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Definitions of Terms and Abbreviations 

 

Adaptive Market Hypothesis (AMH) - An alternative theory of market efficiency, which 

posits that market efficiency follows a dynamic (cyclical) pattern. The agents in such a 

market are subject to the principles of behavioural biases, competition, adaptation and natural 

selection. 

 

Akaike Information Criterion (AIC) - A measure of relative quality of one regression 

model to another. The criterion measures the trade off between a model's goodness of fit and 

complexity. 

 

ALSI - All Share Index, given by the share code J203. 

 

ARIMA (p,d,q) model - A particular time series model, the Auto Regressive Integrated 

Moving Average model is used to better understand the existing relationship in a dataset and 

to forecast that relationship. The parameters p, d and q refer to the order of the 

autoregressive, integrated and moving average components, respectively. 

 

Artificial Neural Network (ANN) - Computational models that were inspired by the 

processing capabilities of the human brain. These models are from the field of computer 

science and are capable of learning and performing pattern recognition (if the pattern is 

captured in a time series, then network is referred to as a dynamic artificial neural network). 

 

Autocorrelation - The correlation of a series with itself. Autocorrelation is also referred to as 

serial correlation as the observations in the time series are correlated across time. 

 

Bayes Information Criterion (BIC) - Closely related to the AIC, the Bayes Information 

Criterion is based on the maximum likelihood function of a model and measures the trade-off 

between a model's goodness of fit and complexity. 

 

Bayes' Theorem - A theorem derived from the axioms of probability, with emphasis on 

conditional probability. The theorem is used to describe how a subjective degree of belief 

should rationally change to account for the evidence observed.  
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Cointegration - When examining two or more series that are individually integrated, if a 

linear combination of those series has a lower order of integration, then the series are said to 

be cointegrated. 

 

Efficient Market Hypothesis (EMH) - A cornerstone of traditional investment theory, the 

EMH asserts that prices at all times reflect relevant available information. One consequence 

of this is that no consistent, abnormal profits can be made in financial markets. There are 

three forms of market efficiency, each a stricter definition of the other, with the strong form 

being characterised as market prices reflecting all available information. 

 

Falsifiable - A statement is referred to as falsifiable if there exists some observation or 

argument that proves the statement false. According to philosophy, falsifiability is often the 

criterion to distinguish the scientific from the unscientific.  

 

Feed-forward neural networks (FFNN) - The simplest type of neural network, a FFNN is 

characterised by the uni-directional flow of information.  

 

Forecasting - The formal process of employing statistical methods to create observations on 

a time series that have not yet occurred. Automatic forecasting refers to the selection of the 

appropriate time series model and the generating of forecasts without human intervention.  

 

Gaussian Random Walk - A Gaussian random walk is one where the successive steps have 

an underlying Gaussian distribution – an enhancement of the discovery by Regnault (1863). 

 

Hurst exponent - A measure of long term memory in a time series.  

 

Jensen's market efficiency - Jensen's (1978) defines market efficiency as an extension of a 

zero profit competitive equilibrium condition bridging the gap between the certainty world of 

classical price theory to the uncertain world of dynamic market behaviour. 

 

JSE - Johannesburg Stock Exchange 
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Kurtosis - A measure of the peakedness of a probability distribution. If this peakedness is 

beyond levels of a normal distribution, then the resulting kurtosis is referred to as excess 

kurtosis. 

 

Learning - The process of training a neural network, learning can either be supervised by the 

researcher or unsupervised. In supervised learning, the network is given output data and 

attempts to match it to inputs as accurately as possible. In unsupervised learning, there is no 

output data given to the network - it attempts to create sample outputs based on minimising 

some error function.  

 

Levenberg-Marquadt Algorithm - A method to solve non-linear least squares problems that 

minimises the distance between the error and output data.  

 

Long term memory - Where a single shock will have a noticeable and persistent impact on 

future volatility. 

 

Ljung Box test - A type of test to determine if a group of autocorrelations from a time series 

are statistically different from zero.  

 

Market - The earliest definition of a market is provided by Gibson (1889) in that “when 

shares become publicly known in an open market, the value which they acquire may be 

regarded as the judgement of the best intelligence concerning them”.  

 

Market efficiency - The traditional definition of market efficiency is given by the EMH 

(discussed above), where the current price reflects all available information such that no 

abnormal profits can be sustained in the long term. Other forms of market efficiency can 

include informational efficiency, where information is assimilated instantaneously into the 

stock price; and allocative efficiency in which capital is allocated in a manner that benefits all 

market participants. 

 

Martingale - A word with various (related) definitions, the traditional meaning of a 

martingale refers to a bettering strategy where a gambler doubles his (her) bet after every loss 

made, resulting in the first win recovering all prior losses as well as the cost of entering the 
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gamble. In mathematics, a martingale is a stochastic process where the next value in the 

sequence is equal to the present observed value given all prior observed values. 

 

Moments of the distribution - A quantitative measure of the shape of a set of points, the 

first four central moments of a distribution often refer to the mean, variance, skewness and 

kurtosis respectively. 

 

Mean Squared Error (MSE) criterion - The MSE criterion measures the average of the 

squared error terms. Typically, the better regression is that which has a lower MSE. The 

square root of the MSE criterion gives rise to the Root MSE (RMSE) criterion. 

 

Non-linear Auto-Regressive with Exogenous (NARX) Neural Networks (NARX NN) - A 

recurrent neural network, the NARX NN allows for lagged dependent and lagged 

independent values of each variable to have an influence in explaining the contemporaneous 

dependent variable. 

 

Neural networks (NN) - Computational models inspired by the processing of the human 

brain, NNs are capable of matching inputs to outputs under a variety of different learning 

techniques.  

 

Neurons - A neuron is a biological cell that processes and transmits information through 

electrical and chemical signals. They form part of the nervous system.  

 

Order of integration - The minimum number of differences required for a time series to be 

stationary.  

 

Perceptron - An algorithm of supervised learning in which an input variable is transformed 

into one of several possible non-binary outputs according to a linear classifier.  

 

Random Walk - According to Pearson (1905), a random walk is a mathematical description 

of a path of successive random steps.  

 

Rational agents - According to Muth (1961), the expectations of agents tend to be 

distributed for the same information set about the objective probability distribution of 
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outcomes. Thus, rational agents do not waste information, they form expectations based on 

the structure of the relevant system describing the economy and public opinion has no 

substantial effect on an agent's expectation.  

 

Recurrent Neural Networks (RNN) - A class of neural networks where there is a bi-

directional flow of information.  

 

Samuelson's dictum - A hypothesis that the EMH should apply more closely at a micro-level 

than at an aggregated, macro-level.   

 

Skewness - The measure of asymmetry in a probability distribution about its mean. If this 

value is in excess to that of a normal distribution, it is referred to as excess skewness. 

 

Self-Exciting Threshold Autoregressive Model (SETAR) - A time series model that 

extends the typical autoregressive model to allow for regime changes.  

 

Student's t-Test - A statistical hypothesis test in which the test statistic follows a Student's t 

distribution.  

 

Subjective Expected Utility Theory - A category of decision theory that combines the 

concepts of a personal utility function and a personal probability distribution to make 

decisions in the presence of risk.  

 

Type I and Type II error - A Type I error is when the null hypothesis is incorrectly rejected; 

whereas a Type II error is when the null hypothesis should be rejected but is not rejected.  

 

White noise - A term referring to randomly generated errors (noise). 

 

Wiener process - A continuous time stochastic process that is used to describe the random 

behaviour of share prices.   
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The dynamics of market efficiency: 

Testing the Adaptive Market Hypothesis in South Africa 

 

ABSTRACT 

In recent years, the debate on market efficiency has shifted to providing alternate forms of the 

hypothesis, some of which are testable and can be proven false. This thesis examines one 

such alternative, the Adaptive Market Hypothesis (AMH), with a focus on providing a 

framework for testing the dynamic (cyclical) notion of market efficiency using South African 

equity data (44 shares and six indices) over the period 1997 to 2014.  By application of this 

framework, stylised facts emerged. First, the examination of market efficiency is dependent 

on the frequency of data. If one were to only use a single frequency of data, one might obtain 

conflicting conclusions. Second, by binning data into smaller sub-samples, one can obtain a 

pattern of whether the equity market is efficient or not. In other words, one might get a 

conclusion of, say, randomess, over the entire sample period of daily data, but there may be 

pockets of non-randomness with the daily data. Third, by running a variety of tests, one 

provides robustness to the results. This is a somewhat debateable issue as one could either run 

a variety of tests (each being an improvement over the other) or argue the theoretical merits 

of each test befoe selecting the more appropriate one. Fourth, analysis according to industries 

also adds to the result of efficiency, if markets have high concentration sectors (such as the 

JSE), one might be tempted to conclude that the entire JSE exhibits, say, randomness, where 

it could be driven by the resources sector as opposed to any other sector. Last, the use of 

neural networks as approximators is of benefit when examining data with less than ideal 

sample sizes. Examining five frequencies of data, 86% of the shares and indices exhibited a 

random walk under daily data, 78% under weekly data, 56% under monthly data, 22% under 

quarterly data and 24% under semi-annual data. The results over the entire sample period and 

non-overlapping sub-samples showed that this model's accuracy varied over time. Coupled 

with the results of the trading strategies, one can conclude that the nature of market efficiency 

in South Africa can be seen as time dependent, in line with the implication of the AMH. 

 

 

Keywords: Market efficiency; neural networks; SETAR models; emerging markets 
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1 Introduction 

There is a longstanding debate amongst academics and practitioners on the question of 

market efficiency. Since the seminal work of Fama (1970) setting out the Efficient Market 

Hypothesis (EMH), empirical tests have been conducted to determine whether markets are 

efficient or not. In recent years, the status quo has shifted towards providing alternate 

hypotheses of market efficiency which are testable and can thus be proven to be true or false. 

This thesis examines one such alternative, the Adaptive Market Hypothesis (AMH) of Lo 

(2004, 2005) with a focus on providing a framework for testing this different form of market 

efficiency. Given the development of the AMH, no formal means of testing cyclical efficiency 

has been established in the literature. Therefore, this thesis offers one such set of ideas to testing 

cyclical efficiency. In particular, it will be determined whether share returns are deterministic 

or not, with further extensions to modelling the returns generating process. By examining 

both individual shares as well as indices (a total of 50 traded assets), as well as across 

different frequencies of returns, a holistic view of market efficiency can be obtained. If the 

South African equities market does indeed exhibit cyclical efficiency, this result would be 

found based on the behaviour (deterministic or not) of share returns and the ability to model 

said returns over time. A range of tests (including a practical trading application) are 

conducted on equity returns in South Africa to comprehensively determine if these returns 

follow a random walk or not. Further, both traditional econometric methods as well as 

artificial intelligence models are used to determine if the returns generating process can be 

specified. By the application of a variety of methods, to permutations of the data frequency, 

this thesis attempts to comprehensively examine market efficiency on the South African 

equities market. It is conjectured that if the success of this modelling procedure varies over 

time, then the equities market can be seen as adaptively efficient, in line with the AMH.  

 

 

The AMH emerged from principles in evolutionary biology, psychology and sociology (Lo, 

2004). This Adaptive Market Hypothesis would describe efficiency as the interaction of 

market participants. In a market with supply- and demand- side participants, the interaction 

between these two groups determines an equilibrium price. Lo (2004) argues that a market 

with scarce resources would be more efficient than one with abundant resources. As these 

two groups are driven by an instinct to survive in the market place, the individuals can learn 

and make informed decisions on whether to purchase or sell the good in question. Over time, 
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innovation in the market place can "reset" the current market dynamics, leading to individuals 

finding a new means of survival. This process can be seen as an evolutionary one, where an 

innovation is seen to disrupt the current equilibrium; and the learning experience of 

individuals lead to the formation (over time) of new groups of individuals with similar 

characteristics leading to a new equilibrium. Once a new equilibrium has been reached, this 

process is seen as efficient. Hence, efficiency would be seen as cyclical, limited by the nature 

of said participants and the environment this interaction occurs within. The implications of 

the AMH suggest that efficiency can be viewed to be a relative measure - there would be 

times when the market is efficient and times when the market is inefficient. While Lo (2004, 

2005) both describes the abstract and practical implications of the AMH, little attention is 

given to testing the implications thereof. This thesis aims to provide a practical means of 

testing the core implication of the AMH – that of cyclical market efficiency. 

 

 

Borrowing from the discipline of computer science, the concept and application of neural 

networks is used to model the efficiency of the market. A neural network, in its simplest 

form, can be represented by a set of processes or "nodes" (some of which can be unknown or 

“hidden”), that would convert an input to the desired output. In contrast, a more traditional 

time series model would be specified in advance and then applied to the financial problem at 

hand. Thus, the application of neural networks to solving financial problems can be seen as 

an extension of an econometrics method, with the difference being that the network's 

processes do not necessarily have to be specified in advance. The foundation of neural 

networks rests in scientists’ attempts to map the processing capability of the human brain. 

Specifying a neural network requires the selection of input data, selecting the appropriate 

network architecture, training the network based on a particular algorithm, and measuring 

performance of the network. To allow comparison between traditional econometric methods, 

the performance of neural networks can be evaluated by examining the error term. Garth, 

Rollins, Zhu and Chen (1996) show that network performance rests on two variables - the 

number of hidden layers and thus nodes in the network and the standard error. The optimum 

network would be the network that balances the errors generated with the number of hidden 

nodes. Thus, if the error term begins to increase after a particular point, then the network 

exhibits decreasing performance at its task of learning and forecasting the data series. The 

basic idea of participants learning as the network develops intrinsically harmonises with that 
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of an adaptive market, suggesting intuitively that neural networks can provide a method of 

testing the AMH. 

 

 

While much related literature exists on the application of neural networks to finance, no 

published works link the application of neural networks to the AMH. Literature discussed in 

Chapter 2, shows, for example, the application of a neural network to forecast an additional 

term in a data series. Using financial data, this forecasting ability can be turned into a 

portfolio strategy, where the investor will buy if the share is underpriced and sell if the share 

is overpriced as determined by the difference between the network’s output and the actual 

share price, much like an investor would use asset pricing models to determine if a share is 

under- or over-priced. This example shows that whilst the foray into neural networks is 

somewhat distanced from finance, these tools can be used to solve problems in the field of 

finance. This thesis adopts this cross-disciplinary approach in attempting to show that market 

efficiency can be considered over time as opposed to at a single point in time. In other words, 

if one uses the entire sample data over a particular time period, the conclusion reached 

regarding market efficiency can differ if the sample period was divided into smaller intervals 

(or differing frequencies). This series is conceptually described by the AMH. 

 

 

1.1 From statistics to machine learning 

Conceptually, there are both similarities and differences between a statistical regression and a 

neural network. Consider a statistical regression represented as �� = �(�, �). It provides an 

estimate of a dependent variable,	�� , a function of a vector of independent variables (X) and 

their associated regression coefficients (A) according to some function f. The regression 

technique rests in minimising the error term of the regression as well as specifying the 

function and independent variables a priori. While a regression aims to minimise the 

difference between the actual and predicted values of the dependent variable, there is no 

assurance that a particular regression for a particular problem statement and dataset is the 

optimal one. Comparatively, a neural network can be represented as �� = �(�,�). The 

dependent variable, �� , is estimated by a set of independent variables (X) and their connection 
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weights (W) according to some complex1 function g. A neural network is trained to produce 

the optimal output. It can be likened to implementing a stepwise regression in that the process 

is repeated until the optimal parameters (referred to as connection weights) are obtained. In a 

multiple linear regression, f represents the set of linear operators whereas in a neural network, 

g represents a linear combination of a number of non-linear functions. A particular form of 

network referred to as a feed-forward neural network with no hidden layers can be viewed as 

a generalisation to a statistical model. In other words, the input data is passed to the complex 

function and then transformed to an output - there are no additional computations (hidden 

layers) between the complex function and the output. The error term (the difference between 

the actual and observed output) is not passed back to the complex function - the data is fed 

forward only. In a statistical model, input data is fed into a (complex) function to produce an 

output, thus it is similar to the network described above. The process of stepwise regression is 

analogous to the learning algorithm in a neural network. Many such learning algorithms exist, 

some of which, such as Hebbian learning, are closely related to statistical modelling (Hebb, 

1949). Further, the design of the complex function is referred to as the network architecture. 

As in econometrics, there is a multitude of "model architectures" to choose from. 

 

 

The similarities between neural networks and the more traditional regression model are quite 

striking, yet the application of the former has not yet been fully incorporated as a mainstream 

approach to solving financial problems. Wythoff (1993) classifies a neural network as a 

generalisation of a classical regression, where the Artificial Neural Network (ANN) is trained 

adaptively using non-linear learning laws (such as a sigmoid activation function) compared to 

matrix inversion in regression modelling. Indeed, the network is trained to produce the lowest 

error term, so it is unrestricted in choosing whether to provide a linear or non-linear function 

to map inputs to outputs. Hanson (1995) defines a back-propagation network as a “multi-

variate, non-linear, non-parametric, stochastic approximation with dynamic feature extraction 

and selection, which makes them capable of learning arbitrary mapping”. In other words, in a 

back-propagation network (a network where the data, including the error term, flows both 

                                                 
1 A complex function can either be defined as a non-real function or where the complexity of the function is 

computationally expensive. In other words, the calculation of the function uses a large amount of resources and 

is time consuming. 
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forwards and backwards), the function or independent variables do not need to be pre-

specified as in the case with regression modelling.  

 

From a practical perspective, the choice between two equally appropriate modelling 

techniques is primarily made by examining the costs of running each model. As the 

dimensionality and non-linearity of the problem increases, the neural network becomes 

superior to a regression in producing accurate approximations. In a regression, an increase in 

the number of independent variables, N, increases the number of polynomial parameters by 

Nm, where m is the order of the polynomial. However, in a neural network, the number of 

parameters grows either linearly or quadratically (N2) for a given m hidden layers. Thus, 

neural networks are considered (in some cases) to be less computationally expensive than 

traditional models. Basheer and Hajmeer (2000) recommend that when following an ANN 

approach, the researcher considers weighing the costs of a higher accuracy, more complex 

ANN to the increase in development time and lost characteristics of a statistical model. While 

the network may produce more accurate results (as given by a lower error term), the lack of 

interpretation and increase in production time may not be feasible for the research question at 

hand. 

 

 

According to Ruck, Rogers, Kabrisky, Oxley and Suter (1990), typical neural network 

models estimate Bayesian a posteriori probabilities when given an appropriately defined 

problem. As such, when given noisy financial data, a delay embedding of previous inputs is 

usually suggested. However, Giles, Lawrence and Tsoi (2001) outline two reasons that make 

prediction difficult for noisy, non-stationary time series data. First, as the network will learn 

from examples, there will exist infinitely many models that can work as well or better by 

learning from the same example. It is thus desirable to have a larger training set to enable 

better generalisation of results. Yet, as the training set size increases, the chance of non-

stationarity also increases. Second, small datasets that contain much noise makes the ANN 

prone to overfitting. Typical ANNs will thus often overlook the temporal relationships 

between the input variables and the output variable. Thus, it is suggested to use a form of 

Recurrent Neural Network (RNN) to maintain the temporal relationship between variables 

and to represent certain computational structures in a more parsimonious manner (Elman, 

1991). In particular, this thesis utilises a Non-linear Autoregressive with Exogenous inputs 

(NARX) neural network - in effect a time series model with lagged dependent and 
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independent variables. The selection of the NARX network is motivated by both empirical 

studies as well as tests of alternatives conducted in this thesis. 

 

1.2 Describing (and modelling) a financial market 

A financial market can be regarded as a complex, dynamic system. The interaction between the 

forces of supply and demand leads to an ever-changing environment, given by the change in asset 

prices per tick; whereas the arrival and assimilation of information coupled with the varied 

reaction of market participants to information lends credence to a market’s complex nature. 

Whether in the search for additional profits by the trader, or the representation of this system for 

academic exploration, it remains a question of whether the complexities of the financial market 

can indeed be captured by a neural network. Takens’ Theorem (Takens, 1981), states that any 

chaotic dynamic system can be modelled from a sequence of observations of the state of a 

dynamical system. At face value, this should imply that the dynamics of the market could be 

represented by a neural network. However, while one can easily argue that the financial market is 

dynamic, it is difficult to argue that the financial market is chaotic.  

 

 

A chaotic system is defined as one where a minor change in the initial conditions can give 

rise to significantly different outcomes. At the moment of new information arriving and being 

assimilated by market participants, it can be inferred that the initial condition of, say, a 

particular share, has been altered. This would culminate in a reaction that is prima facie 

unexpected, implying an element of randomness when it is in fact simply chaotic. If one can 

incorporate this new information in a model, one can provide output solutions that are in line 

with the actual target output. The biological link between the neural network model and the 

processing capability of the human brain leads to an interesting - albeit tenuous - perspective 

regarding market efficiency and profitability. If the market participant (here represented by a 

neural network) views share prices as non-random, he would be motivated by the need to earn 

additional profits. Further, if he were to predict the next observation (share price), using existing 

and new information, he would also view the market as being inefficient as described by the 

EMH. Given the tendency of investors to be overconfident (Barber and Odean, 2001) in their 

investment decisions, they would perpetually apply the same portfolio strategy based on their 

own predictions of the share price. If other investors follow the same behaviour, then the excess 

profits earned per investor would diminish to the point of being eliminated. Once eliminated, 

most investors (exhibiting arguably rational behaviour) would modify their strategy and 
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predictions whereas some investors (exhibiting arguably not fully rational behaviour) will 

continue to apply the same strategy and methodology in predicting a share’s future price. Thus, 

the once eliminated profits now begin to re-emerge and a cycle is formed. The cycles of 

profitability and efficiency are therefore offered as the characteristics of an adaptively efficient 

market, described by Lo (2004, 2005).  

 

 

1.3 Feasibility of study 

A study of this nature has not been published in a South African context, primarily as the 

present literature on testing the EMH focuses on tests of randomness in share returns. The 

literature groups these tests into predictability of security returns and profitability of trading 

strategies. Under the first grouping, the tests are further subdivided into constant or time-

varying parameters with permutations to the full sample, non-overlapping samples and 

overlapping samples. While employing these tests on the JSE is far from unique, they 

nonetheless provide the foundation to examine the returns generating process. The returns 

process will be attempted to be modelled by a regime changing time series model without 

exogenous factors as well as models from artificial intelligence (some of which make 

provision for exogenous factors). Here, exogenous factors are informed by the application of 

Arbitrage Pricing Theory (APT) and can range from macroeconomic, microeconomic or even 

behavioural (sentiment) based. Further, while artificial intelligence can be considered an 

enhancement to traditional econometric models, various data considerations, discussed later, 

need to be considered to ensure that issues such as structural breaks do not influence the 

results negatively. Thus, the contribution of this thesis is twofold - by combining elements 

from other disciplines, such as computer science and biology, approaches to solve or explain 

financial problems using inter-disciplinary approaches are enhanced; and an emerging 

framework for testing adaptive market efficiency is developed. 

 

 

1.4 Hypothesis and theoretical framework  

1.4.1 Problem statement  

Within the context of the South African equity market, is market efficiency, described by the 

AMH, indeed cyclical?  
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1.4.2 Primary hypothesis  

H0: Market efficiency is not cyclical.  

H1: Market efficiency is cyclical.  

 

1.4.3 Secondary hypotheses  

H0,A: Share price behaviour, in the South African market, does not follow a random walk.  

H1,A: Share price behaviour, in the South African market, does follow a random walk.  

 

H0,B: Share price behaviour, in the South African market, cannot be modelled by an 

autoregressive function with no exogenous inputs.  

H1,B: Share price behaviour, in the South African market, can be modelled by an autoregressive 

function with no exogenous inputs.  

 

H0,C: Share price behaviour, in the South African market, cannot be modelled by an 

autoregressive function with exogenous inputs.  

H1,C: Share price behaviour, in the South African market, can be modelled by an autoregressive 

function with exogenous inputs.  

 

 

This thesis aims to provide a practical means of testing the AMH over the period of 1997 to 2014. 

Whilst the objective is not to prove nor disprove the EMH, an indirect comparison should be 

expected to emerge from the results. The hypothesis of cyclical efficiency will be tested through 

three phases. Firstly, it is necessary to establish whether share price changes follow a random 

walk or not. If price changes are random, they cannot be predicted, thus enforcing the notion of 

weak form market efficiency. However, if price changes are not random, secondly, it is then 

viable to establish whether they can be modelled. In the simplest case, one can model current 

share prices based on prior values. If this model is found to be inadequate, then lastly, one can 

model share prices based on both prior values and exogenous factors. 

 

  

It is important to note that this thesis does not test the EMH per se, as the EMH is not 

considered to be a falsifiable theory. In other words, one cannot reject or fail to reject the 

EMH as a test of the EMH requires a pre-specified model of price determination. If one 
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rejects the EMH, it is not possible to determine whether the pricing model is rejected or 

whether the hypothesis itself is rejected. This is referred to as the joint hypothesis problem 

(Campbell, Lo, MacKinlay and Whitelaw, 1998) and is a consequence of the axiomatic (first 

principles) approach to the definition of an informationally efficient market (a market where 

any new anticipated information is already priced into the market and thus has no impact on 

price movements). This approach does not provide testable criteria on what an efficient 

market is nor its counterpart. Thus, it can be said that there has not been any proof against the 

EMH, as the EMH cannot be refuted. The tests of the EMH are thus simply descriptions of 

statistical facts about the behaviour of financial markets.  

 

 

This thesis provides an analysis of the behaviour of the South African equities market. In 

analysing different frequency data as well as trying to explain past price behaviour, the aim of 

the thesis is to show that, historically, market efficiency on the JSE has exhibited cyclicality, 

as defined by the level of which a model can determine prices (or equivalently, returns). 

While popular tests have emerged in determining whether markets are either weak, semi-

strong or strong form efficient (these are discussed in Chapter 2), there is no guideline as to 

how one determines market efficiency. Similarly, when the AMH was proposed by Lo (2004, 

2005), no framework as provided on how cyclical efficiency can be evaluated or tested. 

Therefore, this thesis offers a possible framework for evaluating efficiency, whether cyclical 

or not, in a financial market (here restricted to the South African equities market).  

 

 

1.5 Chapter Outline 

The following chapters will be presented in this thesis. Chapter Two provides a literature 

review for this study, beginning with an examination of market efficiency from different 

perspectives, continuing with an overview of time series econometrics and ending with 

developments in the field of finance. Chapter Three details the data and methodology of the 

thesis. An exposition of the dataset, tests of market efficiency and models used to determine 

the returns generating process are presented. Chapter Four provides the results obtained from 

the study and a discussion thereof, while Chapter Five provides concluding remarks on the 

thesis. 
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2 Literature Review 

“...I think we can suspect that there is no a priori necessity for actual Board of Trade grain 
prices to act in accordance with specific probability models. Perhaps it is a lucky accident, a 
boon from Mother Nature so to speak, that so many actual price time series do behave like 
uncorrelated or quasi-random walk,” (Samuelson, 1965, p.42) 
 
 
This chapter begins with an understanding of the concept of market efficiency, its history, 

theoretical and practical implications before continuing to explore the area of time series 

econometrics. The latter is of interest as it provides a foundation and context to examine 

linear and non-linear time series models. Further, a framework for identifying potential risk 

factors is covered, ending with some developments and esoteric areas of finance literature, as 

it applies to market efficiency.  

 

 

2.1 A qualitative view of market efficiency 

The behaviour of share prices has been a long standing enigma for academics in finance. The 

seminal work of Fama (1970) in defining the Efficient Market Hypothesis (EMH) and in 

particular, the weak form of the EMH has attracted much attention in the literature as it is 

perhaps the most intuitive and acceptable of the three forms to comprehend and test.  

 

 

 “If, in January, 1926, an individual invested $1 in one-month U.S. Treasury bills—one of 

the safest securities in the world—and continued reinvesting the proceeds month by month 

until December, 1996, the original investment would have grown to $14. If, on the other 

hand, an individual invested $1 in the S&P 500—a much riskier investment—over the same 

71-year period, this investment would have grown to $1,370, a considerably larger sum. 

Now suppose that, each month, an individual were able to divine [sic] in advance which of 

these two investments would yield a higher return for that month and took advantage of this 

information by switching the running total of his initial $1 investment into the higher-

yielding asset. What would a $1 investment in such a ‘‘perfect foresight’’ investment 

strategy become by December 1996? The startling answer is $2,296,183,456, more than two 

billion dollars!” (Farmer and Lo, 1999, p1.) 
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If prediction of financial markets were possible, the individuals in question would have 

reaped large rewards in return. It is, however, often justified to question if financial markets 

can be predicted at all, as the power of prediction may not always be fully accurate over time. 

The success of a particular trading rule over a particular time period may not always hold 

when adapted to other time periods. Thus, the profitability of following technical analysis 

waxes and wanes as time progresses, leading the trader to switch rules to ensure profitability 

is not diminished. Indeed, one of the implications of the AMH is that the profitability of 

following a particular investment strategy produces cyclical profits or losses over time. 

Similarly, the second implication of the AMH allows one to view market efficiency as 

changing over time. 

 

 

Beginning with the EMH, the title of the work of Samuelson (1965) clearly indicates the 

author’s position towards efficiency – “Proof that properly anticipated prices fluctuate 

randomly”. In an informationally efficient market, price changes must be random since 

information changes randomly even if information is properly anticipated. Upon closer 

inspection, this assumption provides a contradictory view of efficiency – the more efficient 

the market, the more random the price changes. This implies that there are degrees of 

randomness, in which a fully random process may not be predicted, but a partially random 

process may be predicted. This statement lends credibility to the idea of examining market 

efficiency as a relative concept rather than an absolute one. The market can be efficient or 

inefficient at any point in time, rather than efficient or inefficient across the examined sample 

period. This stance is adopted in this thesis and attempts are made to provide a framework to 

examine market efficiency across time. 

 

 

Further, the outcome of market participants trying to profit from available information 

eliminates the profit opportunity over time. If the profits were to be eroded instantaneously, 

an ideal assumption of frictionless (costless) markets is required, where no profits can be 

made from analysing available information. Over time, the nature and role of the market 

participant diminishes to the extent where they are non-existent, as the lack of profits and 

lack of any analysis of securities provides no benefits. At this point, traditional finance theory 

allows for the market to collapse altogether, as there are no participants along with any 

incentive to trading.  
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A departure to this notion is captured by the Adaptive Market Hypothesis. Consider again the 

case where prices are stagnant. At this point, it is reasonable to assume that arbitrage 

opportunities may exist, causing inactive participants to become active and strive for profits 

via analysis of information. Indeed, while several studies have concluded that price changes 

are random, no definitive conclusion has been reached (Lo and MacKinlay, 1988). In other 

words, while a particular study may show that prices changes are random or not random, the 

sheer volume of studies with either conclusion does not imply a consensus on the hypothesis 

itself. While academics disagree on whether this implies a violation of the EMH, the 

sustained profits of traders and other market participants are a clear indication of the lack of 

complete efficiency in the market. One reason for the disagreement perhaps stems from the 

lack of a testable hypothesis in the EMH. One needs to specify additional criteria, such as 

investor preference and information structure, to test the EMH. However, these criteria then 

make testing the EMH a test of the auxiliary hypotheses, which in themselves, cannot be 

generalised to other markets. In this thesis, market efficiency is tested by examining the 

return generating process, without making assumptions on the nature of the individual or the 

manner in which information is reflected in prices.  

 

 

A new avenue is to then treat the EMH as a reference point as per Farmer and Lo (1999), in 

that one questions the relative efficiency of markets against the EMH. Conceptually, the 

EMH can be considered a final state model that is fixed whereas the AMH is considered a 

dynamic model that reaches the fixed state of the EMH. If non-linear modelling of the market 

cycle is to be attempted, it first begs the question of whether changes in prices (returns) can 

be described by a continuous linear or non-linear function. Thus, from a first principles 

approach, it is necessary to determine if share prices do indeed follow a random walk or 

whether they are a deterministic (perhaps chaotic) process. Before embarking on 

understanding the AMH, it is necessary to observe how the concept of market efficiency has 

evolved since inception. 

 

 

2.1.1 The history of market efficiency 

The notion of market efficiency, indeed all subsequent developments in finance, can be 

traced back to the 19th century.  A French stockbroker, Jules Regnault, attempted to eliminate 
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a theoretical gap that existed in understanding stock markets. He observed that the price 

deviation of a security is directly proportional to the square root of time (Regnault, 1863). 

The longer one looks towards the future price of a security, the greater the volatility present 

in its future price. An alternative interpretation is that one can predict the price band of a 

security in the future, using historical price movements. The observation on the behaviour of 

price deviation was assisted through the use of statistical analysis and provided the 

foundation of how the current finance community analyses price movements.   

 

 

Developments in the field of physics led to the concepts of random walks and Brownian 

motion being introduced in finance by Pearson (1905). According to Pearson (1905), a 

random walk is a mathematical description of a path of successive random steps. A Gaussian 

random walk is one where the successive steps have an underlying Gaussian distribution – an 

enhancement of the discovery by Regnault (1863). This has become quite popular in finance 

theory (for example, in the use of the Black-Scholes option pricing model).  

 

 

With the emergence of interest and development in the field of economics, the earliest 

definition of a market is provided by Gibson (1889) in that “when shares become publicly 

known in an open market, the value which they acquire may be regarded as the judgement of 

the best intelligence concerning them”. Keynes (1923) stated that investors in financial 

markets are rewarded not for knowing better than the market what the future has in store, but 

rather for risk bearing. A typical investor will be compensated at a level commensurate with 

the level of risk taken – a concept that would later be developed into mean-variance 

optimisation. One can interpret this statement to also imply that any predictive analysis on 

share prices would not yield superior results; a resurgence of the definition of a market by 

Gibson (1889). At this point in time, two seemingly unrelated areas of finance have 

developed, namely the quantitative aspect of modelling share prices, and the notion of a 

market which consists of the aggregate of all securities. In the preceding 20th century, these 

two areas began to merge.  

 

 

According to Mandelbrot (1963), Mitchell (1915) was the first to note that price distributions 

are dissimilar to Gaussian population samples. Specifically, Mitchell (1915) noted that price 
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data since the early 1900s failed to follow a Gaussian distribution as there were too many 

observations near the mean and the tails (in other words, leptokurtosis was present). This is 

an important discovery in finance theory as it stands in contrast to subsequent theory built on 

the assumption of a Gaussian distribution of prices. Indeed, the Mandelbrot hypothesis holds 

that price distributions follow a power law (Pareto) distribution – a distribution that has 

leptokurtosis. After results from other authors, combined with the Wall Street Crash of 

October 1929, there was increasing evidence in favour of leptokurtosis in share price 

distributions and less belief in market efficiency. However, there were those that were 

convinced that share price changes were indeed random. Thus, the debate on the prediction 

and statistical distribution of share prices began.  

 

 

Cowles (1933) analysed the performance of investment professionals in the United States. In 

an attempt to test whether investment professionals can forecast future stock prices or select 

superior stocks to invest in, the author analysed news publications written by investment 

professionals. He concluded that stock market forecasters lack the ability to forecast 

perfectly. Indeed, out of the four groups studied, the recommendations from two groups 

produced below average returns, one above average and the other on par with average 

returns. In light of the above research, it became important to determine if stock price 

changes are random in nature. Cowles and Jones (1937) were one of the first authors to show 

that serial correlation in averaged time series price indices was significant. Analysing the 

frequency distribution of stock prices over varying levels of time (ranging from daily to 

yearly), the authors find serial correlation to be present in the higher frequency data more 

than in the lower frequency data. Roberts (1959) demonstrated that a random walk model was 

strikingly similar to an actual share price series. In considering weekly price levels and price 

changes, the author demonstrates, graphically, that there is an equal chance of obtaining a 

positive change as there is of obtaining a negative change. While the Runs test (described 

later) is used in the analysis, no other statistical proof is offered to conclude that share price 

behaviour follows that of a random walk. Osborne (1959) simultaneously showed that the 

logarithm of share prices follows Brownian motion2. In analysing price data, Osborne (1959) 

shows that the expected gain of investing in a share is zero, implying that the investor should 

be indifferent in picking which share he wishes to invest in. As the academic community 

                                                 
2 Also known as a Wiener process in time series, Brownian motion describes the random movement of particles. 
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began to generate interest in the idea of examining stock prices, so too did theories on their 

behaviour begin to emerge. Alexander (1961) concluded that while a random walk model 

best fits the data tested, there was presence of leptokurtosis in the distribution of returns. 

Mandelbrot (1963) first proposed that the tails of the distribution of returns follow a power 

law. In subsequent literature, this would become known as Mandelbrot's stable Paretian 

hypothesis - the hypothesis that stock returns follow a Pareto (power law) distribution in that 

they exhibit leptokurtosis. Meanwhile Granger and Morgenstern (1963) performed spectral 

analysis on market prices and found that short-run movements of the series obey the simple 

random walk hypothesis, but that long-run movements do not and that business cycles were 

of little or no importance. The authors demonstrate the applicability of a (then) new technique 

in statistics, that of spectral analysis, to analysing stock prices and returns. While they find 

minor evidence on the importance of business cycles, the results provide a basis for future 

studies in examining the seasonal effects of stock price behaviour. The authors further state 

that their results show that a short term investor (an investor with an investment horizon of 

less than one year), participates in a fair gamble in that his chances of earning superior 

returns is left to chance and not his stock picking ability; whereas an investor who chooses a 

longer term horizon may benefit from analysis of the business cycle. It is interesting to note 

that the results of Granger and Morgenstern (1963) present room to examine market 

efficiency over data of differing frequencies, an idea utilised in this thesis. Fama (1963) 

tested Mandelbrot’s stable Paretian hypothesis and concluded that the tested market data 

conforms to the distribution. The author acknowledges that returns may well fit a power law 

distribution better than a normal distribution but cautions (rather strongly) against full 

acceptance of this new hypothesis. Thus, debates around the statistical properties of returns 

data began in earnest. 

 

 

Subsequent refinements of random walks, martingales and Brownian motion led Samuelson 

(1965) to provide the first formal definition of efficient markets in terms of a martingale3. 

The author is particular cognisant of defining the martingale property of stock prices in light 

of the then ensuing debate on market efficiency. The work quite aptly describes that a less 

                                                 
3 A martingale is a stochastic process where the next value in the sequence is equal to the present observed value 

given all prior observed values. Martingale strategies can be traced to early application of probability theory to 

gambling which resulted strategies which were aimed at producing zero profits; betting at the “fair game” stake 
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restrictive stochastic model (that of a martingale) of stock price movements is preferred over 

stricter definitions and that if stock prices do follow a random walk, it not refutable proof that 

they will always follow a random walk, especially if different frequency data is examined.   

While the terminology of a martingale and random walk may appear similar, there is a 

distinction between them, namely that in a random walk, the next observation is independent 

of previous observations, whereas in a martingale, the next observation is a function of 

previous observations.  Fama (1965b) defined an efficient market (described in detail later) 

somewhat differently and from extensive empirical analysis, concluded that stock prices 

follow a random walk - the next stock price is a function of the previous stock price and a 

randomly generated error term. Mandelbrot (1966) proved that in competitive markets with 

rational risk-neutral investors, successive price changes are dependent on historical prices; 

they follow a martingale. The author introduced two further components for an efficient 

market, that of investor rationality and risk appetite. Both have roots in utility theory and the 

subsequent field of behavioural finance. At this point, an efficient market was one in which 

prices changes followed a Gaussian distribution and future prices were unpredictable. 

However, based on the plethora of research discussed previously, there was no single, holistic 

definition.  

 

 

While the Efficient Market Hypothesis was publicised by Fama (1970), the term itself was 

first introduced in the literature by Roberts (1967) in an unpublished manuscript. This 

definition, as well as the three forms of market efficiency, was later used in the definitive 

work on the EMH in a series of three articles beginning with Fama (1970). He defines an 

efficient market as “a market in which prices always 'fully reflect' [relevant] available 

information”. Following the introduction of the EMH, the debate on whether markets are 

truly efficient gathered momentum. However, based on the definition by Fama (1970), the 

two additional elements by Mandelbrot (1966), that of rationality and risk appetite, were 

included in subsequent research.  

 

 

2.1.2 Defining the Efficient Market Hypothesis 

Following the question of whether past stock prices can be used in predicting future prices, 

the literature shows two diverse answers to the question. Studies cited previously are divided 
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amongst chartists (those who purport that there are patterns inherent in stock returns) and 

random walk theorists, who purport that future stock price changes are independent of past 

stock price changes. In examining the behaviour of stock market prices, Fama (1965b) 

explores the theory on random walks and martingales, before empirically testing the 

hypothesis that stock price changes are random. The results presented form the establishment 

of the author's later work in defining a theory of efficient markets. Fama (1970) reviews 

empirical and theoretical work combining, amongst others, the work of Fama (1965b) and 

Roberts (1967), in developing a theory of efficient markets.  

 

 

The EMH requires that agents have rational expectations (that is, on average, the population 

of agents are correct, even when no single agent is) and that these agents update their 

expectations whenever new information arises. The EMH requires that investors’ reactions 

follow a Gaussian distribution so that no abnormal profits can be realised and that price 

changes follow a random walk. Recall that under a random walk, successive price changes 

are independent of each other. Thus, in aggregate, these successive changes are more than 

likely to be normally (Gaussian) distributed. It is important to note that these two criteria 

must be satisfied jointly. Thus, any test on market efficiency requires that one test both the 

normality assumption and the independence assumption. Each of the forms of efficiency, as 

described by Fama (1965b) requires a differing set of additional requirements to hold true. 

 

 

The weak form efficiency states that future prices cannot be predicted by analysing past 

prices. In the long run, investment strategies will not earn excess returns after costs. More 

specifically, strategies focused on technical analysis will not be able to consistently produce 

excess returns whereas strategies focused on fundamental analysis may still provide excess 

returns. Statistically, share prices do not exhibit serial correlation, in other words, there is no 

dependence on successive price changes, implying that they follow a random walk. 

 

 

The semi-strong form of market efficiency provides that share prices adjust quickly to public 

information. Neither a fundamental nor a technical analysis-based strategy will earn returns 

in excess of the market average. However, those that have access to private information may 

be able to obtain superior returns.  
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Lastly, under strong form efficiency, share prices fully reflect both public and private 

information. Thus, no sustainable superior returns, after costs, can be achieved in the long 

run. 

 

 

Tests of the above three forms of market efficiency are varied in approach and conclusion. 

This thesis approaches the problem of testing for market efficiency in an inductive manner. 

By observing the returns generating process, it is first sought to determine whether this 

process follows a random walk (or martingale). If it is found that the process is non-random, 

the next question is to provide a possible model that fits this return process, with the possible 

aid of exogenous variables. Given the description of the EMH above, the theoretical 

foundations of the EMH are now explored. 

 

 

2.1.3 An axiomatic approach to informationally efficient markets 

Samuelson (1965) provided the first theoretically rigorous foundation of the now Efficient 

Market Hypothesis of Fama (1970). He argues that the unpredictability of future price 

changes is not a valid basis for tests of information efficiency (recall that information 

efficiency refers to the instantaneous reflection of new information in the stock price). If one 

finds that future price changes cannot be predicted, one must be confident that the model used 

is robust to generalise that conclusion. Given the finding that future price changes cannot be 

predicted, one cannot assume that this implies that there is efficiency in market participants 

analysing information and reflecting this in the current price. Rather, Samuelson (1965) 

viewed the market as efficient where prices were equal to fundamental values when there is 

perfect competition and all participants have free access to relevant information. Further, 

Samuelson (1965) also states that actual markets may have such characteristics by chance. It 

is still arguably difficult to test whether prices are equal to fundamental values without a 

universally accepted equilibrium price model and means of ascertaining whether there is 

perfect competition and free access to relevant information in the market one is testing in. 

However, it is important to note that Fama's (1970) definition of the EMH relates only to 

price and not fundamental value. A market is efficient if the price reflects all available 

information; this does not imply that the fundamental value has to equate to the price. As 

such, the framework provided in this thesis relates to modelling the data generating process 
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with respect to prices (returns) and makes no assumption on the underlying fundamental 

value of the firm. 

 

 

From Samuelson's (1965) model of price changes, the fair game theorem emerged in 

determining future prices. Briefly, this theorem stated that the expected price change, based 

on available information, is either nil or the market average, implying that the value of the 

information is either worthwhile and reflected in the market average, or worthless and not 

expected to change the price. Thus, current market prices will reflect all available information 

relevant to said prices. Any investor can therefore not profit from any analysis of past prices 

as this information is already incorporated into the current price. Fama (1965b) attempted to 

interpret the EMH as an empirically-based, falsifiable theory that could explain the behaviour 

of share prices. His motivation was different from Samuelson (1965) who strove to show that 

share prices do not follow a Gaussian distribution and instead follow a Paretian distribution.  

Samuelson (1965) offered a large-scale view of price behaviour, making minimal 

assumptions on the investor whereas Fama (1965b) assumed that the individual efficiency of 

a particular stock price aggregates to create an overall market efficiency. His assumption was 

that prices at which individual transactions are made are elements of the distribution whose 

price changes were independent and identically distributed. Fama (1965b) sought for 

characteristics of markets to support the assumption of Samuelson (1965) but was aware of 

two contradictory characteristics. First, that there are individuals who are considered leaders 

by others and are followed by other market participants; and second, there is inertia in the 

process of information dissemination - positive news is followed more often by further 

positive news (and vice versa). These two contradictions have been pronounced in the 

behavioural finance literature. The former is now known as herding behaviour - the tendency 

of investors to follow the group decision as opposed to their own (whether rational or 

irrational). In South Africa, Seetharam and Britten (2013) outline the literature on herding 

behaviour studies done in developed and emerging markets and document the herding effect 

on the JSE. The authors find that investors tend to herd more preceding a severe downturn in 

the ALSI index than preceding an upturn in the ALSI index. The authors postulate that this is 

due to investors becoming fearful in times of a recession and greedy in times of an expansion. 

The latter contradictory characteristic is the momentum effect, first documented by Jegadeesh 

and Titman (1993). Thus, Fama (1965b) created the image of the sophisticated trader, one 

where their impact on the market is significant to the extent where they reduce the dispersion 
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of the distribution of share prices to their expected values. Thus, as the sophisticated trader 

increases in expertise and in population, their approximations of the share price will 

converge, in line with the Samuelson (1965) hypothesis.  

 

 

The works of Fama (1965b) and Samuelson (1965) show two divergent approaches to market 

efficiency - one which shows efficiency as a state (an axiomatic approach) and the other 

which shows efficiency as a process (an empirical approach). Thus, Samuelson (1965) 

defined efficiency as a state in which the conditions of perfect competition, zero transaction 

costs and complete, freely available information is met. In contrast, Fama (1965b) defined 

efficiency as the output produced by sophisticated traders. Both methods can be criticised in 

that Samuelson (1965) did not investigate the reality of his assumptions whereas Fama 

(1965b) did not analyse if sophisticated traders are necessary or the only influence on price 

convergence. It is worth noting that no research was conducted by Fama (1965b) into the 

nature and behaviour of these market agents, but it was rather assumed that their existence 

can be observed (and confirmed) by examining share price data. Indeed, in a later article by 

Mandelbrot (1971), it was shown that martingales alone cannot account for the variability of 

price changes in markets. There was thus a need to examine the agents themselves, as their 

behaviour is what ultimately drives stock price changes. In an attempt to reconcile the 

concept of market efficiency with anomalies documented in behavioural finance, Lo (2004) 

argues that one should view efficiency as the interaction of market participants. As their 

interaction increases, there is a distinct possibility that information is processed more 

efficiently, leading prices to eventually reflect all available information. The term 

"eventually" expands the current thinking on market efficiency, in that there are varying 

levels of efficiency. Attention is now given to the market participant and his perspective on 

efficiency. 

 

 

2.2 A market participant's view on efficiency 

There exists a large body of literature on testing the efficacy of a trading rule in earning 

above average returns after costs. Fama (1965b) followed this approach by stating that if no 

trading rule can beat the market in the long run, then the market is considered efficient. While 

this is a practical approach to testing efficiency, it lacks theoretical rigour. Indeed, Campbell, 
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Lo, MacKinlay and Whitelaw (1998) described these tests as having captured the interest of 

the financial community due to their practical application. It is due to this practicality that the 

notion of market efficiency is hardly considered an issue in the lives of financial 

professionals. From the viewpoint of a financial professional, say a trader, the question of 

whether markets are efficient or not is irrelevant. The primary drive for the trader is to 

"survive" by ensuring that his trades generate positive profits. Given that not all traders aim 

to merely survive, those that wish to thrive should be earning returns above that of the 

market. Taking into consideration the approach by Fama (1965b), it follows that a trader 

aiming to thrive would not consistently use the exact same trading rule. This can be 

rationalised as follows. If a particular trader is successful by following a particular trading 

rule, other traders would inevitably discover the high profit potential from this rule and adopt 

it. With many traders adopting the same rule, the finite profit pool is now shared amongst 

more traders, leading to at least one trader considering an innovation to the rule. If successful, 

the trader now earns superior profits to his peers, causing the cycle to repeat.  

 

 

In the short run, there are arguably as many rules (or investors) that earn above average 

returns as those that earn below average returns. In other words, as the chances of having a 

positive return are as likely as a negative return, can one argue that the market is efficient in 

the short run? As one looks at a longer time period, the expectation is to find fewer rules that 

beat the market consistently after risk and costs have been taken into consideration. 

Following Alexander (1961), finding a rule that consistently beats the market is evidence in 

favour of market inefficiency (and vice versa). Realistically, one cannot define the set of all 

possible trading rules in existence, thus one cannot calculate the significance of the success of 

one rule over another. The outcome would be left to pure chance. Further, if the investment 

horizon is extended, it may become an impracticality in itself - a rule may have beaten the 

market over a longer time span than the lifespan of an average investor (or one can assume 

extremely low discount factors or unlimited intergenerational altruism). The discovery of any 

winning trading rule (which implicitly uses historical data) suffers from the benefit of 

hindsight. There is no plausible reason to assume that that specific trading rule will also be a 

winning rule in the future. As the conditions in the market, such as the number of 

participants, regulation and innovation, change, so too does the chances of earning abnormal 

profits. It is thus left to the trader to either adapt a new trading rule or adopt a previously 

winning rule if he wishes to thrive or merely survive in the "new" market environment. These 
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changing market conditions have drawn the attention of some academics as one can examine 

the impact of new information to price changes. 

 

 

2.2.1 Tests of the speed of adjustment of prices to new information 

Anomalies such as the January effect, weekend effect4 and momentum effect have been 

widely found as evidence against the EMH. Proponents of the EMH argue that these 

anomalies are due to selection bias (the desire to focus on interesting subject matter) while 

other random variable distributions remain outside the attention of EMH critics. Similar 

arguments can be made for value and growth shares. Indeed, Lakonishok, Shleifer and 

Vishny (1994) term growth shares glamour shares, in that they are currently popular stock 

picks for investors. However, as more investors pick these glamour shares, the return gained 

by each investor diminishes, leading the investor to remove funds from the share. Jung and 

Shiller (2005) also note that Samuelson's dictum, the phenomenon of a single share following 

the predictions of the EMH closer than market aggregates, may indeed be prevalent in many 

research articles.  They argue that Samuelson's dictum is more plausible if there is more 

information about each stock's (firm's) earnings, dividends or cash flow changes than there 

are of the aggregated market. Given the diversity in the above information for each firm and 

assuming that half of the firms have positive information with the other half having negative 

information, a simple aggregation of them may well signal that the aggregate market has not 

received any new information. Under Jensen's (1978) definition of the EMH (that the EMH is 

an extension of a zero profit competitive equilibrium condition bridging the gap between the 

certainty world of classical price theory to the uncertain world of dynamic market behaviour), 

it is likely that the returns from value shares are due to their more risky nature as well as the 

higher transaction costs of information acquisition. The dichotomy between price and 

fundamental value is now explored.   

 

 

2.2.2 Discrepancies between price and fundamental value 

Shiller (2003) provides a survey of tests of this nature, but shows that there is no consensus in 

their results. While it is shown that the distribution of price changes does not always follow a 

                                                 
4 The tendency of share returns to be abnormally high in January or on a Monday, respectively.  
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Gaussian distribution, there is no agreement as to how much deviation nor whether how long 

the deviations persist, in order to refer to a market as inefficient. While variance bounds tests 

(discussed in the Methodology chapter) may assist, their underlying martingale distributions 

do not allow for high variability in price changes as well as providing little insight into the 

convergence (divergence) process of prices towards (away from) fundamentals.  This may 

lead to a market observer interpreting a divergence as evidence of inefficiency and another as 

evidence of efficiency after the market has adjusted to it. Thus, a market observer's views are 

independent of the statistical results of, say, a variance bounds tests. Any test of efficiency 

would therefore have to isolate the effect of changing fundamentals from the effect of excess 

volatility (noise). As such, a theory of arbitrage pricing has emerged where one determines 

the effect of a number of factors (either fundamental or not) on the returns of an asset. This 

theory is discussed in detail in Section 2.6.  

 

 

A further definition of efficient markets was provided by Black (1986) where prices in an 

efficient market would never decrease below 50% or increase above 200% of the 

fundamental value.  

 

 

“Still, the further the price of a stock moves away from value, the faster it will tend to move 

back. This limits the degree to which it is likely to move away from value. All estimates of 

value are noisy, so we can never know how far away price is from value. However, we 

might define an efficient market as one in which price is within a factor of 2 of value, i.e. the 

price is more than half of value and less than twice value. The factor of 2 is arbitrary, of 

course. Intuitively, though, it seems reasonable to me, in the light of sources of uncertainty 

about value and the strength of the forces tending to cause price to return to value. By this 

definition, I think almost all markets are efficient almost all of the time. Almost all means at 

least 90%.” (Black, 1986, p.533). 

 

 

The definition of Black (1986), while not quite theoretically grounded, offers a practical 

insight into market efficiency. However, the author does not account for the historical 

evolution of variance, a problem linked to an observation by Mandelbrot (1977) that common 

models of price changes do not allow for the variability, discontinuity and concentration of 
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price changes in markets. This has dual implications. First, one needs a model of price 

determination with serial dependence as markets are not able to respond instantaneously to 

news. Second, a sample from a fractal random process5 may exhibit features in which a 

technical analyst may base a recommendation on. Given that the current view on market 

efficiency is still a binary one, Samuelson's (1965) deduction of the concept of efficiency as 

unpredictability still holds, implying that the EMH is not falsifiable as it stands. Apart from 

conceptual grounds of testing market efficiency, it is important to be aware of the practical 

limitations of financial markets in deducing whether said markets are efficient or not. 

 

 

From an empirical viewpoint, one can only test what one observes. Therefore, if price is the 

result of an interaction between a buyer and seller, this is the only observable data one can 

gather to test market efficiency - one cannot observe the true value of a share, only what 

market participants pay (receive) for it. As such, the notion or concept of value diminishes in 

its significance to a researcher as the value of a share is arguably independent of its price (the 

buyer and seller will agree upon a particular monetary value for a particular share, 

irrespective of the share's perceived or true monetary value).  

 

 

2.3 A statistical view of market efficiency 

Grossman and Stiglitz (1980) criticised the work of Fama (1965b) in that the efficient market, 

as defined, requires the existence of sophisticated traders. Further, after sophisticated traders 

have achieved their goal of eliminating abnormal profit, they would disappear, thus making 

the market inefficient. This paradox becomes apparent if one views the "lifecycle" of a 

sophisticated trader. These traders cannot earn above-average returns in an efficient market, 

thus they would have no incentive to trade. In the long run, it thus becomes relatively more 

profitable to hold the market portfolio of securities, which is acquired at minimum cost and 

freely available information. Yet, by holding the market portfolio, there is no incentive for a 

sophisticated trader to invest in acquiring information in the first place. One comes to the 

conclusion that the ideal of market efficiency, as described by Fama (1965b) is unattainable 

as there is no incentive for the emergence of sophisticated traders. In other words, if markets 

                                                 
5 A random process that appears to have a fractal (or similar) pattern. 
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were in a state of equilibrium, the end of information acquisition would cause the market to 

move from equilibrium. The argument of Grossman and Stiglitz (1980) revealed that the 

assumptions made on the EMH hide complex issues in the actual functioning of markets as 

well as the number, motives and behaviour of the sophisticated traders themselves. The 

definition of an efficient market by Jensen (1978) postulates that risk adjusted returns should 

be compared net of transaction costs, as the cost-benefit analysis of information has an 

important role in incentivising market participants in acquiring information. There is also the 

further dichotomy of a statistical and market participant view of market efficiency, the latter 

of which was discussed above.  

 

 

Most of the extant literature on market efficiency investigated whether prices in an efficient 

market followed a random walk and were further normally distributed. While many tests 

were performed, the argument of Samuelson (1965) was often overlooked; that the 

unpredictability of price changes is not sufficient to test market efficiency as a rejection of 

market efficiency may well be due to an inappropriate equilibrium price model being used. 

The random walk models used formed part of a wider group of models known as martingales, 

which impose lesser restrictions on the price change distribution. According to Mandelbrot 

(1977), these restrictions, while more lax, were still too rigid to account for actual price 

behaviour. After two decades following Samuelson (1965), Lo and MacKinlay (1988) 

developed a test for variance bounds, which is more appropriate for martingales with 

heteroscedastic errors. The authors propose examining the variance of stock prices as this will 

provide more information about the time varying nature of stocks. Using weekly data from 

1962 to 1985, the authors develop a specification test (later known as the variance ratio test) 

to reject the random walk hypothesis. However, the authors state that a rejection of the 

random walk hypothesis does not imply a rejection of market efficiency. Recall that the EMH 

provides three forms of market efficiency, implying that if the lowest (weakest) form does 

not hold, then higher (stronger) forms of market efficiency can still hold. Further 

developments, which focused on the individual's ability to process information were in the 

form of rational expectation models of LeRoy (1989). In this model, the author allowed for 

serial correlations of price changes in an efficient market when risk preferences shifted, 

implying that the presence of serial correlation cannot refute the EMH. This notion can be 

considered plausible when viewed over a period of time. Serial correlation implies that 

patterns exist in the data. Thus, a rational investor would want to capitalise on those patterns 
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by trading. Over time, the profits generated from these trades would be eliminated as more 

rational investors identify the same pattern and act upon it. Thus, in the long run, the profits 

are eliminated, resulting in no abnormal profits from being made by any market participant. 

This preserves the definition of market efficiency according to the EMH. 

 

 

Fama (1976) stated that the EMH is not an empirically testable (falsifiable) hypothesis as a 

refutation of the EMH can either point to the EMH not holding or the equilibrium price 

model not holding. In summary, four critiques of the EMH hamper the ability to test the 

hypothesis. First, inappropriate models of price changes are most often used; second, the joint 

hypothesis problem of testing both market efficiency and the equilibrium price model; third, 

the theoretical possibility of serial correlation in an efficient market and fourth, the lack of an 

emergence of sophisticated traders. The first two point to varied statistical treatments in 

solving for a test of market efficiency, while the latter two point towards a philosophical 

approach in defining efficiency. In an attempt to overcome these criticisms, the use of a 

neural network, along with the framework of arbitrage pricing theory (Ross, 1976) is used in 

selecting the input variables. This theory provides an intuitive and encompassing view of 

selecting factors which can influence price changes. While there is some form of bias in that 

the initial dataset contains variables selected by the researcher, the use of both an unspecified 

a priori model as well as data sampling governed the APT framework, should overcome the 

joint hypothesis problem commonly faced when using the CAPM. Further, the neural 

network does not provide a list of significant variables as one only knows that from the input 

variables used, they are combined in some manner to provide the most accurate output. Thus, 

a rejection of market efficiency does not involve rejection of the APT framework used in this 

study. The possibility of serial correlation in an efficient market is discussed in Section 2.5 

below, whilst the emergence of sophisticated traders is given indirectly by testing the cyclical 

nature of market efficiency. If one has a series of conclusions of whether markets are efficient 

or not at each point in time, then these differing conclusions can arguably be due to the 

emergence (divergence) of sophisticated traders. 

 

 

The critiques raised above arose primarily due to Fama (1965b) attempting to create a 

framework around actual financial markets without diverging from the axioms set out by 

Samuelson (1965). This led to a range of tests being conducted on the EMH, when in reality, 
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the EMH could never truly be falsified, without first providing a universally accepted 

equilibrium pricing model. Such models are now explored below. 

 

 

2.3.1 Models of market efficiency 

Fama (1970) provides a review of the (then) literature on market efficiency. He states that 

much of the theoretical development came after empirical results were found. As the primary 

statement of the EMH is that prices fully reflect all available information, one must show that 

the expected return of a security is a function of risk based on some set of information. This 

describes the fair game model.  

