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Abstract and Keywords 

This study explores the potential for Web-based diagnostic assessments in the classroom, with 

specific focus on certain common challenges experienced by learners in the development of 

their rational number knowledge. Two schools were used in this study, both having adequate 

facilities for this study, comprising a well-equipped computer room with one-computer-per-

learner and a fast, reliable broadband connection. 

Prior research on misconceptions in the rational numbers has been surveyed to identify 

a small set of problem types with proven effectiveness in eliciting evidence of misconceptions 

in learners. In addition to the problem types found from prior studies, other problem types have 

been included to examine how the approach can be extended. For each problem type a small 

item bank was created and these items were presented to the learners in test batteries of between 

four and ten questions. A multiple-choice format was used, with distractor choices included to 

elicit misconceptions, including those previously reported in prior research. The test batteries 

were presented in dedicated lessons to learners over four consecutive weeks to Grade 7 (school 

one) and Grade 8 (school two) classes from the participating schools. A number of test batteries 

were presented in each weekly session and, following the learners’ completion of each battery, 

feedback was provided to the learner with notes to help them reflect on their performance. 

The focus of this study has been on diagnosis alone, rather than remediation, with the 

intention of building a base for producing valid evidence of the fine-grained thinking of 

learners. This evidence can serve a variety of purposes, most significantly to inform the teacher 

on each learners’ stage of development in the specific micro-domains. Each micro-domain is 

a fine-grained area of knowledge that is the basis for lesson-sized teaching and learning, and 

which is highly suited to diagnostic assessment. 

A fine-grained theory of constructivist learning is introduced for positioning learners at 

a development stage in each micro-domain. This theory of development stages is the 

foundation I have used to explore the role of diagnostic assessment as it may be used in future 

classroom activity. To achieve successful implementation into time-constrained mathematics 

classrooms requires that diagnostic assessments are conducted as effectively and efficiently as 

possible. To meet this requirement, the following elements of diagnostic assessments were 

investigated: (1) Why are some questions better than others for diagnostic purposes? (2) How 

many questions need to be asked to produce valid conclusions? (3) To what extent is learner 

self-knowledge of item difficulty useful to identify learner thinking? 

A Rasch modeling approach was used for analyzing the data, and this was applied in a 

novel way by measuring the construct of the learners’ propensity to select a distractor for a 

misconception, as distinct from the common application of Rasch to measure learner ability. 

To accommodate multiple possible misconceptions used by a learner, parallel Rasch analyses 

were performed to determine the likely causes of learner mistakes. These analyses were used 

to then identify which questions appeared to be better for diagnosis. 

The results produced clear evidence that some questions are far better diagnostic 

discriminators than others for specific misconceptions, but failed to identify the detailed rules 

which govern this behavior, with the conclusion that to determine these would require a far 

larger research population. The results also determined that the number of such good diagnostic 

questions needed is often surprisingly low, and in some cases a single question and response is 

sufficient to infer learner thinking. The results show promise for a future in which Web-based 

diagnostic assessments are a daily part of classroom practice. However, there appears to be no 
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additional benefit in gathering subjective self-knowledge from the learners, over using the 

objective test item results alone. 

 

Keywords: diagnostic assessment; rational numbers; common fractions; decimal numbers; 

decimal fractions; misconceptions; Rasch models; World-Wide Web; Web-based assessment; 

computer-based assessments; formative assessment; development stages; learning trajectories. 
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Glossary of Terms and Abbreviations 

This glossary covers the words, terms, and abbreviations that have special meaning in the 

context of this thesis. Some are derived from prior work and others are introduced in the context 

of this study. Some words are used for elements of the Development Stage model, introduced 

in Chapter 3, and these words are written with capital letters to highlight their particular 

meaning in the context of this study—for example ABSENT. 

ABSENT The development stage of a learner in a micro-domain in which 

the learner has insufficient knowledge to make sense of any 

question posed, and where guessing is the only possible response. 

This is defined as “the learner does not know this micro-domain”. 

abundant number A whole number for which the sum of its factors is larger than its 

value. For example 12 for which the factors 1, 2, 3, 4, and 6 sum 

to 16. 

ACTIVE The development stage of a learner in a micro-domain in which 

there is active learning taking place as evidenced by the learner’s 

use of known misconceptions. This is defined as “the learner is 

getting to know this micro-domain”. 

AI Artificial Intelligence. 

AMESA Association of Mathematics Educators of South Africa. 

assessment The process of discovering information about the state of 

knowledge of a learner in a specific domain. There are various 

forms of assessment which are used for different purposes. 

assessment for 

learning 

A process which includes continuous assessment to provide 

evidence of learners’ progress towards proficiency, to inform 

instructional practices. This term is often used interchangeably 

with the term “formative assessment”. 

Average Scale 

Score 

The scoring scale used by TIMSS for the longitudinal evaluation 

of countries and for the comparison between countries. 

CAPS Curriculum Assessment and Performance Standards.  

(a/the) choice In a multiple-choice test item, this indicates a particular choice 

option from the range of options for this test item. 

conceptual model The internal knowledge held by a learner at a point in time, which 

is deemed to consist of a collection of schemas that are used both 

to understand mathematical problems and to solve such problems. 

(a/the) construct When used as a noun in the context of a learner’s conceptual 

model, this term is the same as “schema”. 
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CTT Classical Test Theory. 

decimal comma A comma used as a decimal mark. 

decimal fraction The fractional part of a decimal number after the decimal mark. 

decimal mark The mark used to separate the whole number part from the 

decimal fraction part of a decimal number. This is either a decimal 

comma or a decimal point. 

decimal number The entire decimal number consists of a whole number part, a 

decimal mark, and a decimal fraction part. 

decimal point When the point (.) is used as the decimal mark. 

decision matrix A grid of rows and columns in which the cells represent decisions 

or actions to be taken when the conditions associated with a 

particular row and column are met. 

(development) 

stage 

This term is used in the context of my model of Development 

Stages to identify the stage of knowledge of a learner, within the 

context of a specific micro-domain, at a specific point in time. 

Development Stage 

(model) 

When used with initial capitals, this refers to the model of learning 

in a micro-domain which is introduced in Chapter 3, Table 2 on 

page 95. 

diagnostic 

assessment 

A form of assessment that detects conceptual obstacles to learning, 

such as schemas that are not fit for their purpose. 

Difficult This term is used to indicate a learner’s identification of the level 

of difficulty of a test item presented to them in a diagnostic 

assessment as being one of: Easy, Just Right, or Difficult. 

distractor In a multiple-choice question format, a distractor is any choice 

presented which is not a correct choice. Distractors are divided 

into rich distractors and random distractors. 

(level of) difficulty The selection, by the learners, of one of the options of Easy, Just 

Right, or Difficult when asked how difficult they found a 

particular test item. 

DBE Department of Basic Education (National), Republic of South 

Africa. This was formerly part of the combined Department of 

Education (DOE). 

DOE Department of Education (National), Republic of South Africa. 

The former name of the Department of Basic Education. 

D/K Don’t Know. 

Easy This term is used to indicate a learner’s identification of the level 

of difficulty of a test item presented to them in a diagnostic 

assessment as being one of: Easy, Just Right, or Difficult. 
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EMERGENT The development stage of a learner in a micro-domain, defined as 

“the learner is just starting to know this micro-domain”. This is 

considered as the novice stage of conceptual development. 

FET Further Education and Training. The final phase in the South 

African school structure, which comprises Grades 10-12. 

formative 

assessment 

This term is commonly used as a synonym of “assessment for 

learning”. Formative assessment is a process and a tool used in the 

classroom as outlined by Wiliam (2011b). 

GDE Gauteng Department of Education. 

GDP Gross Domestic Product. 

IMMINENT The development stage of a learner in a micro-domain in which 

the constructs are sufficiently mature to handle most problem 

situations. This is defined as “the learner almost knows the micro-

domain”. 

INFIT A statistic for misfitting items which identifies an item’s fit to the 

Rasch model by giving more weight to learners whose ability 

measure is close to the item measure. 

IRT Item Response Theory. 

item Same as “test item”. 

Item When used with an initial capital, Item refers to an identified test 

item from the Item Bank as provided in Appendix D. 

Just Right This term is used to indicate a learner’s identification of the level 

of difficulty of a test item presented to them in a diagnostic 

assessment as being one of: Easy, Just Right, or Difficult. 

late-stage 

misconception 

This is a misconception which is used by IMMINENT stage 

learners, thus occurring late in the development stages. 

learner This is the term in common usage within the South African 

education system to represent the individual engaged in learning, 

as distinct from the teacher or educator. The terms pupil, scholar, 

and student are in less common usage in South Africa. 

Lesson In the context of this study, this means the specific school lessons 

which were used to conduct the online diagnostic tests. 

Mathematics When used with an initial capital letter, this refers to the school 

subject of Mathematics as in the South African curriculum (DBE, 

2011a). When used without an initial capital this refers to the 

general discipline of mathematics. 
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MCQ Multiple-choice question. This is a test item presented to a learner 

in which the response is required to be a selection of one and only 

one of a set of choices presented. 

MERGA Mathematics Education Research Group of Australia 

micro-domain This is a small subset of a larger domain of mathematics 

knowledge, which is typically used as the basis for a single lesson 

or a single type of problem. Micro-domains are used in this study 

as the target for diagnostic assessment practices. 

(my) model My Development Stage Model of learning as introduced in 

Chapter 3. 

NCS National Curriculum Standards, as published by the Department of 

Education, Republic of South Africa. 

N/S Not selected. 

OECD Organization for Economic Co-operation and Development 

OUTFIT A statistic for misfitting items which identifies an item’s fit to the 

Rasch model by giving equal weight to learner’s measures and 

which is more sensitive to outliers such as guesses and slips. 

point-measure 

correlation 

This is a correlation between the responses for the items with the 

person measures. This is shown in the PTMEASURE column of 

the WinSteps outputs. 

PISA Programme for International Student Assessment 

random distractor A choice in a multiple-choice question which is neither a correct 

choice nor a rich distractor. 

rich distractor A choice in a multiple-choice question which is designed to elicit 

evidence of one or more misconceptions. 

RMT Rasch measurement theory 

RQ1 Research Question 1 

RQ2 Research Question 2 

RQ3 Research Question 3 

schema A schema is a theoretical unit of knowledge in a learner’s 

conceptual model. A schema is conceived as unit of the conceptual 

model which is constructed and used by learners during problem-

solving activities in mathematics with the assumption that schemas 

are called upon as required. 

School A 

School B 

The two schools used in this study. 
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self-knowledge Knowledge held by a learner concerning the scope and limitations 

of their own knowledge, in terms of what they know and what 

they do not know. 

slip A mistake made by an otherwise proficient learner. 

STABLE The development stage of a learner in a micro-domain in which 

the constructs are stable and mature and where the learner is able 

to correctly answer every problem presented. This is the expert 

stage of knowledge and is defined as “the learner knows this 

micro-domain”. 

(development) 

stage 

A stage of development of a learner in the context of a micro-

domain, as used in the Development Stage model. These stages are 

ABSENT, EMERGENT, ACTIVE, IMMINENT, and STABLE, 

in terms of increasing maturity of cognitive development. 

summative 

assessment 

A form of assessment with the goal of assessing proficiency at the 

end of a course of study, such as is the case with final 

examinations. This is also referred to as “assessment of learning” 

and has the goal of positioning learners on a scale of achievement 

or grading. 

test item A problem presented to the learner in an assessment setting or as a 

part of a teaching and learning process. 

TIMSS Trends in Mathematics and Science Survey. 

Web The World-Wide Web 

zone of competence Within a micro-domain, this zone is a position where the learners 

can be located if they demonstrate proficiency in the micro-

domain. This encompasses the development stages of STABLE 

and IMMINENT. 

zone of 

incompetence 

Within a micro-domain, this zone represents learners who show no 

understanding of the micro-domain and no evidence of having 

developed conceptual models or schemas. This covers the 

ABSENT development stage. 

zone of learning Within a micro-domain, this zone represents learners who show 

evidence of schema development, but for which the schemas are 

insufficient for full proficiency. This covers the development 

stages of EMERGENT and ACTIVE. 

ZPD Zone of Proximal Development. 
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CHAPTER 1 : INTRODUCTION 

 “…assessment is a, perhaps the, central process in effective 

instruction” Wiliam (2011a). 

Humans are tool builders. Tools allow us to control our world better and to do things 

which we cannot do without these tools. The tools we build are both physical, such as the 

wheel, the motor car, the mobile phone; and they are also conceptual, such as models, 

theories, languages, money. By far the most important conceptual tool ever built by 

humans is mathematics—both in its pure form as a set of common representations and 

techniques; and in its applied form to address the problems of humanity. By using 

mathematics we can understand our world better, and from this we continually develop 

our knowledge and practices in almost every discipline of human activity. We also use 

mathematics as the basis for developing new tools, both physical and conceptual. 

Mathematics, like all conceptual tools, exists primarily in the human mind, and it 

is from the mind that it is developed, accessed and used. The application of conceptual 

knowledge may be direct, by the individuals themselves, or may be delegated, such as to 

computer programs or to intelligent robots. Even though mathematics has been developed 

and taught for thousands of years, the evolutionary process has not hard-coded 

mathematics into our DNA and it is rather our capacity to learn and to develop the 

conceptual models of mathematics which is a distinguishing feature of humans. Given 

the increasing societal demand for mathematical proficiency, our educational systems 

emphasize the development of mathematical knowledge as a core element of a successful 

education. Research continues to explore how learners come to know and to apply 

mathematics, and how such learning can be improved. 

Given that we are not born with innate mathematical knowledge, we must learn 

by constructing our own mathematics as a personalized conceptual toolset. This process 

of knowledge construction, which does appear to be an innate function of the human, 

involves a continuous process of firstly developing a conceptual model, then testing this 

model on our experiences and observations, and finally refining this model until it is in 

line with our observations. As we construct and adapt our models, they will continue to 
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improve as reflections of the world of our observations, but there will remain gaps 

between this inner knowledge and the outer, observed experiences, and the gap between 

our internal conceptual model and the external observations is a dynamic point of conflict. 

Where our conceptual model fails to fit the observations, an innate process of equilibrium 

will induce our conceptual model to adapt. In this context it could be considered that we 

are all always in a state of learning—if learning is seen as this process of conceptual 

development. As a learner develops personal conceptual models of mathematics they will 

fail when their models are insufficiently developed to match the observations of the 

world. This occurs, for example, when attempting an unseen type of mathematical 

problem. Teachers gain useful evidence from their learners’ attempts, since the nature of 

the mistakes can lead the teachers to better understand their learners’ conceptual models 

and to provide suitable instruction to guide the learners towards conceptual models which 

are a better fit for their purpose. 

My study explores how we can better understand the conceptual models 

developed and used by learners as they make sense of their mathematical experiences; 

where this information can help teachers to provide the right mix of observations to 

accelerate the natural process of adaptation which drives conceptual development. 

Mathematics is a very large body of knowledge and my specific focus is on the rational 

numbers, which are introduced in the Senior Phase of the South African curriculum, in 

Grades 7-9 (DBE, 2011a). 

1.1 Background to this Study 

Learners make mistakes as a part of their ongoing learning process. However mistakes 

are essential to the learning process and are not inherently negative (Nesher, 1987; Smith, 

diSessa & Roschelle, 1993). Within the domain of the rational numbers there has been 

extensive inquiry, over a long period, on the nature and extent of learner mistakes and the 

nature of effective remediation (De Morgan 1831/1898/2013; Monroe, 1917; Robertson, 

1924; Buswell & John, 1926; Brueckner, 1928a; Brueckner, 1928b; Neal & Foster, 1928; 

Cooke, 1931; Cooke, 1932; Guiler, 1945; Vinner, Hershkowitz & Bruckheimer, 1981; 

Hiebert & Wearne, 1985). This long-term programme of inquiry has led to an improved 

understanding of the nature and causes of learner mistakes, and has identified that many 

types of mistakes are of a systematic and predictable nature; arising as a commonly-
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experienced step in the conceptual development of learners (Radatz, 1979; Sackur-

Grisvard & Leonard, 1985; Movshovitz, Zaslavky & Inbar, 1987; Resnick et al., 1989; 

Steinle, 2004b). These systematic and predictable errors are referred to as misconceptions 

(Smith, diSessa & Roschelle, 1993) and are conceptual models which are not suited for 

the task to which they are applied—being incomplete or incorrect. Misconceptions are 

distinct from stable conceptual models which have evolved to the point where they are 

sufficient to address a specific type of problem. Such stable conceptual models form the 

core of proficiency, and are labelled as “stable” because they are less subject to change, 

having adapted to the point of suitability for general use in a specific class of problems. 

Diagnosis is an important element of teaching practice, assisting with the 

identification of the causes of learner errors. True diagnosis should not merely identify 

the occurrence and form of errors (Olander, 1933; Sprague, 1939; Bejar, 1984; Wylie & 

Wiliam, 2006), but is best structured as an integral element of a formative assessment 

practice (Black & Wiliam, 1998a; Black & Wiliam, 1998b; Wiliam, 2011a; Wiliam, 

2011b; Stacey, 2013; Stacey, Price & Steinle, 2012). My study explores the diagnostic 

assessment of misconceptions in the rational numbers, specifically concerning the 

effectiveness and efficiency of such diagnostic work, as part of a larger vision of 

improving success in the learning of mathematics through automating and replicating 

such diagnostic processes using the Web. 

On a personal note, I have spent more than 40 years as a part-time mathematics 

tutor and during this period I have observed that every generation of learners moves 

through similar paths of conceptual understanding as they tackle the rational numbers. I 

believe that much can be gained from analyzing the mistakes made by learners and that 

this analysis is greatly improved when the right problems are posed to the right learner at 

the right time. Such right problems maximize the ability to obtain evidence of the fine-

grained learner thinking which accounts for their responses to problems. In my tutor role, 

through gaining access to my students’ fine-grained knowledge within specific contexts, 

I have improved my effectiveness in tutoring, leading to a gain in learner understanding 

that would not have been achieved without this knowledge. Rather than tutoring from a 

rote lesson structure, my modus operandi has been to identify those gaps in the learners’ 

knowledge which are obstacles to understanding and to address these as a priority. 
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Thus, one of my insights from these tutoring activities is that there are some 

questions which are good for diagnosis of learner misconceptions, and are both effective 

and efficient in eliciting evidence of thinking. The contrary insight is that the majority of 

questions add little or nothing to our understanding of learner thinking, and I see this 

distinction as important in order to develop our knowledge to provide effective cognitive 

diagnosis. 

My personal motivation to embark on this inquiry was to better understand and to 

formalize diagnostic assessment in the classroom, by positioning such assessment as an 

integral element of daily teaching and learning, and from this to provide real benefits to 

the learners within the limited time scheduled for teaching the rational numbers. This 

motivation was extended to consider how diagnostic practices could be understood 

sufficiently to be replicated using computer systems, and made available to learners 

throughout the country using the World-Wide Web (the “Web”). 

Diagnostic assessment is a broad area of educational measurement, and my focus 

was on the rational numbers, which were identified as an important element of the shift 

in knowledge from the relative simplicity of the whole numbers to the complexity of the 

real numbers. This shift is positioned within the “transition years” of Grades 7-10 which 

Usiskin (2005) identifies as the period of greatest need for learners of mathematics, and 

where schools should be encouraged to assign their best mathematics teachers. 

From this study I hoped to uncover the qualities of mathematics questions which 

render them effective assessment instruments for cognitive and conceptual diagnosis. My 

plan was to undertake an empirical evaluation of various diagnostic questions, using a 

purely statistical approach to identify the diagnostic value of a particular question. 

However, this notion of “diagnostic value” is not well defined, and part of my study was 

to clarify this notion as a theoretical construct on which to base the remainder of this 

study. I also explore, in selected cases, the qualitative nature of such questions—to 

determine the conditions under which one mathematical question may be better than 

another in a given situation from external observation and without statistical evidence. 

The challenge is that questions which appear similar on the surface may have vastly 

different behaviours when used for diagnostic purposes. I thus  clarify the distinction 

between two purposes of testing: firstly, to establish “ability” within a domain of 
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knowledge; and secondly, to diagnose particular conceptual models which do not fit their 

purpose, and which require attention. 

I have used the word “question” to describe particular mathematical problems 

posed to a leaner within the scope of this introduction, but my preference is to use the 

terms “test item”, or just “item”, to identify a mathematical question which is being 

applied within an assessment context. These terms are adopted consistently within the 

literature on educational measurement. 

I continue this chapter by reflecting on the national need for improvement in the 

state of school mathematics in South Africa with a targeted focus on the domain of the 

rational numbers, which are a consistent challenge for all generations of learners and are 

also a fundamental building block to further mathematics. This chapter provides the 

rationale for this study and leads to the research questions which this study is designed to 

answer.  

1.2 Outlining South African School Mathematics 

Mathematical proficiency is heavily weighted as a component of the entry requirements 

for most higher-education disciplines. For example, at the University of the 

Witwatersrand, the admission requirements for scientific disciplines includes 

Mathematics at Levels 6 (70-79%) or 7 (80-100%), and for most other disciplines there 

is a minimum requirement for Level 4 (50-59%) or 5 (60-69%)1. Thus, without a good 

pass mark in the final Grade 12 Mathematics summative examination there are limited 

prospects for entry into tertiary studies in many disciplines. 

Mathematics is used throughout life and work, and proficiency in mathematics is 

considered sufficiently important that the South African curriculum requirements for the 

Further Education and Training (FET) phase, comprising Grades 10-12, requires a 

compulsory selection of either Mathematics, focusing on pure mathematics; or 

Mathematical Literacy, with a focus on applied, real-world mathematics. Both 

Mathematics and Mathematical Literacy draw heavily on the theoretical and practical 

knowledge introduced in the Senior Phase of Grades 7-9. Many universities adopt 

                                                 
1 

http://www.wits.ac.za/prospective/undergraduate/admissionrequirements/11644/admission_requirements

_nsc.html. Retrieved on 18 May 2015. 
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admission requirements which deny access to learners who have taken Mathematical 

Literacy in Grades 10-12, accepting only a qualification which includes Mathematics. 

Thus when exiting Grade 9, the 14-15 year-old learners are required to make life decisions 

on subject choices which may severely limit their future prospects. 

The South African school system is administered by the national Department of 

Basic Education (DBE) which is responsible for the national curriculum and for 

educational policy, and this is then administered by the Department of Education at the 

Provincial Government level. The DBE is responsible for the Grade 12 school-leaving 

summative assessment as well as the Annual National Assessments (ANAs), which are 

used to monitor systemic education performance in numeracy and literacy. The school 

years are structured into four phases being the Foundation Phase (Grades R-3), 

Intermediate Phase (Grades 4-6), Senior Phase (Grades 7-9), and the FET phase (Grades 

10-12). For each school subject the DBE provides curriculum statements, containing 

subject matter content and guidelines for scheduling and pacing of the classroom 

instruction for each of these four phases. 

Rational numbers are introduced in the earliest years of schooling—in the 

Foundation and Intermediate phases—through the concepts of sharing and 

equipartitioning, which lead to the initial representations of simple fractions in both words 

and notations such as “one half”, 
1

2
; and “three-quarters”, 

3

4
 . The rational numbers are 

given full treatment in the Senior Phase for which the content includes different 

representations including common fractions, decimal numbers, percentages, and 

proportional representations. This phase also covers the operations and calculations 

involving these various representations of rational numbers including conversions 

between different representations. Within the FET phase no further specific instruction 

on rational numbers is provided and yet this important class of numbers are used 

throughout the final three years of school mathematics in both the Mathematics and 

Mathematical Literacy curricula. 

The South African curriculum policy statement is called “CAPS” (Curriculum 

Assessment and Performance Standards), and was introduced following a number of 

years of outcomes-based education (OBE), which was in force at the time that this study 

commenced. Reference is made to both the OBE and CAPS curriculum statements within 

this thesis. 
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The CAPS curriculum statement includes a schedule of instructional activities 

which teachers are expected to follow, indicating when in the school year each topic 

should be covered and how much time is devoted to the topic. Common fractions and 

decimal numbers are each given nine hours in Term 2 of the four-term school schedule 

for Grade 7; then seven and six hours respectively in Term 3 in Grade 8; followed by 4.5 

hours each in Term 1 in Grade 9. These are the only time allocations within the entire 

Senior Phase schedule for these numbers—in effect a total of 40 hours’ instructional time 

over a three-year period of the learners’ school life. Given the richness of the intermediate 

conceptions and misconceptions which are developed as the learners increase their 

proficiency in rational numbers, I expect that this limited period of instructional time is 

insufficient for such an important area of mathematics. 

1.3 South Africa and the TIMSS Studies 

South Africa spends a considerable portion of its annual budget on education, being 

R165.1 billion for the 2010/11 national revised budget, which is 19.9% of the national 

government expenditure of R 829.6 billion (South African Treasury, 2010, p. 118), and 

which is also 6.1% of the GDP of R 2 699.9 billion. 

South Africa has a considerable desire to succeed in basic education, as outlined 

in the curriculum statements (DBE, 2011a). However, even with the large allocation of 

funds for education, and the will to succeed from the educational policy, South African 

mathematics education has been assessed consistently as being within the lowest group 

of countries on international surveys conducted in the past 20 years. The Trends in 

Mathematics and Science Survey (TIMMS) study is conducted every four years at the 

Grade 4 and Grade 8 levels, and South Africa has participated in a number of the Grade 

8 studies, but is consistently placed in the bottom three places. This is a serious situation 

which has not improved in terms of the relative ranking of South Africa when compared 

to other countries over this period. 

Within the TIMSS 2011 Grade 8 mathematics study (Mullis, Martin, Foy & 

Arora, 2011), South Africa was assessed using Grade 9 learners rather than Grade 8 

learners—this was a choice available to countries participating in TIMSS if it was 

expected that the Grade 8 test items would be too difficult for the country’s Grade 8 

learners. Even with this advantage of older Grade 9 learners, South Africa was in the 
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third-last position with an Average Scale Score of 352. This Average Scale Score is 

central to the TIMSS measurement system, and is fixed at 500 as the benchmark average 

with each 100 points on the scale indicating one standard deviation over the entire set of 

country scores. This scale is structured to be invariant across assessments and is a reliable 

measure, enabling each country to measure its progress between the assessment years, 

and also to position itself against other countries on the international scale. 

The TIMSS 2011 Grade 8 mathematics study used a bank of 217 items which are 

divided among four content domains (Number 30%, Algebra 30%, Geometry 20%, Data 

and Chance 20%), and also divided on the dimension of cognitive domains (Knowing 

35%, Applying 40%, Reasoning 25%). The items are split equally between multiple-

choice questions (MCQ), where the learners select from a limited list of choices, and 

constructed-response questions, in which the learners are required to write their answers. 

South Africa did not participate in the 1995 or 2007 TIMSS studies, but 

participated, and was placed last, in both the 1999 and 2003 studies. In 1999 South Africa 

achieved an Average Scale Score of 275 and in 2003 the score remained essentially the 

same at 269. For the 1999 study South Africa was also reported as spending 8.0% of the 

Gross National Product on education—the third highest among the set of 38 participating 

countries (Mullis et al., 2000, p.25). 

For the 2011 TIMSS mathematics study the Average Scale Score for South Africa 

jumped up to 352, from the bottom up to third-last place (Mullis, Martin, Foy, & Arora, 

2011). This is encouraging and can be viewed as relatively significant, since the lowest 

performing countries were far below other under-performing countries and thus to move 

up and out of the bottom place requires a substantial national effort. 

These international studies are important resources to help countries understand 

their position in a global context and as a catalyst for improvement. Such improvements 

are needed continuously throughout the entire educational system of the country since it 

is the totality of the elements of educational system which result in the learner responses 

as the observable symptoms of the national status of mathematics education. 

The TIMSS 2011 study (Mullis et al., 2011) reports that South African learners 

are significantly under-achieving on rational number items, and for some of the test items 

the results are so low that they indicate a systematic basis in the errors, which I now 

analyze in further detail. I specifically focus my attention on the items classified under 
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the topic of “Fractions and Decimals” within the “Number” content domain, which was 

the selected mathematical area for my study. Within TIMSS 2011, 25 out of the total item 

bank of 217 items fall within this topic. Of these 25 items, 11 are included within the 

Released Item Set (IEA, 2013), which are made available for further study by TIMSS. 

These 11 items are split over the cognitive domains of Knowing, Applying, and 

Reasoning in the ratio 6:4:1. Thus the assessment of the proficiency in common fractions 

and decimal numbers is measured mostly in terms of conceptual knowledge rather than 

in the application of this knowledge or with problems which require reasoning. I now 

dive into the reported results for 4 of these 11 test items from the 2011 TIMSS Grade 8 

mathematical study, to see to what extent these items from international studies support 

my study on the quality of test items for diagnostic purposes. These items are M02_01, 

M02_04, M05_02 and M07_02. 

Item M02_01 

Item M02_01 asks the learner to select the correct decimal representation of the 

common fraction 
3

5
 when given four choices (A) 0.8 (B) 0.6 (C) 0.53 (D) 0.35. The correct 

choice is (B) and the other choices are distractors which may elicit a response from 

learners who lack a sufficient understanding of the relationship between common 

fractions and decimal numbers. I note that each of these distractors is not randomly 

introduced, but has been carefully designed to provide a plausible alternative—based 

upon various ways of thinking in common fractions and decimal fractions. The question 

statement contains the common fraction 
3

5
 which contains the digits 3 and 5, and these 

digits also feature in three of the choices provided: Choice (A) uses the digit 8 which is 

3+5; Choices (C) and (D) use 3 and 5 within the structure of the decimal numbers 0.53 

and 0.35. The only choice which does not use digits 3 or 5 is the correct choice (B). Thus, 

whereas this test item is used for systemic assessment, it is designed as a diagnostic 

question for which incorrect responses point to alternative ways of thinking. The results 

show that 61% of South African learners obtained the correct response, which was below 

the international benchmark average of 68%. Given that South Africa used Grade 9 

learners for this study, the performance may be impacted by the relative curriculum 

scheduling of the different countries, since the knowledge of rational number conversion 

would be introduced in different grades in different countries. Thus learners in some 
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countries may have been exposed to this kind of problem in advance of the TIMSS 

assessment, whereas others may not have had such exposure in the mathematics classes. 

Item M02_04 

Item M02_04 concerns the selection of the correct method for subtracting two 

common fractions and is classified within the “Applying” cognitive domain. South Africa 

ranks in joint second-worst place with Chile on a score of 12%. This item is in MCQ 

format with four choices, and thus a pure random response from a single learner has a 

25% probability of being correct. When this is averaged over the entire learner sample 

for a single TIMSS country assessment, the expected country score is also 25% if all 

responses were purely random. Inferences can be drawn from this score, since a score 

which is significantly higher than 25% indicates better knowledge among some of the 

learner samples, and a score significantly lower than 25% points to a non-random pattern 

of responses—in effect a systematic, as well as systemic, pattern of selecting incorrect 

choices. 

On the basis of this reasoning, a low score of 12% for South Africa points to the 

existence of systematic errors which were commonly made by the learners, and this 

provides evidence of some level of conceptual development in the learners, in their 

attempt to make sense of the problem using their conceptual models. Thus this apparently 

very low score of 12% is more likely to arise from the consistent use of misconceptions 

than to result from random guessing. I view this as an important issue, concerning the 

general problem of measuring low performing learners or groups of learners, which is 

significant for my work in exploring how to identify the cognitive causes of such low 

results. 

As a contrived example to further illustrate this point, consider a group of 100 

learners who are each presented with a single MCQ with four choices. Consider also that 

20 of the learners select the correct response on the basis of their proficiency and the 

remaining 80 have no proficiency and select a choice on a purely random basis. I am not 

initially considering learners with partially developed conceptual models, or 

misconceptions, so this is an artificial situation in which the learners either know or they 

randomly guess. I consider random guessing as a response from a learner which does not 

result from using either stable conceptions, and also does not result from any other rule, 

such as always selecting the first choice presented. In such random guessing,  there is an 
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equal chance of each of the choices being selected. For this example, there are 20% 

correct from the 20 learners who selected correct choice, and another 25% of the 

remaining 80 learners (being 20 learners) who selected the correct choice by random 

guessing, making up 40% (20+20) of the 100 learners who selected the correct choice. In 

the alternate situation, in which none of the learners are proficient and all engage in 

random guessing, 25% of the learners are expected to obtain the correct answer purely 

through this random guessing. On the basis of this argument 25% is then the minimum 

possible score, since if there are some learners who are sufficiently proficient to answer 

the question successfully with the remainder of the learners guessing randomly, then the 

expected success rate will be larger than 25%. Thus, success rates of less than 25%, such 

as the 12% determined from the TIMSS study for this item, point to the inference that the 

learners who do not select the correct response through their level of proficiency are not 

guessing randomly. Rather these learners are applying some intermediate conception or 

misconception to answer the question, and this is being done consistently across the entire 

sample of learners to cause such a low score. 

I infer that the very low scores on rational number items are likely attributable to 

misconception usage rather than random guessing. Whereas the TIMSS results consider 

the impact of guessing, by their usage of the Item Response Theory (IRT) three-parameter 

model when calculating the Average Scale Score, it is not evident that this consideration 

for guessing is also used when determining the success rates of the individual questions. 

Thus my argument for the potential evidence of nation-wide misconceptions from the low 

TIMSS success rates points a way to further inquiry. My argument is that the methods we 

use to determine proficiency, such as using the fraction of learners who achieve success 

on an item, are not suited for measuring these intermediate conceptions and 

misconceptions, which are exhibited as systematic errors made by learners, and which 

thus can result in scores which are lower than the expected scores arising from random 

guessing. Thus a different method is needed for this measurement which is more suited 

for low-performing learners. 

Item M05_02 

Item M05_02 asks the learners to position a number “N” on a number line. This 

is categorized under the “Reasoning” cognitive domain; the most complex of the range 

of cognitive categories. The question stem presents a number line on which the positions 
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of 0, 1, and 2 are marked with ticks and labelled with these numbers. Between the 0 and 

1 ticks there are two named points, P and Q, with P<Q. The question asks where the value 

of N should be placed, where N = PxQ. Four choices are presented for the position of N: 

(1) between the 1 and 2, (2) between the Q and 1, (3) between the P and Q, and (4) 

between the 0 and P. The success rates achieved by the best performing countries are in 

the region of 50%, while South Africa scored among the lowest with 10% which, as for 

Item M02_04 above, is far below the expected value of 25% which would have resulted 

if the learners had been guessing randomly. Using the argument which I previously used 

for accounting for such low success rates, I again conclude that such a low success rate 

is not expected to result from pure guessing and this points to the existence of systematic 

selection of the non-correct distractor choices, with this being common throughout the 

learner sample. My argument does not imply that there is only one such systematically 

incorrect approach, but rather that the combination of such alternative choices as selected 

by the learners has a higher frequency of response than for the correct choice. For this 

test item there is a well-known misconception, in which multiplication will always result 

in a larger number while division will always result in a smaller number (Bell, Swan & 

Taylor, 1981). This is a plausible explanation for choices (1) and (3), both of which are 

larger than Q, which itself is larger than P on the original number line. Thus this test item, 

like many others within the TIMSS item bank, is also diagnostic in nature—by its 

inclusion of choices which point to known or predicted misconceptions. Would the 

success rate for South African learners have been so low if the distractors were not 

explicitly linked to misconceptions but were rather random choices? It is likely that in 

such a case the results may have been 25% or more, since there would be no plausible 

explanations for the various choices. However, this particular item cannot be easily 

reformulated to avoid misconception in its distractor choices. 

Item M07_02 

Item M07_02 asks the learners to convert the common fraction 3
5

6
 to a decimal 

number, rounding the answer to two decimal places and is categorized under the 

“Knowing” cognitive domain. This is a constructed-response question, and only four 

countries achieved a success rate higher than 50%; with South Africa at 7% being in a 

group of countries achieving less than 10%. Given the open-ended nature of constructed-
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response questions, it is more challenging to interpret the results and to identify 

misconceptions. Whereas these constructed-response questions are suitable for formative 

and summative assessments, such open-ended questions require considerable analysis to 

address each of the possible and unusual outcomes and thus they do not appear to be 

suited for automated diagnostic assessments. Further research, using the techniques of 

artificial intelligence, will help with automating the interpretation of such open responses, 

however this is beyond the scope of this study. 

In conclusion, there is evidence, from the analysis of the TIMSS 2011 results and 

the four cited items, that South African learners are using some intermediate conceptions 

or misconceptions as the basis for their responses. Thus the measured success rate—in 

terms of the fraction of learners who achieved success—does not accurately reflect the 

level of conceptual development of the learners, and appears to consider that the learners 

either are proficient or are guessing, since the scoring method cannot adequately address 

the partial conceptual development which gives rise to informed, but incorrect, responses. 

Arising from this initial analysis of the TIMSS published results, I largely reject the use 

of raw success rates for identifying low-performing learners and I identify the need for 

an improved model which can position learners on a scale of conceptual development. 

Whereas I have used TIMSS to help set the context, I do recognize that TIMSS is a 

systemic study for ranking of country-level performance, and does not have as its core 

goal the diagnosis of individual learners. 

1.4 Diagnostic Assessment for Learning 

I now turn my attention to how effectiveness of assessment can be improved, to better 

inform teaching and to consequently improve learner proficiency, so that learners will 

succeed more often on mathematics problems and specifically on the types of problems 

posed in class tests, in the annual summative assessments, and in international studies 

such as TIMSS. 

Effective diagnostic assessment means that learner conceptions can be measured 

accurately and can guide effective instruction. Without a fine-grained window into learner 

thinking, instruction cannot target the needs of the individual learners (Wiliam, 2011b). 

This targeted approach to instruction assumes that learning progresses in a constructivist 

process through the learners’ invention, use, and self-reflective evaluation of conceptual 
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models, as they adapt to increase their success and to avoid failure. There is a continuous 

process of learning in which learners develop conceptual models to respond to the 

external world—which for this study consists of mathematical problems in the rational 

numbers. My position is that learner knowledge consists of a connected structure of such 

conceptual models and by succeeding and failing on various problems the learners will 

refine these conceptual models to meet the need to create the equilibrium between the 

internal, mental world of the learner and their observations of the external world (Piaget, 

1964/2003; Piaget, 1985). I use the term “conceptual model” to represent a collection of 

“schemas”, each of which is applicable for a specific pattern which a learner uses to 

address mathematical problems, and which are constructed and changed through the 

learning process. I thus see these collections of schemas as the totality of a learner’s 

knowledge, and I see learning as the progression of changes in the collection of schemas. 

Teachers cannot directly access their learners’ minds to identify, observe, and 

modify their learners’ schemas—there is no equivalent to brain surgery available to the 

teacher to diagnose and to fix these conceptual problems. For the teacher, the knowledge 

of their learners is limited to what they can observe indirectly from the learners’ responses 

to mathematical problems as well as through learner utterances and engagement during 

instruction and tutoring. To discover what is wrong with learners who are making 

mistakes is a diagnostic task and is a process of exploring the possible explanations in the 

form of a lack of conceptions or as misconceptions with the follow-on remedial work. 

These diagnostic tasks involve asking a question and analyzing the results to help to infer 

the schemas that can give rise to the response. Such diagnostic practices are more 

effective when the right questions are asked, since the better the questions, the more that 

can be inferred about the learners’ conceptual models. The more that can be inferred, the 

better the teacher can respond by planning targeted instructional activities. In the absence 

of such information about individual learner conceptions, teachers cannot direct their 

instruction to meet the specific needs of the learners, since these needs will be unknown. 

In such cases teaching is not optimal, and in worst case scenarios all teaching may be 

ineffective. Thus my concern is with the improvement of our knowledge of learner 

conceptions, and specifically to position each learner’s state of knowledge onto some 

spectrum of increasing conceptual development. My concern is how to determine the 

specific schemas a learner uses for his or her responses; including pre-conceptions, prior 



 15 

knowledge, intermediate conceptions, misconceptions, or stable conceptions. There are 

often situations in which learners have a complete lack of schemas for a given problem 

and thus can only resort to random guessing. 

I contend that not all questions are equally suited for diagnostic purposes and that, 

even with the wealth of knowledge which has been accumulated in understanding and 

modeling the trajectories of learning in the development of proficiency in the rational 

numbers, there remains an open question of how to use this diagnostic knowledge for 

improving teaching and to stimulate learning. Whereas this may be seen as merely a 

practical application of existing knowledge, I argue that there is no clear and well 

understood path that takes us from a theoretical understanding of misconceptions to the 

practical application of this wealth of knowledge. Rather, given a range of test items, 

within a particular domain of knowledge, I postulate the existence of a spectrum on which 

each item can be placed in terms of its diagnostic effectiveness. 

This falls into the practices of diagnostic assessment, positioned within a 

framework of formative assessment, or “assessment for learning”, in which assessments 

inform teaching activities rather than being used solely to assess learners. It is within the 

context of formative assessment that diagnostic assessment is best positioned to make a 

difference to improving learning. Diagnostic assessments conducted outside of a 

formative assessment framework are likely to be piecemeal and not directed towards the 

goals of mathematics education. 

1.5 The Right Questions 

My study is concerned with identifying questions which are suited, and perhaps optimal, 

for eliciting evidence of learner thinking, and which can be used for diagnostic purposes 

as an integral element of formative assessment practices, and which can be called 

“diagnostic assessment for learning”. Such questions will support more effective 

diagnostic processes and practices, in terms of the validity and reliability of inferences 

drawn from the learner responses, and to ensure efficient application by being conducted 

with the least effort and in the shortest time. I see this as important for the design of 

diagnostic assessments given that school time is a highly constrained resource, with only 

a short amount of time allocated to each topic in the mathematics curriculum. As indicated 

earlier, only 18, 13, and 9 hours are allocated to decimal and common fractions in Grades 
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7-9 respectively, and this very short time allocation must be used as effectively and 

efficiently as possible to ensure that the learners develop maximum proficiency in the 

rational numbers. 

To achieve this economy of practice, I have identified two key issues which need 

to be addressed. The first is to ask questions which provide valid evidence of learner 

thinking, and the second concerns the fact that a number of such questions may be 

required to infer a learner’s stage of conceptual development in the area of concern. The 

first issue concerns the effectiveness of diagnostic assessment—are we correctly inferring 

the existence of particular ways of thinking? The second issue addresses the efficiency of 

the diagnostic process—are we making these inferences using the least amount of time 

and effort? 

1.6 The Role of Self-Knowledge 

Learners possess knowledge, in the form of schemas, which are used to address the 

mathematical problems and questions as presented. When a new problem is presented, 

the learner selects schemas, the response is determined, and the results are given. 

However, in addition to these schemas, learners also have self-knowledge about the scope 

and limitations of their own knowledge, in terms of what they know and what they don’t 

know. 

Whereas assessments are objective practices of gathering data from observations 

and making inferences from the learners’ responses, it is also possible to inquire into the 

learners’ self-knowledge by asking whether they know how to solve particular problems. 

This self-knowledge can be expressed verbally by the learners using statements such as 

“I know how to solve this problem” or “I don’t know how to solve this problem”. Thus, 

whereas we can rely solely on observed responses to assessment questions, there is an 

opportunity to use such learner self-knowledge as an alternative source of diagnostic 

information. This opens the door to an inquiry on the value of such self-knowledge in 

improving the effectiveness and efficiency of diagnostic practices. 
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1.7 Diagnostic Assessment 

Diagnostic assessment, as outlined in the South African curriculum statements, is a 

broader activity than I outline above, and is defined as follows: 

 

It is not intended for promotion purposes but to inform the teacher 

about the learner’s Mathematics problem areas that have the 

potential to hinder performance. Two broad areas form the basis of 

diagnostic assessment: content-related challenges where learners 

find certain difficulties to comprehend, and psychosocial factors 

such as negative attitudes, Mathematics anxiety, poor study habits, 

poor problem-solving behaviour, etc. Appropriate interventions 

should be implemented to assist learners in overcoming these 

challenges early in their school careers. (DBE 2011a, Senior 

Phase, p.154). 

 

My concern is with the first of these areas, being the content-related challenges, 

which focus on conceptual limitations which hinder mathematical performance and 

constrain the advancement of learning. However, mathematical proficiency is non-linear 

and multi-dimensional in nature, and such conceptual limitations are also complex in 

nature. This is evident in the work of Kilpatrick, Swafford and Findell (2001) who 

structure mathematical proficiency as five interleaved and interwoven strands: 

 conceptual understanding—comprehension of 

mathematical concepts, operations, and relations 

 procedural fluency—skill in carrying out procedures 

flexibly, accurately, efficiently, and appropriately 

 strategic competence—ability to formulate, represent, and 

solve mathematical problems 

 adaptive reasoning—capacity for logical thought, 

reflection, explanation, and justification 

 productive disposition—habitual inclination to see 

mathematics as sensible, useful, and worthwhile, coupled 
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with a belief in diligence and one’s own efficacy. [italics in 

original] (p. 116) 

Content-related challenges may be present in any of these strands but it is 

“conceptual understanding” which I primarily address in this study, given that this is a 

necessary basis for proficiency in the other strands. Without conceptual understanding it 

is not possible to carry out operations, not possible to decide on methods to use, and not 

possible to reason mathematically. Concepts form the language of mathematics and this 

language must be known in order to “do” mathematics. In many ways this language is 

mathematics. For the rational numbers this language includes the verbal and notational 

representations of common fractions and decimal numbers, the operations on these 

mathematical objects, and how these are related to visual and more tangible 

representations such as graphical diagrams and number lines. Concept-related challenges 

may be present in any of these language elements of the rational numbers, and may also 

exist in other strands of proficiency. Whereas the above DBE definition of diagnostic 

assessment highlights the nature of content-related challenges, and states the need for 

intervention, it does not indicate how such content-related challenges should be 

discovered, and also does not indicate the nature of the possible interventions. The CAPS 

document suggests that “Assessment for learning has the purpose of continuously 

collecting information on learner performance that can be used to improve their learning” 

(DBE 2011a, Senior Phase, p. 155), which includes a range of informal, non-documented, 

tasks which are conducted on a daily basis in the classroom. Within this study I address 

the usage of diagnostic tests to provide evidence for the discovery of content-related 

challenges, and I also explore the potential for automation of this task. With my approach 

being the application of targeted diagnostic tests, I thus need to know how I make 

inferences from such tests, and ideally as few test items as possible to meet the 

requirement for efficiency, in order to derive some measure which could be useful and 

meaningful to the teacher. 

1.8 From Scores to Measures 

Tests are instruments which gather data from learners for various assessment purposes. 

Tests are the “ruler” which we use to determine the extent of a particular construct, such 
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as ability in a specific domain, or more importantly for this study, evidence of a content-

related challenge. 

Consider a test which is comprised of five items, from which a score in the range 

0-5 is possible from each of the learners in the class, on the basis of one score point for 

each successful response. However, what does this score mean? Whereas test results are 

used as though they are measures—with the score 0-5 being used as evidence which 

means something, like the ruler is used for measuring length—this is not actually the case, 

and this is due to a range of considerations that exist between the nature of a specific test, 

and the inferences that we can draw from the test results. Foremost of these is the validity 

of the test items, concerning whether they are appropriate instruments to measure the 

construct of interest. 

Whereas international surveys, such as TIMSS, are designed to be good measures, 

this requires considerable effort from a large body of experts to develop such suitable 

instruments, and such resources are not available for informal assessment in the 

classroom. We have no easy way to determine whether a teacher is providing the right 

test items to aid their daily assessment practice, and also whether they are using the results 

to elicit valid evidence about their learners’ challenges. To examine this further, it is 

necessary to dive deeper into the testing process, to identify how this can be improved to 

provide valid evidence to the teacher. This leads to the specific research questions that I 

frame at the end of this chapter. 

For my purposes I consider a test as consisting of a set of items, where each item 

is designed as a suitable instrument for the “construct” which the test as a whole is 

measuring. This construct is an intangible element of the learners’ conceptual model. A 

construct must be measureable so that the test instruments can produce a value—in which 

different learners will achieve different scores resulting from the items in a test. Higher 

scores are evidence of more of the construct and lower scores indicate less of the 

construct. However, not all test items will be equally useful for measuring the construct, 

and thus using the raw test scores alone is not a fair measure. 

Rather, the ideal for educational measurement is to create fundamental measures, 

such as exist within the physical sciences. For example, there are well-developed 

international standards for length and for temperature, with corresponding scales of 

measurement that allow for consistent readings anywhere, at any time, using any 
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instrument which is aligned to the standards. Educational measurement strives for the 

same consistent rulers and thermometers which meet this requirement for a fundamental 

measurement system. With such a fundamental system of measurement, educational tests 

can produce universally accepted measures of a construct—using different learners, at 

different places, and using different instruments. This requirement for fundamental 

measurement is an essential element of modern educational measurement practice (Bond 

& Fox, 2012).  

We use tests as a means to gather evidence from our learners. Each test gathers 

data indirectly, such as by observing a learner in the process of solving a problem. 

However, such observations are also a challenge, since many of the processes involved 

in solving a problem take place in the mind of the learner and are not explicit and thus 

not directly observable. The learner may read aloud the methods they are using but this 

may not produce the results we need since many mental process are not at the conscious 

level of thinking and occur too fast to explain. Thus, it is easier to limit our observations 

to the final responses given by learners to the problems as presented, as is done with both 

MCQ and constructed-response items. I am not discounting the potential value of 

observations other that the learner’s final response, but these other observations are not 

used within this study and are also time-intensive, requiring the teacher to be devoted to 

one learner at a time. Thus for practical purposes we need to work with the methods which 

are available to us, being the presentation of a test and the inference we can draw from 

the test scores. 

Given a single test item, structured to measure a particular construct, and a 

learner’s response, the question arises of how good is this test item for measuring the 

construct of concern. The construct may be broad, such as the learner’s overall 

proficiency in rational numbers, or may be finer-grained, such as the ability to add 

common fractions with the same denominators. It is essential that test items are valid and 

reliable instruments for the construct they are measuring, and that they are used 

appropriately to infer measures which are valid. This is termed “construct validity” and 

is the degree to which inferences drawn from test results are valid and reliable measures 

of the construct (Messick, 1989; Messick, 1995). However, in most cases in educational 

measurements the constructs are not defined in detail, and are rather expressed as a short 

description of a desired competency within a curriculum statement such as, for example 
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“the conversion between different forms of rational numbers”. This is a statement 

indicating a proficiency, and misconceptions can also be expressed in similar words, such 

as “ignoring the decimal point when determining the value of a decimal number”. The 

next step is to find suitable measurement processes to quantity these constructs so as to 

provide evidence to teachers about the learner’s challenges. 

Individual test items are unique, and have their own properties. Some test items 

may be more difficult than others, so that fewer learners succeed on the difficult items in 

contrast to the easier items. As a result, the items in a test may be all difficult or all easy, 

and this can bias the results. To illustrate this point, let us imagine that there are two tests 

S and T to be given to two groups of learners A and B of similar ability. Test S is 

composed of difficult items and is given to group A, and test T consists of easy items and 

is given to group B. Is this fair? Will we obtain accurate results from the tests? We would 

expect, since the ability of the groups A and B are similar, that group A will produce a 

lower score than group B due to the bias in the item difficulties between the two tests. 

But the two groups are both taking a test on the same topic and it is thus evident that using 

the success rates alone—how many learners select the correct responses—does not 

provide for a fair comparison between these two tests without also considering the 

difficulty of test items in these tests. For example, for questions in which a learner is 

required to convert a decimal number to a common fraction, it is likely that the decimal 

numbers 0.5 and 0.7943 have different levels of difficulty by considering only the 

individual nature of these two numbers and without using empirical evidence and 

statistical inference arising from the use of these items in actual tests with learners. It is 

required to consider the level of difficulty of the items to obtain an unbiased measure and 

this issue pervades all educational testing. 

A second consideration is that some test items may be a better fit to the construct 

than other items. As a thought experiment, if I include a test item “What is 1+1?” in a test 

which purports to measure the ability to convert between decimal numbers and common 

fractions, it is clear that this item does not fit the construct and should be excluded. 

However, if this item does not fit the construct then how do I determine which items do 

fit the construct and which do not. Rather than this being simply a case of fit or non-fit 

there is expected to be a spectrum of fit levels, occurring between the extremities of “does 

not fit at all” to “fits perfectly”, in terms of the extent to which a test item is able to 
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measure the construct. Whereas “What is 1+1” is an easy question, it does not fit the 

construct being measured. 

Returning to the notion of fundamental measurement as found in the physical 

sciences, we use rulers to measure length and any ruler will do. When we purchase a ruler 

it is based on a standard and thus our measurements will not vary if we use different rulers 

to measure a single length, or we use the same ruler to measure two equal lengths. This 

property of invariance is an essential element of fundamental measurement and is thus 

also a necessary requirement for educational measurement. To address this requirement 

for invariant, and perhaps universal, measurement methods, Georg Rasch developed the 

method which bears his name (“Rasch Analysis” or “Rasch Measurement Theory 

(RMT)”) which jointly considers the difficulty of the items as well as the ability of the 

learners when analyzing the results of a test (Bond & Fox, 2012; Wright, 1997). Rasch’s 

method has led to a profound change in educational measurement theory and practice. I 

provide some details of the role of Rasch methods for diagnostic measurement in Chapter 

2, and in Chapter 4 I describe how I used Rasch measurement for this study. My study is 

concerned specifically with test items that measure constructs which are useful in a 

diagnostic context, and measure misconceptions using a similar approach to the 

measurement of ability. 

The Rasch process requires non-trivial computational effort and if this is to be 

applicable in a daily assessment context it is necessary to explore how it may be 

automated. 

1.9 Automating Diagnosis 

A learner’s conceptual model is a moving target within the context of educational 

assessment, since these conceptions are changing continuously from day to day and even 

from minute to minute during instruction in the classroom. These changes may be in fine, 

continuous increments, or may be coarse-grained shifts in thinking, such as “aha” 

experiences. From my personal experience in tutoring learners I often observe these 

changes from one moment to the next as the learners grasp an element of mathematics 

which previously eluded them. Armed with this new knowledge they succeed on 

problems which a few moments earlier they were unable to solve. Thus the measurement 

of a learner’s constructs must consider the dynamic nature of these constructs. Any 
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measurements taken are only relevant at the time they are taken since the learner’s 

conceptual model consist of continually changing schemas. Thus to implement 

“assessment for learning”, as outlined in the CAPS statements (DBE 2011a), diagnostic 

information should be available immediately after diagnostic tests have been 

administered to provide the maximum benefit to instructional decisions. 

Some misconceptions may be persistent and may thus span different measurement 

tests, but there will be a point in time when each misconception is first constructed by the 

learner as a tentative, intermediate schema to address a particular problem presented. 

Such tentative and incomplete schemas persist when they are not challenged by the right 

type of problems being given during instruction and through consequent remediation. 

Thus, identifying a learner’s conceptual model requires not only identifying 

misconceptions arising from current instruction, but also misconceptions which persist 

from past learnings. 

Given that diagnostic information is more useful if it is current, and that it is non-

trivial to calculate, this points to the potential role that automated methods can play in 

calculating and providing this information to the teachers and learners. We are witnessing, 

year by year, increasing usage of computers in the classroom, including both dedicated 

computer rooms filled with desktop computers and the modern approach of providing 

Internet-connected tablet computers to every learner. The trend is towards increased 

provision of such technology to enhance education, and this is becoming a permanent 

element of the educational system. This trend is comparable to the introduction of the 

calculator in the 1980s as a mandatory tool for learners of mathematics and science. 

However, there are questions of whether the introduction of calculators has reduced 

learners’ mental arithmetic, such as their ability to recall the “times tables”, and a similar 

argument will hold for the introduction of computers in the classroom. There is universal 

acceptance that computers will play a positive role in the future classroom, and within 

my study I am concerned with the use of these computers for diagnostic assessment, as 

part of the daily assessment practices. I thus argue for diagnostic assessment as a good 

application of computers to enhance the teaching and learning of mathematics. The 

effectiveness of technology for diagnostic assessment is dependent on a number of pre-

conditions: 
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 firstly, that there are test items which are suited to measuring the constructs 

identified within domain of mathematics for which diagnosis is being 

conducted; 

 secondly, that these items can be presented to learners efficiently, with 

learners able to provide responses with minimal effort; 

 thirdly, that the results can be gathered and analyzed as quickly as possible; 

 fourthly, that the measured results can be communicated to the teachers and/or 

learners without delay, and; 

 finally, that the teachers are able to make use of this information to adapt their 

instruction practices to what has been inferred about their learners’ content-

related challenges. 

The considerations and options available for implementation of such automated 

diagnostic systems include the possibility of using the Internet effectively to provide the 

assessment, to process the results, and to communicate these results to those who can use 

this information. This approach removes the need for the resources and the effort required 

to install and run computer programs on separate computers or school-level servers. I 

envision a future where there is central repository of good diagnostic questions which is 

available on demand for teachers. Such a centralized repository has the potential for 

creating an environment in which additional benefit can be gained from the data obtained 

from centralized collection, providing a rich research resource to support further studies 

into the nature of misconceptions, and on effective methods of measurement to detect 

these misconceptions. 

From a practical perspective, many schools in South Africa do not have access to 

computer technology and some do not even have electricity. For such situations manual 

diagnosis is possible using an approach as suggested by Wylie and Wiliam (2006) which 

only requires that each learner has a set of cards to hold up to show their answer to single 

questions posed by the teacher. This is a novel and innovative solution for technology-

poor schools, and also very easy to apply. However, this approach does not provide access 

to the fine-grained knowledge of individual learner thinking which comes from a more 

comprehensive diagnostic process. It also requires careful selection of the questions to 

use, since ideal questions should be adapted for the specific conditions of the learners and 

a standard set of items may not be appropriate to elicit the right evidence. However, in 
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the absence of technology, this approach of Wylie and Wiliam (2006) is far better than 

the alternative of doing nothing. 

I considered the extent to which the automation of diagnostic information, 

specifically using classroom-based assessment tools and access to web-based server 

support systems, should have been included into my study. My concern was whether 

automation of diagnostic assessment would add value to this inquiry, or whether this is 

merely a practical application that is not a knowledge-creating research activity in its own 

right. I did see the value of this inclusion, but I also considered the considerable growth 

in the scope of this study which would have rendered it impractical within the limits of 

time and resources for a doctoral study. I have argued above that more needs to be known 

about the effectiveness and efficiency of diagnosis before a technological implementation 

can be considered as a serious research inquiry or practically employed in the classroom. 

Thus, my conclusion is that studies on the usage of technology for diagnosis must be 

preceded by an inquiry into the nature of effective diagnostic practices. I have used the 

Web as my primary means for collecting diagnostic information from the learners, and 

something has been learned from this experience, and thus I have identified questions that 

warrant further inquiry concerning the usage of the Web for diagnostic assessment. 

Thus, irrespective of how the results of this study may be used in the future, I need 

to use technology and I expect that future diagnostic assessment practices cannot be 

performed without a reasonable level of technological support if they are to be effectively 

used for dynamic, real-time support in the mathematics classroom. I thus argue that 

attempting diagnostic assessment without technological support cannot be effective, 

given the complexity of the conceptual models of the learners, and the wide range of 

misconceptions that occur, as well as the computational requirements to obtain valid 

measures. 

Thus I have positioned my study as an inquiry into the nature of good diagnostic 

items that are suited for future automation using the Web, given that without this 

knowledge any attempt at automation will be subject to the well-known computer 

limitation of “garbage-in-garbage-out”. Without high quality diagnostic processes and 

practices, no level of automation and no amount of technology will help to improve 

teaching and learning. As a result, I have used Web-based diagnosis for this study as a 

tool rather than as a unit of analysis. 
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1.10 Research Problem 

My rationale, as presented above, has been to establish why diagnostic assessment should 

be an integral element of formative assessment, and why it is important that the diagnostic 

practices are both effective and efficient for the teaching and learning of the rational 

numbers. 

My research problem is thus concerned with the effective and efficient diagnosis 

of conceptual difficulties, or misconceptions, in learner thinking, within the realm of the 

rational numbers. 

My study is not exploring how diagnostic information may improve teaching and 

learning of mathematics nor how such information is communicated to or used by the 

teachers. Rather thus study is limited to the problem of detecting and identifying 

misconceptions which are preventing learners from achieving success in their attack on 

problems in the rational numbers. 

My research problem is stated as: 

“How can diagnostic assessment be conducted in an effective and efficient 

manner to detect learner misconceptions in the rational numbers”. 

My scope does not include a study of the alternative methods of conducting 

diagnostic assessments, and is rather focused on the nature of the diagnostic test 

instruments and the corresponding measurement processes which are fit-for-purpose. My 

scope implicitly includes how the processes of diagnostic assessment may be replicated 

through Web-based automation. However, whether these diagnostic instruments are 

implemented in the classroom through paper-and-pencil tests, or are available through an 

online, repository-based assessment system is a secondary concern for this study and will 

form part of follow-on studies. 

1.11 Research Questions 

My research problem raises a number of issues that were identified in my rationale and 

motivation, and which now form the core questions that direct the course of this study. 

In essence, effectiveness and efficiency in diagnosis has been equated respectively 

to the selection of the right diagnostic problems and to the determination of how many 

such problems are required to ensure validity and reliability in the diagnostic inference. 
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Whereas the posing of test items to learners is only one possible approach to obtaining 

diagnostic information, it is the only approach considered within the scope of this study. 

To illustrate an alternate approach, I outline Piaget’s clinical interview method which is 

used to ascertain a learner’s conceptions, as described by Posner and Gertzog (1982): 

 

Its [clinic interview] chief goal is to ascertain the nature and extent 

of an individual’s knowledge about a particular domain by 

identifying the relevant conceptions he or she holds and the 

perceived relationships among those conceptions. (p. 195). 

…allowing a skilful researcher both to probe the areas of the 

knowledge domain of particular interest and to let the subject 

speak freely, while constantly checking his or her spontaneous 

remarks for those that will prove genuinely revealing. (p.196). 

 

The clinical interview approach to diagnosis of conceptions requires access to a 

skilled researcher dedicated to each learner, which is impractical and time-consuming and 

thus challenges the goal of efficiency. However, the clinical interview may provide 

additional information arising from physical observations, such as actions and gestures, 

pauses, and various utterances, which are not available within the scope of formal testing 

processes. What is needed is a process with the same effectiveness as the clinical 

interview, but which is also efficient considering the availability of time and resources. 

My focus is on the use of diagnostic assessments, conducted as formal tests, to 

elicit evidence concerning which misconceptions are used by a learner and the extent to 

which these are used. As a consequence of the previous argument in this chapter I have 

framed the following research questions: 

 RQ1 (EFFECTIVENESS): How can we measure test items in terms of their 

fitness-for-purpose as good diagnostic instruments? 

 RQ2 (EFFICIENCY): Given a particular diagnostic context, how many good 

diagnostic questions are sufficient to establish valid and reliable evidence? 

 RQ3 (SELF-KNOWLEDGE): Does access to learner self-knowledge aid the 

process of diagnosis, in terms of the additional benefit for the added effort in 

obtaining this information? 
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1.12 Outline of Remainder of Thesis 

Chapter 2 discusses prior work on formative and diagnostic assessment practices, rational 

number misconceptions, and educational measurements which collectively impact and 

inform this study. 

Chapter 3 introduces the theoretical framework developed for this study, called 

the “Development Stage Model” which helps to frame the research questions and the data 

requirements. 

Chapter 4 outlines my research approach and methodology including the nature 

of the pretests and the online tests used. 

Chapter 5 presents my analysis of the data arising from the pretests, and Chapter 

6 presents the analysis of data from the online diagnostic assessments conducted using a 

web-based assessment system. 

Chapter 7 provides the results arising from Chapters 5 and 6, with reference to the 

research questions, and presents the core findings arising from this research. 

Finally, Chapter 8 summarizes the outcomes of the study and offers suggestions 

for follow-on research work as well as on practical implementation of the results of the 

study. 

A number of appendices provide additional details to supplement the content of 

the thesis. 

Appendix A provides additional information on the data gathered, including the 

database fields used to store the data from the online assessment. 

Appendix B provides the details of the pretests conducted. 

Appendix C outlines the basis for the Web implementation including the MCQ 

structure and how user security was managed, as well how these mathematical problems 

are rendered in a Web browser. 

Appendix D provides the item bank as used for the online tests. 

Appendix E provides the structure of the four assessment lessons and how these 

were structured into information pages, diagnostic tests, and results pages. 

Appendix F outlines how the WinSteps Rasch analysis program is used for the 

data analysis chapters in this thesis. 
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CHAPTER 2 : LITERATURE SURVEY 

“…the road to a state of expertise is paved with errors and 

misconceptions” Nesher (1987). 

2.1 Introduction 

My study concerns diagnostic assessment, and is focused on its application within the 

rational numbers. This study is thus located within the broader domain of educational 

measurement—addressing the need to measure a learner’s ability, or some other construct 

of interest, within the target domain. 

Diagnostic assessment is a special kind of assessment, requiring a more fine-

grained approach to measurement, and to position my study I explore prior work in a 

number of related fields: 

 constructivism—as a theory of learning which accounts for learner errors and 

misconceptions, where such errors are an integral step in the progression of 

learning 

 rational numbers—with a focus on decimal fractions, common fractions and 

the number line, including the conceptual development of rational number 

knowledge and the identification and classification of common 

misconceptions in the rational numbers 

 educational assessment—including summative, formative and diagnostic 

assessment, and with a comparison to the modern practice of Cognitive 

Diagnostic Assessment 

 educational measurement—and particularly the Rasch method, concerning 

how measures are obtained from raw data 

 trajectories of learning—and how these are applied within micro-domains of 

mathematical knowledge 

 computer-based and web-based diagnostic assessment practices 

For consistency in this thesis, I adopt the following definitions: “decimal 

numbers” are numbers which contain a decimal mark, being a “decimal point” or a 

“decimal comma”. The decimal comma is used by countries which have adopted this 

element of the metric system number representation, including South Africa. A decimal 
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number consists of a “whole number part”, followed by the decimal mark, and then 

followed by a “decimal fraction”. I use the term “decimal number” when the entire 

number is being considered or where the form of the number is not specific to the context, 

and I use the term “decimal fraction” in cases where the fractional part alone is referenced. 

For this entire study I use the decimal point as the decimal mark, such as 23.456, rather 

than the South African educational standard which uses the decimal comma, for which 

the notational representation would be 23,456. This latter is potentially confusing for 

learners, and for almost everyone else in the country, since the decimal number 23,456 

can also be read as “twenty-three thousand, four hundred and fifty-six” in different 

contexts. 

My reason for adopting the decimal point as the standard for this study is that my 

primary diagnostic tests were conducted on the Web, which uses decimal numbers written 

using the decimal point, being the form of decimal numbers which learners are already 

familiar with from their use of calculators, computers, and spreadsheets. Within South 

Africa both of these decimal representations are used, with the decimal comma used in 

school-level education and in some government reporting, while business, science, and 

the media uses the more internationally-accepted decimal point. 

2.2 Constructivism in Learning and Teaching 

My first point of departure is to explore why learners make errors. I present the 

constructivist theory of learning which accounts for systematic learner errors, and 

specifically address how a learner moves from being a novice to being an expert in a 

specific domain of knowledge. Whereas this is a theoretical discussion, which would 

naturally fit within the outline of my theoretical model, the notion of misconceptions is 

so central to my argument that I have preferred to introduce the basis for this theory earlier 

in this thesis. 

All followers of constructivism agree that the learners build their own knowledge, 

and they also accept a common assumption that meaningful learning is created by 

connecting new knowledge to be learned with pre-existing knowledge (Limón, 2001). 

Learning is seen as a “relatively permanent change in behavioural potentiality” and that 

“After learning, learners are capable of doing something that they could not do before 
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learning takes place” (Hergenhahn & Olson, 2005, p.3). Thus for learning to happen, 

some cognitive change is required. 

Learning can be viewed as a sequence of incremental changes within the 

conceptual model of the learner, and these changes may be small or large. From one 

moment to the next, the learner’s conceptual model is adapted to the needs of the 

situations that are presented and experienced. In the constructivist model, these 

adaptations are deemed to be driven by the learner’s experiences of situations which do 

not match their current conceptual model. The process of learning occurs when the 

components of the learner’s conceptual model—as their collection of schemas—fail and 

consequently trigger a cognitive conflict (Limón, 2001). These conflicts are the key 

drivers of the process of equilibration as outlined by Piaget (1985), which is the innate 

process of adaptation of the learners’ world view to the external world they experience 

through their senses (Piaget, 1964/2003; Piaget, 1970). For example, such a cognitive 

conflict occurs when a learner is presented with a new form of mathematical object and 

its associated notations—such as the first introduction to common fractions—which does 

not fit into their prior knowledge of the whole numbers. For the learner, the only way to 

proceed successfully is to adapt his/her thinking. Such cognitive conflicts can be 

exploited in teaching to actively inform instruction (Limón, 2001). In such constructivist 

teaching the teacher modifies the instructional practices to expose cognitive conflicts and 

consequently trigger this natural learning process in the learners. 

Piaget’s model (Piaget, 1964/2003; Piaget 1970; Piaget, 1985), which is an 

historical basis for the theory of constructivism, postulates that every person is 

continually engaged in this process of equilibration, with the purpose of ensuring 

consistency between the external observed world and the internal world of the learner—

his/her conceptual model. New observations are either “assimilated” into the learner’s 

conceptual model, for situations in which the conceptual model contains schemas that are 

sufficient to consume this new input, or are “accommodated”, requiring adjustments to 

the conceptual model to adapt to the internal-external inconsistencies. 

