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There are countless suns and countless earths all rotating round their suns in 

exactly the same way as the seven planets of our system. The unnumbered worlds 

in the universe are all similar in form and rank and subject to the same forces and 

the same laws. 

 – Giordano Bruno, On the Infinite Universe and Worlds (1584) 

 

 

The roads by which men arrive at their insights into celestial matters seem to me 

almost as worthy of wonder as those matters in themselves. 

 – Johannes Kepler, Astronomia Nova (1609) 

 

 

Yes, astronomy's much more fun when you're not an astronomer.  

 – Brian May, VOX Magazine (1991) 
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Abstract 

This study investigates the space around triple systems to find the regions of 

secular stability of planetary orbits. Numerical N-body simulations are used to 

determine empirically the bounds of these regions as a function of the system’s 

configuration.  

There have been numerous theoretical studies of the stellar dynamics of triple 

systems, some with limited numerical checks, but the few purely empirical studies 

have been confined largely to binaries. Very little has been done on planetary 

orbits within either of these systems. There has been almost no work on 

generalised systems, little on retrograde planetary orbits and none on retrograde 

stellar orbits, with nearly all being on coplanar orbits and for a limited number of 

orbital parameters. 

This work expands into, and investigates new areas through 

1. Providing a generalised mapping of the regions of planetary stability in 

triples, by: 

2. examining all four types of orbits – P1, P2, S1 and S3; 

3. investigating these orbit types for both prograde and retrograde motion of the 

planets; 

4. investigating them for both prograde and retrograde motion of the outer body 

of the triple; 

5. investigating highly-inclined orbits of the outer star, stellar Kozai resonance 

and its effect on the region of stability for P1 and P2 orbits; 

6. extending the number of parameters used to all relevant orbital elements of 

the triple’s stars, and 

7. expanding these elements and mass ratios to wider ranges that will 

accommodate recent and possible future observational discoveries. 

This resulted in semi-analytical models describing the stability bounds of each 

type of orbital configuration found in triples.  

These relationships can be used to guide searches for planets in triple systems and 

to determine quickly the feasibility of initial observational estimates of planetary 

orbital parameters, and to select suitable candidates for a survey of such systems. 

The geometry of the stable zone indicates not only where to look for planets but 

the most suitable search method. 

To highlight how the stability of planets in triple systems differs from that for 

binaries, an analysis of these systems over the same parameter space was required, 

resulting in a contribution to the body of empirical work on binaries as well 

 

Key words: methods: numerical – methods: N-body simulations – planet-star 

interactions – celestial mechanics – stars: hierarchical triples – planetary systems: 

dynamical evolution and stability  
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Introduction 

There have been numerous theoretical studies of the stellar dynamics of triple 

systems, with some including limited numerical checks. Theoretical approaches 

have some significant limitations. The few studies that are a) numerical/empirical 

and b) apply to planets, have been confined almost exclusively to binaries. There 

has been only one study of the four-body problem of planets within a triple. There 

has been almost no work on generalised, rather than specific, systems. Few 

studies have looked at retrograde planetary orbits (which should be entirely 

possible in triples, like HAT-P-7b, in a binary system) and none at retrograde 

stellar orbits (of which four have already been discovered). Nearly all have been 

for coplanar orbits and for a limited number of orbital parameters. 

The objective of this work was to comprehensively map the regions of planetary 

stability in triples and address some of these limitations. 

For a comprehensive analysis, one needs to examine all four types of planetary 

orbits in triples, i.e. P1, P2, S1 and S3 orbits. One also needs to address retrograde 

planetary orbits, as planets with these motions have been discovered, and also 

retrograde orbits of the outer star, a rarer occurrence. It is also necessary to touch 

on highly-inclined orbits of the outer star, with the resulting stellar Kozai 

resonance and its sculpting of the geometry of the stable region. 

We also extended the number of parameters used in previous work to all the 

orbital elements of the triple’s stars, and widened the ranges of both these and the 

relevant mass ratios, in order to encompass recent observations as well as 

potential future discoveries. 

The remainder of this chapter provides a contextual overview, ending with an 

outline of the thesis. 

1.1 Stellar Multiplicity 

Some time ago it was recognized that a large fraction of systems in the Galaxy are 

composed of multiple stars. For example, an examination of the 164 nearest G-

dwarfs by Duquennoy and Mayor (1991) showed that 38% of these stars were in 

binaries, 4% in triples, and 1% in quadruple star systems. It has been variously 

estimated that 12% – 40% of the stars in our Galaxy are binary or multiple 

systems, that multiplicities of three and higher can occur in 2% – 25% of all 

stellar systems and that many, if not most, close binaries have distant tertiary 

components (Tokovinin 2004; Alexander 2012; Kane & Hinkel 2013). Binary 

frequency appears to correlate well with stellar ages, with low-mass pre-main 

sequence stars having very high binary frequencies of 80% – 100%. More 

recently, the Kepler Eclipsing Binary Catalog has listed more than 2 100 eclipsing 

binaries (Slawson et al. 2011) among which approximately 20% are in triple 

systems. 

Most known multiple stars result from random discoveries. One early catalog of 

physical stellar multiplicity data is the Multiple Star Catalogue (MSC) (Tokovinin 
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1999), which was complete to a distance of around 10 pc and was updated (up to 

April 2010) to contain 1 359 stellar systems of multiplicity 3 to 7. However, it has 

strong observational biases and is not usable for unbiased statistical studies. 

Tokovinin attempted a comparative analysis of triples and quadruples based on 

the MSC (Tokovinin 2008). A similar effort was undertaken by Eggleton, using 

bright stars and an ad hoc model of observational selection (Eggleton 2009).  

A joint study by Eggleton and Tokovinin (2008) that considered stellar systems 

with multiplicities ranging from one to seven in the set of stars with combined 

magnitude brighter than 6.00 on the Hipparcos scale (which was effectively 

limited to systems with mass above about 1 𝑀𝑠, since very few systems of lower 

mass are included among the bright stars) identified 4 558 such bright systems, of 

which 60% were single stars, 32% binaries and 6% triples, with an observed mean 

multiplicity of 1.53. Although reasonably representative of stars more massive 

than the Sun, this study is unlikely to be representative of the Galaxy as a whole 

because of its magnitude constraint. Raghavan et al. (2010) came to a similar 

conclusion with observed fractions of single, double, triple, and multiple systems 

of 56%, 33%, 8% and 3% respectively, if all confirmed stellar and brown dwarf 

companions are accounted for.  

A more comprehensive survey is based on a volume-limited sample of 4 847 

unevolved or moderately evolved stars with masses from 0.9 to 1.5 𝑀𝑠 within 67 

pc of the Sun (Tokovinin 2014a, 2014b). The multiplicities found are shown in 

Table 1.  

 

Stellar type Fraction 

Single 54% 

Binaries 33% 

Triples 8% 

Quadruples 1% 

2+2 quadruples 3% 

Quintuples 1% 

Total 100% 

Table 1. Stellar multiplicities per Tokovinin (2014) 

Some key findings were that: 

1. Periods of all binaries are distributed log-normally with a median 𝑙𝑛 𝑃 = 4.54 

(100 yr). 

2. The mass ratio is distributed uniformly and is effectively independent of the 

period.  

3. The multiplicity fraction is 0.46 ± 0.01. The fraction of hierarchical systems 

is 0.13±0.01. 

4. There is a lack of outer systems with periods shorter than 1 000 d. 

5. There is an excess of tight inner binaries with P  10 d compared to the 

smooth Gaussian distribution, presumably caused by tidal evolution. 

6. The mass ratios in the inner and outer systems of triple stars are uncorrelated. 

In triple stars, the system mass ratio of the outer binary does not depend on its 

period and has a median value of 0.39, meaning that the masses of tertiary 

components are comparable to the masses of stars in the inner binary.  
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A comprehensive study of 2 600 targeted main-field Kepler binaries found 

evidence for a third body in 222 systems (Borkovits et al. 2015); this implied that 

at least 30% of binaries are in triple or higher multiple systems and the authors 

concluded that a much larger fraction of the binaries in their sample were likely to 

be bound with one or more other bodies. 

According to the Open Exoplanet Catalogue (May 2017), out of the 185 multiple 

star systems with planets, 37 or 20% are triple star systems. This is consistent with 

the finding that triple star systems represent less than a fifth of multiple star 

systems (Raghavan et al. 2010). 

Some quadruple systems have been found, of which AD1652 is one of the few 

systems where orbital fits were found for multiple orbits (Tokovinin, Gorynya & 

Morrell 2014). 

A quintuple system, consisting of a contact binary and a detached binary together 

with a fifth star, probably all gravitationally bound in a single system has also 

been confirmed (Lohr et al. 2015). 

1.2 Hierarchical Orbits 

A hierarchical triple can be loosely defined as a close binary that is orbited by a 

distant companion. More formally, strong hierarchy has been described by 

Zhuchkov, Orlov and Rubinov (2006) as “when the ratio of the orbital periods of 

the outer and inner subsystems following along the hierarchy are ∼102 or higher, 

the hierarchy will be strong, and the system itself will probably be stable, with 

motions close to Keplerian in each hierarchical level. Only systems with strongly 

elongated orbits for their outer subsystems can be exceptions to this rule. Secular 

perturbations (similar to Kozai resonances in triple systems) can certainly alter the 

orbital eccentricities and inclinations in inner subsystems; however, these are 

unable to affect substantially the dynamical stability of the system as a whole.” 

They also noted that “in some systems with strong hierarchy whose closest 

subsystems have periods shorter than 10 days, tidal interactions between the 

components must be taken into account, and these depend substantially on the 

structure of the stars.” 

Most triples are hierarchical simply because if they were not, the system is likely 

to be unstable and fragment into a binary and an ejected third star.  

1.3 Stability Of Triple Stellar Systems 

Hierarchical triple systems normally comprise three bodies of comparable mass, 

with the semi-major axis between two of them being quite small and the third 

body moving in an approximately Keplerian orbit around the centre of mass of the 

binary pair, at a distance large compared to the binary’s separation. A system of 

three or more bodies with comparable separations was shown to be dynamically 

unstable by Harrington (1972). The orbital behavior of hierarchical triple systems 

has been the subject of many theoretical investigations in the last half century 

(Harrington 1968; Mazeh & Shaham 1979; Soderhjelm 1984; Krymolowski & 

Mazeh 1999). A succinct summary of work done on three-body stability criteria 

prior to 1999 is provided by Donnison (1999). At that stage, the criterion for three 

equal masses and circular orbits was 3.1 ≤ 𝑞𝑜𝑢𝑡 𝑎𝑖𝑛⁄ ≤ 3.5, where 𝑞𝑜𝑢𝑡 is the 

closest approach of the third mass to the centre of mass of the binary and 𝑎𝑖𝑛 is 
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the semi-major axis of the binary orbit. More recent theoretical approaches, some 

incorporating numerical checks of their results, are discussed in later sections and 

include Ford, Kozinsky and Rasio (2000), Mardling and Aarseth (2001) and 

Hamers, Perets and Portegies Zwart (2015). 

Retrograde orbits for the outer binary are more stable than perpendicular or 

prograde orbits. The reason for this is that from the perspective of the inner 

binary, at each periastron passage between the two binaries the relative motion is 

more rapid, so perturbations are better averaged over the orbital motions, making 

the system more stable. However, for prograde orbits the motion of the outer 

binary relative to the inner binary is more synchronous at each periastron passage, 

with the result that the tidal pull is much stronger, making the outer binary less 

stable. This result has been known for over one hundred years (Moulton 1914) 

and was investigated further by e.g. Harrington (1972), Donnison and Mikulskis 

(1994) and Gayon and Bois (2008). A different interpretation is that the phase-

space topological structures of mean-motion resonances for prograde and 

retrograde motion are simply different (Morais & Giuppone 2012). 

For example, an early study by Donnison and Mikulskis (1995) on triples found 

that retrograde stellar systems are more stable than prograde for all mass ranges, 

with stability of the system decreasing as the eccentricity of the binary pair 

increases for small outer-body eccentricities and stability increasing for large 

eccentricities, with little effect for intermediate eccentricities. For triples with 

small binary eccentricities, retrograde orbits are more stable, while for systems 

with large eccentricities for both the inner binary and the outer-star, prograde 

orbits are more stable (Donnison & Mikulskis 1995). 

In our study both prograde and retrograde planetary orbits were investigated. 

Previous studies have used a fairly wide range of mass ratios for the outer star 

relative to the inner binary, as there are triples where the inner and outer 

components are of comparable mass. These have been widened even further in 

this study since systems with an inverted mass ratio (i.e. the outer star is more 

massive than the aggregate inner binary) have been found, such as HD 181068 

(Derekas et al. 2011; Borkovits et al. 2013). 

1.4 Exoplanet Multiplicity 

Per the NASA Exoplanet Archive, (to June 2017) there are 2 600 stellar hosts and 

3 486 confirmed extrasolar planets, of which 2 335 were contributed by the 

Kepler mission, with a further 2 250 unconfirmed candidates. Of the planet 

candidates, only 5% – 10% are likely to be false positive detections. In addition, 

2 876 eclipsing binary stars have been identified.  

A 2010 detailed analysis of companions to solar-type stars, based on a sample size 

of 454 concluded that 9% ± 2% of the single stars had planets, compared with 7% 

± 2% of binaries and 3% ± 3% of triples (Raghavan et al. 2010). The results also 

showed that these fractions were statistically similar, suggesting that single stars 

and stars with companions are equally likely to harbour planets.  

A later study by Roell et al. (2012) of 477 stellar systems, identified 57 multiple 

systems (47 double and 10 triple systems) with at least one planet. Some data 

from this study is shown in Table 2. The resulting multiplicity of about 12% was 

lower than previously published values. A suggested reason was the increasing 
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number of transiting planets found in recent years, which were excluded by earlier 

studies. 

 

Multiple Single Double Triple or higher Reference 

Solar-like stars 

46% 54% 34% 9% 1 

44% 56% 38% 4% 2 

Exoplanet host stars 

22.90% 77.10% 19.80% 3.10% 3 

17.20% 82.80% 14.80% 2.40% 4 

11.95% 88.05% 9.85% 2.10% 5 

1: Raghavan et al. (2010),   2: Duquennoy & Mayor (1991)   

3: Raghavan et al. (2006),   4: Mugrauer & Neuhauser (2009)   

5: Roell et al. (2012)       

Table 2. Multiplicities of solar-like stars and exoplanet host stars 

The multiplicity for exoplanet host stars of 12% is also approximately a quarter of 

the multiplicity of solar-like stars. To date, no S-type planet has been found in a 

binary with a (projected) separation of under 10 AU and S-type multi-planet 

systems have only been found in stellar systems with (projected) separations 

larger than 100 AU. The equivalent range for triples is 20 AU and 65 AU. 

Combining the Eggleton (2009) and Roell et al. (2012) data results in the mean 

frequencies shown in Table 3. These are approximate because of different 

binnings of the data. 

 

Reference Multiplicity 

  1 2 3+ 4+ 

1 54 34 9 
 

2 56 38 4 
 

3 77.1 19.8 3.1 
 

4 82.8 14.8 2.4 
 

5 88.05 9.85 2.10 
 

Eggleton1 59.61 31.53 6.30 2.60 

Average 69.59 24.66 4.48 2.60 
1 Excluding the Sun       

Table 3. Frequencies of multiplicities (references refer to those in Table 2) 

The table clearly shows that multiplicity rates are still quite uncertain if not 

contradictory (Wang et al. 2014). We will use the multiplicities from Raghavan et 

al. (2010) – 54% for single stars, 34% for binary stars and 9% for triple stars. 

Eggleton found that the frequencies of various multiplicities follow a power law 

up to septuple multiplicity. 

The frequency of occurrence of circumbinary planets orbiting close to non-contact 

binaries (periods of less than 60 d) depends strongly on the planetary inclination 

distribution. If circumbinary planetary orbits are preferentially coplanar, then the 

rate of occurrence of circumbinary planets is 10% with 95% confidence, which is 

higher than, but consistent with, single star rates. If the planetary inclination 
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distribution is isotropic, then the frequency increases to 47%. This implies that 

formation and evolution in circumbinary disks must either lead to largely coplanar 

planets, or proceed with much greater facility than in circumstellar disks 

(Armstrong et al. 2014). It is likely that this conclusion applies to triples as well. 

To date, 30 confirmed and 37 unconfirmed planets have been found in triple 

systems. 

Putting together all the results of planet frequency studies, it appears that, on 

average, every star should harbour at least one planet. Our Galaxy has at least 

1011 stars, implying approximately the same number of planets. With the visible 

universe containing a current estimate of 21012 galaxies, the number of planets 

therein is of the order of 1023. Of these, approximately 1022 will therefore be in 

triple systems. 

While Kepler's capabilities have been severely diminished, analysis of its 

accumulated data over the next few years is expected to reveal possibly thousands 

of additional planet candidates, and extend their range to smaller sizes and longer 

periods. Follow-up and continuing searches for exoplanets from the ground and 

from space continues, with surveys from GAIA (first data release September 

2016), TESS (2018), CHEOPS (2018) the JWST (2018) and PLATO (2025). 

1.5 Exoplanet Orbits 

1.5.1 Exoplanet orbit types 

A planetary orbit around one stellar component of a binary or triple is denoted an 

S-type orbit, while an orbit around both stars of a binary or all three stars of a 

triple system is a P-type orbit. (There is a further type of orbit, the L-type, where 

the planet co-orbits with one of the stars, i.e. librates about the triangular 

Lagrangian points like the Trojan asteroids in the Solar System. However, these 

orbits are less important in binary and triple systems as they require an outer mass 

ratio 𝜇2 = 𝑚2/(𝑚1 +𝑚2) ≤ 1/26, which is more likely to be met by an outer 

planet than an outer star. These orbits are therefore ignored in this study.) 

These two orbit types are shown diagrammatically in Figure 1 for the binary case. 

A triple system simply consists of a third star orbiting this inner binary. 

 

Figure 1. A planet in a binary system, where ⊗ is the stellar centre of mass: a) 

the planet orbits one component of the stellar binary; b) the planet is in 

a circumbinary orbit around both stellar components (Perryman 2011) 
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In a triple system five planetary orbits are possible – three S-type orbits around 

each of the stars, and two P-type orbits, one around the inner binary and one 

around all three stars of the triple. These are discussed in Section 3.6.1. 

While planets have been found in S-type orbits around the binary components of 

triples as well as around the outer star, only two P-type orbits have been found, 

both being circumbinary (with one being in a quadruple system). The discovery of 

a planet in a circumtriple orbit has not yet been made, but appears inevitable – a 

priori, there is no reason for planetary formation not to occur in a circumtriple 

disk just as in a circumbinary disk.  

However, hierarchical triple systems that are compact enough to possibly harbour 

planets in P-type circumtriple orbits form a small minority of hierarchical triples, 

with only 7 of 724 catalogued systems in one survey appearing suitable 

(Tokovinin 2008). 

The dynamics of a planet in a triple system are potentially much richer than for a 

planet in a binary system. The two orbits constituting the triple system may 

interfere with each other and therefore exhibit secular change. A circumtriple 

planet could therefore interact resonantly with the orbital motion of the stars of 

this stellar system, i.e. show mean motion resonance (MMR). It is these 

resonances that set bounds on the orbits within the system and define the chaotic 

region. A circumtriple planet may also interact with the slower secular precession 

of the two stellar orbits that perturb each other, i.e. secular resonance. A secular 

resonance can create unstable areas within stable regions, as with the asteroid belt 

in the Solar System. Furthermore, for triple star systems that are not coplanar, the 

planet will experience gravitational perturbations not limited to its orbital plane – 

its orbital inclination will also be subject to secular change. Also, a triple system 

with a high mutual inclination will tend to exhibit Kozai resonance, with very 

large fluctuations in eccentricity and inclination. A planet orbiting such a system 

will be affected by all these gravitational effects, with a potentially strong 

influence on its orbital stability. 

1.5.2  Prograde and retrograde planetary orbits 

The stability of prograde versus retrograde planets in circular binary systems has 

been investigated by, for example, Morais and Giuppone (2012) who used 

numerical simulations of S-type systems to produce detailed maps of the (𝑎, 𝜇1) 

stability boundary and showed that retrograde planets are stable at distances up to 

1.5x closer to the perturber than prograde planets (compared with the 1.2x found 

in this study). They also concluded that instability is a result of either increasing 

eccentricity caused by single mean motion resonance forcing, or the chaotic 

diffusion of eccentricity and semi-major axis, as a result of overlapping adjacent 

mean motion resonances. 

Although none have yet been confirmed, planets in retrograde orbits around a 

binary or triple system should be quite possible. For example, the Rossiter–

McLaughlin effect has been used to show that as many as 25% of hot Jupiters are 

orbiting in a retrograde direction with respect to their parent stars (Triaud et al. 

2010), strongly suggesting that dynamical interactions rather than planetary 

migration produce these objects. 

In this study both prograde and retrograde planetary orbits were investigated. 
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1.5.3 Observational discoveries 

Initial exoplanet discoveries were of planets orbiting single stars. Later, stellar 

companions were discovered around several dozen exoplanet host stars formerly 

believed to be single. Most of these exoplanet candidates are in S-type orbits. 

However, the existence of circumbinary planets had been suspected and Kepler 

provided the first confirmed identifications of transiting circumbinary planets.  

To date (May 2017) 3 468 confirmed exoplanets have been found in 2 632 

planetary systems (i.e. a multiplicity of 1.3), including 133 binary systems, 25 

triple systems and two quadruple systems. Kepler/K2 has contributed 2 483 

confirmed planets, over 70% of the total. Discoveries comprise both S-type orbits 

(beginning with HD 114762 b in 1992) and P-type orbits (PSR B1620 – 26 b in 

1994). P-type circumbinary orbits have been found around both wide binaries 

(e.g. NN Ser (AB) c, d, DP Leo b, HU Aqr (AB) c and UZ For (ab) d) and close 

binaries (e.g. HWVir (AB) b, Kepler-16 (AB) b, dubbed the first “Tatooine” 

planet, Kepler-34 (AB) b, Kepler-35 (AB) b, Kepler-38 (AB) b, and Kepler-47 

(AB) b, c, which are all Neptune-like or Jupiter-like planets). The Kepler team 

estimates that about 1% of binary stars of close separations have giant planets in 

nearly coplanar P-type orbits. The 30 confirmed planets in triple star systems 

began with 16 Cygni Bb in 1996, with the most recent discovery being Proxima 

Centauri b in 2016. 

Two planets have been discovered in two quadruple star systems. PH-1 A(ab) b or 

Kepler-64b is in a P-type orbit outside a 20-day period eclipsing binary, with 

another visual binary orbiting ~1 000 AU away (Schwamb, Orosz et al, 2012) and 

30 Ari Bb is in an S-type orbit around one star of a double-binary system (Kane et 

al. 2015). 

Roell et al. (2012) defined the multiplicity of an exoplanet host star by its 

inclusion in the Catalogue of Components of Double and Multiple Stars or CCDM 

(Dommanget & Nys 2002). The current number of discovered planets by 

configuration of star system and hence orbit type, compiled from various sources, 

is shown in Table 4. The exoplanet data was extracted from the Open Exoplanet 

Catalogue (OEC) (Rein 2012) and the NASA Exoplanet Archive database 

(Akeson et al. 2013). The planet orbit code used in the table denotes [number of 

stars in system, number of stars orbited].  

It should be noted that exoplanet host star multiplicity suffers from strong 

observational bias and selection effects produced by the original planet search 

programmes. For example, the Kepler input catalog was selected for certain stellar 

spectral types and radii. 

Comparing stellar multiplicity frequencies with those for exoplanets, 

approximately 70% of stellar systems are single, while 97% of exoplanet 

discoveries have been of this type. Binaries comprise 25% of stellar systems but 

only 2.2% of exoplanets discovered have been of this type. While triple systems 

account for almost 5% of stellar systems, the frequency of exoplanet discoveries 

in these has been only 0.5%. The ratios of these frequencies suggest that, on the 

assumption that the true occurrence of exoplanets is not skewed as acutely as this, 

a large potential exists for future discoveries in binary and higher multiple 

systems, with this potential increasing with increasing multiplicity. 

 

http://cdsarc.u-strasbg.fr/viz-bin/Cat?cat=I%2F274&target=brief&
http://www.openexoplanetcatalogue.com/
http://www.openexoplanetcatalogue.com/
http://exoplanetarchive.ipac.caltech.edu/
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Stellar  Orbit type Exoplanets Relative 

multiplicity Freq. Code Type Number Freq. Number Freq. freq.1 
 (%)   (no.) (%) (no.) (%)  

Singles 69.6 1,1 P 3157 96.4 5657 97.2 1.40 

Binaries 24.7   94 2.9 129 2.2 0.090 

   2,1 S 77 2.4 110 1.9  

   2,2 P 17 0.5 19 0.3  

Triples 4.5   22 0.7 32 0.5 0.123 

   3,1 S 21 0.6 31 0.5  

   3,2 P 1 0.0 1 0.0  

   3,3 P - - - -  

Higher 2.6   2 0.1 2 0.0 0.013 

   4,1 S 1 0.0 1 0.0  

   4,2 P 1 0.0 1 0.0  

 Total 101   3275 100 5820 100  
1 Ratio of stellar frequency to exoplanet frequency. Note some rounding has occurred.  

Table 4. Frequency of exoplanets by type of orbit 

To support this view, comparing the exoplanet orbit type frequencies with the 

planet number frequencies shows that they are broadly similar for single and 

binary stars. It has been found that the frequency of planets in binaries is not 

statistically different from planets orbiting single stars and that it cannot be lower 

by more than a factor of three compared to planets orbiting single stars (Bonavita 

& Desidera 2007). This study also found that for moderately wide binaries, the 

frequency of planets is independent of separation and the wide companion plays 

only a marginal role in the formation and evolution of giant planets. It has also 

been reported that the presence of distant companions (of separations >300 AU – 

500 AU) does not significantly affect the process of planet formation, as the mass 

and period distribution of planets in such wide binaries are similar to those of 

planets orbiting single stars (Desidera & Barbieri 2007). However, comparing the 

frequency of S-type orbits with P-type orbits in binaries in Table 4 shows that the 

former are over six times more common. 

It should nevertheless be noted that while the global frequency of planets in 

binaries may be close to that of singles, several studies have shown that this is 

only true for relatively wide binaries of separation greater than 50 – 100AU. For 

binaries tighter than 50AU, there is a clear deficit of exoplanets (e.g. Kraus et al. 

(2016)). 

The planet frequencies for triples and higher (hidden by rounding) are also 

roughly similar to those for the orbit frequencies, with a large preponderance of S-

type orbits. However, one must again be aware of the small sample size and 

selection effects. 

Most binary and multiple stellar systems found to be harbouring planets are wide, 

with separations larger than 100 AU (Eggenberger, Udry & Mayor 2004), and 

nearly half of the planets found are in very wide binaries with average stellar 

separations greater than 1 000 AU (Roell et al. 2012). However, several systems 

with separations as low as ∼20 AU, such as HD 196885, have been shown to 

contain giant planets. Close binaries tend to be found in higher-multiplicity 
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systems, implying that wide and close binarity are related statistically (Tokovinin 

2001). 

Many planetary configurations are possible, e.g. two hot Jupiters have been 

discovered orbiting each star of a wide binary system (Neveu-VanMalle et al. 

2014). Only three stellar binaries are known to host pairs of circumprimary 

planetary systems, and all are wide: HD 20781/2, XO-2 and Kepler-132, where 

dynamical analysis show that its two planets cannot be orbiting the same star.  

Of the 185 exoplanets in 133 binary systems, the closest P1-type orbit (Kepler-

47b) is ≃0.3 AU, with a stellar separation of just 0.0836 AU (Orosz et al. 2012). 

An example of a close S3 orbit is KOI-2939, a compact triple system with a close 

binary orbited by a large planet 2.7 AU away. (For the definitions of P1, P2, 

S1/S2 and S3 orbits, see Section 3.6.1.) 

Most multiple star systems are triple, with systems of four or more components 

far less likely to occur. Some researchers expect that there will be more cases 

discovered of planets orbiting outside compact binaries than inside wide binaries, 

and this may also hold true for triples. It appears that most triples are hierarchical, 

consisting of a close binary with the third star in a wide orbit. 

Systems with multiplicities of three or higher containing planets are shown in 

Table 5, extracted from the OEC, where 𝑎 and 𝑒 are the planets’ semi-major axis 

and eccentricity respectively. Although stellar systems up to septuples are known, 

to date planets have only been found in systems up to quadruples, of which there 

are two. 

The 26 triple systems contain 35 (confirmed and unconfirmed/controversial) 

planets, giving a multiplicity of 1.3. (There is some uncertainty whether 

Fomalhaut b is a planet; it may be a dust cloud or disc possibly surrounding a 

compact inner object.) 

In stellar systems of multiplicity three or greater, only two P-type orbits have been 

found to date, and both are circumbinary rather than circumtriple. PH-1 is a 

multiple star system of at least four components, hosting at least one planet, 

PH-1 (AaAb) b, found through the citizen science project Planet Hunters. The 

planet is in a circumbinary orbit around a binary that in turn is being orbited by a 

second binary approximately 1 000 AU away. HW Virginis is a multiple star 

system of at least three stellar components, which hosts at least one planet, HW 

Vir (AB) b, detected by eclipse timing variations. An additional object orbits the 

binary every 16 – 55 yr; at around 20 – 65 𝑀𝐽 it is classified a brown dwarf.  

A planet in a circumtriple P2 orbit around a triple system has not yet been 

discovered, but it appears inevitable that this configuration will eventually be 

found.  

For S-type orbits, S3 orbits predominate with 29 cases, while there are only four 

S1 orbits. 

The object of this study was to establish the orbital stability landscape for planets 

around triple systems. This would help to guide searches for this type of planet. It 

should also provide a quick stability check for any orbits that are postulated for 

planets found in triples. 
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Table 5. Exoplanets discovered in stellar systems of multiplicity three and higher 

The rest of this document is organized as follows:  

Chapter 2 outlines previous theoretical and computational approaches to the 

problem of triples. 

Chapter 3 deals with the preparations for the research, including a review of the 

observed ranges of parameters for triple stars and their planets; the ranges to be 

investigated; the selection of the types of orbit to be investigated; Kozai 

resonances; the selection of numerical method and integrator; the choice of 

computational parameters and their ranges for planetary orbits and the 

development of code for the detection of the planetary stability bounds. 

No. Planet name Year Distance Mass Radius a e Stars Planets Orbit

[pc]  [M Jup]  [R Jup]  [AU] type

1 30 Ari B b 2009 41.8 6.6 - 1.010 0.18 4 1 S1

2 PH-1 A(ab) b 2012 1500 - 0.563 0.634 0.0539 4 1 P1

1 HW Vir (AB) b 2008 181 14.3 - 4.69 0.4 3 1 P1

2 HD 2638 b 2005 53.7 0.48 - 0.044 0.0 3 1 S1

3 Fomalhaut b 2008 7.7 - - 177 0.80 3 1 S1

4 HD 126614 A b 2010 73 0.38 - 2.35 0.41 3 1 S1

5 Alpha Centauri B c 2015 1.295 N/A 0.084 N/A <0.24 3 2 S1

6 16 Cygni B b 1996 21.146 1.77 - 1.720 0.689 3 1 S3

7 HD 178911 B b 2001 46.7 6.29 - 0.32 0.1243 3 1 S3

8 HD 196050 A b 2002 46.9 2.83 - 2.47 0.21 3 1 S3

9 HD 40979 A b 2002 33.3 3.28 - 0.83 0.25 3 1 S3

10 91 Aquarii A b 2003 45.9 3.2 - 0.7 0.03 3 1 S3

11 HD 41004 A b 2004 43 2.54 - 1.7 0.74 3 1 S3

12 HD 185269 b 2006 50.3 0.94 - 0.077 0.30 3 1 S3

13 HAT-P-8 b 2008 230 1.275 1.321 0.0439 0.0 3 1 S3

14 WASP-12 b 2008 250 1.404 1.736 0.0229 0.0 3 1 S3

15 Gliese 667 C b 2009 6.97 0.018 - 0.051 0.13 3 7 S3

16 Gliese 667 C c 2009 6.97 0.012 - 0.125 0.02 3 7 S3

17 2M 044144 b 2010 145 9.8 - - - 3 1 S3

18 HD 132563 B b 2011 96 1.49 - 2.62 0.22 3 1 S3

19 Kepler-13 A b 2011 530 9.28 1.51 0.0342 - 3 1 S3

20 Gliese 667 C d 2013 6.97 0.016 - 0.28 0.03 3 7 S3

21 Gliese 667 C e 2013 6.97 0.008 - 0.213 0.02 3 7 S3

22 Gliese 667 C f 2013 6.97 0.008 - 0.156 0.03 3 7 S3

23 Gliese 667 C g 2013 6.97 0.014 - 0.55 0.08 3 7 S3

24 Gliese 667 C h 2013 6.97 0.003 - 0.089 0.06 3 7 S3

25 51 Eri b 2015 29.4 2.0 1.0 14 0.21 3 1 S3

26 HAT-P-57 b 2015 303 < 1.85 1.41 0.0406 0.0 3 1 S3

27 KELT-4A b 2015 210 0.9 1.70 - - 3 1 S3

28 Kepler-444 b 2015 35.7 - 0.0367 0.0418 0.08 3 5 S3

29 Kepler-444 c 2015 35.7 - 0.0453 0.0488 0.12 3 5 S3

30 Kepler-444 d 2015 35.7 - 0.0483 0.06 0.18 3 5 S3

31 Kepler-444 e 2015 35.7 - 0.0498 0.0696 0.02 3 5 S3

32 Kepler-444 f 2015 35.7 - 0.068 0.0811 0.29 3 5 S3

33 KOI-2939 b 2015 - 1.5 1.059 2.720 0.06 3 1 S3

34 Psi-1 Draconis B b 2015 22.93 1.53 - 4.43 0.40 3 1 S3

35 Proxima Centauri b 2016 1.295 0.0041 N/A 0.049 <0.35 3 3 S3

Triples

Quadruples
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Chapter 4 comprises the major portion of the work, in which we investigate the 

generalised stability of planets for the various triple configurations, for all S-type 

and P-type orbits, for prograde and retrograde planetary orbits and prograde and 

retrograde stellar orbits. We then reduced the triple configurations to binaries and 

re-ran the integrations, to highlight how the results for triples differ from those for 

binaries. The results for triples are then compared with any previous work and 

with observational examples. 

Chapter 5 consists of a discussion of these results, and the main conclusions that 

may be drawn from them, followed by Chapter 6 in which we suggest the 

direction of further work on this topic. 
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Chapter 2  

 

Approaches to the problem 

 

2.1 Theoretical Approaches 

There have been many theoretical approaches to determining stability criteria for 

three-body stellar systems. For example, Ford, Kozinsky and Rasio (2000) derive 

octupole-level secular perturbation equations for hierarchical triple systems, using 

classical Hamiltonian perturbation techniques that describe the secular evolution 

of eccentricities and inclinations as functions of the relevant masses and orbital 

elements of triples. Their analytical results were tested by direct numerical 

integrations using, among others, the Swift code described in Section 3.7.1. These 

equations have been re-derived by Naoz et al. (2013), showing that the simplified 

Hamiltonian found can be used as long as the equations of motion for the 

inclinations are calculated from the total angular momentum. 

Most analytical solutions of the equations of motion use linear expansions, but the 

interactions of large, massive bodies close to one another, such as the compact 

triples in this study, are nonlinear. Therefore, while these theoretical approaches 

can be qualitatively useful for the broad understanding of a problem, and for 

establishing approximate bounds, their accuracy can be quite poor, making 

numerical solutions almost obligatory. A good illustration of the degree of 

qualitative and quantitative differences between the two approaches is shown in 

Figure 2. 

 

 

Figure 2. Stability limits for a three-body system as a function of orbital 

inclination. The lines overlaid on the numerical solution are 

various theoretical solutions (Grishin et al. 2017) 

The quantitative accuracy is poor and even the qualitative correspondence holds 

only in the broadest sense.  

To further emphasise the necessity of a numerical approach, in Section 4.2.7 we 

solve the theoretical equations for high-inclination stellar orbits and compare 

these with the numerical results, while in Section 4.3.6 we check the Hill stability 
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criterion against the results of numerical simulations. Both theoretical results fare 

poorly. 

The focus of this work was therefore on a computational approach to the 

determination of stable planetary regions in triples.  

2.2 Computational Approaches 

The three-body problem requires the computation of the mutual gravitational 

interaction and motion of three interacting masses. Unlike the two-body problem, 

an analytic solution is not generally possible. 

In 1887 Heinrich Bruns and Henri Poincaré proved that only specific solutions to 

the generalised three-body problem were possible. The motion of three bodies is 

generally nonrepeating, although some specific repeating solutions were found, 

e.g. by Lagrange (1772). However, these were sparse, consisting of just three 

families. The best-known family is the equilateral configuration where three stars 

of different masses orbit around their common center of mass, always preserving 

an equilateral triangle, with the orbits being circular or elliptical. Another unusual 

family is where three bodies of equal mass revolve around their center of mass in 

a figure-eight orbit (Moore 1993; Chenciner & Montgomery 2000). Surprisingly, 

13 new families were recently discovered (Suvakov & Dmitrasinovic 2013). It 

remains to be established which of these new solutions are stable and may 

represent actual systems, of both stars and planets.  

A simplification of the problem is the restricted three-body problem, where one 

body is assumed to be of negligible mass – it is under the influence of the other 

two primary bodies, but too small to affect the motion of these primary bodies, 

which are assumed to be in coplanar, circular orbits about their center of mass. If 

they are in elliptical rather than circular orbits, it is labelled the elliptic restricted 

problem. Famous mathematicians tackled this problem, such as Euler (1772), who 

introduced a rotating coordinate system; Lagrange (1772); Jacobi (1836), who 

discovered the eponymous integral of motion in this coordinate system; Hill 

(1878); Tisserand (1899); Poincaré (1899); Levi-Civita (1905) and Birkhoff 

(1915). 

Three-body orbits therefore have to be solved numerically. The first tentative 

numerical study of the hierarchical three-body problem, where all masses are 

large, was in 1909 by Danish astronomer Elis Strömgren, followed in 1923 by 

Swedish astronomer Karl Bohlin. Later numerical simulations first investigated 

long-term orbital stability within the coplanar, circular, restricted three-body 

problem – mainly circumstellar and circumbinary orbits. The Laplacian 

interpretation of stability is that the orbits are bounded such that the orbital 

elements (semi-major axes and eccentricities) show no secular or large periodic 

variations during the time covered by the integrations. With improvements in 

computing power, the circular constraint was relaxed to model eccentric binary 

systems, e.g. (Holman & Wiegert 1999; Haghighipour 2008) and then to relax the 

coplanar constraint and investigate inclined orbits. There is now sufficient 

computing power to model extremely large N-body problems. 

One of the earlier numerical approaches, by Eggleton and Kiseleva (1995), 

offered an empirical stability criterion in terms of a critical ratio of the outer 

orbit’s periastron to the inner orbit’s apastron distances in a binary. After deriving 
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the critical semi-major axis for binary dynamical stability in this way, the authors 

also noted that highly mutually inclined orbits are unstable.  

Mudryk and Wu (2006) also analyzed the low-resolution numerical results of 

Holman and Wiegert (1999) and investigated the instability boundary, finding that 

the Hill criterion yields a bound that is very similar to that obtained by resonance 

overlap arguments, making this criterion a necessary and sufficient condition for 

planetary instability. 

Similar subsequent work on S-type and P-type planetary orbits in binary systems 

was done by Musielak et al. (2005) for circular orbits, showing that the regions of 

stability for S-type orbits depend on the semi-major axis ratio between the star and 

planet being in the range 0.22 – 0.46, depending on the mass ratio. For P-type 

orbits, the regions of stability also depend on that distance ratio, and are in the 

range 1.75 – 2.45, again dependent on the mass ratio. 

Cuntz, Eberle and Musielak (2007) later established analytical stability criteria 

using Jacobi’s integral for the coplanar circular restricted three-body case, with 

results in good agreement with those of Holman & Wiegert and Misielak. 

In a different approach, stable configurations for circumstellar and circumbinary 

discs in eccentric binary systems were found by using “invariant loops”, which are 

closed curves that change shape with the orbital phase of the binary as test 

particles (TPs) in them move under the influence of the binary potential (Pichardo, 

Sparke & Aguilar 2005; Pichardo, Sparke & Aguilar 2008). These are analogous 

to stable periodic orbits in time-independent potentials. This method is more 

demanding than that of Holman & Wiegert, whose orbits can intersect themselves 

or neighbouring orbits. The authors compared their results with those of Holman 

& Wiegert and found that the two methods provided similar results when the 

binary eccentricity is small, but when the binary’s eccentricity is large, Holman & 

Wiegert found fewer stable orbits close to the binary, resulting in larger inner 

gaps.  

Numerical stability studies are a powerful tool to guide the search for new planets, 

or additional planets in known planetary systems. For example, over the last 

decade a number of studies have shown that, for systems that contain more than 

one planetary body, the orbits proposed initially were simply not dynamically 

feasible, “illustrating the critical importance of performing dynamical analyses as 

a part of the discovery process for multiple-planet exoplanetary systems.” (Horner 

et al. 2012). 

Also, in recent years, numerous numerical investigations have estimated stability 

zones in known systems that might harbour undiscovered planets. However, only 

one of these addressed triple systems and attracted only six citations (Verrier & 

Evans 2007). This work was an extension to triples of the important empirical 

study by Holman and Wiegert (1999) of planetary stability in binaries (466 

citations). It extended Chambers’s symplectic integrator algorithm (Chambers et 

al. 2002) to a triple system by deriving the split Hamiltonian required for each of 

three hierarchical cases. Verrier & Evans used only one case, that of a 

circumbinary situation, to determine the stable zone for long-lived planetary 

orbits, providing fits to the inner and outer bounds. They concluded that the 

addition of a stable third star does not distort the original binary stability 

boundaries and that binary stability criteria can be used to quite accurately predict 
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the stability zones in any hierarchical stellar system, irrespective of the number of 

stars. They also suggested that circumbinary planets are unlikely to exist in at 

least 50% of observable systems. However, they did not apply their analysis to P-

type circumtriple orbits. 

They also found that, in the dynamics of planetesimals in the quadruple star 

system HD 98800, there were significant numbers of stable test particles in 

circumbinary polar orbits about the inner binary pair, which were apparently able 

to evade the Kozai instability (Verrier & Evans 2009). (The Kozai or Lidov-Kozai 

mechanism (Kozai 1962; Lidov 1962) often destabilizes high-inclination orbits. It 

couples changes in stellar eccentricity and inclination, with high-inclination 

circular orbits oscillating to low-inclination eccentric orbits, and is discussed in 

Section 4.2.) They concluded that high mutual planet-star inclinations are very 

likely, and that if there are regions of stability, then the outlook for planetary 

systems in these environments is more promising than previously thought. The 

numerical results of Verrier and Evans were later explained purely analytically by 

Farago and Laskar (2010), and other researchers in turn expanded on this work 

numerically, investigating the dynamics and stability of orbits in three-

dimensional circumbinary phase space as a function of binary eccentricity and 

mass fraction. They found that these orbits are surprisingly stable. In the words of 

one team of researchers, “circumbinary phase space is rich and dynamic, full of 

remarkable and stable orbits which do not behave simply. We should not presume 

any given binary system to lack a circumbinary component unless otherwise 

demonstrated.” (Doolin & Blundell 2011). 

Interestingly, an earlier study by Verrier and Evans (2006) is of use to us. It 

examined the  Cephei system, which consists of a close binary with a hot Jupiter 

orbiting one component. This is conceptually no different to a triple with a very 

low-mass inner binary component. It has therefore been used as an extreme 

example to compare with this study’s results. 

A further development has been an analytical theory to model the motion of the 

recently discovered circumbinary planets Kepler-16 b, Kepler-34 b and Kepler-35 

b (Leung & Lee 2013). Their orbits are significantly non-Keplerian due to the 

large outer mass ratio and the orbital eccentricities of the binaries, as well as the 

proximity of the planets to the binaries. 

A summary of analytical, numerical and chaos-derived stability criteria from the 

Sixties to 2007 is provided by Georgakarakos (2008). 

However, formal stability analyses have not yet been applied to all the possible 

orbit types in triples 

The fact that a meaningful proportion of stars in the Galaxy are triple systems, and 

the anticipated discovery of new (e.g. circumtriple) orbits in these systems, is one 

of the motivations for this investigation.  
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Chapter 3  

 

Characteristics of triple systems 

 

3.1 Overview 

Some multiple stars, termed trapezian, are very young, unstable systems. The 

relative distances between these bodies are comparable and they are usually 

unstable on time-scales of a few million years or less. They are thought to form in 

stellar nurseries and quickly fragment into stable multiple stars, which may eject 

components as galactic high-velocity stars in the process. An example of such a 

system is the Trapezium at the centre of M42, the Orion nebula. 

