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ABSTRACT

\;

An apparatus to measure residue curves and the associated VLEdata
. .\\. . ."

was de~ig~lad., the apparatus was required to msasure this data
". " . _. '.' ._-,.__," -

quickly, .easilv, cheaply and reasonably accurately, The Acetone,
". . . .. . . ..' \;\ .

Benzene and Chloroform and the Acetone, Methanol and BSt'tZsne
PJ

ternary [lquldsvsterne were mes$'tirea to Je~t the accuracy of. the,

app.ara...t.US.·.'Iii.·..bO.th .. cas.es.'.t. h ..e r.e...$.Ult.)fOb.·.···...rt..al.(~.•eL .•..,~rr.e.la.t.e-."d..··~.•.r.easonably
well Wj~h thO"S~predicted by theory U~i~ ,b:iShed data. .•..

rwh ca.•~d~id.a..t. 6.>e..n *·rain.~rstor the 1-! ie.·.x·.e~ea.j.t.ll,~ MathY.'.E..•..t.··..·.·.hY.l·.'..K.·•.•..·.e..to.·.'nek . '. . .., .• JJ;i', In, •

azeotrope wete e~)aluatedusing the aOjulpme~i1 It"was fO\Jndthat low:" r- " ,
boiling Acetone is not a suitable ehtr~lner for/lhe given systern,lvhHst
high boiling. Butanol is. II l i

'''' II jl Ii . II
/1 ' // i 1

.. Th~thelmQdW1amic'1~teracti<mparafeter/",e+ ~lJeyalu~t~duri9g
thcHbourse of thf~ an~ll,ySis.T,hese wel,lrethf:h us~'d to generaJk residiJ6
4' " " !I I /I '

\~~\u~~esover the full composition spa~ref~~I~the ~:ystems invt~$tigated. n

II II 'I If "I' 'I' , I
,I I! Ii ! I
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Chapter 1
Introduction

1~1 Residue' Curves and Distillation Column Design

Separation of azeotroplc mixtures using distillation is

industrially important but problems occur when complex

[i multlcornponenf systems are examined.

A frequently used method for the. separation of ezeotroplc

mixtureSj~s thatof azeotroplc dis.tmation./~js:"~9metimes possible t.o
\' /1

1 iJ

separqJ/e certain azeotrope-forming mixtures by 'using ···a.sirnple

sequence of columns without introducing other species into the

~ystelT!' Generally, this is hot the Case and thus the additicrt of an
entralner species. is required as well as a more complei process

configuration with one ormore recycles.

The role of the entralner is -to either change the relativi:;

volatl'ltles of the feed liquids in such a way as to 'facilitate separation

or to introduce a new extreme azeotrope that also allows separation.

The design of the separation sequence may be dlvlded into

various parts, the screening of entralners, the conceptual design of

the separation sequence, the detailed design of the columns and the "

optimisation of the whole system (Wahnschafft et aI, 1992).
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Q

Traditional methods for the selection of entralners, design and

"optimisation of the sequence rely on rIgorous simulation models toat IP,; c- . . .. ,

"',V

are time consuming. Ii

,:,J

Various methods have been suggested to handle optlrnlsatlcn,

tJi~ltii recently, the..e: were .no simple methods available to easHy

determine candidate>entralners andthe possibledistillation sequences"
~'. 0

for multlcornpcnent distillaticn, The method of Residbe Curves h~s
q " ~,

recently been d'eveI6ped,for the above two problems. This method

o predicts POS~I((r' 'iarati~n tor given ternary mixtures usin~,only t~e ,
topology of~he ResldueCurve Map. :his information is essential t6
minimise the~Lmes~)entmodelling the system. (j

jr=J

By being able to determine feasible separations, various

candidate entrainers may be rejected if they do not allow separation
':/ .., . c'.· .' '. ',0

of the products.,:/)fhis is a very useful screenlnq procedune, I'll

addition, this methoq] may also be extended to determine possih::a
-: i \

configurations as it predicts Whether a given separation i~possible
and thus the choice of separation sequences is simplicfieq.,'j !J

I}

In general, it is very easy to model a residue curve map for a

specific ternary system as it only requires a knowleqge of the VL~ O,f

the system. It is thus very quick and easy to use th\:jsemaps in the

design process d~azeotroplc distillation. \\II
ji
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Currently, there is no easy experimental method to measure

p residue curves experimentally. It is easy enough to obtain them using ,
,-I . ()

,theory I bt:;t this requires a knowledge of the thermodynamic

interactions in the system. the curves may also be predicted using

S' group contribution method but this is not always ~ufficiently

apcurate for highly complex systems. This knowledge is fiat always

available or not accurate' enough thus necessitating an experimentala' '.' .

approach.

. . ~
The aims.arid objegtives for this hwestigation are as follows:

o ~
1. To design and commission an apparatus that is able to

measure residue curves quickly, cheaply and reasonably

accurately.

C\ 2. To use this apparatus to measure known azeo.tropic

systems and compare the results to those reported in literature.

3. To determine a"suitable entralner for the. 1-Hexene-Metnyl
c

Ethyl Ketone azeotropic system using the apparatus gesigned,
\,'

This system was, selected as it is industrially relevant for the

purification of zr-clefins.
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Chapter 2
Literature Survey

)
2.1 lntroductlon

Distillation is one' of the most widely used separation

processes. As a result, it is )~orthy\lhile obtaining a good

understanding with the airrtofeventually optimising suchprocesses.

\)

Oft~t1, nomdeal interactions occur between c~mponent$ in

mixtures. This may result in an azeotrope being fOlmad between the

liquids. An azeotrope' is defined as being the point' at which the

vapour composition is exactly equal to the liquid composition;

~ -~
Consider the case where it is, required to separai~<a binary

mixture 6.f liquids, that forms an azeotrope, into the .pure

components. Traditlonal distillation methods rely on there being a
ti"'.. " "',' ,'. {I

difference between the li~lJid and Vapour compositions. As the
<'// ~\\ ... , ,',.)..... . ./

" azeotroplc point is apprclacl1\?'~within the distillatior;i: column, the
U . .

difference becomes smaller until"it disappears attheazeotropic point." '" ',,' """':0 .
Nb further separation is thus possible using tr.aditil.:m;aldistillation

jnethods so an alternative method has to be I..ltiNsed.

The usual method utilised is the lntroductlon of an) entrainer,
An entralner is a third componentthat is 8\d<Sedto the binary mixture

, :-

to allow circumvention of the binary azeotrope. This entralnet may

act in various ways so as to ~t':!OW the separation of the two

(;

i)

il
\)

I)
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azeotroplc components, Each action "has a differeht method ~,

associated with it so as to allow the required separatlon, There are"
"

four basic alternatives for separation through dlstlllation (Laroche,
1992a):

...... :

1.(~omogenOU$Azeotropic Distillation, where the entrainer changes

the relative volatility of the azeotropic components,

2. HeterogPrnous Azeotropic Distillation, where the entrainer chaRlges

"the relativevclatilitv of the azeotroplc components and induCes'liqlJid-
liquid immiscibility, '"

'; 3. Reactive Pi~~til1ati.onfwhere the ,~ntrainer reacts wfth tine' of the
constituents:~ ..~. .

4. cSalted Dibtillation, where the entralner dissociates ionicaUycand

thus changes ,the azeotropic composition.
()

. \~;

c- ...-~

For the' purposesofthis study, o~IY homogen1?us azeotroplc '
distillation win be considered. . .,;: o

Generally there are a number of problems a};s,pciated with

azeotropic distillation and its design. Two such pertjn~'ntproblems are

the choice of an entralner and the column sequence to be used to

~erfo'rm agi\\,611separation~ Due to the nonidealitiestof al\8zeqt[0'}:>ic
. .. '. I'. ',' . .... . '" . ' ..
system ther(~ is currently no accepted method to ;fanswereither .of

\\' ",' "',, , '.', ,_ ,', '. ". ',,' :',

these questiens other than '8 rigorous, 'trial and error' steady ,state
I'

simulation. \\
II

I)
I',

A new l~raphical technique, Residue Curve Maps (rcm), hC1!S

recently been \developed and utilised to h,elpi, solve the above
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)

-'\\
">:\
\\
"\
\\\.. ,. .;/

\~\ . Considera vessel conl;ainind,a liquid mixture that'ts opento the
\\:\ "~-\

atl~()_s~here. These liquids will evaporate if. the temperature in the

"'es~{ f}."';incn3·/:!sedabove~ihe'''b(Jbb!e-point of the mixture. All the
" . _...,._"_-'-~~-_:\ :'\~':>;<' .. :' - .::.. _'::-_::'-- - .: <

Uqdids ~~!l!1n~tJNaporate at the same rate as different !iquitfs have
-\\-" . -

dj.fferent.v4>~~tHities.Thismeans effectively that some liquids 'boll off"

or evaporate .nore easih/tt~an others. Generally t it is the case that
\\ ' " ,,'

-, (,

problems. This is (l very new field of research and thus the realler
"/ I;

should take note ..that .'there are h\llany conflicting ideas in the

'it{3r;~lJle.An qverV\leWaltha current(ilnderstandlng of this technique
:;_\,:c:::.\._,'; __: ," _ _ " _ . . '~{-'-_~_~;i}- ,_

will be given 'in this chapter. '

'J

.,-:-,
\
\ '"\.

\. "

2.2 Simple Dlstlllatlon

liquids that ':Ipremore velatile will evaporate at lower temperatures
·1 .,

than others]
~ 'Ir

-;,

Thus.iin ~mixture, the more volatile compounds willevaporate

at a proportionately higher rate than the other less volatke liquids due

to the higher vapour pressure of the more volatile components. This

means that-the liquid in the still will become depleted in the more

volatile component With time. Another fact that should be borne in

mind is that the temperature of the systern must increase if the more

volatile liquids evaporate. Thus, as a typical bOiling.process occurs,

both the ccmposltion of the liquid residue as well as the temperature

in the stillwill change with time. The composition will change in such

a way that the residue becomes depleted in the more volatile
",I

component and the temperature will increase rncnotonicallv.

Similarly,. the composition of the vapour removed will also change
IX

:)'
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J)

and will lJ~uallyshq~ an increase in the amount of'lass volatile

compounds with tirne~

ci the: liquid composition resi~iu'6~''8Qdthe composition of the
oJ .

)

, .-

v,apour bEringremoved may be measured. For fe((larymixtures, these

compositions can be graphed on a ternary set of axes; Jtis found that

the above two ccmpositions change in such ~ way that thev~each
./{

form al~Orve. The curve for the residue compocltlons is kn()~n as a

residue curve.whilst the curve for the vapour compositions is known
~S.8 disti/lq}q Curve. Formally, a residue curve may be defined -as

;; _. __._ _, ·..·'~,r. _ _ : ._ _. : ~: .. J~r~ . ':._____ _.:..:.~.:_;....
, being the locus of the liquid composition remaining fr6rn ';a sirnple

distillation process (Doherty, 19788)(1

II
II

Figure 2.1. The Residue Curve Map for the Acetone,
Benzene and Chloroform System

('
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Different residue curves may be obtained by starting off with

different compositions of liquids in the still. A set of these curves

may then be plotted on a single set of ternary axes to give what is

called a residue curve map. Generally, the v-axls represents the mole

composltlon of the lowest boiling component and the x-axis that of

the highest boiler; This convention will be followed throughout. A

typical residue curve map, that of the acetone, chloroform. and

benzene system is shown in figure 2.1. Each tesidue curve .has a

direction associated with it and by convention it is indicated by
{ . /;'

arrows that indin~fe increasing time and thus increasing temt~erature.

This is aiso ifilJlstratEidin figure 2.1. -. l../",·j'

The topology of this map may be used to determine the

viability 'of separating the three components in a sequence of

distiHation columns (discussed in section 2.8). In this way residue

curves may be used to quickly and easily determine the suitability of

potential entrainers far binary azeotropic systems. No reference was

found in the literature to an apparatus that can be used to easily

measure a set of residue curves has been designed.

The main aim of this dissertation is to design and test an

apparatus for the measurement of residue curves and the associated

distillate curves. Such an apparatus will thus generate the vapour
\!

liquid equilibrium data 'Fo) :the "tsrnary systems under investigati.on.
\.) . ,\

The apparatus and experimental method should be. simple and

inexpensive but such that the data is accurate enough to be used in

the design of distillation columns.
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2.2.1 Geometrical CoCsideration~

There are certain rules that are obeyed in a ternary diagram.l. I ,',

The. lever rule is obeyed in the composltlon triangle. This
. . ~. 7;' .. .. : !

means that if a mixture is splitinto two other mixtures of different
"\ ' , ,

c~rnposjtions; all three compositions must lie on a straight line in the,,,. '
~,~

cornposition triangle. This line effectively represertts a ma,~si.balance~

oyer any lnixing or separation. This illustrated in frgure. 2.2. Material

of composition M is split into two' systems or streams of composition

,represented by points Acmd B respectiveiy. I:pe three points, A, B
6:. .. .... . . . : .. <.' .: .. ~~. ..... . ... ~:::.> ... . ... ,.. ..". .'. ... -:/.,

and M, all He on the same" str&:~ght line with the poiot IV{
\. ::..,:.~

corresponding to the initial mixture lying between the points A and
\~~1

)i

B.

Figure 2.2. ,A i\JIass Balance ih a Ternary System
:..-:..

This rule also applies to dlstlllatlon columns. Consider a, column

with a feed indicated by point M.The tops and the bottoms from the
"eolumn could be indicated by points A and B respectively. The

!J
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distance from A to M and«B to !Vi are in a ratio of the flows of the

mixtures of composition B and A.

2.3 Resid(,le Curves

_.!) ...•. . . .:~

The simple distillation system described in section 2.2 may be
,.

modelled rrtathernaticallv, One of the assumptions of the above
,.

system is that the vapour that is produced will always be in

thermodynamic equilibrium with the liquid which' is the residue.

Furthermore, the Vapo}.,.lfis removed as soon as it is produced.
(i

Residue Liquid

",Figure 1_ >1.')\ Simple Distillation System
,__,. ,

Consider the system shown in figure 2.3. This figure shows a

typical simple distillation (boiling) system. The liquid residue is boiled

in the vessel producing vapour that is in thermodynamic equilibrium

with it. This vapour is removed as it is produced. An elementary
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//u

mass balance may be PC?doirmedonthe system shown in figure 2.3

to give equation 2,1 ( Doherty I 197$(1).

.".(2.1)

o

x SlBci"'y are the liquid and vapour compositions respectively and tis
r;:"-/ ':' ." ". '7... _.' , ./>

a scalar quantity non-linearlv related to time.