A learner’s external inputs or observations include two specific forms of 

communication. Firstly, mathematical examples and problems presented by teachers to 

the learner, with or without worked solutions, as part of instructional practices. Secondly, 

feedback from the teacher to the learner, where teachers respond to a learner’s workings 
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and solutions. Such feedback may be provided at different levels of detail: as a simple 

mark indicating success or failure; as a worked-out explanation of the solution; or, as a 

detailed description of the specific errors made by a learner with guidance on how to 

improve. When more detailed feedback is provided by the teachers, then the learner has 

more inputs to help stimulate and trigger the constructivist learning processes. 

However, there are two situations in which these external inputs will fail to 

increase learning and which may even cause learning to be negatively impacted. In the 

first situation, examples and problems presented by the teachers are incomplete, incorrect, 

or irrelevant in terms of the topic of instruction. This may create learning which is 

distorted and biased towards these examples, since these examples will constitute the 

entire external experience of the learner, thus are the only opportunity for learning. This 

situation was reported by Nesher (1987) in the case of comparing the magnitude of two 

decimal numbers, in which a random selection of pairs of numbers has a relatively small 

chance of helping to discriminate misconceptions. In such cases the teachers will, on the 

basis of tests conducted, deem the learners to be proficient even though known 

misconceptions have been overlooked. Thus the test results are biased by the selection of 

problems used in the test and a different conclusion may arise if different problems are 

presented. In this case, the test items used are incomplete when considering the range of 

learner schemas which are known to exist from prior research. This is firstly a problem 

of construct validity—that the test items do not match the construct being measured—

and secondly is a problem of teacher knowledge; since if the teachers are not aware of 

the misconceptions then their concept of the construct is itself limited. In this latter case 

the test items may be measuring an incompletely defined construct, whereas in the former 

case the construct may be well-defined, but the test items are insufficient to measure this 

construct. 

The second situation of learning failure occurs when the feedback provided by the 

teacher is incorrect, such as when a teacher marks a question as being incorrect even 

though it is correct. There is a common assumption that feedback will promote learning, 

but this is not necessarily always the case (Kluger & DeNisi, 1996). However, when the 

teachers themselves are struggling with their own pedagogical content knowledge of 

mathematics, then the feedback they provide may be incorrect or incomplete, and such 

feedback will certainly impact learning negatively, by causing the learners to construct 
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incorrect or incomplete schemas or models in adapting their thinking to meet the teacher’s 

guidance. Thus the quality and accuracy of the feedback from teachers is an essential 

element of learning success and any incorrect or incomplete feedback is aggravated by 

the trust which learners place in their teachers’ knowledge, so that feedback from teachers 

will be given priority as part of the adaptation process. 

Learners begin a new topic as novices, bringing prior knowledge and pre-

conceptions from other areas of knowledge in which they have previously developed 

some level of proficiency. Mack (1990, 1995) has examined the case of whole number 

knowledge which is brought into the learning of rational numbers and notes that learners 

may not be able to assimilate new symbolic representations with their own informal 

knowledge, and will attempt to generalize existing knowledge even when this knowledge 

is inapplicable. For example, a learner will see the fractions 
4

5
 and 

5

6
 as equivalent “because 

there’s one piece missing from each” (Mack, 1995, p. 28). Thus, learners use their 

existing knowledge to address new situations and, since this is the only knowledge to 

which they have access, will adapt their thinking when told that this knowledge did not 

provide successful outcomes. 

A learner who has reached a state of mastery in a domain will have developed a 

set of schemas which are sufficient to consistently succeed on problems presented within 

this domain. Thus the notion of domain mastery is dependent on the scope of the domains 

and the scope of the problems presented, and any set of schemas will suffice if they 

collectively are used to achieve demonstrable and consistent success. 

A learner of mathematics does not move directly from being a novice to a master, 

but rather moves through intermediate stages of development which exist in the space 

between novice and mastery (Behr, Lesh, Post & Silver, 1983). When  learners’ schemas 

are applied to problems for which their schemas are suited then the learners will 

demonstrate proficiency. However, when these same schemas are applied to other 

problems they may fail to produce the expected results and are considered to be 

misconceptions. Thus, I consider that misconceptions are constructs which are not 

necessarily bad, or even incorrect, but which are not relevant or are not suited to a specific 

problem or domain to which they are addressed. A misconception is thus a conception 

which does not fit a new context. 
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The level of proficiency required by learners is identified by the curriculum 

statements (DOE, 2002; DBE, 2011a) for each type of problem within the scope of each 

topic. The curriculum statements do not necessarily define mastery within a topic but 

rather sufficiency for each level of education. However, whereas the curriculum indicates 

the required proficiency, it does not, and most likely cannot, state the nature of the 

schemas that the learners should construct to meet this proficiency. The conceptual model 

of an individual learner may be a single super-schema in which all mathematical 

knowledge is structured, or may be a set of special-purpose, semi-independent schemas 

which are triggered when needed. This conceptual model may also be something between 

these two extreme alternatives or may be something completely different. As long as a 

conceptual model is a useful tool to help the learner achieve success, then the structure of 

this model is of less concern, especially when we limit our measurement processes to 

determine only whether a learner has attained proficiency. However, when inquiring as 

to why a learner is not proficient, it is necessary to identify and examine the specific 

schemas that the learner has used to identify those schemas which are incomplete, are 

faulty, or are incorrectly applied, so that these can be attended to. This diagnostic practice 

is the responsibility of the teacher. 

J.P. Smith (1995) has dispelled the notion that the development of mathematical 

knowledge moves towards a small set of general constructs, and has shown that expertise 

in the rational numbers occurs as a result of the development of more specialized 

methods. Thus, it appears that novice learners initially develop generalized schemas in 

their progress towards proficiency, while expertise is evidenced by the construction of 

more specialized schemas applicable for more particular problem situations. This is a shift 

from an initial focus on effectiveness in the novice learners—just getting it right—to an 

increasing focus on efficiency of application in proficient learners—getting it right with 

the minimal effort. 

Given that learners construct their knowledge on the basis of external inputs, and 

that mathematics teachers are largely responsible for providing these inputs in the 

classroom, it becomes important for teachers to provide the right problems to each of their 

learners to maximize learning, which stimulates the cognitive conflict identified by 

Limón (2001). To achieve this, teachers need a fine-grained knowledge of their individual 

learners’ understandings (Wiliam, 2011b). This in turn requires that teachers understand 
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the basis for learner errors and how this information can be used to provide personalized 

instruction. However, learners tend to make similar mistakes, many of which can be 

traced to using informal and prior knowledge in new situations (Mack, 1990; Mack, 

1995), and thus many errors are both commonly experienced and hence predictable as 

natural steps in the advancement of learning. 

The analysis of learner errors has a long history of inquiry in mathematics 

education. In an early work, some 90 years ago, Buswell and John (1926) report on a 

technology which captured learners’ eye movements while they were adding a column of 

numbers. Buswell and John’s approach was to unpack learner thinking by examining 

where learners are looking while engaged in arithmetic tasks and as they make mistakes. 

The eye movements were captured onto photographic plates which were analyzed to 

produce diagnostic conclusions. Buswell and John analyzed the methods used by 584 

students in Grades 3-6 in the fundamental arithmetic operations. Whereas prior studies at 

the time had focused only on the identification of the errors, specifically in terms of which 

questions were answered correctly and which were incorrect, Buswell and John extended 

this prior work to examine the methods and mental processes of the pupils and how the 

learners’ processes contributed to the incorrect answers. The introductory chapter to 

Buswell and John’s study details a number of cases in which operations such as 

subtraction are analyzed for individual learners and where the approaches used by the 

learners are incorrect and inefficient, demonstrating significant misunderstanding of the 

number system. Their objective is summed up in the following quotation: 

 

It seems perfectly clear that the children described in the preceding 

paragraphs can never be efficient in arithmetic until they abandon 

their erratic and wasteful methods and adopt more direct and 

economical means of working examples.                                                             

(Buswell & John, 1926, p. 4) 

 

This highlights the mathematical focus of the time—that proficiency in 

mathematics was equated with the most economical procedures, and not seen as the 

development of a deeper understanding on the nature of numbers, and that research did 
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not include the identification and monitoring of schemas in the learners’ conceptual 

models which may account for their responses. 

It was from these initial studies that the focus of research shifted away from the 

analysis of errors, and towards the internal learner conceptions which give rise to these 

errors, and this led researchers to explore the mathematical conceptions and 

misconceptions of learners. 

2.3 Misconceptions 

Confrey (1990) has defined misconceptions as errors which are grounded in a theory and 

articulated by research—essentially as conceptions which are in conflict with accepted 

meanings—and also notes that the terms “errors” and “misconceptions” are often used 

interchangeably. J.P. Smith et al. (1993) note that misconceptions have been studied 

under many alternative names such as preconceptions, alternative conceptions, naïve 

beliefs, alternative beliefs, alternative frameworks, and naïve theories, but that the term 

“misconception” is the generic term commonly used and that all of these forms concern 

the relationship between novice and expert conceptions. J.P. Smith et al. (1993) also note 

that misconceptions originate in prior learning, by attempts to generalize knowledge. This 

is a natural part of constructivist learning, seen as experimentation and adaption, which 

gives rise to the construction of new schemas and conceptions with the goal of 

equilibrating individual experience with conceptual models, and consequently improving 

success. 

Misconceptions are considered as the application of informal knowledge and prior 

learning to a new domain in which they do not fit properly (Nesher, 1987; Confrey, 1990; 

J.P. Smith et al., 1993). Mack (1990, 1995) suggests that learners overgeneralize informal 

knowledge, such as in the misunderstanding of the symbolic notations of common 

fractions by applying whole number knowledge. Resnick et al. (1989) conclude that 

learners commonly invent rules in the course of learning, in cases where the use of earlier 

concepts in a new domain results in a lack of success in new problems, and this causes a 

cognitive conflict. 

Misconceptions are thus part of the totality of conceptions or schemas within a 

learner’s conceptual model, and both misconceptions and other conceptions can exist 

side-by-side with each other (J.P. Smith et al., 1993). Thus it is possible to consider a 
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learner’s conceptual model as a set of schemas of different levels of proven utility to 

specific problems, where the learners select the most appropriate schema when presented 

with a new problem. When problems of increasing complexity are provided by a teacher, 

schemas applicable to simpler examples will not be effective for more complex problems 

and will fail. Over time, and with a suitable set of problems coupled with appropriate 

feedback, the schemas which survive are those that are more successful and are given 

priority in future tasks. Given that we cannot observe learners’ schemas directly, we must 

infer the existence and nature of these schemas from our observations of learner 

responses. 

My exploration of prior work on misconceptions has shown that researchers are 

in general agreement on common attributes of misconceptions including that: they are 

theory-based, with cognitive explanations for their formation and usage; they arise from 

informal knowledge, from prior learning, or from overgeneralization; they co-exist with 

other conceptions; and, that learner development of misconceptions is an element of 

learning. 

I have earlier indicated that for this study I consider a learner’s mathematical 

understanding as a conceptual model which is composed of schemas which may 

themselves be connected or independent, and which may be small and special-purpose or 

large and general-purpose. These schemas are the only conceptual tools which a learner 

has available to address mathematical problems. In effect, I assume that all mathematical 

knowledge exists only in the form of schemas. All schemas are in a continuous process 

of adaptation towards the goal of consistent success on problems, and a schema which is 

stable and effective when applied to one type of a problem may prove ineffective, and 

thus be a misconception, when applied to more complex problems. Misconceptions are 

thus intermediate constructs created by the learner, in response to various inputs, and 

which are constructed on their path to mastery. Thus I argue that there is no essential 

difference between misconceptions and other conceptions, and all form part of the 

conceptual model of a learner. Therefore, in examining the prior work in this field, I 

consider that the concept of “misconception” is a categorization of a conception which is 

applicable when a schema is not fit for the purpose of a specific problem whereas it may 

have been used successfully for prior problems. 
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2.4 Issues concerning Rational Number Misconceptions 

I now examine prior work on misconceptions in mathematics, and specifically within the 

rational numbers. In this section I firstly introduce common issues that span the rational 

numbers, and in the next section I discuss misconceptions in the different types of rational 

numbers. 

Common misconceptions  

One commonly-cited misconception is that “Multiplication Makes Bigger (and Division 

Makes Smaller)”. Bell et al. (1981) examined the choices made by learners for whether a 

given verbal problem should be treated as a multiplication or as a division, and found that 

there were consistent mistakes which pointed to underlying learner assumptions of the 

nature of multiplication as compared to division. This misconception is also addressed by 

Feischbein, Deri, Nello and Marino (1985) and two of the problems they present are 

(PROBLEM 3) “From 1 quintal2 of wheat you get 0.75 quintal of flour. How much flour 

do you get from 15 quintals of wheat?” and (PROBLEM 4) “The volume of 1 quintal of 

gypsum is 15 cm3. What is the volume of 0.75 quintal?” (p.10). Both problems use the 

numeric values 15 and 0.75 and yet the results differ significantly. For PROBLEM 3 the 

success rate was 79% for Grade 5 and 74% for Grade 7, whereas for PROBLEM 4 the 

success rate was 57% for both grades. For both of these problems the learners were asked 

to select whether the right operation to apply is multiplication (the correct answer) or 

division (the incorrect answer). Thus the learners found PROBLEM 4 significantly more 

difficult than PROBLEM 3 when measured by these success rates. Feischbein et al. 

(1985) conclude that the two numbers used in each of the above problems have specific 

roles of “operator” (how many) and “operand” (of what) and that the tacit knowledge of 

“multiplication as repeated addition” does not work in cases where the operator is not a 

whole number. 

Another commonly cited misconception occurs within the topic of common 

fraction addition. Behr et al. (1983) note that only one-third of 13-year-old learners could 

correctly perform the sum 
1

2
+

1

3
, since the learners’ prior knowledge of whole number 

                                                 
2 A quintal is an historic unit of measurement which is 100 times a base unit, such as 100lb or 100kg. 
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addition causes them to see this as two separate additions for the numerator and 

denominator, resulting in the answer 
2

5
 by many learners. 

Issues of persistence 

However, learners are not like computers which can be quickly reprogrammed when a 

bug is detected. The schemas constructed by the learners are personal conceptual tools 

which have been developed and refined, often over an extended period, to address some 

particular problem or to explain some external experience. When schemas are successful 

they become increasingly resistant to change (J.P. Smith, 1995; Nesher, 1987). When 

schemas are shown to be insufficient, remediation is required over an extended period 

since the schemas cannot adapt themselves on the basis of single, isolated examples. I 

contend that schemas are tools, and are constructed for a purpose, and that the process of 

schema construction involves the self-preservation of schemas with proven utility. Thus 

those schemas which are more successful are given priority, and they become persistent 

and thus naturally resistant to change once they have passed from short-term memory to 

the fixity of long-term memory. As a thought experiment, consider the alternative that 

schemas in the long-term memory could change rapidly, which would result in a lack of 

stability where schemas are changed ‘willy-nilly’ to accommodate every new situation. 

The result will be schemas which are only applicable to the latest experience, and for 

which older experiences and their schemas are discarded. Persistence is thus an important 

attribute of human learning, and it is essential that better schemas are persisted, with the 

corresponding need to ensure that incorrect or incomplete schemas continue to adapt 

before becoming persistent. 

Whereas immediate learning occurs in the short-term memory of the learner, this 

is often insufficient to influence the long-term memory in which the persistent schemas 

are stored for future access. This argument was made around 80 years ago by Cooke 

(1931) who stated that there is no data available as to how long learner errors will remain 

remediated after the interventions, thus implicitly recognizing the persistence and 

strength of the misconceptions, even though the term “misconception” was not in 

common usage at that time. Cooke’s follow up study (Cooke, 1932) identified that 80% 

of the errors he noted earlier did not remain following the remedial practices that he 

introduced, which then implies that 20% of these errors did remain. 
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The development of rational number concepts 

The domain of rational number learning is a perennial challenge that is experienced by 

each new generation of learners (Behr et al., 1983). Rational numbers remain one of the 

most complex and difficult areas of elementary mathematics (J.P. Smith, 1995; Bart, Post, 

Behr & Lesh, 1994; Kilpatrick et al. 2001) and learning problems associated with the 

rational numbers have been researched for at least 100 years. However, consider that this 

is only the most recent 100 years of at least 4000 years in the development of rational 

number concepts. Ancient surviving records show that the Babylonians worked with 

base-60 fractional numbers, which remain with us today in our angular measures of 

degrees, minutes, and seconds, and in our time units of minutes and seconds (Kieren, 

1976). The historical development of the rational numbers was wrought with difficulties 

and problems of acceptance, and the historian D.E. Smith (1958) states that the Romans 

avoided fractions to the extent that they developed a multitude of names for parts so that 

they would be relieved from having to represent and to undertake computations with 

fractions. D.E. Smith (1958) also states that the development of our current notational 

system of decimal fractions took hundreds of years to complete, with many competing 

methods and notations which were proposed during this long developmental history. 

Multiple representations of rational numbers 

The evolution of rational number notations and representation has led to our current 

eclectic mix of notations and representations, including common fractions, decimal 

numbers, number lines, percentages, ratio notation, and geometric diagrams, all of which 

are encountered both inside and outside of the school environment (Kieren, 1976). 

Whereas the whole numbers are used primarily for counting, the rational numbers have a 

variety of uses and interpretations. Kieren argues that understanding of the rational 

number requires “adequate experience with their many interpretations” (p. 102) and he 

identified seven specific interpretations: fractions; decimal numbers; equivalence classes; 

ratios; operators; quotients; and, measures on a number line. Kieren’s structure for the 

interpretation of rational numbers has been referenced and refined by many other authors 

over the intervening years, including Behr et al. (1983) who have used Kieren’s 

interpretations as a basis for the Rational Number Project (2014). Kilpatrick et al. (2001) 

note that Kieren’s classification has guided research in rational numbers for two decades. 
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Prior work shows that the domain of the rational numbers cannot easily be viewed 

as a single unified concept but is better viewed as a mix of notations and representations, 

each with a variety of interpretations and applications. Kieren (1976) has identified the 

need for the various fraction concepts to be understood both individually and as connected 

to each other in “isomorphic” interpretations. In his original seven interpretations, Kieren 

does not include verbal fraction representations, such as the term “three-quarters”, and 

also excludes percentages as a specific form. These various forms of fractions and their 

notations have been questioned by Usiskin (1979), concerning whether common fractions 

still have a place in the curriculum given that calculators work suitably with decimal 

numbers alone. Usiskin concludes that different representations each have applications to 

which they are better suited and that calls for the removal of common fractions from the 

curriculum, in favour of a unified model of decimal numbers, are unlikely to succeed. 

Given the multiple representations and interpretations of the rational numbers, I 

examine how the South African curriculum views the scope and development trajectory 

of this knowledge. The curriculum statements (DOE 2002; DBE, 2011a) show the 

development of fractional concepts from the earliest grades, leading to an initial 

understanding of common fractions and their notations, which are introduced prior to 

decimal numbers, percentage, and other forms. Thus, the specific forms of rational 

numbers are introduced in isolation from each other, but as the decimal numbers are 

introduced in Grade 6 (DBE, 2011a), the equivalence of decimal numbers with common 

fractions and percentages is a required proficiency. Learners commence their knowledge 

of rational numbers from the relative simplicity of the natural numbers, which is linked 

with concepts of parts and the notion of equal sharing in the early grades. The operations 

of division by 10, 100, and 1000 are then used to introduce fractions with these 

denominators, which leads to the notation of decimal numbers. From this point learners 

confront multiple representations, together with unique characteristics of rational 

numbers, such as density and the equivalence of different forms. Arithmetic operations 

such as addition are handled differently for common fractions, although for the decimal 

numbers much of the existing whole number knowledge is still applicable. Given this 

additional complexity in both representation and operations of the rational numbers, it is 

evident, purely on the basis of this analysis of the curriculum requirements, that learners 

will struggle to develop a consistent and successful conceptual understanding of these 
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numbers. This is aggravated by my earlier observation that the curriculum only allocates 

40 hours to the common fractions and decimal fractions for the entire three-year Senior 

Phase of Grades 7-9. 

The diagnosis of rational number difficulties 

Early work on the diagnosis of arithmetic problems of learners, including problems in 

common fractions and decimal numbers, focused on identifying the types of problems 

that learners struggled with and with which frequency (Brueckner 1928a, 1928b), and one 

of the early approaches recommended a detailed analysis of the methods used by learners 

through observing their work (Uhl, 1917). Kieren (1976) cites Fish (1874) concerning the 

exclusive focus on mathematical operations and calculations required to solve these types 

of problems while lacking a focus on the conceptual understanding of fractions. 

The study of learner errors in arithmetical operations, including decimal and 

common fractions, has been a continuously active area of educational inquiry for almost 

200 years and highlights include the early diagnostic studies of De Morgan 

(1831/1898/2013), Buswell & John (1926), Brueckner (1928a, 1928b), Olander (1933), 

Sprague (1939), and Guiler (1945). In particular, the work of Olander (1933) is the 

earliest account I have found which considers that learner mistakes have a systematic 

basis. The work on rational number learning and misconceptions also includes: the 

extensive volume of studies published by the Rational Number Group (such as Bart et al., 

1994, Behr et al., 1983); the work of Steinle (2004a) in categorizing learner errors in 

decimal ordering; and new theories of understanding learner errors by Siegler, Thompson 

and Schneider (2011). The focus on understanding and making sense of rational number 

errors has always been an issue for research in mathematics education. 

The emphasis on procedural knowledge, especially in the rational numbers, has 

been highlighted by the Rational Number Project (2014) researchers (Behr et al., 1983; 

Bart et al., 1994), who identify the curricula focus on procedures and methods as being 

at fault, in that it fails to drive the teacher towards developing a deeper understanding of 

learner conceptions that give rise to the misuse of procedures. Behr et al. (1983) state that 

exposure to all interpretations and all forms of rational numbers is necessary to gain a full 

understanding and to establish competency. 

Given my concern in this study for understanding the types of test items which 

are best suited for diagnosis, I examine how South African learners responded to two 
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specific test items in the TIMSS 1999 study (Mullis et al., 2000; NCES, 2015), both of 

which involve the ordering of a set of rational numbers. The first is item B10, which is to 

select the smallest of five decimal numbers being (1) 0.675 (2) 0.5 (3) 0.375 (4) 0.25 and 

(5) 0.125. For this item South African learners obtained an overall score of 6%, which is 

below the expected level of 20% if these learners had been randomly guessing and which, 

as for the examples presented in Chapter 1, reveals information about the conceptual 

development of the learners, inferring that guessing alone is highly unlikely to produce 

such a low result. The second item is D09, which asks the learners to select the smallest 

of four common fractions, 
1

6
, 

2

3
, 

1

3
, and 

1

2
, for which the South African learners, still close 

to the bottom of the list of countries, scored 28%, where this result may be explained on 

the basis of learner guessing which would result in an expected value of 25%. Thus these 

results show that item B10 provides far more evidence of the use of misconceptions than 

item D09, even though D09 has a higher relative success score. Whereas both of these 

items appear to have the potential to elicit similar misconceptions, B10 would be 

preferred for diagnostic purposes given its ability to trigger misconception schemas in the 

learners’ responses. 

The National Research Council (NRC, 2005) report on how students learn 

mathematics in the classroom, introducing three principles which can guide effective 

teaching and learning. Principle #1 “Engaging Prior Understandings” is described as 

“new understandings are constructed on a foundation of existing understandings and 

experiences” (p. 4), and this foregrounds the need to understand a learner’s knowledge to 

ensure successful teaching, including what each learner knows on entry to each new topic. 

Chapter 7 of this NRC report explores new approaches to teaching rational numbers, and 

cites examples of research on various preconceptions and misconceptions which arise in 

the learning of rational numbers. 

Stacey (2013) notes that the history of research into mathematics learning dates 

back to the early 1900s, with a “cognitive turn” from the middle of the 20th century 

onwards, and that this remains an active area for research, as suggested by 20% of the 

2012 MERGA (Mathematics Education Research Group of Australia) conference papers 

being devoted to such research. 
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On the basis of the above general discussion of misconceptions in the rational 

numbers I now examine prior work on particular types of rational numbers as are relevant 

to my study. 

2.5 Misconceptions by Type of Rational Number 

Decimal Number Misconceptions 

Misconceptions in the decimal numbers have been studied more than other topics in the 

rational numbers, and work can be traced back to the error analyses conducted by 

Brueckner, who notes that “the computations in the tests were kept as simple as possible 

so that errors due to faulty handling of decimal numbers would be revealed rather than 

errors due to difficult computation” (Brueckner, 1928b, p. 36). Brueckner thus asserts 

that more complex problems presented to the learners may cause errors resulting from the 

challenges in the computations which then reduces their effectiveness as diagnostic 

instruments. Brueckner’s approach did not explore the cognitive causes of mistakes but 

rather limited his analysis to the identification of which steps in the standard procedures 

for computation were the cause of the observed problems. I concur with Brueckner that 

diagnostic test items should be as simple and as special-purpose as possible. 

Hiebert and Wearne (1985) explored errors in decimal number addition and 

subtraction problems, and predicted the types of errors made by their students, such as 

the sum 5.1 + .46 resulting in a response of .97 or 9.7 rather than the correct response of 

5.56. They conducted tests on learners in Grades 5, 6, 7, and 9 and found that the errors 

which they had predicted were the most frequently observed and accounted for 75% of 

the total set of errors. Hiebert and Wearne’s hypothesis is that learners rely on learned 

methods—or “syntactic” methods—as distinct from conceptual understanding—or 

“semantics”—and thus their learners were likely to be using memorized rules rather than 

employing a deeper understanding of decimal numbers. 

Wearne and Hiebert (1988) proposed a theory for how learners develop 

proficiency on the written symbols and notations of decimal numbers. Their theory is 

used to predict responses by learners to specific test items which cover place-value, 

decimal number addition, and decimal number ordering, and the theory considers a 

“connecting” process which predicts that meanings of the written decimal numbers will 

be developed gradually. Wearne and Hiebert illustrate this progression for the case of a 
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learner “Bonnie” who made various errors during the process of instruction in the decimal 

numbers. Bonnie initially selected .42 as larger than .5 by explaining that 42 is bigger 

than 5, and later explained that .8 is larger than .34 since “eight tenths is more than three 

tenths”, and finally that 0.056 is larger than 0.05 since the “the five and the six is more 

than five hundredths…because it got five hundredths and six thousandths and that only 

got five hundredths.” (Wearne & Hiebert, 1988, p. 378). These examples highlight a 

trajectory of misconceptions that occur through the development of proficiency at 

progressive stages of development. 

Sackur-Grisvard and Leonard (1985) observed that 89% of the errors made by 

learners when comparing the magnitude of decimal numbers are accounted for by three 

rules used by learners. Rule 1 occurs when the decimal number is treated as though it is 

a whole number, which is in line with Wearne and Hiebert’s (1988) example above of 

Bonnie when comparing .42 and .5. Rule 2 selects a number as smaller if it has more 

digits in its decimal fraction—thus both 12.94 and 12.24, with two decimal digits, will be 

considered as less than 12.7, which has only a single decimal digit. Rule 3 selects decimal 

fractions which start with a zero digit as being smaller. Sackur-Grisvard & Leonard 

(1985) conclude that Rule 3 appears later in conceptual development than Rules 1 and 2, 

and note that teachers and textbooks rarely use such comparison tasks in the classroom, 

since teachers tend to avoid introducing problems which are too difficult, so that they can 

produce higher success rates among their learners. For example, applying Rule 1 to 

decimal fractions with the same number of decimal fraction digits will always produce a 

correct response, so that Rule 1 only shows itself as a misconception when the number of 

digits in the two numbers are different. Sackur-Grisvard & Leonard also suggest that 

learners may achieve success when ordering two decimal numbers, but that incorrect rules 

may be exposed when using more than two decimal numbers. Rule 2 occurred with less 

frequency than Rule 1, and in all items either of these rules may be applied by the learners. 

The basis for Sackur-Grisvard & Leonard’s Rule 2 was also reported by Grossman 

(1983), on a large-scale study of more than 7000 applicants concerning a baseline 

assessment for placement at the City University of New York, observing that the highest 

percentage of students, when asked to find the smallest of five decimal numbers, selected 

the choice with the most digits to the right of the decimal point. Grossman also observed 

that these questions were the most difficult of all of the items in the test, as measured on 
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the basis of the proportion of the students who answered the question correctly, and that 

these items were more difficult for these applicants than all of the test items that involved 

operations of addition, subtraction and multiplication on decimal numbers. Thus the 

expectation that items which require more complex computations are naturally more 

difficult that those involving only conceptual understanding is misplaced. Grossman 

recommends that this type of question should be incorporated into schooling, and that this 

action could have the result of making these items on the comparison of magnitudes of 

numbers the easiest, rather than their being the most difficult. 

Resnick et al. (1989) extended the study of Sackur-Grisvard and Leonard (1985) 

to explore the conceptual development of the learners, and suggest that “A child who has 

just been exposed to instruction on decimal numbers must build a representation of 

decimal numbers and related decimal numbers to other well or partially acquired number 

systems” (p.10). These “other number systems” include the domain of the whole numbers 

and the domain of measurement, both of which are introduced prior to the decimal 

numbers. Resnick et al (1989) refer to Sackur-Grisvard and Leonard’s (1985) Rule 1 as 

the whole number rule, and they refer to Rule 2 as the fraction rule since it emulates 

common fraction reasoning. Consequently, Rule 3 is called the zero rule, and is a special 

case of the whole number rule. Resnick et al. (1989) also provide a comprehensive 

comparison of decimal number knowledge to both whole number knowledge and to 

common fraction knowledge, examining what is similar and what is different concerning 

the values, names, notations, and reading rules. This qualitative analysis provides the 

basis for predicting the areas which may cause confusion if prior knowledge of whole 

numbers or common fractions is applied to decimal numbers. The data gathered includes 

not only the results from tasks such as finding the smallest of 0.5 and 0.25, but also the 

verbal explanations of the learners concerning their decision processes. These qualitative 

analyses help to validate the predictive model of the rules. 

Resnick et al. (1989) also found that some learners lacked a knowledge of place-

value, with learners who are using the whole number rule and the zero rules mostly being 

unable to identify the place-value of the digit 5 in the numbers 1.54 and 2.45. An 

explanation for the 2.45 error is the misconception of identifying the digit 5 as being in 

the ‘units’ columns—caused by seeing the entire decimal number as though it is a whole 

number and effectively ignoring the decimal mark. Resnick et al. conclude that there is a 
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progressive usage of these rules in the learning trajectory of decimal number knowledge, 

with the whole number rule appearing early in learning. Their results show a high usage 

of these rules, accounting for 88% of the errors observed. They also conclude that such 

errorful rules are “intrinsic to learning” and “cannot be avoided in instruction” and are 

“best regarded as useful diagnostic tools for instructors” (Resnick et al., 1989, p.26). 

Stacy, Helme & Steinle (2001) use the mirror as a conceptual metaphor to explain 

the common confusions experienced by both school students and by teacher education 

students between fractions, decimal numbers and negative numbers. They argue that the 

mirror metaphor is used in the psychological construction of these numbers and helps to 

explain why learners will see decimal fractions as negative numbers, such as 0.5 being 

understood as negative. 

Steinle (2004a, 2004b) reports on a large-scale, longitudinal study on decimal 

misconceptions which was conducted with more than 3,000 students who jointly 

completed nearly 10,000 tests between 1995 and 1999 in Melbourne, Australia. The data 

was used as the basis to explore decimal misconceptions in more detail than is available 

with smaller studies, with a goal to better understand the nature of the misconceptions. 

Teachers can benefit from being aware of their learners’ misconceptions to help to reduce 

the observed persistence of these misconceptions. Steinle (2004b) identified two primary 

behaviours, labelled as L (Longer-Is-Larger), and S (Short-Is-Larger), which are 

differentiated on the basis of how many digits are present after the decimal point in the 

two decimal numbers which are being compared on each test item. Steinle notes two other 

high-level behaviours being A (correct responses), and U (unknown). Steinle (2004a) 

explores the L and S behaviours in more depth with fine-grained analysis of the data sets 

which leads to additional classification within these L and S behaviours. Learners who 

respond with a majority of correct responses are placed into the A category, using a rule 

which allows for a single mistake in each of her Type 1 and Type 2 items, where these 

items are designed so that Type 1 would be answered correctly by learners with S 

behaviour and incorrectly by learners with L behaviour, and vice versa for Type 2. 

Learners whose responses do not exhibit sufficient consistency in the usage of L or S 

behaviours are categorized under the U behaviour. I make use of Steinle’s L and S 

classification structure as part of my methodology in Chapter 4 and I also use these codes 

when analyzing my results from the decimal number ordering problems. Whereas 
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Steinle’s identification of proficient learners, in her A behaviour, is based upon at most a 

single item incorrect for each type of item, I see the potential for a more formalized 

approach to measured proficiency, and I explore this within my study. 

Steinle (2004b) reports that most learners who reach proficiency in the A 

behaviour in one cycle of assessment were not classified as either L or S in the previous 

cycle, concluding that they were probably using a combination of these two behaviours 

and were experimenting with their conceptual models. When considering these 

behaviours in conjunction with the range of intermediate conceptual models between 

novice and mastery that I discussed earlier, Steinle’s conclusions on the changes in 

behaviour over time provide support for the nature of the intermediate conceptual models 

that lie at different points on this learning trajectory. Thus it is not only our understanding 

of these misconceptions which is important but also the potential for identifying the 

natural sequence of which misconceptions are likely to occur at the different stages of 

conceptual development. 

These prior results provide support for my rationale for this study, and I question 

why misconceptions often persist for long periods and why they are not remediated more 

effectively through instruction. Is it because the wrong examples and problems are used 

in the instruction process, being posed at the class-level rather than at the individual 

learner-level and thus not meeting the requirements for constructivist teaching and 

learning? Or perhaps, as cited earlier, teachers prefer not to use “difficult” questions 

which may take up class time. It is expected that for instruction to be more effective, the 

instruction needs to be more customized and targeted to the needs of the individual 

learners. This argument is used by Griffin (2009) who states “…teachers need to have 

expertise in developmental assessment because it is integral to the formulation of 

personalized learning plans” (p. 181). I contend that such developmental assessment will 

consist largely of diagnostic assessments, to help to understand the current state of the 

learners’ conceptions, since without such fine-grained knowledge of the learner, no such 

personalized learning plans are possible. 

Common Fraction Misconceptions 

Whereas, in the real world, decimal numbers are used to represent a magnitude or 

measured quantity, and generally have a single interpretation as a number, as one of 

Kieren’s (1976) seven interpretations, the same cannot be said for the common fractions, 
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which have a number of different interpretations and conceptions, accounting for the 

other six of Kieren’s structures. 

The common fractions predate decimal fractions by at least 2000 years, with unit 

fractions used in ancient Egypt as the means of expressing parts (Gillings, 1982). The 

Egyptians did not develop fractional notations more specialized than unit fractions, which 

consist of fractions in which the numerator is 1, and which represent the aliquot parts of 

a whole. All other fractions were represented as the sum of a set of unit fractions, with 

the single exception of a specific notation provided for the common fraction 
2

3
. I have 

previously cited the Babylonian’s use of base-60 fractional concepts and how this has 

survived in our present time and angular measurement systems and the number 60 was 

chosen not by accident, but because of its nature as an abundant number—having a large 

number of factors—which provide for splitting into equal parts in many ways. 

Unit fractions are used for the representation of equipartitioning—which is the 

primary concept used as the conceptual basis for the development of the fraction concept 

(Confrey, Rupp, Maloney, & Nguyen, n.d.). The task of equal sharing is first introduced 

in the Foundation Phase (DBE, 2011a) and leads to the notations of unit fractions such as 

1

3
, which leads in Grade 3 to non-unit fractions such as 

2

3
 and 

3

4
. Thus common fraction 

notations are introduced around two years before decimal fractions in the South African 

curriculum. 

Hiebert and Tonnessen (1978) explored the development of the fraction concept 

in a small group of young children between the ages of five and nine, using Piaget’s model 

of seven interrelated constructs. They cite Kieren’s (1976) interpretations of fractions as 

part-whole, ratio, quotient, or as a multiplicative operator, and conclude that whereas the 

seven Piagetian constructs are applicable to continuous quantities, such as cutting up a 

pie into parts, the part-whole construct is the only construct applicable to discrete 

quantities. They claim that Piaget’s model can be used for diagnostic purposes of a child’s 

conception of fractions. 

Mack (1990, 1995) addressed the role of a learner’s rich store of informal 

knowledge, such as partitioning and equivalence, in accounting for errors in fractions 

work. She draws on a wealth of prior research on fraction misconceptions, which indicate 

that rote learning of procedures often gives rise to misconceptions when these procedures 

are applied to different forms of problems. The informal knowledge associated with 
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whole numbers supports a learner’s explanation for why 
1

8
 is seen as larger in magnitude 

than 
1

6
. 

The understanding of the magnitude of fractions has been addressed by Stafylidou 

and Vosnaidou (2004) using the theory of conceptual change, concluding that students 

form synthetic models which reveal their misconceptions. These models are considered 

as intermediate conceptions that result from an attempt to make sense of the fractions, 

and they form a part of the continuously evolving conceptual model of schemas that I 

have referred to earlier. Stafylidou and Vosnaidou use an explanatory framework of a 

“Fraction as Two Independent Natural Numbers” in which both the numerator and 

denominator of a fraction are treated as distinct whole numbers. Using this framework, 

comparisons of the numeric values of common fractions are seen by the learners as being 

equivalent to the problem of comparing the numerators or denominators individually. 

This framework gives rise to a number of misconceptions such as “the value of a fraction 

increases when the numbers that comprise it increase”, and “the value of a fraction 

decreases when the numbers that comprise it decrease” (Stafylidou & Vosnaidou, 2004, 

Table 3, p. 509), which applies for both numerators and denominators. As for Mack 

(1995), Stafylidou and Vosnaidou (2004) conclude that these misconceptions are derived 

from the conceptual development of the learners as they attempt to reconcile the fraction 

concepts with their prior knowledge and that this is a natural part of the learning of 

fractions. 

Kilpatrick et al. (2001) outline the problems of multiple representations in the 

rational numbers, citing the problem of the equivalence of 
3

5
, 

12

20
, 0.6, 0.60, and 60%, and 

state that this presents a significant challenge for learners who are starting to learn the 

concepts of both common fractions and decimal numbers, given the large number of 

representations which learners are exposed to, and which they are required to understand 

and to compare. Kilpatrick et al. cite examples of common misconceptions from the 

rational numbers, where each example has diagnostic qualities which discriminate 

between learners who use a misconception and those who do not. One example they cite 

is that when asking learners to estimate the value of  
12

13
+

7

8
 from the list of choices 1, 2, 

19, 21, and 40, about one half of the learners selected either 19 or 21 as the answer, 

reflecting the use of whole number knowledge rather than common fraction knowledge. 
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I contend that learners who have reached mastery in the common fractions will 

have either constructed a single generic representation from which the various notations 

and interpretations are specific realizations; or they will have constructed specific 

representations for each notation, with a means of interchange between these forms. As 

cited earlier, this latter case is suggested by J.P. Smith (1995) in considering mastery in 

the rational numbers, by the creation of increasingly sophisticated representations which 

are suited to finer types of problem situation. The argument for a single general and 

integrated model for fraction understanding has been proposed by Vergnaud (1994) in the 

“multiplicative conceptual field” which shows that a relatively simple proportional 

representation can account for many interpretations of the common fractions based on the 

types of problems which are encountered in practice. Vergnaud (2009) later presented a 

theory of conceptual fields as a development theory which has as an aim “to describe and 

analyze the progressive complexity, on a long- and medium-term basis, of the 

mathematical competencies that students develop inside and outside school” (p. 83). 

Vergnaud’s theory is generalized beyond the original focus on proportional 

representation and rational numbers and he employs Piaget’s schemas as the basis for a 

model of mathematical understanding. Long, Dunne and Craig (2010) use the 

multiplicative conceptual field to model and to measure learner competence using the 

Rasch method and they recommend this approach as classroom practice. 

 More recently, Siegler et al. (2011) have proposed an integrated theory of whole 

number and fraction development, based upon the consideration of the magnitude of the 

numbers as the key unifying element of number knowledge. Their claim is that there is a 

strong relationship between learners’ understanding of the magnitude of fractions and 

further proficiency in the rational numbers. In particular, Siegler et al. (2011) dispute the 

claim that systematic errors or misconceptions account for the majority of learner errors, 

and conclude that whereas systematic errors do account for some of the errors, that many 

other errors can be accounted for under their theory of the conceptions associated with 

the magnitudes of whole numbers and fractions. 

Within the large body of work on errors and misconceptions in the common 

fractions, many of the examples cited by different studies are either identical or similar 

to one another, and I question whether these are the only examples of such behaviours, or 
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whether these represent classes of such behaviours and are rather viewed as specific 

examples of more generic templates. 

Number Line Misconceptions 

Novillis-Larson (1980) considers the number line as one type of “semi-concrete” 

representations that are used by educators to teach fractions, with other representations of 

this type being sets and geometric regions. She reports that number lines are more difficult 

to grasp than other representations and found that success rates and systematic errors 

differ between number lines which are labelled with the scale of 0-1 and those number 

lines labelled on the scale of 0-1-2. I have created this notational representation “0-1” and 

“0-1-2” to indicate the structure of a number line which has the standard horizontal line 

and with markings at specific points, so that 0-1 indicates that there are two marks on the 

line, for the 0 and the 1. 

Bright, Behr, Post, and Wachsmuth (1988) claim that the number line is more 

complex than other representations since it has two aspects, being firstly the visual, 

geometric form of the line itself, and secondly the symbolic encoding of the numbers at 

specific points on a number line. Other representational forms for rational numbers are 

either purely symbolic, such as common fractions and decimal numbers, or purely visual 

such as sets and geometric regions. Bright et al. (1988) state that proficiency in the 

rational numbers requires the ability to translate between different representations, as was 

previously indicated by Kieren (1976).  Bright et al. (1988) conducted an experiment in 

which learners were asked to position fractions on an empty number line, and they 

provide examples of a learner who marked a 0-1 number line incorrectly from left to right 

as  
1

2
, 

1

3
, and 

1

4
, and another as as  

1

3
, 

1

2
, and 

1

3
. In the former case the learner is applying the 

whole number sequence 2, 3, 4 to the common fractions on the number line and in the 

latter the second 
1

3
 fraction should have been 

2

3
, but was written incorrectly by the learner. 

Bright et al.(1988) report that whereas learners develop an understanding with unit 

fractions they struggle to develop an understanding of non-unit fractions. 

Pearn and Stephens (2007) developed a protocol to probe learners on their 

fractional concepts using a number line, exploring the connection between whole number 

knowledge and fractional knowledge. They used whole number knowledge as a 

preconception applied to fraction learning, as had been addressed earlier by Mack (1990). 
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One misconception which Pearn and Stephens identified was the misunderstanding 

between the number of ticks between the numeric labels on a number of lines and the 

number of parts into which the number line segment has been divided. 

However, Ni (2000) has challenged the use of the number line to measure 

fractional knowledge, indicating that whereas proficiency in the number line implies 

proficiency in fractions, the reverse is not necessarily the case. Ni considers number lines 

as analogues to the fractions, but also notes that these analogues are not always more 

abstract than the symbols which they are analogous to, thus they do not provide a clear 

bridge between the concepts and the different representations. 

Siegler et al. (2011) make use of number line estimation test items, using both a 

0-1 number line and a 0-1-2-3-4-5 number line for larger fractions. They asked the 

learners, using a computer-based interactive test, to position common fractions onto the 

number lines based on the learner’s conception of the magnitude of the fractions. These 

results were then assessed as predictors of the proficiency of the learners, where the 

proficiency had been earlier established on the state-wide tests. In this case the 0-1 

number line results accounted for 41% of the variance in the state-wide tests, with the 0-

1-2-3-4-5 number line results accounting for an additional 34% of the variance. This 

correlation can be paraphrased that if a learner has insufficient knowledge about the 

magnitude of fractions to be able to accurately position the fractions on the number line, 

then they will also be unable to achieve success on other rational number problems. 

In this section I have outlined the nature of conceptions and misconception in 

decimal numbers and common fractions in the number line, and have identified some 

examples of test items which elicit evidence of these misconceptions. However, to be 

practically useful, this knowledge of misconceptions must find its way into the 

development of effective measurement processes, so that these can be embedded into 

assessment practices. 

2.6 Educational Assessment and Measurement 

Measurement vs. Assessment 

Moss (1994) states that “Ultimately, the purpose of educational assessment is to improve 

teaching and learning” (p. 10). However, the terms “assessment” and “measurement” are 

both used in education, and often interchangeably, when discussing the context of the 
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discovery of learner abilities, and the nature of the information provided to various 

stakeholders. 

Griffin (2009), citing Griffin & Fox (1990), clarifies the distinction between 

assessment and measurement by defining assessment “[…] as the process of observing, 

interpreting and making decisions about learning and intervention, whereas measurement 

was regarded as the process of assigning number to observations” (p. 184). For my 

purposes I needed both measurements, in terms of the extent to which learners were using 

misconceptions, and assessment, to ensure that such measures are fit for their purpose in 

making inferences which can support teachers in their daily teaching practice. 

I thus treat assessment as more qualitative in nature and as purpose-driven, with 

each form of assessment having a distinct purpose, providing a benefit to specific 

stakeholders which would not be realized in the absence of this information. The 

curriculum statement for Mathematics (DBE, 2011a) indicates that teachers should apply 

four types of assessment: baseline, diagnostic, formative, and summative, and this 

curriculum statement also makes a distinction between “informal or daily assessment” 

and “formal assessment”—as I have cited earlier. I summarize the stated purpose of each 

of these types of assessment as outlined in the curriculum statement: 

 baseline assessment—are used to ensure preconditions are met before entry 

into a new topic of study 

 formative assessment—described as assessment for learning, is integrated 

into instructional practices in various ways 

 diagnostic assessment—is concerned with discovery of specific challenges to 

learning, including both conceptual and non-conceptual challenges 

 summative assessments—are used by teachers and schools at the end of a 

period of study to select learners for promotion 

In contrast to assessment, I treat measurement as more quantitative in nature, 

implying a sense of exactness, such as the analogy to using a ruler to measure length and 

using a thermometer to measure temperature, which both yield numbers. This analogy 

between physical measurement and educational measurement has been used extensively 

in the Rasch literature to envision the ideal of educational measurement as a universal 

measurement unit which can be used invariantly throughout all times and places (Bond 

& Fox, 2012). For my purposes, educational measurement has the aim of delivering 
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numbers which represent the quantity of some construct which exists within an individual 

learner, so that these measures can be used for some assessment purpose. This reflects 

Matter’s (2009) two paradigms of 

 

measuring how much of a certain quantity (single underlying 

dimension) is evidenced in the student responses; and judging what 

the evidence says about what the student has learnt and how well. 

(p.222, italics in original) 

 

Both of these paradigms are of concern for classroom-based assessment practices, 

since it is required that not only are measurements taken, but that these are then assessed 

to determine what can be inferred from the measurement to guide action to improve 

learning. There is no benefit in measuring when the measured data remains unused, and 

I also contend that if these measurements are not used to the full, providing support to the 

needs of all potential stakeholders, then the resources and efforts in taking the 

measurements have been partly or totally wasted. 

This argument hints that assessment tests should be developed as multi-purpose 

instruments, so that systemic assessments should then provide information to support 

individual learning, even those having different primary purposes. Dunne, Long, Craig 

and Venter (2012) have explored the assessment models which support classroom 

assessment practices, providing aggregated information for decision-making, as well as 

exploring how systemic assessments may inform teaching and learning. Dunne et al. 

argue for the use of Rasch measurement theory (RMT) to provide improved information 

on learner proficiency, coupled with an assessment practice based on mathematical 

development trajectories, and that the use of systemic assessments to provide more useful 

information for teaching and learning will require these systemic assessments to be more 

targeted, more focused, and more limited. 

I continue this section of my literature review by exploring the role of formative 

and diagnostic assessments; by examining how Rasch measurement supports assessment 

practices; and by addressing particular applications of diagnostic assessment to cognitive 

constructs for mathematics. Whereas my concern is with diagnostic assessment, I position 

diagnostic assessment in the context of formative assessment, where diagnostic 
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assessment has the purpose of uncovering challenges to learning, and with formative 

assessment then using this diagnostic information as one of the inputs and practices which 

can improve teaching and learning. 

Formative Assessment and Summative Assessment 

Summative assessment, which is described as “assessment of learning”, is distinct from 

formative assessment, as “assessment for learning”. Formative assessment is seen as a 

process and as an approach to classroom practice rather than merely as a method for 

testing learners (Wiliam 2011a). Whereas my concern in this study is with formative and 

diagnostic assessments, I first compare these to summative assessments. 

Summative assessment is the form of assessment traditionally understood by the 

term “assessment” when this term is used alone. Summative assessments provide a 

measurement of a learner’s proficiency suitable for grading purposes, such as in symbols 

(A, B, C, etc…), or levels (Level 5, Level 6, etc…), and these results are often used for 

promotional purposes or to provide a certificate of proficiency. Summative assessments 

do not have the purpose of providing useful information to support learning, since they 

address the entire subject curriculum, often covering work conducted over many years of 

study, and are not focused on the particular topics as they are being taught in the 

classroom from day to day. Rather, the outcomes of summative assessments will often 

have a major implication for the learners, either positive or negative outcomes, and are 

referred to as “high-stakes” assessments. Summative assessments lack depth in the 

individual topics, sacrificing this depth for increased breadth, and are measuring a high-

level construct, such as the learners’ general proficiency with the subject matter of 

mathematics as a whole. Whereas the purpose of the summative assessment is to obtain 

a broad-based statement of ability, there may be some fine-level information which can 

be derived from these assessments. The high-stakes summative assessments, such as the 

Grade 12 Senior Certificate examinations conducted in South Africa, are managed and 

controlled from a single external source, being the national Department of Basic 

Education, and are thus also systemic in nature as well as being summative. Dunne et al. 

(2012) propose that systemic assessments should use better-targeted instruments, which 

have the power to provide more formative and diagnostic information, and these 

recommendations can also apply to the annual summative assessments. 
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Throughout the past 25 years there has been an important shift from assessment 

of learning to assessment for learning (Gardner, 2012). The terms “formative assessment” 

and “summative assessment”, which are in common usage today, can be traced back to 

1967, a mere 45 years ago, and the term “assessment for learning” was first used as 

recently as 1997 (Leahy & Wiliam, 2012). Teacher guides often indicate that classroom 

practices should involve time for in-class assessment but the teachers for whom these 

guides are written do not have the time to carry out these formative assessments 

(Pellegrino, Chudowsky & Glaser, 2001). There have been calls for teachers’ classroom 

practices to be changed to incorporate formative assessment in 300,000 UK classrooms 

and 2 million USA classrooms (Leahy & Wiliam, 2012). Rather than there being an 

overarching theory of formative assessment, there are guiding principles which have been 

derived from practice and which should be incorporated into such a theory (Black & 

Wiliam, 2009). 

For my purposes, diagnostic information is that which helps to identify the cause 

of learner conceptual problems, and this is an integral element of any formative 

assessment structure, such as the conceptual model proposed by Black and Wiliam (2009, 

p.8), and in particular their Strategy 2 “Engineering effective classroom discussions and 

other learning tasks that elicit evidence of student understanding”. I argue that evidence 

of student understanding as referred to by Black and Wiliam is required, for diagnostic 

purposes, to also elicit evidence of learner “misunderstandings” or misconceptions. 

Pellegrino et al. (2001, p.1) state that “educational assessment seeks to determine 

how well students are learning and is an integral part of the quest for improved 

education”, and they provide an analytical model for assessment which they refer to as 

the “assessment triangle”, which consists of three elements: 

 a conceptual model of the students, identifying the target of the assessment, 

being the knowledge and proficiency of the learners 

 observations as assessment tests which yield measurements of the students, 

and 

 inferences drawn from the measurements, in terms of the nature of the 

conceptual model of a student, which is, in effect, our inferred model of a 

student’s hidden conceptual model 
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This assessment triangle requires that classroom practice must include the 

measurement (“observations”) of learners’ knowledge, it being only possible to infer this 

model through observing the learner and by interpreting these observations. Pellegrino et 

al. (2001) applied this model to both classroom and high-stakes assessments, and have 

noted that most current assessments of achievement are not in line with current theories 

of human cognition. Some of their conclusions are highly relevant to my study: 

 measurement should provide evidence of multiple aspects of proficiency 

rather than a single factor such as ability 

 better assessment practices are needed to diagnose at-risk learners  

 there is enormous potential for creating valid classroom assessments, but more 

study is needed to determine the effectiveness of the approaches 

 most work is directed towards large-scale and high-stakes assessments and not 

to classroom assessments 

Each of these conclusions resonate with the goals of my study, in the need for 

assessments to provide more diagnostic information, and the need to focus on 

effectiveness of such assessments. 

Wiliam (2011a) states that “assessment is a, perhaps the, central process in 

effective instruction” (p. 3) and argues that assessment information alone is insufficient, 

unless it is embedded into a feedback system, since “the use of assessment information 

to improve learning cannot be separated from the instructional system within which is it 

provided” (p. 4). Wiliam reports that the implementation of formative assessment 

practices has had a profound impact, increasing the rate of student learning of around 

70%, which he estimates as being equivalent to an additional eight months per year of 

learning. Wiliam also provides definitions for the terms “formative assessment” and 

“assessment for learning” as they have been applied in prior work, with the key difference 

being the emphasis in formative assessment on the usage of the assessment information 

to improve learning. For my purposes both of these terms embody a need to extract useful 

information about the conceptual model of the learner and  I do not find it necessary to 

distinguish these terms. 

Wiliam (2011a) asserts that the goal of “assessment for learning” is not to merely 

indicate gaps, nor to indicate specific difficulties, but rather to provide evidence about 
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insights into learner thinking which can provide guidance to the teacher as to instructional 

activities which should be undertaken. An example used by Wiliam concerns the case of 

a learner using only the denominator when comparing fractions, which is cited as an 

example of formative assessment, but which is more diagnostic in nature. Thus, to dive 

to the levels of learner thinking which are needed to guide instruction within a formative 

assessment environment, the assessment tasks need to meet diagnostic requirements. 

Stacey (2013) reports on the use of a computer-based assessment tool to conduct 

“smart” tests (“specific mathematics assessments that reveal thinking”) which covers 60 

specific mathematics topics for learners in Years 5-9. These smart tests are introduced 

into the classroom as a formative assessment task, with the goal of impacting directly on 

learning. 

Diagnostic Assessment and Development Stages 

Whereas I have cited Stacey (2013) as an example of the use of formative assessment, 

this work on “smart” tests is also relevant to my work when it is considered as a diagnostic 

tool. Whereas the formative purpose of these smart tests is to inform teaching, it achieves 

this by identifying specific systematic errors, which is essentially a diagnostic task. These 

smart tests help to position learners into development stages, which are intended as a way 

to report learner status to teachers in a simple manner and to inform teaching practices. 

The learning stages used by Stacey for the topic of “Reflections” are structured on 

increasing complexity in the problems on which learners achieve success, with each stage 

building on the proficiencies of the previous stage. For example, Stage 3 is defined as 

Stage 2 plus the ability to “reflect a simple shape (such as circle) in any line, including 

oblique lines” (Stacey, 2013, p. 18). Whereas the individual test items have a diagnostic 

quality and encapsulate specific misconceptions or systematic errors, the development 

stages of the smart tests are rather defined in terms of capabilities, or increasing levels of 

what the learners are expected to be able to do. 

There is a natural link between the structuring of such development stages and the 

systematic errors, or misconceptions, which are more likely to occur at particular stages, 

so that evidence of particular misconceptions can help to position the learners into these 

stages. These development stages are similar in nature to learning trajectories, a concept 

introduced by Simon (1995) as a teacher’s prediction about the path through which 

learning will proceed. Simon considered that teachers will build such models naturally as 
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a part of their teaching practices based on their observations of learners’ difficulties. 

Wilson, Mojica, and Confrey (2013) explored how such learning trajectories can be used 

as core progressions to help teachers make sense of mathematical thinking. Their 

approach uses the learning trajectory of equipartitioning as a long-term development of 

knowledge, spread over many years of learner development, rather than as short-term and 

finer-grained development stages. Whereas such development stages are topic-specific, I 

see the possibility for a topic-agnostic set of development stages, as a generic progress of 

development common to all topics and I propose such a model in Chapter 3. 

Whereas I have presented diagnostic assessment as being coupled with learners’ 

development stages, this coupling is a modern discourse as exhibited in the above-cited 

works of Stacey (2013) and Wilson et al. (2013). The majority of the prior work in 

educational diagnostic assessment views diagnostic assessment as a distinct research 

focus area in which a teacher gathers information on learner conceptual problems, 

requiring a set of tools to gather this diagnostic data from the learner. Among the tools 

which are required to aid teachers are improved test instruments, and Bejar (1984) has 

argued for the development of test instruments to provide more informative and 

diagnostic results than are provided by more traditional testing practices, firstly by 

analyzing students’ weaknesses and secondly by analyzing the patterns of errors. Bejar 

concludes that that there is little guidance on how to conduct such diagnostic tests and 

also highlighted the lack of instrumentation for diagnosis. 

Wylie and Wiliam (2006), as well as Ciofalo and Wylie (2006), explore the 

possibility of teachers using diagnostic questions, one at a time, in a classroom setting as 

an efficient means of gathering diagnostic information. However, their method sacrifices 

reliability in return for a gain in efficiency, and thus their approach is unable to provide 

learner-specific inferences, and consequently is unable to identify the development stage 

of learners. This focus on efficiency, at the expense of validity and reliability, is 

contrasted against the detailed, 30-item diagnostic test set as used by Steinle (2004a) for 

detecting fine-grained evidence of learning thinking on a valid and reliable basis. This 

opens up a line of inquiry, as contained in my research question RQ2, on whether there 

exists a minimum number of items which are sufficient to make an inference, and also to 

what extent this minimum number of items differs between various topics, and is perhaps 

dependent on the specific items used. Whereas a single diagnostic item is the ideal 
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situation—minimizing diagnostic effort so long as validity is assured—it appears 

intuitive that a single item may be insufficient, given the complexity of the types of 

learning thinking. However, it is also an intuitive expectation that 30 test items may be 

too many. Thus in the absence of further evidence on how many items are needed we are 

merely guessing our way towards an effective and efficient diagnostic practice. 

To answer this question on how many test items are needed, there is also a 

requirement to inquire into the nature of good diagnostic test items, on the assumption 

that not all test items are equally suited for diagnostic purposes. This problem has been 

addressed by Bart et al. (1994) in formally specifying the properties of good diagnostic 

questions, which are applied to problems of proportional reasoning. Bart et al. consider 

the properties of a perfect diagnostic test item, which they refer to as a “semi-dense item”, 

and which they define thus: “an item is semi-dense if one can exactly interpret the errors 

students make when they respond to cognitive rules from the responses to the item” (p. 

2). They describe a “cognitive rule” as the cognitive operations that learners will use to 

provide their response. 

The “semi-dense” item of Bart et al. is a theoretical ideal for how to analyze the 

effectiveness of a test item for diagnostic purpose, exploring the structure of the item as 

a semantic, qualitative object, as distinct from empirical results and consequent 

measurement analysis arising from the use of an item among a group of learners. The 

analysis of Bart et al. is conducted using MCQ items which have a specific set of choices, 

where the items are required to meet five properties, paraphrased from Bart et al. (1994): 

 response interpretability: every item choice can be interpreted as the 

application of at least one cognitive rule 

 response discrimination: every individual choice can be interpreted by only 

one specific cognitive rule 

 rule discrimination I: the item has response discrimination, and each cognitive 

rule which interprets a choice will interpret only one choice within the set of 

choices. The suffix I is used to provide for differentiation between different 

rule discrimination rules, the others being II and U which are not covered here. 

For simplicity this is referred to as simply “rule discrimination”. 
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 exhaustive rule set usage: every cognitive rule can be applied to obtain at least 

one choice 

 semi-density: a test item has rule discrimination and exhaustive rule set usage. 

These properties are related to one another and ordered into a hierarchy in which 

Semi-Density has preconditions of Rule Discrimination I and Exhaustive Rule Set Usage, 

and both of these have the precondition of Response Discrimination, which itself has the 

precondition of Response Interpretability. This qualitative analysis proposed by Bart et 

al. (1994) is an important stepping stone for my study, since this is the only formal model 

I have found which identifies the properties of good diagnostic items. My approach uses 

some of these ideas but I rather explore a statistical approach to measure the goodness-

of-fit of such diagnostic items. 

Cromley and Mislevy (2004) argue that test items which are suited for diagnostic 

purposes, and which are consequently used to identify learner misconceptions, are 

different from other types of assessment items, and need to be purposely created to meet 

the goals of diagnostic assessment. Ciofalo and Wylie (2006) propose that when 

diagnostic test items are used one at a time, and thus not within a test of many items, there 

is little need for consistency in whether there are two, three or more choices, but they do 

suggest that the main concern for developers of diagnostic test items should be that the 

incorrect test items are linked to different types of understandings, and thus the selection 

of every choice will provide insight into the learner thinking. 

Cognitive Diagnostic Assessment 

To measure the ability of a learner, various tests are conducted and then, based on the 

results of these tests, a score is determined for the learner. However, this notion of 

“ability” is an artificial, aggregate construct, since ability is a combination of a set of 

schemas, in which each schema may, or may not, come into play to address specific 

situations. When a learner makes a mistake on a test item, this may be traceable to the 

lack of a suitable schema, or to a deficiency in one or more of the schemas that have been 

used. Thus by examining the mistakes made by the learners, in conjunction with the 

cognitive requirements for each of the test items, it is possible to infer which of the sub-

constructs are the most likely to be deficient. 
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As stated earlier, the learners’ schemas are hidden and unavailable for direct 

observation, whereas the “construct” is the theoretical component being measured. For 

each learner, a given construct is likely based on a combination of schemas, each of which 

is linked to a specific sub-construct. The structuring of the construct of “ability” into its 

sub-constructs is the essence of the work in Cognitive Diagnostic Assessment (CDA; 

Leighton & Gierl, 2007a; Leighton & Gierl, 2007b) and Cognitive Diagnostic Modelling 

(CDM; Rupp, Templin, & Henson, 2010). 

Both CDA and CDM comprise a range of models which differ in how they infer 

the extent of the sub-constructs used by the learners and how they account for slips and 

guessing. These various models have some common attributes: 

 there are a set of sub-constructs, or cognitive attributes, which are constituents 

of the construct being measured, and which may be combined in various ways 

 every learner either has, or has not, proficiency in each of the sub-constructs, 

which may be considered as discrete (on/off), or as continuous (range of 

proficiency) 

 every test item either requires or does not require proficiency in each of the 

sub-constructs, which is structured as a “Q matrix” (Tatsuoka & Tatsuoka, 

1997) showing which constructs are required for each choice on each test item 

 the test results indicate which learners selected which choices for each test 

item 

All CDA models have at their basis a mathematical model of the probability that 

a person with a particular set of attributes will obtain a specific response on a given test 

item (DiBello, Roussos, & Stout, 2007). By dividing a construct into sub-constructs we 

have a window into finer-gained thinking of the learners. However, there are some key 

assumptions made in these CDA models, including whether the sub-constructs used by a 

learner can be validly determined as being either on or off, or whether these sub-

constructs exist as a continuum of proficiency, or are perhaps rule-based in nature and are 

used under a variety of conditions and not consistently applied. Another key assumption 

concerns the approach of considering the sub-constructs of ability as being a target for 

diagnosis. Whereas deficiency in a sub-construct is one approach to undertake diagnosis, 

the assumption that these sub-constructs are either on or off does not readily address the 

nature of misconceptions, which could be called “mis-constructs” and which I consider 
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as different, and as distinct, from the absence of ability. The CDA approach is ideally 

used when the questions have a complex level of proficiencies required, and represent an 

approach to diagnosis that would be suited to the analysis of the results from summative 

assessments. When the sub-constructs are extended to include erroneous cognitive rules, 

this leads to a potentially very large and open-ended set of constructs, which then cannot 

easily be mapped onto a limited set of test items. 

Early work in CDA includes the Rule-Space method of analysis, as developed by 

Tatsuoka (1983), which was initially applied to the problems of integer subtraction 

problems and associated learner misconceptions. The Rule-Space approach analyses the 

responses of the learners to infer which rules were likely used to achieve each response, 

and from this to determine the most likely learner proficiencies and the corresponding 

conceptual deficiencies. 

An alternative, and earlier, approach to the identification of faulty components in 

integer subtraction problems, Brown and Burton (1977) developed a program called 

“BUGGY” which used the artificial intelligence (AI) technique of procedural 

representation to simulate student behaviours in response to problems, and then used the 

student responses to explain why the students were making mistakes, rather than merely 

identifying these errors. Brown and Burton’s approach considers misconceptions as 

distinct elements of behaviour rather than as part of a learning trajectory. Their work 

examined diagnosis in terms of a structure of knowledge in which certain operations are 

undeveloped, and which may then be the cause of incorrect results. This has formed the 

basis for further work in which mathematical knowledge is seen as primarily operational 

in nature and largely ignores the conceptual nature of knowledge. 

CDA considers the totality of the attributes, or schemas, which are required to be 

developed within a learner’s conceptual model in order to achieve success on problems 

within the construct of interest. CDA uses a set of test items, linked to the set of attributes, 

to infer the most likely deficiencies of the learner. I position my work as distinct from 

CDA since rather than attempting to address the complexity of the attributes, I used a 

targeted set of simple tests, each of which was designed for fine-grained elicitation of 

specific misconceptions, and which were likely to require smaller sets of items, and which 

I argue are better suited for classroom application. My approach was to conduct analyses 

in parallel for each of the misconceptions, resulting in a pattern of responses, and which 
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made use of simpler test items which were designed for the specific purpose of fine-

grained diagnostic measurement. 

The Rasch Method 

To conduct diagnostic assessment using empirical data from learners, a method is needed 

to analyze the data received so that deductions can be drawn, and from these deductions 

useful information can be derived to inform decisions and actions. 

The most common approach to the scoring of test results for a learner is to simply 

count their correct answers and then to represent the learner’s score as a percentage 

correct. This remains the predominant method for tests conducted in the school 

environment to measure learner ability and is referred to as Classical Test Theory (CTT). 

By providing a range of test items, from easy to difficult, learners are expected to succeed 

on those items which are within their ability and to fail on those items beyond their ability. 

Thus most learners should get the easy items correct, but only proficient learners will 

achieve success on the difficult items. However, CTT fails to indicate by how much 

learners will differ in their ability when they obtain different scores, since it is dependent 

on the particular mix of items chosen for a test. CTT is dependent on the mix of easy and 

difficult test items, and a different mix of test items will produce a different score. What 

is needed is a method which can provide true invariance, so that the scores are consistent 

when tests are applied to different groups of learners, using different sets of items. The 

Rasch method was developed to provide the basis for calculating invariant measures of 

constructs so that educational measurement practices can reach the ideal of “fundamental 

measurement” as has been developed in the physical sciences (Wright, 1997), as 

described earlier. 

This notion of invariance is a fundamental requirement since, when comparing 

two learners with different scores, we are able to say that a learner who achieves a score 

of 80% is thus 10% better than another learner who scores 70%, and that this same 10% 

is the difference between a learner scoring 70% and another scoring 60%. This is not 

guaranteed with CTT and, to repeat the earlier analogy, what is required is the educational 

measurement analogue of the ruler to measure lengths. A 30cm ruler has marks indicated 

for each 1cm, and this is constructed so that each 1cm distance on the ruler is the same as 

each other 1cm distance on each ruler ever made, within a small provision for minor 
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errors in its construction. As a result, the measurement of length of an object will always 

be the correct and consistent, no matter the instrument used. 

The Rasch method was developed by Georg Rasch in the 1950s, based upon the 

requirement to provide such a fundamental measure, and the historical developments 

which led to Rasch’s discovery have been described by Wright (1997). The Rasch method 

provides a model which determines the probability that a person of ability B will have of 

succeeding on a test item of difficulty D, and is expressed as a logistic function on the 

difference (B-D). An outline of how the Rasch method has been used for mathematics 

can be found in Dunne et al. (2012), and the application of the Rasch method for 

measurement in the human sciences is provided by Bond and Fox (2012). 

Whereas the Rasch method can be used for measuring any construct, it has been 

primarily applied in education for measuring learner ability, where learner responses are 

typically scored as correct or incorrect. This is known as the dichotomous Rasch model, 

and is distinct from the polytomous model in which each item may have a range of 

possible scores. A learner response to a test item is based on a potentially large set of 

schemas, and it is the presence, quality, and maturity of these schemas which collectively 

define the notion of learner “ability” as the construct being measured. 

Whereas constructs in mathematics are measured by items for which there may 

be a correct or incorrect answer, thus being dichotomous, there is commonly a need to 

attribute a more complex score, such as an item which carries a result of between 0 and 

3, depending on how much evidence the learner has shown in his/her response. For the 

each of the Grade 12 published examinations, there is an associated Memorandum which 

describes the scoring approach and how marks are to be allocated. For this a simple 

correct/incorrect dichotomous model is insufficient, and measurement is better served by 

the polytomous Rasch model. This is an extension of the basic Rasch method to account 

for a range of scores from a single item. There are two primary applications of this, firstly 

in rating scales, such as the Likert3 scale as used in attitudinal surveys. The second is the 

partial credit model, as explained above, in which there are differing scores for partial 

success on a problem. Whereas these offer some potential for use in a diagnostic 

                                                 
3 A Likert scale is a rating scale for subjective information, mostly structured into five categories such as 

from “completely disagree” to “completely agree”. 
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environment, I have chosen to examine a single fine-grained construct at a time, and thus 

have selected the dichotomous model for my study. 