However, most multiple stars are hierarchical. A gravitational three-body system 

is called hierarchical if its motion is well approximated by a pair of non-crossing 

elliptic orbits. In these systems there is little interaction between the orbits and, as 

for binary stars, they tend to be stable – as a first-order approximation, the 

dynamic effects of the distant pair can be considered as a single star with a mass 

equal to the sum of the masses of the individual components. In a triple star 

system, each star orbits the center of mass of the system. Usually, two of the stars 

form a close binary and the third orbits this pair at a distance much larger than that 

of the binary orbit. The reason for this is that if the inner and outer orbits are 

comparable in size, the system may become dynamically unstable, leading to one 

star being ejected from the system. Hierarchical triple systems are important for 

testing theories of star formation and of stellar evolution in the presence of nearby 

companions. 

While triple systems are less common than binaries, as previously discussed, and 

compact triples are fewer still, their prevalence is not insignificant. One study  of 

the photometric database of eclipsing Kepler binaries estimated that at least 20% 

of all close binaries have tertiary companions and that at least 8% have tertiary 

companions with periods less than ~7 yr (Rappaport et al. 2013). 

One investigator summarised this (regarding an S3 orbit) as follows: “It seems 

that hierarchical triple systems do not represent a hostile environment for planet 

formation around the isolated component, regardless of the mass ratio between the 

planet host and the sum of the masses of the other components. …In all but one 

stellar triple with planets, the separation of the stellar pair is larger than the planet 

semi-major axis. While selection effects certainly play a role, a moderately wide 

pair in a triple system guarantees that the present stellar orbits are not disruptive 

for the planetary system around the isolated component. A wide stellar triple 

might also indicate a rather unperturbed dynamical history for the system.” 

(Desidera et al. 2011). 

In comparison, the circumbinary planets around eclipsing binaries that have been 

found to date are all rather massive and have long periods.  
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3.2 Databases 

The main sources of exoplanetary data are the NASA Exoplanet Archive (NEA), 

the Open Exoplanet Catalogue (OEC), the Exoplanet Orbit Database (EOD or 

exoplanets.org) (Wright et al. 2011), The Extrasolar Planets Encyclopaedia (EPE 

or Exoplanet.eu) (Schneider et al. 2011) and the Catalogue of Exoplanets in 

Binary and Multiple Star Systems (Richard Schwarz). 

The open-source OEC database was created because of perceived deficiencies in 

the EOD and EPE and claims to be the only catalogue that can correctly represent 

the orbital structure of planets in arbitrary binary, triple and quadruple star 

systems, as well as orphan planets (Rein 2012).  

The EOD only lists exoplanets that are validated in peer-reviewed journal articles, 

whereas the EPE also includes candidate and unconfirmed planets, and the NEA 

lists and distinguishes planets at various stages of the confirmation process. Also, 

the NEA uses the Washington Double Star Catalog (WDS) catalog for its stellar 

multiplicities, and the WDS also contains optical systems, i.e. stars that are not 

actually physically associated. Therefore, the fact that a star is listed as having 

multiple components in the NEA does not necessarily mean it is a true multiple 

system.  

All these databases were used in the study. 

3.3 Triples – Stellar Characteristics 

The characteristics of triple stellar systems, together with the parameters chosen 

for these in the integrations, are discussed in Section 3.6. 

3.4 Triples – Planetary Characteristics 

3.4.1 Planetary mass and orbital distances 

The mass versus semi-major axis diagram for all confirmed planets is shown in 

Figure 3. The diameter of the circles is proportional to the number of stars in the 

system (from 1 to 4) and the solid circles represent the planets in the Solar System 

for comparison. 

Our definition of a planet in terms of mass will be from a fairly arbitrary 0.03𝑀⊕, 

which is roughly halfway between the masses of dwarf (non-)planet Pluto and 

Mercury, up to 30𝑀𝐽 or approximately twice the mass of a brown dwarf, 

commonly defined to be 13𝑀𝐽. 

The planets’ semi-major axes span 0.0044 AU to 177 AU, with masses ranging 

from 6.3 × 10−5 𝑀𝐽 to 30 𝑀𝐽. The exoplanet sample shows observational and 

selection biases – the sample consists of planets generally more massive than most 

planets in the Solar System and with semi-major axes that are mostly smaller, 

although there is a clear bimodal distribution in both variables, with semi-major 

axis peaks at around 2 AU and 0.05 – 0.10 AU.  

There is a dearth of exoplanets in the region where the Solar System planets lie, 

since smaller planets are more difficult to detect. There are few semi-major axes 

smaller than 0.02 AU or larger than 10 AU. The first implies very short orbital 

file:///D:/ASTRO/PhD/Thesis/Document/exoplanetarchive.ipac.caltech.edu
http://www.openexoplanetcatalogue.com/
http://www.exoplanets.org/
http://www.exoplanet.eu/
http://www.univie.ac.at/adg/schwarz/multiple.html
http://www.univie.ac.at/adg/schwarz/multiple.html
http://ad.usno.navy.mil/wds/
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periods while the second corresponds to long periods, with many years of 

observation required to confirm just a few planetary orbits.  

 

 

Figure 3. Planet mass versus semi-major axis, with stellar multiplicity 

 

 

Figure 4. Planet mass versus semi-major axis, with 

stellar multiplicity and orbit type 

Although the sample size is small, there appears to be no obvious difference in 

distribution between the different stellar multiplicities shown in the graph. This is 

highlighted in Figure 4, which shows, on an identically scaled graph, the 

confirmed planets discovered in stellar systems of multiplicities greater than one. 
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It also identifies those in S-type and P-type orbits, again together with the Solar 

System planets.  

These exoplanets have semi-major axes spanning 0.016 AU to 80 AU, with 

masses ranging from 0.0035 𝑀𝐽  to 20.6 𝑀𝐽. Again, they tend to be more massive 

than the Solar System planets. 

Here a difference in distribution becomes more apparent, with planets in P-type 

orbits being of higher mass and in wider orbits than for S-type orbits. The mean 

mass of planets in P-type orbits is 8.8 𝑀𝐽, almost twice the 4.8 𝑀𝐽 for planets in S-

type orbits, while the corresponding mean semi-major axes are 4.0 AU and 2.9 

AU respectively. 

Alexander and Pascucci (2012) suggested that disks around close binaries with 

semi-major axes less than 1 AU live longer than those around single stars, but 

disk lifetimes decline as photoevaporation increases at larger binary semi-major 

axes. As a result, they predicted a dearth of circumbinary planets around wide 

binaries with 𝑎 > 10 AU and an abundance of circumbinary planets in stellar 

binaries with 𝑎 < 1 AU.  

In our analysis we are unconcerned with planet masses per se, since they are 

represented by massless test particles, but we are able to compare the stable 

regions found with the above semi-major axis ranges. 

3.4.2 Planetary eccentricity 

Eccentric orbits are a consequence of strong gravitational interactions; eccentric 

planetary orbits in systems with no other detected planets suggest prior scattering 

events in which their siblings were ejected. Planets in multiple systems tend to 

have lower eccentricities, suggesting these interactions did not occur. Planets 

orbiting their central star very closely tend to have very low eccentricities as tidal 

interaction with the star circularises their orbits over long timescales. 

Figure 5 shows the orbital eccentricity of all the confirmed planets against their 

semi-major axes, again with the Solar System planets for comparison. 

Exoplanet eccentricities display a more uniform distribution than mass, ranging 

from close to zero to almost one, averaging 0.17 against the Solar System’s 0.08. 

The distribution of eccentricities for planets orbiting in multistellar systems is 

shown in Figure 6.  

The exoplanets are generally in smaller orbits than the average Solar System 

planet and their eccentricities are higher. The mean eccentricity of S-type orbits is 

0.21 and that for P-type orbits is a smaller 0.13. 

For S-type orbits the gravitational force of the secondary star (or stars) is the main 

source of orbital perturbation, while the stability of P-type orbits is determined by 

the orbital geometry of the stars being orbited. 

One of the proposed explanations is that when the orbit of a close-in planet is 

excited by an outer companion planet, the planet’s gravitational interaction 

combined with tidal effects between the host star and the close-in planet can give 

rise to an increasing growth in the eccentricity of the close-in planet (Alexander 

2012). 
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Figure 5. Planet eccentricity versus semi-major axis, with stellar multiplicity 

 

 

Figure 6. Planet eccentricity versus semi-major axis, 

with stellar multiplicity and orbit type 

  

Statistically it has been found that the orbits of large exoplanets within wide 

binaries have higher eccentricities than those around single stars (Kaib, Raymond 

& Duncan 2013). This is because, even though the companion star in a wide 

binary is far away, this in fact makes it vulnerable to perturbations such as those 

from the galactic tide and passing stars, with the result that its pericentre can 

become quite small given sufficient time and strongly perturb the planetary 
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system. So, counterintuitively, wide binary companions can affect planetary 

systems at least as strongly as tight binaries, causing ejections and increasing the 

eccentricities of the remaining planets. The significant differences in eccentricity 

with size of binary are illustrated in Figure 7, which shows eccentricities within 

tighter (𝑎∗ < 103AU) binaries and those in very wide (𝑎∗ > 103AU) binaries and 

isolated systems, where 𝑎∗ denotes the binaries’ semi-major axis. Although our 

focus will be on relatively close triples, similar behaviour may be expected for 

wide triples.  

 

 

Figure 7. Observed exoplanet eccentricities 

(Kaib, Raymond & Duncan 2013) 

3.4.3 The Kozai mechanism 

One important perturbation which is addressed is that of orbital eccentricities. As 

the two orbits exchange angular momentum, their eccentricities will undergo 

periodic oscillations over secular timescales.  

For non-coplanar systems, corresponding oscillations occur in the orbital 

inclinations. This influence, which can be a large contributor to stellar and 

planetary orbital inclination, is the Kozai or Lidov–Kozai mechanism (Kozai 

1962; Lidov 1962), which refers to the orbit of a body that is perturbed by another 

body orbiting farther out. Due to the perturbation, the orbit of the small body 

experiences libration of its argument of pericentre. Also, as the orbit librates, there 

is a periodic exchange between its inclination and its eccentricity. This often 

destabilizes high-inclination orbits, driving high-inclination circular orbits into 

low-inclination eccentric orbits. A planetary system can be affected strongly by 

the presence of a companion star, even if the semi-major axis of the companion’s 

orbit is large. However, this is only true if the initial inclination between the 

orbital planes of the planet and the companion star is larger than a critical angle of 

39.2°.  

Generally, it has been found experimentally that if the ratio of the initial angular 

momenta of the inner orbit and inclined outer orbits of a triple are greater than 

~4, the angular momentum of the outer star will dominate and significant Kozai 
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resonance arises. This will tend to occur if the outer mass ratio 𝜇2 (defined in 

Section 3.6.2) is greater than ~2. 

A concise description of this mechanism is provided by Fabrycky and Tremaine 

(2007), which is paraphrased and expanded in the following paragraphs. 

The long-term stability of three bodies interacting only through gravity requires 

that the system is hierarchical and also that the eccentricity of the outer body 

cannot be so large that it makes close approaches to the inner binary, i.e. the 

gravitational perturbations on the inner binary must be small. However, even 

small perturbations from the outer body can have important secular effects on this 

binary.  

The first effect is precession of the orbital plane, which occurs if the orbital planes 

of the inner binary and outer body are unaligned. If the inner and outer orbits are 

circular, both the mutual inclination and the scalar angular momenta of the two 

orbits remain fixed, while the two angular momentum vectors precess around the 

direction defined by the total angular momentum vector of the triple system. 

However, if the orbit of the inner binary is initially circular, with the initial mutual 

inclination between inner and outer binaries equal to 𝑖𝑖𝑛𝑖𝑡𝑖𝑎𝑙, Lidov and Kozai 

found there is a critical angle 𝑖𝑐 such that if 𝑖𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is between 𝑖𝑐 and 180 − 𝑖𝑐, 

then the orbit of the inner binary does not remain circular as it precesses, but both 

the eccentricity of the inner binary 𝑒𝑖𝑛 and the mutual inclination 𝑖 exhibit 

periodic oscillations known as Kozai cycles. The amplitude of the oscillations in 

eccentricity and inclination is independent of the magnitude of the perturbation 

from the outer body, which depends on its mass 𝑚3, its semi-major axis 𝑎𝑜𝑢𝑡 and 

eccentricity 𝑒𝑜𝑢𝑡. However, the oscillation amplitude does depend on 𝑖𝑖𝑛𝑖𝑡𝑖𝑎𝑙 – for 

initially circular orbits with 𝑖𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑖𝑐 or 180 − 𝑖𝑐, the maximum eccentricity is 

zero, but if 𝑖𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 90° the maximum eccentricity is one, i.e. the two inner 

bodies collide.  

Kozai cycles can be investigated with various degrees of approximation, from 

analytic equations for the secular evolution of the orbital elements to fully 

numerical approaches.  

The analytical method is to average over the orbital phases of the inner and outer 

binaries (Kozai 1962; Ford, Kozinsky & Rasio 2000). This secular approximation 

can be used since the precession time is usually much longer than the periods of 

the two orbits. In this averaged problem the semi-major axes of the inner and 

outer binary are both conserved. The analysis is simplest in the limiting case when 

𝑎𝑜𝑢𝑡 ≫ 𝑎𝑖𝑛 (so that the perturbing potential of the outer body can be written in the 

quadrupole approximation) and the angular momentum of the outer binary is 

much greater than that of the inner binary (so that the orientation of the outer 

binary is a constant of the motion). With these approximations, the following 

results hold: 

1. The averaged quadrupole potential from the outer binary is axisymmetric 

relative to its orbital plane.  

2. The averaged problem can be described by a Hamiltonian with one degree of 

freedom.  

3. The eccentricity of the outer binary is constant.  
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4. The critical inclination is  

𝑖𝑐 = arcos [(
3

5
)

1

2
] = 39.2°               (1) 

It is important to note that this critical inclination is, first, theoretical and 

second, applicable only to test particles. For real bodies the critical inclination 

is larger than 39.2. 

If the inner orbit is initially circular the maximum eccentricity achieved in a 

Kozai cycle is  

𝑒𝑖𝑛,𝑚𝑎𝑥 ≅ [1 − (
5

3
) cos2(𝑖𝑖𝑛𝑖𝑡𝑖𝑎𝑙)]

1

2
 for 𝑖𝑖𝑛𝑖𝑡𝑖𝑎𝑙 > 𝑖𝑐     (2) 

5. Depending on the initial conditions, the argument of pericentre 𝜔1 (the angle 

measured in the orbital plane between the pericentre of the inner binary and 

the orbital plane of the outer binary) can either librate (oscillate around 90° or 

270°) or circulate. The system may remain at a fixed point 𝑖𝑓𝑖𝑥 with 𝜔1  =

 90° or 270° and 

𝑒1 = [1 − (
5

3
) cos2 𝑖𝑓𝑖𝑥]

1

2
 for 𝑖𝑐 < 𝑖𝑓𝑖𝑥 < 180° − 𝑖𝑐      (3) 

6. The only property of the Kozai oscillation that depends on the masses of the 

three bodies, their semi-major axes or the eccentricity of the outer binary is 

the period of the eccentricity oscillations, given by Ford, Kozinsky and Rasio 

(2000) as (in our notation) 

𝑃𝑒 ≅ 𝑃𝑖𝑛 (
𝑚1+𝑚2

𝑚3
) (

𝑎2

𝑎1
)
3
(1 − 𝑒2

2)
3

2           (4) 

where 𝑃𝑖𝑛 is the orbital period of the inner binary. This expression is a 

quadrupole derivation, is approximate and should be multiplied by a 

coefficient of order unity that can be obtained using Weierstrass’s zeta 

function, as shown by Kozai (1962). 

These oscillations are of the order of the timescale period given by Kiseleva, 

Eggleton and Mikkola (1998) as 

𝜏 =
2

3𝜋

𝑃𝑜𝑢𝑡
2

𝑃𝑖𝑛
(1 − 𝑒𝑜𝑢𝑡

2 )
3

2 [
𝑚1+𝑚2+𝑚3

𝑚3
]           (5) 

The small-amplitude libration about the fixed point takes place with a period 

𝑃𝑙𝑖𝑏 = 𝜏
2𝜋

√30[1−(
5

3
)cos2 𝑖𝑓𝑖𝑥]

1
2sin 𝑖𝑓𝑖𝑥

             (6) 

Combining the last two equations yields 

𝑃𝑙𝑖𝑏 =
4

3√30

𝑃𝑜𝑢𝑡
2

𝑃𝑖𝑛

(1−𝑒𝑜𝑢𝑡
2 )

3
2[

𝑚1+𝑚2+𝑚3
𝑚3

]

[1−(
5

3
)cos2 𝑖𝑓𝑖𝑥]

1
2sin 𝑖𝑓𝑖𝑥

            (7) 
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In general, for large inclinations with large initial eccentricities of the inner 

orbit, the initial argument of periapsis of the inner binary has a large influence 

on whether the system undergoes circulation or libration (libration occurs 

when 𝜔 oscillates between fixed limits while for circulation 𝜔 increases or 

decreases without reversing). But if the inner orbit is nearly circular initially, 

then the initial values of these orbital angles have little effect, since the inner 

orbit can switch from circulation to libration and vice versa (Ford, Kozinsky 

& Rasio 2000). 

7. Octupole and higher order terms in the perturbing potential introduce a 

narrow chaotic zone around the separatrix between circulating and librating 

solutions as determined by the quadrupole approximation (Holman, Touma & 

Tremaine 1997). 

For a sequence of triple systems in which the semi-major axis 𝑎𝑜𝑢𝑡 of the outer 

binary becomes larger while its mass, inclination, and eccentricity remain the 

same, the maximum eccentricity of the inner binary in the Kozai cycle will remain 

fixed, but the period of the Kozai cycle will increase as 𝑎𝑜𝑢𝑡
3 . This behaviour will 

continue as long as the perturbation from the outer body is the dominant cause of 

apsidal precession in the inner binary orbit. Even weak perturbations from distant 

third bodies can therefore result in large eccentricity and inclination oscillations. 

However, small additional sources of apsidal precession in the inner binary, such 

as general relativity, tides or the quadrupole moments of the two members of the 

inner binary or planetary companions can suppress Kozai oscillations caused by a 

distant third body completely, if they dominate the apsidal precession.  

The above formulas are for the case of a test particle and are theoretical. Under 

more realistic assumptions the dynamics become more chaotic and the restrictions 

of the previous simple case do not apply, particularly the maximum eccentricity. 

For example, in triple systems with different inner binary masses, higher-order 

terms of the Hamiltonian give rise to the eccentric Kozai mechanism or EKM, 

which induces arbitrarily high eccentricities over a wider range of 𝑐𝑜𝑠 𝑖 than in 

equal-mass systems and can flip the orientation of the inner orbit between 

retrograde and prograde (Lithwick & Naoz 2011; Naoz et al. 2011; Dong, Katz & 

Socrates 2013; Naoz et al. 2013). In addition, the behaviour of real bodies differs 

from theory. 

It has also been shown with direct integration that for a small fraction of triples 

the angular momentum of the inner binary can go from a finite value to essentially 

zero very quickly, which can produce stellar collisions with no prior tidal 

interaction (Katz & Dong 2012).  

Although the full parameter space exploration of Kozai cycles in triple systems 

with direct three-body integrations remains to be explored, the basic principle that 

systems with lower initial |𝑐𝑜𝑠 𝑖|, i.e. higher 𝑖, reach higher eccentricities remains 

valid.  

For inner binaries in triple systems, when their separation at periastron becomes 

approximately the same as the stellar radii, tidal friction absorbs the orbital energy 

and the period of the inner binary shortens to 𝑃𝑖𝑛 ≲ 10 d. This mechanism, known 

as Kozai cycles with tidal friction or KCTF (Eggleton 2006), works well when the 

period ratio 𝑃𝑜𝑢𝑡/𝑃𝑖𝑛 is not too high and the initial inner period 𝑃𝑖𝑛 is not too long. 
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It causes migration of inner periods from 𝑃𝑖𝑛100 d  to 𝑃𝑖𝑛 ≤ 10 d (Fabrycky & 

Tremaine 2007), while some inner binaries can merge.  

The Kozai mechanism’s influence on planetary orbital inclinations is mentioned 

in the next section and that on stellar configurations is investigated in Section 4.2, 

where inclined orbits of the outer star were used and numerical integrations were 

compared with the above equations. 

It is worth noting that Kozai resonance is not inevitable. The mechanism has 

known limitations, specifically that it can be suppressed when there is a faster 

perturbation acting on a planet. For example, in planet-forming disks, Batygin, 

Morbidelli and Tsiganis (2011) showed that the disk’s self-gravity tends to induce 

fast apsidal recession that erases the Kozai effect, which can remain inhibited as a 

result of orbital precession caused by planet-planet interactions. In multiple planet 

systems the dynamical interaction of the planets, or any additional effect resulting 

in additional precession of the pericenter, can inhibit the Kozai effect, and such 

systems can be classified as dynamically rigid (Innanen et al. 1997). Although 

Kozai evolution is inhibited, the planetary mean plane still precesses if it is 

inclined relative to the orbit of the companion (Mardling 2010; Kaib, Raymond & 

Duncan 2011; Boué & Fabrycky 2014a, 2014b). 

3.4.4 Planetary orbital inclinations 

Planetary orbits in the Solar System are close to coplanar and stable. If multiple 

stars form by hierarchical fragmentation of a rotating cloud (Bodenheimer 1978) 

or by fragmentation of a circumbinary disk (Bonnell & Bate 1994), similarly 

coplanar configurations would be expected. 

Close to 85% of Kepler's multi-planet systems are coplanar to within 3° because 

of the transit technique used. However, several other studies from radial velocity 

searches reach a similar conclusion: that planets in multiple systems usually have 

very low mutual inclinations. For example, Fang and Margot (2012) also found 

that most (85%) multi-planet systems have mutual inclinations of less than 3°. 

This implies that these planets formed together inside a protoplanetary disc and 

did not experience any large gravitational perturbations, which would have 

increased their orbital inclinations. 

The relative orientation of inner and outer orbits in a triple or higher multiplicity 

system can be measured by the angle ∅ between the angular momenta of their 

orbits. One expects totally uncorrelated orbital spins (∅ = 90°) for purely 

dynamical processes and correlated spins (∅ = 0°) for a cascade fragmentation of 

a rotating protostellar cloud. A coplanar system (∅ = 0°) will stay coplanar 

forever in the absence of any external disturbance. Early studies, such as by 

Tokovinin (1993) showed that the available data could only be interpreted by 

involving a small degree of orbital momentum alignment. A later study of 

∅-statistics showed that both extreme hypotheses (co-aligned and random orbital 

spins) could be rejected. The mean ∅ was around 50° (Tokovinin 2000).  

If a planetary system forms in a primordial binary system, the orbits of the planets 

and the companion star may be expected to be essentially coplanar. However, 

while close binaries are likely to have aligned circumbinary disks, wider binaries 

can have misaligned disks (Foucart & Lai 2013). 
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If a planetary system forms around an initially single star, which becomes a binary 

later through an encounter, the orientation of the orbits of the planets is random 

with respect to the orbit of the companion star (Malmberg, Davies & Chambers 

2007).  

Alexander (2012) predicted that circumstellar disks around binaries with 𝑎 < 100 

AU should be coplanar to the orbit of the binary. Thus any planets formed from 

such a disk are expected to be aligned with the binary's orbit (Bate et al. 2000). 

Malmberg, Davies and Chambers (2007) showed that for systems which have 

formed from a single star, which is later exchanged into a binary, around 80% will 

have an initial inclination above 39.2° and hence be in the region where the Kozai 

mechanism can be important. The Kozai mechanism will lead to an increase in the 

eccentricity of an outer planet, if the binary is not too wide. The increased 

eccentricity of the outer planet leads to strong planet-planet interactions in the 

system, which can lead to the ejection of one or more planets and also result in the 

remaining planets being left on more eccentric orbits than before.  

It has been pointed out by Perryman (2011) that, based on limited data, planets 

with the highest eccentricities (𝑒 > 0.8) tend to be accompanied by a stellar or 

brown dwarf companion. This suggests eccentricities are caused by the Kozai 

mechanism, in which hierarchical triple systems with high mutual inclinations 

cause large-amplitude periodic oscillations of the eccentricity of the inner orbit. 

The coupling of these Kozai oscillations with tidal friction (Kozai migration) may 

also lead to circular orbits for short-period planets. In multiple systems this may 

bring massive planets close to their stars and may explain why the most massive 

short-period planets are found in binary or multiple systems. 

In their simulation of planetary orbits around triples, Verrier and Evans (2007) 

assumed all orbits to be coplanar, justifying this assumption on the basis that 

higher inclinations will be subject to Kozai instability, causing large variations in 

the stellar orbits, which would be expected to destabilize test particles rapidly. 

Their integrations always kept one star in a circular orbit. However, their later 

empirical investigation of small particles around a highly eccentric binary star in a 

hierarchical triple system found that while such particles might be expected to be 

disrupted by the Kozai instability, test particles existed in stable, high inclination 

circumbinary orbits. They owed their stability to the high eccentricity of the inner 

binary, which instead of inducing Kozai cycles, caused smooth inclination 

variations and nodal precession for certain initial longitudes. This suppressed the 

Kozai cycles that would be expected to be induced by the outer star in the triple 

(Verrier & Evans 2009).  

3.4.5 Chaotic orbits 

Chaos is a term used to describe a system with nonrepeating motion over a given 

timescale – it is deterministic but unpredictable because of high sensitivity to 

initial conditions. For example, even small differences in estimated orbital 

parameters may result in large differences in orbital trajectories. Since these orbits 

are variable, the initial orbital configurations may not define stable regions well. 

This could lead to different stability landscapes for different planets in the system.  

Stability describes the “boundedness” of a system – a system is stable if changes 

in its evolution are confined within a certain range. For example, a chaotic system 
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can be stable in that the orbits of the bodies do not interchange or become 

unbound, and the oscillations of orbital elements such as eccentricity occur over a 

finite range. This illustrates an important dichotomy in chaotic systems – a system 

may be formally unstable, but for all practical purposes it is stable. With “bounded 

chaos” one can predict the general orbital evolution reasonably well, but not the 

exact positions of the bodies in their orbits. 

While all the stellar orbits we found for triples were well-behaved, this would not 

necessarily be true for planets. Their orbits could be chaotic, but if they 

completely fill an orbital space, although they may not be “stable” in the 

traditional sense, they are bounded. To determine the type of motion of the 

computed orbits, one has to use either long-term orbital computations and 

analysis, or a chaos indicator, such as the fast Lyapunov indicator, which is a 

quick tool to distinguish between regular and chaotic motion. In our investigations 

we used the former, together with many integrations, which would have 

statistically smoothed out these effects. 

3.5 Scope And Limitations Of The Investigation 

Our aim was to determine the orbital stability of both the host stars and their 

planets, where collisions between the stars or the ejection of one of the three stars 

(typically the least massive body) does not occur over secular timescales that are 

very long compared to the orbital periods. 

Our treatment of secular perturbations in this work was based on classical 

Newtonian dynamics and assumed that all three bodies are point masses that do 

not interact other than through gravitation and do not evolve in any way.  

General relativity and tides and can modify such results significantly. General 

relativity can lead to resonant behaviour of the inner orbits’ eccentricity (Ford, 

Kozinsky & Rasio 2000; Naoz et al. 2013), while tidal effects can suppress 

changes in their eccentricity, changing the system’s dynamics materially 

(Soderhjelm 1984; Kiseleva, Eggleton & Mikkola 1998). A combined theoretical 

treatment of these two effects is given by Correia, Boué and Laskar (2016). A 

possible additional perturbation is the general relativistic precession of the inner 

orbit if the inner binary contains compact objects such as white dwarfs or neutron 

stars. When the precession periods from general relativity and from Newtonian 

perturbations become comparable, a resonant effect that leads to larger orbital 

perturbations is possible.  

Also, for triple systems containing very close inner binaries, tidal dissipation in 

the inner components provides a sink of energy and angular momentum that can 

substantially change the character of the secular perturbations.  

Relativistic and tidal effects, as well spin, were not addressed in this study.  

3.6 Selection of Parameter Space 

3.6.1 Orbit types 

The triple system’s nomenclature is shown in the schematic illustration in Figure 

8.  
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Figure 8. Triple system nomenclature with S-type and P-type orbits 

Star 2 orbits Star 1 to form the inner binary and the outer Star 3 orbits the centre 

of mass ⊗ of this binary. Within the inner binary we define 𝑚1 to be the primary 

(and usually heavier) star. There are three S-type orbits, around each of the three 

stars, and two P-type orbits, one circumbinary and one circumtriple. A cloud of 

test particles in circumbinary (P1) orbits will have an inner and outer stability 

bound, while a circumtriple (P2) cloud will have an inner bound only. 

Circumstellar (S1, S2, S3) clouds around the stellar components will have their 

outer edges bounded. Our objective is to determine the regions of orbital stability 

for planets within the system, specifically the outer bound 𝑎𝑖𝑜 of the stable region 

for S1, S2, S3 and P1 orbits (shown for P1 orbits only) and the inner bound 𝑎𝑜𝑖 of 

the P2 orbits. 

The diagram shows a coplanar case, but the orbit of Star 3 (and the test particle 

clouds) can be inclined relative to the orbital plane of Star 1 and Star 2 and the 

invariable plane of the system, as discussed in a later section. 

The outer star in a triple can be in a prograde orbit or a retrograde orbit. In Sterzik 

and Tokovinin (2002), of the 22 triples from the MSC catalogue where sufficient 

orbital data was available, four orbits were retrograde (see Table 7). Retrograde 

planetary orbits in triples have not been studied much, and this is therefore one of 

the new areas investigated in this work. 

From the five types of stellar orbits in Figure 8, some reduction in complexity is 

possible. First, the orbits S1 and S2 are interchangeable so only one case needs to 

be examined. Second, since in many triples the binary is very close, the total 

number of possible orbits often reduces to three, being the two P-type orbits and 

the S3 orbit around the outer star, as shown schematically in Figure 9. So there is 

a maximum of four orbit types to be investigated and effectively only three in 

many cases. 

 

m1 m3m2a1 a2

aio

aoi

P1 orbits P2 orbits

Star 1 Star 2 Star 3

S1 orbits S2 orbits S3 orbits
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Figure 9. Triple systems – orbit types 

To date, 37 triple systems have been found to contain planets, as previously 

shown in Table 5, extracted from the Open Exoplanet Catalog. 

The vast majority, 31, contain S3 orbits, with only five systems hosting S1 orbits. 

Only one P-type orbit has been found, a P1-type. No planets in P2 orbits have 

been found to date.  

In Chapter 4 we investigate the stable regions of a generalised triple system for 

each of these orbit types. 

3.6.2 Stellar configurations 

The system’s configuration is defined by: 

1. Size: semi-major axes 𝑎1, 𝑎2 

2. Shape: eccentricities 𝑒1,  𝑒2 

3. Orientation: inclinations 𝑖1,  𝑖2; longitudes of ascending nodes Ω1,  Ω2; 

arguments of periapsis ω1, ω2and mean anomalies M1, M2. 

4. Mass ratios: 𝑚2 relative to 𝑚1 and 𝑚3 relative to 𝑚1 and 𝑚2 

The expressions we derive for the regions of stability should be in terms of these 

parameters. 

The triple system consists of three stars, each with one mass and six orbital 

elements, so there are 21 variables in the system and the dimensionality of the 

problem is high. However, using Star 1 as the centre of the coordinate system 

removes its orbital elements. We can then define three dimensionless parameters: 

Stellar semi-major axis ratio  𝑎 = 
𝑎2

𝑎1
 

P1 P2

S1 S2

S3

P2P1

S3

P2P1

S3

S1/S2
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Inner mass ratio      𝜇1 = 
𝑚2

𝑚1+𝑚2
 

Outer mass ratio      𝜇2 = 
𝑚3

𝑚1+𝑚2
 

where semi-major axis ratio subscripts 1 and 2 refer to the inner and outer orbits 

respectively and mass subscripts 1 and 2 refer to the inner binary stars and 3 to the 

outer star. Mass ratio definitions in the literature are quite inconsistent. We have 

used the original Holman & Wiegert (1999) inner ratio definition and kept the 

same denominator for the outer ratio. 

Then, since we are interested only in the mutual inclination of the outer star 

relative to the inner binary, the inclination and argument of periapsis of the inner 

binary are free parameters and can be set to zero. Also, since its inclination is 

zero, the longitude of the ascending node for the inner binary does not exist. For 

our purposes the true anomalies were ignored. With these simplifications the 

number of variables falls to eight. 

The following sections discuss the ranges selected for the various configuration 

parameters. 

3.6.3 Semi-major axis ratio 

This ratio 𝑎 cannot be made arbitrarily small as the Swift-HJS algorithm requires 

that 𝑎2/𝑎1  ≫ 2. In the case of compact triples this would appear to put a lower 

limit on the compactness that can be modelled. However, this does not appear to 

be a practical limitation. Of the 285 triples in the Eggleton and Tokovinin (2008) 

catalogue, the dozen most compact systems are shown in Table 6 and the smallest 

semi-major axis ratio was 4.1, with a corresponding outer period of 33 d. Short 

outer periods such as these are unusual, and there is generally a notable absence of 

outer periods of under 103 d (Tokovinin 2014b). In the case of binaries, the 

smallest ratio found to date of a P1-type planet’s semi-major axis to its binary’s 

semi-major axis is currently 3.14, in Kepler-16 b (Doyle et al. 2011) 

The dependence of the stability limits of stellar orbits on the inner and outer mass 

ratios and eccentricities are generally not strong. The stability criterion for triples 

is given by Mardling and Aarseth (2001) as 

𝑎𝑡𝑟𝑖𝑝

𝑎𝑏𝑖𝑛
≳ 𝐶 (

𝑀𝑡𝑟𝑖𝑝

𝑀𝑏𝑖𝑛
)

2

5
 
(1+𝑒)

2
5

(1−𝑒)
6
5

                 (8) 

where 𝑎𝑡𝑟𝑖𝑝 and 𝑒 are the semi-major axis and eccentricity of the outer star (our 

𝑎2 and 𝑒2), 𝑎𝑏𝑖𝑛 is the orbital separation of the two stars in the binary and 𝑀𝑡𝑟𝑖𝑝 

and 𝑀𝑏𝑖𝑛 are the aggregate masses of the triple and binary respectively, while 𝐶 ≅
2.8 is determined empirically. The ratio 𝑎𝑡𝑟𝑖𝑝 𝑎𝑏𝑖𝑛⁄  is equivalent to our semi-

major axis ratio 𝑎. This criterion is valid only for coplanar prograde stellar orbits 

and for 𝑞𝑜𝑢𝑡  ≤  5, where 𝑞𝑜𝑢𝑡 = 𝑚3/(𝑚1 +𝑚2), i.e. equivalent to our 𝜇2. This 

criterion has not been tested in systems with planetary masses (Aarseth & Scarfe 

2004).  
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No. System Configuration Inner Outer Period Semi-major 

  name (per Eggleton & Tokovinin 

2008) 

period period ratio axis ratio 

   
(d) (d) 

 
 𝑎 

1 Lam Tau ((A4IV + B3V; 3.953d SD) + ?; 

33.03d, e=0.15) 

4.0 33 8 4.1 

2 Phi Phe ((A3V + ?; 41.49d e=.32) + ?; 

2.403y) 

41.5 878 21 7.6 

3 15Eta Vir ((A2IV + A4V; 71.79d e=.27) + 

A8-F0; 4791d, e=.08) 

71.8 4791 67 16.5 

4 VV Ori ((B1V + B5-9V; 1.485d) + 

A7V:; 119.1d e=.29) 

1.5 119 80 18.6 

5 Lam Sco ((B1.5IV + ?; 5.953d e=.26) + 

B2IV; 1053d, e=.12) 

6.0 1053 177 31.5 

6 Bet Per ((6.0G8IV + 2.2B8V; 2.87d SD) 

+ 4.72F1; 1.86y, e=0.23) 

2.9 679 237 38.3 

7 64 Ori ((B7III + B8III; 14.57d e=.39) + 

B5V; 13.22y, e=0.73) 

14.6 4829 331 47.9 

8 The Car  ((B0.2Vp + ?; 2.139d e=.24) + 

13.0; 2.242:y) 

2.1 819 383 52.7 

9 B Per ((A2V + ?; 1.527d e=.02) + ?; 

1.921y, e=.24) 

1.5 702 459 59.5 

10 1 Gem (4.77(G6III + ?; 9.597d) + 

K0III; 13.20y e=.34) 

9.6 4821 502 63.2 

11 HR 6469 ((F2V + F8:; 2.23d) + G8III-IV; 

2019d e=.67) 

2.2 2019 905 93.6 

12 4 Dra ((WD + M4V; 0.16d, SD, CV) + 

M3III; 1703d, e=0.30) 

0.2 1703 10644 483.9 

Table 6. Compact triples from the Eggleton & Tokovinin 2008 survey 

For a retrograde outer star, the stability criterion for triples given by Mardling and 

Aarseth (2001) and shown earlier in equation (8) was modified by them by the 

addition of an ad-hoc factor 𝑓 = 1 − (0.3𝑖 180)⁄  (with inclination 𝑖 in degrees) as 

follows: 

𝑎𝑡𝑟𝑖𝑝

𝑎𝑏𝑖𝑛
≳ (1 −

0.3𝑖

180
)  𝐶 (

𝑀𝑡𝑟𝑖𝑝

𝑀𝑏𝑖𝑛
)

2

5
 
(1+𝑒)

2
5

(1−𝑒)
6
5

            (9) 

This factor was derived from numerical experiments by Mardling (1999) and was 

similar to the findings of Harrington (1972) for retrograde coplanar orbits. The 

empirical constant 𝐶 retains its value of 2.8. 

Converting equation (8) to orbital periods, 

𝑃𝑡𝑟𝑖𝑝 ≳ 4.7 (
𝑀𝑡𝑟𝑖𝑝

𝑀𝑏𝑖𝑛
)

1

10
 
(1+𝑒)

3
5

(1−𝑒)
9
5

 𝑃𝑏𝑖𝑛             (10) 

where 𝑃𝑡𝑟𝑖𝑝 and 𝑃𝑏𝑖𝑛 are the orbital periods of the outer and inner binary 

respectively.  

These relationships are shown in Figure 10, which plots the semi-major axis ratio 

and the period ratio against the triple’s outer eccentricity for various mass ratios. 
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..  

Figure 10. Stability criterion for triples. a) semi-major axis ratio and outer 

eccentricity b) period ratio and outer eccentricity 

The relationship becomes super-exponential for higher eccentricities. For 

example, increasing eccentricity from 0.5 to 0.9 raises the required semi-major 

axis ratio an order of magnitude, from 10 to 100. 

Although observational errors in the estimated masses of binaries and triples may 

be large, the small exponent on the mass ratio of 1/10 in equation (10) means the 

dependence of period on these masses is very weak.  

For each triple configuration integration, we set the lower limit of 𝑎 at the 

Mardling stability limit. In every case this lower stability bound was greater than 

that required by the Swift-HJS algorithm. The occasional stellar instability that 

was found corresponded well with the Mardling limit. Large separations can still 

result in a small semi-major axis ratio. For example, in 2013 the Fomalhaut 

system was found to be triple, with new discovery Fomalhaut C’s current 

separation being ~160 000 AU from Fomalhaut A and ~200 000 AU from 

Fomalhaut B. Given the separation between A and B of 58 000 AU, the semi-

major axis ratio is only ~3. (Fomalhaut b may not be a planet, but a dusty disc 

surrounding the inner object.) 

Regarding the choice of upper limit for the semi-major axis ratio, recent research 

by Reipurth and Mikkola (2012) has suggested that, with wide ranges, stable 

bound triples show mean inner and outer semi-major axes of ~100 AU and ~2 000 

AU respectively, giving a mean semi-major axis ratio of around 20. (However, 

their mean initial separations ranged from 40 AU to 400 AU, guided by 

observations, giving a mean semi-major axis ratio of 10.) 

The semi-major axis ratio was therefore varied from slightly inside the Mardling 

limit, denoted 𝑎𝑚, to 100. The vast majority of semi-major axis ratios for triple 

systems fall within this range. Values for 𝑎 were usually generated randomly 

within this range. Where increments were used, they were fairly coarse given the 

insensitivity to this variable, commonly being 20 AU. 

Generally, the stability boundaries were well modelled as functions of mass ratios 

and eccentricities (with only weak contributions from the other orbital elements) 

and scale with 𝑎 except for very small separations. Since its regression coefficient 

should be zero, this parameter was included in all models as an error check.  
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3.6.4 Inner mass ratio 

The range for this ratio, 𝜇1, is between zero and one. However, only the range 

0 <  𝜇1 < 0.5 needs to be studied, as mass ratios of 𝜇1 and 1 − 𝜇1 are equivalent, 

other than for a 180° change in the longitude of the ascending node. Lower limits 

of 0.001 or 0.1, depending on the orbit type, were used in different integrations. 

When not randomly generated, increments of 0.05 – 0.10 were usually used; 

again, the influence of this variable is relatively weak. 

For any selected 𝜇1, 𝑚2 was calculated from 

𝑚2 =
𝜇1

1 − 𝜇1
𝑚1 

3.6.5 Outer mass ratio 

The lower limit for this ratio, 𝜇2, is again zero.  

Interestingly, no evidence has been found that distant tertiary components are 

generally less massive than the components of the inner binaries (Tokovinin 

2014a). Analysing the data from this survey, the largest mass ratio (here defined 

as 𝑚3/𝑚1, where 𝑚3 refers to the distant tertiary component and 𝑚1 to the more 

massive component of the close binary) found was 8.9 (for HIP 29860). However, 

94% of mass ratios are below two and 99% are below five. An upper limit for this 

ratio of around five therefore appears reasonable. If it is assumed that the masses 

of the binary pair are broadly comparable, the equivalent value for our ratio 𝜇2 =
𝑚3/(𝑚1 +𝑚2 ) is ~5/2 = 2.5. A mass ratio greater than one implies an inverted 

system, where the outermost star is more massive than the aggregate inner binary. 

An example is the triple system HD 181068 (Derekas et al. 2011; Borkovits et al. 

2013), which has a mass ratio of ~1.7. The integrations need to cater for this (less 

usual) situation. 

The lowest mass ratio found in the Tokovinin (2014) survey was 0.07. 

We therefore used values for the outer mass ratio 𝜇2 ranging from either 0.2 or 

0.001 (depending on the orbit type) to 2.2 – 2.5.  

Previous studies have found that the influence of mass ratio on stability is weak, 

so a relatively coarse increment of 0.2 was used if these values were not randomly 

generated. Tokovinin also showed that the mass ratios are distributed almost 

uniformly at all periods, so equal increments across the above range were used. 

For any selected 𝜇2, 𝑚3 is calculated from 

𝑚3 =
𝜇2
𝜇1

𝑚2 =
𝜇2

1 − 𝜇1
𝑚1 

3.6.6 Eccentricities 

The only data on both inner and outer stellar eccentricities in triples is from 

Sterzik and Tokovinin (2002), although an updated and larger sample is being 

planned (Tokovinin, private communication 8/11/16). The existing and rather 

modest sample of inner and outer orbital eccentricities is shown in Figure 11, 

ranked in order of largest differences between them. 

 

http://www.ctio.noao.edu/~atokovin/papers/multiples-tables.tar.gz
http://www.ctio.noao.edu/~atokovin/listy9.html


Chapter 3 Selection of Parameter Space 

35 

 

 

Figure 11. Triple systems – distribution of eccentricities 

The mean eccentricity of both inner and outer orbits is quite high at 0.39 and in 

most (70%) of the systems the inner orbit is more eccentric than the outer orbit. 

The difference in eccentricities within these systems ranges from effectively zero 

to 0.57. 

The integrations therefore covered eccentricities in both orbits ranging from zero 

to 0.7 – 0.9, randomly generated or with increments of 0.05 – 0.10. 

Inner binary eccentricity 𝒆𝟏 

The integrations therefore covered eccentricities in the inner orbit ranging from 

zero to 0.7 – 0.9, randomly generated or with increments of 0.05 – 0.10. 

Outer star eccentricity 𝒆𝟐 

A study of 222 Kepler triples found outer eccentricities spanning the full range, 

with a broad peak in the middle of the range and an unexplained narrow peak near 

𝑒2 ≃ 0.28 (Borkovits et al. 2015). 

Tokovinin and Kiyaeva (2016) found that the eccentricities of wide (median 

separation ∼120 AU) low-mass binaries are distributed approximately as 𝑓(𝑒) ≈

1.2𝑒 +  0.4, with 〈𝑒〉 = 0.59. High eccentricities should therefore not be ignored. 