This equation relates howthe composition of the resldue liquid

and distillate <changes with time and may be used to mathematically

~~~~:~::~~:~:rl~:e:~~xt~~::~~~l:~:~~:t~:~.~o::tl:tZ~
", f

"derivation and analysis of this fundamental equation.
f) ~.(_. ')

FrorYlthe analysis by Doherty (19'.79a-b,1979L residue ourves

have the following properties:

1. The tangent to the residue curve at x and 'the vect(Jr

(x-y) are dolllnear, . '~,.,
!j

2. Temperature irt6reases monotonical'y with f alon9,/;
the residue curve,

3. Singular points in the residue curve are either pure

components or azeotropes and are always isolated,

4. Residue curves cannot intersect in the interior or on the

boundary of the composition triangle. Convergence may occur



s

_".;

(J.' .,.

CHAPTER 2. UIl:RATURE SURVEY--------~~----.--~~--~--~----~.~--~~PAGE 12

in a. tangential manner I

5. The residue curve map may only contain nodes and

saddle points ..

.i::

2.3.1 Interpretation of'Residue Curves,

Equations 2.2 and' 2.3 describe the composition profile in a

packed column (Van Dongen and Doherty, 1985br of distillate

'compositio? Yi;D and bottoms oornposltion ){I,e .: Equation 2.2
describes- the ....s·tripping section and, equatlorr 2.3,_ the- rectifying.~., (I

sectlon.
o

., '';';7
dx, 7:7 i: +1 _. 1 ..._.._;:
....__::_:::Xi -:__ . _'.-._- Yi + ..-1 {Yi,!)
dh' X.1;

H

II
"

'(2.2)

;)

I;.,

S y-"lc-+" 1 x's + 1 i.", i S"t1 :i,J3
'_.
I'

(2.3)

Ii
where x and y refer to the 'liquid and }japo~r cornpositlons

respectively. Xi,S is the bottoms comR'Qsitionand Yr,9 i~ th~'distJ!late
-. • -.;. c- .. ...... . ", '. '.... . ,,' ,...... . ,-'r_ ,,; ,'-~' .. "" •

composition, h is the height at the packing, s the reboil ratio and r

the reflux ratlo,

Consider the case when the reflux ratio and reboil ratios are

inf:~l1itEl. In this case, both ils and Jlr are then equal to zero. Both
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equations then simplify down to the r~$.Jduecurve equatlcn. This

indicates that residue c'urves correspond to the profiles in packed

columns at lnftnlte reflux and reboil.

At infinite reflux, it can be. shown using the mass balance and

the properties of residue curves, that: (a) the bottoms and distillate

compositions must lie on the same residue curve ancf(b) the"bqttorns I'

,/ ' ' ... / \
and dlstlllate oornpqsltlons and feeds must lie on a sW' .~iim~,

(Laroche; 1902b)' This is an important property in<that 11i't", ,~pfo~
o .•... ..... '.".' " •... \_'-./

the design of distillation sequences for the limiting ca$r:Fdf inJin~tf:J
reflux. The method in whi'ch this is done is explainl9'c:t further in

" I_' .'

section 2.8.

't

2.4 Azeotropes and S.ingularitie~

If \~ne looks at equation 2.1, it can he seen r ,at the left hand

side of theGequation will be equal to zero ~he~the .systero has

reac"W~dan azeotroplc point or when the liquid is c¢mposed of only

one component. In both cases, the vapour composition will be equal

to that of the liquid.' Any point at which this occurs is defined as

beinq a sinaularity (Doherty, 1978a). In any given system there are

a number'o! these singularities corresponding to azeotropes and pure

liqulds. The residue curves all begin and end' at these singularities.
/'/ ,\
!! I]

if
iI

There are two types of singularities, namely node and saddle

points. The starting and end points of residue curves are defined as

being nodes and all other singularities are saddle points (Flen, 1994).

Fig')re 2.4 shows an example of a saddle and a node point. A node
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that is the origin 0.1 residue curves '1~unstable and that Which is the
"

end of residue curves is defined as being stable. In additioh, one gets
~:' ,

two, different types of" azeotrope. A low boiling. azeotrope', is one

which has, a lower boiling point than the pure components which
.. . , . .

make up ,the azeotrope while a high)boiling azeotrope has a higher
.-:2

boiling point 'than those of the pure components, Generally" residue

curves move towards higher boiling, azeotropes or pure components

and aw"ay from lower boiling azeotropes or pure components.

Unstable Node

o

: ;~gure2.4, two Dif'ferenl Types of Singularities

Foucher (1991) outlines a procedure for constructing the rem

fora system given all the necessary lntormatlon (the singularities of

the system). " ' .

1/'
'J

~l
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2.5 Distillation Boundaries

Residue curvemaps may be, divided into 'distillation regions.

Doherty (1978a1 defines a distillation region as being ,a region in

which residue, curves start off close together and are still close ',I

together after sorne time. Figur~ 2.5 shows an example of arem with

distinct distillation regions (a) While (b) has one distillation region,

c ~.
'--~~-'--~-~~-----i;,,.--'------"'"

Figure 2.5. Residue Curve Map:s with a) TWi) Distillation

Regions and b) One Reyion

Distillation regions are bordered by distillation boundaries or

separatrices. These separatrices are the residue curves which connect

singularities. 'There are two types of separatrices, stable and

unstable. Figure 2.6 shows an example; of a rcm with a saddle. It can

be seen that residue curves both converge and ,di\t~rge from the

separatrices. Those separatricesthat have residue curves' converging

towards them are termed stable and the others are termed unstable.

The unstable separatrlcea are those that are the dlstllletton boundaries

(Doherty, 1978a). The topoiOHY of '" residue curve map f~~ra specific
riO
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system must thul?,,;beknown so as to be able to 'determine whether

a gIven separatrix is unstable or not (Bos~,en, 1993).
':)

-g
Unstable
Seporatm<

stobIe
Seporotrix ~..._~..._ _.__....>,,.-

(C· \
It

Unstable
Separqjrlx

Figure 2.6. A Map vyith Stable and ,Unstable Separatrices

~.. '.'~

Rev (19J2) defines a boundary ast., the separatrlx that

arrives at a saddle point. Typic~lfy this is an unstable separatrix and

agrees with the definition of Doherty (1978a).

ihere are many conflicting ideas as to the degree that the

separatrlces act as boundaries. Stichlrnair (1989,1992), Doherty

(1S/S5)and Laroche (1992b) all put forward different ideas which will

be discussed lin section 2.6.

2,.5.1 Distillation Boundaries and the Topology of Isotherms

The temperature always increases along a residue curve. As a

result, there has been a misconception in the early literature that
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ridges and valleys in the temperature contour plot act as distillation

boundaries, This misconception was endorsed by DohertY{1978al in

his original article.. R..ev(1992) andVan Dongen (1984) acknowledge
.. _" _: - - - -_. ", If

the fact that they do not form bqundarles,

RevH 992) gives a thorough discussicn on this misconception

and then goes on to disprove It. He shows that these ri:rlges and

valleys are not boundaries, through extensive modemng of various

systems. An exemple of a boundary not coinciding with a ridge or

vallev occurs in the methanol, acetone and chloroform sy~tem.

'.'

Rev (1992) proves the above statements. using the fbll_owing

argument. Consider a Valley on the side of a hill. The bottom gf the

valley is.descending monotonically. If one was to walk directly across

the vallev, one would have to first descend and then ascend to cross

it. Nnw if one was to change. your angle slightly I in the direction of
;. -,

the bottom of the valley, it would be possible to walk along the side

of the vaHey whilst descending all the time, cross the bottom and

then to walk outof the valley whilst still descendlnq, This is possible
c,

as one. would he basically follOWing the bottom of the valley,

diverging away from it slightly all the time. A valley could thus be

crossed and therefore it is"not be a distlllatlorr boundary. A similar
:~,

argument may be followed for a ridge.

2.6 Effect of Distillation Boundaries

The residue curves correspond to packed column profiles at

infinite reflux. These differ from a .trayed columnprofne Which is
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.,
described by difference equations and is thus stepped Compared to

. :1

the differential equations that describe residue curves and packed

columns. A column profile Is a prot of liquid compositions in a packed

column. These column profiles ·still approximately·follow residue
d -

curves at finite reflux. The distillation boundaries .lndicated by the

residue curves may. be shifted slightly by changing the reflyx ratio.

Wahnschafft ('1992) shows where and how this shifting may have
I.

notable consequences on the .shape of the boundary. These

consequenFes are determined QY simulating a packed column. at

various feeds and reffux ratios and thus determining the boundaries.

It is generally found that the boundaryindic~'ted by the residue.curve

methodhastc be very curved torany ettect.to-he apparent. Doherty
o

(1978a) realises that the boundaries may be crossed at finite reflux,

when very curved but surmises that the degree of crcssftiqlsvery

small, therefore not viable.

Consider the case where a gIven residue curve approaches. a

curved distillation boundary closely. If the residue curve approaches

this boundary from its concave side, the associated distillate curve

can Hein the other distillation region. In this way a border crossing is

possible at finite reflux as the tops and bottoms points are not

required to Ire on the same residue' curve. Figure 2.7 indicates how

a vapour point from a distillation boundary lies in another regi,on. The

boundary cannot be crossed by an approach from the convexside as

the distillate composition is in the same region. When the column is

being run at infinit(' reflux, both the tops and the bottoms of the

column rnustJle on the same residue curve. Residue curves mi:lY riot,

intersect, Which would be the only way the cress aboundary directly;" "
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thus the boundary Cannot be crossed at infinite reflux.

DlstlllaHon •i ,
BOu..f.ldary ••...~

Figure 2.7. Border Crossing at Finite Reflux

-Conside] the case of the boundad! being a pertectlv straigpt
'. n" - !

line; TH~ distillate wiH lie on the houndarv, As a result; thedlstillate

cannot move the column into another re~lion and thus the boundary

cannot be\.crossed. This is the\only Case When a boundary may not

be crossed 'at an.

Another type ofboundary crossing, possible at infinite reflux,

is that obtained by mixing intermediate prpducts to move feeds from

one dlstillatlon.reqlcn to another, thus facilitating boundary crossing.

Doherty (1985) attempted to use this approach but was not able to, .

succeed for mass balance reasons and 1!he fact that the assumed

boundary was a straight line. Stichlmair ('1992) was able to.perform

this boundary crossing using a recycle; This fact is reported in

Laroche (1~92a}. The curve crossinqis facilitated through the use of

a recycle from both the second and third columns, effectively two

recycles; to get the feeds into regions of the rcm where the boundary

may be crossed. In addition, Stichlrnalr (1992) uses the large

curvature of the boundary t9 facilitate the crossing. Btlchlmalr (1989)

saysthat a separation Is feasible when distillation lines begin and end

()
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at the products. Figure 2.8 shows this type of boundary crossing

where" the curvature of th~ boundary is used. Distillation lines
i.\

intercorinect liquid concentration points and are obtained as follows.

The composition' ofa vapour in equilibrium with a starting liquid is

established. this vapour is then completely condensed to give a liquid

with a different composition to that of the equilibrium liquid, Tt'~
. . \

composition of this condensate gives the next point on the distillat.j

curve. This process is repeated to give a distillate curve with different

curves resulting from different starting points. Distillation lines are

similar to residue curves, thus if there' is a curve that connects both

the ~roposep products, the separation is. possible. This Is used for

curve crossing only when the boundary is very ,curved a.s has be&'i'

mentioned. The above curve crossing is pos~,lble though it is a

complex systern and thus difficult to design.

This type of curve crossing was also reported by Laroche

(1992b). In this case, the feed is ln.a different region to that of the
"

distillate and bottoms from the column. The curve crossing is shown

in figure 2.8. The feed has to He close to the concave side of the

boundary. By the mass balance law, ~II three compositions must lie

on the same straight line and the tops a'l1cj bottcl""~ f,rom the column
. "~ - \ ,I

must be on the same curve for a column b)~h\ ~qtinfinite reflux.

It can be seen from the figure that'the curve ~~~sb~en crossed due

to the high curvature of the boundary, The design<pf a system with

this type of crossing requires data that is highly accurate irrthat it

depends on the shape of the boundary. The column also has to be

run very stably to keep the feed in the right area of the residue curve
. .

map. Bossen (1993) highlights these two facts in saying that the

"t.'
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degree of curve crossing is determined by the shape of the boundary

and the position of the feed. Furthermore, this system would be very

expensive and difficult to control (Foucher et a/199.1, Stichhl1air and

'Herguijuela, 1992).

Boundary
~---,.-"- ;' '7;'i-' ~~_~_J

/1 (/
Figure 2.8. Bound"ry Curve Crossing

Finally r Wanschafft et al, (1992) say that "the extent of

crossing of simple distillation boundaries will hardly ever be large

enough to make species, which introduces such a boundary between

the components to be separated, a good choice as an entrainer," This

suggests that the choice of entrainer should be such that the f ' \Jired
f) 1.

products are always in the same distillation region.

2.7 Possible Products from a Column

\)

It may thus be assumed that for a good stable design of a

distillation column, a distillation, boundary may not be crossed by a

single column even at finite reflux. It may be crossed by a column
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sequence, though this fact is disputed by Doherty and iCaldarola

(1985).

The rem may be used to determine what the possibl~ tops and
'-'

bottoms compositions are for a column With a specific feed. There is

a 'shortcut' method that may be emPI~iyed, the 'bowtle' method.
This method specifies what POSt;bletoP\~c;c~:j(~ttqm products rnav

"
be obtained from a column tor a specific; feed. It relies on two

important lines, the direct split and indlrect spiitlines O=ien,1~94}

sh~'wn in figUre 2.9. The direct spUI: is the line that conrieets feed
. - n ,~' . )

cO,mpositic)!1~nd the lowest bailing vertex in .a distillation region

indicating '3 split with the lowest boiling species as a top product.
/,.' " '" _ . 'i) _. _,', ," , " " " •... .. '.~. . ,_ ", ,:

The indirect split is the line oonnecting the feed to the highestboiling

(,\

I ",

vertex in the distillation region, Indicating a split with th~ highest
• 'f •

boiling species as a bottoms product.
!.~,

;1 c

", :'

,
\_~

Figure 2.9.. The Direct, Indirect and Imll,ossible Splits

.... -.--.' ..,
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To obtait~,thebowtie regions, the indirect and direct split lines

\;-.--) . ,

are drawn on the relevant residue curve '(figure 2.9). These lines split

the distillatioo region into four regions. It should be noted that the
split lines are restricted by any distillation boundaries as the profile
fro;Yla single column may not cross a boundary.

Examplesof possible splits (the direct and indirect splits) and

an impossible split are shown iln figure 2.9. The one split is
Ii

imposslble asthere is not a residue curve that is intersected twice by

the mass balance. The two areas that this line goes 'through are

therefore not possible products from a column and are thus

discarded. The. ether areas are shaded to indicate that they are
o

possible products from the column. Finally, a feasible residue curve

must go through both shaded areasand also intersect.twlce with the

'mass balance line through the feed composition. Thus, tJle feasible
region will lie on the convex side of the residue curve going through

the teed as indicated in figure 2.10. The shadedregion is the 'bowtie{

region for a specific feed.
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Figure 2.10. The KSow~Tue'Region

//

These regions may be' generated mathematically as described

by Wahnschafft (1992). "The resulting rsqlons are gell.erally smaller"

than the real achi~vable regio,ns but may be computed with sufficient"

accuracy for preliminary design procedures, Bowtie region$ may be
'"

cRlmplicated if the feed lies near an inflection(::i?,'~nt in the residue

curve and thus i~:\may not be defined merely in terms of direct and
\\

indirect splits lWahnschafft, '1992). •.Finally, it should be realised that

the bowtle method is a shortcut method that may rule out feasible

tops and bottoms products that are possible with finite reflux

systems.

2.8 Column Sequ~'ncing

The usefulness of resid~~ curve maps is that they allow the" '

designer to easily determine a viable column sequence with no
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o
simul,ati6n of the column being. required. The method used relies on
the fact.that mass balances must always be obeyed and boundaries

cannot be crossed direptly by column profiles.

1)'

The first example is a straightforward non~azeotropic

distillation. The rCI11 and associated column sequence is shown in
"

'figure 2 ..11. This example shows a direct split being used to split cO

components A, Band C. Irtf-he flrst column, pure A is removed out

the top and a mixture of Band C sent to the second column where

tMy are separated. Other cOHfigIJratio,n$that could be used are the

indirec{ ~pHt an.cJthe rfonshprp split. The indirect f~plit.relles on C·_.
, .

.being removed' in the first cqJun'ln and the other tWQ COr)1po)\ents

l?eing removed in !he second. The non-Qsharpsplit would require three

polumns to.aelsieve separation. As a result/ one normaHy dlstilsto a

'composition of interest (pure component or azeotrope) to minittlise

the number of columns required. Non-sharp splits 11laybe .used for