Individual test items may measure more than a single construct, and this may 

confuse the learners and bias the scores, and there is an important assumption of 

unidimensionality in the construct which is required by the Rasch method. This implies 

that the test items are all directed to measuring the construct of interest and not others. 

The example I cited earlier of “What is 1+1” is not appropriate to the measurement of 

rational number ability since the construct is different. The Rasch model requires that 

there is a single construct underlying the behavior of the responses. This does not ignore 

the potential for multi-dimensional constructs, but these are extensions to the basic Rasch 

method. For usage in diagnosis, the Rasch method needs to work with test items that are 

targeted to the measurement of fine-grained constructs, rather than the aggregate 

construct of “ability”. Unidimensionality is threatened with vague and poorly written test 

items, as well as items which test extended constructs which are not core to the test 

requirements (Bond & Fox, 2012). 

Within any test of a complex construct, such as general ability in the rational 

numbers, it is possible to theorize the steps of ability which a learner will proceed through, 

and to provide a range of items to test different attributes of the construct. When 

measuring ability in arithmetic, such items may test simple addition up to complex long 

division, and these can be mapped onto a diagram which reflects the expected 

development of proficiency of this construct. The individual test items will each fit this 

theoretical model of construct development to some degree. Those items with a good fit 

are better estimators, and they match the expected path of development from novice to 

mastery. Those with a poor fit are not good as estimators and should not be considered 

for use in practical settings. 

The practical application of the Rasch model proceeds by understanding the 

nature of the individual test items in terms of the construct, and then using the learner 

scores to calculate the measure of the learner. This learner measure is expressed in terms 

of the difficulty of items at which they have a 50-50 chance of succeeding. Items that are 

easier they have a greater chance of succeeding on, and those with a higher measure of 

difficulty will not be answered successfully. 
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The Rasch method thus not only helps to determine the learner measures, on a fair 

scale of measurement, but it also provides a range of associated statistics on the goodness-

of-fit of the items to the construct being measured, as well as conventional reliability 

statistics. Moss (1994) has proposed that educational measurement, and in particular 

psychometrics, places too much emphasis on reliability, and that to obtain validity it is 

necessary to examine a range of other elements. As a result, there can be validity without 

necessarily obtaining high levels of reliability. This is a direct effect of the nature of 

psychological data, as compared to measures of a physical nature where reliability of 

measurement is highly significant for accepting results. 

When using the Rasch method for diagnostic purposes, I argue that the constructs 

being measured are specific misconceptions, which can be measured in isolation from 

each other. All of the remaining elements of the Rasch method are applicable, but require 

a shift in the interpretation, and this approach is covered in Chapter 4. 

2.7 Construct Validity 

Sadler (1989) has proposed that validity should be prioritized over reliability in all 

diagnostic contexts in which learner improvement is expected and indicates that, whereas 

reliability is normally considered as a precondition for validity, with formative 

assessment this is reversed so that validity is seen as a sufficient, but not necessary, 

condition for reliability. 

In all assessment situations it is essential that the test results are a valid indicator 

of what they are intended to measure. Messick (1989) explored different forms of validity 

and concludes that construct validity is an essential element for all educational assessment 

and that validity must be applied to the process of drawing inferences rather than to the 

data collection tasks. Thus data alone cannot be considered as being valid or invalid, and 

it is when this data is used to obtain measures that construct validity becomes of concern. 

The construct being measured is a theoretical aggregate of an individual’s schemas as 

constructed by his/her personal learning experiences, and to be a true and valid measure 

it is essential that the assessment process accommodates this construct during the 

development of test items, and in the processing of the results. 

Validity is of particular importance for diagnostic assessment in order to derive 

maximum value from the assessment, and in turn to guide remediation and further 
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teaching. There is a spectrum of validity, ranging from completely invalid to completely 

valid so that it is not only the inference to be drawn from the results of the items which 

should be identified as being valid, as Messick (1989) proposes, but also the nature of the 

test items themselves, since it is clearly not possible to draw valid inferences from invalid 

test items. 

To ensure validity of diagnostic inference for individuals there is a requirement 

for not only the afore-mentioned validity in the individual test items, but there will also 

be a minimum number of such questions that are needed to ensure that the misconception 

being diagnosed is the true cause and that no other extraneous factors account for the test 

results obtained from the learner. My study is thus concerned with both of these 

influences, being the quality of individual test items as valid measures of specific 

misconceptions, as well as the economics of assessment in terms of how many questions 

or test items are required to reach valid inferences on the existence of these 

misconceptions on the evidence of the learner responses. The nature of the construct is 

thus important, since validity is expressed in terms of this construct. This is addressed for 

this study in the Development Stage model of learning that I introduce in Chapter 3, 

together with the design of the diagnostic assessments I have used as part of my data 

gathering, as outlined in Chapter 4. 

2.8 Domains and Learning Trajectories 

Mathematical knowledge is traditionally structured into topics or domains, such as the 

whole numbers, the rational numbers, geometry, and algebra. The concept of a 

mathematical “domain” does not have a strict definition, and I have used this term to 

name each broad topic, as are found in the topic headings within curriculum statements. 

I introduce the term “micro-domain” to describe particular elements, problems, and 

proficiencies located within a domain, and which, in my opinion, are better suited for the 

diagnostic work. Thus, whereas a domain is a broad topic which is typically covered over 

2-4 weeks of schooling, a micro-domain may be the subject of 1-2 school periods of 

instruction. My study was concerned with the domain of the rational numbers, and I used 

a number of micro-domains which provide support for the discovery of misconceptions. 

One purpose of dividing up mathematical knowledge into domains is to describe 

the learning trajectories which a learner is expected to move through in developing 
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proficiency in the domain. Graf (2008, p.7) has suggested that “understanding the 

trajectory of development in the target domain is necessary to help students reach learning 

expectations”. Thus, when designing test items which are suited for diagnostic purposes, 

these items should be considered within the context of a learning trajectory and not as 

isolated or independent from a context. 

2.9 Web-Based Assessments 

It became evident at the start of my inquiry, and has become increasingly pronounced 

during the intervening period, that the World-Wide Web (the “Web”) is the preferred 

medium for new computer applications in all fields, which are now being delivered less 

over traditional computers and more over laptops, mobile phones and tablets. Another 

modern trend, which I have not explored in this study, is the potential for mobile “Apps” 

which are hosted on the various mobile devices. These Apps mostly utilize the Web for 

their data access and to support interaction between the users and shared data and 

processes, and for my purpose do not offer anything radically different from the use of 

the Web alone. I position mobile Apps as an alternative medium for the delivery of 

content and data processing. It is clear that any solution which is designed to support 

improved information about learners is required to use digital data stores, as well as a 

means of processing and communicating this data, and thus computer-based and Web-

based solutions present a significant opportunity to take this forward into the classroom. 

The DIAGNOSER system (DIAGNOSER, 2012) has been developed by the Hunt 

Lab in the Department of Psychology at the University of Washington. The purpose of 

DIAGNOSER is to provide on-line, Web-based formative assessments in science and 

mathematics. It claims to provide formative assessments of student thinking to inform 

instruction and has been implemented in various topics in physics, chemistry and biology, 

but I could find no mathematics assessments on the teacher home page. The particular 

questions designed to explore student thinking are called “elicitation questions” with the 

intention to stimulate learner thinking as a prelude to further instruction and discussion. 

All of the questions are in MCQ format, and the various answers are linked to “facets” 

which indicate the particular nature of the student thinking which would have caused the 

selection of each of these. Essentially, the alternative answers are distractors which may 

be related to particular misconceptions. These facets are based on an attempt to organize 
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all of scientific knowledge into a single structure including identification of topics which 

represent the more problematic types of thinking. The DIAGNOSER system is available 

for teachers and their classes using a simple logon process without restrictions, and it 

provides a reporting environment to help inform teachers about their students’ thinking. 

However, it does not appear to be based upon a strong theory of misconceptions in the 

fields in which it operates. 

Recent work conducted at the University of Melbourne, by Stacey and her 

associates (Stacey, 2013; Price, Stacey, Steinle, Chick & Gvozdenko, 2011; Steinle & 

Stacey, 2012) is bridging the gap between research and practice, ensuring that the wealth 

of research into learner thinking can be coupled with the practices of assessment for 

learning, to bring diagnostic assessment into the classroom, and identifying the role of 

the teacher in such classrooms. Their project is called SMART (“Specific Mathematics 

Assessments that Reveal Thinking”) and is a Web-based diagnostic assessment system to 

“provide teachers with a quick and easy way to conduct assessment for learning” (Price 

et al., 2011, p 3). This SMART approach has a number of purposes and approaches which 

are in line with my own work, although I am exploring only one element of classroom-

based assessment practice, being the understanding of learner thinking. My work 

concerns how such classroom-based diagnostic assessments can be improved with more 

reliable and valid evidence and with specific attention to the nature of good diagnostic 

test items, using a universal model of development stages. 

Stacey describes the current status of the work as “...experimental and incomplete, 

yet demonstrates what is possible” (Stacey, 2013, p.14). By combining academic research 

with government educational requirements they have created an open resource for 

diagnostic assessment on 60 topics of interest in the middle school. Among these topics 

are the rational numbers, and among the tests are the pair-wise comparison of the 

magnitude of decimal numbers, which is used to expose a range of misconceptions, and 

which is based upon extensive prior research (Steinle, 2004a; Stacey, 2005; Stacey, Price, 

& Steinle, 2012; Stacey & Steinle, 2006). 

At the University of North Carolina, Confrey and her associates (Confrey, 

Maloney, Nguyen & Corley, 2012; Confrey & Maloney, 2012) have developed a pilot 

diagnostic assessment system, called LPPSync, with a focus on the learning trajectory of 

equipartitioning. This system uses wireless mobile devices, and this work is a part of the 
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GISMO programme (Generating Increased Science and Math Opportunities). This is not 

a Web-based application, but it shares information over wireless devices. 

It is evident from these recent cases that Web-based diagnostic assessment is 

emerging as a discipline to take misconceptions theory into practice. 

2.10 Learner Self-Knowledge 

I noted earlier that empirical evidence arising from educational measurements can be 

complemented with evidence provided directly by the learner, in terms of their self-

knowledge of what they know and what they don’t know. 

This self-knowledge has been referred to as a “Confidence Index” in prior work 

(Webb, Stock, & McCarthy, 1994; Huntley, 2008) which focused on the extent to which 

the individual being assessed is guessing or whether their responses are drawn from their 

prior knowledge and expertise. Webb et al. (1994) used a five-point Likert-type scale 

(1-5) to collect information on the testee’s confidence in their own knowledge with points 

1, 3 and 5 labeled respectively as “NOT CERTAIN’, “SOMEWHAT CERTAIN”, and 

“ABSOLUTELY CERTAIN”, and with points 2 and 4 unlabeled. Their study was 

conducted with undergraduate students enrolled in tertiary studies. Huntley (2008) has 

included a confidence index as one component of a model she used to identify and 

measure “good” mathematics questions. Huntley’s study does not address diagnostic 

assessment but rather deals with general mathematics questions and her model explores 

the role of feedback within mathematics assessment practice. 

In my study I worked with younger learners, and my approach was to ask how 

difficult the learner found the individual test items rather than to ask them how confident 

they were in their answer, which I expected may have been misunderstood by younger 

learners. I refer to my measure as a Difficulty Index, to distinguish it from the Confidence 

Index of the cited former studies. However, this is not merely a change of name of the 

index, since I have shifted the focus away from a subjective assessment by the learner of 

their own self-knowledge and towards the objective statement on the learner’s view of 

the question in terms of its difficulty. 
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2.11 Conclusions from the Literature Survey 

Diagnostic assessment is not a singular discipline which can be disconnected from the 

world and studied alone. It is strongly related to the constructs which it is required to 

diagnose, and I have explored prior work in the domain of the rational numbers. 

I have examined how diagnostic assessment is positioned within formative 

assessment practices, and how these practices can aid learning. The formative practices 

which can benefit from diagnostic assessment include the need to know a learner’s state 

of learning in particular topics of study. I have also reviewed educational measurement 

and the Rasch method, which I expand on in Chapter 4 as part of my methodology. 

Finally, the application of diagnostic assessments using computers and web-based 

assessment environments is examined for its potential in future classroom-based 

assessment practices. 

In this review of prior work, I have positioned my inquiry and my research 

questions to see how my research problem and questions fit into the evolving discourse 

and knowledge base and with the emerging practices of web-based diagnostics. 
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CHAPTER 3 : THEORETICAL MODEL 

3.1 Introduction 

My inquiry has a model-building focus and I use the term “model”, as distinct from 

“theory” to accentuate my purpose to describe the phenomena I am observing rather than 

to make explanatory or causal claims (Mouton, 2001, p. 177). I do refer to my “theoretical 

model” in the course of this chapter to indicate that whereas this is a model, it is also 

grounded in theory. 

I use the term “assessment” to include situations in which a learner is presented 

with mathematical problems to be solved and for which the results are used to infer 

something about the learner, for a pre-defined purpose. As discussed earlier, there are 

many forms of assessment, each having a specific purpose, and my concern is with 

assessments which provide information to support learning, which encompasses both 

formative and diagnostic assessments. I consider assessment to be formative when the 

information it produces concerns the state of learning, and that assessment is diagnostic 

when the results are an indication of the nature of content-related challenges to learning. 

For both formative and diagnostic assessments, the information produced can be used by 

teachers to guide their teaching activities, and can help learners to guide their learning. 

All diagnostic assessments may have a formative value, but diagnostic assessments have 

a specific purpose and thus not all formative assessments will provide diagnostic 

information. 

To explain the role of diagnostic assessments further, I draw an analogy to 

diagnostic practices in other disciplines, such as medicine and vehicle maintenance. 

We visit a doctor when we suspect that something is wrong with our health. The 

doctor performs some initial tests, such as looking at our tongue, checking our pulse, 

listening to our heartbeat, and making other direct observations. This may be followed by 

laboratory blood tests which produce quantitative results. The doctor will not pronounce 

us healthy on the basis of a diagnostic test, but will be able to indicate probable causes of 

our symptoms by reference to some normal range of values and may be able to remove 

certain causes from consideration. 
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A similar analogy is drawn from problems with our vehicles. We firstly observe 

a symptom: we hear a funny sound when the car turns a corner; there is a sudden drop in 

performance; black smoke is coming out of the exhaust; or some substance, perhaps oil 

or water, is dripping under the car. A single symptom alone gives little indication of which 

of hundreds of possible causes is the true cause of the symptom. With many modern 

vehicles, a mechanic will simply connect a diagnostic computer to the vehicle that will 

examine a large number of vehicle parameters and from this will identify likely problem 

causes. The purpose of these diagnostics is not to declare our vehicle roadworthy, but 

rather to help to isolate the problem as quickly as possible so that it can be fixed. 

In both of these analogical situations—for personal health and vehicle operational 

health—it is not the individual measurements which provide the diagnostic value, but the 

inferences drawn from these measurements which help to identify possible causes of the 

problems. 

Similarly, for educational diagnostic assessment, we have some basic symptoms, 

such as a learner who is not succeeding on a particular class of mathematical problems, 

and we want to isolate the causes, which will include the cognitive obstacles that are 

preventing the learner from achieving success. To carry out a diagnosis we need access 

to targeted tests that are suitable to isolate specific causes, which for educational 

requirements will include schemas which are incomplete or used incorrectly and which 

are thus treated as misconceptions. Once we know the cause of the learner errors then, 

analogous to the diagnosis of health or vehicle issues, we can plan to address these 

problems. Educational diagnostic assessment is thus the process of identifying the causes 

for observed problems so that these can be used to inform instruction. 

3.2 Modeling Diagnostic Assessment 

My theoretical model, as introduced later in this chapter, is used to support diagnostic 

assessment practices in the context of a fine-grained progression of learning within micro-

domains. The development of this model is explained in the context of my research 

questions, and this model has been designed to account for the following: 

 The constructivist theory of learning, applied at a fine level in terms of 

conceptual development in micro-domains of the rational numbers. 
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 The progression of a learner through development stages, as learners develop 

and refine their schemas, to increase their success in solving mathematical 

problems in a micro-domain. 

 The role that self-knowledge plays in the identification of misconceptions. 

This model then forms the basis the basis for my research approach as discussed 

in Chapter 4. 

Prior to a detailed explanation of the model, I reflect that a key element of my 

research problem concerns the nature of misconceptions that arise in the learning of the 

rational numbers and how the detection and identification of these misconceptions can be 

improved to support teachers engaged in an assessment for learning context. 

My model identifies five stages that occur in the conceptual development of 

learners as they gain increased levels of proficiency within a micro-domain. I name these 

stages ABSENT, EMERGENT, ACTIVE, IMMINENT, and STABLE, and I use these 

stage names in capitals throughout this thesis. These stages are progressive and they 

represent an abstract learning trajectory which can be used to model conceptual 

development in a variety of micro-domains. In effect, these stages identify points of how 

learners progress in their conceptual development from being a novice to a master, using 

a progression which is independent of the particulars of specific micro-domains. These 

stages are distinguished from one another by the extent to which the individual is able to 

address problems in a limited micro-domain context and how the individuals employ their 

intermediate conceptions, or misconceptions, in their attack on these problems. One of 

the significant features of this model is how it addresses low-performing learners, for 

whom traditional measurement of ability does not yield adequate measures to support 

remedial interventions, as discussed earlier in terms of the interpretations of the scores 

from the TIMSS surveys. 

I position proficient learners, who are in the IMMINENT and STABLE stages, 

into a Zone of Competence. I position learners who are in the process of developing 

proficiency, and who are in the developing stages of EMERGENT and ACTIVE, in a 

Zone of Learning. I propose that these two Zones should be addressed differently to 

ensure that diagnostic assessment practices are effective. In essence, the manner in which 

proficient learners are assessed differs from how non-proficient learners are assessed. One 

critical feature of this approach is that proficient learners are separated out before the non-
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proficient learners are assessed, and thus the learner population is divided into two groups 

as part of the detailed diagnostic analysis, with proficient learners, who require no 

diagnostic assessment, removed prior to the diagnostic assessments. 

I also include an ABSENT stage for learners who show no evidence of any 

conceptual development and who have not yet reached the novice stage, and for whom 

diagnostic assessments are not possible since they have too little knowledge to benefit 

from any form of direct remediation. I place these learners into a Zone of Incompetence. 

These learners will require development of their prior knowledge to move up to the level 

at which new learning is possible. These may be learners who are more than one year 

behind other learners. 

I define these development stages at a high-level, and I expand on these later in 

this chapter: 

 STABLE = the learner knows the micro-domain 

 IMMINENT = the learner almost knows the micro-domain 

 ACTIVE = the learner is getting to know the micro-domain 

 EMERGENT = the learner is just starting to know the micro-domain 

 ABSENT = the learner does not know the micro-domain at all 

I explore each of these stages in terms of the conceptual models which learners 

use during the development of their proficiency, such as preconceptions brought into a 

new micro-domain from prior learnings. Other conceptions are developed as intermediate 

conceptions and are constructed during learning. Thus, at every stage of development, a 

learner will have used and constructed a set of conceptions, and these are developed, 

modified, and refined until the learner reaches the STABLE stage, at which point the 

learner exhibits proficiency in the range of tasks deemed sufficient by the curriculum 

statement or by other standards of proficiency. Given the time constraints in the 

classroom, many learners do not reach the STABLE stage before the class moves on to 

other topics. Learners may thus remain at a state in which they continue to hold 

incomplete intermediate representations, and these will continue to persist as 

misconceptions as they progress into further topics and micro-domains and as this 

knowledge itself becomes a building block, and thus as prior knowledge, for the study of 

new areas of mathematics. 
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Every micro-domain consists of a range of problems which are commonly used 

by teachers and which are found within textbooks, and these problems can be placed on 

a measurement scale from easy to difficult. A measurement process, such as the Rasch 

method, can score each test item with a numeric difficulty factor based upon the 

probability of persons with a particular level of proficiency succeeding on that item. The 

higher the difficulty score for an item, the fewer learners will succeed on this item. The 

Rasch method places both learner proficiency and item difficulty onto the same scale of 

measurement, and this helps to differentiate responses that are merely slips, by an 

otherwise proficient learner, from responses for which there is evidence of the usage of 

specific misconceptions. 

I use the term “conceptual model” to represent the set of schemas which are 

constructed and refined by the learner during the learning process. Various schemas are 

used by learners when solving rational number problems and they complement other 

resources, such as calculators or external help from a peer, a teacher, or a textbook. 

However, these schemas are the only conceptual tools available to a learner during 

problem solving, even with access to external resources. 

I use the term “test item”, or “problem” where appropriate, for the questions and 

problems used in my research, which are designed specifically to elicit learners’ 

conceptual understandings and misunderstandings in the context of my research 

questions. 

My unit of analysis consists of the individual learners who have taken these tests, 

coupled with diagnostic test items which are specific to the learning of the rational 

numbers, and linked with the usage of a Web-based diagnostic testing environment. I 

investigate the cognitive obstacles which learners face in developing proficiency and also 

how diagnostic assessment practices provide evidence of particular misconceptions used 

by learners in responding to the test items. 

My study is played out at two levels. Firstly, at the level of the learners who are 

trying to make sense of the rational numbers through their answering of my test items, 

and secondly at the level of me, as the researcher, who gathers data to validate the 

elements of my model. Thus I make sense of the data I obtain from learners making sense 

of the problems they are presented with. There are thus two minds at work here, being 

firstly my own as researcher, and secondly that of the learner. I cannot merely be a passive 
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observer to this process, since the choices I make in what data I gather, how I collect this 

data, and how I interpret and present the results, reflect my own world view of what this 

data is, what it means to the learner and to the research, and why this should mean 

something to you, the reader. These levels have been addressed by Steffe (2000) in terms 

of his definition of first-order models, being the conceptual model of the learners we are 

studying, and a second-order model, which is our own model of the learners’ model. 

3.3 A Constructivist Theory of Teaching and Learning 

I explore the development of my five-stage model through its constructivist roots, and 

then proceed to examine the model in further detail. These roots can be traced to the 

seminal work of Vygotsky (1978) who provides two important clues as to the nature of 

effective teaching and learning: 

 

… learning which is oriented toward development levels that have 

already been reached is ineffective from the viewpoint of a child’s 

overall development 

(p. 89) 

 

and 

 

… if a child’s mental functions (intellectual development) have not 

matured to the extent that he is capable of learning a particular 

subject, then no instruction will prove useful 

(p. 80). 

 

These statements identify an upper and lower limit for effective learning, and it is 

only between these limits where learning can occur. Vygotsky’s (1978) model of learning 

is conceptualized in the Zone of Proximal Development (ZPD) as  

 

… the distance between the actual development level as 

determined by independent problem solving and the level of 
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potential development as determined through problem solving 

under adult guidance or in collaboration with more capable peers. 

(p.86) 

 

My model builds onto the ZPD by conceptualizing a “Zone of Learning”, as 

described earlier, which I apply specifically to micro-domains, and also specifically for 

diagnostic purposes. The difference between my Zone of Learning and Vygotsky’s ZPD 

is my formalized approach embodied in a fine-grained theory and model of the 

development stages of learning within a micro-domain, which I argue is required for 

diagnostic modeling purposes. I position the Zone of Learning as a model of learning 

which can help to identify the role that specific misconceptions, as intermediate 

representations, and diagnostic assessment, play in learning. The Zone of Learning 

enables learners to be positioned in terms of their conceptual proficiencies and 

misconceptions on the subject matter of a given micro-domain. My model can thus be 

seen as a type of learning trajectory, as described by Empson (2011), which is applied to 

micro-domains in the rational numbers, and which may also be applicable to other micro-

domains beyond the scope of my study. 

Whereas my Zone of Learning provides a model for the positioning of learners in 

terms of their stage of cognitive development within a micro-domain, it does not explain 

the progress, or trajectory, through these stages, and why learners who are not in the 

STABLE stage have developed and have used a range of partial and incomplete 

conceptions in the various stages in their learning process. My concern here is not with 

models of expertise such as described by J.P. Smith (1995) in which STABLE learners 

will continue to refine their schemas to be more efficient, effective and generalized, but 

rather I am concerned with the progress only to the point where a learner has developed 

sufficient conceptual maturity to consistently demonstrate proficiency in a micro-domain. 

For the majority of classroom mathematics this maturity is achieved when a learner meets 

the curriculum criteria as indicated by consistent success on representative problems. 

In the Zone of Learning, learners actively build their own knowledge in response 

to external experiences. This active response to problems both confirms and challenges 

the learners’ existing schemas and consequently requires that the schemas change to 

accommodate these new situations. The constructivist model accounts for why different 
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learners are in different stages of knowledge development, given that each will have a 

different history of external experiences. There is no direct way to determine how schema 

construction takes place in the mind of an individual learner and our only glimpse into a 

learner’s conceptual model is to observe how he or she responds when presented with 

specific and targeted mathematical problems. 

Piaget identifies the processes of organization and adaptation as being innate 

functions of the human being, and which manifest at a certain stage of physiological 

development (Simatwa, 2010; Piaget, 1985). The organizational element of human 

knowledge and mental capability is conceptualized as the collection of schemas which 

comprise their conceptual model. The adaptation element is enabled by three internal 

processes of assimilation, accommodation, and equilibration. Assimilation occurs when 

the existing schemas are able to process new inputs, and accommodation occurs when 

new inputs cannot be addressed, requiring changes in the schemas. Equilibration is the 

process which takes the inputs and attempts to equalize the internal schemas with the 

external experiences, using either assimilation or accommodation. Since adaptation is 

innate in terms of Piaget’s model, this also implies the innateness of equilibration, and 

consequently equilibration is applied continuously as we adapt to each new external 

observation and attempt to make sense of these by modifying our schemas. This 

modification is the process of learning, no more and no less, and thus all of our life 

experience can be considered a continuous process of learning through adaptation. 

In addition to adaptation driven by external experience, we also organize and re-

organize our internal schemas, and this can take place through self-reflection in the 

absence of external observation. This occurs, for example, when we reflect on errors we 

have previously encountered in attempting to solve a mathematical problem, when we 

review our current approach and discover a new approach which works better—and all 

of this takes place in our mind without external observation, by a process of inner 

reflection. 

3.4 An Approach to Assessment 

As outlined above, the ZPD of Vygotsky (1978) models the learning process as it occurs 

from a social perspective when a learner is in contact with an adult or peer. Only 

interactions within the ZPD are effective for learning and it is thus necessary for teachers 
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to know the cognitive level of the learner so as to ensure that the interactions with the 

learner are within their ZPD. Assessments can be used to determine this cognitive level, 

and consequently to inform instruction. Teachers will engage in such practices as a natural 

part of their teaching practices and will conduct assessments to help drive the learners 

towards the curriculum goals. 

The curriculum is a tangible social construction which defines what learners need 

to know to be considered as proficient in mathematics, and curricula are presented as 

structured, sequenced, performance-based subsets of the intangible social construction of 

the totality of mathematics. The curriculum is introduced piece-by-piece during the year 

and from one year to the next, and this is the moving target to which equilibration is 

addressed in education, and learners are expected to adapt by continually modifying their 

base of schemas—their conceptual models. Assessment is ideally conducted as each new 

topic of mathematics is introduced in terms of both the curriculum goals and the learners’ 

conceptual models which they bring to bear on each topic. With regular assessment, and 

with suitable feedback, as promised in assessment for learning practices (Wiliam, 2011b), 

learning has the potential to be accelerated. 

Piaget (1985) submits that a mental conflict occurs when a schema is not fully 

developed or when an inappropriate schema is used for a given situation. This situation 

may arise in learners through misreading a problem or failing to select the most 

appropriate schemas. It may also arise through learners not being exposed to a sufficient 

variety of mathematical situations and contexts within each domain of learning, as cited 

earlier for the micro-domain of the decimal numbers (Nesher, 1987). In the domain of 

mathematics education, a cognitive conflict occurs when a learner provides an incorrect 

answer to a question and when this error is shown to the learner by the teacher or by 

another external agent engaged in the ZPD interaction, such as an on-line assessment 

system. Whereas such errors may result from cognitive or from non-cognitive obstacles, 

my concern is only with cognitive obstacles, and in particular those identified as 

misconceptions. In the mathematics classroom every problem presented to the learners 

may potentially help with the identification of misconceptions, but to be effective such 

problems must be at the right level to match the learners’ knowledge and must also be 

suited to elicit evidence of misconceptions. However, given that different learners are at 
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different stages of development, and also have different conceptual models, it is not 

possible to target individual learner’s needs while conducting class-level assessments. 

In terms of the ZPD I consider the points beyond which learning is not effective, 

being beyond the limits of my model’s Zone of Learning, as introduced earlier. These 

two points are a high point and a low point in terms of the problems presented to  learners 

and the learners’ capability to address these using their own conceptual models. Beyond 

the high point, problems are too difficult for the learner, who will not have developed 

schemas sufficient to address the problem and in this situation the learner can only make 

a random guess or may choose not to answer the problem. At the low point, the problems 

are too easy so that whereas such problems may reinforce the conceptions already learned, 

they cannot add to learning in a meaningful way by the construction and refinement of 

schemas. 

3.5 From Constructivism to Theory 

Arising from the previous discussion on the constructivist basis for my model and the 

assessment considerations, I now describe my model in depth. This model is a fine-

grained theory of learning which refines the ZPD into development stages to reflect the 

high and low points identified in the previous section, as being those points between 

which learning is possible, and outside of which no learning takes place. 

My model treats misconceptions as first-class elements of a learner’s conceptual 

model and as an integral part of the entire conceptual model of the learner. The conceptual 

model consists of schemas which are conceptions at various levels of maturity, including 

preconceptions arising from prior learning, intermediate conceptions which are actively 

being developed during learning, and stable conceptions, which are suited for usage on 

the mathematical problems in the micro-domain of interest. In this context, a 

misconception is thus any conception which is not stable, and which is either incorrect, 

inapplicable, or incomplete. I continue my argument that all conceptions can be 

considered as misconceptions in some context, since all conceptions may be subject to 

change and improvement, although I do account for stable schemas which reach a level 

of maturity at which they appear to be universally applicable to the micro-domain of 

interest. I use the term “first-class” to express my view that misconceptions should be 

treated in the same way and with the same level of importance as stable conceptions, since 
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both stable conceptions and misconceptions will contribute to learner responses. From a 

measurement perspective, I give misconceptions the same level of recognition as “ability” 

as an object of study, and treat misconceptions as distinct objects of study for my analysis. 

My model distinguishes between the perceived “negative” attribute of 

misconceptions and the “positive” attribute of ability. A schema or conception is either 

negative or positive in the sense of measured proficiency and the role that the schemas 

plays in learner success. I focus on the negative because we can determine with 

confidence when a learner’s mistakes are attributable to a specific misconception, but on 

the other hand, we may not be able to determine with a similar level of confidence the 

nature of the schemas a learner is using when he/she  is measured as proficient by his/her 

successful responses. There exist a myriad of different schemas which may all lead to 

measured success in a micro-domain of interest, whereas systematic patterns of errors are 

more likely to reveal a single way of thinking, and this type of thinking may be highly 

refined for a particular case and may be discoverable through a suitable set of appropriate 

test items. My argument here is analogous to Popper’s argument that we can prove falsity 

with certainty but may never be able to prove truth, as “no matter how many instances of 

white swans we may have observed, this does not justify the conclusion that all swans 

are white.” [italic in original] (Popper, 2002). That is, a single black swan will disprove 

the conjecture that all swans are white. When I gather data from learners who provide 

responses to the test items that I present, I can dive into a range of possible reasons for 

the responses on the basis of the misconceptions which I conjecture that they hold. If 

there is sufficient evidence of responses that point to a particular misconception, then I 

have learned something about the conceptual model of the learner. If all learners achieve 

success on all of the items in a test, this may tell me little about the learner’s true ability 

or about their conceptual model. 

This approach of proof by falsification can also be found in the “null hypothesis” 

in inferential statistics, in which it may not be possible to prove a statement to be true, 

while it remains possible to prove a null hypothesis that states there is no impact or effect 

(Howell, 1999). I consider that the ability of learners to successfully not fall into the traps 

which are included as distractors in good diagnostic test items is an indication of the 

advancement of learning. This is thus an application of negative inference, or 

falsification, in the teaching of mathematics by the identification of these negative traits 
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within each learner—where negative is regarded as being inappropriate to the problem at 

hand. In other words, we can learn much from the mistakes made by learners, but we may 

not learn much from their successes. 

3.6 A Fine-Grained Theory of Learning 

My argument above has led me from a general constructivist theory of the ZPD to a finer-

grained model which incorporates the role of misconceptions and which formalizes the 

stages of learning and development. I visualize this fine-grained model of learning as in 

Figure 1, which presents the previously introduced three zones and five stages that 

represent a learner’s maturity within a micro-domain. 

 

 

Figure 1. Fine-Grained Model of Proficiency and Learning 

This model represents a single learner in his/her progress towards proficiency in 

a micro-domain of mathematics. The axis of difficulty represents the measured difficulty 

of problems within the micro-domain, and this increases from left to right. As a learner 

progresses, then the problems which are found to be Easy, Just Right, and Difficult will 

change. An expert learner will likely find all of the problems Easy, but for a novice all 

problems may be Difficult. The range of problems which are within the Zone of Learning 

of the learner are indicated by the end points A and B, representing the low point and the 

high point as described earlier. In this context, the terms Easy, Just Right, and Difficult, 

are features of the learners, rather than the problems, and are expressed in terms of how 

a learner will classify a problem based upon self-knowledge of his/her own proficiency. 

This same classification can also be obtained through empirical evidence of learners’ 
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attempts to solve problems. Using Rasch Measurement Theory, the items can be 

measured on a scale of difficulty which is invariant to changes in the set of problems and 

learners. All such measurement is in terms of a particular construct being measured which 

for most assessment purposes is “ability”—which translates to item “difficulty”. Items 

which fit the Rasch model do so because all learners tend to get the easy ones correct, and 

high-performing learners will get both easy and difficult items correct. Items which fit 

this Rasch model are thus good indicators and predictors of a person’s ability since they 

can be used to infer more accurate ability measures. Thus we can determine, from the 

tests, whether a learner finds the items easy or difficult. 

The conceptions used by the learners will adapt through learning, and it is possible 

to position all learners onto a scale of “ability” based upon their success rates when 

attempting a range of test items of known difficulty. However, this does not point directly 

to the specific schemas, or intermediate conceptions, which cause the learners to make 

mistakes, and thus more can be gained from knowing not just that a learner is positioned 

at a particular point on the scale, but to explain why he/she is at that point in terms of the 

schemas which are held and used, —with the schemas of interest to my study being the 

common misconceptions which occur in the various micro-domains of the rational 

numbers. 

I now unpack this model into its constituent parts, and explain how each part 

contributes to answering my research questions. 

3.7 Individual Learning Trajectories and the Points A and B 

In Figure 1, I identify two specific points, labelled as A and B, which represent the low 

point and the high point at the extremities of the Zone of Learning. As outlined earlier, it 

is in this ZPD-based Zone of Learning that learners are constructing and refining schemas 

as they progress from novice to mastery in a micro-domain. Thus, this Zone moves during 

learning, so that at the start of learning there may be only the Zone of Incompetence, 

encompassing the full extent of the micro-domain, and by the end of learning there is 

ideally only a Zone of Competence, since all learning has been completed, and the 

learners are thus proficient in all types of problems, so that they find all such problems 

easy and within their proficiency. Thus for a given micro-domain the model represents 
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not only a snapshot of a learner’s proficiency in the micro-domain, but also represents 

how this proficiency changes over time. 

As discussed earlier, we cannot directly observe the process of schema 

construction and reconstruction and thus evidence of this process is obtained though 

indirect observation of the responses of learners to test items—and this is accentuated 

with items which are diagnostic in nature, which are designed to identify specific 

conceptions. It is only such diagnostic items which can help to elicit evidence of specific 

misconceptions, rather than more general items which provide evidence of learner ability. 

Various schemas are constructed by a learner on their personal development path, and 

there is no reason to expect that every learner will follow the same path or even a similar 

path to others. However, many studies of systematic errors in the rational numbers, 

conducted over the past 30-40 years, have shown a considerable consistency in the ways 

of thinking that lead to errors. These ways of thinking are intermediate conceptions which 

are progressively developed over time. As a result, these ways of thinking can help to 

represent the specific stages of development for each micro-domain. My model is thus 

essentially a generic trajectory of learning through which learners move in their passage 

from novice to mastery within each micro-domain. This generic trajectory is different 

from the learning trajectories identified by Empson (2011) who has defined a learning 

trajectory as a standard progression of conceptual development in a particular topic, as 

exemplified by the learning trajectory identified by Confrey at al. (n.d.) for 

equipartitioning. 

Individual test items can be positioned onto this axis of difficulty from novice to 

mastery, in terms of the suitability of these items for learners who are at particular stages. 

These test items not only help to determine ability, but also, when used for diagnostic 

assessment, help to identify the particular misconceptions that are being used by learners 

who are at a particular point on this spectrum of capability. For example, some test items 

may elicit late-stage misconceptions, which are used by otherwise proficient learners who 

are in the IMMINENT stage in their final thrust before reaching mastery in the STABLE 

stage. 
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3.8 Micro-Domains 

I introduced the notion of “micro-domains” in section 2.8 “Domains and Learning 

Trajectories” on page 69, and I now define this notion in further detail, considering a 

micro-domain as a small, bite-size unit of teaching and learning, which is mostly derived 

from stated curriculum competencies, and which may consist of a specific type of 

problem, such as decimal number ordering. Learner proficiencies at the level of micro-

domains are combined to create higher-level proficiencies for a domain as a whole, as 

part of instruction in mathematics. 

My model of learning, using micro-domains as the key unit of assessment for 

diagnostic analysis, is a bottom-up approach in which knowledge is gained in fine-grained 

areas and then combined to create more generic knowledge. This is in contrast to the 

model in which learners will first learn generics, and will then apply these generic 

structures to finer levels of problem situation and micro-domains. 

The rational numbers are an important domain of middle-school mathematics, and 

this domain can be divided into micro-domains such as “decimal place-value”, “rounding 

of decimal numbers”, “decimal number ordering”, and “adding common fractions”. Each 

of these micro-domains is sufficiently small to be packaged as a self-contained unit of 

knowledge suited for classroom teaching and also for fine-grained diagnostic 

measurement. However, each micro-domain has pre-requisite proficiencies, and the lack 

of success in a specific micro-domain may be traced to limitations in this prior 

knowledge. 

I consider micro-domains as atomic learning units, in the sense that they cannot 

easily be divided any further for teaching or assessment purposes without losing their 

holistic identity and structure. I position diagnostic assessment, in support of learning, as 

being best addressed at the level of micro-domains rather than being applied to an entire 

domain such as the rational numbers. Every response from a learner to a test item will 

cause the learner to either use their schemas or to guess if they lack appropriate schemas 

to address the problem. These schemas are continually evolving as learning develops and 

thus for my purposes it is less important to know whether a learner is capable or not in a 

specific micro-domain, but more important to understand the set of schemas which they 

bring to each problem. These schemas will include both those which are stable and 

effective for the micro-domain as well as those which are under development. 
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For my study, these micro-domains are not necessarily aligned exactly with the 

curriculum, since such curricula change over time and are often country-dependent. I have 

rather aligned these micro-domains to misconceptions’ research. 

3.9 Item Difficulty Reconceptualized 

Of all of the elements of this study, it is my diagnostic-based reconceptualization of the 

term “item difficulty” which may cause the most confusion and I now unpack this 

modified definition. 

One of my concerns is with the nature of test items that have good “diagnostic 

value”, such as is contemplated in a qualitative sense from the semi-dense items of Bart 

et al. (1994) as I have referenced in Chapter 2. To address the notion of diagnostic value, 

I am asking a research question concerning why some test items appear to have better 

diagnostic value than others. This is an important question because if we know the 

diagnostic value for individual items within a given set, then we can rank these items in 

terms of their relative suitability and effectiveness for diagnostic purposes. Whereas Bart 

et al. (1994) propose a qualitative approach, I am rather exploring a quantitative approach 

to the discovery of diagnostic value and suitability. 

This notion of diagnostic value demands a specific definition, since it is integral 

to my study and also to my approach to the evaluation of specific items. I consider that 

one test item A has a greater diagnostic value than another item B, for the purpose of 

diagnosing a particular misconception, if item A is more likely to elicit evidence of the 

misconception—when applied to learners who actually are using this misconception—

than item B. 

This notion of diagnostic value gives rise to the two-dimensional model in Table 

1, which is represented by the vertical axis (item potential to elicit evidence), and the 

horizontal axis (learner possessing a specific misconception as one of their schemas). 

The goal is to find the items which are positioned in the cell marked with “(X)” 

which are suited to detect learners who hold the misconception, and to distinguish these 

items from those which appear in the other three quadrants. In addition, the goal is to 

determine the best fitting items to meet this requirement, as measures of this construct, 

being the misconception, and which are then better for this purpose than others. 
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Table 1: Items with Good Diagnostic Value 

ITEMS / LEARNERS 
Learner does not have 

misconception 
Learner has misconception 

Item can elicit evidence of this 
misconception 

Error – item elicited evidence 
incorrectly. 

Poor diagnostic value. 

(X) Correct – learner 
misconception is detected. 

Good diagnostic value. 

Item cannot elicit evidence of 
this misconception 

No diagnostic value. 
Error – item is not suited to this 

purpose. 
Poor diagnostic value. 

 

This notion of diagnostic value can be considered in terms of the traditional notion 

of item difficulty, when the construct is a misconception which is being measured. 

The determination of item difficulty is a standard process of both Rasch analysis 

(Bond & Fox, 2012; Linacre, 2013) and IRT (Hambleton & Swaminathan, 1985), and 

both Rasch and IRT determine the probability that a learner with a specific ability will be 

successful on an item which is at a particular level of difficulty. In both Rasch analysis 

and in IRT the items and the learners are positioned on a single scale of measurement. 

For my purposes here, Rasch analysis is preferred over IRT due to its suitability for small 

samples, whereas IRT is recommended for a minimum sample size of 200 (Wright, 

[2005]). 

This measurement scale, and consequently the notion of “item difficulty”, is 

traditionally aligned with the construct of learner “ability”. The probability of a learner 

being successful on a more difficult item will be smaller than the probability of the same 

learner being successful on a less difficult item. However, both Rasch and IRT can be 

applied to the measurement of any cognitive construct, such as personal attitudes, and 

these methods are not restricted to measuring “ability” as the sole trait of interest. 

Whereas this is the primary interest for summative, systemic, baseline, and much of 

formative assessments, with diagnostic assessment the construct of interest changes 

radically. 

Ability is measured as a single construct but, as discussed earlier, learner ability 

is better viewed as a set of schemas, each with a specific purpose and function, which are 

used collectively to enable a learner to answer test items, and thus to demonstrate 

proficiency. When measuring a learner’s ability, we are measuring whether a learner’s 

set of schemas is suited to a test item as presented to the learner. We are consequently not 

measuring the existence or nature of individual schemas, but rather measuring the extent 
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to which the combination of the learner’s schemas is sufficient for the learner to answer 

the item. We can measure ability without ever knowing what these schemas are in detail, 

since the schemas themselves are hidden inside the ‘black-box’ of the mind of the learner. 

The same argument does not hold as I shift my focus to misconceptions as the 

construct of interest, in which each misconception is a single construct for which I seek 

evidence, rather than the composite trait of “ability”. I thus explore the extent to which a 

specific misconception can account for errors in the learner responses to one or more 

items. My construct of interest can be defined as “learner propensity to use a specific 

misconception in a particular situation” and the items are also measured as the extent to 

which they are suited to elicit this misconception, as per the matrix presented in Table 1 

on page 90. For these special-purpose diagnostic items, the notion of “item difficulty” is 

better relabeled as “item as elicitor of misconception”. The terms “easy” and “difficult”, 

as are used in traditional item measurement, also require redefinition since they now 

measure the extent to which a learner who has a particular misconception will use this 

misconception to select the multi-choice response which is based on this misconception 

rather than selecting other choices. In this context, the term “easy” applies to items in 

which most learners who use this misconception will select the response which is a “rich 

distractor” for this misconception; whereas “difficult” means that only a few learners will 

select this rich distractor. I define a “rich distractor” as a choice in a multiple-choice 

question which is designed to elicit evidence of one or more misconceptions. Thus, as 

long as the test items fit the construct being measured, which in this case is a specific 

misconception, then “easy” items are likely to catch more learners in a diagnostic test 

situation. Expressed in probabilistic terms, I determine the probability that a learner who 

is using a misconception will then “succeed” in selecting the choice which indicates this 

misconception. Once I have established the validity of a set of test items which provide 

evidence of a misconception, then I argue that the best items to use for diagnostic 

purposes are those with the highest probability of selection of the rich distractor for the 

misconception. This is how the diagnostic value of test items are calculated, and this 

provides the basis for determining which ones are more suited than others for this specific 

purpose. 

I thus conclude that there is a significant difference in how learners should be 

measured between the proficient learners, who are in the STABLE and IMMINENT 
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stages, and the active learners, who are in the ACTIVE and EMERGENT stages. 

Measuring learner ability using standard Rasch scores is effective to achieve the goal of 

ranking high-performing learners. However, low-performing learners may obtain their 

low scores for a number of reasons, and diagnostic assessment has the purpose of 

identifying which of many possible cognitive causes is the most likely explanation for 

each learner. Exploring the patterns of the learner responses against known 

misconceptions will help to identify patterns of learner thinking to account for the 

observed errors. Thus, whereas there is a single “ability” score that is suited for the high-

performing learners, the low-performing learners should be given specific scores based 

upon each individual misconception that they may have used to answer the test items. For 

the case of low-ability learners, the measure of item difficulty is thus less significant than 

a measure of the usage of a specific misconception. I see this as a reconceptualization of 

the traditional measurement attribute of item “difficulty”. 

Whereas traditional assessments on ability are conducted using the entire set of 

learners, I have chosen to apply a different approach to measurement, so that those with 

less than high proficiency are analyzed using methods which are specific to the discovery 

of misconceptions. As a result, the high proficiency learners are not included when 

conducting diagnostic assessments. This is a claim arising from this study, that lower-

performing learners should not be measured in the same way as high-performing learners. 

3.10 Zones and Development Stages 

Whereas I have reconceptualized item difficulty from the viewpoint of low-ability 

learners, there remains the need to position learners in terms of their raw ability scores, 

as the first step in an analysis of cognitive causes. 

Each individual learner can be mapped onto the range of abilities, as represented 

by the various test items and problems with known “difficulty” measures. I structure the 

spectrum of proficiency from novice to mastery into three zones which I have previously 

introduced as the Zone of Competence, the Zone of Learning, and the Zone of 

Incompetence. Coupled with these zones are the development stages of the learners. I use 

the Zones to reflect the general positioning of the learner into a micro-domain’s spectrum 

of proficiency, and I use the development stages to reflect the cognitive constructs which 

a learner in a zone will have in terms of their ability to solve a problem. 
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A learner’s Zone of Competence indicates the problems which they are able to 

solve successfully within the micro-domain. If the learner’s Zone of Competence 

encompasses the entire micro-domain, then this learner will have developed and refined 

a set of schemas which address the common misconceptions within this micro-domain. 

At the other end of the spectrum, the Zone of Incompetence identifies the range 

of problems that the learner cannot address since they have no schemas to use to 

understand or internally represent the problem as presented and thus can only guess at an 

answer. Whereas the learner may bring in prior knowledge from other domains, the 

problems in this Zone of Incompetence are beyond the learner’s ability to even commence 

an attack on the problem—they cannot read the question and cannot understand what is 

required. Presenting such a problem to this learner is a waste of effort for both the teacher 

and the learner. However, detecting which problems fall within this zone for a particular 

learner is not trivial, and I explore this within this study. Prior to commencing a new 

micro-domain, many learners will have the entire micro-domain within their Zone of 

Incompetence. 

I agree with Vygotsky (1978), as cited earlier, that no learning takes place within 

either the Zone of Incompetence or the Zone of Competence, given that the problems 

presented are either too difficult for the learner to make sense or, or they are too easy and 

can be answered with ease. The problems within these Zones do not challenge the learner, 

and thus learning only occurs within the Zone of Learning which exists between the Zones 

of Incompetence and Competence. However, there are no clear divisions between these 

zones, but rather fuzzy transitions, and it is for this purpose that I have identified the 

transition stages of EMERGENT – in terms of the initial commencement of learning from 

the Zone of Incompetence to the Zone of Learning, and also IMMINENT – from the Zone 

of Learning into the Zone of Competence.  

My purpose in introducing development stages into the model is to identify, at a 

fine-level, where learning is and is not taking place for each individual learner, and to 

determine this by asking the right diagnostic questions to isolate the cognitive causes of 

mistakes, rather than basing the position of the learner on ability alone. To make this 

point, I repeat my argument from Chapter 1 to explain the very low success rates of South 

Africa on some items in the TIMSS surveys, and the inferences which can be drawn from 

these, with this same argument also applying at the level of standard school tests. My 
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argument is that the ability measure alone is insufficient to determine a learner’s position 

within the development stages, and that different methods are needed for the evaluation 

of low-performing learners. 

Knowing the development stage in which a learner is located helps to introduce 

an economic approach to learning, in which the minimum interaction with the learner 

achieves the maximum growth in sustainable proficiency within the shortest possible 

time. I argue that nothing is lost in the learning process by being more effective and more 

efficient, even though this is a clinical and somewhat theoretical approach to the true 

realities of the mathematics classroom. A critical success factor to achieve this 

effectiveness and efficiency is to empower teachers with a fine-grained knowledge of 

learner misconceptions, and it is consequently important to embed such diagnostic and 

formative assessment practices into the classroom as recommended by Wiliam (2011b). 

An extension of this critical success factor is to provide the teacher with the right tools to 

enable them to conduct diagnostic assessments quickly and easily. I originally introduced 

these development stages at the start of this chapter, and I expand these in Table 2. 

My model of Development Stages is used to support my research question RQ1 

(EFFECTIVENESS) where my concern is to discover which test items are more effective 

than others in isolating misconceptions which occur at a specific development stage. By 

assessing the results of learners, such good diagnostic questions allow an improved 

approach to position learners at a particular stage of development, being a more accurate 

representation of learner conceptual development. These good diagnostic questions are 

thus those which have a higher diagnostic value, as I have outlined earlier. 

RQ2 (EFFICIENCY) follows from RQ1 by asking how much diagnostic work is 

needed to produce a sufficiently valid score, on the basis that the less work required to 

meet the goal of effectiveness, the more efficient is the assessment process. 
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Table 2. Learner Development Stages in micro-domains 

STAGE DESCRIPTION 

ABSENT The learner does not know the micro-domain. 

The learner has no schemas sufficient to address the stated problems. He/she cannot 

understand the questions posed or the choices, whether expressed in words, 

diagrams, or in symbols, and thus cannot recognize what has been given and what is 

expected to be produced. The responses to test items presented follow no 

systematic approach and guessing is the only alternative for the learner. 

EMERGENT The learner is just starting to know the micro-domain. 

This is the novice state, where the learner has an initial understanding sufficient to 

read the questions and to recognize the inputs given and the outputs expected, 

seeing symbols, words and other expressions with an initial recognition of them and 

their place. He/she has not developed schemas to solve the problems but is 

recognizing the nature of the problem. There are initial schemas which are being 

used, perhaps from pre-conceptions. 

ACTIVE The learner is getting to know the micro-domain. 

The learner has developed some schemas for how to use the symbols to understand 

and to solve problems and is getting some problems right and some wrong as the 

schemas are adapted to deal with new situations. Some solutions are based on a 

process of educated guessing in which the success of such guessing improves over 

time and with the right quality of feedback. There is dynamic and regular change in 

the schemas, and this stage has the fastest rate of conceptual change within the 

development stages. 

IMMINENT The learner almost knows the micro-domain. 

The learner is achieving a high degree of success on most problems presented and 

final refinements are being made to the schemas to deal with increasingly difficult 

problems. Some of the schemas reflect late-stage misconceptions, which are the final 

changes to the schemas before reaching the STABLE stage. 

STABLE The learner knows the micro-domain. 

This is the state of mastery in which the learner is able to deal with all problems as 

presented and to provide a successful response. This mastery evolves by the learner 

developing increasingly more efficient schemas to deal with the problems. It is 

possible that this process of mastery development will continue forever. 
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3.11 Self-Assessment 

A final element of my model is the inclusion of the learner’s own self-knowledge on the 

difficulty of items. This self-knowledge is an alternate source of evidence which may help 

to identify misconceptions based upon the prior work identified in Chapter 2, such as that 

of Huntley (2008), in which misconceptions are likely to exist whenever a learner 

identifies an item as easy and yet selects an incorrect response. 

So, whereas items can be positioned onto a measurement scale of difficulty using 

the quantitative, objective Rasch process, all learners will also have their own individual 

qualitative, subjective perception of how difficult an item is, and should be able to reflect 

on their own abilities to state whether the item is Easy, Just Right, or Difficult. In 

answering this question, the learners must have sufficient understanding of their personal 

capabilities in terms of each of the questions presented. It was my assumption that if 

learners identify a question as Easy or Just Right, then this implies that they are likely to 

have a schema which they have identified as suited for their attack on the item. If this 

schema results in an incorrect answer, then one inference is that the schema is wrong and 

thus they may have selected the wrong schema. Another inference is that they selected a 

schema which is incomplete. Whatever the outcome, something can be learned by gaining 

access to the learner’s understanding of the difficulty of the item. 

3.12 Commentary on the Theoretical Framework 

My model of the Development Stages of learning explicitly positions misconceptions as 

central to the entire learning process, specifically within the domain of the rational 

numbers in the mathematics curriculum. My model elevates misconceptions to first-class 

constructions in the learning process which are not merely there to be remediated but are 

treated as sufficiently important that we cannot position a learner onto a scale of 

development stages without understanding the learner’s intermediate representations 

developed during the process of learning. 

I have argued previously that conceptions and misconceptions are essentially 

similar and both are considered as schemas in the conceptual model of the learner. This 

includes stable conceptions, preconceptions, and intermediate conceptions, all of which 

are in a continuous state of adaptation and improvement. Thus there is no perfect schema, 
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but merely schemas that become increasingly adapted to the mathematical experiences 

that learners are given in their pedagogical environment. Those schemas which do survive 

are best adapted to the needs, and will become increasingly stable over time. However, 

every schema can be placed into a context in which it may fail, and thus misconceptions 

are not an inherent quality of a schema, and it is rather the case that a schema becomes a 

misconception at the time that it is applied in a context in which it does not fit. As part of 

the learning process, the learner may adapt their schemas to a new situation, or may create 

a new schema for the special situation as observed, while retaining the existing schemas 

for its previously proven purposes. Since we cannot actually inspect these schemas, and 

also cannot observe their creation and adaptation, it is necessary to theorize their nature 

and the process of modification. 

The detection of misconceptions is not a guaranteed outcome of traditional 

formative testing, and I argue that specific diagnostic tests are required to elicit evidence 

of each misconception. Knowing which misconceptions are used by a learner will support 

the positioning of learners into development stages and can thus aid personalized 

instruction. Teachers can only apply the practices of assessment for learning in the 

situation in which such information on specific misconceptions is available for each of 

their learners. 
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CHAPTER 4 : 
RESEARCH DESIGN AND METHODOLOGY 

“Never send a human to do a machine's job” Agent Smith, The 

Matrix (1999) 

4.1 Introduction 

In this chapter I outline the research design and methodology to address my research 

questions, in the light of the Development Stage model for learning in micro-domains 

introduced in Chapter 3. I describe the sampling method, the approach to assessment for 

each of the individual micro-domains, and the plan for how the assessments were 

conducted for both pretests and online lessons. This includes the details of the data 

collection tools which were designed for the assessments. I explain the usage of the Rasch 

method for measurement of the data, and the details of how the data was analyzed. 

The primary data for this study was gathered during “online lessons” which 

consisted of learners accessing a web-site which was specifically developed for this study. 

The online lessons were composed of “lesson elements” which were presented in 

sequence. These lesson elements included “tests”, “information elements”, and “results”. 

The information elements consisted of text and graphic explanations, which were 

provided before and/or after the tests. The tests used for this study, also referred to as 

“online assessments”, were collections of test items which were presented to each of the 

learners in a pre-defined sequence. The results were provided at the end of each test as 

feedback to the learner and showed the results of the learner’s performance on the test. 

These results were provided to assist the learners to identify which questions they 

answered correctly and which were incorrect, but these results did not identify or explain 

the possible causes of incorrect responses. 

In order to build up the online test items a pretest was conducted, for which the 

results are presented in Chapter 5. 
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4.2 Population 

The population for this study is, at the extreme, all learners who are in the Senior Phase 

(Grades 7-9) of South African schools, and who are required to take Mathematics as a 

compulsory subject. The rational numbers are introduced in the Senior Phase as a distinct 

mathematical topic and the curriculum includes varieties and combinations of 

representations and notations. The knowledge of the rational numbers is an important 

foundation for the work covered in Grades 10-12 Mathematics and Mathematical 

Literacy. By the end of the Senior Phase, learners are expected to be proficient in each of 

the types of rational number, including decimal numbers, common fractions and 

percentages, and to know how to convert between these types. 

In 2010 there were 2,991,254 learners in the Senior Phase (Grades 7-9) covering 

all of the schools in South Africa (DBE, 2012). This is a particularly large population for 

a study but is informed by the results from large-scale studies conducted throughout the 

world, which provide evidence that many of the rational number misconceptions pervade 

time and place. This is reflected in the international TIMSS 2003 study (Mullis, Martin, 

Gonzales & Chrostowski, 2004), as well as in multi-national studies such as Resnick et 

al. (1989), and in longitudinal work conducted in Australia by Steinle (2004a, 2004b). In 

particular, the TIMSS 2003 study shows a very low success percentage of South African 

learners on rational number items, and this justifies my selection of the entire country as 

the population for this study. In essence, the problems I am exploring are likely to pervade 

the entire country. 

However, given that my approach was to use web-based assessments I needed 

schools with working computer laboratories, where there were both teachers and learners 

who were fully computer-literate, and thus my study population was limited to schools 

with the computer facilities and capacity to enable a study such as this. Data on how many 

of the national schools were sufficiently resourced was not available but is expected to be 

relatively small, perhaps no more than 5% of the schools in the country at the time of this 

study. 
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4.3 Sample 

My investigation was conducted at two schools in the Northern Suburbs of 

Johannesburg4, which I refer to as School A and School B throughout this thesis. These 

two schools were selected on the basis of meeting a range of criteria concerning sufficient 

computer facilities, and sufficient computer and web proficiency for both the learners and 

the teachers. The schools were chosen on the basis of convenience, given that they were 

both available as study sites, and also were conveniently located in the geographical 

region of Johannesburg. 

The specific criteria I established for participating schools were: 

 a functioning computer room, with one computer per learner and with every 

computer having access to the Internet 

 suitable furniture to allow the learners to use the computers without being too 

close to one another, including one chair per learner 

 computer teachers who are proficient with computers, and who generally 

know more than their learners 

 learners who are computer-literate and who have been using computers at 

school for several years 

 Whereas these requirements may create the perception that this study was 

exclusive and only for the wealthy schools5, I have assumed that there will be a future 

widespread implementation of computing and communication facilities within most 

schools, in which all teachers and learners are proficient with computers. 

I conducted the study for School A in 2009 with two Grade 7 classes with a total 

of 56 learners. School A adopts a policy of allocating learners to classes randomly at the 

start of the school year, and this is relevant considering that at the time of this study I had 

initially chosen to divide up the two classes into a control group and an experimental 

group. Thus for School A there would be no bias to this class selection given the schools 

policy on learner allocation. School A is a public primary school, falling under the 

Gauteng Department of Education (GDE). 

                                                 
4 The northern suburbs of Johannesburg have traditionally been viewed as the more affluent areas within 

the broader metropolitan area of the city. 
5 As at the time of this study, there was a relatively low percentage of schools in South Africa with 

working computer laboratories satisfying these strict requirements. 
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Following the initial assessment of the results from School A, changes were made 

to the structure of the study, and a second school (School B), a private secondary school 

(School B), was selected. For School B, no control group was used, and the online lessons 

were conducted with all three Grade 8 classes of size 25, 25, and 24—a total of 74 

learners. This second study was conducted in 2011 with a two-year delay from School A 

which was partially caused by the impact of the Soccer World Cup in 2010, which 

disrupted normal school schedules and which consequently made it difficult to 

accommodate the additional disruption arising from research studies. 

Information sheets and consent forms were prepared for each of the schools and 

provided to the learners for their own information, as well as for their parents or 

guardians, since the learners were too young to give their own consent to be involved in 

this research. The consent forms were returned to the schools to ensure approval had been 

given to participate. 

4.4 Method 

Two forms of tests were used for this study. A pretest was given to all five participating 

classes from the two schools. This was followed by four of the five classes being given 

the online tests as part of an online assessment and instructional system. 

These online tests were conducted over four school periods, one lesson per week, 

during the Computer Studies periods so as to minimize any interference with mathematics 

lessons. The online tests were supplemented with introductory materials, instructional 

content, and feedback. The online lessons were conducted without direct involvement of 

the teachers, who were not pre-informed about the nature of the specific tests and who 

were not shown the test items until the full set of tests had been completed. My decision 

to not inform the teachers about the tests was to minimize any bias in how the teachers 

may have conducted their teaching from week to week if they had had prior knowledge 

of the types of questions being used within the diagnostic assessments. 

The pretest was a paper-and-pencil test conducted in the classroom, and these 

were conducted and completed in a single school period in the week prior to the first 

online test. The pretest included basic instructions on the front page of the test paper, 

which was read aloud to the classes at the start of the pretest. If any learner could not 

complete the full test in the time allotted then they handed back incomplete papers, and 
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no extensions of time were provided. The pretest was used in this study to inform the test 

items to be used for the online assessments; however, the pretests were also a part of the 

original experimental research design. 

For School A, the research methodology was originally planned as an experiment, 

using pretest and post-tests, with learners divided into control and experimental groups. 

Prior to the commencement of the research the mathematics teacher selected one class 

randomly as the control group and the other as the experimental group. Both classes were 

given the pretest during the same school period. The experimental group was then given 

access to the online lessons, and one school period per week was allocated for these 

assessment sessions, which was planned for four consecutive weeks. The first three of 

these assessment periods were conducted over three consecutive weeks, and the last of 

the four online lessons was conducted after a short school holiday break. However, the 

original approach to use an experimental design was changed after the end of the online 

lessons at School A, with the scope of the study reduced to focus solely on the research 

questions which were presented in Chapter 1. The other research questions that had been 

originally part of this study, concerning the impact of diagnostic assessment in a web-

based classroom, are left to further studies due to the requirement to limit size and scope 

of the project, which had become too large. 

The four online lessons in School A were structured along the lines of a “design 

experiment” (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) in which the results of 

each lesson informed the content and structure of the following lesson. This methodology 

supports flexibility in the approach and enabled me to adapt the lessons. Following each 

weekly online lesson, I performed an initial evaluation of the results and from this I 

planned the next lesson. This design experiment approach was performed only for School 

A, with the lesson structures then used, being essentially the same for School B. 

My original research design was to conduct this study at a single school. However, 

based upon my analysis of the data from School A I decided to repeat the study at School 

B, consisting of three Grade 8 classes. The inclusion of School B allowed me to increase 

the quantity of the learners involved in the study, providing a larger sample of results for 

analysis, and this also provided the experience of working in a different school 

environment at a different grade level. The data that was collected from the two schools 

was merged into a single database for the data analysis. 
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For School B I made some small changes to the structure of the assessments to 

accommodate the findings of the first study, using the same tests and items as I had used 

in School A. This facilitated the merging of the data between the two studies even though 

the tests were not exactly the same. This provided a larger base of data from the online 

lessons than I had obtained from the single class at School A. 

I planned this study to run in isolation of any knowledge of the individual learner’s 

rational number proficiencies, and I chose to have no engagement with the mathematics 

teachers either before or during the assessments, with the sole exception being 

communiques which I provided to the head of school and the head of the mathematics 

departments concerning the progress of the study. 

MCQ assessments were used exclusively in the online assessments although both 

MCQ and provided-response formats were used for the pencil-and-paper pretest. 

4.5 Tools for Data Collection 

Prior to describing the instrumentation of the tests used in this study, I outline the data 

that I planned to collect in this study, specifically concerning the micro-domains and the 

corresponding item types, and the misconceptions that the test items may, or may not, 

elicit. Whereas this is more detailed than would normally be included into a chapter on 

methodology, this information is relevant as the bridge between the research questions 

and the theoretical model on the one hand, and the data analyses of the results obtained 

on the other. Thus in this section I explain the specific items used to gather the data from 

the learners. 

To illustrate these micro-domains and the types of test items I have used I present 

examples from the online test bank, showing how these test items appeared to the learners 

during the online assessments. The test items used within the pretests are provided in 

Appendix B. 

Good Diagnostic Items 

Each of the test items was developed for diagnosis, and none of these test items were 

designed to support grading of the learners in terms of rational number proficiency. Thus 

each of the test items can be viewed as a “trick” question—designed to trip up the learners. 

Whereas the use of such trick questions may be seen as unethical, I consider that it is 
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exactly these kinds of questions which are ideal diagnostic instruments that maximize the 

opportunity to elicit incomplete or incorrect mathematical thinking. 

However, the diagnostic value of the items I used was unknown in advance, 

although some items were drawn from prior studies. Other items were introduced without 

any prior knowledge of their diagnostic value. An outcome expected from these tests was 

to establish the suitability of these items by ranking them in terms of a measure of 

diagnostic value, using the definition of diagnostic value as I introduced in Chapter 3. 

The MCQ test items used in the online assessments each had between 2 and 11 

choices. Most of the choices were rich distractors which were included to elicit evidence 

of particular misconceptions. These rich distractors were distinct from choices that have 

no linkage to known misconceptions, which I refer to as “random distractors”. 

Introducing the Micro-Domains 

Each of the test items used in the study was codified to indicate the micro-domain which 

they are part of and the specific form of test item—such as PV1, which is the code for the 

first type of place-value test item. If a choice in an item could have resulted from more 

than one misconception, or from both a misconception as well as it being the correct 

choice, then the choice was codified with each of these alternative conceptions. The 

misconceptions used were selected both from prior research as well as from my personal 

experience in tutoring learners in the rational numbers. The nature of the coding was such 

that new codification could be introduced in the future for new misconceptions that may 

be discovered, allowing for further processing of the data sets. 

I now explain each of the micro-domains that I used for this study, showing 

examples of the types of test items and the corresponding misconceptions that can be 

elicited in each micro-domain. 

Micro-Domain PV – Decimal Place-Value 

Place-value knowledge is fundamental to the understanding of decimal numbers and thus 

also to decimal fractions. Place-value misconceptions in decimal numbers occur when 

learners do not know how to determine the value of a particular digit in a decimal number 

and the learners resort to prior knowledge, such as using whole number place-value 

knowledge. For example, in the decimal number 12.345 the learner may see the digit 4 as 

tens or tenths, instead of hundredths, which likely results from the learner ignoring the 
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decimal point and seeing this as the whole number 12345. Place-value misconceptions 

may also be intermediate conceptions which are constructed as learners develop their 

knowledge of place-value in decimal fractions. 

As discussed earlier, throughout the pretests and the online testing I exclusively 

used the decimal point, rather than the decimal comma, for representing decimal numbers. 

This is for the reason that learners are more familiar with the decimal point in their work 

with computers. 

I have not encountered prior studies during my literature review that were 

designed to specifically explore misconceptions of the place-value notational system as a 

separate topic of study. However, place-value knowledge is implicitly required for 

understanding how to compare the magnitude of decimal numbers, and these types of 

questions have a long history within misconceptions research, and thus the wealth of these 

prior studies has indirectly explored learners’ understanding of place-value. My intention 

in introducing this place-value micro-domain was to explore the nature of the 

misconceptions using decimal notation alone and without placing decimal numbers into 

a context of operations, such as ordering decimal numbers by their magnitudes. 

I introduced two types of diagnostic test items for place-value knowledge, each of 

which links the numeric representation of a decimal number with the names used for the 

place-values of the individual digits in a decimal number. For both types of test items, the 

decimal numbers were constructed so that the same digit was not used more than once in 

the decimal number, to reduce ambiguity in the learners’ responses. 

The test types were encoded as PV1 (find a digit at a stated place in a decimal 

number) and PV2 (find the place of a given digit in given number). 

Item Type PV1 : Find the digit at a named place-value in a decimal number 

Figure 2 was taken from the Item Bank for this study, which is presented in full 

in Appendix D. Each of the examples shows an Item Number, such as 10003 in Figure 2, 

which is used as the reference to the item in the item bank. 

The selection of which digit in a decimal number corresponds to a particular 

position can help to expose a lack of knowledge concerning the relationship between the 

whole number place name and the fractional place name, such as between “thousands” 

and “thousandths”. The response of the learner may also reflect the uncertainty of where 

the counting should start to determine the position of digits within a decimal number, 
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such as units, tenths, hundredths, and also in which direction the learner is required to 

count to find the different place-values—such as whether they count from the units digit 

as for whole numbers, or from the decimal point. 