Eccentricities for the outer binary also from zero up to 0.7 – 0.9 were used, 

randomly generated or with increments of 0.05 – 0.10. 

3.6.7 Inclinations 

The first list of hierarchical triples published, by Fekel (1981), noted that at least 

one third of triple stars have non-coplanar orbits.  

For triples we will define mutual inclination as the angle of an orbit relative to the 

plane of the inner binary, so mutual inclinations of over 90° represent retrograde 

orbits. Most planetary inclinations are not known. Transiting planets around 
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eclipsing binaries have 𝑖  90 to the line of sight, but that does not say anything 

about their mutual inclinations (although most are probably coplanar). 

The data shown in Table 7 for 22 triple systems is also from Sterzik and 

Tokovinin (2002). The mutual inclination Δ𝑖 between two orbits is given by e.g. 

Martin and Triaud (2015) as 

cos ∆𝑖 = sin 𝑖1 sin 𝑖2 cos ∆Ω + cos 𝑖1 cos 𝑖2            (11) 

where ∆Ω = Ω1 − Ω2 and the inclinations have their usual subscripts. 

We have calculated and inserted ∆𝑖 as the last column in the table, in which 

subscripts 𝑖𝑛 and 𝑜𝑢𝑡 were set to 1 and 2 respectively in the previous equation. 

 

 

Table 7. Triple systems –inclinations. All systems where two visual orbits 

are known, from the Multiple Star Catalog (Tokovinin 1997) 

The mean mutual inclination was high at 63. There were four systems with 

retrograde orbits and six with inclinations greater than 70.  

A later study by Borkovits et al. (2015) found that the distribution of mutual 

inclinations for 62 Kepler triples had a large peak at 0 – 5, indicating 

predominantly close-to-coplanar configurations, but with a significant 38% 

portion of the systems in a secondary peak centred at 40, indicating Kozai 

effects, as shown in Figure 12. 

 

No. Identifier Primary log P out e out Ωout i out log P in e in Ωin i in Remark i

IDS(1900) Sp(A) (d) (°) (°) (d) (°) (°) (°)

1 00263+6642 dM2.5 5.07 0 168 51 3.75 0 24 27 74.0

2 00508+5949 A1V 4.48 0.24 175 54.9 3.25 0.23 185 55 Inner astrom. orbit weak 8.2

3 01304− 3026 K3V 4.61 0.21 142 29.3 3.22 0.301 57.4 21.8 34.2

4 01562+3614 G9V 5.08 0.33 159 140 3.67 0.404 191.4 67 78

5 02208+6657 A5pSr 5.35 0.75 0.8 115 4.28 0.3 175 106 Outer orbit uncertain 139

6 04320+5316 A8V 5.2 0.32 113 133 3.99 0.86 20.8 141 59

7 05566− 3103 K5V 5.15 0.27 143 110 4.39 0.45 125 103 18

8 07142+2210 F2IV 5.64 0.11 18.4 63.3 3.35 0.353 70 92.4 Inner orbit controversial 57.6

9 08065+1757 F7V 5.61 0.24 74.2 146 4.34 0.32 13 167 30

10 08065+1757 F7V 5.61 0.24 74.2 146 3.8 0.08 77 142 4

11 08415+0647 G5III 5.56 0.3 229 39 3.74 0.665 284.8 50 Quintuple 39

12 08524+4826 A7IV 5.47 0.79 4.8 57.8 4.16 0.32 21 108 Outer orbit uncertain 52.5

13 11128+3205 G0V 4.34 0.4 102 122 2.83 0.61 318 91 132

14 14516− 2058 K4V 5.89 0.2 317 72.5 2.49 0.765 18 110 Outer orbit uncertain 70.4

15 15140+2712 G0V 4.87 0.65 64 58.2 4.26 0.7 135 90 Inner system controversial 73.9

16 20435+3607 B5Ve 5.15 0.45 139 134 3.63 0.524 150 135 8

17 22009+6408 A3Vm 6.14 0.24 85 109 2.91 0.589 93.5 71.9 Outer orbit uncertain 38

18 22237− 0032 F3V 5.44 0.5 305 136 3.97 0.59 202.7 34.3 132

19 22370+2054 G0 5.37 0 27.1 127 4.48 0 13.8 42.2 86

20 22573+4147 B6III 4.4 0.48 191 104 3.51 0.127 15 81 174

21 23047+7451 K0III 4.79 0.61 81 30 2.75 0.3 107.9 99 72

22 23344+4510 A2 4.74 0.58 128 130 3.74 0.6 129.7 127.4 Both orbits uncertain 3
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Figure 12. Distribution of mutual orbital inclinations for triple systems. The peak 

between 0 – 5 contains 21 systems (off scale). (Borkovits et al. 2015) 

Tokovinin (2017) found that the two orbits in close triples tend to be aligned, with 

a mean Δ𝑖 of around 20° for outer star separations of ≲ 50 AU but no alignment 

for outer orbits > 1 000 AU. Orbit alignment appears to decline for higher inner 

binary masses and the distribution of Δ𝑖 is such that 80% of triples have Δ𝑖 < 70° 
and the remainder is aligned randomly. 

Outer star inclination 𝒊𝟐 

In our integrations the inclination of the inner stellar orbit is set at zero and that of 

the outer orbit varies from zero (coplanar) to 180 (fully retrograde), 

encompassing the ranges found above. Values were usually randomly generated 

within the desired ranges or increments of 10° were used. 

For the coplanar integrations, small ranges of outer inclination of 0- 60 for 

prograde orbits and 120- 180 for retrograde orbits were selected. In the high-

inclination integrations the full range of 0- 180 was used. 

Both prograde and retrograde planetary orbits were also investigated.  

3.6.8 Outer star longitude of ascending node 

The longitude of ascending node Ω2 was varied from 0° to 270°. The longitude of 

ascending node did not affect the secular evolution of the system significantly. 

Increments were usually 60° or 90°. 

3.6.9 Outer star argument of periapsis 

The argument of periapsis 𝜔 for the inner orbit was normally set at zero, with that 

for the outer orbit ranging from zero to 270°. Increments of 60°- 90° were used. A 

value of 90 was often used as this lead to the maximum induced eccentricity in 

the inner binary.  
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3.7 Numerical Methods And Selection Of Integrator 

The fastest algorithms that are reliable for long-term numerical orbit integrations 

are symplectic integrators. A symplectic integrator is a numerical integration 

scheme for a specific group of differential (in this case, Hamiltonian) equations, 

using classical mechanics and symplectic geometry. One of the earliest symplectic 

integrators was developed by Wisdom and Holman (1991). In particular, mixed-

variable symplectic integrators exhibit substantially faster speed than conventional 

N-body algorithms. However, they become inaccurate when two bodies approach 

one another closely. This occurs because the potential energy term for the pair 

undergoing the encounter becomes comparable to the terms representing the 

unperturbed motion in the Hamiltonian. The problem can be overcome by using a 

hybrid method in which the close encounter term is integrated using a 

conventional integrator whilst the remaining terms are solved symplectically. 

Symplectic integrators may also give spurious results if some objects have or 

develop highly eccentric orbits during an integration. 

Some of the codes investigated include (in approximate order of development): 

3.7.1 Swift  

Swift was created in 1993 (Levison & Duncan 1994; Levison & Duncan 2013). 

The code was designed to symplectically integrate the motion of massive bodies 

and test particles orbiting a more massive center, and is well suited for studying 

the dynamics of planetary systems. A later version for orbital simulation was 

SyMBA (Duncan, Levison & Lee 1998), an extension of Swift that uses a 

multiple time step technique and can symplectically integrate a full N-body 

system including close approaches between massive bodies. However, it fails in 

integrating close encounters with the central star. A further development has been 

Swifter, written by David Kaufmann, where the SyMBA integrator supports a 

second class of bodies of specified maximum mass. These bodies interact 

gravitationally with the more massive bodies, but not with one another. It offers 

seven integration techniques, including the first three listed for Mercury6, below.  

3.7.2 HJS 

Beust (2003) developed an add-on for Swift designed to handle the dynamics of 

hierarchical systems of any size and structure, provided the hierarchy is preserved. 

It comes in the form of the HJS (Hierarchic Jacobi Symplectic) package, a set of 

routines that can be added to the Swift package and specifically allow one to 

integrate the dynamics of multiple stellar systems, i.e. systems with more than one 

massive centre, if they have a hierarchical structure. For example, for a 

circumbinary planet, the main dynamic part will be the Keplerian motion around 

the center of mass of the two stars, with its effective mass the sum of the two 

component masses, and the second part will consist of the rest of the disturbance. 

This code was used by its author in various applications (Beust & Dutrey 2005, 

2006; Reche, Beust & Augereau 2009). It was made public and was subsequently 

used successfully by various researchers (Mudryk & Wu 2006; Lithwick & Wu 

2008a, 2008b; Domingos, Winter & Carruba 2012; Kennedy et al. 2012; Wiegert, 

Faramaz & Cruz-Saenz de Miera 2016). 

http://www.boulder.swri.edu/~hal/swift.html
http://www.boulder.swri.edu/swifter/
http://ipag.obs.ujf-grenoble.fr/~beusth/hjs.html
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3.7.3 Mercury6 

The code probably used most frequently for problems involving a dominant 

central mass has been Mercury6 (Chambers 1999). However, dealing with 

planetary orbits in a binary system is problematical since the system no longer 

contains just one single dominant body. Fortunately, all long-lived planetary 

systems around binary and triple stars are likely to be hierarchical, in which case 

one can modify symplectic schemes while still permitting close encounters. The 

original Mercury6 was later expanded to do this (Chambers et al. 2002).  

Although this package cannot incorporate collisions, since these cannot be 

modelled symplectically, it performs well on most metrics, especially for 

modelling relatively few bodies (where it is very accurate) and the handling of 

close encounters. It is written in Fortran 77 and uses various N-body algorithms: a 

second-order mixed-variable symplectic algorithm, a general Bulirsch-Stoer 

algorithm, Everhart's RA15 Radau algorithm and a hybrid symplectic/Bulirsch-

Stoer integrator. The Bulirsch-Stoer algorithm will work with any system, but it 

may, however, be slow (Chambers, private communication 7/8/13).  

3.7.4 NBODY 

A suite of N-body algorithms (e.g. NBODY6), has been developed by Sverre 

Aarseth, as described in his book (Aarseth 2003). While focused mainly on 

modelling clusters and galaxies, some programs (e.g. Triple) may be applied to 

planetary systems and small-N experiments.  

3.7.5 FEWBODY 

Another code is FEWBODY (Fregeau et al. 2004), which uses the approximate 

analytical criterion of Mardling and Aarseth (2001) for the dynamical stability of 

hierarchical systems and is particularly suited to performing scattering 

experiments. It has been used in the modelling of quadruple systems and their 

comparison with triples (Pejcha et al. 2013). 

3.7.6 Miscellaneous 

In 2007 Verrier & Evans developed a stand-alone program for triple systems, 

Moirai, based on the Chambers et al. (2002) algorithm, and tested it on the three 

main orbital configurations for triples (Verrier & Evans 2007). However, the code 

was not made public. 

Another integrator, written by Piet Hut to investigate a planet bouncing between 

the two stars of a binary, was built on a fourth-order Hermite integrator; it is a 

robust and flexible integrator for small-N systems as it has no preferred dominant 

force or geometry (Moeckel & Veras 2012).  

Some of the more recent integrators have been designed for parallel or 

multicore/GPU implementation, such as QYMSYM (Moore & Quillen 2011) and 

GENGA (Grimm & Stadel 2014). Both codes are hybrid symplectic integrators 

based on Mercury6. At a low number of integrations (~30), the GPU overhead 

dominates and Mercury6 is faster. At a high number of integrations, GENGA 

begins to benefit from the large number of GPU cores, until at around 1 000 

integrations the GPU is fully occupied and the computation time begins to 

http://www.arm.ac.uk/~jec/home.html
https://www.ast.cam.ac.uk/~sverre/web/pages/nbody.htm
http://sourceforge.net/projects/fewbody/
https://www.ids.ias.edu/~piet/act/comp/algorithms
http://astro.pas.rochester.edu/~aquillen/qymsym/
https://bitbucket.org/sigrimm/genga
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increase again. At 16 000 integrations the GPU is about 40 times faster than one 

CPU.  

Other codes include the HNBody package, for the symplectic integration of 

hierarchical systems, which offers explicit support for three classes of particles – 

heavy, light, and massless (Rauch & Hamilton 2012). 

3.7.7 Selection of integrator 

Of these scientific-grade symplectic integrators, perhaps the most popular and 

well-used small-N codes are Swift and Mercury6, with the former’s HJS extension 

being particularly appropriate for the triple star system to be investigated. For a 

compact triple, close encounters are likely.  

Mercury6’s Wisdom and Holman algorithm only uses Jacobi coordinates for 

massive objects. For masses around a hierarchical triple these would in theory be 

the same as Beust's hierarchical Jacobi coordinates, if one of the binary pair from 

the triple was specified as the central object. (As Chambers et al. (2002) have 

pointed out, the technique is identical to the Beust algorithm if only one planet is 

present in the system.) However, use of this code for the integration of the 

dynamics in multiple stellar systems becomes potentially problematic. Even 

taking the interaction with the most massive object as the main part of the 

Hamiltonian, if the masses of different stars are of the same order of magnitude 

this no longer guarantees that one party dominates the other, and the symplectic 

integration method does not work well unless an extremely small time step is 

adopted.  

Previous work (Busetti, F.R., Masters dissertation, 2013) found that Mercury6 

worked well for a triple configuration such as HW Virginis with 𝑎 = 1 326 and 

𝜇2 = 0.03 (Beuermann et al. 2012), but did not model the closer proximity and 

inverted mass ratio of a configuration such as HD 181068 with 𝑎 = 19 and 𝜇2 =
1.7 (Borkovits et al. 2013) well, and the addition of further bodies, in the form of 

test particles, was unsuccessful.  

Beust's hierarchical Jacobi coordinate scheme is therefore the most appropriate for 

the triple systems to be investigated and the HJS code was selected. Much 

research that looks at hierarchical systems uses this code. 

3.7.8 Software details and other software used 

SWIFT and HJS are written in ANSI standard Fortran 77. For the OPEN function 

and in recursive routines SWIFT makes use of the C pre-compiler, cpp. For 

consistency, the edge-detection routine described in Section 3.9 was also written 

in Fortran 77. The Intel Fortran Compiler for Linux, ifort, was used for 

compilation.  

An attempt was made to parallelize the code, first profiling it by compiling with -

profile- loops for both functions and loops. Since many loops had little 

computational content but their parallelization introduced substantial overhead, 

only the top 11 functions, accounting for 76% of the run time, were then auto-

parallelized using OpenMP. However, no speedup was achieved. Lower-level 

parallelization using MPI was not attempted. 

https://janus.astro.umd.edu/HNBody/
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Program output is written to a binary output file. Fortran code was written to read 

data from this file as part of the edge-detection routine. This binary output file was 

also input to SwiftVis, a powerful and very flexible visual data-flow programming 

package by Mark Lewis, which was used to visualise and analyse the data and 

generate some of the graphics. 

Data filtering, visualisation and graphics were also done in OriginsPro and Excel. 

Statistical analyses were carried out with SPSS. Mathematical manipulations such 

as solving the Hamiltonian were done using Mathematica. 

The Bash shell was used extensively for scripting and automating integrations for 

the cluster. Cluster jobs were submitted using the PBS administrative interface 

system. 

Integrations were run on the Mathematical Sciences Cluster at the University of 

the Witwatersrand, using up to 300 cores.  

3.8 Computational Parameters 

3.8.1 Time step 

An early study by Ford, Kozinsky and Rasio (2000) that utilized SWIFT used a 

time step of 1/40 of the orbital period of the inner binary, reducing to 1/600 for 

high-eccentricity systems. Energy and angular momentum were typically 

conserved to 1 part in 106 and 1012, respectively. A larger time step, of 1/20 of 

the orbital period of the inner binary is more commonly used, e.g. Beust (2003). 

Symplectic integration schemes usually ensure energy conservation with 10−6 

relative accuracy using this time step (Levison & Duncan 1994). 

An integration time step of 1/20 of the orbital period of the inner binary was 

therefore normally used in our integrations. The time step also needs to be varied 

to verify that results are not affected by numerical errors. For each batch of 

integrations, we checked that the use of a significantly smaller time step did not 

change our results. 

The time interval between data outputs and dumps was normally set at 1/1 000 of 

the total integration time, which usually translated to 100 − 1 000 yr. 

3.8.2 Integration time 

In stability analyses an integration time of 108 years is often used, as this 

typically applies to systems with dimensions comparable to the Solar System 

because it corresponds roughly to the bulk Lyapunov time for the major planets. 

However, in general the more compact the system, the shorter the required 

integration time as most of the characteristic features of the secular evolution of 

the orbital parameters occur on a shorter time scale. Short orbital periods of the 

test particles (i.e. planets) and high precession frequencies can reduce the required 

integration time by some orders of magnitude. 

The characteristic Kozai times 𝑡𝐾 for the inner binary can be defined, in terms of 

our notation, as per Pejcha et al. (2013): 

http://www.cs.trinity.edu/~mlewis/SwiftVis/SwiftVis.jar
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where 𝑎 refers to semi-major axes, 𝑚 to masses, 𝑒 to eccentricity and the 

subscripts to stars 1 and 2 of the inner binary. 

As higher-order effects in Kozai cycles become important only on longer 

timescales than this, this time is used to indicate which are the relatively worst 

(i.e. least compact) cases in a set of integrations. One can plot the width of the 

evolution ranges obtained over, say, 105 yr for both the semi-major axes and the 

eccentricities of the three bodies to ensure that the integration time comfortably 

exceeds the precession periods of the system. 

The secular evolution of orbital parameters was sampled for each of the 

configurations used, and an integration time of 105 yr was found to be sufficiently 

long in most cases examined. Each batch of integrations included at least one run 

with an integration time of 106 yr or 107 yr on the least compact configuration, to 

confirm this.  

To check the accuracy of the planetary integrations we monitored conservation of 

total energy for the integrations. Using time steps of the above order lead to an 

overall fractional change in the system energy 𝛥𝐸/𝐸0 of about 10−7 over a 105 yr 

integration. The relative energy error Δ𝐸/𝐸0 of a typical integration is shown in 

Figure 13. 

 

 

Figure 13. Relative energy error of a typical integration 

Orbital failures tended to occur quickly – if an orbit did not fail within as little as 

10 – 100 yr, it was usually stable up to 105 yr. While long integration times are 

always desirable, the fact that the stellar systems we investigated were compact 

worked in our favour: 105 yr was often equivalent to hundreds of thousands of 

orbits of the outer star. 



Chapter 3 Computational Parameters 

43 

 

3.8.3 The test particle cloud 

The number of test particles used varied from 1 000 to 10 000, with higher 

numbers being used when rates of ejection were high. In most cases 2 000 or 

3 000 test particles were sufficient. 

The particles’ eccentricities and maximum inclination could be set to any desired 

values (with inclinations of greater than 90° describing retrograde orbits).  

For most stellar configurations, which were close to coplanar, the initial test 

particle cloud took the form of a disc, with the plane of the disk aligned with the 

plane of the inner binary. For configurations where the outer star was of high 

inclination, the test particle disc was aligned with the invariable plane, as 

explained in more detail in Section 4.2.1. 

The inner and outer limits of the particle cloud also need to be specified. To avoid 

making the cloud unnecessarily large for certain configurations and save on 

computation time, the outer limit for P-type orbits needs to be set at a reasonable 

distance. Our approach was to define this relative to the chaotic zone and main 

mean-motion resonances. For example, knowing the period of the outermost star 

enables one to calculate the distance at which the, say, 5:1 MMR occurs; a test 

particle should orbit the whole system stably at that distance. Twice this value 

would be a conservatively large value for the outer boundary, and this criterion 

was generally used. For S-type orbits the maximum outer distance will be 

approximately to the nearest star, some further tweaks are discussed in the 

relevant sections. 

In both cases some computation time can theoretically be saved if, instead of 

abruptly truncating the disk of test particles at a (relatively short) distance, one 

decreases the density of particles moving outwards, for example by using a power 

law where the density of test particles  𝑎−1, where 𝑎 is the semi-major axis of 

the particle. 

The power law used to generate this type of cloud is 

𝑎 = [𝑎𝑚𝑖𝑛
𝑝+1

+ (𝑎𝑚𝑎𝑥
𝑝+1 − 𝑎𝑚𝑖𝑛

𝑝+1)𝑟]
1

(𝑝+1)          (13) 

where 

𝑎𝑚𝑖𝑛 = minimum semi-major axis of cloud 

𝑎𝑚𝑎𝑥 = maximum semi-major axis of cloud 

𝑟 = a random variable [0,1] 

𝑝 = the power law parameter [0,1] 

So, for example, 𝑝 = 0 results in 𝑎 = [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥], i.e. a uniform distribution, 

and for 𝑝 = 1, 𝑎 = [√𝑎𝑚𝑖𝑛, √𝑎𝑚𝑎𝑥]. 

However, in practice the test particles were, usually assigned semi-major axes 

from a uniform random distribution. In generating the test particle cloud, a 

minimum semi-major axis of 0.01 AU was used. This value must be larger than 

the distance at which a test particle was stopped as being too close to the central 

body, and this was set at 0.002 AU (see next section).  
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Test particle orbits with inclinations ranging from fully prograde to fully 

retrograde were used. In coplanar cases the test particle cloud was initially 

uniformly distributed, circular and of zero absolute inclination (i.e. an inclination 

of 0° for prograde particles and 180° for retrograde particles).  

3.8.4 Test particle removals 

The exoplanet orbiting closest to its central body (a pulsar) is PSR 1719 – 14 b, at 

0. 0044 AU, while Kepler-42c has the closest orbit to a “normal” star, at 0.006 

AU. The heliocentric distance at which a test particle is stopped, being considered 

too close to the central body, was therefore selected to be 0.002 AU.  

The furthest planet from its host star yet discovered is HIP 77900 b, at 3 200 AU. 

The distance at which a test particle was assumed to have escaped from the central 

body was therefore set at 10 000 AU.  

These two limits were occasionally varied depending on the type of planetary 

orbit considered. 

The code checks for close approaches between test particles and other bodies, and 

if a test particle approaches within a certain distance of another body it is stopped. 

It is recommended that this distance is set at greater than a Hill sphere. This is 

calculated in the next section. 

3.8.5 The Hill stability criterion 

An astronomical body's Hill (or Roche) sphere approximates the gravitational 

sphere of influence of this body in the face of perturbations from a more massive 

body – it is the region in which it dominates the attraction of satellites. 

In binary systems the integral of motion or Jacobi constant defines allowable 

regions of planetary motion. For a planet that begins with a circular orbit around 

one star, there is a critical value of the semi-major axis ratio. Below this value the 

zero-velocity curve with the same Jacobi constant is “closed” and the planet 

cannot escape, and vice versa. 

The Hill radius 𝑅H for a small body of mass 𝑚2 orbiting a larger body of mass 𝑚1 

with a semi-major axis 𝑎 and eccentricity 𝑒 is 

𝑅H = 𝑎(1 − 𝑒) [
1

3
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If 𝑚2 ≪ 𝑚1, 

𝑅H ≈ 𝑎(1 − 𝑒) (
𝑚2

3𝑚1
)

1

3
                 (15) 

Assuming that a typical exoplanet has 𝑚2~1 𝑀𝐽 and 𝑎~1 AU (as shown in Figure 

3) and 𝑒 = 0, and that a typical intermediate-mass star has 𝑚1~4 𝑀𝑆, then 

𝑅H~0.04. The stopping distance was set at 0.1 AU. 
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3.9  Orbit Stability Bounds – Edge Detection Routine 

It was necessary to automate a procedure for identifying the edges of the test 

particle cloud at the end of an integration. This routine is outlined below for P-

type orbits, with the modifications required for S-type orbits discussed in the 

relevant sections in Chapter 4. 

The procedure first extracts the data from the binary file produced by the HJS 

code. It then takes a cross-section through the centre of the system and test 

particle cloud and constructs a density function, being the surviving particles’ 

frequency distribution.  

The test particles are binned according to their semi-major axis, independent of 

any inclination of their orbit, i.e. this variable is not the projection of their orbits 

on the horizontal plane. This becomes pertinent when inclined orbits are 

considered. There are many heuristics for the optimal number of bins, with two 

popular ones being the square root rule and Rice’s rule. If 𝑛 is the number of 

observations (i.e. remaining test particles), the optimal number of bins 𝑘 is given 

by 𝑘 = √𝑛 and 𝑘 = 2√𝑛
3

 respectively. We took the average of these: 

𝑘 =
√𝑛

2
+ √𝑛

3
                      (16) 

We then set a cutoff value for the particle density function (PDF) to define the 

edge of the test particle cloud and determine its semi-major axis. These cutoff 

values were determined by optimizing the algorithm using visual estimates of the 

edges of a wide range of integration outcomes. 

One problem, for P-type orbits only, is the sparsity of the particle density 

function. For example, beginning with 1 000 test particles, at the end of a 105 

year integration the number of remaining particles in the inner P1 orbits can be 

quite small. Determining the outer stability bound of the inner orbits (and 

occasionally the inner stability bound of the outer orbits) is then difficult, since 

the histogram can be quite discrete, as shown in Figure 14. 

 

 

Figure 14. a) Cartesian plot of final particle positions, 

b) corresponding density function 

The histogram’s particle density function can be smoothed by using a final time 

period (𝑓𝑡) for the integration instead of the final instant, say the last 10% of the 

integration time. The integrity of its profile should remain unaffected, as it is 
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unlikely that many particles will be ejected within this period, and even if a few 

are, this will not change the distribution materially. The use of a final time period 

leads to a much smoother particle density function, as shown in Figure 15. 

 

 

Figure 15. a) Cartesian plot of final particle positions over the last 5% 

of the integration time b) corresponding density function 

The algorithm then begins at the origin of the particle density function and steps 

along the semi-major axis, as shown in Figure 16, until it locates the maximum 

(𝑚𝑎𝑥𝑖) of the inner orbit’s density function, i.e. between the binary, comprising 

Star 1 (at the origin) and Star 2 (very close to it), and Star 3.  

 

 

Figure 16. The particle density function and edge detection algorithm 

The inner orbit’s boundary can be quite diffuse, particularly for retrograde orbits, 

so one must first decide whether any well-defined edge for the inner orbit exists at 

all. To do this, the maximum inner orbit density (𝑚𝑎𝑥𝑖) is divided by the mean 

density of the inner orbits (𝑎𝑣𝑔𝑖). If this “peakiness” falls below a certain 

empirical value (𝑓𝑝), an orbit edge is deemed not to exist.  

Star 2 Star 3

𝑚𝑎𝑥𝑖

 nn r c to  = 𝑓𝑖𝑚𝑎𝑥𝑖

Outer limit of 

inner orbits (𝑎𝑖𝑜)

𝑎𝑣𝑔𝑜

  t r  c to  = 𝑓𝑜𝑎𝑣𝑔𝑜

Inner limit of 

outer orbits (𝑎𝑜𝑖)

𝑙𝑠
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If it exceeds this value, the procedure continues and selects an empirically-

determined fraction of the maximum density (𝑓𝑖) as the density cutoff limit, i.e. 

the inner cutoff value is 𝑓𝑖 𝑚𝑎𝑥𝑖 for the inner orbits’ edge. Moving along the 

horizontal axis until this value is reached, we then read off the corresponding 

value for the semi-major axis (𝑎𝑖𝑜). Because the distribution can still be noisy, 

additional smoothing of the bin values is used. In determining the inner edge, to 

avoid the routine picking empty bins close to 𝑎 = 0, a minimum inner orbit semi-

major axis is set, as a fraction of the outer star’s semi-major axis (𝑙𝑠). 

The algorithm then continues stepping along the semi-major axis, past Star 3. The 

inner edge of the outer test particle disc is then found by applying an outer density 

cutoff limit to the outer particle density function. This outer cutoff is found as a 

(different) empirically-determined fraction (𝑓𝑜) of the mean density (𝑎𝑣𝑔𝑜) of the 

outer density function; when the density function reaches this value the inner limit 

of the outer orbits (𝑎𝑜𝑖) is established. Here the mean is used instead of the 

maximum because of the multi-modality of the outer distribution. 

 

   

   

Figure 17. Test particle cloud and density function of: a) prograde planets 

b) retrograde planets, with all other parameters identical 
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The characteristic profile of the cross-sectional particle density function is quite 

different for prograde and retrograde orbits. For retrograde orbits the density of 

the inner orbits relative to the outer orbits is much lower than for prograde orbits. 

Also, since retrograde orbits are stabler than prograde ones, the region cleared by 

the outer star in this case is much narrower than for prograde orbits, as shown in 

Figure 17. 

This necessitates an additional test for the existence of the inner edge. The ratio of 

the mean density of the inner orbits to the outer orbits is calculated (𝑎𝑎). If this is 

below a certain threshold, the inner edge is too sparse to be defined. This criterion 

is independent of, and overrides, the “peakiness” test. 

The six parameters (𝑓𝑡 , 𝑓𝑝, 𝑓𝑖 , 𝑓𝑜 , 𝑙𝑠 and 𝑎𝑎) were then optimised by training against 

a wide range set of particle density functions. Because of the different 

characteristic profiles of prograde and retrograde orbits, the parameters had to be 

optimised separately for these two cases. 

The optimised edge-detection parameters used for P1 and P2 orbits are shown in 

Table 8. 

 

Parameter Prograde 

orbits 

Retrograde 

orbits 

𝑓𝑡 0.105 0.153 

𝑓𝑝 1.500 1.000 

𝑓𝑖 0.520 0.300 

𝑓𝑜 0.028 0.400 

𝑙𝑠 0.500 0.500 

𝑎𝑎 0.016 0.028 

Table 8. Edge detection parameters for triple system P1 and P2 orbits 

These parameters are for fully prograde and retrograde orbits. For orbit 

inclinations lying between these extreme values, the parameters were interpolated 

between these values according to the “degree of progradeness”. We found this 

degree of progradeness to be approximately related to the ratio of the mean 

density of the inner and outer orbits, so this metric was used.  

During early integration runs it became apparent that some results were 

implausible. These had one thing in common – there was a large outlier spike in 

the test particle density histogram that resulted in an incorrect result from the edge 

detection routine. In every case these spikes were caused by a single anomalous 

test particle; the reason for this remains unclear. The edge detection routine was 

therefore modified to identify and remove any anomalous spikes from the particle 

density function and this de-spiking routine solved the problem. 
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Chapter 4  

 

Results 

 

4.1 Orbit Types P1 And P2 

4.1.1 Configuration 

The configuration of P1-type circumbinary orbits and P2-type circumtriple orbits 

around the inner binary and whole triple respectively is shown in Figure 18. 

 

 

Figure 18. P1 and P2 orbits. Triple system configuration 

Note that the inclination of Star 3, to either the orbital plane of Star 1 and Star 2 or 

to the invariable plane, is not indicated. 

The initial test particle cloud is continuous, ranging from very close to Star 1 to 

well beyond Star 3 as discussed in the previous section; the orbits of Star 2 and 

Star 3 then clear this area as shown and create the stability bounds 𝑎𝑖𝑜 and 𝑎𝑜𝑖. 

4.1.2 Parameter space 

The parameter space used is shown in Table 9. 

For the planets and outer star, prograde or retrograde orbits are indicated by 0 and 

1 respectively. The lower limit of the semi-major axis ratio 𝑎𝑚 represents the 

Mardling limit. The remaining parameters are as discussed in the previous 

chapter. 

For most integrations, parameter values were randomly generated to be uniformly 

m1 m3m2a1 a2

aio

aoi

P1 orbits P2 orbits

Star 1 Star 2 Star 3
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Table 9. P1 and P2 orbits – parameter space 

distributed between the lower and upper limits of the ranges shown, except for the 

prograde/retrograde binary toggles. Combinations were checked for validity, e.g. 

if 𝑒 = 0 then 𝜔 does not exist and if 𝑖 = 0 then Ω does not exist. 

4.1.3 Computational parameters 

The computational parameters used are shown in Table 10. 

 

 

Table 10. P1 and P2 orbits – computational parameters 

Parameter ranges Units

Prograde (0) and retrograde (1) outer star - 0 1

Prograde (0) and retrograde (1) planets - 0 1

Geometry

Semimajor axis ratio a = a 2/a 1 - a m 100

Inner mass ratio μ 1 = m 2/(m 1+m 2) - 0.1 0.5

Outer mass ratio μ 2 = m 3/(m 1+m 2) - 0.2 2.3

Star 2

Eccentricity e 1 - 0 0.9

Inclination i 1 deg 0 -

Longitude of ascending node Ω1 deg 0 -

Argument of periapsis ω 1 deg 0 -

True anomaly ν 1 deg 0 -

Star 3

Eccentricity e 2 - 0 0.9

Inclination i 2 deg 0-60 120-180

Longitude of ascending node Ω2 deg 0 270

Argument of periapsis ω 2 deg 0 270

Orbit type

P1 and P2 

Parameter Units Orbit type

P1 and P2

Central star mass m 1 M S 1

Timestep dt yr Tbin/20

Number of test particles - 1000 - 3000

Test particle orbit centres - -1 -1 -1

Minimum semi-major axis
 (1)

amin AU 0.01

Maximum semi-major axis amax AU 2x 5:1 MMR

Collision with central body rmin AU 0.005

Ejection from system rmax AU 10
4

(1) Must be > specified collision distance
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The test particle orbit centres describe the system’s hierarchy in Swift-HJS. The 

remaining parameters were discussed in the previous chapter. 

The stellar and computational parameters used for the different orbit types are also 

tabled in Appendix A. 

4.1.4 An example integration 

An example integration is illustrated below. The parameters in this specific case 

included an intentionally large inverse outer mass ratio, and were: 𝑎1 = 1 AU, 

𝑎2 = 100 AU, 𝑚1 = 1 𝑀𝑠, 𝑚2 = 4 𝑀𝑠 and 𝑚3 = 15 𝑀𝑠, so 𝑎 = 𝑎2/𝑎1 = 100, 

𝜇1 = 0.8, 𝜇2 = 3.0, and 𝑒, 𝑖, Ω, 𝜔 and 𝑀 for stars 2 and 3 are all zero. A time step 

of 2.236×10−2 yr or around 8 d was used, with a full integration time of 105 yr. 

The test particle cloud consisted of a disc of uniform density initially containing 

10 000 test particles with eccentricities of zero, and extended from the centre of 

the system to 300 AU, where it was truncated. 

The clearing of the inner area over time is shown in Figure 19. The first graph in 

each pair shows the test particle disc in the cartesian plane and the second graph is 

of the corresponding cross-sectional particle density function. 

   

   



Chapter 4 Orbit Types P1 And P2 

52 

 

   

   

   

Figure 19. P1 and P2 orbits. Progression of the clearing of the inner area, 

at times 𝑡 = 0 yr, 170 yr, 290 yr, 1 380 yr and 10 000 yr 

The first pair shows the initial test particle distribution. The second pair shows an 

early stage of clearing. Here clearing proceeds most rapidly in the middle of the 
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test particle cloud and more slowly close to the centre and at the outer regions. In 

the last two pairs one can see the development of regions of relative stability and 

instability. After 104 yr, 48% of the original test particles remained. 

The initial clearing by the outer Star 3 orbiting at 100 AU (not shown) is rapid, 

with most of the ejections occurring early in the integration. At the end of the 

integration at 105 yr there are some test particles remaining in P1 orbits around 

the inner binary, but the edge of this stable region (𝑎𝑖𝑜) is not sufficiently well-

defined, with only 67 particles remaining inside the orbit of Star 3. However, the 

inner edge of the P2 orbits (𝑎𝑜𝑖) has stabilised and this outer limit of the cleared 

region is estimated by the edge detection algorithm as 196 AU.  

This is also shown in Figure 20, where the stable outer ring of test particles begins 

at around 190 AU, with final eccentricities mostly ranging from 0 to around 0.15, 

while a few bodies are orbiting the triple at under 90 AU, with a wide range of 

eccentricities from approximately 0.1 to almost one. 

 

 

Figure 20. P1 and P2 orbits. Semi-major axes and eccentricities 

of test particles after 100 000 yr 

An examination of these orbits shows that the outer P2 orbits are Keplerian and 

the inner P1 orbits are more chaotic as well as eccentric, as shown in Figure 21. 

These inner chaotic orbits are nevertheless stable (in the sense of being bounded) 

for their survival time of 105 yr. 

The relevant stability criteria in an integration are the variation ranges of 

individual orbital elements, particularly semi-major axes. In the case of regular 

dynamics from mean-motion resonances, semi-major axes are secular invariants 

that are expected to undergo very small and rapid changes. So, any significant 

variation in semi-major axes is usually a sign of instability. The orbital parameters 

𝑎, 𝑒 𝑎𝑛𝑑 𝜔 of a test particle at 𝑎  208 AU, close to the inner edge of the outer test 

particle cloud, are shown in Figure 22. 
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Figure 21. Keplerian outer P2 orbits and chaotic and eccentric inner P1 orbits 

 

 

Figure 22. Selected orbital elements of test particle #942 

Over the duration of the integration there is no secular trend in semi-major axis, 

which fluctuates on either side of 208 AU by around 4%, with the particle’s 

orbital eccentricity also showing a small oscillation between zero and 0.09. The 

orbital precession is also small, with the argument of periapsis cycling between 

zero and 6°. 
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In contrast, the behaviour of some of the outermost and innermost particles from 

the inner test particle cloud are shown in Figure 23 and Figure 24. 

 

 

Figure 23. Selected orbital elements of test particle #902 

 

 

Figure 24. Selected orbital elements of test particle #727 

These inner particles are clearly unstable, with their semi-major axes jumping by 

orders of magnitude at random times and with eccentricities regularly exceeding 

unity – many inner orbits were chaotic, albeit bounded. Also, some particles in 
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this region may not be in orbits around the inner binary but in very wide, elliptical 

orbits around the complete triple. 

At the end of 105 yr, 333 of the 1 000 test particles remained in the outer stable 

orbits. The integration was then checked by re-running for 106 yr. At the end of 

this time only six more test particles had been ejected, with the last one being 

expelled relatively early at 0.75 Myr.  

The fact that most ejections occur in the early stages of orbit clearing is illustrated 

in Figure 25.  

 

 

Figure 25. Decline in the number of surviving test particles over time 

Over 90% of the ejections occurred in the first 24 000 years, and 99% by 85 000 

years. Many configurations show even more precipitous declines.  

Another integration of 106 yr was run to check the stability of the results. The 

output variables of interest are the semi-major axes of the inner and outer bounds 

𝑎𝑖𝑜 and 𝑎𝑜𝑖, and these were stable. The outer bound is usually well defined, but 

the inner bound is often tenuous, so if the edge of 𝑎𝑖𝑜 could not be measured with 

any certainty, it was excluded from the data. 

Characteristics of prograde and retrograde planetary orbits 

The results of another typical integration are shown in Figure 26. The upper charts 

show the orbits of the inner binary and the outer star, together with the test 

particle clouds after 105 yr, for prograde and retrograde test particles respectively. 

In each case 𝑎 = 10, 𝜇1 = 0.5, 𝜇2 = 0.5 and all other parameters were zero. The 

last 10% of the integration time is shown, to increase the density of the test 

particles and their density functions in the lower graphs.  
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Figure 26. P1 and P2 orbits. a) prograde planetary orbits 

b) retrograde planetary orbits 

In the prograde case the inner stable region is constrained between the orbit of the 

inner binary and that of the outer star, which also clears an outer region to about 

20 AU. In the retrograde case the greater stability of these orbits allows this outer 

bound to shrink until it is almost coincident with the outer star’s orbit. In this 

particular case a stable inner region does not exist. 

Resonances 

The varying density of the outer test particle cloud, which is also clearly reflected 

in the density histograms, may be attributed to 𝑛: 1 MMRs, which in this case lie 

at approximately 21, 25, 29, 33, 37, 40, 43 and 45 AU. 

For mean motion resonances, the inner body’s approximate nominal resonance 

location 𝑎𝑛, of the (𝑝 + 𝑞): 𝑝 resonance has a semi-major axis given by  

𝑎𝑛 = (
𝑝

𝑝+𝑞
)

2

3
𝑎′                    (17) 
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where 𝑝 and 𝑞 are integers, 𝑞 is the “order” of the resonance and 𝑎′ is the 

perturber’s semi-major axis, as given by equation 8.24 in Murray and Dermott 

(1999). For large 𝑛 the 𝑛: 1 resonance is found at  

𝑎𝑛 = 𝑛
2

3 𝑎′                      (18) 

Regressions 

For P1 and P2 orbits, the respective inner and outer edges of the cleared area of 

the test particle cloud were standardised by taking them as ratios of the semi-

major axis of the outer star, 𝑎2. These standardised dependent variables 𝑎𝑖𝑜/𝑎2 

and 𝑎𝑜𝑖/𝑎2 are denoted the critical semi-major axis ratios delineating the bounds 

of the stable regions. They were then regressed against the parameters discussed 

in Section 4.1.2 using linear regression to extract semi-analytical relationships of 

the form 

𝑎𝑖𝑜
𝑎2

,
𝑎𝑜𝑖
𝑎2

 = 𝑓(𝑎, 𝜇1, 𝜇2, 𝑒1, 𝑒2, 𝑖2, Ω2, 𝜔2) 

Since the critical semimajor axis ratios scale with 𝑎, its regression coefficient is 

zero and the regression equations are the form 

𝑎𝑖𝑜

𝑎2
,
𝑎𝑜𝑖

𝑎2
 = 𝐶 + 𝑎1𝜇1 + 𝑎2𝜇2 + 𝑎3𝑒1 + 𝑎4𝑒2 + 𝑎5𝑖2+𝑎6Ω2 +𝑎7𝜔2    (19) 

Previous theoretical studies of the stable regions for S-type orbits and P-type 

orbits in binary and triple systems, summarised by e.g. Georgakarakos (2008) 

offer relationships in many different functional forms, some derived from theory 

and some empirically. Even the relatively simple empirical regression models 

provided by Holman and Wiegert (1999) use cross-terms up to quadratic order. 

However, 1) these cross terms have no obvious physical meaning, 2) the larger 

number of orbital parameters used in our analysis of triples compared with this 

binary case would lead to an unwieldy number of these terms, 3) in the 

regressions the univariate relationships between the dependent variables and these 

parameters turned out to be linear, with only one exception, and 4) a sample of 

(smaller) regression fits using cross terms was done and they provided no material 

improvement in fit.  

Since our goal is to provide the simplest empirical formulation that is sufficiently 

descriptive, we limited the regressions to simple linear combinations of the 

configuration parameters. Of these terms, only those significant at the 95% level 

were retained.  

Key output metrics 

For all the triple configurations examined, two main metrics were extracted to 

indicate the regions of stability: 

1. The mean critical semi-major axis ratio (MCSAR). The stable orbits 

remaining at the end of an integration have a distribution of semi-major axes. 

From this distribution one has a rough indication of the probability of a planet 

being in a stable orbit at any distance from its central star or stars. 

Unfortunately, these distributions are jagged because of resonances and 

cannot usefully be fitted with smooth functions. Our main metric was 

therefore the mean and range of this distribution. The mean represents an 
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average over all the combinations of variable values used in the variable 

space. 

2. Using all these combinations of variables, we extracted regression equations 

in the form of equation (19), which provides a model for the most likely semi-

major axis ratio for any specific set of variables. Our main metric here was 

the regression constant. This represents the most likely semi-major axis ratio 

for circular, coplanar orbits where both outer bodies are of negligible mass 

relative to the central body (and where the longitude of ascending node and 

argument of periapsis are zero). 

These two measures will normally be different. Both were used as indicators of 

the stability boundary for planets. 

4.1.5 Prograde outer star 

A total of 10 756 integrations was run. An overview of the results for the inner 

and outer stability bounds for prograde and retrograde planetary orbits is shown in 

Figure 27 and Figure 28 respectively. Generally, most of the inner orbits lie well 

inside the orbit of the third star and all the outer orbits well outside it. 

   

Figure 27. P1 and P2 orbits, prograde outer star, prograde 

planets. a) inner bounds b) outer bounds 

For prograde planetary orbits, most of the inner bounds lie between 0.1 and 0.6 

times the outer star’s semi-major axis, averaging around 0.4 times, while the outer 

bounds range from a bit under 2 times to around 4 times, averaging approximately 

3 times. 

 

   

Figure 28. P1 and P2 orbits, prograde outer star, retrograde 

planets. a) inner bounds b) outer bounds 
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For retrograde planetary orbits, there is a clear migration of the orbital bounds 

towards the outer star. The semi-major axis of the inner bounds lies mostly 

between 0.1 and 0.8, averaging 0.5 times the outer star’s semi-major axis, while 

the outer bounds lie mainly between 1 and 3 times this distance, averaging 2 

times. 