 

 

2.3.1.1 Fair game model 

The fair game or Martingale model states that a stochastic process with the condition of an 

information set is a fair game (where the expectation of a variable is equal to the actual value 

of the variable) given by  

 

 �(����|��) = 	0 {1} 

 

Fama (1970) incorporated this model into the EMH. It is expressed as follows 

 

 ��,��� = ��,��� − �(��,���|��) {2} 

 

with  

 

 �(����|��) = 	�(��,��� − 	�(��,���|��)) {3} 

 

where ��,��� is the excess market return of security j at time t+1, ��,��� is the actual price of 

security j at time t+1 and �(��,���) is the expected price of security j at time t+1 given the 

information set ��.  
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According to the Fair Game model, the excess market return of a security should be zero, 

implying that once all information is incorporated into the current price, one cannot earn 

returns above that of the market.   

 

 

2.3.1.2 The submartingale model 

The submartingale model makes a small adjustment to the Fair Game model - the expected 

return can also be positive. Recall that Samuelson's (1965) hypothesis implies that the value 

of the information is either worthwhile and reflected in the market average, or worthless and 

not expected to change price. This adjustment implies that the price of a security is expected 

to increase over time, perhaps also due to the increased level of risk inherent in the security.  

The submartingale model is represented as 

 

 � �
����
��

� ≥ ��,� 
{4} 

 

 

� �
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�
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≥ 0 

{5} 

 

 

The model states that the expected return of the security follows a submartingale, conditional 

on the information set ��. The information set itself holds no value in forecasting security 

prices, except that the expected return can be equal to or greater than zero. This implies that 

no trading rule based only on the information set can achieve greater expected returns than a 

buy and hold strategy during the future period in question (Fama, 1970). Given the choice 

between analysis of price patterns and of the financial statements of a company, Fama (1970) 

would argue that in a weak form efficient market, analysing price patterns holds no value in 

earning abnormal returns. 
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2.3.1.3 The Random Walk model 

The intrinsic value of a share is measured by the sum of future discounted cash flows 

accruable to investors. Any new information that can be expected to change a company's 

future performance must be immediately reflected in the share price as delays in this 

diffusion can be exploited by certain individuals to forecast future profitability. Thus, prices 

should only be able to respond to new information. Since this information arrives randomly, 

prices must fluctuate unpredictably. The Random Walk model of share prices is represented 

as follows. 

 

 ���� = 	�� + ���� {6} 

 

Where ���� is the price of a security at time t+1 and ���� is a random error term with zero 

mean and finite variance. 

 

 

The equation above indicates that the future price of a security is based on the arrival of new 

and unpredictable information. This implies that price changes are independent of past price 

changes. Fama (1970) argues that the random walk model is an extension of the fair game 

model in that the latter indicates conditions of the market equilibrium that can be stated in 

terms of the return generating process of the former model. Tests of the weak form of the 

EMH consider the above three models in their hypothesis as the determination of whether the 

market is weak form efficient or not is a function of both the return generating process and of 

the tests employed. 

 

 

2.3.2 Weak form tests 

The tests of the weak form of the EMH are synonymous with testing the random walk 

hypothesis; the notion that stock price changes are random and thus unpredictable. As with 

most literature on testing the EMH, tests done on the weak form of the EMH show 

conflicting results. Tests of the weak form are based on examining the interrelationship 

between current and past prices. Practically, the runs test, tests for autocorrelation and the 
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variance ratio test have been used to test for weak form efficiency.6 Given the array of 

literature on the topic, a select few works will be discussed here. 

 

 

Sharma and Kennedy (1977) employ the runs test to test for weak form efficiency on the 

Bombay, London and New York Stock Exchanges. Using monthly observations over an 11 

year period, they find that shares on the Bombay Stock Exchange do follow a random walk. 

A combination of approaches is adopted by Dickinson and Muragu (1994) who also find that 

share prices on the Nairobi Stock Exchange follow a random walk. Their study examines 

weekly and monthly data for a sample of 30 of the most liquid shares on the exchange. 

Employing correlation and runs tests, the authors find that the majority of share prices 

examined follow a random walk. While they then generalise this result to conclude that the 

overall Nairobi stock market follows a random walk, the authors are careful to place their 

results in the context of literature on the EMH. They explicitly state that while their results 

show evidence in favour of a random walk, they are cautious to imply that the Nairobi stock 

market is weak form efficient. A possible reason for this hesitation is that one cannot easily 

generalise a result of a particular sample period and data frequency to time periods and data 

frequencies not used in the study. Further, the methodology used needs to be robust enough 

to provide comprehensive evidence that can hold across out-of-sample data. Other 

researchers, such as Seddighi and Nian (2004) use spectral analysis and ARCH tests for 

detecting if the Chinese market is weak form efficient. The authors conclude on a particularly 

small sample of daily share returns from the Shanghai Stock Exchange that the Chinese stock 

market is weak form efficient. The frequency of the time series under observation has also 

been investigated to determine if a result that holds for a particular frequency will hold at 

other frequencies. For example, Groenewold (1997) uses daily, weekly and monthly data to 

determine if the Australian and New Zealand Stock Exchanges are weak and semi-strong 

efficient. The author employs the popular tests of autocorrelation, runs and cointegration on a 

17 year sample period. The results however are mixed - the returns appear to have some 

predictability according to the autocorrelation coefficient but are stationary in the long run. 

This could possibly imply that if one uses higher frequency data to test market efficiency, one 

might find a short term "memory" of the series, which dissipates over lower frequency data. 

Thus, to examine this notion, daily, weekly and monthly data are used in this thesis to 

                                                 
6 Each of these tests are described in the Methodology chapter. 
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examine market efficiency. While much literature exists on tests of the weak form of the 

EMH, it becomes redundant to mention them as there was no conclusive evidence of whether 

emerging or developed markets are weak form efficient. 

 

 

2.3.2.1 Calendar effects 

The finding of abnormal returns in markets during particular time periods has prompted 

researchers to examine if there are any peculiarities in markets which can possibly explain 

these anomalies. A branch of literature which focuses on calendar effects explaining 

abnormal returns is vast, with various reasons provided as to why abnormal returns occur. For 

example, Sullivan, Timmerman and White (2001) provide a short overview of the calendar 

effects literature, citing observations from particular days of the week that affect returns, to 

weeks of the year that affect returns. From the survey of the literature, it is common to see 

these empirical observations being preceeded by a theoretical model explaining their 

existence. Thus, the authors question whether these effects are due to the researcher’s ability 

to data mine. Here, the notion of data mining refers to testing hypotheses that are not 

independent of the data – in other words, the data drives the hypothesis, as opposed to some 

theoretical basis that drives the model. The authors mention that if multiple models (or tests) 

are applied to a data set, it is likely that some of them are likely to provide a positive 

outcome. However, if the tests are well motivated by their theoretical foundations, along with 

some consensus of results, then it is likely that the overall outcome is not a feature of data 

mining.  

 

 

Thus far, common tests for weak form efficiency include: the runs test, examining 

autocorrelation coefficients and the ADF test for stationarity. Poterba and Summers (1988) 

and Lo and MacKinlay (1988) provided the foundation for the variance ratio (VR) test of the 

random walk hypothesis. This test compares the variance of the stock return series against 

stationary alternatives, under the assumption that the variance of random walk increments 

will be linear across the sample. The VR test can be used to test secondary hypotheses of the 

random walk, specifically whether stock prices mean revert. While the concept of the test is 

straightforward, it is often difficult to implement in practice as the test relies on overlapping 

data in computing the variance of long term horizon returns. Lo and MacKinlay (1988) 
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suggest this approach as it can improve the statistical power of the test and suggest that an 

asymptotic distribution be used instead of the exact distribution of the test. However, while 

other tests have been developed to remedy the shortcomings of the VR test, the VR test still 

remains popular in literature. Given an array of tests to use in examining the return generating 

process of share returns, one should also not assume that share returns follow certain pre-

specified conditions. Three such assumptions are now discussed. 

 

 

2.3.3 Assumptions underlying share returns 

In testing the weak form of the EMH, three assumptions need also be considered, namely that 

of normality, independence and stationarity of returns. 

 

 

2.3.3.1 The normality assumption 

Prior to an alternative by Mandelbrot (1963), the assumption of normality in share returns 

was scarcely questioned. Mandelbrot (1963) conducted investigations into both the excess 

kurtosis and skewness of return distributions and thus developed an alternative Power Law 

hypothesis of distributions based on his findings. His position was later reiterated as he noted 

that “Bachelier’s assumption, that the marginal distribution of L(t,T) (returns) is Gaussian 

with vanishing expectation, might be convenient, but virtually every student of the 

distribution of prices has commented on their leptokurtic (i.e., very long-tailed) character.” 

(Mandelbrot, 1966, p.396). Thus, while the normality assumption is required for the EMH, 

many practical tests of the EMH show that this assumption is violated. However, Fama 

(1965b) does not see this violation as evidence that the EMH does not hold.  

 

 

Fama (1965b) studies the statistical properties of returns using shares on the Dow Jones 

Industrial Average (DJIA). He finds that a greater proportion of observations are centred 

around the mean as well as in the tails of the distribution. Further, when examining extreme 

tail observations (those that are beyond five standard deviations from the mean), he finds that 

they are almost 2000 times greater than that implied by a normal distribution. These findings 

indicate leptokurtic behaviour of the returns and Fama (1965b) concludes that a normal 



 33 

distribution is ill fitting to the data. Praetz (1972) uses traditional goodness of fit measures on 

the Sydney Stock Exchange and finds similar leptokurtic behaviour. He further offers an 

alternative distribution, based on Brownian motion, which is claimed to fit the data better 

than that of the Pareto or Gaussian distribution. Officer (1972) has similar findings over a 

longer time period (1926 to 1968) on data from the Centre for Research in Security Prices 

(CRSP) database. He finds that the distributions are reasonably stable across time, yet not 

across the sample of stocks used. Further, under differing frequencies, the stability of the 

distribution changes - daily returns produce a stable distribution only up to 20 days, whereas 

monthly distributions are stable up to 5 months. These results point towards examining 

efficiency using differing frequencies of data as the results may not always hold or be 

generalised if only one particular sampling frequency is used. This approach is adopted in 

this study as daily, weekly and monthly return data are examined. 

 

 

The effect of non-normality can also been seen in event studies. Brown and Warner (1985) 

quantify the level of kurtosis in shares in the CRSP database. The authors find that the 

kurtosis detected is more than double that in a normal distribution and that the frequency of 

data plays a significant role in the conclusion of non-normality. Specifically, daily returns 

will exhibit greater departures from normality relative to monthly returns. Indeed, the 

presence of leptokurtosis is found in numerous studies and pointed out by Engle and Patton 

(2001). The latter authors show that the range of kurtosis is normally between 4 and 50 times 

that required in a normal distribution.  

 

 

From a risk based perspective, Arditti (1967) is among the first set of authors to show that 

leptokurtosis is also accompanied by asymmetry in return distributions. The author 

hypothesises that a risk averse investor will be unwilling to invest if the investment will 

potentially yield a higher loss relative to its gain. This asymmetry can be captured by 

skewness – where the given outcome is more likely overall, but the skewed distributions 

affect the likelihood of this outcome. Using cross-sectional analysis, Arditti (1967) 

established factors that affect returns of firms during 1946 to 1963. Skewness was found to be 

significantly negatively related, implying that investors prefer positive skewness (as positive 

skewness implies that there is a higher likelihood of an observation being greater than the 

mean).  
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2.3.3.2 The statistical independence assumption 

Durbin and Watson (1950) describe independence as the serial correlation function of returns 

that should decay to zero. It is given by 

 

 �(�) = 	������(�), �(� + ��)� = 	� {7} 

 

 

Where C(t) is the serial correlation coefficient of order t, r(t) is the return of a given series at 

time t and Dt is the time scale. A market is thus described as efficient in the absence of linear 

serial correlation. Further, if serial correlation is present, then the anomaly is short lived. The 

assumption of independence can be viewed either from a statistical perspective or from an 

investor’s perspective. If an investor finds that returns are not independent, then investors can 

theoretically use knowledge of past returns to increase future profits (Fama, 1965b).  

 

 

Kendall (1953) studies the properties of returns and finds that the pattern of events in a price 

series is less systematic than what is generally accepted. He concludes that these price 

changes follow a random walk and are thus independent. Further, the author argues that it is 

generally difficult (at least at the time) to distinguish between a true random series and one 

where the systematic element is particularly weak. This implies that when testing any 

hypothesis, one should take caution to the results and model(s) used. Lastly, the author states 

that given his results on a lack of serial correlation in the sample of stock prices, he argues 

that it is near impossible to predict values, in their case one week ahead, without any 

additional information. While Fama (1965b) states that it is difficult to find a series that 

conforms to the independence assumption, statistical independence holds even if some level 

of dependence is present. Further, the simplest explanation for the assumption of 

independence is due to the arrival of new information, which does not follow any consistent 

pattern. After testing returns on the DJIA, he finds that most follow the independence 

assumption with the remainder being serially correlated but with the serial correlation 

decreasing at higher orders. When correlation is statistically significant, they are low enough 

to ignore any statistical or practical implications. Noting that the empirical evidence for 

market efficiency was publicised before the theory, one questions whether the results of Fama 

(1965b) were taken into consideration in developing higher hurdles for the EMH. Over the 
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long run, Campbell et al. (1998) show that the independence assumption is violated. They 

test returns of shares on the CRSP value and equally weighted index and find that there is 

significant first order serial correlation in weekly and monthly returns. Further, the serial 

correlation decayed slower on the equally weighted index than the value weighted index. This 

implies that market capitalisation plays a role in efficiency. To test this hypothesis, the 

authors employ VR tests and find that indeed, market capitalisation plays a role in 

determining whether the aggregate stock market, comprising of individual stocks, is efficient.  

 

 

2.3.3.3 The stationarity assumption 

The third assumption of returns is that of stationarity. According to Mandelbrot (1966), 

stationarity implies that the statistical moments of the distribution do not change from one 

sample to another. Giannopoulos (2000) argues that while the evidence on the stationarity of 

return distributions is inconclusive, the non-stationarity of return variances is widely 

recognised. Further, Cont (2001) mentions that seasonal effects (such as the January effect or 

weekend effect)  may confound the tests of stationarity.  

 

Gibbons and Hess (1981) show that the distribution of returns is not identical over all days of 

the week and provide evidence for the Monday effect; where returns on a Monday have a 

higher first and second statistical moment. Tests were run on daily data of the S&P 500 

index, the CRSP database and shares on the DJIA from 1962 to 1978. They find that the 

returns distribution is not equal across time, yet returns on Mondays are lower than expected. 

It is concluded that there exists seasonality in the daily returns and that it is most likely 

caused by a persistently negative mean return on a Monday.  

 

 

Taylor (1997) focused on the time varying property of variance in his study of share returns. 

The author shows that the absolute and square transformations of U.S. share returns are good 

proxies for volatility and exhibit high levels of first order serial correlation. Further, this 

correlation over an extended period can imply that there is a time varying structure in 

variances over the sample period of 1966 to 1976. Following each assumption, literature has 

progressed to examining the time varying nature of share returns, with particular emphasis on 

the second moment of the return distribution, volatility. 
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2.3.4 The behaviour of share returns 

Volatility, as defined by Poon (2005) is the spread of all likely outcomes of an uncertain 

variable. While volatility is one of several factors in a share return distribution, it has an 

important role in portfolio management, derivative pricing and risk management. Similar to 

share returns, one needs to check for the presence of volatility clustering, persistence, 

leveraged effects and mean reversion to determine if the chosen price model is appropriate 

under the data set used.  

 

 

2.3.4.1 Volatility clustering 

Mandelbrot (1963) defines volatility clustering as large changes in price that tend to be 

followed by further large changes. This implies that a return series can experience times of 

stability and instability and that the periods of instability can be persistent (Poon, 2005). 

Thus, in testing the decay of the autocorrelation function on stock returns, if volatility 

clustering is present, this decay will be prolonged. Given that stock returns are driven by the 

interaction of market participants, arbitrageurs who observe a linear trend in returns will 

exploit this trend through a particular investment strategy. This further drives the persistence 

of the trend. The detection of volatility clustering is fairly straightforward in that a plot of the 

time series can easily expose areas where there is clustering (Engle, 2001). Jacobsen and 

Dannenburg (2003) show that volatility clustering can be statistically observed by Ljung-Box 

statistics on returns of six international markets. Their results show that all markets examined 

have volatility clustering at daily and weekly frequencies at all lags. These findings hold for 

bi-weekly observations but not for monthly observations again highlighting the importance of 

investigating differing sampling frequencies in the investigation of market efficiency. 

 

 

2.3.4.2 Volatility persistence 

Volatility persistence is closely related to clustering in that volatility clustering implies 

volatility persistence if extended periods of time are characterised by greater variability in 

returns. This suggests that the variability must have a degree of persistence to be identified 

initially. Engle (2001), inter alia, refers to this as long term memory, where a single shock 

will have a noticeable and persistent impact on future volatility. McMillan and Ruiz (2009) 
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describe the standard approach to detecting volatility persistence through a sample serial 

correlation function for a non-linear transformation of the returns. If an extended period of 

time lapses until the serial correlation declines to zero, then the series is said to have a long 

term memory. Particular time series models, such as Vector AutoRegression (VAR) models7, 

and some types of neural networks have been introduced to model this long term memory. 

These are discussed in Section 2.5. Ding, Granger and Engle (1993) examine the long term 

memory property of the S&P 500 over the period 1928 to 1991. They find that while first 

order serial correlation is statistically present, it is of small magnitude and short lived. 

However, when the transformation of returns is examined, the serial correlation is statistically 

significant over longer time periods.  

 

 

2.3.4.3 The Leverage effect 

While the original definition of the leverage effect is according to Black (1976), in that there 

is a negative relationship between share prices and the debt-to-equity ratio of a firm; the later 

definition instead focuses on the relationship between share prices and volatility (Engle and 

Patton, 2001).  The leverage effect implies that the relationship between returns and volatility 

is asymmetric, in that negative shocks will have a greater effect on both variables than 

positive shocks.  

 

 

Haugen, Talmor and Torous (1991) find evidence of a negative relationship between 

volatility and returns on the DJIA between 1897 and 1988. Their results show that, following 

an increase in volatility, there is a decrease in average returns for a four week period. Indeed, 

this asymmetric response can be indicative of a non-linear risk aversion function of investors, 

an idea linked to the loss function of Kahneman and Tversky (1979).  With the considerations 

of volatility and assumptions underlying share returns in mind, the next section provides a 

first principles approach to modelling share prices (returns). 

 

 

                                                 
7 A time series model that captures linear interdependencies amongst multiple time series.  
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2.4 Modelling share prices 

At the heart of the EMH lies the question of share price predictability. While a vast amount of 

research has been conducted in this area, no definitive answer has been reached. To forecast 

the returns of a share (or any asset), the returns must necessarily be correlated across time 

(Skaradzinski, 2003).  

 

 

However, the mere notion of forecasting share prices goes against the random walk model of 

Fama (1965b) – where a security’s returns are independent and normally distributed. Studies 

by Conrad and Kaul (1998) and Lo and MacKinlay (1988) rejected the notion of the random 

walk  as  described  by  Fama  (1965b)  due  to  the  existence  of  time-varying  parameters 

and sampling dependence, respectively. However, as a lack of correlation does not 

necessarily imply independence, studies have used more sophisticated methods of testing 

which rely on higher-order statistical moments of the distribution of returns. If a higher-order 

dependence is found, then the underlying data exhibits non-linear behaviour. The 

independent variables used in forecasting may be past values of the asset’s returns, micro-

economic or macro-economic in nature. According to the EMH, prices can be modelled as a 

function of noise and the past share price. 

 

 ���� = 	�� + 	�� {8} 

 

 

where �� is a white noise error term. Thus, the best estimate of the future share price is the 

current share price 

 

 

 

����� = 	�� 

 

{9} 

 

If a series of share prices is thus truly a random walk, then the best estimate of the future 

share price is the current share price. If we now assume that share prices can be predicted, the 

equation is modified somewhat as follows: 

 

 ���� = 	�� + 	�(�� + 	���� + 	���� + 	… + 	������) + 	�� {10} 
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where, in addition to the above specifications, f is a (possibly non-linear) function of past 

share prices. Similarly, the best estimate of the future share price is given by:  

 

 

 

 

����� = 	�� + 	�(�� + 	���� + 	���� + 	… + 	������) + 	�� 

 

{11} 

If the time series in question were to have a trend, then prediction using the above equation 

results in highly inaccurate outputs. Granger and Newbold (1986) propose that the series be 

transformed to represent first order differences, commonly referred to as returns if share price 

data is used. 

 

 ���� = 		�(��, ����, ����, … , ������) + 	�� {12} 

 

Where 

 

 ���� ≜ 	 ���� − 	�� {13} 

and �� is white noise.  In this specification, the best estimate of ���� is given by 

  

����
� = 		�(��, ����, ����, … , ������) 

 

{14} 

 

In other words, assuming an element of predictability of share prices, the best estimate of a 

future share price is some function of past share prices. With the aid of time series 

econometrics, many models have been proposed to model share prices. These are discussed 

below. 

 

 

2.5 Time Series Methods 

A set of data points measured at uniform periods of time is referred to as a time series. To 

model a time series, one needs to be aware of the varying types of seasonality, stationarity 

and determinism (level of randomness) present in the series as the presence of each can point 

towards a different model. Often, in analysing a time series, one can mistake the presence of 

chaos in the series as randomness. Chaos can be defined as the irregular behaviour of 

solutions to deterministic equations of motion (Casdagli, 1991). The necessary requirement is 
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that the system of equations be non-linear in order to generate chaotic solutions as a linear 

system will necessarily generate a trend in its output. These outputs are often mistaken as 

random time series and are only accurate for a length of time governed by the errors of the 

initial conditions and the Lyapunov exponent8 of the system. The following sub-sections 

discuss the various methods of modelling and explaining time series.  

 

 

2.5.1 Exponential Smoothing 

Exponential smoothing (ES) methods were first developed by Holt (1958). These methods 

were widely used for business and industrial applications but were often considered a 

collection of ad hoc techniques by academics. Pegels (1969) provided a means of classifying 

a time series by its trend and seasonal patterns. Both can be linear (additive), non-linear 

(multiplicative) or neither, giving rise to nine different stochastic models. By graphical 

illustration of the time series, the classification by Pegels (1969) assists with choosing the 

best forecasting model to use. Box and Jenkins (1970), inter alia, showed that some linear ES 

forecasts were special cases of ARIMA models. Indeed, the simple ES model can be 

classified as an ARIMA (0,1,1) model (refer to Definitions page) with no constant term. 

Snyder (1985) showed that simple ES methods can be considered to originate from an 

innovation state space model (a model with a single error source). This work prompted later 

research into state space models and ES methods.  

 

 

The classification hierarchy by Hyndman, Koehler, Snyder and Grose (2002) describes the 

various ES methods. Each ES method can consist of one of five types of trend (none, 

additive, damped additive, multiplicative and damped multiplicative)9 and one of three types 

of seasonality (none, additive or multiplicative). This gives rise to 15 different methods, the 

most common being that of Simple Exponential Smoothing (which has no trend and no 

seasonality in the data). Further, the authors provide a theoretical framework which maps ES 

methods to a state space, showing that they are in the same taxonomy as ARIMA models.  

                                                 
8 The Lyapunov exponent describes the exponential divergence of the output vectors in a chaotic system. 

9 Where a damped additive trend refers to a time series that has an additive trend that decays over time and a 

damped multiplicative trend refers to a time series that has a multiplicative trend that decays over time.    
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2.5.2 Prediction intervals 

A criticism of ES was that it could not produce prediction intervals for its forecasts. The first 

analytical approach to this problem by Brown (1963) was to assume that the time series were 

deterministic functions of time and white noise (refer to Definitions page). If this held true, 

then a regression model could be used instead of an ES method. This assumption was heavily 

criticised by Newbold and Bos (1989). The authors note that under the assumption that the 

time series were deterministic functions of time and white noise, one would: overestimate 

false signals (Type 1 error), misestimate the probability of the forecast value, misjudge 

appropriate starting values for the ES method and incorrectly assume that the forecast errors 

are serially correlated. Other authors since attempted to obtain prediction intervals by 

examining the equivalence of ES methods and statistical models. In a follow up study, 

Hyndman, Koehler, Ord and Snyder (2005) used state space models to derive analytical 

prediction intervals for 15 ES methods, providing a comprehensive algebraic approach to 

handling the prediction distribution problem (that an ES model would provide estimates, but 

not a distribution of forecasts). Given the exploration into ES methods, their more general 

forms, that of ARIMA models, are now briefly discussed. 

 

 

2.5.3 ARIMA models 

Early attempts to study time series in the 20th century began with the idea of a deterministic 

world, where a change to an initial condition did not result in a different outcome. Yule 

(1927) provided the first significant contribution of regarding every time series as a stochastic 

process, where a change in the initial state produces a different final outcome. As such, the 

concept of an autoregressive (AR) model and moving average (MA) model was developed. 

Wold's decomposition theorem10 led Kolmogorov (1941) to formulate a solution to the 

problem of linear forecasting (and later the Kolmogorov Smirnov test for normality). The 

work of Box and Jenkins (1970) integrated the then existing knowledge on time series and 

has become a staple addition to any time series course. The Box-Jenkins method is widely 

used in first testing for stationarity and seasonality, and then proceeding to specify and 

evaluate the model. With the advent of the computer, autoregressive integrated moving 

                                                 
10 Every covariance-stationary time series can be decomposed into the sum of one deterministic and one non-

deterministic series. 
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average (ARIMA) models could be developed and used in forecasting discrete time series 

processes through their univariate forms.  

 

 

2.5.4 Univariate models 

During the 1960s, the selection of an ARIMA model was largely left to the researcher's 

judgement, as there was no algorithm available to specify the model correctly. Since then, 

information criterion techniques have been developed, such as the Akaike Information 

Criterion (AIC) and the Bayes Information Criterion (BIC). Often, it becomes a task of 

minimising these criteria that would result in the best model fit as one would prefer to have 

estimates as close as possible to actual values to show that the model best describes the data. 

 

 

There are a number of methods for estimating the parameters of an ARIMA model, yet they 

are prone to error when there are large differences in the finite sample properties. Newbold, 

Agiakloglou and Miller (1994) showed that this difference is significant across the then 

available software packages and can result in inaccurate forecasts. As a means to overcome 

the problem, the authors suggest the use of full maximum likelihood estimation11 to ensure 

the parameters are statistically consistent. If a time series is known to follow a univariate 

ARIMA model, forecasts using disaggregated observations12 are as good as using aggregated 

observations under the MSE criterion.  

 

 

As an alternate to the univariate ARIMA model, Parzen (1982) proposes an ARARMA 

methodology where the time series is transformed from a long term memory AR filter to a 

short term memory filter. Using data for airline passengers, Parzen (1982) shows that the 

ARARMA model is a better fit than other more traditional time series models. Meade and 

Smith (1985) are part of the few authors who test the ARARMA methodology and show that 

it achieves a significantly low Mean Absolute Percentage Error (MAPE) for longer forecast 

                                                 
11 A method of estimating the parameters of a statistical model, maximum likelihood estimation provides 

estimates of the mean and variance of a distribution given sample information.  
12 (Dis)Aggregated observations - Observations combined (removed) from several measurements. 
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horizons. While software is available for implementation, these methods are often opaque in 

that the researcher cannot fully describe the model (it is considered a black box). While there 

are guidelines for the choice of automatic forecasting methods, Me'Lard and Pasteels (2000) 

suggest the use of an Expert System13 as the expert system can more optimally configure the 

parameters of the model, speeding up the time taken to produce results and quite possibly 

producing more accurate results.  

 

 

2.5.5 Non-linear models 

Compared to the study of linear time series, the development of non-linear time series is still 

in its infancy (De Gooijer and Hyndman, 2006).The first work in this area is by Volterra 

(1930) who showed that any continuous non-linear function can be approximated by a finite 

series with a memory property, later known as a Volterra series. While the probabilistic 

properties of these models have been studied, little exists in the problem of parameter 

estimation, model fitting and forecasting. Poskitt and Tremayne (1986) attribute this to the 

lack of computational power at the time as well as the complexity of the Wiener model itself. 

While linearity in itself can solve many practical applications, it is often restricted by the 

existence of complex real world problems. One hindrance of the forecasting ability of non-

linear models was pointed out by De Gooijer and Kumar (1992) in that the models made it 

difficult to obtain analytical expressions for closed-form multi-step ahead forecasts. The 

models could not be applied (non-analytical) by a researcher to obtain a finite valued solution 

(the solution was not closed-form). In principal, the Chapman-Kolmogorov relationship (the 

mapping of joint probability distributions to a stochastic process) can be used to obtain exact 

least squares multi-step ahead forecasts through integration techniques and currently, these 

forecasts have been obtained through Monte Carlo simulation or bootstrapping approaches. 

The latter approach is preferred as it requires no assumptions about the distribution of the 

error process. Indeed, Clements, Franses and Swanson (2004) concluded that "... the day is 

still long off when simple, reliable, and easy to use non-linear model specification, 

estimation, and forecasting procedures will be readily available." Four such non-linear 

models are presented below. 

 

                                                 
13 A program that mimics the decision-capability of a human being – discussed in Chapter 3. 
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2.5.5.1 ARCH and GARCH models 

A feature of financial time series is that there are periods of high and low volatility which are 

often clustered together. This volatility clustering is ideally suited to be modelled by 

autoregressive conditional heteroscedastic (ARCH) models of Engle (1982). These models 

describe the conditional variance as a deterministic (quadratic) function of past returns. As 

the variance is known at time t-1, one step and multi-step ahead forecasts can be made. The 

more general form of ARCH model is given by GARCH models where there are additional 

dependencies on the lag of the condition variance. These models are fairly similar to ARIMA 

models and thus share many statistical properties. Sabbatini and Linton (1998) test a simple 

GARCH (1,1) model on daily returns of the Swiss market index and find that the out-of-

sample forecasts were not accurate. Engle and Ng (1993) point out that asymmetric volatility 

is often present in financial returns and their conditional variances. Negative (positive) 

returns are generally associated with an upward (downward) revision of the conditional 

volatility. As such, researchers have developed GARCH type models to account for this 

asymmetric volatility.  

 

 

2.5.5.2 Long term memory models 

When the integration parameter, d, in the ARIMA process is fractional and greater than zero, 

the process is said to have a long term memory. This implies that the observations that are a 

long time span apart have some sort of dependence between them. Stationary long term 

memory models or fractionally integrated models (ARFIMA) models have also been 

developed to allow real values (as opposed to integer values) of the integration parameter. 

These are thus more apt to modelling long term dependence as the integration parameter can 

now take on more values. Souza and Smith (2002) investigated the effect of different 

frequencies of data on ARFIMA models. They find that the bias in the fractional parameter of 

a non-aggregated series is influenced by the short run autoregressive and moving average 

parameters.  
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2.5.5.3 SETAR Models14 

One of the initial applications of non-linear models to business cycles was shown by 

Hamilton (1989)'s application of Markov Switching techniques. These non-linear models 

assumed that changes to market phases were governed by an unobserved Markov chain (a 

process where the next state depends only on the current state).  This assumption meant that 

the exact times a regime (market phase) change occurred were unknown (the unobserved part 

of the assumption), and could only be estimated using probabilities (Hamilton, 1989). 

Another property of Markov models is that the change (or switch) between regimes is abrupt. 

In financial markets, it is often difficult to justify this assumption. Further, the changes 

between an expansionary and contractionary phase of the market cycle need not necessarily 

be symmetric. It can therefore be inferred that modelling the changes between these regimes 

of the business cycle can be problematic as they can be either be symmetric or asymmetric 

and is an issue that STAR models are aptly suited towards. Investors have heterogeneous 

beliefs, different time horizons and learning speeds (see Harrison and Kreps, 1978 and 

Bernatzi and Thaler, 1995). These all point to a gradual change in markets as opposed to a 

more abrupt one. Thus, a new family of models were developed, namely Transition 

Autoregressive (TAR) models, where they address the issue of a change between regimes. In 

TAR models, movements are governed by an observed variable and are referred to as Self 

Exciting TAR (SETAR) models when the observed variable is a lag of the dependent 

variable. Tong (1983) provided an extensive discussion of Self-Exciting Threshold AR 

(SETAR) models. These models are piecewise linear models that "partition" the non-linear 

time series into linear pieces, making estimation of the overall model quicker and less 

computationally expensive. Other modifications to these models include Threshold VAR 

(TVAR) models and continuous threshold AR (CTAR) models. While the CTAR models 

provide highly accurate estimates, they are often impractical due to the higher dimensional 

integration involved in parameter estimation.  

 

 

Through examination of the literature on modelling techniques, it emerges that as the 

accuracy of the model increases, the ability to estimate its parameters and interpret the model 

itself decreases. This phenomenon is seen in the case of neural networks discussed below. 

The author states that a small amount of outliers in a time series can often mask the simplicity 

                                                 
14 Portions of this sub-section are taken from Seetharam and Britten (2015). 
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of the series itself.  This brings into question the use of macro-economic and micro-economic 

variables in addition to lagged dependent variables. McMillan (2005) provides international 

evidence in favour of non-linear modelling of financial markets. An interesting avenue of 

research is explored by the author linking non-linear behaviour of share prices to 

performance of noise traders, in spirit of the behavioural finance literature of asset prices 

being dictated by the interaction of noise traders and sophisticated traders. The results show 

that a non-linear model is able to capture the effect of noise traders on share prices as well as 

providing significant gain in forecasting prices out-of-sample for Asian-Pacific economies. 

 

 

Alagidede and Panagiotidis (2009) provide evidence on testing time series models in several 

African countries. The authors test each country index for the presence of non-linearity and 

then proceed to model returns appropriately. Using daily closing prices, the authors find non-

linearity in most of their sample, with the exception of South Africa. Bonga-Bonga and 

Makakabule (2010) use a Smooth Transition Regressive (STR) model is used to investigate 

the relationship between macroeconomic variables and stock returns. The difference between 

the STAR and STR models is that the former uses lagged values of the independent variable.  

Whilst the modelling approach is similar, direct comparison of results between STAR and 

STR models is inappropriate. van Gysen, Huang and Kruger (2013) conduct a comprehensive 

study of linear and non-linear modelling techniques in forecasting returns on the JSE. The 

authors find that non-linear methods are favoured over their linear counterparts, but less so 

during turbulent market conditions, such as the financial crisis between 2007 and 2009. 

Specifically, Markov switching models provide the most accuracy from the family of non-

linear models considered.   

 

 

2.5.5.4 Neural Networks 

While ANNs are adept at forecasting non-linear time series, some have questioned their 

accuracy. For example, Tkacz (2001) shows that the forecasts of an ANN are outperformed 

by a naive random walk model. Some attention has also been given to define the border 

between ANNs and traditional techniques. Balkin and Ord (2000) show that ANNs can work 

better for high frequency data and also stress the importance of a large dataset to obtain more 

accurate training and forecasts of the ANN. An observation is made by Qi (2001) in that an 
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ANN is more likely to outperform other methods when the input data is as current as possible 

and using a recursive modelling procedure. Swanson and White (1997) show that a simple 

feed-forward ANN with a single hidden layer offers a highly useful and flexible alternative to 

a linear model, particularly in multi-step ahead forecasts, as the linear model needs to be 

specified in advance whenever new information becomes available over an extended time 

period. A comparison between ANNs and an ARIMA model is given by Ghiassi, Saidane and 

Zimbra (2005). They find their dynamic ANN performs significantly better than a traditional 

ARIMA model based on MSE statistics and the Morgan-Granger-Newbold test for 

autocorrelation between the positive and negative sum of the error terms. 

 

 

Given the array of time-series based models to choose from, the researcher must also be 

cognisant of the inputs to the model. Indeed, choosing appropriate inputs are as important as 

choosing the correct functional model form. The next section of the literature discusses a 

prevalent theory in finance in choosing appropriate factors that influence stock prices and 

returns. 

 

 

2.6 Considerations in asset pricing  
 

The Arbitrage Pricing Theory (APT) of Ross (1976) is seen as a (perhaps superior) 

alternative to the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1964).  

The weaknesses of the CAPM are mainly in its often unrealistic assumptions and empirical 

shortcomings. Tests of the CAPM usually display poor explanatory power in overestimating 

the risk free rate and underestimating the market risk premium. This therefore limits its 

practicality, particularly in the use of betas to predict a share’s return.  

 

 

The APT has the potential to overcome these weaknesses by providing a model that generates 

asset returns via multiple factors and it’s explanatory power can thus be theoretically better 

than the CAPM. Despite this, the APT has failed to replace the CAPM mainly due to its 

weakness to explain variation in asset returns by a given, limited number of easily 

identifiable factors. Indeed, most empirical tests of the APT begin with the selection of 
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candidate variables into the model. While this may prove useful in explaining returns, the 

generalisation ability of the model is poor. For example, Chen, Roll and Ross (1986) attempt 

to provide candidate macroeconomic variables that are felt to influence asset returns. While 

this selection is not based on a rigorous, theoretical identification, the approach nevertheless 

uses factors that are intuitive and justifiable. The aim of their study was to identify a common 

set of factors that will be robust across time and dataset-specific characteristics.  

 

 

The APT model assumes that the return to security i, given by ��, is generated by a multi-

factor model. 

 

 �� = ��,� + ��,��� + ��,��� + ⋯ + ��,��� + ��				� = 1,2,3, … , � {15} 

 

 

where �� are the factors (j = 1,2,...,J), ��,� are the factor loadings and ei is a random variable 

in a universe of N assets. Assuming that in equilibrium all arbitrage opportunities are 

exhausted, the model implies that the relationship between expected return of asset i is given 

by: 

 

 �(��) = 	 �� + ��� − �����,� + ��� − �����,� + ⋯ + (�� − ��)��,� {16} 

 

where the existence of a risk free asset with return �� is assumed and �� is the expected return 

to the portfolio with a unit sensitivity to factor j and a zero sensitivity to other factors. A 

special case of the APT, where j = 1 and �� = �� is given by the CAPM equation. 

 

 

To test the APT, one first needs to estimate the factor loadings for each asset and then regress 

the sample mean returns on the factor loadings in a cross-sectional regression. However, it is 

up to the researcher to determine the value of J (the number of factors) as well as to identify 

those factors. Literature makes use of either principle component analysis or factor analysis 

to identify the factors and estimate the factor loadings. These are then used to explain mean 

asset returns in the manner described above (Roll and Ross, 1980).  
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Alternatively, one can identify the factors a priori based on justifiable reasons for their 

inclusion. Chen, Roll and Ross (1986) used this method to identify several candidate 

macroeconomic factors that could affect asset returns. While the results were not compared to 

other models, Cheng (1996) compares a macroeconomic APT model to alternatives using 

canonical correlations (a method for finding the highest correlation pairs between multiple 

variables). He finds that the canonical correlations method works reasonably well and can 

successfully identify factors of economic risk in the APT context. 

 

 

The estimation procedure of the APT suffers from the errors-in-variables problem, where the 

independent variables are often measured incorrectly, leading to a spurious regression. 

Gibbons (1982) suggests that a multivariate regression approach can be used to overcome this 

problem. Given that  �� is the expected return to the portfolio with unit sensitivity to factor j 

and a null sensitivity to other factors, it implies that 

 

 �� = ��,�
�

+ �(��) {17} 

 

where ��,�
�

 is a constant and �(��) is the expectation of factor j.  Equation (18) can be 

rewritten as 

 

 �(��) = 	 �� + ���,�
�

+ �(��) − �����,� + ���,�
�

+ �(��) − �����,� + ⋯  

+ (��,�
�

+ �(��) − ��)��,� 

{18} 

 

Taking the expectation of Equation (18): 

 

 �(��) = ��,� + ��,��(��) + ��,�(��) + ⋯ + ��,�(��) + ��				� = 1,2,3, … , � {19} 

 

and combining the above two equations 

 

 �� − ��,� = 	 ���,�
�

− �����,� + ���,�
�

− �����,� + ⋯ + ���,�
�

− �����,�		 

	� = 1,2,3, … , � 

{20} 
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which provides N restrictions on the parameters of a system of N equations. In total, there are 

J+1 parameters (the constant terms), such that there are N-J-1 restrictions where J < N. The 

procedure above can be estimated using non-linear least squares and is suggested by 

McElroy, Burmeister and Wall (1985). Having established the general equation for the APT 

model, attention is now focussed on particular candidate factors. 

 

 

2.6.1.1 The APT model with macroeconomic factors 

Chen (1983) suggested that a time series of statistically derived factors be correlated with a 

time series of identified macroeconomic factors. In establishing a strong statistical 

relationship between the two series, one can infer that the macroeconomic factors are 

suggestive of systematic risk. Chan, Chen and Hsieh (1985) provided a motivation for returns 

being sensitive to changes in the macroeconomic environment which can theoretically be 

hedged by investors. The authors identify the monthly growth rate in industrial production, 

the unanticipated inflation rate, changes in expected inflation, changes in the term structure of 

interest rates, the default spread and changes in the business cycle as being systematic factors 

that affect returns. While innovations in these factors appear a more intuitive variable to use, 

the authors caution that the generation of these innovations through pre-whitening15 may lead 

to a loss of information. All of their chosen factors show some level of statistically significant 

correlation with each other and the returns on an equally weighted New York Stock 

Exchange (NYSE) index. In typical studies of the macroeconomic APT model, the presence 

of correlation between returns and candidate variables is cited as a justification for their 

inclusion into the return generating process (van Rensburg, 2000). The authors follow the 

typical APT approach outlined previously and find that the default spread, growth rate in 

industrial production and unanticipated inflation are significant variables in the models in 

explaining approximately 35% of the cross-sectional variation in expected returns. Barr 

(1990) applies this procedure to the JSE and finds that measures of real economic activity are 

appropriate factors to use in an APT model, a finding that is similar to international studies. 

 

 

To further the work of Chan et al. (1985) and to explain expected returns of an asset by 

systematic risk factors, a macroeconomic APT model was found by Chen, Roll and Ross 

                                                 
15 The removal of a signal at a particular frequency from a data set. 
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(1986). The authors utilise the framework of the APT given by Ross (1976) and focus on the 

influence of unanticipated events (especially in systematic or macroeconomic risk factors) on 

asset returns.  The existence of systematic risk factors can be observed by the co-movement 

of share returns and in the diversification strategies of investors. This implies that factors that 

are associated with the economy have an impact on the prices of market indices. Chen et al. 

(1986) begin with an investigation into the dividend discount model to aid in the 

identification of risk factors within the APT framework. If any systematic risk factor 

influences either the expected cash flows or the discount rate, then it will also affect the 

asset's price. If one assumes that all current information is already incorporated into prices, it 

follows that only unanticipated information needs to be account for. To circumvent the 

errors-in-variables problem, the authors use a rate of change methodology to represent 

innovations.  Using the monthly and annual industrial production growth rates, the change in 

expected and unexpected inflation, the change in the default spread, the term structure, 

consumption growth and changes in the oil price, the authors attempt to explain returns on 

both an equally weighted and value weighted NYSE index over the period 1953 to 1983. 

Amenc and Le Sourd (2005) term the final set of factors identified as the "classic" factors of 

a macroeconomic APT model. It can be represented as: 

 

 �� = � + ���� + ����� + ���� + ����� + ����� + �� {21} 

 

where �� is the return on security i, α is the constant term and the factor loadings are 

represented by �� to ��. They are respectively, the monthly industrial production growth rate 

(MP), the change in expected inflation (DEI), unexpected inflation (UI), the change in the 

default spread (UPR) and the change in the term structure (UTS). Chen et al. (1986) state that 

the above equation shows that returns can be modelled by innovations in multiple 

macroeconomic risk factors. Further, they also note that the above equation is not the only 

representation of a macroeconomic APT model - other candidate factors can easily be used 

and found to be (more) significant than the current specification.  

 

 

Indeed, Hamao (1988) investigates the robustness of the Chen et al. (1986) model by testing 

it on the Japanese market.  Under the APT framework, the author chooses industrial 

production, inflation, the equity risk premium, interest rates, the Japanese Yen/ United States 
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Dollar exchange rate and oil prices as factors into the APT model. Apart from finding the 

same factors to be significant, the change in oil prices, the unexpected change in the foreign 

exchange rate and changes in the terms of trade are also found to be significant. Further, the 

test against the CAPM beta factor shows that the CAPM does not capture any additional risks 

not already captured in the macroeconomic factors chosen. In other words, the inclusion of 

additional risk factors assists in describing the returns generating process. Apart from 

macroeconomic factors being considered, some authors have looked towards the arrival and 

assimilation of information as descriptors of stock returns. 

 

 

2.6.1.2 From unanticipated factors to agent expectations 

Connor and Korajczyk (1988) use principal component analysis to estimate an APT model 

and find that the model outperforms the CAPM. Using similar macroeconomic data by Chen 

et al. (1986), the authors apply their new technique of principal component analysis to the 

issue of identifying relevant factors in an APT framework. They find that the factors 

identified are robust to firm size and to equal or value weighted methods. Given that some 

statistical techniques offer little economic intuition in interpreting the estimated risk premia, 

attention has been given to pre-specifying observed macroeconomic and financial factors as 

candidates for systematic risk (most famously, Chen et al., 1986). These tests rely on the 

assumption that prices react to news regarding macroeconomic and financial variables and 

that this news is unanticipated. Consequently, agents form expectations around these factors. 

In tests of the APT, it is therefore necessary to generate an expectations formulation process 

in order to examine the unanticipated components of the news. While the APT does not 

mention how agents form their expectations about observed factors, one possible condition 

that can be enforced is that the expectations produce a mean-zero and serially uncorrelated 

white noise process which follows a random walk. 

 

 

Some authors address the issue of generating unexpected components for the observed factors 

of the APT and show that previous techniques employed in this area may well be misleading 

in identifying the appropriate set of risk factors. Two techniques emerge from the literature, 

namely the rate of change model and the autoregressive model. The former uses the first 

difference of the factor as the unanticipated component and assumes that the factors follow a 
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random walk where the expected value is the current value. The latter allows for the former 

as a special case and assumes that agents use autoregressive models to form expectations 

where the unanticipated component is the residual from these models. It is found that the rate 

of change methodology fails to meet the criteria that the components are serially 

uncorrelated; whereas the autoregressive methodology fails to provide an expectations 

generating process where the agents do not make systematic forecast errors.  Chen et al. 

(1986) then propose a new methodology based on learning – the Kalman filter – which is 

discussed below. 

 

 

2.6.1.3 Unanticipated factors in an APT 

Define the ith factor, ��,� as 

 

 ��,� = (��,� − �������,��) {22} 

 

where ��,� is the actual value of the ith observed factor at time t and ����(��,�) is the 

expectation of factor �� at time t-1. In this definition, the assumption that ����,�� = 0 must be 

satisfied and the expectation forming process of ��,� must be considered.  

 

 

If agents are rational according to the definition of Muth (1961)16, then the unanticipated 

component should be a zero mean, serially uncorrelated innovation that is orthogonal 

(independent and uncorrelated) to the information set. This leads one to generate 

unanticipated factors using rational expectations models (Priestly, 1996). Indeed, Priestly 

(1996) shows that an APT model with Kalman filter innovations outperforms the two other 

methods of the rate of change and autoregressive models.  

 

 

                                                 
16 According to Muth (1961), the expectations of agents tend to be distributed for the same information set about 

the objective probability distribution of outcomes. Thus, rational agents do not waste information, they form 

expectations based on the structure of the relevant system describing the economy and public opinion has no 

substantial effect on an agent's expectation. 
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Chen et al. (1986) generate unanticipated factors by simply differencing the candidate 

variables whereas Clare and Thomas (1994) use autoregressive models. The rate of change 

approach assumes that the unanticipated component is the first difference of the variable and 

that all information is included in the most recent observation. If this is true, then agents do 

not make use of past information when it is relevant and the unanticipated component will 

not be white noise. While the unanticipated components allow for the use of past information, 

they also assume that the parameters are stable. The author theorises that any econometric 

model based on the optimal decision making of economic agents over time will not capture 

"arbitrary", unanticipated information in its output. The alternative means of generating 

unanticipated components is given by Friedman (1979). It is assumed that agents use a simple 

linear model with time-varying parameters that will approximate the true model. Thus, agents 

learn and update their expectations recursively each period as more information is available 

such that the problem of estimating an expectations series and generating the unanticipated 

component becomes, in the simplest scenario, one of signal extraction through a Kalman 

filter.  

 

 

One can represent an unanticipated shock as follows. Assume that �� is the variable of 

interest, ��
∗ is the expectation of ��, shocks to �� and ��

∗ are statistically independent and that 

changes to ��
∗ are time varying with parameter �� which evolves as a random walk,  the 

model is written as 

 �� = ��
∗ + �� {23} 

 

 ��
∗ = ����

∗ + �� + ��	�ℎ���	�� = ���� + � � {24} 

 

where ��, �� and �� are white noise processes. The first equation is known as the 

measurement equation and the second as the transition equation which determines the 

evolution of the expectation of ��
∗.  

 

 

The model fits well within the framework of Ross (1989) who assumes that information 

evolves as a random process. The equations then describe a stochastic environment where 

agents form expectations based on a stochastic trend model. The residuals of the model, if 
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they are serially uncorrelated, are used as the expected components in the APT model. When 

they are serially correlated, a more general structure is allowed for by specifying an 

autoregressive model with time varying parameters as the expectations generating process. In 

the latter scenario, the measurement and transition equations will take the form 

 

 �� = ��,����� + �� {25} 

 

 ��,� = 	 ��,��� + � �,� {26} 

 

Antoniou, Garrett and Priestley (1998) examine the APT model using data from the London 

Stock Exchange. The authors, using the above returns generating process, find three common 

factors that can explain stock returns - unexpected inflation, money supply and excess returns 

on the market portfolio. An interesting result emerges that two particular companies in their 

sample are greatly affected by an additional two factors. The authors argue that these two 

factors contribute marginally to the overall performance of the APT model in explaining the 

cross section of returns across all firms studied. Thus, the exclusion of those two companies 

affected by the two additional factors still provides an APT model with substantial 

explanatory power. Thus far, attention in the APT framework has been given to domestic 

factors. However, as financial markets continue to become integrated, an investor's exposure 

to currency risk and other international risk factors need to be taken into account.  

 

 

2.6.2 International asset risk 

While the macroeconomic factors of Chen et al. (1986) offer valid interpretations of risk in 

developed markets, it is also necessary to establish any additional risk factors that may be 

present in emerging markets. Clare and Priestley (1998) examine returns on the Malaysian 

market and include domestic and international factors in their APT model. Their results show 

that unexpected changes in the risk free rate, the term structure of interest rates, unexpected 

inflation and changes in expected inflation are statistically significant. The macroeconomic 

model is then modified with the inclusion of a domestic market index and is also found to be 

significant. The authors also incorporate the MSCI World Index as a proxy for international 

risk. Once again, this new factor is found to be significant, indicating that international risk 

(or at least some form of international influence) is significant in explaining returns on the 
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Malaysian share market. A comparison between the CAPM, the domestic APT and 

international APT indicates that the international APT is superior to the others, implying that 

an international risk factor contributes towards the pricing of assets in the Malaysian stock 

market.  

 

 

To price assets in an international context, one needs to make assumptions on the utility 

functions of individuals, sources of uncertainty and market structures. Further, to model these 

prices requires an appropriate stochastic model specification which is robust to the arrival of 

new information and the possible correlation of market index movements both between 

countries and across time. The International APT (IAPT) (Solnik, 1983) provides a 

framework for finding and evaluating international factors that may influence stock returns. 

The author shows that that the IAPT allows investors to value the returns of the same asset 

differently, analogous to a domestic setting where the investors have heterogeneous beliefs. 

However, due to the issues around currency translation, a globally defined market portfolio 

and the ex ante specification of international factors, the IAPT has not received much 

attention in the more recent literature. Indeed, the author states that if international markets 

are segmented, the power of his own theory diminishes significantly. He advises that the APT 

model itself offers a better alternative to pricing international assets than the traditional 

CAPM and suggests that one use a combination of international factors common to all asset 

classes along with factors common only to domestic asset classes in deriving an international 

pricing model. Naturally, one needs to be aware of limiting the number of factors to ensure 

the resulting model can be tested and interpreted correctly. This process is discussed below. 

 

 

2.6.3 Variable selection in the APT  

Chen (1983) suggests that candidate variables be chosen based on which factors are justified 

to influence asset pricing. Thus, any factor that influences the expected cash flow or discount 

rate can be included in an APT model. Berry, Burmeister and McElroy (1988) set out 

additional criteria that must be met by candidate variables to be included in an APT model. 

First, each factor must have a pervasive influence on the asset's returns. Second, each factor 

must be unpredictable at the beginning of each period and third, relevant factors must 

influence expected returns. The first criterion implies that firm specific factors are not 
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candidate risk factors as they can be diversified away. The second criterion suggests that, at 

the start of every period, the expected value of the given factor is null and the series of 

observations is uncorrelated. Under this criterion, unexpected changes in a factor can be 

included as they would meet the statistical properties by definition. The final criterion can 

only be investigated through trial and error. The authors state that while there is no correct set 

of factors, an extended number of factors may produce equivalent results. While the 

framework by Berry et al. (1988) is useful in selecting factors for an APT model, it is not the 

focus of this thesis.  

 

 

Sharpe (1963) advocates the use of a market index in the CAPM (which is a special case of 

the APT). From a practitioner's viewpoint, the market index is considered a benchmark by 

most investors when making investment decisions, suggesting that prices reflect the 

movements of a market index. Hamao (1988) offers that market indices capture unexpected 

shocks to macroeconomic factors. As prices respond quickly to public information, returns on 

the market index should be related to innovations in macroeconomic factors. This argument 

can be extended to international indices, where they are able to capture their respective 

domestic innovations in macroeconomic factors. Indeed, van Rensburg (1996) shows that 

returns on the DJIA influence the ALSI. Using variables, such as the unexpected movements 

in gold returns, the returns on the DJIA Industrial index, the term structure of interest rates, 

inflation expectations and the residual market returns factor, the author shows that all factors 

except gold returns are significant in the APT model constructed over the period 1980 to 

1989.  

 

 

Clare and Thomas (1994) suggest that changes in the expected rate of inflation can affect 

expected cash flows and discount rates. A higher inflation rate will imply a higher short term 

interest rate and a higher discount rate as investors expect to be compensated more for 

bearing additional risk in investing in equity. Fama (1981) argues that the negative 

relationship between inflation and returns is likely a result of the proxy effect (a mirror of the 

relationship between real activity and inflation). When using both real variables and 

measurements of expected and unexpected inflation, the stock return and inflation 

relationship disappears. The author finds evidence that real stock returns are positively 

related to real activity measures, such as capital expenditure, the average real rate of return on 
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capital and output. Further, there is a consistent negative relationship between inflation and 

real activity, implying that agents rationally set current prices on forecasts of relevant future 

real variables. Termed "the proxy effect hypothesis", Fama (1981) shows through regressions 

using monthly, quarterly and yearly data that the growth rates of money and real activity are 

effective at eliminating any perceived relationship between real stock returns and expected 

inflation rates.  This explanation is however contested by Wei and Wong (1992) who suggest 

that the proxy effect can explain the spurious negative relationship between returns and 

expected inflation, but not between returns and unexpected inflation. From a microeconomic 

point of view, the authors argue that the transfer of wealth between creditors and debtors set 

off unanticipated inflation (as an increase in inflation helps debtors and hurts creditors). If 

one views the debtor and creditor firms as having listed stocks, one can expect a positive 

relationship between debtor firm's stocks and unanticipated inflation. Wei and Wong (1992) 

examine this hypothesis using common stocks from different industry groups over the period 

1926 to 1985. They find that the proxy hypothesis is fully supported for natural resource 

stocks and partially supported for other sector stocks. By including a measure of future real 

activity, they find that the spurious negative relationship between stock returns and expected 

inflation is eliminated. However, the relationship between stock returns and unexpected 

inflation is still significant.  

 

 

The growth rate in industrial production and the growth in GDP are often used as competing 

measures of real activity (Fama, 1990). Past literature shows that variables that measure time-

varying expected returns shocks capture 30% of the variance on the annual real return of the 

value weighted NYSE index. Similarly, future growth rates of industrial production captures 

43% of the variance. However, as production growth rates, expected returns and shocks to 

expected returns are correlated to the business cycle, the combined explanatory power of 

these variables is only 58%. In testing the variables that influence stock returns, Fama (1990) 

finds that the goodness of fit from monthly returns regressions on future production growth 

rates understates the information about production. This information is captured better over 

longer term returns.   

 

 

Chen et al. (1986) use the default spread as one of their macroeconomic proxies. Measured as 

the difference between low grade corporate bonds and long term government bonds, the 
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authors hypothesise that the variable should have a zero mean in a risk neutral world. Thus, 

the default spread is a direct measure of risk aversion in pricing securities. Further, the 

default spread can capture a leverage effect, with more levered firms having a lower 

corporate bond rating. The default spread is also able to influence share returns. The spread 

between yields on corporate bonds and yields on government bonds increases during adverse 

economic conditions and would thus decrease equity returns. Thus, the default spread can 

have either a positive or negative effect depending on the business cycle.  

 

 

Oil prices can theoretically influence the performance of the stock market. An upward 

movement in oil prices can arguably increase the level of uncertainty in the market, inducing 

a fear amongst participants and a decrease in stock prices. Studies such as Hamilton (1996) 

examine the influence of oil prices on industrial production, inflation and stock market 

returns. It is found that higher oil prices lead to a higher cost of production, a lower 

production rate and lower expected earnings. Huang, Masulis and Stoll (1996) examine this 

relationship on the U.S. stock market and find that there is a lead-lag effect between future oil 

prices and oil company stock returns. However, in the overall market, oil prices do not have 

any significant explanatory power, in line with Chen et al. (1986). The conclusion of whether 

oil prices should be considered in an APT model is still open to discussion. More recently, 

Miller and Ratti (2009) find that over the 1971 to 2008 period, stock markets react negatively 

to oil price changes in the long run. The authors use a Vector Error Correction Model 

(VECM) approach and find that the impact tends to reduce to zero for years after 1999. They 

justify this finding by stating that the oil and stock market bubble of 2000 could have 

influenced their results.  

 

 

Given that some local industries compete with their international counterparts, the 

depreciation of the foreign currency foretells a loss of sales and profit from local suppliers (as 

consumers can now purchase the same item for a cheaper price elsewhere). Griffin and Stulz 

(2001) explore the impact of exchange rate fluctuations on stock prices across similar 

industries internationally.  Using data from various countries over 1975 to 1997, Griffin and 

Stulz (2001) show that the impact of exchange rates varies across industries. Intuitively, 

exporting industries will be adversely affected by domestic currency appreciation while 

importing industries will benefit from it. Exchange rate fluctuations are hypothesised to affect 
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firm value by affecting the demand for its products and thus expected future cash flows. 

However, given their results, the authors state that exchange rate fluctuations alone only 

account for 1.5% of the variation in stock prices. By including industry-specific effects, they 

can account for an additional 3.8% of variation, implying that exchange rate fluctuations 

alone do not explain stock variation across countries.  

 

 

Cutler, Poterba and Summers (1989) seek to determine the underlying causes for movements 

in stock prices. The (then) viewpoint was that these movements were caused solely by 

changes in fundamentals of the stock itself. Given various forms of event studies, literature 

has shown that stock prices react to announcements about a change in fundamentals. The 

authors then attempt to test whether the only factor in moving stock prices is the arrival of 

news, irrespective of whether it is fundamentally related or not. While not finding any 

definitive evidence on news alone influencing stock prices, their results suggest that changes 

in the money supply, short and long term interest rates act as proxies for economic news. 

Changes in the interest rate will lead to changes in the discount rate in the manner described 

previously. Thorbecke (1997) suggests that monetary policy tightening will decrease a firm's 

value and limit its ability to borrow. The lower investment expenditure will deter investors as 

the expected future cash flows will be lower and result in a decline in the firm's share price.  

 

 

Since the Asian financial crisis of 1997, the role of gold as a hedge against economic 

uncertainty has again risen to considerable heights for investors. Chan and Faff (1998) 

examine a number of potential factors that can theoretically influence the returns of gold 

firms' stocks. Using the market index, gold price, interest rate and foreign exchange rate 

(Australian Dollar/United States Dollar), their findings suggest that changes in the gold price 

be used as an additional factor in an APT model as gold prices influence returns by their 

impact on interest rates. Davidson, Faff and Hillier (2003) test the inclusion of the gold price 

in an international asset pricing setting. They find that 22 global industries show sensitivities 

to changes in the gold price, over and above normal market fluctuations. Upon inspection of 

the industries, there is no discernible characteristic that defines them, implying that industries 

across that stock market can be influenced by the gold price. The authors conclude that the 

gold price is a significant factor to include in an asset pricing model. In South Africa, 

unpublished research by Bodington (2014) investigated the hedging properties of gold for the 
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South African investor investing in either local bonds, local equity or international equity. 

