasoning with statistics: data collection 

-Examine statistics tasks and discuss the impact they may have on 

students‘ learning experiences   

  

32 

23-27 

SEPT 

 

 Reasoning with statistics: data analysis 

-Examine statistics tasks and discuss the impact they may have on 

students‘ learning experiences   

 Content 

 Test 5 

23 SEPT 

BLOCK 4: PROBABILITY 

33 

30-4 OCT 

Understanding  measures of centre and variability 

-Interpreting results 

 Oct 2 

34 

7-11 OCT 

Exploring concepts of probability   

35 

14-18 

OCT 

Teaching probability 

 

 Assignmen

t 2 

Oct 18 

36 

21-25 

OCT 

Teaching probability 

EXAM EQUIVALENT discussion 

  

37-40 

28-18 

NOV 

EXAMS 

EXAM EQUIVALENT  due 8
th

 November 
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APPENDIX C: TASKS AND MEMORANDA FOR TASKS 

Task 1 

The diagram below shows a circumscribed circle with centre S. Triangle ABC has AB = AC. Angle A is acute and AB is extended to K. AS extended cuts BC at 

M and  the circle at H. BE bisects   ̂   BE meets AS produced at E. AB when produced, is perpendicular to EK. 

 
 

Question Memo  

(a) Write down and label all the geometric 

figures that you see in the above diagram. 

E.g. ΔABC 

 

Circle S, 2 semi-circles, 4 segments 

Triangles: ∆ABM, ∆ACM, ∆BMH, ∆MHC, ∆BHE, ∆BKE (all single triangles);  

∆ABC, ∆ABH, ∆AHC, ∆BHC, ∆BME, ∆ABE, ∆AKE (all composite triangles) 

 Quadrilaterals: ABHC, BKEH, BKEM (accepts kite ABHC, cyclic quad ABHC) 

(b) Which triangles are congruent? Explain. 

 

tests knowledge of congruency.  

 

Required to show that:  

(a) ∆ABH ≡ ∆ACH  

AB = AC given 

Ĉ = 90  (  in semi-circle) 

(  in semi-circle) 
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  (SAA) 

(b) ∆ABM ≡ ∆ACM 

CM=BM (∆MHB ≡ ∆MHC  

AC=AB (given) 

   ̂       (∆ABH ≡ ∆ACH  

AM common 

 ∆ABM ≡ ∆ACM  

(c) ∆MBH ≡ ∆MHC 

HC=HB (∆ABH ≡ ∆ACH)  

  ̂     ̂  (∆ABH ≡ ∆ACH) 

HM common 

 ∆MBH ≡ ∆MHC 

 

(d) Construction of  Triangle ABC  

AS extended cuts BC at M and the circle at H.  

BE bisects  

BE meets AS produced at E.  

AB when produced, is perpendicular to EK 

(c) Use GeoGebra to construct the figure. 

 

Construction of  

Triangle ABC  

AS extended cuts BC at M and the circle at H.  

BE bisects  

BE meets AS produced at E.  

AB when produced, is perpendicular to EK 
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Task 2 

In the diagram below O is the centre of the circle. GH is a tangent to the circle at T. 

J and K are points on the circumference of the circle. TJ, TK and JK are joined. 

 
Question Memo 

(a) Prove the theorem that 

states that  ̂    ̂   

using four different 

methods (four 

constructions). 

 

Method 1 

The task requires a construction of the method. A consideration should be made in transforming the statements and reasoning 

with the construction. The requirements for this method are: 

 Identification of the radii 

 Proof of the angles in a triangle 

 The application of the tan-chord theorem to show that T3 + T2 = 90º 

 Concluding that  ̂    ̂    
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Method 2 

The task requires a construction of the method. A consideration should be made in transforming the statements and reasoning 

with the construction. The requirements for this method are: 

 The application of the tan-diameter  theorem to show that T1 + T2 = 90º 

 The application of the angle in semi-circle  theorem to show that J1 + J2 = 90º 

 The application of the angle in same segment theorem to show that J2  = T2 

 Concluding that  ̂    ̂    
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Method 3 