There are clear striations in the outer bounds, indicating variations of stability at 

different distances from the inner binary. This is particularly evident for prograde 

orbits, where, for example, a region of relative instability lies between 2.3 and 3.0. 

The fewer striations in the retrograde bounds is attributable to the fact that these 

orbits are generally more stable. There are some suggestions of striations in the 

inner region, but they are much weaker. 

Others have also found striations of instability, especially for high eccentricities of 

the inner binary (𝑒1 ≥ 0.5) and inclinations of the outer star of 𝑖2~0 and 𝜋/2, and 

have hypothesized that these unstable regions are caused by orbital resonances 

between the test particles and the inner binary (Doolin & Blundell 2011). 

The number of stable bounds found is shown in Table 11, where orbit type refers 

to planets. 

 

 

Table 11. P1 and P2 orbits, prograde outer star. Number of bounds found 

Of the total of 10 756 integrations, outer bounds were found in 10 215 

integrations or 95% of the cases, split evenly between prograde and retrograde 

cases. 

Inner bounds were found in only 2 758 cases; a substantially smaller 26% of all 

integrations had inner stability bounds that were sufficiently well-defined to be 

measured. Of these, retrograde orbits accounted for only 35% – retrograde inner 

orbit bounds have particularly diffuse edges, which are difficult to determine. 

The mean critical semi-major axis ratios and their ranges are shown in Table 12, 

where SD denotes standard deviation. 

 

 

Table 12. P1 and P2 orbits, prograde outer star 

– mean critical semi-major axis ratios 

There is a substantial difference in the stability bounds of prograde and retrograde 

orbits. For inner orbits the stability limit for retrograde orbits is 35% larger than 

Orbit Total

type simulations Bounds found Success rate Distribution Bounds found Success rate Distribution

 (no.) (%) (%)  (no.) (%) (%)

Prograde 5413 1782 33 65 5133 94.8 50

Retrograde 5343 976 18 35 5082 95.1 50

Total 10756 2758 26 100 10215 95.0 100

a oi /a 2

Cases with well-defined orbit bounds

a io /a 2

Orbit type

Min Avg Max SD Min Avg Max SD

Prograde planetary orbits 0.131 0.383 0.892 0.147 1.253 2.936 5.197 1.449

Retrograde planetary orbits 0.113 0.519 0.828 0.108 1.184 1.976 4.916 0.507

Difference (%) - 35 - - - -33 - -

a oi /a 2a io /a 2
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for prograde ones, while for outer orbits the stability limit for retrograde orbits is 

33% smaller. 

These mean critical semi-major axis ratios are averages over all whole parameter 

space. We next derived the regression equations for these ratios.  

The signs of the coefficients in the regressions for the inner and outer bounds, 

𝑎𝑖𝑜 𝑎2⁄  and 𝑎𝑜𝑖 𝑎2⁄ , are expected to be as shown in Table 13. 

 
Coefficient Inner Outer  

orbits orbits 

μ1 + + 

μ2 – + 

e1 + + 

e2 – + 

i2 + – 

Ω2 – + 

ω2 – + 

Table 13. P1 and P2 orbits, prograde outer star – 

expected signs of regression coefficients 

For the semi-major axis ratio 𝑎, if the outer star is further away from the binary, it 

should allow the inner stability bound to move outwards, implying a positive sign 

for this coefficient. This larger distance also reduces the influence of the inner 

binary on the outer bound, allowing it to be relatively closer to the outer star, here 

resulting in a negative coefficient (although the effect on the outer bound is likely 

to be minimal relative to that on the inner bound). 

As the inner mass ratio 𝜇1 increases, the influence of the outer binary star becomes 

stronger, pushing the inner bound outwards, leading to a positive coefficient. The 

outer bound would feel the same effect, (although far less so), also giving its 

coefficient a positive sign. 

A larger outer mass ratio 𝜇2 increases the influence of the outer star relative to the 

inner binary, which pushes the inner bound inwards and the outer bound 

outwards, which should result in negative and positive coefficients respectively. 

As the eccentricity of the inner binary 𝑒1 increases (with the semi-major axis 

constant) it will force the inner bound to move outward because of the effective 

increase in semi-minor axis, with a similar but far weaker effect on the outer 

bound, making both coefficients positive. However, the influence on the outer 

bound is expected to be so small that the sign is effectively indeterminate. 

For the outer star a higher eccentricity 𝑒2  results in a more elongated orbit. This 

results in it having a smaller perihelion distance from the centre of mass of the 

binary, leading to a contraction of the inner bound. As the outer star’s orbit 

becomes more elongated it also clears an area that extends further out, pushing the 

outer bound outwards. Signs of the coefficients for inner and outer orbits should 

therefore be negative and positive respectively. 

In our study of coplanar cases we change the inclination of the outer star by only 

small amounts, usually less than 30. Higher-inclination configurations are 

discussed in Section 4.2. As the inclination of the outer star 𝑖2 increases by a small 
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amount, its distance from both the inner and outer bounds increases compared 

with the coplanar case. Its diminished influence therefore allows the inner bound 

to extend further out and the outer bound to move further in, resulting in positive 

and negative coefficients, respectively, for these bounds. Inner and outer orbits 

that are inclined relative to each other should be more stable.  

For inclined orbits, and an outer orbit that is noncircular, as the longitude of the 

ascending node Ω2 increases from 0° to 90° it will push the outer bound outwards 

and the inner bound inwards – a similar effect to that of the outer star’s 

eccentricity increasing and which results in the same signs. 

Again, for a noncircular outer orbit, now not necessarily inclined, an increase in 

the argument of periapsis 𝜔2will have the same effect and result in the same 

signs. 

These coefficient signs apply to both prograde and retrograde stellar orbits.  

We now performed the regressions on the inner and outer regions, for both 

prograde and retrograde planetary orbits. As expected, for retrograde orbits the 

outer stable region moves inwards compared with the prograde case, and the inner 

stable region moves outwards, i.e. both move closer to the outer star. 

Note that while the critical semimajor axis ratio scales with 𝑎 (except for very 

small separations) and its regression coefficient should be zero, it has nevertheless 

been included in all regressions as an additional indication of model error; it is of 

course excluded in the regression equations.  

Outer region  

Prograde planetary orbits 

For the outer region the regression resulted in the following relationship, where 

the error terms are the average 95% confidence limits. Where coefficients are zero 

to three decimal places they are excluded.  

𝑎𝑜𝑖 𝑎2⁄ = (2.377 ± 0.024) + (−0.003 ± 0.000)𝑎 + (0.053 ± 0.036)𝜇1 +
(0.044 ± 0.007)𝜇2 + (0.090 ± 0.026)𝑒1 + (1.997 ± 0.013)𝑒2 + (−0.002 ±
0.000)Ω2 + (−0.002 ± 0.000)𝜔2               (20) 

A typical partial regression plot, here of 𝑎𝑜𝑖 𝑎2⁄  against eccentricity 𝑒2, is shown 

in Figure 29. A linear fit appears appropriate in this case. 

Data on the above regression coefficients are listed in Table 14. In this and 

subsequent tables of regression results, the various parameters are defined as 

follows: 𝜎-standard deviation; 𝑅2-coefficient of determination, F- F statistic for 

overall significance, 𝑆𝐸-standard error and MAPE-mean average percentage error, 

all being for the overall regression fit; 𝑡-𝑡 statistic for individual coefficients, 𝑁-

number of points. 

The model shows that for a dominant central star and coplanar, circular orbits the 

outer stability bound would be found at around 2.4 times the semi-major axis of 

the outer star.  

 



Chapter 4 Orbit Types P1 And P2 

63 

 

 

Figure 29. Regression plot of outer critical semi-major 

axis ratio against outer star eccentricity 

 

 

Table 14. P1 and P2 orbits, prograde outer star. Regression coefficients 

 – outer region, prograde planetary orbits 

The only parameter that has a major influence on this distance is the eccentricity 

of the outer star's orbit. For very high eccentricities it could push this bound out as 

far as almost 4.4 times the semi-major axis of the outer star.  

The outer bound’s dependence on the remaining orbital parameters is very weak 

for the two mass ratios and the inner binary’s eccentricity 𝑒2 and is effectively 

zero for the remaining parameters. The configuration of the inner binary and the 

inclination of the outer star has no material effect on the outer bound. 

The regression equation has an 𝑅2 of 0.828, the F-statistic was 3 080 and the 

standard error of the regression was 0.239. The model has a low mean absolute 

percentage error (MAPE) of 6%. 

 

Model Standardised 

Coefficients

B

Std. 

Error Beta

Lower 

Bound

Upper 

Bound

C 2.377 .012 194.6 0.000 2.353 2.401

a -0.003 .000 -.143 -23.8 0.000 -0.003 -0.002

μ 1 0.053 .018 .017 2.9 0.004 0.017 0.089

μ 2 0.044 .004 .067 11.5 0.000 0.036 0.051

e 1 0.090 .013 .040 6.8 0.000 0.064 0.115

e 2 1.997 .013 .883 151.8 0.000 1.972 2.023

i 2 0.000 .000 .018 3.1 0.002 0.000 0.001

Ω2 -0.002 .000 -.111 -15.9 0.000 -0.002 -0.002

ω 2 -0.002 .000 -.093 -13.4 0.000 -0.002 -0.002

Unstandardized 

Coefficients

t Sig. 95% 

Confidence 
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Retrograde planetary orbits 

The best fit to the data is given by 

𝑎𝑜𝑖 𝑎2⁄ = (1.483 ± 0.019) + (0.131 ± 0.028)𝜇1 + (−0.008 ± 0.006)𝜇2 +
(−0.036 ± 0.020)𝑒1 + (1.725 ± 0.020)𝑒2 + (0.002 ± 0.000)𝑖2 +
(0.001 ± 0.000)Ω2 + (0.001 ± 0.000)𝜔2             (21) 

The constant term is 38% smaller than that for the prograde case, confirming that 

retrograde orbits are substantially more stable than prograde ones. Data on the 

regression coefficients is listed in Table 15. 

 

 

Table 15. P1 and P2 orbits, prograde outer star. Regression coefficients 

 – outer region, retrograde planetary orbits 

The coefficient of the eccentricity of the outer star is larger than the constant; an 

orbit with an eccentricity approaching one would add 1.7 to the critical semi-

major axis of the outer bound, more than doubling it. This factor’s influence is 

thus much stronger than in the case of a prograde planet. The inner mass ratio’s 

influence is larger than for the prograde case, but it remains small, and the 

significance of the remaining variables is again minimal. 

The regression equation has a slightly better fit than the prograde case, with an 𝑅2 

of 0.860, a F-statistic of 3 880 and a standard regression error of 0.190. The 

model’s MAPE was again 6%. 

Inner region 

Prograde planetary orbits 

The regression equation was as follows: 

𝑎𝑖𝑜 𝑎2⁄ = (0.439 ± 0.018) + (−0.005 ± 0.025)𝜇1 + (−0.020 ± 0.005)𝜇2 +
(−0.004 ± 0.018)𝑒1 + (−0.114 ± 0.025)𝑒2 + (−0.001 ± 0.000)Ω2 +
(−0.001 ± 0.000)𝜔2                   (22) 

Data on the regression coefficients is listed in Table 16. 

Model Standardised 

Coefficients

B

Std. 

Error Beta

Lower 

Bound

Upper 

Bound

C 1.483 .010 153.4 0.000 1.465 1.502

a -0.004 .000 -.220 -40.4 0.000 -0.004 -0.003

μ 1 0.131 .014 .048 9.1 0.000 0.103 0.159

μ 2 -0.008 .003 -.015 -2.8 0.005 -0.014 -0.003

e 1 -0.036 .010 -.018 -3.5 0.000 -0.057 -0.016

e 2 1.725 .010 .876 166.1 0.000 1.705 1.745

i 2 0.002 .000 .103 19.6 0.000 0.002 0.002

Ω2 0.001 .000 .054 8.5 0.000 0.001 0.001

ω 2 0.001 .000 .032 5.1 0.000 0.000 0.001

Sig. 95% 

Confidence 

Unstandardized 

Coefficients

t
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Table 16. P1 and P2 orbits, prograde outer star. Regression coefficients 

 – inner region, prograde planetary orbits 

The constant indicates that the inner stability bound for a circular, coplanar triple 

should have a critical ratio of roughly 0.44. The largest influence on this bound is 

again the eccentricity of the outer star rather than the inner binary, but relative to 

the constant term its influence is three times weaker than for the outer stability 

bounds.  

The sign of some of the coefficients are not as expected. However, in many of 

these cases, particularly for inner orbits, the errors in the coefficients are larger 

than the coefficients themselves. This has therefore been ignored. 

This regression equation has an 𝑅2 of only 0.132, the F-statistic was 34 and the 

standard error of the regression was 0.093. The model has a higher mean absolute 

percentage error (MAPE) of 19%. This again reflects the more indistinct nature of 

the inner bound’s edge compared with that of the outer stability bound. 

Retrograde planetary orbits 

The best-fit equation for the critical ratio of this stability bound is 

𝑎𝑖𝑜 𝑎2⁄ = (0.573 ± 0.015) + (0.009 ± 0.021)𝜇1 + (−0.043 ± 0.004)𝜇2 +
(−0.010 ± 0.015)𝑒1 + (−0.469 ± 0.029)𝑒2           (23) 

Data on the regression coefficients is listed in Table 17. 

The constant is similar to that for the prograde case and the coefficient of the 

eccentricity of the outer star, while still small relative to the outer region cases, is 

three times larger than it was for the prograde case. The remaining variables are 

insignificant.  

The regression’s 𝑅2 of 0.671, F-statistic of 246, standard error of 0.062 and 

MAPE of 10% are better than for the prograde case. The inner retrograde stability 

limits have better-defined edges than the prograde limits. 

 

Model Standardised 

Coefficients

B

Std. 

Error Beta

Lower 

Bound

Upper 

Bound

C 0.439 .009 47.8 0.000 0.421 0.457

a 0.000 .000 .009 0.4 0.692 0.000 0.000

μ 1 -0.005 .013 -.009 -0.4 0.694 -0.029 0.020

μ 2 -0.020 .003 -.160 -7.1 0.000 -0.025 -0.014

e 1 -0.004 .009 -.011 -0.5 0.633 -0.022 0.013

e 2 -0.114 .013 -.213 -8.9 0.000 -0.139 -0.089

i 2 0.000 .000 .049 2.2 0.027 0.000 0.000

Ω2 -0.001 .000 -.172 -6.1 0.000 -0.001 0.000

ω 2 -0.001 .000 -.174 -6.3 0.000 -0.001 0.000

Unstandardized 

Coefficients

t Sig. 95% 

Confidence 
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Table 17. P1 and P2 orbits, prograde outer star. Regression coefficients 

 – inner region, retrograde planetary orbits 

Summary – prograde outer star 

For triple configurations with circular, coplanar outer stellar orbits, the inner (P1) 

and outer (P2) stability boundaries for prograde planetary orbits are found at 

around 0.4 times and 2.4 times the distance of the outer star respectively, and for 

retrograde planetary orbits at around 0.6 times and 1.5 times this distance 

respectively. 

The configuration of the inner binary has little influence on either inner or outer 

orbits. This results from the fact that, as a consequence of the Mardling stability 

limit, the outer star is sufficiently far away that the inner binary effectively 

resembles a single point mass. 

The outer star dominates the regions of stability in a triple system, with its 

eccentricity having by far the largest influence. 

These conclusions hold for both prograde and retrograde planetary orbits. 

However, the greater stability of retrograde orbits results in outer bounds that are 

closer to the outer star and inner bounds that are further from the binary, 

compared with the prograde case. 

The difference in these bounds can be significant, as shown in Table 18, which 

uses the regression equations to calculate the sensitivity of the critical semi-major 

axis ratio to the outer star’s eccentricity, for prograde and retrograde planetary 

orbits.  

For circular orbits of the outer star the absolute difference in critical ratio for 

prograde and retrograde orbits is 31%-38% while for highly eccentric stellar orbits 

it is 27%-68%. 

For highly eccentric orbits of the outer star, the semi-major axis of the outer 

bound can expand 84% further out for prograde orbits and more than double 

(116%) for retrograde orbits, while the inner bound reduces by 26% for prograde 

planetary orbits and can contract by as much as 82% for retrograde planetary 

orbits. 

Model Standardised 

Coefficients

B

Std. 

Error Beta

Lower 

Bound

Upper 

Bound

C 0.573 .007 76.4 0.000 0.558 0.588

a 0.000 .000 .102 4.8 0.000 0.000 0.001

μ 1 0.009 .011 .016 0.8 0.398 -0.012 0.030

μ 2 -0.043 .002 -.386 -19.2 0.000 -0.047 -0.038

e 1 -0.010 .007 -.026 -1.4 0.166 -0.025 0.004

e 2 -0.469 .015 -.631 -31.8 0.000 -0.498 -0.440

i 2 0.000 .000 -.052 -2.8 0.005 0.000 0.000

Ω2 0.000 .000 .022 1.0 0.324 0.000 0.000

ω 2 0.000 .000 .028 1.3 0.195 0.000 0.000

95% 

Confidence 

Unstandardized 

Coefficients

t Sig.
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Table 18. P1 and P2 orbits, prograde outer star. Critical semi-major axis ratio 

versus direction of planetary motion and outer star eccentricity 

The accuracy of the relationships derived to determine these bounds is good for 

the outer bound (~6%) but less so for the inner bound (~14%). 

4.1.6 Retrograde outer star 

To investigate this case, a set of 4 807 integrations was run. The parameter space 

used is shown in Table 9, with the range of 𝑖2 changing from 0° – 60° to 120° – 

180° and the semi-major axis ratio 𝑎𝑚 now calculated from equation (9). 

The test particle cloud was again an initially uniformly distributed circular disc of 

zero eccentricity, with its outer limit extending to the 5th MMR as previously 

described.  

The results for prograde and retrograde planetary orbits are shown in Figure 30 

and Figure 31 respectively. The inner orbits are quite sharply defined at their 

lower limit for prograde orbits and at their outer limit for retrograde orbits, with 

only a few outliers beyond these, while outer orbits display a sharp edge only for 

retrograde orbits. 

 

 

Figure 30. P1 and P2 orbits, retrograde outer star, prograde 

planets. a) inner bounds b) outer bounds 

The prograde inner bounds are uniformly distributed and the critical ratio lies 

between 0.1 and a more diffuse limit around 0.7, averaging close to 0.4. The 

prograde outer critical ratio generally ranges from around 1.5 to around 3.5, 

averaging 2.7. The striations in the pattern again indicate resonances – for 

example, there is a region of relative instability between 2.0 and 2.6.  

 

Bound

e 2 0 1 Δ (%) 0 1 Δ (%)

Prograde 0.44 0.33 -26 2.38 4.37 84

Retrograde 0.57 0.10 -82 1.48 3.21 116

Δ (%) 31% -68% - -38% -27% -

a oi /a 2a io /a 2
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Figure 31. P1 and P2 orbits, retrograde outer star, retrograde 

planets. a) inner bounds b) outer bounds 

For retrograde inner orbits the inner critical ratio is diffuse, but the outer limit is 

well-defined at around 0.7. For retrograde outer orbits the inner critical ratio lies 

at about 1.1, with a diffuse outer bound from about 3. A region of strong 

instability is visible between 1.3 and 1.5, with a second one between 1.7 and 2.1. 

The number of bounds found is shown in Table 19. 

 

 

Table 19. P1 and P2 orbits, retrograde outer star. Number of bounds found 

Compared with the case of a prograde outer star, slightly fewer outer orbits were 

found and they were no longer evenly split between prograde and retrograde 

planetary orbits. Of the total of 4 807 integrations, outer orbit bounds were found 

in 4 350 integrations or 91% of cases compared with 95% previously, with a small 

preponderance of retrograde cases, as before.  

Inner orbit bounds were found in only 1 108 or 23% of these cases, compared 

with 26% previously. Prograde and retrograde planetary orbits accounted for 27% 

and 20% of these respectively, compared to 33% and 18% previously, probably 

indicating less stability when the motions of the planets and outer star are in the 

same direction.  

 

 

Table 20. P1 and P2 orbits, retrograde outer star. Mean 

critical semi-major axis ratios 
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Planet orbit Total

type simulations Bounds found Success rate Distribution Bounds found Success rate Distribution

 (no.) (%) (%)  (no.) (%) (%)

Prograde 2122 569 27 51 1895 89.3 44

Retrograde 2685 539 20 49 2455 91.4 56

Total 4807 1108 23 100 4350 90.5 100

a oi /a 2

Cases with well-defined orbit bounds

a io /a 2

Orbit type

Min Avg Max SD Min Avg Max SD

Prograde planetary orbits 0.110 0.385 0.897 0.077 0.924 2.773 5.384 0.891

Retrograde planetary orbits 0.112 0.537 0.857 0.132 0.591 1.960 4.957 0.571

Difference (%) - 39 - - - -29 - -

a io /a 2 a oi /a 2
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The mean semi-major axis ratios and their ranges are shown in Table 20.  

There are once again substantial differences in the critical ratio for prograde and 

retrograde planetary orbits, averaging 34% in absolute terms, with the differences 

for inner and outer orbits being quite similar to those found for the prograde 

stellar case. 

Differences in critical ratios for prograde and retrograde stellar orbits  

The mean semi-major axis ratios for prograde and retrograde outer stars are 

compared in Table 21. 

 

 

Table 21. P1 and P2 orbits. Difference in mean critical semi-major 

axis ratios for prograde and retrograde stellar orbits 

It is worth briefly comparing the differences in our results for prograde and 

retrograde systems with other studies related to planetary stability.  

Looking at an example of a single stellar case, in an analysis of the orbital 

stability of systems of closely-spaced planets, Smith and Lissauer (2009) set up 

stylised planetary systems of five planets in which every planet orbits in the 

opposite direction to its nearest neighbours. The resulting systems were 

dramatically more stable than an identical system of prograde planets, albeit with 

more scatter in the results. The five-planet retrograde systems could be packed 

more than twice as closely together as prograde systems. The data in their Table 3 

shows that the outermost retrograde planets orbited 27% closer to the star, which 

is comparable to the 35% – 39% above. 

More pertinently to our stellar configuration, Quarles and Lissauer (2016) 

examined the long-term stability of planets in the binary α Centauri AB system 

(i.e. ignoring Proxima Centauri). For P1 circumbinary orbits their data (Fig. 8) 

shows that retrograde test particles were stable 38% closer to the central star, 

identical to our result. 

The difference that the orbital direction of the outer star makes, for both prograde 

and retrograde planetary orbits, is small but not insignificant. The differences, of a 

few percent, are statistically meaningful for inner retrograde planetary orbits and 

outer prograde planetary orbits. 

For the case where the outer star moves in a retrograde orbit, compared with the 

case with the star moves in a prograde orbit, one would expect that: 

1. For outer planetary orbits, those that are prograde would move inwards, 

towards the outer star and retrograde ones would move outwards, away from 

it. This occurred for prograde planets, which moved in by a statistically 

Orbit type

Stellar orbit: Prograde Retrograde Δ% Prograde Retrograde Δ%

Prograde planetary orbit 0.383 0.385 1 2.936 2.773 -6*

Retrograde planetary orbit 0.519 0.537 3* 1.976 1.960 -1

Δ% 35 39 -33 -29

* significant at the 5% level

a io /a 2 a oi /a 2

Stability bound averages
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significant 6%; the 1% that retrograde planets also moved in by was not 

statistically meaningful.  

2. For inner planetary orbits, prograde ones would move outwards, towards the 

outer star and retrograde ones would move inwards, away from it. The 

prograde bounds did this, moving out by a statistically insignificant 1%, but 

the retrograde bounds moved in the wrong direction, by a statistically 

meaningful 3%. More investigation is required. 

Outer region  

Prograde planetary orbits 

The regression equation is 

𝑎𝑜𝑖 𝑎2⁄ = (2.089 ± 0.092) + (0.809 ± 0.116)𝜇1 + (0.114 ± 0.011)𝜇2 +
(0.015 ± 0.025)𝑒1 + (1.298 ± 0.060)𝑒2 + (−0.001 ± 0.000)𝑖2     (24) 

Again, where coefficients are zero to three decimal places they are excluded. Data 

on the regression coefficients is detailed in Table 22. 

 

 

Table 22. P1 and P2 orbits, retrograde outer star. Regression 

coefficients – outer region, prograde orbits 

The constant is 12% smaller than in the case where the outer star is prograde. The 

major change is that the dependence on both mass ratios has increased, by an 

order of magnitude for the inner ratio and by 2.6 times for the outer ratio. The 

influence of the inner binary’s eccentricity remains negligible while that of the 

outer star is again dominant, although less so than for the case where this star is 

prograde. The inclination of the outer star (over the limited range used in this 

case) again has no effect on the planetary stability bounds. 

The most significant feature of the retrograde stellar case is therefore that, in 

addition to the outer eccentricity, the inner mass ratio is a significant determinant 

of the critical semimajor axis ratio. 

Model Standardised 

Coefficients

B

Std. 

Error Beta

Lower 

Bound

Upper 

Bound

C 2.089 .047 44.5 .000 1.997 2.181

a -.004 .000 -.278 -17.5 .000 -.004 -.004

μ 1 .809 .059 .229 13.7 .000 .693 .925

μ 2 .114 .011 .172 10.8 .000 .093 .134

e 1 .015 .025 .010 0.6 .551 -.034 .064

e 2 1.298 .030 .668 42.7 .000 1.238 1.358

i 2 -.001 .000 -.058 -3.6 .000 -.001 .000

Ω2 .000 .000 .031 2.0 .049 .000 .001

ω 2 .000 .000 .001 0.1 .930 .000 .000

Unstandardized 

Coefficients

t Sig. 95% 

Confidence 

Interval for B
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The fit was poorer than for the prograde stellar case. The regression equation has 

an 𝑅2 of 0.271, the F-statistic was 26 and the standard error of the regression was 

0.126. The model has a high mean absolute percentage error (MAPE) of 31%. 

Retrograde planetary orbits 

The best fit to the data was given by 

𝑎𝑜𝑖 𝑎2⁄ = (1.708 ± 0.070) + (0.182 ± 0.083)𝜇1 + (0.023 ± 0.014)𝜇2 +
(0.018 ± 0.035)𝑒1 + (1.693 ± 0.041)𝑒2 + (−0.001 ± 0.000)𝑖2     (25) 

Here the constant term is 15% larger than for a prograde outer star. The 

coefficients for the two mass ratios have also risen but remain small – the 

increased influence of the inner mass ratio seen for prograde planetary orbits does 

not hold for retrograde planetary orbits. The coefficient of the eccentricity of the 

outer star is slightly smaller but remains comparable in magnitude to the constant. 

Data on the regression coefficients is listed in Table 23.  

 

 

Table 23. P1 and P2 orbits, retrograde outer star. Regression 

coefficients – outer region, retrograde orbits 

The regression equation has a much better fit than for the prograde case, with an 

𝑅2 of 0.773, a F-statistic of 1 039 and a standard regression error of 0.269. The 

model’s MAPE is also much better, at 8%. 

Inner region 

Prograde planetary orbits 

The model was as follows: 

𝑎𝑖𝑜 𝑎2⁄ = (0.463 ± 0.058) + (0.190 ± 0.071)𝜇1 + (−0.037 ± 0.013)𝜇2 +
(−0.021 ± 0.031)𝑒1 + (−0.187 ± 0.053)𝑒2 + (−0.001 ± 0.000)𝑖2    (26) 

Data on the regression coefficients is listed in Table 24. 

 

Model Standardised 

Coefficients

B

Std. 

Error Beta

Lower 

Bound

Upper 

Bound

C 1.708 .036 47.6 .000 1.638 1.778

a -.006 .000 -.320 -32.7 .000 -.006 -.005

μ 1 .182 .042 .045 4.3 .000 .100 .265

μ 2 .023 .007 .032 3.2 .001 .009 .037

e 1 .018 .018 .010 1.0 .325 -.018 .053

e 2 1.693 .021 .795 80.4 .000 1.652 1.734

i 2 -.001 .000 -.068 -7.0 .000 -.001 -.001

Ω2 .000 .000 .012 1.2 .212 .000 .000

ω 2 .000 .000 .011 1.1 .264 .000 .000

Sig. 95% 

Confidence 

Interval for B

Unstandardized 

Coefficients

t
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Table 24. P1 and P2 orbits, retrograde outer star. Regression 

coefficients – inner region, prograde orbits 

Compared with the prograde stellar case the constant is larger, as expected, albeit 

marginally. For the mass ratios, the coefficient of the inner one has increased by 

nearly forty times, and that for the outer one by less than twice. The coefficient for 

the eccentricity of the outer star is materially larger than for a prograde outer star. 

The key difference is that the influence of the inner mass ratio has become 

significant and comparable to that of the outer eccentricity. 

This regression equation has an 𝑅2 of 0.547, the F-statistic was 285 and the 

standard error of the regression was 0.358. The model has a mean absolute 

percentage error (MAPE) of 9%. 

Retrograde planetary orbits 

The best-fit equation for the critical ratio of this stability bound is 

𝑎𝑖𝑜 𝑎2⁄ = (0.656 ± 0.041) + (−0.056 ± 0.044)𝜇1 + (−0.022 ± 0.01)𝜇2 +
(0.005 ± 0.020)𝑒1 + (−0.510 ± 0.029)𝑒2             (27) 

Data on the regression coefficients is listed in Table 25. 

Compared with the prograde stellar case the constant has increased as expected, 

but the other coefficients are largely unchanged, with only that for the inner mass 

ratio increasing appreciably. However, it remains an uninfluential determinant of 

the critical semimajor axis ratio. 

The regression’s 𝑅2 of 0.710, F-statistic of 162, standard error of 0.071 and 

MAPE of 12% are similar to the prograde case. 

 

Model Standardised 

 Coefficients

B

Std. 

Error Beta

Lower 

Bound

Upper 

Bound

C .463 .030 15.6 .000 .405 .521

a .000 .000 .066 1.8 .073 .000 .001

μ 1 .190 .036 .203 5.3 .000 .120 .261

μ 2 -.037 .006 -.212 -5.8 .000 -.050 -.024

e 1 -.021 .016 -.049 -1.3 .191 -.052 .010

e 2 -.187 .027 -.262 -7.0 .000 -.240 -.134

i 2 -.001 .000 -.187 -4.9 .000 -.001 .000

Ω2 .000 .000 -.066 -1.8 .073 .000 .000

ω 2 .000 .000 -.051 -1.4 .171 .000 .000

Unstandardized 

 Coefficients

t Sig. 95% 

Confidence 

Interval for B
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Table 25. P1 and P2 orbits, retrograde outer star. Regression 

coefficients – inner region, retrograde orbits 

Comparisons 

The mean critical semi-major axis ratio data for inner and outer orbits, for the 

previous eight combinations of orbital motion, are shown in Table 26. These are 

the average ratios found over all the combinations used in the parameter space.  

 

 

Table 26. P1 and P2 orbits. Mean critical semi-major axis ratios 

for various combinations of orbital motions 

For P1 planetary orbits the mean critical ratio is materially (36%) different for 

prograde and retrograde planetary orbits, being 0.383 and 0.519 respectively. Both 

these ratios are slightly (~2%) larger for retrograde stellar orbits. 

For P2 orbits the mean critical ratio is similarly (-33%) different for prograde and 

retrograde planetary motions, being 2.94 and 1.98 respectively. For retrograde 

stellar orbits these ratios are slightly (~3%) smaller. 

Summary graphs of the corresponding regressions are presented in Figure 32.  

 

Model Standardised 

 Coefficients

B

Std. 

Error Beta

Lower 

Bound

Upper 

Bound

C .656 .021 31.6 .000 .615 .697

a .000 .000 -.033 -1.4 .172 .000 .000

μ 1 -.056 .022 -.065 -2.5 .012 -.100 -.012

μ 2 -.022 .005 -.108 -4.4 .000 -.032 -.012

e 1 .005 .010 .011 0.5 .640 -.016 .025

e 2 -.510 .015 -.882 -34.1 .000 -.539 -.480

i 2 .000 .000 .032 1.3 .184 .000 .000

Ω2 .000 .000 -.057 -2.4 .015 .000 .000

ω 2 .000 .000 -.009 -0.4 .708 .000 .000

95% 

Confidence 

Interval for B

Unstandardized 

 Coefficients

t Sig.

Orbit Critical

type ratio Star 3 Planet Min Mean  Max

P P 0.131 0.383 0.147 0.892

R 0.113 0.519 0.108 0.828

R P 0.110 0.385 0.077 0.897

R 0.112 0.537 0.132 0.857

P P 1.253 2.936 1.449 5.197

R 1.184 1.976 0.507 4.916

R P 0.924 2.773 0.891 5.384

R 0.591 1.960 0.571 4.957

1. P - prograde, R - retrograde

Motions
1 Mean critical semi-major axis ratio

P1 a io/a 2

P2 a oi/a 2
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Figure 32. P1 and P2 orbits. Regression coefficients for various combinations 

of orbital motions. Upper panel a) prograde outer star, lower panel 

b) retrograde outer star 

For P1 orbits the dominant influence on the critical ratio is only the outer star’s 

eccentricity, particularly for retrograde planetary orbits. For P2 orbits this effect is 

even stronger, for both planetary motions. In the case of a retrograde outer star 

these influences are largely unchanged for P1 orbits, but for P2 orbits the inner 

mass ratio becomes important for a prograde planet. 

The differences between the regression coefficients for prograde and retrograde 

stellar orbits are summarised in Table 27. Where the signs of coefficients are 

different for very weak terms, this is ignored. 

In summary, a retrograde outer star results in a greater influence from the two 

mass ratios, particularly the inner one, with this effect being greater for prograde 

planetary orbits than for retrograde ones. The effect of the inner binary's 

eccentricity remains insignificant. The effect of the outer star’s eccentricity 

remains large but is lower for outer bounds (for both prograde and retrograde 

planetary orbits) but is largely unchanged for inner bounds, for both these 

planetary motions. 
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Table 27. P1 and P2 orbits. Differences in regression coefficients for 

prograde and retrograde motions of the outer star 

The directional movements of the stability bounds for planetary orbits are as 

expected for three of the four cases. However, for retrograde inner planetary orbits 

the bound increases instead of shrinking. This may be attributable to the small 

sample, since very few retrograde star/retrograde planet combinations were stable. 

Relationship between stability bounds and the outer star’s eccentricity 

Since the eccentricity of the outer star is by far the most influential variable on 

both the inner and outer planetary stability bounds, a series of integrations was run 

to examine the relationship between these two variables. 

Outer bounds 

The relationship between the two variables is shown in Figure 33, where the 

values of the other variables were: 𝑎 = 100 AU, 𝜇1 = 𝜇2 = 0.5,  𝑒1 = 𝑖1 = Ω2 =
𝜔2 = 0 and 𝑖2 = 0 and 180. 

For the outer bound the critical ratio should be an increasing function of outer 

eccentricity 𝑒2. This is true for all four cases shown, although for the two 

retrograde planet cases the critical ratio flattens out from 𝑒20.6. There are 

discontinuities in the critical ratio in each case. This is most visible in the 

prograde star/prograde planet case, with gaps occurring at eccentricities of 0.10, 

where the critical ratio jumps from 2.37 to 2.70; and at 0.39, with the ratio 

undergoing a step change from 2.82 to 3.05. These instabilities are less 

pronounced in the two retrograde planet cases. 

A retrograde outer body allows the outer bound to move substantially closer to it, 

with a critical ratio at 𝑒2 = 0 of 1.3, compared with 2.1 for a prograde outer star. 

However, this difference diminishes with increasing outer eccentricity, with both 

critical ratios converging towards 3.2 as this eccentricity approaches unity. 

Ratio Ratio

Prograde Retrograde (abs.) Prograde Retrograde (abs.)

stellar orbit stellar orbit stellar orbit stellar orbit

C 2.377 2.089 0.88 0.439 0.463 1.06

a -0.003 -0.004 - 0.000 0.000 9.75

μ 1 0.053 0.809 15.16 -0.005 0.190 38.68

μ 2 0.044 0.114 2.61 -0.020 -0.037 1.86

e 1 0.090 0.015 0.17 -0.004 -0.021 4.79

e 2 1.997 1.298 0.65 -0.114 -0.187 1.65

C 1.483 1.708 1.15 0.573 0.656 1.15

a -0.004 -0.006 1.58 0.000 0.000 0.47

μ 1 0.131 0.182 1.39 0.009 -0.056 6.22

μ 2 -0.008 0.023 2.75 -0.043 -0.022 0.51

e 1 -0.036 0.018 0.49 -0.010 0.005 0.47

e 2 1.725 1.693 0.98 -0.469 -0.510 1.09

Prograde 

planetary 

orbits

Retrograde 

planetary 

orbits

Coefficient

Outer bounds

Coefficient

Inner bounds
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Figure 33. P2 orbits. Outer stability bound as a function of outer star eccentricity 

Inner bounds 

The original series of integrations did not result in sufficient data points because 

of the small number of inner bounds that are defined well enough for their edges 

to be established. Fewer bounds are found when 

1. stellar and planetary orbits are in the same direction, i.e. both are prograde or 

both are retrograde, as these are less stable situations, and  

2. stellar eccentricity increases. 

Running more integrations resulted in Figure 34. 

 

Figure 34. P1 orbits. Inner stability bound as a function of outer star eccentricity 

For the inner bound the critical ratio is expected to be a decreasing function of 

outer eccentricity. This was the general trend in each case, albeit with the high 
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scatter that reflects the diffuse nature of inner orbit bounds, which in turn results 

from the greater sparsity of surviving test particles compared with outer orbits. 

Interestingly, no stable inner orbits were found for outer eccentricities above 0.7.  

4.1.7 Comparison with previous work on P1 and P2 bounds 

The regression constant for the prograde and retrograde inner orbits corresponds 

approximately with those for binaries, as published by Morais and Giuppone 

(2012) and those for the outer orbits are similar to those originally found by 

Holman and Wiegert (1999) for binaries and later by Verrier and Evans (2007) for 

triples. (In the Holman and Wiegert paper, their equation (3) appears not to 

depend on 𝑎𝑏  at all, unlike their equation (1); this is probably a misprint.) 

Holman and Wiegert found that for P-type orbits around binaries, the regression 

constant for the inner critical ratio (our 𝑎𝑜𝑖/𝑎2) was 1.6, with an average model 

error of 4%, while for S-type orbits, the equivalent to our 𝑎𝑖𝑜/𝑎2 was 0.464, with 

an average model error of 3%. 

The results from Verrier and Evans for the critical ratios 𝑎𝑜𝑖/𝑎2 and 𝑎𝑖𝑜/𝑎2 were 

2.92 and 0.466 respectively, and no model accuracies were provided. (Note that in 

their regressions, their definition of mass ratios differs from Holman and 

Wiegert’s and from ours.) 

A more comprehensive comparison of our results with previous empirical work is 

provided in Section 4.7. 

Pertinent to our results, Doolin and Blundell (2011) also found striations of 

instability, probably a result of resonances between the binary and the planet, and 

that there were “pinnacles and peninsulas of unstable regions for the non-librating 

and librating regions respectively, except when the stellar masses are equal”. They 

also found that at high mutual inclinations, planetary systems are more stable. 

Also regarding inclination, Li, Holman and Tao (2016) noted that of ten 

circumbinary systems they sampled, nine had inner planets quite close to the 

stability bound and all were effectively coplanar with the stellar orbits. They 

suggest the dearth of circumbinary systems around short-period solar-type main-

sequence binaries is because it is hard to form planets around short period 

binaries, which could be exacerbated by the Kozai mechanism, which contributes 

to the formation of these binaries. Hamers, Perets and Portegies Zwart (2015) 

suggest that this lack of circumbinary systems, which is the opposite to what may 

be expected from observational biases, is because many of the short-period Kepler 

eclipsing binaries are actually triples and is a result of the secular gravitational 

influence of the circumbinary planet, within an hierarchical triple system, on the 

binary. 

4.1.8 Some observational examples of P1 and P2 orbits 

The only P1 orbit found in a triple system to date is in HW Virginis, which is not 

a classical triple as it consists of an inner binary of aggregate mass 0.63 𝑀𝑆, a 

planet of 14.3 𝑀𝐽 and an outer body whose mass of 30 – 120 𝑀𝐽 classifies it as 

brown dwarf. The semi-major axes of these two bodies are estimated at 4.69 AU 

and 12.8 AU (Beuermann et al. 2012), giving a semi-major axis ratio of 3.13. No 

circumtriple P2 orbits have been discovered to date. 



Chapter 4 Orbit Types P1 And P2 

78 

 

The smallest exoplanet orbit found in a P1 orbit around a binary, in terms of 

absolute semi-major axis, is Kepler 47b, at 0.296 AU (Orosz et al. 2012). The 

semi-major axis of the close binary is 0.0836 AU, giving a semi-major axis ratio 

(relative to the binary) of 𝑎𝑖𝑜 𝑎1⁄ = 3.54. 

However, the smallest semi-major axis ratio of a planet’s orbit is for Kepler 16b, 

with the semi-major axis of the planet being 0.705 AU and that of the binary 

0.224 AU, giving a ratio of 𝑎𝑖𝑜 𝑎1⁄ = 3.14 (Doyle et al. 2011). 

Both of these lie outside the smallest mean critical semi-major axis ratios found in 

the simulations of ~0.1, so the possibility exists of finding planets in even smaller 

orbits. 

4.1.9 Triples compared with binaries 

Effects of a mass-dominant outer star on the inner binary region 

To highlight how the P1 and P2 planetary stability bounds in a triple differ from 

those in a binary, one needs to remove the disturbing influence of the inner binary 

and then compare the results with those from the previous section. This is because 

when the outer star of a triple is mass-dominant, as in our integrations for inverted 

mass ratios, it will it will tend to induce a wobble in the orbit of the inner binary, 

which will then affect the planetary orbits around it, particularly the P1 orbits. 

One can isolate this effect by merging the inner binary into a single mass.  

An example of the influence of a massive outer star on the orbit of the inner 

binary is shown in Figure 35, where the top two graphs show the outer and inner 

stellar orbits respectively for a low-mass outer star of 0.001 𝑀𝑠 and the bottom 

two graphs for a high-mass outer star of 6 𝑀𝑠. The other parameters are 𝑎1 =
1,  𝑎2 = 50, 𝑚1 = 𝑚2 = 1, 𝑒1 = 𝑒2 = 0.5, Ω2 = 45, 𝑡 = 1 Myr 

For the low-mass outer star the inner orbit in b) is effectively unperturbed, but a 

high-mass outer star induces eccentricity and precession effects in the inner orbit, 

as shown in d). The consequent effect on planetary orbits is shown by the test 

particle clouds in Figure 36. The upper panel shows the test particle cloud for the 

low-mass outer star case, and the bottom panel for the high-mass outer star case. 
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Figure 35. For 𝑚3 = 0.001 𝑀𝑠 (upper panel) a) outer orbit b) inner orbit. 

For 𝑚3 = 6 𝑀𝑠 (lower panel) c) outer orbit d) inner orbit 

 

   

   

Figure 36. For 𝑚3 = 0.001 𝑀𝑠 (upper panel) a) test particle cloud b) zoomed in. 

For 𝑚3 = 6 𝑀𝑠 (lower panel) c) test particle cloud d) zoomed in 
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An outer star of very low mass relative to the inner binary, i.e. a low 𝜇2, has a 

negligible effect on the planetary orbits and there is no outer stability bound to the 

test particle cloud. However, as this star’s mass increases, to a high 𝜇2, there are 

two effects:  

1. First, the outer star, whose orbit is visible in the upper right of graph c), clears 

a much larger region around its orbit, resulting in an outer bound (𝑎𝑜𝑖, outside 

the graph’s range) and an inner bound (𝑎𝑖𝑜, here shown at ~17 AU).  

2. Second, the clearing of the region around the inner binary increases because 

of the induced precession of this binary by the outer star. This effect can be 

significant – in Figure 36 the semi-major axis of this cleared region almost 

doubles, from ~2.8 AU in b) to ~5.5 AU in d). 

Configuring a binary case 

To highlight these effects, the previous P-type integrations were repeated for the 

case of a binary stellar system to isolate the characteristics specifically attributable 

to a triple configuration. This was done for prograde planetary orbits only. Rather 

than creating a new configuration and algorithms specific to binaries, to preserve 

as much consistency as possible, particularly should the triple/binary differences 

be small, the existing framework for triples was used, and as much of the 

procedure as possible was kept unchanged. 