Her findings suggest that a South African investor will hedge local bonds and local equity 

against gold in times of a market downturn, but not against international equity. This implies 

that gold is not correlated to equity prices and could be included as a risk factor in an APT 

model. Having considered the models behind returns generating processes, one now 

investigates the issues around using said models to test market efficiency. 

 

 

2.7 Considerations in testing market efficiency 

Given a model that can explain the variation in stock returns, one then questions whether this 

explanation can turn into a prediction. This is a contentious issue and a simple reasoning is 

offered here to avoid the trap of prediction and explanation. Any empirical work conducted 

would rely on data gathered over a particular sample period. While the results of this 

empirical work can well vary, it is often difficult to simply generalise the results over the 

examined sample period to hold in the universal scenario. Thus, while a model might be 

excellent at explaining returns, it does not imply that it is also good at predicting returns. 

Therefore, the stance adopted in this thesis is one of providing explanatory evidence as 

opposed to predictive evidence.  

 

 

Evidence that returns can be explained (modelled) range from literature on the aggregate, 

macroeconomic level (Fama and French, 1989) to the microeconomic level (Fama and 

French, 1992). Fama and French (1989) offer evidence on the variation of expected returns of 

stocks and bonds through time and across the business cycle. Their results show that the 

expected excess returns on bonds and stocks are correlated. The default and maturity spreads 

accounts for much of the variation in stock returns and are further related to long term 

business cycle phases. In particular, the dividend yield and default spread had a higher 

weighting when the business cycle is at a trough, and a lower weighting when the cycle is at 

its peak. The term spread is more correlated with short term changes in the business cycle and 

is also low around peaks and high around troughs. The authors then question whether their 

findings are indicative of a rational assessment of expected returns. While their results appear 

intuitive and in line with traditional economic theory (in that all variables relate to changing 

business conditions and their variation can be explained using the monetary theory of demand 
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and supply), the authors are hesitant to conclude that their findings imply market rationality. 

The work by Fama and French (1992) was a precursor to their now famed three factor APT 

model. Beginning with common factors identified by literature to add explanatory power to 

the CAPM, the authors test the impact of market equity (size of a firm) and the ratio of book 

equity to market equity as factors in an APT model. Offering little on the implication for 

market rationality, the authors simply state that their findings prove that the traditional 

CAPM is insufficient in explaining the risk-return relationship of stock returns. Rather, they 

posit that equity risk is multidimensional, influenced by the additional factors of size and 

book-to-market ratios.  

 

 

A simple model of stock prices describes the current stock price as a function of the present 

value of rationally expected or optimally forecasted future dividends, discounted by a 

constant (or fairly stable) discount rate. This implies that movements in the returns of stocks 

should be attributed to movements in the forecasted dividend stream. However, some argue 

that stock return series are often too volatile to be explained by any new, objective 

information incorporated into the new dividend forecast. Shiller (1981) points out that price 

volatility cannot solely be explained by changes in dividends. In an attempt to reconcile the 

data with the efficient markets model (here assumed to be a dividend discount model 

described previously), the author uses time series approaches to describe the trend like 

behaviour of dividends and reconcile it with the chosen model. He concludes that the 

movements in the detrended price over the sample period can be seen as a rational response 

to new information about movements in the detrended dividend series, if and only if these 

future movements were larger than those actually observed over the data period. In other 

words, there are necessarily additional factors that can assist in explaining price volatility, not 

all of which are rational. Researchers are required to judge whether these additional factors 

are more consistent with rational behaviour or irrational mispricing. Some authors argue that 

there is a third possible explanation, that of parameter uncertainty. When investors have 

imperfect information about expected returns or cash flows, they must learn about the 

unknown process using information that is available, which can be modelled using Bayesian 

analysis. Parameter uncertainty will necessarily affect prices at a given point in time through 

its impact on investors’ beliefs as well as the evolution of prices over time as investors learn 

more about the economy.  
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Lewellen and Shanken (2002) provide an example of parameter uncertainty. Suppose that 

dividends are independent and identically distributed over time with unknown mean, d, and 

known variance, s. Thus, dividends are serially uncorrelated and have constant volatility and 

any test of this series will reveal these properties. From a rational investor’s perspective, the 

mean of the dividend process is random and represented by a posterior belief about d. 

Realised dividends provide information about future dividends and the perceived volatility 

declines as the investor learns. The empirical properties of the series are clearly different to 

that perceived by the investor. The authors show that for this reason, asset pricing tests can 

find patterns in returns that are neither part of the subjective distribution nor caused by 

irrationality. 

 

 

2.7.1 Risk aversion, uncertainty and market efficiency  

Rationality in markets implies that investors correctly use all available information in 

forming security prices. A consequence of this definition is that to investigate how returns are 

generated behoves the consideration of how market participants determine and assimilate 

relevant data in their decision making. The EMH assumes that investors learn to make correct 

inferences about the impact of new information on the probability distribution of returns, 

thereby forming rational expectations about the future. What the traditional definitions of 

rationality do not imply, however, is the speed at which security prices react to information 

surprises. For example, when an event clearly conveys good or bad news about a firm’s 

future prospects, the full extent of this impact may well be uncertain. Thus, with incomplete 

information, the best an investor can do is estimate the parameters of a conditional 

probability distribution summarising various possible outcomes.  

 

 

Lewellen and Shanken (2002) present an alternate market hypothesis, the Uncertain 

Information Hypothesis (UIH), where the price setting behaviour of investors before a 

dramatic financial event are known. The UIH then predicts that after new information is 

processed, the risk and expected return of the security in question increase in a systematic 

fashion; in addition to a noisy piece of favourable or unfavourable news that immediately 

causes a market of risk averse investors to set their prices significantly below their 

conditional expected values. As the uncertainty over the eventual outcome is resolved, 
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subsequent price changes tend to be positive on average, irrespective of the nature of the 

causal event. Further, if investors exhibit decreasing absolute risk aversion (the rate of change 

of curvature of the utility function decreases as wealth increases), then the average price 

change will be larger following bad news than good news. In contrast, the AMH offers no 

similar definition to the behaviour of investors, other than their inherent ability to learn and 

survive when conditions in the marketplace change. Where the UIH investigates how agents 

assimilate information from a microeconomic viewpoint, the AMH aggregates each agent’s 

ability to assimilate information to create a market where the adaptive agent survives. 

 

 

While no study has tested the implications of the UIH, literature indirectly does exist to 

provide indications of its implications. Prior to the UIH being publicised, French, Schwert 

and Stambaugh (1987) show that the ex ante risk premium on common shares is positively 

related to the expected volatility of returns.  A positive relationship between the expected risk 

premium and predictable level of volatility on common stocks is found over the period 1928 

to 1984. This positive relationship implies that a positive unexpected change in volatility 

would increase future expected risk premiums, thereby lowering current stock prices. The 

magnitude of this strong relationship is found to not be solely due to the leverage effect, 

implying that a positive relationship exists between expected risk premiums and ex ante 

volatility, in line with the implication of the UIH that there is a systematic increase in both 

expected risk and return.  

 

 

In a pioneering study on investor behaviour, De Bondt and Thaler (1985) attempt to reconcile 

market behaviour and the psychology of individual decision making. They study the concept 

of overreaction – the tendency of prices to move past their “true” values. Conceptually, if one 

is willing to accept that there can be overreaction in the stock market, then it follows that 

some level of reaction is deemed acceptable. A means of classifying this acceptable reaction 

is through Bayes’ rule of updating probability beliefs. However, Kahneman and Tversky 

(1979) show that this rule does not match the reality of how investors perceive new 

information and they instead use heuristics. De Bondt and Thaler (1985) demonstrate that 

investors tend to overreact to information and must therefore consistently revise their original 

forecasts. While empirically observing this phenomenon in the returns of prior high and low 

return portfolios, the authors provide many more questions to answer. For example, if 
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overreaction is consistently observed as long as (in their study) three years after portfolio 

formation, it begs the question of what prompts these portfolio returns to move back to their 

“normalised” values. One such theoretical explanation is offered by the UIH. 

 

 

2.7.1.1 Developing the UIH 

Assume that: investors are rational according to the standard utility axioms of von Neumann-

Morgenstern; they are risk averse; the market incorporates all available information into 

prices quickly and that major surprises can be identified as either good or bad news, but the 

full extent of these surprises is uncertain. The last assumption implies that investors can form 

conditional probability distributions of returns given that the news is either good or bad. 

 

 

Given these assumptions, Lewellen and Shanken (2002) now proceed to prove that rational 

investors’ reactions to unfavourable news will produce a short run price pattern similar to 

overreaction. Conversely, the reaction to favourable news will produce a price pattern similar 

to underreaction.  These are shown in Figure 1. Panel A shows the adjustment of prices to 

bad news. The arrival of bad news on the event day drives the pre-event value of the security, 

P, to PB and there is no response after the event. Thus, the present value of the certainty 

equivalent of risky cash flows is reduced to PB because the event discloses a certain decrease 

in the share’s expected future cash flows.  

 



 66 

 

 

In contrast, Panel B shows the pattern of price changes that would be caused by unfavourable 

surprises that decrease the expected cash flows of the share and increase its systematic risk. 

With the additional uncertainty, the present value of the certainty equivalents, PB*, is strictly 

less than PB in a market of risk averse investors. After the uncertainty of the event dissipates 

on day k, the price increases from PB* to PB.  

 

 

The impact of a favourable suprise is shown in Panels C and D. When the full extent of the 

good news is certain, the price increase from P to PG. The adjustment is instant and there is 

no abnormal response after the event. However, when the good news increases the systematic 

risk as well as the expected value of future cash flows, the price rises from P to PG*. 

Similarly to the previous case, when the uncertainty surrounding the event dissipates on day 

k, the price further increases from PG* to PG.  

 

 

The above interpretation can easily be generalised to encompass marketwide surprises that 

affect the price of stock indices. The UIH claims that major favourable and unfavourable 

Figure 1 – Share price changes in response to favourable and unfavourable information (Lewellen and Shanken, 2002) 
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surprises about the economy will increase the risk of stocks in general. Thus, an index is 

expected to behave to those shown in Panels B and D. Moreover, when investors experience 

decreasing absolute risk aversion and hold a broad, diversified portfolio of equity, the price 

reaction to unfavourable marketwide surprises will be more pronounced than the reaction to 

an equivalent favourable marketwide surprise. This implies that in both situations, the 

portfolio is rationally priced and there are no ex ante arbitrage opportunities. Further, when 

empirical tests are done on samples of only bad or only good news, it may create the 

impression of investors consistently overreacting to bad news and underreacting to good 

news. Thus, one needs to be aware of both data mining and parameter uncertainty. While the 

former may produce statistically significant results that are actually random, the latter is 

arguably of more concern as it might produce patterns that are statistically significant, but of 

no importance to the investment decision. 

 

 

2.7.1.2 Testable implications of the UIH 

The UIH has the following testable implications. Firstly, share return variability will increase 

following the announcement of any major unanticipated news. Secondly, the average price 

response following negative events will be positive and vice versa. Thirdly, on average, post 

event price changes will be larger for a sample of unfavourable events than favourable events 

if investors experience decreasing absolute risk aversion.  

 

 

The second and third implication together implies that while the average reaction across good 

and bad news may not be the same, the reaction should not be negative. Further, when 

considering the first and second implication, the UIH predicts that following the arrival of 

unanticipated information, investors can expect to be compensated for bearing higher risk. 

This is line with satisfying the risk averse investor. The UIH can also be extended toward 

individual firm events with minor adjustments to the wealth and utility function of the 

investor.  

 

 

While the literature on psychological biases in markets is growing, it is often misinterpreted 

as evidence against market efficiency. Studies in behavioural finance document anomalies 
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ranging from overconfidence (Barber and Odean, 2001) to herding behaviour (Seetharam and 

Britten, 2013). These anomalies are, in light of the argument presented above, descriptive 

elements of how an actual financial market functions. Shefrin (2002) mentions that profit 

opportunities associated with these behavioural anomalies are often associated with higher 

levels of risk, preserving Jensen's (1978) definition of efficiency. It is thus difficult to 

interpret which part of the anomaly is associated with higher levels of risk and the remaining 

"anomaly". Litvinova and Ou-Yang (2003) introduced the assumption that in choosing an 

optimal level of effort in acquiring information, agents are cognisant of the existence of other 

like-minded agents in the market. This creates competition amongst agents decreasing the 

marginal benefit of a single agent acquiring information. As the marginal benefit decreases to 

a level that eliminates the desire to obtain more information, sophisticated traders bear higher 

risk and higher costs in trading. While the number of agents may increase (or decrease), this 

does not necessarily lead to market efficiency and no equilibrium in their model.  

 

 

Therefore, it is imperative to account for the population of traders in a market, segmented by 

their psychological characteristics (such as the need for competition), in obtaining costly 

information, as well as the speed and costs of learning such information. As such, the 

description of the AMH captures the behaviour of agents, albeit at an aggregated level. It 

provides a framework in which the individual agents are autonomous in their search for 

valuable information, thereby always creating an ever changing equilibrium where profits can 

be made from time to time. The UIH can be seen as a microeconomic view of market 

efficiency. Another alternate theory explores market efficiency from a macroeconomic point 

of view - indirectly bringing a robust understanding of the AMH. 

 

 

2.7.2 The Market Fraction Hypothesis 

Brock and Hommes (1998) develop an asset pricing model where the agents have 

heterogeneous beliefs. In this model, agents can update their beliefs of the future price of a 

risky asset based on a fitness measure of past realised profits. The agents can thus be 
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clustered according to their beliefs. Using dynamical systems analysis17, they provide 

analytical evidence for circumstances in which chaos exists causing the fractions of the 

clusters to change. They then extend this analysis to show that chaos can exist under the two 

and four belief types18. Based on these observations, Chen (2008) and Chen, Chang and Du 

(2012) suggest a Market Fraction Hypothesis (MFH) which describes the constant variability 

among the fraction types as being driven by the types of trading strategies of the agents.  

 

 

The MFH is characterised by three statements. First, in the short run, the fraction of different 

clusters of strategies changes over time, implying a short dominance duration for any one 

cluster. Second, in the long run, different clusters are equally attractive and their market 

fractions are equal. Third, the size of each type of trading strategy is positively correlated to 

its earnings performance. These statements imply that it is not possible for a single strategy to 

dominate the market by attracting an overwhelming fraction of market participants for many 

consecutive periods. Further, if the market has two trading strategies, their fraction should 

keep changing over time such that in the long run, they have the same market share. There is 

also a positive (albeit counterintuitive) correlation between survivorship of a strategy and the 

profits obtained from a strategy. 

 

 

Agent based modelling can be categorised in a binary fashion. The first group would examine 

a financial market by allowing the agents to choose between different types of portfolio 

strategies. The agents in this model are presented with, say, three types of strategies at each 

point in time and are required to choose one; leading the researcher to examine the fractions 

of different strategies that are chosen over time. A shortcoming of this approach is that the 

strategies are predefined and do not change over the lifetime of the simulated experiment. As 

such, the second type of agent based modelling examines rather the evolution of the agents 

themselves, where the agent is allowed to create his own strategy at each point in time. While 

this may be a more realistic simulation, it focuses on the evolution of price rather than the 

fraction of different strategies chosen over time. Kampouridis, Chen and Tsang (2012) 

                                                 
17 A geometric analysis that aims to reliably compute objects of dynamic significance, such as the swing of a 

pendulum. 

18 A fundamentalist or contrarian investor, coupled with a bullish or bearish investor. 
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combine these two approaches to test the Market Fraction Hypothesis. The authors use 

artificial intelligence techniques (specifically genetic programming (GP) and Self Organising 

Maps (SOMs), both of which are described in Chapter 3) for testing the MFH. The first 

technique, genetic programming, was used to evolve the agents and their behaviour over 

time; while the second, Self Organising Maps, was used to cluster agents with similar 

characteristics (thereby creating in effect fractions of agents with a similar portfolio strategy). 

They find that their GP algorithms produce robust results across 10 international markets, 

implying that in the long run, these markets tend to favour five to six types of agents to 

capture the behaviour of 95% of market participants. However, in using SOMs to identify 

clusters of agents, their results do not support the MFH particularly well. The explanation of 

this finding is left to their future research. Deviating from the relationship between risk 

aversion and parameter uncertainty, literature also provides alternative forms of market 

efficiency based on the rationality of the investor. 

 

 

2.7.3 Rationality and Market Efficiency 

Perhaps the first authors to offer an alternative to the EMH, Daniel and Titman (1999) 

defined a new form of market efficiency, that of adaptive efficiency. A market is considered 

to be adaptive efficient when profit opportunities apparent in historical data are dissipated as 

soon as they appear. The authors argue that a rational arbitrageur will take time to understand 

the trading strategies and possible irrationality of other traders. Once this knowledge is 

gained, patterns that were caused by trading of irrational traders can be removed over time. 

Assuming a risk-averse arbitrageur with limited capital, it follows that price patterns cannot 

be instantaneously removed, as suggested by the EMH. Thus, adaptive efficiency can be 

considered a weaker form of market efficiency than that suggested by the EMH. In tests of 

the U.S equity market, Daniel and Titman (1999) reject the adaptive efficient hypothesis as 

the profits discovered from a zero cost trading strategy appeared to remain persistent over the 

time period 1963 to 1997. The long-short strategy is based on market capitalisation, 

momentum and book-to-market ratios. It has negative betas each year; consistent, positive 

profits and an extremely high Sharpe ratio. In effect, the authors test what can now be 

considered the second implication of the AMH; that the profitability from following a 

particular strategy over time will be cyclical. While their findings are contrary to this 
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implication, the thinking around alternate efficient market hypotheses began from the work of 

Daniel and Titman (1999). 

 

 

The traditional economic paradigm of rational individuals implies that these individuals can 

make optimal decisions based on available information. Grossman and Stiglitz (1980), inter 

alia, show that this implies that asset prices reflect all available information, such that 

abnormal profits can only be achieved through the use of private information.  Further, the 

typical investor, who can reasonably be assumed to not have access to private information, 

would never earn abnormal profits according to this view. Daniel and Titman (1999) develop 

their notion of adaptive market efficiency based on the behavioural bias of overconfidence. 

The overconfidence bias is chosen in particular as the authors believe that it is the most 

established, most likely evident in security valuation and most likely to arise through 

evolutionary selection. The last reason, that of evolutionary selection, can be explained as 

follows. If a behavioural bias distorts an investment decision with no offsetting benefit, it 

follows that that bias would likely be eliminated through natural selection. Given the 

individual's ability to learn, the acknowledgment or discovery of the bias would lead the 

investor to determine if the bias assists in earning abnormal profits. If no abnormal profits are 

gained from this bias, the astute investor will discard the bias in search of another (barring 

any finer points on whether a character trait can easily be discarded). 

 

 

Traditional economics is of the view that irrational investors have a minor effect on prices. 

Thus, rational investors can change prices to a point where the profit opportunity is 

eliminated, implying that prices are in effect determined by mostly rational investors.  

Behavioural-based models gained favour since the work of DeBondt and Thaler (1985) in 

showing that there exists overreaction in stock prices. While traditional economics criticises 

behavioural theories, in that the array of irrational behaviours in a given setting is unlimited, 

no singular theory can explain a multitude of financial anomalies out of sample. Daniel, 

Hirshleifer and Subrahmanyam (1998) show that the evidence is more consistent with 

particular behavioural biases than the standard rational model. The authors develop a theory 

based on investor overconfidence and biased self-attribution. In the context of financial 

markets, individuals will overestimate their abilities to analyse information and underestimate 

their error in making forecasts. Thus, an overconfident investor is defined as an agent who 
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attributes more confidence to his own assessments about a private signal to the market than a 

public signal; overweighting this information and causing the price to overreact. The 

behavioural model of Daniel et al. (1998) is based on the premise of overreaction of prices to 

private information and underreaction to public information. Examining the investor in the 

above model, the authors argue that their agents are quasi-rational; they are Bayesian 

optimisers for the most part, except when analysing private information.  

 

 

2.7.4 The response from the rational investor 

The hypothetical investor in Daniel and Titman (1999) is assumed to have shifted his capital 

towards strategies that have performed well in the past. The magnitude of this shift would 

determine the magnitude of his profits. However, without the benefit of perfect hindsight, the 

investor would have cautiously shifted capital, earning moderate returns over time. In the 

presence of irrational investors, there is no accepted metric to determine how much capital a 

rational investor will shift towards strategies that have performed well in the past. With both 

rational and irrational investors present, that learn from past price movements, non-

stationarity in the data is the root cause of the problem. Whilst the hypothetical investor 

discovers price patterns, other rational investors would most likely discover the same price 

patterns at the same point in time. If all rational investors acted on their discovery, the profits 

from the strategy would be eliminated. The investor should ideally have a theory of 

inefficient markets that assists in understanding irrational behaviour as well as the extent to 

which these patterns are detected by other rational investors (assuming that some of the 

overconfident investors have access to private information). The belief of market efficiency 

then becomes a non-trivial question. If the investor believes that he is the only one to conduct 

such an analysis on the market, then he would most likely shift more capital towards the 

chosen strategy. If however, the investor believes that the inefficiencies detected are 

corrected by other investors, then he may well decide to not shift any capital to the chosen 

strategy. If most investors act in a like manner, then the profit opportunity may well persist. 

Alternatively, if they are contrarian in nature, they may well shift capital into an opposing 

strategy, reversing the pricing anomaly. The traditional paradigm of efficient markets, as 

described by Fama (1965b), implies that an investor during those times, with access to high-

level technology and costless processes, would be able to earn above-average returns. The 
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evidence presented in Daniel and Titman (1999) firmly rejects this notion, in favour of an 

alternative form of adaptive efficiency.  

 

 

2.7.5 The Adaptive Market Hypothesis 

 

As per Simon (1982), human beings are boundedly rational. We cannot compute complex 

calculations mentally in any feasible amount of time. This is just one of the many “shortfalls” of 

homo economicus. If the EMH is the cornerstone of traditional finance theory, and if homo 

economicus is a component of the ideal investor, then the stark reality is that homo sapiens are 

not ideal investors. As such, we do not live up to the impossibly high standards of theory. This 

leads us to the debate of whether markets are truly efficient. From the arguments presented 

previously, the time horizon under investigation is extremely important. It is plausible that no 

practitioner may beat the market in the long term. It is also equally possible that an analyst 

might consistently beat the market in the short term (in independent trades). This thesis 

defines efficiency for markets to be such that the market is efficient at every point in time.  

 

 

 

Lo (2004, 2005) describes a new form of market theory – the Adaptive Market Hypothesis 

(AMH). This approach utilises concepts from finance and the principles of evolution. It is 

simply stated as follows: “Prices reflect as much information as dictated by the combination 

of environmental conditions and the number and nature of ‘species’ in the economy” (Lo, 

2005, p. 19). Species refer to market participants (asset managers, hedge funds, traders, inter 

alia). Thus, the efficiency of the market at any point in time is related to the factors of 

evolution and competition present.  

 

 

The AMH is built upon Wilson’s (1975) concept of socio-biology and Simon’s (1982) 

concept of bounded rationality. As decision makers learn through trial and error, the feedback 

from these actions determines their survival capability. As market conditions change, 

participants develop new heuristics to replace the old, inappropriate ones and adjust their 

investment strategy accordingly. Research by Hunt and Ellis (1999) shows that emotion 

affects people’s memory and judgement. Indeed, when making investment decisions under 
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uncertain conditions, it is reasonable to expect that the investor will deviate from full 

rationality and modify his investment strategy based on past mistakes and successes. A form 

of Darwinian evolution ensues in that only the investor who adapts is able to survive by 

making profits under changing conditions. Conceptually, the EMH can be considered a final 

state model which is fixed whereas the AMH is considered a dynamic model that reaches the 

fixed state of the EMH. It presents a simple, philosophical and pleasantly intuitive view of 

market efficiency. Market efficiency can be seen as cyclical. There are times of inefficiency 

and efficiency. For a market to become efficient, it must first be inefficient and vice versa. 

The influence of market participants (through trading or financial product innovation) 

influences this efficiency, sometimes in a disruptive way. To date, no formal methodology 

has been published on testing the AMH. However, authors have nonetheless proposed and 

tested methods.  

 

 

The AMH of Lo (2004, 2005) captures the characteristics of the changing psychology of 

different investor groups. It applies evolutionary principles to financial markets, and attempts 

to explain investor "irrationality" as a rational reaction to a changing environment. Further, 

the AMH implies that market efficiency is relative to time. In other words, markets can be 

both efficient and inefficient over a sample period as efficiency is measured at each time 

interval. The AMH incorporates elements of asymmetric information of Grossman and 

Stiglitz (1980) and the "noise" trader19 of Black (1986). In ecological terms, they are the prey 

of sophisticated traders and suffer from psychological biases as described by behavioural 

finance. Statistically, their behaviour may cause a serial dependence in price changes unless 

eliminated quickly by sophisticated traders. In addition to these two investor groups, there is 

a feedback loop between them. According to Shefrin (2002), sophisticated traders may be 

aware of an increased number of noise traders through large and sudden price changes, which 

would increase their perception of risk and decrease their enthusiasm for trade. This would in 

turn lead to larger price fluctuations, changing the equilibrium between noise and 

sophisticated traders over time. One can thus expect to find larger price fluctuations during 

periods dominated by noise traders. 

 

 

                                                 
19 An arguable definition, a noise trader is an investor who makes buy and sell decisions with no regard to 
fundamental analysis. 
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If one had more precise information on the number and behaviour of noise traders, one could 

model an ecological environment and possibly the complexity of competition for resources. 

From the suggestions of Farmer and Lo (1999), this would enable insight into the emergence 

and extinction of certain investor groups and behaviour. The inclusion of heterogeneous 

beliefs in an adaptive learning model assists in depicting financial market dynamics, which 

according to Lo (2004, 2005), provides an opportunity to: explain changes in risk premia, 

explain changes in risk attitude and, explain changes in winning investment strategies; 

ultimately aiding in understanding the process of market efficiency.  

 

 

For example, Todea, Ulici and Silaghi (2009) test the profitability of a moving average 

trading rule in six Asian markets. By examining a technical analysis trading rule, the authors 

are in effect testing the weak form of market efficiency. The authors state that an acceptance 

(failure to reject) the hypothesis implies informational efficiency, but a rejection of the 

hypothesis does not imply informational inefficiency due to the joint hypothesis problem 

described earlier. Examining the evolution of profits from a trading strategy, they find that 

the profits generated vary through time and postulate that this cyclicality is similar to that 

described by the AMH. While this may seem like weak evidence in favour of the AMH, recall 

that one cannot readily test the EMH without first specifying an appropriate equilibrium price 

model. Thus, one can only offer indirect evidence of the implication of the AMH.  

 

 

Neely, Weller and Ulrich (2009) test for stability of returns over time in the foreign exchange 

market. The authors find that trading rules used during the 1970s and 1980s provided 

statistically significant profits whereas those used during the 1990s did not. They infer that 

the lack of consistent profits over time implies a cyclical form of efficiency, favouring the 

AMH, similar to Todea et al. (2009). Butler and Kazakov (2012) test two implications 

(cyclical profitability and cyclical efficiency) of the AMH using computational intelligence 

techniques. To test the former, the authors use a popular trading rule, Bollinger Bands20, to 

determine profits from following that rule over time. The rule is adapted using a particular AI 

                                                 
20 A technical analysis trading rule that measures the high and low values of a share's price relative to previous 

trades.  



 76 

technique, that of Particle Swarm Optimisation (PSO)21 to chose optimal parameters in the 

Bollinger Bands. They find that this particular rule is able to outperform the market index 

35% of the time, implying that the profits from such a strategy vary over time in line with the 

implications of the AMH. Further, to test the latter implication of cyclical efficiency, the 

authors examine the returns generating process. Assuming returns to be generated from a 

GARCH(1,1) model, the authors divide the output into a sample exhibiting random walk 

behaviour and another exhibiting deterministic (non-linear) behaviour. This division is done 

using the Hinich Portmanteau bi-correlation test. Thereafter, using several AI techniques to 

determine predictability of the two samples, the authors find that a Support Vector Machine22 

or a decision tree23 are equally effective in forecasting future values of deterministic share 

returns. Using time-series econometrics, the authors demonstrate that non-linear dependence, 

if detected, can provide more reliable forecasts.  

 

 

Cajueiro and Tabak (2004) test for market efficiency across 13 different countries. The 

authors use a rolling window approach to view efficiency over time rather than across the 

entire sample period in comparison to most other studies. Using a Hurst exponent and 

Rescaled Variance (R/S) method, the authors calculate and rank relative efficiency across the 

13 market indices. They find that most Asian indices studied exhibit long run dependencies 

compared to South American indices. Further, in line with previous studies, there is no 

evidence of dependence in return observations within the developed market indices studied. 

The authors present a practical framework for testing serial dependence, which is adopted in 

this thesis. These tests are apt for detecting long term patterns that may be apparent in the 

data.  Some authors argue that the existence of non-linear serial dependence is a challenge to 

the unpredictability criterion of market efficiency. In principle, when one examines the 

autocorrelation between return observations, one should also examine higher order (non-

linear) autocorrelation that may be present.  

 

                                                 
21 A method of optimisation that iteratively improves the candidate solution allowing a population of candidate 

solutions to converge on a particular option. 
22 A supervised learning model that can analyse data and recognise patterns in either classification problems or 

regression analysis.  
23 A support tool that represents decisions and possible outcomes in a tree-like graph.  
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Johnson, Jefferies and Hui (2003) demonstrate that a simple return generating process may 

exhibit higher order correlation which appears random when one examines the (linear) 

autocorrelation function. Specifically, the function produces a value of zero, indicating that 

the returns are not correlated, and thus implying evidence in favour of the EMH. Lim (2007) 

takes the above into consideration in testing for relative efficiency across market indices. 

Adopting the approach from Cajueiro and Tabak (2004), the author uses a Hinich 

Portmanteau test with a rolling window approach to capture higher order correlations across 

time. He finds that market efficiency is not a static measure as previously assumed by the 

literature. Instead, there is evidence of non-linear dependence of stock returns that evolves 

over time.  

 

 

Indeed, a branch of literature exists which uses theories and techniques from the physical 

science discipline in solving problems in economics. Labelled econophysics, the fledgling 

field can provide means of solving some of the long standing questions in finance.  Zunino, 

Zanin, Tabak, Prez and Rosso (2009) test whether market efficiency is cyclical in developed 

and emerging markets using techniques from the physical sciences. They introduce the 

concept of entropy, a measure of disorder or chaos, to rank stock market efficiency. This 

measure does not rely on any particular pricing model, but does rely on the probability 

distribution of prices. If stock prices followed a random walk, this entropy measure would be 

maximised. A further measure, the number of forbidden patterns, is also used. These 

forbidden patterns capture the existence of missing sequences in a time series and was 

proposed by Amigo, Kocarev and Szczepanski (2006) as a distinguishing factor between a 

random and deterministic process. Zunino et al. (2009) find that both measures have lower 

values in developed markets (indicating greater efficiency) and higher values in emerging 

markets. The results of these three particular studies demonstrate that the paradigm of 

considering efficiency as a binary state is changing, along with the techniques used to solve 

the long standing debate on market efficiency. The methodology used in this thesis adopts 

some of these approaches, discussed in detail in Chapter 4.  
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2.7.6 The behavioural view of market efficiency 

 

The field of economics can be seen as having foundations in biology, sociology and more 

recently psychology. While current economic thought is now dominated by equilibrium-

based models, some authors have nonetheless proposed models based on biological 

processes. Miller (1986) argues that these models place limited demands on the abilities of 

the economic agent. Borrowing from Simon (1982), agents can be considered boundedly 

rational. In other words, they can process as much information as is humanly possible. This 

sets a far less restrictive assumption on the capability of the agent compared to optimisation 

models traditionally used. Further, these biological models are dynamic in nature, making 

them well-equipped to handle disequilibrium conditions. In contrast to equilibrium models, 

these evolutionary models can model a large amount of economic behaviour which 

(arguably) occurs in disequilibrium states.  

 

 

While the biological-based model is appealing, it is not without its disadvantages. These 

models often lack analytical solutions that traditional models provide. Their dynamic nature 

often requires simulation to achieve a high level of accuracy. The results from these 

evolutionary models can provide insight into the conditions that an optimal state is reached, 

prompting further research using equilibrium models. Miller (1986) creates a biological-

based model on genetic programming. The model has sufficient theoretical structure and 

works well in explaining many economic concepts. Further, Miller (1986) suggests that the 

model has strong optimisation abilities, inferring that the optimisation and adaptive approach 

may not be mutually exclusive, as previously thought. Indeed the role of Artificial 

Intelligence, specifically neural networks as approximators of functions, has aided to solve 

many complex issues in economics. 

 

 

2.7.6.1 Neural Networks 

Any form of explanatory analysis on share returns makes the implicit assumption that 

publicly available information has a relationship to future share returns. Such information 

could range from economic variables, fundamental (accounting-based) variables to rumour 

and speculation. This assumption clearly violates the EMH which states that it is impossible 
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to forecast future prices as all relevant information is already accounted for in current market 

prices. When new information enters the market, prices will adjust instantaneously in a 

random manner according to the random walk hypothesis. This line of reasoning implies that 

the best forecast of future share prices is the current share price, thus resulting in a random 

walk model. A major caveat of studies that show the contrary, which is exposed by 

proponents of the EMH, is that the evidence presented relies on a linear dependence between 

the share price and the independent variables. Practically, it is reasonable to infer that non-

linear relationships do exist between economic and financial variables. Given this inference, 

one can then proceed to model these relationships. However, this model-driven approach 

requires that the model first be specified before estimation of the parameters can commence. 

Neural networks have thus been introduced to model financial problems precisely because of 

the reason outlined above. They are capable of non-linear modelling without any a priori 

knowledge about the relationship between the input and output variables. Desai and Bharati 

(1998) test the predictability of four asset class returns using a neural network. If a neural 

network is mistakenly applied to linear data, the network will either be relatively 

computationally expensive to train compared to simpler linear models or will overfit the data 

and learn the noise in the series. Thus, to avoid the latter, one should first investigate the 

series for neglected non-linearity before attempting to use a neural network to predict any 

future values. Using two popular tests of the sort, Desai and Bharati (1998) test the return 

series for large stocks, small stocks, corporate bonds and government bonds. They find that 

non-linearities do exist in large stocks and corporate bonds and attempt to fit a neural 

network to predict future values of these two asset class returns. The neural network 

outperformed both a linear regression and GARCH model, showing that over the sample 

period covered, neural networks are more suitable for modelling non-linear behaviour of 

asset classes.  

 

 

Notwithstanding their ability to perform non-linear modelling, the accuracy of results from a 

neural network is heavily biased towards the ability of the researcher. In other words, a neural 

network is only as successful at predicting future prices based on the inputs received (which 

are selected by the researcher). Often, no justification is given for the selection criteria of 

input variables. It is apparent that the inclusion (or exclusion) of (irrelevant) relevant input 

variables can be detrimental to the success of the network. Given some background on neural 

networks, one proceeds to be informed of their development since inception. 
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Hardin (2002) suggests that neural networks were developed in part due to the ordinal 

revolution in economics and decision theory. As the choices of economic agents have a social 

and interactive context, one needs to construct a means of mapping all potential and actual 

responses from the interaction of these agents. As our choices have social and interactive 

elements, it becomes near impossible to theoretically describe all potential paths from these 

responses and interactions. Thus, Hardin (2002) argues that these models exhibit a 

fundamental indeterminacy. It is impossible to practically describe all possible interactions 

and responses. Assuming the rational individual understands the product of their interactions 

with others, it follows that the reactions of those other participants may not necessarily be 

similar or unique – similar to the “prisoner’s dilemma”. When the element of time is added to 

these models, the agents may react quite differently to what was assumed by the other agents. 

These time based models would be dependent upon some initial condition, which would 

cause a chaotic series of actions to emanate from each change in condition. Further assuming 

that a complex model can be constructed and empirically tested, the problem of aggregation 

arises, where information contained in the individual data are lost due to aggregation. This 

can be observed through application of Arrow’s Impossibility Theorem (Arrow, 1950). 

Aggregation of preferences into a general choice rule makes it impossible to determine the 

optimal allocation of resources in the face of disagreement24.  

 

 

ANNs assume ambiguity25 in the ability of the researcher – the researcher does not know that 

he is incapable of conceiving, designing or constructing a complicated, interactive model of 

human behaviour. Thus, the alternative would be to learn from past observations, without 

imposing a determinate principle on it (Krippendorf, 2002). In economics and finance, this 

does not necessarily pose a problem as initial conditions are dependent on future expectations 

- the price of a stock today does not necessarily depend solely on its previous price, but also 

on the forces of supply and demand for it. Applying an ANN to an economic or financial 

problem, the focus would be to detect and test for non-linear relationships as they are more 

likely to be present than linear relationships according to Granger (1991).  While neural 

                                                 
24 The theorem is most commonly described in an example of an election. Assume a finite set of candidates for 

the election, a finite set of voters and their individual preferences for outcomes. These preferences are 

unrestricted - they are independent of other influences. The theorem states that it is not possible to derive a 

complete and consistent social choice rule exclusively from the individual preferences, except in dictatorships.  

25 Ambiguity is defined as unknown outcomes with an unknown distribution. 
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networks are capable of processing voluminous amounts of data, they lack insightful 

imagination (Weiss and Kulikowski, 1991).  In other words, while they are capable of 

processing voluminous data and performing calculations beyond the natural ability of 

humans, the results of ANNs are essentially taken to be true, provided the data and the 

network itself is adequate. 

 

 

2.7.6.2 Advantages and Disadvantages of ANNs 

The use of ANNs over conventional statistical methods presents many useful advantages. 

First, ANNs have the ability to analyse complex patterns in the data with a high degree of 

accuracy. Second, there are no assumptions made as to the underlying distribution of the data. 

They thus provide an unbiased analysis, especially when the relationships between variables 

do not fit an assumed model. Maasoumi, Khotanzed and Abaye (1994) stress that since time-

series data is dynamic, it is necessary to have non-linear tools to discover any relationships 

among the data. They conclude that ANNs are the best at discovering such relationships. 

Given that not all data sets are complete, ANNs can perform well with missing or incomplete 

data. The ANN can readjust its connection weights to account for the new data presented to 

it, enabling a dynamic updating of the node thresholds and providing a more accurate 

forecast. In comparison to an econometric model, it is easier for an ANN to forecast data over 

short intervals, given that the argument of anomalous characteristics disappearing when data 

is aggregated. If the ANN is used for solving an economic or financial problem, this 

advantage is quite appealing. In an attempt to circumvent data aggregation, data of differing 

frequencies is thus used in this study to provide robustness. 

 

 

Given the complex nature of economic and financial systems, it is difficult (if not impossible) 

to develop a model which accounts for all possible reactions and counter-reactions. If one 

tries to account for all possible outcomes and dynamic interactions, the resulting model 

becomes both overly complex and impractical to test. Thus, using principles such as profit or 

utility maximisation produce inaccurate results. Recall that the most important maxim in the 

AMH is that of survival - not necessarily of profit or utility maximisation. ANNs, while not 

attempting to provide a complete model of the system, attempt to emulate it. ANNs can 

handle the indeterminacy of the system by either utilising probability and statistics; or by 
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using fuzzy logic on the input and output data. The activation function can thus be adjusted 

accordingly. While the ANN does not solve the indeterminacy problem, it provides a means 

of reducing it; thereby allowing forecasts and predictions to be carried out with some degree 

of accuracy (often higher than traditional econometric methods). This is indirectly tested by 

using differing frequency data in this study as well comparing the result of the neural network 

to more traditional econometric models. 

 

 

As much as an ANN solves many problems, there are also flaws in utilising them. Firstly, 

ANN development is often left to the researcher in that there is no structured methodology 

available for constructing an ANN. Further, the output quality may be unpredictable 

regardless of the architecture of the network. The researcher may have followed each 

reasonable heuristic in designing an optimal network, but the output may nonetheless be 

poor. An ANN is also considered to be a “black box” (a system that cannot be fully described 

despite it accurately predicting output data). As such, it is impossible to determine the 

relationship between nodes in the hidden layer without further additions (Li, 1994). One such 

method that has emerged in the recent literature is the use of a Deterministic Finite State 

Automaton (DFA). These DFAs produce a symbolic representation of how input data is 

processed and transformed into output data, however, this method is still in its infancy as of 

time of writing.  

 

 

ANNs can be thought of as autopoietic systems – they produce their own patterns from a set 

of inputs that are, in turn, used to operate the future production of outputs which are 

emulative (provide empirical evidence) instead of theoretical (provide theoretical evidence) 

(Krippendorf, 2002).  In contrast, a regression model is usually built around first principles in 

statistics and physics. Thus, a regression model provides a higher level of structure and 

explanatory power compared to an ANN. As such, it is important to understand the different 

types of ANN architecture to determine if the advantages and disadvantages of each are 

acceptable to the researcher.  ANNs usually have long training times that require the 

researcher to perform multiple iterations to enhance confidence in the predictive ability of the 

network. Another disadvantage is that neural networks are data-dependent. The success of the 

ANN depends on the input data. In solving financial problems, it is crucial to test the ANN 
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on out-of-sample data as the input data may be inherently different (similar) to the out-of-

sample data.  

 

 

Kanas (2001) developed an ANN for the Dow Jones and Financial Times indices. Tests from 

both the ANN and a linear model revealed little in predicting directional changes in the 

indices, however, the non-linearity in share prices was confirmed. An ANN may easily over-

fit or under-fit the data, an implication from an indeterminate system. Therefore, an ANN 

does not contain explicit causal relationships nor is built on first principles.  

 

 

It should be noted that many of the disadvantages highlighted above can be solved using pre-

processed data (for example, using returns instead of raw price levels). As per Schwartz 

(1995), using a few well-chosen variables will result in a better result than using every known 

economic variable as inputs. Often, the ES can be used to eliminate either insignificant or 

highly correlated variables – speeding up the training time and enhancing accuracy. This also 

adds an element of indeterminacy – the choice of the ES differs each time based on the 

iteration and choice of expert. More such applications are now discussed, with particular 

reference to the use of neural networks as opposed to other AI techniques. 

 

 

2.7.6.3 Application of ANNs to finance 

Swales and Yoon (1992) test whether an ANN is better at forecasting than multiple 

discriminant analysis. Given the popularity of the former technique, the limitations of the 

technique suggest that a non-linear approach may better assist analysts and investors in 

making investment decisions. The authors show that an ANN is superior at predicting share 

prices compared to the discriminant analysis method, based on analysing information content 

in news alerts from select Fortune 500 companies. 

 

 

In the insurance arena, Brockett, Cooper, Golden and Pitaktong (1994) construct an early 

warning system to predict insolvency on insured clients. The authors use a feed-forward 

neural network with the backpropagation learning algorithm and compare its performance 
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against the more traditional measures in the field to predict insolvency, namely discriminant 

analysis and publically reported insurance regulator ratings. They find that the neural network 

shows a high level of predictability and generalisation for predicting insolvency two years 

after the end of their sample period. While it is now known that a feedforward network is not 

the best architecture to use for time series data, the results of the authors show the power of 

artificial intelligence techniques in solving relevant issues in finance (or at least in insurance). 

 

 

In the pricing of derivatives, the most common practice is to use the Black-Scholes option 

pricing framework. However, this approach rests on the parametric specification of the 

dynamics of the underlying asset's price. If there is a misspecification in this stochastic return 

generating process, then it follows that the price derived from the framework will be error 

prone. In effect, the success of establishing a true price of the derivative rests on correctly 

specifying the stochastic process of the underlying asset price. Hutchinson, Lo and Poggio 

(1994) propose a non-parametric approach for pricing derivatives. By selecting those factors 

believed to influence the derivative's price, the authors compare the error terms from three 

different models, a radial basis function network, a multilayer perceptron and a projection 

pursuit regression (PPR) (a technique unrelated to artificial intelligence, PPR is a means of 

analysing high dimensional datasets by examining their lower dimension projections). While 

the authors do report that the networks are better than other methods, they are hesitant to 

generalise their findings given the short data period (three years) and single derivative 

instrument used.  

 

 

While the ANN is better at prediction, it does not imply that the ANN is a determinate 

system. Some authors, such as Hill, Marquez, O’Connor and Remus (1994) find that the 

ANN is comparable to traditional statistical methods. Indeed, the ANN performs as well as 

the classical regression model at forecasting yearly prices, but better in forecasting monthly 

and quarterly prices. When non-linearity is present in the data, the ANN can necessarily 

outperform regressions in modelling human behaviour. Kuo and Reitsch (1996) test 

regression and ANN methods at forecasting data. They use two datasets, one with a 

dependent variable and a number of explanatory variables (a cross sectional dataset) and the 

other with a single dependent variable measured across time (a time series dataset). Further 
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employing exponential smoothing techniques to the time series data, the authors find the 

neural network models generated the most accurate forecasts in both datasets. 

 

 

Kuan and Liu (1995) investigate the out-of-sample forecasting ability of neural networks in 

predicting exchange rates. As foreign exchange rates are integrated of order one and their 

changes are uncorrelated over time, these changes are not linearly predictable. Thus, one 

needs to employ non-linear methods to forecast them. Utilising a two step procedure to 

estimate and select the appropriate feed-forward and recurrent network, the results from their 

study are mixed. Out of six daily exchange rates studied (the U.S Dollar, British Pound, 

Canadian Dollar, Deutsche Mark, Japanese Yen and Swiss Franc) over 1980 to 1985, only 

two networks offer either significant market timing ability (predicting the correct direction of 

the future exchange rate) or a lower out of sample error. While their results are not overall in 

favour of using neural networks to forecast exchange rates, the authors do propose an easily 

implemented procedure in selecting the best network for use in the modelling exercise. The 

procedure allows for a family of networks to be estimated that produce the best predictive 

ability. Thereafter, statistically better estimates for these networks are derived using non-

linear least squares regressions. The authors test this procedure and find that it performs well 

in determining the optimal ANN.  

 

 

Shachmurove and Witkowska (2001) investigate the dynamic relationships between major 

world stock markets using neural networks. Using daily data from seven major indices (six 

country indices and one world index), the authors propose that the daily return on a particular 

index is a function (contemporaneous and lagged) of other indices. They first apply ordinary 

least squares regression methods to determine which variables are significant to be input to 

the neural network, a multilayer perceptron. They find that the neural network predicts daily 

stock returns better than the more traditional methods of ordinary least squares and general 

linear regression models. Further, there are different network architectures that exist for each 

index. The results of their study point towards a simple, yet powerful application of neural 

networks in predicting stock returns. In the case of the authors, their objective was to 

determine if there exist interrelations between global stock indices and to determine if a non-

parametric model provided superior forecasting ability. Indeed, asset managers and 

investment banks such as Goldman Sachs and J.P. Morgan utilise ANNs (Shachmurove and 
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Witkowska, 2001). The authors describe how a unit trust by Fidelity Investments bases its 

portfolio allocation on the recommendations of its ANN.  The increased usage of ANNs in 

business indicates the usefulness of the ANN in solving financial problems and can be 

considered a pioneering field in the realm of empirical finance.  

 

 

2.8 Frontiers in finance 

There has been a recent emergence of non-traditional fields in finance - most notably that of 

behavioural finance, evolutionary finance and neurofinance (Tseng, 2006). The extent of 

market efficiency and indeed its participants’ rationality is a matter of perspective. While the 

empirical evidence remains unchanged, the unique characteristics of each individual that 

views this information can possibly lead to differing conclusions. This is more apparent in the 

professional realms of trading and investing, where market participants have a variety of 

backgrounds, experience and heuristics for analysing identical information.  

 

 

Rational behaviour theories either prescribe how people should behave in order to achieve 

certain goals under certain conditions, or they describe how people actually do behave. When 

risk, uncertainty or incomplete information is introduced, it is well documented that people 

behave differently from the strict and often abstract definition of rationality. Simon (1997) 

defines an alternative (and more realistic) form of rationality, which he calls bounded 

rationality. 

  

The term ‘bounded rationality’ is used to designate rational choice that takes into account 

the cognitive limitations of the decision-maker, limitations of both knowledge and 

computational capacity. Bounded rationality is a central theme in the behavioural 

approach to economics, which is deeply concerned with the ways in which the actual 

decision-making process influences the decisions that are reached. The theory of 

subjective expected utility (SEU theory) underlying neo-classical economics postulates 

that choices are made: (1) among a given, fixed set of alternatives; (2) with (subjectively) 

known probability distributions of outcomes for each; and (3) in such a way as to 

maximize the expected value of a given utility function (Savage, 1954). These are 

convenient assumptions, providing the basis for a very rich and elegant body of theory, but 
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they are assumptions that may not fit empirically the situations of economic choice in 

which we are interested. Simon (1997, p. 291) 

 
 
 

The concept of bounded rationality has been firmly rooted in many theories in behavioural 

finance and is preferred over its stricter counterpart. Indeed, Shleifer (2000) argues that the 

attitude of investors towards risk, their sensitivity to the framing of problems and their non-

Bayesian expectation formations bias investors toward deviating from rationality. The first 

assumption of the EMH can thus be modified in terms of bounded rationality or minimal 

rationality (Rubinstein, 2001).  

 

 

Rubinstein (2001) describes the debate between himself and a famed behaviouralist, Richard 

Thaler, on market rationality. The first assumption is that markets are maximally rational if 

all investors are rational. This implies that investors would not trade much and rather invest 

in the market or an index fund. In practice, the author argues that this is hardly believed to be 

true by many investors. The second assumption is that asset prices are determined as if all 

investors are rational. Again, in practice, it can be said that not all investors are actually 

rational, for if they were, then, for example, fund managers would correct their own and their 

client's irrational investment choices. Therefore, in a rational, but not maximally rational 

market, investors can either trade too much or too little. If markets are not rational, it does not 

imply that profit opportunities exist. In such a case, Rubinstein (2001) refers to this as a 

minimally rational market, where prices are not set as if all investors are rational, but there 

are no abnormal profit opportunities for the rational investor. Further, Shleifer (2000) shows 

that real world arbitrage opportunities are risky and limited. This would imply that if an 

opportunity arose, it may not necessarily be eliminated through trading as that action is 

dependent upon the risk attitude of the investor willing to undertake the arbitrage. The final 

assumption is also considered unrealistic by Simon (1982). It is assumed that an investor will 

comprehensively and accurately analyse information available to decide upon choices in the 

present and the future. In reality, this assumption cannot be met by market participants, due to 

the limitations of their mental capacities. 
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As much as the empirical evidence can criticise the EMH, supporters of the EMH show that 

the methodology used in testing market efficiency are the very cause of such anomalies as the 

methods are designed to detect an anomaly they create (Fama, 1998). Conceptually, this point 

is valid, yet in a similar manner, there has been no correct methodology used to show that the 

market has been efficient at all times. An interesting viewpoint was raised by Constantinides 

(2002) in that “several examples of apparent deviation from rationality may be reconciled 

with rational economic paradigms, once we recognise that rational investors have incomplete 

knowledge of the fundamental structure of the economy and engage in learning”. This finding 

was taken into consideration in developing the AMH where agents are boundedly rational 

and engage in learning in order to generate profits and survive over changing market 

conditions. 

 

 

2.8.1 Bounded Rationality 

According to Simon (1982), the assumptions of SEUT are that: (1) the utility function is well 

defined and cardinal, (2) there is a well defined set of alternatives, (3) a joint probability 

distribution can be assigned to all future sets of events and (4) the decision maker is a utility 

maximiser. The theory of bounded rationality aims to relax the assumptions of SEUT. It is 

important to note that rationality cannot be considered in binary form – there are varying 

degrees of rationality. Thus, bounded rationality does not imply irrationality on the part of the 

investor but merely a less strict form of perfect rationality (as discussed above). 

 

 

Relaxing the second assumption, one can assume that the alternatives will follow a generating 

process. This generating process can be considered complex and difficult to analyse in a 

given amount of time, as outside factors may affect asset prices which will in turn cause the 

process to change again. Therefore, it is unlikely that the given set of alternatives assumed by 

SEUT will be complete. As investors find alternatives, evaluate them and decide which to 

follow, the given time period in which the alternatives remain fixed is too small to provide an 

accurate assessment. Modern cognitive psychology shows that in these situations, humans 

will follow some heuristic in finding satisfactory answers instead of perfect answers.  
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Similarly, the third assumption requires the investor to have a priori knowledge of all future 

events – an impossible task. Instead, the investor will rely on estimates of joint probability 

distributions given that future events are uncertain. If both the second and third assumptions 

are relaxed, the decision maker is unlikely to have a well defined utility function (Tseng, 

2006). It follows that the last assumption will also be relaxed as a utility function that is not 

well defined cannot be maximised. Thus, the decision maker will have no alternative but to 

settle for a type of satisficing strategy (Simon, 1982). In other words, the decision maker will 

settle for a decision regardless of whether it is the most optimal one.  

 

 

Conlisk (1996) provides four reasons for incorporating bounded rationality into traditional 

finance and economic theory. First, bounded rationality provides empirical insights.  

 

There is a mountain of experiments in which people: display intransitivity; misunderstand 

statistical independence; mistake random data for patterned data and vice versa; fail to 

appreciate law of large number effects; fail to recognize statistical dominance; make errors 

in updating probabilities on the basis of new information; understate the significance of 

given sample size; fail to understand covariation for even the simplest 2x2 contingency 

tables; make false inferences about causality; ignore relevant information; use irrelevant 

information (as in sunk cost fallacies); exaggerate the importance of vivid over pallid 

evidence; exaggerate the importance of fallible predictors; exaggerate the ex ante 

probability of a random event which has already occurred; display overconfidence in 

judgment over evidence; exaggerate confirming over disconfirming evidence relative to 

initial beliefs; give answers that are highly sensitive to logically irrelevant changes in 

questions; do redundant and ambiguous tests to confirm a hypothesis at the expense of 

decisive tests to disconfirm; make frequent errors in deductive reasoning tasks such as 

syllogisms; place higher value on an opportunity if an experimenter rigs it to be the “status 

quo” opportunity; fail to discount the future consistently; fail to adjust repeated choices to 

accommodate intertemporal connections; and more. (Conlisk, 1996, p. 670). 

 

 

Second, there are economic and financial models that already incorporate bounded 

rationality, which were subsequently proven to be more useful than their counterparts.  

Anufriev, Hommes and Philipse (2013) examine the influence of expectations on market 
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prices as past literature shows that heterogeneous agent models and non-fundamental 

expectations can result in price bubbles. As the expectations of market participants in real 

markets are not easily observable, a controlled experiment is particularly difficult to 

construct. Thus, the authors fit a Heuristics Switching Model to determine if agents can learn 

to forecast. In this model, agents can switch between heuristics by learning which heuristic 

performed better in the past, causing the impact of different heuristics on price to change over 

time. Their results showed that the participants relied on simple first order forecasting 

heuristics and anchored their expectations to past prices and extrapolated past trends. Third, 

there may be a case where the environmental conditions favour either bounded or unbounded 

(maximal) rationality. Last, based on a foundation of economics, limitations on cognitive 

abilities can be considered a scarce resource.  

 

 

Gabaix and Laibson (2000) develop a boundedly rational decision algorithm which makes 

quantitative predictions on heuristics. Based on algorithms that simplify decision trees, the 

authors show that when cognitive efforts are costly, the agent will rely on a simplification of 

the decision tree. The model proposed makes quantitative behavioural predictions, offering 

an alternative to rational models that is psychologically plausible. The decision algorithms 

are widely used and documented in the psychological literature, showing that the model is 

empirically testable. The authors find that the model fits well and reject the notion of a fully 

rational model.  

 

 

Given a choice of receiving R120 today and receiving 12 monthly payments of R10, it is easy 

to choose the optimal option rationally. The choice above requires both knowledge of the 

problem (financial mathematics in this example) and computation of the answers in both 

choices. Thus, rationality requires the decision maker to have knowledge and computational 

skills.  

 

 

As a contrasting example, suppose that a salesman needs to visit two customers that are 

situated at opposite ends of the neighbourhood. In choosing which customer to visit first, the 

salesman needs to have knowledge of the costs, time and distance to travel. Further 

assumptions will also need to be made, such as the availability of each customer. With only 
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two customers, the optimal solution is relatively straightforward given all the required 

information. However, if the number of customers increases linearly, the time taken in 

solving the problem increases exponentially. This is known as the “travelling salesman” 

problem in operations research and computer science. While heuristics exist to solve the 

problem, they are computationally difficult to implement.  The problem is classified as non-

deterministic polynomial-time hard (NP-hard). In other words, the time required to find the 

optimal solution grows exponentially as the number of customers increases linearly (Tsang, 

2008). Again, while a solution exists, it may not be feasible for the salesman to compute 

within a fixed amount of time. In such an event, the salesman would settle for the second best 

option found within the allotted time frame as well as the lowest cost (where knowledge gain 

and computational time are costly).  This provides a backdrop for the definition of bounded 

rationality of Simon (1982).  

 

 

From a scientific viewpoint, one can study the effect of relaxing the assumptions of SEUT 

using algorithms and heuristics (Tsang, 2008). In a financial market, often the most feasible 

option available to the trader or investor is to rely on heuristics to find the optimal solution to 

a problem. The search for such a solution not only provides an interesting study in itself, but 

also has implications for market efficiency. If one defines perfect rationality as being able to 

find the optimal solution in a given situation, then the level of optimality settled upon by 

constrained resources determines the level of rationality. As technology advances and general 

living conditions (in particular, education levels) increase, the decision maker is able to 

implement what was a once computationally infeasible solution to current problems. Thus, a 

theory where computational intelligence determines effective rationality (CIDER) is 

introduced by Tsang (2008). Rubinstein (2001) states that real world agents do not 

necessarily attempt to find the optimal decision. If it is assumed that an agent’s task is to pick 

that decision from a finite set of options that satisfies all given constraints, then an agent’s 

actions will be impacted by the actions of others in say, an organisation or a market. In such 

an environment, finding that decision which satisfies all constraints is often easier than 

finding the optimal one (Tsang, 2008). This problem of constraint satisfaction is also 

bounded by the problem’s computational complexity and available resources of the decision 

maker. A discussion of investor rationality is not complete without considering other 

psychological factors that affect the investor. One such factor, emotion, is considered below. 
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2.8.2 Emotion 

Elster (1998) defines emotions based on six characteristics: cognitive antecedents (beliefs), 

intentional objects, physiological arousal (changes in the hormone levels of the nervous 

system), physiological expressions (body expressions), valence (a ranking of emotion on the 

pleasure-pain scale) and action tendencies (impulses that lead to a response). Emotions and 

their precedent beliefs form the difference between human beings and other animals. While 

animals experience, say pain or hunger, they do not form beliefs on these experiences. Thus, 

a human being will form an intentional object due to the emotion felt for that object – it is 

based on cognitive antecedent. Biologically, emotions are caused by hormonal changes as 

well changes to the autonomic nervous system which results in physiological expression. 

They have some sort of measurable scale and lead to actions if the emotion is powerful 

enough.  In a perfectly rational world, it is considered that any action or belief formed by 

emotion has no place. However, emotions can help to maximise utility by the act of rational 

decision making - they force the agent to make a decision and sometimes make the most 

optimal decision. Elster (1998) shows that emotions play a dual role in decision making for 

choice and reward. Given a set amount of time, emotions assist the agent to limit the 

information received and analysed, forcing the agent to make a decision based on the options 

available. The ideal of maximal rationality assumes that there are no surprises, 

misunderstandings or irresolvable conflicts but this maxim cannot guide actions that are 

available in a given amount of time. Elster (1998) argues that bounded rationality forces a 

decision to be made and avoids an "addiction to reason" in which the agent will always 

procrastinate for the arrival of new information.  

 

 

Visceral factors, according to Loewenstein (2000) refer to a range of negative emotions that 

motivate the agent to engage in a specific behaviour. Tseng (2006) argues that contrary to 

popular belief, visceral factors are systematic instead of erratic and unpredictable. However, 

the cognitive deliberations of these visceral factors are unpredictable. These factors result in 

long-lasting and significant consequences that affect behaviour. Thus, they play an important 

role in decision making under uncertainty as they force the agent to make a decision and not 

procrastinate. Visceral factors have been usually left out of traditional economic and financial 

modelling as they have been seen as too unpredictable. However, a rational assessment of a 

risk with a corresponding choice of action will often differ from the emotional reaction to that 
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risk.  For example, the lack of a response to an emergency is normally caused by a 

heightened emotional reaction in the agent. The emotional arousal serves as a functional 

equivalent for the rational faculties it has temporarily suspended, by inducing a behaviour 

that is rationally required that would have been reasoned out by the agent if more time was 

available. While emotions can assist in solving problems quicker than rational processing, the 

capacity for emotions to enhance rationality at times would not exist if the same emotions 

also undermine it at times. 