The task requires a construction of the method. A consideration should be made in transforming the statements and reasoning 

with the construction. The requirements for this method are: 

 Identification and construction of radii OT and OK 

 Proof of  angles in isosceles triangle to show that T1  = K1 

 The application of the angle in tan-radius  theorem to show that T1  = 90º - x 

 The application of the angles at the centre and the circumference subtended by same chord theorem to show if 

         ̂   =   ̂   then    ̂  = 90º - x  

 Concluding that if    ̂   =   ̂    then  ̂    ̂    
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Method 4 

The task requires a construction of the method. A consideration should be made in transforming the statements and reasoning 

with the construction. The requirements for this method are: 

 Identification and construction of GT extended to H and tangent KH at K 

 The application of the angle in tan from common point theorem to show that K1  =  T1 

 Proof of  angles in isosceles triangle to show that T1  = K1 

 The application of the angle in tan-radius  theorem to show that T1 + T2 = 90º 

 The application of the angles at the centre and the circumference subtended by same chord theorem to show that 

  ̂   =         ̂  ; meaning that  if    ̂   = 180º - (T1 + K1) then   ̂                        

 Noting that since T1  = K1 then   ̂   = 2 ̂  

 Concluding that if    ̂   =    ̂    then  ̂    ̂    

 

(b) How would you handle 

this problem in a 

classroom 

environment? 

describe or demonstrate the various ways to model or illustrate the theorem. The demonstration should encompass the ability 

to provide an explanation of the concept or the procedure for the proof. The demonstration should discuss or utilize the 

general or specific instructional strategies for teaching the tan-chord theorem 
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Task 3 

Suppose question 1 below was part of a geometry lesson: 

Question 1 

In the diagram below, L, Q, N and E are points on the circumference.  

Which of the angles are equal? 

 

 

Question Memo 

(a) What are the main mathematical ideas in 

the question 1 above?  

The respondent must provide a description that demonstrates knowledge of angles in same 

segment theorem and its converse. Statements should be be justified by appropriate reasoning. 

The response to address misconceptions of the theorem 

(b) Produce a solution to the question.  ̂   ̂   ̂ applying the angle in the same segment theorem. 
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Task 4 

Jane used GeoGebra to construct a diagram using the description below: 

 

AB is a vertical diameter of a circle with centre O. 

P is any point on the circle closer to A than B. 

The perpendicular to AB at O meets AP produced at M. 

OM and BP intersect at K. 

BM cuts the circle at T. 

Draw radius OP. 

 

Question Memo 

Attached is Jane‘s GeoGebra construction of the 

diagram. Click here for the GeoGebra file. 

 

What is wrong with Jane‘s construction? (hint: use 

drag mode, construction protocol) 

Errors in the construction of the diagram  

1. M constructed as abitrary point 

2. CD is independent of AB 

3. Order of construction of P 

The respondent must provide a description that demonstrate knowledge of geometry definitions 

and/or properties of these geometric words (perpendicular, vertical diameter, intersects, produced 

, closer to than), knowledge of how the properties of a diagram aid in the construction of a 

diagram, the disposition to translate statements to a diagrammatic register, and the knowledge of a 

construction procedure.  

 

 

 

 

file:///E:/chapter%204%20data%20presentation/Task4%20Jane's%20construction.ggb
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A SCREEN SHOT OF JANE‘S CONSTRUCTION 
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APPENDIX D: NKOSI’S TASK 1 script 

 

 

 

 

 



 

238 

 

APPENDIX E: EXCERPT OF NKOSI’S TRANSCRIPT 

 

Kim:  I want us to look at the tasks, as you have responded to them. So we look at each task and 

recordings and go through the recordings as well to see how you responded, to have an 

idea of how you responded.  The first one  Task 1(a); it was to write all and label all the 

figures you see in the diagram.  Tell me, how did you come up with these figures? 

Nkosi:  I think it was the shapes and I listed and the shapes I can see.  I can mostly see triangles 

and one quadrilateral.  And I also saw a circle. 

Kim:  you saw a circle? 

Nkosi:  yes 

Kim: now, let‟s start with a circle.  You can  only see one full circle?  Or can you also see 

parts of the circle 

Nkosi:  no I only see one full circle 

Kim:  the line AH, what do you call it? 