heat integration, 'balancing 'hfular flowrates to oth~r coturrms" or

;$Olatin9 diffic~lt separations 'Fien, 19~41;No~~sharpcolumns .are
., .. J ,)

normally used 'as preconcen ,ratars.
!

A

1,-,

Figure .2.11. A Noo·A~eotropic Separatior,1
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'There was")')o azeotrt~pe present in the above system. This

gives the designer a lot of fre,edom in the choices that may be made

with regt~rdsto column coJfigurations. When azeotropes are P,' resent,
f

the problem is more cojistrained in that a lot fewer options are

available. Consider th~; following example that is taken from
"

Stichlmair (1992).

J,_ ;
,J.,: . ",' . . " ',' il

The residue, curv.e map for the system is shown in figl.lrI'J2.1 Z~
The components a tinct b are the desired products with e bJJlng the

,,' . !

entralner. the coJuVhnctJnfiguration and associated mass balances lor

this separation at(j sho~y,n in figure 2.13.

, , ", "'" ", " ':. ('Figure2.,12.The Residue C.~rvefor the System Under ~uestion
0' '

The feed lies in the region where a can be obtained as a pure

component. Stichlmair (1992) suggests that F be mixed with the yet
',>., ()

unknown bottoms stream 133to obtain the feed mixture M1. M1 is
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then fedto column C"\J that has bottoms B1 and distillate D1. D1 is

then mixed with the unknown D<3 to, give M2 which is fed into

column C-2. The products 'from this column are 62 (the bottoms) and

the distillate D2. D2 is then fed to column C-3 where it is split into

the products D3 and 83 Which are now known. It is always advisable

to keep the recycle small for economic reasons. rhus, by the lever

arm rule, the length B2-M2 must be much larger than the length 02-

tyI2. This requires a highly curved distillation boundary (for the curve
I (}

crossing) and an optimal position for M2. This example gives some

idea of how a typical column sequence could be determined. It may

I;>enoted that there is no simulation required other than that for the

residue curve, cutting down on a lot of time that would have
.;j

otherwise been spent trying to determine a viable column sequence.

The above solution is very expensive in terms of capital and

operating costs. 'It is a complex sequence with tnany columns and

complications. therefore, wherever possible, the entralner should be

chosen so as to give il sequence with the minimum number of

columns (·2)and also as few recycles as possible.

Doherty and Caldarola (1985) give a god'q",discussion on some of the

posslble pitfalls lncolurnri sequencing. An examplethey.gi.ve involves"

an J:;'specified entrainer used for the separation &r water and ethanot,

The residue curve map is shown in figuft3 2.14 along with,. a
a

suggested column sequence. The manner in,which the separations
,,\

and mixihg occurs is self explanatory" following the same rules as

u(,e!j in the previous example.
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O. Ent!Oinat

b. Enrrdlner c.
c.

Ethanol

Figure 2.14. The rem (a) and Suggested Separation Cb,c)

Once the column sequence has been determined, it is normal

tp perform a simulation so as to ensure that the mass balance over

the:! whole sequence converges. Dohehy and Caldarola (1985)

probeeded to do this and found that the syst~m did not want to
ii

converge. They find that in order for there to be no mass
1;

acC:umul~ltion in the system, all the water in F must be in B1 and alt'
jI

the] ethahol 'must be in, B2. If one looks at a mass balance over
Ii ;)

col~lmnsl!C-2 and C~3, it can be seen that D3, D1 and 132must lie. on
11 .. ". "~
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thesame line.ihis requires that D1 be in distillation region" which

is not possible to achieve with a simple distillation column. Doherty

and Caldarola (1985) conclude frornthls and other case studies that

"distillation boundaries within the composition triangle can never be

crossed by simple recycle methods and that other sequencing

\) techniques have to be employed". Laroche (1991) challenges this

saying that the statementis only correct if the system is homd~enous

and the distillation boundaries are linear. From this it ~ray be
Ii

concluded that 'very' curved boundaries may be crossed o~,:s1l11,1le
'I

boundaries may be crossed using other methods such as d~banting, . . f

(heterogenous distillation) or reactions. (reactive distillation)il These
:1

examples show how important it is to keep the mass balance'$ of the

·2.9 Alternative Separation Techniques

Homoqencus distillation Is\\not the only type of separation

process available. Other processes are heterogenous/ reactive and

batch distillations.

Heterogenous distillation uses the fact that at certain

concentrations, there will be. two liquid phases of different

!composition present. These two Hquid phases can be separated by

decanting. In this way, it is possible to move across-dlstlllatlon

boundaries, Res·id'Jecurves may. alsd be 'used for the. design of this. .

type of separation. Pham (1990a, b and c) giVeS 'e g6{Jd introduction

into the use of residue curve maps forc,the design of heterogenous

distillations. Van Donqen (1983) presents a mathematical algorithm
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bvwhich.itmay be determined lfa heterogenous system Will occur

in a specific ternary system.

In reactive distillation, the entralner reacts reversibly with one

of the constituents to be removed, thus allowing it to be removed by

means of distillation. Barbosa (1988) and Venimadhavan (1994)
. .

show how this type of process may be modelled and residue curves

used for the qesign of rr·.lumn sequences.

'\

Van Dongen (1985a) shows hbw a batch distillation process
'"may be modelled. He goes on to show how resldue curve maps for

c-.

batch distillations may be modeHt3d and thus usedfordesign:
'_! ..

2.10 GeneralRules fCJ~ Selection of Entrainers

Various authcr~,;try and spec\fy specific rules Jor the selection
. . __.v, ,1

of entrainers, As is expected, they all have,·"aTfferent" rules and

requirements ·from errtralners.> Minimum-boiling azeotropes are

normally considered as they are more cormnon than maximUh1-boHing

azeotropes {Laroche et el, 1992a).

Doherty arrd Caldarola (19~5) consider all. permutations of

residue curve maps that contain at leapt one minimum-boiling binary

azeotrope. They find that there are 87 different residue curve maps.

Inherent in these maps are the assumptions that each side of the
'_ _- . 'I~' .. ~:: _ _ . __ _:,' _ __ _ _ _. '. ::. . -.," _ _."_ .__ .__ : ._. _r _\) -. : ••"

compositlon triangle can.have at-most one 8zeotropeand that there:"
is a maximUM of one ternary .:azeotrope': They attempt to use mixing

to cross the separatrlx but fail eacn time for mass balance reasons.
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As 9 result, they conclude that the entrainer should be selected in

such a way that it does hot introduCtP a boundary between) the

components to be separated. Of the 85 rem's considered, they find

that 35 obey this condition. They therefore conclude that only

c.entrainers that produced one of these rem's should be considered for

further design and optimisation.

Foucher, Doherty and Malone (1991) state that a sufficient
,. .'."\

condition for separability is that the components to be separated both

lletn the same distillation region. This is the same condition that

Doherty and Caldarola (1985} specified. Foucher et al {1991}present
~he seven most favourable maps for the separation of a Jow~boHing ,

azeotrope. In their analysis they suggest that a straight line

approximation of the separatrix is sufficient to determine separability.

Finally, they present three different column sequences that may be

used to achieve separation for the seven maps that they specify.. "

Stlchlrnair et al (1989) proposes a criterion that assumes the «

coliJmn profile cannot cross a distillation boundary. they specify then
i'

follibwing rules for a mlnlmurn boiling azeotrope:
:r ... . 'I

The entralner must be a low,.boiling SUbstance itself or

The entrainer must form one or two new minimum-boiling

azeotropes.

They present three feasible rem's all with separatrices between

the components to be separated as well as a three column sequence

to perform the required separation. A set of rules for the separation

o
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of a maximt1rtt':boiling azeotrope are also presented together with a

column sequence for theseparation.

Further rules for entrainer selection, distinguishing between

processes with and without border crossing are developed by

Stichlmair and Herquijuela (1992). Column profiles are once again

assumed not to cross simple distillation boundaries' hut boundaries

may be crossed by mixing offeasibl,t:1 products in systems w.ith very

\l curved boundaries. Processes that do not involve border crossings are

(~) developed using the criteria of Doherty and Caldarola'·'{1985) that(>
components to be separated must lie in the same distillation region.

Sfichlrnair ,"and Herguijuela {1992} present criteria that lead to

processes With. border crossings. Those for the separation of a

mihimum.;boi(ing azeotrope are :

Low-boiling entrainer,

An intermediate entrainer that forms a new

rninimum-boillnq azeotrope with the lower boiling of the

othertwo. components,

A high-boiling entrainer Which forms low-boiling

azeotropes with both components, one of which must boil
at a laWer temperature than that of the azeotrope to be

separated

The latter two rules are simi1arJo those proposed ~y Sti.chJmair .
et a/ (1989), Once again, a similar set of rules is ·proposed for a

maxlmurn-bolllnq azeotrope, Various column sequences for tho

required separations are also presented.
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Laroche et al (1992a) compares the Jules presented by Doherty

and Caldarola (1985) and Stichlmalr et al (1989). He finds that the

two sets of Jules are contradictory. The rules of Doherty and

Caldarola (t985) are termed "satlstactcrv" even thoughthey reject

many entrainers that would make separation possible. fhe rules by

Sticti'imair (?t--~ll1989) also reject candidate entrainers that make': .. -: _".)}:-- '---:. _". - _.. .:.' :

separations r10ssible but accept entrainers that make separation
. - . l' - ..;"

infeasible. Laroche et al (1992a) analysed over 400 mixtures ahd

their }qm's and determined the foHowing classes of entrajner that

always make a separation feasible :

Heavy (high-boiling) erttrainers that do nofintroduce

.aaeotropes,

lnterrnedlate-bollfnq ·entrainersthat do not introduce

azeotropes,

The entralner makes a separation feasible whenthe

azeotrope is a saddle in the rem. Light entrainers are
j~J

/,",.~,..•also included in this category.
#" -

Theauthors also say thatthere.are other classes of entrainers

that make a given separation feasible but that they were not specified

as. the separation sequence could not be determined,

Laroche et al (1991) assesses candidate entrainers Using
i) ; ::::~/

equivolatility curves. These curves are used to split the cornposltion

triangle into regions, with the volatility order in each'r'egion being

usedto compare the various entrainert~.Their method only eon$)~der$

entreiners that do not introduce ~j~eotropes, cqmparing h~avv

entrainers with each other and lighfentrainers with each other. This
'i:(
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: .. !<" ."
". \':.

mett;bd may not be used for intermediate entrainers~i'as "he Iocal.«

vhlc/lility or-ier has no meaning in the sense ~f ease ofseparabil~tV',,'

Laroche er' at (1991) justify this short coming claiming th~l the

itl.911strialuse of lntetrnediate entrainers is rare. Once the be'~t heavy
and light entrainers have been determined, the best ofi'th'e two is

odetermined by using a final cost .for the proposed sequence,
\ ,~,,;7""~~\;;:;' "'\ .

~ ij .~

Laroche et e! (1992b). a1#6developed rules for separa~\iI;'~Yand
.?

column sequencing b,~,~,ed(In th,~convex hulls of the residue curves"~~r' ,".;'.;:'.:.....~
,.r~~

that go through tr 'c'~;I'~qujred product compositions. This

method, applies Onl), ,: CIP$~I;~;;''<"J",asthey admitted, it Can

e.x.}~I.f1d;.~;~~i'~.r.s tt(~.: ',Ie at finite reflux. An example
# '~c 'j,'

<r'bfthistypeis tha'~h,:~~,=)i~,\."" ,.e~ ?mngei'~trah'letsthat are used

industrially to 5eR~r"te rninirntni1-", /." .•i azeotropes.
\ Ii
,,~.

~~;;,

2.11 Further Fa\)tors Aff"\!1 Ateot,o"io Dlstlllatlon Sequen"es

p.artin'l~99~) saysY'~ternary dia:rams are a "powerful tool
., . ; '. ~-. . ... ... "./

to present the compositions o(furati':icompunent mixtures". As ha&"o"';'

been shown/ residue curve maps are themselves a very powerful tool

for the design of azeotropic distillation sequences.

Residue curves find their main application in 'finding feasible

distillation sequences. Wahnschafft(1992) states thr.t if a system is

feasibl~ at infinite reflux, it will be 50 at {I'lite. reflux as the infinite

reflux system is an extreme case, It-should be noted that the reverse

is not true (Laroche, 1992b), as separation sometimes gets worse
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with an increase in reflux ratio to the limit where the separation may
), .. ,

not be possible at an infinite reflux but posslble at a finite reflux.

In the previous discussion, nothing was said about the

optimisation of a give'~ system. This is a broad field that

complements .the residue curve theory, ,.Knight (1989) presents a

svsternatic optimisation algorithm. It relies on the minimum reflux

being known G'lfterwhich a simple method of optimlsation is followed,

This minimum reflux may be obtained by the method described by

Levy (1985). Knight (1989) finds' that the most important

optimisation variable is the ratio of the recycle to the feed (the feed

ratio).

Another field of column design is that of choosing the

conditions for the best heat integration. Knapp (1990) 'presents a
method that, uses a blfurcetion and residue curve map analysts to

thermally integrate colurnns. The bifurcation aspect is required as

residue curve maps change. their appearance at specific bifurcation

pressures. This integration is performed once the sequence has been

optimised as described by ;<nignt (1a89).

Finally, Beklarls (199~H· shows that certain distillation

sequences can have more than one steady state. This is a fact that
has to be taken into account in column design. They show that

certain conditions in .a residue curve map, such as two adjacent
i'}

saddles, may lead to multiple steady states.
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Distillation j)equences

2. 12 COilcluding Remarks on Residue Curves an~ Azeotropic
.0 If 0 co

D
':J

Rem's gi~Je a lot of information 'that' may be used. in the
". ,£.:;J_~1· _

preliminary Ciesign of dlstilletion columns and sequences. 'There is..
some disagre,errH~ntin litel"ature about theinterpretatlcn.cr behavloqr

"

of columns in certain situations,

We will later look at chqosing entsalners that) e'l}sure that no
,) " " " "

boundaries ne~d(i be crossed in ttie separation. The methods of

'Doherty and Caldarola !1985), and Laroche (1992b) .appea'r JJsefl..lIas'-
,they allow us to find feasit)le entrainer~for a specific separation even

l
;

D ,." , " ,'.-"'"

though they may reject r:m"Anyother feasible entralrrers,
(_r , ,-

() ",()

Measuring a rem for \a syst,em that is not fully described will"

give many useful insights into thef"sYstems, It allows regions to be

determined where the behaviour of the curves is critical egoexistence

Of boundaries, curvature and inflection paints that are not obvious
. ()

without the graphical representation.
/i

Measuring rem's allows one to :
G

1. measure. VLE,

2. identify areas of potential Interest JS the rem is measured

all6wing it to be examined more completely

3. obtain useful data for a new system.

o

o
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2.13 A Brief Review of Various Vapour-J ..iquidEquilibrium Measuring

Equipment

hi practice there ~re two types of equilibrium cells that ate

used in vapour liquid equilibrium rneasdrement. 'This classification is

shown in figure 2.15 (M\uhlbauer, 19~O). The classification depends

on whether liqyidt vapour or both~ie circulated around the cell: If

circulation occurs, the cell is classified 'as a dynamic ceil and if not,

it is termed a static. The basic principle behind each type of ceHwill

bef described.

SO)gi<> '.tlPQ\!lt I.jqJId Pass

{r

Stolle~'vIicot stalleCoOlbbiod 'Glatlc A'tavtlcd

Figure 2.15. The Varieties of, EquUibr'iu01Cells

2. 14 St~tic Vapour-Liquid Equilibrium Methods

The bask: lavout for this type of cell is shown in figure 2.16.



~I-IAPTER 2. LITERATURE SURVEY PAGE 3\9----------~--~----------~--~,\'

1~:~~J~n~ng:~~~arafuiel "1
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-+-'-4 Vdpour
~ Samplingr) -+---14 UqUld

Sampling

EqUlf!brlum Cell

/ Agitation DeMce

Controlled Environment
{)

Figure 2.16. The Statio VlE,Appal'atus

The mixture to be analysed is charged into the cell. This

1l1ixtwe is then agitated to promote contact between the phases,

thus allowing an equilibrium to be-established. Once equilibrium has

been reached, samples of boththe liquid and vepour are withdrawn

and analysed using appropriate techniques. This' s,ampling is done

usiNg different methods that ~re specifically d~signed not to' disturb

the equilibrium. The temperature and pressure o'f the system are also

noted for modelling purposes. Once the necessary data has been

obtained, a~mixture of different composition is analysed. This

procedure is 'followed until enough data has been collected. This

method described is the static analytical method. in the non-analytical

method, the phases are not analysed but the equilibrium ilSinferred
" c-: If

from measured properties of the system and the initial starting

cor.ipositlcns. This breakdown of methods is illustrated in figure

2.15.
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Selected static Vapcur-Llqui« Equilibrium equipment is,

presented in Nakayama et. et (1987), Ng and Robinson (1979),

Guillevic et af (198.3) and Kalra et al (1978). c,

2.15 Dynamic Vapour-liquid Equilibrium Methods

1)
f;

<

Dynamic equilibrium apparatus carr-be classified into three

categories: single vapour pass, phase recirculation and Single vapo.ur
i;:;

and liquid pass.

2.15.1 Single Vapour Pass Method