 

Figure 2. PV1 – Place-value sample test item - select digit at named position 

To clarify the definitions which I introduced earlier, a decimal number, such as 

13.45, has a whole number part (13), a decimal mark (.), and a decimal fraction part (.45). 

The place-value system uses the convention that the position of the digit relative to the 

decimal mark determines its magnitude, so that in the whole number 123, the digit 2 

represents “tens”, and has the value 20, and not 2. Place-value knowledge is an important 

element of mathematics instruction in the early grades, as learners come to understand 

the decimal notational system of place-value within the whole numbers. When the place-

value notational system is extended to include decimal fractions, the process of learning 

introduces a number of misconceptions. 

One source of these misconceptions concerns the naming system we use for the 

place-values. For the whole number part of a decimal number the place-values have the 

largest place-value on the left and the smallest on the right (thousands, hundreds, tens, 

units), increasing in magnitude from right to left. However, when examining the words 

used for the digits in the fractional digits of the decimal number these appear to increase 

from left to right—tenths, hundredths, thousandths, etc.—if the “ths” is dropped from the 

end of the place-values, which then become tens, hundreds, and thousands. 

Another source of misconception is the decimal mark itself, its nature and its 

purpose, given that the learners’ prior exposure to whole numbers stops at the units 

columns. Some learners will see the decimal number as a single whole number by 
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ignoring the decimal mark altogether, and thus making sense of this new form of number 

using whole number knowledge. There are also well-known misconceptions in seeing 

decimal fractions as the same as the negative numbers (Stacy, Helme & Steinle, 2001). 

For this PV micro-domain, I use the misconception of seeing the entire decimal 

number as a whole number by ignoring the decimal mark. Other place-value 

misconceptions can be analyzed in a similar manner in future studies. 

For Item 10003 in Figure 2 the correct response is the digit 7. However, if the 

learner used the whole-number misconception, then he/she would probably have selected 

the digit 0 as being in the thousands place, which is misusing the term “thousands” for 

“thousandths”. This place-value misconception predicts that learners using this 

misconception will then have selected 0 for this test item. 

Item Type PV2: Find the named place-value of a given digit in a decimal 
number 

 

Figure 3. PV2 - Place value sample test item - select position from digit 

For the PV2 test items, the goal is to recognize the place-value name for the digit 

selected. These test items are the logical complement of the PV1 item type above. 

Item 10001, in Figure 3, asked the learner to select the place value name for the 

digit 7 in the decimal number 36.748. Whereas the correct answer is tenths, the learner 

who sees this decimal number as a whole number would select hundreds, or may have 

selected hundredths, confusing the meaning of the “ths” suffix. These are diagnostic test 

items designed to expose learners’ misunderstandings by requiring the learners to unpack 

the decimal number into its parts, and to understand the role of each digit in a decimal 

number. 

The item bank includes a range of PV1 and PV2 test items and there are differing 

numbers of decimal places in the fractional part of the decimal numbers, based upon the 
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assumption that the learners may already know how to unpack 2-digit decimal fractions, 

as is found in the local monetary representation (such as R 1.65 for one Rand and sixty-

five cents) but may struggle with decimal fractions containing 1, 3, or more digits which 

numbers are not as familiar from real-world experience. 

Misconceptions in this micro-domain 

Whereas I initially considered a number of misconceptions that may arise in the 

development of place value knowledge, I focused on the conception that the learner sees 

the entire decimal number as a whole number by ignoring the decimal point in making 

his/her judgment about the value of a digit or its place name. This has been identified in 

studies which have addressed misconceptions occurring in the comparison of decimal 

numbers, such as Resnick et al. (1989). 

Table 3. Misconceptions in the PV micro-domain 

Code Misconception Name Description 

WHOLE whole-number knowledge The learner treats the decimal number as a whole number, 
ignoring the decimal point. 

Micro-Domain DO - Decimal Number Ordering 

The ordering and comparison of decimal and other numbers is included within the 

assessment criteria in the National Curriculum Statement (DBE, 2011a). This micro-

domain consists of test items which are used to identify misconceptions in decimal 

numbers, and consists of problems which ask learners to select the smallest or largest 

from a set of two or more decimal numbers. This micro-domain has been studied 

extensively in rational number misconceptions research (Sackur-Grisvard & Leonard, 

1985; Resnick et al., 1989; Steinle & Stacey, 2005; Steinle, 2004a) and has proven value 

in eliciting a range of misconceptions held by learners as they attempt to make sense of 

the decimal numbers. For my study I have restricted the test items to problems in which 

the learner is required to select the smallest or largest from a set of two or five decimal or 

whole numbers. I have not included the more challenging problems which require the 

sequencing of a set of numbers into ascending or descending sequence, as was used by 

Sackur-Grisvard and Leonard (1985). 

Item 10021 in Figure 4 illustrates the use of staggered decimal structures, in which 

the learners were presented with decimal numbers with differing numbers of digits in the 

decimal fraction, such as where 2.39 has two decimal fraction places and 2.4 has only one 
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decimal fraction place. This type of comparison helps to identify misconceptions in 

learners who have not yet reached the STABLE stage in this micro-domain. A single test 

item of this type will not provide enough information to determine a learner’s 

misconceptions or development stage, since it is not possible to determine from a single 

item whether the learner was guessing or was applying some conceptual basis to his/her 

selection. Thus a number of such test items were needed to provide sufficient evidence—

which is my research question RQ2. 

 

Figure 4. Decimal ordering sample test item: two choices 

In addressing problems in this micro-domain, learners will make use of many 

conceptions and misconceptions, and when an incorrect response is given by a learner it 

is not evident which misconception has been used or whether the learner has simply 

guessed the answer. Steinle (2004a) has documented a range of behaviours used by 

learners to address these observed problems and has analyzed how these behaviours 

change with student age and grade. My purpose in this study is not to contribute further 

to this extensive body of prior work into these misconceptions, but rather to explore which 

particular test items can detect misconceptions more effectively (RQ1) and efficiently 

(RQ2). Consequently, I am limiting my study to a selection of the ways of thinking 

documented by Steinle (2004a), which is the most comprehensive analysis of this type of 

misconception conducted to date. As an example, in Steinle’s L1 misconception, “whole 

number thinking & decimal point ignored thinking” (Steinle, 2004a, Table 3.1, p.47), 

learners will ignore the decimal point and will consider 1.53 as either two whole numbers 

of 1 and 53 (whole number thinking) or will consider 1.53 as 153 (decimal point ignored). 

Whereas Steinle (2004a) has used pairwise comparisons, other researchers have 

used alternative formats with more than two choices such as item B10 from the published 

item set from the TIMSS 1999 study (Mullis et al., 2000; NCES, 2015), which was noted 

by Kilpatrick et al. (2001), and which was described previously in Chapter 2. This B10 

item asks the learner to select the smallest from the set of choices (1) 0.675 (2) 0.5 (3) 

0.375 (4) 0.25 and (5) 0.125, where these choices include rich distractors which can 

expose misconceptions in the decimal numbers. However, even this widely-cited test item 

may be faulty as a diagnostic item, and Steinle (2004a) has pointed out that the correct 
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response of 0.125 may be selected by “denominator focused thinking” which is 

indistinguishable from true proficiency when using this item alone. Thus a single test item 

used alone is often insufficient for accurate diagnostic assessment when considering the 

range of ways of thinking and it is thus necessary to determine how many such questions 

may be required. When there is evidence of many distinct ways of thinking then this 

challenges the requirements of “semi-dense” items (Bart et al., 1994) which are deemed 

to be qualitatively sufficient criteria for diagnostic items. For situations with a large 

number of identified fine-grained misconceptions it is not possible to embed all such 

misconceptions into a single test item. 

I have used a general template for both two-choice and five-choice test items, 

using a range of misconceptions to construct the rich distractors, as well as providing 

random distractors. For instance, the example presented in Figure 5 includes choices that 

include both leading (0.075) and trailing (0.090) zeroes in the decimal fraction, which are 

not present in the B10 item from the TIMSS 1999 study as cited above. 

 

Figure 5. Decimal ordering sample test item with five choices 

Misconceptions in this micro-domain 

I have used Steinle’s (2004a) detailed coding structure for misconceptions in 

decimal numbers. This is described, using my own examples, in Table 4 below. However, 

all of these codes are attributed to Steinle, and I have not contributed further to this coding 

structure in this study, but have rather explored how these can be used to answer my 

research questions. 

These codes were applied to each of my 28 test items for this micro-domain, and 

in cases where a test item did not include provision for one of the misconceptions then 

that item was not used for the analysis of that misconception. Thus every choice for each 

of the 28 test items was linked to zero or more of the misconception codes, as well as 

being identified as the correct choice where this applied. In many cases the correct choice 

could be accounted for by one or more of the misconceptions and this required further 
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analysis to determine which misconception the learners were likely to be using on the 

balance of the evidence of their response to the total set of items. The assumption is that 

a learner’s results are likely to be consistent if he/she is using a well-developed 

misconception. Due the fine-grained nature of this classification scheme, it is common 

that a single choice is accountable for by more than one of the codes. 

Table 4. Steinle's (2004a) Classification of decimal ways of thinking 

Code Description Example 

A expert mode  

A1 task expert Score high on most examples 

A2 money thinking Score high, and truncates or rounds to two decimal places as for money 

L longer is larger  

L1 Whole number 
thinking and 
decimal point 
ignored 

Whole number thinking: see 1.53 as two numbers 1 and 53 in which only 
one part is used for answering, such as choosing longer decimals as 
larger.  

Decimal point ignored: 1.53 > 1.8 since 153 > 18. This also includes the 
value of trailing zeroes, so that 1.40 ≠ 1.4 

These two ways of thinking are not treated separately in Steinle’s study. 

L2 column overflow 0.70 > 0.7 since 70 is 70 tenths, in which the unit value is determined by 
the first non-zero place in the decimal fraction. Thus 2.39 > 2.4 since 39 
tenths is more than 4 tenths. 

L3 reverse thinking 0.37 seen as 7 tens and 3 units or 73. Removing the “ths” in the place-
value. Trailing zeroes are ignored since they contribute no value to the 
number produced. 

S short-is-larger  

S1 denominator 
focused thinking 

Since one tenth is larger than one hundredth, then any number of tenths 
is larger than any number of hundredths. 1.999 < 1.50 < 1.3 since 999 
thousandths is smaller than 50 hundredths which is smaller than 3 
tenths, thus in increasing sizes : 1, 1.101, 1.998, 1.11, 1.49, 1.2, 1.8, 2. 

S3 reciprocal 
thinking 

In which 3.86 is seen as 3/86 and is thus larger than 3.87 since for 
denominators smaller is larger. For this I ignore leading zeroes, but 
include trailing zeroes, so that 1.040 is treated as 1/40. 

Micro-Domain CR – Common Fraction Representation 

This micro-domain concerns the relationship between the word description of a fraction 

and its standard notation. This is analogous to my PV micro-domain for the decimal 

numbers, exploring the relationship between mathematical notations and the 

corresponding words used for these concepts. 

Whereas prior studies have explored misconceptions and errors in the addition of 

common fractions, I have not encountered studies that address the relationship between 
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the textual and notational representations of common fractions, and my inclusion of this 

type of test item is based upon my own experience with learners in tutoring sessions, 

encountering their inability to see these two representations as equivalent in all but the 

simplest cases. This relationship between the fraction words and notations is not 

specifically identified as a proficiency required in the National Curriculum Statement 

(DBE, 2011a). 

 

Figure 6. Common fraction word representation sample test item 

As an example, Item 10060 in Figure 6 requires knowledge of both language and 

mathematical notations. The words used in this item, being “one quarter”, should have 

been introduced, used, and reinforced throughout grades R-6. This test item has 

distractors which are designed to trip up learners who are using incorrect schemas which 

will cause them to make an incorrect educated guess at the choice. 

 The first choice (1.4) examines the possibility that the learner is confusing the 

representation between common fractions and decimal numbers. Whereas 

there is explicit reference to “common fraction” in the item stem, this may not 

be understood or read properly by the learner. 

 The second choice (
4

1
) explores whether the learners may confuse numerators 

and denominators. 

 The final choice (
1

25
) is a more complex distractor which is intended to provide 

an alternative to learners who may know that the decimal number 0.25 equals 

one quarter. 

I position this CR micro-domain as addressing EMERGENT knowledge in the 

larger context of the domain of the rational numbers, and the items within this micro-

domain are designed to distinguish between learners who have no usable prior 

knowledge, being in the ABSENT stage, from those learners who have started to develop 

some conceptions and schemas, being the EMERGENT stage in my model. This 
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explanation illustrates that development stages exist at various sizes and levels of 

mathematical domains, such as being applicable to the entire domain of the rational 

numbers as well as to micro-domains that are small component elements of the rational 

numbers. Each of the micro-domains, such as this CR micro-domain concerning common 

fraction representation, will have its own development stage structure which leads to 

proficiency.  

 

Figure 7. Fraction representation sample test item 

Item 10063, as presented in Figure 7, was more challenging than the Item 10060 

presented in Figure 6 since it required an understanding of the difference between the 

numerator and the denominator, rather than simply understanding the concept of “one 

quarter” as a unit fraction as in the previous example. 

Whereas the first choice was the correct option, each of the other choices may 

have elicited a response from a learner based upon his/her level of understanding. For 

example, choice 3 (0.68) was a likely choice if the learner confused common fractions 

with decimal fractions and had not yet developed the conceptual models to see these as 

distinct from each other. 

This proficiency should have been established in the Intermediate Phase in Grades 

4-6, for which the curriculum includes the understanding of common fractions with 1- 

and 2-digit denominators. The test items in this group helped to determine whether the 

learners had incomplete schemas concerning the core knowledge of common fraction 

notation. Such incompleteness in their knowledge would have a serious impact on other 

fractional work, such as with the addition of two common fractions, and the conversion 

from common fractions to other rational number representations. 

Misconceptions in this micro-domain 

I have identified two misconceptions for analysis of this data, presented in Table 

5 below, and I consider the possibility of discovering other misconceptions from the data 
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arising from the online tests. There is naturally some overlap between the misconceptions 

in this micro-domain and in other micro-domains, such as the usage of whole number 

thinking which applies to various types of problems. Whereas the detailed coding 

structure of Steinle (2004a), as outlined in Table 4, was developed primarily on the basis 

of decimal number paired comparisons, these ways of thinking may also be applied to 

common fractions. For this study I separate these micro-domains and explore specific 

misconceptions as applicable to each, rather than exploring common ways of thinking 

across micro-domains. 

Table 5. Misconceptions in the CR micro-domain 

Code Misconception Name Description 

RECIPROCAL fraction reversal Selecting 
4

1
 instead of 

1

4
. 

DECIMAL decimal leakage Selecting the decimal number rather than the common 
fraction 

Micro-Domain NL - Number Line and Common Fractions 

The number line is used throughout the early school grades, from Grade 1 up to Grade 7, 

as a visual image and artifact to aid learners’ understanding of number systems. 

Commencing in Grades 1-3 in which small whole numbers are depicted and manipulated 

on number lines, this moves to the representation of common fractions on number lines 

Grade 4-6, and the representation of decimal fractions in Grade 7. Whereas there is no 

explicit statement within the curriculum that the number line can be seen as a common 

basis on which to compare different types of numbers, I expect that this is an implicit 

outcome of using the number line for different purposes. 

Thus the number line is used to aid the representation, ordering, comparison and 

operations of various types of numbers. It is a dual representation, including both visual 

and symbolic elements which complicates the development of number line knowledge 

over the purely symbolic, such as common fractions, or purely visual, such as geometric 

or set representations of fractions as I cited earlier from Bright et al. (1988). 

The number line has the potential to act as a universal representation on which all 

different types of numbers can be seen as parts of a single system of numbers, on the basis 

of their relative magnitude. 

Ten test items are included for this micro-domain, of which two are on the scale 

0-1, three are on the scale 0-1-2, and the remainder cover scales of more than 2 units. All 
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of the test items have the same question stem: “What is the value of the red arrow on the 

number line as a common fraction?”, and each test item has four possible choices. Most 

of the ten items provide tick marks between the units, which are not labelled with values. 

Two of the items have the red arrow pointing to a place between the ticks, and for Item 

10073 there are no ticks provided between the units. The test items differ in terms of the 

scale or range of the number line, the number of ticks between the items, and the specific 

choices for the learner to select from. 

 

Figure 8. Number line sample test item 

Item 10070, depicted in Figure 8, is presented on the scale 0-1 and has 5 tick 

marks between the 0 and the 1 with the arrow pointing at the 5th tick mark. The choices 

for this item include rich distractors which may elicit evidence of particular 

misconceptions, such as 
1

5
 which may be chosen by a learner who notes that the red arrow 

is positioned at the 5th tick. 

As outlined in Chapter 2, there has been prior research into number line 

conceptions and errors and there has been some identification of systematic errors that 

occur during learners’ attempts to position a number on the number line. These 

misconceptions include treating the entire number line as a single unit, no matter how 

large the scale as marked by the numbers. 

My intention in using the number line was to explore how new misconceptions 

may be discovered on the basis of the patterns in the learner responses. When there is a 

non-random consistency in the selection of incorrect choices then an opportunity is 

opened to discover and document the ways of thinking which give rise to these choices. 
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Misconceptions in this micro-domain 

Two misconceptions have been included into this study arising from prior work. 

The first is where the entire number line is seen as a unit, and common fractions are seen 

in terms of the entire line, disregarding the ticks and number marks. I have called this the 

WHOLELINE misconception and this was reported by Novillis-Larson (1980), and 

further studied by Bright et al. (1988). 

The second misconception is where the number of tick marks between two 

numbers on the number line is seen incorrectly as the same as the number of parts into 

which the number line is divided, so that 4 ticks on the scale 0-1 would be seen as a 

division into 4 parts rather than 5 parts. This has been reported by Pearn & Stephens 

(2007) and I refer to this as the TICKPARTS misconception. 

In addition, I have included a third misconception, which I call DECIMAL being 

the selection of a decimal number rather than the common fraction which was requested, 

which was also used in the CR micro-domain under the label of “decimal leakage”. 

Table 6. Misconceptions in the NL micro-domain 

Code Misconception Name Description 

WHOLELINE whole number line. The learner sees the entire number line as a single unit, 
no matter how many whole numbers this represents 
(Novillis-Larson, 1980; Bright et al., 1988). 

TICKSPARTS ticks vs parts. The number of ticks is seen as the number of parts 
(Pearn & Stephens, 2007). 

DECIMAL decimal leakage Selecting the decimal number rather than the 
requested common fraction when both are available 
as options. 

Micro-Domain CG – Common Fraction Graphics 

The learning of fractional knowledge commences in the early grades with the 

identification of physical, tangible objects, which are used as manipulatives to illustrate 

the notions of equal sharing and equipartitioning. These concepts are introduced in Grade 

R and learning progresses through Grades 1-3 with increased sizes of the sets and groups 

that are to be shared and divided into parts. Geometric shapes and sets of visual objects 

serve as surrogates for the physical objects and fractional knowledge can be applied to 

these visual object in the same way as to the physical objects. Even as early as Grade R 

activities include the dividing up of groups of items by colour, by shape, by size, or by 
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other observable attributes. By the time that the learners reach the Senior Phase in Grades 

7-9 they should have experienced at least six years of exposure to this type of thinking. 

 

Figure 9. Graphical fraction sample test item 

In Item 10080, shown in Figure 9, the learner is presented with 16 squares 

arranged in a 4x4 grid structure, with each square being coloured either red or blue. The 

item stem says: “Which of the following best represents the fraction of red squares in the 

drawing?”, and the word “best” is included in this question to point out to the learner that 

there may be more than one correct choice and also to suggest that one choice may be a 

better correct choice than others. For Item 10080 the “best” representation could be 

interpreted as 
6

16
 since this represents the diagram in which there are 6 red squares out of 

a total of 16 squares. The choice 
3

8
 is the reduced value of the fraction 

6

16
, and is not wrong, 

but the learners were not asked to provide the simplest or reduced form of the fraction but 

rather the “best”. However, the term “best” is possibly not a term with which the learners 

are familiar in this context, and they may consider such best to imply what they are asked 

to do in class, which in most cases will involve reduction to the simplest form. Both of 

these choices are correct as mathematical expressions, but there are situations in which 

non-reduced forms could be better representations than the reduced form, since the 
6

16
 

form provides the added information that there are 16 units out of which 6 are identified, 

rather than seeing this only as a proportion. 

The other choices in this example have been included as distractors to elicit 

different types of thinking. The choice of 6 is included for when the learner does not know 

common fractions, and this may provide evidence of the ABSENT stage of development. 

The choice 
10

16
 has been included for learners who misread the question and think that the 
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fraction represents what is not selected, analogous to the confusion between fractions and 

negative numbers. 

It was my plan to explore new potential misconceptions resulting from observed 

systematic errors, rather than to use any prior research within this micro-domain. 

Misconceptions for this micro-domain 

This is a new type of item that I have experimented with to determine if these 

items elicit any evidence of misconceptions and will be discussed during the analysis 

process and are thus not being conceptualized in advance. The analysis explores whether 

there were any patterns of errors in the learners’ responses that may have pointed to 

systematic behaviours. 

Micro-Domain CO - Common Fraction Ordering 

Misconceptions arise in the understanding of the magnitude of common fractions, as 

exemplified in the following test item. 

 

Figure 10. Common fraction ordering sample test item 

Item 10092 in Figure 10 provides two choices in response to the question stem: 

“Which of the following is the smallest?” in which both are common fractions with equal 

denominators, in this case 8. 

This micro-domain consists of 20 test items, each of which has exactly two 

choices which are both common fractions, and which have a range of complexity in the 

relationship between the denominators with the simplest being equal denominators as in 

Item 10092 above. Other types of item in this micro-domain are: denominators which are 

multiples of one another, such as Item 10094 which asks for the smallest of 
5

6
 and 

9

12
; 

denominators with common factors, such as Item 10096 asking for the smallest of 
2

6
  and 

4

9
; and finally, where the denominators are mutually prime, such as Item 10100 asking for 

the smallest of 
7

10
 and 

5

7
. These items represent increasing complexity in the arithmetic 

effort required to solve the problem. The first ten items ask for the smallest, and the 
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second ten items ask for the largest. Given that there are only two choices given, the 

correct wording should have been “smaller” or “larger” but this was not noted during the 

piloting. 

Whereas the items with the same denominators can be solved by inspection of the 

numerator, all other forms of relationship between the denominators require some effort 

in computation to be performed to obtain the correct response. However, learners may 

attempt to use a short-cut method, perhaps derived from whole number knowledge or 

from other misconceptions. 

Misconceptions for this micro-domain 

When presented with two common fractions with a task to find the smallest (or 

largest) a learner may use the short-cut method of selecting either the smallest (or largest) 

numerator or denominator alone, and without first determining the true magnitude of the 

common fraction. 

 

Figure 11. Sample CO test item 

For example, Item 10099, as shown in Figure 11, asks for the smallest of two 

common fractions with different numerators and denominators. Considering that the 

learners would be expected to honour the requirement to find the smallest, they would 

select the second choice. However, in this case this is also the correct option and so there 

is no way to distinguish between the misconception and proficiency. 

 
Figure 12. Sample CO test item 

Another example, Item 10100, in Figure 12, would result in the second choice 

being selected if the learner was using a rule of selecting the denominator or numerator. 

This choice is the largest, but by only a very small amount. 
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Based upon these examples I explore one misconception, which I refer to as 

WHOLE which is when the learner selects the smallest (or largest) using either the 

numerator or the denominator of the fraction, rather than determining and using the true 

magnitude of the common fraction. 

Table 7. Misconceptions in the DO micro-domain 

Code Conception Name Description 

WHOLE whole number thinking Selecting the smallest or largest depending on either 
the numerator or the denominator as being smallest or 
largest. 

Micro-Domain CE - Common Fraction Estimation 

This micro-domain concerns problems where the learner is required to find the closest 

match between common fractions and decimal numbers. I designed two types of items, 

with the first (coded as CE1) asking the learner to select the closest whole number or 

decimal number to a given fraction, where the choices were not common fractions. The 

second item type (coded as CE2) asks the learner to select the closest fraction to a given 

whole number, common fraction, or decimal number. 

Given that whole numbers are addressed in the South African mathematics 

curriculum prior to the introduction of common fractions, I have made the assumption 

that a knowledge of the whole number system is more developed than the knowledge of 

the common fraction system for all learners in these grades. However, the same cannot 

be said for the decimal number system, which is introduced in the curriculum after the 

common fractions. The curriculum also identifies the requirement that learners be 

proficient in converting numbers between common fractions and decimal numbers. 

The test items I introduced for this micro-domain were loosely based on items 

cited in prior studies, such as Kilpatrick et al. (2001) who makes reference to the 

misconceptions that are exposed when a learner is asked to estimate the whole number 

closest to the common fraction sum  
7

8
+

12

13
 given the choices 1, 2, 19, 21, or 40. This is a 

complex common fraction addition operation when performed by hand, requiring the 

discovery of the common denominator of mutually-prime 8 and 13. This problem appears 

to be suited for diagnostic work, and Kilpatrick et al. (2001) report that the majority of 

the learners selected 19 or 21 as their answer, which is explained on the basis of the 

learners disregarding the common fractions and employing whole number thinking. 
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I simplified the form of the test items I used for estimation with 10 test items for 

each of the types CE1 (Items 10112-10116, and 10122-10126), and CE2 (Items 10117-

10121 and 10127-10131). 

These test items were structured to detect two specific whole-number-thinking 

misconceptions which I call NUMERATOR and DENOMINATOR. The NUMERATOR 

misconception is when learners use the numerator of a common fraction for estimation 

purposes, and the DENOMINATOR misconception is when they use the denominator of 

the common fraction as the basis for estimation. 

 

Figure 13. Fraction estimation sample: CE1 

As an example of the CE1 test item type, I show Item 10112 in Figure 13, where 

the learner was asked to select the number which is closest to the common fraction 
2

5
. This 

problem is challenging for those learners who lack a conceptual understanding of decimal 

numbers and common fractions, given that there is no correct choice of 0.4 as a possible 

answer and all of the available choices appear to be too large as an accurate estimate. The 

correct choice is 1, being the closest to 0.4, and the other choices are included as 

distractors which highlight particular cognitive behaviours, using the numerator and 

denominator digits of the common fraction in the item stem. 

 

Figure 14. Fraction estimation sample: CE2 

As an example of the CE2 test item type, I illustrate Item 10118 in Figure 14, and 

these CE2 items are more complex to solve, requiring more work by the learners. 
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However, given that these are problems of estimation, the intention was for the learner to 

identify which is the closest, without having to perform these complex calculations. The 

choices given in Item 10118 are relatively close to the decimal numbers 1.0, 0.25, 0.25, 

and 0.5, so that the fourth choice is correct. 

This micro-domain is potentially a rich resource for discovery of misconceptions 

concerning the common fractions and I was exploring how learners attempted to answer 

these questions by informed guessing. 

Each of the 20 items for this micro-domain had four choices, which were mostly 

a single type of number, such as a whole number or a decimal number, but there were two 

items which provided a set of choices which included a combination of whole numbers 

and decimal numbers. 

Misconceptions in this micro-domain 

Whereas this micro-domain has been identified as a useful source for the 

discovery of misconceptions, I have not found a prior study in which these 

misconceptions have been named and formalized, as is the case with decimal number 

ordering. 

For the CE1 type of items, learners may select the choice based upon their true 

understanding, or may be influenced by the presence of specific digits in the various 

choices. I assumed that in the absence of any other information, the learners would have 

looked for similar digits and numbers in the numerator or the denominator. For the CE2 

types of items, the data arising from the learners was used to explore the potential for 

identifying misconceptions. 

Table 8. Misconceptions in the CE micro-domain 

Code Conception Name Description 

DENOMINATOR use denominator Select the choice which is equivalent or similar to the 
denominator. 

NUMERATOR use numerator Select the choice which is equivalent or similar to the 
numerator. 
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Micro-Domain CA – Common Fraction Addition 

This micro-domain consists of problems concerning the addition of common fractions. 

This type of test item has been studied as a basis for understanding learner errors and 

diagnostic measures for a period of at least one hundred years, and has been shown to 

expose misconceptions in learner thinking (for example Brueckner, 1928a). 

 

Figure 15. Fraction addition sample test item 

The choices have been included on the basis of my assumptions of incorrect rules 

that the learner might apply, resulting from my own experience with learners, and also 

from some prior studies in this field. Some of these choices are rich distractors, such as 

1
1

3
 in Item 10152 in Figure 15, which bears a similarity to the item stem in the usage of 

the digits 1 and 3. Item 10152 is an example of the simplest case of fraction addition, in 

which the denominators are the same. Other items within the item bank include those 

with denominators in which one is a multiple of the other (such as 2 and 4); with two 

denominators having common factors (such as 4 and 6); and denominators which are 

relatively prime (such as 3 and 4, with no common factors). 

Misconceptions in this micro-domain 

Only one misconception is identified for analysis, which is the case where the sum 

of two fractions is seen as the common fraction which is produced by adding the 

numerators and the denominators respectively. 

Table 9. Misconceptions in the CA micro-domain 

Code Conception Name Description 

ADDITION addition Select the choice in which the numerators and 
denominators are added individually rather than 
performing the full fraction addition. 
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Summary of the Micro-Domains Used in this Study 

I have outlined above the range of data capture instruments for each of the micro-domains 

that I used for this study, exemplifying a few selected cases and identifying the specific 

misconceptions which these instruments were designed to elicit. These are however only 

eight of a large potential base of such micro-domains in the rational numbers and these 

specific micro-domains were used to explore the potential for common principles and 

practices which may then apply to other micro-domains. 

4.6 Self-Knowledge of Item Difficulty 

The second element of my data capture instrumentation concerns qualitative information 

which is available from asking the learners how difficult they find each of the items. 

When learners respond to a test item in the pretest or the online assessments, they 

respond with some personal level of confidence in their ability to tackle the item as 

presented. This is self-knowledge which all learners will have to a greater or lesser extent 

and which informs their approach to every mathematical problem which they answer 

throughout their entire school career. 

A knowledge of the confidence that learners have in their ability can aid the 

identification of the development stage in which a learner is located. To address this 

possibility, Huntley (2008) proposed a 2x2 decision matrix structure in which the two 

columns represent confidence measures of low and high, and the two rows represent 

whether the choice selected by the learner was correct or not. Each cell in Huntley’s 

matrix model is used to infer whether the learners are proficient, are guessing, or whether 

they are using a misconception to account for their response. 

I proposed a 3x3 decision matrix which extends Huntley’s model of confidence 

by considering three levels of difficulty and three types of response. My difficulty scale 

consisted of Easy, Just Right and Difficult, which are words familiar to young people, 

and this question on perceived difficulty was included into every item posed in the pretest 

and in the online tests. I used these three terms (Easy, Just Right, Difficult) with initial 

capitals throughout this thesis to distinguish them from other uses of these words. The 

response scale provides three types of learner response, from the choices available in the 

MCQs: firstly, when the response is correct; secondly, when it is an incorrect response 

which has been designed as a rich distractor; and finally, when it is a random distractor. 
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This 3x3 decision matrix is depicted in Table 10 below and this identifies, for each cell 

of the matrix, which learning zone this corresponds to, as well as the specific 

Development Stage which is inferred. 

Table 10. Decision matrix on learner confidence vs. response type 

RESPONSE TYPE 

LEARNER PERCEPTION OF DIFFICULTY 

Easy Just Right Difficult 

Correct response  

Zone of Competence 

STABLE 

 

Zone of Competence 

IMMINENT / ACTIVE 

guessing 

Zone of Incompetence 

ABSENT 

Incorrect - 
Rich distractor 

misconception 

Zone of Learning 

ACTIVE / EMERGENT 

misconception  

Zone of Learning 

ACTIVE / EMERGENT 

 

Zone of Incompetence 

ABSENT 

Incorrect - 
Random distractor 

potential 
misconception 

Zone of Incompetence 

ABSENT 

 
 

Zone of Incompetence 

ABSENT 

 

 
Zone of Incompetence 

ABSENT 

 

Table 10 is a decision matrix, identifying the decisions made given a particular 

learner response to an item with known types of response for each choice and distractor.  

As an example of how this matrix was used: when answering a specific test item, 

if learners selected a rich distractor and then marked this as Easy or Just Right, then I 

inferred that they believed they knew what they were doing when they answered, but they 

selected the wrong answer. This points to a misconception, and the matrix positions them 

in the ACTIVE stage in which this misconception is being used actively, or alternatively 

in the EMERGENT stage, in which they have recently started to use this as a new schema 

as they experiment with ways to address the problem. However, whereas this may apply 

to a single item answered by a specific learner, it is unlikely that a single test item is 

sufficient, so these results are signs of misconceptions rather than accurate measurements. 

Alternatively, if learners selected a random distractor then we cannot establish a 

conception or misconception that could account for their response, within the limits of 

our current knowledge of the micro-domain, and the conclusion is that the learners have 

insufficient knowledge to address the problem, with the inference that they have guessed 

and are in the ABSENT stage. 

This approach applies to both the pretest and to the online assessments. For the 

pretest the following instruction is included on the front-page of the test sheet: 
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Indicate whether you found the question Easy, 

Difficult, or Just Right for your own level 

of knowledge of rational numbers by placing 

an X into the block next to this statement… 

For example [X] Easy. 

Every test item presented in the online assessment included an additional question 

of whether the learner found the test item Easy, Just Right or Difficult. The learners were 

prevented from continuing with the next test item until they had answered this question 

on the level of difficulty. 

One important element of my study was to determine whether this information on 

learner self-knowledge is useful to improve diagnosis. This constitutes my research 

question RQ3. 

I address the potential for this Difficulty Index model in Chapter 7 following the 

initial analysis of the data from the online assessments for the individual micro-domains 

in Chapter 6. 

4.7 Instrumentation 

Whereas this is a study on diagnostic assessment, I structured the online lessons to include 

not only assessment, but also to include introductory explanations, remedial content and 

feedback. This structure was designed to be close to the classroom situation in which 

formative and diagnostic assessments are integral elements of classroom activity. 

In this lesson structure, the results of the diagnostic assessment, at the level of 

measuring learner misconceptions, were likely to be impacted by the instructional pages 

and the feedback. However, my primary goal, as expressed in the research questions, was 

to determine the value of the diagnostic items, rather than to determine the development 

stage of the learners as the major outcome. The development stages are introduced to 

determine learner stages for the end goal of understanding the nature of good diagnostic 

test items, thus they are a means to an end, rather than being an end in themselves for this 

study. 

This lesson structure may also have impacted my use of the Rasch method, which 

I used for the analysis of the results, and which required that the items were independent 

of one another since it is likely that the provision of feedback and instruction will have 
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had some impact. However, as discussed in Chapter 2, the Rasch method provides a 

method of measurement which is invariant, and it is very difficult to achieve total 

independence of the items when all items are similar in nature and are from a single 

micro-domain, since even the act of answering one item may subtly inform the learner 

how to answer further items. This impact occurs even when feedback is not provided 

immediately after each test item. For this study, I made an assumption that the 

introduction of instructional content and feedback into the lesson structure would not 

impact the assessment results. 

The question arises as to whether a set of tests, such as these diagnostic tests, 

constitutes a research method. I note that Cohen, Manion and Morrison (2007) provide 

guidance on the use of tests as a research method, in which they note the importance of 

being clear about the nature of what is being tested. They specifically cite that “diagnosis 

of difficulties” (p. 414) is one example of a research project suited to be conducted by 

means of tests. I concur with Cohen et al. (2007) that diagnostic testing, coupled with my 

model of development stages, is the most suitable methodology for gathering data for 

data analysis, given the particular focus of this study. 

I previously outlined the micro-domains I have chosen to use in this study, and I 

have used some of my test items as exemplars of how they were used to extract diagnostic 

information from the learners. I now outline each of the testing instruments I have used 

in terms of what is being tested and measured, and how this has been developed and 

piloted. This section is supplemented by the outline of the lesson structure in Appendix 

E, the pretest structure in Appendix B, and the item bank in Appendix D. I continue with 

a description of how the web-based assessments were conducted. 

Implementing the Web-Based Assessments 

I have chosen to use MCQ items exclusively within the online assessments, since this 

both facilitates gathering data and is suited for detailed analysis with the Rasch method. 

In my implementation of MCQ, each test item was structured with four distinct 

elements: (1) a question which is posed; (2) a set of choices, including a correct choice 

and a set of distractor choices, in which each may be linked to one or more misconceptions 

(rich distractors) or which are not linked (random distractors); (3) a method for selecting 

a choice; and finally (4) a question on learner confidence. This is an extension of the 
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standard MCQ structure as outlined by Kehoe (1995), who uses the term “stem” for the 

question part of the MCQ, and “options” for the choices. 

Using the Web for mathematics assessments presents a number of challenges 

which result directly from the nature of mathematics in general, and from the rational 

numbers in particular. These challenges include the handling of mathematical notation in 

web pages and the presentation of mathematical graphical elements. These two special 

challenges must be incorporated into the preparation of both the question text in the item 

step as well as in the choices. 

I conducted pilots of the online tests using a variety of technologies for 

representing mathematics and graphics and I selected the MathML (Mathematics Markup 

Language) standard for the presentation of mathematical notation, which at the time of 

this study was only available on the Firefox Web browser. This posed the restriction for 

the study that FireFox had to be installed on every computer used during the assessments. 

I also explored alternatives for the display of fractions in graphical form. I decided 

to use the Scalable Vector Graphics (SVG) standard which provides support for all of the 

types of graphical elements I needed but which again was not widely available in the 

common Web browsers. 

Both MathML and SVG have helped me to present the mathematics to the learners 

in a form familiar to them from their text books and classwork. My usage of MathML 

and SVG is described in Appendix C. 

Lesson Structure 

Four online lessons were conducted for each of the two schools, and each lesson was 

structured as a sequence of activities, as outlined in the introduction to this section on 

Instrumentation. Three types of activity were used and each activity was presented to the 

learner as one or more Web pages using the FireFox Web browser. These three types of 

online activity are: 

 Information pages: these include introductory information, instructional 

material, and commentary before and after the tests. When the learners are 

finished they move to the next activity automatically. 

 Test pages: each test consists of between 4-20 MCQ test items, and is 

presented to the learner in a fixed sequence. The learners cannot continue until 

they have answered the item, and they cannot move back to change an answer. 
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The system captures various data elements which are then stored on the 

assessment database: 

o the choice selected by the learners for each test item, 

o the learners’ self-assessment of the item difficulty, 

o the learners’ indication of whether they don’t know how to answer the 

test item, and 

o the start and end time of the learners’ responses for each item. 

 Results pages: on the completion of each test the results are presented, 

indicating the original question together with the learner’s response and the 

correct response, and a score for the test itself. It was not my original plan to 

present this, due to the impact that this may have for diagnostic purposes, as 

opposed to formative purposes, but the piloting indicated that the users felt 

short-changed by the lack of feedback after they had spent time answering the 

questions. 

The lesson structure used for this study, including how each of the lessons is 

structured into these three types of activities, is detailed in Appendix E. 

4.8 Piloting of the Instruments 

Piloting is recommended for questionnaires (Cohen et al., 2007; Mouton, 2001) and I 

used a pilot implementation to assess the usability of both the individual test items and 

the test environment as a whole, as well as to check for any ‘bugs’ in the encoding of the 

test items. For my purposes there is no essential difference between a questionnaire, as 

outlined by Cohen et al. (2007), and an assessment test conducted on paper or online, so 

this recommendation applies directly to my work. 

My sample for the pilots consisted of a group that included graduates, 

professionals, as well as some learners in Grades 10-12. I selected this sample on the basis 

that they were expected to be sufficiently proficient in mathematics to be able to comment 

on the content, and sufficiently Web-literate to be able to comment on the user interface 

for the online assessment. Some of the individuals on whom this pilot test was 

administered were Computer Studies graduates for whom mathematical proficiency is an 

entry requirement for their course of study. 
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Piloting the Pretest 

The initial version of the paper-based rational number test was administered to the pilot 

group. My intention was to explore how mathematically-literate people would experience 

the test prior to using it on younger learners. 

An informal discussion was held with each of the pilot individuals after 

completing the pilot test, and this helped to inform me about test items which were too 

difficult; items which were ambiguous; and items which did not serve a purpose. On the 

basis of this feedback I modified the pretest. 

Piloting the Online Assessments 

I used a pilot version of the online assessment for two workshops I conducted on 

Computer-Based Assessment at the AMESA conference in 2008 at the Nelson Mandela 

Metropolitan University in Port Elizabeth. The lessons learned from this pilot helped me 

to improve the way I presented the questions to the learners and the manner in which I 

reported results and provided feedback during the online sessions. I also learned more 

about what data can be captured online and how this data may be useful. From this, I 

designed the online assessment to collect more data than I need for this study, such as the 

response time, which may prove useful in further studies. 

I conducted a final pilot of the online tests with four of the individuals who had 

previously helped with the pretest pilot and these were conducted on the day prior to each 

of the actual lessons with the classes. This helped me to make final adjustments to 

improve the performance of the assessments and to correct any outstanding issues with 

the test items themselves. This piloting resulted in the identification of some spelling 

mistakes and improved wording of some test items to render them more meaningful and 

less ambiguous. The timing of the test was checked to ensure that most of the learners 

would be able to complete the test in the allotted time. The pilot group also reported back 

on the results pages, as well as the information pages. This helped considerably in 

minimizing the occurrence of errors in the test items and in the result pages prior to the 

actual lessons. 
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4.9 Planning Meetings with the Schools 

Planning meetings were held in advance with each of the schools, attended by the head 

teacher and the head of the mathematics department. This was followed up with more 

detailed meetings with the mathematics teachers responsible for the classes in my study, 

and with the technical personnel who were responsible for the computer facilities. The 

teachers were informed that the study involved the rational numbers, but no further details 

were provided on the specified tests to be conducted. At these meetings I reviewed the 

computing facilities, ensuring that the computers and their software were suitable. Both 

School A and School B have computer rooms which were used for Computer Studies 

lessons and which were made available for my study. 

4.10 Administering the Tests 

Detailed data was gathered from the tests presented to the learners in the five classes 

across the two study schools. A pretest was conducted for each of the classes as a paper-

and-pencil test administered to all five classes. The online lessons were given to four of 

the classes, being one class from School A and three classes from School B, at the rate of 

one lesson per week. 

Pretests 

The pretests were conducted at the schools during a mathematics lesson. The pretest was 

designed to be completed within 40 minutes and, with the school periods being 50 

minutes in duration, this allowed sufficient time to hand out the papers and to instruct the 

class on the tests. At this time, I also explained how to access the online assessments and 

I handed out the user codes. I made a specific point of explaining that the decimal point 

was being used throughout these tests rather than the decimal comma which they would 

have been familiar with at school. The learners indicated that they were familiar with both 

forms of writing decimal numbers from their school work, as well as from using 

spreadsheets on the computers. The learners confirmed that the knowledge of the decimal 

point was not an issue. 

All of the learners wrote their user codes, but not their names, on the question 

sheet for the pretest and this user code then provided the link between the pretest and the 

Web-based assessments. 
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The results from the pretest were captured into a Microsoft Access database. 

These results were analyzed at a high-level during the days after the pretest, and the 

findings were used to inform the test items to be used within the online assessments. 

Online Lessons 

Each of the online lessons was conducted in the computer rooms of the study schools. 

For each of the sessions I arrived early and ensured that the computers were set up 

properly in advance. 

School A - Lesson 1 

In School A, the computers were running the Ubuntu variation of Linux, and FireFox was 

installed by default. Each of the learners was competent with using the Web for research 

and they had no trouble accessing the Web-based assessment engine. 

I explained how to log on and to run through the tests and any learners who had 

forgotten their codes were reminded of these by the computer teacher, who was available 

throughout the assessment lessons. Most of the learners had opened the Web site and had 

entered their user code and password before I had even completed my explanation. I 

emphasized again that my tests presented decimal numbers using decimal points rather 

than decimal commas, to refresh what I had explained during the paper-based tests in the 

previous week. 

Some learners finished the first online lesson in 10 minutes whereas others took 

the entire 50 minutes of the lesson. All of the learners in the class were quiet for the entire 

lesson and I saw no evidence of the learners speaking to one another or collaborating 

silently. 

Based upon the results of this first lesson, I planned for the second lesson, with 

the following changes: 

 Additional explanation was provided in the instructional content for the use of 

the decimal point in the tests as opposed to the equivalent decimal commas. 

This was included to minimize the possibility that some of the whole number 

misconceptions (such as reading the digit 5 in the number 2.45 as units rather 

than hundredths) were due to misreading the decimal number. 

 Some of the test items used in the place-value tests in Lesson 1 were repeated 

to see if this explanation on the usage of the decimal point would have any 
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effect. Special consideration was given to these duplicate test items in the 

analysis, to avoid double counting. 

 The number of test items was increased from 20 in the first lesson to around 

40 in the second lesson. 

 The size and number of instructional pages was reduced, with a focus on the 

explanations used between the tests. These pages are a short set of 

instructional pages and the manner in which these are used was outlined 

earlier. 

A communique was prepared and emailed to the key staff involved in this 

research, explaining some of the tests performed during the pretest, while omitting any 

advance information about the upcoming tests. 

School A - Lesson 2 

Lesson 2 was primarily concerned with the problems of ordering decimal numbers, by 

selecting the smallest or largest from a set of numbers. 

After Lesson 2 was completed I prepared another communique for the staff 

involved in this study from the school. I particularly noted an initial result showing that 

there was a significant improvement in the results from the previous test on the 

recognition of places values, being an improvement of 9% over the entire class. However, 

I did not discuss this in terms of its statistical significance. 

School A - Lesson 3 

From the experience of Lesson 2 I increased the number of questions in the tests in Lesson 

3 to 60, and I focused on questions concerning graphical fractions as well as the 

positioning of fractions onto the number line. 

School A - Lesson 4 

Within this final lesson I included test items in which I asked the learners to select the 

closest whole number to a particular common fraction to determine the extent to which 

they were familiar with fraction notation.  

School B 

The progress for the four lessons was similar to that for School A. The number of learners 

was larger than for School A and involved three classes of learners. The classes were 
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more challenging to administer than School A since there was no teacher present during 

the assessment periods and on some occasions there was talking among the learners which 

I had to address. Issues with the computers during the class were addressed by the 

computer technician and did not negatively impact the lessons. 

4.11 Data Collection 

The data from the pretests were collected on paper test sheets that were handed out to the 

learners. Each individual test paper was headed by the user code which had been allocated 

to the learners. In some cases, when the learners had forgotten their code, they were asked 

to put their name on the paper, and the teacher later informed me which user code this 

corresponded to, since this linkage between the user code and the learner name was 

maintained by the teachers. 

For the online tests, the data was collected directly from the Web server, which 

automatically tracked the following: 

 Which learner was logged on (by their user code). 

 Which lesson, which test, and which item. 

 The start and ending time for the question—in which the start time was the 

time when this was presented to the learner, and the ending time was when 

they selected the answer. 

 The answer that they selected from the MCQ choices. 

 An indication of “Don’t Know” if they had selected that option instead of 

selecting an answer. 

 Their indication of whether this question was Easy, Just Right or Difficult. 

4.12 Data Capturing 

The pretest responses were captured into a Microsoft Access database, and following the 

data capture, random checks were performed on a few papers to ensure that there were 

no errors in the data capture. 

The data from the online tests was captured automatically by the system and 

stored in an SQL Server database (School A), and in a MySQL database (School B). 
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All of the data, for both schools and for both the pretest and the online tests, was 

merged into single Microsoft Access database which was used as the basis for the detailed 

data analysis. 

4.13 Errors and Limitations in the Research Data Gathering 

The data gathering processes were subject to various limitations and issues which may 

have impacted on the quality of the data collected. 

For School B, some of the computers did not work as required, and did not have 

the correct software, and this resulted in some learners being delayed in starting their 

tests. In a couple of cases this could not be resolved before the lesson was complete, and 

there were not enough spare computers. 

In School B, I noticed some initial collusion between the learners in sharing 

information. It was not possible to completely avoid learner-to-learner discussions taking 

place in the class during the tests, and it was also not possible to prevent the learners using 

the Web for other purposes. I specifically did not record the names or codes of the learners 

who were engaging in other activities since I felt that this may risk the requirement for 

anonymity. I also did not record who was sitting close to one another, and as a result all 

learners are considered as working independently for my analysis. However, in my 

opinion, these issues were kept under control and did not impact the online lessons or the 

data collection. 

4.14 Rasch Analysis 

Having collected the raw data, these needed to be analyzed to assist in answering the 

research questions. For this analysis I have chosen to use the Rasch method, which is 

highly suited to educational measurement (Bond & Fox, 2012). I have adapted the Rasch 

method to suit my requirement to measure the diagnostic properties of test items, and I 

outline this below. IRT also meets my requirements but is better suited for larger data 

sets, whereas Rasch was better suited for this study (Wright, [2005]). 

I chose to use the WinSteps program (Linacre, 2013) which provides a wide range 

of outputs and calculated measures for the analysis of test item responses and learner 

proficiencies. 
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The inputs to a WinSteps program execution are: 

 the set of test items used, each identified by a code 

 the set of the learners, each also identified by a code, and 

 the set of learner responses to each test item 

The learner responses are coded as 0 (for an incorrect response) or 1 (for a correct 

response). Missing values are accommodated and are coded using a period (.) and are 

automatically omitted from the analysis, with the Rasch analysis providing measures of 

learner ability and item difficulty while accommodating missing values. This approach is 

detailed in Appendix F. 

The primary outputs from the Rasch analysis were the measures of the test items 

on a scale of difficulty, centered on zero, and the grading of the learners using a calculated 

ability scale. The scales of item difficulty and learner ability were aligned and able to be 

compared, which is a unique feature of both the Rasch method and IRT. 

Another important output from Rasch analysis is the fit of the learner response 

data to the Rasch model, which occurs as a by-product of the manner in which the Rasch 

method finds the best-fit model to the input data as provided. As a result of this process 

of best-fitting to the totality of the data, there are data that fit the model and other data 

that do not fit, and which are considered as outliers in the statistical sense. This data 

included both person and item data. The Rasch method structures test items on a scale of 

“difficulty” and the learners onto a scale of “ability”. The use of misfitting data can distort 

the Rasch model and it is recommended by Linacre (2013) that these be removed prior to 

re-running the Rasch model. Misfitting test items are those for which the results are 

inconsistent with the Rasch model, and these items would have distorted the model to 

some degree if they were retained. Misfitting items were identified based upon their 

INFIT or OUTFIT statistics. INFIT is calculated based on an increased weighting of the 

items which have a measure close to the learner measure, thus measuring the behaviour 

of items around a learner’s ability measure. OUTFIT is unweighted, and is more sensitive 

to outliers, such as guesses and slips. For both INFIT and OUTFIT, the mean-square value 

(MNSQ) was used, with values greater than 2.0 having the potential to distort or degrade 

the measurements made (Linacre, 2002). 

Misfitting learners were also removed, for cases where the learner responses did 

not fit the data results, and such misfits in learner data may have been an indication of 
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guessing, where the relationship between learner capability and item difficulty cannot be 

determined due to inconsistency in the responses from these misfitting learners. My 

justification for removing learners for my analysis was that my research questions are 

focused on the test items rather than on the learners. I note that the removal of misfitting 

data is contentious in the case where accuracy in measuring learner ability is required, 

since such anomalies may point to other factors which are beyond the capability of the 

Rasch model, and may also point to deficiencies in the item bank. As an example, if a 

learner scores well on the difficult items, but then scores poorly on the easy items, then 

this points to an anomaly beyond the capability of the Rasch model. 

My approach was to separate the analysis of high-performing learners from the 

lower-performing learners, and I argue in this study that the assessment methods suited 

for these two groups are different, with the first group focusing on the measurement of 

ability and the second group focusing on the measurement of specific conceptual models 

that cause the lack of performance. 

My approach thus used Rasch analysis in two different and sequential analyses. 

Firstly, I used a traditional Rasch analysis to determine the proficiency of learners on the 

basis of the test items presented. I then removed these high-performing, proficient, 

learners from the set of learners that I took into the second analysis, in which I analyzed 

the incorrect responses in more detail than for the first analysis. My justification for this 

removal is that if a learner demonstrated proficiency, which is the STABLE stage of my 

model, then by definition they would not have made mistakes that warrant the analysis of 

their misconceptions. Any such mistakes made by otherwise proficient learners were 

treated as slips, as noted by Olivier (1989). 

For my analysis of the low-performing learners I applied the Rasch method by 

addressing particular misconceptions that were linked to test items as the rich distractors 

in the MCQs. I analyzed the learner responses to determine which test items are good 

indicators of each codified misconception, and also which learners showed evidence of 

the usage of the various misconceptions. As explained earlier, the trait I was measuring 

is not “ability”, in its traditional meaning, but rather the extent to which learners’ 

responses are accounted for by their usage of a particular way of thinking. 

Stacey and Steinle (2006) have argued that Rasch analysis is inapplicable for 

diagnostic purposes when used in its traditional approach to measure ability. They claim 
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that “there is nothing to gain in following that [Rasch] approach in this and other cases” 

(p. 89), and their particular application was the DCT2 diagnostic test which is designed 

to elicit evidence of decimal number misconceptions. Stacey and Steinle’s claim is based 

on analysis of their results using a Rasch analysis, and they provide an explanation that 

the Rasch requirement for trait unidimensionality is not satisfied with tests which are 

designed to discover multiple traits, as is the case within all diagnostic tests designed to 

reveal multiple misconceptions. Rather, Stacey and Steinle propose a model based on 

“mapping learning” rather than “measuring learning” (p. 78), and suggest that “learning 

as revealed by answers to test items is not always of the type that is best regarded as 

‘measurable’” (p. 89). When Rasch is used to measure misconceptions in the same way 

that it is applied to measure ability then I agree with the conclusions of Stacey and Steinle 

(2006). 

However, I argue that Rasch can be used effectively for diagnostic analysis, and 

my mitigation for Stacey and Steinle’s (2006) claim of inapplicability is to conduct Rasch 

analyses in parallel for each identified misconception, so that the analysis then comprises 

a parallel set of unidimensional analyses. The resulting measures are then provided for 

learner ability, as well as learner usage of specific misconceptions to account for their 

responses. On this basis, the most likely misconceptions can be determined for each 

learner to account for their responses. 

To process the data I used the WinSteps program (Linacre, 2013) the details of 

which are included in Appendix F. 

4.15 General Approach to Data Analysis 

I outline here the general approach I adopted for the data analysis of the online 

assessments, to answer the research questions. This general approach consists of a 

sequential set of steps which are applied for each of the micro-domains, and which was 

adapted as required for the individual micro-domains. 

 I first analyzed the response patterns over all the test items and all the learners, 

using a frequency table, to see which choices have been selected more than 

others and to identify if there were any unexpected high frequencies in 

incorrect choices that were not previously identified as rich distractors. If the 

misconceptions were well understood, and were reflected in the choices of the 
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test items, then this step should reveal that there were high frequencies of 

responses for the correct choices and for the rich distractors, but low frequency 

responses for the random distractors. 

 I then identified and extracted the learners who were proficient in the micro-

domain and classified them in the STABLE stage of development. This was 

conducted using a Rasch analysis on the test items by encoding the learner 

responses as either correct or incorrect. Learners whose ability score was 

beyond a specified cutoff measure were placed into the STABLE development 

stage and were removed from the set of learners for further processing of 

evidence of misconceptions. During this process any test items that showed 

poor correlations or were misfits for the measurement of ability were removed 

and for this, and throughout this analysis I used the point-measure correlation 

as provided in WinSteps (Linacre, 2013) which shows the extent to which the 

item responses are in line with the learner measures. 

 For those learners in the STABLE stage, there would still be a few test items 

that were answered incorrectly. These responses were classified as slips, but 

may be also seen as “late-stage” misconceptions when they are selected 

consistently by learners who are otherwise proficient. In such cases, the 

learners were better considered to be in the IMMINENT stage. However, for 

the purpose of this study decisions were made on a case-by-case basis, since 

there was insufficient evidence to determine whether a mistake was a slip or 

a misconception. 

 I next identified those learners who were in the IMMINENT stage, being those 

learners who mostly responded correctly, but who had a sufficiently high 

number of incorrect responses that they could not be considered to be fully 

proficient. Those learners in the IMMINENT stage were close to proficiency, 

and this step explored the nature of their incorrect responses for evidence of 

known misconceptions. This also helped to determine which misconceptions 

occurred in the latter stages of cognitive development in this micro-domain. 

This was similar to the analysis of the proficient learners, but in this case there 

would be far more data to analyze. These learners were identified based upon 

their Rasch measure of ability, and those learners with an ability score in the 
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range 1.0-1.5 were generally selected into the IMMINENT stage. These 

learners were not removed from the list to be studied further, since their 

misconceptions would be analyzed together with the remaining learners. 

 The set of learners who were not in the STABLE stage were analyzed using 

parallel Rasch analyses, one analysis for each of the identified 

misconceptions, to categorize the learners into the ACTIVE, EMERGENT, 

and ABSENT stages. 

 The learners who showed no consistency in their responses in terms of the 

misconceptions were positioned into the ABSENT stage, since from the data 

provided I could not detect the presence of either conceptions or 

misconceptions that could account for their responses. In effect, as far as the 

test results were concerned, the learner responses were random, resulting from 

pure guesswork with no systematic basis. 

 The remaining learners were those who were within the ACTIVE and 

EMERGENT stages of development, with the difference being that the 

ACTIVE stage learners were achieving around 50% proficiency and their 

incorrect responses could be identified as misconceptions. The EMERGENT 

stage learners would have some evidence of using misconceptions, as distinct 

from the ABSENT stage learners. 

I now continue with the analysis of the pretests, which provides the lead in to the 

full analysis of the online test data in Chapter 6. 
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CHAPTER 5 : 
DATA ANALYSIS AND RESULTS - PRETEST  

In this chapter I present the test results from the pretest using bar charts for questions with 

a small number of categories of responses and a tabular format for the constructed-

response items. When reference is made to the number of learners who selected a 

particular choice, I use the notational form of N/M (for example, 23/76), meaning “N 

learners out of M”, and these results are also presented as percentages where appropriate. 

In situations in which there is reference to a common fraction the notational form of 
6

10
 is 

used. When identifying particular responses from constructed-response questions these 

are often placed in quotation marks, such as “54.”, to clearly distinguish these responses. 

The data from the pretest were manually captured into a Microsoft Access 

database from the paper answer sheets completed by the learners. For each of the 

questions presented in this chapter, suggestions are made as to how the responses may be 

used to assess the learner development stage. 

The pretests results were used as an aid to understand the nature of the 

misconceptions used by the learners in classes used in this study, and to help to select the 

types of test items for the online assessments. 

5.1 Pretest Results and Question-Level Analysis 

A pretest of 15 test items was conducted with learners in both of the study schools and 

each item was included for its potential to expose misconceptions. 

Each of the test items used in the pretest is now explained, with each representing 

a potential micro-domain. The full pretest paper is provided in Appendix B, with 

explanations on the source of the items and the reason for inclusion for each of the items. 

I use the term “choice” to indicate a particular choice provided within the MCQ 

questions and I use the term “response” to indicate a learner’s selection of a particular 

choice. 

For each of the questions I present the response counts, and in some cases I 

supplement this with a summary table of the difficulty levels for each item as indicated 

by the learners as being Easy, Just Right or Difficult. 
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Question 1: Common Fraction Ordering 

In this Question I asked the learners to select the larger of the unit fractions 
1

4
 and 

1

6
. This 

question is below the curriculum level of proficiency expected for Grade 7-8 learners, 

and the failure of a learner to answer this item correctly may point to a serious lack in 

conceptual understanding of the common fraction system, but it may also be the result of 

a guess or a slip. Even with such a simple test item there is a linkage back to the 

development stages of my model. A learner who answered this correctly may have been 

in the STABLE stage, even though guessing may account for this result. A learner who 

made a slip may be in the IMMINENT stage, and a learner who selected the correct 

response but based upon the use of a misconception, would be in the ACTIVE stage. A 

learner who guessed would be in the ABSENT stage. Whereas this single question cannot 

provide sufficient information to determine the development stage of a learner, the 

response can provide some useful information. 

 

Figure 16. Pretest Question 1 - compare common fractions 

Results 

One of my observations from these results is the large proportion of the learners 

from School B (Grade 8) who selected 
1

6
 as being the larger (26/70), compared to School 

A (4/56). However, it was not my purpose in this study to compare these two schools, 

given that my focus was on the test items themselves and their diagnostic potential. 

Analysis 

During the design of this study my expectation had been that this item would be 

answered correctly by most of the learners. However, I had previously discovered that 
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such an apparently simple item can elicit evidence of misconceptions, arising from the 

pilot conducted with adults and some Grade 12 learners. 

There is one well-known misconception for the selection of an incorrect result for 

this example—that whole number reasoning is being applied so that 
1

6
 is seen as the larger 

number since 6 >  4. In the absence of any other explanation, the simplest explanation 

is likely to be the correct one—which is a method of reasoning known as Occam’s Razor 

(Metaphysics Research Lab, 2014). Even if there are other plausible explanations, a 

question as simple as this will be an aid in eliciting this misconception. However, with 

only two choices, this item is also prone to guessing, with a 50-50 chance of a learner 

selecting a correct choice even if they have no knowledge of common fractions. 

The significant values highlighted in Table 11 show that 28 (12+16) of the 

learners who selected 
1

6
 as being the largest also indicated that they found this question 

either Just Right for their level of ability or that they found this Easy. Only two of the 

learners who selected this incorrect choice found this item to be Difficult. Also, only one 

learner who selected 
1

4
 as his/her choice indicated this as Difficult, which is an indication 

of guessing. The term “N/S” indicates the count of learners who did not select the level 

of difficulty. The learners were asked to write “D/K” to represent “Don’t Know”, rather 

than simply resorting to guessing. 

Table 11. Pretest Question 1 - difficulty levels 

OPTION N/S Difficult Just Right Easy TOTAL 

D/K 8    8 

1

4
 2 1 14 79 96 

1

6
  2 12 16 30 

TOTAL 10 3 26 95 134 

 

When the learner response is coupled with the indication of how difficult they 

found the test item, more information is obtained that may improve our inference of the 

development stage. From the analysis of those who marked this item as Just Right or 

Easy, it is possible to not only gather evidence that 30 of the learners selected the incorrect 

option of 
1

6
 but also to determine that of these, 28 (12+16) are likely to have answered this 
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on the basis of a misconception they held about the nature of fractions, when the 

additional information on difficulty is also considered. 

Question 2: Fraction Estimation 

The second item asked the learner to estimate the magnitude of a common fraction 

addition, where the addition was difficult to calculate in full. This item assesses the 

learners’ conceptual understanding of the magnitude of common fractions beyond what 

can be inferred from the test item used in Question 1. 

This question has been cited by Kilpatrick et al. (2001) and it appears to be a good 

diagnostic item. My research question RQ1 asks why this item is “good” for diagnostic 

purposes when compared to other items, so that I can better understand the nature of such 

good diagnostic questions, with a measurable scale of “goodness” in terms of their 

capability as tools to elicit evidence of misconceptions. 

Kilpatrick et al. (2001) note that the responses of 19 (choice C) and 21 (choice D) 

were selected by learners who lacked a full conceptual understanding of the common 

fractions, and who resorted to adding either the numerator or the denominator. To fully 

calculate this sum 
13

12

8

7
  requires the learner to determine the common denominator of 

the mutually-prime 8 and 13, and then to perform the necessary multiplications of the 

numerators to arrive at a point where they have the same denominator and thus can be 

added. However, an exact answer for this sum is not required, as suggested by the word 

“closest” in the question, and which in turn requires that the learner has a sufficient 

conceptual understanding of the problem statement to plan their solution. 

Question 2 

Which is the closest to the sum 
13

12

8

7
 ? 

A. 1 
B. 2 
C. 19 
D. 21 
E. 40 
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Results 

This question produced similar results to those reported by Kilpatrick et al. (2001), 

with options C, D, and E eliciting 42, 19, and 25 responses respectively from the 

combined data set of both schools, where choice E (40) is the sum of all of the numerators 

and denominators in the fractional sum. The correct choice B was selected by only 18 

learners—fewer than any of the individual choices C, D, or E. 

 

Figure 17. Pretest Question 2 - common fraction estimation 

Analysis 

Whereas this result confirms prior studies, my interest was to determine to what 

extent this type of test item could be used for the diagnosis of misconceptions in common 

fractions. The response distribution in Figure 17 provided an indication of the suitability 

of this type of item for diagnostic purposes, since the largest choice C is based upon the 

misconception that learners see the addition of common fractions as the sum of their 

numerators. I consider that one criterion for item suitability is that learners who held this 

misconception would select those choices which were introduced as rich distractors 

linked to this misconception. When this is the case then these items are good indicators 

of this misconception. Whereas we do not know in advance the learners who hold 

particular misconceptions, a Rasch analysis can simultaneously calculate both learner and 

item measures, and thus can provide the basis for estimating the extent to which a learner 

used this misconception. A qualitative analysis of this question also shows that the 

introduction of 19 as a choice had the potential to provoke selection by learners who 

would tend to add the numerators when adding fractions. Thus there were two possible 

approaches for analysis of suitability, one statistical-quantitative and the other qualitative. 
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Question 3: Decimal Fraction Place-Value 

This question explored misconceptions in decimal number representation, in the 

extent to which a learner understands the place-value of particular positions in a decimal 

number. 

The results in Figure 18 show two peaks. The first peak is the correct choice 

“thousandths” (E), and the second, and marginally higher, peak is “hundredths” (choice 

D) which was selected by the majority of the learners in both schools. This is explained 

by learners treating the decimal number as a whole number, effectively ignoring the 

decimal point. This is essentially the same conceptual basis as for Question 1 of this 

pretest. 

 

Figure 18. Pretest Question 3 - decimal fraction place-value 

This test item can be analyzed in terms of the self-knowledge of the learners in 

terms of their perceived level of difficulty. Most of the learners responded to this item, 
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and Table 12 shows how many learners identified this question as being Easy or Just 

Right, as highlighted in red. 

Table 12. Pretest Question 3 – difficulty levels 

OPTION N/S Difficult Just Right Easy TOTAL 

N/S 7    7 

A 1   1 2 

B  2 1 2 5 

C  2 6 5 13 

D  2 23 32 57 

E 1 1 9 34 45 

F   1 4 5 

TOTAL 9 7 40 78 134 

Analysis 

These results highlight a lack of knowledge of place-value in decimal fractions, 

where learners revert back to their knowledge of place-value in whole numbers. 

The results from this question indicate that this type of item may be suited to elicit 

evidence of place-value misconceptions for learners who are starting to know the decimal 

numbers. This is of importance to rational number learning since any incompleteness in 

place-value knowledge will impact all situations which rely on this knowledge, both in 

education and in the real world. 

Choice D (hundredths) was selected by 57/134 of the learners, most of whom (55) 

indicted the level of difficulty as either Just Right or Easy. This choice may be selected 

for two possible reasons. Firstly, that the learner ignores the 0, then sees the 6 as tenths 

and the 7 as hundredths. Secondly, that the learner ignored the decimal point altogether, 

and treats the number as a whole number, seeing the 7 as hundreds, and then selecting 

hundredths as the most likely choice. The challenge is that a single choice may result 

from many ways of thinking, and this particular item may not be a good diagnostic item 

to identify place-value misconceptions, considering the qualitative requirements for good 

diagnostic questions as indicated by Bart et al. (1994). 
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Question 4: Ordering of 5 Decimal Numbers 

I have derived Question 4 from item B10 in the TIMSS 1999 study (Mullis et al., 

2000; NCES, 2015). 

Results 

 
Figure 19. Pretest Question 4 – decimal fraction ordering 

Whereas the correct choice is B, there are far more responses for choices C and 

A. Choice C (0.5) can be accounted for by whole-number reasoning, in which the decimal 

point is ignored, which is one variation of Steinle’s (2004a) L1 misconception. Choice D 

(0.675) may be accounted for by various misconceptions, with one being where these 

choices are seen as negative numbers, where -675 is the smallest of the set, and another 

where these numbers are seen common fractions, where 
1

675
 is the smallest fraction. These 

ways of thinking have been documented by Steinle (2004a) as her S3 code. 

Analysis 

This type of test item, comparing the relative magnitude of decimal numbers, has 

proven from prior research to be a useful instrument for identifying and documenting 
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misconceptions, and thus is useful for further study into their effectiveness for diagnostic 

purposes. 

The challenge is to determine which particular test items are better suited to elicit 

which of the known misconceptions, so that this information can be used to help position 

the learners into one of the Development Stages of the model. 

Given that choices C and D feature prominently in the responses, it is likely that 

these represent specific stages in the conceptual development of decimal numbers. Choice 

C (0.5) is an indication of whole number thinking, essentially ignoring the decimal point 

altogether, which, like the pretest question above, represents the least-developed 

conceptual model, whereas option D (0.675) requires something more than prior 

knowledge of the whole number system, since otherwise choice C would have been more 

likely. Thus choice D reflects a more developed stage than choice C. I thus position choice 

C into the stage of EMERGENT and choice D into the ACTIVE stage. 

Question 5: Decimal Representation 

Decimal numbers can be represented in words or by using decimal notation. 

Question 5 explored the link between these two representations by asking learners to 

select which decimal number corresponds to a particular word statement. This test item 

was adapted from item L09 in the TIMSS 1999 released item set (Mullis et al., 2000; 

NCES, 2015), and two of the four choices in the TIMSS item have been retained as my 

choices E and C, which are complemented with six other options that I have added which 

may have the potential to identify other misconceptions. 