The inner binary was reduced to a single star by allocating effectively all the 

binary’s mass to the central star and placing the second star, now of 

inconsequential mass, at a negligible distance from the central star. If the total 

mass of the binary is 𝑀 = 𝑚1 +𝑚2, 0.999𝑀 was given to the central star and 

only 0.001𝑀 to the second star, whose orbital distance was also reduced from 

𝑎1 = 1 AU to 0.01 AU with zero eccentricity.  

The semi-major axis of Star 3 was varied over the same range as the previous 

integrations, i.e. from the smallest Mardling stability limit of 3.3 AU up to 100 

AU. The inner mass ratio now needed to be selected in the range 0 – 1 instead of 0 

– 0.5, since the inner binary was no longer symmetrical. 

Since the time step of the integrations is based on the period of the inner binary, 

this required changing to the base of the new “binary”, i.e. what was previously 

the outer binary. The new formula also required an adjustment to ensure the time 

step was in no case larger than in the previous integrations. This was done by 

identifying the configurations that gave the smallest time step for the original 

binary and for the new “binary”, and equalising these time steps by calculating the 

new factor required to replace the 1/20 used in the original binary. The resulting 

formula was as follows: 

Original triple: Δ𝑡 =
1

20
(

𝑎1
3

𝑚1+𝑚2
)

1

2
              (28) 

New “binary”: Δ𝑡 =
1

38
(

𝑎2
3

𝑚1+𝑚2 +𝑚3
)

1

2
             (29) 

The time step for the first set of integrations ranged from 0.035 yr-0.047 yr, 

averaging 0.042 yr, while the new time step averaged 0.030 yr. 
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The effect on a typical particle density function of minimising the second star of 

the inner binary is illustrated in Figure 37, where the heavily inverted outer mass 

configuration moves from the inner binary having stars of equal mass, to the 

central star having 99.98% of the binary mass and the secondary orbiting the 

central star at a very close 0.01 AU, i.e. the inner binary effectively approximates 

a single point mass. In both cases 𝑎2 = 100 AU,𝑚3 = 15 𝑀𝑠  and 𝑖, 𝑒, Ω, and 𝜔 

for stars 2 and 3 are zero. Integrations were for 105 yr. 

 

   

   

Figure 37. Reducing the inner binary. a) upper panel: 𝑚1 = 2.5 𝑀𝑠,  

𝑚2 = 2.5 𝑀𝑠, 𝑎1 = 1 𝐴𝑈 b) lower panel: 𝑚1 = 4.999 𝑀𝑠,  

𝑚2 = 0.001 𝑀𝑠, 𝑎1 = 0.01 𝐴𝑈 

The differences appear subtle, being visible mainly in the changed density profile 

of the inner test particle cloud. Nevertheless, when the inner binary is merged, the 

inner stability bound reduces as expected, from 46 AU to 36 AU, a contraction of 

over 20%. The inner test particle cloud is diffuse, as always, with some arbitrary 

judgement involved in determining its edge (via the selection of parameters in the 

edge detection algorithm). Since the test particle density profile is different to the 

triple case, these parameters required re-optimization. However, a consistent 

procedure that changes as few parameters as possible will minimise the 
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introduction of any structural bias into the determination of the orbital stability 

bounds. 

The outer bound is sharply defined and is unaffected by the merging of the inner 

binary. The parameters used are shown in Table 28; the only parameters that 

required modification were 𝑓𝑖 and 𝑓𝑜. 

 

Parameter Prograde 

orbits 

Retrograde 

orbits 

𝑓𝑡 0.105 0.153 

𝑓𝑝 1.500 1.000 

𝑓𝑖 0.250 0.400 

𝑓𝑜 0.028 0.170 

𝑙𝑠 0.500 0.500 

𝑎𝑎 0.016 0.028 

Table 28. P1 and P2 orbits. Edge detection parameters for reduced binary system 

Results for the binary case 

In the reduced binary configuration, the case of a retrograde outer star falls away. 

For comparison with the triple star analysis done for a prograde outer star in 

Section 4.1.5, 5 865 integrations of the reduced binary model were run. The 

resulting smallest sample, for retrograde inner orbits, provided 859 stability 

bounds, which was a sufficiently large sample. The inner and outer stability limits 

for prograde and retrograde planetary orbits are shown in Figure 38 and Figure 39. 

 

   

Figure 38. Binary P1 and P2 orbits, prograde outer star, prograde 

planets: a) inner bounds b) outer bounds 

Comparison with Figure 27 shows that in the binary case the inner stable orbits 

are on average closer to the central star, but with a more asymmetrical distribution 

of critical ratios, with a more well-defined upper limit at around 0.5. 

The outer stable orbits are slightly closer to the outer star on average, with some 

orbits very close to it. There are fewer orbits beyond a critical ratio of around 3.5 

compared with the triple case.  
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Figure 39. Binary P1 and P2 orbits, prograde outer star, retrograde 

planets: a) inner bounds b) outer bounds 

For retrograde planetary orbits the range of critical ratios has a more symmetrical 

and uniform distribution than for triples as shown in Figure 28. The outer orbits’ 

critical ratios lie closer to the central star and have a tighter range compared with 

those for triples. 

The number of stable bounds found for the binary integrations is shown in Table 

29. 

 

 

Table 29. Binary P1 and P2 orbits, prograde outer star. Number of bounds found 

For the inner orbits the success rate in identifying stability bounds was almost 

double that for the triple case, while the relative proportion of prograde to 

retrograde bounds was broadly the same. In the simpler binary system the edges 

of bounds were generally better defined. 

For the outer orbits, the success rate compared with triples was slightly higher at 

almost 100%, and the relative proportions of prograde and retrograde orbits 

remained the same. 

The mean critical semi-major axis ratio ranges of these bounds are shown in Table 

30.  

 

 

Table 30. Binary P1 and P2 orbits, prograde outer star 

 – mean critical semi-major axis ratios 
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Orbit Total

type simulations Bounds found Success rate Distribution Bounds found Success rate Distribution

 (no.) (%) (%)  (no.) (%) (%)

Prograde 3034 1972 65 70 2994 99 51

Retrograde 2831 859 30 30 2831 100 49

Total 5865 2831 48 100 5825 99 100

Cases with well-defined orbit bounds

a io /a 2 a oi /a 2

Orbit type

N Min Avg Max SD N Min Avg Max SD

Prograde planetary orbits 1972 0.058 0.364 0.581 0.143 2994 1.030 2.703 3.501 1.176

Retrograde planetary orbits 859 0.026 0.471 0.911 0.153 2831 1.001 1.691 3.478 0.365

Difference (%) - - 29 - - - - -37 - -

a io /a 2 a oi /a 2
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Comparison with the triple case 

Comparing triple and binary stellar systems with the outer star having the same 

semi-major axis, if the inner binary merges into a single star, all orbit bounds may 

be expected to move towards the central star.  

The results for the binary case in Table 30 are compared with the triple case in 

Table 31. 

 

 

Table 31. Binary P1 and P2 orbits. Difference between mean critical 

semi-major axis ratios in triples and binaries 

The data show that, as expected, both the inner and outer mean critical semi-major 

axis ratios move towards the central star, for both prograde and retrograde 

planetary orbits. While these movements are statistically significant, they are 

nevertheless small, suggesting that the influence of the outer star is dominant. 

The regressions for the binary case can also be compared with those shown 

previously for the triple case, as shown in Table 32. 

Table 87 in Section 4.6 shows the results of previous studies of binaries. For P-

type orbits (equivalent to our outer orbits, reduced from the P2 orbits of the triple) 

the regression constants have varied widely, from 1.6 to 3.9, averaging 2.6. These 

were for prograde orbits. Our value above of 2.4 is consistent with these results. 

Only one result for retrograde planetary orbits has been reported, by Doolin and 

Blundell (2011), with a constant of 1.3 – 2.7, averaging 2.0. This study’s 1.5 falls 

in the lower end of this range. 

For S-type prograde orbits (equivalent to our inner orbits, reduced from the P1 

orbits of the triple) the constants ranged from 0.22 to 0.80, averaging 0.43. Our 

result of 0.44 is almost identical to this average. Again, there was only one 

previous study for retrograde orbits, by Morais and Giuppone (2012), which gave 

0.60 – 0.94. Our 0.57 is lower than their range. 

For binaries, as for triples, the stability bounds for outer orbits have better-defined 

edges than for inner orbits, resulting in higher model R2s and lower model errors 

(measured by MAPEs). The regression coefficients are illustrated in Figure 40. 

 

Difference in average bounds

Orbit type Triple Binary % Triple Binary %

Prograde planetary orbits 0.383 0.364 -5* 2.936 2.703 -8*

Retrograde planetary orbits 0.519 0.471 -9* 1.976 1.691 -14*

% 35 29 - -33 -37 -

* significant at the 5% level

a io /a 2 a oi /a 2
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Table 32. Binary P1 and P2 orbits. Regression coefficients 

and model fits, triples compared with binaries 

In all cases, aside from the constant the only variable of any influence is the 

eccentricity of the outer star, 𝑒2. Generally, the effect of the outer star’s 

eccentricity is far larger on the outer stability bounds than on the inner stability 

bounds. For inner orbits its influence is larger in binaries than in triples, for both 

prograde and retrograde planetary orbits. For outer orbits, its effect in binaries and 

triples is essentially the same for retrograde orbits, but for prograde orbits it has a 

larger influence in triples than in binaries.  

 

Inner,

prograde B t B t

C 0.439 47.8 0.195 19.1

a 0.000 0.4 0.000 47.9

μ 1 -0.005 -0.4 - -

μ 2 -0.020 -7.1 -0.006 -1.8

e 1 -0.004 -0.5 - -

e 2 -0.114 -8.9 -0.435 -39.4

i 2 0.000 2.2 - -

Ω2 -0.001 -6.1 - -

ω 2 -0.001 -6.3 - -

R
2

0.132 0.563

Model 

error (%) 19 11

BinaryTriple Outer,

prograde B t B t

C 2.377 194.6 2.719 84.2

a -0.003 -23.8 0.000 -25.8

μ 1 0.053 2.9 -

μ 2 0.044 11.5 -0.017 -1.4

e 1 0.090 6.8 -

e 2 1.997 151.8 0.884 25.4

i 2 0.000 3.1 -

Ω2 -0.002 -15.9 -

ω 2 -0.002 -13.4 -

R
2

0.828 0.893

Model 

error (%) 6 3

Triple Binary

Inner,

retrograde B t B t

C 0.573 76.4 0.211 14.3

a 0.000 4.8 0.000 31.6

μ 1 0.009 0.8 -

μ 2 -0.043 -19.2 -0.026 -4.9

e 1 -0.010 -1.4 -

e 2 -0.469 -31.8 -0.567 -34.9

i 2 0.000 -2.8 -

Ω2 0.000 1.0 -

ω 2 0.000 1.3 -

R
2

0.671 0.444

Model 

error (%) 10 13

Triple Binary Outer,

retrograde B t B t

C 1.483 153.4 1.235 141.9

a -0.004 -40.4 0.000 -45.7

μ 1 0.131 9.1 -

μ 2 -0.008 -2.8 0.023 7.3

e 1 -0.036 -3.5 -

e 2 1.725 166.1 1.681 175.0

i 2 0.002 19.6 -

Ω2 0.001 8.5 -

ω 2 0.001 5.1 -

R
2

0.860 0.921

Model 

error (%) 6 4

Triple Binary



Chapter 4 Orbit Types P1 And P2 

86 

 

..  

   

Figure 40. Binary P1 and P2 orbits. Regression coefficients, 

triples compared with binaries 

4.1.10 Conclusions – P1 and P2 orbits 

Comparing the stable regions of triples with binaries to highlight their differences 

shows that the inner and outer critical semi-major axis ratios of binaries are closer 

to the central star for both prograde and retrograde planetary orbits. While 

statistically significant, the difference is small, ranging from 5%-14%, indicating 

the dominant influence of the outer star over the inner binary. Compared with 

binaries the influence of the outer star’s eccentricity is significantly smaller for 

inner prograde orbits and materially larger for outer prograde orbits; there are no 

similar differences for retrograde orbits. The relatively small differences between 

triples and binaries results from the Mardling stability limit for triples, which 

precludes them from becoming too compact. 

For triple configurations with prograde, circular, coplanar outer stellar orbits and a 

wide range of mass ratios, the inner and outer stability boundaries as measured by 

the critical semi-major axis ratio, are found at around 0.36 times and 2.7 times the 

distance of the outer star respectively for prograde planetary orbits, and at around 

0.47 times and 1.7 times this distance respectively for retrograde planetary orbits. 

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

C a μ1 μ2 e1 e2 i2 Ω2 ω2

Inner orbits, prograde

Triple Binary
Coefficient

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C a μ1 μ2 e1 e2 i2 Ω2 ω2

Outer orbits, prograde

Triple Binary
Coefficient

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

C a μ1 μ2 e1 e2 i2 Ω2 ω2

Inner orbits, retrograde

Triple Binary
Coefficient

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C a μ1 μ2 e1 e2 i2 Ω2 ω2

Outer orbits, retrograde

Triple Binary
Coefficient



Chapter 4 Orbit Types P1 And P2 In Highly Inclined Triple Systems 

87 

 

The configuration of the inner binary has little influence, as the stability limit of 

the outer star is sufficiently far away that the inner binary effectively resembles a 

single point mass, so the outer star’s influence is dominant, with its eccentricity 

having the strongest effect. The greater stability of retrograde planetary orbits 

results in both inner and outer bounds moving closer to the outer star compared 

with the prograde case. The difference in critical ratios for prograde and 

retrograde planetary orbits is significant, ranging from ~30%-70% depending on 

the eccentricity of the outer star. For highly eccentric orbits of the outer star, the 

semi-major axis of the outer stability bound can expand by over 80% for prograde 

orbits and more than double for retrograde orbits, while the inner bound shrinks 

by a quarter for prograde planetary orbits and by over 80% for retrograde 

planetary orbits. 

For a retrograde outer star the two mass ratios have a greater influence, 

particularly the inner one, with this effect being greater for prograde planetary 

orbits than for retrograde ones. The effect of the inner binary's eccentricity 

remains insignificant. The eccentricity of the outer star remains the largest 

influence; it is essentially unchanged for inner bounds but is lower for outer 

bounds. 

The outer stability bound increases approximately linearly with increasing outer 

star eccentricity, with the critical semi-major axis ratios of prograde and 

retrograde planetary orbits converging to the same value of around 3.1. The inner 

critical ratio shows only very weak dependence on the outer eccentricity. Prograde 

star/prograde planet orbits are the least stable; combinations with one or more 

retrograde orbits are more stable. 

These results are consistent with the few observational examples of P1 and P2 

orbits found to date. 

4.2 Orbit Types P1 And P2 In Highly Inclined Triple 

Systems 

4.2.1 Vertical characteristics of the stability region 

Only prograde planetary orbits were considered. The previous analyses, which 

have been largely coplanar in that they have used only reasonably small variations 

in the outer star’s inclination, have been relative to the plane of the inner binary. 

In this section, which deals with large inclinations of the outer star, the analysis 

needs to be relative to the invariable plane of the triple system. 

The invariable plane is the plane passing through the system’s barycentre and 

perpendicular to its total angular momentum vector. For example, in Figure 41 the 

invariable plane is orthogonal to the total angular momentum vector 𝐿 = 𝐿1 + 𝐿2, 

where 𝐿1 and 𝐿2 are the angular momentum vectors of the inner and outer binary 

orbits respectively. 

The inclinations 𝑖1 and 𝑖2 of Stars 1 and 2 respectively are now also measured 

relative to the invariable plane. 

For the orbital configurations used in the analysis of Kozai effects in this section, 

the angular momentum of the outer star contributes most of the total angular 

momentum of the system. This is because the angular momentum of one body 
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Figure 41. The invariable plane in a triple system 

orbiting another is given by 

𝐿 = 𝜇√𝐺𝑀𝑎(1 − 𝑒2)                   (30) 

where 

𝜇 =
𝑚𝑎𝑚𝑏

𝑚𝑎+𝑚𝑏
 is the reduced mass of the system, comprising masses 𝑚𝑎, 𝑚𝑏 

𝐺 = the gravitational constant 

𝑀 = ∑ 𝑚𝑖
𝑛
𝑖=1  is the total mass of the system 

𝑎 = the semi-major axis of the body 

𝑒 = the eccentricity of the body’s orbit 

Since for the outer binary in a triple both 𝑀 and 𝑎 are larger than for the inner 

binary, the outer angular momentum would usually tend to dominate the inner 

angular momentum. This can be better quantified by writing the ratio of the 

angular momenta of Star 3 and Star 2, from equation (30), i.e. 

𝐿3

𝐿2
= [

𝑚2(𝑚0+𝑚1)
2

𝑚0𝑚1(𝑚0+𝑚1+𝑚2)
]√1 + (

𝑚2

𝑚0+𝑚1
)√

𝑎2

𝑎1
√
1−𝑒2

2

1−𝑒1
2       (31) 

In this analysis we used relatively large masses for the outer star to highlight 

significant Kozai resonances. Since the first term is ≳1 for stars of broadly 

comparable mass, the second term is always >1 (e.g. 1.5 for stars of equal mass), 

𝑎2/𝑎1>~3 – 5 from the Mardling limit and the last term is > 0.7 for the 

eccentricities used, a momentum ratio larger than one is assured, and is in most 

cases significantly larger because of the higher values of 𝑎2/𝑎1used. 

`

Inner orbital plane

L1

i2

L

m1
m2

m3

i1
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This is shown in Table 33, which shows the highest and lowest contributions of 

the outer star for the stellar configurations used later in this section.  

 

 

Table 33. Highest and lowest contributions to system angular 

momentum for high-inclination integrations 

The highest is effectively 100% and the lowest 64%. More importantly, the mean 

contribution is 92%, with over 70% of the contributions lying between 90% and 

100%.  

The dominant angular momentum of the outer star results in the invariable plane 

lying close to the orbital plane of the outer star. Aligning the test particle disc with 

the outer orbital plane instead of the invariable plane is therefore an acceptable 

approximation. 

As an example, the next two figures show the initial and final states of the test 

particle cloud for the integration of a triple system consisting of three equal-mass 

stars of 1𝑀𝑆 with an outer star inclination of 65. The test particle disc has also 

been set at an inclination of 65 to be coplanar with the outer orbital plane (and to 

have the same longitude of ascending node). 

Figure 42 shows the test particle cloud in the coordinate system of the inner 

orbital plane, and Figure 43 shows the same data using the coordinate system of 

the outer orbital plane, which lies close to the invariable plane. The configuration 

is: prograde test particle cloud, 𝑎 = 20 AU, 𝑒1 = 𝑒2 = 0,  𝜇1 = 𝜇2 = 0.5,  𝑖1 =
0,  𝑖2 = 65°, Ω = 0,𝜔 = 0. 

In the coordinate system of the inner orbital plane the initial test particle cloud is a 

flat disc. It is also a flat disc in the second case, but this is less obvious because it 

is inclined at the same 65 of the outer orbital plane, so it appears as an ellipse in 

both the x-y plane and (to a lesser extent) in the x-z plane. The final shape of the 

test particle cloud is identical in both cases, but because of its inclination in the 

second case, its projections on the x-y and x-z plane appear more complex. At the 

end of the integration the symmetry around the 65 inclination in the x-z plane is 

clear. 

A numerical simulation of the debris disc around HD 98800 by Verrier and Evans 

(2008) showed a similarly warped coplanar disc, inclined at almost 50, around 

the inner binary, with a small inner ring and high-inclination outer halo. Similar 

dynamics have been explored more generally by Farago and Laskar (2010) and 

Doolin and Blundell (2011) and stable high-inclination particles were also 

reported in simulations of GGTau (Beust & Dutrey 2005, 2006). As pointed out 

by Ford, Kozinsky and Rasio (2000), as the orbits of Star 2 and Star 3 exchange 

Range Body Semi-major axis Mass

a m L Ratio Contribution

(AU) (M s )  (kg m
2
/sec) (x) (% of total)

Star1 - 1.00 - - -

Maximum Star2 1 0.01 8.9E+43 1 -

Star3 100 2.02 1.8E+47 2030 99.95

Minimum Star2 1 1.00 8.9E+45 1 -

Star3 40 0.20 1.6E+46 1.8 64.14

Angular momentum
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Figure 42. P1 and P2 orbits, using coordinate system of the inner orbital 

plane. a) upper panel: 𝑡 = 0 𝑦𝑟 b) lower panel: 𝑡 = 100 𝑘𝑦𝑟 

angular momentum, their eccentricities will display periodic oscillations over 

secular timescales that are long compared to their orbital periods. For non-

coplanar systems these oscillations also occur in orbital inclinations. 

Once the orbit of the outer star is no longer coplanar with the orbit of the inner 

binary, i.e. the mutual inclination of the two orbits is no longer zero, the stable 

planetary region will also no longer be coplanar but will extend vertically above 

this plane, with its shape being sculpted primarily by the outer star. 

An example is illustrated in Figure 44, where the x-y plane is aligned with the 

invariable plane, approximated by the outer orbital plane. The parameters are 𝑎 =
40 AU, 𝑒1 = 0, 𝑒2 = 0, 𝑖1 = 0, 𝜇1 = 0.5, 𝜇2 = 2.0, 𝑖2 = 65°. 

Note that the outer limit of the test particle cloud is of no relevance, since this is 

simply where it has been truncated. 
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Figure 43. P1 and P2 orbits, using coordinate system of the outer orbital 

plane. a) upper panel: 𝑡 = 0 𝑦𝑟 b) lower panel: 𝑡 = 100 𝑘𝑦 

The test particle orbits are initially coplanar with the invariable plane and circular, 

with the result that the horizontal cross-section, projected onto this plane, is 

circular. However, for different configurations of the triple there is great variation 

in the vertical cross-sectional profiles of the stable region, as shown by the 

vertical projection in Figure 44.  

Examining the paths of individual test particles over time yields the following 

observations:  

1. Their orbits librate, with the argument of periapsis 𝜔 oscillating. 

2. The semi-major axis of their orbits, 𝑎, remains effectively constant. 

3. Their orbits remain circular, i.e. their eccentricity remains very close to zero. 

4. These orbits vary in inclination. They are initially coplanar with the inner 

binary and then become more inclined over time, eventually oscillating 

around a final non-zero inclination.  

5. Some test particles develop Kozai resonance and some of these eventually 

undergo orbit flipping into retrograde motion. 
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Figure 44. Position in space of surviving test particles 

after 100 kyr. P1 and P2 prograde orbits 

The annular vertical “chimney” shown in Figure 44 therefore consists of test 

particles in circular orbits of constant semi-major axis but varying inclination. 

This may be more clearly illustrated by tracking a specific single test particle over 

time, as shown in Figure 45. The cross-sections show the positions of this particle 

over the last 0.1% of the integration time. 

The projection of the test particle’s position on the horizontal plane is annular, 

with changes in semi-major axis, eccentricity and inclination, as well as 

precession, contributing to this in varying degrees. The period of oscillations in 

inclination is much longer than those in the other orbital elements. This particle's 

orbit reaches a maximum inclination of 34°. 

There is a limit to the maximum inclination of planetary orbits. The number of 

stable orbital bounds falls exponentially with increasing inclination, as shown in 

Figure 46, where the legend refers to the triple configurations discussed later in 

Table 34. 
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Figure 45. P1 and P2 orbits. Single prograde test particle cloud after 1 𝑀𝑦𝑟, 
𝑎 = 40 𝐴𝑈, 𝑒1 = 𝑒2 = 0, 𝑖1 = 0, 𝜇1 = 0.5, 𝜇2 = 2.0, 𝑖2 = 65° 

The lines end when there are no more stable prograde bounds. (However, the 

number of remaining bounds is not zero, as there are usually a few left with 

inclinations greater than 90° – these are planetary orbits that have flipped and 

become retrograde, and are ignored.) 
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Figure 46. Number of stable P1 and P2 prograde orbits remaining after 

1 Myr as a function of initial planetary inclination, for 

various triple configurations 

4.2.2 Stellar Kozai resonances in the triple 

This section illustrates visually some of the manifestations of the stellar Kozai 

mechanism for different configurations of triple systems, i.e. the shape of the test 

particle clouds relative to the outer orbital plane. The results are then analysed in 

the following section. 

For all configurations, the initial eccentricities of both stellar orbits were zero. The 

initial inclination of the inner orbit was always zero, so the mutual inclination 

between the two orbits was the inclination of the outer star, 𝑖2. The same cloud of 

test particles, all in prograde orbits, was used in all configurations and the 

integration time was usually 106 yr. The longitude of ascending node Ω and 

argument of periapsis 𝜔 for both stellar orbits were zero. The parameters that 

were varied are shown under the figures. 

The non-resonant case is shown in Figure 47. The third graph shows the linearised 

relationship between the inclination and eccentricity of the inner binary’s orbit. 

The square root of the slope of this line is the conserved quantity 𝐿𝑧 in the Kozai 

relationship  

𝐿𝑧 = cos 𝑖2  √1 − 𝑒2
2                   (32) 

The three stars are of equal mass. At the 30° inclination of the outer star, no Kozai 

resonance appears. The inner binary's semi-major axis, inclination and 

eccentricity all remain constant, although there is libration. (Libration occurs 

when 𝜔 oscillates between fixed limits, while for circulation 𝜔 increases or 

decreases without reversing.) The third graph indicates that there is no Kozai 

effect. 
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Figure 47. P1 and P2 orbits, base case, no Kozai resonance, 

𝜇1 = 𝜇2 = 0.5, 𝑖2 = 30°, 𝑎 = 40 𝐴𝑈 

However, the test particle cloud is no longer coplanar with the inner binary and 

extends materially in the z-direction, up to 125 AU. The x-y projection appears 

oval because of the tilt of the invariable plane, and the general inclination of the 

test particle cloud of close to 30 is visible in the x-z projection. While the shape 

of the outer boundary of the test particle cloud will be referred to, it must be 

remembered that its extent in the x-y plane is arbitrarily truncated, which will also 

constrain its extent in the z-direction to some extent; the shape of the inner region 

is usually of more importance. 

In the next case, shown in Figure 48, the inclination of the outer star is increased 

to 65°, well above the 39.2° (and 140.8°) theoretical critical inclinations for Kozai 

resonance in small bodies.  

Here Kozai resonance develops. Libration begins at around 100 kyr, with a period 

of 122 yr and oscillates between 45° and 135°, a range of 90°. The interchange 

between the inclination and eccentricity of the inner binary’s orbit is shown in the 

second graph, with the period of the Kozai resonance being 114 kyr. The range of 

inclination is 60° and that of eccentricity is 0.80. The third graph confirms that 

strong Kozai resonance is indeed occurring.  

Note that the critical inclinations and equation (32) apply to the standard Kozai 

mechanism, where the test particle’s orbit is circular and vertical angular 

momentum is conserved. However, when the test particle’s orbit is eccentric, then 

vertical angular momentum varies,  the dynamics can no longer be solved 

analytically, the Kozai oscillations are modulated on longer timescales and can 

exhibit behavior completely different to that of the standard Kozai mechanism. 
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Figure 48. P1 and P2 orbits, higher outer star inclination, 

𝜇1 = 𝜇2 = 0.5, 𝑖2 = 65°, 𝑎 = 40 𝐴𝑈 

This so-called eccentric Kozai mechanism (EKM) has been analysed by e.g. 

Lithwick and Naoz (2011). 

Note that in this integration, as well as all the others, the semi-major axis ratio (i.e. 

the semi-major axis of the outer star, since we set the semi-major axis of the inner 

star to one) remained effectively constant; the largest variation was 0.1%. 

The next integration, shown in Figure 49, shows the effect when the outer star is 

brought closer to the inner binary. 

In this case the resonance begins much earlier, at 10 kyr. Here we have circulation 

rather than libration, with a period of 36 kyr. The period of the Kozai resonance is 

much shorter at 11.3 kyr, the range of mutual inclination is a lower 19° and the 

range of eccentricity is approximately the same at 0.79. 

In Figure 50 the inclination of the outer star has been increased to 90°, compared 

with the 65° in the case illustrated in Figure 48. 

The higher inclination results in the Kozai resonance developing earlier, at around 

95 kyr. Circulation has a period of 150 kyr, the period of the Kozai resonance is a 

shorter 76 kyr, the range of relative inclination is lower at 45° and the range of 

eccentricity is very high at 0.98. 

The effect of increasing 𝜇2, i.e. increasing the mass of the outer star, is shown in 

Figure 51 (to be compared with Figure 48). 
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Figure 49. P1 and P2 orbits, closer outer star, 

𝜇1 = 𝜇2 = 0.5, 𝑖2 = 65°, 𝑎 = 20 𝐴𝑈 

 

 

Figure 50. P1 and P2 orbits, higher outer star inclination, 

𝜇1 = 0.5, 𝜇2 = 0.5, 𝑖2 = 90°, 𝑎 = 40 𝐴𝑈 
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Figure 51. P1 and P2 orbits, higher outer star mass, 

𝜇1 = 0.5, 𝜇2 = 2.0, 𝑖2 = 65°, 𝑎 = 40 𝐴𝑈 

 

 

Figure 52. P1 and P2 orbits, retrograde outer star, 

𝜇1 = 0.5, 𝜇2 = 2.0, 𝑖2 = 115°, 𝑎 = 40 𝐴𝑈 
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Compared with the equal-mass case, resonance begins earlier, at 22.3 kyr. The 

circulation period is 710 kyr, the period of the Kozai resonance is again much 

shorter at 19 kyr, the range of relative inclination is a lower 24° and the range of 

eccentricity is similar at 0.83. 

Keeping the same mass ratios but putting the outer star into a retrograde 65° orbit 

(i.e. 115°) now results in the behaviour shown in Figure 52. 

In the second graph of the figure the inclination is now greater than 90°, ranging 

between 113° and 140° or 27°. Resonance begins at a similar 20 kyr, the period of 

the Kozai resonance is also similar at 23 kyr, circulation has a much shorter period 

of 46 kyr, the range of eccentricity is essentially unchanged at 0.85 but the range 

of inclination of 28° is slightly higher. 

The effect of changing the mass of one of the inner binary stars is shown in Figure 

53 (to be compared with Figure 51). 

 

 

Figure 53. P1 and P2 orbits, higher outer star mass and lower inner 

star mass, 𝜇1 = 0.25, 𝜇2 = 2.0, 𝑖2 = 65°, 𝑎 = 40 𝐴𝑈 

As the mass of one of the inner stars decreases relative to the other one, resonance 

begins later at 27 kyr and has a longer period of 27 kyr. The circulation period of 

625 kyr has shortened, the range of relative inclination is unchanged at 25° and 

the range of eccentricity is also the same at 0.83. 

4.2.3 Analysis of stellar Kozai resonances 

The data from the previous integrations are summarised in Table 34, where P and 

R represent prograde and retrograde orbits and KR denotes Kozai resonance. 

These have been extracted graphically and are approximate. 
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Table 34. P1 and P2 orbits. Summary of Kozai characteristics 

A further 102 integrations were run with various other parameter combinations. 

From a qualitative examination of this larger sample the conclusions were: 

1. For larger 𝑎, 𝜇1, 𝜇2 and 𝑖2, the period of Kozai resonance is shorter and 

resonance begins earlier.  

2. The influence of 𝜇1 on Kozai resonance period is the largest, followed by 𝜇2 

and then 𝑖2, while that of 𝑎 is small. 

3. Of the two Kozai resonance orbital elements, the range for inclinations is 

between the critical value of 39° to over 80°. The influence of 𝑖2 on this range 

is strong. The change in eccentricities is large, ranging from zero to very 

close to one. This range does not vary much with the different configurations, 

but the strongest influence was again from 𝑖2. The value of the Kozai 

conserved quantity 𝐿𝑧 appeared to be reasonably constant for the same values 

of 𝑖2, as shown in Table 34, but it was very different for different values of 𝑖2. 

4. The period of libration also tends to be much shorter for higher 𝑎, 𝜇1 and 𝜇2, 

but longer for higher 𝑖2. Libration occurs with centering around 90° and a 

range of 90°. The outer star’s inclination 𝑖2 has a strong influence on this 

range. As previously noted, 𝜔 can either librate (oscillate around 90° or 270°) 

or circulate (increase or decrease continuously), and the cases with an average 

𝜔 of 180° and range 360° correspond to circulation. 

5. When the outer star is in a retrograde instead of prograde orbit, the resonance 

period and inclination range increase, but only modestly, and the eccentricity 

range almost not at all. However, the libration period more than doubles and 

the libration range also widens considerably. As usual, the edges of the 

stability bounds for retrograde orbits are less well defined because of the 

greater stability of these orbits. 

The above numerical values of maximum eccentricity, Kozai resonance period 

and libration period can be compared with equations (3), (4) and (7) discussed in 

Section 3.4.3 and rewritten using our notation here, i.e. 

𝑒𝑖𝑛,𝑚𝑎𝑥 ≅ [1 − (
5

3
) cos2(𝑖𝑖𝑛𝑖𝑡𝑖𝑎𝑙)]

1

2
 for 𝑖𝑖𝑛𝑖𝑡𝑖𝑎𝑙 > 𝑖𝑐         (33) 

𝑃𝑒 ≅ 𝑃𝑖𝑛 (
𝑚1+𝑚2

𝑚3
) (

𝑎2

𝑎1
)
3
(1 − 𝑒2

2)
3

2             (34) 

No.

μ 1 μ 2 i 2 a Outer KR KR Lz

star begins Period Min Max Range Min Avg Max Range period Low High Range Low High Range

(-) (-) (deg) (-) orbit (kyr) (kyr) (rad) (rad) (rad) (deg) (deg) (deg) (deg) (kyr) (deg) (deg) (deg) (-) (-) (-) (-)

1 0.50 0.50 30 40 P - - 0.00 6.28 6.28 0 180 360 360 - 27 27 0 0.00 0.00 0.00 -

2 0.50 0.50 65 40 P 100.0 122 0.79 2.35 1.56 45 90 135 89 122.0 38 60 22 0.00 0.83 0.83 0.45

3 0.50 0.50 65 20 P 10.0 36 0.00 6.28 6.28 0 180 360 360 11.3 39 58 19 0.00 0.79 0.79 0.46

4 0.50 0.50 90 40 P 95.0 150 0.00 6.28 6.28 0 180 360 360 76.0 39 84 45 0.01 0.99 0.98 0.05

5 0.50 2.00 65 40 P 22.3 69 0.79 2.34 1.55 45 90 134 89 19.0 39 64 25 0.02 0.85 0.83 0.44

6 0.50 2.00 65 40 R 20.0 46 0.20 6.00 5.80 11 178 344 332 23.0 113 140 27 0.04 0.85 0.81 0.40

7 0.25 2.00 65 40 P 26.5 650 0.00 6.27 6.27 0 180 359 359 27.0 39 64 25 0.00 0.83 0.83 0.43

Stellar parameters Kozai parameters

Libration Inclination Eccentricity
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𝑃𝑙𝑖𝑏 =
4

3√30

𝑃𝑜𝑢𝑡
2

𝑃𝑖𝑛

(1−𝑒𝑜𝑢𝑡
2 )

3
2[

𝑚1+𝑚2+𝑚3
𝑚3

]

[1−(
5

3
)cos2 𝑖𝑓𝑖𝑥]

1
2sin 𝑖𝑓𝑖𝑥

            (35) 

These are compared in Table 35. The point around which libration occurs is 

denoted by 𝑖𝑓𝑖𝑥 and where 𝑖𝑓𝑖𝑥 = 180° there is circulation rather than libration. 

 

 

Table 35. P1 and P2 orbits. Comparison of libration periods, 

Kozai resonance periods and maximum eccentricity 

For the libration periods and Kozai resonance periods the correspondence is 

somewhat better than order-of-magnitude, with absolute errors averaging ~40%. 

The performance of 𝑒𝑖𝑛,𝑚𝑎𝑥 is much better, with an average absolute error of only 

~2%. 

While this limited overview of stellar Kozai effects is interesting, the intention is 

not to map their characteristics in triple systems per se; we are more interested in 

their influence on the stability of the P-type planetary orbits. These two strong 

influences on planetary stability, i.e. the simple inclination of the outer star and of 

the Kozai motion, cannot be separated as they are interlinked (for inclinations 

greater than the critical inclination).  

4.2.4 Planetary stability bounds and the outer star’s 

inclination 

In this section we examine the effect of stellar Kozai resonance on the sculpting of 

the shape of the stable region, as manifested by the test particle cloud. We do not 

address Kozai resonance of the individual planets, i.e. test particles, themselves. 

Characteristics of the stellar configurations used 

For the relatively small values of inclination for the outer star used in the previous 

quasi-coplanar regressions, there was no significant relationship between 

inclination and the inner and outer bounds. A series of integrations was now run 

to examine any relationship between these variables for higher inclinations. Both 

prograde and retrograde stellar orbits were used, but only prograde planetary 

motions were considered. 

As the Kozai critical angle of 39 is theoretical and applicable to test particles 

only, whereas we are using a relatively massive outer star, this critical angle may 

No.

μ 1 μ 2 i 2 a Outer star i fix Libration Equation Kozai Equation e max Equation

orbit period (35) period (34) (33)

(-) (-) (deg) (-) (deg) (kyr) (kyr) (kyr) (kyr) (-) (-)

2 0.50 0.50 65 40 Prograde 90 122 46.7 122 128 0.83 0.84

3 0.50 0.50 65 20 Prograde 180 36 - 11 16 0.79 0.84

4 0.50 0.50 90 40 Prograde 180 150 - 76 128 0.99 1.00

5 0.50 2.00 65 40 Prograde 90 69 23.4 19 32 0.85 0.84

6 0.50 2.00 65 40 Retrograde 178 46 - 23 32 0.85 0.84

7 0.25 2.00 65 40 Prograde 180 650 - 27 32 0.83 0.84

Resonance parametersStellar parameters
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no longer be applicable as a criterion for Kozai resonance, so the integrations 

were instead split into what were experimentally determined to be non-Kozai and 

Kozai regimes, i.e. those of relatively low inclination whose nodes circulate and 

those of high inclination where the nodes librate about 90 or 270. In practical 

terms, we know that for real bodies, as opposed to test particles: 

1. The critical inclination is larger than the theoretical 39, e.g. Grishin et al. 

(2017). 

2. If the ratio of initial angular momentum of the outer orbit to that of the inner 

orbit is ≳4 then significant Kozai resonance usually occurs, e.g. Beust et al. 

(2012). 

In the integrations, the orbital parameters of the triple were selected to display 

Kozai resonance. They are shown in the table inside Figure 54, together with the 

resulting distribution of angular momentum ratios. 

 

 

Figure 54. Angular momentum ratio distribution for Kozai integrations 

The number of instances where the angular momentum ratio was not ≳ 4 was 

negligible, so the sole determinant of whether Kozai resonance would occur in our 

sample of configurations was the outer star’s inclination 𝑖2.  

For the integrations the sample was first split into the prograde and retrograde 

stellar cases. Each case was then split into the subsets where Kozai resonance did 

or did not occur.  

Results of the integrations 

Figure 55 shows the critical semi-major axis ratios for the inner and outer 

planetary orbits against the “absolute” inclination 𝑖2 (i.e. 𝑖2 for prograde orbits 

and 180 − 𝑖2 for retrograde orbits), for both Kozai and non-Kozai regimes. As 

usual, there is more scatter for inner orbits than outer orbits. 
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Figure 55. P1 and P2 orbits. Critical semi-major axis ratios versus outer star 

inclination a) inner stability bound b) outer stability bound 

For inner orbits, the critical semi-major axis ratio has almost no dependence on 

the outer star's inclination for prograde stellar orbits, and only a weak one for 

retrograde orbits. Retrograde stellar orbits allow the stable planetary region to 

extend further out because of greater dynamic stability (with a regression constant 

representing a semi-major axis ratio of 0.70 versus 0.49), but as inclination 

approaches 90, this benefit decreases. (The regression lines should, theoretically, 

coincide at 90, for both inner and outer orbits.)  
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For outer orbits, the critical ratio also has no dependence on inclination for 

prograde stellar orbits. However, it can be seen in Figure 55 b) that this low 

average dependence is made up of two parts. For low inclinations the critical ratio 

is constant at 1.92, but as inclinations increase the critical ratio begins to decline, 

i.e. the orbital stability bound begins to move inwards. This makes intuitive sense 

because once Kozai resonance begins, as the outer star’s inclination increases, the 

eccentricity of the inner binary decreases, which allows this to occur. 

This divergence begins at around 45 and is probably a manifestation of the start 

of Kozai resonance. This suggests that for real bodies that may also be relatively 

large, Kozai resonance is more likely to begin when 𝑖2 ≳ 45 than for 𝑖2 > 39. 

Interestingly, for retrograde stellar orbits dependence on 𝑖2 is much stronger. In 

this case planetary orbits can again approach much closer to the outer star (with a 

regression constant representing a semi-major axis ratio of 1.2 versus 1.9), but this 

increased stability declines as inclination rises to 90. Also of interest are the 

regions of stability interspersed with gaps of instability, which is similar to that 

seen in Figure 33. This characteristic was not seen in any of the other orbits types. 

The mean semi-major axis ratios for the non-Kozai and Kozai cases are shown in 

Table 36. 

 

 

Table 36. Non-Kozai and Kozai cases, mean critical semi-major 

axis ratios for prograde and retrograde stellar orbits 

Two points may be made from the table: 

1. Generally, with a retrograde outer star the inner orbits move outwards 

towards this star and the outer orbits move inwards; both these motions are 

towards the star and reflect the greater stability of retrograde orbits, as 

previously found. 

2. For a prograde outer star, the existence of Kozai resonance makes no 

difference to the critical ratios of either the inner or outer bounds, which 

remain virtually identical. For a retrograde outer star, however, the bounds 

are very different. When Kozai resonance occurs the inner bound contracts 

Orbit Regime N Mean stable   SD Min Max

type critical ratio (%)

Inner Non-Kozai 256 0.484 0.099 0.049 0.837

a io /a 2 Kozai 47 0.495 2.2 0.100 0.288 0.748

Outer Non-Kozai 341 1.941 0.051 1.755 2.242

a oi /a 2 Kozai 317 1.933 -0.4 0.176 1.759 2.532

Inner Non-Kozai 177 0.666 0.078 0.423 0.853

a io /a 2 Kozai 101 0.531 -20.4 * 0.096 0.105 0.818

Outer Non-Kozai 272 1.335 0.126 1.095 1.820

a oi /a 2 Kozai 204 1.753 31.3 * 0.195 1.363 2.510

* Differences significant at the 5% level

Prograde outer star

Retrograde outer star
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inwards, while the outer bound moves outwards, and by a larger proportional 

amount.  

For both inner and outer orbits these movements are in a direction opposite to that 

usually induced by a retrograde stellar orbit. This suggests that Kozai resonance 

increases planetary instability, which should not be surprising.  

At the 5% level of significance, the critical semi-major axis ratios for planetary 

orbits under non-Kozai and Kozai regimes do not differ for a prograde outer body, 

but for the retrograde case they are substantially different, by an absolute 20%-

30%. The number of inner orbits that could be found under Kozai resonance with 

a prograde outer star was very small. 

The regression data for the four cases may be found in Appendix C and in Table 

85, and are summarised visually in Figure 56. 

 

 Prograde outer star Retrograde outer star 
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Figure 56. P1 and P2 orbits. Regression results for non-Kozai and Kozai regimes 

None of the orbital parameters have any significant influence on the critical semi-

major axis ratio, with the possible exception of 𝜇1in the prograde star/Kozai case. 

This stability bound is therefore effectively represented by the constant, which 

also reflects the two points made previously. 

The data for the constant in the four cases is summarised in Table 37. 

For a prograde outer star, Kozai resonance results in the constant being 44% 

smaller for inner orbits and 22% larger for outer orbits, while a retrograde outer 

body does not cause a significant difference in either constant. Note that Table 36 

and Table 37 are not inconsistent – the large differences in mean critical ratio are 

in the retrograde stellar case whereas the large differences in the constant are 

found for the prograde case. 
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Table 37. P1 and P2 orbits. Regression constants 

for non-Kozai and Kozai regimes 

The Kozai bulge 

The next question is whether there exists any relationship between the vertical 

extent of the stable region for planets and the outer star’s inclination. 

The scatter plots in Figure 55 do not reveal some details of the dependence of the 

orbit bounds on the outer star’s inclination. Using the same data as in Figure 55 

b), Figure 57 shows the relationship for four outer orbits, where  𝑒1 = 𝑒2 = 𝑖1 =
Ω2 = 𝜔2 = 0 and the remaining configuration parameters are as shown in the 

legend. These latter parameters were selected to show Kozai resonances 

increasing from weak to strong. Here the full range of inclinations is shown, i.e. 

the actual value of 𝑖2, from 0 to 180, is used instead of the “absolute” inclination 

in the scatter plot. The outer star and planets were in prograde orbits and the 

integration time was 105 yr. 