Nkosi:  diameter 

Kim:  so if I have a diameter, what do we call this region? 

Nkosi:  which region? 

Kim:  the region above that is enclosed by the circle above the diameter. 

Nkosi:  I don‟t know, I wouldn‟t call it the major circle. I don‟t know. What is it called? 

Kim:  A semi-circle. 

Nkosi: a semi-circle? Ohhh. 

Kim:  and the one below is also a semi-circle. 

Nkosi:  it is. 

Kim:  and we also talk about segments. Do you see segments there? 

Nkosi:  yes they are 

Kim:  Are they not figures? 

Nkosi:  no 

Kim:  you didn‟t think of them as figures? 

Nkosi;  no, not as geometric figures 

Kim:  okay in your own understanding, what do you understand about the word geometric 

figures? 

Nkosi:  I understand more like geometric shapes 

Kim:  shapes? 

Nkosi:  yes 

Kim: okay. Fine, so according your response, for you the geometric shapes meant looking at 

the triangles, the circle and the quadrilateral. 

Nkosi:  yes 

Kim:  now let‟s look at the triangles, you had 1, 2, 3, 4, 5, 6, 7, 8 triangles. Are those the only 

triangles that you see? 

Nkosi:  yes, those are the only ones I see. 
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Kim:  how did you identify them? 

Nkosi:  I started inside the circle, It is this one, 1,2 and this one,3,4 and then I said 5,6 and then 

7,8 then on this line, this one is 10 

Kim:  you can come up with a pattern. You can come up with single triangles that one have one 

single triangle within. Okay, so those are 1, 2, 3, 4, 5, 6 right? 

Nkosi:  yes 

Kim:  then you can come up with triangles that have two triangles within. You have 1,2,3,4 

right? 

Nkosi:  yes 

Kim: then you can list triangles that have 3 triangles within, 1,2,3. Then you can also have a 

triangle that composes of 4 triangles within which is the big triangle. So all in all you 

should have 13 triangles. 

Nkosi:   are they those ones over here? 

Kim:  yes, did you see that? With quadrilaterals, how many did you see? Two? 

Nkosi:  yes 

Kim:  which are A, B, H, C right? 

Nkosi:   yes 

Kim:  and then K, E, B, M. 

Nkosi:  Yes 

Kim:  Okay, now is there any special about A, B, H, C? 

Nkosi:  I forgot the term 

Kim:  Cyclic 

Nkosi: yes 

Kim:  okay, now, question (b), which triangles are congruent? Now I want you to explain to me 

because you have identified three pairs of triangles. Now I want you to explain to me how 

you come up with the conclusion that these two are congruent triangles? 

Nkosi:  This triangle is equal to that triangle because they have equal sides; they share the same 

common side 

Kim:  which is? 

Nkosi:  AM  

Kim:  Okay 

Nkosi:  and these two sides are equal 

Kim:  which are B, M and C, M. why? 

Nkosi:   it‟s segmented the…. This is a chord that is cut by a diameter, that cuts it into equal 

parts and then the angle here is both 90 

Kim:  okay, angle B, M, A is 90 =   A, M, C 

Nkosi:  so, with the side‟s side angle I can see that they are congruent. 

Kim:  okay, now these other two?  Angle A, B, H and triangle A, C, H  

Nkosi:  Okay, you can see these two lines are equal, B, H and C, H 

Kim:  why would they be equal? 

Nkosi:  because this line here, there‟s another congruent triangle inside here BM = CM right? 

Then the angles here are equal.  

Kim:  they are both equal to what? 

Nkosi:  90 degrees and then they share a common side 
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Kim:  which is? 

Nkosi:  M, H, therefore B H is = to C H 

Kim:  which means that you have to start with this one first 

Nkosi:  yes 

Kim:  This means that you need to show that BMH is congruent to CHM for you to be able to 

prove that ABH is congruent to ACH. So you started with ABM being congruent to ACM 

and then from there you go to BHM being congruent to triangle CHM. Then from there 

you can conclude that ABH is congruent to ACH, that‟s what you are saying right? 