In this method, a pure gas~ous component at a specific
'\

pressure is bubbled throuqh a liquid phase in the equilibrium cell. The

gaseous comJtnent progressively dissolves in the liquid until the

.. .vapout I~.;;n~the can is hi equiltbrlurn with' the liquidin the ,Gall-The
vapour' and Ii&Uid may then be analysed. This method is presented in

figu;e 2.17. ~I~' eX3mrt:~r6f this method is presented by Young
c' _ /,1

,. \f If
(1978). -

.---__,__...".......Equ'~rl~ i I
Cell

Vapour Feed
'-"'------"-~,----

Figure 2.17. The Single Vapour Pass Equipment
- ~\;- \\

\.
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2.15.2 Phase Rec.irculation Method

<~'
" ')" _ (l"_ _ _ -'1

The cotnponents are charged into the eqUilibrium cell. t' Tt
teil!perature and pressure of.the ,cell is rriaint1:Hned,at the requitE

1/ -. ~- .

levels while either one or:hoth" of the liquid and vapour phases

continuously withdrawn fromtn'e cell and.recirculated. In the rnethc
where both phases are redrcul,ated, the vapour and liquid phases a:

" introduced countercur~e~tIY as Isshown Jl1figur.e 2.1 S. Once aga),

" ,,;th'€!two, phases ~re sanip~,~dan~ an'alys~d onc({~,qW;"rium has bee
'reached. " " '",', i, \ II ,. , ," ,:' jl "\ " ",

; ',. /f C ' <) ".c::,
. If c~ '1/

,Vr- __~----~8~~ ~~_~

---I

Figure 2.18; The ,phase Recirculatie)O Equipment Configuf,atio

)\
I

j This method allows the equilibrium to: be e~bliShect a h
quicker than 'in the,single pass method as the. contact betweeq tr

phases' is much better. Ah example of this method is presented t
c

Freitag and Robinson (1988). c_,
o

C'
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2.15.3 The Single Vapour arrd Liquid Pass Method

Separate streams of vapour and liquid components .e.rec
•

co,rtsrcted cocurrently in a mixing unit-that is maintained at a specific

temperature and pressure. The combined stream is .fed into the

equilibrium cell whelf~ the two p..ases separate out and are removed
o . .~

separately. These two streams rnav be sampled. "T;ris method'·is
" .;' .shown in figure 2.19. Ino'n; ta et al (1986) presents a typical

apparatus that utilises this method. fl

EquilIbrIum
Cell

llquld Peed

Figure 2.19. The Single Vapour and .Liquid Pass Equipment

Con.figuration

2.16 Concluding Re~arks on Vapour-Liquid Equilibrium Equipment

Various methods for the measurement of Vapour-Liquid

equilibrium have been presented. The final apparatus that wi'~;be

. presented for tnf.~hl~f,;\!i'14nt;rrH:mtof residue curves uses a principle that
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isc'simUar to that of the single vapour pass apparatus as the vapour
" '; _,'

produced 'wil!'only pass throughthe liquid once. It aJso 'tfHows·a good
contact between the vapour and liquid to give a reasonably good,'"

"

I~.

o

equilibrium.

o

,''','f
.,';;

"

" I.]
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Chapter 3

Theory and Calculational Procedure

3.1 Introduction

Q The models used to calculate the VLE data as well as the algorithm

used will be presented in this chapter. ThisVLE data is required as if isthe

only way that may be used to determine how accurate and

therr-odvnarnicallv consistent the measured experimental data is. In

addition, the algorithm which is used to fit models to the experimental data

is presented.

3.2 Thermodynamic Models Used

Consider a two phase system. 'fpr the two phases to be in
'I

equilibrium, the fuqacities of the phases haV,e to be the same as is shown

in equation 3.1.

.J;: - f
J..v - 1 3.1

where fv is the vapour fugacity and fl is the liquid fugacity.

The fugacity of the vapour phase may be written as shown in

equation 3.2. If an assumption that the vapour phase is ideal is made,

equation 3.2 may be simplified to give equation 3.3.
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: /)

->

fv ;: P 3ri <Pi t», T~ Yi).o 3.2
It
I~
\

where '~fis the system prl,c.{lsurein Pascals, V, is the molar fraction of

component i; t is temperature in KelVin and <P is the fugacity coefficient.

For an ideal vapour phase, the fugacity coefficient is equal to one, therefore:
o

3.3

,',
The fugacity of the liquid phase may be' written as is shown in

equation 3.4 with the assumptions that the vapour phase is a mixture of
"

idea! gasses and that th,~liquid molar "volume is negligible due to the low
',il:; \1

{ !pressure.

-t]l

3.~

! .:

where Xi isth~'ljqujd mOlaf fraction of component it y,lsthe activity

coefficient and Pv,i l~ vapour pressure.of component i..' U . • .

Equating equations 3.3 and 3.4 giVes equation 3,.5 which describes

how the vapour and liquid mole fractions are related to each other.

II

3.5
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The systems that are investigated fall into two categories. The first

is the category where the mixture is almost ideal. For this, type of system,

the Margules equation is used to determine the liquid activity co'~fficieht.

The other type of system is that which is more non-ideal. Reid et aJ "
suggests that the Wilson correlation should be used to determine the liquid

activity coefficient as it contains only two parameters and is mathematlcallv c

simple to use.

The above two correlations for the liquid activity coefficients are used

because they are both simple and easy to implement. They also give a
reasonably good correlation with data provided they used for the

situations specified above.

3.2.1 The Antoine Equation

"c~-'CThe vapour pressure for each component is determined using the
(\ - - - - - ,-
Afrtoine equation shr' vn in equation 3.6, The parameters for this equation

,. '/

"?}e shown in Appendix B.

AIltB
InPv = AntA - T + Ante 3.6

where P, is the vapour pressure of tine pure component in Pascal and Tis

in Kelvin.
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3.2.2 The Margules Correlation

The Margules correlation for the activity coefficient is shown in

equation 3" 7 (Reid et ai, 1987).

<' /

3.7

where Ai and Bj are pardrneters,

, )

This equation is only useful for a binary system but as ternary
\J a

systems are being examined, the parameters in the correlation have to be

adapted. They are adapted using equations 3.8 and 3..9. All the parameters

used in equations 3.8 and 3.9 are those for the binary systems .denoted by

the subscripts. All parameters used in this equation are shown in Appendix

B. G

3.8

N~ x. A.:i"B1;::;; .L.!--.J_-.~-,
cd = 1 (1- Xl)

where Akk = O.



3.2.3 The Wilson Correlation

,

TheWilson correlation used to determine the activity coefficients fbr
non-Ideal systems is shown in equation 3,10 (Reid et el, 1987). The

parameters used are shown in Appendix B.

Xk AId
N
I; Xj Aki .:
J r

3.q.O

where I\n is 1 and the rest are the Wilson coefficients given in
Appendix S,

. ":... :j

A res'ibt,e curve map may be simulated if, all the parameters

mentioned in section 3,1 are known. A computer program writtea in turbo
pascal that genentes residue curves Is .presented in Appendix C, This

program uses the equllibrlurn equations presented in section 3.2(\;;·\~ether
, ~,' )-,,-_/ ., .

with a RungeKutta routine to calculate the 'required residue curves.

3.3.1 Sinililation Algorithm

Initially, the starting liquid compositions arespecifIed in-the program.

From a specific liquid composltlon 'at 'I, '.bubble point, itt is possible,::\to

determine the associated temperature. This is the case asthe vapour mole
\1

fraetione must all add up to unity. This fact is illustrated In equati~n 3.t1.o '. .

'I?

I}
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The temperature is obtained by solving equation 3.11 for the one

temperaturethat win make the right side,of 3.11 equal to the tota[1 pressure

of the system: Equation 3. 11 was obtained by summing equation 3.5 for all
I"'

3.11

i\
O;nce the pressure is known, the vapour compositions may be

calculated using equation 3.5. As a result, the right hand side of the

differential equation describing residue curves (equation 2.11 is then known.

The differential equation is then integral~d using the Runge Kutta routine
..... " ' , ,."',, ... ' ,\' ',t

(Ralston and Rabinowitz, 1978) to give the next Uqui~1composition on the
'. G

. residue curv~ from which the temperature and vapour compositions meW
H'

once again be calculated .

., The above procedure is repeated untit the, residue curve reaches' a

stationary polnt at which polnt'the program is exited.Thelprosram may thus

be used to calculate a series of residue curves so as to obtain a residue
\1

curve map.

The above alg("~ithmmay be adapted to calculate the 'predicted VLE:
,',

for varlcus startingUI""Jid compositions sothat experimental results may be

compared with tl,,,\)i'Y.

3.4 AnalVsis ofExperimel1tcd VlE Data

<>

The mOdels'described in the previous sectloh were used to determine

)1
[I
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o ..

the necessary parameters to describe a specific ternary system. These

parameters are those needed in the Wilson and Margules models, The fitting

of the models was. achieved through the use of programs wdttep in the
'" - ~
"Mat.lab package ..

Aschem.atic of the basic algorithm used is shown in figure 3.1. the

..Matlab programs used for both the Margules and .Wilson correlations are

shown in Appendix C:'

'~' .

. ....•.. \\
Calculate 071,
Temperatures
and Vapour
Compositions

Minimisation i\
Routine II

J\

Figure 3.1. The Basic Model' Fitting Algorithm

.'_."
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The models are fitted at each point to the experlrnentalVl.E data that
((

is measuredever a series of runs. The data recorded consists of 'me liquid

compositions and the assoctated temperatures.snd vapour compositions.
\~, . ;:-. - \t;-' "', , - - - '_ -- . " ,

j/

.' \1
..•... \1. ." ..

InitiallYI the ';parameters for the specific model being fitted are!,
\'j,

guessed. These values. are then used ..to calculate the temperatures and;,\i "

vapour compositions associated with a series of measured liqUid\\~
I'

compositions. Equation 3.11 is solved to give the'temperature associated \,

,~ith a spe~i/;Onquid composition, It is PO$Sib~)? solve ~hr1\quatio~:s the .

.o n I.y•.•...ti.:n.••~pow.n: rs t.h a..t .0.f.'.. th..e' "" ..p..e.rat.•.ure." '.h.IS ~9.uatIO.~' IS O..'..bta.med b'Y'
summing both Sld€j:sof equation 3.5 and usmq the .fact that the vapour

~l -, - --- - I

compositions have to a~d. upto 1. The/mins function is u.;ad in J\Ilatlab to
determine the temperatures. J

(, .

';'

Once the temperatures have been determined, the vapour
.;,.

;"compositions may be determined using equation 3.5 together with the

'temperature determined iIj th~: PlelfiOU$S~!I,." ,. c

Oncef~thevapour compositions and related temperatures have been

determined, a residual which is the difference between the measured

experimental v~lue and that calculated using the mode! is calculated for
:'~\..., "

each experlmental.Vtf point. An error associated with each variable may

then be defined as being the sum over all the VLE points of tl1~squares of
, ..,,::_

the residuals divided by the square of the expected error with the total error

being the. sum of all the individual errors. This error function is shown in

equation 3. 12.
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o

3.1.2

where AYI ami AT are the residuals:JtH2) th~ vapour composition and
")~'i! "

temperature an~ dY, and,aT are the e:xpeQt~.derrors.
':.1

( .. '........ "
.'The .expected errors/are 'ap~roxir~atedby comparing the measured

results to those'.predictedby thecrv.for ~otll the VApourcompositions and
. 0

thete,?1peratur~s. ,

The frnins function is used once againto minimise this error with the

parameters in the activity coefficient model being the variablesthat the error
",,;

i, "function is being minimised with respectto. ,
-~

;:0 (). (\ ':. • ;;

The' above method gives the coefficients for a $p~cific activity

coefficient model that is assoclatedwlthmeasureddata, I~{vas rearisedthat
the edbr 10the temperature measurementwas much greater than that of,-::...~.;.""'- ",.. ,', . . . =.

the vapour measurement and thus only the vapour 'data was fitted to the
r, :- .,

models. The'temperatures cal,clJlatedOverea hidden variable'p~eded for the
'l . . ,,"C,,' . {( .' ',' ,.

calculation, of the vapour COI)lposHibnsin any case. ln this way, the

calculated vapour cornpositiens "took into account the calculated

temperatures, ;'. t~,;

(I

fl
(/
c (i
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3.5 Concluding Remarks

The basic methodology. behind the slmulatlon o~,residue' curves as
. : __ _ _ .'. . _:__ _ '~~> _ __._. __<. _ _ v ___ _ _!i' (. ".
well as the analysis. of VLE data has been presented; 0.

o 0

It may ~\ 5u'ggested that the residue curve equation be used to
)1

analy$\··+'~.~;rxperimental data and .$0 obtain the necessarY)coefficient~. It
""as' decided not to- follow this method as a small initial,: error in a

...~:;~.'

..

composition. would result ip much larger error~ occurrIng later~~in the '"{/

~gorjthmj:, Thi~ istthe due.to the fa.ct,thata differential.equatit\\ is being

fitted. ft/.'$ a result, anlylndividual VL.Epoints are consldsredfor th&ahalysis.

TheparameterscalculatedwiH be usedto.slmulate resldue-curves whlohwlll

be compared to those experimentally measured.

o o.

'-'-

i.1

o

II

, [('
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Chapter 4

Experimental Method and Apparatus

4.1 Introduction

It has been shown that residue Curves are very useful for the de.si€n
ji

of distillation column sequences. A simple apparatus for. the experimental ~I
measurement of these curves is required in order to measure these c.tH·\,',e~,,)l·)

for systems for Which there is ncr'e.xperimental data available. ThUl:'lan

apparatu.~ is required that can be used to measure resi~oe. curves as \iV~11 .:!IS
the associated vapour compositions and temperatures.

These ,(alues have to be determlned reasonably accurately with the
i\ . ,

method used also having to be quick, easy and simple. The challenge is thus
to design an apparatus that balances ease (A use and speed with accuracy,

The factor that has to be considered ill the design of this apparatus

is that the vapour leaving the still at a specific time has to be in

thermod\mamic equilibrium with the remaining liquid. Initially, it is not clear
,', , .

how easy this is to achieve. Similarly, the temperatures of both the vapour
. - \\\.- - .-

and liq,uid have to be the same but once again itts not obvious how easy

this will be to achieve. "

The phllosophv used in the design of the apparatus will be that the

apparatus must be kept as simple as possible. keeping in mind that 'results. ..'

of a high accuracy are not. required. This is the case as the residue curves

determined will probably onlv-be used in the initial entralner selection phase
.,
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and column sequencing and possibly bdt~ihthe final desiqn of the distmJiorl
",\, - "_' "II

6blumn~. The ~nd result was that a verY,simple ~pPflratus was initially &~ed
c u

,I

with modifications being kept to an absolute minimum. Hence, two setups

Were finally investiqated as ~ll~·be expI~ined further Inthis chapter. c~

4.2 General Desdriptiort

The apparatus was designed so that residue cuives could .be

measured ~Iuring batch ~r simple boiling Jie. liquid compositi09,~l a~ well as

the ass~)jgted ~rn_perai~res and distillate curves tievapour} ~k~quilihriiJm,
,i __ t_"" "c, '. :_::_~\ - ._,;::.:_

~ifft the (iqi.Jid;tes[due. '

, i\
\\

;1 (\

There 'wereva1-1buscomponents tothe experimental setup. as sbq,wntr ',' , -

i~~figure 4.1.t!The main component was the still. Two d(ffereritdesigns of

stills v/ete,used and th~\ getalls will be described later in this .chapte'r.
,.," "'" " .. \\ I' ',,' ,0•

. ,

!I
II

.Cond~ns(3r

rJ .. o

I'i)

'.. '))

Figore 4.1. the Experimental Configuration

U II
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The still was kept in a Mernrnert oil bath. The purpose of the bath

was twofold. The first was to ensure that the liquid residue would be at its

bubble point. 10 addition, there was a temperature difference between the

bath liquidand' ~he residue that ensured that there was a net energy lnflux
'.' -.' ,

into the still.Dbviously, the greatenhist~mperat4re difference;the greater

the rate ofbomng. In this way, the bflilingrate of ihe system Was controlled
II .. ... ." \\

by mainta'iniog a specific temperature differencev\(the temperature of the
f

bath 6~jng continuoustv increased).

Thera were temperature andliquld sampling ports on the stills. The

temperature p~rt allowed a pt-l OOprobe to be inserted into the still so that

the temperature of the system couldbe measured. This probe works on the

same principle as a thermocouple, but it has a reference link that corrects

for errors that may occur as a result of long connections. The liquid port

was covered with a septum so as to allow the. sampling of the liquid using

a needle without the introduction of ak,,~othe system that would disturbthe

equilibrium est~blished.

The vapour produced in the still Was removed using two spouts off

the top of the still. The first spout is connected to the vapour sampling line

that is connected to a gas chromatograph (GC)'. This GC with nitrogen gas

af! its carrier; was used for the analysis of mixtures that were sampled

during the runs. The sampling in this line was done using a gas sampling

"·alve. The second spout was used to control the pressure ip the .still by

connecting itto a Iine that went through a bubbler and inturn a condenser.

This pressure controVNiII be discussed''in more detail in section. 4.5. The
'\

above two lines were both heated using heating tape to prevent

condensation in them.
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4.3 G.C. Running/andCalibration
:1

< II
The ?naiysis of. the samples wa~ performed with a 58,aOA Hewlett

Packard .9as chromatograph' that had ·been recommissioned. with new
····ff ... - -.' ..

electronics. The column used was a.Porapal; QJcolumn Which is weil suited

for the analysis :bf light hydrocarbons. The signal from the ,H.C. was

amplified using an inhouse\arnpllfier and it was captured USing an XT
<.., -. '~.'"

Ii
L.

cemputer runnthg on il\~"pUsesoftware.
\.

The best, operating conditions ofthe GC for each pa\\ticular system
had to be determined prior to any experimentation ..The GC 'also hadto be

< '::::

calibrated;;

'l

The operating conditions were determined bV injecting a typical