 

 

Figure 57. P1 and P2 orbits. Outer critical semi-major axis 

ratio versus outer star inclination (smoothed) 

Regime N

Constant  (%) 
Std. 

Error

Lower 

Bound

Upper 

Bound

Inner Non-Kozai 256 .545 .032 17.2 .483 .607

a io /a 2 Kozai 47 .303 -44 .130 2.3 .041 .566

Outer Non-Kozai 341 1.92 0.01 207.6 1.90 1.94

a oi /a 2 Kozai 317 2.35 22 .049 47.7 2.25 2.44

Inner Non-Kozai 177 .685 .024 28.0 .637 .733

a io /a 2 Kozai 101 .738 8 .086 8.6 .567 .908

Outer Non-Kozai 272 1.29 0.02 67.4 1.25 1.33

a oi /a 2 Kozai 204 1.36 5 0.07 18.3 1.21 1.50

Prograde outer star

Retrograde outer star
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The general contraction of the outer bound as 𝑖2 increases from zero to 180 

remains the same as shown in Figure 55 b). However, what becomes visible is that 

for stellar inclinations between ~45° − 135° (i.e. in the range where Kozai 

resonance occurs) there is a large shift outwards of this bound of up to ~20%, with 

this bulge being in the direction opposite to the general trend.  

This increase in the critical semi-major axis ratio appears to be related to the 

strength of the Kozai resonance. Examining the underlying data, as the strength of 

the Kozai resonance increases, 

1. The periods of libration and of the resonance shorten; 

2. The Kozai i-e relationship weakens; and  

3. The 𝑧-range of the P-orbit stability bound decreases strongly.  

The last point may be seen from Figure 58 to Figure 60, which show the stable 

regions, identically scaled, for three of the cases shown in Figure 57, in order of 

increasing strength of Kozai resonance. The integrations were all at 𝑖2 = 70° and 

were run for 105 yr.  

The vertical extent of stable planetary orbits more than halves, from 170 AU to 80 

AU (although the absolute values are irrelevant as they are largely determined by 

where the test particle cloud is truncated in the x-y plane). 

The stellar Kozai resonance increases as the outer star comes closer to the binary 

and as its inclination increases. In the first case this causes the planetary orbits to 

become less highly-inclined and to contract in the z-direction, while in the second 

case this results in a larger variation in the eccentricity of the inner binary, causing 

a larger clearing of the inner region, evidenced by the central “hole” in the 

horizontal projections becoming more visible in the previous three figures. 

 

Figure 58. P1 and P2 orbits under Kozai resonance, 

𝑎 = 30 𝐴𝑈,  𝜇1 = 0.5,  𝜇2 = 0.5 
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Figure 59. P1 and P2 orbits under Kozai resonance, 

𝑎 = 20 𝐴𝑈,  𝜇1 = 0.5,  𝜇2 = 0.5 

 

Figure 60. P1 and P2 orbits under Kozai resonance, 

𝑎 = 15 𝐴𝑈,  𝜇1 = 0.25,  𝜇2 = 2.5 

There is no similar analysis for the inner orbits, because when there are strong 

Kozai effects there are also usually no well-defined inner orbit bounds. 

In summary: 

1. For real bodies that may also be relatively large, Kozai resonance tends to 

occur when 45 < 𝑖2 < 135. 

2. The dependence of the planetary orbital stability bounds on inclination is 

much stronger for retrograde stellar orbits than prograde ones. In the 
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retrograde case, when Kozai resonance occurs the inner bound contracts 

inwards, while the outer bound moves outwards, by a larger proportional 

amount.  

3. For inner planetary orbits, the critical semi-major axis ratio has almost no 

dependence on the outer star's inclination. While a retrograde outer stellar 

orbit allows the stable planetary region to extend further out, this benefit 

decreases as inclination approaches 90. 

4. For outer planetary orbits, at low stellar inclinations the critical ratio is 

constant, but as inclinations increase from zero to 180 the orbital stability 

bound begins to move inwards. However, in the region of inclinations where 

Kozai resonance occurs, there is a significant contrary outward shift which 

exceeds this general trend. 

4.2.5 Comparison with previous work on non-coplanar 

orbits 

There are a few studies that are of tangential interest to the work in this section. 

A study of binaries with inclined circumbinary planetary orbits by Doolin and 

Blundell (2011) found three distinct modes of orbital behaviour for non-coplanar 

orbits. These were 1) close-to-coplanar prograde (𝑖 ∼ 0); 2) close-to-coplanar 

retrograde (𝑖 ∼ 180°), where these orbits precess in the longitude of the ascending 

node; and 3) close-to-polar orbits (𝑖 ∼ 90° and 𝜔 ∼ ±90°), which have their 

longitude of ascending node and inclination coupled to precess about the centre of 

an island of libration. 

As mentioned in Section 1.4, Verrier and Evans (2009) examined the dynamics of 

planetesimals in the specific quadruple star system HD 98800, where test particles 

in circumbinary polar orbits about the inner binary appeared to evade Kozai 

instability. They concluded that high mutual planet-star inclinations are very 

likely, and that if regions of stability exist, planetary systems may be found in 

them. 

Kennedy et al. (2012) suggest that the misaligned circumbinary debris disc around 

99 Herculis can be explained by a ring of polar orbits that move in a plane 

perpendicular to the binary pericentre direction and discuss possible shapes of test 

particle clouds, which were also generated by the Swift-HJS code. 

Hamers et al. (2015) studied the evolution of short-period main sequence binaries 

within triple systems, where circumbinary planets can change this evolution 

significantly, by either shielding the inner binary from Kozai cycles induced by 

the tertiary or undergoing Kozai resonance itself and either being ejected or 

surviving in an inclined and eccentric orbit.  

Pejcha et al. (2013) focused mainly on stellar, rather than planetary, Kozai effects 

in quadruple systems, comparing them to triple stellar systems. However, they 

touch on the interesting case where the inner “binary” consists of a star and a 

planet in orbit around a distant binary (equivalent to our S3-type orbit in a later 

section), suggesting that the planet can experience the eccentric Kozai 

mechanism, resulting in both high eccentricity and the frequent occurrence of 

orbital flips, which could explain the abundance of retrograde hot Jupiters. 
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4.2.6 Observational examples of stellar Kozai resonance in 

triples 

As a stellar example, HD 109648 is a triple comprising three stars with 

approximately equal masses of around 1 𝑀𝑠, with a compact inner binary of 

period ~5 days and relative orbital inclination of 6  𝑖  54. The significantly 

non-zero eccentricity of 0.0119 of the inner orbit has been attributed to 

perturbation by the outer companion. A similar situation applies to HD 284163, 

consisting of an inner pair of masses 0.72 𝑀𝑠 and 0.33 𝑀𝑠 in a 2.4-day orbit, with 

a smaller outer star of 0.5 𝑀𝑠 at 7.4 AU, where the inner binary has an eccentricity 

of 0.057. Another triple,   Per, consists of an inner binary of masses 1.7 𝑀𝑠 and 

3.7 𝑀𝑠 and period 2.87 days and an outer body of 1.7 𝑀𝑠 with a 1.86 yr period; it 

has an inner eccentricity of 0.0653. In all these cases, discussed by Ford, 

Kozinsky and Rasio (2000), tidal dissipation should have led to circularised inner 

orbits, so their significantly different eccentricities point to Kozai resonance as a 

possible cause.  

Another example is TY Coronae Australis (TY Cra), mentioned by Beust (2003), 

made up of a close binary of masses 3.1 𝑀𝑠and 1.6 𝑀𝑠 and period 2. 88 days 

orbited by an outer star of 1.26 𝑀𝑠 at ∼1.5 AU, with a very high mutual orbital 

inclination of around 85 (using updated observations). 

4.2.7 The limitations of a theoretical approach 

Section 2.1 briefly mentioned the inadequacy in many situations of theoretical 

approaches to the analysis of stability. We are now better able to substantiate this 

statement with an illustration of the limits of theoretical approximations and how 

they break down. We do this by comparing the theoretical analysis of a high-

inclination triple with the numerical results from integrations. 

The configuration of this triple is an equal-stellar mass, high-inclination case with 

both orbits eccentric and a 90 longitude of ascending node. The parameters used 

were: 𝑎 = 20 AU,  𝜇1 = 0.5,  𝜇2 = 0.5, 𝑒1 = 0.5,  𝑒2 = 0.5, 𝑖1 = 0°,  𝑖2 =
60°, Ω2 = 90 and 𝜔2 = 0. 

In their paper on the secular three-body problem Farago and Laskar (2010) 

address two limiting cases, the inner restricted problem, where the inner body (i.e. 

our Star 2) has no mass, and the outer restricted problem, where the outer body 

(Star 3) has negligible mass. They used the latter approximation to explain the 

finding that small bodies with very high inclinations around one of the binaries of 

the double binary HD 98800 remain stable despite the perturbation of the other 

binary (Verrier & Evans 2008; Verrier & Evans 2009). We developed the 

approximation for the outer restricted model and compared its results with the 

output of a numerical integration. 

In this model there are no restrictions on the negligible-mass particle (i.e. planet) 

regarding its inclination or eccentricity. The Hamiltonian is given by 

〈𝐻〉  =  −𝑘[2 cos2 𝑖2   −  𝑒1
2 sin2 𝑖2  (3 −  5 cos 2Ω2)]         (36) 

where 

𝑘 = −
𝛼𝐺2
4
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𝑛1 = √
𝐺𝑀01

𝑎1
3  is the mean motion of the binary 


1
=

𝑚0𝑚1

𝑚0+𝑚1
  is the reduced mass 

𝑀01 = 𝑚0 +𝑚1 is the mass of the system 

𝐺2 = √𝐺𝑀01𝑎2(1 − 𝑒2
2) is the angular momentum of the particle 

𝐺 = the gravitational constant 

𝑚0 = mass of Star 1 

𝑚1 = mass of Star 2 

𝑎1 = semi-major axis of the inner binary 

𝑎2 = semi-major axis of a particle 

𝑒1 = eccentricity of the binary 

𝑒2 = eccentricity of the particle 

𝑖2 = inclination of the particle 

 

Transforming equation (36) with new variables 𝑝 = 𝑖2 cosΩ2 , 𝑞 = 𝑖2 sinΩ2 

results in 

〈𝐻〉  =  𝑘 (
1.25𝑝2+(0.75𝑝2+2𝑞2)cos[2√𝑝2+𝑞2]

𝑝2+𝑞2
)         (37) 

 

Figure 61. Outer restricted approximation, Hamiltonian surface 
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For the example configuration used, the general form of the three-dimensional 

surface defined by the Hamiltonian is shown in Figure 61, for 𝑘 = 1. 

The contours for the Hamiltonian for different values of 𝑘 are shown in Figure 62. 

(This configuration is, coincidentally, essentially the same as that illustrated by 

Doolin and Blundell (2011)). 

 

 

Figure 62. Outer restricted approximation, curves of constant Hamiltonian 

for values of 𝑘 of a) 0.02 b) 0.5 c) 1.0 d) 5.0. Contours cover 

the range 𝐻 = [−8, 8] 

We then compared this approximation with the numerical integration of this case 

where the outer body has a non-negligible mass that is comparable to the stars in 

the inner binary, using 𝑚0 = 𝑚1 = 𝑚2 = 1 𝑀𝑆. The integration was run using an 

initial 10 000 test particles that left 3 637 survivors after 106 yr. The initial 

inclination of the test particles ranged between 0 and 90, resulting in an initially 

spherical cloud. The cloud at the end of the integration is shown in Figure 63; it 

remains spherical, with a higher-density internal shell. 
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Figure 63. P1 and P2 orbits. High-inclination example, 𝑎 = 20 𝐴𝑈,  𝜇1 =
0.5,  𝜇2 = 0.5, 𝑒1 = 0.5,  𝑒2 = 0.5, 𝑖1 = 0°,  𝑖2 = 60°, 𝛺2 = 90,  𝜔2 = 0 

The surviving test particles were then plotted on the (𝑝, 𝑞) plane using the p-q 

transformations used previously. The results are shown in Figure 64 a). In Figure 

64 b) this test particle distribution is then overlaid on the contour plot from Figure 

62 c). 

 

 

Figure 64. P1 and P2 orbits. a) final distribution in the p-q plane of 

test particles from an initial spherical cloud b) test particle 

distribution overlaid with curves of constant Hamiltonian 

The correspondence between the model and the test particle distribution is very 

good, with no discernible differences. The model appears to perform well, given 

that the outer star’s mass is far from negligible. Similar transformed test particle 

distributions result from a wide combination of outer mass ratios and outer star 

inclinations in the ranges  𝜇2 = [0.05, 2.5] and  𝑖2 = [20°, 80°] respectively.  
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However, a more appropriate starting configuration may be a tilted disc, on the 

basis that most planets will form in a circumstellar disc whose plane will be close 

to the invariable plane (as opposed to random capture). Beginning with an initial 

test particle cloud in the form of a disc aligned with the invariable plane instead of 

a spherical cloud then results in a very different distribution, as shown in Figure 

65.  

 

 

Figure 65. P1 and P2 orbits. Final distribution in the p-q plane of test particles 

from an initial disc aligned with the invariable plane 

A further 24 integrations were performed, for outer mass ratios ranging from 0.01 

to 2.5 (an outer mass ratio as high as 2.5 is not implausible, as discussed in 

Section 3.6.5.) and outer star inclinations from 30 to 80. The remaining 

parameters were unchanged and all integrations were for 106 yr. These are 

collected in Appendix B, with some selected cases shown in Figure 66. 

The distributions most resembling that in Figure 64 a), although the resemblance 

is weak, are a) and d), i.e. for outer mass ratios between 0.25 and 1.0 and outer 

inclinations around 40. The characteristic features of the theoretical distribution 

generally erode for higher outer inclinations and, interestingly, for lower outer 

mass ratios, irrespective of inclination (see Appendix B). As the outer mass ratio 

increases beyond 1.0 and inclinations increase past 40, the characteristic structure 

of the outer lobes first breaks down, after which the inner lobe disappears, with 

the accuracy of the approximation declining rapidly 

This illustrates that theoretical approximations can be unsuitable for studies that 

encompass the full range of possible configurations of real triples.  
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𝑎) 𝜇2 = 0.25,  𝑖2 = 40 

 

𝑏) 𝜇2 = 0.25,  𝑖2 = 60 

 

𝑐) 𝜇2 = 0.25,  𝑖2 = 80 

 

𝑑) 𝜇2 = 1.0,  𝑖2 = 40 

 

𝑒) 𝜇2 = 1.0,  𝑖2 = 60 

 

𝑓) 𝜇2 = 1.0,  𝑖2 = 80 

 

𝑔) 𝜇2 = 2.5,  𝑖2 = 40 

 

ℎ) 𝜇2 = 2.5,  𝑖2 = 60 

 

𝑖) 𝜇2 = 2.5,  𝑖2 = 80 

Figure 66. P1 and P2 orbits. Final distribution in the p-q plane of test particles 

from initial discs aligned with the invariable plane, for various 

outer mass ratios and inclinations 

4.2.8 Conclusions – highly inclined triple systems 

In highly inclined triples, test particle with circular orbits initially coplanar with 

the invariable plane evolve with semi-major axes that remain constant and orbits 

that remain circular, librate and become more inclined over time, eventually 

oscillating around a final inclination, with some developing Kozai resonance or 

undergoing orbit flipping into retrograde motion. The number of stable orbital 

bounds falls exponentially with increasing inclination. 

Analysis of a limited sample of stellar Kozai resonances in triples showed that for 

larger 𝑎, 𝜇1, 𝜇2 and 𝑖2, the period of the Kozai resonance is shorter and resonance 

begins earlier, with the influence of 𝜇1 on the Kozai resonance period being the 

largest, followed by 𝜇2 and 𝑖2, and that of 𝑎 being small. Of the two Kozai 

resonance orbital elements, the range for inclination was between the critical 

value of 39° to over 80°, with a strong influence from 𝑖2. The change in 

eccentricities was large, ranging from zero to very close to one. The period of 
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libration was much shorter for higher 𝑎, 𝜇1 and 𝜇2, but longer for higher 𝑖2. 

Libration occurs with a centering around 90° and a range of 90°, again strongly 

influenced by 𝑖2. For retrograde stellar orbits the resonance period and inclination 

range increased modestly, but the libration period more than doubled and the 

libration range widened considerably. Comparing the numerical results with the 

theoretical equations, the libration periods and Kozai resonance periods differed 

by ~40% while maximum eccentricity was within ~2%. 

Extracting and comparing the critical semi-major axis ratios under Kozai and non-

Kozai regimes and analysing the effect of stellar Kozai resonance on the sculpting 

of the shape of the stable region showed that for the inner stability bound, the 

critical semi-major axis ratio had little dependence on the outer star's inclination. 

For the outer stability bound, there is no dependence at low inclinations, but as the 

stellar inclination increases the critical semi-major axis ratio begins to decline, 

since the eccentricity of the inner binary decreases, causing this. This divergence 

begins at around 45 as a result of stellar Kozai resonance beginning. For 

retrograde stellar orbits dependence on 𝑖2 is generally much stronger. For a 

prograde outer star, stellar Kozai resonance has no effect on the critical ratios of 

the inner or outer bounds. For a retrograde outer star, however, when Kozai 

resonance occurs the inner bound contracts inwards, while the outer bound moves 

outwards, by a larger proportional amount. These movements are in the opposite 

direction to the general effect of a retrograde stellar orbit, indicating that Kozai 

resonance increases planetary instability. While the semi-major axis ratio of the 

outer bound shows an overall decrease as 𝑖2 increases from zero to 180, between 

~45° −  135°, where Kozai resonance occurs, there is an increase of up to ~20%, 

which appears to be related to the strength of the Kozai resonance. 

A comparison of the theoretical and numerical results for the analysis of a high-

outer mass, high-inclination triple confirms that theoretical approximations are 

inadequate for the analysis of realistic triple systems and a numerical approach is 

necessary. 

4.3 Orbit Type S1/S2 

4.3.1 Configuration 

The investigation of S-type orbits in triples has a direct application to searches for 

extrasolar planets, since radial velocity variations are easier to measure for planets 

close to their host stars. 

Some early stability studies of S-type and P-type orbits in binaries included 

Harrington (1977), Szebehely (1980), Dvorak (1984), Dvorak, Froeschle and 

Froeschle (1986), Rabl and Dvorak (1988), Dvorak, Froeschle and Froeschle 

(1989), Holman and Wiegert (1999) and Musielak et al. (2005). These largely 

circular, coplanar models were extended to other eccentricities by Pilat-Lohinger 

and Dvorak (2002) and inclined P-type orbits for equal-mass binaries by Pilat-

Lohinger, Funk and Dvorak (2003). 

The stellar configuration for the triple and the region of interest containing S1 

planetary orbits is shown in Figure 67.  
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Figure 67. S1/S2 orbits, triple system configuration 

The S1 and S2 orbits around Star 1 and Star 2 respectively (shown in Figure 8) are 

interchangeable, so only one case needs to be examined. These will henceforth be 

referred to simply as S1 orbits, to distinguish them from S3 orbits, which are 

centred on Star 3. 

4.3.2 Parameter space 

It is helpful to scale the masses of the stars in the triple differently to those in the 

previous analysis of P-type orbits. Table 38 shows the values used in some 

relevant studies for the total mass and semi-major axis of the inner binary, for 

both S-type orbits and P-type orbits. Verrier and Evans (2007) is the only study 

pertinent to a triple. 

For binaries the distribution of the mass ratio is quite flat, as discussed in an 

earlier section – there is a relative scarcity of low-mass companions and a 

preponderance of like-mass pairs, and this also applies to binary pairs in triples. 

These like-mass pairs tend to have short periods, with most being well below 103 

yr (equivalent to ~126 AU), and most short-period binaries are found in triples 

(Raghavan et al. 2010). 

We retained the binary semi-major axis of 1 AU, but used a mass for the central 

star of 0.01 𝑀𝑠, resulting in a minimum binary period of 7 yr, close to the median 

and the studies by Morais and Giuppone (2012), Musielak et al. (2005) and 

Verrier and Evans (2007). The average binary period used in the integrations was 

8.5 yr. 

The mass ratio 𝜇1 was varied in the range 0.001 – 0.5 and 𝜇2 in the range 0.001 – 

2.2, essentially the same as for the P-type orbits previously considered. Note that 

in Verrier and Evans (2007) the ratio of the masses of the inner binary stars (in 

our notation) 𝑚1/𝑚2 is varied from 1 to 2, and the ratio of the outer binary 

𝑚3/𝑚2 from 0.1 to 2. This equates to our 𝜇1 ranging from 0.333 to 0.500 and 𝜇2 

possibly in the range 0.0333 to 0.25 – our parameter range is much wider. 

The parameter space used is shown in Table 39. 
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Table 38. S1 orbits. Scaling of inner binaries 

 

 

Table 39. S1 orbits. Parameter space used 

Reference Binary Maximum Minimum

semimajor binary binary

axis mass period

a 1 m 1+m 2 P

(AU) (Ms ) (yr)

Holman & Wiegert (1999) 1.00 ? ?

Verrier & Evans (2007) 1.00 2.00 0.71

5.00 2.00 7.91

David et al (2003) 1.00 1.00 1.00

1.00 1.50 0.82

Musielak et al (2005) 15.00 1.33 50.37

5.00 1.60 8.84

Morais & Giuppone (2012)* 1.00 0.03 6.28

Gould et al (2014)** 12.50 0.28 83.97

Median 7.09

Our S1 and S3 type selected (avg) 1.00 0.02 8.53

Our P-type selected (avg) 1.00 2.00 0.85

*   mass adjusted for units used.

** OGLE-2013-BLG-0341L

Parameter ranges Units

Prograde (0) and retrograde (1) outer star - 0 1

Prograde (0) and retrograde (1) planets - 0 1

Geometry

Semimajor axis ratio a = a 2/a 1 - a m 100

Inner mass ratio μ 1 = m 2/(m 1+m 2) - 0.001 0.5

Outer mass ratio μ 2 = m 3/(m 1+m 2) - 0.001 2.2

Star 2

Eccentricity e 1 - 0 0.7

Inclination i 1 deg 0 -

Longitude of ascending node Ω1 deg 0 -

Argument of periapsis ω 1 deg 0 -

True anomaly ν 1 deg 0 -

Star 3

Eccentricity e 2 - 0 0.7

Inclination i 2 deg 0-60 120-180

Longitude of ascending node Ω2 deg 0 270

Argument of periapsis ω 2 deg 0 270

Orbit type

S1
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4.3.3 Computational parameters 

Some changes to the computational parameters were necessary. For broadly 

similar parameter ranges there were more ejections in S-type integrations than 

there were for P-type integrations, and a larger number of initial test particles was 

therefore used to compensate for this. Nevertheless, for extreme configurations 

where most test particles are ejected, the edge-detection algorithm can produce 

poor results if there are too few test particles left at the end of the integration, i.e. 

if the density histogram is too sparse. An error trap for this situation was thus also 

required. Experimentally it was found that results became unreliable when the 

number of test particles per bin in the density histogram was below ~20. As 

described previously, the number of bins used, 𝑘, is given by equation (16), 

𝑘 =
√𝑛

2
+ √𝑛

3
                      (16) 

so the mean number of test particles, 𝑛, per bin is 

(
𝑛

𝑘
)

̅̅ ̅̅̅
=

𝑛

⌈
√𝑛

2
+ √𝑛
3

⌉
=

2𝑛
2
3

𝑛
1
6+2

                (38) 

For any required number of test particles per bin, one can calculate the minimum 

required number of remaining test particles from the above relationship. For 20 

test particles per bin, this minimum number of test particles is ~300. A condition 

was therefore imposed that, if at the end of any integration the number of test 

particles was below this number, the results were discarded.  

One also needs to specify the heliocentric distance at which a test particle is 

stopped, being considered too close to the star. We set this distance at 0.005 AU, 

equal to one solar radius.  

Compared with P-type orbits we can also justify a lower escape distance for a test 

particle, since if it moves well beyond the semi-major axis of the binary it is 

highly likely to be ejected within a short time. We used a distance of 100 AU. 

In terms of setting the initial semi-major axis of the test particle cloud, previous 

work on binaries e.g. Holman and Wiegert (1999) used the range 0.02 – 0.50 

times the semi-major axis of the binary, 𝑎1, and found the critical semi-major axis 

ratio at around 0.46𝑎1, while our work on P1 orbits found a range of 0.38𝑎1 −
0.54𝑎1. The range selected was much wider, at 0.02𝑎1 − 0.90𝑎1. The choice of 

the lower limit was found to be important, in that choosing it to be zero resulted in 

nearly all test particles being ejected. The reason for this is unknown. 

The default integration time was again 105 yr, with sample checks of 106 yr. 

Because most test particles are swiftly ejected in this configuration, a higher initial 

number of 3 000 was used to ensure that enough survived for a sufficiently 

smooth particle density function. 

The edge-detection algorithm also required modification. The extraction of 

𝑎𝑜𝑖 falls away and the de-spiking routine could be removed, as could the 

determination of the “peakiness” of the inner particle density function that 

determines whether inner orbits exist. The cutoff density level was then re-

optimized from calibration runs. The S1 orbit bound was defined as the semi-
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major axis of the last bin that contains test particles above this density level, if the 

next 15 consecutive bins are also below this cutoff (and are also below the limit 

𝑙𝑠). The characteristic shapes of the particle density functions of prograde and 

retrograde particle clouds were the same, unlike those found for P1 orbits, while 

the retrograde distributions extended further out, as expected. 

The relevant bound-determination parameters after re-optimisation are shown in 

Table 40. 

 

Parameter Prograde  Retrograde  

ft 0.020 0.020 

fp 1.500 1.000 

fi 0.020 0.020 

fo 0.028 0.400 

ls 0.010 0.010 

aa 0.016 0.028 

Table 40. S1 orbits. Edge detection algorithm parameters 

Since S1 orbits have sharper edges than P-type orbits, a very small number can be 

used for 𝑓𝑖, and a small value was also used for 𝑙𝑠. The other computational 

parameters are shown in Table 41. 

 

 

Table 41. S1 orbits. Computational parameters 

4.3.4 Prograde outer star 

For S1 orbits the stability bound is defined in terms of the inner orbit’s semi-

major axis, i.e. 𝑎𝑖𝑜 𝑎1⁄ . A set of 5 406 integrations was run. The survival rates of 

the test particles are shown in Figure 68.  

In these S1 orbits a complete range of stability was exhibited, evidenced by the 

number of test particles remaining at the end of the integrations, which varied 

from 100%, i.e. complete stability (up to 105 yr) to 0%, i.e. all particles being 

ejected, usually quite early in the integration. The average survival rate was a low 

Parameter Units Orbit type

S1

Central star mass m 1 M S 0.01

Timestep dt yr Tbin/20

Number of test particles - 3 000

Test particle orbit centres - -1 0 0

Minimum semi-major axis
 (1)

amin AU 0.02

Maximum semi-major axis amax AU 0.9a 1

Collision with central body rmin AU 0.005

Ejection from system rmax AU 10
2

(1) Must be > specified collision distance
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10%, indicating that within the parameter space used only a relatively narrow 

range of configurations was stable.  

 

 

Figure 68. S1 orbits, prograde outer star, test particle survival rates 

The critical semi-major axis ratios for prograde and retrograde orbits are shown in 

Figure 69. 

 

..  

Figure 69. S1 orbits, prograde outer star. a) prograde 

bounds b) retrograde bounds 

The semi-major axes of the stability bounds span a wide range, from very close to 

the central star (0.046 AU) to almost nine tenths of the distance to the second star 

(0.885 AU). This maximum is well above the ranges used in the previous studies 

mentioned earlier, but lies below the selected maximum size of the test particle 

cloud of 0.9𝑎1 so this selection was sufficiently large. In most of the integrations, 

though, the test particle cloud underwent a very large contraction in semi-major 

axis (averaging 71%) from this initial value. 

The stability bounds found are analysed in Table 42. 

Well-defined bounds were found for 40% of the integrations, well ahead of the 

26% found for P1 orbits. There was no distinction between prograde and 

retrograde bounds, whereas for P1 orbits there was a clear preponderance of 

prograde bounds (33% versus 18%). This is because the edges of the S1 

retrograde stability bounds are far less diffuse than those for P1 retrograde 

bounds. The mean critical semi-major axis ratios and their ranges are shown in 

Table 43. 

 

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000

Simulation number

TPs remaining (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000 2500 3000

Simulation number

aio/a1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000 2500

Simulation number

aio/a1



Chapter 4 Orbit Type S1/S2 

122 

 

 

Table 42. S1 orbits, prograde outer star. Number of bounds found 

 

 

Table 43. S1 orbits, prograde outer star. Mean critical semi-major axis ratios 

The difference in mean critical semi-major axis ratios between prograde and 

retrograde planetary orbits of 2% is not statistically significant at the 5% level. 

The expected signs of the coefficients in regressions of the orbit bounds 𝑎𝑖𝑜 𝑎1⁄  

are shown in Table 44. 

 

Coefficient 

  

S1 

orbits 

μ1 – 

μ2 – 

e1 – 

e2 – 

i2 – 

Ω2 + 

ω2 + 

Table 44. S1 orbits, prograde outer star, expected signs of regression coefficients 

The expected signs of the regression coefficients for S1 bounds differ from those 

for P1 bounds as the P1 bounds are outside the inner binary while the S1 orbits are 

within it. A larger semi-major axis ratio 𝑎 may be expected to allow the semi-

major axis of the bound to increase. A more massive Star 2, i.e. larger 𝜇1, would 

push the bound inwards, with a similar effect (although much weaker) from 𝜇2. A 

higher eccentricity 𝑒1 for Star 2 will also reduce the bound, with a similar (but 

again much weaker) effect from 𝑒2. A higher inclination of the outer star 𝑖2, which 

brings it closer to the inner stars and planets, will also tend to reduce the planets’ 

critical semimajor axis. An increase in either the longitude of ascending node or 

argument of periapsis of the outer star should, however, move it further away 

from the inner stars and planets (assuming a non-zero inclination and 

eccentricity), allowing the stability bound to increase. 

Planet orbit Total

type simulations Bounds found Success rate Distribution

 (no.) (%) (%)

Prograde 3009 1232 41 56

Retrograde 2397 949 40 44

Total 5406 2181 40 100

Cases with well-defined orbit bounds

a io /a 1

Orbit type

Min Avg Max SD

Prograde planetary orbits 0.015 0.180 0.760 0.049

Retrograde planetary orbits 0.015 0.185 0.771 0.122

Difference (%) - 2 - -

a io /a 1
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The regression equations for both types of planetary orbit are discussed in the 

following sections. 

Prograde planetary orbits 

The regression resulted in the following relationship, where the error terms are the 

average 95% confidence limits:  

𝑎𝑖𝑜 𝑎1⁄ = (0.390 ± 0.027) + (−0.746 ± 0.045)𝜇1 + (0.005 ± 0.009)𝜇2 +
(−0.398 ± 0.040)𝑒1 + (−0.006 ± 0.027)𝑒2           (39) 

Where coefficients are zero to three decimal places they are excluded. Data on the 

regression coefficients are listed in Table 45. 

 

 

Table 45. S1 orbits, prograde outer star. Regression 

coefficients – prograde planetary orbits 

The variable with by far the greatest influence on S1 orbits is the inner mass ratio, 

with a coefficient almost twice that of the regression constant, followed by the 

eccentricity of the inner orbit, with a coefficient comparable to the constant. The 

signs of these large coefficients are as expected. In comparison, the outer star has 

a negligible effect on the planetary orbits. The mass ratio and eccentricity of its 

orbit have very weak influences, with the standard error of the coefficient of the 

latter being larger than the (absolute) coefficient itself. In cases like this, the fact 

that the sign of the coefficient appears to be wrong is simply ignored. The 

inclination 𝑖2 and elements Ω2 and 𝜔2 do not enter the regression equation. 

The regression equation has an 𝑅2 of 0.583, much higher than that found for P1 

orbits, the F-statistic was 142 and the standard error was 0.081. The model, 

however, has a poor mean absolute percentage error (MAPE) of 35%. 

Retrograde planetary orbits 

The best-fit equation for the critical semi-major axis ratio is 

Model Standardised 

Coefficients

B

Std. 

Error Beta

Lower 

Bound

Upper 

Bound

C .390 .014 28.4 .000 .363 .416

a .000 .000 .056 2.4 .016 .000 .001

μ 1 -.746 .023 -.804 -32.4 .000 -.792 -.701

μ 2
.005 .004 .024 1.1 .284 -.004 .013

e 1 -.398 .020 -.484 -19.7 .000 -.437 -.358

e 2
-.006 .014 -.010 -0.5 .647 -.034 .021

i 2 .000 .000 .036 1.6 .116 .000 .001

Ω2
.000 .000 .033 1.4 .154 .000 .000

ω 2 .000 .000 .021 0.9 .352 .000 .000

Unstandardized 

Coefficients

t Sig. 95% 

Confidence 

Interval for B
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𝑎𝑖𝑜 𝑎1⁄ = (0.393 ± 0.028) + (−0.667 ± 0.044)𝜇1 + (0.003 ± 0.009)𝜇2 +
(−0.383 ± 0.040)𝑒1 + (0.002 ± 0.027)𝑒2            (40) 

Data on the regression coefficients is listed in Table 46. 

 

 

Table 46. S1 orbits, prograde outer star. Regression 

coefficients – retrograde planetary orbits 

The regression coefficients are virtually identical to those for the prograde case, 

with the previous conclusions remaining unchanged.  

The retrograde regression equation has a 𝑅2 of 0.561, the F-statistic is 124 and the 

standard error of the regression was 0.081. The model has a mean absolute 

percentage error (MAPE) of 37% 

4.3.5 Retrograde outer star 

For this case a set of 3 041 integrations was run. 

The parameter space used was the same as in Table 39, with the outer star’s 

inclination now ranging from 120° −  180° instead of 0° −  60° for the prograde 

case. The results are shown in Figure 70 and Figure 71. (The periodic pattern 

displayed in Figure 70 is an artefact of some of the integrations being run in 

batches of 128.) 

 

Figure 70. S1 orbits, retrograde outer star, test particle survival rates 

Model Standardised 

Coefficients

B

Std. 

Error Beta

Lower 

Bound

Upper 

Bound

C .393 .014 27.9 .000 .365 .421

a .000 .000 .066 2.8 .006 .000 .001

μ 1
-.667 .022 -.760 -29.8 .000 -.711 -.623

μ 2 .003 .005 .015 0.6 .519 -.006 .012

e 1
-.383 .020 -.476 -18.7 .000 -.424 -.343

e 2 .002 .014 .004 0.2 .880 -.025 .029

i 2
.000 .000 -.005 -0.2 .832 .000 .000

Ω2 .000 .000 -.008 -0.4 .725 .000 .000

ω 2
.000 .000 -.001 0.0 .970 .000 .000

Unstandardized 

Coefficients

t Sig. 95% 

Confidence 
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The range of test particle survivorship was slightly less than for a prograde outer 

star; the maximum number of test particles remaining was 93% and the average 

survival rate was 10%.  

 

..  

Figure 71. S1 orbits, retrograde outer star. a) prograde 

bounds b) retrograde bounds 

The stability bounds are generally closer to the central star than for the prograde 

stellar case, with a minimum ratio of 0.028 and a maximum of 0.772. In the 

integrations the test particle cloud’s average contraction was slightly less, at 75%. 

There is no visible difference between the prograde and retrograde critical 

semimajor axis ratios. The stability bounds found are analysed in Table 47. 

 

 

Table 47. S1 orbits, retrograde outer star. Number of bounds found 

The overall success rate was 57% compared with 53% for a prograde outer star, 

attributable mostly from the higher number of prograde planetary bounds (60% 

versus 53% previously). This hints that prograde planetary orbits may be more 

stable if the outer star is in a retrograde orbit. 

The mean critical semi-major axis ratios and their ranges are shown in Table 48. 

 

 

Table 48. S1 orbits, retrograde outer star. Mean critical semi-major axis ratios 
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Planet orbit Total

type simulations Bounds found Success rate Distribution

 (no.) (%) (%)

Prograde 1586 957 60 55

Retrograde 1455 791 54 45

Total 3041 1748 57 100

Cases with well-defined orbit bounds

a io /a 1

Orbit type

Min Avg Max SD

Prograde planetary orbits 0.015 0.197 0.772 0.059

Retrograde planetary orbits 0.028 0.196 0.772 0.157

Difference (%) - -1 - -

a io /a 1
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The mean critical ratio of 0.196 is 8% higher than the average 0.183 for prograde 

stellar orbits. Although the -1% difference shown is not significant at the 5% 

level, the sign would be correct in that the critical ratio for retrograde planetary 

orbits should be smaller than for prograde orbits (opposite to the situation for 

prograde stellar orbits) since the retrograde direction of motion of the outer star 

should have some small influence on planets within the inner binary, conferring 

additional stability to prograde planets and less stability to retrograde planets. The 

effect would be small, as the mean period of the outer binary star is ~10 times 

larger than that of the planet. 

The expected signs of the regression coefficients remain unchanged. The 

regression equations for both types of orbit are discussed in the following 

sections. 

Prograde planetary orbits 

The regression resulted in the following relationship, where the error terms are the 

average 95% confidence limits:  

𝑎𝑖𝑜 𝑎1⁄ = (0.277 ± 0.097) + (−0.387 ± 0.067)𝜇1 + (−0.005 ± 0.014)𝜇2 +
(−0.125 ± 0.055)𝑒1 + (−0.005 ± 0.043)𝑒2           (41) 

Where coefficients are zero to three decimal places the variable is excluded. Data 

on the regression coefficients are listed in Table 49. 

 

 

Table 49. S1 orbits, retrograde outer star. Regression 

coefficients – prograde planetary orbits 

As in the prograde stellar case, the dominant variables are again the inner mass 

ratio and the eccentricity of the inner orbit. However, their influence is 

substantially weaker, with their respective coefficients being 48% and 69% 

smaller respectively.  

This regression equation has a 𝑅2 of only 0.126, the F-statistic was 17 and the 

standard error of the regression was 0.139. The model has a very large mean 

absolute percentage error (MAPE) of 67%. 

Model Standardised 

Coefficients

B

Std. 

Error Beta

Lower 

Bound

Upper 

Bound

C .277 .049 5.6 .000 .180 .374

a .000 .000 .003 0.1 .929 .000 .000

μ 1 -.387 .034 -.360 -11.4 .000 -.453 -.320

μ 2 -.005 .007 -.023 -0.7 .461 -.019 .009

e 1 -.125 .028 -.141 -4.4 .000 -.180 -.070

e 2 -.005 .022 -.007 -0.2 .816 -.048 .038

i 2
.000 .000 .034 1.1 .273 .000 .001

Ω2 .000 .000 -.005 -0.2 .876 .000 .000

ω 2 .000 .000 -.009 -0.3 .759 .000 .000

Unstandardized 

Coefficients

t Sig. 95% 

Confidence 
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Retrograde planetary orbits 

The best-fit equation for the critical semi-major axis ratio is 

𝑎𝑖𝑜 𝑎1⁄ = (0.423 ± 0.106) + (−0.451 ± 0.072)𝜇1 + (−0.006 ± 0.016)𝜇2 +
(−0.056 ± 0.061)𝑒1 + (−0.048 ± 0.048)𝑒2           (42) 

Data on the regression coefficients is listed in Table 50. 

 

 

Table 50. S1 orbits, retrograde outer star. Regression 

coefficients – retrograde planetary orbits 

The regression coefficients are again much weaker than for the prograde stellar 

case, with the coefficients for 𝜇1and 𝑒1 being 32% and 85% smaller respectively.  

However, the coefficient of 𝑒2 has increased, approaching that of 𝑒1, so the outer 

star now has a small influence, unlike in the prograde stellar case. 

The regression equation has a poor fit like the prograde planetary case, with an 𝑅2 

of 0.176, F-statistic of 20 and a standard error of regression of 0.143. The model 

has a mean absolute percentage error (MAPE) of 74% 

Comparisons 

The mean critical semi-major axis ratios for the four combinations of orbital 

motion are summarised in Table 51 and graphs of the corresponding regressions 

are presented in Figure 72. 

S1 planetary orbits on average extend ~8% further out when the outer star is in a 

retrograde orbit. For prograde stellar orbits, retrograde planetary orbits extend 

slightly (3%) further out while for retrograde stellar orbits they are virtually the 

same. 

In the study of the long-term stability of planets in the binary α Centauri AB 

system mentioned in Section 4.1.6 (Quarles & Lissauer 2016) the data for S1 

orbits (Fig. 7) shows that retrograde test particles were stable 9% closer to the 

outer companion, larger but still comparable to our 3%. 

 

Model Standardised 

Coefficients

B

Std. 

Error Beta

Lower 

Bound

Upper 

Bound

C .423 .054 7.8 .000 .317 .529

a .000 .000 -.063 -1.9 .054 -.001 .000

μ 1 -.451 .037 -.416 -12.3 .000 -.523 -.379

μ 2 -.006 .008 -.023 -0.7 .481 -.022 .011

e 1
-.056 .031 -.061 -1.8 .074 -.117 .005

e 2 -.048 .025 -.064 -2.0 .051 -.097 .000

i 2
.000 .000 -.040 -1.2 .223 -.001 .000

Ω2 .000 .000 -.036 -1.1 .269 -.001 .000

ω 2 .000 .000 .011 0.3 .734 .000 .000

Sig. 95% 

Confidence 

Unstandardized 

Coefficients

t
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Table 51. S1 orbits. Mean critical semi-major axis ratios 

for various combinations of orbital motions 

 

   

Figure 72. S1 orbits. Regression coefficients for various combinations of orbital 

motions a) prograde outer star, b) retrograde outer star 

In summary, the determinants of the critical semi-major axis ratio for planetary 

orbits in S1 orbits are the inner binary’s mass ratio and eccentricity only; for a 

retrograde outer star the influence of the eccentricity is much weaker. 

Differences between prograde and retrograde stellar orbits 

The S1 regression equations are shown below excluding error terms, where the 

first subscript refers to a prograde or retrograde outer stellar orbit and the second 

subscript to a prograde or retrograde planetary orbit. 

(
𝑎𝑖𝑜

𝑎1
)
𝑝𝑝

= 0.390 − 0.746𝜇1 + 0.005𝜇2 − 0.398𝑒1 − 0.006𝑒2     (43) 

(
𝑎𝑖𝑜

𝑎1
)
𝑝𝑟

= 0.393 − 0.667𝜇1 + 0.003𝜇2 − 0.383𝑒1 + 0.002𝑒2     (44) 

(
𝑎𝑖𝑜

𝑎1
)
𝑟𝑝

= 0.277 − 0.387𝜇1 − 0.005𝜇2 − 0.125𝑒1 − 0.005𝑒2     (45) 

Orbit Critical

type ratio Star 3 Planet Min Mean  Max

P P 0.015 0.180 0.049 0.760

R 0.015 0.185 0.122 0.771

R P 0.015 0.197 0.059 0.772

R 0.028 0.196 0.157 0.772

1. P - prograde, R - retrograde

Motions
1 Mean critical semi-major axis ratio

S1 a io/a 1
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(
𝑎𝑖𝑜

𝑎1
)
𝑟𝑟
= 0.423 − 0.451𝜇1 − 0.006𝜇2 − 0.056𝑒1 − 0.048𝑒2      (46) 

Comparing the two stellar directions, for the retrograde case the coefficients 

concerning the binary have become weaker, with the coefficients for the outer star 

becoming (relatively) stronger. This is particularly true for the coefficient of 𝑒2 

relative to 𝑒1. So a retrograde outer star has an increased influence on the 

planetary stability bounds, albeit small. 

Also, using the above nomenclature we would expect the planetary stability of 

these configurations to be ranked 𝑝𝑝 < 𝑝𝑟 < 𝑟𝑝 < 𝑟𝑟. To test this, the previous 

four equations were evaluated for 104 different combinations of 𝜇1, 𝑒1, 𝜇2 and 𝑒2, 

using the ranges 𝜇1 = [0, 1], 𝑒1 = 𝑒2 = [0, 0.7] and 𝜇2 = [0, 2.3]. 

The normalised average critical semi-major axis ratio for each configuration is 

shown in Table 52, which confirms the expected ranking and reveals the effect of 

the outer star, where its retrograde motion appears to strongly stabilise both 

prograde and retrograde planetary orbits. 

 

 

Table 52. S1 orbits. Relative stability of combinations 

of stellar and planetary orbital motions 

In the equations above, the prograde stellar case the constant is effectively the 

same for prograde and retrograde planetary orbits, but in the retrograde stellar 

case they are quite different. Also, in the first case the coefficient of 𝜇1 for 

retrograde planets was smaller than for prograde planets, while the opposite holds 

in the second case.  