Nkosi:  yes 

Kim:  okay. Question c) you were to construct this. Tell me, when you constructed, what did 

you consider? 

Nkosi:  The angles 

Kim:  the angles?  

Nkosi:  Yes. For example the 90 degree angle 

Kim:  so your plan was to make sure that you have the 90 degree angle first? What was your 

plan? 

Nkosi:   my plan was to start with the circle then after the circle I… 

Kim:  why did you start with the circle? 

Nkosi:  because it‟s easier to draw this quadrilateral because it‟s a circle. Then I drew point A 

here 

Kim:  okay. So you draw a circle, centre A and B the circumference. Take me through what you 

are doing here. 

Nkosi:  now I want to draw a ray, because I can see there‟s a ray here. Then I drew a ray that 

goes through the red point centre. Then I drew it and I‟m going to draw another ray 

which goes through B. then I see that the rays are finished so I should draw a segment 

now. 

Kim:  which segment? 

Nkosi:  Segment LX or LCO. Now I want to draw a line KA. Now I want to go the segments, then 

I join those two points at the circumference.   

Kim:   what‟s going on? 

Nkosi:  I‟m just making sure that it looks the same and I joined those two points. 

Kim:  what does „looks the same‟ mean? 

Nkosi:  the same with this one, they are similar. Then I just join the lines and move that point.. 

Kim:  you want to move this point? 

Nkosi:  yes I wanted it to look like that. 

Kim:  why were you moving it? 

Nkosi:  because I see here the gradient is the same 

Kim:  so you wanted it to look as exactly like it did on the diagram because it seems like AE is 

horizontal 

Nkosi:  yes. Then I drew in the 90 degrees and I could see that it wasn‟t a 90 degree so I made it 

a 90 degree which was difficult 

Kim:  but then again when you have two line segments that meet at a 90 degree, what does it 

say about those two lines? 

Nkosi:  they are perpendicular 



 

241 

 

Kim:  yes they are perpendicular, so you have your 90 degree. 

Nkosi:  yes, so let‟s see what is needed. Just wanted to remove the E and it becomes one short 

line segment IE. 

Kim:  Now tell me when you drew this; didn‟t you refer to the description there? 

Nkosi:  no, not at all 

Kim:  why not? 

Nkosi:  because, I‟m not drawing it by hand so I know for example that these two lines would be 

equal, this would equal to that BM will equal to that line  

Kim:  in your diagram, they will be equal? 

Nkosi:  yes 

Kim:  now let‟s look at your GeoGebra file to see if they are equal because you are saying that 

triangle ABC, we know that from the description that it is an isosceles triangle right? So 

in your own thinking, when you draw this, the description of your diagram should fit 

exactly what‟s in there?    

Nkosi:  Yes 

Kim:  Okay. Now let‟s see in your triangle CHI it is an isosceles triangle. We expect CI to 

equal to CH. So now which line here is CI? 

Nkosi:  I don‟t know 

Kim:  this one is E, okay? This one, the 7.9 one and this is B which is 6.43 

Nkosi:  I didn‟t consider that 

Kim:  and you also didn‟t consider that IK in your diagram should be the bisector for angle 

HIF because you are given here that B bisects CBK. Was that the question that was 

misleading you and led you to think that? Suppose you were just given this diagram then 

the question says, Construct the diagram on GeoGebra. Would you still not look at the 

description? 

Nkosi:   if you just gave me this and don‟t give me the description? 

Kim:  I also give you the description and then I say draw. Suppose all these other questions 

were not there and I said construct this figure 

Nkosi:  on GeoGebra? 

Kim:  Yes 

Nkosi:  Yes, i would just look at the diagram. 

Kim:  you‟d just look at the diagram? But suppose you‟d also looked at the description, what 

would you have changed in your construction? 

Nkosi:  the accuracy.  

Kim:  Because your only concern was the 90 degree 

Nkosi:  yes because that‟s the only one I could see from the diagram 

Kim:  suppose it was mentioned in the diagram that AB=AC, would you have made sure that 

they were accurate? 

Nkosi:  yes, then I was going to make sure that they were accurate. 

 
 