Which is the decimal representation of the number “two hundred and six and 
nine tenths”? 

A. 206.90 
B. 206.910 
C. 206.09 
D. 206+9/10 
E. 206.9 
F. 2006 9/10 
G. 20069.10 
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Results 

 

Figure 20. Pretest Question 5 - decimal number representation 

Figure 20 shows that whereas the generally-accepted correct choice is E (206.9), 

which accounts for the highest number of learner responses, choice A (206.90) is also 

correct, but it is an alternative response which indicates greater precision, and together 

these two comprise 76/126 responses. However, choices B (206.910) and C (206.09) each 

had a relatively large number of responses when compared to choices F and G. Most 

learners indicated that choices B and C were either Just Right or Easy as shown in Table 

13. 

Table 13. Pretest Question 5 – difficulty levels 

Option N/S Difficult Just Right Easy TOTAL 

A 1 1 8 19 29 

B  3 2 8 13 

C  4 11 3 18 

D 1  4 4 9 

D/K 2 2   4 

E 1 5 13 28 47 

F  1 1  2 

G  1 3  4 

TOTAL 5 17 42 62 126 

Analysis 

This test item appears to have some diagnostic value given the systematic 

selection of choices B and C. The results show that when the correct response was not 
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selected, the incorrect responses were biased towards choices B and C, which supports 

an inquiry into whether these were based upon common ways of thinking among this 

learner sample. 

The correct responses (choices A and E) are an indication of the STABLE 

development stage of the learner, and choices B and C can position learners in the 

ACTIVE stage on the basis of presumed intermediate conceptions which account for 

these responses. For example, choice B may have been selected on the basis of learners 

believing that they should put both the 9 and the 10 (from the “nine tenths”) into the 

selected answer, and for which the response of “0.9” may not appear as the correct 

representation to a learner since it does not explicitly identify the word “tenths” by a “10”. 

Question 6: Common Fractions to Percentages 

This question had seven choices, which included a number of rich distractors. The 

whole numbers for the numerator and denominator were both included as rich distractors, 

such as including 3% as choice A where 3 is the numerator of the fraction. The numerator 

and denominator digits combined together as choice C (34%). 

Results 

There is an indication, from the high frequency of choice E in Figure 21, that 

many learners understand the conversion from common fractions to percentages. The 

only significant alternative is choice C (34%). 

What percentage is equivalent to the fraction 
𝟑

𝟒
? 

A. 3% 
B. 4% 
C. 34% 
D. 50% 
E. 75% 
F. 100% 
G. 133.33% 
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Figure 21. Pretest Question 6 - common fractions to percentages 

Analysis 

There was insufficient evidence from this example to conclude why individual 

learners selected rich distractors over the correct choice, and why the frequency of choice 

C was so much higher than choices A and B, when each of these appeared to support the 

usage of a single type of misconception. 

When these results are explored in terms of the development stages, the correct 

responses indicate the STABLE stage, and the rich distractors of A, B, and C indicate the 

ACTIVE stage. A learner could be placed in the ABSENT stage when there is no apparent 

conception which is evident in the response, such as for choices D, F, and G. However, 

individual learners may have had other misconceptions which account for these choices 

where these misconceptions are not as yet known. 

Question 7: Equivalent Fractions 

This question explored the operations and calculations required to make two 

fractions equivalent to one another. This was presented as a simple equation in which two 
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common fractions were presented, one of which had a missing value, represented by the 

variable 𝑥, which must be selected from the range of choices provided. 

The distractors for this question included a range of plausible choices, including 

choice F (15), which was created by producing the same additive difference from 3 that 

4 is from 16 in the denominator (+12). An alternative and simpler additive reading is that 

3 is one less than 4 and thus the number we are looking for is one less than 16, being 15.  

 

Figure 22. Pretest Question 7 – equivalent fractions 

The results in Figure 22 demonstrated significant proficiency of the majority of 

the learners in both of the schools. One of the learners in school B entered an alternative 

response “9” which would result from noting that 4x4 = 16, and thus 3x3 = 9. This is an 

alternative relationship which I had not considered when designing this question, and this 

may have been more widely selected if this was one of the rich distractors. 

Analysis 

This question established that this was a proficiency of learners in both schools, 

with insufficient evidence of systematic errors on the basis of the choices provided. This 

question addressed procedural competence, and was more arithmetically challenging than 

the other questions presented up to this point in the pretest. 

The results from this question showed that more learners had been assessed as 

competent on this question than on the apparently simpler questions in this pretest. This 

points to the possibility that whereas the questions requiring a number of steps are useful 
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to measure learner proficiency, it is the simple, and often trivial, questions that appear to 

be better suited for diagnostic purposes. 

This question also highlighted a potential problem in the construction of 

diagnostic items, when a particular way of thinking was not reflected in one of the 

available choices, as was the case for the learner who wrote “9” as his/her response rather 

than selecting one of the given responses. This question thus violates the “Exhaustive 

Rule Set Usage” of Bart et al. (1994) which requires that every way of thinking is reflected 

in at least one choice. However, this also challenges our understanding of learner 

thinking, in terms of whether we have discovered all the various ways of thinking that 

learners employ, which are needed to build good diagnostic questions. 

Question 8: Decimal Addition 

This question challenges the understanding of the decimal numbers in terms of 

how the .4 is treated. Every choice in this question has been designed as a rich distractor 

with the correct choice being B. 

Choice A (.29) results from treating the .25 and .4 as whole numbers, by dropping 

the decimal point, and then adding them to get .29, and finally inserting the decimal point 

back into the calculation. Choices C (4.25) and D (25.4) combine the decimal numbers to 

create the choice, and choice E (6.5) considers the learner multiplying the correct 

response by 10. 

For both schools, the distractor choice A was by far the most widely selected, even 

though the correct answer is choice B, which is the second-smallest choice, with only 

choice E having a smaller response. This type of item has potential as a good diagnostic 

question, since an important misconception is exposed in learner understanding. 

What is the result of .25 + .4 
A. .29 
B. .65 
C. 4.25 
D. 25.4 
E. 6.5 
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Figure 23. Pretest Question 8 - results 

Analysis 

The most likely explanation is that choice A was causing the learners to consider 

these two input numbers as whole numbers, so that 25+4 = 29. Choices C and D also had 

relatively high responses when compared to choices B and E, and show a way of thinking 

as observed earlier in which the learners may have believed that they had to include all 

of the input digits into the answer. 

Another consideration is that these decimal numbers were presented without a 

leading zero, and this may have had an impact on the learners’ choices. In the real world 

we are presented with numbers in many different forms and notations, and the dropping 

of the initial zero in the whole number part remains a valid decimal number, and examples 

of the usage of decimal numbers which drop the leading zero are presented by Kilpatrick 

et al. (2001). 

The development stage is ACTIVE for those who selected the distractor choice A 

which showed a high-level of consistency between the two schools. The correct choices, 

answered by very few learners, indicates the STABLE stage, with the remainder likely to 

indicate an ABSENT stage of development. I would consider that choices C and D may 

point to the EMERGENT stage in which there is some evidence of conceptions, but 

insufficient to indicate conceptual development. 
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One advantage of this question for diagnostic purposes is its simplicity, and I 

continue to argue that good diagnostic questions should be as simple as possible while 

providing evidence of specific ways of thinking. 

Question 9: Decimal Subtraction 

This question was a variation of Question 8, focused on subtraction rather than addition, 

and was presented in a constructed-response format rather than as an MCQ. As for 

Question 8, the decimal point was used without the zero (0) prefix, and this may have 

caused confusion with the learners over and above their existing misconceptions. 

Table 14. Pretest Question 9 – decimal subtraction 

Response Frequency 

 6 

.3 16 

.9 1 

+3 1 

0.3 2 

11 OR 3 1 

3 75 

3,0 1 

3. 1 

3.0 1 

3.4 1 

4 2 

4. 1 

4.7 1 

5 1 

6.6 13 

7.3 1 

7.4 1 

D/K 1 

DK 1 

E 4 

 

The results of the pretest, given in Table 14, showed that there were three 

significant responses being “.3” (16/132), “3” (75/132), and the correct answer “6.6” 

(13/132). 

What is the result of 7 - .4 
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By far the largest frequency (75) was the response of “3”, which may be explained 

by the learners ignoring the decimal point. The response of “.3” received 16 responses, 

in which the numbers were both treated as whole numbers, but in which the decimal point 

was added back in to the final response. The correct answer “6.6” only received 13 

responses. 

The difficulty factors for these three highest responses are shown in Table 15 and 

indicate that 60/75 of the learners considered this question as Easy. 

 

Table 15. Pretest Question 9 – selected difficulty levels 

RESPONSE N/S Difficult Just Right Easy TOTAL 

.3 2 1 2 11 16 

3 1 3 11 60 75 

6.6  2 5 6 13 

TOTAL 3 6 18 77 104 

Analysis 

There were a large number of learners who responded with the incorrect answer 

“3” when compared to the other alternatives, which may be accounted for by the learners 

not considering that .4 is a decimal number, and rather treating this as a whole number. 

My conclusion is that the subtractive form of the question is unlikely to reveal any 

further misconceptions within these results. However, the additive form does reveal some 

evidence of misconceptions that are suited to the identification of the development stage 

of the learner. 

Question 10: Decimal Point Insertion 

I made an error in the wording for this question, since it should have indicated “the 

decimal point is missing”, rather than “decimal place”. 

This question was representative of a special class of diagnostic questions that 

pose a problem together with an answer which is incomplete, where the learner is asked 

The following arithmetic calculations have been worked out, but the decimal place is 
missing in the answer. Please insert the decimal point correctly in the following two 
answers: 

a. 657 x .7 = 46004 
b. 16.2 ÷ 3 = 54 
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to fill in the missing element. In this case the answer was missing its decimal point to 

mark the separation of the whole number part and the decimal fractional part of the 

decimal number. 

After the paper was handed out to the learners, I noted an error, in that the answer 

presented for part A was incorrect, and it should have been presented as 4599. I thus 

removed Question 10a from further analysis due to this error and I only analyzed Question 

10b. 

Results 

 

Figure 24. Pretest Question 10b – inserting a decimal point 

As seen in Figure 24, for the second of the two questions there were 78 learners 

who selected the correct response “5.4” with less than 10% responding with either of the 

alternatives “54.” (7) and “.54” (10). 

Analysis 

Question 10b was relatively easy, since dividing a decimal number by a whole 

number is well within the capabilities of the learners. 

This type of question is not well-studied, and offers little additional support for 

diagnostic purposes for my needs in this study. I thus did not analyze this in terms of the 

Development Stages. 
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Question 11: Decimal Addition Estimation 

In this question, the sum of the two decimal numbers in the item stem is 10.96, 

and some of the learners performed this calculation in full on their answer sheets. Noting 

that 10.96 is close to 11, this means that choices B, C, and E are all close, and this question 

was thus intended to discover what learners considered the term “closest” to mean. The 

answer I was seeking is choice C in which both the value as well as the form of the answer 

are close to the question. 

This question was adapted from item H09 in the released items set from the 

TIMSS 1999 study (Mullis et al., 2000; NCES, 2015). The TIMSS item H09 used 3-digit 

whole numbers, and I modified this to use 3-digit decimal numbers, with a single-digit 

whole number, and with two decimal fraction digits for the tenths and hundredths 

positions. Of the 38 countries participating in TIMSS 1999, Singapore was highest with 

a 97% pass rate, the international average was 80%, and South Africa was in the lowest 

position with a 38% pass rate. This is essentially identical to the 39% (49/125) results 

from my study. 

Results 

The results provided in Figure 25 showed a peak for the correct choice C for both 

schools combined, while School B had choice A as the highest frequency. Choices B and 

D had high values, and whereas choice B adds up to the estimated value, choices A and 

D do not. In this case in there was a significant difference between the Grade 8 class in 

School B, and the Grade 7 class in School A. 

Which of the following is closest to the sum 6.91 + 4.05 
A. 6.00 + 4.00 
B. 6.00 + 5.00 
C. 7.00 + 4.00 
D. 7.00 + 5.00 
E. 8.00 + 3.00 
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Figure 25. Pretest Question 11 - decimal addition estimation 

Analysis 

There were multiple “correct” solutions for this question, when this is determined 

by the magnitude of the answer alone, and this is likely the reason why the responses 

were distributed over the choices available. Choice A was likely selected because the 

whole number part of the decimal numbers is 6+4 which is the same as integer parts of 

the numbers in the question text, even though the sum of 10 is not close to 10.96 as for 

the other choices. 

Without further analysis of the reasons for the learners’ responses, it was not 

possible to position these responses onto the development stages in my model, and thus 

this particular type of question appears to have limited value for my online diagnostic 

tests. 

Question 12: Common Fraction Equivalence 

Three related questions were included in the pretest as constructed-response questions, to 

enable me to examine the patterns of responses. Question 12 explored equivalent 

fractions, asking the learner to write a fraction equivalent to the fraction provided. I first 

addressed Question 12 and then I combined the analyses for Question 13 and Question 

14 which both address the density property of the common fractions—which is that 

between any two common fractions it is possible to find another common fraction—and 

this attribute of the common fractions makes them different from the whole numbers. 
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Results 

Table 16. Pretest Question 12 – common fraction equivalence 

Response Frequency Count 

 7 

/4 1 

0,38 1 

1/2 2 

1/4 5 

1/7 1 

12/16 1 

12/32 1 

2/2 2 

2/4 1 

2/5 1 

2/7 1 

22/8 1 

24 2 

24/64 2 

24/8 1 

26 1 

3/16 1 

3/4 2 

3/5 1 

30/80 1 

375/1000 1 

38% 1 

4/12 1 

4/16 1 

4/4 3 

4/9 1 

5/10 1 

5/12 1 

6/16 53 

6/8 1 

8/3 3 

9/16 5 

9/24 8 

9/64 1 

D/K 16 
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In Table 16 the responses with a green background indicate the correct responses 

provided by the learners. 

The vast majority of the learners responded with “6/16”, created by simply 

doubling the numerator and the denominator, although a range of other correct answers 

were given. The most frequent incorrect responses were “1/4” and “9/16” each with only 

five responses, and with a large number of other responses for which there are only a few 

responses.  

Analysis 

From these results I conclude that the constructed-response format is suited to 

discovery of new ways of thinking, but is not suited to diagnostic assessment, since there 

are too many possibilities for which there is no apparent conceptual basis. This type of 

item may be used to identify proficiency when a correct response is provided, but the 

incorrect responses are generally not identified with any specific misconception. Given 

the challenges in the lack of common patterns in the frequency of incorrect response, I 

have not attempted to position the learners into the Development Stages. 

Questions 13/14: Common Fraction Density 

Question 13 asked the learner to find a new fraction which is between a given fraction 

and 1, where there are additional numerators available using the same denominator. 

Question 14 then repeated the form of Question 13 but for which there are no other 

numerators available which satisfy the requirement and which thus required a change to 

the denominator for the solution. 

Table 17. Pretest Question 13 – common fraction density 

Response Frequency count 

0 2 

1 1 

1 9/7 1 

1 AND 6 1 

1/1 1 

1/14 1 

1/2 20 

Question 13 : Write down a fraction that is larger than 
𝟐

𝟕
 and less than 1 

Question 14 : Write down a fraction that is larger than 
𝟑

𝟒
 and less than 1 
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Response Frequency count 

1/4 2 

1/4 OR 1/2 1 

1/6 1 

1/7 5 

15 1 

2/4 1 

2/5 2 

2/8 3 

2/9 1 

3/3 1 

3/4 5 

3/6 2 

3/7 13 

-3/7 1 

3/8 7 

3/9 1 

34 1 

4/14 (Note 1) 8 

4/6 1 

4/7 5 

5/13 1 

5/14 1 

5/7 4 

-5/7 1 

5/8 1 

6/14 1 

6/7 10 

7.0/10 1 

7/8 1 

D/K 14 

Note 1: The “4/14” is equivalent to “2/7” but is not larger, as required. 

Table 18. Pretest Question 14 – common fraction density 

Response Frequency count 

0.5 1 

0.5/6 1 

1 1 

1/1 1 

1-/12 1 

1/2 10 

1/3 4 
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Response Frequency count 

1/4 7 

1/5 1 

1/7 1 

1/8 1 

1/9 1 

12 1 

12/12 1 

12/16 2 

15/16 1 

2/3 4 

2/4 4 

2/4 1/2 1 

2/5 1 

2/7 1 

2/8 1 

3 1 

3/5 1 

3/8 1 

3/9 1 

4 AND 5 1 

4/4 4 

4/5 9 

46 1 

5/10 1 

5/5 1 

5/6 4 

5/8 1 

6.4 1 

6/4 1 

6/7 1 

6/8 (Note 1) 9 

6/9 1 

7/8 20 

7/9 (Note 2) 1 

8/10 2 

9/10 2 

9/16 1 

9/8 1 

D/K 13 
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Note 1: The response “6/8” has the same value as “3/4” and is not thus larger. 

This is the same error as noted in Question 13. 

Note 2: “7/9” is an interesting response, since it is quite difficult to determine that 

“7/9” is greater than “3/4”. If these are each converted to the denominator 36, being the 

lowest common multiple of 4 and 9, then “3/4” becomes “27/36” and “7/9” becomes 

“28/36”, which is larger, but only just. This was either a well-informed response or a good 

guess. 

The most common correct response is “7/8” which shows a good understanding 

of the density of the common fractions. Since there is no further numerator beyond 3 with 

a denominator of 4 while still remaining below 1, the learners simply doubled the 

denominator to “6/8” and then added 1 to the numerator, giving “7/8”. The other 

responses were used rarely by only 1-2 learners, and yet some of these represent common 

misconceptions that can be grouped for analysis purposes. 

Analysis 

These questions illustrated a range of issues in learner understanding of the 

common fractions. For Questions 13 and 14, many of the learners entered values that 

were either equal to the lower fraction or were larger than 1.  

Whereas these items have potential for the discovery of misconceptions, their 

value lies in the constructed-response format and did not suit the MCQ format that I was 

using for the online tests. The only viable diagnostic response was when the learners were 

suggesting a value that was equivalent to the lower value given, on the understanding that 

this is larger. For example, seeing “6/10” as larger than “4/5”. 

Question 15: Ordering of Decimal Numbers (10 pairs) 

This question was a simplified variation of the decimal ordering item type, which 

has been the subject of extensive research in terms of learner misconceptions (Sackur-

Grisvard & Leonard, 1985; Resnick et al, 1989; Steinle, 2004a; Steinle & Stacey, 2005). 

When learners are asked to order a set of decimal numbers into increasing or 

decreasing magnitudes, or to select the largest or smallest value, this has been shown from 

the previously-cited studies to expose a range of behaviours, including those studied and 

verified over large-scale, longitudinal studies (Steinle, 2004b). 
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This small set of ten pairs of decimal numbers has been designed to explore the 

extent of the misconceptions both at the level of the class as a whole and at the level of 

the individuals. 

Results 

The results are presented in the sequence of the percentage of learners who 

obtained the correct answer. This does not imply that the higher percentages are easier, 

and this also does not imply directly that any of these are good indicators of 

misconceptions. For this question I use the expression 15(B) to indicate the sub-question 

15(B). 

Table 19. Pretest Question 15 – decimal ordering results 

Sub-
Question 

Count 
Number 

Correct 
% Correct 

I 87 64 73.6% 

G 93 67 72.0% 

C 108 77 71.3% 

D 94 66 70.2% 

A 98 66 67.3% 

F 106 71 67.0% 

E 105 67 63.8% 

J 100 58 58.0% 

H 88 40 45.5% 

B 107 42 39.3% 

 

Draw a circle around the SMALLEST of EACH of the following pairs of decimal 
numbers 

A.  0.45 0.39 
B.  0.4 0.39 
C.  0.45 0.3 
D.  5.45 5.39 
E.  0.453 0.3 
F.  0.398 0.3 
G.  8.4 8.3 
H.  7.45 7.9 
I.  3.45 3.33 
J.  0.45 0.08 
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The lowest score was from 15(B) that asked the learners to compare 0.4 and 0.39, 

and which may expose the WHOLE misconception. 

The highest scores were from 15(I) and 15(G), which both have the same number 

of decimal digits in the fractional part. 

Analysis 

There is value in these types of test items, and they are easy to administer in a 

MCQ format, and thus were selected for use within the online tests. However, there is a 

limitation that a learner response on items with only two choices may result in various 

ways of thinking, and it may not be possible to determine the true conceptual cause 

without a sufficient number of items which is contrary to my assumed need for efficiency 

when used in a classroom environment. 

The analysis of these ten items over the complete set of learners shows 81 learners 

who answered all 10 sub-questions, and I analyze the responses from this subset using 

the total number of the correct responses as an indicator of proficiency. Of these 81 

learners, 9 scored 10/10 and another 6 scored 9/10. The learners scoring 9/10 made 

mistakes on 15(B) and 15(H) only, suggesting that these may represent items which can 

elicit late-stage misconceptions in otherwise proficient learners. There are 28 learners 

who scored 8/10 and of the 58 mistakes made by this group, 28 were on 15(B), with 

another 25 on 15(H), with the remaining 5 mistakes from 15(D) - 2, 15(E) - 1, 15(F) - 1 

and 15(J) – 1. I use the notation “15(D) – 2” to indicate that learners made 2 mistakes on 

15(D). 

Based upon this analysis I position those learners with 10/10 into the STABLE 

development stage, and those scoring 9/10 and 8/10 into the IMMINENT stage. 

Learners scoring 7/10 made the largest number of mistakes on 15(B) – 8, 15(H) – 

7, and 15(J) – 8, with no other questions receiving more than three incorrect responses. 

So whereas the item 15(J) did not feature as a mistake with those learners scoring 8/10 or 

more, this was predominant in learners scoring 7/10. Thus it appears that the learners 

scoring 7/10 may have been confused by the leading zero in item 15(J) which did not 

cause the higher-scoring learners to make the same mistakes. 

When analyzing the 7 learners who obtained a score of 6/10, which consists of 28 

total mistakes, the distribution of the mistakes changes, with the largest being 15(B) – 5, 

15(E) – 5, and 15(J) – 6. I note that 15(H) is answered incorrectly by only 2/7 of these 
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learners. I also note that there were only two mistakes for 15(F) even though 15(E) and 

15(F) are similar in their structure and in their correct choices. 

I position those learners scoring 6/10 and 7/10 in the ACTIVE development stage, 

showing a range of systemic errors. 

There were no learners who scored 5/10, and only three learners each scoring 4/10 

and 3/10. However, for these learners, it is difficult to distinguish those learners with 

some understanding from those who are guessing. Of these six learners, there was little 

consistency in the successful questions, with the major results as 15(B) – 5, 15(G) – 4, 

15(H) – 3, and 15(I) – 3 with the other sub-questions having 2 or less correct responses. 

Whereas these were distributed quite evenly, when compared to learners scoring 6/10 up 

to 10/10, it is noted that the highest success was achieved on 15(B) which was one of the 

items in which the IMMINENT stage learners struggled with. 

There were two learners who scored 0/10 and one who scored 1/10, but a 

surprisingly high 12 learners with a score of 2/10. This latter group of learners also 

achieved success on 15(B) and 15(H) consistently, as the only two items on which they 

succeeded, which are the same items which those with 8/10 and 9/10 grappled with, and 

this presents a contradiction, which is emphasized by the results of those learners who 

obtained 3/10 and 4/10. It is likely that these low-performing learners were using an 

alternate way of thinking which caused them to fail on all other questions and to only 

succeed on these two questions. 

Using these scores alone it appears that those learners scoring 0/10, 1/10 and 2/10 

were using some conceptual knowledge to account for their responses and thus could be 

in the EMERGENT stage. However, those learners scoring 3/10 and 4/10, for which there 

is insufficient evidence to determine consistency in the responses, may be in the ABSENT 

stage, in which their responses may be indistinguishable from guessing. 

What is apparent here is that learners who have a very low score, or 0/10, 1/10 

and 2/10, which results are unlikely to result from guessing because of their high 

frequency of a few incorrect responses, may have better conceptual development than 

learners who scored 3/10 and 4/10. This is a reflection of the observation I have made 

earlier concerning the TIMSS results and the issues of making inferences on learner 

abilities from unusually low scores. 
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The other anomaly is the relatively large number of learners who achieved a score 

2/10 when compared to the totality of learners who scored less than 5/10. 

The most unexpected response is the inverse correlation of 15(B) and 15(H) 

between learners achieving a high total score but who then failed on these sub-questions, 

with learners achieving a low total score but who succeeded on these same sub-questions. 

Both of these sub-questions have a common structure which is unique to these sub-

questions and which is not present in any of the others, in which one choice has a single 

decimal place and the other has two decimal places, where the decimal number with the 

single decimal place is the largest. However, I cannot determine why this inverse 

correlation is so distinctive, and I suggest that this warrants future study. 

5.2 Summary of the Pretest Results 

I have used the results of the pretest to help determine the suitability of various test items 

for online assessments, and to identify those that may help to position learners into the 

development stages. 

I conclude that not every type of test item is suited for diagnostic purposes, and 

the pretest has helped to identify item types that are more likely to be useful in a diagnostic 

context, where other types of items appeared to be of little diagnostic value. I now 

summarize these questions and my decisions on inclusion into the online assessments. 

Question 1 concerned Common Fraction Ordering and it provided useful results 

on the inability of some learners to compare two small and simple common fractions. 

This single question alone demonstrates the power of a simple question to separate 

learners with different ways of thinking about a competence which is expected to be in 

place by Grades 7 and 8. I thus selected this type of question for the online assessment 

with the intention to compare the diagnostic value of different items. 

Question 2 concerned Common Fraction Estimation, using an example from prior 

studies. This question is relatively complex, and I have created a simpler variation of this 

for the online assessments using a single common fraction rather than an addition. It 

seems that simpler questions may provide better diagnostic evidence than questions 

where learners are required to perform more mathematical operations. 

Question 3 on Decimal Fraction Place-Value provided an opportunity to elicit 

misconceptions arising from the form and notations of the decimal system, which may be 
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overlooked by more complex items such as decimal number ordering. These questions 

offer the alternative to diagnose a lower-level skill, being the understanding of place-

value notation, prior to the use of such numbers in operations such as ordering. This 

question type was included in the online assessment structures. 

Question 4 on the Ordering of 5 Decimal Numbers had the potential to elicit a 

number of misconceptions in the decimal numbers. My results from the pretest mirrored 

the results from other studies, and provided a range of possible responses, where each 

response may point to a different way of thinking. For the online tests I have included 

decimal number ordering test items which use two decimal numbers, as in Question 15, 

which addresses the same misconceptions. 

Question 5 on Decimal Representation explored the fundamentals of decimal 

notation and was similar to Question 3. However, Question 3 showed greater promise for 

the identification of misconceptions and was also simpler. Thus Question 5 was not used 

for the online assessments. 

Question 6 had the potential to elicit misconceptions, but was not used since this 

introduced the percentages as a new form of rational number representation. It is my 

preference to limit the online assessments to decimal numbers and to common fractions 

due to the short time that was available for these online lessons. 

Question 7 required arithmetic operations to produce the answer, and was thus 

focused on operational rather than conceptual knowledge. Whereas this question was 

more complex than others given the amount of procedural work required to arrive at an 

answer, this question showed a high proficiency among the learners, with little evidence 

of systematic misconceptions proportional to the total sample. This may result from 

schools focusing on procedural knowledge rather than conceptual understanding. Thus 

for this group of learners this type of question may not be useful. 

The experience from analyzing Questions 8, 9 and 10 was such that I consider 

these too difficult to interpret for diagnostic purposes although they may have value in 

further studies. 

The form of Question 11 has also been used previously in TIMSS, but I am 

uncertain about the diagnostic value of this type of question, and I have elected not to use 

this for the online assessments. 
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Questions 12, 13, and 14 all concerned actively creating new common fractions 

which meet a specific requirement. Given that these required constructed-responses, these 

were not included in the online assessments, since I was using MCQ questions exclusively 

due to their ease of handling and analysis. I also questioned whether the results of these 

types of test items have diagnostic value, given the complexity in identifying the 

conceptual base on which the answers were provided in this pretest. 

I have included other types of items in the online tests which were not presented 

in this pretest, including problems which use the number line, geometric areas, and sets. 

I now continue with the analysis of the data arising from the online assessments. 
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CHAPTER 6 : DATA ANALYSIS - ONLINE DATA 

6.1 Introduction 

This chapter provides the analysis of data collected during four online assessment lessons 

as conducted with four classes over two study schools (School A and School B). This 

data analysis uses the approach described in Chapter 4. 

I apply my research questions to the data obtained from the online assessments 

for each of the micro-domains of my study, and in Chapter 7 I combine the results from 

the individual micro-domains. 

The data was captured directly from the learners’ interactions using an online, 

web-based assessment program. This online assessment program gathers data far more 

efficiently than is possible with manual data capture from learner-completed paper 

answer sheets, and also collects far more data, at a faster rate, and in real-time if 

necessary. 

Throughout this chapter I make reference to the test items from my item bank, 

which is presented in full in Appendix D. These test items are identified as “Item 

NNNNN”, where NNNNN is the item number from the Item Bank. 

This chapter is arranged as follows: 

 An outline of the data obtained from the online tests. 

 A detailed analysis of the data, including answering the research questions, 

for each micro-domain in turn. 

6.2 The Data 

Data was captured automatically from the online assessment system as part of the 

learners’ interaction with the system. This data was captured into databases on the web 

server and was merged into a Microsoft Access database for analysis and reporting. 

This merged database contains one record for each test item answered by each 

learner, and each record includes data fields for the learners’ responses as well as the 

timing of their responses. These data records include items which the learners attempted 

but were unable to answer. However, no data records were stored for test items that were 
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not presented to the learners due to their time running out in the lesson, or for cases where 

the learner did not attend on the day of the test. 

Each learner took the same set of tests during each lesson, where each test 

comprised the same sequence of test items, and the learners completed the tests at their 

own pace. Some learners finished the tests quickly while others did not complete the tests 

in the allotted time. 

The learners responded to each item in turn, and the system checked that their 

response was acceptable before they could advance to the next item. An acceptable 

response was either: (1) a selection of one of the multiple choices available in the MCQ, 

or; (2) an indication that the question was not understood and thus that a selection from 

the available choices could not be made. The learners indicated whether they found the 

test item Easy, Just Right, or Difficult, and whereas this was initially included as an 

optional question it was modified to be mandatory from the second lesson in School A 

and for all subsequent lessons for School A and School B. 

The data fields captured in the combined database are detailed in Appendix A. 

Handling Errors in the Test Items 

Some errors were noted in the formulation and encoding of the test items, and one of the 

database fields, named “ERRORNOTE”, stores information about such errors. For 

example, consider Item 10084 as shown in Figure 26. The question stem was incorrectly 

worded and this was not noticed until after the learners had completed the tests. 

 

Figure 26. Item 10084 

This question asked the learners to select the blue squares when the diagram 

clearly has blue circles. This was one of a very small number of cases in which the data 

analysis must consider the possibility of a misunderstanding by the learners arising from 
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the incorrect form of the test item. For these cases, the data was checked to ensure that 

these errors in wording did not impact the learner responses and the ERRORNOTE data 

entry help to explain misfitting items. 

Micro-Domains and Response Counts 

The frequency of learner responses by micro-domain is presented in Table 20. The Record 

Count column is the number of response records on the database for each micro-domain 

in this study. Some items were used more than once, over different tests, and these 

duplicates were removed, using only the first response by each learner to each question, 

to mitigate the case where learners changed their response after seeing the correct result 

of the duplicated item in the feedback. This is then my data universe. 

Table 20. Count of response records by micro-domain 

Code Micro-Domain Record Count 

PV place-value problems 2599 

DO decimal number ordering 2593 

CR common fraction representation 899 

NL number lines and common fractions 835 

CG common fractions in graphics 936 

CO common fraction ordering 2354 

CE common fraction estimation of values 1252 

CA common fraction add/subtract 1119 

 

The Research Questions and the Data 

I first outline how the data supports my research questions, and I repeat the definitions 

for these research questions as were introduced in Chapter 1. These questions are then 

addressed in detail for each of the micro-domains, using the Development Stage model 

which was described on page 85 in Chapter 3. 

RQ1 (EFFECTIVENESS): How can we measure test items in terms of their fitness-for-

purpose as good diagnostic instruments? 

The learner responses are analyzed for each item using the Rasch method, to rank 

these items by their measured value for detecting misconceptions, with some items then 

identified as the “best” for this purpose. Selected items are also analyzed qualitatively to 
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explore whether their diagnostic value can be predicted from the nature and form of the 

item. 

RQ2 (EFFICIENCY): Given a particular diagnostic context, how many good diagnostic 

questions are sufficient to establish valid and reliable evidence? 

RQ2 explores how many items are required to justify a claim that a learner has 

used a particular misconception. Whereas prior studies have used larger test batteries to 

improve the reliability of the results, these are not suited for practical use given the time 

restrictions of classroom settings and I argue for the importance of knowing how many 

items are sufficient where the ideal is a single test item with the diagnostic power to 

discriminate between learners who use a particular misconception and those who do not. 

This question is answered by considering the “best” test items as identified in 

RQ1, and by exploring how many such items are needed. This is answered on the basis 

of the limited items available within this study, with the goal to discover general 

principles that can support future, more detailed studies. 

RQ3 (SELF-KNOWLEDGE): Does access to learner self-knowledge aid the process of 

diagnosis, in terms of the additional benefit for the added effort in obtaining this 

information? 

Finally, RQ3 explores to what extent learner self-knowledge may help to discover 

misconceptions, as a qualitative input which is distinct from the quantitative inputs from 

the learners’ responses as analyzed for RQ1 and RQ2. I address RQ3 using the decision 

matrix presented in Table 10 on page 125, given the learner inputs from the test items and 

the learners’ indication of item difficulty. 

6.3 Micro-Domains Summary 

For the benefit of the reader, I summarize each of the eight micro-domains used in this 

study as were introduced in Chapter 4, prior to embarking on the detailed analysis: 

 PV - Decimal Place-Value: the knowledge of the place-value system as 

applied to decimal numbers, and specifically to decimal fractions. Limitations 

in the knowledge of place-value will hamper conceptual understanding of 

other micro-domains within the decimal number system such as conversion 

between various forms of rational numbers. 
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 DO – Comparing and Ordering Decimal Numbers: the knowledge of the 

magnitude of decimal numbers and how the numbers are ordered into 

ascending or descending magnitudes. 

 CR – Common Fraction Representation: the ability to match a word 

description of a fraction with its common fraction notation. 

 NL - Number Line and Common Fractions: the conceptual understanding of 

the numerical magnitude of common fractions by being able to position a 

fraction on a number line. 

 CG - Common Fraction Graphics: the ability to match graphic representations 

to common fractions. 

 CO - Common Fraction Ordering: the ability to rank common fractions by 

selecting the highest or lowest from a set. 

 CE - Common Fraction Estimation: the estimation of the magnitude of 

common fractions. 

 CA - Common Fraction Addition: the addition of common fractions. 

These eight micro-domains are concerned primarily with conceptual 

understanding of the rational numbers and their representations, with some attention to 

procedural knowledge. These micro-domains include well-researched misconceptions 

that commonly occur in the development of learners’ mathematical proficiency. 

I provide a detailed description of the analysis conducted on the first micro-

domain of Place-Value, describing how the general approach to analysis, as described in 

Chapter 4, is applied to this micro-domain. For subsequent micro-domains I reduce the 

level of detail since much of this approach is repetitive. 

Frequency analyses of the learner responses were conducted initially in each 

micro-domain, to identify whether these met the expected results. The frequency analysis 

is used to show the number of learners who have selected the correct choice in the MCQ 

items, compared to the number who selected choices which are based on known 

misconceptions. These analyses are used to discover evidence of systematic error patterns 

which I had not pre-identified and which warrant further consideration. 

Within this chapter I use the word “lesson” to identify the online lessons 

conducted as part of this study. 
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6.4 Micro-Domain PV - Place-Value Knowledge 

Initial Analysis of Responses 

This micro-domain consists of 25 test items on place-value knowledge, being Items 

10001-10020 and 10051-10055 from the Item Bank as presented in Appendix D. Of these, 

16 are in the PV1 form and 9 are in the PV2 form, where these different forms are 

described in Chapter 4 on page 104. 

A total of 105 learners provided responses to these items, including 31 learners 

from School A, for whom these test items were presented over two separate tests in the 

first lesson, and 74 learners from School B, for whom these items were presented in five 

tests conducted in the first two lessons. The number of learners attending the lessons 

differed for each day of testing, resulting in some inconsistency in the total numbers of 

learners who provided responses. 

Table 21 shows the frequency of responses to these items, with the purpose of 

providing a quick visual inspection of the response patterns. Some patterns warrant 

explanation, and to support this the cells are colour-coded as follows: 

 cells with a blue background are the correct choices, which consistently 

indicate the highest frequency responses 

 cells with a red background are choices are accountable to the WHOLE 

misconception where the learner sees the decimal number as a single whole 

number. The choices in this category include those which use the “ths” suffix 

(such as “hundredths”), as well as choices which do not have this suffix (such 

as “hundreds”) on the assumption that the learner may be confused by the 

words as well as by the notation 

 cells with a yellow background are from choices which have five or more 

responses and yet are neither correct responses nor accounted for by the 

WHOLE misconception 

In this table, the columns labels are the sequence number of the choices from the 

MCQs, and are not the actual values of these choices as selected by the learners. For the 

PV1 test items, where the learners had to select the digit at a given position, the choices 

are given as the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 as well as the additional choice labelled as 

“there is no digit in that position”. There are 11 possible choices and each is numbered as 

1-11 respectively. For the PV2 tests there are 9 choices, which the learner saw as 
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“thousandths”, “hundreds”, “tens”, “units”, “tenths”, “hundredths”, “thousandths”, “ten-

thousandths”, and “the value cannot be determined”, and these are numbered as 1-9.  

Table 21. Place-Value: Counts by test item/response 

Item# 1 2 3 4 5 6 7 8 9 10 11 

10001  22 6 1 51 9      

10002  4 22 1 10 44 2  5   

10003 26 2   6  2 48 1  3 

10004 2 18 1 1 3 16 40 4 2   

10005 1  20  9 6 48 3    

10006 1 8 3  8 56 1 23  1 2 

10007 30 2  1 3 2 1  57 1 6 

10008 5 2 3 2 66 2 3 20    

10009  67 3 2 4 2 22 2   1 

10010  21 1 1 8 69 2  1   

10011 3 4  47 1 11 1     

10012 1 10 1  6 47 1     

10013  6 1  4 8 5 40 1   

10014  7   7 49 2     

10015 4 7 2 5 6  1 1 6  33 

10016 5  2 11  3 47 1    

10017 1 9 6 1 46 5  1    

10018 1 10  2 1 46 2 3  1 3 

10019 5 4 2 51 1 4 2     

10020  4 8 1 7 47 1 1    

10051 1 57 2 2 2 8     2 

10052 2 2 5 1 3 13 46 2    

10053 2  7  55 7 2     

10054  7 54 4 2 4 1 1    

10055   2 5  55 3 5 1 2  

 

Two of the items do not have red cells. Item 10051 asked the learner to select the 

“hundredths” position in the decimal number 0.3154, for which the correct choice is the 

digit “1”, but this is also the digit that would be selected by the learner if the entire decimal 

number was considered as a whole number, and also if the learner viewed “hundreds” 

and “hundredths” as the same. Thus the 57 responses for choice 2 were not 

distinguishable between proficient learners who used stable conceptions and learners who 
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used the WHOLE misconception. Item 10054 does not have a specific misconception 

linked to the choices, but there were 7 learners who selected “hundreds” when asked for 

the position of the digit “5” in the decimal number “451.678”. 

The yellow cells were analyzed to seek an explanation of the patterns and whether 

they pointed to misconceptions other than the WHOLE misconception. The words used 

in the item stem and choices are shown in quotation marks, such as “tenths”: 

 Dropping the suffix “ths”, such as selecting “tens”, when “tenths” is the 

correct choice (10001, 10017). 

 Identification that the value cannot be determined (10002). 

 Counting from the left, ignoring the leading zero, but still considering this 

as a decimal fraction. Such as considering the 4 in 0.0674 to be in the 

thousandths position (10003, 10005). 

 Looking for a digit when there is none in the position, such as looking for 

the hundreds position in 0.080001 when “hundredths” was asked for 

(10007). 

 Selection of a choice which is closest to the one needed, when it was not 

provided as a choice. This included selecting “thousands” for the place-

value of 3 in 0.34759, where there was no “ten-thousands” given as an 

choice, but there was a “ten-thousandths” choice (10008). 

 Dropping a leading zero, such as selecting “tenths” for the digit 9 in 

117.0905 (10010, 10014). 

 High-frequency errors requiring further analysis beyond the scope of this 

study are: 

o Selecting 4 for the tenths position in 214.579 (10006, 8 learners). 

o Selecting “tenths” for digit 5 in 0.4567 (10012, 6 learners). 

o Item 10015 had three high-frequency responses, which do not fall 

into the above explanations. 

o Selecting 5 as being in the hundredths position in 0.3154 (10051, 

5 learners). 

o Selecting 9 in 241.97 as being in the hundredths position (10053, 

7 learners). 
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o Selecting 5 in 451.678 as being in the hundreds position (10054, 7 

learners). 

o Selecting 3 or 7 as being in the thousandths position in 23.6759 

(10055, 5 learners each). 

These unexplained responses are potential misconceptions, due to the high 

frequency of these responses compared to other choices, but there is insufficient data to 

warrant a further consideration in this study. These anomalies point the way to a more 

fine-grained analysis of learner thinking, such as for Items 10015 and 10055, where the 

frequency of unexplained responses was larger than the choice indicating the WHOLE 

misconception. 

Item Suitability 

Proficient learners were isolated and removed from further analysis, on the basis that 

these learners would not make mistakes and thus their responses could not help to identify 

items which were better suited for detecting misconceptions. Mistakes made by proficient 

learners were likely to be slips. 

To identify proficient learners, the items used had to be fit-for-purpose, and items 

with low correlations or which were misfitting would have had a negative impact on the 

inference process and had to be removed. 

In Table 22, which was drawn from TABLE 26.1 in Winsteps (Linacre, 2013), 

the data is sorted on the column labelled PTMEASURE/CORR—being the “point-

measure correlation”. This column shows the level of correlation between the item 

responses and the learner measures, with a range of values between -1 and +1. Negative 

correlation indicates that learners with high measures tend to fail on this item, and learners 

with low measures tend to succeed. A similar argument can be made for low positive 

correlations, such as those below 0.20. Items with negative or low correlation were 

checked to identify the possible cause, and if these could not be fixed by correcting the 

coding of the items, then these items were removed as being unrepresentative of the 

construct being measured. Table 22 shows that all of the Place-Value items had 

correlation of between 0.48 and 0.78 which are within the acceptable range and thus all 

test items were retained for the next round of analysis, looking at the fit statistics. 

Items 10052, 10053, and 10054 showed high OUTFIT mean squares (MNSQ) 

values of 2.19, 2.05, and 1.63 respectively. Values larger than 2.00 were attended to and 
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warranted their consideration for exclusion (Linacre, 2002; Linacre, 2013). The OUTFIT 

statistic is sensitive to outliers and if this value is high for an item it indicates that learners 

were making slips or were guessing. Whereas this is fixable, it has the potential to distort 

the Rasch model. 

Table 22. Place-Value: Test item correlation 

TABLE 26.1 PV - SCHOOLS A+B - CORRECT   PV-AB-CORRECT.out.txt  Nov 17 21:17 2013 

INPUT: 105 LEARNER  25 TESTITEM  REPORTED: 105 LEARNER  25 TESTITEM  2 CATS WINSTEPS 3.80.1 

------------------------------------------------------------------------------------------- 

LEARNER: REAL SEP.: 2.07  REL.: .81 ... TESTITEM: REAL SEP.: 1.84  REL.: .77 

  

         TESTITEM STATISTICS:  CORRELATION ORDER 

  

---------------------------------------------------------------------------------------------- 

|ENTRY   TOTAL  TOTAL           MODEL|   INFIT  |  OUTFIT  |PTMEASURE-A|EXACT MATCH|         | 

|NUMBER  SCORE  COUNT  MEASURE  S.E. |MNSQ  ZSTD|MNSQ  ZSTD|CORR.  EXP.| OBS%  EXP%| TESTITEM| 

|------------------------------------+----------+----------+-----------+-----------+---------| 

|    24     54     73    -.80     .36|1.51   2.4|2.19   1.8|  .48   .64| 73.5  83.6| 10054   | 

|    22     46     74     .19     .34|1.64   2.9|2.05   2.5|  .49   .69| 69.6  82.3| 10052   | 

|    21     57     74   -1.14     .37|1.18   1.0|1.28    .6|  .57   .62| 78.3  83.9| 10051   | 

|    14     49     65    -.93     .39|1.31   1.6| .95    .1|  .57   .64| 80.0  83.4| 10014   | 

|    25     55     73    -.93     .36|1.20   1.1|1.17    .5|  .57   .64| 82.4  83.8| 10055   | 

|    15     33     65    1.23     .35|1.37   1.7|1.50   1.5|  .58   .69| 71.7  81.9| 10015   | 

|    12     47     66    -.55     .37|1.15    .8| .91    .0|  .63   .66| 77.0  82.9| 10012   | 

|    23     55     73    -.93     .36| .89   -.5|1.63   1.1|  .65   .64| 88.2  83.8| 10053   | 

|    10     69    101    -.42     .30|1.03    .2|1.24    .8|  .65   .67| 84.6  81.9| 10010   | 

|     7     57    101     .55     .29|1.11    .7|1.23    .9|  .66   .70| 76.7  81.6| 10007   | 

|    20     47     68    -.22     .37| .98    .0|1.12    .4|  .67   .68| 86.7  82.5| 10020   | 

|    11     47     67    -.42     .37| .85   -.7|1.25    .7|  .70   .67| 88.7  83.0| 10011   | 

|    18     46     69    -.09     .36|1.00    .1| .86   -.2|  .70   .69| 81.7  82.1| 10018   | 

|     3     48     86     .88     .31| .94   -.3| .89   -.3|  .71   .69| 81.6  81.3| 10003   | 

|     6     56    100     .63     .29| .86   -.9|1.02    .2|  .72   .70| 87.6  81.3| 10006   | 

|     4     40     86    1.55     .30| .85  -1.0| .66  -1.1|  .72   .67| 84.2  80.0| 10004   | 

|     9     66     99    -.22     .30| .85   -.9| .64  -1.1|  .73   .68| 85.4  82.1| 10009   | 

|    19     51     67    -.90     .40| .79  -1.0| .49   -.8|  .73   .67| 93.2  85.1| 10019   | 

|    13     40     65     .33     .37| .87   -.5| .88   -.2|  .73   .70| 86.7  83.3| 10013   | 

|     5     48     86     .79     .31| .88   -.6| .80   -.7|  .74   .70| 85.5  81.7| 10005   | 

|    17     46     67    -.15     .37| .80   -.9| .75   -.5|  .74   .69| 86.4  82.8| 10017   | 

|    16     47     69    -.22     .37| .82   -.9| .57  -1.1|  .75   .69| 83.3  82.5| 10016   | 

|     2     44     87    1.17     .30| .79  -1.3| .65  -1.3|  .75   .69| 85.9  81.2| 10002   | 

|     8     65    100    -.12     .29| .72  -1.9| .60  -1.4|  .76   .68| 90.0  82.0| 10008   | 

|     1     50     88     .74     .31| .73  -1.6| .62  -1.5|  .78   .71| 91.0  82.2| 10001   | 

|------------------------------------+----------+----------+-----------+-----------+---------| 

| MEAN    50.5   78.8     .00     .34|1.00    .0|1.04    .0|           | 83.2  82.5|         | 

| S.D.     8.1   13.0     .76     .04| .24   1.2| .43   1.0|           |  5.9   1.1|         | 

----------------------------------------------------------------------------------------------| 

 

 

These items 10052, 10053, and 10054 were thus removed from the set for further 

analysis, due to their high OUTFIT values, and the analysis was repeated for a second 

iteration. This yielded another set of high OUTFIT values from the remaining items, and 

by continuing this process over two more iterations Items 10015, 10051, and 10055 were 

also removed. This yielded 19 test items which showed good correlation and acceptable 

OUTPUT and INFIT statistics. These results are shown in Table 23. 

Learner A18 responded to small number of test items, all of which were removed 

during these iterations. There is thus no response data to compute the proficiency for this 

learner who was consequently removed from the data set for the computation of 

proficiency.  However, this learner would still play a part in the determination of the 



 182 

misconceptions when the WHOLE misconception was analyzed. The analysis continues 

with the remaining 104 learners. 

 

Table 23. Place-Value: Item correlations after iteration 4 

TABLE 10.1 PV - SCHOOLS A+B - CORRECT PV-AB-CORRECT-4.out.txt  Nov 24 21:52 2013 

INPUT: 104 LEARNER  19 TESTITEM  REPORTED: 104 LEARNER  19 TESTITEM  2 CATS WINSTEPS 3.80.1 

------------------------------------------------------------------------------------------- 

LEARNER: REAL SEP.: 1.92  REL.: .79 ... TESTITEM: REAL SEP.: 1.73  REL.: .75 

  

         TESTITEM STATISTICS:  MISFIT ORDER 

  

---------------------------------------------------------------------------------------------- 

|ENTRY   TOTAL  TOTAL           MODEL|   INFIT  |  OUTFIT  |PTMEASURE-A|EXACT MATCH|         | 

|NUMBER  SCORE  COUNT  MEASURE  S.E. |MNSQ  ZSTD|MNSQ  ZSTD|CORR.  EXP.| OBS%  EXP%| TESTITEM| 

|------------------------------------+----------+----------+-----------+-----------+---------| 

|    14     49     65   -1.26     .41|1.71   2.9|1.55    .9|A .53   .68| 68.5  83.9| 10014   | 

|    12     47     66    -.83     .40|1.51   2.1|1.49   1.0|B .60   .71| 74.5  83.7| 10012   | 

|     7     57    101     .45     .31|1.29   1.5|1.42   1.4|C .68   .75| 72.8  82.7| 10007   | 

|    11     47     67    -.68     .40| .85   -.6|1.35    .8|D .73   .72| 87.5  84.1| 10011   | 

|    10     69    101    -.66     .31|1.07    .4|1.29    .8|E .68   .71| 84.1  82.4| 10010   | 

|    19     47     68    -.30     .39|1.10    .5|1.24    .7|F .68   .72| 83.3  83.0| 10020   | 

|    13     40     65     .22     .40|1.08    .4|1.15    .5|G .73   .75| 83.3  85.2| 10013   | 

|     6     56    100     .54     .31| .96   -.1|1.10    .5|H .74   .74| 83.8  82.4| 10006   | 

|     1     50     88     .64     .34| .86   -.6|1.06    .3|I .78   .76| 90.0  83.2| 10001   | 

|    17     46     69    -.15     .39|1.05    .3| .94    .0|J .72   .73| 81.5  82.8| 10018   | 

|     9     66     99    -.44     .32| .92   -.4|1.04    .2|i .73   .72| 86.3  82.8| 10009   | 

|     3     48     86     .83     .33| .93   -.3| .80   -.6|h .76   .74| 82.4  82.1| 10003   | 

|    18     51     67   -1.04     .42| .92   -.3| .58   -.6|g .72   .69| 88.7  84.6| 10019   | 

|     5     48     86     .73     .34| .91   -.4| .81   -.5|f .77   .75| 85.3  82.5| 10005   | 

|    16     46     67    -.22     .39| .87   -.5| .77   -.5|e .75   .72| 84.9  83.4| 10017   | 

|     4     40     86    1.61     .32| .81  -1.2| .56  -1.1|d .77   .72| 83.8  80.0| 10004   | 

|    15     47     69    -.30     .39| .80   -.9| .58  -1.0|c .77   .72| 83.3  83.0| 10016   | 

|     2     44     87    1.16     .33| .79  -1.2| .60  -1.2|b .79   .74| 85.7  81.5| 10002   | 

|     8     65    100    -.32     .32| .75  -1.4| .62  -1.2|a .78   .73| 87.7  82.8| 10008   | 

|------------------------------------+----------+----------+-----------+-----------+---------| 

| MEAN    50.7   80.9     .00     .36|1.01    .0|1.00    .0|           | 83.0  83.0|         | 

| S.D.     8.1   14.1     .76     .04| .24   1.1| .32    .8|           |  5.3   1.1|         | 

---------------------------------------------------------------------------------------------- 

 

Identifying STABLE Learners 

Learner proficiency was calculated so that high-proficiency learners could be identified 

and then removed for the second phase of the analysis, which then addressed the less 

proficient learners. The previous analysis has already performed the calculations and the 

top performing learners are shown in Table 24 in the sequence of LEARNER MEASURE. 

The MEASURE column contains the estimated learner ability, for example 4.41 for 

learner B03. 

It was not possible to determine a learner measure which is higher than the most 

difficult of the items, which in this case is Item 10004 with a difficulty measure of 1.61, 

as in Table 23. Thus all of the learners with an estimated measure of at least 1.61, being 

all of those down the list to learner A78, were deemed to have full proficiency in this 

micro-domain when measured against this set of items. These learners are highlighted 

with a grey background. 
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Table 24. Place-Value: Learner measures for ability 

TABLE 17.1 PV - SCHOOLS A+B - CORRECT PV-AB-CORRECT-4.out.txt  Nov 23 15:02 2013 

INPUT: 104 LEARNER  19 TESTITEM  REPORTED: 104 LEARNER  19 TESTITEM  2 CATS WINSTEPS 3.80.1 

------------------------------------------------------------------------------------------- 

LEARNER: REAL SEP.: 1.92  REL.: .79 ... TESTITEM: REAL SEP.: 1.73  REL.: .75 

  

         LEARNER STATISTICS:  MEASURE ORDER 

  

--------------------------------------------------------------------------------------------- 

|ENTRY   TOTAL  TOTAL           MODEL|   INFIT  |  OUTFIT  |PTMEASURE-A|EXACT MATCH|        | 

|NUMBER  SCORE  COUNT  MEASURE  S.E. |MNSQ  ZSTD|MNSQ  ZSTD|CORR.  EXP.| OBS%  EXP%| LEARNER| 

|------------------------------------+----------+----------+-----------+-----------+--------| 

|    33     19     19    4.41    1.85|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| B03    | 

|    55     19     19    4.41    1.85|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| B25    | 

|    60     19     19    4.41    1.85|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| B30    | 

|    62     19     19    4.41    1.85|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| B32    | 

|    77     19     19    4.41    1.85|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| B47    | 

|    31     15     15    4.31    1.85|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| B01    | 

|    65     15     15    4.31    1.85|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| B35    | 

|    76     15     15    4.31    1.85|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| B46    | 

|     3     14     14    4.26    1.85|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| A03    | 

|     6     14     14    4.26    1.85|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| A07    | 

|     8     14     14    4.26    1.85|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| A10    | 

|    24     14     14    4.26    1.85|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| A68    | 

|    48     14     14    4.16    1.85|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| B18    | 

|    54     10     10    3.33    1.86|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| B24    | 

|    35     18     19    3.15    1.04|1.13    .4|2.47   1.3| -.21   .17| 94.7  94.7| B05    | 

|    37     18     19    3.15    1.04|1.12    .4|1.95   1.0| -.14   .17| 94.7  94.7| B07    | 

|    50     18     19    3.15    1.04| .80    .0| .29   -.4|  .50   .17| 94.7  94.7| B20    | 

|    86     18     19    3.15    1.04|1.03    .3| .76    .2|  .17   .17| 94.7  94.7| B56    | 

|    90     18     19    3.15    1.04| .98    .3| .59    .0|  .26   .17| 94.7  94.7| B60    | 

|    94     18     19    3.15    1.04|1.02    .3| .70    .1|  .20   .17| 94.7  94.7| B64    | 

|    95     18     19    3.15    1.04|1.04    .3| .83    .3|  .14   .17| 94.7  94.7| B65    | 

|    96     18     19    3.15    1.04|1.03    .3| .76    .2|  .17   .17| 94.7  94.7| B66    | 

|    39     14     15    3.03    1.05|1.05    .3| .87    .3|  .14   .18| 93.3  93.3| B09    | 

|    43     14     15    3.03    1.05|1.05    .3| .87    .3|  .14   .18| 93.3  93.3| B13    | 

|    14     13     14    2.97    1.06| .92    .2| .50   -.1|  .35   .19| 92.9  92.8| A31    | 

|    15     13     14    2.97    1.06|1.18    .5|2.78   1.4| -.27   .19| 92.9  92.8| A32    | 

|    18     13     14    2.97    1.06|1.07    .4| .96    .4|  .11   .19| 92.9  92.8| A43    | 

|    22     13     14    2.97    1.06| .92    .2| .50   -.1|  .35   .19| 92.9  92.8| A66    | 

|     4      9     10    2.82    1.07|1.05    .3| .91    .3|  .14   .18| 90.0  89.9| A05    | 

|    56     12     13    2.66    1.05| .92    .2| .55   -.1|  .38   .17| 92.3  92.3| B26    | 

|    61     14     15    2.48    1.05|1.06    .4|1.14    .5|  .00   .13| 93.3  93.3| B31    | 

|    49     17     19    2.36     .77|1.16    .5|1.26    .6|  .00   .23| 89.5  89.4| B19    | 

|    51     17     19    2.36     .77|1.24    .6|2.05   1.3| -.22   .23| 89.5  89.4| B21    | 

|    63     17     19    2.36     .77|1.02    .2|1.03    .3|  .20   .23| 89.5  89.4| B33    | 

|    66     17     19    2.36     .77| .97    .1| .62   -.3|  .35   .23| 89.5  89.4| B36    | 

|    83     17     19    2.36     .77|1.04    .3| .76   -.1|  .25   .23| 89.5  89.4| B53    | 

|    89     17     19    2.36     .77| .87   -.1| .65   -.2|  .41   .23| 89.5  89.4| B59    | 

|   102     17     19    2.36     .77| .78   -.2| .45   -.6|  .55   .23| 89.5  89.4| B72    | 

|    44     14     16    2.25     .78| .93    .1|1.06    .3|  .27   .24| 87.5  87.4| B14    | 

|    34     13     15    2.22     .78|1.30    .7|2.18   1.5| -.36   .24| 86.7  86.6| B04    | 

|    74     13     15    2.22     .78| .80   -.2| .53   -.5|  .55   .24| 86.7  86.6| B44    | 

|     7     12     14    2.15     .79| .71   -.5| .43   -.7|  .62   .26| 85.7  85.6| A08    | 

|    27     12     14    2.15     .79| .91    .0| .60   -.3|  .43   .26| 85.7  85.6| A79    | 

|    72      9     10    2.04    1.07|1.04    .3| .99    .3|  .07   .14| 90.0  90.0| B42    | 

|    93     16     19    1.86     .65|1.22    .7|1.27    .6| -.01   .27| 84.2  84.2| B63    | 

|    73     12     15    1.70     .67|1.06    .3|1.08    .3|  .20   .28| 80.0  79.9| B43    | 

|    26     11     14    1.62     .68| .78   -.5| .58   -.7|  .59   .30| 78.6  78.5| A78    | 

|    84     15     19    1.48     .59|1.13    .5|1.76   1.5| -.01   .30| 84.2  79.2| B54    | 

|   100     15     19    1.48     .59| .73   -.8| .55  -1.0|  .66   .30| 84.2  79.2| B70    | 

|    46     14     18    1.37     .60|1.35   1.1|1.85   1.7| -.21   .31| 72.2  78.4| B16    | 

… (ROWS REMOVED) 

|    98      0      2   -1.95    1.98|      MINIMUM MEASURE|  .00   .00|100.0 100.0| B68    | 

|    59      2     16   -2.20     .77|1.02    .2| .83    .0|  .22   .21| 87.5  87.5| B29    | 

|    38      1     10   -2.51    1.06|1.15    .4|2.05   1.2| -.52   .13| 90.0  90.0| B08    | 

|    20      1     13   -2.68    1.06| .81    .0| .38   -.3|  .51   .19| 92.3  92.3| A46    | 

|    13      1     14   -2.69    1.06|1.13    .4|1.39    .7| -.03   .19| 92.9  92.8| A30    | 

|    19      1     14   -2.69    1.06|1.16    .5|2.07   1.1| -.17   .19| 92.9  92.8| A44    | 

|    29      1     14   -2.69    1.06| .81    .0| .36   -.3|  .48   .19| 92.9  92.8| A82    | 

|    97      1     18   -3.10    1.04| .99    .3| .68    .1|  .20   .14| 94.4  94.4| B67    | 

|    80      0      5   -3.20    1.89|      MINIMUM MEASURE|  .00   .00|100.0 100.0| B50    | 

|    45      0     10   -3.24    1.87|      MINIMUM MEASURE|  .00   .00|100.0 100.0| B15    | 

|    81      0     10   -3.24    1.87|      MINIMUM MEASURE|  .00   .00|100.0 100.0| B51    | 

|    99      0      8   -3.56    1.86|      MINIMUM MEASURE|  .00   .00|100.0 100.0| B69    | 

|    68      0     14   -3.81    1.85|      MINIMUM MEASURE|  .00   .00|100.0 100.0| B38    | 

|    11      0     14   -3.98    1.85|      MINIMUM MEASURE|  .00   .00|100.0 100.0| A27    | 

|    52      0     19   -4.38    1.84|      MINIMUM MEASURE|  .00   .00|100.0 100.0| B22    | 

|------------------------------------+----------+----------+-----------+-----------+--------| 

| MEAN     9.3   14.8     .77    1.02| .99    .1| .99    .1|           | 82.6  82.1|        | 

| S.D.     6.4    3.6    2.46     .47| .18    .7| .52    .8|           | 12.5  10.7|        | 

--------------------------------------------------------------------------------------------- 
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19 items remain from the original 25, since 6 of the items were removed due to 

high OUTFIT, and thus the maximum score is 19/19. Five learners achieved this 

maximum measure—being learners B03, B25, B30, B32, and B47. Another nine learners 

are indicated as MAXIMUM MEASURE, but they have lower ability measures, since 

they answered fewer items but still answered all of their items correctly. This includes 

the learners from B01 to B24 in Table 24. 

Other learners almost achieved 100% success, including scores of 18/19 and 

14/15. Learners B09 and B13 both have a measure of 3.03 and learner B31 had a measure 

of 2.48, yet all three of these learners scored 14/15. The reason for this difference is that 

they answered different test items correctly, which results in different calculated 

measures. So whereas these learners all achieved the same score of 14/15 when measured 

using classical test theory (CTT), where the score is based only upon the number of items 

answered correctly, Rasch analysis considers the difficulty of the items which were 

answered correctly when computing the learner measure. 

The proficient learners were initially identified as having ability measures of at 

least 2.00, as suggested by Linacre (2013) as a suitable starting cut-point. This means that 

the learners from B03 to B42 in Table 24 were proficient and which I then removed before 

the analysis progressed to the next step of this analysis. However, many learners had 

ability estimates greater than 1.61, which is the highest measured difficulty of any of the 

19 test items, and thus it was better to set the cut-point at this item measure. This cut-

point resulted in 47 learners who were identified as having full proficiency and who have 

now been removed. However, many learners were at the borderline of proficiency and 

who demanded special attention. 

Using my Development Stage model, these 47 learners were positioned into the 

STABLE development stage. These learners had evidence of internal schemas which 

were sufficient to obtain consistent success on place-value, and they showed no evidence 

of systematic errors in their responses. Some of these proficient learners have made 

mistakes, such as B19 with 17/18, and these mistakes were more likely “slips”. Such slips 

result from non-cognitive causes, such as rushing to answer a question before reading it 

properly, or making a mistake when entering their answer into the system, or perhaps 

having a short break in their concentration in the class. However, it may be possible that 

some proficient learners continued to hold some misconceptions and these are addressed 
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later in this analysis when I seek to identify those learners who were in the IMMINENT 

stage of development who were near, but not quite at, the STABLE level of proficiency. 

At the bottom of Table 24 some learners were identified as “MINIMUM 

MEASURE” since their calculated ability scores were below the level of the easiest items, 

meaning that these learners could not be measured on this test. These learners obtained 

no correct responses, such as B50 with 0/5 and B15 with 0/10. However, they were not 

automatically classified as ABSENT in my model, since their mistakes may have arisen 

from misconceptions, which then points to an active stage of learning. Thus the traditional 

CTT approaches to scoring of low-ability learners does not show the true conceptual 

development of these learners. 

Learners were positioned into the ABSENT development stage based on a lack of 

evidence of systematic errors, and not through low ability scores, and to identify these 

learners I shifted my approach and examined those incorrect responses which pointed to 

the learners who were using the WHOLE misconception. 

In summary, I started with 105 learners and then lost learner B18 when his/her 

response data was no longer available after removing test items during the initial 

iterations. From the remaining 104 learners I removed 47 whose ability measures were 

greater than 1.60, indicating that they were in the STABLE development stage in this 

micro-domain of place-value knowledge. I was left with 58 learners that I carried forward 

to the next step (58=105-47, considering that learner B18, removed previously, could now 

be reincorporated for the following steps). 

Analyzing the WHOLE Misconception 

I had previously eliminated 6 misfitting items when calculating the STABLE stage 

learners and I subsequently reintroduced these and used all of the original 25 items. For 

each item, the choices were coded with the WHOLE misconception when the choice 

would be selected by considering the decimal number as a whole number rather than as a 

decimal number. 

The learners’ responses were coded with the value 1 (success) if they selected this 

choice which is linked to the WHOLE misconception. All other responses were coded 

with 0 (fail), including the correct choices, and missing values were coded with the period 

(.). In this context the terms “success” and “fail” are misnomers, as previously discussed 

on page 89 concerning my reconceptualization of item difficulty, since this scoring is now 
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based on whether the learners selected a choice which reflects the WHOLE 

misconception. 

Firstly, the items were checked for fit against the learners’ usage of the WHOLE 

misconception, and the results of this are shown in Table 25, where the header of this 

table shows that this was conducted using 58 learners and 25 items. 

Item 10055 shows negative correlation (-.08) for Item 10055, and there was also 

a low correlation for Items 10053 and 10051. These three items also had high OUTFIT 

values, greater than 1.5, and for the second iteration I removed these items, which yielded 

a results table in which additional items were then calculated as being out of fit with the 

consensus of the other items. 

Table 25. Place-Value: WHOLE misconception correlation 

TABLE 26.1 PV - SCHOOLS A+B - WHOLENUMBER PV-AB-WHOLE.out.txt  Jun 20 22:19 2015 

INPUT: 58 LEARNER  25 TESTITEM  REPORTED: 58 LEARNER  25 TESTITEM  2 CATS WINSTEPS 3.80.1 

----------------------------------------------------------------------------------------- 

LEARNER: REAL SEP.: 1.43  REL.: .67 ... TESTITEM: REAL SEP.: 2.82  REL.: .89 

  

         TESTITEM STATISTICS:  CORRELATION ORDER 

  

---------------------------------------------------------------------------------------------- 

|ENTRY   TOTAL  TOTAL           MODEL|   INFIT  |  OUTFIT  |PTMEASURE-A|EXACT MATCH|         | 

|NUMBER  SCORE  COUNT  MEASURE  S.E. |MNSQ  ZSTD|MNSQ  ZSTD|CORR.  EXP.| OBS%  EXP%| TESTITEM| 

|------------------------------------+----------+----------+-----------+-----------+---------| 

|    25      3     38    2.50     .64|1.26    .7|5.32   2.6| -.08   .31| 92.1  92.0| 10055   | 

|    23     28     38   -1.96     .41|1.34   1.8|1.80   1.7|  .11   .41| 76.3  75.1| 10053   | 

|    21     23     39   -1.18     .38|1.52   2.8|1.88   2.7|  .13   .50| 51.3  73.0| 10051   | 

|    24      1     38    3.74    1.03|1.00    .3| .43    .0|  .21   .18| 97.4  97.3| 10054   | 

|    12     24     33   -1.72     .45|1.37   1.7|1.31    .8|  .25   .46| 66.7  76.7| 10012   | 

|    10     44     54   -2.56     .39|1.08    .5|1.50   1.0|  .31   .40| 81.1  81.8| 10010   | 

|    14      7     32    1.43     .49|1.11    .5|1.50    .9|  .36   .46| 81.3  80.7| 10014   | 

|    19      6     32    1.35     .52|1.08    .4|1.41    .8|  .37   .47| 90.6  83.7| 10019   | 

|    15      5     32    1.95     .54| .99    .1|1.46    .8|  .37   .40| 81.3  85.0| 10015   | 

|     7     26     54    -.42     .33|1.32   1.9|1.32   1.4|  .38   .55| 67.9  74.2| 10007   | 

|     3     24     42    -.81     .37|1.02    .2|1.48   1.8|  .46   .51| 75.6  73.0| 10003   | 

|    11     11     33     .61     .44|1.14    .7| .90   -.2|  .48   .52| 63.6  76.7| 10011   | 

|    13     14     32     .03     .43|1.04    .3|1.24    .9|  .50   .55| 78.1  74.9| 10013   | 

|    16     11     34     .24     .44| .99    .0|1.33    .9|  .53   .55| 78.8  77.5| 10016   | 

|    18     10     34     .43     .45|1.02    .1| .92    .0|  .53   .54| 78.8  78.3| 10018   | 

|    22      8     39    1.15     .45| .83   -.7| .52  -1.0|  .59   .45| 82.1  81.5| 10052   | 

|     9     21     52    -.05     .34| .86   -.9| .77   -.9|  .63   .54| 74.5  74.4| 10009   | 

|     1     30     43   -1.42     .38| .75  -1.6| .58  -1.3|  .63   .46| 81.0  75.0| 10001   | 

|     6     27     53    -.62     .33| .83  -1.1| .78  -1.0|  .64   .54| 78.8  74.1| 10006   | 

|     2     28     44   -1.11     .36| .74  -1.7| .63  -1.4|  .66   .50| 83.7  74.3| 10002   | 

|    17      9     32     .63     .47| .78   -.9| .54  -1.0|  .66   .52| 81.3  79.0| 10017   | 

|     8     18     53     .39     .35| .78  -1.4| .61  -1.4|  .67   .54| 84.6  76.3| 10008   | 

|     5     28     43   -1.23     .37| .68  -2.1| .59  -1.4|  .68   .49| 90.5  74.2| 10005   | 

|     4     28     43   -1.21     .37| .68  -2.1| .53  -1.7|  .70   .49| 81.0  74.5| 10004   | 

|    20     13     33    -.14     .43| .63  -1.9| .49  -1.8|  .77   .55| 84.8  76.3| 10020   | 

|------------------------------------+----------+----------+-----------+-----------+---------| 

| MEAN    17.9   40.0     .00     .44| .99   -.1|1.19    .1|           | 79.3  78.4|         | 

| S.D.    10.6    7.7    1.45     .14| .24   1.3| .95   1.3|           |  9.4   5.8|         | 

---------------------------------------------------------------------------------------------- 

 

After two more iterations I eventually removed eight items, being Items 10010, 

10012, 10014, 10015, 10051, 10053, 10054, 10055. After these four iterations, this 

yielded the table of results shown in Table 26, which showed good correlation in the 

PTMEASURE column, and also generally good INFIT and OUTFIT values, with the 

exception of Items 10007 and 10013. Other than these cases the test items were quite 
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well-behaved, meaning that there was a good correlation between the item response data 

and the learner measures in terms of this WHOLE misconception and that there was a 

good fit to the Rasch model. 