sample and seeing if the peaks separated but, If they ran into each other,

the terliperaturEl of the oven was decreased and if they weretob far from

each-other, this temperature was increased. The best operating temperature
b .'. . . • ..... . 'was 9h9sen such that analysis of a sample would be as short as possible

under the conditions while ensurtnqthat the peaks were weI! separated.

Once a suitable operating temperature had been set; the GG was

calibrated. Solutions of known composition were made and different

quantities of these solutionswere injected intothe GC. Th~ area under each

peak was therimeasured, This area measured should be di!~ctlyprdr)Qrtiollal

to the moles of chemical that passes though the GC. This was round to be

the case in that the constants derived were the same over a wide range of

concentrations ..This relation is shown in equation 4. 1.
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II Mo.lA;::c * A:reaA
1/
I,

I? _I)) (\\ "
" , jj " , ," ' •.

MolA refers to the'rtumb'erof moles of.a component A, AreaA refers to the

area under the GGtrace for.cornponent A and c is thE:;callbratlon.ccrrstant:

\~

THere is a qifferent proportion~Uty)constant fur"each chemical that n
tI ,:, \', ,I)"

passes throklgh the" d'E~tector. The areas -thet were measured for the
o

calibratlorrs maybe used to determine this, constant, using, equation 4,.2"

~\ :- : ()

. tl

,f) Mol%A :::100 X -:- - -~a...;..x.,AreaA ---- .4~2
"', , " " a x Ai 19aA +A.reaS +' d x A.reaL»

,\,

This is a simple equation that giV~s th~; ;tl1olefraction ftrpm known

constants -and Areas from a GC trace. Component B does not have a
,. - .._, -;, - ',_ . - , ., - ~>

calibraticn eonsjant ~§ 'the constants forthe other components are adjusted
1 ••• - - - ._ :.-_ • • :',.

Ii ,,, to make it 1:' lJsing this equatiop': with known molar perqe,!Jtages and peak

areas, the calibration constant a may be calculated' and then used td'
.'. . " "'"

.,.. .... ,{'. . .... : ' ' \'::
calculate other.molar composition with known GC peak areas.

A typical peak trace from the GC for tne acetone, chloroform and

,,' "pef,zene system is shown in figure 4.2 ..,

o,
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1
.~~_U~~ l00~_~_.e_M__~o~~~_~

(/ . . ......, i: I
Figure 4.2. A GC'trabe for the Acetone. Senzene,a~~d Chlorofbrm

System

4.4 Vapour and Liquid Sampling

The vapour is drawn off throuqrrtwo ports, the sampling port and the

pressure control port. The sampling portconnects to a sample valve that in
\\ _' _ __ _ '.'. --_ _ '.

turn ~bnnects to the GC. The line that connects the port and thevalve is

heated using; heating tape so as to prevent the condensation of the vapour,
t.!

This is done as' any condensation that may occur would influence the

composition of the vapour going throuqhto the sample valve and thus make

these results invalid. The sample valve is also heated, for the above reason,

using a heating cartridge that was mounted in an aluminium block.

The sample valve is a 6,Port Extel'llal Volume Sample Injector. The
)"j

valve circuit is shown in figure 4.3, In the valve's bypa~;~iposition, the
//

sample is flushed through the sample loop. The sample loop is a piece of

stainless steeltuhing with a-volume of 1 ml. The vapour flushes throug!t

this loop and out through the waste port where it is collected. In the

"- sampling position; the vapour bypasses this loop and gOe~ straight out
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!{,

through the waste port. During this time, the carrier gas flushes through the
'0

sample loop, flushing out all the vapour that was prevlouslv trapped in
there.

!.-'. :

.' .

Figure4.3. The Sampling Valve with the Valve in a. the Sample Mo~:e

and h. the. Bypass Mode

The valve is turned using arr'actuator connected to a timer. The timer

was set in such a way that the time ittakes for the valve; to return to its

"Qliginal position is the time the GC raqulres to analyse both a liquid and
..-,.;

vapour sample:

The liquid sample was removed at the same time as ihe vapour

sample; This was performed using a sy}ringa.with a 30cm ne'rdle, The liquid

sample was injected into the GC usirjg a 1 pi Dynatech syringe. The liquid

sample was injected into the GC jqst afterthe var~!ur sample so that 'the
. _. .~,.., ,;. r.:J ,

liquid trace woOrd appear just after that of the vapour sa~pl\9. "This was

done so as to save time. Thfj liquid was stored in ice prior to it being
d

injected iG~othe GC<,soas to p¥'cv(:)ntany volatiles from evaporating and

thus causing the composition of the liquid sample to change,

II
!J
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. ~"\
::',',Cti'J '_,

',)

4.5 PressureContr.o!

gas sampling andno pressureccotliro], th~ pressure in the system would rise "
IJ .. - - _. : ,',.f - ..-. . --' ,;:.-, . . .... - , :.

as"th~ 'pressu,re drop through th!~'sample valve was too great:: This was

""~'~~~I1deSira'bl~as the,.modelling WQ;nd ..be' compllcated and the ..tirnetaken for
equilibriWJl to be reached would ffi.\t!.l11Uchlonger. Thus, q'pre$suf'ei relief Hge

" \;., ''''', (..' ," '" " ',,'

, ~~_._was: putjn.lt is ~asicaJJYa heated'~~ that 90es fr~m the .$lm"tb a bubbler.
-~.-.::-~-'~;._ c. ,\,1 ._.' ,"

This bubbler IS kept in the. water (bath and i~thus heated to·th~;temperatu(e
of the bath~,F: .' .tl , .

I"
"It was found that when the system,was setup with cmly one port for

" ~

Part of the vapm.H'll5laves"~~!::~~iIIdqvvn the pressureflne and bubbles
t ", '1 . '. ,', . .• \_) ~, . . ." .through water In a bubbler whllst':,'the rest goes to the sample valve: The
'"::~~'f:,," ""'" '.: '>: _ ", '", , : J, '''''" ':"1',,, ,,,,,' ',', • .,'. , ." "_ ".,','.' ".'(~

vapour passin~f'through the bubbler ~O.~snot1jcondense as the':water' in the

bubbleris not enoqgh to prevent this. The vapour from this;'bqbbler then
~.:{]

goes throu9Q a condenser where if is cooled and condensed ..uslnq cold'
"_ - - - ",. "_":;; .:

water.'

co The pressure In the still can 'be controlled by varying the oil level in
If}\ . . '. , ' ' . -. ' " '. " '

the buhbh:~r.It follows that if the oil level stays constant, the pressure in the
-,

still will also .rernaln constant. This solves the problem of a changing
I, "I~.

pressure'fn the system when there w~s only the sample ·line.
_" :.". ." ""

simple yet ,,~ryeffective method used fer the control of pressure.. ,



'I/J
Chapter 4. Experim!;mtal Method artd Apparatus

4.6 Superheating and Nucleatio'n Sitas

Vapour formation occurs at nIJcleation sites during the process of

boiJing. If these sites were not there; vapour bubbles might not form, thus
the liquid would start to superheat and flash directly to vapour. The vapour

that is produced in.this way is in equilibrium with the liquid ata superheated

temperature. This temperature and vapour' composition is not atthe bubble
I.,', " '., ..: " . . .

II

point temperature for the specific liquid composition in the still. In the
1!.,;

experimentatlondescribed, this is highly undesirable as the system would'-- - . - "

not be at its bubble point as required. .A1~\.a result, nucleation points
. .I _- •

conelstlnq mainly of pieces of stainless steel \~~reused. It\N:;Is found that
,

these supplied sufficient· nucleation points;
'~.\

k c

The ground glass joint was sealed Ui!finga f\\1f!onseal. Thlswas done
. . . . .. .... Ii. • \.

.asthe chemicals used in the systems measured dl\~solved Vacuum grease.
. ~i _-- ..I' . \\; .. .

. :. .,._ - - "._. - - - .... :_ - .\\_ - _._ - , _. ('I

When this grease dissolved, it entered the still an~1coated the nucleation
. - 0 . ~ .

POit1tS,which did not work anymore and thus supeI~heatin~ occurred,
r. - \ ' f)

I

\,_ - - - ' ..
Superheating of the system also occurs when tt~eheating rate of the

\

wat~rbath Istoe high. This is controlledbv keeping a vel~ysmall temperature

gradient between the liquid in the still and the bath. A i)ypical differerl'ce is
;_:} \:,

approximately 5 ce. ~,
\
t.
I
\

\'
I.
II

Ii
.', . -":".. . _,' _.. . . I'"

The initial apparatus was kept: as simple a.spossibl~\JD_~eeping with

the philosophy discussed in the Introduction. "'-'''''F -"'--~-..::::~~~~,
ll: .' <~\
I!· ,.

4.7 Initial Apparatus
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~\ a .~
" '.. (7{.! '.. .' ' '." ""' .. ' .. ,. '
;rhe initial ~ti!lwas a 11round bottomed flask with three spouts, for

i), . '
liquid and vapour Sampling, and temperature measurement, This still was~

found to give reasonable residue curves, whilst the VLE ar{d temperature
~,. ~

o .. , w
results were not as satisfactory, Tttisls shown in the next $~ptibn and the
sources ofIrraccuracvare also discussed.

<.

4.fj Pre~uminai'Y,Results
Q

((

o

Initial resu!ts were obtairJ~d fOrtheacvtone,ch_loroform and ,~enzene
system "using th~ above ,,'simple' apparatu~L These results are shown in
figure 4.4. Tbe Residue Curve Mi¥ gen~tate,~ using the computer program

described in chapter 3 'are $uperimpP$ed oH"the results shown in figure 4.4,
It m~y be seen that there is some correlation between the results and the

predicted curves I;£utthat ihis correlation is, not all that,.good. Both the
,. .., "'... ..". ~. ,!

1:.\

vapour compositions measured and the temperatures measured are' IPot,\ . ?F-" "'... . .... . . ,.-,

close enough to the values:iDredictedby theory, even thqu'gh the measured
o

residue curves arf~",J;easonablyclose 'to those predicted by theory.clt was

proposed thatthis:'~as due to the f~ctthat the vapou~ .evolved Was hot in

contact with the liquid mixture for long enoogh and thus thevapour was not
'::;

at the bubble point of the bulk liquiq, This resulted in the inaccurate results.

A newapparatus described later in this chapter was then designed to aHovy

- a longer contact between the liquid andvapour phases,
-;-.

.:~~.

,", ,

II/-,.
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i;)

a

-. c- '(_,

"FigUre'4.4. The l\(Ieasured Residue Curve Using the Inidal Apparatus
. . ).' ~ .

I

4.~1
Ii

()

()

ii

The-apparatus designed to,laciHtate greater contact'b~tw~~n the twa
~. :' .:.. - --_\) 0 .". : ~~__ '. :'

phases Is shown in a scheraatlc 'farm in figure 4.5. The, gr-'3'ater'contact
:'f, , 0

between the ,twP." phases is achi~ved by allowing the vapour ptodl,tced to
. <.\ .

entrain some of the liquid as it rises.

\)

\";

/)

c.)
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, Figure 4.5. A Schematic" Drawing of the liquid Entraining Still~-. - . .. . -.

The majority of the vapour that l§produced is captured by the hood "

that is in the licfuid.This hood has a diameter of 3cm. This hoodleads to a

6mm glass tube that leads to the top ofthe.apparatus. Thevapour goes up
.,

this tube, entraining some of the liquid, allowing the greater contact time.

In practice the amount of liquid entrainedis not very much b~t it has been
found to be enough for a close approach to equilibrium to be achieved.

The tube that leads; up, then flares into a funnel. There is a large

conical piece of glass over this funnel. This glass causes the Vapour that
\1.

comes up the tube to be directed outwards, away from the sampling points.

Any liquid that was, entrained with the vapour is thus given time to separate
. u - - ..
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from the vapour before the vapour is removed from the system. This is

required as even the :smallest amount of liquid in the vapour 'sample will

pr,ejudice the accuracy oftheresults dramatically. In .additlcn, this apparatus

'has a large space above the liquid. This. also allows any liquid that may get "

sp~_$,hedup in the process of boiling toseparate from the vapour and drop

ba&k into the residue. Almost the whole still was immersed in the bath, thus

, exposinq a small surface area through which heat losses could occur. This

resulted in almost no partiat condensation occurring that cculd affect the

accuracy ofthe.results._. ..\'. ,. ..

The two gas sampling points are directly above the glas$ barrier. One

c poiritleads tattle bubbler and the other to the GC.

A further feature of this apparatusis its shape. A conical shape was

opted for as it allows a greater depth of liquid for a specific volume. This
'. '. ,"

has the effect ttrat the vapour once again stays in contact with the Jiquidfor

lonqer than if the apparatus was spherical. In addition, liquid sampling can
~».

be performed6Ylsmaller volumes of liquid. This is important as the depth

of the liquid becomes a limiting factor for boiling and liquid sampling a~ the

volume of liquid remaining becomes smaller.
, ,

: ...

The .liquid sampling occurs through the port shownin figure 4.5. This

port has a septum on it to ensure that all the vapour goes through the

sample lines and that no air is introduced into the system. The"l;lampling is

done using a syringe with a long needle that is put through the septum and

into the liquid. The temperatllre measurement is also done through a similar

port. In this case a PT..100 probe is used. It is also inserted into the liquid

through a septum.
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A Residue Curve. Map that was measured using the <apparatus

described is shown in figure 4.6. Once again, the theoretical curves are

superimposed. The fit in this case Is a lot better than that of the initial
. ., J\

apparatus. In addition, the measuredtemperatures andvapour cornpositlons

are t,"iJery close to those predicted using the theory.
C'.,' ....

Two different sizes of still of the same design were then compared.
;"; .,

The dimensions of these two stills are shown in Appendix D.

c
o...,
U 0.70
III
c,
u,

c.ro

o.ro 0.30 0.50 0.70 o.SO

Benzene Mol Fract.ion

Figure 4.6. The Residue Curve .Map Measu~ed with the New

Apparatus

A typical result for the acetone, chloroform and benzene system is

shown in figure 4.7. The one line ififor the large still and the second is for

the smaller still. It may be seen th\at these results correlate well with each

other and are thus reproducible within the expected accuracy of the

apparatus. Due to the smaller still requiring less liquid it was used for the
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duration 'crYtne project.

()

~-r~~~ __~~~~
0.75 2.2!$ _J.7'!! s~zs

Benz-e'1_S -li_qiJld rt9G.~IOn x --101

: I.)

Figure 4; 1. A Comparison of the Two Sizes of Apparatus in the

Chloroform and Benzene Bin~rySystem

, c/
L.

In the '·iEiboVe experiments, both the, calculated temperatures and

vapourcomposltlons were deterrnined for each liquid composition. It Was
~\ . .

found that :they correlated well with those measured using the new

apparatus. The temperatures Were within 0.2 S~C and the vapour

cornposltionswere within 2 mol% of the pradlcted theoretical values.

4.10 EXperimental. Method

Initiany, the liquid tl?ixture "ismixed and poured into the stilt The

temperature in the bath is then slovvly increased until the liquid starts to
boil. Thls, is done by increasing the temperature of the bath So that it is

t)

always 5°C greater than that in rhestlll.Thls has to be done otherwise the

liquid In the still superheats.

Once the liquid Is boiling I the sarnplinq sequence is initiated. A liquid
-;-J
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. .. (j .'.-

sample is drawn at the same time as ~hevapour sample, The samples(iare
c: D

then analysed as Was described in section 4.3.

The rtext'sarnple istakeri once the analysis of the current-sample has
. .... ~

been completed. The analysis time for a Vapour liquid pair vacJed frarn(?'-'~\
r '.,,~t,;~~:.

minutes for the Acetone, Chloroform and Benzene System to 17 minutes 1...:.V·"
D 0

the more complex 1-Hexene, Methyl Ethyl Ketone and Butanol System.
1"

r !

This p;pcess is co~tiPued untilthe'level'~f liquid in th~ still is below
. .'- - _- _- - _""

", . . - ~ ,

that of 'the hood at which point the El;>{J:>erimentalrun is aborted,' This is.

neces~~ry as the.\lapourevolved at thispoint'is not.'~resent In 's~fficjent

qU'ant~tiesto disp,lace any previous vapour evolved, thus vap6f.!rrresults may
be inaccurate at this level of liquid. the liquid-vapour contect. is als,? hot

good, thus possibly giving inaccurate results. At this point, the residue left
Ii .... 0

in the 5tH!WEll) approxilT(~tely20% of the initial char{:'Je.,
(_!

(j

4.1.1 Conclusions

',\
o

The final apparatus used to measure Residue Curve Maps has been c
{\. .:,', "", " " " ' ""'" ,',,' a\

presented together wi~h th~! experimental method to be followed.

Preliminary results for the ACetone, ~r.nzene and Chlorofcrm sy~~ have

•been presented. Thev agree wen )Nith:~ho$epredicted by theory, iryuicating

that the apparatus is sufflcientlv accurate for the measurement ot Residue
(J

Curve Maps. c,
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Chapter 5
Results and Discussion

,If

5 1· -i: .•.• mtro~ ucnon
II

InitiailyI the accuracy of the apparatus described in chapter 4

was tested using Simple 'systemsthat have been well studied. The u
"I .. _. - ..

(I

first Was the acetone, benzene and chloroform svstem. This is ao ' , . ,....

simple system that h?,s an azeotrope in the acetone and chloroform
(/

binary. The boiling poi~?tsofthe pure components are shown in table
5:;1.

.;.

The acetone, methanol and chloroform system was then
~ ~,

studied. This V\!qS chosen as itproduces a complex residue curve map

l) with a ternary azeotrope and two binary azeotropes, The boiling

points of the pure components are, shown in table 5.1.

The two systems already mentioned were used to test the
" '

accuracy of the apparatus. This accuracy Was found to be s~)fficient~ . . .

for the purpose of obtaining residue curve maps.

An entralner to break the azeotrope between 1-hexene and

methylethyl ketone was then sought ..This system Was chosen as no
data could be found on the binary system but it could be predicted

QY the UNIFAC method. It was only known that an azeotrope /J
present.
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TwO candidate, ontratners were inltially.selected; One was the

lower hoiliect, acetone and the Other was highe.r belllnq butanol. The
, ".·,r/.'~\ '~.

boiling poih;t~(of all the components of these systems are also stiown
:.:\. . ';',.

in table 5'.1'.
", ;~

\\

Acetone
C', :.;.

.•.. ,., , ~
';"c'j r3~nzene, "~,,,,~0.1

;~J

Chloroforrn 61.2

Methanol 64.7

1-Hexene 63.3

Methyl Ethyl· 79.6

Ketorie

Boiling

Point

(OC)

56.5

Butanol 99.5
..

.!I .

Table 5.1. The Pure Component Boiling Points at Atmospheric

Pressure

All the binary s\{$tems measured were rnodelled as ls explained