 

 

Emotional states can be categorised into “hot” and “cold” (Tseng, 2006); where an emotion 

in a hot state can be fear or greed and an emotion in a cold state can be rational calmness. The 

difference between behaviour in these two states is known as the empathy gap. As seen by 

real world evidence, the behaviour of investors during hot states biases those investors 

towards making mistakes (and a subsequent loss). Tseng (2006) argues that traders need to 

close this empathy gap to earn long-term financial returns and satisfaction. Indeed, since 

emotions encompass bounded rationality, behavioural finance and neuro-finance, they have a 

profound impact on the decision making process. In practice, these emotions are seen through 

the decisions of investors which are inexplicable according to traditional finance theory.  

 

 

2.8.3 Neuro-finance  

Using scientific methods from other fields, finance has made significant advances in its 

theory. With the development of behavioural finance, there arose a need to empirically test 

some of the assertions about investors and their behaviour. Neuro-finance has emerged as a 

front-runner in this regard. This field analyses financial markets by applying neuro-

technology to observe and understand the trading behaviour of market participants (Tseng, 

2006). The underlying assumption in neuro-finance is that market participants have different 

psycho-physiological traits which affect their decision making ability. Behavioural finance 

investigates the actions of investors during the act of trading and decision making and 

evaluates these against the backdrop of established psychological theory. In contrast, neuro-

finance examines why and how these behaviours occur based on the biological profile of the 

investor (through hormonal changes and brain activity). Neuro-finance is closely related to 
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neuro-economics with the main emphasis being on financial market activity instead of all 

economic behaviour.  

 

 

Tseng (2006) also refers to neuro-finance as being medical finance in that the biological 

profile of the investor can be explained through knowledge from the medical field.  For 

example, damage to a particular area of the brain (the orbital frontal cortex) may result in 

abnormal financial decision making; melancholic depression may cause excessive sleepiness 

and chronic risk aversion; anxiety can be characterised by excessive risk perception and may 

lead to panic selling, impulsive overtrading or avoidance of financial markets. Results from 

experimental studies show that several medications can change the risk-return perception of 

participants. Further, investors may need psychological support to avoid common behavioural 

biases. Investors will have the tendency to minimise denial, disappointment and anger when 

they have made the wrong financial decision. Lo and Repin (2002) conduct controlled 

experiments on investors and traders using positron emission tomography (PET) and 

magnetic resonance imaging (fMRI) to understand brain activity and psycho-physiological 

characteristics when making financial decisions. They find that emotional responses are a 

significant factor in real-time processing of financial risk amongst professional traders. 

Kuhnen and Knutson (2005) use similar techniques to examine deviations from the decisions 

of a rational agent (one where risk-seeking or risk-aversion mistakes are not warranted). 

Their results show that when people anticipate physical pain, adverse visual stimuli, risky 

choices or anxiety, the part of the brain that handles cognitive functioning (the anterior 

insula) is activated. In contrast, when people anticipate monetary gain, the emotional centre 

(also the centre of addiction) of the brain is activated.  

 
 

2.9 Summary 

This chapter outlined the literature on market efficiency, beginning with a qualitative 

exposition on how the concept of market efficiency emerged in finance academia. Simply, a 

market is considered efficient if one cannot use any means available to consistently earn 

abnormal returns, through the prediction of future stock prices. Market efficiency is not a new 

concept in the literature as the term has been used since the late 19th century. However, the 

concept became popularised by Fama (1970) in defining the Efficient Market Hypothesis, 
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which stated that no abnormal profits may be made over time as prices reflect both private 

and public information.  

 

 

Since its popularisation, the EMH has generated a multitude of both empirical evidence and 

more recently, alternate market theories. Concerned with whether asset prices reflect all 

available information, researchers who conducted tests on the EMH were regularly faced 

with problems in the form of either unrealistic assumptions, or one of a joint hypothesis - 

testing both an asset pricing model and the EMH simultaneously. While some may have 

overcome this obstacle, the work of Fama (1970) has certainly fostered a greater 

understanding of financial markets. From the viewpoint of a market participant, studies have 

attempted to analyse the speed of adjustment of prices to new information; while others have 

taken the statistical definition of the EMH (that share prices follow a random walk) and have 

attempted to test the hypothesis. However, irrespective of the viewpoint chosen, there is no 

consensus on whether markets are efficient according to the EMH.  

 

 

A digression to time series methods was thereafter discussed, to provide a foundation for the 

econometric and neural network used in this thesis. Often, in analysing a time series, one can 

mistake the presence of chaos in the series as randomness. The necessary requirement is that 

the system of equations be non-linear in order to generate chaotic solutions as a linear system 

will necessarily generate a trend in its output. These outputs are often mistaken as random 

time series and are only accurate for a length of time governed by the errors of the initial 

conditions and the Lyapunov exponent of the system. Various time series models, ranging 

from simple to complex, were presented as an "evolution" of the field to what led to models 

being developed in the field of computer science. This evolution can be seen as the search for 

the "perfect" model. Once a model is developed and permeates into the academic community, 

empirical testing of it leads to robust descriptions of its appropriateness. In the event that it 

has a particular shortcoming, a new research question emerges in that one then tries to 

improve on the existing model. Thus, while one can use logic to deduce which model is more 

appropriate than another, this argument is limited by the universe of available models as well 

as the shortcomings inherent in any model. In other words, while a neural network may be 

more appropriate to use, it is not without its disadvantages nor is it the "best" out of the 

universe of models that can be chosen. 
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A discussion of asset pricing followed, where both considerations of investor rationality and 

the influence of exogenous factors were presented. Coupled with the foundation provided for 

time series methods, the discussion on asset pricing would then provide a background and 

motivation for the artificial intelligence models used, along with the inclusion of exogenous 

factors that could influence stock returns.  

 

 

Lastly, some of the emerging (and perhaps esoteric) areas of finance research were discussed, 

providing a well-rounded view of how inter-disciplinary collaboration can provide solutions 

to long standing questions in finance. At face value, the field of finance is concerned 

primarily with observation and empirical testing. Any new theory introduced to the field is 

grounded on a set of assumptions either related to the market participant or to the applicable 

world at large. As such, the realm of behavioural finance, evolutionary finance and 

neurofinance provide alternate views on finance theory. For example, the extent of a market 

participant's rationality is often considered a matter of perspective as some theories rely on a 

participant having full or strict rationality, whereas others rely on reasonable levels of 

rationality (bounded rationality).  

  

 

Conceptually, the arbitrage pricing framework covered in this chapter can be considered the 

starting point for any investigation into the inclusion of additional risk factors, however, one 

must first ensure that the data used is correctly processed and indeed deterministic (or at least 

non-random). Data collection and processing are fundamental to ensuring accurate insights 

are generated from the attempt to answer a research question. Further, one should also take 

cognisance of any nuances inherent in a method or model that is used - as is the case with 

neural networks.   
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3 Data and Methodology 
 

Testing for cyclical efficiency requires one to first test whether returns follow a random walk 

or some deterministic process. If the latter is found to be true, then it implies that some form 

relationship over time is present in the data and this data generating process can be modelled. 

A first attempt at modelling this process is to use autoregressive models which show the 

relationship between the contemporaneous return and historic returns. If this model is found 

to be suitable, yet still contain significant constant or error terms, it implies that additional 

factors apart from historic returns influence contemporaneous returns. One then investigates 

this hypothesis using, in this particular case, a neural network, where the data generating 

process can be non-linear but unknown to the researcher a priori. Further, the use of neural 

networks also acts as a further test of random walk behaviour, adding to the library of 

existing methods. Using the proposed framework to examine cyclical market efficiency, one 

can also investigate whether the sampling frequency has any impact on the results in both an 

individual share level and aggregated index level. This chapter outlines the data collected and 

used in the study as well as those particular techniques selected for determining if market 

efficiency is cyclical. 

 

 

3.1 Data  

As alluded to above, this thesis will examine the hypothesis of cyclical market efficiency on 

both an individual share level as well as aggregated index level, over different sampling 

frequencies and over sub-samples. Closing prices for the local equity, equity indices (local 

and international), macroeconomic data, fundamental and behavioural related data were 

obtained for the period September 1997 to October 2014. Three data sources were used, 

ranging from McGregor BFA, Bloomberg and the South African Reserve Bank; and each 

variable contains total returns (inclusive of corporate actions or dividends where applicable). 

Given the task of ensuring returns inclusive of dividends are correctly incorporated, the 

simplifying assumption of using the dividend yield (converted to the appropriate frequency) 

was used. Thus, the total return is the sum of the share price change and the dividend yield. 

With respect to the indices used on a monthly basis, the total return index (TRI) of those 

indices were obtained and used instead of the method outlined previously. The sample period 

was chosen so as to ensure full daily, weekly and monthly data were available (a longer 
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sample period could have been used if a particular frequency or less shares were required). 

The number of observations ranges from 4480 for daily data, 896 for weekly data, 206 for 

monthly data, 68 for quarterly data and 34 for semi-annual data. While the different 

frequencies add an element of robustness to the study, the choice of frequencies is certainly 

not exhaustive. Indeed, one can extend the frequencies to include the highest (high-frequency 

data or tick-by-tick data), to lower ones (perhaps annual). For the purposes of this thesis, 

these five popular frequencies are chosen, with remaining frequencies left to future research. 

  

 

Table 3 below shows the individual equity series used, along with select equity indices; 

whereas Table 4 below describes the candidate variables and frequency of data used for 

modelling purposes. Forty four local equity series were randomly selected from the top 100 

shares by market capitalisation on the JSE, as of October 2014, along with six local equity 

indices. From the local equity series, the nine shares presented in bold below, along with the 

JSE Top 40, are used in the results and discussion, whereas the remaining results are 

displayed in the Appendix.  

 

 

Table 1 - Shares and indices used 

Share Code Share Name Industry 

SAB South African Breweries Consumer Goods - Beverage 

BIL BHP Billiton Basic Materials - Mining 

NPN Naspers Consumer Services - Media 

MTN MTN Group Telecommunications - Mobile 
Telecommunicatons 

SOL Sasol Oil and Gas - Oil and Gas Producers 

AGL Anglo American Basic Materials - Mining 

FSR Firstrand Group Financials - Banks 

SBK Standard Bank Group Financials - Banks 

APN Aspen Healthcare Healthcare - Pharmaceuticals and 
Biotechnology 

BGA Barclay's Group Africa Financials - Banks 

RMH RMB Holdings Ltd Financials - Banks 

MDC Medi-Clinic Corp Health Care - Health Care Equipment and 
Services 

SHF Steinhoff International Holdings Consumer Goods - Household Goods and 
Home Construction 

INP Investec Financials - Financial Services 

MPC Mr Price Group Consumer Services - General Retailers 
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IMP Impala Platinum Basic Materials - Mining 

NTC Network Healthcare Health Care - Health Care Equipment and 
Services 

MMI MMI Holdings Financials - Life Insurance 

ANG Anglogold Basic Materials - Mining 

IPL Imperial Holdings Industrials - Industrial Transportation 

NPK Nampak Industrials - General Industrials 

GFI Goldfields Basic Materials - Mining 

ASR Assore Basic Materials - Mining 

INL Investec Limited Financials - Financial Services 

PIK Pik N Pay Stores Consumer Services - Food and Drug Retailers 

TFG The Foschini Group Consumer Services - General Retailers 

SNT Santam Financials - Nonlife Insurance 

HYP Hyprop Investments Financials - Real Estate Investment Trusts 

SAP Sappi Basic Materials - Forestry and Paper 

CLS Clicks Group Consumer Services - Food and Drug Retailers 

GND Grindrod Industrials - Industrial Transportation 

PPC Pretoria Port Cement Industrials - Construction and Materials 

AFE A E C I Ltd Basic Materials - Chemicals 

RCL RCL Foods Consumer Goods - Food Producers 

SUI Sun International Consumer Services - Travel and Leisure 

ILV Illovo Sugar Consumer Goods - Food Producers 

RLO Reunert Industrials - Electronic and Electronic 
Equipment 

FBR Famous Brands Consumer Goods - Travel and Leisure 

MUR Murray & Roberts Industrials - Construction and Materials 

SPG Super Group Industrials - Industrial Transportation 

FPT Fountainhead Property Financials - Real Estate Investment Trusts 

SAC SA Corporate Real estate Fund Financials - Real Estate Investment Trusts 

OCE Oceana Group Consumer Goods - Food Producers 

WBO Wilson Bayley Holmes Ovcon Industrials - Construction and Materials 

J150 JSE Gold Mining Index  

J200 JSE Top 40  

J203 JSE All Share Index (ALSI)  

J211 JSE Industrial 25  

J213 JSE Financial and Industrial 30  

J177 JSE Mining Index  

 

 

The candidate variables below are examined before being used in any modelling procedure 

for stationarity, normality and correlation. These variables are defined as the first difference 

of the original variable dataset. Those variables that have passed this initial screening are then 

used as exogenous inputs into the respective econometric models presented below. Apart 
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from the financial crisis in 2007, the last reported trough in the market cycle was during 

1999. This sample period provides a sufficient framework to examine the market cycle; 

especially given the global recession since 2007 (the period under investigation corresponds 

to a ‘complete’ market cycle in that it includes a peak between two troughs. From the 

candidate variables in Table 4 below, those that "pass" the initial screening are described in 

the results of Chapter 4. 

 

 

Table 2 – Variables considered 

 Variable Acronym used Frequency released 

Economic R153 bond R153 Daily 

R157 bond R157 Daily 

Oil Price Oil Daily 

Gold Price Gold Daily 

Prime Rate Prime Monthly 

PPI PPI Monthly 

CPI CPI Monthly 

GDP GDP Quarterly 

Equity - Returns MSCI World Index World Daily 

MSCI BRIC Index BRIC Daily 

MSCI EMEA Index EMEA Daily 

FTSE 100 FTSE Daily 

S&P 500 S&P Daily 

Hang Seng 100 Hang Seng Daily 

Equity - Fundamentals  ALSI Earnings Yield EY Daily 

ALSI Dividend Yield DY Daily 

ALSI Volume Vol Daily 

ALSI Price/Earnings Ratio PE Daily 

 

Five frequencies of the data are used in this study - daily, weekly, monthly, quarterly and 

semi-annually. For those variables that did not have daily observations, they were made to 

follow a step-wise linear function, in that once new data is captured, the current variable 

maintains the same value until the next data point is captured. In the event that a daily 

observation was not available, an assumption was made that the release date of say, GDP 

data, occurs on the last day of the month. To extend the example of GDP data, if GDP data 
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was released on 31 January 2013, the daily value of future observations remains the same 

until the next GDP release data one quarter later. Thus, when converting returns to a 

logarithmic scale, the log returns remain at a value of 0. This is found to be intuitive in the 

manner an investor interprets information that is not released daily. The "latest" value of 

information is kept by the investor until new information is released. It should also be noted 

that the international indices used exclude dividends.  

 

Further, the models are run on the full sample, non-overlapping samples and over-lapping 

samples to add robustness to the results. The full sample period is split evenly into 10 sub-

samples that do not overlap and span 21 months of data. These sub-samples consist of 448 

observations. 

 

 

3.2 Methodology 

In effect, there are three phases of the methodology. The first phase involves testing for 

random walk behaviour on the return series; the second testing for an autoregressive data 

generating process with no additional variables apart from the lagged dependent variable; and 

the third with testing the data generating process with additional (lagged) variables without 

pre-specifying the functional form of the model.  

 

 

3.2.1 Testing for normality 

Three tests for normality are presented to ensure robustness of the results. These tests cover 

parametric, non-parametric and graphical evidence on whether the data used exhibits 

normality or not. 

 

3.2.1.1 The Jarque Bera test 

The Jarque Bera (JB) provides a goodness of fit statistic of whether a sample distribution 

matches a normal distribution by examination of the skewness and kurtosis measures. The JB 

test statistic is defined as: 
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where S is the skewness of the sample and K is the kurtosis of the sample. These are 

respectively given by: 

 

� =
�̂�

���
=

1
�
∑ (�� − �)̅��

���

�
1
�
∑ (�� − �)̅��

��� �
�/�

 

{38} 

 

 

� =
�̂�
���

=

1
�
∑ (�� − �)̅��

���

�
1
�
∑ (�� − �)̅��

��� �
� 

{39} 

 

where �̂� and �̂� are estimates of the third and fourth moments of the distribution, � ̅ is the 

sample mean and ��� is the sample variance. The test statistic is asymptotically distributed 

with a chi-squared distribution with two degrees of freedom. This is used to test the null 

hypothesis that both the skewness and excess kurtosis are set to zero.  

 

 

3.2.1.2 The Q-Q plot 

The Quantile-Quantile (Q-Q) plot is a visual aide for depicting the probability distributions of 

two samples (populations) against each other. The set of intervals for the quantiles are chosen 

from each distribution and are plotted as a pair of coordinates. A particular coordinate 

corresponds to one of the quantiles of a distribution plotted against the same quantile of the 

other distribution. Therefore, the ensuing line of coordinates form a curve across each 

numbered quantile. The Q-Q plot is most often used to compare a sample distribution to a 

normal distribution. If the two distributions are similar, then the line of coordinates would be 

roughly shown at a 45° angle. As such, the Q-Q plot is a non-parametric approach to 

determining if a distribution is normal. 
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3.2.1.3 The Kolmogorov-Smirnov test 

The Kolmogorov-Smirnov (K-S) test is a non-parametric test for normality. It compares one 

continuous probability distribution to a reference probability distribution (considered a one-

sample K-S test). The null hypothesis for the test is that both samples are from the same 

distribution, and the test statistic follows a Kolmogorov distribution. While this test is a quite 

popular non-parametric means of testing for normality, it is often less accurate than other 

tests such as the Shapiro-Wilk test or Anderson-Darling test. However, it is deemed 

appropriate to use this test as opposed to the others mentioned as the former does not perform 

well under data that has multiple identical values; while the latter does not perform well with 

small samples.  The K-S test statistic is given by: 

 

 �� = sup
�

|��(�) − �(�)| {40} 

 

where sup� is the supremum of the set of distances,  ��(�) =
�

�
∑ �����

�
���  and �����

 is an 

indicator function that is equal to unity if ���� and zero otherwise.  

 

 

3.2.2 Testing for linearity 

The BDS test can be considered a popular means of establishing whether a series is non-

linear. It was originally designed to test if a distribution's observations were independent and 

identical for the purposes of detecting non-random chaotic behaviour. The test statistic 

defines a correlation integral which measures the frequency of which a temporal pattern is 

repeated. Consider a time series xt for t = 1, 2, 3, ..., T and define its m-history as xmt = (xt, xt-

1, xt-2, ... xt-m+1). Then, the correlation integral at point m can be estimated by: 

 

 
��,� =

2

��(�� − 1)
� � �(��

�, ��
�, �)

�������

 
{41} 

 

where Tm = T-m+1 and �(��
�, ��

�, �) is an indicator function equal to unity if |���� − ����|<

� and zero otherwise. Thus, the correlation integral measures the probability that any two m-

dimensional points are within a distance ϵ of each other. If the observations are independent 

and identically distributed, then this probability is equal to: 
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 ��,�
� = Pr	(|�� − ��|)

� {42} 

 

Therefore, the BDS test statistic is given by: 

 

 
��,� = √�

��,� − ��,�
�

��,�
 

{43} 

 

where ��,� is the standard deviation of √�(��,� − ��,�
� ) and the test statistic follows a normal 

distribution.  

 

 

3.2.3 Testing for stationarity 

Two tests for stationarity are presented below. These tests are commonly used in tandem to 

determine if a series is both stationary and has a unit root. 

 

 

3.2.3.1 The Augmented Dickey Fuller test 

Detection of a random walk first requires tests for autocorrelation. This would measure the 

relationship between the share return at the current period to a value in a previous period. The 

Augmented Dickey Fuller (ADF) test is a popular metric used to measure autocorrelation in a 

series. The version of the ADF test applied includes an intercept and trend. 

 

 
∆�� = 	 �� + ��� + ����� + ��∆����

�

���

+ �� 
{44} 

 

where c is a constant term, ��� is the trend term, p is the number of lags of y and ��	is white 

noise. 
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3.2.3.2 The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test 

The KPSS test examines the null hypothesis that the time series under consideration is 

stationary around a deterministic trend. The series is decomposed into a deterministic trend, 

random walk and stationary error and the test uses the Lagrange multiplier method to test the 

hypothesis that the random walk component has a zero variance. The KPSS test complements 

the ADF test in that by utilising both, one can determine if a series appears to be stationary 

and appears to have a unit root, for which more data points is required. The test statistic is 

given by: 

 

 
���� = ���

∑ ���
��

���

���
 

{45} 

 

where ���
� = ∑ ���

�
��� , and ��� is the residual of the regression of the deterministic component 

on the series itself and ���  is the estimate of long-run variance of ���. Under the null 

hypothesis that the series is stationary, the test statistic follows a Gaussian distribution, with 

the parameters of the distribution being dependent on the form of the determinstic terms in 

the regression. 

 

 

3.2.4 Testing for random walk behaviour 

Given the multitude of tests for random walk behaviour, one needs to be cognisant of which 

tests are used to accurately provide results. As such, four tests are considered, with each 

being an improvement on the prior.  

 

 

3.2.4.1 Runs test 

The runs test is a non-parametric test for detecting whether a series is random. If a series is 

random, then the observed number of runs should be close to the expected number of runs. A 

run is defined as a sequence of consecutive (price) changes with the same sign. Thus, there 

are three categories of run: upward, downward and flat. Under the null hypothesis of 

independence in share returns, the total expected number of runs (m) is estimated as: 

 



 106 

 
� =

�(� + 1) − ∑ ��
��

���

�
 

{46} 

 

where N is the total number of observations and �� is the number of price changes in each of 

the three categories.  

 

 

For a large number of observations, the sampling distribution of m is approximately normal 

and the standard error of m is given by 
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{47} 

 

Standard normal Z statistics can be used to test whether the hypothesis of independence is 

rejected. A disadvantage of the Runs test shown above is that it can only detect randomness 

at a lag order of one only. While other versions of the Runs test have been developed, more 

powerful tests examine the decomposition of variance.  

 

 

3.2.4.2 Variance ratio test 

The variance ratio test of Lo and MacKinlay (1988) is shown by many authors to be an 

adequate test of the weak form of the EMH. The test assumes that the variance of increments 

in the random walk series is linear in the sample interval - the variance should be proportional 

to the sample interval. Specifically, if a series q follows a random walk, the variance of its q-

differences should be a q multiple of the first difference. 

 

 ������ − ����� = ����(�� − ����)   {48} 

 

The Variance Ratio (VR) is then calculated as  

 

 

��(�) = 	

1
������� − �����

���(�� − ����)
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��(�)

��(1)
 

{49} 



 107 

 

For a sample size of n(q+1) observations the formulae for computing the variances are 

modified as follows 
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{50} 
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where ℎ = �(�� + 1 − �)(1 −
�

��
) 

 

and ��=
�
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Under the assumption of either homoscedasticity or heteroscedasticity, two standard normal 

statistics, Z(q) and Z*(q), can be used. 

 

 
�(�) = 	
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{52} 

 

 

 
�∗(�) = 	
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{53} 

 

A shortcoming of the Lo and MacKinlay (1988) VR test is that the lag order q is required to 

be specified. Thus, a modified version of this test is employed, by Chow and Denning (1993) 

as this tests for multiple lags of order q. As both the single and multiple order VR test 

statistics have shortcomings in their reliance to an approximated distribution, these tests can 

often give rise to size distortions or low power (Wright, 2000).  

 

 

Thus, the modification of Wright (2000) is used as this provides a non-parametric version of 

the Lo-MacKinlay test, displaying results for the variance decomposition based on ranks (R1, 
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R2 variables in the test) and sign (S1). Assume that r(Yt) is a rank of return Yt among T1, T2, 

..., Tr, then r(Yt) is the number from 1 to T given by 
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{54} 
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� 

{55} 

where Φ  is the standard normal cumulative distribution function and Φ �� is its inverse. The 

series r1,t is a linear transformation of the ranks that is standardised to have a sample mean of 

0 and a sample standard deviation of 1. The R1 and R2 test statistic are defined as 
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{57} 

 

Similarly, Wright (2000) defines a sign statistic, st, by being equal to 0.5 if the return Yt is 

positive and -0.5 otherwise. The sign based variance ratio test statistic, S1, is thus defined as: 
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{58} 

Therefore, the Chow and Denning as well as Wright modifications of the VR test are used as 

the former examines multiple variances and the latter ranks and signs. In addition, a graphical 

plot of the variance decomposition over time would reveal if the series follows random walk 

behaviour or not. If the variance decomposition is not within acceptable confidence intervals, 
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then it implies that the variance does not decompose over time as expected. Perhaps a more 

sophisticated version of the variance ratio test, the Hurst exponent provides a measure of long 

term memory in a time series and as such is discussed below.  

 

 

3.2.4.3 Hurst Exponent 

To test for non-linear dependence, the Hurst exponent is used. Zunino et al. (2009) argue that 

the exponent measures the long range dependence in stock market indices, where an 

existence of autocorrelation between distant observations will imply market inefficiency. The 

exponent provides a measure of memory and fractality of a time series. Ranging from values 

between 0 and 1, the Hurst exponent can identify if a time series follows a random walk or is 

persistent. A value of 0 indicates that the series is anti-persistent (mean-reverting); a value of 

1 indicates that the value is persistent and a value of 0.5 indicates that the series is random. 

Further, there are various permutations of calculating the Hurst exponent, leading one to be 

cautious in the preference of one calculation over another. Taqqu, Teverovsky and Willinger 

(1995) conduct simulations of the different methods of the Hurst exponent on data of 

differing sample sizes to empirically determine the best method to use for a particular sample 

size. The authors find that for series that have between 4000 and 7000 data points, the Peng 

estimator should be used; for series with 700 to 1000 data points, the Whittle Estimate be 

used; and for series less than 700 data points, the R/S method be used. All three methods are 

discussed below. The first considers analysing both the mean and standard deviation of a time 

series; the second on detrending the time series and then analysing the variance to determine 

the Hurst exponent; whereas the third relies on a periodogram fit. 

 

 

3.2.4.3.1 Rescaled range estimate 

Hurst (1951) describes the process for running the Hurst exponent. A sliding window 

approach partitions the series into subsamples that exhibit random walk behaviour and non-

linear dependence. In a given time series, {��}�
� ,  and a window of size d, an initial sub-

sample is created that consists of d observations. The tests to classify the prevailing pattern in 

the data are run and the window is then incremented by one observation – from 2 to d+1. 
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This continues until all observations are classified (from observation T-d to observation T). 

To calculate the Hurst exponent, one uses rescaled range (R/S) analysis. 

 

1. Calculate the arithmetic mean of the series (or window), m. 

 

2. Calculate the mean-adjusted series, {��}, by subtracting m from each observation   

 

3. Calculate {��}, the cumulative deviation of {��}. 

 

4. Calculate{��} ,the range of {��} 

 

5. Calculate{��}, the standard deviation of {��} 

 

6. Calculate the rescaled range as 
��

��
 

 

7. The Hurst exponent is then estimated from 
��

��
= � ∗�� , where c is a constant.  

 

3.2.4.3.2 Peng Estimate 

Consider a noisy time series, �(�), where � = (1,2,3, … , ����). This time series can be 

integrated to obtain: 

 

�(�) = 	�(�(�) − 	��)

�

���

 

{59} 

where �� = 	
�

����
∑ �(�)

����
��� 	and is divided into n equal partitions. In each partition, the 

integrated time series has a polynomial function that is fit to it, ����(�), which is known as the 

local trend. The integrated time series, �(�), is detrended by subtracting the local trend in 

each partition and is calculated as: 

 �(�) = 	�(�) − 	����(�) {60} 

For a given partition size, n, the Root Mean Square fluctuation is calculated as: 
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{61} 

 

The above calculation is repeated for n partition sizes to provide a relationship between F(n) 

and n. A power-law distribution between F(n) and n indicates the presence of scaling, given 

by: 

 �(�)~��  {62} 

The parameter, α, is called the scaling exponent and represents the correlation properties of 

the time series. If α = 0.5, then there is no correlation and the time series is white noise. If α < 

0.5, then the series is mean-reverting; and if α > 0.5, then the series is trending.  

 

 

3.2.4.3.3 Whittle Estimate 

Assume that the spectral density of a self-similar process is denoted by �(�, �) where 

� = (��, ��, ��, … , ��). If �� = ��
� where ��

� is the variance of the innovation � of the infinite 

autoregressive representation of the process, then this implies that ∫ ���{�(�, �)}
�

��
�� = 0 

and �� represents the Hurst parameter, H. The Whittle estimator, �̂, of � = (��, ��, ��, … , ��) 

minimises the quality of fit function: 
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where �(∙) denotes the periodogram of the time series of length N and is defined as: 
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�� is given by ��� and the estimate of ��
� is given by: 



 112 

 
��
� = 	�

�(�)

�(�, (1, �̂))
��

�

��

 
{65} 

 

3.2.4.3.4 Significance levels 

While the Hurst exponent (and its various methods) are considered powerful tests of random 

walk behaviour, the method in general suffers from a lack of distribution theory to correctly 

allocate confidence intervals to interpret the results. In other words, faced with an answer of 

0.49 for the Hurst exponent, one does not have a clearly defined interval to determine if 0.49 

is statistically close (or not) from 0.5. As such, authors have proposed three avenues to 

determine the significance of the Hurst exponent. The first relies on conducting the test using 

a variety of methods and simply choosing the consensus. The other relies on simulating data 

to obtain confidence intervals that can be applied in general to a sample of finite 

observations; and the final considers a simple case of the inverse of the number of 

observations in the sample (this provides a point estimate as opposed to a confidence 

interval). This thesis relies on the second method and uses robust estimates obtained from the 

literature. Weron (2002) provides equations based on simulations to estimate the confidence 

intervals for the Peng and Whittle estimators. These equations are as follows, where � =

	log� � and n is the sample size. Further, Weron (2002) notes that the Whittle estimator is the 

only known Hurst exponent method which has known asymptotic properties.  In other words, 

one can only rely on approximate statistical results as opposed to exact statistical results, the 

former of which is based on the behaviour of those statistics in large samples. As a 

consequence, the confidence interval for the Whittle estimate is considerably larger than the 

other two methods used in this thesis, as the latter two do not have asymptotic properties. 

 

Table 3 - Hurst exponent confidence intervals for the Peng estimate 

Confidence interval Lower bound Upper bound 

90% 0.5 − �(��.����(�)�	�.��) 0.5 + �(��.����(�)�	�.��) 

95% 0.5 − �(��.����(�)�	�.��) 0.5 + �(��.����(�)�	�.��) 

99% 0.5 − �(��.����(�)�	�.��) 0.5 + �(��.����(�)�	�.��) 
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Table 4 - Hurst exponent confidence intervals for the Whittle estimate 

Confidence interval Lower bound Upper bound 

90% 
0.5 − �(��.���

�
��	�.��) 0.5 + �(��.���

�
��	�.��) 

95% 
0.5 − �(��.���

�
��	�.��) 0.5 + �(��.���

�
��	�.��) 

99% 
0.5 − �(��.���

�
��	�.��) 0.5 + �(��.���

�
��	�.��) 

 

Rasheed and Qian (2004) provide a confidence interval for the traditional R/S method used in 

this study, also based on simulations. The authors do not provide an equation to calculate the 

Hurst exponent yet do provide a mean and standard deviation value. As such, the confidence 

intervals used in this thesis are as follows. The reader will note that the higher the confidence 

interval, the wider the range between the lower and upper bound. A wider (larger) confidence 

interval implies that the chance of the observation at hand being equal to the true population 

value is higher. Or equivalently, the researcher is less likely to reject the null hypothesis that 

the observed value is not "close enough" to the true value. 

 
Table 5 - Hurst exponent confidence intervals 

Frequency Method 
90% 95% 99% 

Lower Upper Lower Upper Lower Upper 

Daily Peng 0.4508 0.5432 0.4429 0.5515 0.4260 0.5685 

Weekly Whittle 0.2492 0.7241 0.2027 0.7630 0.0913 0.8471 
Monthly/Quarterly/ 

Semi-annual 
R/S 0.4656 0.6252 0.4503 0.6405 0.4205 0.6703 

 

In summary, the preliminary tests of the dataset involve normality, linearity, stationarity and 

random walk behaviour. To test for normality, three tests are used - one parametric, one non-

parametric and one graphical method. To test for linearity, the most powerful and popular 

test, the BDS test, is used. To test for stationarity and for a unit root, the ADF and KPSS tests 

are used. Lastly, to test for random walk behaviour, a non-parametric Runs test, variance ratio 

tests (one parametric and the other non-parametric), the variance decomposition plot; and the 

Hurst exponent is used. If the time series under consideration indicates non-random 

behaviour, it is possible that one can model this time series. As such, econometric models can 

be used. 
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3.2.5 Modelling the return generating process 

If the returns process does not follow a random walk, one proceeds to model the process 

itself. Two such models are presented here, the first being a sophisticated autoregressive 

model (the SETAR model) and the second being a neural network (a NARX network).  

 

 

3.2.5.1 SETAR Models 

A SETAR model is the simplest form of a threshold AR model. The SETAR model divides a 

time series into a piecewise linear function over a particular threshold value. Conceptually, 

the SETAR model creates several linear time series models from a non-linear time series. 

When the piecewise function is a function of the lagged dependent variable, the model is 

referred to as a SETAR model as the dependent variable is dependent on lagged values of 

itself ("self exciting"). Let Yt be a univariate time series and let 

�� = (����, ����, ����, … , ����)′, a k x 1 vector with k = 1 + p. The SETAR(m) model can be 

defined as: 

 

�� = ��
�������,�(�, �) + ⋯ + ��

� ������,�(�, �) + �� {66} 

  

 where � = (��, … , ����) with �� < �� < ⋯ < ���� and ��,�(�, �) = �(���� < ���� ≼ ��). 

Further, �(∙) is the indicator function, ��represent the jth threshold, with j being any integer 

and d is the delay parameter, which is usually strictly positive.  

 

 

3.2.5.2 SETAR Modelling Procedure 

The typical modelling procedure presented here is consistent with that of Granger and 

Terasvirta (1993). In modelling returns, one can rely on the grid search procedure in the add-

in for the statistical program, R, referred as the “tsdyn”26 package, to find optimal parameter 

values. 

 

                                                 
26 A time series package that implements non-linear autoregressive models by Di Nurzo, Aznarte and Stigler 
(2009). 
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1) First, it is required to specify a linear autoregressive model of order k. The appropriate 

order is chosen by the lowest Akaike Information Criterion or Ljung-Box Statistics. 

 

2) Once specified, the researcher needs to test the linearity of the above model to determine 

the delay parameter, d. Note that the equation below tests for linearity in the return series. 

The function "setartest" in R tests the series against 3 alternatives - a linear AR model, a 

SETAR model with one threshold value and a SETAR model with two threshold values. 

 

3) Now that the use of the SETAR model has been established, the coefficients remain to be 

estimated. This can be done through non-linear least squares (NLS) or equivalent methods. 

Insignificant coefficients are dropped from the regression until only those coefficients that are 

significant remain. In this process, accurate estimates of γ are usually difficult and 

accompanied by a high standard error. A low significance of γ should not be interpreted as 

weak evidence of non-linearity, as large changes in γ have little impact on the value of the 

transition function. Thus, high significance of γ is not necessary. 

 

4) To further evaluate the accuracy of the model, forecasting of future share returns is done. 

There are primarily two methods of approach. One could forecast out of sample by either 

assuming the parameters to be constant, or one could forecast for the next interval (the next 

month) and use the new observation to re-estimate the SETAR model. This thesis uses the 

former approach. The most common method employed for testing of forecasts, is the Root 

Mean Squared Error (RMSE): 

 

���� = ��
1

�
� � (�� − ��)

�

�

�����
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�.�

 

{67} 

 

 

where n is the number of observations in each forecast, Aτ is the actual return at time t, Fτ is 

the forecast return at time t.  While the SETAR model assists in modelling regime changes, it 

must still be specified in advance before it can be applied. Attention is now turned to neural 

network models, which do not require an a priori specification.  
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3.2.6 Building an ANN 

Basheer and Hajmeer (2000) provide a process for building an ANN, as shown in Figure 2 

below. While these steps are intuitive, it is nonetheless instructive to discuss them here. 

 

Phase 1: Problem definition and formulation 

Prior to conducting any research, the problem needs to be adequately understood, with 

particular attention to causal relationships that may be present. The authors also suggest that 

other techniques be explored before a final decision is made to use ANNs. 

 

Phase 2: System design 

Reliant on the abilities of the modeller, the ANN is designed. This would involve data 

collection, any filtering or processing of the data, statistical analysis of the data and 

partitioning of the data into training, test and validation samples. 

 

Phase 3: System realisation 

This phase involves training the network and the optimal selection of the parameters used 

(such as connection weights, learning rates and number of hidden nodes). Recently, 

evolutionary techniques, such as a genetic algorithm, have been shown to assist in this phase. 

 

Phase 4: System verification 

Once the optimal parameters are selected, the ANN is then tested on the validation sample. 

  

Phase 5: System implementation 

If the network has performed adequately, the ANN is then programmed using the appropriate 

computer hardware and software. 
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Phase 6: System maintenance 

If there are exogenous factors that cause the characteristics of the data to change over time, 

the ANN would need to be retrained. This final phase involves ensuring that the minimum 

acceptable error is adhered to at all times. 

 

Figure 2 – The phases of ANN development 
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3.3 Neural network hierarchy 

Angus (1991) provides guidelines on selecting the best network for the application at hand. 

The author suggests that the type of network be guided on its applicability to the problem. 

Roughly, the problem statement can be split between time-variant and time-invariant 

problems. A time-variant problem would relate to some spatio-temporal pattern, where the 

time stamp of the variable(s) in question plays some role in the output. In contrast, a time-

invariant problem does not require any dependence on a time stamp. 

 

 

Generally, feed-forward networks are sufficient for learning time-invariant problems, 

however, there are particular networks, such as Tapped Delay Neural Networks (TDNNs) 

that can be used. Angus (1991) argues that the use of hidden states in a neural network (NN) 

expands the range of applications for the NN. Recurrent Neural Networks (RNNs) can be 

used to model time-varying problems, recognise patterns or for forecasting purposes. These 

networks can model non-linear chaotic, dynamic systems and in principle, should be able to 

predict future values of the output variable.  As such, the family of RNNs is considered more 

applicable to the problem of modelling cyclical market efficiency. In particular, a non-linear 

autoregressive with exogenous inputs (NARX) RNN will be used.  

 

 

3.3.1 Non-Linear Autoregressive Models with Exogenous inputs (NARX) 

NARX recurrent neural networks are a form of non-linear models which determine current 

output values from past input and past output values. A NARX network can be described as 

follows: 

 

 �(�) = ���(� − ��), … , �(� − 1), �(�), ��� − ���, … , �(� − 1)� {33} 

 

where u(t) and y(t) represent the input and output respectively of the network, Du and Dy are 

the lags of the input and output respectively; and f is a non-linear function. The NARX 

network is illustrated in Figure 3.  
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Figure 3 – A Non-linear Autoregressive with Exogenous Inputs Network 

 

NARX NNs train and converge much faster compared to their traditional NN counterparts. 

They are also quite adept at learning long term dependencies (Lin, Horne, Tino and Giles, 

1996) and can store information over extended periods of time. This thesis uses a NARX 

network for evaluate and forecast the ALSI. 

 

Tino, Horne and Giles (2001) describe a NARX network of zero input order, but suggest that 

the results can be generalised to higher order inputs. A zero order input would simplify 

Equation (33) to the following: 

 

 �(�) = 	��		�(�), �	�� − ���, … , �(� − 1)	� {34} 

 

 

where ᴪ represents the mapping performed by an MLP. Graphically, this is depicted in Figure 

4 below.  
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Figure 4 – A Multi-layer perceptron 

 

To assist in describing the network, Kailath (1980) suggests that the equations are 

transformed into state space format. This assists in examining the Jacobian matrix. As the 

states of a discrete-time dynamical system can be mapped with the unit-delay elements in the 

realisation of the system, the NARX NN can be described in state space form as: 

 

 
��(� + 1) = 	 �

Ψ(�(�), �(�))																			� = 1

����(�)																				� = 2, … , �
	� 

{70} 

and    

 �(�) = 	��(� + 1) {71} 

   

While NARX networks work well with time series data, they are still prone to long-term 

dependencies that exist within the data. This issue can be mitigated by dividing the dataset 

into smaller sub-samples. The process for constructing a neural network is now discussed. 

 

 

 

3.4 Issues in ANN development 

The success or failure of a network at its task is often heavily weighted towards the ability of 

the researcher to circumvent certain issues in data collection, processing and network 

training. This section discusses the most pertinent of these issues and their influence on the 

result of the network in matching its output to the actual data. 
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3.4.1 Database size and partitioning 

Perhaps the most detrimental issue to using an ANN in research, the sample size needs to 

adequate enough for training and testing, without being too large to affect the accuracy of the 

ANN. Conceptually, the sample size should be large enough to account for possible known 

variations in the definition of the problem to be solved. An example would be to use a 

training sub-sample that covers a market cycle. The sample is partitioned into a training, 

testing and validation sub-sample. The training sample should be described as above – 

sufficiently large to cover possible known variations in the data. The testing sub-sample 

should be sufficiently different to that in the training sub-sample, without being considered 

completely unrelated. An example would be to use a testing sub-sample that covers a market 

cycle that is different to the one used in training. Lastly, the validation sub-sample is used 

after the optimal neural network is modelled. Once again, it must be sufficiently different 

from the previous data, within reason. An example would again be to use data that covers a 

market cycle, different from the previous sub-samples. 

 

 

Looney (1996) suggests that 65% be used for training, 25% for testing and 10% for 

validation. The latter suggestion is adopted in this thesis by splitting the data into the 

aforementioned percentages for training, testing and validation as it allows sufficient 

observations to be used in each stage. 

 

 

3.4.2 Data pre-processing, balancing and enrichment 

To accelerate training of the network, the data often needs to be pre-processed. This can be 

achieved by removing noise, reducing the number of variables, deletion of outliers and 

transforming the data (Swingler, 1996).  

 

 

3.4.3 Data normalisation 

Normalisation or scaling of the data within a uniform range prevents larger numbers from 

overriding smaller ones and premature saturation of the hidden nodes (Basheer and Hajmeer, 
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2000). Further, for extremely large values, the logarithm of the data may be used prior to 

normalisation. This would avoid outliers in the data and assist in network training time. 

 

 

3.4.4 Input and Output representation 

Data representation is an important and critical factor in the design of an ANN according to 

Masters (1994). It may be possible to convert continuous input data to a discrete, binary form 

to extract rules from a trained network (Fu, 1995). Other specialised algorithms exist for 

conversion of continuous variables to discrete form based on the distributions (Kerber, 1992). 

These algorithms allow flexibility in the use of networks as they are capable of handling both 

discrete and continuous data, transforming the input or output to enhance network accuracy 

while still providing a tractable means of examining non-linear processes. 

 

 

3.4.5 Network weight initialisation 

Initialising network weights involves assigning an initial, zero-mean random number to each 

connection (Rumelhart, Hinton and Williams, 1986). The literature does not agree on the 

importance of selecting the “correct” initial weight. Arguably, while a particular initial 

weight will assist in speeding up the training time, it can be considered unnecessary if the 

computer hardware available is sophisticated enough to not be affected by the non-initialised 

weights.  

 

 

3.4.6  The backpropagation learning rate, η 

Apart from data processing and narrowing the search parameter for neuron weights, one can 

adjust the parameters of the learning algorithm. While a large value for the learning rate will 

accelerate training, the search algorithm on the error surface may never converge – leading to 

over-fitting of the model. However, a small value for the learning rate may result in the 

network taking too much time to converge on a solution. Authors (Wythoff, 1993; Zupan and 

Gasteiger, 1991 and Fu, 1995) have suggested learning rates between 0.1 and 1.0; 0.3 and 

0.6; and 0.0 to 1.0, respectively. Alternatively, an adaptive learning rate may be used which 
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will vary along the course of training. This alternative is appealing as, generally, the distance 

from a minimum cannot be predicted (one will only know the distance from the minimum 

after it has been reached). Further, when the search algorithm is far away from the minimum, 

a larger learning rate is required; whereas a smaller learning rate is required when the search 

algorithm is near the minimum. 

 

 

3.4.7 The backpropagation momentum coefficient, μ 

Haykin (1994) states that the inclusion of a momentum term assists in stabilising the search 

algorithm for the global minimum. A higher momentum coefficient will accelerate the weight 

updates and reduce the risk of the search algorithm not converging. However, it also 

increases the risk of over-fitting. Similar to the learning rate, either a constant or adaptive 

value can be used. Wythoff (1993) suggests a learning rate between 0.4 and 0.9 whereas Fu 

(1995) suggests a rate between 0.0 and 1.0. Others, such as Zupan and Gasteiger (1991) 

suggest a combined learning rate and momentum coefficient approximately equal to unity. 

An adaptive momentum coefficient will fluctuate as the training progresses. This technique 

can be used in conjunction with the methods suggested above, in that as the momentum 

coefficient increases, the learning rate decreases. Practically, the value of the momentum 

coefficient also impacts the computer storage space of the researcher. 

 

 

3.4.8 The activation function, σ 

A correctly specified activation function is important in the development of an ANN. The 

choice of activation function is dependent on the objective of the ANN. For example, step 

functions can be used to indicate whether a neuron is simply activated or not, regardless of 

the magnitude of activation. ANNs that use backpropagation algorithms usually use a 

sigmoid function as it has properties of both continuity and differentiability on the real 

number line. While the advantages of using a particular function over another is not yet 

understood according to Hassoun (1995), Moody and Yarvin (1992) show that the choice of 

activation function does affect the success of the ANN. Indeed, if the activation function 

leads to a saturation of values at its bounds, neurons may be inappropriately activated 

(inhibited) leading to a larger error term. 
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3.4.9 Convergence criteria 

An ANN may be said to converge if: 1) the training error is acceptable (� ≤ �) or 2) the 

gradient error is acceptable (∇� ≤ �) or 3) there is cross-validation of the output. Basheer 

and Hajmeer (2000) state that the last criterion is more reliable, at the cost of computing time, 

power and abundance of data. Thus, many researchers use the first or second criteria, or a 

derivation thereof. For example, one can use the coefficient of determination, R2, or the 

standard square error, SSE27, given by: 

 

 
��� = 	

1

�
�����,� − ��,��

�
�

���

�

���

 
{35} 

 

Where ��,� and ��,� are the actual and target solution of the ith output node on the pth training 

example of N examples and M output nodes. Such an approach incorporates a measure of 

complexity in the network architecture and was introduced by Garth et al. (1996).  

 

 

3.4.10 Number of training cycles 

The most intuitive (and perhaps best) approach to determine the optimal number of training 

cycles is through trial and error. While a large number of training cycles may be beneficial in 

assisting learning, it may lead to over-training of the network and a complete recall of the 

data (as opposed to a prediction). While the SSE of the network may not follow a strictly 

smooth path, one can consider a significant increase in SSE (assuming a decreasing SSE) to 

indicate that the optimum network configuration has been reached. 

 

 

                                                 
27 Alternate measures, such as the Mean Squared Error (MSE), Root MSE, or Mean Absolute Percentage Error 

(MAPE), can be used. The first two measures are scale dependent and have the advantage of being the most 

common and statistically relevant. The latter is scale independent and has the advantage of not being sensitive to 

outliers (Hyndman and Koehler, 2006). 
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3.4.11 Modes of training 

The optimal number of hidden layers and subsequent hidden nodes is a critical component in 

network architecture. While the researcher often starts with no a priori knowledge on the 

number of hidden nodes, Basheer (1998) suggests that one hidden layer is sufficient to 

approximate continuous functions, whereas Masters (1994) suggests two hidden layers for 

discontinuous functions.  

 

 

3.4.12 Size of the hidden layer 

The optimal number of hidden layers and subsequent hidden nodes is a critical component in 

network architecture. While the researcher often starts with no a priori knowledge on the 

number of hidden nodes, Basheer (1998) suggests that one hidden layer is sufficient to 

approximate continuous functions, whereas Masters (1994) suggests two hidden layers for 

discontinuous functions.  

 

 

In summary, training a network rests on optimising the parameters of the network. Table 2 

below presents a concise view of the effect on each parameter if it incorrectly specified (not 

all of which is a hindrance to the researcher). 

 

Table 6 – Summary of network parameters 

Parameter Parameter is too large (high) Parameter is too small (low) 

NHN Over-fitting Under-fitting 

Learning rate, η Unstable connection weights Slow training speed 

Momentum coefficient, μ Increased risk of over-shooting 

minimum error 

Entrapment in local error 

minima. 

Number of training cycles Poor generalisation of untrained 

data 

Incapable of generalising data 

Size of training subset Good generalisation ability Poor generalisation 

Size of testing subset Can confirm good 

generalisation ability. 

Confirmation of poor 

generalisation 
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3.5 Learning algorithms 

The ability to learn distinguishes sentient life forms from other biological entities. Similarly, 

the ability of a network to mimic learning enables the network to increase its accuracy 

towards the desired output.  

 

 

"Learning is defined as the process of updating the internal representation of the system in 

response to external stimuli so that it can perform a specific task. This includes modifying 

the network architecture, which involves adjusting the weights of the links, pruning or 

creating some connection links and changing the firing rules of the individual neurons." 

(Schalkoff, 1997, p. 128)  

 

 

ANNs would thus learn through an iterative process by examining the error term generated 

by the previous network architecture, adapting future network architecture to minimise future 

error terms. This is similar to the manner in which human beings learn and process 

information. An ANN is said to have learnt if it can (1) handle imprecise, fuzzy, noisy and 

probabilistic information without noticeable adverse effects on response quality and (2) 

generalise from the tasks it has learnt to unknown ones. (Basheer and Hajmeer, 2000).  

 

As per Haykin (1994) and Hassoun (1995), there are four basic learning algorithms. Error-

correction learning (ECL) is used in supervised learning in which the arithmetic difference 

(error) between the ANN solution at any stage during training and the corresponding correct 

answer is used to modify the connection weights so that the overall network error is gradually 

reduced. The most popular learning algorithm used in ECL is the backpropagation (BP) 

algorithm. As a precursor to the BP algorithm, the gradient descent method is used to 

minimise the error function through updating the weights of the neurons.  The method finds 

the gradient of the weight space and selects the steepest descent at each iteration, finding 

either a minimum or infinitely decreasing path. When the minimum is found, it is not 

necessary the global minimum, which can incorrectly lead to premature stopping of the 

training of the network. The BP algorithm avoids this pitfall by introducing two more 

parameters (the learning rate and the momentum parameter) that affect the speed at which the 

system learns. These parameters force the search to consider results from previous iterations, 
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thereby avoiding the search from finding a local minimum or infinitely decreasing path.  This 

"consideration" is what gives the algorithm its name as it passes information from each 

output back to the input and hidden layers of the network. The BP algorithm (along with the 

gradient descent method) is used in training the networks used in this thesis. 

 

3.6 Summary 

Recall that the hypothesis of cyclical efficiency will be tested through three phases. Firstly, it is 

necessary to establish whether share price changes follow a random walk or not. If price changes 

are random, they cannot be predicted, thus enforcing the notion of weak form market efficiency. 

However, if price changes are not random, it is then viable to establish whether they can be 

modelled. The first model requires prior values of the share price as determinants of the current 

share price. The use of this model is founded on information being contained only in past prices – 

it can be likened to the semi-strong form of market efficiency where public information is 

reflected in the share price. Lastly, if the prior step is inadequate, it implies that there exists 

private information that is not incorporated in past prices and does influence the current share 

price.  

 

Using five different frequencies of data for fifty equity series, one proceeds to examine the 

distribution properties of these variables, before testing the random walk hypothesis. 

Preliminary tests on normality, stationarity and non-linearity are conducted. The latter is of 

importance as it guides the choice of econometric model to be used. In testing the random 

walk hypothesis, popular measures from the literature are used - namely the Runs test, 

Variance Ratio test and the Hurst exponent. Each method is both more complex and more 

accurate than the preceding, with multiple "versions" of each test also examined. For 

example, the Chow and Denning (1993) and Wright (2000) modification of the Variance 

Ratio test is conducted as the former tests for multiple variances whereas the latter is non-

parametric in nature. Similarly, the method used to calculate the Hurst exponent differs based 

on the sample size (thus three methods are used). 

 

If any of the variables are found to not follow a random walk, then an attempt to model the 

return generating process using autoregressive models is made. Simple ARIMA models, in 
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addition to threshold models (in particular SETAR models) are generated. The SETAR model 

is considered a "basic" non-linear econometric model in that it allows for regime changes in 

the data (recall the non-linearity test was conducted earlier). If these econometric models are 

found to be lacking, the use of additional risk factors is also considered, along with a neural 

network model as the former points towards a more complete description of the returns 

process whereas the latter assists in providing a flexible solution to the modelling problem. 
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4 Results 

This chapter provides and discusses the results in determining if market efficiency is cyclical. 

Tests and models are run on five differing frequency data to provide robustness to the results. 

From the sample of 44 shares and 6 indices, select results are displayed in this chapter, with 

the remaining results being shown in the Appendix. Further, the full sample period for the 

ALSI only is split evenly into 10 sub-samples that do not overlap and span approximately 21 

months of data. This was chosen so as to balance the need for sufficient data points in the 

NN, circumvent any short term stationarity and to aid in interpreting the performance of the 

NNs over the short term. According to Moody (1995), the size of the training set assists in 

dealing with a tradeoff between noise in the data and non-stationarity. A smaller training set 

makes estimations from the NN more difficult, while a larger training set allows non-

stationarity to appear at small time intervals. Beginning with preliminary statistics on the data 

used, results outline characteristics of the financial variable distributions to inform the choice 

of model in estimating the data generating process. Pre-specified time series models are then 

used to model the returns process, followed by unspecified neural network models. In the 

latter case, exogenous variables are also introduced into the system in the spirit of an APT 

framework. The neural network models were run in MatlabTM
 with the remaining analysis 

conducted in R. 

 

 

4.1 Preliminary statistics 

As with any empirical investigation, it is often useful to be aware of the basic descriptive 

statistics in the data tested. These simple measures often provide some form of guidance to 

the researcher in the choice of model to be used and potential caveats of the analysis. 

 

 

4.1.1 Full sample results 

Descriptive statistics for the all frequencies are presented in Table 7 below. The average 

returns across all frequencies is quite small but increase in magnitude , along with an 

increasing volatility at lower frequencies. In other words, the standard deviation (Std. Dev) 

increases as the frequency decreases. Values for skewness and kurtosis vary, in most cases 
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showing excess kurtosis (defined as kurtosis is excess of a value of 3), but this remains to be 

statistically shown. 

 

In the case of daily returns, the selection below shows that equities seem to be positively 

skewed, with indices being negatively skewed. All 10 securities below have excess kurtosis, 

indicating that returns are more clustered around the mean than expected by pure chance. 

While the mean returns are quite low (along with their standard deviations), the minimum 

and maximum returns are quite extreme, in the sense that all minimum returns are negative, 

with the equities again having greater maximum returns than the two indices. A similar result 

can be seen with weekly data.  

 

 

As the frequency of data lowers, the mean, standard deviation, minimum and maximum 

values typically increase in magnitude, whereas skewness and kurtosis seem to fluctuate, 

indicative of share specific reasons. For example, the indices have kurtosis values that seem 

to decrease as the frequency decreases, whereas certain shares have fluctuating kurtosis 

values (such as NPN). As the frequency decreases, the influence of dividends becomes more 

evident in creating outlier returns, which, when aggregated to an index level, is not 

particularly significant.  

 

 

 

 

 

Table 7 – Descriptive statistics  

DAILY RETURNS 

Share Code Mean Std. Dev. Minimum Maximum Skewness Kurtosis 

BIL 0.0010 0.0238 -0.1489 0.1973 0.5066 7.6986 

MTN 0.0012 0.0261 -0.1875 0.2425 0.2657 8.1143 

SOL 0.0009 0.0232 -0.1592 0.1537 0.1558 7.7320 

FSR 0.0007 0.0213 -0.1180 0.1356 0.2162 6.5538 

SAB 0.0007 0.0177 -0.1278 0.1423 0.2286 7.6986 

NPN 0.0011 0.0248 -0.1551 0.1667 0.0788 7.7106 

AGL 0.0007 0.0245 -0.1666 0.1544 0.1548 7.1361 

TOP40 0.0006 0.0139 -0.1331 0.0882 -0.2386 8.6266 

ALSI 0.0006 0.0127 -0.1191 0.0771 -0.3224 8.5930 
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WEEKLY RETURNS 

Share Code Mean Std. Dev Minimum Maximum Skewness Kurtosis 

BIL 0.0049 0.0528 -0.1813 0.4368 0.7894 8.8971 

MTN 0.0061 0.0601 -0.3955 0.4732 0.5471 10.9725 

SOL 0.0045 0.0531 -0.2117 0.3329 0.5070 7.9750 

FSR 0.0040 0.0488 -0.2056 0.3702 0.8103 11.4767 

SAB 0.0037 0.0394 -0.1252 0.2303 0.5219 6.0827 

NPN 0.0055 0.0584 -0.2830 0.3602 0.0295 7.7439 

AGL 0.0035 0.0548 -0.2004 0.2944 0.4019 5.3265 

TOP40 0.0032 0.0311 -0.1458 0.1971 0.0700 6.6411 

ALSI 0.0032 0.0288 -0.1692 0.1748 -0.1167 7.1818 

MONTHLY RETURNS 

Share Code Mean Std. Dev Minimum Maximum Skewness Kurtosis 

BIL 0.0202 0.0968 -0.2432 0.3992 0.2818 3.5318 

MTN 0.0251 0.1092 -0.5126 0.4971 0.1298 7.3520 

SOL 0.0180 0.0940 -0.2896 0.4127 0.3629 4.7137 

FSR 0.0161 0.0879 -0.4028 0.3789 0.1372 6.6790 

SAB 0.0153 0.0702 -0.2503 0.2305 -0.2436 4.3424 

NPN 0.0243 0.1227 -0.4460 0.4382 -0.1322 5.1626 

AGL 0.0140 0.1040 -0.3156 0.4711 0.2447 4.8162 

TOP40 0.0361 0.0606 -0.3085 0.1739 -0.6145 5.3303 

ALSI 0.0140 0.0574 -0.2930 0.1407 -0.7748 6.2000 

QUARTERLY RETURNS 

Share Code Mean Std. Dev Minimum Maximum Skewness Kurtosis 

BIL 0.0689 0.1316 -0.3399 0.3674 0.5064 5.1107 

MTN 0.0818 0.2433 -0.4510 1.3617 0.2656 6.5679 

SOL 0.0520 0.1455 -0.3317 0.5113 0.1557 4.7285 

FSR 0.0484 0.1401 -0.4106 0.6159 0.2161 3.5509 

SAB 0.0689 0.1316 -0.3400 0.3674 0.2285 4.6951 

NPN 0.0750 0.2341 -0.5115 0.8581 0.0788 4.7071 

AGL 0.0416 0.1812 -0.3980 0.6583 0.1547 4.1329 

TOP40 0.0336 0.0960 -0.3200 0.2531 -1.0784 2.0532 

ALSI 0.0341 0.0933 -0.3287 0.2384 -1.2030 2.5413 

SEMI-ANNUAL RETURNS 

Share Code Mean Std. Dev Minimum Maximum Skewness Kurtosis 

BIL 0.1351 0.2545 -0.3232 0.8948 0.6913 0.8557 

MTN 0.1854 0.4716 -0.3047 2.3500 2.7543 10.3188 

SOL 0.1154 0.2557 -0.3475 0.8495 0.4101 0.3037 

FSR 0.1014 0.2180 -0.5062 0.8024 0.2865 2.4805 

SAB 0.0833 0.1471 -0.3455 0.2682 -1.2569 1.3387 

NPN 0.1656 0.4469 -0.5028 2.0507 1.9539 6.8682 

AGL 0.0984 0.3014 -0.6285 0.8088 0.3028 0.2287 

TOP40 0.0710 0.1500 -0.3315 0.3615 -0.8220 0.6335 

ALSI 0.0711 0.1424 -0.3125 0.3559 -0.8290 0.8147 
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To expedite training of the network, all of the candidate variables underwent variable 

selection in MatlabTM. This tool selects variables that do not exhibit multicollinearity 

amongst themselves and the target variable (the ALSI). After variable selection, there were 

seven remaining variables that were of a daily frequency: oil returns (Oil), gold returns 

(Gold), change in ALSI dividend yield (DY), change in ALSI earnings yield (EY), S&P 500 

returns (S&P), Hang Seng 100 returns (HS), and FTSE 100 returns (FTSE). It is interesting to 

note that none of the macro-economic variables were selected to be included in the network. 