Table 26. Place-Value: WHOLE misconception iteration 4 

TABLE 26.1 PV - SCHOOLS A+B - WHOLENUMB PV-AB-WHOLE-4.out.txt  Jun 20 23:05 2015 

INPUT: 58 LEARNER  17 TESTITEM  REPORTED: 58 LEARNER  17 TESTITEM  2 CATS WINSTEPS 3.80.1 

----------------------------------------------------------------------------------------- 

LEARNER: REAL SEP.: 1.44  REL.: .67 ... TESTITEM: REAL SEP.: 1.79  REL.: .76 

  

         TESTITEM STATISTICS:  CORRELATION ORDER 

  

---------------------------------------------------------------------------------------------- 

|ENTRY   TOTAL  TOTAL           MODEL|   INFIT  |  OUTFIT  |PTMEASURE-A|EXACT MATCH|         | 

|NUMBER  SCORE  COUNT  MEASURE  S.E. |MNSQ  ZSTD|MNSQ  ZSTD|CORR.  EXP.| OBS%  EXP%| TESTITEM| 

|------------------------------------+----------+----------+-----------+-----------+---------| 

|     7     26     54    -.25     .36|1.72   3.3|1.97   2.7|  .38   .65| 60.4  77.4| 10007   | 

|    15      6     32    1.45     .54|1.16    .6|1.54    .9|  .38   .48| 88.9  81.3| 10019   | 

|    11     14     32     .40     .46|1.35   1.5|2.22   2.3|  .45   .62| 70.0  77.3| 10013   | 

|    17      8     39    1.66     .48|1.01    .1| .59   -.4|  .51   .49| 74.3  81.4| 10052   | 

|    14     10     34     .44     .48|1.07    .4| .99    .1|  .56   .58| 77.8  75.9| 10018   | 

|    10     11     33    1.05     .46|1.02    .2| .78   -.3|  .57   .56| 67.7  76.0| 10011   | 

|    12     11     34     .22     .47|1.05    .3|1.05    .3|  .58   .60| 74.1  75.5| 10016   | 

|     3     24     42    -.72     .41|1.11    .6|1.76   1.8|  .58   .64| 74.4  78.6| 10003   | 

|    13      9     32     .67     .49| .83   -.7| .61   -.8|  .64   .56| 77.8  77.1| 10017   | 

|     8     18     53     .71     .37| .91   -.5| .71   -.8|  .65   .60| 74.5  77.0| 10008   | 

|     1     30     43   -1.48     .43| .93   -.2| .69   -.5|  .66   .62| 77.5  80.6| 10001   | 

|     6     27     53    -.50     .37| .97   -.1| .97    .0|  .66   .65| 76.6  77.5| 10006   | 

|     4     28     43   -1.25     .42| .85   -.6| .64   -.7|  .70   .63| 80.0  79.7| 10004   | 

|     9     21     52     .19     .37| .82  -1.0| .64  -1.2|  .70   .63| 82.6  76.8| 10009   | 

|     2     28     44   -1.10     .41| .76  -1.1| .68   -.7|  .72   .64| 87.8  79.7| 10002   | 

|    16     13     33    -.22     .47| .69  -1.5| .56  -1.4|  .75   .63| 85.2  75.2| 10020   | 

|     5     28     43   -1.27     .42| .58  -2.2| .45  -1.4|  .78   .63| 95.0  79.5| 10005   | 

|------------------------------------+----------+----------+-----------+-----------+---------| 

| MEAN    18.4   40.9     .00     .44| .99   -.1| .99    .0|           | 77.9  78.0|         | 

| S.D.     8.3    7.9     .93     .05| .26   1.2| .53   1.2|           |  8.1   2.0|         | 

 

I now had a data set with responses from 58 learners and for the remaining 17 

items. My task was to determine the extent to which these 58 learners exhibited evidence 

of using the WHOLE misconception in their responses to these test items. This 

information was provided using WinSteps output in Table 27, which shows the learners 

in the sequence of their estimated “MEASURE” which for the learner measure was the 

extent to which their responses were accountable to the WHOLE misconception. 

In the first row of this table, learner B51 had 9/9 responses which were 

accountable to the WHOLE misconception with a measure of 2.98, and learner B22 had 

achieved 15/16 responses which were accountable to the WHOLE misconception with a 

measure of 2.90. The seven learners from B51 down to B50 had no more than one 

response which was not accounted for by the WHOLE misconception. 

At the bottom of this table, the learner responses showed no indication of the 

WHOLE misconception, however, some of these learners had achieved a relatively high 

ability mark but their calculated ability measure was insufficient to position them in the 

STABLE stage. 
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Table 27. Place-Value: WHOLE misconception 

TABLE 17.1 PV - SCHOOLS A+B - WHOLENUMB PV-AB-WHOLE-4.out.txt  Jun 20 23:05 2015 

INPUT: 58 LEARNER  17 TESTITEM  REPORTED: 58 LEARNER  17 TESTITEM  2 CATS WINSTEPS 3.80.1 

----------------------------------------------------------------------------------------- 

LEARNER: REAL SEP.: 1.44  REL.: .67 ... TESTITEM: REAL SEP.: 1.79  REL.: .76 

  

         LEARNER STATISTICS:  MEASURE ORDER 

  

--------------------------------------------------------------------------------------------- 

|ENTRY   TOTAL  TOTAL           MODEL|   INFIT  |  OUTFIT  |PTMEASURE-A|EXACT MATCH|        | 

|NUMBER  SCORE  COUNT  MEASURE  S.E. |MNSQ  ZSTD|MNSQ  ZSTD|CORR.  EXP.| OBS%  EXP%| LEARNER| 

|------------------------------------+----------+----------+-----------+-----------+--------| 

|    44      9      9    2.98    1.88|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| B51    | 

|    29     15     16    2.90    1.05|1.16    .5|2.42   1.2| -.19   .18| 93.8  93.7| B22    | 

|     4     11     12    2.57    1.09| .69   -.2| .27   -.3|  .58   .27| 91.7  91.6| A14    | 

|     7     11     12    2.57    1.09|1.05    .3| .63    .1|  .28   .27| 91.7  91.6| A27    | 

|    11     10     11    2.55    1.09|1.13    .4| .88    .4|  .17   .26| 90.9  90.8| A42    | 

|    49      9     10    2.18    1.12| .58   -.4| .24   -.5|  .72   .33| 90.0  90.0| B58    | 

|    43      4      5    1.99    1.15|1.17    .5|1.16    .5| -.06   .23| 80.0  80.0| B50    | 

|    15     10     12    1.69     .83| .61   -.8| .36   -.8|  .72   .35| 83.3  83.3| A67    | 

|    33     11     14    1.63     .69|1.15    .5|1.03    .3|  .22   .34| 71.4  78.6| B29    | 

|    57     13     17    1.39     .61| .77   -.7| .61   -.7|  .59   .35| 88.2  77.4| B76    | 

|    10      9     11    1.33     .82| .90   -.1| .73   -.2|  .44   .31| 81.8  81.8| A41    | 

|    54      5      7    1.25     .87| .74   -.6| .66   -.6|  .70   .28| 85.7  72.8| B69    | 

|    35     11     15    1.10     .63| .96    .0| .76   -.4|  .47   .38| 73.3  76.3| B37    | 

|     2      9     12    1.10     .73|1.30    .9|1.25    .6|  .14   .40| 66.7  77.2| A02    | 

|     6      9     12    1.10     .73| .64  -1.0| .47  -1.0|  .74   .40| 83.3  77.2| A26    | 

|     9      9     12    1.10     .73| .73   -.7| .53   -.8|  .67   .40| 83.3  77.2| A30    | 

|    13      8     11    1.05     .74|1.47   1.3|1.64   1.2| -.06   .39| 54.5  75.4| A46    | 

|    52     11     16     .99     .58| .95   -.1| .83   -.3|  .45   .38| 75.0  72.3| B67    | 

|     5      0      1     .80    2.19|      MINIMUM MEASURE|  .00   .00|100.0 100.0| A18    | 

|    12      8     12     .61     .68| .99    .1|1.19    .6|  .39   .42| 75.0  72.9| A44    | 

|    17      8     12     .61     .68|1.18    .7|1.23    .7|  .26   .42| 58.3  72.9| A80    | 

|    18      8     12     .61     .68|1.47   1.4|1.47   1.1|  .01   .42| 58.3  72.9| A82    | 

|    45      6     11     .57     .63|1.20   1.2|1.23   1.3| -.10   .26| 54.5  61.5| B52    | 

|    37      9     14     .46     .60| .76  -1.0| .67  -1.1|  .65   .37| 71.4  69.2| B39    | 

|    39      9     14     .46     .60|1.17    .8|1.23    .8|  .17   .37| 57.1  69.2| B41    | 

|    34      8     14     .11     .58| .72  -1.4| .66  -1.4|  .70   .38| 85.7  67.3| B34    | 

|    23      4      9     .05     .69| .98    .0| .96   -.1|  .31   .26| 66.7  61.8| B10    | 

|    36      8     15     .05     .57| .87   -.5| .80   -.7|  .55   .41| 73.3  68.2| B38    | 

|    21      6     11    -.18     .66| .98    .0| .93   -.2|  .42   .38| 54.5  67.6| B06    | 

|    58      7     17    -.43     .54| .65  -1.8| .59  -1.7|  .75   .40| 82.4  69.2| B85    | 

|    40      3      9    -.45     .73|1.32   1.2|1.63   1.7| -.42   .24| 55.6  67.0| B45    | 

|     1      5     12    -.65     .64| .83   -.6| .76   -.6|  .57   .41| 83.3  68.7| A01    | 

|    48      6     17    -.73     .55|1.30   1.3|1.31   1.0|  .11   .39| 52.9  70.9| B57    | 

|    31      5     15    -.93     .59| .56  -2.1| .48  -1.5|  .80   .38| 93.3  71.1| B27    | 

|    22      2      9   -1.04     .82|1.34    .9|2.09   1.7| -.61   .21| 77.8  77.8| B08    | 

|     8      4     12   -1.07     .66|1.04    .2| .92    .0|  .37   .38| 66.7  70.0| A28    | 

|    30      4     15   -1.30     .63|1.63   2.0|2.32   2.1| -.36   .35| 66.7  73.8| B23    | 

|    20      4     16   -1.34     .62| .94   -.1| .73   -.4|  .45   .36| 68.8  75.4| B02    | 

|    50      4     17   -1.39     .61| .85   -.4| .65   -.6|  .53   .35| 82.4  76.7| B61    | 

|    53      0      2   -1.41    1.98|      MINIMUM MEASURE|  .00   .00|100.0 100.0| B68    | 

|    26      3     10   -1.43     .73| .98    .0| .86   -.1|  .36   .33| 60.0  70.1| B15    | 

|    41      1      9   -1.89    1.07| .85    .1| .55   -.2|  .50   .15| 88.9  88.9| B48    | 

|    24      1     10   -1.93    1.07|1.05    .3| .96    .3|  .11   .17| 90.0  90.0| B11    | 

|    51      0      3   -2.08    1.93|      MINIMUM MEASURE|  .00   .00|100.0 100.0| B62    | 

|    42      2     11   -2.09     .81|1.06    .3| .97    .2|  .21   .27| 81.8  81.7| B49    | 

|    14      2     12   -2.10     .81|1.07    .3|1.35    .7|  .15   .28| 83.3  83.2| A50    | 

|    16      2     12   -2.10     .81|1.05    .3| .90    .2|  .25   .28| 83.3  83.2| A77    | 

|    32      2     15   -2.26     .79| .88   -.1| .58   -.3|  .42   .26| 86.7  86.6| B28    | 

|    25      2     17   -2.32     .78|1.14    .4| .96    .3|  .15   .26| 88.2  88.2| B12    | 

|    28      2     17   -2.32     .78| .94    .1| .71   -.1|  .34   .26| 88.2  88.2| B17    | 

|    19      1     10   -2.88    1.07|1.12    .4|1.19    .6|  .04   .19| 90.0  89.9| A86    | 

|    27      1     16   -2.93    1.05|1.14    .4|1.82    .9| -.09   .19| 93.8  93.7| B16    | 

|     3      1     12   -2.95    1.07|1.14    .4|1.32    .7|  .01   .20| 91.7  91.6| A06    | 

|    38      0      9   -3.20    1.86|      MINIMUM MEASURE|  .00   .00|100.0 100.0| B40    | 

|    47      0      9   -3.20    1.86|      MINIMUM MEASURE|  .00   .00|100.0 100.0| B55    | 

|    56      0     10   -3.23    1.86|      MINIMUM MEASURE|  .00   .00|100.0 100.0| B71    | 

|    46      0     17   -4.40    1.85|      MINIMUM MEASURE|  .00   .00|100.0 100.0| B54    | 

|    55      0     17   -4.40    1.85|      MINIMUM MEASURE|  .00   .00|100.0 100.0| B70    | 

|------------------------------------+----------+----------+-----------+-----------+--------| 

| MEAN     5.4   12.0    -.39     .96|1.00    .1| .99    .1|           | 77.5  78.1|        | 

| S.D.     4.0    3.7    1.89     .45| .24    .8| .48    .8|           | 12.6   8.9|        | 

--------------------------------------------------------------------------------------------- 

 

I then differentiated learners who used the WHOLE misconception exclusively 

from learners whose responses were accounted for by other misconceptions or by 
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guessing. I chose a learner measure (in the MEASURE column) of 1.00 as the cut-point, 

which included 18/58 learners, from learner B22 down to learner B67—with a measure 

of 0.99, which I treated as sufficiently close to 1.00—in Table 27. The cut-points were 

chosen to best differentiate the learners into the various stages. 

The resulting selection included learner A02, for whom only 9/12 were 

attributable to the WHOLE misconception which may seem to be too low compared to 

other learners selected. This is explained by the manner in which Rasch calculates 

measures for the items, and the specific 9 items which were answered by learner A02, 

since not all combinations of 9/12 items will produce the same learner measure. Some 

test items were better indicators of the WHOLE misconception than others, and this is the 

reason why learners A44 and A80, both of whom scored 8/12 test items, calculated 

measures of 0.61 which was far lower than the measure of 1.10 for learner A82. The test 

items which they answered had different levels of suitability as an indicator of the 

WHOLE misconception. 

Returning to my Development Stages, I initially removed 47 learners who were 

in the STABLE stage. The remaining learners than had to be positioned into the remaining 

stages of ABSENT, EMERGENT, ACTIVE and IMMINENT, since my model required 

that every learner was placed into one, and only one, of these stages. The three primary 

stages—ABSENT, ACTIVE and STABLE—represent the Zones of Competence, 

Learning and Incompetence. The other two stages—EMERGENT and IMMINENT—are 

transition stages between the primary stages. 

There were 18/58 learners who used the WHOLE misconception to account for 

their responses, I positioned these learners in the ACTIVE stage, since their responses 

indicated active use of misconceptions. These 18 learners in the ACTIVE stage 

complemented the 47 learners who were positioned into the STABLE stage, which was 

65 out of the original 105 learners, thus leaving 40 learners who were spread over the 

three remaining Development Stages. 

The IMMINENT stage is for learners who were achieving a high level of success, 

but whose knowledge could not yet be considered STABLE. These learners were making 

mistakes that may have resulted from some use of misconceptions or they may have been 

making slips for which there is no systematic explanation. I thus moved learners into the 

IMMINENT stage if they achieved a high ability measure, but which was insufficient to 
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be considered as STABLE. To differentiate the IMMINENT stage learners, I selected a 

cut-point of 0.60 on the learner ability measures, and this resulted in 12 learners with 

ability measures between 0.60 and 1.60, all of whom scored low on the WHOLE 

misconception measure, meaning that the errors which they made were generally not 

accountable to the use of the WHOLE misconception. 

To summarize, I have positioned 47 of the original 105 learners into the STABLE 

stage, 12 into the IMMINENT stage, and 18 into the ACTIVE stage, which left 28 

learners to be classified into the EMERGENT and ABSENT stages. The difference 

between these two Development Stages is that the EMERGENT stage learners showed 

some evidence of using misconceptions to account for their incorrect responses, whereas 

ABSENT stage learners showed little or no such evidence, and thus their responses could 

only be inferred as random guesses. 

I adopted a simple rule for the EMERGENT stage, which selected learners who 

had higher ability measures, but for whom the incorrect responses did not show sufficient 

evidence of the systematic usage of the WHOLE misconception to warrant their being in 

the ACTIVE stage. I initially set a cut-point ability measure of 0.00 as the basis for these 

learners, which meant that 3 learners were positioned into the EMERGENT state, and the 

remaining 25 were in the ABSENT state. These results were shown in Table 28 which 

shows the measures for these remaining 28 learners in decreasing sequence of their 

WHOLE measure. Each of these learners had an ability measure which was insufficient 

to allocate them to the STABLE stage or IMMINENT stages, and also a WHOLE 

measure which was insufficient to position them into the ACTIVE or EMERGENT 

stages. 

The ABSENT stage was used for situations in which I could not account for the 

learner responses either on the basis of ability or through their use of the WHOLE 

misconception. This classification had some anomalies, such as learners B67 down to 

B87 in Table 28, who had more than 50% of their responses which were attributable to 

the WHOLE misconception, identified by the WScore and WCount columns in the table. 

For example, learner B67 scored 11/16 on the WHOLE misconception, but the estimated 

WHOLE measure of 0.99 was insufficient to classify this learner as ACTIVE. In essence, 

the Rasch measures were not sufficiently high to provide evidence that that these learners 

were using the WHOLE misconceptions for their responses. The problem is that the 
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Rasch analysis appears to contradict my rejection of learners who score 11/16 or 8/12 on 

this WHOLE misconception. This behaviour is explained by the specific items these 

learners were answering and whether these items were themselves good indicators of this 

misconception. 

Table 28. Place-Value: EMERGENT+ABSENT learners 

Learner Code Correct Measure WHOLE Measure AScore ACount WScore WCount 

B67 -3.1 0.99 1 18 11 16 

A80 -1.87 0.61 2 14 8 12 

A44 -2.69 0.61 1 14 8 12 

A82 -2.69 0.61 1 14 8 12 

B52 -1.32 0.57 4 14 6 11 

B41 -1.36 0.46 3 15 9 14 

B39 -1.88 0.46 2 15 9 14 

B34 -0.29 0.11 6 15 8 14 

B10 -0.66 0.05 4 10 4 9 

B38 -3.81 0.05 0 14 8 15 

B06 -0.19 -0.18 6 14 6 11 

B85 -0.88 -0.43 6 19 7 17 

B45 -1.12 -0.45 3 10 3 9 

A01 -1.87 -0.65 2 14 5 12 

B57 -1.48 -0.73 4 19 6 17 

B27 0.01 -0.93 7 15 5 15 

B08 -2.51 -1.04 1 10 2 9 

A28 -0.91 -1.07 4 14 4 12 

B02 -0.63 -1.34 6 17 4 16 

B61 -1.16 -1.39 5 19 4 17 

B68 -1.95 -1.41 0 2 0 2 

B15 -3.24 -1.43 0 10 3 10 

B11 -1.68 -1.93 2 10 1 10 

B62 -0.34 -2.08 2 4 0 3 

A50 -0.54 -2.1 5 14 2 12 

A86 0 -2.88 4 10 1 10 

B40 -0.24 -3.2 5 10 0 9 

B71 0.18 -3.23 6 10 0 10 

 

Some of the learners who scored relatively high on ability, such as B71 with 6/10, 

and B27 with 7/15, were positioned within the EMERGENT or ABSENT stages because 

of the inability of this model to classify their incorrect responses as the WHOLE 

misconception with a sufficient level of confidence. Thus, I could not account for why 
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these learners were making mistakes using my model of misconceptions within place-

value knowledge and some other explanation must be sought, which may include the 

following: 

 pure guessing by the learner 

 additional, unknown misconceptions 

 extraneous factors such as inability to concentrate 

 learners helping other learners in a blind-leading-the-blind scenario 

 a limitation in the implementation of the WHOLE misconception. 

Given these limitations I assume that, in the absence of any other evidence, that 

these responses were the result of guessing. This conclusion could be refined through 

improved items which could test for other ways of thinking. 

These final 28 learners were now split into the EMERGENT and ABSENT groups 

based upon their level of usage of the WHOLE misconception. Following this analysis, I 

selected another cut-point, at -1.00, as the limit above which the learners appeared to be 

using the WHOLE misconception for some incorrect responses. The top 16 learners had 

WHOLE measures greater than -1.0, and they showed limited usage of the WHOLE 

misconception, and were positioned in the EMERGENT stage. The remaining 12 learners 

showed insufficient evidence of ability and also little or no evidence of using the WHOLE 

misconception, and were considered as having no schemas that were consistently applied, 

and were positioned in the ABSENT stage. 

Answering the Research Questions 

RQ1 (EFFECTIVENESS) 

For the WHOLE misconception analysis, 17 items were used, selected from the original 

25 for which the correlation and the INFIT and OUTFIT values were acceptable. From 

Table 26 the highest item measure is 1.66 for Item 10052 and the lowest is -1.48 for Item 

10001, which are both measures of the item “difficulty” of the WHOLE misconception. 

A low Rasch item measure implies that the item is “easy”, meaning that it was 

answered successfully by most learners, and a high measure implies “difficult”, in which 

the fewest learners answered this item successfully. In the context of measuring WHOLE 

misconception usage, my interest was in distinguishing test items which were good 

indicators of the WHOLE misconception. Thus my focus was on the “easy” test items, 
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and particularly those with scores of less than -1.00. Applying this logic back to the results 

of Table 26 I infer that items 10001, 10002, 10004, and 10005 are likely better than the 

others since they detected the WHOLE misconception for more learners than for the other 

items, and these items are also valid test items for this construct which were not removed 

due to OUTFIT or INFIT behaviours. However, these items were all among the first test 

items presented to the learners and the argument for the use of the “easy” items must be 

considered in the light of the sequence in which the learners were presented with the test 

items. This yielded another surprising result—that the more test items which were 

presented to the learners, the less they were inclined to select the WHOLE misconception 

choice. It thus appears that the learners were learning through merely answering the items, 

since feedback was not presented to the learners until the end of each test. 

My recommendation is to use only those test items that are better suited to the 

discovery of this misconception. These “easy” items are valid indicators of the WHOLE 

misconceptions, where “easy” is interpreted that a learner with this misconception is more 

likely to select the MCQ choice which is linked to this misconception. 

These items can be qualitatively analyzed, to identify features of the items which 

may render these suitable for this diagnosis. Item 10005 asked for the place-value of 6 in 

the decimal number 20.0067, for which the correct response was “thousandths”, and for 

which both “tenths” and “tens” were treated as WHOLE misconceptions. The frequency 

count of responses in Table 21 showed that these two choices of “tens” (column 3) and 

“tenths” (column 5) made up the largest fraction of incorrect responses. 

I compared this to Item 10011, which asked for the digit in the “tenths” position 

of decimal number 200.3154. Of the 19 learners who selected incorrect choices, 11 

selected 5 (column 6 in the table), which was the digit which would have been in the 

“tens” position if the entire number was seen as a whole number, and thus this was a result 

of using the WHOLE misconception. 

However, this item also had a number of responses from the digits 0 and 1 and 

had a high measure, meaning that the learners who used the WHOLE misconception were 

less likely to select the WHOLE choice (being the digit 5) when answering this item, 

when compared to the Item 10005 above. 
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RQ2 (EFFICIENCY) 

Learners were positioned in the ACTIVE stage based upon the evidence from the Rasch 

analysis of their use of the WHOLE misconceptions, and learners showing less evidence 

of this usage were positioned in the EMERGENT stage. This process was conducted 

using the 25 items in this test set, which was reduced to 17 items which were determined 

to be suitable by considering their correlation and their fit statistics. I now ask which 

combination of these items can produce similar results, and how many items are needed. 

Some of the items were better as diagnostic indicators of the WHOLE 

misconception, as established by RQ1, and thus one useful place to find a minimal set of 

items is with these “better” items. Thus, the problem of efficiency is not only concerned 

with how many items are needed, but is also concerned with which specific items are 

needed to achieve the maximum benefit in valid inferences arising from the smallest 

number of items asked. 

An alternative, and exhaustive, approach is to determine the learner measures by 

using subsets of the items—using one, two, three, four, or more items at a time—using 

the previously calculated item measures, and by comparing these new learner measures 

to the learner measures already calculated using the entire set of items. However, this 

approach is computationally challenging given the very large number of combinations 

over which this calculation must be performed. There were 17 items which were used for 

this place-value, and the results of the Rasch analysis are shown in Table 26 on page 187. 

A subset of one item from this set then provides 18 alternatives. Using two items there 

are 18x17=306 combinations, for three items this is 18*17*16 = 4896 combinations, and 

for four this rises to 73,440 combinations. For each of these combinations of items the 

learner measures must be calculated and then compared to their original measures from 

using the full set of 17 items. The best combination would be that which is the closest to 

the calculated estimations of the learner WHOLE misconception measure as indicated in 

Table 27 on page 188, in which the notion of “closest” must be formalized. 

This approach is infeasible without incurring considerable computational effort 

and thus it was my evaluation that a few best-fitting items be selected. I thus selected the 

items with the lowest measures, which had the greatest propensity to be selected by 

learners, as identified in the WHOLE misconception analyses in Table 26 above. These 

are Items 10001, 10005, 10004, and 10002, in that sequence. Future studies may refine 
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this approach, perhaps using the exhaustive analysis of every possible combination as I 

contemplate above. 

RQ3 (SELF-KNOWLEDGE) 

There were 2489 total responses to questions posed in this place-value micro-domain and 

of these 834 were incorrect responses. These incorrect responses were analyzed to 

determine whether it was possible to infer the development stage from learners using the 

decision matrix I presented in Table 10. 

Of the 834 incorrect responses, 387 were indicated by the learners as Easy, and 

an additional 298 as Just Right. These 685 (387+298) responses comprised 82% of the 

incorrect responses, and were from learners who were likely to have believed they were 

answering the question correctly. 

As an example, Item 10001 was previously identified as being a good candidate 

for usage in a diagnostic environment, and it exhibited the maximum value of potential 

evidence for the WHOLE misconception. This test item asked the learner to identify the 

place-value of the digit 7 in the number 36.748. There were 38 (22+6+1+9) learners who 

selected an incorrect response of which 22 selected “hundreds” and another 9 learners 

selected “tenths”. Of the 22 who selected “hundreds”, which is an indication of the 

WHOLE misconception by treating the decimal number as through it is a whole number 

by disregarding the decimal point, 18/22 learners identified this question as Easy or Just 

Right, and only one learner identified this test item as Difficult. Three of the learners did 

not answer this question on difficulty. 

For those learners who used this misconception, there was thus no additional value 

to be obtained from asking whether they found this item Easy, Just Right, or Difficult, 

since the Rasch analysis of the results was itself sufficient for 18/22 of the cases. 

The learners who marked this item as Difficult may have been in the ABSENT 

development stage, and this could not be directly inferred from an examination of the 

responses. As a result, there is some value in knowing the learners’ perception of the 

difficulty, even if this is being used solely to isolate those learners who found the test 

item Difficult and for whom I could then infer the lack of a suitable schema and 

consequently the likelihood of a guessed response. The alternative is the presence of a 

schema and hence evidence of a misconception. However, this must be balanced against 

the additional time and effort in gathering and the analysis of the data. 
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Summary 

The place-value micro-domain has been analyzed using the standard approach I 

introduced in Chapter 4. 

 

Figure 27. Place-Value : Learners by Stage 

The distribution of the learners over the five Development Stages is given in 

Figure 27. This shows the expected pattern that IMMINENT and EMERGENT transition 

stages have less learners than those in the primary stages of STABLE, ACTIVE, and 

ABSENT. 

My diagnostic model is incomplete for place-value knowledge but can improve 

over time as other ways of thinking are incorporated into the model from prior studies. 

The model will also improve as new, better diagnostic test items are added to the item 

bank. By improving this diagnostic model, it can help to identify various ways of 

thinking, and has the potential to improve the effectiveness of diagnostic assessment by 

accounting for an increasing number of misconceptions which are exposed through 

learner responses. 

6.5 Micro-Domain DO - Decimal Number Ordering 

Initial Analysis of Responses 

This micro-domain can be reduced to the problem of understanding the relative 

magnitude of decimal numbers. The item bank contains 30 items, some of which were 

drawn from prior studies, and others which were created to address specific 

misconceptions.  

STABLE IMMINENT ACTIVE EMERGENT ABSENT

Stage 47 12 18 3 28
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Two tests were conducted in the second online lesson, with Test 1 comprising 

Items 10021-10040 and Test 2 comprising Items 10041-10050. A short instructional 

sequence was included between these tests. The items were structured mostly as the 

problem of finding the largest or smallest of two decimal numbers. Five of the items also 

included a choice concerning whether the two decimal numbers were equal. Three of the 

items comprised five decimal numbers as choices. A total of 97 learners responded to 

these tests. 

The Items 10029 and 10049 presented choices which were whole numbers rather 

than decimal fractions and could be considered as “trick” questions. These were both 

removed from the detailed analysis, but they warrant a short analysis. Their choices did 

not contain a decimal point and were presented vertically in a staggered form, left-

aligned, in which the same size place-values were not in line. 

Item 10029, shown in Figure 28, was presented around halfway through Test 1, 

and 6/91 learners selected 1111 as the smallest. This would be correct if the choices were 

decimal fractions with a leading decimal point. This item was introduced to explore 

problems with recognizing differences between whole numbers and decimals. Given than 

only six learners responded in this way, one explanation is that these few learners did not 

read the question properly. 

 

Figure 28. Item 10029 

Item 10049, shown in Figure 29, used the specific wording “decimal numbers” 

rather than simply “numbers”. 58/78 learners selected the correct response (9), and 18/78 

selected the last option “55555” as being the smallest, which was a far higher frequency 

than for the similar choice in Item 10029. These items differed in the sequencing of the 

choices, and in Item 10049’s use of the term “decimal numbers”. Of these 18/78 learners 

selecting “55555”, five were positioned in the STABLE stage and these were among very 

few mistakes made by these STABLE stage learners, and whereas these should be 

considered as slips they may have had a consistent basis which would cause them to be 
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late-stage misconceptions. In such cases, these learners could then be considered to be in 

the IMMINENT stage, given that they had lingering misconceptions. Without further data 

it was not possible to determine whether these were slips or misconceptions.  

 

Figure 29. Item 10049 

A correct response may result from knowing the subject matter, from guessing, or 

from the use of a misconception. Some items had the same choice which was both the 

correct response and which was also indicative of one or more misconceptions. This 

complicated the determination of the conceptual basis of the responses, and I have chosen 

to conduct two analyses based on different approaches to selecting the data for analysis. 

For the first analysis, the total set of responses was used. This produced a larger 

data set for analysis, but correct responses may have been selected based on a 

misconception. My second analysis used only error responses and removed all correct 

responses. This was a reduced data set which avoided the issue of a correct response also 

resulting from a misconception. This resulted in smaller datasets of between three and 

seven test items for each of the misconceptions. 

Identifying STABLE Learners 

This analysis follows a similar structure to the previous micro-domain, but omits much 

of the explanations and associated tables. 

Firstly, STABLE stage learners were identified and removed from further 

analysis. This analysis was performed on the basis of the correct choices obtained from 

each of the 28 test items in this micro-domain, with Item 10029 and Item 10049 of the 

original 30 items removed as not being a true part of this micro-domain. 

The cutoff ability measure was set at 2.00 for STABLE stage learners, resulting 

in the selection of 16/97 learners being positioned as STABLE. These learners obtained 

relatively high correct scores, such as 28/28, 19/19, and 27/28. 
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The remaining 81 (=97-16) learners were filtered to identify those in the 

IMMINENT stage, based on an ability measure in the range 1.00-2.00, resulting in the 

selection of 20 learners into this stage. Thus, from the 97 learners, 16 were classified as 

STABLE and another 20 as IMMINENT, leaving 61 positioned in the ACTIVE, 

EMERGENT, and ABSENT stages. The IMMINENT stage learners were retained for the 

analysis of the misconceptions, while STABLE stage learners were removed as per the 

standard approach to analysis. Thus 81 learners were retained for the analysis of the 

misconceptions. 

To continue the arguments from the previous micro-domain, the STABLE 

learners were removed since they made too few mistakes to add value to the analysis of 

items suited to diagnose misconceptions. Also, the approach to measuring low-

proficiency must be different from traditional ability measurement, to account for their 

responses in terms of misconceptions. 

Analysis of Decimal Number Misconceptions 

This analysis used a subset of Steinle’s coding structure for ways of thinking in decimal 

numbers (Steinle, 2004a, Chapter 3), which was presented as Table 4 on page 111. 

Steinle’s codes used in this analysis were A1, A2, U1, U2, L1, L2, L3, and S3 and these 

were applied to each of the 28 test items in this micro-domain. The test items differed 

from Steinle’s in three ways. Firstly, the use of three items which have five choices rather 

than only two choices. Secondly, three test items had whole number parts which were 

different between the choices, such as 2.414 vs. 3.001 in Item 10035. Finally, in the use 

of leading and trailing zeros in some items. Steinle’s S1 was not used in this study, due 

to the lack of items which target this code. 

For items with only two choices it was a challenge to elicit evidence of 

misconceptions, since a learner’s response may have been based on true proficiency or 

may have resulted from one of many misconceptions. Each misconception was analyzed 

using a separate Rasch analysis, effectively performing these in parallel. These analyses 

were performed only where there was sufficient data available, since some 

misconceptions occurred less frequently than others as the conceptual basis for the rich 

distractors in my items. 

Steinle’s (2004a) code A1 (task expert) was established by positioning learners 

into the STABLE stage, and code A2 (money thinking) was aligned to the IMMINENT 



 200 

stage, considering the types of errors which were made by otherwise expert learners. This 

analysis examined patterns of response errors which indicated misconceptions that 

occurred in otherwise proficient learners before reaching full proficiency. The A2 code 

was interpreted for this study to comprise learners who had a proficiency measure of 

between 1.00 and 2.00, and who were positioned in the IMMINENT stage. This approach 

is distinct from Steinle’s definition of the A2 code which is applied to learners who have 

a partial set of rules derived from money thinking. 

The U1 and U2 codes represent unclassified errors, and apply to learner responses 

which did not fit within the coding system, and which could not be further analyzed. 

These responses were treated as random errors, in the absence of any further knowledge 

about the ways of thinking. Whereas U1 was treated as unclassified, U2 was used to 

indicate misread, misrule, or mischievous, and thus may indicate potential patterns of 

behaviour. As an example, U2 could have been used to classify an otherwise expert 

learner who misread smallest for largest and solved the wrong problem; however if this 

was to be applied, this behaviour should then have been applied consistently. These 

U1/U2 codes have been used to position learners into the ABSENT stage, since it is 

beyond the diagnostic capability of the test items and the inferential processes to identify 

and to uncover misconceptions which were the basis for these responses. Over time, such 

unknown but systematic patterns of errors could provide the basis for research into more 

specialized misconceptions. For my purposes, expert learners who are making a few 

mistakes, such as misreading, would be classified into my IMMINENT stage. 

The codes L1, L2 L3, and S3 were analyzed using parallel Rasch analyses, and 

the resulting learner measures were an indication of the extent to which these ways of 

thinking accounted for the responses to the test items. Some of the items were not suited 

to measure specific codes and where the evidence of the learner use of these ways of 

thinking did not correlate with an item then this item was removed for further analysis. 

Items with no positive results were also removed, in which no learner selected the rich 

distractor linked to the code. 

Poor correlations may indicate a miscoding of the items, resulting in incorrect 

calculations of the measures if these items are retained. When miscoding is ruled out as a 

cause then the item’s construct validity should be questioned. This process of eliminating 
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misfitting items is more complex when an individual choice can elicit evidence of more 

than one way of thinking. 

The choices from each of the 28 test items were coded with the particular 

misconceptions that they address—essentially, which of Steinle’s (2004a) codes can 

account for a learner’s selection of this choice. 

The Rasch analyses are now presented for each of the codes used for this micro-

domain and the results are then presented in Table 29. 

L1: whole number thinking and decimal point ignored 

All 28 test items were analyzed to determine which of these items elicited 

evidence of L1 thinking. Five of the test items showed a low correlation to the learner 

responses and were unsuitable as indicators. One of these test items, Item 10028, had a 

correlation value of -0.1, which indicated a lack of correlation between the learners’ 

pattern of responses and the calculated learner measures. This item asked the learner to 

select the smaller of 0.05 and 0.9, for which the misconception and the correct choices 

were the same and this item had no use as a predictor of this behaviour. However, the 

Item 10027, which asked for the smaller of 0.09 and 0.5, had an excellent correlation of 

0.56. Thus these two items had significantly different value for diagnostic purposes even 

though they appeared to be similar in form 

Four other items produced low correlations and all had exactly three decimal 

places in each of their choices, such as Item 10035 to find the smaller of 2.414, and 3.001.  

From this small sample it appears that for the L1 misconception to be elicited more 

effectively, the decimal fractions for the choices should not have the same number of 

decimal places. However, this argument does not hold for Item 10022, asking for the 

smallest of 2.39 and 2.40, which showed good correlation to the learner measures but 

which was different from other items in having a trailing zero in one of the choices. The 

five test items with poor correlation were removed from the data set, and the analysis was 

repeated. 

Following the Rasch calculation, Item 10034 showed a high OUTFIT value and 

was also removed and the calculation again repeated, producing an acceptable fit of the 

test items to the learners’ propensity to use the L1 misconception. 
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L2: column overflow 

For this way of thinking, 15 items were removed due to the lack of correlation and 

fit to the data, leaving 13 test items which were good indicators, but with varying degrees 

of discrimination between learners who used the L2 misconception and learners who did 

not. 

In total, 17 learners had high measures on the L2 code including learners B57 and 

B85 who both selected 12 out of 13 choices and for whom this provided evidence of a 

highly consistent usage of the L2 way of thinking. 

L3: reverse thinking 

The L3 way of thinking was exemplified by 0.79 being read as 97 with the “ths” 

dropped, and thus 9 hundreds and 7 tens. 

Learners B10 and B40 scored 14/14 on this analysis, meaning that all 14 of their 

responses were accounted for by this way of thinking. In total, five learners achieved 

calculated measures on L3 greater than 1.5. 

S3: reciprocal thinking 

For S3 thinking, the decimal point was seen as being equivalent to the common 

fraction symbol so that 3.4 was seen as the same as 
3

4
.  

22 learners had responses which fit this model, and 9 of these learners showed a 

high usage of this misconception to account for their measures. These included learners 

B12 and B14 with 20/22 responses accountable to this way of thinking. 

Identifying Learners by Stage - all Responses 

Parallel Rasch analyses were conducted for each of the four codes. Assumptions were 

made on how the coding should address leading and trailing zeroes, which are not 

explicitly included in Steinle’s (2004a) model, and also on whether to ignore or consider 

differences in the whole number part of the choices. 

These Rasch analyses have produced sets of learner measures for each of these 

codes, where each measure is an indicator of the propensity of a learner to select a choice 

based upon a particular way of thinking. These analyses also produced item measures, 

where a larger value indicates that less learners who used this misconception actually 
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selected the coded choice from these items, whereas lower item measures were selected 

by more learners, and thus were considered as better to meet the requirements for RQ2. 

The calculated learner measures are summarized in Table 29, with learners in the 

STABLE stage shaded in grey. These learners were not analyzed for the coded 

misconceptions. 

In the L1, L2, L3 and S3 columns, measures greater than 1.50 are highlighted with 

a light orange background, and with a light yellow background for measures between 

1.00 and 1.50. These are indicators of learners’ use of these misconceptions to select the 

choices. In the ABILITY column, the IMMINENT stage learners are shaded with a light 

orange background when the measure is in the range 1.00-2.00. 

Learners were positioned in the ACTIVE stage when they were not classified as 

STABLE or IMMINENT but had a measure of 1.50 or more on at least one of the coded 

misconceptions. Learners were positioned in the EMERGENT stage if they had no 

evidence of misconceptions from these measures, but had an ABILITY measure of at 

least 0.50, and are identified by light-green color in the ABILITY column. The remaining 

learners were positioned in the ABSENT stage and are indicated by the absence of 

shading. 

Table 29. Decimal Ordering: Results of Rasch analysis 

Learner ABILITY L1 L2 L3 S3 

A01 1.42 -2.08 -1.59 -2.45 1.18 

A02 0.45 0.64 1.58 0.32 -1.21 

A05 1.42 -1.70 -1.09 -1.97 1.18 

A06 0.29 -0.21 -0.21 0.11 -0.26 

A07 4.86     

A08 -0.51 0.87 1.58 1.02 -1.49 

A10 0.80 -1.39 -2.18 -1.29 0.91 

A14 1.67 -1.70 -0.21 -1.97 0.91 

A18 0.45 0.64 2.18 0.32 -0.71 

A26 2.82     

A27 -0.03 0.64 0.21 0.55 -1.21 

A28 0.62 0.64 2.18 0.11 -0.95 

A30 0.62 -0.64 -0.21 -0.32 0.19 

A31 3.59     

A32 4.86     

A42 -0.03 0.21 0.64 0.11 -0.48 

A43 2.33     
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Learner ABILITY L1 L2 L3 S3 

A44 1.67 -1.70 -1.09 -1.97 0.19 

A46 0.13 -0.21 -1.09 -0.32 -0.48 

A50 0.99 -0.21 - -0.54 -0.48 

A66 -0.34 0.87 1.09 0.78 -1.21 

A67 1.42 -0.87 -0.64 -1.60 0.42 

A68 0.29 -1.39 -2.18 -0.77 0.91 

A77 2.33     

A78 0.13 -0.87 -1.59 -1.02 0.91 

A79 0.44 -4.04 -3.85 -3.82 2.90 

A80 -0.34 0.42 1.09 0.32 -0.71 

A82 1.97 -0.21 0.64 -0.54 -0.48 

A86 1.19 -1.12 -1.09 -1.29 0.42 

B01 3.59     

B02 -0.51 -0.87 -0.21 -0.77 0.91 

B03 4.86     

B04 0.29 -0.87 -1.59 -0.54 -0.03 

B05 1.97 -0.42 -0.21 -0.77 -0.48 

B07 0.29 0.42 -0.21 0.55 -0.95 

B08 -0.27 0.63 -0.57 0.58 -1.10 

B09 -0.11 2.77 3.58 1.93 -2.95 

B10 -1.04 2.72 0.97 3.95 -2.87 

B11 -0.51 1.70 0.64 1.02 -1.81 

B12 0.45 -4.59 -3.06 -3.22 2.75 

B13 1.42 -0.21 0.64 -1.02 -0.26 

B14 0.99 -3.34 -2.18 -3.22 2.75 

B16 -0.67 1.12 0.64 0.78 -1.21 

B17 0.99 -3.34 -2.18 -4.48 2.22 

B19 1.04 0.02 0.27 -0.16 0.14 

B20 0.99 -3.34 -2.18 -3.22 2.75 

B21 1.67 -0.42 0.64 -1.02 -0.26 

B23 0.29 0.42 2.18 0.32 -0.71 

B24 1.19 -2.08 -2.18 -3.22 1.81 

B25 0.62 -0.87 0.21 -0.77 0.42 

B26 2.52     

B27 2.33     

B28 0.45 -0.64 -0.21 -0.77 0.42 

B29 0.13 1.39 2.18 1.60 -2.69 

B30 4.86     

B32 0.31 -0.71 -1.22 -0.58 0.23 

B33 3.59     
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Learner ABILITY L1 L2 L3 S3 

B34 -0.51 0.98 0.17 1.35 -2.06 

B35 1.42 -1.39 -1.09 -1.97 0.66 

B36 0.21 1.39 2.02 0.58 -1.53 

B37 1.15 -0.85 -1.57 -1.29 0.42 

B38 -0.19 0.87 1.58 0.78 -1.21 

B39 1.22 -1.04 - -1.18 0.51 

B40 -0.76 4.00 2.02 3.95 -4.16 

B41 0.45 1.39 2.02 1.35 -2.06 

B42 0.08 -3.75 -2.03 -3.42 4.24 

B43 0.31 1.06 1.09 0.71 -1.79 

B44 4.63     

B45 1.14 1.10 - 1.36 -2.13 

B46 -0.27 -1.71 -3.69 -1.08 1.18 

B47 1.04 -1.68 -0.74 -0.87 0.14 

B48 2.30     

B49 2.00     

B51 1.60 -1.30 -0.57 -2.03 0.52 

B52 -0.19 1.12 0.64 0.55 -1.49 

B53 -0.34 -0.74 -0.76 -0.86 0.91 

B54 -0.03 1.39 1.58 0.78 -2.19 

B55 0.45 0.64 0.21 0.32 -0.95 

B56 1.97 -2.08 -1.59 -2.45 1.18 

B57 -0.03 2.56 3.06 1.29 -2.69 

B58 -0.19 0.64 0.21 0.78 -1.21 

B59 1.67 -2.08 -1.59 -2.45 1.18 

B60 3.59     

B61 0.45 -3.34 -4.38 -1.97 2.22 

B62 0.90 0.99 - 1.36 -1.96 

B63 0.99 -0.87 0.21 -0.77 -0.71 

B64 -0.51 1.39 1.09 1.29 -1.81 

B65 0.80 -1.70 -1.59 -1.60 0.91 

B66 -0.19 -1.70 -3.06 -1.02 1.47 

B67 0.29 0.64 0.64 0.32 -1.81 

B68 -1.43 3.02 3.36 1.17 -1.86 

B69 0.45 -1.71 -2.32 -1.50 1.18 

B70 -1.02 0.42 0.21 0.32 -0.71 

B71 0.62 0.00 1.09 0.11 -0.48 

B72 0.62 -1.12 -1.59 -1.02 0.91 

B76 0.62 0.87 1.09 0.55 -1.49 

B85 -0.19 2.56 3.06 1.60 -2.19 
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A visual analysis of Table 29 yields the following observations: 

 There were 24 learners in the ACTIVE stage—who had insufficient ability 

measures to be STABLE, and who had at least one misconception measure of 

1.50 

 There remained 37/97 learners for whom no conclusion could be reached in 

terms of their responses, being learners with no scores highlighted with 

shading. These 37 learners had measures which did not show proficiency and 

also did not show use of one or more of the individual misconceptions. These 

learners may have been using misconceptions but these cannot be determined 

validly using this approach within the scope of the current set of 

misconceptions and the current item bank. These were positioned in the 

ABSENT or EMERGENT stages with EMERGENT learners differentiated 

by having an ability measure of at least 0.50. This splits off 10 learners as 

EMERGENT, leaving 27 in the ABSENT stage. 

 There were no L1 or L3 measures greater than 1.50 with the learners in School 

A, and only one case of S3 which was greater than 1.50. 

 For most learners who showed evidence of a misconception, there was overlap 

between the measures, so that a high score in one measure often indicated a 

high score in another, and this was a by-product of the structure of this set of 

items. 

 For each of the codes, there were a number of learners who measured higher 

than 1.00: 

o L1 : 16 learners 

o L2 : 21 learners 

o L3 : 13 learners 

o S3 : 15 learners 

A total of 115 errors were recorded for the 26 learners who were classified as 

STABLE or IMMINENT, with these being from all but one of the 28 test items. This 

item, for which all of these top 26 learners scored 100%, was Item 10035, asking for the 

smaller of the decimal numbers 2.414 and 3.001, in which all learners correctly selected 

2.414. 
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However, 11 of these 26 highest proficiency learners selected 0.79 as being 

smaller than 0.6 in Item 10025. Two other test items received a relatively high frequency 

of incorrect choices among these groups of 26 top learners, being Item 10030, asking for 

the smallest of 0.09 and 0.500, for which 7 learners selected 0.500, and Item 10045, 

asking for the smallest of 10.0 and 10.125, with 6 learners selecting 10.125. Thus these 

three items, 10025, 10030, and 10045, are candidates to be considered as suited to detect 

late-stage misconceptions. 

Identifying Learners by Stage – Error Responses only 

This analysis differs from the previous analysis in that only errors were analyzed so that 

the correct responses were removed before the analysis. This analysis was only conducted 

for this micro-domain and not for others, due to its relatively large number of documented 

misconceptions, and the challenge that many item choices could have been selected from 

both stable conceptions as well as from misconceptions, thus complicating the 

identification of the most likely conceptual base of the learner. 

The results are summarized in Table 30, which is presented in the same structure 

as the previous analysis. This table shows, for each learner, the measures which indicate 

to what extent the learner was likely to have used a particular misconception in 

responding to the test item. In some cases, there were overlaps in the misconceptions 

used, with many misconceptions being possible explanations for a learner response. 

This table only shows results for misconception measures in the cells where these 

are larger than 1.50, and as for the previous analysis shows the full sample of learners, 

with their assessed ability as measured from the CORRECT choices. As a result, these 

are not shaded with a background colour like Table 29. 

The results are shown in the sequence of high-to-low learner proficiency, as was 

calculated in the previous analysis, and which remains unchanged. The STABLE learners 

were included as part of the analysis of the misconceptions for this variation of the 

analysis, due to the need to have as much data as possible on the errors. This shows high 

measures for some codes, such as learner A26 for codes L1 and L3, which offer 

alternative explanations for their errors. 

Table 30. Decimal Ordering: Learner measures 

Learner CORRECT L1 L2 L3 S3 

A32 4.86     
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Learner CORRECT L1 L2 L3 S3 

B03 4.86     

B30 4.86     

A07 4.86     

B44 4.63     

B60 3.59     

B01 3.59   1.81  

B33 3.59     

A31 3.59     

A26 2.82 2.08  2.48  

B26 2.52     

B27 2.33     

A77 2.33     

A43 2.33     

B48 2.30     

B49 2.00 2.05  2.44  

B05 1.97     

B56 1.97    2.30 

A82 1.97 2.08  2.48  

B21 1.67 2.65    

B59 1.67    2.30 

A44 1.67     

A14 1.67  2.15  2.93 

B51 1.60 2.05  2.44  

A67 1.42 1.51    

A05 1.42    3.20 

A01 1.42     

B35 1.42    2.35 

B13 1.42 2.85    

B39 1.22     

B24 1.19    2.69 

A86 1.19   1.88  

B37 1.15    2.30 

B45 1.14     

B19 1.04     

B47 1.04     

B14 0.99    3.59 

B63 0.99     

B20 0.99    3.59 

A50 0.99 2.05  2.44  

B17 0.99    3.69 
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Learner CORRECT L1 L2 L3 S3 

B62 0.90     

B65 0.80     

A10 0.80    3.58 

A30 0.62    3.05 

A28 0.62 2.79  3.07  

B25 0.62    1.51 

B76 0.62 2.61  3.07  

B71 0.62 2.61  3.07  

B72 0.62    2.10 

B12 0.45    3.20 

B55 0.45     

B61 0.45    2.10 

A18 0.45  2.37 3.07  

B41 0.45 2.61  3.07  

A02 0.45 1.91  3.07  

B28 0.45   3.05  

B69 0.45    2.07 

A79 0.44     

B32 0.31   1.88  

B43 0.31 2.08  2.48  

A06 0.29 2.61  3.07  

B67 0.29 2.38  2.48  

B07 0.29 2.61  3.07  

B04 0.29    2.34 

A68 0.29    2.10 

B23 0.29 3.01  1.81  

B36 0.21     

A78 0.13    1.75 

A46 0.13     

B29 0.13 2.61  3.07  

B42 0.08  2.15  2.93 

A27 -0.03 2.04  3.07  

B54 -0.03 2.04    

A42 -0.03 1.91    

B57 -0.03 3.55  3.07  

B09 -0.11 2.79  3.07  

B38 -0.19 2.60  3.05  

B66 -0.19    2.10 

B85 -0.19 3.55  3.07  

B52 -0.19     
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Learner CORRECT L1 L2 L3 S3 

B58 -0.19 2.61  3.07  

B08 -0.27     

B46 -0.27    2.07 

A66 -0.34 2.79  3.07  

A80 -0.34    2.68 

B53 -0.34    4.11 

B11 -0.51 2.04    

B02 -0.51 2.03    

B34 -0.51     

B64 -0.51 2.04  3.07  

A08 -0.51 3.46  3.05  

B16 -0.67 2.79  3.07  

B40 -0.76 2.79  3.07  

B70 -1.02 2.04    

B10 -1.04 2.79  3.07  

B68 -1.43 2.65    

 

This table is read as follows:  the ABILITY column shows the measured ability 

of the learner, using all of the responses; the L1, L2, L3 and S3 columns shows the likely 

reasons for mistakes made by the learners, using only error responses, even if the correct 

responses is also accountable to the same way of thinking. 

In this table, learners A14 and B11 are shaded to provide ease of identification for 

the following explanations. 

Learner A14 scored 23/28 correct with a measure of 1.67 and also scored a high 

measure of 2.93 on the S3 misconception. This is interpreted that for two test items for 

which the learner made a mistake and which are also linked to the S3 misconception, 

there is evidence that this learner used this misconception as the basis for selecting these 

incorrect responses. The additional explanation is that they may have used the S3 way of 

thinking to account for some of their correct responses. However, 23/28 is around an 82% 

pass mark, which appears to be very high by CTT standards of measurement, and yet the 

L2 and S3 misconceptions have far higher measures which makes them more likely 

explanations for this learner’s responses. 

Learner B11, who was at the lower end of the proficiency scale, received an 

estimated measure of -0.51 on the basis of 11/28, and a measure of 2.04 on the basis of a 
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score 4/5 on the L1 misconception test. From this it can be inferred that this learner used 

the L1 misconception to account for 4/5 of the test items which measure L1. 

There were only three learners who obtained a measure > 1.50 for L2 when using 

the incorrect responses only, without also including the correct responses. 

This analysis was performed on a relatively small number of items and thus its 

reliability is questionable, given that some of these results may also be attributed to 

guessing. Thus this approach requires more data to arrive at conclusive inferences. 

Answering the Research Questions 

RQ1 (EFFECTIVENESS) 

For L1, 22 items had good fit to the learner responses, but these were not all equal 

in their value. Item 10022 had the lowest measure (-1.64), and thus has the potential to 

catch the largest number of learners. Items 10036, 10045, and 10025 also had low 

measures and are also candidates for being good diagnostic items. 

However, most of these items had only two choices for learner selection of the 

smallest or largest, and there was an overlap concerning which way of thinking accounts 

for the learner responses. The best test items are those for which no other explanation was 

possible—which follows the guidelines on the “semi-dense” items of Bart et al. (1994), 

In this case, Items 10023 and 10038 are likely to be the best diagnostic items, since for 

both of these items the selection of the L1 option does not have any other explanation in 

terms of the misconception being measured, so that L1 is the only possible conceptual 

explanation after considering guessing and slips. 

The L2 code did not have individual items for which there was a single reason 

why a learner would choose the L2 choice over another. However, a suitable set of items 

can provide evidence that L2 thinking was used consistently. Of the items which provide 

a good fit to the Rasch model, those which were answered by the majority of learners 

who held this misconception are Items 10026 (-2.93), 10042 (-1.59), 10039 (-1.42), and 

10048 (-1.41). These four items are likely to be the best set to elicit evidence of this 

misconception. 

The L3 code was identified as the conception used by a number of learners, with 

two learners, B10 and B40, scoring 14/14 on this code. This means that these learners 

used this misconception, and only this misconception, in answering the items. However, 
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there were a few items which provided consistent results across the sample of learners, 

and those which are more likely to elicit this evidence are Items 10036, 10025, and 10045. 

Finally, Items 10047, 10031, and 10040 had the lowest measures for S3, and thus 

will catch the largest number of learners using this misconception. However, Items 10037 

and 10044 also had low scores and should be considered as potential diagnostic indicators 

of this misconception. 

RQ2 (EFFICIENCY) 

RQ2 asks how many diagnostic test items are needed to provide sufficient 

evidence of misconceptions used by the learners. The focus is not on test items which 

provide evidence of ability and proficiency, but rather those which expose particular 

misconceptions and ways of thinking. This is complicated by the large number of 

misconceptions associated with decimal number ordering and the need to distinguish 

between these misconceptions. 

The assumption is made that ideal items do exist—for which the individual 

choices each point to a specific misconception with no overlap between the choices and 

the conceptions which they elicit. For such ideal items the choice selected by a learner 

would then point directly and exactly to the misconception which accounts for the 

response. This approach only fails in the case of the ABSENT stage learners, who were 

likely to be guessing and thus did not have systematic patterns of responses. 

For each of the codes L1, L2, L3, and S3, there were some test items that can be 

used to elicit evidence of the usage of the misconceptions, expressed in decreasing levels 

of suitability (best first): 

 L1 : Items 10022, 10036, 10045, 10025 

 L2 : Items 10026, 10042, 10039, 10048 

 L3 : Items 10036, 10025, 10045 

 S3 : Items 10047, 10031, 10040, 10037, 10044 

There was little consistency between the items identified for the individual ways 

of thinking, and thus RQ2 was a challenge to answer unless all of these items are used. 

My conclusion is that test items with only two choices are not suited for efficient 

diagnostic usage, since a large number will be required to be used to identify the 

conceptions being used to select the responses. An alternative is to use items with more 

than two choices which can elicit more types of misconceptions. The use of items with 
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only two choices is also aggravated by the number of misconceptions which are included 

for this micro-domain. If there was only a single misconception being assessed then there 

would be fewer alternatives for explanations of the learners’ conceptual base for their 

responses than if there were four separate misconceptions, as in this micro-domain. One 

recommendation for classroom practice is that misconceptions are addressed by the 

teacher individually so that the diagnostic assessments can be more targeted. 

RQ3 (SELF-KNOWLEDGE) 

Item 10021 asked for the smaller of (1) 2.36 and (2) 2.4 and 40 incorrect responses 

were given for choice (2), which was coded with both L1 and L3. Of these 40 incorrect 

responses, only four learners identified this test item as Difficult and the others identified 

this as either Easy or Just Right. 

Similar findings can be made for each of the other test items in this micro-domain, 

and it appears that this self-knowledge is primarily useful for identifying those learners 

who identified items as Difficult, and who could then be placed into the ABSENT stage 

of development, since the Easy and Just Right learners are already positioned into the 

Development Stages quantitatively using the Rasch analysis alone. 

Summary 

 

Figure 30. Decimal Ordering : Learners by Stage 

The learners were quite evenly distributed over the five stages, as shown in Figure 

30. This distribution involved setting a number of cut-points for both the ability measure 

and for the individual coded misconceptions. These cut-points were set on the basis of a 

visual inspection of the values rather than using a more formalized approach, and by 

manipulating cut-points the learners were positioned differently. These stages indicated 
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relative learner development in a micro-domain rather than being an exact measure, and 

future research is needed to improve the nature of this positioning into these Development 

Stages. I contend that knowing the learner Development Stages is useful for the teacher, 

and I suggest that a single vocabulary of stages will assist learners in better understanding 

these trajectories. 

Test items with only two choices were problematic for assessing proficiency, 

since pure guessing resulted in an expected score of 50%. These test items elicited 

evidence of learners’ understanding of decimal magnitudes using problems which 

involved the ordering of two numbers. These have proven utility for rational number 

research, but their usage for efficient classroom application should be questioned. 

However, the misconceptions used in this micro-domain may be overlooked when using 

traditional assessments, unless these are specifically targeted. 

Of the original 97 learners, 16 were identified as being in the STABLE stage due 

to their proficiency over a range of the items. These fell into the A1 code. 

Of the remaining 81 learners, 37 learners could not be classified using the codes 

representing the constructs being measured when the correct items were included using 

the existing set of test items. However, more learners could be classified, under less valid 

conditions, by omitting the correct responses from the analysis and analyzing only the 

error responses. This second analysis provided additional information and the number of 

learners whose error responses could not be classified was reduced to 10. 

6.6 Micro-Domain CR - Common Fraction Representation 

Initial Analysis of Responses 

This micro-domain consisted of ten items, each of which asked for the best fractional 

representation for a given verbal statement. A total of 88 learners provided responses to 

one or more of the items. 

The number of responses were counted for the ten test items and for each choice, 

to both determine the general level of fraction knowledge among the learners, and also to 

identify patterns of error responses. 
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Table 31. Common Fraction Representation: Counts by test item/response 

Item# 1 2 3 4 5 

10060 6 7 71 4  

10061 2 6 4 73 2 

10062 1 3 76 2 5 

10063 76 7 1  3 

10064  8  76 2 

10065 7 3 2 73  

10066  76 6 3  

10067 79 5  1  

10068 6 23 6 50  

10069 41 35 2 6  

 

Table 31 shows that Items 10060 to 10067 each had a single dominant choice 

which was selected by the majority of the learners, and these were the correct choices for 

each item. These items had a relatively small number of errors, with some representing 

known misconceptions. Items 10068 and 10069 had two possible correct answers, due to 

the ambiguity in the wording that was introduced into the test items. 

For Item 10064, 8/86 learners selected 9.12 for “nine twelfths” in item 10064, 

representing a misunderstanding between common fractions and decimal numbers—

which I refer to as the DECIMAL misconception, and which is the same as Steinle’s 

(2004a) S3 code used for the decimal number ordering. Two learners selected 
12

9
 in which 

the numerator and denominator were reversed—which I have called the REVERSAL 

misconception. 

For Item 10068 learners were asked to select the closest representation of “three 

hundred and sixteen fortieths” as a common fraction, with 23 learners selecting 
316

40
 and 

another 50 learners selecting 300
16

40
. Both are correct in terms of the different readings of 

the fraction description, as outlined at the start of this section. This is a limitation of our 

ability to express fractions in words rather than a limitation of the learners’ knowledge. 

For Item 10069 the highest response came from a choice which I had predicted to 

be the most likely to be selected. This was similar to the situation for Item 10068 in which 

the wording of the fractions was itself ambiguous. The primary difference was that the 

word “and” was omitted from Item 10068, and I had predicted that the wording “sixty 
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one sixty thirds” would cause learners to select 
61

63
 but only 35 made this choice against 

41 selecting 61
60

3
. I note that in this case, with the word “and” omitted, more learners 

selected the mixed fraction, as opposed to Item 10067. Another 6 learners selected the 

other reading of this “(sixty) (one sixty) (thirds)”, being 60
160

3
. 

These initial observations challenged the validity of using questions involving 

word fractions in a diagnostic test, since it appears to be the limitations of the wording, 

rather than the learners’ conceptual knowledge, which influenced the selection of the 

options. 

Two misconceptions were identified in Chapter 4, being DECIMAL, when the 

decimal representation choice is selected in preference to the common fraction (for 

example selecting 1.4 for “one quarter”), and RECIPROCAL, when the numerator and 

denominator are interchanged. These accounted for the majority of the errors, and no 

other errors were coded for this micro-domain. 

Identifying STABLE Learners 

A total of 47/88 achieved 100% success on these test items, of which 45 learners achieved 

10/10, with one learner each achieving 5/5 and 6/6 respectively. 

Of the remaining learners, 21 made a single mistake, of which 20 achieved a score 

of 9/10 and one obtained a score of 3/4. Of these 21 learners most of the responses were 

accountable for by the DECIMAL and RECIPROCAL misconceptions and there were 

two cases where the learners selected other choices, of which one, selecting 1/25 for “one 

quarter” was a surprising result from a learner who otherwise obtained a clean sheet. This 

left 19 errors to be explained, which was then reduced by another 10 for the errors in the 

Items 10068 and 10069 which were not true errors due to their ambiguous wording. Of 

the remaining errors, five consisted of selecting 5
9

6
 for “five and six ninths”, which 

showed a high consistency among the errors caused by the learners who made only a 

single mistake, and which is a variation of the RECIPROCAL misconception. Whereas 

slips were likely to be random in nature, a systematic error used by a number of learners 

may have been an indication of a way of thinking which was not identified in advance or 

uncovered from the patterns of responses. The discovery of these new ways of thinking 

is beyond the scope of this study and these results point to future studies. 
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Analyzing the DECIMAL Misconception 

All of the items except for 10067 and 10069 provided a choice which highlighted the 

DECIMAL misconception. These items were highly correlated to the responses received 

from the learners, and two items had a 100% correlation, being Items 10061 and 10065. 

This means that these items were perfectly aligned with the results of learner behaviour, 

and thus are perfect diagnostic instruments. In other words, those learners who showed a 

propensity to use the DECIMAL misconception have always selected these choices, and 

those who did not have this propensity did not select these choices. All of the remaining 

eight test items in this set had good correlation and also acceptable fit statistics. 

There were five learners with measures of 1.5 and above for the DECIMAL 

misconception and another seven learners who showed a strong propensity to use this 

misconception. Learner B49, for example, selected 6/6 choices on the basis of this 

misconception. 

When there are fewer items for analysis, as for this misconception, then Rasch 

analysis may be an overkill for practical usage, but it can offer good support when 

selecting which of the items are better for diagnosis. 

Analyzing the RECIPROCAL Misconceptions 

Only 2/10 of the test items were useful for the analysis of the RECIPROCAL case. These 

were Item 10069, which had an issue with the wording as outlined previously, but which 

has proven useful for eliciting this misconception, as well as Item 10065. No other items 

which had the RECIPROCAL misconception as a choice received sufficient responses 

for analysis. 

To perform this analysis all error responses were included, but none of the correct 

responses, since there were no cases in which a choice was both correct and 

RECRIPROCAL at the same time. Given that the number of error responses in this micro-

domain was small, there was very little data available to determine with sufficient validity 

that this misconception was the cause of the errors. 

Learner B16 selected 3/5 choices which were accountable to the RECIPROCAL 

misconception and learner B66 selected 4/9 of his/her errors on the same basis, and for 

both of these learners there was a strong indication of RECIPROCAL thinking. The total 

number of items counted included all test items for which the learner responded in error, 
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including responses which were not an indicator for this misconception. However, this 

did not impact on the results, which have shown that only two of the items were valid for 

the determination of this misconception. 

I conclude that RECIPROCAL thinking has value and warrants attention for 

future studies. The results raise another concern, that a particular way of thinking may 

only be used by a small number of learners in a class, and that the consensus of the class 

proficiency may drive the class forwards if these misconceptions are not detected and 

dealt with appropriately. 

Answering the Research Questions 

RQ1 (EFFECTIVENESS) 

The DECIMAL misconception was selected by 8/10 learners in Item 10064, and 

by 6/9 learners with Item 10066. These items also correlated with learner measures and 

were responsible for many of the errors. 

For the RECIPROCAL misconception, Item 10065 provided better evidence then 

others with 7/12 responses being directly attributed to this way of thinking. 

RQ2 (EFFICIENCY) 

RQ2 cannot be answered for this micro-domain, since there was insufficient data 

to split up the error responses into smaller subsets. The question is whether a single item 

may suffice, if this could cause the learner to select the rich distractor rather than the 

correct response. 

RQ3 (SELF-KNOWLEDGE) 

For RQ3 there were a total of 213 error responses from the 88 learners involved 

in the tests for this micro-domain. Of these, learners only provided 14 responses where 

an item was marked as Difficult, and these were spread over the entire set of test items. 

The result was that almost all of the learners considered these test items as either Easy or 

Just Right for their level of proficiency, and thus there was no way to distinguish between 

the learners who were proficient from those that thought that they were proficient but in 

reality were not. 

As a result, learner difficulty appears to have little or no value for diagnostic 

purposes on the basis of these misconceptions and the data available. 
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Summary 

A large number of the learners achieved success, but the errors encountered were 

insufficient to enable the positioning of learners into Development Stages. More research 

is needed to identify whether and to what extent, this micro-domain is useful for 

diagnostic purposes. Thus I do not present a summary of the distribution of the learners 

over the stages as I have done for the previous micro-domains. 