As a result, by looking at the equations one can see that in the prograde stellar 

case, since the intercept for prograde and retrograde planetary orbits is almost the 

same (as is the coefficient of 𝑒1), the retrograde orbits bound will always be 

further from the inner star, since the coefficient of 𝜇1is smaller i.e. 

(
𝑎𝑖𝑜

𝑎1
)
𝑝𝑝

𝑝𝑠

≈ 0.390 − 0.746𝜇1 − 0.398𝑒1             (47) 

(
𝑎𝑖𝑜

𝑎1
)
𝑟𝑝

𝑝𝑠

≈ 0.393 − 0.667𝜇1 − 0.383𝑒1             (48) 

Where superscript 𝑝𝑠 refers to the prograde outer stellar orbit and subscripts 

𝑝𝑝 and 𝑟𝑝 refer to the prograde and retrograde planetary orbit bounds 

respectively. 

Outer star Average

and planet a io /a 1

motion

pp 0.010

pr 0.147

rp 0.456

rr 0.770
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However, in the retrograde stellar case the equations for the critical semi-major 

axis ratios are 

(
𝑎𝑖𝑜

𝑎1
)
𝑝𝑝

𝑟𝑠

≈ 0.277 − 0.387𝜇1 − 0.125𝑒1             (49) 

(
𝑎𝑖𝑜

𝑎1
)
𝑟𝑝

𝑟𝑠

≈ 0.423 − 0.451𝜇1 − 0.056𝑒1             (50) 

In this case the retrograde orbit bound will be further from the inner star only for 

𝜇1 ≲ 2.28 − 3.36 (obtained by equalising the two expressions and setting 𝑒1 =
0 and 1); for larger values of 𝜇1the opposite would hold. Although this value of 

𝜇1 is meaningless in this instance, one can see that the direction of rotation of the 

outer star influences the retrograde planetary orbits, even though they are 

generally more stable.  

4.3.6 Comparison with the Hill stability criterion 

As mentioned in Section 2.1, theoretical approaches to stability are often 

imperfect. Another good example is to compare the numerical results for S1 orbits 

with the Hill stability criterion, which has been used extensively in dynamical 

studies (although not completely without criticism, e.g. Cuntz and Yeager (2009)). 

If the critical semi-major axis ratio is equal to one third of the Hill radius, i.e. 

𝑅H 3⁄  (Mudryk & Wu 2006), then from equation (14) we get 

𝑎𝑖𝑜

𝑎1
=

𝑅H

3𝑎
= (1 − 𝑒) (

1−𝜇1

81
)

1

3
                (51) 

A log-log plot of 𝑎𝑖𝑜 𝑎1⁄  against 1 − 𝜇1 should have a slope of 1 3⁄  and intercept 

(1 − 𝑒) √81
3

⁄ . For circular orbits this intercept would be 0.231. 

Various integrations were run using a range of mass ratios 𝜇1 and semi-major axis 

ratios 𝑎, for circular, coplanar, prograde planetary (and outer star) orbits and with 

𝜇2 fixed at 0.5. A typical result is shown in Figure 73, for 𝑎 = 50, 𝜇2 = 0.5, 𝑒1 =
0, 𝑒2 = 0, 𝑖2 = 0,Ω2 = 0 and 𝜔2 = 0. 

For 𝜇1 ≪ 1 and 𝜇1 → 1, one would expect the critical semi-major axis to follow 

the one-third power relationship. As shown in the figure, this is indeed true, but 

there are two distinct regimes. For 1 − 𝜇1 ≲ 0.645 (or 𝜇1 ≳ 0.355) the critical 

semi-major axis ratio lies close to, and below, the Hill relationship and converges 

towards it for small values of 𝜇1. For 𝜇1 ≲ 0.355 there is an abrupt change in 

regime to a different and equally good relationship, with much higher critical 

semi-major axis ratios. 

For different stellar semi-major axis ratios 𝑎 (in the range 10 − 100) this regime-

switching point for 𝜇1 remains approximately the same. The 𝜇1 → 1 relationship 

also does not change much, but the exponent of the 𝜇1 ≪ 1 relationship varies 

strongly. 

This suggests that the use of the Hill criterion as a determinant of planetary 

stability in a triple would be overly simplistic, and again highlights the 

inadequacy of theoretical approaches in the analysis of this situation.  
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Figure 73. S1 orbits. Critical semi-major axis ratios versus (1-𝜇1) 

In fact, even its use in binaries is not straightforward. For example, it was pointed 

out in the semi-analytic study by Mudryk and Wu (2006), in which the numerical 

work also used the Hierarchical Jacobi Symplectic integrator by Beust (2003), that 

even if a planet is allowed to escape according to the Hill criterion, it will only do 
so if its orbit is chaotic as a result of overlapping resonances, implying that the 

Hill criterion is a necessary but not sufficient condition for instability – this 
criterion describes the energy condition for instability while resonance 
overlap provides the proximate cause. However, they found that for practical 

purposes the criterion was a sufficient condition. 

The original Hill derivation for coplanar, circular orbits was later split into 

prograde and retrograde cases. For example, Innanen (1979) incorporated the 

Coriolis force to find stability limits at 0.69𝑅H and 1.44𝑅H for prograde and 

retrograde orbits respectively. This was later corrected to 0.80𝑅H and 2.60𝑅H by 

Hamilton and Burns (1991), who then found very different limits of 0.49𝑅H for 

prograde orbits and 1𝑅Hfor retrograde ones. 

The Hill criterion was recently generalised to the three-body problem with an 

outer body of arbitrary inclination by Grishin et al. (2017). A mass hierarchy of 

“star” ≫ “plan t” ≫ “sat llit ” was used. However, even if we could reduce our 

four-body problem to three by ignoring the outer body, this mass assumption 

would severely restrict the mass ratios of the inner binary, so it would be of little 

help in our investigation. 

4.3.7 Comparison with previous work on S1 bounds 

Few empirical studies have been done on S1 orbits, even in binaries.  

Holman and Wiegert (1999) found a critical semi-major axis ratio (our 𝑎𝑖𝑜/𝑎1) of 

0.464, while Musielak et al. (2005) found critical ratios in the range 0.22 − 0.46.  

The stability of prograde versus retrograde planets in circular binary systems has 

been investigated by e.g. Morais and Giuppone (2012), who used numerical 
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integrations of S-type systems to produce detailed 𝑎-𝜇1 maps of the stability 

boundary and showed that retrograde planets are stable at distances up to 0.66 

times closer to the perturber than prograde planets (compared with the 0.5 times 

found in this study). They found a range beginning at 0.4 − 0.5 for prograde 

planetary orbits and 0.6 for retrograde planetary orbits, although data for the latter 

case was much sparser. 

The only previous work done on S1 orbits in triples was by Verrier and Evans 

(2007). Their regression equation is not comparable to ours as it uses cross-terms 

and a differently-defined mass ratio. The outer star does not appear in the 

regression and they concluded that “the addition of a stable third star does not 

distort the original binary stability boundaries”. Retrograde orbits were not 

considered, for either the planet or the outer star. 

A more comprehensive comparison of these numerical results with previous work 

is provided in Section 4.7. 

4.3.8 Some observational examples of S1 orbits. 

Among the closest S1 orbits found in a binary are: 0.7 AU for OGLE-2013-BLG-

0341L b, with a binary separation of ~12 AU-17 AU, resulting in a semi-major 

axis ratio 𝑎𝑖𝑜 𝑎1⁄  of 0.058 – 0.041 (Gould et al. 2014); 1.09 AU with a binary 

separation of 13.6 AU for HD59686 b, yielding 𝑎𝑖𝑜 𝑎1⁄  0.080 (Trifonov et al. 

2018); and 0.382 AU and 5.3 AU respectively for KOI-1257 b, giving 

𝑎𝑖𝑜 𝑎1⁄  0.072 (Santerne et al. 2014). 

No radial-velocity or transit surveys have found S-type planets in any binary 

systems with a separation less than ~10 AU (Lissauer, Dawson & Tremaine 

2014). 

Only three S1 orbits in triple systems have been found to date, and are shown in 

Table 53. Again, there is some uncertainty whether Fomalhaut b is a planet or a 

dust cloud or disc. 

 

 

Table 53. S1 orbits of planets discovered in triple-star systems 

The generally low values for the semi-major axis ratios are a manifestation of 

observational bias. Although some of our integrations showed stable bounds with 

semi-major axis ratios as low as 0.015, they also extended to almost 0.8, with the 

greatest concentration in a “sweet spot” of 0.03 − 0.25, so there appears to be 

significant scope for planets to be found much further out from their host stars.  

4.3.9 Triples compared with binaries 

Configuring a binary case 

Planet Mass a io P e a 1 a 2 a io /a 1

(M j ) (AU) (d) (AU) (AU)

Fomalhaut b - 177±68 3.20110
5

0.80±0.10 58000 159000 0.00305

HD 126614 A b 0.38±0.04 2.35±0.02 1244±17 0.41±0.10 36.2 ≳1000 0.0649

HD 2638 b 0.48 0.0440 3.4442 ± 0.0002 0 25.6 ± 1.9 - 0.00172
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To highlight how the S1 planetary stability bounds in a triple differ from those in 

a binary, one needs to remove the disturbing influence of the outer star of the 

triple and compare the results with those from the previous section. Only one case 

of stellar orbit direction need be considered, as the removal of the outer star means 

the stellar prograde/retrograde distinction falls away. 

As discussed previously, changes to the experimental procedure should be 

minimised to extract what may be subtle differences. This was done by repeating 

identically the S1 integrations, with the only change being that the outer star’s 

mass was simply reduced to a negligible value. Unlike the case for P1/P2 orbits, 

no other changes were needed; in particular, the edge-extraction routine did not 

require re-optimization.  

The mass of the outer star was selected to be one thousandth of the central star’s 

(Star 1’s) mass, i.e. 10−5 𝑀𝑆. In the integrations for triples the range used for 𝜇2 

resulted in the outer star’s mass varying from zero to 0.043 𝑀𝑆. As shown by the 

coefficient of 𝜇2 in Table 45, the dependence on the outer star’s mass is weak. 

However, it is not negligible, as shown by plotting the critical semi-major axis 

ratio directly against the outer star’s mass 𝑚3, shown in Figure 74. 

 

 

Figure 74. S1 orbits. Critical semi-major axis ratio versus mass of outer star 

Although the scatter in this univariate plot is large, the dependence on mass is 

exponential – a reduction in mass from the maximum of 0.043 𝑀𝑆 to the proposed 

10−5 𝑀𝑆 would result in a doubling of the critical ratio from approximately 0.095 

to 0.188. 

Results for the binary case 

For comparison with the triple star analysis (for a prograde outer star) in Section 

4.3.4, 5 121 integrations of this binary model were run. The stability limit 𝑎𝑖𝑜 𝑎1⁄  

for all orbits is shown in Figure 75 a). The graph is not separated into prograde 

and retrograde planetary cases as there is no visible difference between them. This 

is compared in Figure 75 b) with the combined graph of prograde and retrograde 

bounds, from Figure 69. 
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Figure 75. S1 orbits. All stability bounds a) binary bounds b) triple bounds 

The binary bounds show a similar distribution of critical semi-major axis ratios, 

but with the smallest ones being further away from the central star. There are two 

ranges of differing density (i.e. regions of differing stability) – at critical ratios 

from a bit under 0.1 up to 0.22 and then from 0.22 to 0.48. These also existed in 

the triple case. A plot of the distribution of critical semi-major axis ratios, shown 

in Figure 76, highlights the two regions. 

 

 

Figure 76. Binary S1 orbits. Distribution of critical semi-major axis ratios 

The region from 0 – 0.22 has the highest stability, followed by lower stability in 

the range 0.24 – 0.48 and a largely unstable region from 0.50 outwards. The 

proportions of stable orbits falling into these three regions are 64:33:3 

respectively. The average contraction of the initial test particle cloud was 71%, 

slightly less than the 77% for the triple case. This relative expansion of the test 

particle cloud is expected, given the removal of the influence of the outer star.  

The stability bounds found are analysed in Table 54. 

As for the triple case, there was no distinction between the success rate of 

prograde and retrograde bounds found, as both types of orbits had equally sharply-

defined stability bounds, where they existed. The overall success rate of 41% was, 

however, lower than the 53% for the triple case. The ranges of the mean critical 

semi-major axis ratio for these bounds are shown in Table 55. 
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Table 54. Binary S1 orbits. Number of bounds found 

 

 

Table 55. Binary S1 orbits. Mean critical semi-major axis ratios 

Comparing Table 55 with Table 43 shows that the closest orbits lie substantially 

further from the central star, with critical ratios of around 0.046 compared with 

0.015 for the triple case. The mean critical ratio of 0.270 is 48% higher than the 

0.183 for triples. The largest critical ratios are also slightly higher than in the 

triple case.  

In the binary case retrograde planetary orbits again extend further out relative to 

prograde orbits, by 12% compared with 2% in triples. 

Comparison with the triple case 

The results for the binary case shown in Table 55 are compared with the triple 

case in Table 56. 

 

 

Table 56. Binary S1 orbits. Difference between average 

planetary bounds in triples and binaries 

Although smaller than measured by the univariate relationship in Figure 74, the 

difference in critical ratios averaged 50%. (Although this is much larger than the 

absolute ~9% difference between the triple and binary cases for P1 and P2 orbits, 

this is simply because the critical semi-major axis ratio is measured relative to 𝑎1 

rather than the larger 𝑎2.) 

The regressions for the binary case can also be compared with those found for the 

triple case, as shown in Table 57. 

Planet orbit Total

type simulations Bounds found Success rate Distribution

 (no.) (%) (%)

Prograde 2856 1169 41 56

Retrograde 2265 908 40 44

Total 5121 2077 41 100

Cases with well-defined orbit bounds

a io /a 1

Orbit type

Min Avg Max SD

Prograde planetary orbits 0.046 0.257 0.885 0.066

Retrograde planetary orbits 0.047 0.289 0.775 0.120

Difference (%) - 12 - -

a io /a 1

Difference in average bounds

Orbit type Triple Binary %

Prograde planetary orbits 0.180 0.257 43*

Retrograde planetary orbits 0.185 0.289 57*

% 2 12 -

* significant at the 5% level

a io /a 1
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Table 57. S1 orbits. Regression coefficients and model fits, triples versus binaries 

The results of previous studies of S-type orbits in binaries are shown in Table 87 

in Section 4.6. The binary case has modestly higher model R2s and lower model 

errors (MAPEs) than for the triple case. 

For S-type prograde orbits the regression constants ranged from 0.22 to 0.464, 

averaging 0.38. Our result (for a prograde planet) of 0.36 is very close to this 

average. The single study addressing retrograde orbits, by Morais and Giuppone 

(2012), gave ~0.6 and our 0.38 is well below this.  

The regression coefficients for triples and binaries are illustrated in Figure 77. 

 

   

Figure 77. S1 orbits. Regression coefficients, triples versus binaries –  

a) prograde planets b) retrograde planets 

The results for prograde and retrograde planetary orbits in triples and binaries are 

qualitatively similar, in that the only variables of influence are the inner mass ratio 

𝜇1 and eccentricity 𝑒1. However, the influence of the mass ratio is significantly 

larger in triples than in binaries, while that of eccentricity (and the constant) are 

effectively the same.  

S1 orbits Δ (%)

prograde planet B t B t B

C .390 28.4 .360 54.4 -8

a .000 2.4 .000 1.3 -77

μ 1 -.746 -32.4 -.497 -50.7 -33

μ 2
.005 1.1 .000 0.0 -

e 1 -.398 -19.7 -.396 -58.8 0

e 2 -.006 -0.5 -.011 -1.6 67

i 2
.000 1.6 .000 -0.3 -

Ω2 .000 1.4 .000 -0.9 -

ω 2
.000 0.9 .000 0.8 -

R
2

0.58 0.68 -

Model error (%) 34.9 40.6 -

Triple Binary S1 orbits Δ (%)

retrograde planet B t B t B

C .393 27.9 .378 44.5 -4

a .000 2.8 .000 -1.7 -136

μ 1 -.667 -29.8 -.491 -39.6 -26

μ 2
.003 0.6 .000 0.0 -

e 1 -.383 -18.7 -.411 -47.9 7

e 2 .002 0.2 .000 0.1 -77

i 2
.000 -0.2 .000 1.9 -

Ω2 .000 -0.4 .000 -0.1 -

ω 2
.000 0.0 .000 -0.2 -

R
2

0.56 0.64 -

Model error (%) 36.7 41.8 -
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4.3.10  Conclusions – S1/S2 orbits 

On average the outer star of a triple has a significant constraining influence on S1-

type orbits compared with the binary case. In triples the added influence of the 

outer star makes S1 orbits move inwards, with the mean critical semi-major axis 

ratio reducing substantially from 0.270 to 0.183 or over 30%, with the difference 

in critical ratio between prograde and retrograde planetary orbits also shrinking by 

around 10%. The mass ratio has a larger influence in triples than in binaries, while 

the effect of eccentricity is the same. 

For S1 planetary orbits in triples, the critical semi-major axis ratio is in the range 

~0.180 − 0.196. The sole significant determinants of this ratio are the inner 

binary’s mass ratio and eccentricity, in approximately equal measure, as reported 

by other researchers, although we found the influence of eccentricity declines 

sharply for a retrograde outer star. The critical ratio is generally ~7% greater for 

retrograde stellar orbits. Retrograde planetary orbits extend slightly further out (by 

3%) for prograde stellar orbits, but for retrograde stellar orbits they are essentially 

the same. 

4.4 Orbit Type S3 

4.4.1 Configuration 

As mentioned in the introduction, we are not aware of any previous empirical 

work on this configuration in triples. 

The region of S3 orbits is illustrated in Figure 78. The nomenclature of all the 

variables remain the same as in the previous configurations discussed. However, 

for computational convenience the origin of the coordinate system was moved 

from Star 1 to Star 3, to leave, for example, the edge detection routine, used here 

to determine 𝑎𝑖𝑜, unchanged. The “outer star” is now the inner binary, which will 

be called the “outer binary”. 

 

 

Figure 78. Triple system configuration – S3 orbits 
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4.4.2 Parameter space 

The parameter space used is shown in Table 58. It is identical to that used for S1 

orbits. 

 

 

Table 58. S3 orbits. Parameter space used 

4.4.3 Computational parameters 

The initial size of the test particle cloud around Star 3 was first set at half the 

distance to the centre of mass of the inner binary, or 𝑎2 2⁄ . However, it became 

apparent that the size of the test particle cloud needed to be chosen with more 

care, particularly for large values of the inner mass ratio 𝜇1 or a high eccentricity 

𝑒2 for the outer star. 

For example, Figure 79 shows the orbit of the outer binary, consisting of Star 1 

and Star 2, and its eccentric orbit relative to Star 3 in an integration. Note that per 

the new coordinate system, the outer orbit now consists of the close binary pair.  

With an initial test particle cloud semi-major axis of 𝑎2 2⁄  or 31 AU in this 

example, which extends to the perihelion of the outer binary’s orbit, some test 

particles are attracted to, and become associated with, this binary. When this sub-

cloud of captured particles is at aphelion, the test particle density histogram 

nevertheless appears normal, as shown in Figure 80. 

The edge detection routine for the test particle cloud correctly picks the edge at 5 

AU. However, at perihelion the histogram has a completely different profile, 

making correct edge identification impossible, as shown in Figure 81. 

Parameter ranges Units

Prograde (0) and retrograde (1) outer star - 0 1

Prograde (0) and retrograde (1) planets - 0 1

Geometry

Semimajor axis ratio a = a 2/a 1 - a m 100

Inner mass ratio μ 1 = m 2/(m 1+m 2) - 0.001 0.5

Outer mass ratio μ 2 = m 3/(m 1+m 2) - 0.001 2.2

Star 2

Eccentricity e 1 - 0 0.7

Inclination i 1 deg 0 -

Longitude of ascending node Ω1 deg 0 -

Argument of periapsis ω 1 deg 0 -

True anomaly ν 1 deg 0 -

Star 3

Eccentricity e 2 - 0 0.7

Inclination i 2 deg 0-60 120-180

Longitude of ascending node Ω2 deg 0 270

Argument of periapsis ω 2 deg 0 270

Orbit type

S3 
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Figure 79. S3 orbits. a) orbit of close binary pair Star 1 and Star 2 b) orbit of 

binary pair around Star 3. Parameters 𝑎1 = 1 𝐴𝑈, 𝑎2 = 62 𝐴𝑈, 
𝜇1 = 0.176, 𝜇2 = 0.375, 𝑒1 = 0.042, 𝑒2 = 0.651, 𝛺2 = 32° 

 

 

Figure 80. S3 orbits. a) test particle density function at aphelion b) test 

particle cloud at centre with captured sub-cloud at aphelion 

The test particle cloud therefore must be small enough that particles are not lost 

from Star 3 to the binary at its perihelion. As a rough approximation let this 

distance 𝑟𝑝 be defined as the point at stellar perihelion where the gravitational 

attraction of Star 3 on a particle is the same as that of the outer binary. Assuming 

that  𝑎2 >>  𝑎1, this can be calculated without regard to the orientation of the 

outer binary by considering this binary to be a point mass of 𝑚1 +𝑚2 located at 

its centre of mass. At stellar perihelion, 𝑟𝑝 = 𝑎2(1 − 𝑒2). At this separation, the 

point of equal gravitational attraction from Star 3 and the binary then depends 

only on the masses of the three stars. Assuming that Figure 78 represents the 

orbits at perihelion rather than aphelion, at the point of equal gravitational 

attraction on a test particle (labelled TP) we have 
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Figure 81. S3 orbits. a) test particle density function at perihelion b) test 

particle cloud at centre with captured sub-cloud at perihelion 

 

𝑚1+𝑚2

[(1−𝑥)𝑟𝑝]
2 =

𝑚3

[𝑥𝑟𝑝]
2                    (52) 

with solutions for 𝑥 of 

𝑥+ =
√(𝑚1+𝑚2)𝑚3−𝑚3

(𝑚1+𝑚2)−𝑚3
 and 𝑥− =

−√(𝑚1+𝑚2)𝑚3−𝑚3

(𝑚1+𝑚2)−𝑚3
       (53) 

Only the positive root needs evaluating, since the only meaningful cases are when 

𝑥− is positive, and in these cases it is always larger than 𝑥+. 

The maximum semi-major axis 𝑎𝑚𝑎𝑥 of the test particle cloud should therefore be 

𝑎𝑚𝑎𝑥 = 𝑥𝑟𝑝 = 𝑎2(1 − 𝑒2) (
√(𝑚1+𝑚2)𝑚3−𝑚3

(𝑚1+𝑚2)−𝑚3
)           (54) 

A few test particles are still captured by the binary when using this value, but use 

of this approximation essentially solved the problem.  

As for S1 orbits, the integration time was again 105 yr with test integrations of 

106 yr. The initial number of test particles was reduced from 3 000 to 2 000 and 

the system ejection limit was increased from 102 AU to 104 AU. The other 

computational parameters are shown in Table 59. 

Since the S3 orbits are conceptually the same as S1 orbits, the edge detection 

routine is unchanged, and the parameters used for S3 orbits, as shown in Table 60, 

are the same as for S1 orbits. 
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Table 59. S3 orbits. Computational parameters 

 

 

Table 60. S3 orbits. Edge detection algorithm parameters 

4.4.4 Prograde outer star 

For S3 orbits the stability bound is defined in terms of the outer orbit’s semi-

major axis, i.e. 𝑎𝑖𝑜 𝑎2⁄ . A set of 3 166 integrations was run. The survival rates of 

the test particles are shown in Figure 82.  

 

 

Figure 82. S3 orbits, prograde outer star, test particle survival rates 

Again, the periodicity is an artefact of the batch-wise running of integrations. The 

number of test particles remaining after 105 years ranges widely, from 100% down 

to around 30%. The pattern is inverse to that for S1 orbits in that there were no 

integrations where all test particles were ejected, a consequence of the fact that 

Parameter Units Orbit type

S3

Central star mass m 1 M S 0.01

Timestep dt yr Tbin/20

Number of test particles - 2 000

Test particle orbit centres - -1 0 0

Minimum semi-major axis
 (1)

amin AU 0.02

Maximum semi-major axis amax AU Eqn. (54)

Collision with central body rmin AU 0.005

Ejection from system rmax AU 10
4

(1) Must be > specified collision distance

Parameter Prograde orbits Retrograde orbits

f t 0.020 0.020

f p 1.500 1.000

f i 0.020 0.020

f o 0.028 0.400

l s 0.010 0.010

a a 0.016 0.028
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 𝑎2 >>  𝑎1. The number of stable orbits found is far higher for S3 orbits than S1 

orbits. 

The critical semi-major axis ratios for prograde and retrograde orbits are shown in 

Figure 83. 

 

 

Figure 83. S3 orbits, prograde outer star a) prograde 

bounds b) retrograde bounds 

In the integrations the test particle cloud always shrank from the initial 𝑎𝑚𝑎𝑥, by a 

minimum of 2% and maximum of 89%, with an average contraction of 35%. 

The critical semi-major axis ratio 𝑎𝑖𝑜/𝑎2 varied widely with the orbital 

configurations used, ranging from less than 0.01 to over 0.9 and averaging around 

0.3. Prograde planetary orbits are seen to be concentrated closer to the parent star, 

while retrograde orbits lay further away on average, as expected, and were more 

uniformly dispersed. The distribution of critical semi-major axis ratios for both 

orbital motions was generally more uniform than for S1 orbits. 

The orbital stability bounds found for each case are shown in Table 61. 

 

 

Table 61. S3 orbits, prograde outer star. Number of bounds found 

A similar number of integrations were carried out for each type of planetary 

motion and well-defined bounds were found for almost all of them (compared 

with only 53% for S1 orbits), with little difference in success rate between 

prograde and retrograde planetary orbits. The mean critical semi-major axis ratios 

and their ranges are shown in Table 62. 

The mean critical ratios for S3 bounds are not comparable with those for S1 orbits 

as they have different denominators. As expected, retrograde planetary orbits are 

more stable than prograde, with their mean critical ratio being 25% larger than for 

prograde orbits. 
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Prograde 1604 1599 100 52
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Table 62. S3 orbits, prograde outer star. Mean critical semi-major axis ratios 

The expected signs of the coefficients in the regressions for the orbit bounds 

𝑎𝑖𝑜 𝑎2⁄  are shown in Table 63. 

 

Coefficient 

  

S3 

orbits 

μ1 – 

μ2 + 

e1 – 

e2 – 

i2 – 

Ω2 + 

ω2 + 

Table 63. S3 orbits, prograde outer star. Expected signs of regression coefficients 

The only change in coefficients compared with S1 orbits is for 𝜇2. Since the small 

bodies are now orbiting Star 3, as 𝜇2 increases, the mass and hence influence of 

the binary declines relative to this body, allowing the stability bound to move 

outwards from Star 3 and the critical ratio to increase. The regression equations 

for both types of planetary orbit are discussed in the following sections. 

Prograde planetary orbits 

The regression resulted in the following relationship, where the error terms are the 

average 95% confidence limits:  

𝑎𝑖𝑜 𝑎2⁄ = (0.392 ± 0.022) + (−0.075 ± 0.028)𝜇1 + (0.037 ± 0.007)𝜇2 +
(−0.020 ± 0.021)𝑒1 + (−0.602 ± 0.021)𝑒2           (55) 

Where coefficients are zero to three decimal places they are ignored. Data on the 

regression coefficients is listed in Table 64. 

The value of the constant is quite similar to the mean critical ratio of 0.384 found 

by other investigators for prograde S1 orbits in binaries. The notable feature of the 

regression is the very strong dependence only on the eccentricity of the outer star, 

with a coefficient for this variable that is 50% larger than the constant. The sign 

for this coefficient, and for the other variables, is correct, but the influence of the 

other variables is largely irrelevant. This reflects the behavior discussed in Section 

4.4.3 and the variable outer limit used for the test particle cloud.  

The regression equation has an 𝑅2 of 0.71, the F-statistic was 478 and the 

standard error of the regression was 0.084. The model has a mean absolute 

percentage error (MAPE) of 25%. 

 

Orbit type

Min Avg Max SD

Prograde planetary orbits 0.009 0.289 0.893 0.098

Retrograde planetary orbits 0.010 0.361 0.920 0.158

Difference (%) - 25 - -

a io /a 2
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Table 64. S3 orbits, prograde outer star. Regression 

coefficients – prograde planetary orbits 

In all the regressions of P-type and S-type orbits so far, the univariate 

relationships between the critical ratios and the independent variables were linear. 

Interestingly, in S3 orbits a nonlinear relationship appeared for the first time, 

between 𝑎𝑖𝑜 𝑎2⁄  and 𝜇2. This is shown in Figure 84, with a power law regression 

line fitted. The slope of the regression line is positive, as expected. 

 

Figure 84. S3 orbits, prograde outer star. Relationship between 

critical semimajor axis ratio and 𝜇2, linearised 

The regression equation was not changed to incorporate this as a nonlinear term, 

for comparability and since a linear fit was not too dissimilar (𝑅2 = 0.14). 

Retrograde planetary orbits 

The regression equation for this case is given by 

𝑎𝑖𝑜 𝑎2⁄ = (0.441 ± 0.018) + (0.001 ± 0.025)𝜇1 + (0.113 ± 0.006)𝜇2 +
(−0.012 ± 0.018)𝑒1 + (−0.584 ± 0.018)𝑒2           (56) 

Data on the regression coefficients is listed in Table 65. 

Model Standardised 

Coefficients

B

Std. 

Error Beta

Lower 

Bound

Upper 

Bound

C .392 .011 35.6 .000 .370 .413

a .002 .000 .277 20.2 .000 .001 .002

μ 1
-.075 .014 -.071 -5.2 .000 -.103 -.046

μ 2 .037 .003 .151 11.0 .000 .030 .043

e 1
-.020 .011 -.026 -1.9 .053 -.041 .000

e 2
-.602 .010 -.798 -58.3 .000 -.622 -.582

i 2 .000 .000 .000 0.0 .998 .000 .000

Ω2
.000 .000 .005 0.3 .733 .000 .000

ω 2 .000 .000 .012 0.9 .387 .000 .000

Unstandardized 

Coefficients

t Sig. 95% 

Confidence 

Interval for B

y = 0.3014x0.2674

R² = 0.2747

0.01

0.10

1.00

0.01 0.10 1.00

μ2

aio/a2
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Table 65. S3 orbits, prograde outer star. Regression 

coefficients – retrograde planetary orbits 

The outer eccentricity again has by far the largest influence, followed by the 

constant and then, to a much lesser degree, 𝜇2. The signs of all the non-zero 

coefficients except for (the very weak) 𝜇1 are all correct.  

The regression has an 𝑅2 of 0.796, the F-statistic was 722 and the standard error 

of the regression was 0.071. The model’s mean absolute percentage error (MAPE) 

of 17% is much better than for the prograde case. 

4.4.5 Retrograde outer star 

The integrations were now repeated with all parameters remaining as shown in 

Table 58 except for the inclination of the outer orbit, which changed from the 

range 0° −  60° to 120° −  180°. A total of 3 133 integrations were run. The 

results are shown in Figure 85 and Figure 86. 

 

 

Figure 85. S3 orbits, retrograde outer star, test particle survival rates 

The distribution of the critical stability ratio is not visibly different to that for the 

system with a prograde outer star. The orbital stability bounds found for each 

planetary motion are shown in Table 66. 

Again, well-defined bounds were detected in nearly all cases. The mean critical 

semi-major axis ratio ranges of these bounds are shown in Table 67. 

Model Standardised 

Coefficients

B

Std. 

Error Beta

Lower 

Bound

Upper 

Bound

C .441 .009 47.0 .000 .423 .459

a .001 .000 .107 9.1 .000 .000 .001

μ 1
.001 .013 .001 0.1 .920 -.023 .026

μ 2 .113 .003 .460 39.0 .000 .108 .119

e 1
-.012 .009 -.016 -1.4 .173 -.030 .005

e 2 -.584 .009 -.759 -64.3 .000 -.602 -.567

i 2
.000 .000 -.006 -0.5 .604 .000 .000

Ω2 .000 .000 -.040 -3.4 .001 .000 .000

ω 2
.000 .000 -.051 -4.3 .000 .000 .000

Sig. 95% 

Confidence 

Unstandardized 

Coefficients

t
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Figure 86. S3 orbits, retrograde outer star. a) prograde 

bounds b) retrograde bounds 

 

 

Table 66. S3 orbits, retrograde outer star. Number of bounds found 

 

 

Table 67. S3 orbits, retrograde outer star. Mean critical semi-major axis ratio 

The mean stability bounds are effectively identical to those for the prograde stellar 

case. 

Prograde planetary orbits 

The regression equation is 

𝑎𝑖𝑜 𝑎2⁄ = (0.391 ± 0.037) + (−0.071 ± 0.027)𝜇1 + (0.033 ± 0.006)𝜇2 +
(−0.001 ± 0.019)𝑒1 + (−0.597 ± 0.019)𝑒2           (57) 

Data on the regression coefficients are listed in Table 68. 

The regression coefficients are virtually identical to those for the prograde stellar 

case, with the greatest influence by far remaining the outer eccentricity. The only 

coefficient to change materially is that for 𝑒1, which is weaker by a factor of 

nearly 30 compared with the prograde case. The signs of all the significant 

regression coefficients are correct. 
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Prograde 1596 1591 100 52

Retrograde 1537 1489 97 48

Total 3133 3080 98 100

Cases with well-defined orbit bounds

a io /a 2

Orbit type

Min Avg Max SD

Prograde planetary orbits 0.007 0.287 0.853 0.096

Retrograde planetary orbits 0.009 0.360 0.908 0.156

Difference (%) - 25 - -

a io /a 2
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Table 68. S3 orbits, retrograde outer star. Regression 

coefficients – prograde planetary orbits 

The regression has an 𝑅2 of 0.727, the F-statistic was 522 and the standard error 

of the regression was 0.077. The model has a mean absolute percentage error 

(MAPE) of 23%. 

Retrograde planetary orbits 

The regression equation for retrograde planetary orbits is given by 

𝑎𝑖𝑜 𝑎2⁄ = (0.425 ± 0.037) + (−0.002 ± 0.025)𝜇1 + (0.114 ± 0.006)𝜇2 +
(−0.002 ± 0.018)𝑒1 + (−0.580 ± 0.018)𝑒2           (58) 

Data on the regression coefficients is listed in Table 69. 

 

 

Table 69. S3 orbits, retrograde outer star. Regression 

coefficients – retrograde planetary orbits 

Model Standardised 

Coefficients

B

Std. 

Error Beta

Lower 

Bound

Upper 

Bound

C .391 .019 20.5 .000 .353 .428

a .002 .000 .316 23.7 .000 .002 .002

μ 1 -.071 .014 -.069 -5.2 .000 -.097 -.044

μ 2
.033 .003 .144 10.9 .000 .027 .039

e 1 -.001 .010 -.001 -0.1 .937 -.019 .018

e 2
-.597 .010 -.817 -61.4 .000 -.616 -.578

i 2 .000 .000 .002 0.1 .894 .000 .000

Ω2
.000 .000 -.002 -0.2 .873 .000 .000

ω 2 .000 .000 -.010 -0.8 .447 .000 .000

Unstandardized 

Coefficients

t Sig. 95% 

Confidence 

Interval for B

Model Standardised 

Coefficients

B

Std. 

Error Beta

Lower 

Bound

Upper 

Bound

C .425 .019 22.7 .000 .388 .461

a .000 .000 .074 6.2 .000 .000 .001

μ 1 -.002 .013 -.002 -0.1 .887 -.027 .023

μ 2
.114 .003 .480 40.0 .000 .108 .119

e 1 -.002 .009 -.002 -0.2 .861 -.019 .016

e 2
-.580 .009 -.765 -63.5 .000 -.598 -.562

i 2 .000 .000 .009 0.8 .436 .000 .000

Ω2
.000 .000 -.049 -4.1 .000 .000 .000

ω 2 .000 .000 -.020 -1.6 .100 .000 .000

Sig. 95% 

Confidence 

Interval for B

Unstandardized 

Coefficients

t
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Again, the regression equation is almost the same as for the prograde stellar case, 

with all signs as expected except for 𝜇1. The largest difference is again for 𝑒1, 

which is smaller than in the prograde stellar case by a factor of 8. 

The regression has an 𝑅2 of 0.790, the F-statistic was 688 and the standard error 

of the regression was 0.071. The model has a mean absolute percentage error 

(MAPE) of 17%. 

Comparisons 

The mean critical semi-major axis ratio data for the four orbital motions are 

summarised in Table 70 and graphs of the corresponding regressions are presented 

in Figure 87. 

 

 

Table 70. Mean critical semi-major axis ratios for S3-type orbits 

The averages of the mean critical semi-major axis ratios for prograde and 

retrograde planetary orbits are 0.288 and 0.360 respectively, with wide ranges 

around these values depending on the parameters of the triple. These ratios are 

independent of the direction of motion of the outer star. 

 

   

Figure 87. S3 orbits. Regression coefficients for various combinations of orbital 

motions a) prograde outer star, b) retrograde outer star 

For non-circular orbits the eccentricity of the outer star has the dominant influence 

on the critical ratio, while its inclination has an insignificant effect. The inner and 

Orbit Critical

type ratio Star 3 Planet Min Mean  Max

P P 0.009 0.289 0.098 0.893

R 0.010 0.361 0.158 0.920

R P 0.007 0.287 0.096 0.853

R 0.009 0.360 0.156 0.908

1. P - prograde, R - retrograde
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outer mass ratios have weak but non-zero influences. These effects are virtually 

identical for prograde and retrograde motions of the outer star. 

4.4.6 Comparison with previous work on S3 bounds 

Although the major portion of S-type orbits discovered in triples are S3 (31 out of 

36), we are not aware of any empirical work on S3 orbits per se.  

4.4.7 Some observational examples of S3 orbits. 

A listing of all the known S3 orbits is given in Table 5. The semi-major axes of 

some host stars and for the planets in S3 orbits around them, providing their semi-

major axis ratios, are shown in Table 71, based on data in Wagner et al. (2016). 

For systems lacking an orbital model, projected separations are given instead of 

semi-major axes. 

 

 

Table 71. S3 orbits. Selected planets found in these orbits in triple-star systems 

The semi-major axis of the planet closest to its parent star of 0.04 AU still lies 

well outside our inner limit of 𝑎𝑚𝑖𝑛 = 0.005. The smallest and largest values of 

𝑎𝑖𝑜 𝑎2⁄  are 0.000606 and 0.265. As for S1 orbits, the discovered S3 orbits suffer 

from observational bias. Although the integrations found some stable bounds with 

semi-major axis ratios as close as 0.009 to the host star for a few stellar 

configurations, there were very few critical ratios lying below ~0.1 and most 

stable bounds ranged from 0.1 – 0.6, with some as far out as 0.9. There are 

probably many planets at much greater distances from their host stars than 

discovered to date. 

The most recent discovery is KELT-4 Ab, an inflated hot Jupiter in an S3 orbit 

around the bright component of a hierarchical triple. The semi-major axis of 

KELT-4 B and KELT-4 C (our 𝑎1) is 10 AU and that between the binary and 

KELT-4 A (our 𝑎2) is 328 AU. The planet’s semi-major axis is 0.0432 AU, giving 

it an extremely small 𝑎𝑖𝑜 𝑎2⁄  of 0.000132. It is likely that BC is currently 

undergoing Kozai–Lidov cycles and is therefore highly eccentric (Eastman et al. 

2016). 

Planet a io a 2 a io /a 2 Orbital Orbit

[AU] [AU] [-] model?  type

16 Cyg Bb 1.72 700 0.00246 No S3

51 Eri b 13 1960 0.00663 Yes S3

HD 196050Ab 2.47 501 0.00493 No S3

HD 41004Ab 1.64 22 0.07450 Yes S3

Kepler 444Ae 0.07 66 0.00106 Yes S3

Kepler-444Ab 0.04 66 0.00061 Yes S3

Kepler-444Ad 0.06 66 0.00091 Yes S3

Kepler-444Af 0.08 66 0.00121 Yes S3

Kepler-44AAc 0.05 66 0.00076 Yes S3
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4.4.8 Triples compared with binaries 

Configuring a binary case 

As in the case of P1/P2 and S1 orbits, the characteristics of planetary orbits 

specific to triples are highlighted by repeating the previous integrations for a 

binary, in this case by merging the inner binary into a single star. An unchanged 

experimental procedure was used, and the merging of the inner binary was done 

exactly as described for the P1/P2 case in Section 4.1.9, i.e. of the total inner 

binary mass, 0.999𝑀 was allocated to the central star and 0.001𝑀 to the second 

star, whose orbital distance was also reduced from 𝑎1 = 1 AU to 𝑎1 = 0.01 AU 

and whose eccentricity was set at zero, while the semi-major axis of outer Star 3 

was varied from 3.8 AU (the smallest Mardling limit found for S3 stellar orbits) 

up to 100 AU. The inner mass ratio varied from 0 to 1 and the integration time 

step used was calculated from equation (29), averaging ~0.030 yr or ~11 d. No 

other changes were necessary and the edge-detection routine did not require re-

optimization. As for the S1 case, the merging of the inner binary into one star 

means the stellar prograde/retrograde distinction falls away. 

Results for the binary case 

For comparison with the triple star analysis (for a prograde outer star only) in 

Section 4.4.4, 6 310 integrations of this binary model were run. The critical semi-

major axis ratio 𝑎𝑖𝑜 𝑎2⁄  for all orbits and the test particle survival rates are shown 

in Figure 88. The prograde and retrograde planetary cases are not shown 

separately as there are no visible differences between them. 

 

   

Figure 88. Binary S3 orbits. a) all stability bounds b) test particle survival rates 

Compared with Figure 82 this shows a similar distribution of critical semi-major 

axis ratios. The average contraction of the initial test particle cloud was 32%, a bit 

less than the 34% for the triple case, with this smaller shrinkage being consistent 

with the slightly reduced influence of the inner binary because of its mergence 

into a single star.  

The number of stability bounds found are shown in Table 72. 

Bounds were found in 6 235 cases or almost all the integrations. As for the triple 

case, there was no meaningful difference between the number of prograde and 

retrograde bounds found, meaning that they were equally well-defined in the 

binary S3 case. The ranges of the mean critical semi-major axis ratio for these 

bounds are shown in Table 73. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1000 2000 3000 4000 5000 6000

Simulation number

aio/a2

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000

Simulation number

TPs remaining (%)



Chapter 4 Orbit Type S3 

151 

 

 

Table 72. Binary S3 orbits. Number of bounds found 

 

 

Table 73. Binary S3 orbits. Mean critical semi-major axis ratios 

The merging of the inner binary has allowed the mean critical ratio to move 

outwards, for both prograde and retrograde planetary orbits, and the smallest and 

largest orbits found have also generally increased. This is because the semi-major 

axis 𝑎2 is measured to the centre of mass of the outer binary, so these two stars 

orbit closer at a distance closer than 𝑎2, compared with a single star at that 

distance. The perturbing influence of a binary is larger than that of a single star of 

the same mass located at the centre of mass of the binary.  

As may be expected from appropriate scaling, the difference between the mean 

critical ratios for the S1 and S3 binary cases is small, despite their being relative 

to semi-major axes 𝑎1 and 𝑎2 respectively, which differ by two orders of 

magnitude. This ratio is only 20% larger for prograde S3 binary orbits and 27% 

larger for retrograde orbits. As mentioned later in Section 4.5.1, S3 orbits as a 

fraction of 𝑎2 extend proportionally further out than S1 orbits as a fraction of 𝑎1. 

As always, retrograde orbits are stabler, allowing the planet to approach closer to 

the binary companion. However, the difference in average ratio between these two 

types of planetary orbit of 19% for the binary case is smaller than the 25% found 

for the triple system from which it was reduced. 

Comparison with the triple case 

These results for the binary case, as shown in Table 73, are compared with the 

triple case in Table 74. 

The average difference in S3 orbits for binaries and triples is around 5%, which is 

much smaller than the average 50% difference found for S1 orbits and is 

comparable with the average (absolute) 9% difference for P1/P2 orbits. This 

difference is 7% for prograde orbits, while for retrograde orbits it is a statistically 

insignificant 2%.  

 

Planet orbit Total

type simulations Bounds found Success rate Distribution

 (no.) (%) (%)

Prograde 3218 3195 99 51

Retrograde 3092 3040 98 49

Total 6310 6235 99 100

Cases with well-defined orbit bounds

a io /a 2

Orbit type

Min Avg Max SD

Prograde planetary orbits 0.011 0.309 0.907 0.181

Retrograde planetary orbits 0.015 0.368 0.880 0.160

Difference (%) - 19 - -

a io /a 2
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Table 74. Binary S3 orbits. Difference between mean 

planetary bounds in triples and binaries 

The regressions for the binary case are compared with those for the triple case in 

Table 75. 