It can be inferred, yet remains to be proven, whether the average investor even considers 

macro-economic data in examining movements in the ALSI. Descriptive statistics on the 

additional pricing factors are presented in Table 8 below. The mean values reveal little 

additional information as they are less than 1%. The negative values for the dividend (and to 

a lesser extent earning) yield occur due to the data being differenced (dividend yield is 

always a positive number, yet the difference between dividend yields can be negative). 

 

 
Table 8 – Descriptive statistics of the inputs to the network 

 Oil Gold DY EY S&P HS FTSE 
Minimum -0.1444 -0.0891 -0.0881 -0.1884 -0.0947 -0.1473 -0.0926 
Maximum 0.1290 0.0964 0.1247 0.2109 0.1096 0.1725 0.0938 

Mean 0.0003 0.0003 0.0000 0.0000 0.0002 0.0001 0.0001 
Standard deviation 0.0215 0.0115 0.0001 0.0160 0.0126 0.0169 0.0122 
 

4.1.2 ALSI Sub-sample results 

Each sub-sample had daily observations in a 21 month period.  Table 9 shows that the 

average daily return is less than 1% in all of the sub-samples, with some evidence of 

volatility. Further, there is some evidence of kurtosis and skewness, but this remains to be 

statistically shown. 
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Table 9 - Descriptive statistics of each sub-sample 

Sub-
sample 

Mean Std. Dev Minimum Maximum Skewness Kurtosis 

#1 0.0001 0.0170 -0.1191 0.0771 -1.0658 10.6966 

#2 0.0010 0.0115 -0.0759 0.0440 -0.5014 8.1980 

#3 0.0003 0.0127 -0.0538 0.0608 0.1376 5.2758 

#4 0.0002 0.0106 -0.0329 0.0466 0.2715 3.9630 

#5 0.0017 0.0091 -0.0383 0.0389 -0.1772 4.7206 

#6 0.0009 0.0126 -0.0647 0.0505 -0.4530 6.0672 

#7 0.0000 0.0204 -0.0729 0.0709 0.1221 4.1457 

#8 0.0007 0.0101 -0.0362 0.0433 -0.1326 4.0770 

#9 0.0007 0.0092 -0.0315 0.0373 0.0190 4.9549 

#10 0.0006 0.0084 -0.0320 0.0229 -0.4053 4.0974 

 

 

The descriptive statistics of the data (ALSI returns and pricing factors) reveal that normality 

is a poor assumption to make for all of the variables under consideration. This is empirically 

tested in the next sub-section. For ease of reading, the specific results for quarterly and semi-

annual data is not presented here, but rather summarised at the end of this chapter (and 

provided in detail in the Appendix).  

 

 

4.2 Tests for normality  

Three techniques are used to determine if the variables used are normally distributed. The 

first, the Jarque Bera test is perhaps the most popular in literature and is a parametric test of 

normality. The second is a graphical inspection of the quantile-quantile (Q-Q) plot, which 

plots the frequency distribution of the variables against a theoretical quantile distribution. 

Thirdly, a non-parametric counterpart to the Jarque-Bera test, the Kolmogorov-Smirnov test 

will be used.  

 

 

4.2.1 Full sample results 

4.2.1.1 Jarque Bera test 

The Jarque Bera test for normality is presented in Table 10 and Table 11 below. The table 

illustrates the χ2 test statistic, degrees of freedom (D.O.F) and the corresponding p-value. The 
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null hypothesis of normality is rejected if the p-value is statistically significant. The results of 

the Jarque Bera test indicate that the null hypothesis of normality is rejected at a significance 

level of 5% (indeed at a level of 1%) for all equities at a daily and weekly frequency.  

Table 10 – Jarque Bera Test for normality using daily frequency data 

Share Code χ2 D.O.F P-value 

BIL 5 074.0830 2.00 0.00*** 

MTN 8 115.5240 2.00 0.00*** 

SOL 4 197.8720 2.00 0.00*** 

FSR 2 392.3800 2.00 0.00*** 

SAB 4 159.9920 2.00 0.00*** 

NPN 4 146.6940 2.00 0.00*** 

AGL 3 211.2930 2.00 0.00*** 

TOP40 5 952.0680 2.00 0.00*** 

ALSI 5 916.8350 2.00 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

 

Table 11 - Jarque Bera Test for normality using weekly frequency data 

Share Code χ2 D.O.F P-value 

BIL 1 391.3720 2.00 0.00*** 

MTN 2 417.6010 2.00 0.00*** 

SOL 962.3966 2.00 0.00*** 

FSR 2 780.6240 2.00 0.00*** 

SAB 395.4563 2.00 0.00*** 

NPN 840.3172 2.00 0.00*** 

AGL 226.1857 2.00 0.00*** 

TOP40 495.6933 2.00 0.00*** 

ALSI 654.9113 2.00 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

However, under monthly frequency data in Table 12, one share (BIL) statistically follows a 

normal distribution at the 10% level, whereas all other equities below do not. Two additional 

mining shares, ANG and GFI also follow a normal distribution at the 10% level, implying 

that three of six mining shares in the population studied are normally distributed. Further, the 

Mining and Gold Mining index are also normally distributed. The normality of the returns 

distribution implies that average returns are expected the majority of the time; and that 

possibly these returns are randomly generated.   
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Table 12 - Jarque Bera Test for normality using monthly frequency data 

Share Code χ2 D.O.F P-value 

BIL 5.1547 2.00 0.08* 

MTN 163.1444 2.00 0.00*** 

SOL 29.7287 2.00 0.00*** 

FSR 116.8197 2.00 0.00*** 

SAB 17.5042 2.00 0.00*** 

NPN 40.7438 2.00 0.00*** 

AGL 30.3678 2.00 0.00*** 

TOP40 197.0036 2.00 0.00*** 

ALSI 108.5021 2.00 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

 

Expanding the results to quarterly and semi-annual data, there are no shares that are normally 

distributed under quarterly data, but 23 that are normally distributed under semi-annual data. 

There is no industry specific pattern that emerges, along with no tendency of a share to be 

normally distributed under multiple frequencies. Similarly, one rejects the null hypothesis of 

normality at the 5% level of significance for all daily frequency variables considered in the 

neural network. These values are displayed in Table 13 below.  

 
Table 13 – Jarque Bera test for normality on the input variables 

 Oil Gold DY EY S&P Hang Seng FTSE 
χ2 2120.8220 12115.9500 149608.8000 149608.8000 11654.4200 20405.6400 6169.2610 
D.O.F 2 2 2 2 2 2 2 
P-
value 

0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Therefore, according to the Jarque Bera test for normality, none of the input variables under 

consideration follow a normal distribution, while in most cases, the equities data do not 

follow a normal distribution. In classical linear regression modelling, the assumption of 

normality must be met. However, in the case of neural networks (as well as the non-linear 

time series models applied here), this assumption is not a concern if it is not met. 

 

4.2.1.2 Quantile-Quantile plot 

The Quantile-Quantile (Q-Q) plot displays two probability distributions by plotting their 

quantiles against each other. If the two distributions have similar plots, then the result would 
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be a straight line at a 45° angle. Examining the Normal (Q-Q) plots of the daily data in Figure 

5 and Figure 6, one finds that all of the equities do not display evidence of normality. 

Therefore, according to the visual evidence of the Q-Q plot, none of the equities under 

consideration follow a normal distribution. 

BIL  MTN 

 
SOL 

 
FSR 

 
 

Figure 5 - Q-Q plot of daily frequency data (1) 
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SAB 
 

 
NPN 

 

AGL 
 

J200 
 

 

ALSI 
Figure 6 – Q-Q plot of daily frequency data (2) 
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Examining the Normal (Q-Q) plots of the weekly data plots in Figure 7 and Figure 8, one 

finds that all of the equities do not display evidence of normality. However, there are some 

equities, such as BIL, SOL, HYP and the ALSI that do weakly follow a normal distribution.  

As this visual evidence is weak, it can however be concluded that according to the visual 

evidence of the Q-Q plot as well as the Jarque Bera test, none of the equities under 

consideration follow a normal distribution. 

 

 

 
BIL  

 
MTN 

SOL 
FSR 

Figure 7 - Q-Q plot of weekly frequency data (1) 
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J200 
 

 
 

 
ALSI 

 
Figure 8 - Q-Q plot of weekly frequency data (2) 
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A similar conclusion can be reached when studying the Q-Q plots of the monthly equities 

data in Figure 9 and Figure 10, albeit the evidence for non-normality is not as significant as 

with the previous data frequencies.  

BIL  MTN 
 

SOL FSR 

SAB  
NPN 

 
Figure 9 - Q-Q plot of monthly frequency data (1) 
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AGL 
 

J200 

 

 
ALSI 

 
Figure 10 - Q-Q plot of monthly frequency data (2) 

 

Examining each of the additional pricing factor Q-Q plots in Figure 11 and Figure 12, one 

finds that they too do not follow a normal distribution. 

 

Oil 

 

Gold 

Figure 11 - Q-Q plots for each exogenous variable to be used in the network (1) 



 142 

 

Hang Seng 

 

 

S&P 500 

 

 

FTSE 

 

 

 

ALSI - Dividend Yield 

 

 

 

ALSI - Earnings Yield 

 

 

 

Figure 12 - Q-Q plots for each exogenous variable to be used in the network (2) 
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4.2.1.3 Kolmogorov-Smirnov test 

The Kolmogorov-Smirnov (K-S) test (also known as the Lilliefors test) is a non-parametric 

counterpart to the Jarque-Bera test. It is used to describe the difference between the empirical 

distribution function of the sample and the cumulative distribution function of the reference 

distribution. The null hypothesis is that both samples are drawn from the same distribution.  

The results of the K-S test are displayed in Table 14 below. Both the test statistic (D statistic) 

and the corresponding p-values indicate that all daily equity return series are not drawn from 

a normal distribution.  

Table 14 - K-S results for daily returns 

Share Code D Statistic P-Value 

BIL 0.4785 0.00*** 

MTN 0.4751 0.00*** 

SOL 0.4763 0.00*** 

FSR 0.4798 0.00*** 

SAB 0.4825 0.00*** 

NPN 0.4740 0.00*** 

AGL 0.4765 0.00*** 

J200 0.4852 0.00*** 

ALSI 0.4863 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

The results of the K-S test for weekly data are displayed in Table 15 below. Similar to the 

daily results, there is no evidence of normality. 

 

 
Table 15 - K-S results for weekly returns 

Share Code D Statistic P-Value 

BIL 0.4521 0.00*** 

MTN 0.4452 0.00*** 

SOL 0.4454 0.00*** 

FSR 0.4506 0.00*** 

SAB 0.4640 0.00*** 

NPN 0.4407 0.00*** 

AGL 0.4508 0.00*** 

J200 0.4705 0.00*** 

ALSI 0.4727 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 
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When examining the monthly return data in Table 16, a similar conclusion to the ones 

reached above can be drawn – there is no evidence of normality. 

 
Table 16 - K-S results for monthly returns 

Share Code D Statistic P-Value 

BIL 0.4274 0.00*** 

MTN 0.4195 0.00*** 

SOL 0.4265 0.00*** 

FSR 0.4343 0.00*** 

SAB 0.4316 0.00*** 

NPN 0.4078 0.00*** 

AGL 0.4098 0.00*** 

J200 0.4560 0.00*** 

ALSI 0.4470 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

A similar conclusion of non-normality under quarterly and semi-annual data can be found in 

all 50 securities examined. Lastly, the daily frequency variables used as inputs in the neural 

network also do not display evidence of normality, as shown in Table 17 below. 

 
Table 17 - K-S results for exogenous variables 

 Oil Gold Hang Seng S&P FTSE DY EY 
D statistic 0.4710 0.4818 0.4762 0.4800 0.4807 0.4828 0.4777 
P-Value 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

 

In summary, considering both visual evidence, parametric and non-parametric tests for 

normality, it can be concluded that the all of the equities data under daily, weekly and 

monthly frequencies do not follow a normal distribution. In the case of conflicting results 

between the Jarque Bera test and the K-S test (such as in some of the mining shares), the 

difference can be attributed to the non-parametric nature of the latter test. The K-S test 

determines normality against a randomly generated distribution. If this distribution has a 

sufficiently large number of observations, then according to the Central Limit Theorem, this 

distribution is approximately Gaussian. In the case of the monthly returns sample size, the 

small sample size could have lead to normality being concluded prematurely. Thus, given the 

superiority of the KS test over the JB test, it can be concluded that none of the equities in the 
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population are normally distributed. Attention is now drawn to the results of these tests for 

each non-overlapping sub-sample. 

 

 

4.2.2 ALSI Sub-sample results 

4.2.2.1 Jarque Bera test 

The Jarque Bera test for normality in each sub-sample dataset is presented in Table 18 below. 

The table illustrates the χ2 test statistic, degrees of freedom and the corresponding p-value. 

The null hypothesis of normality is rejected if the p-value is statistically significant. The 

results of the Jarque Bera test indicate that the null hypothesis of normality is rejected at a 

significance level of 5% (indeed at a level of 1%) for all sub-samples Therefore, according to 

the Jarque Bera, none of the variables under consideration follow a normal distribution. 

 

Table 18 - Jarque Bera results for each sub-sample 

Sub-sample χ2 D.O.F P-value 

#1 1190.5710 2.00 0.00*** 

#2 523.1271 2.00 0.00*** 

#3 98.0930 2.00 0.00*** 

#4 22.8181 2.00 0.00*** 

#5 57.6022 2.00 0.00*** 

#6 190.9274 2.00 0.00*** 

#7 25.6137 2.00 0.00*** 

#8 22.9640 2.00 0.00*** 

#9 71.3668 2.00 0.00*** 

#10 34.7494 2.00 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

4.2.2.2 Quantile-Quantile plot 

The Quantile-Quantile (Q-Q) plot displays two probability distributions by plotting their 

quantiles against each other. If the two distributions have similar plots, then the result would 

be a straight line at a 45° angle. Examining the Normal (Q-Q) plots of each sub-sample's data 

in Figure 13 and Figure 14 against a randomly populated normal distribution, one finds that 

all return series display departures from normality.  Therefore, according to the visual 
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evidence of the Q-Q plot, none of the sub-samples under consideration follow a normal 

distribution. 

 

 

 

#1 

 

 

#2 

 

#3 

 

#4 

Figure 13 - Q-Q plots for each sub-sample (1) 
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#5 

 

#6 

 

#7 
#8 

#9 
 

#10 

Figure 14 - Q-Q plots for each sub-sample (2)  
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4.2.2.3 Kolmogorov-Smirnov test 

The Kolmogorov-Smirnov (K-S) test is a non-parametric counterpart to the Jarque-Bera test. 

It is used to describe the difference between the empirical distribution function of the sample 

and the cumulative distribution function of the reference distribution. The null hypothesis is 

that both samples are drawn from the same distribution.  The results of the K-S test are 

displayed in Table 19 below. Both the test statistic (D statistic) and corresponding p-value 

indicate that all return series are not drawn from a normal distribution. Therefore, according 

to the K-S test, none of the sub-samples under consideration follow a normal distribution. 

 
Table 19 - K-S results for each sub-sample 

Sub-sample D Statistic P-Value 

#1 0.4748 0.00*** 

#2 0.4854 0.00*** 

#3 0.4832 0.00*** 

#4 0.4895 0.00*** 

#5 0.4891 0.00*** 

#6 0.4841 0.00*** 

#7 0.4751 0.00*** 

#8 0.4883 0.00*** 

#9 0.4899 0.00*** 

#10 0.4897 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

 

In summary, the visual evidence, parametric and non-parametric tests for normality over each 

non-overlapping sub-sample pointed to the data being drawn from a non-normal distribution. 

The tests of the random walk hypothesis now begin in earnest, with tests of non-linearity in 

the return generating process. 

 

 

4.3 Tests for non-linearity 

One test for linearity, the Brock-Dechert-Scheinkman (BDS) test is employed. This test 

examines linearity around key percentiles of the distribution. 
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4.3.1 Full sample results 

The BDS test examines observations around the 25th percentile, median, 75th percentile and 

90th percentile for non-linearity at a lag structure of 2 and 3. At a minimum, the BDS test 

requires a lag of 2 to be conducted; and a maximum lag of 20. The lag of 3 was chosen as it 

shows the lowest lag at which the results are statistically significant. The top half of the table 

provides the percentile values as described above, with the bottom half providing the p-values 

of those percentiles.  

 

The results of the BDS test show that daily BIL returns (Table 20), daily MTN returns (Table 

21) and daily SOL returns (Table 22) exhibit non-linear behaviour as the null hypothesis of 

linearity is rejected at all common levels of significance. 

 

Table 20 – BDS test for non-linearity of BIL daily returns 

BIL 25th percentile Median 75th percentile 90th percentile 

 
0.0119 0.0238 0.0357 0.0476 

2 8.4002 9.1993 9.8333 10.5223 

3 12.126 13.354 14.3111 15.3729 

 

BIL 25th percentile Median 75th percentile 90th percentile 
0.0119 0.0238 0.0357 0.0476 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

 
Table 21 – BDS test for non-linearity of MTN daily returns 

MTN 25th percentile Median 75th percentile 90th percentile 
0.013 0.0261 0.0391 0.0522 

2 14.2931 15.2998 16.4209 16.8788 

3 19.0183 19.3507 19.8789 19.7112 

 

MTN 25th percentile Median 75th percentile 90th percentile 
0.013 0.0261 0.0391 0.0522 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

 



 150 

Table 22 – BDS test for non-linearity of SOL daily returns 

SOL 25th percentile Median 75th percentile 90th percentile 
0.0116 0.0232 0.0347 0.0463 

2 14.163 14.5488 14.4076 14.743 

3 17.1412 17.7531 18.0586 18.8018 

 

SOL 25th percentile Median 75th percentile 90th percentile 
0.0116 0.0232 0.0347 0.0463 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

 

Similar conclusions can be drawn for FSR daily returns (Table 23), SAB daily returns (Table 

24), NPN daily returns (Table 25) and AGL daily returns (Table 26) in that there are non-

normalities in the data according to the BDS test. 

 
Table 23 – BDS test for non-linearity of FSR daily returns 

FSR 25th percentile Median 75th percentile 90th percentile 
0.0107 0.0213 0.032 0.0426 

2 13.6113 14.8994 15.3627 15.1698 

3 17.6326 19.0421 19.3718 18.9976 
  

FSR 25th percentile Median 75th percentile 90th percentile 
0.0107 0.0213 0.032 0.0426 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 
Table 24 – BDS test for non-linearity of SAB daily returns 

SAB 25th percentile Median 75th percentile 90th percentile 
0.0089 0.0177 0.0266 0.0355 

2 12.358 13.752 14.3582 14.4853 

3 14.9321 16.316 16.7457 16.6222 

 

SAB 25th percentile Median 75th percentile 90th percentile 
0.0089 0.0177 0.0266 0.0355 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 
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Table 25 – BDS test for non-linearity of NPN daily returns 

NPN 25th percentile Median 75th percentile 90th percentile 
0.0124 0.0248 0.0372 0.0497 

2 15.5464 16.4342 16.7112 16.0929 

3 19.2877 20.01 20.303 20.1143 

 

NPN 25th percentile Median 75th percentile 90th percentile 
0.0124 0.0248 0.0372 0.0497 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 
Table 26 – BDS test for non-linearity of AGL daily returns 

AGL 25th percentile Median 75th percentile 90th percentile 
0.0122 0.0245 0.0367 0.049 

2 9.6824 11.0947 12.7444 13.6597 

3 12.4384 14.195 16.3651 17.6314 

 

AGL 25th percentile Median 75th percentile 90th percentile 
0.0122 0.0245 0.0367 0.049 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Lastly, examining the daily returns of the J200 (Table 27), GFI (Table 28) and the ALSI 

(Table 29), the same conclusion is reached in that there is evidence of non-linearity in all 

three distributions. 

 
Table 27 – BDS test for non-linearity of J200 daily returns 

J200 25th percentile Median 75th percentile 90th percentile 
0.007 0.0139 0.0209 0.0278 

2 10.7067 12.3156 13.566 14.0021 

3 15.1673 17.4519 19.1856 19.7513 

 

J200 25th percentile Median 75th percentile 90th percentile 
0.007 0.0139 0.0209 0.0278 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 
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Table 28 – BDS test for non-linearity of GFI daily returns 

GFI 25th percentile Median 75th percentile 90th percentile 
0.0147 0.0295 0.0442 0.059 

2 10.4435 12.5219 13.9685 14.7544 

3 13.5584 15.3725 16.3833 16.5151 

 

GFI 25th percentile Median 75th percentile 90th percentile 
0.0147 0.0295 0.0442 0.059 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 
Table 29 – BDS test for non-linearity of ALSI daily returns 

ALSI 25th percentile Median 75th percentile 90th percentile 
0.0063 0.0127 0.019 0.0254 

2 10.3033 12.1241 13.4984 13.8658 

3 15.0979 17.4721 19.3082 19.6816 

 

ALSI 25th percentile Median 75th percentile 90th percentile 
0.0063 0.0127 0.019 0.0254 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

 

The results of the BDS test show that weekly BIL returns (Table 30), weekly MTN returns 

(Table 31) and weekly SOL returns (Table 32) exhibit non-linear behaviour as the null 

hypothesis of linearity is rejected at all common levels of significance. 

Table 30 – BDS test for non-linearity of BIL weekly returns 

BIL 25th percentile Median 75th percentile 90th percentile 
0.0264 0.0528 0.0792 0.1056 

2 4.0587 5.5324 6.4257 7.4672 

3 4.2862 5.9743 7.0556 8.0845 

 

BIL 25th percentile Median 75th percentile 90th percentile 
0.0264 0.0528 0.0792 0.1056 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 
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Table 31 – BDS test for non-linearity of MTN weekly returns 

MTN 25th percentile Median 75th percentile 90th percentile 
0.0300 0.0601 0.0901 0.1202 

2 5.6899 5.9294 5.6904 5.2326 

3 7.1232 7.4998 7.1586 6.7512 

 

MTN 25th percentile Median 75th percentile 90th percentile 
0.0300 0.0601 0.0901 0.1202 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 
Table 32 – BDS test for non-linearity of SOL weekly returns 

SOL 25th percentile Median 75th percentile 90th percentile 
0.0266 0.0531 0.0797 0.1062 

2 2.596 3.4924 4.617 6.2227 

3 4.7227 5.3347 5.8603 7.1449 

 

SOL 25th percentile Median 75th percentile 90th percentile 

0.0254 0.0508 0.0762 0.1016 

2 0.01*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Similar conclusions can be drawn for FSR weekly returns (Table 33), SAB weekly returns 

(Table 33), NPN weekly returns (Table 35) and AGL weekly returns (Table 36) in that there 

are non-normalities in the data according to the BDS test. 

 
Table 33 – BDS test for non-linearity of FSR weekly returns 

FSR 25th percentile Median 75th percentile 90th percentile 
0.0244 0.0488 0.0733 0.0977 

2 4.3307 6.2032 8.0879 9.1905 

3 5.3114 7.1288 8.8976 10.0861 

 

FSR 25th percentile Median 75th percentile 90th percentile 
0.0244 0.0488 0.0733 0.0977 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 
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Table 34 – BDS test for non-linearity of MDC weekly returns 

SAB 25th percentile Median 75th percentile 90th percentile 
0.0197 0.0394 0.0591 0.0788 

2 4.1059 5.5013 5.9267 5.006 

3 5.9955 7.3956 7.9474 7.2162 

 

SAB 25th percentile Median 75th percentile 90th percentile 
0.0197 0.0394 0.0591 0.0788 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Table 35 – BDS test for non-linearity of PIK weekly returns 

NPN 25th percentile Median 75th percentile 90th percentile 
0.0292 0.0584 0.0875 0.1167 

2 5.7037 6.5977 7.1349 7.2322 

3 7.032 8.1127 8.409 8.3712 

 

NPN 25th percentile Median 75th percentile 90th percentile 
0.0292 0.0584 0.0875 0.1167 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 
Table 36 – BDS test for non-linearity of HYP weekly returns 

AGL 25th percentile Median 75th percentile 90th percentile 
0.0274 0.0548 0.0823 0.1097 

2 3.4574 4.3606 5.612 6.7464 

3 4.7389 5.7518 6.8904 7.5565 

 

AGL 25th percentile Median 75th percentile 90th percentile 
0.0292 0.0584 0.0875 0.1167 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Lastly, examining the weekly returns of the J200 (Table 37), GFI (Table 38) and the ALSI 

(Table 39), the same conclusion is reached in that there is evidence of non-linearity in all 

three distributions. While the 25th percentile of ILV returns is only significant at the 5% level 
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(instead of the 1% level achieved by other percentiles), the conclusion of non-linearity 

remains. 

 
Table 37 – BDS test for non-linearity of ILV weekly returns 

J200 25th percentile Median 75th percentile 90th percentile 
0.0156 0.0311 0.0467 0.0623 

2 4.1644 4.5566 5.6532 6.6236 

3 6.443 5.9418 6.7844 7.2664 

 

J200 25th percentile Median 75th percentile 90th percentile 
0.0292 0.0584 0.0875 0.1167 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Table 38 – BDS test for non-linearity of WBO weekly returns 

GFI 25th percentile Median 75th percentile 90th percentile 
0.034 0.068 0.102 0.136 

2 3.1684 4.3355 5.6391 6.9756 

3 3.7893 5.1029 6.191 7.3617 

 

GFI 25th percentile Median 75th percentile 90th percentile 
0.034 0.068 0.102 0.136 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Table 39 – BDS test for non-linearity of ALSI weekly returns 

ALSI 25th percentile Median 75th percentile 90th percentile 
0.0144 0.0288 0.0433 0.0577 

2 4.093 4.7478 5.6397 6.5969 

3 6.1041 5.9944 6.5691 7.0093 

 

ALSI 25th percentile Median 75th percentile 90th percentile 
0.0144 0.0288 0.0433 0.0577 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 
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The results of the BDS test show that monthly BIL returns (Table 40), monthly MTN returns 

(Table 41) and monthly SOL returns (Table 42) exhibit non-linear behaviour as the null 

hypothesis of linearity is rejected at all common levels of significance. 

 
Table 40 – BDS test for non-linearity of BIL monthly returns 

BIL 25th percentile Median 75th percentile 90th percentile 
0.0484 0.0968 0.1452 0.1936 

2 5.4582 3.5637 3.8127 3.2908 

3 7.4697 4.7495 4.8581 4.4573 

 

BIL 25th percentile Median 75th percentile 90th percentile 
0.0484 0.0968 0.1452 0.1936 

2 0.00*** 0.00*** 0.00*** 0.001 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 
Table 41 – BDS test for non-linearity of MTN monthly returns 

MTN 25th percentile Median 75th percentile 90th percentile 
0.0546 0.1092 0.1638 0.2183 

2 4.328 4.8374 5.1284 5.3886 

3 4.0142 5.4697 5.6889 6.1249 

 

MTN 25th percentile Median 75th percentile 90th percentile 
0.0546 0.1092 0.1638 0.2183 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Table 42 – BDS test for non-linearity of SOL monthly returns 

SOL 25th percentile Median 75th percentile 90th percentile 
0.047 0.094 0.141 0.1879 

2 3.0827 2.9635 3.2846 3.3857 

3 2.484 2.6562 2.9824 3.2978 

 

SOL 25th percentile Median 75th percentile 90th percentile 

0.0447 0.0895 0.1342 0.1789 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.01*** 0.01*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 
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The FSR monthly returns (Table 43) produce interesting results. At a lag of 2, the lower two 

quantiles (25th and 50th) show significant non-linearity, whereas the upper two quantiles do 

not. In contrast, at a lag of 3, non-linearity is present throughout the distribution. This result is 

quite interesting as it implies that the return distribution for FSR is non-linear when returns 

fall below the mean and linear when returns lie above the mean. It suggests that both a linear 

and non-linear model should be used when examining the monthly returns generating 

process. Under the constraints of traditional, a priori models, one would need to first 

determine where this "structural break" occurred before proceeding to model these returns. 

The monthly SAB returns (Table 44) show linearity for the most part. It is only at a lag of 3 

that there is non-linearity in the returns series, however this is not statistically strong. The 

remaining equity returns of PIK (Table 45) and HYP (Table 46) show evidence of non-

linearity. 

 
Table 43 – BDS test for non-linearity of FSR monthly returns 

FSR 25th percentile Median 75th percentile 90th percentile 
0.044 0.0879 0.1319 0.1759 

2 2.0661 1.874 1.3339 1.105 

3 4.083 3.2033 2.6645 2.5203 

 

FSR 25th percentile Median 75th percentile 90th percentile 
0.044 0.0879 0.1319 0.1759 

2 0.04** 0.06* 0.18 0.27 

3 0.00*** 0.00** 0.01** 0.01** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 
Table 44 – BDS test for non-linearity of SAB monthly returns 

SAB 25th percentile Median 75th percentile 90th percentile 
0.0351 0.0702 0.1052 0.1403 

2 1.1637 0.9844 1.2845 1.3668 

3 1.8396 1.6193 2.1003 2.4691 

 

SAB 25th percentile Median 75th percentile 90th percentile 
0.0351 0.0702 0.1052 0.1403 

2 0.24 0.32 0.20 0.17 

3 0.07* 0.11 0.04** 0.01** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 



 158 

Table 45 – BDS test for non-linearity of NPN monthly returns 

NPN 25th percentile Median 75th percentile 90th percentile 
0.0613 0.1227 0.184 0.2454 

2 4.4232 4.3691 4.0739 3.3535 

3 6.4474 5.8917 6.0759 5.0606 

 

NPN 25th percentile Median 75th percentile 90th percentile 
0.0351 0.0702 0.1052 0.1403 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 
Table 46 – BDS test for non-linearity of AGL monthly returns 

AGL 25th percentile Median 75th percentile 90th percentile 
0.052 0.104 0.156 0.208 

2 0.5434 0.6202 0.6227 0.7973 

3 2.1024 1.6479 1.5662 1.7088 

 

AGL 25th percentile Median 75th percentile 90th percentile 
0.0351 0.0702 0.1052 0.1403 

2 0.59 0.54 0.53 0.43 

3 0.04** 0.10* 0.12 0.09* 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Lastly, examining the monthly returns of the J200 (Table 47), GFI (Table 48) and the ALSI 

(Table 49). All three display evidence of non-linearity. In particular, it appears that the 

returns above the mean for the ALSI show weaker evidence of non-linearity than returns 

below the mean. 

 

Table 47 – BDS test for non-linearity of J200 monthly returns 

J200 25th percentile Median 75th percentile 90th percentile 
0.0303 0.0606 0.0908 0.1211 

2 3.247 3.0268 1.9848 1.551 

3 7.1257 5.6793 4.6553 4.0452 

 

J200 25th percentile Median 75th percentile 90th percentile 
0.0351 0.0702 0.1052 0.1403 

2 0.00*** 0.00*** 0.05* 0.12 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 
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Table 48 – BDS test for non-linearity of GFI monthly returns 

GFI 25th percentile Median 75th percentile 90th percentile 
0.0588 0.1175 0.1763 0.2351 

2 2.2641 2.6922 3.1084 2.6192 

3 2.3812 2.27 2.4494 2.0114 

 

GFI 25th percentile Median 75th percentile 90th percentile 
0.0588 0.1175 0.1763 0.2351 

2 0.02** 0.01*** 0.00*** 0.01*** 

3 0.02** 0.02** 0.01*** 0.04** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 
Table 49 – BDS test for non-linearity of ALSI monthly returns 

ALSI 25th percentile Median 75th percentile 90th percentile 
0.0287 0.0574 0.0861 0.1147 

2 3.9638 3.2759 2.1868 1.4318 

3 8.0483 6.1382 4.6461 3.8241 

 

ALSI 25th percentile Median 75th percentile 90th percentile 
0.0287 0.0574 0.0861 0.1147 

2 0.00*** 0.00*** 0.03** 0.15 

3 0.00*** 0.00*** 0.00*** 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

 

The BDS test for non-linearity is now run on each of the daily frequency input variables. The 

results for the commodities, Oil and Gold, are presented in Table 50 and Table 51 below. 

They indicate that both series have non-linear components as the p-values for all variables are 

zero, implying a rejection of the null hypothesis of linearity. 

 

Table 50 – BDS test for non-linearity on Oil 

OIL 25th percentile  
0.0107 

Median 
0.0215 

75th percentile  
0.0322 

90th percentile  
0.0429 

2 8.7146 8.7922 9.4258 10.3393 
3 11.6335 11.245 12.1772 13.7132 

 

OIL 25th percentile 
0.0107 

Median 
0.0215 

75th percentile 
0.0322 

90th percentile 
0.0429 

2 0.000*** 0.000*** 0.000*** 0.000*** 
3 0.000*** 0.000*** 0.000*** 0.000*** 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 
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Table 51 - BDS test for non-linearity on Gold 

GOLD 25th percentile  
0.0057 

Median 
0.0115 

75th percentile  
0.0172 

90th percentile  
0.0229 

2 10.6042 12.1133 13.2069 14.0988 
3 12.4524 14.9178 16.1743 16.5816 

 

GOLD 25th percentile 
0.0057 

Median 
0.0115 

75th percentile 
0.0172 

90th percentile 
0.0229 

2 0.000*** 0.000*** 0.000*** 0.000*** 
3 0.000*** 0.000*** 0.000*** 0.000*** 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

 

The results for the ALSI dividend yield earnings yield are presented in Tables 52 and 53 

below. Each variable shows that there exists non-linearity in the series. 

 

Table 52 - BDS Test results for the ALSI Dividend Yield 

DY 25th percentile  
0.0057 

Median 
0.0113 

75th percentile  
0.0170 

90th percentile  
0.0270 

2 14.0581 12.8392 10.4675 12.596 
3 9.9397 12.2369 15.3878 13.7962 

 

DY 25th percentile 
0.0057 

Median 
0.0113 

75th percentile 
0.0170 

90th percentile 
0.0270 

2 0.000*** 0.000*** 0.000*** 0.000*** 
3 0.000*** 0.000*** 0.000*** 0.000*** 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 
Table 53 - BDS Test results for the ALSI Earnings Yield 

EY 25th percentile  
0.0080 

Median 
0.0160 

75th percentile  
0.0240 

90th percentile  
0.0320 

2 10.4938 11.1411 10.4675 9.4944 
3 15.1129 16.1595 15.3878 13.8553 

 

EY 25th percentile 
0.0080 

Median 
0.0160 

75th percentile 
0.0240 

90th percentile 
0.0320 

2 0.000*** 0.000*** 0.000*** 0.000*** 
3 0.000*** 0.000*** 0.000*** 0.000*** 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

 

The results for international indices, the S&P 500, Hang Seng 100 and FTSE 100, are 

presented in Tables 54, 55 and 56 below. The results from the test indicate that the series has 
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some non-linear components as the p-values for all variables are zero, implying a rejection of 

the null hypothesis of linearity. 

 

 
Table 54 - BDS Test results for S&P 500 

S&P 25th percentile  
0.0063 

Median 
0.0126 

75th percentile  
0.0189 

90th percentile  
0.0252 

2 8.9495 10.279 12.5075 15.2412 
3 15.347 16.3849 17.7273 19.9918 

 

S&P 25th percentile 
0.0063 

Median 
0.0126 

75th percentile 
0.0189 

90th percentile 
0.0252 

2 0.000*** 0.000*** 0.000*** 0.000*** 
3 0.000*** 0.000*** 0.000*** 0.000*** 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

 
Table 55 - BDS Test results for the Hang Seng 

Hang Seng 25th percentile  
0.0084 

Median 
0.0169 

75th percentile  
0.0253 

90th percentile  
0.0338 

2 7.5547 10.2474 12.5962 14.4866 
3 10.5999 14.4438 16.8918 18.4769 

 

Hang Seng 25th percentile 
0.0084 

Median 
0.0169 

75th percentile 
0.0253 

90th percentile 
0.0338 

2 0.000*** 0.000*** 0.000*** 0.000*** 
3 0.000*** 0.000*** 0.000*** 0.000*** 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

Table 56 - BDS Test results for the FTSE 

FTSE 25th percentile  
0.0061 

Median 
0.0122 

75th percentile  
0.0183 

90th percentile  
0.0244 

2 13.3668 14.4039 15.3884 15.9411 
3 18.6776 19.5417 20.119 20.7226 

 

FTSE 25th percentile 
0.0061 

Median 
0.0122 

75th percentile 
0.0183 

90th percentile 
0.0244 

2 0.000*** 0.000*** 0.000*** 0.000*** 
3 0.000*** 0.000*** 0.000*** 0.000*** 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Therefore, according to the BDS test, all of the variables under consideration follow some 

form of non-linear data generating process. The tests for non-linearity are now conducted on 

each sub-sample. 
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4.3.2 ALSI Sub-sample results 

The BDS test examines observations around the 25th percentile, median, 75th percentile and 

90th percentile for non-linearity at a lag structure of 2 and 3. The top half of the table provides 

the percentile values as described above, with the bottom half providing the p-values of those 

percentiles.  

 

 

The results of the BDS test (Table 57) show for sub-sample 1 that the series is non-linear, as 

each BDS statistic is statistically significant at the 5% level of significance. 

 

Table 57 - BDS Test results for the sub-sample 1 

#1 25th percentile Median 75th percentile 90th percentile 
 0.0085 0.017 0.0255 0.034 

2 5.0347 4.7872 4.6635 4.5558 
3 8.1186 7.4139 6.5083 5.626 

 

#1 25th percentile Median 75th percentile 90th percentile 
 0.0085 0.017 0.0255 0.034 

2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

However, when examining the second sub-sample (Table 58), it is found that the series is 

linear at a lag of 2 for the 25th percentile, but is non-linear for the remaining quintiles and 

lags.  

 

Table 58 - BDS Test results for the sub-sample 2 

#2 25th percentile Median 75th percentile 90th percentile 

 0.0057 0.0115 0.0172 0.023 
2 1.5147 2.5792 3.6968 5.2205 
3 1.791 2.6283 3.9164 5.1564 

 

#2 25th percentile Median 75th percentile 90th percentile 

 0.0057 0.0115 0.0172 0.023 
2 0.13 0.01** 0.00*** 0.00*** 

3 0.07* 0.01** 0.00*** 0.00*** 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 
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For sub-sample 3 (Table 59) and sub-sample 4 (Table 60); the former is found to be non-

linear, with the latter being linear. 

 

Table 59  - BDS Test results for the sub-sample 3 

#3 25th percentile Median 75th percentile 90th percentile 

 0.0063 0.0127 0.019 0.0254 
2 2.3244 2.9062 3.1386 3.275 
3 3.0965 4.0206 4.0778 4.0392 

 

#3 25th percentile Median 75th percentile 90th percentile 

 0.0063 0.0127 0.019 0.0254 
2 0.02** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Table 60  - BDS Test results for the sub-sample 4 

#4 25th percentile Median 75th percentile 90th percentile 

 0.0053 0.0106 0.016 0.0213 
2 0.5109 0.3161 0.0308 -0.0801 
3 1.3836 0.6568 0.2101 -0.1055 

 

#4 25th percentile Median 75th percentile 90th percentile 

 0.0053 0.0106 0.016 0.0213 
2 0.61 0.75 0.98 0.94 
3 0.17 0.51 0.83 0.92 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

 

The results for sub-sample 5 (Table 61) are interesting in that the majority of the test statistics 

are insignificant, but there is some hint of significant non-linearity at a lag of 3.  
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Table 61  - BDS Test results for the sub-sample 5 

#5 25th percentile Median 75th percentile 90th percentile 

 0.0045 0.0091 0.0136 0.0182 
2 1.316 0.8975 0.5933 0.0168 
3 3.795 2.6413 1.6555 0.9235 

 

#5 25th percentile Median 75th percentile 90th percentile 

 0.0045 0.0091 0.0136 0.0182 
2 0.19 0.37 0.55 0.99 

3 0.00*** 0.01*** 0.10* 0.36 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

The BDS test for the remaining sub-samples shows that sub-sample 6 (Table 62) to sub-

sample 9 (Table 65) display evidence of non-linearity (although somewhat weaker in 

evidence for sub-sample 7 and sub-sample 9).  

 

Table 62  - BDS Test results for the sub-sample 6 

#6 25th percentile Median 75th percentile 90th percentile 

 0.0063 0.0126 0.0188 0.0251 
2 3.4406 3.7493 3.4475 3.1801 
3 4.8201 5.5963 5.9115 5.9394 

 

#6 25th percentile Median 75th percentile 90th percentile 

 0.0063 0.0126 0.0188 0.0251 
2 0.00*** 0.00*** 0.00*** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Table 63 - BDS Test results for the sub-sample 7 

#7 25th percentile Median 75th percentile 90th percentile 

 0.0102 0.0204 0.0306 0.0408 
2 1.9723 2.3699 2.4129 2.4313 
3 3.9487 4.9003 5.0655 4.9032 

 

#7 25th percentile Median 75th percentile 90th percentile 

 0.0102 0.0204 0.0306 0.0408 
2 0.05* 0.02** 0.02** 0.02** 

3 0.00*** 0.00*** 0.00*** 0.00*** 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 
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Table 64  - BDS Test results for the sub-sample 8 

#8 25th percentile Median 75th percentile 90th percentile 

 0.005 0.0101 0.0151 0.0201 
2 3.206 3.079 2.7082 2.8991 
3 3.8343 3.8436 3.6062 3.8647 

 

#8 25th percentile Median 75th percentile 90th percentile 

 0.005 0.0101 0.0151 0.0201 
2 0.00*** 0.00*** 0.01** 0.00*** 

3 0.00*** 0.00*** 0.00*** 0.00*** 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Table 65  - BDS Test results for the sub-sample 9 

#9 25th percentile Median 75th percentile 90th percentile 

 0.0046 0.0092 0.0138 0.0184 
2 2.7114 3.5751 2.7441 1.7464 
3 4.5361 5.1548 4.5489 3.8499 

 

#9 25th percentile Median 75th percentile 90th percentile 

 0.0046 0.0092 0.0138 0.0184 
2 0.01** 0.00*** 0.01** 0.08* 

3 0.00*** 0.00*** 0.00*** 0.00*** 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

The results of sub-sample 10 (Table 66) are largely in favour of linearity, with the exception 

at the 10% level of the 75th percentile test statistic at a lag of 3. While this particular statistic 

is significant, it is not enough to conclude that the series is non-linear. 

 

Table 66  - BDS Test results for the sub-sample 10 

#10 25th percentile Median 75th percentile 90th percentile 

 0.0042 0.0084 0.0126 0.0167 

2 -0.0974 0.3926 0.3619 -0.0218 

3 1.1141 1.4259 1.7263 1.3085 

 

#10 25th percentile Median 75th percentile 90th percentile 

 0.0042 0.0084 0.0126 0.0167 

2 0.92 0.69 0.72 0.98 

3 0.27 0.15 0.08* 0.19 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 
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Therefore, according to the BDS test, the majority of the sub-samples under consideration do 

not follow some non-linear data generating process, implying that linear models would be 

more adept at capturing their behaviour than non-linear models. In contrast to the overall 

sample results, it was discovered that while the overall sample may follow a non-linear data 

generating process, the majority of time periods within the overall sample follow a linear data 

generating process. This implies that some points in time that act as regime changers - 

considered turning points in the series. It is quite plausible that the data around these regime 

changing points exhibit non-linear behaviour, with the data further from these points 

exhibiting linear behaviour. These results imply that some form of regime switching models 

should be used to model the returns generating process. Before commencing however, one 

should first inspect the series for autocorrelation if any time series model is to be used. 

 

 

4.4 Tests for stationarity 

Two complementary tests for stationarity are conducted, namely the Augmented Dickey 

Fuller (ADF) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. The former tests for 

the presence of a unit root (which has implications on stationarity), while the latter examines 

a time series as being composed of multiple components, some of which may not be 

stationary. Further, a test conducted by Lo (2004), in constructing his argument for cyclical 

efficiency, is replicated here. This is a simple measure of autocorrelation over time, using a 

rolling window approach. The graphical inspection of the diagram can reveal points in time 

where returns were not independent of each other (thus having implications on efficiency) as 

well as provide robustness to the overall preliminary statistics in adopting an overlapping 

sample approach. 

 

 

4.4.1 Full sample results 

4.4.1.1 Augmented Dickey Fuller test 

The Augmented Dickey Fuller (ADF) test for stationarity was conducted on the ALSI. The 

test statistic is usually a negative number, with a larger negative number representing a 

stronger rejection of the null hypothesis of a unit root in the series. Further, the test is 
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conducted for a mean and trend in the series, to determine if any form of the described 

stationarity exists. The results from Table 67 to Table 69 show that the ALSI is stationary at 

the lags tested and at the 1% level of statistical significance. In other words, the daily, weekly 

and monthly returns data do not show signs of non-stationarity. 

 

Table 67 - ADF Test Results for daily returns 

Test Statistic Lag P-value 

BIL -17.3255 16 0.01*** 

MTN -16.5742 16 0.01*** 

SOL -17.2609 16 0.01*** 

FSR -17.0675 16 0.01*** 

SAB -16.6482 16 0.01*** 

NPN -14.5267 16 0.01*** 

AGL -16.5913 16 0.01*** 

J200 -16.0414 16 0.01*** 

ALSI -15.6333 16 0.01*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Table 68 - ADF Test Results for weekly returns 

Test Statistic Lag P-value 

BIL -9.6735 9 0.01*** 

MTN -9.4568 9 0.01*** 

SOL -10.0748 9 0.01*** 

FSR -11.0275 9 0.01*** 

SAB -10.0548 9 0.01*** 

NPN -10.1591 9 0.01*** 

AGL -9.4168 9 0.01*** 

J200 -9.6489 9 0.01*** 

ALSI -9.7272 9 0.01*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 
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Table 69 - ADF Test Results for monthly returns 

Test Statistic Lag P-value 

BIL -6.7246 5 0.01*** 

MTN -5.9674 5 0.01*** 

SOL -6.021 5 0.01*** 

FSR -7.2153 5 0.01*** 

SAB -5.4231 5 0.01*** 

NPN -5.8839 5 0.01*** 

AGL -5.8224 5 0.01*** 

J200 -5.9984 5 0.01*** 

ALSI -6.0981 5 0.01*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Similarly, when one considers quarterly and semi-annual data, the results indicate 

stationarity. The results for the daily frequency input variables are displayed in Table 70 

below. Using the mean and trend version of the test, it is found that all exogenous return 

variables are stationary.  

 

Table 70 - ADF Test Results for exogenous variables 

Test Statistic Lag P-value 

Gold -16.2804 16 0.01*** 

Oil -14.7765 16 0.01*** 

FTSE -16.412 16 0.01*** 

HS -15.5022 16 0.01*** 

SP -15.8228 16 0.01*** 

EY -15.7285 16 0.01*** 

DY -15.7285 16 0.01*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

 

4.4.1.2 Kwiatkowski-Phillips-Schmidt-Shin test 

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test is used to test the null hypothesis that a 

time series is stationary around a deterministic trend. The time series is decomposed into a 

deterministic trend, random walk and stationary error component and a Lagrange multiplier 

method is used to test the hypothesis that the random walk component has a zero variance. 

The KPSS test thus supplements the ADF test in that both test for a unit root and stationarity.  
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The results of the KPSS test for the daily, weekly and monthly equity returns are displayed in 

Table 71 to Table 73 below. For all frequencies tested, the KPSS test shows that the null 

hypothesis of stationarity is not rejected, with the truncated parameter (T.P) being optimally 

chosen so as to compromise between the sample size and statistical power of the test. Further, 

each of the daily frequency input variables (Table 74) is also stationary at the 10% level of 

significance. 

 
Table 71 - KPSS results for daily returns 

Share Code Test statistic value T.P P-Value 

BIL 0.1227 15 0.1* 

MTN 0.099 15 0.1* 

SOL 0.0545 15 0.1* 

FSR 0.0462 15 0.1* 

SAB 0.1715 15 0.1* 

NPN 0.2226 15 0.1* 

AGL 0.1488 15 0.1* 

J200 0.0412 15 0.1* 

ALSI 0.0481 15 0.1* 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 
Table 72 - KPSS results for weekly returns 

Share Code Test statistic value T.P P-Value 

BIL 0.126 6 0.1* 

MTN 0.1079 6 0.1* 

SOL 0.0631 6 0.1* 

FSR 0.0351 6 0.1* 

SAB 0.1586 6 0.1* 

NPN 0.1453 6 0.1* 

AGL 0.1812 6 0.1* 

J200 0.0392 6 0.1* 

ALSI 0.0436 6 0.1* 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 
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Table 73 - KPSS results for monthly returns 

Share Code Test statistic value T.P P-Value 

BIL 0.1353 3 0.1* 

MTN 0.1084 3 0.1* 

SOL 0.0735 3 0.1* 

FSR 0.0624 3 0.1* 

SAB 0.2269 3 0.1* 

NPN 0.1491 3 0.1* 

AGL 0.1764 3 0.1* 

J200 0.0541 3 0.1* 

ALSI 0.0479 3 0.1* 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

The results hold for quarterly and semi-annual data, in that all of the securities are found to be 

stationary. 

 

Table 74 - KPSS results for exogenous variables 

 Oil Gold Hang Seng S&P FTSE DY EY 

Test statistic value 0.0779 0.1974 0.0587 0.1173 0.0547 0.0177 0.0577 

T.P 15 15 15 15 15 15 15 

P-Value 0.1* 0.1* 0.1* 0.1* 0.1* 0.1* 0.1* 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Therefore, according to the KPSS test, all of the variables under consideration are stationary 

at a 10% level of statistical significance. 

 

 

4.4.1.3 Rolling autocorrelation test 

Under the random walk hypothesis, returns should not be correlated; the autocorrelation 

coefficient should be zero. Thus, Lo (2004) adopts a rolling window approach to test this 

premise. By a graphical view of the rolling first order autocorrelation (the autocorrelation 

coefficient calculated over a daily rolling window), the author concludes that over the sample 

period investigated; there were phases of inefficiency and efficiency. Replicating this 

approach for the daily, weekly and monthly ALSI returns, the results are displayed in Figure 

15 below. The graphs show the plot of each time series' autocorrelation coefficient return 
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against time. Under conditions of market efficiency, the autocorrelation coefficient across 

time should be close to zero.  

 

 

Using daily returns, the graph shows that the rolling autocorrelation coefficient fluctuates 

around zero, implying that there are small periods of time where the ALSI experiences 

market inefficiency. Using weekly returns and monthly returns, the results are similar, 

showing volatility in the autocorrelation coefficient with a cyclical pattern. This therefore 

implies that over the sample period examined, the ALSI experienced periods of weak form 

efficiency and periods of weak form inefficiency. As can be expected with lower frequency 

data, extending the method to quarterly and semi-annual data, the evidence of randomness 

becomes more clear (there is less of a pattern in the ALSI returns). While not a test in and of 

itself (one needs to determine corresponding p-values to ascertain whether a deviation from 

zero is statistically significant), the rolling autocorrelation plots replicate the work of Lo 

(2004, 2005) in providing the foundation to examine market efficiency in a dynamic context. 
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Figure 15 - Rolling autocorrelation at lag 1 for daily (top right), weekly (top left) and monthly (centre) ALSI returns 

 

Therefore, according to a rolling autocorrelation test, the ALSI experienced periods of market 

efficiency and periods of market inefficiency, across all frequencies examined. Indeed, the 

monthly rolling autocorrelation figure seems to correspond roughly to that of a business 

cycle, with the more recent observations (near the global recession) being autocorrelated. 

While not a strict statistical procedure in and of itself, the rolling autocorrelation graphs 

provide indirect evidence of cyclical efficiency. In other words, it has been found that there 

exists some form of memory in the daily, weekly and monthly ALSI series over the sample 

period under investigation. Further, this memory does not decay rapidly to zero and is 

persistent. The stationarity tests are now conducted on each sub-sample. 
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4.4.2 ALSI Sub-sample results 

4.4.2.1 Augmented Dickey Fuller test 

For each of the sub-samples, the Augmented Dickey Fuller (ADF) test for stationarity was 

conducted. The test statistic is usually a negative number, with a larger negative number 

representing a stronger rejection of the null hypothesis of a unit root in the series. Further, the 

test is conducted for a constant, linear trend in the series, to determine if any form of the 

described stationarity exists. The results from Table 75 show that the all return sub-samples 

are stationary at the lags tested and at the 1% level of statistical significance.  

 
Table 75 - ADF results for each sub-sample 

Sub-sample Test Statistic Lag P-Value 

#1 -7.1274 7 0.01*** 

#2 -7.1597 7 0.01*** 

#3 -6.333 7 0.01*** 

#4 -7.9652 7 0.01*** 

#5 -7.6637 7 0.01*** 

#6 -8.2051 7 0.01*** 

#7 -7.853 7 0.01*** 

#8 -8.7232 7 0.01*** 

#9 -8.7456 7 0.01*** 

#10 -7.3046 7 0.01*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Therefore, according to the ADF test under a zero mean, single mean and trend, all of the 

sub-samples under consideration are stationary. 

 

4.4.2.2 Kwiatkowski-Phillips-Schmidt-Shin test 

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test is used to test the null hypothesis that a 

time series is stationary around a deterministic trend. The time series is decomposed into a 

deterministic trend, random walk and stationary error component and a Lagrange multiplier 

method is used to test the hypothesis that the random walk component has a zero variance. 

The KPSS test thus supplements the ADF test in that both test for a unit root and stationarity. 

The results of the KPSS test for all sub-samples of ALSI returns are displayed in Table 76 

below. For all frequencies tested, the KPSS test shows that the null hypothesis of stationarity 

is not rejected. 
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Table 76 - KPSS results for each sub-sample 

Sub-sample Test statistic value T.P P-Value 

#1 0.1387 4 0.1* 

#2 0.0720 4 0.1* 

#3 0.1128 4 0.1* 

#4 0.2062 4 0.1* 

#5 0.0441 4 0.1* 

#6 0.0918 4 0.1* 

#7 0.1462 4 0.1* 

#8 0.0415 4 0.1* 

#9 0.1249 4 0.1* 

#10 0.0628 4 0.1* 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

Therefore, according to the KPSS test, all of the sub-samples under consideration are 

stationary. With stationary variables, one can now proceed to conduct tests on the variance of 

the data over time; where changes in this variance would have implications for market 

efficiency. 

 

 

4.4.2.3 Rolling autocorrelation test 

Using the sub-sample returns, Figure 16, Figure 17 and Figure 18 show that the rolling 

autocorrelation coefficient fluctuates around zero for each sub-sample period, implying that 

there are small periods of time where the ALSI experiences market inefficiency. This 

therefore implies that over the sample period examined, the ALSI experienced periods of 

weak form efficiency and periods of weak form inefficiency. 
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#1 #2 

#3 #4 
Figure 16 - Rolling autocorrelation for each sub-sample (1) 
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#5 
#6 

#7 #8 

Figure 17  - Rolling autocorrelation for each sub-sample (2) 
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#9  

#10 
Figure 18 - Rolling autocorrelation for each sub-sample (3) 

 

Therefore, according to a rolling autocorrelation test, the ALSI experienced periods of market 

efficiency and periods of market inefficiency, across all frequencies examined. While not a 

strict statistical procedure in and of itself, the rolling autocorrelation graphs provide indirect 

evidence of cyclical efficiency.  

 

 

4.5 Testing the random walk hypothesis 

To examine possible random walk behaviour of the data, the runs test, variance ratio tests 

(specifically the Chow Denning and Wright modifications) and the Hurst exponent are used 

for the different frequencies of equities data only. These tests allow for multiple variances in 

the data and are an improvement over the popular Lo-MacKinlay variance ratio tests (as a 

result, the Lo-MacKinlay tests are not conducted). Further, graphical methods, namely plots 

of variance decomposition and the Hurst exponent are employed to add robustness to the 

results. The former allows one to simply view the evolution of variance over time (similar to 

a Q-Q plot in its purpose) while the latter is a sophisticated method used to detect if the 

sample distribution is random or deterministic (both in the short term or long term).  
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4.5.1 Full sample results 

4.5.1.1 Runs test 

The Runs test is a simple, non-parametric means of assessing whether a series is randomly 

generated or not. It can be considered a precursor to the Hurst exponent, tested later in this 

study.  

 

The results of the Runs test for the daily returns data are shown in Table 77 below. The null 

hypothesis of randomness in the data is rejected if the p-value is statistically significant. The 

results show that few of the daily equities are randomly generated. In particular, BIL, MTN, 

SAB (and FSR, at a 10% level of significance) are randomly generated. For the majority (43) 

of the 50 securities that are not randomly generated, all have runs that are less than expected 

by chance, implying less fluctuation in the return generating process. This however does not 

imply that the volatility is lower, but rather that there are fewer instances where the change 

from a positive run to a negative run, enabling a “smoother” process, with the same amount 

of deviation from the mean. This smoother process should imply a greater level of confidence 

in being able to fit a model – which is to be investigated later.    

Table 77 - Runs test for daily returns 

Share Code Test Statistic P-value 

BIL -0.269 0.79 

MTN -0.9862 0.32 

SOL -2.57 0.01** 

FSR -1.7034 0.09* 

SAB -0.6574 0.51 

NPN -3.855 0.00*** 

AGL -3.2275 0.00*** 

J200 -2.3608 0.02** 

ALSI -2.7194 0.00*** 
Note: * denotes a 10% level of significance, ** denotes a 5% level of significance and *** denotes a 1% level 

of significance 

 

 

Using weekly returns data, it is found in Table 78 that only one return series is not randomly 

generated. While one of these (SAB) has the same conclusion under daily data, it is 

interesting to note that the ALSI under weekly data is randomly generated (whereas under 

daily data it was found to not be randomly generated). This could imply any pricing 
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anomalies that manifest themselves in the short term are eliminated over a week. Further, it 

conceptually shows that a non-randomly generated series can be a subset of a randomly 

generated series. From the population of securities studied, nine are non-randomly generated, 

with their runs being greater than expected by chance. This is in contrast to the daily results, 

implying that there is more fluctuation in the returns process under lower frequency data.  

 

Table 78 - Runs test for weekly returns 

Share Code Test Statistic P-value 

BIL 0.9359 0.35 

MTN 0.9359 0.35 

SOL 3.0084 0.00*** 

FSR 0.9359 0.35 

SAB 0.7354 0.46 

NPN -0.0669 0.95 

AGL -0.5348 0.59 

J200 -0.6685 0.50 

ALSI -0.4011 0.69 
Note: * denotes a 10% level of significance, ** denotes a 5% level of significance and *** denotes a 1% level 

of significance 

 

Lastly, by examining monthly returns data in Table 79, two of the series are not randomly 

generated, with SAB maintaining the same conclusion under all three frequencies. It is again 

found that the ALSI, under monthly data, is randomly generated using the Runs test. Here, 

only 8 securities are non-randomly generated, with the majority of these 8 having runs that 

are greater than chance. Only three shares, AFE, ASR and TFG have runs that are less than 

expected by chance. This is perhaps due to the lower liquidity.  

 
Table 79 - Runs test for monthly returns 

Share Code Test Statistic P-value 

BIL 1.8159 0.07* 

MTN -1.3969 0.16 

SOL 2.235 0.03** 

FSR -0.5588 0.58 

SAB 0.6984 0.48 

NPN -1.1175 0.26 

AGL 0.6984 0.48 

J200 -0.1397 0.89 

ALSI -0.4191 0.68 
Note: * denotes a 10% level of significance, ** denotes a 5% level of significance and *** denotes a 1% level 

of significance 
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Under quarterly data, 12 securities were non-random, with four having runs that were greater 

than chance. These shares were across three industries, so there is no discernible sector-

specific pattern. Under semi-annual data, five securities were non-random, with two of them 

having runs thata were greater than chance. From all securities, there was no instance where 

it was found to be non-random under all frequencies. One share, SOL, was non-random under 

four of the frequencies (from daily to quarterly), and had the middle two frequencies of runs 

being greater than chance. Other exceptions were ASR and PIK, where ASR had daily, 

weekly and monthly runs being less than chance, and PIK being greater than chance under 

weekly, monthly and quarterly data.  