However, a few learners used the DECIMAL and the RECIPROCAL 

misconceptions as identified in advance of the analysis, and even if this helps a few 

learners it could be beneficial. 

6.7 Micro-Domain NL - Number Line for Common Fractions 

Initial Analysis of Responses 

This micro-domain consists of a range of problems which use the number line to position 

common fractions. For example, Item 10071, as shown in Figure 31, has a stem with a 

number line on range 0-1 which has 7 ticks on this range, with a red arrow pointing to the 

4th tick. The learner was asked to select the common fraction represented by the point on 

the number line where the red arrow is pointing. 

 

Figure 31. Number line example test item 

Three misconceptions were identified in Chapter 4 concerning the number line. 

The TICKSPARTS misconception concerns confusion between the number of ticks and 
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the number of parts. The WHOLELINE misconception is where a learner treats the entire 

number line as a range 0-1 irrespective of how many whole numbers on the line. The 

DECIMAL misconception occurs when a learner selects a decimal number instead of the 

common fraction requested. There were few choices which exhibited these individual 

misconceptions and thus a simpler approach was used for analysis— positioning the 

learners into the Development Stages in a single pass based on the frequency of responses 

observed. Thus the Rasch method was not used, and the analysis was based on visual 

inspection, which may reflect human expertise in seeing patterns in data that machines 

are unable to identify, and this approach may hold promise for a future AI-based approach 

to data analysis. 

Table 32 shows the number of learners who selected the different choices for the 

items in this micro-domain. Correct responses are shown with a blue background and 

both Items 10071 and 10078 have two correct responses. 

The test items can be divided into two groups. Firstly, those with little evidence 

of systematic errors—where there was a dominant correct response and the remaining 

responses divided among the choices with no other choices. This group consists of the 

Items 10071, 10073, 10074, 10075, and 10079. 

Table 32. Number Line: Counts by test items/response 

Item# 1 2 3 4 

10070 7 26 42 4 

10071 41 25 10 3 

10072 4 26 3 47 

10073 4 61 6 7 

10074 7  1 71 

10075 65 7 5 1 

10076  5 36 37 

10077 2 37 35 2 

10078 9 44 25  

10079 64 8 5 1 

 

The second group had a distinct pattern of systematic errors, in which one of the 

incorrect responses predominated, with a frequency of 26 or more, and these are indicated 

on the table with a red background.  Whereas there were a number of choices which 

received up to 10 responses, there were no choices which had between 11 and 25 
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responses. Thus there was a clear distinction between these dominant choices and others. 

However, the pattern of the other choices was not random, such as Item 10074 for which 

7/8 of the errors were attributable to choice 1. These other possible misconceptions were 

not included in this study, and should be the subject of future studies. 

For Item 10070, the number line had five ticks, which were over the range 0-1, 

with the arrow pointing to the 5th tick. Thus each tick represented the value “one-sixth” 

and the correct response was 
5

6
. However, 26/79 of the learners selected the common 

fraction 
1

5
. One explanation for this high frequency is that the arrow points to the 5th tick, 

with the digit 5 being consistent between this tick and the choice. This is a variation of 

the TICKSPARTS misconception. 

For Item 10072, one of the choices was the decimal equivalent of the correct 

answer, in this case 1.5 being provided as a choice in addition to the common fraction 1
1

2
. 

However, the response 1.5 was incorrect for this test item, given that a common fraction 

was requested. 26/80 learners selected this decimal number response, which was almost 

identical to the results from Item 10070, of which only 10 learners were common to both 

items. This is an example of both the DECIMAL and the WHOLELINE misconception. 

For Item 10076, there were 4 ticks between each of the whole numbers, 

0-1-2-3-4-5, which split each whole number range into 5 parts. The arrow points at the 

midpoint between the whole number labels 4 and 5, and is positioned midway between 

the 2nd and 3rd ticks. The correct response of 4
1

2
 was selected by 37 learners, with 36 

learners selecting 4
2

5
 which was close but which was not correct. This was evidence of a 

misconception in the mathematical reality of the learners which was not considered in 

advance, in which the learners treated the arrow as pointing at 
2

5
 even though it was 

pointing to a space after this tick. This could have been due to the learners believing that 

the diagram was wrong and that the arrow was misplaced. This should be explored as a 

potential misconception in the future, with reference to prior work on the empty number 

line. Five learners selected the second choice (5
1

2
), which was an error reflecting the 

process of counting back from the right of the number line rather than from the left. As a 

contrast, 65 learners selected the correct choice of 2
3

4
 in Item 10075, with almost no 
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learners selecting 2
1

2
, where the number line was over the range 0-5 with only the whole 

numbers marked, and with the arrow pointing to an empty place between the 2 and the 3, 

but with no guiding tick marks as in Item 10076. Thus the tick marks in Item 10076 may 

have influenced the learners in their choice over the lack of tick marks in Item 10075. 

Since this error occurred only on this single item, I suggest that this is included into a 

future study on learner misconceptions between number lines with ticks and empty 

number lines in terms of their suitability for diagnosis. 

The TICKSPARTS misconception was evident in Item 10077 in which more 

learners selected choice 2 (1
5

11
) than the correct choice 3 (1

5

12
). The learners likely 

selected choice 2 (1
5

11
) based upon counting the number of ticks, there being 11 ticks. 

This misconception was also evident in Item 10078, in which 44 learners selected choice 

2 (2
2

5
) as opposed to a mere 25 learners selecting the correct choice 3 (2

2

6
) together with a 

smaller number selecting the other correct choice 1 (2
1

3
). 

Identifying Learners by Stage 

For this micro-domain there were 81 learners and 10 test items. Using an ability cutoff at 

1.50 there were 28 learners positioned in the STABLE development stage which included 

those learners having between 8 and 10 correct responses. 

These STABLE stage learners collectively made 40 errors, and some of these 

were common to this group of learners: 

 Item 10076: 7 learners selected 4
2

5
  rather than 4

1

2
 as the answer given that 

there were two ticks prior to the arrow on the diagram. 

 Item 10077: 7 learners selected 1
5

11
 using the number of ticks as the 

denominator rather than the correct 1
5

12
 which was the correct choice, 

using the number of divisions rather than the number of ticks. 

 Items 10078: 10 learners selected the incorrect choice with the same 

reasoning as for Item 10077. 

These three cases accounted for 24/40 errors made by the STABLE learners, and 

this suggests that those who made these errors should be downgraded to the IMMINENT 

stage since they had lingering misconceptions which may have been hidden by the high 
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scores that these learners obtained. It is thus my conclusion that these were not slips but 

were misconceptions. 

The ACTIVE stage learners were those when there was a predominant usage of 

one of more of the misconceptions, and the remaining learners were then positioned in 

the ABSENT or EMERGENT stages. 

Given that the majority of the test items highlighted the TICKSPARTS 

misconception, this was the only misconception taken further for analysis. 

Answering the Research Questions 

RQ1 (EFFECTIVENESS) 

RQ1 is answered by the success in identifying the TICKSPARTS misconception 

from both of the items 10077 and 10078. These can be used in conjunction with the 

following: 

 Item 10070 exposed a misconception in the understanding of the fractions 
1

5
 

vs 
5

6
 in terms of the parts and the number line. 

 Item 10072 offered the learners the alternative of selecting a decimal number 

even though the common fraction was requested. 

 Item 10076 provided the situation in which the arrow was not positioned on a 

tick and this helped to identify how learners responded. 

The structure of these test items is thus that each test item exposed a different 

misconception, and the responses from five of the ten items did not provide evidence of 

systematic errors and misconceptions. 

RQ2 (EFFICIENCY) 

For RQ2, a single item is likely sufficient to obtain a quick response. For example, 

to detect the TICKSPARTS misconception either Item 10077 or 10078 alone is sufficient 

to provide evidence of the misconception. 

RQ3 (SELF-KNOWLEDGE) 

For RQ3, there were 783 responses in total covering all test items and all learners, 

with 360 of these indicated as Easy, 228 as Just Right, and 160 responses as Difficult. 

This frequency of items identified Difficult was far larger than all the other micro-

domains in this study. 13 learners identified more than 7 of the items as Difficult with 4 



 224 

identifying all of the 10 items as Difficult. Learner B34 identified all 10 items as Difficult, 

and yet scored 6/10, but most of those who identified a high number of items as Difficult 

did not achieve success, and thus these learners were potential candidates for being in the 

ABSENT stage. Thus, for this micro-domain there is some potential for using the learner-

indicated difficulty as an aid to detection of misconceptions . 

 

Overall, the results of this micro-domain provided potential for discovery of 

misconceptions, and this should be explored through follow-on studies. 

Summary 

Whereas some learners were positioned into STABLE and IMMINENT 

Development Stages, there was insufficient data available to position the remaining 

learners into the other Development Stages, and thus the summary of the Development 

Stages is not presented for this micro-domain. 

6.8 Micro-Domain CG - Common Fraction Graphics 

Initial Analysis of Responses 

Table 33 shows the count of the responses over the 12 items in this micro-domain. A blue 

background denotes the correct responses, identifying multiple correct responses where 

applicable. A red background highlights incorrect responses with high frequencies which 

point to possible misconceptions. This micro-domain was not analyzed in advance, in 

Chapter 4, for any previously identified misconceptions, rather the approach adopted was 

to analyze these results to find potential misconceptions. 
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Table 33. Fraction Diagram: Counts by test item/response 

Item# 1 2 3 4 

10080 1 75 2  

10081 14  62 1 

10082 29 14 22 7 

10083 50 6 10 5 

10084 24 2 7 39 

10085 69  1 2 

10086 13  59  

10087 1 15 54 2 

10088 2 7 57 5 

10089 1 52 11 7 

10090 1 44 21 5 

10091 4 55 1 11 

 

Five of the 12 items show a pattern of systematic errors. Each of these was 

analyzed qualitatively to understand the possible misconceptions which may have given 

rise to the learners’ responses. The response times were used for this analysis, which were 

not used for any other previous analyses. 

Item 10081 is a 10x10 grid of squares, with the bottom right 6x6 being blue and 

the remaining squares being red. The learners had to count the squares to obtain the 

answer, and the average time taken by the learners to answer this item was only slightly 

longer than Item 10080 which had significantly less squares to count. The challenge is to 

explain why 14/76 of the learners selected the incorrect choice 
64

100
, which is the fraction 

of the red squares rather than that of the blue squares, and also since the majority of these 

learners did not make a similar error Item 10080. One possible explanation is that the 

learners did not read the question and followed the example of Item 10080 which asked 

for the red squares and then simply applied this to the next item 10081 without reading 

the stem question properly. However, there is evidence from the responses to Item 10080 

of general proficiency in understanding the relationship between the diagram and 

common fraction notations. This explanation for the high incidence of learners choosing 

64

100
 is perhaps not a misconception, but rather more operational, in a rush to answer the 

question. This is more likely due to a lack of experience in how to read a question before 
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answering. Even though this explanation is not conceptual in nature, it may be commonly 

experienced as learner errors, and thus also requires diagnosis and remediation. 

Item 10082 was the most difficult of the test items in this micro-domain, requiring 

both reasoning as well as common fraction knowledge. This test item was derived from 

the TIMSS 2003 study, item M012001 (Mullis et al., 2004). The highest count of 

responses was for “1”, indicating that only one more circle was needed to be yellow to 

make up 
4

5
  of the total. This response was likely derived from the three yellow circles in 

the diagram and the target fraction of 
4

5
, so that adding “1” would seem like an appropriate 

response. This is an example of whole number arithmetic in which the denominator was 

ignored in the calculation. 

Item 10083 asked for the best representation of the blue squares—which should 

have been labelled as circles, but no learner reported this error, nor did any of those in 

my pilot group—where one diagonal consists of 6 yellow circles, with the rest of the 6x6 

circles being blue. There were 10/71 of the learners who selected the choice 
1

6
, which is 

the fraction of yellow circles and not the blue circles. This could have been caused by the 

learner remembering the previous question, since the colour yellow was the target of that 

question. This is similar to the issue that arose in Item 10081, further justifying that this 

notion of “item memory” is possibly a common cause of errors and potentially worthy of 

further examination. 

Item 10087 had a high number of learners (15/72) who selected 2
1

4
 as the answer 

rather than the correct 2
3

4
, but there was insufficient evidence to uncover the reason for 

this. Future research into such fraction diagram representations would be needed to 

understand the nature of this misconception. 

For item 10091, 11 learners selected 3
2

3
 as the response, which was a similar error 

to the selection of 2
2

6
 in Item 10088, since they both had more whole units than existed 

in the diagrams, and also that the wrong color was chosen for the fractional part, being 

the white segments in Item 10088 and the yellow segments in Item 10091. 



 227 

Answering the Research Questions 

Due to the small number of items within this set, it was not possible to answer the research 

questions in full, but the analysis of the responses has pointed to future directions for this 

research. 

RQ1 (EFFECTIVENESS) 

For RQ1, I have not found prior diagnostic studies that used fraction diagrams in 

a diagnostic setting, and also no studies that have dealt with misconceptions within such 

fraction diagrams. As a result, this part of my study is providing initial results which can 

point to further studies. 

RQ2 (EFFICIENCY) 

This is not covered for this micro-domain due to limited data available. 

RQ3 (SELF-KNOWLEDGE) 

There were a total of 870 responses to these 12 test items, with 521 marked as 

Easy, 267 as Just Right, and 49 as Difficult. However, only 9 of the 93 responses 

identified as systematic errors were indicated as Difficult. There is thus potential to learn 

more about this relationship between learner self-reflection and the possible 

misconceptions associated with fractions represented as diagrams. 

Summary 

No summary is provided here for how the learners are positioned into the micro-

domains. Further research will be needed to identify specific misconceptions and the 

nature of the best types of problems which are suited for these as diagnostic instruments. 

6.9 Micro-Domain CO - Common Fraction Ordering 

Initial Analysis of Responses 

The full set of 20 items in this micro-domain were presented to the learners in School A, 

but only 10 of these items were presented to the learners in School B. Whereas Rasch 

analysis can handle such differences in the number of items, there may be some impact 

on the items for which there is less data. There were 93 learners in total, with 29 learners 

from School A, and 64 learners from School B, with 1143 responses recorded. 
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The 20 items were categorized in advance in terms of an estimated difficulty level 

based on the nature of the denominators. These are presented in Table 34, which combines 

the estimated difficulty with the measured item difficulty from the Rasch analysis. This 

also includes the average duration in seconds that learners spent answering these items, 

which is extracted separately for both correct and incorrect responses. 

The analysis of the response time was not performed for the other micro-domains, 

and this was also the only micro-domain for which there was an estimated difficulty level. 

Table 34. Common Fraction: Test items by difficulty and duration 

Item# 
Measured 

Difficulty 

Estimated 

Difficulty 

Duration 

All 

Duration 

Correct 

Duration 

Incorrect 

10092 -1.47 1 33.01 31.99 37.63 

10102 -1.35 1 30.02 25.97 46.71 

10105 -0.70 3 19.44 21.21 15.12 

10096 -0.61 4 24.56 27.27 18.75 

10104 -0.61 3 26.60 22.28 35.24 

10107 -0.45 5 31.46 31.67 30.86 

10095 -0.11 3 16.34 18.32 13.74 

10097 -0.09 5 22.31 25.67 14.75 

10106 -0.07 4 24.66 28.18 20.00 

10094 -0.05 3 21.78 21.14 22.59 

10100 0.12 5 22.62 22.18 23.44 

10108 0.17 5 24.18 23.33 25.70 

10093 0.29 2 29.15 33.02 25.44 

10101 0.31 5 26.21 26.28 26.14 

10099 0.33 5 20.46 16.06 27.50 

10098 0.33 5 18.69 19.19 17.90 

10103 0.55 4 30.00 31.25 28.33 

10111 0.74 5 21.32 20.80 21.92 

10110 0.74 5 21.89 25.07 18.23 

10109 1.95 4 23.86 29.89 21.00 

 

This table is presented in the sequence of the calculated Rasch difficulty of the 

items. This Rasch difficulty is an indication of how many of the learners answered the 

items correctly, so that an item with a low measure was easier to answer correctly than 

an item with a high measure. 
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Some observations from this table are: 

 Whereas Item 10092 was identified as the easiest, it also had the longest 

duration. This was the first question presented to the learners in the online 

assessment, so the learners may have taken the extra time to become familiar 

with test operations. For the future I suggest that learners are given an initial 

trial question to help them to become familiar with the types of questions 

before the test commences. 

 The most difficult was Item 10109 and was answered correctly by only 9/28 

learners. The correct responses had a far longer duration (29.89s) than the 

incorrect responses (21.00s). 

 Item 10102 was anomalous considering that it was both one of the easiest, and 

also had the longest duration for incorrect responses, of 47 seconds. In 

analyzing this in further detail, there were 36 responses of 10 seconds or less, 

of which only 6 were incorrect, and the longest response measured was 277 

seconds which may have impacted the average response time. To obtain a 

more accurate result, outliers in the response times could be removed. 

However, for this study, I have included all response times, given that such 

outliers occurred throughout the set of items and that my concern is not with 

accuracy but rather with these duration measures as indications of learner 

activity. 

 For many items there was a significant difference between the durations of 

learners who selected the correct option from those who selected the incorrect 

option. Items 10102, 10104 and 10099 had the largest differences in the 

durations of correct responses over the incorrect responses, and likewise Items 

10106, 10096, 10109 and 10097 had large differences in incorrect over correct 

response durations. 

 For example, Item 10104 was answered correctly by 57/83 learners, but 

incorrect responses took 13 seconds longer on average than correct responses. 

There is thus some indication that the duration taken by the learners on some items 

may be a predictor of whether they will succeed or fail, but 12/20 items had relatively 

similar durations for success and failure, in which the absolute difference was less than 7 

seconds on responses which were typically between 20-30 seconds for other items. 
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Identifying STABLE Learners 

The results are presented in “map” form in Table 35 using TABLE 1.0 of WinSteps that 

shows both the learners and the items on the same scaled diagram. I have not used this 

map form on previous micro-domains since the previous results benefit from the 

additional information in the form of the tables. However, for this micro-domain there is 

no additional information to display, and thus this “map” form is preferred, being shorter 

and more concise. 

This “map” is a qualitative picture of the data, illustrating the goodness-of-fit of 

the data to the Rasch model. The left panel of the map shows the measured ability of 

learners from the highest at the top (learner B30), to the lowest at the bottom (learner 

B62), and compares this to the equivalent measures of item difficulty on the right side 

from the most difficult at the top (Item 10109), down to the easiest at the bottom (Item 

10092). The prefix ‘10’ is dropped from the item numbers to enable these to fit better 

onto the diagram, so Item 10110 is represented by the label 110. This map diagram shows 

a bell curve structure for both the learners and the items, with a concentration around the 

median point, as indicated by the “M” on the central axis, with the learners and items then 

spreading out to the top and bottom. 

Learner B62 only responded to one test item, and thus cannot be considered as the 

true worst performer. 

The learners around the median measure each scored around 9-10/20 or 5-6/10, 

which means that they selected an incorrect option for around 50% of the test items. 

However, given that each of the test items offered only two choices, getting 50% correct 

could also be achieved by guessing. 

The process to determine the learners in the STABLE stage was the same as in 

previous micro-domains, using a cut-point of 1.5. This selected 12 learners in the 

STABLE stage, being learners B30 down to A43 on the map. 

Below this STABLE group are 13 learners A03 to B16 who had measures of 

ability from 1.50 down to 1.00 and each obtained high absolute scores such as 18/20, 8/10 

and 4/5. Based upon this Rasch measure, these learners were not positioned in the 

STABLE stage, and need further analysis on their errors. 
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Table 35. Common Fraction Comparison: Map of learners and items 

TABLE 1.0 CO-AB-CORRECT                 CO-AB-CORRECT.out.txt  Jan  2 23:04 2014 

INPUT: 93 LEARNER  20 TESTITEM  REPORTED: 93 LEARNER  20 TESTITEM  2 CATS WINSTEPS 3.80.1 

----------------------------------------------------------------------------------------- 

  

MEASURE                                         LEARNER - MAP - TESTITEM 

                                                     <more>|<rare> 

    4                                                 B30  + 

                                                           | 

                                                           | 

                                                           | 

                                                           | 

                                                           | 

                                                           | 

                                                           | 

                                          A05 A31 A32 A78  | 

                                                           | 

    3                                                      + 

                                                           | 

                                                           | 

                                                           | 

                                                           | 

                                                           | 

                                              A26 A44 A79 T| 

                                                           | 

                                                           | 

                                                           | 

    2                                                      +  109 

                                              A77 B21 B46  | 

                                                           | 

                                                      A43  | 

                                                           | 

                                                      A03  |T 

                                                          S| 

                                                           | 

                                                  A06 A86  | 

                      B01 B03 B09 B20 B25 B35 B36 B51 B72  | 

    1                                                 B16  + 

                                                           | 

                                                           | 

                                                           |S 110 111 

                                                           | 

      B08 B14 B22 B31 B32 B43 B50 B52 B55 B58 B60 B64 B76  |  103 

                                          A01 A27 A28 B68 M| 

                                                           |  093 098 099 101 

                                      A30 A42 A50 A66 A68  |  108 

                                      A14 B34 B39 B40 B47  |  100 

    0             A02 A41 A67 B04 B05 B11 B19 B23 B27 B28  +M 

                                                      A82  |  094 095 097 106 

                                                      A80  | 

                                                           | 

      A10 B15 B24 B29 B37 B38 B44 B45 B48 B57 B59 B66 B69  |  107 

                                                  A08 A46  | 

                                                           |  096 104 

                                                          S|S 105 

                                                      B63  | 

                          B02 B17 B41 B54 B56 B61 B65 B67  | 

   -1                                                      + 

                                                           | 

                                                           | 

                                          B07 B12 B53 B85  |  102 

                                                           | 

                                                           |T 092 

                                                           | 

                                                          T| 

                                                           | 

                                                           | 

   -2                                                 B62  + 

                                                     <less>|<frequent> 

 

From this point I continue my analysis with the entire set of 93 learners for the 

identification of the NUMERATOR and DENOMINATOR misconceptions and am not 

separating out the STABLE stage learners as I have done previously so that I can explore 

an alternative approach with fewer steps and with more data. 

Analyzing the NUMERATOR Misconception 

This misconception is based upon the following rule to find the smallest common 

fraction: 
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NUMERATOR rule: Select the smallest numerator, and if the 

numerators are equal then select the smallest denominator. Similar 

for the largest. 

This rule was applied using a Rasch analysis, and the results of the top few 

learners are shown Table 36: 

Table 36. Common Fraction Ordering: NUMERATOR misconception 

TABLE 17.1 CO-AB-NUMERATOR            CO-AB-NUMERATOR.out.txt  Jan  3 13:56 2014 

INPUT: 93 LEARNER  20 TESTITEM  REPORTED: 93 LEARNER  20 TESTITEM  2 CATS WINSTEPS 3.80.1 

----------------------------------------------------------------------------------------- 

LEARNER: REAL SEP.: 1.20  REL.: .59 ... TESTITEM: REAL SEP.: 2.20  REL.: .83 

  

         LEARNER STATISTICS:  MEASURE ORDER 

  

--------------------------------------------------------------------------------------------- 

|ENTRY   TOTAL  TOTAL           MODEL|   INFIT  |  OUTFIT  |PTMEASURE-A|EXACT MATCH|        | 

|NUMBER  SCORE  COUNT  MEASURE  S.E. |MNSQ  ZSTD|MNSQ  ZSTD|CORR.  EXP.| OBS%  EXP%| LEARNER| 

|------------------------------------+----------+----------+-----------+-----------+--------| 

|    10     19     20    4.51    1.85|      MAXIMUM MEASURE|  .75   .75|100.0 100.0| A27    | 

|    11     19     20    4.51    1.85|      MAXIMUM MEASURE|  .75   .75|100.0 100.0| A28    | 

|    41     10     10    3.87    1.87|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| B15    | 

|    53     10     10    3.87    1.87|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| B29    | 

|    67     10     10    3.87    1.87|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| B45    | 

|    62      5      5    2.87    1.90|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| B39    | 

|    63      5      5    2.87    1.90|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| B40    | 

|    38      9     10    2.53    1.09|1.12    .4| .92    .4|  .15   .24| 90.0  89.9| B11    | 

|    51      9     10    2.53    1.09|1.12    .4| .92    .4|  .15   .24| 90.0  89.9| B27    | 

|    75      9     10    2.53    1.09|1.28    .6|2.39   1.2| -.19   .24| 90.0  89.9| B54    | 

|    77      9     10    2.53    1.09|1.29    .6|2.66   1.3| -.22   .24| 90.0  89.9| B56    | 

|    86      9     10    2.53    1.09|1.29    .6|2.66   1.3| -.22   .24| 90.0  89.9| B65    | 

… 

 

As for the case of the Decimal Number Ordering micro-domain, there are some 

items for which the choices do not conclusively point to a single way of thinking, such as 

being both correct and also the outcome of applying the NUMERATOR rule. A learner’s 

response to a single item cannot be used to infer which rule the learner was using when 

they responded. However, inference is improved when using a number of items in a test 

to identify consistent responses. 

Learner A27 scored 19/20 on this NUMERATOR rule, but only scored 12/20 

against the correct responses, and consequently their responses are better accounted for 

by the NUMERATOR rule. Similarly, learner B45 scored 5/10 correct, which is the 

expected outcome from pure guessing, compared to their score of 10/10 when scored 

against the NUMERATOR rule. 

A cutoff measure of 2.50 resulted in 12 learners who showed evidence of using 

the NUMERATOR misconception consistently, and included those with raw scores down 

to 9/10. 
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Analyzing the DENOMINATOR Misconception 

This misconception is structured on the basis of the denominators, where smaller 

denominators represent larger numbers. 

DENOMINATOR rule: To find the smallest number select the largest 

denominator, not considering the numerators. When the 

denominators are equal then select the smallest numerator. 

 

Table 37. Common Fraction Ordering: DENOMINATOR misconception results 

TABLE 17.1 CO-AB-DENOMINATOR        CO-AB-DENOMINATOR.out.txt  Jan  3 13:56 2014 

INPUT: 93 LEARNER  20 TESTITEM  REPORTED: 93 LEARNER  20 TESTITEM  2 CATS WINSTEPS 3.80.1 

----------------------------------------------------------------------------------------- 

LEARNER: REAL SEP.: .99  REL.: .50 ... TESTITEM: REAL SEP.: 2.36  REL.: .85 

  

         LEARNER STATISTICS:  MEASURE ORDER 

  

--------------------------------------------------------------------------------------------- 

|ENTRY   TOTAL  TOTAL           MODEL|   INFIT  |  OUTFIT  |PTMEASURE-A|EXACT MATCH|        | 

|NUMBER  SCORE  COUNT  MEASURE  S.E. |MNSQ  ZSTD|MNSQ  ZSTD|CORR.  EXP.| OBS%  EXP%| LEARNER| 

|------------------------------------+----------+----------+-----------+-----------+--------| 

|    22     20     20    4.49    1.85|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| A67    | 

|    55     10     10    3.49    1.88|      MAXIMUM MEASURE|  .00   .00|100.0 100.0| B31    | 

|    28      9     10    2.58    1.09|1.12    .4|1.12    .6|  .13   .20| 88.9  88.9| A82    | 

|     1     18     20    2.45     .77|1.02    .2| .77    .1|  .21   .20| 89.5  89.4| A01    | 

|    72      9     10    2.16    1.09| .82    .0| .42   -.1|  .46   .23| 90.0  90.1| B51    | 

|    21     17     20    1.95     .65|1.24    .7|1.47    .8|  .06   .25| 84.2  84.2| A66    | 

|    27     17     20    1.95     .65|1.06    .3|1.06    .3|  .19   .25| 84.2  84.2| A80    | 

|     8      8     10    1.42     .83|1.19    .6|2.80   1.9| -.12   .31| 80.0  79.9| A14    | 

|    84      4      5    1.40    1.17|1.24    .6|1.13    .5|  .07   .28| 80.0  80.1| B63    | 

|    49      8     10    1.28     .84|1.63   1.3|3.91   2.4| -.61   .31| 80.0  80.1| B24    | 

|    56      8     10    1.28     .84| .92    .0| .71   -.1|  .42   .31| 80.0  80.1| B32    | 

|    68      8     10    1.28     .84| .81   -.3| .56   -.4|  .54   .31| 80.0  80.1| B46    | 

|    70      8     10    1.28     .84|1.45   1.0|3.19   2.0| -.34   .31| 80.0  80.1| B48    | 

… 

 

 

Table 37shows the top 13 learners where the MEASURE column is the learner 

measures computed using the DENOMINATOR rule. Learners A67 and B31 each 

achieved a 100% score on this measure, and A67 also scored 10/20 on the correct choices, 

and B31 scored 7/10. Learner A01 scored 18/20 using this DENOMINATOR rule, and 

also scored 12/20 on the correct choice. Thus these 3 learners, A67, B31, and A01, have 

achieved 50-70% correct, which is an acceptable pass mark in the classroom, and yet the 

most plausible way of thinking to account for their results is the DENOMINATOR rule. 

I set the cut-point at 1.20 resulting in 14 learners who showed evidence of using 

the DENOMINATOR rule to answer these test items. These were combined with the 12 

learners selected as using the NUMERATOR rule to comprise 26 learners for whom there 
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was evidence of misconception usage and who were positioned within the ACTIVE 

development stage. 

The benefits of using a Rasch model for this data analysis of misconception usage 

is to validate the responses in terms of a strong statistical model. The other benefit is that 

these can be scored easily, since the Rasch calculations require automated methods and 

cannot be calculated by hand. 

The vast majority of these items had a good fit to the response data, and 

consequently the data fits the measures as obtained from the learner responses. There 

would not have been such a good fit if the constructs being measured were not real and 

thus this analysis not only provided valid measures of the items and learners, but also 

provided evidence of these misconceptions being both real and measurable as a reflection 

of learning thinking on common fractions. 

Identifying STABLE, IMMINENT, ACTIVE, and ABSENT Learners 

The initial analysis presented in the person-item map in Table 35 shows 25 learners with 

measures greater than 1.00, of which 12 were positioned in in the STABLE stage with a 

measure of 1.50 of more. These learners made very few errors, with minimum scores of 

9/10 for School A or 19/20 for School B. 

The remaining 13 learners from this group of 25 learners  made some errors, 

scoring around 8/10 or 15-18/20. These were classified as IMMINENT stage learners, 

and an analysis of their errors may help to determine if these are slips or late-stage 

misconceptions. 

From the initial 93 learners, 25 were positioned into the STABLE or IMMINENT 

stages, with another 26 previously positioned into the ACTIVE stage by reason of their 

high measures on the NUMERATOR and DENOMINATOR rules. The remaining 42 

learners were then in either the ABSENT or EMERGENT stages, however, no rule has 

been established to separate these and these were retained as a single combined stage. 

Answering the Research Questions 

RQ1 (EFFECTIVENESS) 

For the NUMERATOR rule, the Items *10093, 10094, *10101, *10103, 10105, 10106, 

and 10107 meet the requirement that the correct choice and the rich distractor are 

different, implying a clear inference from a learner response. From this qualitative 
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analysis, the three items identified with an * are best in terms of the quantitative evidence 

that more of the learners who have used this rule also selected these choices. 

For the DENOMINATOR rule, the best items are *10095, 10096, 10097, 10098, 

10099, 10100, 10104, 10108, *10109, *10110, and *10111, for which each, like the 

NUMERATOR rule, has a rich distractor choice which has no other plausible explanation 

within the limits of this model. Those marked with a * show the best measures from the 

Rasch analysis and thus could be recommended for diagnostic measurement. 

RQ2 (EFFICIENCY) 

There is a challenge when using only two choices in a diagnostic test that the 

responses may be subject to guessing which would result in an expected success rate of 

50% per item. However, the items marked with an * provide better indicators of the use 

of these rules, to distinguish these from proficiency learners, and those who were 

guessing. 

RQ3 (SELF-KNOWLEDGE) 

There are some learners who marked an item as Difficult and who also selected 

the incorrect option. The majority of these responses were for Items 10093, 10095, and 

10101, making up around 50% of the items marked as Difficult, with the remainder spread 

over the other 17 items. Item 10093 was the first item presented, and Item 10095 was 

relatively easy compared to other items in the set, whereas Item 10101 was more difficult 

in the sense that the fractions in the stem are very close to each another. However, there 

was insufficient evidence that the Difficulty Index would help to improve the 

effectiveness of the diagnostic process. 

Summary 

This analysis has helped to determine whether there was evidence of specific 

misconceptions in learner responses, formulated as rules that can be tested on the common 

fractions. 

Two misconceptions were formulated and tested, being the NUMERATOR rule 

and the DENOMINATOR rule. There was strong evidence that these rules form the basis 

for the responses of 12 learners for the NUMERATOR rule and 14 learners for the 

DENOMINATOR rule. 
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Figure 32. Common Fraction Ordering : Learners by Stage 

The distribution of learners for this micro-domain was influenced by the inability 

to separate the EMERGENT and ABSENT stage learners, but it is clear from Figure 32 

there was an overall lack of proficiency among the learners. 

6.10 Micro-Domain CE - Common Fraction Estimation 

CE1: Initial Analysis of Responses 

This micro-domain was structured into two different types of test items, CE1 and CE2, 

where CE1 items were used for both schools A and B, covering 98 learners with a total 

of 880 responses, and the CE2 items were used only for school A, with a total of 289 

responses from 29 learners. 

Items types CE1 and CE2 were analyzed separately for this micro-domain, which 

was a variation of the standard approach I have adopted. 

The results showed a good correlation for each of the items, indicating that each 

of these items was consistent with the consensus of the others items in determining the 

learner measures. The INFIT and OUTFIT statistics were within acceptable limits, and 

thus no items were removed to improve the Rasch modeling. 

CE1: Identifying STABLE Learners 

A total of 19 learners scored 1.50 or more on the ability measure, where the raw scores 

were all around 8/10, and these 19 learners were placed into the STABLE stage. These 

learners collectively made a total of 13 mistakes of which 7 answered Item 10114 

incorrectly with 4/7 of these learners choosing 0.12 or 0.5. The choice 0.12 is an 

indication of the NUMERATOR misconception, which is not expected in learners 
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achieving high ability scores. This error may provide evidence of late-stage 

misconceptions which were not explicitly identified by other items in this set. 

 

Figure 33. Item 10114 

 

 

Figure 34. Item 10112 

 

36/92 learners obtained the correct answer on Item 10114, shown in Figure 33, 

compared to only 28/90 for Item 10112, shown in Figure 34, which was identified by the 

Rasch calculations as having the highest item difficulty score. 

On a visual inspection, Item 10112 appeared to be far simpler than Item 10114, 

but this observation was not borne out in the results. Item 10112 exposed misconceptions 

which the most proficient learners did not show evidence of using, except that two of the 

learners who achieved 9/10 for these item types made their only mistake on Item 10112 

with both selecting 2.5, the DECIMAL misconception, as their answer. 

CE1: Identifying IMMINENT Learners 

Learners with an estimated ability measure of between 1.0 and 1.5, roughly translating to 

a score of 7/10 were positioned in the IMMINENT stage. This included seven learners 

who collectively  made a total of 23 errors, which were used to identify patterns that 

indicated a preference for a particular type of error. The first observation is that two items 

produced no errors at all, being Items 10122 and Item 10126. 

 

Figure 35. Item 10122 

Item 10122, shown in Figure 35, was answered correctly by all of the learners 

positioned in the STABLE and IMMINENT stages. This item was designed to elicit 
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responses for the second and third choices, being “7” and “8”, and of the 44 learners who 

answered this test items incorrectly, 9 responded with “7”, and 22 with “8”. 

Thus this item can discriminate between learners in the IMMINENT stage and the 

other stages, since this appeared to be an early-stage misconception which was more 

likely to be used by learners in their initial development leading up to the ACTIVE stage. 

Item 10112, shown in Figure 34, was answered incorrectly by four of the learners 

in the IMMINENT stage, and as for the results of the STABLE stage, all of these learners 

selected the choice “2.5”. 

 

Figure 36. Item 10115 

Item 10115 was answered incorrectly by four learners, who selected choices “19” 

and “20”, which reflected the NUMERATOR and DENOMINATOR misconceptions 

respectively. This result was predicted by the misconceptions model for this micro-

domain, as distinct from the results of Item 10112, for which the highest-frequency 

response was not predicted. This highlights the challenge in designing the choices for an 

item, including rich distractors which will elicit misconceptions effectively. 

CE1: Identifying ABSENT, EMERGENT and ACTIVE Learners 

The learners who were not in the STABLE or IMMINENT stages would have made a 

number of errors, and it is the extent to which these were accountable to known 

misconceptions which was important for this analysis. 

The ACTIVE stage learners should have achieved around 50% success on the 

items, with their errors accountable to the known misconceptions. This would indicate 

active use of some schemas which lead to success, and active schema development to 

account for their errors. The ACTIVE learners are analyzed in the next section. 

The Rasch ability measure has been used to position 19 learners into the STABLE 

stage and 7 into the IMMINENT stage. It was a general expectation of the Development 

Stage model that the number of learners in the IMMINENT and EMERGENT stages 
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would be smaller than the other stages, since these are transition stages between the 

primary stages of STABLE, ACTIVE and ABSENT. 

An additional 39 learners were positioned in the ACTIVE stage, who had ability 

measures between -0.5 and 1.0. A further 33 learners had measures below -0.5, who 

needed to be split into those whose responses were showing evidence of some 

misconception usage (EMERGENT) and those whose responses did not (ABSENT). This 

requires the identification of the degree to which learners were guessing or were using 

these known misconceptions. 

 

Figure 37. Common Fraction Estimation CE1 : Learners by stage 

Learners were positioned into the ABSENT stage when they had an ability 

measure of less than -0.5, and also showed no indication of having used the 

NUMERATOR or DENOMINATOR misconceptions. This approach produced one 

learner, B39, who succeeded on 5/10 with no evidence of pattern in their errors. 

In summary, these 71 learners were positioned with 39 in the ACTIVE stage, 32 

in the EMERGENT stage, and a single learner in the ABSENT stage. 

CE1: Analysis of the misconceptions 

The analysis continues by examining the misconceptions themselves and for this three 

separate Rasch analyses were conducted: for the NUMERATOR misconception; for the 

DENOMINATOR misconception; and then for the combination of both, for cases where 

the learner response indicated that either of these misconceptions were used. The analysis 

commenced with the combined set of misconceptions, and STABLE stage learners were 

removed to reduce the influence of proficient learners. The correct responses were also 
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removed, to focus the analysis on the errors, which helped to find an explanation for these 

errors in terms of either of the two pre-identified misconceptions. 

The results showed good correlation and fit, with no items required to be removed 

for further analysis. However, Item 10126 had a questionable correlation and the analysis 

was run twice, both including and excluding this item. 

The results indicated that all of the items in this analysis were indicators of these 

misconceptions, but some were better for this purpose. Items 10124 and 10125 yielded 

no results at all and could not be measured—in other words, no learners selected the rich 

distractors for these items. 

The most unlikely item is Item 10112, for which the rich distractors were selected 

by only 16/60 learners, and the most likely are Items 10116 and 10123, with 37/41 and 

34/39 learners respectively. These two latter items are better as diagnostic indicators for 

common fraction estimation, since the learners who did not select the correct response 

were likely to select one of these misconceptions for their response. 

Analyzing the items in this micro-domain from the perspective of the 

misconceptions yielded the following: 

 7 learners predominantly selected the NUMERATOR in their incorrect 

responses. 

 Item 10126 is the best indicator of the NUMERATOR misconception. 

 6 learners predominantly selected the DENOMINATOR misconception in 

their incorrect responses. 

 Items 10122 and 10115 are best indicators of the DENOMINATOR 

misconception. 

CE1: Answering the Research Questions 

RQ1 (EFFECTIVENESS) 

The NUMERATOR and DENOMINATOR showed insufficient evidence of 

learner use, so these were analyzed separately. However, the evidence was sufficient 

when the analyses were combined. The best item to use within the combined analysis are 

Item 10115 for which the rich distractors were selected by 36/74 learners, and Item 10113, 

by 39/72 learners. Items 10116 and 10114 also produced good diagnostic results. 
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Figure 38. Item 10126 

Item 10126 is by far the best item to detect the NUMERATOR misconception 

with 31/67 of the learners selecting this choice, and the Rasch analysis giving this a 

measure of -1.39. This low measure means that learners who used this misconception 

were more likely to select the rich distractor for this item than for any of the other items. 

RQ2 (EFFICIENCY) 

A single good diagnostic item, such as Item 10115, is sufficient by itself to provide 

an indication of learners who used either the NUMERATOR or DENOMINATOR 

misconceptions. Item 10113 can supplement this as required. 

RQ3 (SELF-KNOWLEDGE) 

A total of 14 learners were identified as almost exclusively using either the 

NUMERATOR or the DENOMINATOR misconception to account for their incorrect 

responses, on the basis of the Rasch analyses. Of these the majority also indicated the 

item difficulty as Easy or Just Right. Thus it is possible to predict that a learner who 

selected this rich distractor, and who also marked the item as Easy or Just Right, has used 

this misconception, rather than guessing, since otherwise their Rasch measures would not 

have indicated this result. 

However, there were some exceptions, such as learners B11 and B66 whose 

responses were split equally between Easy/Just Right and Difficult. For the remainder of 

the learners no items were marked as Difficult. 

Thus for this case, learner self-knowledge is potentially as reliable as the Rasch 

analysis as an indication of the most prolific usage of misconceptions. This can also be 

applied very easily without the need to compute the results as required by Rasch analysis. 

The analysis of the usage of self-knowledge must also take into account the 

possibility of guessing on the part of the learners. The learners may not only have guessed 

the responses to the items, but may also have randomly selected their indication of item 
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difficulty. Given that there were four choices for each test item, there was a 25% chance 

of success of selecting a particular misconception, and also given that there may have 

been two rich distractors within these four choices, there was then a 50% chance of a 

learner selecting a rich distractor by guessing. 

To counter this, I conducted an alternative analysis, using a normalized result in 

which the learner’s indication of difficulty was reduced to account for the possibility of 

guessing, by reducing the indicated value by 66% to provide a factor on a zero base. This 

was interpreted as the extent to which the outcomes were directly attributable to some 

schema usage and not to guessing. 

The results showed that there were sets of learners whose responses were more 

likely to be non-random in nature, and these correlated with the learners whose responses 

were accountable to these misconceptions from the Rasch analysis. However some 

learners did not score high on the Rasch analysis and consistently marked the items as 

Easy or Just Right when selecting these rich distractors. The reason for this was that these 

learners had selected correct choices or random distractors for other items. However, 

when these learners did select  a rich distractor, they invariably identified these as being 

Easy or Just Right. 

These results point to the potential for using both quantitative and qualitative 

approaches to measure a learner’s use of a misconception. The Rasch analysis provides 

good evidence when used alone, but there were situations in which the learners may have 

held these misconceptions and yet this was not indicated in the response pattern. When 

used in combination with the self-knowledge data there was a greater likelihood of 

detecting a broader range of learners who were using these misconceptions, and were thus 

within the ACTIVE or EMERGENT stages of my model. 

Whereas the findings from other micro-domains showed no additional value 

arises from using the self-knowledge of the learners, this is one case in which a positive 

effect is noted. 

CE2: Initial Analysis of Responses 

The second analysis for the Common Fraction Estimation micro-domain uses the CE2 

test items which asked the learner to find the common fraction which was closest to the 

given whole number, a decimal number or other common fraction. These items were used 
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only for school A and were not included within the tests for School B. A total of 29 

learners responded to the 10 items in this micro-domain. 

Table 38. Common Fraction Estimation: CE2 Counts by test item/response 

Item 1 2 3 4 

10117 10 18 1  

10118 2 7 11 9 

10119 9 6 5 9 

10120 7 3 11 8 

10121 19 3 3 4 

10127 10 2 6 11 

10128 13 1 5 10 

10129 8 4 13 4 

10130 16 11 2  

10131 12 4 4 9 

 

Table 38 provides the frequency analysis of how many learners selected the 

individual choices for each of the items. This shows a large number of learners who made 

errors, and the highest frequency errors are highlighted with a red background and were 

analyzed to identify ways of thinking that may account for these responses. 

Item 10128 is shown in Figure 39 and this item was answered correctly by only 

5/29 learners. Choice 1 received 13/29 responses, and choice 4 received 10/29 responses, 

with both having a greater response than the correct choice 3. A qualitative analysis of 

the choice 1 suggests this may be selected on the basis that 
5

10
 consists of the same digits 

“1” and “5” as found in the item stem “1.5”. The fraction 
15

5
  in choice 4 also uses these 

same digits exclusively and perhaps it is a syntactic reading of the choices which  

influenced the learners in selecting an option, rather than the understanding of which had 

numeric magnitudes which were close to “1.5”. 

The result from this frequency analysis, coupled with a similar more detailed 

analysis of the other items is that these items were beyond the capability of the learners 

in this Grade 7 class, and that little can be gained from further detailed analysis. As a 

result, the detailed analysis was kept to a minimum. 
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Figure 39. Item 10128 

CE2: Identifying STABLE and IMMINENT Learners 

The initial Rasch analysis showed that Item 10118 has low correlation and was removed 

for a second cycle of the Rasch calculations. The results then showed a good correlation 

and fit and 3 learners were identified with high measured proficiency (7/9 or 8/9 items 

correct) and were positioned in the STABLE stage. 

Another 4 learners were measured at 0.83, achieving 6/9 success and were 

positioned into the IMMINENT stage. The incorrect responses were concentrated on four 

items, with Item 10128 being answered incorrectly by four of the learners in the 

IMMINENT stage, with the other items being Items 10127 and 10131 each with three 

learners selecting an incorrect option, and Item 10129 with two learners selecting an 

incorrect option. 

CE2: Identifying ABSENT Learners 

Nine learners answered no more than two items correctly, of which three learners 

obtained no correct answers at all. These showed no evident ability, but also showed no 

indication of using one of the misconceptions identified in this micro-domain. 

CE2: Identifying ACTIVE and EMERGENT Learners 

The 13 remaining learners obtained some correct answers, and who were analyzed further 

on their use of the identified misconceptions. However, whereas there were some definite 

patterns of errors that could contribute to a more detailed analysis, there was insufficient 

data in this set to warrant this analysis. It is thus recommended that this should be left to 

a future study in which this type of item can be used within a more extensive quantitative 

analysis, and which can be coupled with a qualitative analysis of the structure and form 

of the items, which would ideally be coupled with interviews of the learners to gain an 

insight into their individual and collective thinking. 
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The distribution of the learners by stage is summarized in Figure 40 

 

Figure 40. Common Fraction Estimation CE2 : Learners by Stage 

CE2: Answering the Research Questions 

The research questions were not addressed for the CE2 items due to the limited data 

available. However, there was clear evidence of systematic selection of errors, which 

points to misconceptions that may not have been covered by the items in this set. 

6.11 Micro-Domain CA - Common Fraction Addition 

Initial Analysis of Responses 

This micro-domain used 20 items conducted over two tests. Items 10152-10161 were 

used in Test 1 and Items 10162-10071 for Test 2. 

Table 39 shows the count of responses for each of the choices for each of the test 

items. Those marked with a blue background indicate the correct response and there is 

only one correct choice for each of the items. Items with a red background indicate a high 

frequency of responses for incorrect choices which were selected on the basis of having 

at least 50% of the frequency of the correct choices or for which the frequency was 

significantly higher than the other incorrect choices. 

The distractor choices included both rich distractors identifying common 

misconceptions and some random distractors with no intended conceptual basis. 

For each test, the first five questions were used for both of the participating 

schools and the second five questions were only used for School A. This accounts for the 

smaller number of responses for Items 10157-10161 and 10167-10171. 
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Table 39. Common Fraction Addition: Counts by test item/response 

Item# 1 2 3 4 

Test 1 

10152 8 3 71 2 

10153 33 7 40 3 

10154 8 48 21 6 

10155 5 11 7 60 

10156 38 31 3 11 

10157 11 11 3 3 

10158  10 15 3 

10159 7 11 8 2 

10160 6 6 3 13 

10161 16 7 4 1 

Test 2 

10162 5 2 8 63 

10163 6 53 2 17 

10164 5 42 17 12 

10165 10 6 49 11 

10166 15 37 9 15 

10167 15 3 5 5 

10168 14 4 5 5 

10169 3 2 14 9 

10170 4 7 2 15 

10171 9 14 1 3 

 

Prior studies have shown that the common fraction addition is attempted by 

adding the numerators and/or denominators—essentially treating the fractions as whole 

numbers. This is the ADDITION misconception on which this analysis was based and 

which was used to identify the rich distractors. 

Learners selected a significant fraction of the rich distractors for Items 10153, 

10156, 10157 and 10158, being where the choice was structured as the sum of either the 

numerator or the denominator. For instance, Item 10157 included the choice 
11

15
 in 

response to the requested sum 
7

11
+  

4

15
. These ADDITION distractors were not provided 

for all items, and thus were not always available to the learners as a choice. When these 

rich distractors were not included, then the learners selected other choices. 
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Item 10154 provided a variation in which the mixed number 1
4

6
 was provided as 

a choice, and this also elicited a high number of learner responses. 

In Test 2, Item 10163 requested the sum of 
5

9
+  

4

9
 which is the easiest case of 

common fraction addition since there is a common denominator in place which requires 

no further work to determine. However, 17/78 learners selected 
9

18
, which is the sum of 

both the numerators and denominators. Items 10169, 10170 and 10171 provided choices 

that are the sum of numerators, and a significant number of learners selected these 

choices. 

As for previous micro-domains, the proficient learners were initially identified 

and removed. Following this, the responses from the remaining learners were analyzed to 

identify their usage of specific misconceptions to account for their responses. The 

ADDITION misconception is highly relevant, on the basis of the frequency analysis, and 

this was indicated by rich distractors within Items 10153, 10154, 10156, 10157, 10158, 

10163, 10169, 10170, and 10171. 

Identifying STABLE Learners 

The Rasch analysis showed that many learners had a measured proficiency higher than 

the measured difficulty of the most difficult item and all of these learners were considered 

to have total proficiency within the scope and limitations of these 20 test items. This 

notion of “total proficiency” means that the learners had not made any mistakes, and thus 

their ability measures could not be accurately assessed, except to infer that within the 

scope of these tests that they were totally proficient. 

A number of learners  achieved success on at least 80% of the items they 

answered, and these learners would be given an “A” grading or perhaps a distinction on 

a summative test. This analysis resulted in 35 of the learners being identified as proficient 

and were positioned in the STABLE stage. They were also removed from further analysis. 

The cut-point measure for those who answered 20 test items was a raw success of around 

16/20. Learners succeeding on 15/20 or less were moved to the next step of analysis. 

These 35 learners were positioned in the STABLE development stage. 
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Analysis of the ADDITION Misconception 

Nine items were identified above as rich distractors for the ADDITION misconception. 

The responses from these items were analyzed over the non-STABLE learners using a 

Rasch analysis in which the measures were calculated based on whether the learners 

selected the ADDITION choice rather than any of the other choices. 

Table 40 shows the results of these nine items in terms of their suitability in 

detecting the ADDITION misconception. The correlations in the PTMEASURE-A 

CORR column are all within an acceptable range, and some of these, such as Items 10156, 

10158, 10163, 10153, and 10154, have high correlations, indicating a strong linkage 

between these questions—as diagnostic indicators of the ADDITION misconception—

with the learner propensity to select these choices. 

The INFIT and OUTFIT values were larger than 1.5 for some items, but these 

remained within an acceptable range, and particularly INFIT, which was the more 

challenging to address (Linacre, 2002). As a result, all of the items were retained for 

further analysis. 

Item 10158 had a measure of -0.88 and 10/13 learners who answered this item 

selected the rich distractor for the ADDITION misconception. On this basis this is the 

most useful discriminator for this misconception. 

Table 40. Common Fraction Addition: ADDITION misconception results 

TABLE 26.1 CA-AB-ADDITION              CA-AB-ADDITION.out.txt  Dec 28 14:42 2013 

INPUT: 49 LEARNER  9 TESTITEM  REPORTED: 47 LEARNER  9 TESTITEM  2 CATS WINSTEPS 3.80.1 

--------------------------------------------------------------------------------------- 

LEARNER: REAL SEP.: .00  REL.: .00 ... TESTITEM: REAL SEP.: .00  REL.: .00 

 

TESTITEM STATISTICS:  CORRELATION ORDER 

 

---------------------------------------------------------------------------------------------- 

|ENTRY   TOTAL  TOTAL           MODEL|   INFIT  |  OUTFIT  |PTMEASURE-A|EXACT MATCH|         | 

|NUMBER  SCORE  COUNT  MEASURE  S.E. |MNSQ  ZSTD|MNSQ  ZSTD|CORR.  EXP.| OBS%  EXP%| TESTITEM| 

|------------------------------------+----------+----------+-----------+-----------+---------| 

|     4     11     16    -.42     .66|1.53   1.6|1.86   1.6|  .23   .55| 61.5  74.2| 10157   | 

|     8      7     13     .15     .65|1.36   1.6|1.65   2.0|  .24   .51| 45.5  65.0| 10170   | 

|     7      9     14     .25     .63|1.29   1.2|1.41   1.3|  .26   .47| 41.7  66.1| 10169   | 

|     9      9     13     .24     .68| .87   -.4| .78   -.5|  .56   .45| 54.5  67.9| 10171   | 

|     3     27     36    -.25     .50| .82   -.8| .81   -.6|  .69   .61| 85.7  72.9| 10156   | 

|     5     10     13    -.88     .86| .76   -.4| .61   -.3|  .70   .59| 90.0  82.3| 10158   | 

|     6     16     32     .81     .49| .92   -.4| .87   -.4|  .71   .68| 71.4  68.9| 10163   | 

|     1     27     34    -.26     .57| .76   -.9| .66   -.9|  .73   .62| 82.4  73.9| 10153   | 

|     2     20     30     .35     .55| .82   -.8| .80   -.7|  .76   .70| 81.3  67.7| 10154   | 

|------------------------------------+----------+----------+-----------+-----------+---------| 

| MEAN    15.1   22.3     .00     .62|1.01    .1|1.05    .2|           | 68.2  71.0|         | 

| S.D.     7.4    9.7     .47     .11| .28   1.0| .44   1.1|           | 17.0   5.1|         | 

---------------------------------------------------------------------------------------------- 

 

However, Item 10158 was relatively difficult compared to the others presented, 

when analyzed qualitatively, since it required the determination of the lowest common 

denominator of 9 and 5, being 45. However, 15/28 learners who attempted this test item—
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who were all from School A—selected the correct choice 1
1

45
, with 10/28 selecting 

6

14
 

which is the sum of the numerators and denominators. 

 

Figure 41. Item 10158 

Similar explanations apply to Items 10157, 10153, and 10154. 

Identifying ACTIVE and ABSENT Learners 

There were 22 learners  positioned into the ACTIVE stage, due to having an ADDITION 

measure of greater than 1.00. Of the original 85 learners, 35 were positioned into the 

STABLE stage and then another 22 into the ACTIVE stage, and by ignoring the 

IMMINENT and EMERGENT stages there were 28 learners remaining in the ABSENT 

stage. The learners were positioned only into the three main stages for this analysis due 

to the limited number of items which had rich distractors for the ADDITION 

misconception. 

 

Figure 42. Common Fraction Addition : Learners by Stage 

The distribution of learners in Figure 42 still reveals important information about 

the individual learners, even though this only covers the three primary stages. For 

example, it shows how many were located in the ABSENT stage and who warranted 

special attention to commence their path to proficiency in common fraction addition. 
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However, some learners in the ABSENT stage  obtained relatively high marks for 

this test. For these learners, a lack of conceptual understanding may go unnoticed by the 

teachers, on the assumption that a good mark is inferred to mean that they know the topic 

sufficiently to move on in their mathematics studies. 

Answering the Research Questions 

RQ1 (EFFECTIVENESS) 

All nine questions that highlight ADDITION misconception are useful in terms 

of the Rasch results. Of these, Items 10158 and 10157 were answered using the 

ADDITION distractor by more learners and thus are more suited as detectors of this 

misconception. 

RQ2 (EFFICIENCY) 

Whereas some of the items were used by both of the schools in this study, there 

was sufficient evidence, from the test items used only by School A, to infer that any of 

the test items used in this first test would suffice as a good diagnostic item when used by 

itself. However, within this list, Items 10153 and 10156 are preferable, since they are less 

complex than other items, and thus can be asked and answered far quicker in a classroom 

setting. 

Thus, my answer to RQ2 is that a single question is likely to be sufficient to 

provide initial evidence of the usage of this misconception. 

RQ3 (SELF-KNOWLEDGE) 

There were 139 learner responses for options marked as the ADDITION 

misconception, and 72 of these were indicated as being Easy, 26 as Just Right, and only 

16 as Difficult. Some learners did not answer the question on difficulty, which was 

optional only for School A, leaving a total of 114 responses. Thus 98/114 of the learners 

(86%) indicated this as either Easy or Just Right, and yet selected the ADDITION 

misconception. 

6.12 Conclusions 

The response data has been analyzed to identify proficient learners, and also to identify 

misconceptions. The misconceptions resulted from both prior knowledge of specific 
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misconceptions which had been encoded into the rich distractors, as well as by exploring 

new misconceptions in micro-domains for which there was little or no prior work. This 

was conducted within the limits of the size and duration of the tests, and the nature of the 

item bank. 

Most of these micro-domains were analyzed using a standard approach, by first 

performing a high-level analysis of results, looking for any evidence of systematic errors, 

and then by matching the error response patterns to the misconceptions which were 

identified for each micro-domain. 

STABLE stage learners were then identified and removed, using a Rasch analysis 

on the correct choices. Learners who had not reached the STABLE stage but whose ability 

measures were sufficiently high were identified as IMMINENT and their errors were 

analyzed to find evidence of common late-stage misconceptions. 

All learners other than those in the STABLE stage were analyzed in terms of their 

propensity to select one or more of the rich distractors, or to select other distractors which 

identified potential misconceptions uncovered during this study. On this basis, they were 

positioned into the ACTIVE, EMERGENT and ABSENT stages, with the added 

information, not presented in the results of this study, that each learner was identified in 

terms of the specific misconceptions which they were using and which accounted for their 

positioning into a stage. 

Variations to this standard analysis were accommodated to suit the specific 

nuances for the individual micro-domains, and especially where there was insufficient 

data to position the learners into the stages. In most of the micro-domains there was an 

indication of other ways of thinking which were found within the patterns of learner 

responses but which were not accounted for within the limited test items used, and 

recommendations are made for future studies to fill these gaps in knowledge. 

The next chapter consolidates the findings from this study in terms of the three 

research questions which this study addresses, and other findings which have arisen from 

the analysis of the results. 
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CHAPTER 7 : 
RESEARCH RESULTS AND FINDINGS 

This chapter summarizes the results obtained from this study and consolidates the 

findings across the range of micro-domains as reported in Chapter 6. 

7.1 Discussion of Results by Research Question 

This study began with a vision concerning the potential of the Web to provide help to 

teachers in mathematics classes. The goal was to both advance the knowledge and 

practice of diagnostic assessment for mathematics and to identify the potential for 

systemic introduction of automated tools for diagnostic assessment into classrooms, to 

coincide with the increased usage of computer technology in secondary education. 

My initial analysis led me to treat this as a research problem, to address a gap in 

how diagnostic assessment is both understood and is used, and to recommend how 

diagnostic processes could be used in a classroom setting. I selected the rational numbers 

as my domain of study with a focus on misconceptions in the decimal numbers and the 

common fractions. 

My three research questions were posed in Chapter 1 which are labelled as RQ1 

(EFFECTIVENESS), RQ2 (EFFICIENCY), and RQ3 (SELF-KNOWLEDGE). 

Collectively, these questions address the challenge of obtaining high quality, diagnostic 

information about learners, where “high-quality” means that the diagnostic information 

is fit-for-purpose and is valid in terms of what it is measuring. These measurements 

include diagnostic information about the learners’ state of knowledge of mathematics and 

particularly the conceptual obstacles to developing proficiency in the rational numbers. 

In Chapter 1, I motivated the need to answer these three questions as a required 

step towards providing valid web-based diagnostic tools for mathematics classrooms. 

These research questions have guided this project from the start, and have 

informed the review of prior work; the planning and execution of the initial paper-based 

pretest; and the content and structure of the online assessments. These online assessments 

were used to gather the bulk of the data from learners, and were conducted over eight 

micro-domains in the rational numbers. 
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The detailed data analysis was conducted over each of these eight micro-domains 

and was reported in Chapter 6. This analysis is now followed, in this chapter, by a 

reflection back to these research questions, both individually and across each of the 

micro-domains. Common threads are identified from the detailed analyses, leading to a 

number of findings, and to recommendations which extend beyond the scope of these 

questions. The Development Stage model forms the basis for the analyses, and is assessed 

in terms of its potential utility, by reviewing its successes and the areas which can be 

improved. This model is central to this study, and constitutes the primary theoretical 

vehicle used to both identify conceptual development stages and to position learners into 

a trajectory based on their stage of development. 

RQ1 (EFFECTIVENESS) 

The items in this study were designed for the specific purpose to elicit misconceptions. 

The form and nature of many of these items were drawn from prior studies, and variations 

of previously reported items were introduced to explore why some items are better than 

others for diagnostic purposes. 

The “semi-dense” criteria for diagnostic items, as identified by Bart et al. (1994), 

informed the design of some of the items in this study’s Item Bank. However, the items 

do not meet the requirements for semi-density since these criteria are too strict for general 

application. Rather, semi-density provides a theoretical model to analyze items 

qualitatively. Many of the items used for this study included choices which were random 

distractors and which were not based upon any known cognitive rule, thus violating Bart 

et al.’s “Response Interpretability” criterion. In some cases more than one choice was 

provided for a given cognitive rule, violating their “Response Discrimination” criterion. 

A Rasch analysis was used to measure the diagnostic value of items. This 

approach is distinct from the qualitative “semi-dense” approach suggested by Bart et al. 

(1994), yet both approaches have a common purpose of identifying items which are good 

diagnostic items. The Rasch process was based on learner selection of rich distractors in 

the MCQ items, each of which was linked to known misconceptions. The items were 

validated by applying Rasch analyses in parallel, with one analysis for each of the known 

misconceptions, from which items were identified as better indicators of these 

misconceptions. 
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The items were divided into two groups for each misconception, being firstly 

those suited for diagnosis of the misconception, and secondly those which were not 

suited. This division was based on the statistical fit of the items with the learners who 

showed evidence of using this misconception to account for their responses. The Rasch 

analysis calculated two measures simultaneously, being firstly the construct, as the 

learners’ use of a misconception, and secondly the suitability of the individual items for 

identifying the misconception. Unsuitable items were identified through the lack of fit to 

measure this construct, and were removed from the original set of items, leaving a reduced 

set of items which  fit the construct, and were thus suited to measure the learner’s use of 

the misconception. This reduced set of items was used to determine which items are better 

than others for diagnosing this particular misconception. These “better” items have been 

described in the section “Item Difficulty Reconceptualized” on page 89 in which these 

better items are those which are “easier”, based on their having low Rasch item measures. 

“Easier” here means that the rich distractors in these items were selected by a larger group 

of the learners who  used this misconception and which accounted for their responses. 

These easier items were thus more inclusive to the majority of the learners but being so 

inclusive they were also subject to an error of measurement in which a learners were 

indicated as using a misconception when  in reality they had not. This was an intentional 

side-effect and is the lesser of the two evils of measurement error, given the alternative 

of failing to identify learners who had used this misconception. 

The design of the items included the requirement that each choice should not be 

both a correct response as well as a rich distractor for a specific misconception, however 

this proved to be unavoidable in some cases. For instance, most of the items in the micro-

domain of Decimal Number Ordering asked the learner to select the smaller or larger of 

two decimal numbers. Given only two choices means that there were a range of ways of 

thinking which are known to account for learner responses to such items, and thus a single 

choice may have been selected from more than one way of thinking. 

The requirements for good diagnostic items have been discussed in Chapter 4 on 

page 126, concerning the instrumentation for this study, and are also summarized under 

the heading of Good Diagnostic Items on page 103. Essentially, my position is that a good 

diagnostic item must have the primary purpose of identifying a learner’s misconceptions, 

and that it should be usable in conjunction with other diagnostic items to support an 
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effective and efficient formative assessment classroom structure as proposed by Wiliam 

(2011b). 

RQ1 is now discussed by the individual micro-domains. 

PV: Place-Value Knowledge 

The Rasch analysis shows that Items 10005, 10001, 10002, and 10004 detect the 

WHOLE misconception better than others. 

DO: Decimal Number Ordering 

A number of items were identified as suited for diagnosing each of the four coded 

ways of thinking—L1, L2, L3, and S3—drawn from Steinle’s (2004b) work, but there 

was almost no overlap between the items suited for each of these codes. 

Items 10023 and 10038 are better for the diagnosis of the L1 misconception when 

these are analyzed qualitatively, since one of their two choices points only to this 

misconception. These two items were also measured as “easy” by the Rasch analysis, in 

terms of the number of learners who  selected these choices. This dual 

qualitative/quantitative approach to item validity is preferred over using a single approach 

where this is possible. 

Similar findings on good diagnostic items have been made for each of the ways 

of thinking in this micro-domain. 

CR: Common Fraction Representation 

Most learners selected the correct choices, showing general proficiency on the 

verbal representation of common fractions. As a result, there was insufficient data from 

the learner errors to identify which items are better for the DECIMAL and the 

RECIPROCAL misconceptions. The most significant result was that a large number of 

learners selected the decimal fraction which is similar in its digits to the common fraction, 

being the DECIMAL misconception. For example, Item 10064, where the decimal 

number 9.12 was selected as the closest representation to “nine twelfths”, when the choice 

9

12
 was also available. 

Three explanations are suggested for the lack of learner errors: firstly, that the 

learners already had proficiency in this field; secondly, that the test items were 



 256 

insufficient to gather evidence of misconceptions; and finally, that the misconceptions in 

this micro-domain are not well understood and require further study. 

NL: Number Line for Common Fractions 

Five of the ten test items in this micro-domain resulted in systematic errors made 

by the learners, and there was evidence of three separate misconceptions. Firstly, the 

TICKSPARTS misconception which occurs when a learner mistakes the number of ticks 

as being the same as the number of parts. This misconception was evident from Items 

10070 and 10077 and either of these is a good diagnostic item. Secondly, the 

WHOLELINE misconception, which occurs when learners treat the entire number line as 

being on the scale 0-1 even though the labels show that the scale is wider. This was 

evident in Item 10072, where 3/78 learners selected 
3

4
 when the arrow pointed at a tick 

midway between 1 and 2 on the scale of 0-2, and where the majority of learners selected 

the correct response. Thirdly, the DECIMAL misconception, where the rich distractor is 

a decimal number, even though a common fraction is requested. This was evidenced from 

the results of Item 10072 where 26/80 learners selected 1.5 over the correct response of 

1
1

2
 which was selected by 47/80 learners. 

I conclude that the items identified here are all good for isolating these 

misconceptions even though the data was limited. 

CG: Common Fraction Graphics 

Misconceptions were not pre-identified for this micro-domain. Rather, the learner 

responses were analyzed to explore patterns of systematic errors made by the learners and 

whether these could be formalized as existing or new misconceptions. Some errors 

appeared to be the result of misreading the item and its choices rather than being a 

misconception. However, this may be an example of non-cognitive causes of errors which 

warrant consideration for diagnostic assessment, such as when the previous item 

influences a learner’s reading of the subsequent item. 

It is not possible to make further conclusions about the nature of the 

misconceptions in this micro-domain, and hence no way to determine which items are 

better than others. 
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CO: Common Fraction Ordering 

The NUMERATOR misconception occurs when the learner uses only the 

numerator to determine which is larger or smaller, and the DENOMINATOR 

misconception is when the learner uses only the denominator to make this determination. 

The Rasch analysis indicated that Items 10093, 10101 and 10103 are better for the 

NUMERATOR misconception, and Items 10095, 10109, 10110 and 10111 better for the 

DENOMINATOR misconception; however, when analyzed qualitatively and compared 

to each other, it was not obvious from the structure and content of these items why one 

item is better suited than another. 

CE: Common Fraction Estimation 

Two types of tests were used for this micro-domain, with CE1 asking for the 

closest number to a common fraction, and CE2 asking for the closest common fraction to 

a given number. Two misconceptions were considered: NUMERATOR, in which the 

learner selects a choice based upon the numerator of the common fraction; and 

DENOMINATOR, in which the learner selects a choice based on the denominator. 

For the CE1 items, the analysis was improved when these two misconceptions 

were combined. This resulted in Items 10013 and 10015 being determined as better for 

diagnosis; being selected by more learners who had higher measures for the use of these 

misconceptions. 

For the CE2 items, learners were selecting choices based upon the similarity 

between the digits in the stem and in the choices, and little else can be deduced on the 

quality of these items for this diagnosis. 

CA: Common Fraction Addition 

Items 10157 and 10158 are both suited to detect the ADDITION misconception; 

inducing learners to select a rich distractor for this misconception. This occurs when the 

common fraction in a choice has either the numerator or the denominator which are the 

sum of the numerators or denominators of the common fractions in the stem. 

RQ2 (EFFICIENCY)  

This question concerns how many items are sufficient to produce valid evidence of the 

use of particular misconceptions by the learners. The economic argument is that the fewer 
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questions are required, then the faster that informed instruction can progress in the 

classroom. 