in Chapter 3. The expected errors used in equation 3.12 Were 0.02

(mole fraction) for the vapour cornpositlons and 2 °C for the'l

temperatures, The large temperature variance was chosen as there

was a degree of superheatlnq in the experlmental system and thus



1.)

J)

the measured temperature~:'lJguld ~,Iw~ysbe slightly different f;om
the equilibrium temperature cwith the vapo~r compositions probably

being rnoi'~ accurate. The;'standwd devlatioris-ofthe exp~ril11ental

data fr~m .the values predicted by both the literature and fitted

parameters are.quqtedthroughout. thesfJ standard deviations were,

ob;·...?ned by applying the stan",dard deviation equation to the VLE
I."",,';~ A

~~ ~

5.2 The Acetone, _~,el1zeneand Chloroform System
r t--'
~-..j

Inlti~IIYlreslque curves .for'theVarious binary systems. inthis
ternary system were measured. Th~results are<given in Appendix E.

The vapour~liquid diagrams a~t-~~g_wn7infigures 5.1, 5 ..2 ,and 5.3.
The experimental values were analys~d as Is described in chapter 3 .. '
The Mar-gu!es parameters thus obtained are shown Itt table 5.2

o -- _ .. .' . _. _ _ - ' '-'. '. _. <J , _ _. ,
together with pubH;;hed values (Sandler, 19.89). These param'eters

r: '.. (j'.. '.. ..... .' 1)

and the parali1aters quoted in literature were used to draw the ,
'. '_.\

theoretical and experimental curves ..sfiown in the figures.
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Margules

Parameters

Lit. ValuesP::J
0.00513 0.41022

-0.8871 -0;69344
"

0.38601

Ir--------:-------~....;-" -------t-------"-" ......ill! f'
.1) A31 : C~,' 0.8400 ...0.58056 if . J:" ,
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where: Acetone : 1 ..

Benzene: 2

Chloroform : 3

Taf)le 5.2. T'he Fitted and Literature Margules Parameters for the
. --0- ~

0.4302
,

":0.1801

Acetone, Benzene and Chloroform System

,
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o

Figure 5.2 The Acetone Ch'orofQrml,iquid VapourP;ot (a3~6kPa)
\'). . . . '."(~i
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Figure et3The Benzene<ChloroformUquid VapourPlotIS3.6kPa)
~ .

Generally, the vapour' liquid curves correspond W~U to the

measured data -forboth the literature ~nd fitted Margules parameters.

In addition, the two curves in all three binary systems correspond
))

(;_-
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. .. ..

is shown, Furtherli)ore'~ aUdata'shpwn WG$ user!,int~e regreasion to

obtain thethermod~hamic interaction par~h,et~i~"rhis data included '~~'>
n . ... !

both thetemperatures and composi:ti.ons Wiith the co~positions being
.. .' .' Ii ( •. /;. "

weighted a hundred fold more than the t~ill1peratures.
I .... 'f

" Ii
The residual temperature diagrar1~$ for the ~bove binary.. . :!., " ...•

systems are shown in figures Ji.4, 5;5 ~~nd5.6. The temperature
v. •••• 'i .
..... 'I· '! ..

difference is the difference betWeen'thai) measured and calculeted
temperatures. In 'the ac,~tone~benzenei and-. benzene ..chloroform
systems, the temperature differences are all less than .2 0G. This is

an acceptable value :fo.!·the apparatus as a degree of sqperheating is

expected. In the case of" the acetone-chloroform system, the
\)

temperatures are-up to 5 °C greater than those otthe equilibrium
~~."t. • •. . . ~ • .:....~...:. _,:::::••

:). \.J .....::

temperature. This probablv occurred as the heating rate for this

system was higher than that for ~he· other two binf.lry systems,
, ,. "","" ,,".. ... •. . ,,' •...'''.,.',:',',', . ... ..... .. .''',l) , ,' ...

resulting tn superhe~ting. As a lti$ult, in future eX'Q\(i~i-mentsthe
heating rate was set in such 8' way that the maximum temperature

diffF.3rence.rr:' oen the bath and the still was 5 at. It is interesting~\_ /"/-1 ' ,"to note r \\O~~J)l:te. this'$upsrheating, '~hevapour liquid curve still
,;. ..,

. ~ "'.:':::.. . . -,. . . ..

corresconds .l!3U to the predicted values, inrligating that.thevapour
r?' , ",,:. ~."-::):j .

ccritpcsitlori C~~1be me~:;I4red accurately.

I "

f?
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Figure 5.;6 The, Residual Temperature Plot for the Benzene
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figure 5.1 The RCMfor the Acetone, Benzene and Chloroform

System Simulated with Literature Parameters Cornpar.ed to

Experf.:ll1entallyDetermined Residue Curves (83.6kPi:l)
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Fi~ure 5.8 The RpM for the Aceton~,. Benzene and,Chloroform'

SY0tsm Simulated with Fitted Parameters CQmpare~ to

Experimenta,ly Determined Residue CUl'ves, (8'3.6kPa)
, )) c" '" (j ,

.~!~ '; ~I {-i
The ternary system is shown in figures 5.7 and 5.S. Each

residue curve is simulated by' integrating equatio!' 2; 1 using the

Margules parameters from literature and those fitted for the binary

systems.

In both cases the fits are good indicating that the ternary

system was V1\~asured accurately. The standard deviations are

determined"'~V calculating the predic.~(:idtemperature at, each liquid

composition and then applying relevant formulae, Once again some

superheating is Occurring but it does not seem to change the residue

curve map rti\lchl indicating that the apparatus is suitable for
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measuring residue curve maps as well as giVihg reasonably accurate

VLE data for binary systems'.

5.3 The Acetone, Methanol and Chloroform System

The residue curve map for the acetone, methanol and

chloroform system is shown in figures 5.9 and 5.10:'The values for

the fitted model are shown in table 5.3 together with the values from

'\\JiterMure (Hirata et et, 1975) •.
! :~'\-,",,-, ),

Wilson

Parameters

.F'ltted Values tit. Values

v ,

1\12 1.3775

0.6429

0.59963

1.21619

0.2747 ,0.91281

,; 1\23 ~O.0927

4.2174

0.10193'

1.49891

1.2Q03 0.88304

where; acetone : 1

methanol: 2

chloroform : 3

Table 5.3 The Fitted and Literature Wilson Parameters for the

Acetone, ChlorOform and Methanol Systerr,

//
\\
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Figure 5; 10 The ReM for the Acetone, Chloroform and

Methanol System Simulated with Fitted Parameters Compared

to Experimentally Determined Residue curves (83.6kPa)

Generally I the residue curve map is well described by both the

fitted parameters and the literature parameters. The fitted parameters

gives residue curves that are a bit more curved than those of the

literature parameters, Both fits are' good for the Istraight; residue

curves but worse for the areas where the curvature is high. This

suggests that the system is not quite at equilibrium in these areas. In

order to get more accurate results. the boiling rate should be

decreased even further when regions of high curvature are

encountered.

()
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I~!,general, the apparatus measures a residue curve map that

corresponds well to that predicted in the literature and thus the
apparatus fulfils the initial aims of this project.

5.4 The ' ..Hexene and Methyl Ethyl Ketone System

The measured vapour liquid values as well as the fitted

equation are shown in figure 5.11. An azeotrope occurs at a mole

fractionof approximately 0.8. TheresidualtemperatureplotisshoWtI
,".- : _.

in figure 5.1;t The temperatures are an at most 2 °C gr~eater than c

those predicted which is within the error expected and thus

acceptable.

Hexene
0.75

Fraction
1.05.

-If-

• E:xperiment.al Potrit.s
_ ..- Fitled CUrve

The Std Devte Lton on
Lhe I-Hexene Mole
Fraction is 0.01

figure 5.11 The Vapour Liquid Plot for the I-Hexene Methyl

Ethyll{etone System (83.6kPa)
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Figure 5.12 The Residual Temperature Plot for th~ 1.-He:~ene
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Methyl Ethyl Ketone System l83.6kPa)

'I
Two enrrainers were-then considered. The first was acejone,

.' . ....•. . '. .... .... . .'1
a low boiling entralner. It is known that acetone does not forbl an

azeotrope with methyl ethyl ketone but its.behaviour with l~h~ixene
"\':;, ,i

is not known (Laroche at el, 1992al. This system vias 'thus

measured. It should be noted that the system could have been

-predicted using UNIFAC.

The. second entrainer to be considered was butanol, a high

boiling entralner, Correlations in Horsley (1973) suggest that butanol
I
I

will not form azeotropes with any of the two primary cOll1pone'rts of

the system and thus it would be desirable by the rules of .ooher1!yand

Caldarola (1985)' This system was thus also measured.
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o

5.4.1 The Acetone, 'l-Hexene and. Methyl Ethy: Ketone System
I)
i

ThE:}vapour liquid diagrams for the acetone-l ..hexene and

acetone ..methyl ethyl ketone bin(;lXY systems are sho\iV.nin 'figures
5. 13 and 5.14. The data for the- acetone-methvl ethyl ketone system

is not very good as Can be seen in figure 5.13. This is probably due
o "':

to the fact that the heating rate may have been too high andthus the
system was not at equilibrium, giving the bad data. A good fit was

not obtained and thus published data for this system was used to

gener'ate the-tt,'eoreticcH curve. These parameters is shown.in table
. ~

5.4. Despite.the bad data, theseparation that would be obtained for

this system is, good as the difference at various points of the vapour

and liquid compositions is large, This is illustrated by the high relative

volatility of 2.3 at a liquid compcsition of 0.6.
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g D.ZS '. Fr~ction is 0.3
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Acet-ohe ~iquld Mole· Fr-ac Ltcrn

'z\
Figure 5.13 The Vapour [iquisJ Plot for the Acetone Methyl

Ethyl Ketone System (83.6kPa)
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Figure 5.14 The Vapour Liquid Plot for the Acetone 1-Hexene
System {83.6kPa}

0.3899
J,f

\-\"\

\, \'I~'~----~~~~----~--~---+~'--~--~~~'--~,
"\_ }.

0.50562

0.1806

where : acetone : 1
t-hexene ;,2

methyl ethyl ketone : 3
:1

Table 5.4 The Fitted Wilson Parameters .for the Acetone., 'l-Hexene
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and Methyl Ethyl Ketone System

In;;the .case of the aeetone-t-hexene system, an azeotrope-
c

occurs as may be seen in figure' 5 ..14. This suggests that a separatrix

may be introduced into the 'residue curve map. This \\ischecked for

later when the rem is measured. TH,~ model fits well and the

parameters are shown in table 5.4.

q

.The residuals for the two systems are shown in figures 5.15'

and 5.16. The temperature differerrces are small.t,i,ndicating that there ....'
<\. -. - _- (~)-_.---_.- _-.- ---- - _- -.- -. - .-- - - ."

is a good a9.reernerrt with the model.e!

"
• Fitted Value.;? •

1.05

" ,

"
The S t.d Deviation
of the Temperature
is 0.87°0

•

".,..
::>

I""C.....,.,,-f---.f.------'------+--+--*-__+_
O.IS 0.+5 O.?5

Acet.one Liquid Mole Fr ac t ton

..

" figure 5.15. The Residual Temperature Plo~for the Acetone 1-

'.,·';Ie)(ene System
\.
\\

J!
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Figure 5; 16,The Residual T~rnperature Plot fO.r the Ace'~ona
~ ,~

Methyl I:ttlY~Ketone System " .i

"rhe measureqresidue curve map togetherv14thth~ predicted
ret\klJ~ curves are shown in fi~lJrei!:L17. The model correlates well

e~;ePt at regions bf high curvature ~heri the system is'probebly.nct

lin equilibrium.

., :.,
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figure 5.17 The ReM for the Acetone, 1-Hexene and Methyl

Ethyl Ketone System Simulated with Fitted Parameters.

_Compared to Experimentally Determined Residue Curves

JS3.6kPa)

It (Janbe seen that the acetone-t-hexene azeotrope introduces

a separatrlx that will prevent separation of methyl ethyl ketone and

I-hexene. As a result, acetone is not a suitable entralner,

,$.4.2 The Butanol, 1..Hexane and Methyl Ethyl Ketone System

The vapour liquid diagrams for the butanol-t-hexene and

butanol-methyl ethyl ketone systems are shown in ·figures 5.1.8 and

5.19. In both cases, there was a marked difference in the liquid and

vapour compositions, indicatinr,:,that good separations will occur. The

relativ(~ volatilities for the Butsnol I-Hexene and Butanol Methyl Ethyl
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Ketone systems at Q.5 mol t-Hexene :'md Methyl Ethyl Ketone
,.

respectively are 9 an0d7 indicating a good separation. In addition, no

azeotropes occur indicating that butanol is a possible entralner.

e,
J
o
0..
III.>,
C O~2S
III
..J
J
00

Experimental POints
--_' F'llted CI.!,rve

The $ld De vlat.ion
of the Butanol Mole
Frect.lori Is 0.057

Figure 5,18 The Vapour Liquid Plot for the Butanol 1..H~xene

System {83.6kPa}
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Butanol l.tquld Mole Fr-ec t.Ion

co:;
o
III

~
0)\\
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L. '
J
o
0.
III>,.

g 0.25
III
...>
::>
00

The,fit.d Deviation
of ~re But.ertcl Mole
FracJ,lon is 0.036

Figure 5.19 The Vapour Liquid Plot for the Butanol Methyl
:;I' .',

Ethyl Ketone System (a3.6~Pa)

~, Experimental Points
___ I FIt.ted Curve

0.15 0.45 O.7S 1.05
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o
The fitted curves correlate well with the measured data. The

il
parameters determined are shown In table 5.5..The temperature
residuals are shown in figur~'s 5.20 and 5.21. Thefemperature

differences are high indicating that the system was probably'= . 0

supe~beated. 'Despite this, the vapour liquid diagrams correlate well

with the fitted values.

'"

,

0.0177

\

r.0344

0.0381

0.3886
p

.'i

,

where: butanol : 1
(.I .~)

t-hexene : 2
methyl ethyl ketone : 3

Table 5.5 The Fitted WiI$on Parameters for the Butahof.1-H~xene and
i)

Methyl Ethyl Ketone System '

<.i
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The. Residue 'Curve Map was also measured. It is shown in
fi9We 5.22. The predicted residue curves all fit well.

c
o

The SEd Deviation

(I

,-"0 0:90
ra
'-u..

~ 0.70

:L
Q)

) ~;_- - ;,

.... 0.50
01..J
Q)
~

:ns: 0.30
...>
W·.'

:n

~ 0.
10t.

:L

x -.--- .............-~,

"
I ') I 1----1--I---I----li---I----4<)C

0.10 0.30 0.50 0.70 .'0,90

But.anol Mole Fr-e.c.t.Ion" I)

,. .J
ii Figure 6.22 The ReM for the Butanol, 'l-Hexene and Methxl\\
Ethyl 'I<~tone System Sim~)lated with Fitted Parameters\\
Compared to Experimentally Determined Residue CUi~ves\\

(83.6kPa) iI

5,~5 Cor1ciOding Rertunks ()

Initially the apparatus was tested by rneasuring t\f~O known
}i

systems. In both cases, th5~ml3?sured results correlated well with

published data ilidica~ing that the apparatus gives reliable results.
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Two different entralners-were then tested for the separation of

the t-hexene and methyl ethyl ketone system. The rem's generated

from the fitted Wilson coefficients are shown in figures 5.23 and

5.24. Acetone introduces a separatrix and is thus not a feasible

entrainer, Butanol introduces no additional azeotropes and thus does

not Introduce a separatrix. It is a promising entrainer that would have
//

to, be economically compared to other possible entrainers. A possible :;
column sequence to performthe separation is shown in figure 5.25.

The feed to the system is' the binary azeotrope with various recycles

being used to get the required pure products.

c
,0 o

....;>
(JJ ,~ 0.70
t,
l.t.

<D
o 0.50
L

I' (().Ie
0'0.30

....;>
<1>
(J
<1;

-----j2-.~ I I~,
'0.30 ""Q.50 0.70

Ell1HI Ket one M',olel

I)

Figure 5.2a The 'Ca,pl~l~tedReM for the Acetone, 1-Hexene
, . _.' \_) . . ...• _ II

and Methyl Ethyl KotoWlfJSystem (83.6kPa) 0

o

'))
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Figure 5.25. The Proposed Separation Sequence for the 1-

Hexene, Methyl EthyrKetone ~nd Butanol System
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Chapter 6

Conclusions and

Recommend.ations

An apparatus was designed for the measurement of residue

curvesoand the associated VLE data. This apparatus is quick (9 days

for a full system) 1 e.?sy and cheap. to use and gives reasonably

accurate results.

Initially, two systems were measured; the acetone, benzene

and chloroform and the aceto('lb, methanol and chloroform systems.
II

The measured results; correlate very weH with those predicted from
,.:_;

the literature,"indicating th?! the results obtalnedusinq the deSigned

apparatus are sufficiently accGr~te.

An entramer to break the 1.-hexene and methyl ethyl ketone
,~

azeotrope was then sought and one was found. Butanol is this

candidate entrainer with acetone having being tested and discarded

as an unsuitable entralner.

"
In ~eneralr the apparatus performs relati\tely':wen~, giving good

data. There are however a few areas in \Which lmprovernents may be '

mad~.

The requlred bbiling rate can be determined by boiling a pure

component and cornparinq, the measured boiling point to published
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values. In this way, the heating rate for the initial heating of the

charge Can be adjusted to give a reasonable boiling temperature and

thus reasonable results.

The method of liquid sampling is manual and necessltatesthe

removal of sample of approximately Zml, Removing such a large

sample may disturb the equilibrium in the still, prejudicing the results,

It\;$ thus recommended, that some .method of liquid samplini\~ is
(', \ ~ '_' i

,inttdduced (,:I:at will firstly remov small amounts of sample :,Iand
,; '. .' "'. '. 1

\1

secondly is automated. A possible method of. s~-'mpling is usin'\;Ja '

sealed port that takes a small sample and vaporises it, sending 1the

vapour to the GC. This type of sampling should be possible to

automate, resulting in runs being done automatically and thus

probably more accurately.
, I

Satlsfagtory results might, also be obtained if only Iiquld
" .• _. . - .. ';~tj _, -'(" ..",,' " .~.- _,' ,'_ ~-;.:/

compositions were measured. However, due to the differentip}'nature

of residue curves if the initial pOint on '~ residue curve were

inaccurate, the fit to the differential equation might not be good thus (,\

giving rise to inaccurate model parameters. In spite of this it would

halve the amount of samples that needed to be ~\nalysed and in
['

general one would expect the liquid samples to be more accurate

than the vapour ones.

" It can ba seen from the residue carves in the r:esid~e curve'f.- . , ,',
, Ii

maps, where only' the liquid results are giVen that the dat() fits the

model results quite weHr:,Whether such good results-could have been
. '," . . G