 

 

Table 75. S3 orbits. Regression coefficients and model fits, triples versus binaries 

The regression coefficients, coefficients of determination (R2) and model errors 

(MAPEs) are similar for both planetary orbital motions, confirming that the effect 

of the binary on S3 orbits in a triple is relatively weak.  

The constant for the binary case of 0.39 for prograde orbits is 18% higher than the 

average value of 0.33 found in previous studies (as discussed for S1 orbits). No 

previous regression constants are available for retrograde planets. 

The regression coefficients for triples and binaries are illustrated in Figure 89. 

Aside from the constant, the only parameter of importance is 𝑒2, the eccentricity 

of the outer star containing the S3 orbit. The next most important influence, the 

mass of the binary relative to the mass of the host star (i.e. 𝜇2
−1), is far smaller. 

The mass ratio 𝜇1 is smaller still, unlike in the S1 case, where it was of equal 

quantitative importance to 𝑒2.  

 

Difference in average bounds

Orbit type Triple Binary %

Prograde planetary orbits 0.289 0.309 7*

Retrograde planetary orbits 0.361 0.368 2  

% 25 19 -

* significant at the 5% level

a io /a 2

S3 orbits Δ (%)

prograde planets B t B t B

C .392 35.6 .385 67.5 -2

a .002 20.2 .000 26.6 -99

μ 1 -.075 -5.2 - - -

μ 2
.037 11.0 .062 28.1 -

e 1 -.020 -1.9 - - -

e 2 -.602 -58.3 -.585 -83.1 -3

i 2
.000 0.0 - - -

Ω2 .000 0.3 .000 -2.8 -

ω 2
.000 0.9 .000 -0.6 -

R
2

0.71 0.72 -

Model error (%) 24.7 30.9 -

Triple Binary S3 orbits Δ (%)

retrograde planets B t B t B

C .441 47.0 .446 88.8 1

a .001 9.1 .000 6.1 -100

μ 1 .001 0.1 - - -

μ 2
.113 39.0 .114 58.3 -

e 1 -.012 -1.4 - - -

e 2 -.584 -64.3 -.599 -96.7 2

i 2
.000 -0.5 - - -

Ω2 .000 -3.4 .000 -1.7 -

ω 2
.000 -4.3 .000 -3.1 -

R
2

0.8 0.81 -

Model error (%) 16.8 22.4 -

Triple Binary
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Figure 89. S3 orbits. Regression coefficients, triples versus binaries 

– a) prograde planets b) retrograde planets 

4.4.9 Conclusions – S3 orbits 

For S3 orbits a triple has a smaller mean critical semi-major axis ratio than a 

binary, since the outer binary has a larger effect on it than a single body of equal 

mass at the same distance. However, this difference is small, at around 5%. This is 

less than the average 7% and 11% differences for P1 and P2 orbits respectively 

and much smaller than the average 50% difference found for S1 orbits. 

For S3 planetary orbits in triples, the critical semi-major axis ratio is in the range 

~0.289 – 0.361 (compared with ~0.180 – 0.196 for S1 orbits) and is essentially 

independent of the direction of motion of the outer star. The critical semi-major 

axis ratio is ~25% larger for retrograde planetary orbits than for prograde orbits, 

significantly larger than the 7% difference found for S1 orbits.  

The sole significant determinant of the critical ratio is the eccentricity of the outer 

star, with very minor contributions from the inner and outer mass ratios. These 

coefficients are virtually identical for prograde and retrograde planetary motions 

as well as the direction of motion of the outer star. 

4.5 Orbit Types S1 And S3 In Triples Compared 

S1 and S3 planetary orbits in triples are similar in that they both orbit a single star. 

They differ in that S1 orbits are in turn orbited by a close companion star and a 

much more distant outer star, while S3 orbits are orbited by a much more distant 

binary. S1 planetary orbits are therefore constrained to a relatively small size by 

the orbit of the close companion, whereas S3 orbits, being bounded by the more 

distant bodies, will have much larger critical semi-major axes. However, these 

semi-major axes need to be scaled by the distance of their respective perturbing 

bodies in order to compare the effect of the outer body being a single star or a 

binary. The S1 and S3 critical semimajor axis ratios for both types of planetary 

motion are now compared, for prograde motion of the outer body or bodies. 
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4.5.1 Prograde stellar orbits 

In Table 76 the mean stability bounds for S1 orbits are shown as a ratio of the 

semi-major axis 𝑎1 of the binary companion and those for S3 orbits as a ratio of 

the semi-major axis 𝑎2 of the outer binary.  

 

.  

Table 76. S1 and S3 orbits compared. Mean critical semi- 

major axis ratios, prograde outer star/s 

The S3 orbits extend proportionally further out, to around one third of 𝑎2 while S1 

orbits reach only one fifth of 𝑎1. The scaled perturbing influence of the inner 

binary companion on the central star and its planets is far larger than the influence 

of the binary on the distant outer companion and its planets. The magnitude of this 

effect is large, with the critical ratio for S3 orbits being nearly 80% larger than 

that for S1 orbits. This difference is larger for retrograde planetary orbits than 

prograde orbits. 

The individual components making up these average results, expressed by the 

regression coefficients, are shown together with their differences in Table 77. 

 

 

Table 77. S1 and S3 orbits compared. Difference in regression 

coefficients, prograde outer star/s 

The differences for prograde and retrograde planetary orbits are very similar and 

the largest ones are concentrated in 𝜇1, 𝑒1 and 𝑒2. This is not surprising, as in S1 

orbits the parameters of the inner binary are the dominant determinant, i.e. 𝜇1 and 

Orbit S1 S3

Stability bound a io /a 1 a io /a 2 Δ%

All orbits 0.183 0.324 77

Prograde planetary orbits 0.180 0.289 60

Retrograde planetary orbits 0.185 0.361 95

Δ% 2 25 -

Orbit

S1 S3 S1 S3

Δ Δ

C .390 .392 0.002 .393 .441 0.048

a .000 .002 0.001 .000 .001 0.000

μ 1 -.746 -.075 0.672 -.667 .001 0.668

μ 2 .005 .037 0.032 .003 .113 0.110

e 1 -.398 -.020 0.377 -.383 -.012 0.371

e 2 -.006 -.602 -0.595 .002 -.584 -0.586

i 2 .000 .000 0.000 .000 .000 0.000

Ω2 .000 .000 0.000 .000 .000 0.000

ω 2 .000 .000 0.000 .000 .000 0.000

Prograde Retrograde

Coefficient Coefficient
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𝑒1, while for S3 orbits the eccentricity of the outer star around the inner binary’s 

orbit is the major influence (rather than the eccentricity of this distant binary 

itself). The outer mass ratio 𝜇2 has only a very small effect. 

4.5.2 Retrograde stellar orbits 

The mean stability bounds for S1 and S3 planetary orbits in systems where the 

outer stellar body or bodies are in retrograde motion are shown in Table 78. 

 

 

Table 78. S1 and S3 orbits compared. Mean critical semi- 

major axis ratios, retrograde outer star/s 

The differences between S1 and S3 orbits are qualitatively like the prograde 

stellar case but smaller on average by 13%. The differences are larger for 

prograde planetary orbits (14% smaller) than for retrograde planetary orbits (11% 

smaller). Looking at the differences in regression coefficients, shown in Table 79, 

the general pattern is the same as for the prograde stellar case.  

 

 

Table 79. S1 and S3 orbits compared. Difference in regression 

coefficients, prograde outer star/s 

However, the differences in influence of 𝜇1 and, to an even larger extent, 𝑒1, are 

smaller, although the difference in 𝑒2 remains the same. This is shown in the 

comparison in Figure 90. Also, the differences between prograde and retrograde 

planetary orbits are larger. 

Orbit S1 S3

Stability bound a io /a 1 a io /a 2 Δ%

All orbits 0.196 0.322 64

Prograde planetary orbits 0.197 0.287 46

Retrograde planetary orbits 0.196 0.360 84

Δ% -1 25 -

Orbit

S1 S3 S1 S3

Δ Δ

C .277 .391 0.114 .423 .425 0.002

a .000 .002 0.002 .000 .000 0.001

μ 1 -.387 -.071 0.316 -.451 -.002 0.449

μ 2 -.005 .033 0.038 -.006 .114 0.120

e 1 -.125 -.001 0.124 -.056 -.002 0.054

e 2 -.005 -.597 -0.592 -.048 -.580 -0.532

i 2 .000 .000 0.000 .000 .000 0.000

Ω2 .000 .000 0.000 .000 .000 0.000

ω 2 .000 .000 0.000 .000 .000 0.000

Coefficient Coefficient

Prograde Retrograde
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Figure 90. S1 and S3 orbits compared. Regression coefficients 

for a) prograde and b) retrograde outer star/s 

4.5.3 Conclusions 

The greater perturbing influence of a binary compared with a single star at the 

same distance has a correspondingly larger effect on the critical semi-major axis 

ratio of S3 orbits compared with S1 orbits. This difference is more muted for 

retrograde orbits of the outer stellar bodies.  

Comparing S1 and S3 orbits, the largest differences in influence are for the inner 

mass ratio and the inner and outer eccentricities. However, for retrograde stellar 

orbits the influence of the inner eccentricity largely disappears. These effects are 

generally the same for prograde and retrograde planetary orbits. 

4.6 Summary Of Results 

4.6.1 Summary of differences between triples and binaries 

The way in which the stability bounds in triples differ from those of binaries is 

summarised by their respective mean critical semi-major axis ratios in Table 80. 

The binary configurations are reduced from those of the triples by: 1) for P1 and 

P2 orbits, merging the inner close binary into a single star of equivalent mass, 2) 

for S1 orbits, reducing the outer star to one of negligible mass, and 3) for S3 

orbits, again merging the close binary into a single star. All cases were for 

prograde motion of the outer star. The differences shown were statistically 

significant in all but one of the cases.  

The differences in critical semi-major axis ratios were comparable for P1, P2 and 

S3 orbits, averaging an absolute ~8%, with this (relatively small) difference 

reflecting 

1. the dominant influence of the outer body over the inner close binary for P-

type orbits, and  

2. the small semi-major axis of the close binary relative to its distance from the 

outer star (a consequence of the Mardling stability limit) for S3 orbits. 
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Table 80. Summary of differences between mean critical semi-major 

axis ratios in triples and binaries – all orbit types 

The absolute differences in mean critical semi-major axis ratios for prograde and 

retrograde planetary orbits, of ~20% − 40%, are broadly comparable for triples 

and binaries.  

For S1 orbits the differences in mean critical semi-major axis ratios are much 

larger at ~50%, because this ratio is measured relative to 𝑎1 rather than the larger 

𝑎2. The differences between prograde and retrograde orbits are also more marked. 

For the P-type orbits in triples the expansion of the inner body from a single star 

into a binary pushes planetary orbits outwards. The regressions in Table 32 show 

that compared with binaries, for triples the influence of the outer star’s 

eccentricity is significantly smaller for inner prograde orbits and materially larger 

for outer prograde orbits, with no difference for retrograde orbits.  

For S1 orbits in triples the additional influence of the outer star makes the 

planetary orbits move inwards, with the mean critical semi-major axis ratio 

reducing by around 30%; the difference in critical ratio between prograde and 

retrograde planetary orbits also shrinks proportionally more than for the other 

orbit types. The stability of S1 planetary orbits is determined only by the inner 

mass ratio and inner eccentricity of the binary, in approximately equal measure, 

and we find that the inner mass ratio has a larger effect in triples than in binaries, 

while the influence of inner eccentricity is the same. 

For S3 orbits in triples, the presence of the outer close binary also pushes 

planetary orbits inwards, but the mean critical semi-major axis ratio in a triple is 

on average only 5% smaller than for a binary, since the enhanced effect of the 

second “body” being a binary rather than a single star is diminished because of its 

distance. For both binaries and triples the dominant determinant of the critical 

Orbit type Planetary

orbit

Triple Binary %

P1

Prograde 0.383 0.364 -5*

Retrograde 0.519 0.471 -9*

% 35 29 -

P2

Prograde 2.936 2.703 -8*

Retrograde 1.976 1.691 -14*

% -33 -37 -

S1

Prograde 0.180 0.257 43*

Retrograde 0.185 0.289 57*

% 2 12 -

S3

Prograde 0.289 0.309 7*

Retrograde 0.361 0.368 2  

% 25 19 -

* significant at  the 5% level

a io /a 2

Difference in

average bounds

a io /a 2

a oi /a 2

a io /a 1
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ratio is the eccentricity of the outer body’s orbit, with the outer mass ratio being of 

minor importance.  

4.6.2 Summary of results for triples 

The mean critical semi-major axis ratios and their ranges for the various orbital 

configurations are summarised in Table 81 and shown in Figure 91 and Figure 92. 

These are the average ratios over all the combinations of parameters used in the 

parameter space of the integration. The minimum and maximum critical ratios 

found in the integrations are of interest as a guide to the limits of possible orbits 

and in relation to observational discoveries. 

 

 

Table 81. Summary of mean critical semi-major axis  

ratios for various orbital configurations 

The mean critical ratios for the various configurations were discussed in the 

relevant sections. There are only very small differences in the mean critical ratios 

of similar-motion (i.e. prograde or retrograde) planetary orbits for different orbital 

motions of the outer star.  

 

Orbit Critical

type ratio Star 3 Planet Min Mean  Max

P P 0.131 0.383 0.147 0.892

R 0.113 0.519 0.108 0.828

R P 0.110 0.385 0.077 0.897

R 0.112 0.537 0.132 0.857

Non-Kozai P P 0.049 0.484 0.099 0.837

Kozai P 0.288 0.495 0.100 0.748

Non-Kozai R P 0.423 0.666 0.078 0.853

Kozai P 0.105 0.531 0.096 0.818

P P 1.253 2.936 1.449 5.197

R 1.184 1.976 0.507 4.916

R P 0.924 2.773 0.891 5.384

R 0.591 1.960 0.571 4.957

Non-Kozai P P 1.755 1.941 0.051 2.242

Kozai P 1.759 1.933 0.176 2.532

Non-Kozai R P 1.095 1.335 0.127 1.820

Kozai P 1.363 1.753 0.195 2.510

P P 0.015 0.180 0.049 0.760

R 0.015 0.185 0.122 0.771

R P 0.015 0.197 0.059 0.772

R 0.028 0.196 0.157 0.772

P P 0.009 0.289 0.098 0.893

R 0.010 0.361 0.158 0.920

R P 0.007 0.287 0.096 0.853

R 0.009 0.360 0.156 0.908

1. P - prograde, R - retrograde

Motions
1 Critical semi-major axis ratio

P1 a io /a 2

P2 a oi /a 2

S1 a io /a 1

S3 a io /a 2
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Figure 91. Summary of mean and standard deviation of critical 

semi-major axis ratios for P1, S1 and S3 orbits 

 

 

Figure 92. Summary of mean and standard deviation of critical 

semi-major axis ratios for P2 orbits 

There are, however, large differences between the stable bounds for prograde and 

retrograde planetary orbits, with retrograde orbits being stabler and thus closer to 

the perturbing body. This means further away from the central binary for P1 

orbits, closer to the central binary for P2 orbits and further away from the outer 

star for S3 orbits. This difference is, however, quite muted for S1 orbits.  

This also manifests itself in the ranges, for the same reasons, reflecting the greater 

stability of retrograde orbits, which leads to better-defined stability boundary 

edges. It is noticeable that for P1 orbits the error range for P*/R and R*/P motions 

is smaller than for P*/P and R*/R combinations, where * refers to the outer star. A 

prograde orbit of the planet orbiting the outer star will be retrograde to the “outer” 

star of the binary and therefore more stable and vice versa. 

S3 orbits generally have larger critical semimajor axis ratio than S1 orbits. 
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The effect on the planetary stability bounds of the outer star being retrograde is 

shown in Table 82. The table shows the percentage difference in the mean critical 

semi-major axis ratio for the various orbital configurations, where the directions 

of the planetary motions are the same in each case and the only difference is the 

direction of motion of the outer star. The significance level is shown for the mean 

critical ratio; differences in the regression constant are shown for comparison 

only. 

 

 

Table 82. Summary of differences in mean critical semi-major axis ratios 

and regression constants, for retrograde relative to prograde 

stellar motion, with the same planetary motion 

Although the absolute differences in critical ratio are quite small, with an absolute 

average of 3%, half are statistically significant. 

The effect on the planetary stability bounds of the direction of motion of the 

planets is shown in Table 83. The table again shows the percentage difference in 

the mean critical semi-major axis ratio and the regression constant, for a 

retrograde planet compared with a prograde one, with the direction of motion of 

the outer star being the same.  

Here the absolute differences are significant and large, averaging 37% for P1 

orbits, 31% for P2 orbits and 25% for S3 orbits, with the signs being consistent 

with the greater stability of retrograde orbits. S1 orbits are, as expected, 

unaffected. 

The differences in the critical semimajor axis ratios between S1 and S3 orbits is 

summarised in Table 84. 

For prograde stellar orbits the mean critical ratio for S3 orbits is on average nearly 

80% larger than that for S1 orbits, as the perturbing effect of the inner binary 

companion on the central star and its planets is far larger than the influence of this 

inner binary on the distant outer companion and its planets. This difference is 

much larger for retrograde planetary orbits than prograde orbits. These differences 

are smaller for a retrograde outer star. 

 

Orbit Ratio Planet Difference in

type motion regression

 constant

(%)

P 1 6

R 3 * 15

P -6 * -12

R -1 15

P 9 * -29

R 6 * 8

P -1 0

R 0 -4

Average (abs.) - 3 11

* significant at the 5% level

S3 a io /a 2

P1 a io /a 2

P2 a oi /a 2

S1 a io /a 1

Difference in

mean stable

ratio

(%)
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Table 83. Summary of differences in mean critical semi-major axis ratios 

and regression constants for retrograde relative to prograde 

planetary motion, with the same stellar motion 

 

 

 

Table 84. Summary of differences in S1 and S3 

mean critical semi-major axis ratios 

For prograde stellar orbits, in S1 orbits the inner binary (𝜇1 and 𝑒1) is the 

dominant determinant of the stable region, while for S3 orbits 𝑒2 has the major 

influence. For retrograde stellar orbits the influences of 𝜇1 and 𝑒1, are smaller, 

while the effect of 𝑒2 is unchanged.  

The mean critical semi-major axis ratios and their ranges for non-Kozai and Kozai 

regimes are summarised in Figure 93, for prograde planetary orbits. 

For a prograde outer body, the mean critical ratios for both inner and outer 

planetary orbits are essentially unaffected by the Kozai regime, but for a 

retrograde outer star they are substantially different, with the ratio for inner orbits 

shrinking by 20% and that for outer orbits expanding by over 30%.  

 
 

 

Orbit Ratio Star 3 Difference in

type motion regression

 constant

(%)

P 36 * 31

R 39 * 42

P -33 * -38

R -29 * -18

P 2 1

R -1 53

P 25 * 13

R 25 * 9

Average (abs.) - 24 25

* significant at the 5% level

S1 a io /a 1

S3 a io /a 2

P1 a io /a 2

P2 a oi /a 2

Difference in

(%)

mean stable

ratio

Stellar Planetary Δ%

orbit orbit S1 S3

a io /a 1 a io /a 2

P All orbits 0.183 0.324 77

P 0.180 0.289 60

R 0.185 0.361 95

Δ% 2 25 -

R All orbits 0.196 0.322 64

P 0.197 0.287 46

R 0.196 0.360 84

Δ% -1 25 -

Orbit type
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Figure 93. Summary of mean and range of critical semi-major axis ratios 

for non-Kozai and Kozai cases, for both stellar motions 

For a prograde outer star, Kozai resonance results in a 44% smaller constant for 

inner orbits and one 22% larger for outer orbits, while a retrograde outer body 

does not result in a significant difference in either constant.  

Statistics on the semi-analytical regression equations for each type of orbital 

configuration, 24 in all, are summarised in Table 85. The semi-major axis ratio 𝑎 

was included solely as an error check. 

The following general conclusions may be drawn from Table 85: 

1. Over 45 000 integrations were run, from which nearly 30 000 stability bounds 

were found, a success rate of 65%. One third of the integrations did not result 

in stability bounds with edges that were sufficiently well-defined. The success 

rate was 96%for P2 orbits, but only around 38% for P1 orbits due to their 

more diffuse nature. S3 orbits had success rates approaching 100%, while 

those for S1 orbits were approximately 55%, again because of their more 

tenuous boundaries. 

2. The various regressions resulted in 24 regression constants and 192 

coefficients. Ignoring those smaller than 0.01, only four were of the “wrong” 

sign and these were all small (< |0.06|). 
3. Looking at the average of the absolute values of the coefficients, it is clear 

that 𝑖2,  Ω2 and 𝜔2 have a negligible influence on the stability bounds.  

4. The critical semimajor axis ratio scales with the semi-major axis ratio 𝑎 and 

its coefficient should be zero, so its average absolute value of 0.001 provides 

an indication of the intrinsic error of the methodology. 

5. The only influences (for relatively small inclinations) were therefore from the 

mass ratios and eccentricities, with those from 𝜇1 and 𝑒2 being an order of 

magnitude larger than those from 𝜇2 and 𝑒1. 

6. For the mass ratios, on average the inner ratio 𝜇1 had far more influence on 

the stability bounds than the outer ratio 𝜇2, by a factor of six. The mass ratios’ 

largest impact was on S1 orbits, with a much weaker but non-negligible effect 

on P2 orbits. 

7. The configuration where 𝜇2 had the greatest effect was, unsurprisingly, on S3 

and P2 orbits, but its effect was nevertheless negligible. 
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8. For the eccentricities, 𝑒2 had an average effect of over eight times that of 𝑒1. 

Its influence was pervasive over all orbital configurations except S1, with its 

strongest impact being on P2 orbits. The only configuration where 𝑒1 had a 

significant influence was for S1 orbits; again, this was not surprising. 

9. The average 𝑅2 of the regressions was 0.49, ranging from a very poor 0.02 to 

a high 0.86. The mean average percentage error (MAPE) of the regression 

models generally correlated with 𝑅2, ranging from a best case of 3% to a 

worst case of 74%, with an average of 20%.  

10. P2 orbits generally had the best fits, followed by S3 orbits. The poorest fits 

were for S1 orbits with a retrograde star, followed by S1 orbits with a 

prograde star. 

4.7 Comparison With Previous Work 

Since the results for triples are largely new work, there is little existing empirical 

research against which our conclusions can be compared. The one area of overlap 

is between our “triple-reduced-to-binary” cases and previous work on binaries. 

Although the amount of data here is also very sparse, this comparison is included 

in this section as a check of our methodology.  

Only results that correspond with previous comparable data are shown. Our 

results on S3 orbits are thus excluded, as are our results pertinent to retrograde 

stellar motion and high-inclination triples. 

4.7.1 Comparison of scope 

The ranges of the orbital parameters and test particle clouds used in this study are 

shown in Table 86, together with those used in the single triple study by Verrier 

and Evans (2007), which examined P1 and P2 orbits. The table excludes all the 

additional orbital parameters with which we extended previous studies. For 

interest, the parameters of prior studies of binaries are also shown, as well those of 

our triple-to-binary reductions. 

Our semi-major axis ratio range 𝑎 is slightly wider than used by Verrier & Evans, 

since the Mardling limit can extend as low as ~3. Our inner mass ratio range was 

also broader, with a smaller lower limit, while the range for the outer mass ratio 

was also larger and focused on higher mass ratios that included heavily inverted 

configurations. The range of inner and outer eccentricities we used was also 

larger. 

Comparing binary studies, our integrations of S1 orbits covered a wider range of 

mass ratios and broadly the same eccentricities as previous studies. Mass ratios for 

our P1 orbits were the same (for technical reasons an upper limit of 1.0 was used, 

but this was actually equivalent to 0.5 in that specific case) and eccentricities were 

generally similar. 

Retrograde planetary orbits were considered in only two of the eight prior studies, 

one for S1 orbits and one for P1 orbits, while our analyses examined prograde and 

retrograde planetary motions for all orbit types. The inner and outer limits of the 

test particle clouds we used were much more extended than in the two studies for 

which this data was shown. 
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Table 85. Summary of regression statistics for all triple orbital configurations  
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Table 86. Comparison with variable ranges used in previous empirical studies  
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4.7.2 Comparison of results 

The data are shown in Table 87. The number of significant figures shown are as 

per the sources. In the comparisons we use both mean critical semi-major axis 

ratios and the regression constants. They contain dissimilar but useful information 

and both are necessary, since only a minority of previous studies provided a 

regression constant. Our regression coefficients are not shown as they are not 

comparable with the different regression models used in other studies. 

 

 

Table 87. Comparison with mean critical semi-major axis ratios and 

regression constants from previous empirical studies 
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configurations and test particles were used in the 2007 study. Although a much 

larger parameter space and much larger clouds of test particles were used in our 

study, the boundary of P1 orbits is always far more tenuous than that for P2 orbits, 

and the selection of a density cutoff to define its edge is necessarily arbitrary. So 

while results should be consistent within a study, a difference of this magnitude 

across studies is quite possible for P1 orbits. 

Another study by Verrier and Evans (2006) can be mentioned, even though it is 

not of a triple but a close binary with a large planet orbiting one component. Since 

this is conceptually no different to a triple with a very low-mass inner binary 

component it provides an interesting, if extreme, example. Their prograde S1 

critical ratio was 0.605 compared with our 0.180; they found no prograde P2 

bound (versus our 0.383) but a retrograde ratio of 0.234 (compared with our 

0.518); their prograde and retrograde P2 ratios of 3.04 and 1.87 respectively were 

close to our 2.94 and 1.98, but their prograde and retrograde S3 ratios of 0.070 

and 0.164 were quite different to our 0.289 and 0.361. It may be expected that the 

results for orbits within this “triple” are quite different because of its unusual 

configuration, while those for orbits external to it are similar, being relatively 

unconcerned with the inner binary structure of the “triple”. 

Although the object of this work was to establish the stable planetary regions of 

triples, for interest we have also included the few historical results for binaries. 

The results of our integrations where the triple was reduced to a binary are also 

shown for comparison. The regression constants, where they were provided in 

other studies, are compared with ours in Figure 94. 

 

 

Figure 94. Comparison of results for binaries – regression constants 

For prograde S1 and P1 orbits our results are very close to those in previous work. 

There have been no studies on S1 retrograde orbits. For P1 retrograde orbits there 

exist only two other results; ours coincides with the lower one, from Doolin and 

Blundell (2011). 

The critical semi-major axis ratios found in previous research are shown in Figure 

95, together with both our mean critical semi-major axis ratios and our regression 

constants. 
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Figure 95. Comparison of results for binaries – critical semi-major axis ratios 

Our mean critical ratios shown are the average of the P1/P2, S1 and S3 binary 

reductions; while the results from these triple reductions should be identical, they 

did show some differences.  

For binary S1 prograde planetary orbits, previous results for the critical semi-

major axis ratio varied widely, ranging from 0.22 − 0.46 and averaging 0.38. Our 

corresponding mean critical ratio of 0.26 and regression constant of 0.36 are 

within this range. 

For P1 prograde orbits the range was 1.6 − 3.85, with the important study by 

Holman and Wiegert (1999) being the lowest. The average is 2.44, close to our 

mean critical ratio and constant of 2.70 and 2.72 respectively.  

Of the two studies that addressed retrograde planetary orbits, the one for S1 orbits 

found a critical ratio of 0.60. Our results for the mean critical ratio and constant, 

of 0.29 and 0.38 respectively, are ~45% lower. The results for our S1 prograde 

and retrograde orbit types should be mutually consistent, however, since the 

integration procedure was simply repeated with only one number, the 

prograde/retrograde toggle, changing. The study for P1 orbits, by Doolin and 

Blundell (2011), found critical ratios in the range 1.3 − 2.7; our results were 

comparable, with a mean critical ratio of 1.69 and a regression constant of 1.24. 

Despite the small amount of data from previous studies and our integrations, the 

above results compare well. The one relatively large difference for retrograde S1 

orbits is curious and suggests further investigation. 

4.7.3 New binary data 

The integrations of reduced triples contribute some new results and data points to 

the analysis of binaries. These results are consolidated in Appendix D. 
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Chapter 5  

 

Conclusions 

5.1 What Was Done In This Study 

The main contribution of this work has been to extend the analysis of planetary 

stability in triples into configurations and parameter ranges that have not been 

previously researched, as well as to expand the number of variables and the 

understanding of their influence on stability in these systems. 

We first reviewed the current state of knowledge regarding stellar multiplicity, 

hierarchical orbits and exoplanet multiplicity, before defining the characteristics 

of the planetary orbit types in triples and documenting the observational 

discoveries of these planets to date. 

We then outlined previous approaches to the problem of planetary stability within 

triples and discussed the merits of theoretical and computational approaches. In 

the body of the work, we compared the results of theoretical and numerical 

analyses in two different situations, to illustrate the inadequacy of the former 

method. 

The preparations for the investigation were then set out, including a review of the 

observed ranges of parameters for triple stars and their planets; the selection of the 

types of orbits to be investigated; Kozai resonances; the parameter ranges to be 

investigated; the selection of numerical method and integrator; the choice of 

computational parameters and their ranges for planetary orbits, and the 

development of code for the detection of the edges of planetary stability bounds. 

The body of the research then investigated the generalised stability of triple stellar 

configurations for all S-type and P-type orbital configurations, for prograde and 

retrograde planetary orbits and prograde and retrograde stellar orbits. We then 

reduced the triple configurations to binaries and re-ran the integrations, to 

highlight how the results for triples differ from those for binaries. The results for 

both triples and binaries were then compared with previous research and with 

observational examples. 

The construction of multiple regression equations resulted in semi-analytical 

models for each type of orbital configuration studied, 24 in all. 

5.2 How This Extended Previous Work 

This extended previous research by expanding into, and investigating new areas 

through 

This work expanded into, and investigated new areas through 

1. Providing a generalised mapping of the regions of planetary stability in 

triples, by: 

2. examining all four types of orbits – P1, P2, S1 and S3; 

3. investigating these orbit types for both prograde and retrograde motion of the 

planets; 
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4. investigating them for both prograde and retrograde motion of the outer body 

of the triple; 

5. investigating highly-inclined orbits of the outer star, stellar Kozai resonance 

and its effect on the region of stability for P1 and P2 orbits; 

6. extending the number of parameters used to all relevant orbital elements of 

the triple’s stars, and 

7. expanding these elements and mass ratios to wider ranges that will 

accommodate recent and possible future observational discoveries. 

8. To highlight how the stability of planets in triple systems differs from that for 

binaries, an analysis of these systems over the same parameter space was 

required, resulting in a contribution to the body of empirical work on binaries 

as well. 

This advanced our understanding of the regions of stability within a significantly 

extended parameter space. It also enabled comparisons with some observational 

results which were not possible previously. The small region where our work 

overlapped with other studies enabled comparison with, and confirmation of, 

these studies. The correspondence between our work and previous research in 

these areas of overlap was good, engendering some confidence in the new results, 

where validation by other work is not yet possible.  

5.3 New Findings 

Most findings were new, simply because they were made in an area that had not 

yet been investigated comprehensively. Some of the more interesting or 

significant ones were as follows. 

Low-inclination P1 and P2 orbits 

Compared with binaries, the inner and outer critical semi-major axis ratios of 

triples are further from the central star for both prograde and retrograde planetary 

orbits. The difference is small but statistically significant, indicating the dominant 

influence of the outer body over the inner binary. These relatively small 

differences between triples and binaries results from the Mardling stability limit 

for triples, which precludes them from becoming too compact. 

The difference in critical ratios for prograde and retrograde planetary orbits is 

significant, ranging from ~30%-70% depending on the eccentricity of the outer 

star. For highly eccentric orbits of the outer star, the critical semi-major axis of the 

outer stability bound can expand by over 80% for prograde orbits and more than 

double for retrograde orbits, while the inner bound shrinks by a quarter for 

prograde planetary orbits and by over 80% for retrograde planetary orbits. 

The outer stability bound increases approximately linearly with increasing outer 

star eccentricity, with the critical semi-major axis ratios of prograde and 

retrograde planetary orbits converging to the same value of around 3.1. 

The regression constant for the prograde and retrograde inner orbits corresponds 

approximately with those published by Morais and Giuppone (2012), and those 

for the outer orbits are similar to those originally found by Holman and Wiegert 

(1999) and later by Verrier and Evans (2007). 
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The smallest exoplanet orbits found to date have semi-major axis ratios ~3, which 

are far outside the smallest ones we found of ~0.1, so the possibility exists of 

finding planets in much smaller orbits. 

High-inclination P1 and P2 orbits 

For real bodies that may also be relatively large, Kozai resonance tends to occur 

when 𝑖2 > 45 and 𝑖2 < 135. Analysis of a limited set of stellar Kozai 

resonances in triples showed that for larger 𝑎, 𝜇1, 𝜇2 and 𝑖2, the period of the 

Kozai resonance is shorter and resonance begins earlier, with the influence of 𝜇1 

on the Kozai resonance period being the largest, followed by 𝜇2 and 𝑖2, while that 

of 𝑎 is small. The period of libration was much shorter for higher 𝑎, 𝜇1 and 𝜇2, 

but longer for higher 𝑖2. For retrograde stellar orbits the resonance period and 

inclination range increased modestly, but the libration period more than doubled 

and the libration range widened considerably. Comparing the numerical results 

with the theoretical equations, the libration periods and Kozai resonance periods 

differed by ~40% while maximum eccentricity was within ~2%. 

The number of stable orbital bounds for planets falls exponentially with increasing 

inclination of the outer body of the triple. For the inner stability bound, the critical 

semi-major axis ratio had little dependence on the outer star's inclination. For the 

outer stability bound, there is no dependence at low inclinations, but as stellar 

inclination increases the critical semi-major axis ratio begins to decline, since the 

Kozai resonance causes the eccentricity of the inner binary to decrease. This 

divergence begins at inclinations of around 45, instead of the theoretical 39.  

For retrograde stellar orbits dependence on 𝑖2 is generally much stronger. For a 

prograde outer star, stellar Kozai resonance has no effect on the critical ratios of 

the inner or outer bounds. For a retrograde outer star, however, when Kozai 

resonance occurs the inner bound contracts inwards, while the outer bound moves 

outwards, by a larger proportional amount. These movements are in the opposite 

direction to the general result from a retrograde stellar orbit, indicating that Kozai 

resonance increases planetary instability.  

While the semi-major axis ratio of the outer bound shows an overall decrease as 𝑖2 

increases from 0to 180, between the ~45° −  135° where Kozai resonance 

occurs, there is an increase of up to ~20%, which appears to be related to the 

strength of the Kozai resonance. 

S1/S2 orbits 

On average, the outer star of a triple has a substantial constraining influence on 

S1-type orbits compared with the binary case, which makes S1 orbits move 

inwards, with the critical semi-major axis ratio reducing substantially by over 

30%, from an average 0.270 to 0.183. The difference in critical ratio between 

prograde and retrograde planetary orbits also shrinks, by around 10%. The mass 

ratio has a larger influence in triples than in binaries, while the effect of 

eccentricity remains the same. 

For S1 planetary orbits in triples, the critical semi-major axis ratio is in the range 

~0.180 − 0.196. The sole significant determinants of this ratio are the inner 

binary’s mass ratio and eccentricity, in approximately equal measure, as found by 

other researchers, although we found that the influence of eccentricity declines 



Chapter 5 New Findings 

172 

 

sharply for a retrograde outer star. The critical ratio is generally ~7% greater for 

retrograde stellar orbits. Retrograde planetary orbits extend slightly further out (by 

3%) for prograde stellar orbits, but for retrograde stellar orbits they are essentially 

unchanged. 

Our results for binary S1 orbits corresponded well with the few previous studies 

on prograde orbits but were different to the single study done on retrograde orbits. 

Only three S1 orbits in triple systems have been found to date, with semi-major 

axis ratios ~0.001 − 0.1, and they suffer from observational bias. Our results 

showed stable bounds with semi-major axis ratios that extended to almost 0.8, 

with the greatest concentration in a “sweet spot” of 0.03 – 0.25, so there appears 

to be scope for future planet discoveries to be made much further out from their 

host stars. 

S3 orbits 

For S3 orbits a triple has a smaller mean critical semi-major axis ratio than a 

binary, since the outer binary has a larger effect on it than a single body of equal 

mass at the same semi-major axis. However, this difference is small, at around 

5%. This is less than the average 7% and 11% differences for P1 and P2 orbits 

respectively and much smaller than the average 50% difference found for S1 

orbits. 

For S3 planetary orbits in triples, the critical semi-major axis ratio is in the range 

~0.287 − 0.361 (compared with ~0.180 − 0.196 for S1 orbits) and is essentially 

independent of the direction of motion of the outer star. The critical semi-major 

axis ratio is ~25% larger for retrograde planetary orbits compared with prograde 

orbits, significantly larger than the 7% for S1 orbits.  

The sole significant determinant of the critical ratio is the eccentricity of the outer 

star, with very minor contributions from the inner and outer mass ratios. These 

regression coefficients are virtually identical for prograde and retrograde planetary 

motions and the direction of motion of the outer star. 

The largest and smallest observational values for semi-major axis ratios found to 

date are 0.265 and 0.000606. The lowest result in our integrations was 0.009, but 

there were very few critical ratios lying below ~0.1. 

The S3 orbits discovered to date also suffer observational bias. In our integrations 

the majority of mean critical ratios ranged from 0.1 – 0.6, with some as high as 

0.9, so there are probably many planets at much greater distances from their host 

stars that are yet to be discovered. 

Effect of the direction of stellar and planetary orbits 

The effect on the planetary stability bounds of the outer star being retrograde is 

quite small, with the difference in critical semimajor axis ratio averaging ~|3%|. 

Nevertheless, half of the differences are statistically significant. 

The effect on the planetary stability bounds of the direction of motion of the 

planets is much larger, averaging 37% for P1 orbits, 31% for P2 orbits and 25% 

for S3 orbits. S1 orbits are largely unaffected. 
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5.4 How The Results Can Be Used 

These generalised results can be useful in the investigation of observed systems, 

providing a fast method of determining their stability bounds within the large 

parameter space that results from observational uncertainties. The relationships 

expressed in the regression models can be used to guide searches for planets in 

triple systems. They can also be used to select suitable candidates for a survey of 

triple systems. The geometry of the stable zone indicates not only where to look 

for planets but how to look – whether radial velocity, transit or other methods 

would be the most suitable. 
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Chapter 6  

 

Further work 

 

The limited investigation of high-inclination stellar orbits in this work was 

confined to Kozai resonance in these orbits and then its effect on the three-

dimensional shape of the region of planetary stability. Examining Kozai resonance 

in the planetary orbits themselves would add a further layer of complexity.  

Another interesting extension of this work would be to investigate mean motion 

resonances in the planetary orbits. Since this will occur for only a very small 

proportion of planets, the test particle clouds we used, consisting of 1 000 – 3 000 

test particles, would only find a few instances of resonance. To generate 

meaningful numbers, the number of test particles would need to increase by an 

order of magnitude, to around 200 000. Particles in mean motion resonances could 

then be found by exhaustive search of the test particles or by narrowing the search 

to the theoretically determined areas where they are most likely to be found. The 

additional amount of both time and computational resources required did not 

permit this to be carried out. 
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Appendices 

Appendix A 

A.1 Summary Of Stellar Parameters 

 

 

Table A1. Summary of stellar parameter ranges used for various orbit types 

 

A.2 Summary Of Computational Parameters 

 

 

Table A2. Summary of computational parameters used for various orbit types  

Parameter ranges Units

Prograde (0) and retrograde (1) outer star - 0 1 0 1 0 1 0 1 0 1

Prograde (0) and retrograde (1) planets - 0 1 0 1 0 1 0 1 0 1

Geometry

Semimajor axis ratio a = a 2/a 1 - a m 100 a m 100 a m 100 a m 100 a m 100

Inner mass ratio μ 1 = m 2/(m 1+m 2) - 0.1 0.5 0.1 0.5 0.1 0.5 0.001 0.5 0.001 0.5

Outer mass ratio μ 2  = m 3/(m 1+m 2) - 0.2 2.3 0.2 2.3 0.2 2.5 0.001 2.2 0.001 2.2

Star 2

Eccentricity e 1 - 0 0.9 - - 0 0.7 0 0.7

Inclination i 1 deg 0 - - - - - 0 - 0 -

Longitude of ascending node Ω1 deg 0 - - - - - 0 - 0 -

Argument of periapsis ω 1 deg 0 - - - - - 0 - 0 -

True anomaly ν 1 deg 0 - - - - - 0 - 0 -

Star 3

Eccentricity e 2 - 0 0.9 0 0.9 0 0.7 0 0.7

Inclination i 2 deg 0-60 120-180 0-60 120-180 0-60 120-180 0-60 120-180

Longitude of ascending node Ω2 deg 0 270 0 270 0 270 0 270

Argument of periapsis ω 2 deg 0 270 0 270 0 270 0 270

0-180

0, 90

0, 90

Binary High

0, 0.5

reduction inclination

0, 0.5

Orbit type Orbit type Orbit type

P1 and P2 S1 S3 

Orbit type

P1 and P2

Orbit type

P1 and P2

Parameter Units Orbit type Orbit type Orbit type Orbit type Orbit type

P1 and P2 P1 and P2 P1 and P2 S1 S3

(Binary reduction) (High inclination)

Central star mass m 1 M S 1 M = (1-μ 1 )
-1

1 0.01 0.01

Timestep dt yr Tbin/20 Eqn. (29) Tbin/20 Tbin/20 Tbin/20

Number of test particles - 1000 - 3000 1000 - 3000 5 000 - 10 000 3 000 2 000

Test particle orbit centres - -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 0 0

Minimum semi-major axis
 (1)

amin AU 0.01 0.01 0.01 0.02 0.02

Maximum semi-major axis amax AU 2x 5:1 MMR 2x 5:1 MMR 2x 5:1 MMR 0.9a 1 Eqn. (54)

Collision with central body rmin AU 0.005 0.005 0.005 0.005 0.005

Ejection from system rmax AU 10
4

10
4

10
4

10
2

10
4

(1) Must be > specified collision distance
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Appendix B 

B.1 Comparison With Theory – Outer Restricted 

Model 

 

 

𝑎) 𝜇2 = 0.01,  𝑖2 = 30 

 

𝑏) 𝜇2 = 0.01,  𝑖2 = 60 

 

𝑐) 𝜇2 = 0.01,  𝑖2 = 80 

 

𝑑) 𝜇2 = 0.05, 𝑖 = 30 

 

𝑒) 𝜇2 = 0.05,  𝑖2 = 60 

 

𝑓) 𝜇2 = 0.05,  𝑖2 = 80 

 

𝑔) 𝜇2 = 0.1,  𝑖2 = 30 

 

ℎ) 𝜇2 = 0.1,  𝑖2 = 60 

 

𝑖) 𝜇2 = 0.1,  𝑖2 = 80 

 

𝑗) 𝜇2 = 0.25,  𝑖2 = 40 

 

𝑘) 𝜇2 = 0.25,  𝑖2 = 60 

 

𝑙) 𝜇2 = 0.25,  𝑖2 = 80 
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𝑚) 𝜇2 = 0.5,  𝑖2 = 40 

 

𝑛) 𝜇2 = 0.5,  𝑖2 = 65 

 

𝑜) 𝜇2 = 0.5,  𝑖2 = 80 

 

𝑝) 𝜇2 = 0.75,  𝑖2 = 55 

 

𝑞) 𝜇2 = 0.75,  𝑖2 = 60 

 

𝑟) 𝜇2 = 0.75,  𝑖2 = 65 

 

𝑠) 𝜇2 = 1.0,  𝑖2 = 40 

 

𝑡) 𝜇2 = 1.0,  𝑖2 = 60 

 

𝑢) 𝜇2 = 1.0,  𝑖2 = 80 

 

𝑣) 𝜇2 = 2.5,  𝑖2 = 40 

 

𝑤) 𝜇2 = 2.5,  𝑖2 = 60 

 

𝑥) 𝜇2 = 2.5,  𝑖2 = 80 

 

Figure B1. Final test particle distributions in the p-q plane, resulting from an 

initial disc aligned with the invariable plane. For all cases: 

𝑎 = 20 AU,  𝜇1 = 0.5, 𝑒1 = 0.5,  𝑒2 = 0.5, 𝑖1 = 0°, Ω2 = 90 
𝑎𝑛𝑑 𝜔2 = 0. Initially 10 000 test particles, integrated for 106 yr. 
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Appendix C 

C.1 Regressions – Highly-Inclined Triple Systems 

 

 

Table C1. Regressions for P1 and P2 orbits, with a prograde and 

retrograde outer body, for non-Kozai and Kozai regimes  
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Appendix D 

D.1 Regressions – Binary Systems 

 

 

Table D1. Summary of regression statistics for all binary orbital configurations   
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