 

4.5.1.2 Wright test 

To test individual variance ratios, the non-parametric version of the variance ratio test by 

Wright (2000) is used. Results from the Wright test (Wright, 2000) for the daily return series 

in Table 80 provide mixed evidence of whether the series are identically and independently 

distributed. All series (indeed from the population of securities examined) have some lags 

that are statistically significant and others that are not. The ALSI appears to not follow a 

random walk for lower lags, yet becomes a randomly generated series at higher lags.  

Table 80 – Wright test on daily returns  

BIL R 1 R 2 S 1  NPN R 1 R 2 S 1 

k=2 0.9703 1.1769 1.1653 k=2 4.4304*** 5.0889*** 5.4981*** 

k=5 -1.1089 -1.0571 0.8238 k=5 2.1352** 2.4871** 5.2645*** 

k=10 -2.5023** -3.0621*** 0.4885 k=10 0.9546 1.246 5.0798*** 

 

MTN R 1 R 2 S 1 AGL R 1 R 2 S 1 

k=2 2.4868** 3.2687*** 1.6136* k=2 3.8024*** 3.6054*** 3.496*** 

k=5 0.1109 0.6225 1.9149* k=5 2.2982** 2.088** 2.9296*** 

k=10 -1.3267 -1.171 2.347** k=10 -0.0492 -0.3076 1.0195 

 

SOL R 1 R 2 S 1 J200 R 1 R 2 S 1 

k=2 4.9494*** 4.9959*** 3.8546*** k=2 3.7386*** 3.7625*** 4.1833*** 

k=5 0.8977 0.8344 1.9585** k=5 1.697* 1.4468 3.4315*** 

k=10 -1.5297 -1.5512 0.8691 k=10 0.1868 -0.3184 3.0461*** 

 

FSR R 1 R 2 S 1 WBO R 1 R 2 S 1 

k=2 2.3786** 3.2079*** 1.9721** k=2 4.1177*** 4.3166*** 11.8029*** 

k=5 -0.4105 -0.1823 1.042 k=5 4.6183*** 4.3087*** 18.1939*** 

k=10 -2.0241** -2.0241** 0.3735 k=10 4.0851*** 3.4396*** 23.6257*** 
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SAB R 1 R 2 S 1 ALSI R 1 R 2 S 1 

k=2 0.5856 1.2056 0.747 k=2 4.3878*** 4.4929*** 4.0638*** 

k=5 -1.3569 -1.5002 0.1473 k=5 2.5** 2.3815** 3.5079*** 

k=10 -1.7494* -2.0011** 0.6142 k=10 1.0381 0.6781 3.4957*** 
Note: * denotes a 10% level of significance, ** denotes a 5% level of significance and *** denotes a 1% level 

of significance 

 

 

The results from the weekly return data (Table 81) show a similar trend of mixed 

conclusions. One share, SOL, shows significant test statistics at all lag levels, whereas other 

shares show no significance at any lag level. Two shareas, AGL and INP, are randomly 

generated as they have no significant lags. In particular, the ALSI only shows significant S1 

statistics, indicating that the distribution of positive and negative values deviates from a 

Gaussian distribution. There are 28 securities that have a random distribution according to the 

Wright test, and these seem to be concentrated in the financials, healthcare and industrials 

sectors. These align to the intuition behind the Wright test – that a longer sample interval 

should portray a greater variance, implying more chance of randomness.  

 

Table 81 - Wright test on weekly returns  

BIL R 1 R 2 S 1  NPN R 1 R 2 S 1 

k=2 -2.0676* -3.1129*** -0.735 k=2 -0.3292 -0.2493 0.8018 

k=5 -1.9639* -2.5353** -0.6465 k=5 0.5336 0.7231 2.0128** 

k=10 -1.7012 -1.9373* -0.661 k=10 0.5826 0.6368 1.6029 

 

MTN R 1 R 2 S 1 AGL R 1 R 2 S 1 

k=2 -2.3533** -2.5426** -1.6704 k=2 -0.6004 -1.0219 0.6013 

k=5 -1.7911* -1.663 -1.2077 k=5 -1.1083 -1.3166 -0.1342 

k=10 -1.3556 -1.1296 -1.1201 k=10 -0.724 -0.9005 0.186 

 

SOL R 1 R 2 S 1 J200 R 1 R 2 S 1 

k=2 -3.4887*** -3.3531*** -3.608*** k=2 -0.088 -0.382 1.4031 

k=5 -2.998*** -2.7942*** -2.6227*** k=5 -0.4902 -0.5097 1.72* 

k=10 -2.8997*** -2.7633*** -1.5277 k=10 -0.3209 -0.2582 1.8879* 

 

FSR R 1 R 2 S 1 INP R 1 R 2 S 1 

k=2 -2.1948** -2.3394** 0.3341 k=2 -0.015 -0.5246 1.0022 

k=5 -2.4159** -2.3513** -0.0854 k=5 -1.08 -1.5261 0.1098 

k=10 -2.0651** -2.173** 0.0198 k=10 -0.6852 -1.0845 0.4354 

 

SAB R 1 R 2 S 1 ALSI R 1 R 2 S 1 
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k=2 -1.5748 -1.7602* 0.1336 k=2 0.615 0.3154 2.3385** 

k=5 -2.2639** -2.233** -0.1342 k=5 0.3397 0.2709 2.33** 

k=10 -1.617 -1.6787 0.4551 k=10 0.4748 0.4359 3.1148*** 
Note: * denotes a 10% level of significance, ** denotes a 5% level of significance and *** denotes a 1% level 

of significance 

 

 

Lastly, the monthly returns data (Table 82) show that few of the shares show any significant 

statistics in not being randomly generated series. In particular, the ALSI has one significant 

S1 statistic at a lag of 10. This by itself is not enough evidence to conclude that the ALSI is 

not randomly generated. From the population of 50 securities, most of the randomly 

generated series are from the financials and consumer goods sectors.  

 

 
Table 82 - Wright test on monthly returns  

BIL R 1 R 2 S 1  NPN R 1 R 2 S 1 

k=2 -1.7834 -1.702 -0.2787 k=2 1.0758 1.3344 0.9754 

k=5 -1.0599 -0.8763 0.7887 k=5 -0.6353 -0.4634 0.4834 

k=10 -1.2232 -1.0787 0.6108 k=10 -0.6539 -0.4876 1.1226 

 

MTN R 1 R 2 S 1 AGL R 1 R 2 S 1 

k=2 1.517* 1.5697* 0.418 k=2 -0.8 -0.3054 -0.8361 

k=5 1.6108* 1.589* 1.4501 k=5 -0.6667 -0.0552 -0.1272 

k=10 0.8962 1.0552 1.2959 k=10 -0.8175 -0.4713 0.0743 

 

SOL R 1 R 2 S 1 J200 R 1 R 2 S 1 

k=2 -1.9726* -1.8627* -2.0902** k=2 -1.0258 -0.888 3.7624*** 

k=5 -0.6955 -0.4218 -0.229 k=5 -1.0513 -0.7697 6.5892*** 

k=10 -0.3767 -0.1709 -0.0083 k=10 -1.0637 -0.9702 8.6091*** 

 

FSR R 1 R 2 S 1 OCE R 1 R 2 S 1 

k=2 -1.2322 -1.4995 0.6967 k=2 0.1627 0.4787 0.1393 

k=5 -0.9655 -1.3903 0.9413 k=5 -1.0146 -0.963 0.4325 

k=10 -0.7091 -1.2945 1.3702 k=10 -0.7551 -0.6361 0.9822 

 

SAB R 1 R 2 S 1 ALSI R 1 R 2 S 1 

k=2 -1.0325 -1.0739 1.1148 k=2 -0.5511 -0.4369 0.6967 

k=5 -1.4111 -1.5371 2.5696** k=5 -0.6392 -0.478 0.7378 

k=10 -0.7535 -0.9524 4.2096*** k=10 -0.6058 -0.6118 1.7499* 
Note: * denotes a 10% level of significance, ** denotes a 5% level of significance and *** denotes a 1% level 

of significance 
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Therefore, according to the Wright test, there is no discernible conclusion that can be reached 

about the shares in general, which in the strictest sense leads one to fail to reject the null 

hypothesis of a randomly generated series. Under quarterly data, only two securities (IMP 

and GND) were non-random. These two were also non-random for the higher frequencies 

(daily, weekly and monthly). However, under semi-annual data, no security was non-

randomly generated. In particular, the daily and weekly ALSI show weak evidence of 

departures from the independence and identically distributed assumption (with the daily 

results being a somewhat stronger rejection of random walk behaviour than the weekly 

results), while the monthly ALSI has no evidence to show it deviates from a randomly 

generated series. As such, a test for multiple variances is now employed with the aim of 

providing clearer results. 

 

4.5.1.3 Chow Denning test 

The Chow Denning test (Chow and Denning, 1993) for multiple variances is employed, in 

which the null hypothesis is that the series follows a random walk. The CD2 test statistic is 

also provided as a heteroscedasticity-robust version of the CD1 statistic. Therefore, one can 

reject the null hypothesis of a random walk if both versions of the test statistic are significant. 

 

Using daily returns (Table 83), one of the returns series, SHF has insignificant test statistics, 

implying that the series follow a random walk. The remaining return series, have significant 

values of either the CD1 or CD2 statistic, indicative non-random behaviour. In the example 

of MTN and SAB, the CD2 statistic is not significant at the 5% level, implying that while 

non-random behaviour might be present, it is quite likely "masked" by multiple variances as 

the CD1 statistic implied non-random behaviour, but when controlling for multiple variances, 

no significant evidence of non-random behaviour was found. A contrasting result to the Runs 

test is found with HYP - it was found to not be randomly generated under the Runs test yet 

was found to be randomly generated under the Chow Denning test. Applying the same logic 

used in the case of MTN, the conflicting results are most likely due to the presence of 

multiple variances. Examining all 50 securities, only six are randomly generated with no 

particular sector pattern emerging.  



 184 

Table 83 – Chow Denning test on daily returns 

Share Code CD1 CD2 

BIL 3.799*** 2.5526** 

MTN 3.083*** 1.7195 

SOL 4.1877*** 2.535** 

FSR 4.0026*** 2.9092** 

SAB 2.5954** 1.8282 

NPN 5.3459*** 3.3411*** 

AGL 2.8803** 1.8526 

J200 3.1154*** 1.7223 

SHF 0.6658 0.4059 

ALSI 4.0791*** 2.2615* 
Note: * denotes a 10% level of significance, ** denotes a 5% level of significance and *** denotes a 1% level 

of significance 

 

The Chow Denning test is now run on weekly returns and is shown in Table 84 below. Only 

two equity series, BIL and SOL, have significant test statistics at the 5% level, implying a 

rejection of random walk behaviour. The remaining series, including the ALSI, appear to 

follow a random walk. Similar to the case when daily returns were used, MTN and in this 

example, FSR, appear to have non-random behaviour but this is masked by multiple 

variances. Of the population of securities, 39 are randomly generated, mostly from the 

financials, healthcare and industrials sectors. The results of the ALSI thus far correlate to 

those of the Runs test in that the daily series was found to not be randomly generated in 

contrast to the weekly series.  

 
Table 84 - Chow Denning test on weekly returns 

Share Code CD1 CD2 

BIL 4.482*** 2.676** 

MTN 2.8216** 1.9156 

SOL 3.5039*** 2.465** 

FSR 2.8641** 1.5216 

SAB 2.359* 1.7845 

NPN 1.0138 0.7086 

AGL 1.8433 1.3347 

J200 1.393 0.8941 

SHF 3.1031*** 1.7764 

ALSI 0.5369 0.3501 
Note: * denotes a 10% level of significance, ** denotes a 5% level of significance and *** denotes a 1% level 

of significance 
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Using monthly returns (Table 85), all of the series do exhibit random walk behaviour under 

the CD2 statistic. Again, in the example of the ALSI, this is in line with the findings of the 

Runs test.This pattern is also found in the population of 50 securites – only three are non-

random (PIK and TFG from consumer services and GND from industrials).  Their non-

random distributions could be due to low liquidity of the shares.  

 
Table 85 - Chow Denning test on monthly returns 

Share Code CD1 CD2 

BIL 1.6928 1.4282 

MTN 1.8515 1.1523 

SOL 1.5421 1.1219 

FSR 2.1371* 1.6069 

SAB 1.3548 1.132 

NPN 1.5917 1.2155 

AGL 0.273 0.253 

J200 0.9148 0.8647 

SHF 1.0325 0.79 

ALSI 0.6482 0.5468 
Note: * denotes a 10% level of significance, ** denotes a 5% level of significance and *** denotes a 1% level 

of significance 

 

Under quarterly data, eight securities are non-randomly generated, with three under semi-

annual data. No particular share is non-randomly generated under all frequencies, along with 

no discernible industry that stands out. In summary, according to the Chow Denning test for 

multiple variances, the results did correlate to the Runs test in most instances. In particular, 

the ALSI did not follow a random walk under daily data, but did follow a random walk under 

weekly and monthly data. 

 

 

4.5.1.4 Variance decomposition plots 

Figure 19 and Figure 20 below shows the variance ratios over time of the daily returns series. 

The variance ratio for BIL becomes significant at higher lags, indicating possible long term 

memory. In contrast, the variance ratio for MTN, SOL, FSR, NPN, AGL, the J200 and the 

ALSI have significant ratios at lower lags, indicating possible short term memory. Extending 

the analysis to the 50 securities, the majority (41) are non-random. The evidence therefore 

implies that the ALSI is not weak form efficient when considering daily returns data in the 

short term. This is in line with the results from the Runs test and variance ratio test. 
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BIL 
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SOL 

 
FSR 

 
SAB  

NPN 
Figure 19 - Graphical representation of variance ratio for daily returns (1) 
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AGL 
 

J200 
 

ALSI 
Figure 20 - Graphical representation of variance ratio for daily returns (2) 

 

Figure 21 and Figure 22 below shows the variance decomposition of the weekly returns over 

time. Four return series, BIL, SOL, FSR and SAB, exhibit significant variance ratios, 

implying some form of memory exists in these weekly series. The remaining equities 

however, including the ALSI, do not display any significant memory characteristics. Indeed, 

only 23 securities display evidence of non-random behaviour across all industries. The 

evidence therefore implies that the ALSI is weak form efficient when considering weekly 

returns data, in line with results of previous tests. A possible reason for the ALSI being weak 

form inefficient under daily data and efficient under weekly data could lie in the speed of 

adjustment of stock prices to new information. On a daily basis, perhaps investors do not 

incorporate all information into stock prices, yet by the end of a week that information is 

priced into the stock. 
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MTN 

 
SOL  
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SAB   

NPN 
Figure 21 - Graphical representation of variance ratios for weekly returns (1) 
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AGL 

 
J200 

 

ALSI 
Figure 22 - Graphical representation of variance ratios for weekly returns (2) 

 

Figure 23 and Figure 24 below shows the variance decomposition of the monthly returns over 

time. Apart from one share (FSR), none of the other 49 securities display evidence of 

memory; the results are not statistically significantly different from random walk behaviour. 

The evidence therefore implies that the ALSI is weak form efficient when considering 

monthly returns data. This corroborates the weekly data test results and is in contrast to the 

daily data test results. The same line of reasoning in explaining why the weekly ALSI returns 

follow a random walk can be applied here.  
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NPN 

Figure 23 - Graphical representation of variance ratios for monthly returns (1) 
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AGL  

J200 
 

 

ALSI 
Figure 24 - Graphical representation of variance ratios for monthly returns (2) 

 

There are two securities (IMP and GND) that are non-random under quarterly data and none 

that are non-random under semi-annual data. Therefore, according to the visual evidence of 

the variance decomposition over time, the daily ALSI return series shows some (weak) 

element of predictability, but the weekly and monthly return series appears to behave like a 

random walk. This implies that investors do not fully incorporate all information into daily 

prices, but only in weekly and monthly prices. Further, it is quite possible (yet remains to be 

tested), whether an investor can earn abnormal profits on a daily portfolio strategy.  
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As a preliminary and basic test of market efficiency, a simple technical analysis rule (that of 

moving averages) was applied to the daily ALSI return series. Briefly, if an x-day moving 

average rule were to earn an investor profits after costs have been taken into account, then it 

points towards market inefficiency, particularly against the notion of share price behaviour 

following a random walk. While the results are not presented in detail here, the results 

showed that an investor would earn 4.2306% before costs on a 50 day moving average rule, 

5.9636% before costs on a 150 day moving average rule and 7.5150% before costs on a 200 

day moving average rule. Once costs have been taken into account, these returns decrease 

significantly, to the point of being negative. Thus, in the simplest scenario of practically 

testing whether markets are efficient according to the EMH, one finds in favour of the weak 

form of market efficiency. However, as argued in Chapter 2, given the multitude of trading 

rules available, one cannot reject or fail to reject the EMH unless one comprehensively tests 

all possible trading rules in existence. By conducting a simple moving average test using 

popular trading windows, this thesis found that the ALSI is weak form efficient. However, 

this result could be by pure chance and thus more robust statistical methods are required. 

 

 

4.5.1.5 Hurst exponent test 

The Hurst Exponent is further used to test for randomness in the data series. The results of the 

Peng method28 in calculating the Hurst exponent are shown in Figure 25 and Figure 26 

below. The corresponding 95% confidence interval for the Hurst exponent is in the range 

(0.4429, 0.5515). In other words, for a series to be classified as a random walk, the Hurst 

exponent should be in the range specified. The results from Figure 36 below show that BIL 

and SOL exhibit mean reversion, whereas the remaining series, including the daily ALSI 

return series, follows a random walk. Indeed, the results of the ALSI Hurst exponent are 

robust across all confidence intervals. This result is contradictory to the Runs test, yet can be 

explained by the method of sampling used in each - the Hurst exponent uses a rolling window 

approach to calculate the test statistic whereas the Runs test does not. Hence, the accuracy of 

the Hurst exponent can be considered superior to that of prior tests. In total, there are 8 

securities that are non-random, specifically they are mean-reverting according to the Hurst 

exponent and span across sectors. The low number of non-randomly generated securities 

                                                 
28 Recall that according to Taqqu et al. (1995), the Peng estimator should be used for series with 4000 to 7000 
data points. 
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point is intuitive, as one would not expect patterns to emerge from high frequency data that 

can be realistically capitalised upon by an investor.  

 

 
BIL 

 
MTN 

 
SOL  

FSR 
Figure 25 - Hurst Exponent (Peng method) for daily returns (1) 
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Figure 26 - Hurst Exponent (Peng method) for daily returns (2) 
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When examining the results of weekly returns via the Hurst exponent29, shown in Figure 27 

and Figure 28 below, the corresponding 95% confidence interval is (0.2027, 0.7630). It is 

found that all of the series below follow a random walk. Some of these results are in line with 

prior tests (including the R/S method), however, others are contradictory. Given the wide 

confidence intervals, none of the 50 securities are non-random. However, this is possibly due 

to the confidence intervals of the Whittle method. In particular, the ALSI has the same 

conclusion of following a random walk under both daily and weekly data.  

 
BIL (H = 0.4190) 

 
MTN (H = 0.4594) 

 
SOL (H =  0.4301) 

 
FSR (H = 0.4234) 

Figure 27 - Hurst Exponent (Whittle Estimator) for weekly returns (1) 

                                                 
29 Recall that according to Taqqu et al. (1995), the Whittle Estimate should be used for series with 700 to 1000 
data points.  
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SAB (H = 0.4383) 

 
NPN (H = 0.5084) 

 
AGL (H = 0.4600) 

 
J200 (H = 0.4763) 

 
FPT (H=0.4154) ALSI (H = 0.4950) 

Figure 28 - Hurst Exponent (Whittle Estimator) for weekly returns (2) 
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When examining the Hurst exponent according to monthly data, the corresponding 95% 

confidence interval is (0.4503, 0.6405). According to Figure 29 and Figure 30 below30, only 

four series, MTN, SOL, FSR, the J200 and the ALSI show signs of memory. Indeed, 22 

securities of the 50 studied are non-random, with the indices and financial shares being mean-

reverting and the remaining not. The mean-reversion property of the indices and shares 

implies a level of sophistication in the traders of those securities. By perhaps following 

technical analysis, there are cyclical profits to be obtained, as there is a tendency of the share 

to oscillate between the minimum and maximum resistance levels. These financial shares also 

had non-linear distributions under the BDS test, which is supportive evidence of the results 

from the Hurst exponent. The results of the ALSI are in contrast to those found in previous 

tests but are robust across all confidence intervals. In other words, the monthly returns of the 

ALSI do not follow a random walk, but rather show signs of short term memory. Again, this 

is contradictory to some of the prior test results and is reconciled in the summary section of 

this chapter.  

 

 

 

 

 

                                                 
30 Recall that according to Rea et al. (1995), the R/S method should be used for series with less than 700 data 
points. 
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BIL MTN 

SOL FSR 

Figure 29 - Hurst Exponent (R/S method) for monthly returns (1) 
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ALSI 
Figure 30 - Hurst Exponent (R/S method) for monthly returns (2) 
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Under quarterly and semi-annual data, there are 39 and 38 securities respectively that are 

non-random. Shares that are part of the healthcare, mining along with the indices tend to be 

persistent (not mean-reverting). There was only one share, MMI, that was mean reverting 

under both quarterly and semi-annual frequencies. The remaining shares that were non-

random under one frequency did not follow the same conclusion under the lower frequency. 

In other words, the financial shares that were mean reverting under monthly data, were also 

mean reverting under quarterly data, but then found to be randomly generated under semi-

annual data. This implies that the degree of mean-reversion decreased as the frequency 

lowered. This is intuitive as these shares have all seen significant increases in price over time, 

implying an increasing mean price as oppose to a constant mean price. Therefore, according 

to the Hurst exponent, the monthly return series exhibits mean reversion like behaviour, but 

the daily and weekly return series do not. This implies that the ALSI is weak form efficient if 

one examines daily or weekly data, but weak form inefficient if one examines monthly data. 

 

 

4.5.2 ALSI Sub-sample results 

4.5.2.1 Runs test 

The Runs test is a simple, non-parametric means of assessing whether a series is randomly 

generated or not. It can be considered a precursor to the Hurst exponent, tested later in this 

sub-section. The results of the Runs test for the sub-sample returns data is shown in Table 86 

below. The null hypothesis of randomness in the data is rejected if the p-value is statistically 

significant. The results are quite interesting as they show that all but three of the sub-samples 

(sub-samples 1, 2 and 4) exhibit randomness as all p-values are above the 5% level of 

statistical significance. As the daily returns were found to not be randomly generated 

according to the Runs test, the sub-sample results point towards the daily series being 

comprised of both random and non-random components.   
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Table 86 - Runs test result for each sub-sample 

Sub-sample Test Statistic P-value 

#1 -3.0271 0.00*** 

#2 -2.1757 0.03** 

#3 -0.8533 0.39 

#4 -1.9865 0.05** 

#5 0.7568 0.45 

#6 -0.2838 0.78 

#7 -0.7568 0.45 

#8 -0.3784 0.71 

#9 1.0406 0.30 

#10 0.0000 1.00 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

4.5.2.2 Wright test 

Results from the Wright test (Wright, 2000) for each sub-sample are displayed in Table 87. 

Most sub-samples have insignificant test statistics, implying that the particular sub-sample 

does follow a random walk. The exceptions are the first four sub-samples, as one of the R1, 

R2 or S1 statistic is significant at a lower lag but becomes insignificant at higher lags. This 

implication reveals that all of the sub-samples can be concluded to follow a random walk, in 

contrast with the daily ALSI return series result. 

 

Table 87 - Wright results for each sub-sample 

#1 R 1 R 2 S 1  #6 R 1 R 2 S 1 

k=2 4.0674*** 3.6529*** 3.3072*** k=2 0.2495 0.146 1.3229 
k=5 3.2903*** 3.1032*** 2.2945** k=5 -0.8264 -0.8667 1.6734* 

k=10 2.4745** 2.3165** 1.6008 k=10 -1.6553 -1.6943 1.8751* 

  

#2 R 1 R 2 S 1 #7 R 1 R 2 S 1 

k=2 3.3194*** 3.0144*** 3.4017*** k=2 0.7302 0.9501 1.0394 
k=5 3.4264*** 3.0489*** 3.2261*** k=5 -0.4752 -0.4974 0.6728 

k=10 2.6882*** 2.2941** 3.2799*** k=10 -0.7021 -0.9474 -0.0112 

  

#3 R 1 R 2 S 1 #8 R 1 R 2 S 1 

k=2 2.723*** 2.7636*** 0.8504 k=2 -0.1658 -0.1348 0.4725 
k=5 2.016** 2.3592** 0.3968 k=5 -0.9682 -0.9393 0.8108 

k=10 1.0638 1.6888* -0.2239 k=10 -1.0175 -1.1426 1.0523 

  



 202 

#4 R 1 R 2 S 1 #9 R 1 R 2 S 1 

k=2 2.4645** 2.3931** 1.5119 k=2 -0.3477 0.1141 -0.5669 
k=5 1.3569 1.3448 0.4658 k=5 -1.011 -0.9422 -0.6728 
k=10 0.4329 0.2149 -0.1287 k=10 -1.4951 -1.6032 -0.347 

  

#5 R 1 R 2 S 1 #10 R 1 R 2 S 1 

k=2 -0.6925 -0.787 0.6614 k=2 -0.6417 -1.0796 0.6614 
k=5 -0.3433 -0.3526 1.4319 k=5 -1.2155 -1.2327 0.0863 

k=10 -0.1623 -0.2579 2.9497*** k=10 -1.3202 -1.2418 0.1007 
Note: * denotes a 10% level of significance, ** denotes a 5% level of significance and *** denotes a 1% level 

of significance 

 

4.5.2.3 Chow Denning test 

The Chow Denning test (Chow and Denning, 1993) for multiple variances is employed, in 

which the null hypothesis is that the series follows a random walk. The results are shown in 

Table 88 below. The null hypothesis is not rejected for all sub-samples at the 5% level, 

implying that these sub-samples have returns that are randomly generated. This result is 

contradictory to the one found using the daily ALSI returns series.  

 

Table 88 - Chow Denning results for each sub-sample 

Share Code CD1 CD2 

#1 2.5808** 1.3105 

#2 2.3256* 1.4594 

#3 2.6034** 2.1088 

#4 2.1761* 2.3419* 

#5 0.6377 0.6546 

#6 1.5309 1.0297 

#7 1.1344 0.9791 

#8 1.2552 1.0401 

#9 1.7577 1.3959 

#10 1.2122 1.0887 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

 

4.5.2.4 Variance decomposition plots 

Figure 31 and Figure 32 below shows the variance decomposition over time. In sub-samples 

1, 2, 3 and 4 there is some evidence of significant variance ratios. However, this does not 



 203 

remain so as the lags increase. The remaining sub-samples have insignificant variance ratios, 

implying that returns cannot be forecasted in these sub-samples.  

#1 #2 

 

 
#3 

 
#4 

Figure 31 - Graphical representation of variance ratios of each sub-sample (1) 
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#7 

 

 
#8 

 

 

#9 #10 

 

Figure 32 - Graphical representation of variance ratios of each sub-sample (2) 
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Therefore, according to visual evidence of the variance decomposition over time for each 

sub-sample, only four out of the ten shows evidence of predictability, albeit the evidence is 

weak.  In comparison to the overall daily sample result, in that there is initial short term 

memory that fades at longer lags, the tests on each sub-sample provide a supportive result - 

the first four sub-samples had instances of non-random behaviour at lower lags.  

  

 

4.5.2.5 Hurst exponent test 

The Hurst exponent test was run on each of the ten sub-samples using the R/S method. Figure 

33 below shows the result for the first four sub-samples. The null hypothesis of the test is that 

the exponent is equal to 0.5 (the series follows a random walk), under a 95% confidence 

interval of (0.4503, 0.6405). From the figure below, it can be concluded that the third sub-

sample exhibits long term memory, with the remaining exhibiting random behaviour. The 

results presented are significant at the 5% level.  

 

 

 

 

 

 

 

 

 



 206 

 

#1   

#2  

 

#3   

#4  

Figure 33 - Hurst exponents for the first set of four sub-samples 

 

Figure 34 below shows the result for the second set of four sub-samples. The null hypothesis 

of the test is that the exponent is equal to 0.5 (the series follows a random walk). From the 

figure below, it can be concluded that the second set of four sub-samples all exhibit random 

behaviour. The results presented are significant at the 5% level.  
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#5  

 

#6  

  

 

#7 #8  

Figure 34 - Hurst exponents for the second set of four sub-samples 

 

Figure 35 below shows the result for the last set of sub-samples. The null hypothesis of the 

test is that the exponent is equal to 0.5 (the series follows a random walk). From the figure 

below, it can be concluded that both exhibit random walk behaviour. The results presented 

are significant at the 5% level.  
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#9  #10  

Figure 35 - Hurst exponents for the last set of sub-samples 

 

 

Therefore, according to the Hurst exponent, the majority (nine) of the samples follow a 

random walk, with one sub-sample exhibiting non-random behaviour. The results are 

somewhat contradictory to that of the overall daily returns sample in that the daily ALSI was 

found to follow a random walk under the Hurst exponent. The contradictory results show that 

one can have non-random sequences of data in a series that is randomly generated.   

 

 

4.5.3 Summary of results for the test of random walk behaviour 

By investigation of the distributional properties of the daily, weekly and monthly ALSI share 

return series, it was found that: all three return series are non-normal, stationary and non-

linear. These results provided a backdrop to investigate the random walk hypothesis on the 

equity market in South Africa. According to various parametric, non-parametric and 

graphical approaches used, one could build up a foundation on which to evaluate the 

accuracy of each test. By testing the weak form of the EMH using the Chow and Denning 

(1993) multiple variance ratio test, it was found that the daily return series is not randomly 

generated whereas the weekly and monthly return series are randomly generated.  

 

 

However, by testing the weak form of the EMH using the Hurst exponent, it was concluded 

that the daily ALSI return series does follow a random walk, whereas the weekly and 
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monthly return series do not follow a random walk. While the Chow and Denning (1993) test 

does consider multiple variances, it still does not consider aspects from the non-parametric 

variance ratio test of Wright (2000), namely signs and ranks. Thus, one can rely more on the 

Hurst exponent due to its rolling sample approach and non-parametric nature.  

 

 

The results from the Hurst exponent are intuitive as it points towards lower frequency data 

being more "predictable" than higher frequency data and can be explained by the interaction 

of investors and information. As information arrives, it is plausible that this information is not 

assimilated and reflected into share prices immediately. The daily fluctuations of share prices 

could be due to noise, whereas once information is interpreted correctly, investors tend to act 

in accordance, causing some trend to form on the return series. 

 

 

A limitation of the approach used thus far relates to the range of tests available for normality, 

linearity, stationarity and testing the random walk hypothesis. One can easily argue that an 

alternative test should be used instead of those employed here. While reasonable attempts 

were made to provide robust results in the use of both parametric and non-parametric tests, it 

is easily conceivable that a new, more powerful test can be employed. Further, the division of 

the overall sample into equally sized sub-samples were made based on the size of the dataset 

alone. One can argue that this division could be done differently. However, the choice was to 

simply provide an alternative view of the results and can be improved by future research. 

 

 

The increasing amount of attention given to emerging markets behoves researchers to test the 

most basic assumptions taken for granted by global finance academia. There is no intuitive 

reasoning to suspect that share prices in emerging markets, for example, do follow a random 

walk. In particular, many countries in Africa have stock exchanges that are quite young, with 

more exchanges to emerge in the near future. Given the plethora of hypotheses and theories 

in existence, it would be interesting to test these against the backdrop of an emerging 

exchange such as the JSE. A minor link back to literature discussed previously, the results 

thus far do correlate with Alagidede and Panagiotidis (2009) in that the authors find non-

linearity in the daily returns generating process on the JSE. 
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4.6 Modelling the data generating process without additional factors 

Given the results of the previous section, modelling the returns generating process is now 

attempted. Prior to using SETAR models to explain the returns generating process, an attempt 

is made to fit a simple ARIMA model to each of the returns series. This provides a 

foundation on which to base the success of the SETAR model. Further, none of the series 

showed signs of non-stationarity according to the tests performed previously, enabling one to 

proceed to model the returns. Further, due to the small number of observations for quarterly 

and semi-annual data, those results are not discussed here, but presented in the Appendix.  

 

 

4.6.1 ARIMA models 

The summary results of the ARIMA model for each daily return series is shown in Table 89 

below.  All models have an intercept  and the MAPE value is considerably large. In theory, 

the MAPE value has no upper bound. However, for practical purposes, an upper bound of 

100% is imposed. This implies that the closer the MAPE value to 100%, the poorer the fit of 

the model. All of the models are a poor fit according to the MAPE or even the R2 criterion (as 

the R2 is close to zero). An interesting observation emerges in that the majority of models 

have an intercept term, suggesting additional factors that could influence the returns process.  

 

Table 89 - ARIMA for daily returns 

Share code ARIMA 

(p,q,r) 

Intercept R2 (%) MAPE (%) 

BIL 0,0,0 Yes 2.38 100 

MTN 0,0,1 Yes 2.61 100 

SOL 0,0,3 Yes 2.30 100 

FSR 2,0,1 Yes 2.12 100 

SAB 1,0,2 Yes 1.77 100 

NPN 3,0,0 Yes 2.47 100 

AGL 3,0,2 Yes 2.44 100 

J200 3,0,1 Yes 1.39 100 

ALSI 3,0,1 Yes 1.26 100 
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Further, if one were to examine the forecasting ability of these models, the result is quite 

poor. The forecast of the AGL and ALSI models are provided in Figure 36 below.  

 

AGL 

 

ALSI 

Figure 36 - Forecasts of daily returns 

 

The summary results of the ARIMA model for each weekly return series is shown in Table 

90 below.  Similar to the daily results, all models have an intercept and high MAPE. While 

the MAPE and R2 values indicate a poor fit of the data, albeit the RMSE values are higher 

than their daily counterparts. The same observation of significant intercepts also applies in 

the case of the weekly returns series. Given the high MAPE values, forecasting results are not 

presented. 

 

Table 90 - ARIMA models for weekly returns 

Share code ARIMA 

(p,q,r) 

Intercept R2 MAPE 

BIL 0,0,1 Yes 5.22 100 

MTN 0,0,1 Yes 5.98 100 

SOL 2,0,2 Yes 5.24 100 

FSR 0,0,2 Yes 4.82 100 

SAB 0,0,2 Yes 3.91 100 

NPN 3,0,2 Yes 5.77 100 

AGL 0,0,1 Yes 5.47 100 

J200 0,0,0 Yes 3.11 100 

ALSI 0,0,0 Yes 2.88 100 
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The summary results of the ARIMA model for each monthly return series is shown in Table 

91 below.  All models had an intercept and the MAPE value for each model is considerably 

large. Most of the models indicate that an ARIMA form in itself is not suitable as the ARIMA 

terms are all zero. The same observation of significant intercepts also applies in the case of 

the weekly returns series. Given the high MAPE values, forecasting results are not presented. 

 

Table 91 - ARIMA models for monthly returns 

Share code ARIMA 

(p,q,r) 

Intercept R2 MAPE 

BIL 2,0,3 Yes 9.24 100 

MTN 0,0,1 Yes 10.79 100 

SOL 3,0,2 Yes 9.10 100 

FSR 2,0,2 Yes 8.65 100 

SAB 0,0,0 Yes 7.00 100 

NPN 0,0,1 Yes 12.14 100 

AGL 2,0,2 Yes 10.11 100 

J200 2,0,2 Yes 5.97 100 

ALSI 2,0,2 Yes 5.67 100 

 

4.6.2 SETAR Test of linearity 

As expected, a simple ARIMA model does not adequately capture the returns generating 

process of any of the data under investigation. Before attempting to fit a SETAR model to the 

data, the SETAR test is performed to determine if there are multiple regimes in the dataset. 

The SETAR test results for the daily returns data is displayed in Table 92 below.  The first 

test examines a linear AR model against a SETAR model with one threshold (regime) and is 

labelled as "1vs2", whereas the second test examines a linear AR model against a SETAR 

model with two thresholds and is labelled as "1vs3". The results show that a SETAR model 

(either with one or two thresholds) is favoured over a linear AR model. The SETAR 

parameters and their significance will therefore lead to picking either a one or two threshold 

model. If both are found to be significant, the one with more regimes is chosen as this would 

fit the data better. 
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Table 92 - SETAR test for daily returns 

BIL Test Statistic P-value  NPN Test Statistic P-value 

1vs2 69.9117 0.00*** 1vs2 42.1421 0.00*** 

1vs3 112.0303 0.00*** 1vs3 77.1801 0.00*** 

 

MTN Test Statistic P-value AGL Test Statistic P-value 

1vs2 58.9606 0.00*** 1vs2 71.8768 0.00*** 

1vs3 101.9386 0.00*** 1vs3 110.8973 0.00*** 

 

SOL Test Statistic P-value J200 Test Statistic P-value 

1vs2 57.6538 0.00*** 1vs2 45.2868 0.00*** 

1vs3 99.2896 0.00*** 1vs3 80.6688 0.00*** 

 

FSR Test Statistic P-value ILV Test Statistic P-value 

1vs2 33.5100 0.00*** 1vs2 47.7605 0.00*** 

1vs3 62.5522 0.00*** 1vs3 77.8584 0.00*** 

 

SAB Test Statistic P-value ALSI Test Statistic P-value 

1vs2 44.8145 0.00*** 1vs2 44.6253 0.00*** 

1vs3 72.0092 0.00*** 1vs3 86.6647 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

The SETAR test results for the weekly returns data is displayed in Table 93 below.  The 

results show that a SETAR model is favoured over a linear AR model for all of the equities 

returns. However, for MDC and SAB, a single threshold model is favoured as opposed to a 

two threshold model for the remaining series. The SETAR parameters and their significance 

will therefore lead to picking either a one or two threshold model. 
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Table 93 - SETAR test for weekly returns 

BIL Test Statistic P-value  NPN Test Statistic P-value 

1vs2 44.0224 0.00*** 1vs2 62.1547 0.00*** 

1vs3 74.9299 0.00*** 1vs3 112.6071 0.00*** 

 

MTN Test Statistic P-value AGL Test Statistic P-value 

1vs2 38.3828 0.00*** 1vs2 40.0725 0.00*** 

1vs3 76.7992 0.00*** 1vs3 85.2041 0.00*** 

 

SOL Test Statistic P-value J200 Test Statistic P-value 

1vs2 47.7922 0.00*** 1vs2 64.9358 0.00*** 

1vs3 72.8696 0.00*** 1vs3 97.1576 0.00*** 

 

FSR Test Statistic P-value MDC Test Statistic P-value 

1vs2 62.8911 0.00*** 1vs2 35.2596 0.00*** 

1vs3 89.5761 0.00*** 1vs3 55.4638 0.2 

 

SAB Test Statistic P-value ALSI Test Statistic P-value 

1vs2 37.5445 0.00*** 1vs2 64.5103 0.00*** 

1vs3 55.8008 0.4 1vs3 96.8455 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

The SETAR test results for the monthly returns data is displayed in Table 94 below.  The 

results show that a SETAR model (with one threshold) is favoured over a linear AR model 

for BIL and FSR. The results of ILV point toward a linear AR model being preferred over a 

SETAR model. This result is interesting as previously it was shown that an ARIMA model on 

ILV returns was a poor fit. The next possible model to use for ILV returns would be a 

conditional variance (ARCH) model. The remaining four series favour some SETAR model 

over a linear AR counterpart. The SETAR parameters and their significance will therefore 

lead to picking either a one or two threshold model. 
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Table 94 - SETAR test on monthly returns 

BIL Test Statistic P-value  NPN Test Statistic P-value 

1vs2 40.4084 0.00*** 1vs2 59.4276 0.00*** 

1vs3 82.2812 0.2 1vs3 122.6431 0.00*** 

 

MTN Test Statistic P-value AGL Test Statistic P-value 

1vs2 63.0379 0.00*** 1vs2 57.3277 0.00*** 

1vs3 97.8842 0.00*** 1vs3 97.1541 0.00*** 

 

SOL Test Statistic P-value J200 Test Statistic P-value 

1vs2 60.0938 0.00*** 1vs2 73.5673 0.00*** 

1vs3 106.4460 0.00*** 1vs3 129.1300 0.00*** 

 

FSR Test Statistic P-value BGA Test Statistic P-value 

1vs2 53.9565 0.00*** 1vs2 41.4190 0.4 

1vs3 97.5631 0.2 1vs3 67.5253 0.2 

 

SAB Test Statistic P-value ALSI Test Statistic P-value 

1vs2 53.6157 0.00*** 1vs2 81.6789 0.00*** 

1vs3 113.7620 0.00*** 1vs3 126.5855 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

 

 

4.6.3 SETAR model 

Having established that some form of SETAR model is appropriate for all except the monthly 

ILV return series, attempts to model these returns are now made. The SETAR model requires 

a set of starting values and a number of regimes in which to begin the modelling process. 

This selection is done via the R command “selectSETAR”, in which the command conducts a 

grid search over user specified values of gamma and d, along with the number of regimes. 

This input is then used in the SETAR modelling procedure to derive coefficients of the 

SETAR model. An example of the model output using the daily ALSI returns is presented in 

Table 95 below. The output does not contain any significant terms apart from the high regime 

constant, indicating that the SETAR model is a poor fit.  
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Table 95 - SETAR model for daily ALSI returns 

ALSI Estimate Standard Error T-Statistic P-Value 

Constant (low regime) -0.0005 0.0004 -1.2136 0.22 

φ low, 1 0.0004 0.0301 0.0126 0.99 

φ low, 2 0.0180 0.0224 0.8010 0.42 

Constant (high regime) 0.0013 0.0004 3.5537 0.00*** 

φ high, 1 0.0235 0.0295 0.7961 0.43 

φ high, 2 0.0117 0.0202 0.5782 0.56 

Residuals 
Variance 

0.0001596 

 MAPE 100% 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

The number of significant coefficients, significant constants and the MAPE for each model is 

presented in Table 96 below, with the remaining shares presented in the Appendix. In the 

case of the SETAR models under daily returns, it is found that all models have considerably 

high MAPEs, along with few significant coefficients. Indeed, there are cases where the 

intercept terms are significant, indicative of further unknown factors that may play a role in 

explaining that particular return generating process. In contrast, a model with no significant 

coefficients or intercept terms points towards an alternate model form that is required. 

 

 
Table 96 - SETAR model diagnostics for selected shares using daily returns 

Share code Number of 
significant coefficients 

Number of 
significant intercepts 

MAPE 

BIL 1 0 100 

MTN 1 1 100 

SOL 2 2 100 

FSR 2 0 100 

SAB 1 1 100 

NPN 1 2 100 

AGL 2 0 100 

J200 0 2 100 

ALSI 0 1 100 

 

 

The success of the SETAR model using daily returns was found to be ineffective - a plausible 

conclusion given that the daily ALSI return series followed a random walk under the Hurst 

exponent. Attention is now drawn to deriving SETAR models using weekly returns. An 
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example of the model output using weekly ALSI returns is shown in Table 97 below. It is 

again found that the SETAR model is a poor fit as it has a high MAPE along with no 

significant coefficients or intercepts. Similarly, given the random walk conclusion of the 

weekly ALSI return series, the inability of a SETAR model to fit the data is a plausible 

finding. 

 

Table 97 - SETAR model for weekly ALSI returns 

ALSI Estimate Standard Error T-Statistic P-Value 

Constant (low regime) -0.0004 0.0021 -0.18 0.86 

φ low, 1 -0.1036 0.0713 -1.45 0.15 

φ low, 2 0.1102 0.0480 2.30 0.02 

Constant (high regime) 0.0061 0.0019 3.18 0.00 

φ high, 1 -0.0924 0.0673 -1.37 0.17 

φ high, 2 -0.0282 0.0472 -0.60 0.55 

Residuals 
Variance 

0.0008202 

 MAPE 100% 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

The number of significant coefficients, significant constants and the MAPE for each model is 

presented in Table 98 below, with the remaining shares presented in the Appendix. In the 

case of the SETAR models under weekly returns, it is found that all models have 

considerably high MAPEs, along with few significant coefficients. Indeed, there are cases 

where the intercept terms are significant, indicative of further unknown factors that may play 

a role in explaining that particular return generating process. In contrast, a model with no 

significant coefficients or intercept terms points towards an alternate model form that is 

required. 
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Table 98 - SETAR model diagnostics for selected shares using weekly returns 

Share code Number of 
significant coefficients 

Number of 
significant intercepts 

MAPE 

BIL 2 2 100 

MTN 1 1 100 

SOL 1 1 100 

FSR 2 1 100 

SAB 1 1 100 

NPN 1 2 100 

AGL 0 1 100 

J200 2 1 100 

ALSI 1 1 100 

 

The results of the SETAR model using monthly ALSI returns are presented in Table 99 

below. The model does have a significant constant in the high regime , albeit at the 10% level 

of significance. However, given the high MAPE, this model is also not suitable to explain the 

monthly ALSI return generating process. 

 

Table 99 - SETAR model for monthly ALSI returns 

ALSI Estimate Standard Error T-Statistic P-Value 

Constant (low regime) 0.0142 0.0096 1.48 0.14 

φ low, 1 -0.0605 0.1567 -0.39 0.70 

φ low, 2 -0.0574 0.1158 -0.50 0.62 

Constant (high regime) 0.0168 0.0092 1.82 0.07* 

φ high, 1 -0.0631 0.1518 -0.42 0.68 

φ high, 2 0.0429 0.0899 0.48 0.63 

Residuals 
Variance 

0.003205 

 MAPE 100% 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

The number of significant coefficients, significant constants and the MAPE for each model is 

presented in Table 100 below. Also recall that the output for ILV is not available, as the 

SETAR test showed that a regime changing model was not suited to this return series. In the 

case of the SETAR models under monthly returns, it is found that all models have 

considerably high MAPEs, along with few significant coefficients. Indeed, there are cases 

where the intercept terms are significant, indicative of further unknown factors that may play 
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a role in explaining that particular return generating process. In contrast, a model with no 

significant coefficients or intercept terms points towards an alternate model form that is 

required. 

 
Table 100 - SETAR model diagnostics for selected shares using monthly returns 

Share code Number of 
significant coefficients 

Number of 
significant intercepts 

MAPE 

BIL 0 1 100 

MTN 1 0 100 

SOL 0 1 100 

FSR 1 1 100 

SAB 1 1 100 

NPN 1 0 100 

AGL 1 1 100 

J200 1 1 100 

ALSI 0 0 100 

 

The results of the SETAR model using quarterly ALSI returns are presented in Table 101 

below. The model does not have any significant coefficients, perhaps due to either the small 

sample size, or the inability of the model to fit the return generating process. This is 

corroborated by the high MAPE.  

 

Table 101 - SETAR model for quarterly ALSI returns 

ALSI Estimate Standard Error T-Statistic P-Value 

Constant (low regime) 0.0347 0.0339 1.02 0.31 

φ low, 1 -0.0882 0.2749 -0.32 0.75 

φ low, 2 0.1786 0.2364 0.76 0.45 

Constant (high regime) 0.0253 0.0293 0.87 0.39 

φ high, 1 0.1519 0.3030 0.50 0.62 

φ high, 2 -0.1246 0.1525 -0.82 0.42 

Residuals 
Variance 0.007703 MAPE 100% 

Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

The number of significant coefficients, significant constants and the MAPE for each model is 

presented in Table 102 below. While some models do have significant coefficients, four out 

of the ten securities below have no significant coefficients or intercepts. This implies that the 
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return series cannot be modelled by a SETAR specification. Further, the MAPE for each 

model is high, implying a poor fit. Again, the small sample size needs to be considered.  

 
Table 102 - SETAR model diagnostics for selected shares using quarterly returns 

Share code Number of 
significant coefficients 

Number of 
significant intercepts 

MAPE 

BIL 0 2 100 

MTN 0 0 100 

SOL 2 1 100 

FSR 2 1 100 

SAB 0 0 100 

NPN 0 0 100 

AGL 2 1 100 

J200 0 0 100 

ALSI 0 0 100 

 

The results of the SETAR model using semi-annual ALSI returns are presented in Table 103 

below. The model does have a significant constant in the high regime as well as a significant 

coefficient in the low regime. However, given the high MAPE, this model is also not suitable 

to explain the return generating process. 

 

Table 103 - SETAR model for semi-annual ALSI returns 

ALSI Estimate Standard Error T-Statistic P-Value 

Constant (low regime) -0.1295 0.1192 -1.09 0.29 

φ low, 1 -1.2480 0.5962 -2.09 0.05 

φ low, 2 -0.3569 0.4885 -0.73 0.47 

Constant (high regime) 0.1164 0.0510 2.28 0.03 

φ high, 1 -0.1601 0.2992 -0.53 0.60 

φ high, 2 -0.0537 0.1685 -0.32 0.75 

Residuals 
Variance 

0.01023 

 MAPE 100% 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

The number of significant coefficients, significant constants and the MAPE for each model is 

presented in Table 104 below. Again, while the models do have either significant intercepts 

or significant coefficients, the high MAPE implies a poor fit. Here, the issue of sample size is 

particularly important, as there are only 38 observations.  
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Table 104 - SETAR model diagnostics for selected shares using semi-annual returns 

Share code Number of 
significant coefficients 

Number of 
significant intercepts 

MAPE 

BIL 0 1 100 

MTN 1 0 100 

SOL 0 1 100 

FSR 0 0 100 

SAB 1 1 100 

NPN 1 0 100 

AGL 0 0 100 

J200 1 0 100 

ALSI 1 1 100 

 

 

In summary, it was found that all five frequency SETAR models were a poor fit to the data. 

While some models had statistically significant constants, indicating that additional factors 

are required to model the returns generating process. As the SETAR model is an 

improvement on a simple ARIMA model, it is still insufficient to capture the complexities of 

the data used in this study. As such, it is inappropriate for modelling that particular returns 

process, as it is not governed by a dynamic non-linear functional form. Indeed, the results of 

Seetharam and Britten (forthcoming) show that an improvement of the SETAR model, a 

STAR model, does provide a better fit to the data, but there are still significant intercept 

terms. The next improvement to these time series models would be to use a functional form 

that is not specified in advance. All returns series are now evaluated using models that are not 

specified a priori, namely neural networks. 

 

 

4.6.4 Neural network modelling results 

To compare the results of the SETAR model, and to provide a case for the inclusion of 

exogenous variables, a non-linear autoregressive (NAR) neural network model was run. Prior 

to this, a simple feed-forward network was considered, but discarded due to the poor fit of the 

model from a conceptual and empirical standpoint. The NAR model is conceptually similar to 
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a SETAR model, with the advantages of neural network models discussed previously 

(namely the non-specification of a functional form).  

 

 

All of the neural networks in this study are trained in Matlab using the Levenberg-Marquadt 

algorithm and the performance of the network was based on the mean-squared error, with six 

iterations used to determine this performance (and therefore terminate training). This 

algorithm is a more sophisticated version of the non-linear least squares method used in 

regression analysis. The results of the ALSI are discussed in detail, with the result of the 

remaining networks being in the Appendix. The results of the NAR model using daily ALSI 

returns are shown below. The network converged after 15 iterations (Figure 37), with the best 

performance at the 9th iteration. In other words, the network took 15 attempts to model the 

daily ALSI return generating process. While there is no autocorrelation in the residuals 

(Figure 38), the R2 of the network is only 12.23% according to Figure 38. This is an 

improvement over the ARIMA and SETAR models, yet it is still not adequate to use a NAR 

to explain the return process. Conceptually, the higher R2 can be attributed to a function form 

that was not specified a priori. The next evolution of this model would be to include 

exogenous inputs.  

  
Figure 37 - Performance of the NAR network using daily returns 
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Figure 38 - R

2 
of the NAR network using daily returns 

 

 
Figure 39 - Autocorrelation of the error terms of the NAR network using daily returns 

  

Table 105 below provides a summary of the NAR model for the remaining daily series. The 

variability in the hidden nodes parameter points towards some series having more complex 

data generating processes than others. For example, BIL and MTN have the highest number 

of hidden nodes, indicating the most complexity in these return series (recall that Basheer 

(1998) suggests that one hidden layer is sufficient to approximate continuous functions, 

whereas Masters (1994) suggests two hidden layers for discontinuous functions). However, 
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the overall R2 are low, indicating that while the NAR NN is better than the SETAR model, it 

still does not model the returns series well. 

 

Table 105 - NAR model diagnostics for selected shares using daily returns 

Share 

Code 

Iterations Best 

Iteration 

Hidden 

Nodes; Delay 

Parameter 

(h,d) 

Test R2 

(%) 

Overall R2
 

(%) 

Autocorrelation 

in error terms 

BIL 14 8 4,1 29.45 10.92 No 

MTN 15 9 4,1 10.22 10.06 No 

SOL 21 15 2,1 10.33 12.08 No 

FSR 90 84 2,1 14.80 7.01 No 

SAB 34 28 3,1 20.11 10.32  

NPN 12 6 1,1 12.73 9.07  

AGL 10 4 2,1 5.07 5.81  

J200 18 12 3,1 2.05 13.07  

       

ALSI 15 9 2,2 1.38 12.28 No 

 

 

The results of the NAR model using weekly ALSI returns are shown below. The network 

converged after 10 iterations (Figure 40), with the best performance at the fourth iteration. In 

other words, the network took 10 attempts to model the daily ALSI return generating process. 

While there is no autocorrelation in the residuals (Figure 42), the R2 of the network is only 

17.32% according to Figure 41. This is an improvement over the ARIMA and SETAR 

models, yet it is still not adequate to use a NAR to explain the return process. Conceptually, 

the higher R2 can be attributed to a function form that was not specified a priori. The next 

evolution of this model would be to include exogenous inputs. 
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Figure 40 - Performance of the NAR network using weekly returns 

  

 

 
Figure 41 - R

2 
of the NAR network using weekly returns 
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Figure 42 - Autocorrelation of the error terms of the NAR network using weekly returns 

  

Table 106 below provides a summary of the NAR model for the remaining weekly series. In 

contrast to the trend found using daily returns, the number of iterations for the ALSI is 

relatively low compared to some of other series. Further, the complexity of FSR, WBO and 

the ALSI is higher than that of the remaining series as they have the highest number of 

hidden nodes. As with the daily return series, the overall R2 for each share return is still low, 

indicating possible additional factors that could influence returns. 

 

Table 106 - NAR model diagnostics for selected shares using weekly returns 

Share 

Code 

Iterations Best 

Iteration 

Hidden 

Nodes; Delay 

Parameter 

(h,d) 

Test R2 

(%) 

Overall R2 

(%) 

Autocorrelation 

in error terms 

BIL 9 3 1,1 12.36 22.51 No 

MTN 11 5 2.1 5.11 17.16 No 

SOL 8 2 1,1 28.59 16.10 No 

FSR 10 4 3,1 37.44 22.90 No 

SAB 12 6 2,1 14.02 10.92 No 

NPN 19 13 10,1 2.30 30.77 No 

AGL 7 1 2,1 25.21 10.59 No 

J200 9 3 10,1 11.36 27.61 No 

ALSI 10 4 3,1 2.71 17.32 No 

 

 

The results of the NAR model using monthly ALSI returns are shown below. The network 

converged after nine iterations (Figure 43), with the best performance at the third iteration. In 
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other words, the network took nine attempts to model the daily ALSI return generating 

process. While there is no autocorrelation in the residuals (Figure 45), the R2 of the network 

is only 23.87% according to Figure 44. This is an improvement over the ARIMA and SETAR 

models, yet it is still not adequate to use a NAR to explain the return process. Conceptually, 

the higher R2 can be attributed to a function form that was not specified a priori. The next 

evolution of this model would be to include exogenous inputs. 

  

 

 
Figure 43 - Performance of the NAR network using monthly returns 
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Figure 44 - R

2 
of the NAR network using monthly returns 

  

 

 
Figure 45 - Autocorrelation of the error terms of the NAR network using monthly returns 
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Table 107 below provides a summary of the NAR model for the remaining monthly series. 

Similar to the trend found using weekly returns, the number of iterations for the ALSI is 

relatively low compared to other series. Further, the complexity of the ALSI is higher than 

that of the remaining series as it has the highest number of hidden nodes. It is interesting to 

note that the R2 for the monthly series is higher compared to their weekly and daily 

counterparts. This implies that lower frequency data is easier to model that higher frequency 

data. 

 

Table 107 - NAR model diagnostics for selected shares using monthly returns 

Share 

Code 

Iterations Best 

Iteration 

Hidden 

Nodes; 

Delay 

Parameter 

(h,d) 

Test R2 

(%) 

Overall R2 

(%) 

Autocorrelation 

in error terms 

BIL 13 7 2,1 26.71 37.60 No 

MTN 8 2 1,1 31.24 25.98 No 

SOL 7 1 2,1 22.18 22.22 No 

FSR 14 8 2,1 19.19 45.69 No 

SAB 7 1 10,1 19.42 16.71 No 

NPN 8 2 10,1 30.23 33.15 No 

AGL 7 1 2,1 25.21 10.59 No 

J200 9 3 10,1 11.36 27.61 No 

ALSI 9 3 3,1 16.02 22.12 No 

 

 

In summary, using a NAR network to specify the return generating process of the daily, 

weekly and monthly ALSI return series did result in a model that was no better (at times 

poorer) than the SETAR counterparts. The one improvement however was in the monthly 

NAR NN. Previously, a SETAR model was a poor fit to the monthly return data, indicative of 

either an alternate model being required. Thus, the existence of a NAR NN using monthly 

return data does point towards the return process being more complex than the models used 

thus far.  The results of the NAR using quarterly and semi-annual data are not presented here. 
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While the SETAR model is generally good at modelling regime changes, given the data used 

in this study, either the SETAR model is ill-equipped to the data, or the data is too complex to 

be modelled by a simple regime changing model. This avenue of inquiry is explored by 

modelling the return series using artificial intelligence and is discussed later. Given the 

objective of this thesis – to present a case for cyclical efficiency – it is necessary to examine 

the power of the above autoregressive models under a different sampling method. As such, 

the autoregressive models are now presented under the sub-samples of the ALSI.  

 

 

4.6.5 ALSI Sub-sample results 

As the SETAR model methodology effectively first tests for the fit of a linear AR model, for 

each sub-sample, an attempt was made to fit an ARIMA model to the daily return series. The 

summary results of the ARIMA model for each sub-sample return series is shown in Table 

108 below. Both the MAPE and R2
 indicate a poor fit to the data. An interesting observation 

should be noted in that for the latter half of the sub-samples, no ARIMA coefficients or an 

intercept appears to be significant, pointing towards a randomly generated series. There is no 

discernible relationship between a particular sub-sample being found to be randomly (or not 

randomly) generated and the lack of an ARIMA model fit to the data.  

 

Table 108 - ARIMA model for each sub-sample 

Sub-sample ARIMA 

(p,q,r) 

Intercept R2 (%) MAPE (%) 

#1 0,0,2 No 0.00 100 

#2 2,0,2 No 1.13 100 

#3 0,0,1 No 1.26 100 

#4 1,0,2 No 1.04 100 

#5 0,0,0 Yes 0.91 100 

#6 0,0,0 Yes 1.25 100 

#7 0,0,0 No 2.04 100 

#8 0,0,0 No 1.09 100 

#9 0,0,0 Yes 0.92 100 

#10 0,0,0 No 0.84 100 
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The SETAR test results for each sub-sample are displayed in Table 109 below.  The first test 

examines a linear AR model against a SETAR model with one threshold, whereas the second 

test examines a linear AR model against a SETAR model with two thresholds. The results 

show that a SETAR model is favoured over a linear AR model for all sub-samples except that 

of sub-samples 4 and 7. The SETAR parameters and their significance will therefore lead to 

picking either a one or two threshold model, with the exception of the two sub-samples 

mentioned. While sub-sample 4 did have an ARIMA model with lags on both the 

autoregressive and moving average terms, the model was a poor fit. Indeed, sub-sample 7 did 

could not be fit to any ARIMA model. These results, in conjunction with the SETAR tests, 

point towards either volatility models being used or towards a non-specified linear AR model 

being used. 