obtained by regressing only on liquid results is not clear. In fact one
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might need to measure more residue curves to obtain equivalent

accuracy thus in effect negating the apparent sav.}ng in .effort of

sample analysis ..

In conclusion, an apparatus Has been designed that can
u

measure residue curves and the associated VLE data easily and

quickly. Reasonable results were obtained inqicatins that the

apparatus is useful inthe initial $earc~ for possible entralners. Jhere

are th()u~hc some rnodiflcatlons that may be made in further work .

.\ .\ .:

~\.. "

o

J
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Appendix A

Derivation of the
" ~ii"

~~ Q

Equation

Residue Curve

,~ 0 c

i', " a "''Co.nslcler the simpfe distillation system shown in figure 2.3~'A

mass balance on component j WiHyield{
!J
(I

.(:;

r-

i = 1... c

where V is t:~~molar fl~wrate ofthe vapour be(~ngremove'd and His
the molar n(uid holdup in the still. Equation A.1 may be expanded

c

usihg the chain rule to give;

elF! dx, ,,'~-"
,_','_Xi + H __ :1 :;; ""Vu."
dt G dt: J;r

A.2

An overall mass balance gives:
.:\\"

(j an - V"dt _ ... " A..3
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Combining equation A.,2 and A.3 gives:

(J

dX:!.-vx· + EJ-· == -vY:l.
:t dt .

\Nhich reduces to give:

In, an isobaric system Yi may be expressed functionally as tollows :
~ "

A.6

'1

'Equation,A.6 is abbreviated and substituted into A.5 to give:

dx1( t:) v·( t) ,
dt = ....H( t) (Y.i (x( t) ) -x.t( t) ) A.7

The liquid holdup and the vapour flow rate may then be

incorporated into the derivative and the equation may be gener~Hsed
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.:;.-

.- ()

A.S

Note that4he functional dependences have been left out of
11 , _ _ _ __ __ ',' ',_ "J 'It

equation AJl for the sake of brevity. EqctationA.a \:""the residue
. . - - . - -G

curve equation as described in chapter 2.

.,-;.\

-~

o
\,' 1

o
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AppendtxB
Thermodvnamlc Parameters Used

c.:r

The parameters used ill the WilsOll, Margules and Antotne

correlatiorts are all presented in this Appendix.

a.1 The Margules Parameters

Acetone == 1
Benzeh'e := 2

Chloroform ::: 3

2

· ~ ~\~-r_-o~.2_1~7_1_5__ i~ __ ~ ~1

\ ..0.20229
'\r ~="'"'=:. ========::::::::!J
\.

0.41022

Co-:;nppnent Margulas Parameter

A'2
0.38501

-0:69344

-0.58056

\
Table B.1 The Margules Parame,ters for the Acetone, Benzene and

;' _- : ;-,

Chloroform System (Sandler, 1989)
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8.2 The Wilson Parameters
l)

Acetol1e"= 1
Metilari'Ql ~ 2,

','

Chloroform = 3

(} \)
Comp()nel:)~

o \,',,..----::---------- ...."--t-------------.------- ..-IIa Wilson Parameter

1..21619

'\ 0.5996.3
'\;~I---------~ .......'~-.9-,1-2-8-1---------------·-

1.49891
" '

,\ 0.10193

0.88304
tI

Table B.2. The Wilson Parameters foil'the Acetone. Methanol and
ChloriOform System (Hirata et ai, ,1975)

. . " ,. '. .
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a.3 Antoine Parameters

Table B.3. The Antoine Parameters (Coulson aP)~jRichardson. 1989)
~\.l < ,'I

Component AntS AnteAntA

2940.46 ~35.93Acetone 21.5441

Benzene 20.7963 2788.15 ..52.36

o. '0'

~============================================~
Chloroform 20.8660 2477.07 ' ~39.94

o

where the Antoine equation used is :

B.1

w.pere P, is in Pascals and T is in Kelvin.
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table ~.4.. The Antoine Parameters (Hirata,et a/~ 1975)

\\Cornponet1t
.' ...,....

At1tlR AntS Ante
\',

7.02447 1161 224

7.87863 1473.11 230

6.90328 1 163.03 227.4 ;:i

6.86572 1152.971 225.849
. If

6.97421 1209..6 216

Acetone

Methanol

Benzene

t-Hexene

r.•Methyl-Ethyl
(,01

Ketona

1462.060Butan-1-ol 7.65521
~,.;.:/j====:::::::::========"==='======::!:::;::;:"';,I.;'" J:::i:::::::==::!::::::==========:!1

188.7

where the Antoine equation. used is:

ji

where Pv is in mmHg and T is in ce.
c

B.,2
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Appendix C
~

Computer Programs

The computer programs used were either for simulating the

residue curves or for fitting thermodyrramic- parameters t" the

measured data. The simulating program Was written inTurbo Pascal
:'. , " ' ' .. \\

and the =fitting program was written in Matlab,

Ctl The SimUlation Program \) .

The program listed q,elow is used to simulate residue curves

for the acetone, methanol and chloroform system. It can be

adapted to simulate the VLE values only. This is d9ne by removing

~.

the iptegration routine.
)}

:: :,"' .'
PROGRAM Residue (lNPUT,OUTPUT);

.. ;)

USES ICrt;

TYPE

tern = ARRAY[1 ..3] OF HEAL;

cona = ARRAY[1 ..~ 1•.3] OF REAL;

o
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CONST "

antacon : ARRAY[1 •.3,1 •. 3] OF REAL. .== ((1 , ',,3775 ',:)0,6429)

{1 ::::a}il
I

(0.2747 " 1 ,-0.092.7)" {2~m]
(4.2174,1.2603 I 1 ));, {3;:c}

A : ARRAYi1..3J OF REAL::: (7.02447 ,7.87863 ,6.90328);

B: ARRAy[i,31 OF REAL. == (1161, 1473.11 ,1163;03);

,C :,'ARRAY[1 .. 3] OF REAL. = (224,230 ,227.4);

svspres ;: 63600;

Taz =315;

Ta::::323;
.._:;;:.;?

Tb=353;

Tc=300;
(~

flleliq :::;;iG:\SIrv1\L.iQ.DAr;

filevap = 'G:\sim\Vap.dat';

frac ::: "O~Olr
Tcount = 1;

VAR
xf : tern;

inor.z : INTEGER;

file..Jlq,flle~_yap Ifilep,at, filenis :>TEXn
x,y/gamm,pis,xx .tern:
loop: BOOL.EAN;

Tmax, Tmltr.Top, Twr1t3,delt :REAL;

',':

t)

(!

.:.).

.' ,~.
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<.

{Procedure to Find the Temperature Extremes]

Procedure Max Min (VAH Tmax, Tmln : REAL);
...... .' '. 1

i, ..

BEGIN

Trnin : = Ta:

IF Tb <' Tmin THEN

Trt,ln : = 'tb~
U

IF re < Trnin THEN

Tmin :.= To:
IF Taz <: Trrrln THEN
Tmin :# Taz:

IJ

;,'"

Tmax = ... Ta:
IF Tb > Trnax THEN

Tm.t,lx;= Tb;

IF Ie > Tmax THEN

Tmax :.==. lei
.'.: '" '

IF Taz.> Trtiax THEN

Trnaxr= Tail

END;

{Procedure. to Determine the Gamma Value}

Procedure Gamma tx.tern:
I:. VAR ..Jm :terXll;

:.,j
"i "

VAR
sum1,sum2,sum3 : tern;

i,j,k : INTEGER;
i'
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BEGIN

FOR i := 1 TO 3 DO
BEGIN

surn'l Ill :== 0;
sum2[i] ::::::or

1''' sum3[iJ ; == 0

5Nt>;

FOR J : == 1 TO \\3po
BEGIN .\\

"
FOR k : == 1 +o 3 DO

BEGIN..
sur,n3[j] : == xlkl *antacon[j,k] + syrn3[j]

END

END;

FOR i: == 1 :TO 3 DO
//

'BEGIN

FOR j : == 1 TO 3 DO

BEGIN

surn l [iJ : == x[j] *antacon[J,i11$um3[j] + sum1 Ill

END

lEND;
;FOR i : == 1 TO 3 DO

BEGIN
FOR j ::::::1 TO 3 DO

BEGIN

sum2[i] : == x[j] "antaconli.]l + sUm2[jJ

END

END;

APPENDIX C~
iJ
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jf

~ORIG03DO

BEGIN
'\

gam[il ::= exp (1-sum),f[iJ-In(sum2[i]))

END
END;

{Procedure to Determine the Vapour Pressure}

Procedure Antoine (T : REAL;

VAR P : TERN);

o

VAR W
(i',~

component: INy EGER;

BEGIN
FOR component: := 1 TO 3 DO

P[component]

:=1013251760*exp(in{1 0) *(~)[componentl-(B[c:omponent]I(T-273.
II15+ Clcclnpcnentlrll)

END;

jI
II

('-~i

{NormalisIng Procedure}

Procedure Norm (vee .tern:

VAH vee 1 .tern):

VAR
k : INTEGER;

vee_sum :REAL;

BEGIN
vec_sum : =0;



G o

"

_pA_G_E_-_11_7 ----~--~-- ~S,~--__A-P-P-EN_D~IX-·~C
\\

FOR k : d~1 TO 3 DO

Bt:GUSlJ
vec_sum : = vec_sumo + veclkl

END;
FOR k ::::::1 TO 3 DO

BEGIN

vecl lkl : == veclkl/veo sum,> .... ':"_" .. ', -

j:ND

END;

[Procedure to Determine the Vapour Composition}~;
Procedure Vapour Comp (Pi,gam,x:tem;, -

VAR y:tern);

VAR
z :.lNTEGER;

'(1 .tern:
I~

BEGIN

Fi~)Rz: == 1 TO 3 DO

BEeTN
yllz]": = pi[z) *x[z] *g~,m[z]/sy@pres

END n,; .

Norm(yl,y)

END;

(J

Il

i\

/f
1/
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APPENDIX C

{Procedure to Integrate the Curve}

Procedure Runge~K_Con (y2,x2 .tern:
VAR k :t~rn);

\fAR i),I '\
b.step : INT~;GER;

C)

BEGIN

step: = 1.0;

FOR b :==1 TO 3 DO
(i

BEGIN

klbl := step*frac*(y2[bl-x2[b])
···END

END; .

{Procedure t6. Integrate the Curve]

Procedure Hunge_Kutta (x3,y3:tern;

VAR nextx .tern):

VAR
tcount : REAL;

h/i: INTEGER;

xx,k1 ,k2,k3tk4,k :tern;

BEGIN

Tcount :.:::2;

Runge_K_Con .(y3,x3,k1);

FOR i: == 1 TO 3 DO

xx[iJ: =x3[iJ +0.5*k1 [iJ;

(/
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For i: == 1 TO 3 DO

xxUl: =x3[jJ +O,5*k2[il;

Runge. K Con (y3,xx,k3);

For i; == 1 TO 3 00

xxlil; =x3[i] +k3[i];.

Runge K Con (y3,xx,k4);

For i~== 1 TO 3 DO ",
~;?_)

k[i]:::::(kl [i] +2*k2[il +2*k3[iJ+ k4[j])/6.;

For i; == 1 TO 3 DO

nextxlil: =x3[iJ + k[iJ;

Norm (nextx.nextx): \1

IF «nr < 0.0001) OR (x[21 < a,OOOl) OR (x[3] < 0,0001)

THEN
\-,'1

BEGIN

loop : == false

END

END;
{Procedure to Determine the Temperature at the Point}

"
procedure Temperature (Tmin,Tmax :REAL~

x,gamma:tern;

VAR Temp:REAL);

VAR

nextf I nextY, Y_intrslope "leftT,rightT, leftY ,rightY : REALi
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i!
FUN(~TION Prfr~s(x,gamma:terni

=: .r:', ,

Tl:REAL):REAL;

VAR

klNTEGER;

P :REAL;

ParP :tem~

,~-:-,

BEGIN
;j

P.," r( .
•~"__I VI'

AntOine(Tl,Par?);

FOR l: = 1 TO ~.DO
,

BEGIN

P: F P+xli] *ParP[i] *gamrna[iJ
END;

Pres:=P

END;

BEG.IN

leftT: = Trnin;
,~,

rightT: == Trnax:
"

REPEAT
"

left¥ : :::.isyspres~Pres(x/ganirria,leftT)1

. right¥: 1isyspres'-Pres(x ..gamma,rightT);
,i . . ,") , ,~,

slope: = (left¥~rightY)/(ieft-r~rightT);

¥_Vit .:== leftY~slope*ieftT;

next'F : := "'Y;_lnt/slope~
next¥·: =syspres~Pres(x,garnma,nextT);
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IF ilextT*leftT <0 THEN
BEGIN

rightT; =nextT;

righty: ; nextY

END

ELSE

leftT: :::;nextT;

,left't::::;nextY

END

\. UNTIL (AE3S{rJextYL<O.000 1);
~":-...

Temp :,::;i n~\:tT" "')i
END; ,/ ' 'C

{The M(~in~gram Body}
BEGIN ,.

? := 1;
ASSfyn (filedatJ ~g:\sim\amcr.dta;).;

Res~f (filedatl:

Assign (filares,'g:\sim\amcrr2,dta');

Rewrite (flleresl:
WHILE not eoftfiledat) DO

BEGIN

WRITElN (z);

WRITELn (fileres,z);

z r= z+l:
,HEAD (filedat,)ffI1 n.
READ (filedat,xf[2J);

READLN (filedat,x;f[3l);

APPENDIX C
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<',

loop: ;;: true;
Max_"Min (Tmax.Trninl:
X: =: Xfi ,

", " .'~
Garnoma(x;ga~m) ;"

'I II.Temper.,ture. flTmin,Tmax,xtgamm,Top)c!
"[write :,=: TJP - 0.5; .~, "-';,

REPEAT

Garnma(x,gamml';i
Temperature (T~in,Tmax,xl.gahJm/ToP) t

Antoine (Top,Pis);

VapOt~r_Comp{Pjs,Gamm,x,Y)';

Ruqge__Kutta(xN .xx);
IF (Top;,> Twt(ite) THEN

J) :.!.:

BEGIN~

(:;

Twrlte := Twrite + Tcount:

Writeln{fileres,x[21:,{3:4r' ',x[1J:8:4);

il .),]
Aj:)PF.NOIX C

I[
(,

\\

c, Wiiteln{x[31:8:4,x[21:8:.ix[11:8:4tY[31;8:4,'i/[21:8:4,y[t]:8:4,(Top-2
"7j:'~5}:7,~3); ,-,

END;

x: =: xx:
UNTIL (loop =: false);

)~ < - ~'I

END.; "(;"
o

Close(filedat) ;

Close (fileres)

END.

'f)

.:
l

(J'
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C.2 The Parameter Fitting Programs
/f
If.,

The following prqgram was written to determine the
paramete;s for!;th~ gqg1one, methanol and chl~~oJorm system.

Main Program

%Definitions '& InitiaHsationsAcetort~;bhloroform,Benzene. .. ' ". .',". ).:',

A12 == 0.0051277;

A13' = -0.8871;
A2f = 0.4302284; I,

A23 = -0.180261;

A31 == -0.84;
A32 = -0.180135;

AO(1) = A12;

AO(2) == A 13;

AO(3)= A21i

AO(4) = A23;

AO(5) == A31;

AO(6} == A32;

load ternpz.asc F,(L "
~--=.

x l = temp2(:,1); %Acetone

x2 == temp2(:,2)~ %Benzene
x3 ::: temp2(:,3); %Chlorofbrm
yl := temp2(:,4);
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y2 == temp2(:,5);

y3 ::: tomp2(:,6);

'T = ternp2(:,7);

oPtions(1{,:) = b;
\(

options(t4) = 1000; % Maximum iterations

options(2) = 1e-10;

options(3) = 1e-2;

[A,options] = frpins{' mindiff2' ,AO,options,[],x1,x2,x3,y1 ,y21y3,T) i

dlsp (A)

disp (options);

Procedure ll1indiff2

function Error = fun{AO,x1,x2,x3,y1 ,y2,y3,T)i

options(1) :::;0;

options(2) = 1e-6;

z = length(T);

disp (zl:

gamm1 = 6xpl(1 - x1) .* (2 .* x'l .* (:x2". * AO(3) + x3 .* AO(5»

+ AO(1).* x2.* (1 - 2.* x1)+AO(?).* x3.* (1-2.* x)t»));
gamm2 = exp((1 - x2) .,* (2 .* x2 .* (x1 .* AO(1) + ?::?" AO(6))

+ AO(3) .* x1 .* (1 - 2.* xz) + AO(4) .* xa .> (1-2.* x2)));

gamm3 == exp{(1 - x3) .* (2 .* x3 .* (x2 "* AO{4) + x l .* AO(2))

+ AO(6) .* x2.* (1 - 2.* x3) + AO(5) .* x1 ,* n,~2.* x3}));
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for i == 1.z,

tttm ==
frninsr'temp", T(O.cptions.Il.qamm 1(0 ,gamm2{i) ,gamm3(i},x1 {i},x2(i

),x3{i)) ;

end;

vapl = exp ('21.5441 - 2940.46 .I {ttt- 35~S3 .+ 273',15}};

vap2 ::::exp ( 20.7963 - 2788.15 ./ (ttt ..52.36 + 273.15));

vap3,:::: exp ( 20.8660 - 2696.7)) ./ (ttt - 46. i6 + 273..15)};

yy', = (gamm 1 .* yap l' .* xl) ./ 83600;

yy2 == (gaml112 .'~ vap2' .* x2) ./ 83600;

yy3, == (gamm3 . * vap3' .* x3l .f 83600i
"

Errl == (yl - yyl }JO.02;

Err2 == (y2 - yy2) ./0.02;

Err3 == (y3 - yy3h/0.d~;
Err4 = (T - ttt') ..12;
Error = Errl.(:)'*Errl(:) + Err2{:)'*Err2(:) + Err3(:}'*Err3(:)

+Err4(':)'*Err3{:};

l' ()

Procedure temp

function temp = fun(T,gamrnl,gamm2,gamm3,xl,x2,x3);

vap1 = exp f 21.5441 - 2940.46 / (T - 35.93 + 273.15));

vap2 = exp {.20'..7953 - 2788.15 I' (T - 52.36 1/ 273i!15));
"vap3 == exp ( 20.8660 - 2696.79 1 (T - 46.16 + 273:15));

temp, :=abs( xl '* vap1 if gamm1 + x2 * vap2 '* gamm2 + x3 '*
garmn:j'it- vap3 - B3600};

/l
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Appendix D
,,',

The· sen Design
f

;) ." ~~'"
The dimensioned desfgl;Ts of the large and small stms~a~

shown in figure D.J and D.2. ,Note that the internals of the still ate
all in one piece and can thus tlijvrremoved for cleaning.

f, (:?:!
I)

~.,;.

()

'.>0 oj;

Figure O.1 The. ~mall Still

.~'.
;~
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Figu~~'D.2The large .still
",....:..

!)

ApPj3ndixD

o
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Ii "'

Experimental Results (:
f

)J

()

.. '

Liquid
Fr.ae

ACFj· Ben-
toM zette

J.'

Run 1 0::746 0.101
•c'

'" 0.122 0.106
:_;:.

,;0.71() 0.109

10.706 0.118
.".

0.~g1 0.125

0'956 0.137

:,0.621, 0.147

Chloro-
form

Vapour
Free

0.089

'.

Ace- Ben-
"tone zene

54.5

form

. ...

Chloro- Temp

'.'

0.7(35 0.094 0.141

0.741 0.1 03 (r.)t5S

0.153 ..' 6.791 0.079 0.130
, ' .

0.172 .'0.793 ,,0.081; 0.126

0.181 0.7135 0.085 0.130 55,;~~~d~,~~~----~----~-r--~~
0.176' 0;7S{ 0.131 -fA 58

0.194 59.5

0.207 61.5

0.232 0:107 O"P 3 0.1.80
.

61.51'

'0.510 .... 0.191
.- 0.40;?;~":0.249

Run 2 '0.415 0.108

0.424 0:1 12

0.419 0.118

0.409 :.0.1,28

0.394 0.138

'0.332 0.174

0.212 0.227

0.299 0.249' 62.5

0.348 ,; 0;$,27; 0.169,. 0.304. 64.5

580.477 .•.. 0.549 0.058 0.393

0.464 0,481 0.086 0.433

0.610 0.1'41

58

0.463 0.478 0.089 0.433
.;' ".

0.463 0.459 0.096 0.44,:1

58.5

58.75 I

.,\\

00494

0.468 ,0.440, 0.t03 00457
' .

0.376 0.1,29 0.4'94

59

~ .
Table E.1 The Experimental Result$ 1PI'the Ternary Acetone, Benzene ..ind'Chloroform
System

0.501 0.326 0.160 0.514

65

67.5
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Liquid Vapour
Frac Frac

Ace- Ben- Chloro- Ace- Ben- Chloro-, Temp
tone zene form tone Zene form

Run 3 0.458 0.332 0.210 0.580 0.232 0.188 58

0.431 0.357 O.2i2 0.564 0.255 Q/iS1 58.5

0.395 0.392 0.2.13 0.536 0.274 0.190 ,; 59

0.353 0.425 0.221 0.493 0.305 0.202 60

0.303 0.466 0.230 0.438 0.342,. 0.221 61.5

0.237 0;'529 0.235 0.374 0.387 0.238 62.5

0.157 0.621 0.223 0.286 0.457 0.257 64.5

Run 4 0.136; 0.141 0.722 0.097 0.051 0.852 55 ,
,

0.142 0.150 0..707 0.125 0.091 0<784 59

0.141 0,161 0.692 '0.134 0.105 0,761 6Q

0.143 0.177 0.680 0.140 0.122 0.738 60

0.141 0.197 0.662 0.144 0.139 0.718 60.5 ;j

0.139 0.222 0,639 0.145 0.161 0.694 61

0,'133 0.257, I 0.610 0.144 0.181 0.674 01.5

0.116 0.316 0.568 0.139 0.219 0.642 6.2
.; I.•

0.118 0.336 0.547 0.121 0.285 0.593 66

Run 5 0.193 0.358 0.449 0.300 0.216 0.484 59.5

0;,189 0.376 0.435 0.249 0.270 0.481 61.5

0.181 0.384 0.435 0.238 0.284 0.478 61.15

0.171 0.396 0.433 0.:!28 0.295 0.477 62.....;._.._

0.142 0.456 0.402 0.196 0.338 0.466 63.5

0.119 0.496 I 0.385 0.174 0.369 0.457 64

0.095 0•.538 0.367 0.150 0.407 0.443 65

0.060 0.630 0.310 0.150 0.407 0.443 66
Table ~;.2The Experimental R£:s.ults f.or the Acetone, Benzene and Chloroform Syvtam
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~-~, --------~--~------~~--~~~----------~--~--~~i ~I

Ii
J_!
II

Liquid
Hac

Ben-
zene

(i

( \1

~Vapour··
'Frac "

Ace-
tone

Bed- 0 Ohloro- Chforn- ., Temp
form .'

Ace-
toneformzene

0.170

0.078 0,170 0.443 0.3137 650.q28 0.2.94
Table E.3 The Experimental Results for the Ternary Acetone, Benzen~ and CI:doroforrn'
System "

o

\)

'{)

Ii

i\
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(,\
)1

\\

"f)

Liquid
Frac

.

Vapour
Frac

Ace- Ben-
tone zena

Chloro-" Ace-
form .\\ tone

Bel1- Chloro-, Temp 'V

zens form

0.095 0.000 52.45
i'

0.100 0.000 52.4

0.106 0.000 52.15

0.110 0.000 52.4

0.121 0.000 52.6

0·.131 0'.000 52.8

0.146 0.000 53.05
f

0.17'1 0.000 54!./l

U rr \;

0.225 0;000 55.:45

0.231 0.000 56.25

0.251 0.000 56.7

0.243 0.000 57.) u

0.323 0.000 51.65

0.306 0.000 58.8

0.287 ,,0.000 60.35

O.Q@O
0

0.322 r. 62.15;-
if t:

63.9'0 •.29:i 0.000
"0.364 0.000 66.05,

0.501 0.000 68.35

Run 1 0.860 -0.140

0.84.8 0.152 0.000

0.000 0.905

0.900

0.839 0.161

0.827 o.rzs
0.812 0.188

0.792 0.20S

0.764 0.236

o.ooo
0.000

0.000

Q,OO\.)
f) ,~

0.000 0.8;54
~,

0.828

RUIl.2 i 0.583 "0.417 ' 0.000

0.550

0.717 0.283 0.000

J/
0.514

Q.894

0.890

0.879

0.869
"

0.775
r::;J

0.76S

0.749

0.415

0.351
t I

6:'292

0.228

0.154 0.846 0.000 0.499
table ~E.4The Experimental Pat~ f?f tne Acetone anI Benzene Binary System

0.713

0.678

0.70S
"

0.636
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Liquid Vapour
I;,Frac ':'

Fraq

~~5Ben- Chloro- Ace- Ben- Chloro- II Temp
zane form tone zene form

~\'

Run 1 O.9/_~0 0.000 0.100 0.898 0..000 0.102 53.8
~\ 10----...

:0
0.808 0.000 0.192 0.870 0.000 0.130 54.3

0.793 0.000 0.207 0.854 0.000 0.146 06.6

0.766 0.000
i.

0;234 0.832 0.000 0.168
f 59,,15

0.06)0 ~:'o,281
'/~

0.719 0.808 " 0.000 0.192 59.8
v

0 0.68S O.OO( .)O.3~2 '0.790 0.000 0.21.0 60.2
i. ~

0.604 0.000 0.3'i)6 0.682 0,000 ' 0.3lS 66';5 r;

Run 2 0.442 0.000 0.558 0.482 0.000 0.618 58.45

0.459 0,000 0.541 0.474 G.OOO 0.526 60.2

0.446 0.000 0.554 0.463 0.000 0.537 &2.4

0.431 0.000 0.569 0.449 0.000 0.551 63.2

0.409 0.000 ,I, 0.591 0-425 0.000 0.575 65.1

"Run 3 0.288 0.000 0,712 0.233 0.000 0.767 58

0.273 0.000 0.7'l7 0.236 o.coo 0.764 58.2

0.273 0.000 0.727 0.246 0.000 0.7540 58.45

0.283 0.000 0.717 0.2Ei8 0.000 0.742 ['8,65
.::..

:0.1'100.290 0.000 0.271 0,000 0.729 60.2

D

0.663 0,000 0.337 0.776' 0.000 0.224 58.8
Table E.S ...r....-h,o-=-E:xp-e~I'I'-m~e-nt:-a""I""'Re..Ls-u""llts-+f,o-r""th""le""A-=-c-e""'tQ-n-e..Ls..,..n.."......dc:T"'.h....'lo-ro"""o-r-_m....B.....-na-r ....y""'S:-yStefil