 

Table 109 - SETAR test on each sub-sample 

#1 Test Statistic P-value  #6 Test Statistic P-value 

1vs2 52.3963 0.00*** 1vs2 49.2332 0.00*** 

1vs3 84.5385 0.00*** 1vs3 83.9205 0.00*** 

 

#2 Test Statistic P-value #7 Test Statistic P-value 

1vs2 52.0156 0.00*** 1vs2 29.3066 0.2 

1vs3 84.1592 0.00*** 1vs3 61.0855 0.2 

 

#3 Test Statistic P-value #8 Test Statistic P-value 

1vs2 26.0985 0.00*** 1vs2 37.6693 0.00*** 

1vs3 60.6853 0.00*** 1vs3 66.9051 0.00*** 

 

#4 Test Statistic P-value #9 Test Statistic P-value 

1vs2 21.3012 0.4 1vs2 43.4419 0.00*** 

1vs3 46.3230 0.6 1vs3 71.8188 0.00*** 

 

#5 Test Statistic P-value #10 Test Statistic P-value 

1vs2 39.4198 0.00*** 1vs2 37.9706 0.00*** 

1vs3 82.7977 0.00*** 1vs3 63.8646 0.00*** 
Note: * denotes a 10% level of statistical significance, ** denotes a 5% level of statistical significance and *** 

denotes a 1% level of statistical significance. 

 

The number of significant coefficients, significant constants and the MAPE for each model is 

presented in Table 110 below. In the case of the SETAR models under daily returns, it is 

found that all models have considerably high MAPEs, along with few significant coefficients. 
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Indeed, there are cases where the intercept terms are significant, indicative of further 

unknown factors that may play a role in explaining that particular return generating process. 

In contrast, a model with no significant coefficients or intercept terms points towards an 

alternate model form that is required. 

 

Table 110 - SETAR model diagnostics for each sub-sample 

Sub-sample Significant coefficients Intercepts MAPE 

#1 2 1 100 

#2 3 1 100 

#3 1 1 100 

#4 N/A N/A N/A 

#5 1 1 100 

#6 2 2 100 

#7 N/A N/A N/A 

#8 0 0 100 

#9 1 0 100 

#10 1 1 100 

 

Table 111 below provides a summary of the NAR model for the sub-samples. The number of 

hidden and delay nodes seems to fluctuate, with the former indicating changing complexity 

and the latter indicating some form of memory. Similarly, the overall R2 seems to fluctuate 

over each sub-sample, but still remains relatively low. This implies that additional factors 

should be considered apart from lagged returns. 
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Table 111 - NAR model diagnostics for each sub-sample 

Sub-
sample 

Time period 
of sample 

Hidden, 
Delay 

Number of 
epochs  

Training R2 

(%) 
Validation R2 

(%) 
Testing R2 

(%) 
Overall R2 

(%) 

#1 Sep 1997 to 
May 1999 

2,2 11 19.99 14.31 2.32 16.32 

#2 May 1999 to 
Feb 2001 

1,1 8 12.39 3.98 27.25 12.17 

#3 Feb 2001 to 
Oct 2002 

1,1 15 10.11 25.49 22.12 14.49 

#4 Oct 2002 to 
Jul 2004 

1,2 10 13.91 13.01 37.13 16.30 

#5 Jul 2004 to 
Mar 2006 

1,1 17 7.26 15.95 9.41 9.72 

#6 Apr 2006 to 
Dec 2007 

2,1 17 22.72 2.31 21.94 18.85 

#7 Dec 2007 to 
Sep 2009 

2,1 11 8.15 19.41 19.22 10.54 

#8 Sep 2009 to 
May 2011 

1,1 13 21.59 7.12 17.48 18.81 

#9 May 2011 to 
Feb 2013 

2,2 9 8.40 7.55 16.52 8.65 

#10 Feb 2013 to 
Oct 2014 

2,2 12 15.66 11.67 3.71 14.03 

 

 

4.6.6 Summary of results for modelling returns without additional factors 

In applying the SETAR model to daily, weekly and monthly returns data, it was found that 

the fit of this family of models differs heavily based on the frequency of data used. The 

monthly SETAR model was the model to have a significant coefficient as well as a 

significant constant. The latter point towards additional factors that need to be included in 

explaining the monthly ALSI returns process.  Applying the SETAR methodology to each 

sub-sample, it was found that two out of the ten sub-samples could not have a SETAR model 

fitted to them (the returns process was not non-linear). The first of these sub-samples was 

found to be randomly generated under the Hurst exponent, which makes the lack of a SETAR 

model fit plausible. The other sub-sample, however, was found to not be randomly generated. 

That finding, in conjunction with the lack of a SETAR model fit, points towards some 

alternate model form that is required.  
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The results support the findings of van Gysen, Huang and Kruger (2013), in that non-linear 

models are more suitable to modelling South Africa equity returns. As stated earlier, the time 

period under examination for SETAR modelling has a heavy influence on the results. This 

time period (and thus the sample size) can be extended to include previous financial 

anomalies (such as the political shift in South Africa during 1992 to 1994). Forecasting can 

also be done via the recursive modelling procedure, which will assist in providing forecasts 

over a longer time horizon.  

 

 

Smith and Dyakova (2014) show that several African markets experience good and poor 

periods of predictability, with the South African market (the JSE) being in the latter group. 

This result, while supportive of those in this thesis, focuses instead on predictability 

compared to explanation, the latter of which is the viewpoint taken in this thesis. The authors 

conclude that this widely varying degree of predictability provides evidence in favour of the 

Adaptive Market Hypothesis of Lo (2004, 2005). It could quite well be the case that a 

SETAR model, modified to include additional (lagged) factors may have better predictive 

ability. Overall, this sub-section has provided some evidence as to the non-linearity of share 

prices in South Africa and the results appear promising for future research.  This sub-section 

has established that a particular non-linear model of daily returns of the ALSI is less than 

adequate in capturing non-linearities present in the data. However, it is believed that a more 

robust model can be used. Specifically, the NAR NN was barely able to obtain a good fit of 

the data, which is perhaps not surprising considering that more than one hidden layer was 

found in the optimal network (multiple hidden layers point towards a discontinuous function 

in the dependent variable). Thus, the proceeding sub-section attempts to model the ALSI 

using both endogenous and exogenous variables, similar to the Arbitrage Pricing Theory 

framework of Ross (1976). 

 

 

4.7 Modelling the data generating process with additional factors 

The NARX network was implemented in MatlabTM and is represented in Figure 46 below. 

The input data are passed to a number of hidden layers, with the output also being passed 

backpropagated. The NARX network therefore allows for information to flow in both 
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directions before reaching the output layer. Also recall that the ALSI dataset (all three 

frequencies) is the only variable used in this section. As such, the results do not relate to any 

of the other shares or equity indices previously analysed.  

 

 

Figure 46 – Representation of the NARX network in Matlab 

 

 

4.7.1 Daily return sample results 

The input data is transformed using the tangens hyperbolicus (tanh) function and passed to 

each layer of the network (in this case, two layers) with possible feedback between the layers 

according the gradient descent method. Recall that this method finds the path of "least 

resistance" in that it selects the steepest descent at each iteration, finding either a minimum or 

infinitely decreasing path. In addition, the Levenberg-Marquadt algorithm is used to provide 

a means of generating the error term. This algorithm is a more sophisticated version of the 

non-linear least squares method used in regression analysis. A summary of the parameters or 

methods of the network are shown in Table 112 below.  

 

Table 112 – Overview of methods used in training the daily NARX network 

Parameter Method or Value 

Training Levenberg-Marquadt algorithm 

Learning Gradient Descent method 

Performance Mean Squared Error criterion 

Number of hidden layers 2 

Number of neurons 2 

Transfer Function Tangens hyperbolicus (tanh) 
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The network was trained using 65% of the sample, validated on 25% and tested on 10% as 

per Looney (1996).  Convergence of the training and validation MSEs were reached after 47 

epochs. In other words, it took 17 attempts for the network to most accurately learn the 

relationship between the dependent and independent variables. The performance of the 

network is shown in Figure 47 below. The network converged after 11 epochs (training 

cycles) as the minimum mean squared error (MSE) was reached at this point. The figure 

below shows that the MSE begins to increase after 17 epochs, thus training was stopped to 

avoid overfitting.  

 

 
Figure 47 - Depiction of MSE over time, using daily ALSI data 

  

The network was able to correctly fit 37% of the data, as given by the overall R2 of the model 

in Figure 48. The training phase had the highest R2 of 38%, followed by the validation phase 

of 37%. This is considerably higher than the SETAR and NAR models and can be attributed 

to both the time series nature of the network along with the additional inputs. Examining the 

autocorrelation of the error terms does not reveal any serial correlation between the error 

terms, which does not cause concern. 
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Figure 48 - Comparison of R
2
 during training, validation and testing phases 

  

 

 

Figure 49 - Autocorrelation function over time  
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4.7.2 Weekly return sample results  

The input data is transformed using the tangens hyperbolicus (tanh) function and passed to 

each layer of the network (in this case, three layers) with possible feedback between the 

layers according the gradient descent method. Recall that this method finds the path of "least 

resistance" in that it selects the steepest descent at each iteration, finding either a minimum or 

infinitely decreasing path. In addition, the Levenberg-Marquadt algorithm is used to provide 

a means of generating the error term. This algorithm is a more sophisticated version of the 

non-linear least squares method used in regression analysis. A summary of the parameters or 

methods of the network are shown in Table 113 below.  

 

Table 113 – Overview of methods used in training the weekly NARX network 

Parameter Method or Value 

Training Levenberg-Marquadt algorithm 

Learning Gradient Descent method 

Performance Mean Squared Error criterion 

Number of hidden layers 3 

Number of neurons 3 

Transfer Function Tangens hyperbolicus (tanh) 

 

The network was trained using 65% of the sample, validated on 25% and tested on 10% as 

per Looney (1996).  Convergence of the training and validation MSEs were reached after five 

epochs. In other words, it took five attempts for the network to most accurately learn the 

relationship between the dependent and independent variables. The performance of the 

network is shown in Figure 50 below. The network converged after five epochs (training 

cycles) as the minimum mean squared error (MSE) was reached at this point. The figure 

below shows that the MSE begins to increase after three epochs, thus training was stopped to 

avoid overfitting.  
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Figure 50 - Depiction of MSE over time, using weekly ALSI data 

 

Examining the fit of the network during each phase of training, testing and validation, one 

finds that the overall fit of the model is 32% (the bottom right quadrant of Figure 51 below). 

This implies that the network was able to correctly explain 32% of weekly returns over the 

sample period, implying that there is a (small) degree of inefficiency in the ALSI. This is 

again seen to be higher than the previous SETAR and NAR models, primarily due to the 

inclusion of additional inputs in explaining the data generating process. 

 
Figure 51 - Comparison of R

2
 during training, validation and testing phases 
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An examination of the autocorrelation coefficients of the error term does not reveal any 

hindrances with the model. Indeed, the errors appear stationary. 

 
Figure 52 - Autocorrelation function over time 

 

 

4.7.3 Monthly return sample results 

The input data is transformed using the tangens hyperbolicus (tanh) function and passed to 

each layer of the network (in this case, two layers) with possible feedback between the layers 

according the gradient descent method. Recall that this method finds the path of "least 

resistance" in that it selects the steepest descent at each iteration, finding either a minimum or 

infinitely decreasing path. In addition, the Levenberg-Marquadt algorithm is used to provide 

a means of generating the error term. This algorithm is a more sophisticated version of the 

non-linear least squares method used in regression analysis. A summary of the parameters or 

methods of the network are shown in Table 114 below.  

 

Table 114 – Overview of methods used in training the monthly NARX network 

Parameter Method or Value 

Training Levenberg-Marquadt algorithm 

Learning Gradient Descent method 

Performance Mean Squared Error criterion 

Number of hidden layers 2 

Number of neurons 2 

Transfer Function Tangens hyperbolicus (tanh) 
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The network was trained using 65% of the sample, validated on 25% and tested on 10% as 

per Looney (1996).  Convergence of the training and validation MSEs were reached after six 

epochs. In other words, it took 11 attempts for the network to most accurately learn the 

relationship between the dependent and independent variables. The performance of the 

network is shown in Figure 53 below. The network converged after six epochs (training 

cycles) as the minimum mean squared error (MSE) was reached at this point. The figure 

below shows that the MSE begins to increase after six epochs, thus training was stopped to 

avoid overfitting.  

 

 
Figure 53 - Depiction of MSE over time, using monthly ALSI data 

 

Examining the fit of the network during each phase of training, testing and validation, one 

finds that the overall fit of the model is 47% (the bottom right quadrant of Figure 54 below). 

This figure implies that the network was able to correctly explain 47% of daily returns over 

the sample period, implying that there is a degree of inefficiency in the ALSI. As was the 

case with the daily and weekly frequency data, the monthly data used in the NARX network 

provided a higher goodness of fit compared to the SETAR and NAR models.  
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Figure 54 - Comparison of R

2
 during training, validation and testing phases 

 

An examination of the autocorrelation coefficients of the error term does not reveal any 

hindrances with the model. Indeed, the errors appear stationary. 

 

 
Figure 55 - Autocorrelation function over time 
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4.7.4 Quarterly return sample results 

A summary of the parameters or methods of the network are shown in Table 115 below. The 

final network had two hidden layers as well as two neurons.   

 

Table 115 – Overview of methods used in training the quarterly NARX network 

Parameter Method or Value 

Training Levenberg-Marquadt algorithm 

Learning Gradient Descent method 

Performance Mean Squared Error criterion 

Number of hidden layers 2 

Number of neurons 2 

Transfer Function Tangens hyperbolicus (tanh) 

 

The network was trained using 65% of the sample, validated on 25% and tested on 10% as 

per Looney (1996).  Convergence of the training and validation MSEs were reached after two 

epochs. In other words, it took eight attempts for the network to most accurately learn the 

relationship between the dependent and independent variables. The performance of the 

network is shown in Figure 56 below. The network converged after two epochs (training 

cycles) as the minimum mean squared error (MSE) was reached at this point. The figure 

below shows that the MSE begins to increase after two epochs, thus training was stopped to 

avoid overfitting.  

 

 
Figure 56 - Depiction of MSE over time, using quarterly ALSI data 
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Examining the fit of the network during each phase of training, testing and validation, one 

finds that the overall fit of the model is 37% (the bottom right quadrant of Figure 57 below). 

This figure implies that the network was able to correctly explain 37% of quarterly returns 

over the sample period, implying that there is a degree of inefficiency in the ALSI. This is 

lower than the corresponding monthly NARX network by 10%, implying that either the 

NARX model is a worse fit to the quarterly data, or that there are not enough observations.  

 
Figure 57 - Comparison of R

2
 during training, validation and testing phases 

 

An examination of the autocorrelation coefficients of the error term does not reveal any 

hindrances with the model. Indeed, the errors appear stationary. 
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Figure 58 - Autocorrelation function over time 

 

4.7.5 Semi-annual return sample results 

A summary of the parameters or methods of the network are shown in Table 116 below. The 

network had three delay nodes and one hidden layer.   

 

Table 116 – Overview of methods used in training the semi-annual NARX network 

Parameter Method or Value 

Training Levenberg-Marquadt algorithm 

Learning Gradient Descent method 

Performance Mean Squared Error criterion 

Number of hidden layers 1 

Number of neurons 3 

Transfer Function Tangens hyperbolicus (tanh) 

 

The network was trained using 65% of the sample, validated on 25% and tested on 10% as 

per Looney (1996).  Convergence of the training and validation MSEs were reached after 

four epochs. In other words, it took 10 attempts for the network to most accurately learn the 

relationship between the dependent and independent variables. The performance of the 

network is shown in Figure 59 below. The network converged after four epochs (training 

cycles) as the minimum mean squared error (MSE) was reached at this point. The figure 

below shows that the MSE begins to increase after six epochs, thus training was stopped to 

avoid overfitting.  
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Figure 59 - Depiction of MSE over time, using semi-annual ALSI data 

 

Examining the fit of the network during each phase of training, testing and validation, one 

finds that the overall fit of the model is 66% (the bottom right quadrant of Figure 60 below). 

This figure implies that the network was able to correctly explain 66% of daily returns over 

the sample period, implying that there is a larger degree of inefficiency in the ALSI. This 

goodness of fit is quite high in relation to the other models, which is either due to the ability 

of the NARX to fit the data better, or conversely, overfit the data due to the small sample 

size.   
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Figure 60 - Comparison of R

2
 during training, validation and testing phases 

 

An examination of the autocorrelation coefficients of the error term reveals the suspicion of 

overfitting above – the error terms at longer lags are non-stationary. This is expected to occur 

with lower frequency data, implying that more observations are needed, along with possible 

further differencing. 
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Figure 61 - Autocorrelation function over time 

 

In summary, it was found that a NARX network is suitable to model the returns generating 

process of all five frequencies of data of the ALSI, however, as the frequency of data lowers, 

the small number of observations as well as the issue of non-stationarity arises. Of particular 

interest is that the daily return NARX NN provided the best goodness of fit statistic (as the 

results of the semi-annual NARX network is rejected due to non-stationarity) to the data. This 

is in contrast to the results of the random walk hypothesis in that the daily return series was 

found to be randomly generated. At this juncture, two avenues can be explored as 

conclusions. The first reasoning points towards the inadequacy of the Hurst exponent (in 

relation to the NARX NN) in capturing random walk behaviour. The second reasoning points 

towards frugality on the part of the researcher - if a test result indicated the random walk 

nature of the daily ALSI return series, then the daily NARX NN should not have been run in 

the first place. As the number of training cycles was the largest compared to the weekly and 

monthly frequencies, it is plausible that non-random behaviour can exist yet be complex to 

detect. However, as the Hurst exponent is a particularly sophisticated measure of randomness 

in a series, it is plausible that the pattern detected could be spurious. Thus, the overall sample 

is split into smaller sub-samples and the NARX network run on each sub-sample. 
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4.7.6 ALSI Sub-sample results 

The NARX NN was trained and evaluated using each of the 10 sub-samples to investigate if 

any deviation in the network output would occur for particular phases of the business cycle as 

well as to deal with non-stationarity that may be apparent in smaller time intervals. From the 

10 sub-samples used, the results of each NARX NN are provided in Table 117 below.  For 

each sub-sample, the optimal number of hidden nodes and delay steps are found. This 

network is then trained, validated and tested to produce an overall goodness of fit metric. The 

number of epochs until convergence across all sub-samples remains fairly low, with a spike 

in sub-sample 5. The number of hidden and delay parameters is relatively stable, with the 

exception of the delay nodes in sub-sample 6. The overall goodness of fit measures, given by 

R2, for each sub-sample is reasonably good and fluctuates over time. This last statement is 

explored graphically below. 

 

 

Table 117 – Split sample results of the NARX network 

Sub-
sample 

Time period 
of sample 

Hidden, 
Delay 

Number of 
epochs  

Training 

R2 (%) 
Validation 

R2 (%) 
Testing 

R2 (%) 
Overall 

R2 (%) 

#1 Sep 1997 to  
May 1999 

1,1 12 52.11 34.56 35.41 46.61 

#2 May 1999 to  
Feb 2001 

2,1 11 58.02 34.57 39.45 51.48 

#3 Feb 2001 to 
Oct 2002 

2,1 15 38.04 43.25 25.61 38.04 

#4 Oct 2002 to 
Jul 2004 

1,1 16 41.47 33.04 39.06 38.74 

#5 Jul 2004 to 
Mar 2006 

2,1 12 37.82 34.61 40.01 36.62 

#6 Apr 2006 to 
Dec 2007 

1,3 14 46.67 31.58 33.49 41.45 

#7 Dec 2007 to 
Sep 2009 

1,1 10 38.34 32.13 45.67 37.85 

#8 Sep 2009 to 
May 2011 

2,1 16 41.86 32.56 36.02 38.24 

#9 May 2011 to 
Feb 2013 

1,2 13 35.99 38.19 30.88 35.84 

#10 Feb 2013 to 
Oct 2014 

1,1 12 34.00 31.39 52.30 35.51 

 

Exploring the plots of hidden nodes and delay parameters in Figure 62, one observes that the 

number of hidden nodes remains fairly constant throughout the sample period.  However, the 
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number of delay nodes seems to fluctuate at the onset of the global recession during 2006 to 

2007. This could possibly indicate that with increased volatility, the current share price is 

generated by historic share prices. Indeed, the ability of a NARX to capture long term 

dependencies in the data is superior to that of other network architectures.  

 

 

 

Examining the overall goodness of fit R2 and the testing (out-of-sample forecasting) R2 in 

Figure 63, one sees a cyclical pattern that is difficult to correspond to a business cycle. The 

network appears to perform well at times and poorly at others; but upon closer inspection, 

performance seems to increase during a recession and decrease during times of prosperity. 

Indeed, the highest overall fit is during Dec 2007 to Sep 2009, which is during the financial 

recession. Examining times of prosperity, for example the technology bubble during 2000 to 

2001 and the recovery from the recession during 2012 to 2013, one finds that the network 

performance during these times is below the average overall R2 of 32%.  
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4.7.7 Summary of results for modelling returns using additional factors 

This sub-section set out to model the returns on the ALSI as a function of macroeconomic, 

microeconomic and behavioural type variables, using an APT framework. The modelling 

procedure employed artificial intelligence techniques, in particular a NARX neural network. 

 

Recurrent Neural Networks (RNNs) can be used to model time-varying problems, recognise 

patterns or for forecasting purposes. These networks can model non-linear chaotic, dynamic 

systems and in principle, should be able to predict future values of the output variable. The 

results showed that a NARX network was somewhat adequate  at explaining returns over the 

sample period, with the accuracy of the network improving at lower frequency data (the 

monthly NARX NN performed marginally worse than the daily NARX NN). While the out of 

sample forecasts were not error prone, the errors were of small values, implying that the use 

of a neural network can aide in explaining the returns generating process. Further, the results 

of the network did show that over certain periods in the sample, the errors of the output 

increased dramatically – the network was not able to consistently explain well over the entire 

sample period. The NARX NN methodology employed appeared to perform better at fitting 

the data during recessionary times and poor during times of prosperity. This finding is 

particularly interesting as it implies that these time varying, "non-specified" models can 

explain return relationships better when an economy is experiencing a recession and worse 

when an economy is prospering. This result can be linked to that of Seetharam and Britten 

(2013) in that during recessionary times only, investors on the JSE (or at least those that have 

an investment position on the ALSI) exhibit herding behaviour and mimic the actions of other 

investors. Further, as each of the networks constructed had a positive number of hidden 

nodes, indirect evidence on the non-linearity of share returns was found. Recall that if a 

problem is non-linearly separable, a multi-layer network is considered best to model such a 

problem. Last, recall that Basheer (1998) suggests that one hidden layer is sufficient to 

approximate continuous functions, whereas Masters (1994) suggests two hidden layers for 

discontinuous functions. As most of the NNs based on ALSI data had more than one hidden 

layer, this pointed towards that particular sample of data being approximated by a 

discontinuous function - an indicator of complexity. 
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Conceptually, one can view the results of the NARX model that fluctuated over time as a 

form of evidence in favour of the AMH. It has been established that the model is indeed 

worthy of inspection as the forecasts were quite close to the actual values of the daily returns 

on the ALSI,  however, this was not always the case over the entire sample period. Even with 

the adaptive capability of neural network to change its parameters over time, prediction errors 

fluctuated to levels that were acceptable, to levels that were not acceptable. This implies that 

an adaptive model, while good, is not perfect at explaining the daily returns generating 

process of the ALSI. It is thus considered evidence in favour of the AMH as the differing 

goodness of fit statistics over the sub-samples can be seen as the conditions (or rather 

efficiency) of the market changing over time. 

A short digression to the testing of a portfolio strategy is now presented, to assist in a holistic 

view of testing market efficiency. 

 

4.8 A practical test of market efficiency 

The practical question of whether markets are efficient or not can be examined by comparing 

the returns of a passive (buy and hold) trading strategy against an active trading strategy. To 

determine the returns of the buy and hold strategy, a monetary amount of R10 000 was 

invested in each share at the beginning of the sample period, 1 September 1997, and the total 

return was calculated based on the ending share price as at 31 October 2014. To account for 

transaction costs, a fixed amount of 1% is levied when the share is bought and 1% when the 

share is sold on 31 October 2014. Further, the returns are inclusive of any cash dividends 

(only) paid during the sample period.  

 

 

Second, a technical analysis trading rule is employed as a proxy for the active trading 

strategy. Specifically, a 50 day and 200 day moving average crossover rule is used to 

determine when the investor would buy (or sell) a particular share. These particular moving 

averages are chosen due to their popularity. This hypothetical investor will either invest 

money in the stock market or in the corresponding risk free asset (proxied by the 91 day 

treasury bill rate). Again, dividends accrued while the share is held are taken into account, 

along with transaction costs as described previously.  
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Third, a portfolio strategy utilising the output of the neural network is employed, with the 

logic outlined above. In other words, when the network "forecasts" an upswing on the ALSI, 

relative to the current ALSI value, then the investor would purchase the ALSI (and vice 

versa). Transaction costs of 1% per purchase and 1% per sale of the index is also levied, with 

the investor beginning with an amount of R10 000.  

 

 

The annualised returns over the entire sample period are shown in Table 118 and Table 119 

below.  Out of the 44 equities and six indices invested in, there are 18 examples (17 equities 

and one index) of an active strategy outperforming a passive strategy, net of costs. The neural 

network trading strategy performs worst of the three (albeit this conclusion is limited to the 

ALSI). While there are instances where the difference in returns between the two strategies is 

economically significant, there are also cases where this difference is negligible. Given that 

the 1% transaction cost per purchase and sale is a proxy for actual transaction costs, it is 

plausible that following the active trading strategy might produce results which are not in 

favour of market efficiency. Further, there are a number of shares that produce relatively high 

returns (around 30%). Last, it is interesting to note that one of the indices (the J150) produced 

higher returns under the active strategy compared to the passive strategy. One possible 

explanation for this outperformance would be the volatility in the underlying asset (gold, in 

this example). While the gold price (in U.S. Dollars) has steadily increased over the sample 

period, the somewhat recent "gold price bubble", along with corporate social responsibility 

issues with gold suppliers, would have caused more volatility and thus potentially greater 

returns if an investor were to time the purchase and sale of this commodity. It is also worth 

noting that the difference in returns for the indices is somewhat marginal, implying that 

whether one were to follow a passive or active strategy on an index, the outcome can be 

considered the same. However, given the higher prevalence of transaction costs in the active 

strategy, the rational investor would opt for the buy and hold strategy over the active strategy 

for indices. 

 

 

As the passive strategy outperforms the active strategy in more than half of equities 

examined, one can be tempted to conclude that the market (proxied by these 44 equities and 

six indices) is weak form efficient. However, there are instances where this is not the case. 
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The philosophical question then arises as to whether these 18 instances are enough to 

conclude that the market is not weak form efficient. In terms of the implications of the AMH, 

that of cyclical efficiency and cyclical profitability, one would need to examine the trading 

rule over different sub-samples. However, given the criticisms of testing the universe of 

trading rules outlined in Chapter 2, this avenue is practically impossible, even with the 

assistance of artificial intelligence. In other words, while AI might assist in automating the 

trading rule process, one cannot test for market efficiency as there are a theoretically infinite 

amount of rules in existence. Thus the rejection of market efficiency by any one trading rule 

is not considered absolute proof (and the converse is similarly true).    

  

Table 118 - Comparison of returns across active and passive strategies (1) 

B&H Return MA Return MA strategy 

outperforms 
B&H strategy 

NN 

Return 
B&H 

End Value 
MA 

End Value 

SAB 16.56% 9.54%  R 138 736 R 37 814 

BIL 21.28% 19.16%  R 274 250 R 192 584 

NPN 22.11% 18.50%  R 308 388 R 174 178 

MTN 25.95% 25.12%  R 524 740 R 458 365 

SOL 17.92% 16.55%  R 169 478 R 128 553 

AGL 10.93% 8.80%  R 59 375 R 32 550 

FSR 17.74% 8.09%  R 164 969 R 27 998 

SBK 15.97% 13.16%  R 127 149 R 73 475 

APN 50.61% 12.70%  R 11 299 244 R 67 868 

BGA 15.83% 7.97%  R 124 661 R 27 292 

RMH 16.82% 10.39%  R 144 290 R 44 535 

MDC 24.32% 21.49%  R 419 878 R 272 787 

GRT 13.75% 13.60%  R 91 248 R 79 265 

INP 10.79% 8.01%  R 58 056 R 27 553 

MPC 31.30% 24.21%  R 1 071 435 R 403 246 

IMP 21.17% 9.80%  R 270 199 R 39 809 

NTC 22.12% 24.68% Y  R 308 782 R 430 821 

MMI 13.09% 8.98%  R 82 584 R 33 744 

ANG 1.59% 3.55% Y  R 13 105 R 8 196 

IPL 11.82% 12.72% Y  R 68 042 R 68 077 

NPK 9.84% 10.71% Y  R 50 073 R 47 371 

GFI 3.10% 7.12% Y  R 16 888 R 22 554 

ASR 30.33% 30.92% Y  R 943 667 R 1 010 601 

INL 10.84% 8.16%  R 58 473 R 28 452 

PIK 17.01% 7.95%  R 148 373 R 27 181 



 255 

Table 119 - Comparison of returns across active and passive strategies (2) 

B&H Return MA Return MA strategy 

outperforms 
B&H strategy 

NN 

Return 
B&H 

End Value 
MA 

End Value 

TFG 17.91% 21.92% Y  R 169 154 R 290 469 

SNT 17.91% 18.42% Y  R 169 147 R 172 253 

HYP 28.61% 19.65%  R 751 183 R 207 544 

SAP 1.78% 8.64% Y  R 13 531 R 31 507 

CLS 19.59% 12.78%  R 215 645 R 68 835 

GND 29.69% 26.77%  R 867 889 R 576 869 

PPC 13.77% 13.47%  R 91 546 R 77 581 

AFE 16.26% 18.38% Y  R 132 720 R 171 214 

RCL 12.53% 17.32% Y  R 75 927 R 145 111 

SUI 10.34% 11.19% Y  R 54 141 R 51 809 

ILV 11.49% 9.12%  R 64 657 R 34 733 

RLO 15.98% 17.43% Y  R 127 347 R 147 769 

FBR 31.26% 31.79% Y  R 1 066 004 R 1 133 267 

MUR 6.48% 14.62% Y  R 29 363 R 94 139 

SPG -5.64% 4.44% Y  R 3 690 R 11 078 

FPT 8.62% 8.68% Y  R 41 327 R 31 761 

SAC 16.92% 13.62%  R 146 367 R 79 543 

OCE 23.04% 21.06%  R 351 470 R 255 816 

WBO 23.84% 21.68%  R 392 800 R 280 370 

J150 1.30% 6.11% Y  R 12 489 R 17 688 

J200 12.41% 10.91%  R 74 443 R 49 119 

J203 12.59% 11.15% -1.00% R 76 544 R 51 415 

J211 13.05% 12.21%  R 82 153 R 62 279 

J213 11.62% 10.11%  R 66 050 R 42 258 

J177 11.26% 10.14%  R 62 468 R 42 510 

 

 

4.9 Overall summary of results 

To examine cyclical efficiency on the South African equities market, a range of tests and 

modelling was conducted on 50 returns series - 44 equities and six indices - using daily, 

weekly and monthly frequency data to evaluate three secondary null hypotheses31. This 

                                                 
31 H0,A: Share price behaviour, in the South African market, does not follow a random walk.  

H0,B: Share price behaviour, in the South African market, cannot be modelled by an 

autoregressive function with no exogenous inputs.  
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provided a holistic view of market efficiency at both an individual share level and aggregated 

index level. It was found that 18 of the 44 shares had returns that were randomly generated 

under daily and weekly data, but not randomly generated under monthly data. Further, as the 

frequency of data lowered (from daily to monthly), more shares appeared to not follow a 

random walk. These two results indicate that the aggregated share market appears to not 

follow a random walk under monthly data, thus one would fail to reject the null hypothesis 

labelled H0,A. Before examining the consecutive hypotheses, a summary and comparison of 

the tests run for all equities and indices is provided. Given that the majority of tests examine 

significance at the 95% level of confidence, it is quite possible that the results could be 

manifested by chance, 5% of the time. This section discusses the results of each test across 

frequencies and sectors of the shares analysed, with emphasis on the results that are 

noteworthy of discussion. In other words, the results of all tests across all frequencies of all 

50 securities is not presented here, but rather those results that are “anomalies”.  

 

While four shares (BIL, ANG, GFI and GND) along with the J150 and J177 indices have 

normal distributions under monthly data according to the JB test, nois normally distributed 

under the KS test. Given the non-parametric nature of the K-S test, as well as the reasoning 

outlined previously, the results of non-normality across all securities holds.  

 

From Tables 120, 121 and 122 below, fourteen shares (AFE, ASR, SAB, PIK, CLS, MPC, 

SUI, RMH, INP, INL, SAC, PPC, MUR and SPG) and three indices (J211, J213, J177) had 

distributions that followed both a linear and non-linear pattern (recall that the distributions 

could be linear at values below the mean and non-linear at values above the mean); with five 

shares (AGL, ANG,  ILV, BGA and IPL) and one index (the J150) following a strictly linear 

distribution under the BDS test under monthly data. These results are equivalent to 54% of 

securities following a strictly non-linear distribution. The financial and consumer services 

industries show up strongly, which is corroborated by the corresponding index (J213) also not 

following a linear distribution. In the example of mining, it is interesting to see the mining 

index (J177) in the results but not many mining shares.  This could imply that the trading 

activity, which is a function of the share’s distribution, differs for individual shares and 

                                                                                                                                                        
H0,C: Share price behaviour, in the South African market, cannot be modelled by an 

autoregressive function with exogenous inputs.  
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indices. Under quarterly data, six shares (AGL, ILV, IPL, NPK, HYP and GRT) followed a 

linear distribution, 26 securities followed both a linear and nonlinear distribution. Last, under 

semi-annual data, five shares (NTC, IPL, GFI, SAP, SUI) and the J150 followed a strictly 

linear distribution, whereas 36 securities followed both a linear and non-linear distribution. 

Given that the majority of shares follow a mix of a linear and non-linear distribution, there is 

little insight gained from industries. In most instances, the distribution remains the same 

under monthly, quarterly and semi-annual data. There are two cases (GFI and ASR), where 

the distributions became linear under semi-annual data but were linear and non-linear under 

quarterly data. From a trading perspective, the non-linear nature of the return distributions 

points towards some form of mean reversion in share prices, which implies that if one can 

time the market, it is possible to consistently earn abnormal profits.  

 

Table 120 – BDS test results for all shares (1) 

Share Sector BDS 

    Monthly Quarterly Semi-Annual 

AFE Basic materials Linear and 
Non-linear 

Linear and 
Non-linear 

  

SAP Basic materials     Linear 

BIL Mining     Linear and 
Non-linear 

AGL Mining Linear Linear Linear and 
Non-linear 

IMP Mining   Linear and 
Non-linear 

Linear and 
Non-linear 

ANG Mining Linear Linear and 
Non-linear 

Linear and 
Non-linear 

GFI Mining   Linear and 
Non-linear 

Linear 

ASR Mining Linear and 
Non-linear 

Linear and 
Non-linear 

Linear 

SAB Consumer goods Linear and 
Non-linear 

Linear and 
Non-linear 

Linear and 
Non-linear 

RCL Consumer goods     Linear and 
Non-linear 

ILV Consumer goods Linear Linear Linear and 
Non-linear 

OCE Consumer goods   Linear and 
Non-linear 

Linear and 
Non-linear 

GRT Consumer goods   Linear Linear and 
Non-linear 

FBR Consumer goods   Linear and 
Non-linear 

  

PIK Consumer services Linear and 
Non-linear 

Linear and 
Non-linear 

Linear and 
Non-linear 
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Table 121– BDS test results for all shares (2) 

Share Sector Frequency 

  Monthly Quarterly Semi-Annual 

CLS Consumer services Linear and 
Non-linear 

Linear and 
Non-linear 

Linear and 
Non-linear 

MPC Consumer services Linear and 
Non-linear 

Linear and 
Non-linear 

Linear and 
Non-linear 

TFG Consumer services   Linear and 
Non-linear 

Linear and 
Non-linear 

NPN Consumer services     Linear and 
Non-linear 

SUI Consumer services Linear and 
Non-linear 

  Linear and 
Non-linear 

FSR Financials   Linear and 
Non-linear 

Linear and 
Non-linear 

SBK Financials   Linear and 
Non-linear 

Linear and 
Non-linear 

BGA Financials Linear Linear and 
Non-linear 

Linear and 
Non-linear 

RMH Financials Linear and 
Non-linear 

Linear and 
Non-linear 

  

INP Financials Linear and 
Non-linear 

Linear and 
Non-linear 

Linear and 
Non-linear 

INL Financials Linear and 
Non-linear 

Linear and 
Non-linear 

Linear and 
Non-linear 

MMI Financials     Linear and 
Non-linear 

SNT Financials   Linear and 
Non-linear 

Linear and 
Non-linear 

HYP Financials   Linear Linear and 
Non-linear 

FPT Financials     Linear and 
Non-linear 

SAC Financials Linear and 
Non-linear 

  Linear and 
Non-linear 

MDC Healthcare     Linear and 
Non-linear 

NTC Healthcare     Linear 

APN Healthcare   Linear and 
Non-linear 

Linear 

PPC Industrials Linear and 
Non-linear 

Linear and 
Non-linear 

Linear and 
Non-linear 

MUR Industrials Linear and 
Non-linear 

  Linear and 
Non-linear 

WBO Industrials   Linear and 
Non-linear 

Linear and 
Non-linear 

NPK Industrials   Linear Linear and 
Non-linear 

IPL Industrials Linear Linear Linear 

GND Industrials   Linear and 
Non-linear 

Linear 
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Table 122– BDS test results for all shares (3) 

Share Sector Frequency 

  Monthly Quarterly Semi-Annual 

SPG Industrials Linear and 
Non-linear 

linear Linear and 
Non-linear 

SOL Oil   Linear and 
Non-linear 

Linear 

MTN Teleco   Linear and 
Non-linear 

Linear 

J150 JSE Gold Mining Index Linear   Linear 

J200 JSE Top 40     Linear and 
Non-linear 

J203 JSE All Share Index (ALSI)     Linear and 
Non-linear 

J211 JSE Industrial 25 Linear and 
Non-linear 

Linear Linear and 
Non-linear 

J213 JSE Financial and Industrial 30 Linear and 
Non-linear 

Linear Linear and 
Non-linear 

J177 JSE Mining Index Linear and 
Non-linear 

Linear Linear and 
Non-linear 

 

When examining the results of the Runs test in Tables 123 and 124 below, 38 shares and 6 

indices were non-randomly generated under daily data. There is no particular industry which 

stands out, apart from two financial shares (SBK and RMH), which are randomly generated. 

These shares had runs that were less than expected by pure chance, which infers that there 

were trends in these shares’ returns over the sample period on a daily frequency. Nine shares 

(ASR, GRT, PIL, SBK, FPT, SAC, WBO, NPK and SOL) were non-randomly generated 

under weekly data. These shares came from various sectors in the market – mining, consumer 

goods, consumer services, financials and industrials and their runs are a mix of greater than 

and less than expected by pure chance. However, those shares in the consumer goods 

(services) sector as well as the financial sector had runs that were greater than expected by 

pure chance, implying higher trading activity. When examined in relation to the trading 

strategy performance, there was little overlap between the share’s outperformance of a buy 

and hold strategy and being non-random.  There was a single share, ASR, that had a 

consistent lower number of runs under these three frequencies.  Indeed the trading strategy 

for ASR outperformed the market, confirming the logic outlined above. ASR also appears to 

have low liquidity, which points towards the outperformance being generated not from “share 

effects” as opposed to market microstructure effects.  Last, when comparing those shares that 

had a greater number of runs, they were more likely to have a non-linear distribution under 

the BDS test – implying that they can be modelled. The shares that did outperform (where the 
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active strategy outperformed the buy and hold strategy) were ASR, FPT and NPK. As there is 

no consistent industry which outperformed, an alternative reason is that perhaps the liquidity 

of these shares caused the outperformance.  Six shares (AFE, BIL, ASR, TFG, NTC and 

SOL) were non-randomly generated under monthly data. The mining industry features 

strongly again in the monthly data. The runs are predominantly greater than that expected by 

chance, implying higher volatility, which is generated by higher trading volumes. When 

viewed alongside the results from the JB test, it was found that mining shares are typically 

normally distributed. If returns are non-random according to the Runs test, yet are normally 

distributed, it is plausible that no consistent abnormal profits are made, especially so when 

the frequency of data is monthly. The results of the Runs test are equivalent to 12%, 82% and 

88% of securities being randomly generated from daily, weekly and monthly data 

respectively. Last, under quarterly data, 11 shares are non-randomly generated and five are 

non-randomly generated under semi-annual data. The Healthcare and industrials sectors show 

up in both quarterly and semi annual frequencies.  

 

Table 123 – Runs test results for all shares (1) 

Share Sector Frequency 

  Daily Weekly Monthly Quarterly Semi-Annual 

AFE Basic materials Less   Less Less Greater 

SAP Basic materials Less         

BIL Mining     Greater     

AGL Mining Less         

IMP Mining Less     Less   

ANG Mining Less         

GFI Mining Less         

ASR Mining Less Less Less     

RCL Consumer goods Less         

ILV Consumer goods Less         

OCE Consumer goods Less         

GRT Consumer goods Less Greater       

FBR Consumer goods Less     Less Less 

PIK Consumer services Less Greater Greater Greater   

CLS Consumer services Less     Less   

MPC Consumer services Less         

TFG Consumer services Less   Less     

NPN Consumer services Less         

SUI Consumer services Less         

FSR Financials Less         
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Table 124 – Runs test results for all shares (2) 

Share Sector Frequency 

  Daily Weekly Monthly Quarterly Semi-Annual 

SBK Financials   Greater       

BGA Financials Less         

INP Financials Less         

INL Financials Less         

MMI Financials Less         

SNT Financials Less   Greater Less   

HYP Financials Less         

FPT Financials Less Greater   Greater   

SAC Financials Less Greater       

MDC Healthcare Less       Greater 

NTC Healthcare Less   Greater   Less 

APN Healthcare Less     Less   

PPC Industrials       Greater   

MUR Industrials Less         

WBO Industrials Less Less       

RLO Industrials Less         

NPK Industrials   Greater   Greater   

IPL Industrials Less         

GND Industrials Less     Less Less 

SPG Industrials Less         

SOL Oil Less Greater Greater Less   

J150 JSE Gold Mining Index Less         

J200 JSE Top 40 Less         

J203 JSE All Share Index (ALSI) Less         

J211 JSE Industrial 25 Less         

J213 JSE Financial and Industrial 
30 

Less         

J177 JSE Mining Index Less         

 

From the Chow Denning test results in Tables 125, 126 and 127 below, 43 shares were non-

randomly generated using daily data, 20 shares and one index (the J213) were non-randomly 

generated under weekly data. The most heavily represented sectors of mining, consumer 

goods and services, financials and industrials appear to have non-randomly generated returns. 

Most of these results are in line with the Runs test, yet there are some shares which were 

found to be non-random under the CD test, but random under the Runs test. Given that the 

CD test examines variances, as opposed to the Runs test which examines “level” data, it is 

possible that heteroscedasticity is the cause of non-randomness in these shares. Three shares 
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(PIK, TFG and MDC) were non-randomly generated under monthly data and given the small 

sample; there is no discernible pattern per industry.  This is equivalent to 14%, 56% and 94% 

being randomly generated from daily, weekly and monthly data respectively. Using quarterly 

data, eight securities are non-randomly generated (BGA, RMH, MDC, IMP, PIK, SNT, GND 

and OCE) and three under semi-annual data (FSR, RMH and AFR). The financial sector 

shows up strongly in both frequencies (indeed under all frequencies).  

 

Table 125 – Chow Denning test results for all shares (1) 

Share Sector Frequency 

    Daily Weekly Monthly Quarterly Semi-Annual 

AFE Basic materials Non-
Random 

      Non-Random 

SAP Basic materials Non-
Random 

        

BIL Mining Non-
Random 

Non-
Random 

      

AGL Mining Non-
Random 

        

IMP Mining Non-
Random 

Non-
Random 

  Non-
Random 

  

ANG Mining Non-
Random 

Non-
Random 

      

GFI Mining Non-
Random 

Non-
Random 

      

ASR Mining Non-
Random 

        

SAB Consumer goods Non-
Random 

Non-
Random 

      

RCL Consumer goods Non-
Random 

        

ILV Consumer goods Non-
Random 

Non-
Random 

      

OCE Consumer goods Non-
Random 

Non-
Random 

  Non-
Random 

  

GRT Consumer goods Non-
Random 

        

FBR Consumer goods Non-
Random 

Non-
Random 

      

PIK Consumer services     Non-
Random 

Non-
Random 

  

CLS Consumer services Non-
Random 

Non-
Random 

      

MPC Consumer services Non-
Random 

Non-
Random 

      

TFG Consumer services Non-
Random 

  Non-
Random 

    

NPN Consumer services Non-
Random 
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Table 126 – Chow Denning test results for all shares (2) 

Share Sector Frequency 

  Daily Weekly Monthly Quarterly Semi-Annual 

SUI Consumer services Non-
Random 

        

FSR Financials Non-
Random 

Non-
Random 

    Non-Random 

SBK Financials Non-
Random 

Non-
Random 

      

BGA Financials Non-
Random 

Non-
Random 

  Non-
Random 

  

RMH Financials Non-
Random 

    Non-
Random 

Non-Random 

INP Financials Non-
Random 

        

INL Financials Non-
Random 

        

MMI Financials Non-
Random 

        

SNT Financials       Non-
Random 

  

HYP Financials           

FPT Financials Non-
Random 

Non-
Random 

      

SAC Financials Non-
Random 

Non-
Random 

      

MDC Healthcare Non-
Random 

  Non-
Random 

Non-
Random 

  

NTC Healthcare           

APN Healthcare Non-
Random 

        

PPC Industrials           

MUR Industrials Non-
Random 

        

WBO Industrials Non-
Random 

        

RLO Industrials           

NPK Industrials Non-
Random 

Non-
Random 

      

IPL Industrials Non-
Random 

        

GND Industrials Non-
Random 

Non-
Random 

  Non-
Random 

  

SPG Industrials Non-
Random 

Non-
Random 

      

SOL Oil Non-
Random 

Non-
Random 

      

MTN Teleco Non-
Random 

Non-
Random 

      

J150 JSE Gold Mining Index Non-
Random 
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Table 127 – Chow Denning test results for all shares (3) 

Share Sector Frequency 

  Daily Weekly Monthly Quarterly Semi-Annual 

J200 JSE Top 40 Non-
Random 

        

J203 JSE All Share Index 
(ALSI) 

Non-
Random 

        

J211 JSE Industrial 25 Non-
Random 

        

J213 JSE Financial and 
Industrial 30 

Non-
Random 

Non-
Random 

      

J177 JSE Mining Index Non-
Random 

        

 

The results of the Wright test in Tables 128, 129 and 130 below show that all securities were 

non-randomly generated under daily data, 28 shares and four indices were non-randomly 

generated under weekly data; and 15 shares (SAP, IMP, ASR, SAB, FBR, CLS, TFG, MDC, 

NTC, MUR, WBO, GND, SPG,  SOL and MTN) and two indices (the J200 and J203) were 

non-randomly generated under monthly data. Consumer goods and services, as well as 

industrials stand out as being non-randomly generated from the monthly data. In contrast, 

financials show up as non-randomly generated under weekly data but randomly generated 

under monthly data. This is roughly in line with the CD test and is equivalent to 0%, 36% and 

66% of securities being randomly generated under daily, weekly and monthly data 

respectively. Using quarterly data, two shares (IMP and GND) are non-randomly generated, 

whereas under semi-annual data, none of the shares are strictly non-randomly generated (in 

other words, there is not enough statistical evidence to conclude non-randomness).  

 

Table 128 – Wright test results for all shares  (1) 

Share Sector Frequency 

    Daily Weekly Monthly Quarterly 

AFE Basic materials Non-
Random 

Non-
Random 

    

SAP Basic materials Non-
Random 

  Non-
Random 

  

BIL Mining Non-
Random 

Non-
Random 

    

AGL Mining Non-
Random 

      

IMP Mining Non-
Random 

Non-
Random 

Non-
Random 

Non-
Random 

ANG Mining Non-
Random 

Non-
Random 
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Table 129 – Wright test results for all shares  (2) 

Share Sector Frequency 

  Daily Weekly Monthly Quarterly 

GFI Mining Non-
Random 

Non-
Random 

    

ASR Mining Non-
Random 

Non-
Random 

Non-
Random 

  

SAB Consumer goods Non-
Random 

Non-
Random 

Non-
Random 

  

RCL Consumer goods Non-
Random 

Non-
Random 

    

ILV Consumer goods Non-
Random 

      

OCE Consumer goods Non-
Random 

Non-
Random 

    

GRT Consumer goods Non-
Random 

Non-
Random 

    

FBR Consumer goods Non-
Random 

Non-
Random 

Non-
Random 

  

PIK Consumer services Non-
Random 

Non-
Random 

    

CLS Consumer services Non-
Random 

Non-
Random 

Non-
Random 

  

MPC Consumer services Non-
Random 

Non-
Random 

    

TFG Consumer services Non-
Random 

Non-
Random 

Non-
Random 

  

NPN Consumer services Non-
Random 

      

SUI Consumer services Non-
Random 

      

FSR Financials Non-
Random 

Non-
Random 

    

SBK Financials Non-
Random 

Non-
Random 

    

BGA Financials Non-
Random 

Non-
Random 

    

RMH Financials Non-
Random 

      

INP Financials Non-
Random 

      

INL Financials Non-
Random 

Non-
Random 

    

MMI Financials Non-
Random 

      

SNT Financials Non-
Random 

      

HYP Financials Non-
Random 

      

FPT Financials Non-
Random 

Non-
Random 
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Table 130 – Wright test results for all shares  (3) 

Share Sector Frequency 

  Daily Weekly Monthly Quarterly 

SAC Financials Non-Random Non-
Random 

    

MDC Healthcare Non-Random   Non-
Random 

  

NTC Healthcare Non-Random Non-
Random 

Non-
Random 

  

APN Healthcare Non-Random       

PPC Industrials Non-Random       

MUR Industrials Non-Random   Non-
Random 

  

WBO Industrials Non-Random Non-
Random 

Non-
Random 

  

RLO Industrials Non-Random       

NPK Industrials Non-Random Non-
Random 

    

RLO Industrials Non-Random       

NPK Industrials Non-Random Non-
Random 

    

IPL Industrials Non-Random Non-
Random 

    

GND Industrials Non-Random Non-
Random 

Non-
Random 

Non-
Random 

SPG Industrials Non-Random   Non-
Random 

  

SOL Oil Non-Random Non-
Random 

Non-
Random 

  

MTN Teleco Non-Random Non-
Random 

Non-
Random 

  

J150 JSE Gold Mining Index Non-Random Non-
Random 

    

J200 JSE Top 40 Non-Random   Non-
Random 

  

J203 JSE All Share Index (ALSI) Non-Random Non-
Random 

Non-
Random 

  

J211 JSE Industrial 25 Non-Random Non-
Random 

    

J213 JSE Financial and Industrial 30 Non-Random Non-
Random 

    

J177 JSE Mining Index Non-Random       

 

When examining the variance decomposition test results in Tables 131, 132 and 133 below, 

35 shares and six indices were non-randomly generated under daily data, 23 shares were non-

randomly generated under weekly data and one share (MUR) was non-randomly generated 

under monthly data. Consumer goods and services appear to be randomly generated under 
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both daily and weekly data, along with shares in the healthcare and industrial sectors. 

Financials are randomly generated when examining Variance Decompositions, but do appear 

to be randomly generated under more sophisticated tests. This result points towards a 

possibly complex return generating process in those shares, which could also be coupled with 

peculiarities in their trading compared to other sectors. For example, with spikes in trading 

volumes for financial shares, it is possible that multiple variances (the CD test) would be 

detected as opposed to variances at a particular lag (the variance decomposition test). In 

summary, the results are equivalent to 18%, 46% and 98% being randomly generated under 

daily, weekly and monthly data respectively. Last, under quarterly data, two shares (IMP and 

GND) are non-randomly generated, whereas all shares are randomly generated under semi-

annual data.  

 

Table 131 – Variance Decomposition test results for all shares (1) 

Share Sector Frequency 

    Daily Weekly Monthly Quarterly 

AFE Basic materials Non-
Random 

Non-
Random 

    

SAP Basic materials Non-
Random 

Non-
Random 

    

BIL Mining Non-
Random 

Non-
Random 

    

AGL Mining Non-
Random 

      

IMP Mining Non-
Random 

Non-
Random 

  Non-
Random 

ANG Mining Non-
Random 

Non-
Random 

    

GFI Mining   Non-
random 

    

ASR Mining Non-
Random 

      

SAB Consumer goods Non-
Random 

Non-
Random 

    

RCL Consumer goods Non-
Random 

      

ILV Consumer goods Non-
Random 

Non-
Random 

    

OCE Consumer goods   Non-
random 

    

GRT Consumer goods Non-
Random 

Non-
Random 

    

FBR Consumer goods Non-
Random 

Non-
Random 
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Table 132 – Variance Decomposition test results for all shares (2) 

Share Sector Frequency 

  Daily Weekly Monthly Quarterly 

CLS Consumer services 
Non-
Random 

Non-
Random     

MPC Consumer services 
Non-
Random       

TFG Consumer services 
Non-
Random       

NPN Consumer services 
Non-
Random       

SUI Consumer services 
Non-
Random       

FSR Financials 
Non-
Random 

Non-
Random     

SBK Financials Non-
Random 

Non-
Random 

    

BGA Financials Non-
Random 

Non-
Random 

    

RMH Financials Non-
Random 

      

INP Financials Non-
Random 

      

INL Financials Non-
Random 

Non-
Random 

    

MMI Financials Non-
Random 

      

FPT Financials Non-
Random 

Non-
Random 

    

SAC Financials Non-
Random 

Non-
Random 

    

APN Healthcare Non-
Random 

Non-
Random 

    

MUR Industrials Non-
Random 

  Non-
Random 

  

WBO Industrials Non-
Random 

      

NPK Industrials Non-
Random 

      

IPL Industrials Non-
Random 

      

GND Industrials Non-
Random 

Non-
Random 

  Non-
Random 

SPG Industrials Non-
Random 

Non-
Random 

    

SOL Oil Non-
Random 

Non-
Random 

    

MTN Teleco Non-
Random 

Non-
Random 

    

J150 JSE Gold Mining Index Non-
Random 
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Table 133– Variance Decomposition test results for all shares (3) 

Share Sector Frequency 

  Daily Weekly Monthly Quarterly 
J200 JSE Top 40 Non-

Random 
      

J203 JSE All Share Index (ALSI) Non-
Random 

      

J211 JSE Industrial 25 Non-
Random 

      

J213 JSE Financial and Industrial 30 Non-
Random 

      

J177 JSE Mining Index Non-
Random 

      

 

Lastly, from the Hurst exponent results in Tables 134 and 135 below, 8 shares (AGL, FBR, 

SBK, RMH, FPT, SAC, GND and SOL) were non-randomly generated under daily data. This 

is in line with previous test results where the mining, consumer goods, financials and 

industrial sectors show strongly. No shares were non-randomly generated under weekly data, 

which is largely due to the confidence intervals given by the Whittle test estimate; and 22 

shares and 4 indices (the J200, J203, J211 and J213) were non-randomly generated under 

monthly data.  This is equivalent to 84%, 100% and 56% being randomly generated under 

daily, weekly and monthly data respectively. From the trend, it would be presumable to say 

that the number of shares randomly generated under weekly data should lie between the 

number of daily and yearly shares. Further, the industrials and financial sector shares show up 

strongly under monthly data to be non-randomly generated. In general, if one were to 

examine whether the non-random trend is persistent or anti-persistent (mean reverting), the 

majority of shares under these three frequencies appear to be mean reverting; with industrial 

shares under monthly data being persistent in their trend (non-mean reverting). Under 

quarterly data, 33 shares and 6 indices are non-randomly generated, whereas under semi-

annual data, 32 shares and 6 indices are non-randomly generated. In both of these 

frequencies, the majority of financial shares are non-randomly generated, along with 

healthcare and industrials. All of the indices show up as non-random. Further, of the 39 

shares that are non-randomly generated under quarterly data, 10 are mean reverting. This 

trend is particularly strong in the financial sector. Similarly, of the 38 shares under semi-

annual data, 12 are mean reverting. However, there is no particular trend across industries for 

this frequency of data. Looking across all five frequencies, all of the shares that are non-

randomly generated are mean reverting under daily data, with some also mean reverting 
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under monthly data – particularly those in the financial sector. As the frequency lowers, more 

shares are found to be non-randomly generated, and more appear to not be mean reverting. 

However, there are certain shares that remain mean reverting even under semi annual data 

(such as AFE, IMP, ASR, GRT, MPC, TFG, MMI, PPC, WBO and GND), yet there is no 

discernible industry pattern across the frequencies. This points towards share specific effects 

that affect the results as opposed to market effects. 

 

Table 134 – Hurst exponent results for all shares (1) 

Share Sector Frequency 

  Daily Weekly Monthly Quarterly Semi-Annual 

AFE Basic materials       Anti-
Persistent 

Anti-
Persistent 

SAP Basic materials       Persistent   

BIL Mining       Persistent Persistent 

AGL Mining Anti-
Persistent 

    Persistent Persistent 

IMP Mining         Anti-
Persistent 

ANG Mining       Persistent   

GFI Mining       Persistent Persistent 

ASR Mining     Persistent   Anti-
Persistent 

SAB Consumer goods       Persistent Persistent 

RCL Consumer goods       Anti-
Persistent 

Persistent 

OCE Consumer goods     Persistent     

GRT Consumer goods         Anti-
Persistent 

FBR Consumer goods Anti-
Persistent 

    Persistent   

PIK Consumer services       Anti-
Persistent 

Persistent 

CLS Consumer services         Persistent 

MPC Consumer services     Anti-
Persistent 

Persistent Anti-
Persistent 

TFG Consumer services         Anti-
Persistent 

NPN Consumer services       Persistent   

SUI Consumer services     Anti-
Persistent 

  Persistent 

FSR Financials     Anti-
Persistent 

Anti-
Persistent 

  

SBK Financials Anti-
Persistent 

  Anti-
Persistent 

Anti-
Persistent 
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Table 135– Hurst exponent results for all shares (2) 

Share Sector Frequency 

  Daily Weekly Monthly Quarterly Semi-Annual 

BGA Financials     Anti-
Persistent 

Anti-
Persistent 

  

RMH Financials Anti-
Persistent 

    Anti-
Persistent 

  

INP Financials     Anti-
Persistent 

Anti-
Persistent 

Persistent 

INL Financials     Anti-
Persistent 

Anti-
Persistent 

Persistent 

MMI Financials       Anti-
Persistent 

Anti-
Persistent 

SNT Financials       Persistent Persistent 

HYP Financials       Persistent Persistent 

FPT Financials Anti-
Persistent 

  Persistent Persistent Persistent 

SAC Financials Anti-
Persistent 

  Persistent     

MDC Healthcare       Persistent Persistent 

NTC Healthcare       Persistent Persistent 

APN Healthcare     Persistent Persistent Persistent 

PPC Industrials     Persistent Persistent Anti-
Persistent 

MUR Industrials     Persistent Persistent   

WBO Industrials       Persistent Anti-
Persistent 

RLO Industrials     Persistent Persistent Persistent 

NPK Industrials       Persistent Anti-
Persistent 

IPL Industrials         Persistent 

GND Industrials Anti-
Persistent 

    Persistent Persistent 

SPG Industrials     Anti-
Persistent 

  Anti-
Persistent 

SOL Oil Anti-
Persistent 

  Persistent Persistent Persistent 

MTN Teleco     Persistent Persistent Persistent 

J150 JSE Gold Mining Index       Persistent Anti-
Persistent 

J200 JSE Top 40     Anti-
Persistent 

Persistent Persistent 

J203 JSE All Share Index (ALSI)     Anti-
Persistent 

Persistent Persistent 

J211 JSE Industrial 25     Anti-
Persistent 

Persistent Persistent 

J213 JSE Financial and Industrial 
30 

    Anti-
Persistent 

Persistent Persistent 

J177 JSE Mining Index       Persistent Persistent 
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From the summary of test results above, it can be inferred that the results found are not due to 

“pure chance”, as the majority of results point toward a significantly high (low) number of 

securities that reject the null hypothesis of each test. There is however, one instance where 

94% of securities were found to be randomly generated under monthly data from the Chow 

Denning test. Attention is now drawn to focus on the J203 (ALSI).  

 

 

In determining whether the three frequencies of return data of the ALSI follow a random 

walk, various parametric and non-parametric tests were performed. These results, for the 

overall sample, are provided in Table 136 below. All tests for normality concluded that the 

daily, weekly and monthly ALSI return series are non-normal. Similarly, the BDS test 

showed that all three frequencies of data exhibit non-linear behaviour and are stationary 

according to the ADF and KPSS tests. A simple measure of rolling autocorrelation depicted a 

cyclical trend in all of the return series, indicating that the ALSI was efficient over periods of 

time, but also inefficient over other periods of time.  

 

In examining the Random Walk Hypothesis, five tests were conducted. Two of these tests 

focus on the mean of the series, whereas the remaining three focus on the variance (standard 

deviation).  

 

 

Examining the results of the Runs test and Hurst exponent, the daily ALSI series appears to 

not be randomly generated under the Runs test, whereas it appears to be randomly generated 

under the Hurst exponent. Similarly, the monthly ALSI series appears to be randomly 

generated under the Runs test and not randomly generated under the Hurst exponent. These 

contradicting results can be explained however. Recall that the Runs test examines 

randomness at a lag order of 1 only, in contrast to the Hurst exponent which examines 

randomness along a rolling window. Therefore, the Hurst exponent may detect randomness or 

non-randomness over smaller intervals that may not be apparent over the entire sample 

period. As such, the results of the Hurst exponent are considered more reliable than that of 

the Runs test. 
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Attention is now turned to the results of the variance tests - the Chow Denning test, Wright 

test and variance decomposition plot. The Chow Denning method of the variance ratio test 

pointed towards only the weekly and monthly series following a random walk; whereas the 

Wright modification for the variance ratio test led to all three series following a random walk. 

As the Chow and Denning modification is seen as a superior method compared to the Wright 

modification (the former tests for multiple variances compared to the latter), the results of the 

Chow and Denning modification hold more significance. Further, the variance decomposition 

plot offers the same conclusion as the Chow Denning test. However, this result conflicts with 

those of the Hurst exponent.  

 

 

Summarising the above two paragraphs produces conflicting results when comparing the 

Hurst exponent test to the Chow and Denning test. In other words, according to the Hurst 

exponent, the ALSI appears randomly generated using daily and weekly data and not 

randomly generated using monthly data. In contrast, the Chow Denning test shows that the 

ALSI appears not randomly generated under daily data and is randomly generated under 

weekly and monthly data. Reconciling these results is arguably quite straight forward. Recall 

that the Hurst exponent examines random walk behaviour using a rolling window approach; 

whereas the variance ratio tests used in this study used a "fixed" window approach. Thus, the 

Hurst exponent can be considered superior to that of the variance ratio test. In order for the 

results to be truly comparable, one would need to use a rolling window approach when 

implementing the variance ratio test. 

 

 

In fitting the SETAR model, it was found that all three models had a poor fit to the data, 

indicative of either a different functional form or the inclusion of additional variables. While 

this enabled one to reject the null hypothesis labelled H0,B, the evidence is weak and the 

rejection (or failure to reject) is a question of semantics. In other words, share price behaviour 

can be modelled by an autoregressive function with no exogenous inputs; however the 

resulting model is a poor fit. Further, in creating NAR and NARX networks, it was found that 

the NAR network performed marginally better than the SETAR counterpart; whereas the 

NARX network performed better than the SETAR and NAR models. Again, this leads one to 

reject the null hypothesis labelled H0,C, however, the evidence is not definitive.  
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Table 136 - Summary of results for the random walk hypothesis 

Daily Weekly Monthly 
Quarterly 

Semi-
Annual 

Normality 

Jarque Bera 
Non-

Normal 
Non-

Normal 
Non-

Normal 

Non-

Normal 
Non-

Normal 

Q-Q Plot 
Non-

Normal 
Non-

Normal 
Non-

Normal 

Non-

Normal 
Non-

Normal 

K-S test 
Non-

Normal 
Non-

Normal 
Non-

Normal 

Non-

Normal 
Non-

Normal 

Non-
linearity BDS test Non-linear Non-linear Non-linear 

Non-
linear 

Linear 
and Non-

linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical 

Cyclical Cyclical 

Runs test 
Not 

Random Random Random 
Random Random 

Chow Denning 
test 

Not 
Random Random Random 

Random Random 

Wright test Random Random Random Random Random 
Variance 

decomposition 
plot 

Not 
Random Random Random 

Random Random 

Hurst exponent Random Random Random 
Not 

Random 
Not 

Random 

Modelling 

SETAR MAPE 100% 100% 100% 100% 100% 

NAR R2 12.28 12.28 12.28   

NARX R2 37.34 37.34 37.34 37.19 66.21 

 

Similarly, the results for each sub-sample are summarised below in Table 137 and Table 138. 

The tests for normality all point towards each sub-sample not being drawn from a normal 

distribution as well as being stationary. The test for linearity produces mixed results 

throughout the sample period. There are sub-samples that are linear, sub-samples that are 

non-linear and sub-samples that are both linear and non-linear. This interesting result shows 

that while the overall daily sample is non-linear, there are components of the daily data that 

have both linear and non-linear behaviour. Within samples where there were both evidence of 

linear and non-linear behaviour, one can arguably divide these samples further. Further, as 

per Kaboudan (1999), if a series' data generating process is a combination of linear and non-

linear or linear, non-linear and stochastic, then the predictability of the series decreases 

significantly.   
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As the results of the Chow and Denning and Wright variance ratio tests differ, the logic 

outlined in the methodology will be employed. Therefore, according to the Chow and 

Denning modification of the variance ratio test, all of the sub-samples are randomly 

generated. This shows that a non-randomly generated series can consist of series that are 

randomly generated. 

 

 

Reconciling the difference in results between the Runs test, variance ratio plot and Hurst 

exponent is somewhat more difficult. It was previously mentioned that the Runs test 

examines randomness at a single lag order. Therefore, the results of Runs test are not 

considered superior to that of the variance ratio plot and Hurst exponent. The variance ratio 

plot examines the fraction of known and unknown variance against lag orders. Each of the 

plots was compiled to a maximum of 10 lags. Thus, any long term memory would 

theoretically not be captured in these plots. Therefore, according to the Hurst exponent, one 

of the sub-samples exhibit non-random behaviour, in contrast to the overall daily sample 

results in which the exponent showed random behaviour. This implies that a series that is 

randomly generated can consist of sub-series that are both random and non-randomly 

generated. Further, given that the Hurst exponent employs a sliding window approach, it is 

considered more sophisticated than the other tests employed in detecting randomness in a 

series. It is possible, however, that the window used in the Hurst exponent, which differed per 

frequency, could have affected the results. In other words, if a longer (shorter) sliding 

window was used, the test result could have differed. The interaction between this element 

along with the frequency of data used presents an interesting avenue to explore as future 

research – the impact of data frequency in determining the optimal sliding window.  

 

In dividing the daily sample into sub-samples, it was found that no SETAR model could be 

fit to any of the sub-sample data. NARX networks were more successful in fitting the data in 

each sub-sample, performing better than their corresponding NAR network.  



 276 

Table 137 - Summary of results for each sub-sample for the random walk hypothesis (1) 

S1 S2 S3 S4 S5 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-

linearity BDS test Non-linear Non-linear Non-linear Non-linear Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
autocorrelation Cyclical Cyclical Cyclical Cyclical Cyclical 

Runs test Not Random Not Random Not Random Not Random Not Random 

Chow Denning test Random Random Random Random Random 

Wright test Not Random Not Random Not Random Not Random Not Random 
Variance 

decomposition plot Not Random Not Random Not Random Not Random Not Random 

Hurst exponent Random Random Random Random Random 

Modelling 

SETAR MAPE 100% 100% 100% 100% 100% 

NAR R2 16.32 16.32 16.32 16.32 16.32 

NARX R2 46.61 46.61 46.61 46.61 46.61 
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Table 138 - Summary of results for each sub-sample for the random walk hypothesis (2) 

S6 S7 S8 S9 S10 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-

linearity BDS test Non-linear Non-linear Non-linear Non-linear Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
autocorrelation Cyclical Cyclical Cyclical Cyclical Cyclical 

Runs test Random Random Random Random Random 

Chow Denning test Random Random Random Random Random 

Wright test Random Random Random Random Random 
Variance 

decomposition plot Random Random Random Random Random 

Hurst exponent Random Random Random Random Random 

Modelling 

SETAR MAPE 100% 100% 100% 100% 100% 

NAR R2 18.85 18.85 18.85 18.85 18.85 

NARX R2 41.45 41.45 41.45 41.45 41.45 
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In application of the above tests and models, a framework has emerged to test a market 

(proxied by a market index) for cyclical efficiency. One first determines if the returns series 

follows a random walk or deterministic process, and then attempts to model the deterministic 

process using specified and "unspecified" models which include (exclude) exogenous factors. 

The primary feature of determining cyclical efficiency emerges from the use of non-

overlapping sub-samples of the data. Further, an empirical result emerged in that the 

frequency of data has a significant role in determining whether markets can be considered 

efficient. 

 

With reference to the primary and secondary hypotheses of this thesis, it was found that: (1) 

share price behaviour in the South African market, under a daily and weekly frequency does 

not follow a random walk; whereas under a monthly frequency do follow a random walk; (2) 

an autoregressive function with no exogenous inputs could model both daily and weekly 

returns data, but not monthly returns data; however (3) an autoregressive model with 

exogenous inputs provides a better fit to the daily and weekly data than its counterpart model 

with no exogenous inputs. The use of a variety of tests provided robustness to the results; and 

enabled one to both empirically and theoretically determine if market efficiency, as described 

by the AMH can be considered a reality. By employing various tests, the researcher becomes 

cognisant of the shortcomings of any one test, allowing the most sophisticated version to be 

used in further studies of market efficiency. While statistical techniques might aide in the 

discussion, a simple, practical test of market efficiency was also employed. The returns of a 

buy and hold strategy were compared to that of a trading rule and a neural network inspired 

rule. The results show that in all but one example, the buy and hold return outperformed the 

trading rule, after costs. While this is found to be in favour of market efficiency, the single 

example of the active strategy outperforming the passive strategy should not be ignored. 

 

When these secondary hypotheses were subjected to smaller sub-samples, it emerged that the 

ability of the autoregressive model with exogenous inputs was able to perform better in some 

time periods and worse in others. Therefore,  the primary hypothesis whether market 

efficiency is cyclical or not has some merit, but requires further empirical analysis. At a 

minimum, a procedure has been outlined for determining whether market efficiency, in South 

Africa, can be considered cyclical or not.   
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4.10 A combined view of market efficiency 

Thus far, the results of the statistical tests of market efficiency and the practical test of market 

efficiency have been viewed in isolation. Table 139 and Table 140 view these results in 

parallel. The table summarises the results of the random walk test (with emphasis on the 

Hurst exponent test), showing whether the particular equity (index) had returns that followed 

a random walk under daily (D), weekly (W), monthly (M), quarterly (Q) or semi-annual (S) 

data. Further, the results of whether a passive strategy outperformed an active strategy are 

displayed again.  

 

At first glance, one observes that if the active strategy outperformed the buy and hold 

strategy, the share's returns were found to follow a random walk in the majority of examples. 

Conversely, there are five examples where the active strategy outperformed the passive 

strategy, and the shares returns were not random on a daily basis. The former statement might 

lead to conclusion that either the test for the random walk is not robust, or the trading strategy 

is flawed. If a share's return does follow a random walk, this does not preclude the possibility 

of an active trading strategy outperforming a passive one as one needs to definitively test a 

variety of trading rules to reach a general conclusion. Further, the result of whether a share’s 

returns follow a random walk or not hold over the entire sample period, yet as observed with 

sub-samples of the ALSI, this conclusion may not always hold true over all sub-samples. 

Indeed, while these results can be analysed on an individual share level, by viewing this from 

a market level, multiple investors following the same active trading strategy should 

theoretically eliminate any profits that can be made, in line with the AMH and its dual 

implications of cyclical efficiency and cyclical profitability. 

 

 
Table 139 - Statistical and trading results (1) 

Share Code Share Name Not Random Outperform 

SAB South African Breweries QS  
BIL BHP Billiton QS  
NPN Naspers Q  
MTN MTN Group MQS  
SOL Sasol DMQS  
AGL Anglo American DQS  
FSR Firstrand Group MQ  
SBK Standard Bank Group DMQ  
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Table 140 - Statistical and trading results (2) 

Share Code Share Name Not Random Outperform 

APN Aspen Healthcare MQS  
BGA Barclay's Group Africa MQ  
RMH RMB Holdings Ltd DQ  
MDC Medi-Clinic Corp QS  
SHF Steinhoff International Holdings S  
INP Investec MQS  

MPC Mr Price Group MQS  
IMP Impala Platinum S  
NTC Network Healthcare QS Y 
MMI MMI Holdings QS  
ANG Anglogold Q Y 
IPL Imperial Holdings S Y 

NPK Nampak QS Y 
GFI Goldfields QS Y 
ASR Assore MS Y 
INL Investec Limited MQS  
PIK Pik N Pay Stores QS  
TFG The Foschini Group S Y 
SNT Santam QS Y 
HYP Hyprop Investments QS  
SAP Sappi Q Y 
CLS Clicks Group S  
GND Grindrod DQS  
PPC Pretoria Port Cement MQS  
AFE A E C I Ltd QS Y 
RCL RCL Foods QS Y 
SUI Sun International MS Y 
ILV Illovo Sugar   
RLO Reunert MQS Y 
FBR Famous Brands DQ Y 
MUR Murray & Roberts MQ Y 
SPG Super Group MS Y 
FPT Fountainhead Property DMQS Y 
SAC SA Corporate Real estate Fund DM  
OCE Oceana Group  M  
WBO Wilson Bayley Holmes Ovcon QS  
J150 JSE Gold Mining Index QS Y 
J200 JSE Top 40 MQS  
J203 JSE All Share Index (ALSI) MQS  
J211 JSE Industrial 25 MQS  
J213 JSE Financial and Industrial 30 MQS  
J177 JSE Mining Index QS  
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5 Conclusion 

While the results from this thesis aid in the debate on market efficiency, it is imperative to 

note that the viewpoint was not one of proving the EMH to be (in)correct but rather to 

provide evidence in favour of a more encompassing hypothesis in which it can be falsified. 

Mackay (1841) provides a history of financial errors in which the power of a group of 

individuals does not always produce the most efficient or effective outcome. This is perhaps 

the core differentiator between behavioural and traditional finance, namely that the majority 

does not always know better than the individual.  In contrast, Surowiecki (2005) purports that 

organised crowds or institutions are more knowledgeable than any single individual.  While 

there is evidence in favour of both arguments, there is no conclusive empirical viewpoint that 

has yet been settled on by finance academics. As mentioned previously, the EMH as it stands 

cannot be refuted as it is not falsifiable. Given that no progress can be made in that area, the 

alternative would be to develop a falsifiable theory which describes financial markets today. 

The AMH integrates psychology, sociology, behavioural finance and quantitative finance to 

produce a somewhat workable definition of efficiency. Recall that no formal means of testing 

cyclical efficiency has been established in the literature. Therefore, this is the first South African 

study to offer a comprehensive test of market efficiency, from both a statistical and economic 

perspective, with the results pointing towards a market whose efficiency changes over time. By 

examining 44 randomly selected equities and 6 indices, over five frequencies, as well as multiple 

tests of randomness, return generating processes and trading strategies, this thesis supports the 

cyclical efficiency implication of the AMH. 

 

 

Chapter 2 outlined the literature on market efficiency, beginning with a qualitative exposition 

on how the concept of market efficiency emerged in finance academia. Simply, a market is 

considered efficient if one cannot use any means available to consistently earn abnormal 

returns, through the prediction of future stock prices. Market efficiency is not a new concept 

in the literature as the term has been used since the late 19th century. However, the concept 

became popularised by Fama (1970) in defining the Efficient Market Hypothesis, which 

stated that no abnormal profits may be made over time as prices reflect both private and 

public information. From the viewpoint of a market participant, studies have attempted to 

analyse the speed of adjustment of prices to new information; while others have taken the 

statistical definition of the EMH (that share prices follow a random walk) and have attempted 
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to test the hypothesis. However, irrespective of the viewpoint chosen, there is no consensus 

on whether markets are efficient according to the literature.  

 

 

A foray to time series methods was thereafter discussed, to provide a foundation for the 

econometric and artificial intelligence methods used in this thesis. Various time series 

models, ranging from simple to complex, were presented as an "evolution" of the field to 

what led to models being developed in the field of computer science. This led to the 

application of models in that field to solve problems in finance, an application that is novel in 

the context of testing market efficiency in a South African context. 

 

 

A discussion of asset pricing followed, where both considerations of investor rationality and 

the influence of exogenous factors were presented. Coupled with the foundation provided for 

time series methods, the discussion on asset pricing would then provide a background and 

motivation for the artificial intelligence models used, along with the inclusion of exogenous 

factors that could influence stock returns.  

 

 

Lastly, some of the emerging (and perhaps esoteric) areas of finance research were discussed, 

providing a well-rounded view of how inter-disciplinary collaboration can provide solutions 

to long standing questions in finance. 

  

 

This thesis sought to enhance the definition of cyclical efficiency by providing empirical 

evidence that examines whether the JSE equities market is efficient as defined by the AMH. 

In the journey towards cyclical efficiency, the random walk hypothesis was examined. The 

results of Chapter 4 confirmed that in the time period under investigation, the changes in the 

daily ALSI returns were random. An interesting result emerged in that by investigation of 

five frequencies of ALSI returns, the frequency chosen by the researcher has a significant 

impact on the results. In particular, it was found that lower frequency ALSI returns series did 

not follow a random walk, indicative of market inefficiency; whereas the daily and weekly 

ALSI return series did follow a random walk. Thus, the first of the secondary hypotheses 

(that of share returns following a random walk) can be rejected under lower frequency data, 
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but not rejected under daily and weekly frequency data, with respect to the ALSI. Extending 

that analysis to incorporate a sample of 50 securities for robustness, it was found that 86% of 

the shares and indices exhibited a random walk under daily data, 78% under weekly data, 

56% under monthly data, 22% under quarterly data and 24% under semi-annual data. While 

there is a slight increase between the number of randomly generated securities in quarterly 

and semi-annual data, the overall trend points towards higher frequency data being randomly 

generated, and lower frequency data being non-randomly generated. This is in line with the 

ALSI specific results in that it appears that the JSE can be considered weak form efficient on 

a daily and weekly basis but not the remaining frequencies. This result highlights that 

concluding whether markets are efficient or not, according to the EMH, is a function of the 

data frequency chosen as well as the sample of assets used. Further, it is intuitive that as the 

frequency of data decreases from daily to monthly, a fewer number of shares exhibit random 

walk behaviour as the series have less “noise”.  

 

 

Having established that lower frequency returns do not follow a random walk, it implies that 

there exists some deterministic process that governs them. The first process would be that of 

an auto-regressive model, where the current return is only a function of past returns. To aide 

in this objective, a SETAR model was utilised to model the returns on the ALSI. The SETAR 

model can cater for non-linearities that may be present in the data and is quite appropriate for 

modelling cyclical behaviour. This model was run on all three frequencies of data, despite the 

outcome of tests for a random walk, as it is plausible that the random walk result can be 

decomposed into non-linear components, along with a noise term. The results of Chapter 4 

indicated that while a SETAR model is appropriate, there did exist additional factors (perhaps 

exogenous) that influence the current daily return on the ALSI. Therefore, the second of the 

secondary hypotheses of whether returns can be modelled by an autoregressive process 

cannot be rejected under lower frequency data, but rejected under daily and weekly data. 

 

 

Ultimately, the aim of Chapter 4 was to establish both the additional factors that influence the 

ALSI return as well as a suitable model for evaluation of historic patterns and possible 

prediction of future returns. Drawing from the field of computer science, neural networks 

were used as approximators to test market efficiency. The use of a neural network enables the 

researcher to simply specify the inputs to the model with no prior knowledge of the form of 
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the model itself. This is intuitively appealing when one considers the notion that while a 

multitude of variables may influence the ALSI, there is little guidance on how this influence 

actually occurs. This model was run on all five frequencies of data, despite the outcome of 

tests for a random walk, as it is plausible that the random walk result can be decomposed into 

non-linear components, along with a noise term, as evidenced by the BDS test. The results 

from Chapter 4 indicate that a NARX neural network shows potential in modelling the 

returns on the ALSI, with a number of exogenous factors being included in addition to lagged 

values of the ALSI itself. This implies that returns on the ALSI are influenced by both 

exogenous and endogenous (lagged) factors. The exogenous factors included oil returns, gold 

returns, change in ALSI dividend yield, change in ALSI earnings yield, S&P 500 returns, 

Hang Seng 100 returns, and FTSE 100 returns. Therefore, the final secondary hypothesis of 

whether returns can be modelled by an autoregressive model with exogenous inputs cannot 

be rejected under all data frequencies examined. However, this finding cannot be interpreted 

in isolation to those previously discussed. While an autoregressive model was not suited to 

monthly data, having found that a model not specified a priori was suited to monthly data 

indicates that the monthly returns generating process is more complex than initially 

perceived. In other words, a specified model may exist which can explain the lower 

frequency returns process, but the one used in this thesis was unable to do so. However, the 

advantage of neural networks as approximators compared to traditional econometric methods 

is most pronounced when the sample sizes decreased (quarterly and semi-annual data). There 

was no need to bin the data, as the overall goodness of fit increased marginally as the 

frequency decreased.  

 

 

To enhance the statistical results as well as provide a comprehensive viewpoint on market 

efficiency, one needs to examine the economic significance of trading strategies to determine 

if one can outperform the market. This thesis adopted such an approach by determining the 

returns of a passive (buy and hold) strategy and an active (moving average crossover) 

strategy, net of costs. The results of a simple buy and hold strategy on the ALSI seemed to 

perform better than an active trading rule or even an active neural network inspired strategy; 

thus corroborating the results of the random walk test for daily ALSI data. Therefore, it can 

be said that the use of AI in developing and implementing a trading strategy, at least using 

South African data, is not warranted according to the results of this thesis.  
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It is interesting to note that when viewing the results of the random walk tests alongside the 

results of the trading strategy, an active strategy produced better returns than a passive 

strategy for eighteen shares, thirteen of which had returns of all three frequencies that 

followed a random walk. This implies that while the statistical test of market efficiency might 

provide one particular result, it needs to be viewed in conjunction with a practical test of 

market efficiency (as well as from the viewpoint of the AMH). Indeed, if one were to rely on 

the statistical result, then there would be no rational investor that would attempt a trading 

strategy on those shares. Given that scenario, in an adaptive market, there would exist at least 

one investor that would wish to attempt a trading strategy under the assumption that there 

exists an opportunity that none have capitalised upon (in other words, the investor would be 

the first to exploit this potentially lucrative opportunity). This result links back to the dual 

implications of the AMH - that of cyclical efficiency and cyclical profitability.   

 

 

While neural networks are relatively new in the field of finance, their application in this 

thesis, indicates that they are less favourable to portfolio management problems and more 

favourable to asset pricing problems. A shortcoming in the implementation of the NARX 

neural network was that the accuracy of the network, while reasonably low, did experience 

periods where the network performed better at predicting the return on the ALSI. 

Empirically, this would prompt the researcher to re-evaluate the model over that time period, 

leading to perhaps a new specification. Conceptually, this can be linked to the AMH, as it can 

be concluded that the network traversed through periods of accurate prediction and inaccurate 

prediction. This cyclical pattern can indeed be seen as the efficiency of the market changing 

over time, where a variable that was once significant loses its significance over time (or vice 

versa). By dividing the sample period into smaller samples, prediction was improved, but at 

the cost of a lack of interpretation. In examination of sub-samples of the daily ALSI return 

series, it was found that most of the sub-samples exhibited long term memory; and that a 

NARX network was also suitable to model the returns process. However, given the existence 

of long term memory, it is advisable for future research to implement the process using 

overlapping samples as well as differing sample sizes. Further, the advice of Kendall (1953) 

should be heeded, in that when testing hypothesis, one should take caution to the results and 

model(s) used. 
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In summary, this thesis has attempted to show that markets go through cycles of efficiency. 

The contributions of the thesis are as follows. First, the use of artificial intelligence 

techniques in solving financial problems is a promising area of research. Indeed, a particular 

neural network model was found to be the best out of other models considered to explain the 

relationship between return data. The once considered disparate fields of finance and 

computer science can be merged to an extent, with techniques from one assisting in problem 

solving in the other. Second, the frequency of observation is significant in determining 

market efficiency. This result was found only by robust testing of the data under multiple 

tests. This brings about a renewed interest in examining data frequencies - from the lowest to 

the highest - but needs to be naturally tempered by pragmatic reasoning as to their use in 

testing a hypothesis. Third, a comprehensive study was undertaken to examine the concept of 

market efficiency at both a share and index level, showing that both the definition of a market 

(that of an index and of the interaction of agents) needs to be carefully considered. Last, a 

framework has emerged in which one can systematically examine market efficiency, 

according to the AMH. If one proceeds to simply begin modelling returns without 

preliminary tests on the data, spurious relationships can and will be found. The results point 

to a four stage framework. 

 

1) Determine whether a return series is random or deterministic. If random walk behaviour 

is present, then the market is weak form efficient. 

 

2) If the result of (1) points towards a deterministic process, determine if prices can be 

predicted by their lagged values only. If this is the case, then all public information is 

incorporated into prices – the market is semi-strong form efficient. 

 

3) If the result of (2) shows significant intercept terms, then incorporate additional risk 

factors in the spirit of an APT framework. If prices can be predicted by both lagged values 

and exogenous factors, then there exists private information that is not incorporated into the 

share price.  

 

4) Examine the results of (1), (2) and (3) across differing frequencies of data as well as non-

overlapping samples. If the prediction of (3) does not vary over time, then the arrival and 

assimilation of new or private information is not instantaneous. If however, the prediction 

of (3) does vary over time, then one can argue that market efficiency is cyclical. 
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By comprehensively examining the behaviour of equity prices in South Africa, there are 

stylised facts that emerged. First, studies which examine the efficiency of markets are 

dependent on the frequency of data. If one were to only use a single frequency of data, one 

might obtain conflicting conclusions. Second, by binning data into smaller sub-samples (for 

example, splitting daily data into yearly sub-samples), one can obtain an interesting pattern of 

whether the equity market is efficient or not. Here, it is often the case that the sum of the 

parts is not equal to the whole – in other words, one might get a conclusion of, say, 

randomess, over the entire sample period of daily data, but there may be pockets of non-

randomness with the daily data. Third, by running a battery of tests, one provides robustness 

to the results. This is a somewhat debateable issue as one could either run a variety of tests 

(each being an improvement over the other) or argue the theoretical merits of each test befoe 

selecting the more appropriate one. Fourth, analysis according to industries also adds to the 

result of efficiency, if markets have high concentration sectors (such as the JSE). One might 

be tempted to conclude that the entire JSE exhibits, say, randomness, where it could be driven 

by the resources sector as opposed to any other sector. Last, the use of neural networks as 

approximators is of benefit when examining data with less than ideal sample sizes. The NNs 

used for quarterly and semi-annual data did not suffer from overfitting in comparison to the 

more traditional econometric models.   

 

 

As with all studies, one must be cognisant of generalising a result that held over a particular 

sample period to that over any sample period. As a natural extension of future research, one 

can apply the framework in this thesis to different sample periods, different countries and 

most importantly, to more frequencies of data - one might call it striving to be 

"comprehensive". Further, as returns for lower frequencies are calculated by using the 

beginning and end of that particular time period (such as the first and last day of the month), 

it would be interesting to employ the method in this thesis across an average of daily return 

data points, such that a weekly or monthly return represents the average daily return. This 

might present volatility not inherent during the first and last day of the observed prices. 

Similarly, the use of a particular test will always have proponents and opponents in the field. 

An attempt was made to circumvent this issue by employing, as far as possible, parametric, 

non-parametric and graphical versions of tests to ensure that the results obtained are 

consistent. There is slight favour towards non-parametric tests, as they do not rely on the 

underlying return distribution to be specified. Given the non-normality of returns found in 
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these five frequencies, this supports the notion of using non-parametric tests in studies of 

market efficiency. If one were to use a parametric test, one needs to first establish the 

distribution of that particular security’s returns. When applied across multiple frequencies 

and multiple securities, this becomes cumbersome, along with the comparability of results 

being compromised. However, within each of the three categories, numerous tests do exist 

and it is quite possible that a superior test can be employed. Last, while a NARX network 

does capture the relationship between the ALSI return series better than other models 

considered, this relationship cannot be described as the network is considered a "black box". 

An avenue of future research would be to design and implement a means of describing such 

relationships, either within the realm of artificial intelligence, or by the use of agent-based 

models where agents have heterogeneous preferences. The use of Deterministic Finite State 

Automata appears quite promising in this regard and is left for future research. This recent 

addition to the field of artificial intelligence enables the researcher to map the pathways of 

the neural network symbolically, allowing the researcher to observe how the input(s) are 

transformed into an output. However, specifics such as the weighting of each input are 

considerably more difficult to obtain. The use of Automatic Encoders can assist in the 

variable selection problem, as they would select the best inputs for the neural network as 

opposed to being selected by the researcher. Another technique from the realm of Computer 

Science, would be the application of a Kalman filter in the neural network. The Kalman filter 

is used in the case of a multi-scaled data distribution (effectively a return series that is 

represented daily, weekly and monthly). Kalman filters can be promising in the field of asset 

pricing as they work well with "noise" in the data as well as being conceptually linked to 

Bayesian statistics. 

 

 

While the early works in finance have set the groundwork for many financial fields today, 

subsequent works primarily focus on finding empirical evidence rather than conceptual or 

philosophical avenues. Practically, there does exist an abundance of data with many untold 

discoveries, but this does little to advance the field of finance in new directions. Indeed, the 

literature on which this thesis is founded presents an opportunity to warrant an investigation 

into the philosophy of finance. Further, after comprehensively examining market efficiency at 

both an individual share and aggregated market level, one can offer insights into how the 

South African market, and possibly other emerging markets, behave.  
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Appendix A 

The BDS Test 

The intuition behind the test is as follows. Let ��be a univariate time series, independent and 

identically distributed from some distribution. Let �� represent the probability that two points 

are within a distance ε of each other. In other words 

 

 �� = �(|�� − ��|< 	�) {A1} 

 

Further define  

 �� = �(|�� − ��|< 	�, |���� − ����|< �) {A2} 

 

 

as the probability of a history of two points being within a distance ε of each other. Under 

independence of ��, the two events contained in event B are independent implying that 

�� = 	��
�. Therefore, it is possible to estimate ��, ��and �� − 	��

� which has an expected 

value of zero under the null hypothesis. To estimate the probability that two m length vectors 

are within ε, define 

 
��,�(�) = 	

2

(� − � + 1)(� − �)
� � ���(����, ����)

���

���

�

�����

�

���

 
{A3} 

 

where 

 
�������, ����� = 	 �

1	��	����� − ����� < �

0		��ℎ������
� 

{A4} 

 

 

n is the sample size and m is the embedding dimension. Under the null hypothesis of an 

independent and identical distribution, 

 � ���,�(�)� = 	 (�(��,�(�)))
� {A5} 

 

 

Brock, Dechert and Scheikman (1987) show that given an embedding dimension, m, and the 

value of the radius, ε, the BDS statistic 
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��,�(�) = 	√� − � + 1

��,�(�) − 	��,�����
� (�)

��,�(�)
 

{A6} 

 

is asymptotically distributed following N ~ (0,1), The consistent estimator, ��,�
� (�) is given 

by 

 

 

 
��,�
� (�) = 	4[�� + 2 � ����

���

���

��� + 	 (� − 1)���� + �������� 
{A7} 

 

where 

 � = ��,�(�) {A8} 

 
� = ��(�) = 	

6

�(� − 1)(� − 2)
� � � ℎ�(��, ��, ��)
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{A9} 

 
ℎ�(�, �, �) = 	

1

3
[��(�, �)��(�, �) + 	��(�, �)��(�, �) + 	 ��(�, �)��(�, �) 

{A10} 

 

 

Kanzler (1999) shows that the consistent estimators ��,�(�) and ��(�) are in the class of U 

statistics and are the most efficient estimates of c and k respectively. The BDS test statistic is 

a two-sided test, with the null hypothesis of independent and identical distributions being 

rejected at the 5% level of statistical significance. 
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Appendix B 
 

Table B 1 - Summary of results for SAB 

SAB 

Consumer 
Goods - 
Beverage Daily Weekly Monthly Quarterly  Semi Annual 

Normal
ity 

Jarque Bera Non-Normal Non-Normal Non-Normal Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearit
y BDS test Non-linear Non-linear Linear and Non-linear Linear and Non-linear Linear and Non-linear 

Station
ary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Rando
m walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Random Random Random Random Random 

Chow Denning 
test 

Not IID Not IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID Not IID Not IID Not IID 
Variance 
decomposition 
plot Not Random Not Random Random Random Random 

Hurst exponent  Not Random Not Random Random Non-Random Non-Random 

Modelli
ng 

SETAR MAPE 144.20% 139.70% 166.80% 237.50% 131.60% 

NAR R2 16.48 10.05 14.48     
 



 308 

Table B 2 - Summary of results for BIL 

BIL 
Basic Materials - 
Mining Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Normal Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Random Random Non-Random Random Random 

Chow Denning 
test 

Not IID Not IID IID IID IID 
Correlated and 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID IID Not IID Not IID 
Variance 
decomposition 
plot Not Random Not Random Random Random Random 

Hurst exponent  Not Random Not Random Not Random Non-Random Non-Random 

Modelling 

SETAR MAPE 139.70% 142.90% 122.40% 994.50% 355.20% 

NAR R2 11.85 12.19 15.46     
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Table B 3 - Summary of results for NPN 

NPN 

Consumer 
Services - 
Media Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelat
ion Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow 
Denning test 

Not IID IID IID IID IID 
Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID IID IID Not IID Not IID 
Variance 
decompositi
on plot Not Random Random Random Random Random 
Hurst 
exponent  Random Random Not Random Non-Random Random 

Modelling 

SETAR 
MAPE 273.70% 267.70% 341.70% 201.50% 172.60% 

NAR R2 9.41 13.42 13.7     
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Table B 4 - Summary of results for MTN 

MTN 

Telecommunications 
- Mobile 
Telecommunicatons Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear 

Linear and Non-
linear 

Linear and Non-
linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Random Random Random Random Random 

Chow Denning test 

Not IID Not IID IID IID IID 
Uncorrelated with 
No 
Heteroscedasticity 

Uncorrelated with 
No 
Heteroscedasticity 

Uncorrelated with 
No 
Heteroscedasticity 

Uncorrelated with 
No 
Heteroscedasticity 

Uncorrelated with 
No 
Heteroscedasticity 

Wright test Not IID Not IID Not IID Not IID IID 
Variance 
decomposition plot Not Random Not Random Random Random Random 

Hurst exponent  Random Not Random Not Random Non-Random Non-Random 

Modelling 

SETAR MAPE 138.50% 143.40% 126.70% 261.50% 646.80% 

NAR R2 12.98 15.64 19.49     
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Table B 5 - Summary of results for SOL 

SOL 
Oil and Gas - Oil 
and Gas Producers Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Linear and Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Non-Random Non-Random Non-Random Random 

Chow Denning test 

Not IID Not IID IID IID IID 
Correlated and 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID Not IID Not IID IID 
Variance 
decomposition plot Not Random Not Random Random Random Random 

Hurst exponent  Not Random Not Random Not Random Non-Random Non-Random 

Modelling 

SETAR MAPE 213.50% 228.90% 232.10% 200.10% 249.70% 

NAR R2 14.04 12.59 12.62     
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Table B 6 - Summary of results for AGL 

AGL 

Basic 
Materials - 
Mining Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear Linear and Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelati
on Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow 
Denning test 

Not IID IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID IID IID IID IID 
Variance 
decompositio
n plot Not Random Random Random Random Random 
Hurst 
exponent  Random Random Random Non-Random Non-Random 

Modelling 

SETAR 
MAPE 118.70% 116.10% 120.70% 144.30% 122.60% 

NAR R2 6.57 10.59 17.17     
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Table B 7 - Summary of results for FSR 

FSR 
Financials - 
Banks Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Linear and Non-linear 

Linear and Non-
linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelatio
n Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Random Random Random Random Random 

Chow Denning 
test 

Not IID Not IID IID IID Not IID 
Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Wright test Not IID Not IID IID Not IID Not IID 
Variance 
decomposition 
plot Not Random Not Random Random Random Random 

Hurst exponent  Not Random Not Random Not Random Non-Random Random 

Modelling 

SETAR MAPE 152.20% 141.60% 164.40% 175.10% 180.60% 

NAR R2 8.86 20.15 14.04     
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Table B 8 - Summary of results for SBK 

SBK 
Financials - 
Banks Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Linear and Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelati
on Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Random Non-Random Random Random Random 

Chow 
Denning test 

Not IID Not IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID IID Not IID Not IID 
Variance 
decompositio
n plot Not Random Not Random Random Random Random 
Hurst 
exponent  Not Random Not Random Not Random Non-Random Random 

Modelling 

SETAR 
MAPE 145.50% 153.40% 145.60% 233.00% 250.10% 

NAR R2 5.95 20.51 26.11     
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Table B 9 - Summary of results for APN 

APN 

Healthcare - 
Pharmaceuticals and 
Biotechnology Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear 

Linear and Non-
linear Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Random Random Random Non-Random Random 

Chow Denning test 

Not IID IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID IID IID Not IID Not IID 
Variance 
decomposition plot Not Random Not Random Random Random Random 

Hurst exponent  Random Random Not Random Non-Random Non-Random 

Modelling 

SETAR MAPE 474.80% 833.30% 977.10% 245.00% 181.10% 

NAR R2 22.9 23.14 25.74     
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Table B 10 - Summary of results for BGA 

BGA 
Financials - 
Banks Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear 

Linear and Non-
linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary NON Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelatio
n Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow Denning 
test 

Not IID Not IID IID Not IID IID 
Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID IID IID IID 
Variance 
decomposition 
plot Not Random Not Random Random Random Random 

Hurst exponent  Not Random Not Random Not Random Non-Random Random 

Modelling 

SETAR MAPE 121.60% 125.80% 133.60% 108.80% 1420.00% 

NAR R2 8.97 13.05 15.55     
 

 

  



 317 

Table B 11 - Summary of results for SHF 

SHF 

Consumer Goods - 
Household Goods and Home 
Construction Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear 

Linear and Non-
linear 

Linear and Non-
linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Non-Random Random Random Random 

Chow Denning test 

Not IID IID IID IID IID 
Correlated and 
Heteroscedasticit
y 

Uncorrelated with 
No 
Heteroscedasticity 

Uncorrelated with 
No 
Heteroscedasticity 

Uncorrelated with 
No 
Heteroscedasticity 

Uncorrelated with 
No 
Heteroscedasticity 

Wright test Not IID Not IID IID IID IID 

Variance decomposition plot Random Not Random Random Random Random 

Hurst exponent  Random Not Random Not Random Random Non-Random 

Modelling 

SETAR MAPE 108.10% 115.90% 112.90% 131.50% 386.70% 

NAR R2 10.54 11.32 16.36     
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Table B 12 - Summary of results for RMH 

RMH 
Financials - 
Banks Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear and Non-linear 

Linear and Non-
linear Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelatio
n Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow Denning 
test 

Not IID IID IID Not IID Not IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Wright test Not IID IID IID Not IID Not IID 
Variance 
decomposition 
plot Not Random Random Random Random Random 

Hurst exponent  Not Random Random Not Random Non-Random Random 

Modelling 

SETAR MAPE 170.10% 170.50% 220.70% 118.00% 205.70% 

NAR R2 7.75 15.58 23.49     
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Table B 13 - Summary of results for MDC 

MDC 

Health Care - Health 
Care Equipment and 
Services Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary NON Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Random Random Random Random Non-Random 

Chow Denning test 

IID Not IID IID Not IID IID 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Correlated and 
Heteroscedasticit
y 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID IID Not IID Not IID Not IID 
Variance decomposition 
plot Random Random Random Random Random 

Hurst exponent  Random Random Not Random Non-Random Non-Random 

Modelling 

SETAR MAPE 162.60% 163.20% 158% 434.60% 434.50% 

NAR R2 13.32 12.17 43.67     
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Table B 14 - Summary of results for INP 

INP 

Financials - 
Financial 
Services Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear and Non-linear Linear and Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary NON Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelatio
n Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow 
Denning test 

Not IID IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID IID IID IID IID 
Variance 
decomposition 
plot Not Random Random Random Random Random 
Hurst 
exponent  Not Random Random Random Non-Random Non-Random 

Modelling 

SETAR 
MAPE 116.30% 116.10% 106.40% 116.40% 1004.00% 

NAR R2 10.34 16.74 13.04     
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Table B 15 - Summary of results for MPC 

MPC 
Consumer Services 
- General Retailers Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear and Non-linear Linear and Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow Denning test 

Not IID IID IID IID IID 
Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID IID Not IID Not IID 
Variance 
decomposition plot Not Random Random Random Random Random 

Hurst exponent  Random Random Random Non-Random Non-Random 

Modelling 

SETAR MAPE 180.30% 195.10% 194.10% 170.90% 100.30% 

NAR R2 11.01 10.03 7.29     
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Table B 16 - Summary of results for IMP 

IMP 

Basic 
Materials - 
Mining Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear 

Linear and Non-
linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelatio
n Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Non-Random Random 

Chow 
Denning test 

Not IID Not IID IID Not IID IID 
Correlated and 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID Not IID Not IID Not IID 
Variance 
decomposition 
plot Not Random Not Random Random Not Random Random 
Hurst 
exponent  Not Random Not Random Random Random Non-Random 

Modelling 

SETAR 
MAPE 141.30% 143.90% 155% 218.10% 151.10% 

NAR R2 10.9 11.37 14.73     
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Table B 17 - Summary of results for NTC 

NTC 

Health Care - Health 
Care Equipment and 
Services Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Non-linear Linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Random Random Non-Random Random Non-Random 

Chow Denning test 

IID IID IID IID IID 
Uncorrelated with 
No 
Heteroscedasticity 

Uncorrelated with 
No 
Heteroscedasticity 

Uncorrelated with 
No 
Heteroscedasticity 

Uncorrelated with 
No 
Heteroscedasticity 

Uncorrelated with 
No 
Heteroscedasticity 

Wright test Not IID Not IID Not IID Not IID Not IID 
Variance 
decomposition plot Random Random Random Random Random 

Hurst exponent  Random Random Not Random Non-Random Non-Random 

Modelling 

SETAR MAPE 130.50% 126.30% 123.90% 147.60% 177.10% 

NAR R2 8.43 15.52 19.85     
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Table B 18 - Summary of results for MMI 

MMI 

Financials - 
Life 
Insurance Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Non-linear Non-linear 

Stationary 

ADF test Stationary Stationary Stationary NON Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelati
on Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Random Random Random Random Random 

Chow 
Denning test 

Not IID IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID IID IID IID Not IID 
Variance 
decompositio
n plot Not Random Random Random Random Random 
Hurst 
exponent  Random Random Not Random Non-Random Non-Random 

Modelling 

SETAR 
MAPE 150.20% 164.30% 123.30% 111.70% 295.60% 

NAR R2 5.21 15.11 16.38     
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Table B 19 - Summary of results for ANG 

ANG 

Basic 
Materials - 
Mining Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Normal Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear Linear and Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelati
on Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow 
Denning test 

Not IID Not IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID IID IID IID 
Variance 
decompositio
n plot Not Random Not Random Random Random Random 
Hurst 
exponent  Not Random Random Not Random Non-Random Random 

Modelling 

SETAR 
MAPE 112.90% 103.30% 123.10% 264.80% 206.40% 

NAR R2 4.13 13.64 10.85     
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Table B 20 - Summary of results for IPL 

IPL 

Industrials - 
Industrial 
Transportation Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear Linear Linear 

Stationary 

ADF test Stationary Stationary Stationary NON Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Random Random Random Random Random 

Chow Denning 
test 

Not IID IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID IID IID Not IID 
Variance 
decomposition 
plot Not Random Random Random Random Random 

Hurst exponent  Not Random Random Not Random Random Non-Random 

Modelling 

SETAR MAPE 121.20% 122.70% 118.40% 157.80% 583.60% 

NAR R2 9.63 13.99 12.49     
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Table B 21 - Summary of results for NPK 

NPK 

Industrials - 
General 
Industrials Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelatio
n Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Non-Random Random Non-Random Random 

Chow Denning 
test 

Not IID Not IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID IID Not IID IID 
Variance 
decomposition 
plot Not Random Random Random Random Random 

Hurst exponent  Random Random Not Random Non-Random Non-Random 

Modelling 

SETAR 
MAPE 130% 146.10% 128.60% 154.50% 126.30% 

NAR R2 7.6 16.01 16.85     
 

  



 328 

Table B 22 - Summary of results for GFI 

GFI 

Basic 
Materials - 
Mining Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Linear and Non-linear Linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelati
on Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow 
Denning test 

Not IID Not IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID IID IID IID 
Variance 
decompositio
n plot Random Not Random Random Random Random 
Hurst 
exponent  Not Random Not Random Random Non-Random Non-Random 

Modelling 

SETAR 
MAPE 15486% 9771% 13040% 134.90% 196.30% 

NAR R2 12.32 10.57 20.21     
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Table B 23 - Summary of results for ASR 

ASR 

Basic 
Materials - 
Mining Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear and Non-linear Linear and Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelatio
n Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Random Non-Random Non-Random Random Random 

Chow 
Denning test 

Not IID IID IID IID IID 
Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID Not IID Not IID Not IID 
Variance 
decomposition 
plot Not Random Random Random Random Random 
Hurst 
exponent  Random Random Not Random Random Non-Random 

Modelling 

SETAR 
MAPE 192.30% 173.90% 169.50% 659.70% 91.39% 

NAR R2 6.02 11.91 15.12     
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Table B 24 - Summary of results for INL 

INL 

Financials - 
Financial 
Services Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear and Non-linear Linear and Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelatio
n Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow 
Denning test 

Not IID IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID IID IID IID 
Variance 
decomposition 
plot Not Random Not Random Random Random Random 
Hurst 
exponent  Not Random Random Random Non-Random Non-Random 

Modelling 

SETAR 
MAPE 135.60% 126.10% 119.50% 110.30% 365.50% 

NAR R2 9.77 10.59 16.51     
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Table B 25 - Summary of results for PIK 

PIK 

Consumer Services - 
Food and Drug 
Retailers Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear and Non-linear 

Linear and Non-
linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Random Non-Random Random Non-Random Random 

Chow Denning test 

IID IID Not IID Not IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID IID Not IID Not IID 
Variance 
decomposition plot Random Random Not Random Random Random 

Hurst exponent  Random Random Not Random Non-Random Non-Random 

Modelling 

SETAR MAPE 127% 120.70% 125.60% 119.50% 193.60% 

NAR R2 9.13 7.06 46.44     
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Table B 26 - Summary of results for TFG 

TFG 
Consumer Services 
- General Retailers Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Linear and Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Non-Random Random Random 

Chow Denning test 

Not IID IID Not IID IID IID 
Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID Not IID Not IID Not IID 
Variance 
decomposition plot Not Random Random Not Random Random Random 

Hurst exponent  Random Random Random Random Non-Random 

Modelling 

SETAR MAPE 129.50% 130.50% 130.40% 156.70% 211.90% 

NAR R2 10.27 20.72 15.1     
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Table B 27 - Summary of results for SNT 

SNT 

Financials - 
Nonlife 
Insurance Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear 

Linear and Non-
linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelatio
n Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Non-Random Random 

Chow Denning 
test 

IID IID IID Not IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID IID IID Not IID Not IID 
Variance 
decomposition 
plot Random Random Random Random Random 

Hurst exponent  Random Random Not Random Non-Random Non-Random 

Modelling 

SETAR MAPE 148.40% 147.40% 226.50% 196.00% 202.50% 

NAR R2 16.98 12.9 16.67     
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Table B 28 - Summary of results for HYP 

HYP 

Financials - Real 
Estate Investment 
Trusts Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow Denning 
test 

IID IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID IID Not IID Not IID Not IID 
Variance 
decomposition 
plot Random Random Random Random Random 

Hurst exponent  Random Random Not Random Non-Random Non-Random 

Modelling 

SETAR MAPE 6931% 7059% 7593% 202.50% 4078.00% 

NAR R2 13.31 12.31 23.43     
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Table B 29 - Summary of results for SAP 

SAP 

Basic Materials - 
Forestry and 
Paper Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Non-linear Linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow Denning 
test 

Not IID IID IID IID IID 
Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID IID IID IID IID 
Variance 
decomposition 
plot Not Random Not Random Random Random Random 

Hurst exponent  Random Random Not Random Non-Random Random 

Modelling 

SETAR MAPE 115.30% 110.20% 115.60% 135.60% 265.60% 

NAR R2 7.33 10.26 11.83     
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Table B 30 - Summary of results for CLS 

CLS 

Consumer Services - 
Food and Drug 
Retailers Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear and Non-linear Linear and Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary NON Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Non-Random Random 

Chow Denning test 

Not IID Not IID IID IID IID 
Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID Not IID IID Not IID 
Variance 
decomposition plot Not Random Not Random Random Random Random 

Hurst exponent  Random Not Random Not Random Random Non-Random 

Modelling 

SETAR MAPE 155.80% 156.60% 159% 163.50% 486.20% 

NAR R2 10.47 11.09 23.13     
 

 

  



 337 

Table B 31 - Summary of results for GND 

GND 

Industrials - 
Industrial 
Transportation Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear 

Linear and Non-
linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary NON Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Non-Random Non-Random 

Chow Denning test 

Not IID Not IID IID Not IID IID 
Uncorrelated with No 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID Not IID Non IID Not IID 
Variance 
decomposition plot Not Random Not Random Random Not Random Random 

Hurst exponent  Not Random Not Random Random Non-Random Non-Random 

Modelling 

SETAR MAPE 153.70% 151.80% 169.20% 157.20% 318.20% 

NAR R2 9.64 15.48 28.97     
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Table B 32 - Summary of results for PPC 

PPC 

Industrials - 
Construction and 
Materials Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear and Non-linear Linear and Non-linear Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Non-Random Random 

Chow Denning 
test 

IID IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID IID IID IID Not IID 
Variance 
decomposition 
plot Random Random Random Random Random 

Hurst exponent  Random Random Not Random Non-Random Non-Random 

Modelling 

SETAR MAPE 181.80% 177.80% 197.60% 220.50% 157.60% 

NAR R2 12.74 12.69 31.12     
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Table B 33 - Summary of results for AFE 

AFE 

Basic 
Materials - 
Chemicals Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear and Non-linear Linear and Non-linear Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelatio
n Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Non-Random 

Chow 
Denning test 

Not IID IID IID IID Not IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Wright test Not IID Not IID IID Not IID Not IID 
Variance 
decomposition 
plot Not Random Not Random Random Random Random 
Hurst 
exponent  Random Random Random Non-Random Non-Random 

Modelling 

SETAR 
MAPE 190.60% 277.70% 283.50% 187.10% 102.20% 

NAR R2 9.93 13.95 16.45     
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Table B 34 - Summary of results for RCL 

RCL 

Consumer 
Goods - Food 
Producers Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Non-linear Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow Denning 
test 

Not IID IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID IID Not IID Not IID 
Variance 
decomposition 
plot Not Random Random Random Random Random 

Hurst exponent  Random Random Not Random Non-Random Non-Random 

Modelling 

SETAR MAPE 116.70% 130.70% 127.70% 324.40% 264.40% 

NAR R2 10.1 20.2 21.47     
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Table B 35 - Summary of results for SUI 

SUI 

Consumer Services 
- Travel and 
Leisure Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear and Non-linear Non-linear Linear 

Stationary 

ADF test Stationary Stationary Stationary NON Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Non-Random Random 

Chow Denning test 

Not IID IID IID IID IID 
Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID IID IID Not IID IID 
Variance 
decomposition plot Not Random Random Random Random Random 

Hurst exponent  Random Random Not Random Random Non-Random 

Modelling 

SETAR MAPE 139.80% 131.40% 168.60% 175.20% 176.80% 

NAR R2 10.89 14 28.02     
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Table B 36 - Summary of results for ILV 

ILV 
Consumer Goods 
- Food Producers Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear Linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow Denning 
test 

Not IID Not IID IID IID IID 
Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID IID IID IID IID 
Variance 
decomposition 
plot Not Random Not Random Random Random Random 

Hurst exponent  Random Not Random Not Random Random Random 

Modelling 

SETAR MAPE 112.50% 110.90% 116.60% 112.60% 305.90% 

NAR R2 9.11 11.13 11.08     
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Table B 37 - Summary of results for RLO 

RLO 

Industrials - Electronic 
and Electronic 
Equipment Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Non-linear Non-linear 

Stationary 

ADF test Stationary Stationary Stationary NON Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow Denning test 

IID IID IID IID IID 
Uncorrelated with 
No 
Heteroscedasticity 

Uncorrelated with 
No 
Heteroscedasticity 

Uncorrelated with 
No 
Heteroscedasticity 

Uncorrelated with 
No 
Heteroscedasticity 

Uncorrelated with 
No 
Heteroscedasticity 

Wright test Not IID IID IID Not IID Not IID 
Variance 
decomposition plot Random Random Random Random Random 

Hurst exponent  Random Random Not Random Non-Random Non-Random 

Modelling 

SETAR MAPE 122.40% 130.10% 134.50% 210.90% 127.40% 

NAR R2 8.47 21.33 16.07     
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Table B 38 - Summary of results for FBR 

FBR 
Consumer Goods - 
Travel and Leisure Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Linear and Non-linear Non-linear 

Stationary 

ADF test Stationary Stationary Stationary NON Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Random Random Random Random Non-Random 

Chow Denning test 

Not IID Not IID IID IID IID 
Correlated and 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID Not IID Not IID Not IID 
Variance 
decomposition plot Not Random Not Random Random Random Random 

Hurst exponent  Not Random Not Random Random Non-Random Random 

Modelling 

SETAR MAPE 200.40% 233.80% 270.80% 404.60% 709.20% 

NAR R2 12.48 12.44 10.77     
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Table B 39 - Summary of results for MUR 

MUR 

Industrials - 
Construction and 
Materials Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear and Non-linear Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow Denning test 

Not IID IID IID IID IID 
Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID IID Not IID IID Not IID 
Variance 
decomposition plot Not Random Random Not Random Random Random 

Hurst exponent  Random Random Not Random Non-Random Random 

Modelling 

SETAR MAPE 141832% 359459% 224300% 102.30% 104.60% 

NAR R2 8.31 17.54 17.18     
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Table B 40 - Summary of results for SPG 

SPG 

Industrials - 
Industrial 
Transportation Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear and Non-linear Linear and Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary NON Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow Denning 
test 

Not IID Not IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID IID Not IID Not IID Not IID 
Variance 
decomposition 
plot Not Random Not Random Random Random Random 

Hurst exponent  Random Random Not Random Random Non-Random 

Modelling 

SETAR MAPE 110.40% 114% 111.90% 156.70% 132.00% 

NAR R2 6.26 16.45 19.58     
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Table B 41 - Summary of results for FPT 

FPT 

Financials - Real 
Estate Investment 
Trusts Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Non-Random Random Non-Random Random 

Chow Denning test 

Not IID Not IID IID IID IID 
Correlated and 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID IID Not IID IID 
Variance 
decomposition plot Not Random Not Random Random Random Random 

Hurst exponent  Not Random Not Random Not Random Non-Random Non-Random 

Modelling 

SETAR MAPE 108.20% 109.10% 113.80% 148.50% 172.80% 

NAR R2 11.04 12.59 15.2     
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Table B 42 - Summary of results for SAC 

SAC 

Financials - Real 
Estate Investment 
Trusts Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear and Non-linear Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Non-Random Random Random Random 

Chow Denning test 

Not IID Not IID IID IID IID 
Correlated and 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID IID Not IID Not IID 
Variance 
decomposition plot Not Random Not Random Random Random Random 

Hurst exponent  Not Random Not Random Not Random Random Random 

Modelling 

SETAR MAPE 105.80% 111.20% 114% 129.30% 346.50% 

NAR R2 6.39 18.43 12.81     
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Table B 43 - Summary of results for OCE 

OCE 
Consumer Goods - 
Food Producers Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear 

Linear and Non-
linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Random Random Random Random Random 

Chow Denning test 

Not IID Not IID IID Not IID IID 
Correlated and 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID IID Not IID Not IID 
Variance 
decomposition plot Random Not Random Random Random Random 

Hurst exponent  Not Random Not Random Not Random Random Random 

Modelling 

SETAR MAPE 131.40% 134% 133.50% 203.10% 200.50% 

NAR R2 7.53 15.21 18.63     
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Table B 44 - Summary of results for WBO 

WBO 

Industrials - 
Construction and 
Materials Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Linear and Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelation Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Non-Random Non-Random Random Random 

Chow Denning test 

Not IID IID IID IID IID 
Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID Not IID Not IID Not IID 
Variance 
decomposition plot Not Random Random Random Random Random 

Hurst exponent  Random Random Not Random Non-Random Non-Random 

Modelling 

SETAR MAPE 258.60% 254.90% 253.30% 120.60% 154.70% 

NAR R2 21.27 12.87 34.69     
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Table B 45 - Summary of results for the J150 

 

J150   Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear Non-linear Linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelati
on Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow 
Denning test 

Not IID IID IID IID IID 
Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID IID IID IID 
Variance 
decompositio
n plot Not Random Random Random Random Random 
Hurst 
exponent  Random Random Not Random Non-Random Non-Random 

Modelling 

SETAR 
MAPE 142.60% 115.70% 159.60% 133.00% 422.90% 

NAR R2 10.36 12.03 12.2     
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Table B 46 - Summary of results for the J200 

J200   Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelati
on Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow 
Denning test 

Not IID IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID IID Not IID Not IID Not IID 
Variance 
decompositio
n plot Not Random Random Random Random Random 
Hurst 
exponent  Random Random Not Random Non-Random Non-Random 

Modelling 

SETAR 
MAPE 123.60% 123.60% 125.80% 151.00% 186.40% 

NAR R2 11.28 12.16 9.62     
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Table B 47 - Summary of results for ALSI 

J203   Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Non-linear Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelatio
n Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow 
Denning test 

Not IID IID IID IID IID 
Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID Not IID Not IID Not IID 
Variance 
decomposition 
plot Not Random Random Random Random Random 
Hurst 
exponent  Random Random Not Random Non-Random Non-Random 

Modelling 

SETAR 
MAPE 297.20% 283.20% 241.60% 118.30% 167.80% 

NAR R2 12.8 16.49 23.87     

NARX R2 38.91 24.55 36.94     
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Table B 48 - Summary of results for the J211 

J211   Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear and Non-linear Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelati
on Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow 
Denning test 

Not IID IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID IID Not IID Not IID 
Variance 
decompositio
n plot Not Random Random Random Random Random 
Hurst 
exponent  Random Random Not Random Non-Random Non-Random 

Modelling 

SETAR 
MAPE 332.50% 370.20% 418.90% 180.70% 573.90% 

NAR R2 13.19 17.31 17.74     
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Table B 49 - Summary of results for the J213 

J213   Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Non-Normal Non-Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear and Non-linear Linear and Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary NON Stationary Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelati
on Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow 
Denning test 

Not IID IID IID IID IID 
Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID Not IID IID Not IID Not IID 
Variance 
decompositio
n plot Not Random Random Random Random Random 
Hurst 
exponent  Random Random Not Random Non-Random Non-Random 

Modelling 

SETAR 
MAPE 313.60% 215.70% 1006% 139.20% 82.06% 

NAR R2 12.73 15.72 14.13     
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Table B 50 - Summary of results for the J177 

 

J177   Daily Weekly Monthly Quarterly  Semi Annual 

Normality 

Jarque Bera Non-Normal Non-Normal Normal Normal Normal 

Q-Q Plot Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 

K-S test Non-Normal Non-Normal Non-Normal Non-Normal Non-Normal 
Non-
linearity BDS test Non-linear Non-linear Linear and Non-linear Linear and Non-linear Linear and Non-linear 

Stationary 

ADF test Stationary Stationary Stationary Stationary NON Stationary 

KPSS test Stationary Stationary Stationary Stationary Stationary 

Random 
walk 

Rolling 
Autocorrelat
ion Cyclical Cyclical Cyclical Non-Cyclical Non-Cyclical 

Runs test Non-Random Random Random Random Random 

Chow 
Denning test 

Not IID IID IID IID IID 
Correlated and 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Uncorrelated with No 
Heteroscedasticity 

Wright test Not IID IID IID IID IID 
Variance 
decompositi
on plot Not Random Random Random Random Random 
Hurst 
exponent  Random Random Random Non-Random Non-Random 

Modelling 

SETAR 
MAPE 113.60% 115.30% 115.30% 248.30% 157.10% 

NAR R2 7.14 12.15 15.53     
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