I
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Liquid
0

"Vapour
f.; Frac Frac

Chlaro- .
....

Ace- Ben- .Ace- Ben- Chloro- Temp
·0 tone zene form tone zene form 8

RUn 4 ,- 0.SS1 0.000 0.1(:19 0.926 0.000 0;014 54.1
,

(i 0 ..848 0.000 0.15,2 0.911 0.000 0.0139 53.8

0.822' 0.000 0.178 0.896 0.000 0.104 .' 5.4.1
,

c;

0:800 0.000 0.200 "0.879 0,000 0.121 54:55
.,' (;

..
0.768 0.000 0.232 0.962 0.000 0.138 55.1

.; ,;
'0.720 0.000 c 0.280 0.847 0.000 0.153 55~~

co !t;-
0.663 0.600 0.337 . 0,.776 0.000 0.224 58.1e..

Table E.GThe Experimental Results for the Acetone and Chloroform System '1"--
"

(,

'I U

r;..

o
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Liquid
Frae

VapOlJr
Frac

Ben-
zene

Ben- Chloro-
zena form

Ace-
tone

Ace-
tone

Chloro- Temp
form .

=;

0.938 ~ 57.4i<',-,.\I· ", .. ,
0 ..933 572~.jC,L.

Run 1 0.000

" 0.000

0.000

0.000

0.150 0.850

0.155 i) 0.845

0.062

(J.067
ij

0.842 0.000 0.067 0.9330.000 0.158 58

0.000/1 0.088 0.9120.000 0.171 0.829 59.05

0.000 0.099 Od~01 59.350.000 0.189 0.811

0.000 0.106 0.894 59.550.000 0.207 0.793

0.000 0.116 0.885 1(59.850.000 0.228 0.772

0.000 0.128 0.872 60.25p.OOO 0.246 ) 0.754.
0.000 0.273 0.727

.....,
0.000 ,,0.148 0.852 61.1

0.789 .v 6{.35RUn2 0.00'0 0.451 0.539 0.000 0.211

0.693 . 64.25 I·0.528" 0.000::.; 0.3070.000 0.472

0.516 0.000·' 0.3160.000

0.489 0.000 0.329 0.6710.000 0.51 t

0.6610.461 0.000 0.339 65.40.000 0.539

0.000 0.348 0 0.6620.000 0.528:;: 0.472 65.65

0.000 0~538 0.000 0,,361 65.80.6390.462

65.95o.ooo 0.3710.000 0.562 0.6290.438

0.000 0.388 0.612 ,,,=,; 66.650.4490.000 0.551

0.478 0.000 0.289 0.711 66.850.000 0.522

66.950.392 0.000 0.412 0.5880.000 0.608

67.650.000 0.455 0.5450.3700.000 0.630
Table E.7 The Expei'lmental Results for the Benzene and Chloroform Bmary System
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.,

Liql,lid Vapeur
Frao Fmc

Ace- Meth- Chloro- Ace- 'Math- Chloro- Temp
tone anal form tone anal form

Run

U

0.675 0.:218 ,o..ld7 0~703 0.2?3 0.074 51.~~ I"
c:

0.648 0.230 0.121 0.694 0.233 0.073 51.95 "

> 0.6f1-Z 13'.236 0.122 0.680 0.246 0.074 51 .85 "

0.639 0.234 0.127 0.66ge 0.256 :~O.075 52,

0.637 0.234 0.1 29 0.662 0.258 0.080 52
"

0.616 0.225 0.160 0.653 0.256 0.090 52.05

0.595 0'1~O6' O.19f) 0.587 0.236 0.178 5~~15

0.593' 0.1;,!34 0.223 0.624' 0.232 0.144 56.25

" a.Si36 0,l3€t 0.276 0.562 0.215 0.224 '57.2 .,'.
,

0,438
.,

Run 2 0.326 a.t.07$ 0.097 0.417 0.145 5\2.95

'g.398, 0.120' ,'"
I

0.314 0.578 0.108
"

0.482 53.1

0.614 0.092 6\.376
,~

0.294 0~506 0.118 5:;1
.-__..,~ ~",,~

g.62? 0:096
,,.,,,.<:/

0.277 0.320 0.479 "0:,2:\)2' 52.85

0.247 0.664 0.089 0.335 ,0.560 0.105 53

0.222 '0.688 o.oso 0.310 0.584 0.106 55.65
u

0.188 0.740 0.072 0.279 0.619 0.103 56.65
.:

'0.136 0.813 0.051 0.238 0.676 0.088 57.1 5
r;.

0.097 0.862 0.041 0.196 0.731 0.073 58.1
Table.E.8 The Experimental Rc!slllts fpr the Acetone. Methano and Chloroform System,

(, . .' (I . .... •.•.. . :::.... '_
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.•.. Liquid Vapour
~l Frac

"
Fraction ,

';Ace- Meth- Chtor- Ace- Meth- Chlor- Temp
tone anol oforvp tone .anol of arm

.;/k~

Run 3 " 0.367 "0.350 0'.2&3 q.369 0,,:53;;:; I 0.300' [,53.4 -
\1 ,··' ..... ·.r~

0'.384 -0.303 0·313 0'.371 0.355 0'.275 53.7

0.38S 0.287 1,0/3.24
I~

0.373 0.346f) 0.280' 53.7

D.39g 0'.264 0'.339 0.377 0.337 0.286 ·53.7

0.406 0.230' 0'.365 ;0.385 0'.314 0.30'1 53.95
i.

0;417' 0·19p 0.38S 0.394 0.288 0'.317 54.3

0.43~,j ,b!13B '0;'425 0'.410 0.259 0'.331 54.9 r:
.'

0.075
~~.

0'.446 0.479 O~~31 0.215 0.355 55.S .
I 0.,443 0'.0'24 0'.533 0.460' 0.174 0'.366 56.9.5

RUIl 4
" "

0'.125 0'.608 0.267 0'.111 0'.539 0'.350 53.3
~)

0.124 0'.622 0'.254 0.1 1.4 0.550' 0.336 53.5
\'\ 0:122 0'.646 0'.232 0'.118 0.563 0.319 53.4

'0 0.122 0'.663 0.215 0.123 0.573 0.30'3 53.6

0'.122 0'.678 0'.20'0 0:128 0',586 0'.286 53.75
,';;'

0'.120 0'.695 0'.185 0.131 0.60'0 0.269 55.2

0.116 0'.720 0'.1'134 0'.133 0.61.3 0.254 57.8

0'•.115 n

i

d'.1560'.728 0'.134 1,·0'·631 0'.234 58.2

0.106 0.763 0'.131 0'.135 0.649 0'.216 58.65

0.098 0'.790 0.1 12 0.134 0.673 0.194 59.25

0'.082 0.~35 0.0'83 0.124 0'.715 0'.160' 61.6
(.~,

Table E.g The Experimental Results for the Acetone, Methanol and Chloroform Ternary
System
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Run 5

Run 6

"
APPENDIX E

Liquid'
frac

,

,.Vapour
Frao

form
: Ace-

0..441 52.5

Meth- ChlorQ- Ace-
torrs. anol tone

53.05

arlQI form
Meth- Chiaro- Temp

0.473 0.246

0.256 0.534 0.21.0 - 0..267 0.512' 0.221

0.500 0.229

'0..255 0.529 0.216' 0.281

0.258 0.523 0.218 53.20.271

0.248 0.555 a:.·~96 0..263 0..5'21 .0.216 53~~ __+- 4- -4 ~ -+v~ ~ __ ~~.
0.246 0..559 0..195 0..262 0..526 O-~~12 53.1" '

o

0.242 0..567 0.,191 0.259 0.532 0.2e9 56

53.2

0.23ec; 0.583 0.182 0.255 0~5~3 0.20.2
1-- ......::.if--- .......---4-----f-...:....i"
0.219 0.616 .0.165 0..248

58.15

0.239 . 0.5.82

0..558 0.194 ,,59.015'

0.184 0.688 0..127
:'0..480.. 52.5

0.178 59,65

o

0.151

0..137 0..383

0,225

0..255

0..282

0..396 0.453

/ - .
.0.2e~t/ 0.259 0.456

t, f

.0.252 0.30.5 0.443 0..193 0..380. 0..427 [;4.4

0..351 0..424, 57:5

0.315 0..429

0.295 0..423

0..227 0.341 0..432 0..1£38° 0.396 0..436 f!{2.7

o 0.190. 0..379 0.431
.
0.3510.208

0.377 0.071 0.552

58.35 iD Cl

56.6

Table E.1 () The Experimental ReSUlts for the Acetone, Methanol and Chloroform
Tlilrnary System
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APPENDIX E

Run 7

l'.!

LiqJ.,lid
Frac

Vapour
Fra9~----~----~----~--~--~--~-r------~----,

Temp

c,

0.369

0.423 0.361

Ace-
tone

--:'
0.132 00409 0.458 5:2.5

Meth-
anol

.r >

Chloro- Ace- Math-
form ton~ anol

Chloro-
form

0.170 0,468 0.095 --;; 0.3640:362 51;;70.041

0.179 0.378 0.443

0.190 0.371 0.438

0.199 I·0.365 0.436

0.296 0.363 ..00431 0)'137 0.415 0.449 52.2

I---::-:....::-- .......:.....:~~y:::::::::: ::::::::::';:::~B~~
.I------Io-....:.,""---+--- ...----i----+;l"'-' ----11-----4:, _( '",

0.240 O.J~:81 0.429 0.169 0.412 0.419 -'5'aJi65 ,),~ I--l

0.316 0..430 0.173 0.4'15. 0.412 52.65 ~0.254

0.117 0.389 0.494 5204

0.S99 0..474 52.350.126

0.178
I',

0.421 0.401 ,I 52.70.2.'7'1 0,292' 0.437 .,
0.433 .0.3960.287 0.267 0.446. 0.171 52.7

0..191 0.419 0.390 53.15

0.329

0.300 0.236 0.459

0.4190.197
c.

0.474
-;

0.200 0.381 53,65

0.346 0.167 0.318 54.250.191 0.431

0.229

0.382 0.077 .0.541

0.116 0.516 54.950.401 0.370

0.216 65.85

Crable e.11 The. E:xperimental Results, for the Acetone, Methanol and Chloroform
Ternary System

:.\
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o
(\

/I

RUrle" .

"

Liquid
Frac

Vapour
Frac:

52.7

Ace-
tone

Meth- Chloro- Ace-
anol form tone

"}
M'eth- Chloro- Temp
anol, form !":;'

0.404 0.496 0.100
J/

0.499 ,0.417. fo.083 52.4
!

0.389 0.514 0.098 ;:,0•.4;;76 (),440 0.085 52.~;,;

0.~84 0.509

0.374 0.518

0.107
I,)

0.Q850.462 0.4·53 52.55' 'k
,

0.108 0.450 0.465

0.362 0.531
:, <.

0.108 0.431 0.479

0.086 52.6

0.090 52.65

0.543 0.1,06 0.420 0.485 0.095
:1.)

1-0_.3_3_6......_0_.5..,.6_4_'..f..".0...._1_1....0~ ....0_._3....94-_....jr_0-.....5-0_3_,_"....0-.1-0...'2--1__5-2-.7-~'--Ic c
'"

0.324 0.566 0.110, ~ 0.379 0;516 '0. J 04 52.75~----+-----~---'.,k-JJA'-.'..-- ..--+-----i,\~••~----~-----~~
,1--0_.3_0...0--l._0_.5_8_8-+_0lJ3~,.,.!-.-b-.3-5....7-~0-,5-3,-1--+_'b,...,....11_2_4....5~2....6_,_,.c,o.l

". ~~)

0.071 0.476." 0.453 0.030 0.386 0.583 50.5~--~~, .~--_~~__--~+-~--4--- __-~__-~~
0.404 O~563 50.7

d.351

0,077 0,479. 11.414 0.037 0.423 0.54:q~" 50.9
0.08+ . 0.~2' t;4f ,.>!-Il ... 0-.-0-4-2-....'·-O .....4...3.....7-+-0-.5-2-1........'+-,-,5-:'1-..0....5~

1--0~_0.8",_a-+o-o...,..fj,f),_!5...;.._0_.4_O_8_!--O_.0_4_7....-;.._0.....4_4_8_'...' _0...._50_5_~c5_1....0_. 5"'''--1

0.397 0.050 '0.455' O'A95 (~/.10.094 0.509
\ "';

iI

0.518O.HIO

0.104 0.527

0.11p 0.532

0.122 0.551

0.068 0.464 0~i479

G~0'61 1
\}

O.4n 0,.469

0.073 0,487 OA40

O.Qf)O 0.500 0.,410

0.38,:2 61.25.~'_~~~~-u---+~~~b- ~
0.369 51

0.328 52.2

0.134 0.588, 0.278 0.111(, 0.529 0.368 53 J
Table E.12 The Experimental ReSUlts for the' Acetone, Metl1anOT.and Cl1roroform
Ternary $ys~em "

Ii
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u
!i
b

. "

Uqu![;i
Fraction

6 _I!
.~i.

Vapour
Fraction ",

}'Met< C'..:QHexane But\'lt'lOl Hexe(!e M~k Temp> ,',

" '--="~. 0

0.555 .. 0.180 0.930 0.S11 0.158 59.30
t: .....

0_.558 0.175 0.021 0.82,6 0;152 59.40
~~;;-

'.;;:;

0.508 0.177 0.022 0.8.25 0..154 59.86" ___
0.453 0.180 :"0.028(, 0.814 0.158 I "GOteBo

'.

0.407 O~181 0,034 0.,a03 0.163 60.7.0

0.360 0.181 0.041 0.749 (~" 0.210 61.65

0.'045"
:

0.307 0.180 0.777 0.178. 62.30,
0.268 0.178 0.045 0.7~9 0.186. '63.00

0.000 0.438
c:·~

0.266 0.635 0.562 62.50
"'

0.~48 0.653 0.000 0.551 0.44$ 62.90
I,

t)

0.4630.228 0.655 0.001 0,.536 63.40"

0.205 0.670'0 0.002 0.615 0.483 64.15
I'

0.181 0.686
,.

0!002 0.495 ,p.50S 64.80
\' ii

O;1}i4 0.691 0.004 0.463 0.533 65.60
II{

0(ifi9O 0.703 0.006 0.437 0.557 66.50
" .... '"

0.105 0.698 0.010 0.390 0..099 67.50
('

J636'0.087 0.701 0.010 0.355 68.120

0.0157 0.695 0.027 0.279 0.695 (i10A5

0.,367.

0.099

0.099

0.117

0.126

O.1~3

0.248

II II

RLih" .....0 .....2""'6...5_·-+---+---+ .....--""'-ll----_,_--~.......~--""'f
0.268

Run 2

\':'

1--- .........

0.3H'

0.411

0.156

0.167
!0.197

. 0.212

. - '.
Table E.13'The Experimental Results fQr thi~ Butanol" 1-Hexepe and Methyl Ethyl
Ketone iernary System ' . .

'\:,1
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.APl~ENDIX E

Mapaur
Fraction "

_.)3~~ariol" Hexane ; Mek '.'i Butanol Hexane, Mek :::_Temp

(I

0.214

Run :3 (},040 0.524 0.436 ..0;004 0';718 0.278. 60;30.~----~----~~----~-----~~--~~~~~--~,d.181 0.417" 0,705 0 0.28B eo.so
O.€;a4 " 0",,394- 61.30

0.673 O;~1:4 61 .65
': il

0.654 0.330 .62.30

,', 0.638 0.343 62.80

0.358
....

0.611 es.i a'
0.894

:

0.092 SB.40

0.890 " 5e.OO.~. 0.089"

.
0.229 0.362

..>
O.~9(l 0.283

0.326
.

0.247

0.lS1 0.722

\\

. <> '
0.379 0.526 0.874 ' 0.092 '{ 60.20

". . " .. "" ..
00489 0.416 ". 0.095" 0.043 0.859 0.09a 50.BO

Tab:e· E.14 The' ExpenlTlental Resorts' t9f':the :Butanol, 1-Hel'teflt'f anti L ethyl I:thyl
Ketone Ternary5Y5t~m' . ',' '" .
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o

ti4tJid
FfElctiim

., .1~

Vapour
Ffi:lc~lon

»: ,>

,

" "'" ,~1:)!ahoJ
, '

HexElhe Hexene .'. Me~ ..
.,
Temp ,.'ButanolMek

,)

0t394 0.606 0.000' 0.026 ,0.974 0.000 60.50

0.475 0.525, .o.oco o.OSO 0:9/,0 0•.006 .., 61.00

0.552 0.448 0.000 0.033 ,0.967 , 0.000 61.66,
(1 ''_''''~'''''''-I- .......--'''_','<~",,-----1~''''''-+---~+-----~----I

0.809 0.3$,1 0,000 0,03$ 0.967 0.000 62.00 .~.

Run 2 .0.030
z

64.95

·...'0

0.000 0;040
..

(i 0.327
. '.,

0.000

o.zos . 0..291 orSGo 65.750.000 ,0.040 0,000

0.1,49 0.9152 66.,95'0,000 0.000
,')

1'0,176 O,o(~d 68.05
c

0.052 o.ooo
a.20B "0.944 0.000

:
68.95,0.000 ' 0.056

"·0.811
.: ":.
0.000

:' ':.

·,to,500.000 ~,06~ cO.938
j'. '(,.

Q,,830 0.934
'i'"o.ooo" 71.2l3'6.110

, 0.845 0,000 0.07(~ 0.924, 0.000 72.80~~,,~ ~ -+ ~c4-' ~ <~ ~~ __ ~

OJ~69 O>.h31 0,.000 0.086 0.914, 0:000 15.QO

0..155

,',' ,'.'(tass '0..105 o.ooo 0,103 0.897 o.ooo 77.90

I;." .

\)
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APPENDIX e

LiqUid
Fraction

'-"'ti3Pour
Fraction

.'

Temp

'1.000 18,25

Butanol 'Hexenefl, Mek P:Jtanol Hexene Mek
'",.f

0.789 . "'0,000 0.000

1--......._+......................,"""'~d,....t.;.,.,.~~.>~6)j62 {),OOO

:~}O.346 )0.000 0.fl54, lit'61 (J 0.0')0
ifl............ -- ..... --~,· ...... ...;;,o,.-!r<:_." '
1",0.390 0,000 0.6tO ,'0.01!) :'O,POO 0.921 80.40\,~\--~~~-fr--+---~'_~~-1------~----~"""'--~

Run 2 0.699 0.000 0.401 0.11.75 0,000 0,815 as.as

0,631 ,,0.000 ()/;{'/~ 0;204 0.000 0,7901,' Sa,90,._.. -+.......- ........~.i" '\oi.-+-_..., --I!---- -I--- _~........j

r-B~6!:l;~\) (0.000 . /t;,:-..s'47~"+-,,,~_~~,2'l;;.,o_6_ 0••0_00_.· 0....· ._7...84+ ......8 ....7 ..., 5~~~"_,

0.673 0.000 0.321' 6,225 0,000 0.775 88.00~~\

o.asa
0.939

7$~Q5
(-\~i:"__

79.75

'". ;".

0.687 0,000

0,701 0,000~----+------+----~.......---+------
0.718 0.000

0,000
'.-0.76S aa,3O '.."0.313 0.232

0.299 0.238
"0.282 0.256

0.266 0.267

0.233 0.314

0.206 0,340

0.000 0.7(;2 88.80"

0,744., 89.500.000

0.734 l (tOOO 0,000 ''';,9.733 90,00

0.767 0.000 0.000 0.686 91.50

0.000 0.660 92.40
."

0,831 0.000 0.169 0.400 0.000 1 0.600 94:60
Table E, 16 The f:xperrmetltal ResUlts for the BI~tano and Methyl Eihyll<etone Binary
System ;,; .
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\::1

Liquid Vap
Frac Frac

Ace- Hexene .Mek Ace- Hexene M~k Temp
tone tone

RlIf} 1 0.451 0.445 0.104 0.504 00453 0.043 47.40

0.419 0.451 0.130 0.498 0.45a 0.044 41.70

0.401 0.:462 0.147 0.482 0.466 0.062 48.1"5

0.380 0.450 0.170 0.468 0.47.'2 0.061 48.40

0.358 0.444. 0.198 0.466 0.474 0.060 48.75

0.334- 0.434 0.232 0.455 0.479 !0.066 49.40
(-~',."(J.; /;

Run 2 0.270 0.492 0.238 0.436 0.503 0.061 1,.50..30

0.259 0.493 0.248 0.412 0.513 0.076 50.65

0.245 0.490 0.265 0.364 0.527 0.109 51.30

0.227 0.482 0.290 0.365 0.529 0.106 51.80

0.208 0.479 0.313 0.361 0.535 0.104 51.90

0.192 0.470 0.333 0.374 0.534 0.092 52.30

0.180 0.463 0.356 0.385 0.529 0.086 52.70"
., ~

0.160 0.453 0.3S7 0.291 0.553 0.157 53.35

0.142 0.429 0.429 0.248 0.556 0.196
..

54.;2.0

RUn 3./ 0.310 0.622 0.068 0.522 0.469 0.009 47.00,,-
0.297 0.632 0.071 0.521 0.469 0.010 47.25

0.280 0.643 0.077 0.505 0.479 0.016 47.65
,":_,.'

0.259 0.660 0.081 0.093 0.904 0.003 47.95

0.225 0.685 0.090 0.477 0.501 0.022 48.75

0.196 0.707 0.097 0.485 0.495 0.020 49.00
\)

'riO.152 0.739 0.108 0.426 0.538 0.035 50.35

0.120 0.760 0.120 0.477 0.499 0.023 50.S0
Table E.17 The Experimental Data for the Acetone, r ~iexene and Methyl Ethyl Ketone
Ternary System
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",
liquid Vapour
Fraction Fraction

Ace~ Hexane Mek Ace- Hexene Mek Temp
\}

tone tone

Run 4 0.034 0.805 0.161 0.258 0,647 0.095 53.75

0.031 0.801 0.168 0.207 0.684 0.109 54.15

0.024 0.802 0.174 0.166 0.710 0.124 54.60

0.012 0.812 0.175 0.076 0.769 0.155 55.50

0.006 0.814 0.181 0.051 0.785 0.164 55.50

0.001 0.817 0.182 0.033 0.797 0.170" 55.40

Run 5 0.519 0'()94 0.387 0.605 0.270 0.124 64.30
"

0.509 0,087 0.405 0.607 0.247 0.146 54.70

0.500 0.082 0.418 0.607 0.233 0.159 54.90

0.498 0.078 0.4~3 0.613 0.229 0.157 55.10

0.494 (; 0.074 0.432 0.615 0.235 0.151 ' 55.35
",~

1".
0.483 0.066 0.451 0.618 0.207 0.'175 56.30

0.471 0.056 0.473 0.623 0.189 0.187 56.80

0.466 0.052 0.482 0.629 0.188 0.183 57.15

0.457 0.048 0.495 0.619 0.157 0.224 57.40
/~'

0.441 0.039 0.521 0.626 0.143 0.232 58.75

Run6 0.838 0.108 0.055 0.754 0.230 0.016 47.75

0.845 0,097 0.058 0.765 0.217 0.018 48.10

0.851 0.088 0.061 0.777 0.204 0.019 48.35

0.856 0.079 0.065 0.789 0.190 0.021 48.40

0.860 0.071 0.069 0.800 0.177 0.023 48.50

0.869 0.055 0.076 0.829 0.144 0.027 49.50

0.872 0.041 0.087 0.864 0.117 0.029 49.85
table E.1B :The Experimental .Data for the Acetone, 1-Hexene and Methyl Ethyl K1i:ltone
Ternary System
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Vapour
Fraction

Liquid
Fraction

Temp

\)

Mek .....• Ace-

tone
Ace-
tone

Hexene.

0.000 0.824

MekHexene

Run 1 0.887 0;113 0.000 0..177

0.907 0.093 0.000 0.798

0.223 0.000 47.25

0.918 0 0.082 0.000 .... 0.808

0.929 0.071

0.~39" 0.061.. 0.000 .,0.836

0.202 0.000 47.65

0.046 0.000 0.815 0.1~4

0.971 0.029 0.000 0;907 0.093

0.192 0.000 47.65

.,
0.568

Run 2 0.582 -0.418 (i.000 0.579 0.421 0.000 44.95~----~~--~~--~~----~----~~~~~--~
0.432 0.000 0.577 0.423 0.000 44.70 l:

0.176 0.000 47.70

0.437 0.000 0.576 0.424 0.000" 44.60
Table E.19 Tile Experimental Results torthe Acetone and 1-Hexene l3inarv System

Oi563

0.164 0.000 47.60

0.000 . 48.45

0.000 48.80

o
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Liquid Vapour
Fraction Fraction c.c

Ace- Hacxene Mek Ace .. Hexane Mek Temp
n tone"~" tone

RUn 1 0.558 0.000 " 0.442 0.99,2 0.000 0.038 57.90

~ 0:559. 0.000 0.441 0.902 0.000 0.098 58.40
~ "

u

0.554 0.000 0.446 0...875 0.000 0.125 58.50

0.540 0.000 0.460 0.863 0.000 0.137 58.90

\ 0.513 0.000 0.487 0,846 0.000 0.154 59.55

0.490 0.000 0.510 0.870 0.000 0.130 60.10\ "0 tf0.470 0.000 0.530 0.831 0.000 0.169 60.70

"0.SS6 64.00HUhi2 0.334 0.000 0.666 0.000 0.114
"

0•.315 0.000 0.685 0.962 0.000 0.138 64.•20
lJ "

0.305 0.000 0.695 0.SB8 0.000 0.112 64.50

0.296 0.000 0.704 0.911 0:000 0.089 64.70

0.277 0.000 0.723 0.835 0.000 0.165 65.20

0.242
'c'

0.0.00 0.758 0.615 0.000 0.385 66.80 '..

0;203 0.000 0.797 0.655 0.000 0.345 67.50

O.lRO , 0.000 0.820 .0.712 0.000 0.288 68\\10

0.r59 , 0.000 9.841 0.731 0,000 0.269 63.60
Table E.2Q The Experimental Results for the Acetonf.l ami Methyl Ethyl Ketone l3inary
SYstem
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,L
,:::,

Liquid Vapour
Fraction ,

, Fractibn'<

Ac~- Hexane Mek' Ace-
"

Hexene MeW Temp
tOM , tone

c':·
0 ,

Run 1 0.000 0.804 0.196 0.000" O.I3~.2 0.178 56.20

0.000 0.808 0.192 0.000 0.809 0.191 56.25. J

0.000 0.806 <:tI.194 0.000
,

0;897 0.193 56.25

0,000 '0. 80S 0.195 0.000 0.806 0.'194 56.40

t> 0.000 0 ..798 0.202 0.000 0'.801 0.199 ' 56.45

0.000 0.794 0.206 0.000 0.799 0.201 56.05

0.000 0 ..788 0.212 0.000 0.792 0.208 55.90
//

Run 2 0.000 0.522 0.478 0.000 0 ..679 0.321 58.00 "

0.000 0.519 0.48t 0.000 0.689 0"311 58.00..... ,:,

0.000 0.509 0.491 0.000 0.679 0.321 58.15

0.000 0.500 0.500 0.000 0.~i79 0.321 58.20-
a?OOO

]I

0.489 0.511 0.000 0.~114 0.326 58.45

0.000 0.475 0.525 0.000 0.6,65 0:335 58.50

0.000 0.#59 0.541 0.000 0.6.65 0.335 58.50

0.000 0.429 0.571 0.000 0.633 0.367 59.40
...

59.400,000 0.388 0.612 0.000 0.623 0.377

0.000 0•.,346.,. 0.654 0.000 0.609' 0.391 59.60

0.000 0.303 0.697 0;000 0.571 0.429 60.90
Table E.2 The- Experimental Results for the 1-Hexene and Mathy fthylKetooe Binary 'I

System
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('\

"
~Liqllid Vapour
-Fraction Fractioil

Ace- Hexene Mek " Ace- Hexane MeR Temp
'. ,

tope . '
_ ..

_ . tone __

.. ,
0.000 0.07a 0.000 O\~70

..Q.922 t'0.1~0 , 56.80
":\.,

otooo 0.032 0,068 ... o.ooo 0.~89 0.111 '56.90
if;

0.,000 '0.941 0.059 01000 0.901 0.099 56.85

0.000 0.942 0.058 0.000 0.905 0.095 "56.85

0.000 0.947 0.053 0.000 0.90~, 0.091 56.85
'.' ....

0;900 0.954 0.046 0.000 0.911 - 0.089 .' 513,'75
".

0;000
.... .. (;

0.957 0.043 0.000 0.910 0.090 56.60

0.000 0.961 0.039 0.000 0.92a
IOo

,! 0.074 56.80

Run 3

Table E.2 oa.The ~:x;penmentalResul!s for t he l~Hexene and Methyl Ethyl K~toi1eBinary
System '

0-
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