Wylie and Wiliam (2006) propose a manual approach which uses a single item, 

but I have argued against this on the grounds of the validity of the results. In general a 

single test item is unlikely to offer a sufficient level of validity, due to the impact of slips 

and guessing. I conclude that Wylie and Wiliam’s approach offers a good alternative for 

classroom diagnosis when technological support is unavailable. 

My primary findings from RQ2 are that the number of test items needed for a 

valid diagnosis is not constant between the micro-domains; and that this number is also 

not easy to determine. The number of items needed is dependent on the various ways of 

thinking being diagnosed; the diagnostic quality of the items used; and the level of 

validity that is required. When diagnostic items are designed to address specific 

misconceptions, then a single test item can provide an indication of learner thinking. 

However, to efficiently isolate specific learner conceptions sufficient to position learners 

into the Development Stages then a single test item is mostly insufficient. 

The micro-domains are summarized for this research question, omitting those for 

which no conclusion could be reached. 

PV: Place-Value Knowledge 

A single item can provide evidence of a misconception, but only if the item 

sufficiently discriminates between the correct response and the rich distractor. Such an 

item should provide sufficient rich distractors to discriminate between words such as 

“thousands” and “thousandths”. However, a valid inference that can discount the impact 

of guessing and slips will require a small number of items, but far less than the 10-20 

used in these tests. As required, different items will be needed for different ways of 

thinking in place value. 

DO: Decimal Number Ordering 

For items with only two choices, a single item is insufficient to make a valid 

inference concerning which way of thinking a learner has used to account for his/her 

response. Steinle’s (2004a) study used a standard battery of 30 test items, which is 

acceptable for the discovery of misconceptions, but is perhaps too large for efficient usage 

in a classroom setting. 
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Thus, items for this micro-domain should rather have more choices, so that a 

single item can produce a more specific conclusion. This is the case for item B10 from 

TIMSS 1999, which had five choices, and which was analyzed in section “Micro-Domain 

DO - Decimal Number Ordering” on page 108. 

NL: Number Line Common Fractions 

Items 10077 and 10078 were reliable indicators of the TICKSPARTS 

misconception, and either one of these is sufficient for a quick diagnosis. For the 

DECIMAL and WHOLELINE misconceptions, there was insufficient data to answer this 

question. 

CO: Common Fraction Ordering 

 A single item is insufficient for diagnostic purposes when these items are 

structured by comparing two common fractions to select the larger or smaller. Rather, a 

number of items are required to establish a valid inference on whether the learner is 

proficient, is guessing, or is using misconceptions. This is essentially the same situation 

as encountered with Decimal Number Ordering, and common threads on diagnostic 

validity should be explored between these micro-domains. 

Whereas test items with two choices are easy to administer in a classroom setting, 

each of the choices has multiple interpretations. This may result in invalid inferences 

drawn from the learner responses when insufficient items are used; or if the results are 

not analyzed to isolate the most likely conceptual cause. 

CA: Common Fraction Addition 

The ADDITION misconception can be isolated quickly using a single test item; 

but this will not provide sufficient evidence to position the learners into different stages. 

Items 10153 and 10156 are the most suited and together these are sufficient to tentatively 

position a learner into one of the STABLE, ACTIVE, or ABSENT stages; but this will 

apply only if slips and guessing are not considered. 

RQ3 (SELF-KNOWLEDGE) 

This Difficulty Index uses learner self-knowledge, in conjunction with learner responses, 

to infer the use of misconceptions. The basis for this approach is that when learners 

identify an item as Easy or Just Right, and who also select an incorrect choice, then this 
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is an indication of a misconception. The argument is that by identifying an item as Easy 

or Just Right, the learner has selected a schema which they believe will solve the problem; 

thus if the response is wrong then it is likely that that schema is wrong. 

However, this self-knowledge data may be influenced by a range of psychological 

factors, such as learners believing that they will be seen as weak if they indicate an item 

as Difficult. In some cases, learners who selected Difficult were shown to be relatively 

proficient. 

I repeat here the 3x3 decision matrix as introduced originally in Table 10: 

RESPONSE TYPE 

LEARNER PERCEPTION OF DIFFICULTY 

Easy Just Right Difficult 

Correct response  

Zone of Competence 

STABLE 

 

Zone of Competence 

IMMINENT / ACTIVE 

guessing 

Zone of Incompetence 

ABSENT 

Incorrect - 
Rich distractor 

misconception 

Zone of Learning 

ACTIVE / EMERGENT 

misconception  

Zone of Learning 

ACTIVE / EMERGENT 

 

Zone of Incompetence 

ABSENT 

Incorrect - 
Random distractor 

potential 
misconception 

Zone of Incompetence 

ABSENT 

 
 

Zone of Incompetence 

ABSENT 

 

 
Zone of Incompetence 

ABSENT 

 

This Difficulty Index may add value to the data gathered from the learner 

responses to the test items, when coupled with Rasch analysis measures. However, Rasch 

analysis needs a computer to carry out the calculations to produce the measures; whereas 

the Difficulty Index can be applied to individual test items without needing a computer. 

RQ3 asks whether this self-knowledge on the perceived difficulty of items adds 

value by reducing the number of items which are needed in a diagnostic assessment. If 

this is not the case, then the only impact is that the learner is asked to provide information 

which does not affect the measurement; achieving the same results as obtained when this 

information is not used. Given this study’s economic focus on diagnostic assessment, this 

self-knowledge should be avoided unless there is a tangible benefit arising from its usage. 

For example, consider learner A67’s responses to the 20 questions in the Place-

Value micro-domain. These responses produced a measure of 1.52, which is evidence of 

the WHOLE misconception. On this basis this learner was positioned into the ACTIVE 
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stage; which means that they had sufficient responses which were accountable to the 

WHOLE misconception to indicate active learning. 

These same responses from learner A67 were also applied to the Difficulty Index 

matrix structure; by counting the responses to each test item based upon whether the 

response was, or was not, a rich distractor for the WHOLE misconception; and by 

coupling this count to the learner-indicated difficulty. 

Table 41. Learner A67 Difficulty Index Analysis 

LEARNER A67 Easy Just Right Difficult 

Correct response 4 
STABLE 

1 
IMMINENT / 

ACTIVE 

0 
ABSENT 

Incorrect - Rich 
distractor 

13 
ACTIVE / 

EMERGENT 

1 
ACTIVE / 

EMERGENT 

0 
ABSENT 

Incorrect - Random 
distractor 

3 
ABSENT 

1 
ABSENT 

0 
ABSENT 

 

This matrix shows a total of 23 responses whereas there were only 20 test items 

in this set; and this is due to three of the test items having  a choice which is both a 

CORRECT response as well as being a rich distractor for the WHOLE misconception. 

The highest frequency of responses (13) was found in the highlighted cell. This 

cell indicates that the learner selected a rich distractor and also marked the item as Easy. 

This decision matrix positions the learner in either the ACTIVE or the EMERGENT 

stage; which is effectively the same result as determined from using the Rasch analysis 

alone. There is thus no additional benefit to using this information if the Rasch 

calculations are available. On the other hand, if computers are not available in the 

classroom to perform the Rasch calculations in real-time, then the Difficulty Index offers 

a scaled-down alternative to infer learner development stages. 

I conclude that the Difficulty Index adds little additional value when the Rasch 

analysis can be performed on the data. However, there are cases in which this adds value, 

and the Difficulty Index may be applicable in cases in which the computing requirements 

of Rasch are not available. 
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7.2 Key Findings from this Study 

Final conclusions are presented now in the form of key findings resulting from this study. 

Most findings result from the research questions for this study; and other findings are 

related to the Development Stage model, and to practical issues and implications of Web-

based, diagnostic assessments. These key findings are the most significant conclusions 

resulting from this study. 

Finding 1: Learners can be positioned into Fine-Grained Development 
Stages 

My initial literature review identified the lack of a fine-grained model of learner 

development which was suited as the basis for my study. The purpose of such a model 

would be to identify the progress of learners through their developmental progress in 

micro-domains from novice to mastery; while considering the nature of the learners’ 

conceptual model, including their misconceptions. 

During daily instruction learners are exposed to new micro-domains, which are 

often presented as specific problem types. The learners use both prior knowledge and new 

schemas to follow the teacher and to carry out their work. For example, a learner’s prior 

knowledge may consist of informal whole number knowledge which is applied to new 

problems in common fractions. A learner’s schemas include intermediate conceptions 

which are developed during learning in a new topic, and which are applied to more 

complex and challenging problems as introduced by the teacher. As an example, once a 

knowledge of the addition of common fractions with equal denominators is established, 

then the teacher may use examples with unequal denominators. This introduces more 

complexity into the mathematical representation, requiring the construction and 

reconstruction of schemas, so as to accommodate prior knowledge of common factors. 

My concern in this study was to identify where the learners are located in their 

conceptual development in a micro-domain so as to enable more targeted instruction and 

possible remediation. The Development Stage model is a response to the practice in which 

learners are considered to know a topic when they get the right answers; while other 

learners are considered to not know a topic by getting the wrong answers. Many tests are 

marked by simply giving a tick or cross, and this provides insufficient information to 

determine a learner’s stage of development in a micro-domain. Two problems arise with 
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such a simple marking approach. The first, being learners who know what they are doing 

and who get a wrong answer, being a slip, and secondly, learners who do not know what 

they are doing and yet achieve success, being the result of a lucky guess. 

Learner knowledge in a micro-domain is not a simple dichotomy which separates 

those who know from those who don’t know; rather, understanding develops over a 

spectrum of evolving proficiencies and conceptions. The Development Stage model is the 

core theoretical contribution of my original research proposal, and has remained mostly 

unchanged. However, it has been refined to include the boundary stages of EMERGENT 

and IMMINENT, which account for transitions between the primary stages of ABSENT, 

ACTIVE and STABLE. As learners start their learning in a micro-domain they become a 

novice and are consider to be in the EMERGENT stage, which quickly leads to active 

learning in the ACTIVE stage. As their knowledge matures, they get close to mastery in 

the IMMINENT stage. This model represents the fine-grained development stages of a 

learner in a micro-domain, and also has the potential to identify which diagnostic test 

items are best for learners in the different stages. 

This model assists both with the interpretation of  learner responses and the 

explanation of these responses as being one of the following: 

 correct responses which are truly reflective of achieved proficiency; 

 slips by otherwise proficient learners; 

 the use of preconceptions or intermediate conceptions; which are both 

considered as misconceptions that are an integral element of conceptual 

development; 

 random guessing, resulting in both correct and incorrect responses, from 

learners who have insufficient knowledge to address a problem. 

The five stages of the model represent a continuity of learning in a micro-domain, 

from novice (ABSENT → EMERGENT), through active learner (ACTIVE → 

IMMINENT), to mastery (IMMINENT → STABLE).  

The approach adopted for the data analysis in Chapter 6 was to position learners 

on the stages of the model and specifically to identify misconception usage in the 

ACTIVE stage. This information can be useful to teachers if it can be provided 

automatically and immediately—with little effort on the teacher’s part—as part of daily 

instruction based on formative assessment practices. Such fine-grained information on 
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learner knowledge is not currently available through other means, since the amount of 

data required to be gathered and processed is too large for a teacher to handle. However, 

with the potential for widespread availability in the classroom of devices connected to the 

Internet, this has become a possibility. 

My finding is that it is possible, using the approach developed in this study, to 

position learners into these stages for each micro-domain, and to accomplish this with a 

small number of items. 

 The application of this model to each micro-domain has highlighted some issues 

which point to further work, as follows 

 How the micro-domain knowledge and proficiency is mapped to the stages for 

the micro-domain. 

 The role and meaning of the ABSENT stage. 

 Setting a reasonable cut-point in the Rasch measures which indicate when a 

learner is in the STABLE stage, given that the cut-points used are inconsistent 

between the micro-domains. 

 Setting a reasonable cut-point for the ABSENT stage from the Rasch analysis 

for which learners are considered to know nothing about the topic. 

One additional outcome is that the stages in this model can be used as a common 

vocabulary for teachers; since these stages are meaningful across micro-domains and they 

point to appropriate remediation for groups of learners who are in a particular stage. Thus 

the model may provide a benefit to learners similar to what would result from 

personalized instruction, as was contemplated by Bloom (1984). 

It is my finding that this Development Stage model is valid and indicates real 

stages in the growth of proficiency; and consequently that it can provide teachers with 

fine-grained knowledge of their learners’ misconceptions in a way that cannot be 

provided using traditional means. However, the data processing to compute these 

measures from the learners’ responses requires computational support. 

This finding on the Development Stages raises the question of whether this model 

should itself have been included as one of the research questions for this study, but I chose 

to adopt the position that this model was a means to an end, where the end is to better 

understand effectiveness and efficiency in diagnostic testing of misconceptions. 
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An additional finding is that learners who are in the ABSENT stage are those for 

whom the wording, notations, and nature of the problems are beyond the learners’ 

understanding. In other words, these learners lack the capability to even read the question 

and to understand what is expected in a solution. These learners are failing on Polya’s 

(1945/1990) first step in problem-solving; that they are unable to read the question. When 

the learners move beyond the ABSENT stage, they are commencing their conceptual 

development in learning the mathematical language of the problems in this micro-domain. 

The finding is that this ABSENT stage is not well understood within this model and that 

this warrants further research into the initial emergence of conceptions within new micro-

domains. 

Finding 2: Some Test Items are Better Suited for Diagnostic Assessment 

My second finding concerns the suitability of test items for diagnostic purposes, and it is 

my conclusion that this suitability is measurable using a method analogous to how the 

Rasch method addresses the notion of item difficulty.  

Rasch analysis was used to measure the propensity of learners to use specific 

misconceptions in responding to items. This satisfies RQ1 to determine why some items 

are better than others for diagnostic purposes; and it is shown that Rasch analysis is 

adequate for this purpose. 

The Rasch analyses were conducted in parallel for the misconceptions being 

assessed, given that there were multiple combinations of conceptions and misconceptions 

that could account for learner responses to individual items. This approach is detailed in 

Appendix F which explains how the learners’ responses were marked for input into the 

WinSteps program. 

The results indicated which learners held which misconception and to what level, 

and also which test items were more likely to be selected by learners who were using a 

particular misconception. During this process items were removed when they did not fit 

the model and also when they did not correlate with calculated learner measures, since 

these items may have distorted or degraded the model (Linacre, 2002). 

For each micro-domain, items were identified which are better suited for 

diagnostic purposes. Thus some items are shown to be effective indicators of 

misconceptions, while others are not; and the criteria for what constitutes a good 

diagnostic item was not evident in many cases from a visual inspection of the item. 
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However, there were some cases in which a visual inspection was useful and this may 

help to predict the diagnostic value of items. Thus, a test item may be counter-productive 

for diagnostic purposes unless the quality of the item is assessed using a method such as 

the parallel Rasch approach which has been used in Chapter 6. 

Finding 3: Which Micro-Domains are Suitable for Diagnostic Assessment 

The micro-domains used in this study were located within the domain of the rational 

numbers and were not independent. Some misconceptions were found across these micro-

domains, many are based on prior whole number knowledge, and their effect across these 

micro-domains was similar in terms of the learner responses. 

These micro-domains included problem types which are well-established and 

documented within the misconceptions literature and included problem types which have 

not been subjected to such intensive analysis. These latter types of problems are suited 

for the exploration and discovery of new misconceptions—which may be local to a single 

micro-domain. 

When misconceptions are common, then any micro-domain can be used to isolate 

learner use of these misconceptions. Thus it is better to use a micro-domain which is 

easier to apply. For example, it is clear that the problem of identifying the relative 

magnitude of decimal numbers provides ripe ground for uncovering and documenting a 

range of fine-grained behaviours.  However, it is also possible that other types of 

problems may elicit evidence of the same misconceptions, and may achieve this with less 

diagnostic effort. 

The items in the Number-Line micro-domain have helped to uncover a 

misconception which has received little attention in prior research, and which I refer to 

as TICKSPARTS. This is evidenced by learners equating the number of ticks on the 

number line with the number of parts into which the number line is divided. This 

misconception was observed initially from a frequency analysis of learner responses. This 

leads to the possibility of using large-scale Web-based data on learner responses as a 

research tool to continually discover fine-grained ways of thinking; on the basis of 

observed and unexplained patterns of responses. This approach raises solvable ethical 

issues on access to information, and it may allow for the identification of misconceptions 

which are specific to a particular learner community, such as a single class or school. 
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Micro-domains are considered as ideal units of knowledge for diagnostic work. 

From the experience of the eight micro-domains used in this study the following 

characteristics are identified as suited to define the ideal micro-domain: 

 Having a small scope, and with the availability of simple test items which are 

easy to administer quickly. 

 Well understood in terms of the conceptions and misconceptions which 

learners use when addressing problems in the micro-domain. 

 Represent a barrier to learning if not understood and may become persistent if 

not attended to. 

 Applicable to classroom work, either on its own or as a pre-requisite to new 

work. 

Finding 4: Self-Knowledge adds little value to the Diagnosis of 
Misconceptions 

The Difficulty Index proposed in Chapter 4 was conceptually well-founded, and is based 

upon a motivated argument from earlier studies. The finding is that the additional effort 

in applying the Difficulty Index does not add incremental value to the diagnostic 

assessment process to warrant its regular usage in the classroom. Rather, learner self-

knowledge should be used only where it enhances the conclusions, and when a finer level 

of positioning into the Development Stage model is needed. This can help to isolate new 

ways of thinking which are not currently identified, formalized, and being detected. 

I conclude that the Difficulty Index should not be used as normal practice in 

classroom settings, given that it requires additional time and effort for collection and 

analysis, and that the same results are obtained from the Rasch analysis alone. 

One exception is that this approach has potential benefit in classrooms where there 

is no access to the computing requirements for Rasch analysis. 

Finding 5: No Common Rule for the Number of Items Needed 

Classroom time is a limited resource, and deriving learner knowledge from the least 

assessment effort is always beneficial. The alternative to short, targeted tests is to use 

larger batteries of items which take time to administer and to evaluate; and the CAPS 

curriculum states that diagnostic assessments should be conducted as efficiently as 

possible (DBE, 2011a). 
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For some micro-domains, a single question will suffice to distinguish learners 

who know, and are in the STABLE stage; from those who are using the misconception, 

and are in the ACTIVE stage; and from those who are indeterminate, and who are placed 

into the ABSENT stage. On the basis of a single test item this is as much as can be 

inferred. Such a test item must satisfy, as far as possible, the properties of the “semi-

dense” criteria of Bart et al. (1994), so that learners’ responses are sufficient to distinguish 

between different ways of thinking. 

However, for the micro-domain of Decimal Number Ordering using items with 

only two choices, it is not possible to distinguish between correct responses and rich 

distractors using a single item, and this limits the usefulness of these items for diagnostic 

purposes. 

Finding 6: Diagnostic Items Should be MCQ and Need Sufficient Choices 

Constructed-response items are not suited for diagnostic assessment due to the number of 

possibilities provided by learners, and also the challenge in interpreting these responses. 

These responses require a strong semantic model for interpretation; and consequently this 

is left to future models and technologies which may open up opportunities for such 

analysis. On the other hand, MCQ items are limited by forcing the learners to select only 

from the choices provided; and these choices may miss important misconceptions if they 

are not designed properly. 

MCQ items with only two choices are suggested as being too limited for general 

use as diagnostic instruments in the classroom, due to the larger number of such items 

required to provide evidence of the various misconceptions. Rather, consideration should 

be given to meet the semi-dense criteria of Bart et al. (1994), which stipulate the 

relationship between the ways of thinking and the item choices; and this naturally requires 

more choices to reflect the various ways of thinking. 

Finding 7: High- and Low-Proficiency Learners Need Different Methods of 
Measurement 

Learners with high proficiency, being those in the STABLE stage, must be measured 

using a different approach than learners who are not proficient. 

This finding is based on the theoretical model of schemas in which a learner’s 

knowledge consists of a set of schemas which come into play as required for a particular 
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situation. Changes in schemas equates to the process of learning, and at every point in 

time these schemas will be fit for some purpose, but perhaps not for all of the purposes 

which the learner is presented with. 

Measurements of learner ability is effective and meaningful only when the 

learner’s schemas are sufficient to address the problems presented in a micro-domain. 

However, when the schemas are insufficient then the approach must change to focus on 

identifying which of many possible misconceptions the learner has used. 

On this basis two forms of measurement are provide for the analysis. The first is 

the traditional approach to measure proficiency or ability; ideally using a Rasch analysis 

scored on the correct choices in the MCQ items. The second is conducted by running 

separate Rasch analyses in parallel, one for each known misconception, to determine the 

most likely explanation for the errors made by the low-proficiency learners. 

My finding is that this approach—separating the measurement of high-proficiency 

and low-proficiency learners—has considerable value for diagnostic assessment while 

also clarifying the distinction between the measurement of ability and diagnostic 

assessment. 

Finding 8: Very Low Values may Indicate Better Conceptual Development 

Very low scores may result from a single learner’s responses to a number of MCQ items; 

but can also result from the responses of a number of learners to a single MCQ item. 

Given an MCQ item with four choices, then  learners with no conceptual basis to address 

the item can only resort to guessing; and they should achieve an expected score of around 

25%. However, a learner may achieve a score which is far lower than 25%, such as 10%, 

and this result indicates a systematic pattern which can only result from the use of 

misconceptions in selecting the choices. Thus a score of 10% is an indication of some 

level of conceptual development, whereas a score of 25% is more likely to result from 

random guessing. 

I argue that some level of conceptual development, as exhibited in learners who 

score 10%, will always trump the lack of conceptual development, as exhibited by 

learners achieving 25%. Thus these low scores are not correlated with conceptual 

development, and this applies no matter how these scores are computed, such as from a 

CTT sum of scores or from a Rasch analysis of the learners’ responses. This argument 
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applies for all scores which are below 25% for cases of four choices per MCQ item. A 

similar argument holds for MCQ items with different numbers of choices. 

In summary, for the low scoring learners, it is the case that a lower score represents 

more conceptual development than a higher score. 

The outcome of this is that the low performing learners need to be measured using 

a different approach, as discussed in Finding 7 above, and this approach has been used 

throughout Chapter 6 as part of the process to detect misconceptions. 
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CHAPTER 8 : CONCLUSIONS AND FUTURES 

8.1 Contributions of this Study 

I now present the major contributions which emanate from this study, based on the 

detailed data analysis in Chapter 6 and the findings summarized in Chapter 7. Some of 

the arguments are repeated from previous chapters to support the contextualization of this 

study. These contributions are: 

 Methods to assess proficiency are not suited to the measurement of low-

proficiency learners. 

 Diagnostic assessments can be conducted effectively and efficiently. This 

includes the claim that traditional scoring is inapplicable for low-proficiency 

learners; requiring an alternative approach which addresses the schemas of the 

conceptual models of the learners rather than their composite ability. 

 Information on learner self-knowledge of their proficiency adds little or no 

cost-benefit over quantitative methods of measurement. 

 Small micro-domains are suited for diagnostic assessments. 

 The Development Stage theoretical model is suited to position learners based 

on their development stage; which aids the formative assessment process. 

Methods to assess proficiency are not suited to the measurement of 
low-proficiency learners 

My first contribution is the approach to differentiate the measurement processes for high-

proficiency learners, who are in the STABLE and IMMINENT stages of development, 

from other learners who are in active learning stages. 

This was not posed as a research question, but was applied throughout the data 

analysis of the online data. There was some benefit in the measurement processes for 

firstly identifying the proficient learners and separating them out. Given that the purpose 

of this study was to explore the diagnostic assessment of misconceptions, it was thus 

important to use that subset of the learners who were not proficient, rather than to include 

proficient learners for whom diagnostic assessment was not required. 

This is a contribution which can be applied to all situations in which diagnosis is 

needed, and is applied as a two-phase approach, with the first phase identifying the 
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proficient learners, for whom there is no evidence of content-related challenges, and the 

second phase, which uses the alternative methods recommended in this study, for the 

specific identification of misconceptions which are the content-related challenges. 

The economy of diagnosis 

The second contribution is that diagnostic assessments can be conducted effectively 

(RQ1) and efficiently (RQ2) by asking the right items in the right quantity, and by 

processing the responses to produce valid measurements. Thus, this study can be viewed 

as a contribution to the economics of educational diagnostic practices. 

This economical approach requires a new way to gather and process data about 

learning thinking. The approach explored in this study is a novel application of Rasch 

analysis, calculating measures in parallel for known misconceptions; then using this to 

identify the most likely conceptions which account for learner responses. This approach 

is contrasted against the measurement of learner ability, which is seen as a composite of 

schemas as the measurable construct. 

This approach addresses the challenges of measuring low-ability learners using 

conventional scoring, and which is summarized in Finding 8 in Chapter 7. 

This approach also addresses the critique on the unsuitability of IRT for diagnostic 

purposes (Stacey & Steinle, 2006) which uses learner “ability” as the construct being 

measured and in terms of this usage I agree with their critique; considering that this 

critique of IRT will apply similarly to Rasch analysis. This critique is addressed by 

shifting the target of assessment to fine-grained misconceptions which occur in the 

mathematical reality of the learners. This approach identifies the conceptions and 

misconceptions which are more likely to account for learner responses, including both 

correct and  incorrect responses. This provides a fine-level window into learner thinking 

which is not readily accessible using any other means; and is achieved by treating 

diagnosis as the presence of misconceptions rather than as the absence of general  ability. 

This approach is contrasted against the consideration of expertise as a composite, 

but unknown, set of schemas which are sufficient to answer all problems in a micro-

domain. Thus to measure expertise it is not necessary to know the specific conceptions 

which a learner has used, since expertise is inferred purely through consistently correct 

responses without any need to understand the specific conceptions used. 
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There is little or no cost-benefit to using learner self-knowledge for 
diagnosis 

My third contribution concerns the usage of information on what learners think about the 

difficulty of the items which they are required to answer in assessment tests. 

Finding 4, as presented in Chapter 7, concludes that whereas the information on 

learner self-knowledge can help to infer a learner’s Development Stage, it does not add 

anything which is not already available by using the Rasch analysis process. In essence, 

the quantitative analysis of the data from learner responses to good diagnostic test items 

is sufficient to meet the goals of effectiveness and efficiency of diagnostic assessment. 

Such a Rasch analysis requires computer support, since the inferences require a 

complex calculation which uses the learner’s responses, and the item characteristics to 

infer the learner measure as the most likely measure which would produce these 

responses. The learner measures for usage of misconceptions are only valid as they are 

measured, since the learners’ conceptions change fast in the work in micro-domain. Thus 

if there is no computing support then these results cannot be calculated. In this case, the 

suggestion is to use the learner self-knowledge, which can complement the scores to make 

inferences without needing a complex calculation. However, these cannot provide the 

finer details of learner misconceptions as are available within the Rasch analysis, but they 

can support the positioning of the learners into the development stages. 

The Development Stage model can position learners in a micro-domain 

A fourth contribution concerns the Development Stage model which I have used to 

support my study. There is a need to better understand learning thinking in order to inform 

instruction; and this need was the motivation for the Development Stage model which is 

a supporting theory throughout this study . Even though this model was included as a 

research question at the time this work commenced, I now see this as a valuable 

contribution to knowledge of learning thinking in micro-domains, and as a separate 

outcome from this study. 

This model positions learners into one of five development stages and has been 

applied to the micro-domains I have used; specifically, to those micro-domains with 

sufficient data. Prior work in development models has addressed larger-scale, often multi-

year, learning trajectories, such as the work of Confrey et al. (n.d.) on equipartitioning 

and other components of the Common Core State Standards for Mathematics (National 
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Governors Association Center for Best Practices, Council of Chief State School Officers, 

2010). The Development Stage model provides a quantitative, fine-grained scaling of the 

novice-expert spectrum, with the potential to position all learners, at every point in time, 

onto one of the stages, based on their personal development within a micro-domain. A 

learner is expected to move through these Development Stages rapidly during the learning 

of a new micro-domain, and I envision a future in which it will be possible to measure 

progress through these stages instantaneously as learners increase their proficiency 

through their engagement in classroom activity and with targeted assessments. This 

measurement information can be used to provide an “X-Ray” view of the mental 

structures of the learner and could be presented in a dashboard user interface to aid a 

teacher in understanding the current stage of development of each of their learners, to 

enable the teachers to engage in a kind of “brain surgery” to help the learners to fix the 

gaps in their conceptual model. 

I propose that this Development Stage model is generally applicable to all micro-

domains, and could be coupled with an automated process to position learners on the basis 

of the processes and algorithms described in Chapter 6. 

Micro-domains are suited for diagnostic assessments 

A final contribution arising from this study is an outcome from the nature of the diagnostic 

work conducted, rather than being an outcome from the research questions. This concerns 

the usage of “micro-domains” as the targets for diagnostic work, and is contrasted against 

the application of diagnostics to larger domains of knowledge. I argue that micro-domains 

are the ideal size of knowledge for the application of diagnostic assessments for 

identifying incomplete, incorrect, or inapplicable schemas which influence learners’ 

responses; however, this size is not defined exactly but is expected to be small, being 

addressed within a maximum of 1-2 days of classroom instruction. 

Criteria for micro-domains are proposed in Chapter 7, which may be used to 

demarcate a micro-domain to meet the needs of diagnostic work. These criteria are 

outlined in “Finding 3: Which Micro-Domains are Suitable for Diagnostic Assessment” 

on page 266. 

The alternative to micro-domains is to attempt to diagnose larger domains of 

knowledge, such as the entire rational numbers at a unit; however larger domains are not 

suited for the diagnosis of misconceptions, since there are too many conceptions which 



 275 

come into play in these larger domains, leading to a challenge in identifying which 

schemas are used. Such larger domains are better suited for measuring ability, which is 

by its nature a composite of conceptions. 

8.2 Relating Findings to Theory and Literature 

I return to the literature as reviewed in Chapter 2 to position my work with regard to the 

established theories and practices and how my findings address the gaps and opportunities 

which I had identified. The scope was wide due to the multi-disciplinary nature of this 

work and includes constructivism, misconceptions research assessment practices, 

educational diagnosis, Web-based assessment, Rasch analysis, Cognitive Diagnostic 

Assessment, and the rational numbers. A few core works and themes were selected which 

have informed both the motivation and the form of this study, and which now I reflect on 

in terms of my contributions. 

Formative Assessment and Diagnostic Assessment 

There has been an increasing focus on assessment for learning over the past 20 years. 

Wiliam (2011a) asserts that “assessment for learning” and formative assessment are 

almost identical in their usage, and that their goal is to provide evidence about learner 

thinking to teachers to inform instructional planning and activities. To be beneficial, this 

evidence is required to include diagnostic information on learner conceptual difficulty, 

and thus diagnosis is best positioned as an element of formative assessment practice 

(Black & Wiliam, 1998a; Black & Wiliam, 1998b; Wiliam, 2011a; Wiliam, 2011b; 

Stacey, 2013; Stacey, Price & Steinle, 2012). 

Black and Wiliam (2009) have proposed a set of strategies for formative 

assessment, including that to be effective, classroom activities tasks should elicit evidence 

of student understanding. I have argued that this evidence must include misconceptions 

as an integral element of student understandings. 

My work has taken this requirement for diagnostic information and has explored 

how diagnostic assessment can become both more effective, by selecting items which are 

better for diagnosis, and more efficient, in identifying the number of items needed. I have 

argued that traditional approaches to the assessment of ability are not suited for diagnostic 

purposes, and that an approach that targets specific misconceptions is required. 
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Assessment Practices 

Pellegrino et al. (2001) suggest that assessment consists of three interrelated elements, 

structured into the “assessment triangle”. This structure applies to all forms of assessment 

in which the understanding of learner thinking is the goal, and this includes diagnostic 

assessment. 

The first element is the conceptual model of the students, which I have treated as 

consisting of a set of schemas, which the learners use to address mathematical problems. 

I assume that this is also the sum total of the knowledge of the learner; thus there is no 

other knowledge which exists outside of the schemas. The goal of diagnostic assessment 

is to discover the schemas which are not fit for the purpose of specific micro-domains, 

and which are thus considered as misconceptions. 

The second element consists of the observations which are taken from learners, 

and which help to determine the learner’s conceptual model. These observations are the 

learners’ responses to “good” diagnostic questions. 

The third element consists of the inferences which are drawn from the 

observations, and which convert raw observations into meaningful measurement of the 

learner’s usage of misconceptions. The inferential approach used for this study consists 

of a parallel application of Rasch analysis, which uses the learner responses to identify 

the most likely schemas to account for these responses. 

Rational Number Misconceptions 

The domains of application for this study are specific micro-domains of the rational 

numbers. One of the important micro-domains concerns the problems of ordering decimal 

numbers, and inferences which can be drawn about learner misconceptions. I have based 

my work in this micro-domain on the detailed model of learners’ ways of thinking on 

decimal numbers as identified and coded by Steinle (2004a). Four of Steinle’s codes—

L1, L2, L3 and S3—have been included into my study, and these have helped to identify 

specific misconceptions used by learners. For some learners there was significant 

evidence of the usage of a single one of these misconceptions whereas other appeared to 

be using many. 
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It was not my intention in this study to add to the knowledge base of 

misconceptions in the rational numbers, but rather to explore how the wealth of prior 

knowledge can be applied for diagnostic assessment practices. 

Measurement 

Educational measurement is concerned with the inference element in the assessment 

triangle of Pellegrino et al. (2001). The measurement process takes observations, 

consisting of learners’ responses to items, and from these concludes something about the 

learners’ conceptual models. It is important that educational measurement is consistent 

and standardized, so that the measures have an interpretation across different groups of 

learners, on different tests, and at different times. The notion of “fundamental 

measurement” has been a primary motivation for the development of better methods of 

measurement in the social sciences (Bond & Fox, 2012; Wright, 1997). 

My purpose has been to find a more effective approach to diagnostic assessment 

by using the right questions to detect and isolate misconceptions used by learners, which 

is my RQ1. This is a measurement problem and is intended to result in consistent 

measures so that if a learner achieves a particular measure on these tests, then this will 

result in a corresponding inference on which schemas, and in particular which 

misconceptions, best account for the learner’s responses. 

Whereas there are a range of models which can support educational diagnosis, 

such as those outlined by Rupp et al. (2010), I have chosen an alternate approach by using 

simpler Rasch models in parallel and then identifying the most likely schema which a 

learner is using. These results are then used to help determine whether a learner is 

proficient or not, and to what extent they are actively learning, by positioning the learners 

into one of the Development Stages. 

Web-based diagnostic assessment 

There had been little work reported on Web-based diagnostic assessment of mathematics 

at the time I prepared my research proposal for this study; however, in my updated 

literature review, conducted towards the end of this study, Web-based diagnosis is 

emerging as a topic of interest for research and development. This has provided the 

opportunity to position my work in a broader body of work and to relate my findings and 

contributions with this evolving knowledge base. 
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SMART tests (“Specific Mathematics Assessments that Reveal Thinking”) (Price 

et al., 2011) provide teachers with an automated, Web-based environment to conduct 

assessment for learning. The SMART test approach is close in concept and in application 

to my work and has similar goals. The SMART application is in use in the State of 

Victoria in Australia. My work differs from SMART in three ways. Firstly, the manner 

in which I have selected test items suited for diagnostic assessment, using Rasch analysis 

to identify good diagnostic items. Secondly, my goal is to gain maximum diagnostic 

information from the smallest number of test items, exploring an economic view of the 

efficiency of diagnosis. Finally, my generic model of Development Stages is distinct from 

the domain-specific learning hierarchy as provided within SMART. 

For the SMART tests, Price et al. (2011) provide a learning hierarchy which they 

compare to the six-level OECD scale of proficiency used in the PISA study (OECD, 

2010). My Development Stage model provides an alternative dimension for analysis 

which is distinct from the models of Price et al. and the OECD. My focus is on fine-

grained conceptual development in micro-domains of knowledge, and my goal has been 

to understand where a learner is positioned in terms of their personal development from 

being a novice to exhibiting expertise in a micro-domain. Both Price et al. (2011) and the 

OECD (2010) present models that are learning trajectories and whereas my model is 

structured as a trajectory, it is based upon the shift in proficiency at a fine-grained level. 

I have scoped this study to address the problem of understanding learner proficiency by 

identifying their position in my Development Stage model. I have not attempted to assess 

or inform learning; which I view as changes in the conceptual model of a learner triggered 

by effective feedback and informed instruction. 

8.3 Surprising Results 

The most surprising result obtained was that in many of the micro-domains a single good 

diagnostic test item can be used as diagnostic indicator, even though more test items are 

needed to establish sufficient validity. It is possible to use these test items in non-

technology classrooms and to provide the teachers with the some of the benefits as would 

be available in technology-linked classrooms. 

I had the initial expectation that the self-knowledge of the learners would be 

universally useful to assisting the diagnostic assessment process. However, it became 
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apparent during the data analysis that these additional questions on whether the learners 

found the test items to be Easy, Just Right, or Difficult was unreliable, and was also 

unnecessary, given the power of the statistical inferences provided by the Rasch Analysis. 

In essence there was little or no added value in using this self-knowledge as an input for 

diagnostic purposes. However, there were a few cases in which this approach proved 

useful, and it was noted that this can also complement the use of diagnostic items when 

there is no computational support for calculating the Rasch measures. 

A final, but highly significant, surprise result has arisen from my analysis of the 

use of MCQ items which include rich distractors. When responding to such test items, 

learners with a lack of schemas to address the test items will be randomly guessing their 

responses, and will achieve a higher score than those learners who have developed a few 

schemas and who are more likely to select the rich distractors. Thus for low-proficient 

learners, the raw scores obtained are the opposite of the learners’ actual proficiency, since 

the lowest scores, which are well under the average expected from random guessing, can 

only result from systematic choices based upon some level of conceptual development. 

This is a general result which occurs in all cases where MCQ items have rich distractors 

which are based on misconceptions and when the scores are applied in low-performing 

learners. In conclusion, some conceptual development in a learner’s conceptual model 

should always trump the lack of conceptual development, where the opposite is shown 

from the raw scores. 

8.4 The Future: Implementation and Research 

I embarked on this study with two aims. Firstly, to advance knowledge in diagnostic 

assessment of mathematics misconceptions. Secondly, to inform practical intervention 

into classroom practice, using computers for learning. My motivation was clear from the 

start—that the problems of mathematical teaching and learning in South Africa are at a 

crisis point which will not be resolved in the short term using the current approaches to 

teacher development, improvements in classroom resources, or by curricula reform. This 

crisis is far larger than any of these approaches can address, either individually or in 

concert with each other. To address this crisis, we need to exploit the power of automation 

for the benefit of education. My own background is artificial intelligence and knowledge 

representation, which has provided me with a unique lens concerning potential theoretical 
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and practical opportunities for addressing this crisis. It has been a significant shift in my 

academic and professional focus to move into the rich world of educational research and 

practice. Throughout the past 40 years I have maintained a mathematics tutoring activity 

with a few selected students every year, and I have been driven to conduct this research 

through my goal to apply methods which I naturally use, as a tutor of mathematics, to a 

far wider audience. 

I now raise the question of what can be done to turn the findings and theories of 

this study into practical application in support of my original aim—to achieve the 

potential of making a systemic difference in the quality of classroom mathematics of 

South Africa. In other words, this is a vision to create a widespread and sustainable 

increase in mathematics proficiency among the learners of the country. 

The White Paper on e-Education (DOE, 2004), and the more recent Schooling 

2025 Programme (DBE, 2011b) both highlight the need for computers and the Internet, 

but focus on the usage of computers for administrative support, and on access to Internet 

resources, and do not address the role of computers in support of learning. In particular, 

they completely ignore the role of computers for assessment. Since the introduction of 

the electronic calculator into the classroom in the 1980s, there has not been any major 

shift in the widespread use of technology in the classroom to support mathematics 

teaching and learning. The potential now exists, from the combination of inexpensive 

tablet computers and access to the Internet, to create the critical mass, the tipping point, 

at which the system may change forever in a positive way. 

At the outset of my study, I found little evidence of work being conducted on the 

widespread usage of computers for assessment, occasionally referred to as “Computer-

Aided Assessment” (CAA) and which specifically addressed the diagnostic assessment 

of rational number knowledge. This is the case even though computers had been available 

for educational usage for at least 30 years—since the advent of personal computers and 

laptops—and yet computers continue to remain largely unused for supporting education 

in the rational numbers in the classroom. 

My work can move forward in two directions in parallel from this point. Firstly, 

as the practical application of this work into the classroom, initially on a pilot basis with 

a few schools while exploring the potential for widespread implementation. I recommend 

this as a combination of research and practice, where the focus is on the introduction of 
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these new practices into the classroom, and for which research should explore the 

readiness of the teachers, learners, schools, and classrooms to implement technology into 

the classroom. This also requires a study on how feedback may be used to close the 

teaching-learning loop, using the diagnostic information to provide fine-grained 

information about the learners’ conceptualizations. 

My second proposed direction for this study is to extend the research to include 

other micro-domains in mathematics and to seek common patterns between these micro-

domains. Even within the existing micro-domains that I have studied here, there are many 

unexplained patterns of errors, which may be researched as new ways of thinking and 

then applied back into the diagnostic model. 

The nature of this proposed research should also include the following core 

problems that I encountered in my work which are gaps that require a research approach 

in combination with a practical implementation: 

 Redefining the role of the teacher in the technology-rich classroom—would 

teachers be better used as mediators of knowledge with support from trusted 

online knowledge bases than as educators working without technological 

support? 

 Exploring the culture of the classroom, with regard to both the teacher and the 

learners, in terms of readiness to adopt assessment technology and formative 

assessment practices. 

 As a side-effect of the introduction of technology into the classroom, 

investigating the acceptance or resistance of teachers to the removal of key 

responsibilities for teaching, and how this could affect the implementation 

process. 

 Finer-grained analysis of micro-domains, and establishing the linkage 

between micro-domains, seen as small and incremental steps in learning, with 

the larger learning trajectories that map progress over many years of learning 

and which are linked into the curriculum standards and practices. 

 Repeating this study in other micro-domains both within and beyond the 

rational numbers. Suggestions include percentages, ratio and proportion, 

algebra, factorization, and eventually the entire Senior Phase curriculum. The 

purpose would be to stimulate mathematical proficiency to enable more 
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learners to be well-prepared for pure Mathematics in Grades 10-12, rather than 

taking the “easier” option of Mathematical Literacy. 

 Exploring the creation of a constructivist learning environment in the 

classroom using formative assessment practices driven by a Web-based tool. 

 Finally, investigation into the handling of very large amounts of data, 

commonly called “big data”, that is gathered at the systemic level from all 

classrooms concerning diagnostics and misconceptions. How can this be used 

to support data-driven research and theory evaluation? Also what are the 

ethical and privacy issues that arise in making such data available for 

secondary analysis? 

8.5 The Prospects for Web-Based Diagnostic Assessment in 
the Classroom 

My research hypothesis for this study is that Web-based online diagnostic assessment is 

an effective way to improve mathematics at the systemic level, in situations where there 

is access to computing facilities and broadband technologies within the schools. This is a 

technology-based extension of the position taken by Wiliam (2011a) on the importance 

of the teacher’s knowledge of their learners’ knowledge to support formative assessment 

practices. My goal has been to extend this position to address online diagnostic 

assessment in the classroom. 

The introduction of computers in schools in South Africa has been slow, and also 

fraught with challenges and difficulties, including the lack of security to protect the 

computers, and the lack of capacity of the teachers and learners to use the computers 

effectively. However, the potential offered by connecting these computers to the Internet 

is large, and is a significant benefit for learners in schools who have this capacity. Access 

to the Web does not require the same level of computer literacy as needed to operate a 

computer, and thus accessing a Web browser poses fewer issues of learner and teacher 

capacity, and is thus more amenable to under-resourced and under-capacitated schools. 

I commenced this study on the basis that I was required to use schools that already 

had the infrastructure and the capacity in terms of a good computer facility; and in which 

both learners and teachers were computer-proficient. It was essential for my work that 
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these computers were also connected to the Internet and that the learners knew how to 

use the Internet. 

Given these pre-conditions, which I hope to be the norm in all schools within a 

few years, there is an emerging opportunity for how to use these computing facilities, and 

my research is focused on the usage of these facilities for classroom-based diagnostic 

assessment. 

My study involved the creation of a few tests which were administered over the 

Web to four classes in two separate schools. Arising directly from the study were a 

number of important findings concerning the usage of the Web for administering the tests: 

 Firstly, that the amount of data gathered is large, even for a small number of 

classes and tests, resulting in hundreds of thousands of data elements which 

required data processing. When implemented on a larger scale, this will move 

into the area of “big data” and will provide the basis for detailed analyses of 

such data in ways not possible at present. 

 Secondly, that the feedback was provided immediately to the learners at the 

end of a test and, given the analyses performed in Chapter 6, this feedback 

could be automated to provide a comprehensive analysis to the teacher in real-

time. 

 Thirdly, that I, as the test administrator, was able to check in real-time what 

was happening for each individual learner, and to detect any issues. 

I firmly believe, based upon this study, that diagnostic assessment can be 

incorporated successfully into daily classroom practice, but that this will require access 

to the Internet in every mathematics classroom. Whereas a few years ago, when I started 

this study, this was infeasible due to the costs of procuring the computers, there are now 

tablet computers that are lower in cost than textbooks and this can drive an effective 

paperless educational environment. There are currently initiatives underway to provide 

all learners with their own tablet, such as Gauteng’s announcement to provide learners in 

Grades 4-9 with tablets, which commences in 2015 with an initial 21 schools6. It is 

expected that these tablets will be connected to the Internet, and this offers an opportunity 

                                                 
6 http://www.itwebafrica.com/mobile/320-south-africa/233202-gautengs-plan-to-provide-learners-with-

tablets 
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to also use these tablets for diagnostic assessment as part of formative assessment 

classroom practices. 

On the basis of my study I consider that the following potential exists to extend 

and apply this work further: 

 The data is collected at a fine-grained level from each individual learner in 

response to each test item, and this provides a massive bank of data which can 

be used as an ongoing research tool to support exploration for further 

misconceptions in a way not possible from existing approaches. 

 The diagnostic assessments are analyzed ‘on-the-fly’ and provide the teacher 

with customized information about their individual learners’ knowledge as 

soon as the tests are completed; allowing the teacher to adapt their 

instructional plans and practices. These instruments provide a quick insight 

into the learner thinking, and specifically on misconceptions that may be 

obstacles to their learning. 

 Learners with persistent issues can be identified early and can be attended to 

with remedial work. 

 Learners with similar misconceptions can be grouped to provide a benefit 

similar to one-to-one instruction. 

 Further micro-domains in the rational numbers can be added and this approach 

may be extended to other topics in the mathematics curriculum that can be 

structured into conceptual bases to identify learning trajectories including the 

misconceptions that commonly occur and which are obstacles to learning. 

 Data mining on the large banks of data can be used to identify further patterns 

of system usage, and can extend the knowledge of the learning trajectories and 

the Development Stages in the micro-domains. 

 This approach to centralized data collection can provide an alternative to the 

expensive, and administratively challenged, Annual National Assessments, in 

providing better quality information, at lower-cost, and with almost zero 

administrative overhead. 
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8.6 Final Words 

This is end of a long and difficult study in which I have had a number of personal 

challenges while conducting the research. I wish to note that I have not encountered 

anything that I would rather have done during the time I have spent on this study. I hope 

that my work may provide one small part of a solution for realizing a rapid and systemic 

improvement in mathematics knowledge so that, within a generation, South Africa can 

move up the international ranks, and that society as a whole can benefit from school-

leavers who are far more mathematically proficient than is the case at present. 
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APPENDIX A : RESULTS OF DATA GATHERING 

A large amount of data was collected in this study, when measured by the number of 

database records in the database. This database is divided into three sections: 

 Firstly, the base data about the schools and learners (provided in codes rather 

than in names), with the lesson structures used by the online-system. 

 Secondly, the data captured from the pretest, which provides the complete set 

of learner responses to each test item, and also contains the interpretation of 

the learner responses to the constructed-format questions. 

 Thirdly, the data captured automatically on the server from the online-tests, 

which consists of 13,178 records each of which is a single response of a 

learner to a test item presented. 

Each record from the database from the online tests consists of the following 

fields: 

Table 42. Database fields for online test responses 

Field Type Usage Notes Sample Data 

SCHOOL Code The school from which this record was drawn, 
being either A or B. 

A 

CLASS Code The class within the school, which was either 7 or 
8 indicating the class Grade. This is unused for 
most of the study. 

7A 

LESSON Number The lesson number for the weekly online lessons, 
being 1-4. 

1 

TESTSEQ Number The test number within the lesson, with there 
being a number of tests deployed within each of 
the lessons. These are not sequential since other 
activities are also used, such as the display of 
supporting information. 

3 

ITEMSEQ Number The sequence of the test item within the test 
within the lesson. 

1 

USERCODE Text The user code that was created for this analysis, 
that removes all references to school and the 
individual learners. 

A01 

DATEOPEN Date/Time The date/time when the test item was initially 
presented to the learner, and displayed on the 
Web page. 

2009/05/28 
01:39:33 PM 
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Field Type Usage Notes Sample Data 

DATECLOSED Date/Time The date/time when the learner completed the 
test item, including all required fields such as the 
difficulty fields. From the DATEOPEN and 
DATECLOSED the duration of this response can be 
calculated in seconds. 

2009/05/28 
01:40:01 PM 

ANSWER Number The response given by the learner to this test 
item. 

2 

ISEASY True/False True if the learners marked this as Easy. 0 

ISJUSTRIGHT True/False True if the learner marked this test item as Just 
Right. 

-1 

ISDIFFICULT True/False True if the learner marked this test item as 
Difficult. 

0 

ISNOTUNDERSTOO
D 

True/False True if the learner marked this test item as not 
being understood. 

0 

TESTITEMTYPE Number The type of test item, from a predefined set of 
types, which are explained below. 

1 

NUMANSWERS Number How many choices there are for this test item. 
This is copied in from the ItemBank table. 

9 

CORRECTANS Number The correct choice, for this item, being the one 
which is deemed to be correct, even if others are 
also partially correct. 

5 

ITEMBANKNUM Number The reference to the Item Bank number appears 
as Item# on the various diagrams in this thesis, as 
well as in the dump of the items given in the 
Appendix. These item bank numbers start from 
10001. 

10001 

XML Long Text The full text of the question itself, including all of 
the HTML, SVG and MathML as outlined in the 
appendix. 

<Problem><Q
uestion>What 
is the place-
value of 7 in… 

ERRORNOTE Text Any issues that were noted in the item 
description, form, or usage that needed to be 
considered when this was being analysed. 

 

 

For each of the test items, identified by the ITEMBANKNUM, there is an additional data 

table which marks every choice in the MCQ test items as either being the CORRECT 

choice, or being one of many possible MISCONCEPTIONS that would give rise to this 

response. The choices are numbered in terms of the sequence of the choice, counted from 

1 for the first choice, rather than the text of the choice presented to the learners. 
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For example, for Item 10001, choice 1 is “Thousands”, choice 2 is “Hundreds” 

etc… and in this case choices 2 (“Hundreds”) and 6 (“Hundredths”) are marked as the 

WHOLE misconception, while choice 5 (“Tenths”) is marked as CORRECT. 

I extracted the data for the analyses in Chapter 6 by selecting the items that I 

needed for a particular type, using the TESTITEMTYPE field, where a value of 1 (as in 

the above sample data) is the PV1 type, which is the first type of the place-value test 

items. I also matched the learner choice to the particular conception which I was 

examining, such as the WHOLE misconception. As required within the various steps of 

processing I removed certain Items or User Codes if these were misfitting to the Rasch 

model. 
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APPENDIX B : PRETEST 

This appendix provides the details of the pretest and a short explanation of the source of 

the individual questions used. The pretest was conducted for each of the two schools in 

this study, and was administered prior to the online assessments. 

The purpose of the pretest was to help to identify test items to use in the online 

assessments. The pretest consisted of a number of test items, some of which had been 

used in prior work on misconceptions in the rational numbers. All of the test items used 

in the pretest are short and simple, and were selected for their diagnostic value rather than 

to establish learner proficiency. The formalization of this “diagnostic value” was one of 

the primary goals of this study, following from the work of others (Bart et al., 1994; 

Huntley, 2008) who have investigated the nature of “good” mathematical questions. 

Each of the questions used in the pretest also asked the learners whether they 

found the test item Easy, Just Right, or Difficult. 

I confine my explanation to the motivation for inclusion as well as the provenance 

of each type of question included. In some cases, I refer to the TIMSS test items, and refer 

to TIMSS 1999 (Mullis et al., 2000; NCES, 2015) and TIMSS 2003 (Mullis et al., 2004; 

IEA, 2007). 

Introductory Notes. 

The following notes were provided on the question paper prior to the individual questions. 

 

USER CODE: ______________  DATE: ____________ 
 

Please enter ONLY the User Code you have been assigned by your teacher and do NOT 

write your name on this test paper. 

This test is part of a research project being undertaken by Roger Layton as part of PhD 

in Mathematics Education at the University of the Witwatersrand. 

This test concerns your knowledge of mathematics and includes questions about the 

Rational Numbers. 

This test does not play any part in your year mark, since the results will be used for 

research purposes only. 

You have 20 minutes to complete the test. 
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INSTRUCTIONS: 

1. Do not turn over the page until your teacher tells you to start. 

2. Please do all of your workings on this paper. 

3. Write the answer in the place provided for each question unless the answer is 

required to be placed elsewhere. 

4. Indicate whether you found the question Easy, Difficult, or Just Right for your 

own level of knowledge of rational numbers by placing an X into the block 

next to this statement… 

For example [X] Easy. 

5. If you do not know the answer, then write D/K (Don’t Know) in the ANWER 

block. 

6. If you run out of time, leave the rest of the answer blocks empty. 

 

Question 1: Ordering of Common Fractions 

The first question in the pretest was at a lower level than the age of the learners in the 

study, and it concerned the selection of the larger of two small simple common fractions. 

From the National Curriculum Statement this is a Grade 4 competence: 

Recognizes and represents the following numbers in order to 

describe and compare them: …. common fractions with different 

denominators including halves, thirds, quarters, fifths, sixths, 

sevenths, and eighths; … (DOE, 2002, p.40). 

Question 1 : Which is larger: 
4

1
or

6

1
? 

ANSWER:__________ [  ] Easy, [  ] Difficult, [  ] Just Right 

I used this first question to explain to the learners how they should answer the 

question, by writing their answer in right place, and to let me know whether they found 

this question Easy, Difficult or Just Right, by placing a cross in the block on the right. I 

asked the learners to do any workings on the flip side of the question paper. 

The original intention of asking the learners about their perception on the 

difficulty of the question was to determine whether this can be used to isolate 

misconceptions, on the basis that if a question is indicated as Easy or Just Right and this 

is answered incorrectly, then this may provide additional evidence of a systematic error 

and a possible misconception, including situations in which this is not within the set of 
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misconceptions known in advance. This information also might provide useful 

information from the learners who identified a question as Difficult and who selected the 

correct answer, which might mean that they were guessing. 

Question 2: Estimation of Value of Common Fractions 

This question is based upon an example mentioned by Kilpatrick et al. (2001), asking the 

learner to select the closest to a common fraction sum which is too difficult to be worked 

out by hand. 

For the pretest the following question was posed 

Question 2 : Which is the closest to the sum 
13

12

8

7
  

a. 1 

b. 2 

c. 19 

d. 21 

e. 40 

 

This question requires a conceptual understanding of common fractions, including 

their notation and magnitude. The two common fractions in this sum are both close to 1, 

and thus the sum is close to 2 (answer b). 

Question 3: Place-Value 

Place-value is at the core of all work in decimal numbers, and this particular 

question was included to quickly identify the level of knowledge of the learners. This 

question is within the curriculum expectations for Grades 7 and 8. 

Question 3 : What is the place value of the digit 7 in the number 0.06758 

a. Tens 

b. Units 

c. Tenths 

d. Hundredths 

e. Thousandths 

f. Ten-thousandths 
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Question 4: Decimal number ordering 

Which of the following is the smallest? 

A. 0.25 

B. 0.125 

C. 0.5 

D. 0.675 

E. 0.375 

This type of question concerning comparison of decimal numbers has been widely used 

in rational number research (Sackur-Grisvard & Leonard, 1985; Resnick et al., 1989; 

Steinle, 2004b), and is also referred to in Kilpatrick et al. (2001). This particular example 

is cited in various places in this thesis, and it has proven value to help expose a number 

of different misconceptions. 

Question 5: Decimal notation 

Question 5 : Which is the decimal representation of the number “two hundred and six and 
nine tenths”? 

A. 206.90 

B. 206.910 

C. 206.09 

D. 206+9/10 

E. 206.9 

F. 2006 9/10 

G. 20069.10 

This question was introduced to determine the ability of the learners to convert between 

a word description of a decimal fraction and the decimal representation. A similar type of 

question was included into the TIMSS 2003 public question sets (IEA, 2007). 

Question 6: Fractions and percentages 

TIMSS 2003 (IEA 2007) included questions concerning the relationship between 

fractions and percentages, and this proficiency is included within the assessment criteria 

in the National Curriculum Statement (DBE, 2011a) concerning conversions between the 

various types of rational numbers. Question 6 was introduced to detect particular 

misconceptions in the meaning of the fractions and percentages. 
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Question 6 : What percentage is equivalent to the fraction 
4

3
? 

a. 3% 

b. 4% 

c. 34% 

d. 50% 

e. 75% 

f. 100% 

g. 133.33% 

I am particularly interested in the number of learners who selected choice c, 

considering that 34% is the percentage equivalent of the common fraction 
3

4
. 

Question 7: Equivalent fractions 

This question was introduced to identify whether the learner knows how to find 

equivalent fractions. This was intended to detect various possible errors, such as the 

selection of 15 (choice f) since 4-3 = 1 and 16-15 = 1. 

Question 7 : What is the value of x if  
164

3 x
  

a. 3 

b. 4 

c. 7 

d. 12 

e. 13 

f. 15 

Question 8, 9: Decimal addition and subtraction 

A number of early studies in learner errors explored how learners would react to 

questions where there is no whole number prior to the decimal fraction. Whereas these 

are valid fractions they are not in common usage, with modern representation using the 

zero prior to the fraction such as 0.25 rather than merely .25 

This question was posed in two ways, with question 8 being a multiple choice 

format, and question 9 being constructed-response. 

Question 8 : What is the result of  4.25.   

a. .29 

b. .65 

c. 4.25 

d. 25.4 

e. 6.5 
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Question 9 : What is the result of 7 - .4 

Question 10: Place-value estimation 

This question was derived from early work in identifying learner errors in which 

the learners were asked to position a decimal point in a given answer to complete the 

answer. For example, the first of the two sub-questions asks the learners to multiple 657 

by .7 and the answer is given as 46004. The learner is required to put the decimal point 

into this answer, and the correct answer is 460.04. I made an error in the wording for this 

question, since it should indicate “the decimal point is missing”, rather than the decimal 

place. 

Question 10 : The following arithmetic calculations have been worked out, but the decimal 
place is missing in the answer. Place the decimal point correctly into the following two 
answers: 
( a )  6 5 7  x  . 7  =  4 6 0 0 4  

( b )  1 6 . 2    3  =  5 4  

Question 11: Decimal estimation 

This question has also been derived from the public set made available from the 

TIMSS 2003 study (IEA, 2007), and it provides a useful measure of understanding of the 

decimal numbers.  

This question requires the learner to inspect the question and to select the most 

appropriate and closest answer. The expectation was that some learners would perform 

the addition in full and then compare the result as the value of the sums in the individual 

choices. By doing this they would find that there was more than one alternative for a 

correct choice. The sum is 10.96 which is close to 11, and there are three choices which 

evaluate to 11 being choices b, c, and e. My intention was that a competent learner would 

select choice c as the closest, given that the individual numbers that comprise the addition 

sum are also close to the corresponding numbers in the choice, with 6.91 being close to 

7.00 and 4.05 being close to 4.00. 

Question 11 : Which of the following is closest to the sum 6.91 + 4.05 

a. 6.00 + 4.00 

b. 6.00 + 5.00 

c. 7.00 + 4.00 

d. 7.00 + 5.00 

e. 8.00 + 3.00 
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Questions 12, 13, 14: Common fraction density 

These three questions explore the learner’s understanding of density of the 

common fractions, where density is the property that there are always fractions that exist 

between two other fractions. For example, between 
3

5
 and 

4

5
 there is a fraction 

7

10
, even 

though there is no whole number between 3 and 4, since the whole numbers do not have 

the property of density. 

Question 12 asks the learner to find an equivalent fraction to the one provided. 

Question 13 and 14 ask for new fractions between the given fraction and 1, however, for 

Question 14 there is no further fraction available with the same denominator and it is 

necessary to change the denominator. 

Question 12 : Write down a fraction that is equivalent to
8

3
 

Question 13 : Write down a fraction that is larger than 
7

2
 and less than 1 

Question 14 : Write down a fraction that is larger than 
4

3
 and less than 1 

Question 15: Decimal ordering 

The final question in the pretest concerns the decimal number ordering for the 

case of selecting the smallest of pairs of numbers 

Question 15: Place a tick against the smallest number in each of the following pairs. 

A. 0.45 [  ] 0.39 [  ] 

B. 0.4 [  ] 0.39 [  ] 

C. 0.45 [  ] 0.3 [  ] 

D. 5.45 [  ] 5.39 [  ] 

E. 0.453 [  ] 0.3 [  ] 

F. 0.398 [  ] 0.3 [  ] 

G. 8.4 [  ] 8.3 [  ] 

H. 7.45 [  ] 7.9 [  ] 

I. 3.45 [  ] 3.33 [  ] 

J. 0.45 [  ] 0.08 [  ] 
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APPENDIX C : 

WEB-BASED IMPLEMENTATION 

This appendix provides details of how the Web-based assessment was implemented, 

using examples to illustrate how this was designed, implemented technically, and 

presented to the learners. 

Multiple-Choice Question (MCQ) Structure 

I made a decision early in the research process to use only MCQs: firstly, due to their ease 

of gathering data; secondly, due to the extensive prior research on this form of question, 

thirdly, their suitability for additional analysis through Rasch Analysis; and finally, 

because of their widespread usage in computerized assessment. 

In my implementation of MCQ each test item was composed of four distinct 

elements: 

 a question which is posed; 

 a set of possible answers; 

 a place to enter the answer, and 

 a question on how difficult the learner found this test item. 

These test items were required to be presented using the Web, and this had two 

major challenges resulting from the nature of typical mathematical questions: firstly, the 

handling of mathematical notation on the Web, and secondly the usage of graphical 

elements as part of a question, such as for the number line.  

Representing Mathematics on the Web using MathML 

One of the key challenges in presenting mathematical notation on the Web has 

been the range of standards for mathematical representation and notation. Within the 

domain of the rational numbers, it is common that both a questions and its possible 

answers will include a number of notations and conventions, many of which are specific 

to mathematics, such as the structure of the common fraction. For example, the fraction 

for “three-quarters” is represented best as 
3

4
. This is also commonly represented by 3/4 or 

¾ but these are less adequate for mathematical notation. Figure 43. Example of Web 

mathematics requirement presents this challenge of displaying fractions on the Web. 



 306 

To accommodate this requirement to provide true mathematical notation in a Web 

browser I needed to make a decision on whether I should create image files (such as using 

the JPG or PNG formats) for each of the mathematical expressions I was using, using an 

equation editor such as that provided with Microsoft Word. This approach of using such 

image files was commonly used in most Web-based mathematics at the time I 

commenced this study. It is a time-consuming task to create these image files, and they 

are not scalable as the page is resized. They are also not easily changed if there is a need 

to modify the Web page. 

At the time of preparing the test items for the Web there was an emerging standard 

for mathematical markup called MathML, the Mathematics Markup Language (World 

Wide Web Consortium, 2010). MathML holds the promise of enabling mathematical 

expressions to be included into standard HTML Web pages and presented to the users in 

a familiar mathematical language. I made the decision to use MathML as the basis for all 

mathematical expressions in my test items, while I was simultaneously aware of the 

limitations of MathML support within many Web Browsers. For instance, Internet 

Explorer, the most popular Web browser at the time of this study, did not support 

MathML implicitly, and the MathML add-ins available for Internet Explorer Web 

browser were not easy to implement. However, the FireFox Web browser had a long 

history of support for MathML, and thus I decided on using MathML but imposed an 

additional constraint on the computer laboratories in the study schools that every 

computer being used must have the FireFox Web browser installed. 

For the first school in the study the FireFox browser was already in use as the 

default, with the computers running on the Linux / Ubuntu operating system. However, 

for the second school this was a challenge, with Internet Explorer being the predominant 

Web browser, and a special setup was required to ensure that FireFox was available prior 

to the start of the online assessments. 
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Representing Graphics on the Web using SVG 

A second technical consideration concerned the display of graphical items that commonly 

appear in questions on fractions, such as those within the public item banks of TIMSS 

2003 (IEA, 2007). I planned to use this type of question in the tests and needed to 

incorporate both graphical images and mathematical notations. I illustrate this 

requirement using a problem from my item bank. 

Similar to the challenges with the presentation of mathematical notation, there 

were corresponding challenges in the handling of graphical structures. A similar decision 

was required for whether to generate image files in JPG or PNG for these graphical 

questions, or to use modern standards for representing graphic directly within a Web 

browser. 

All Web browsers support the incorporation of images within Web pages, but this 

requires that all of the images must be pre-built using standard image formats. This can 

be done using software programs such as Adobe Photoshop or Microsoft Paint. I wanted 

this to be the option of last resort due to the effort required in setting up each of the 

questions, and the lack of flexibility if there was a need to change these images during 

the course of the study. 

As an alternative I considered the SVG language (Scalar Vector Graphics) (World 

Wide Web Consortium, 2011), which has been defined as a World Wide Web Consortium 

Recommendation7. SVG is a language to define graphical elements and objects directly 

within HTML. The benefit of SVG is that it can be generated by other computer programs 

or by hand, and provides smaller sizes of files for transfer than the relatively large size of 

image files. 

                                                 
7 A “World Wide Web Consortium Recommendation” is the highest level of standards provided by the 

World Wide Web Consortium in terms of how the Web is structured. However, since the World Wide 

Web Consortium is not an official standard-setting body these documents cannot be referred to as 

“standards”. 

Figure 43. Example of Web mathematics requirement 



 308 

Once again, I discovered an inherent limitation in the range of Web browsers that 

support SVG, and I discovered that the most popular browser, Internet Explorer, also does 

not provide support for SVG, whereas FireFox supports SVG implicitly. With the 

previous decision to use the FireFox browser exclusively for this study this was already 

taken care of in the set up for the study. 

Access to the Web-Based Assessment Program 

Each learner was given a logon code and a private password at the start of the research 

programme. These were handed out at the time of the pretest and these codes were then 

entered onto the paper pretests as one element of my implementation of privacy. This 

process of handing out the user codes was conducted by the school personnel, and I was 

not provided with the lists of which codes corresponded to which learner. The learners 

were requested not to share their password with others. The user codes were constructed 

by combining a prefix representing the school followed by a unique sequential number. 

However, it was only after the school codes were selected that it became evident that the 

school name could possibly be inferred from the short code used. As a result, the school 

codes have been changed within this thesis to reflect the requirement for anonymity and 

confidentiality that I had agreed with the school principals. 

The Web site required the users to log on at the start of each of the weekly 

assessment sessions. The Web site also preserved the current status of the testing, so that 

if a learner logged off and then logged on again within a single session they would 

continue from where they left off. 

Preparing the Test Items for the Web Assessment 

All of the test items have been coded using XML (Extensible Markup language; World 

Wide Web Consortium, 2008) as follows: 

<Problem> 
 <Question>What is the place value of 0 in the decimal number 3.408?</Question> 
 <Answers> 
  <Answer Seq="1">Thousands</Answer> 
  <Answer Seq="2">Hundreds</Answer> 
  <Answer Seq="3">Tens</Answer> 
  <Answer Seq="4">Units</Answer> 
  <Answer Seq="5">Tenths</Answer> 
  <Answer Seq="6">Hundredths</Answer> 
  <Answer Seq="7">Thousandths</Answer> 
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  <Answer Seq="8">Ten-Thousandths</Answer> 
  <Answer Seq="9">The value cannot be determined</Answer> 
 </Answers> 
</Problem> 

Figure 44. Example of markup of a test item for the Assessment Markup Language 

This XML test item is stored in a relational database which holds the bank of the 

test items. Each of the test items in this item bank has its own encoding, as shown in 

Figure 44, and its database entry contains detailed information about this question such 

as which is the correct choice, and which choices correspond to which known 

misconceptions, noting that there are situations in which correct choices may also be the 

same choices as a known misconception. 

The reasons I used XML for the test items is firstly to separate the content of the 

test items from the format in which they are presented to the user; and secondly that this 

can accommodate the specifics of the mathematical notations on the Web, including 

mathematical notation, and graphical items and diagrams. The mathematical notation is 

structured using MathML, the mathematical markup language, and the graphics were 

encoded using SVG, Scalable Vector Graphics. 
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APPENDIX D : 

THE ITEM BANK FOR ONLINE TESTS 

This appendix provides the full list of the test items used in online tests and these 

are presented in the same form as the users would see on the Web diagnostic system. 

A total of 153 test items are included here, covering the range of the test item 

types as identified in Table 43. These are numbered 10001 to 10073, with a gap from 

10032 to 10051 which were duplicates of other items and which were merged prior to the 

analysis. 

Table 43. Summary of Item Bank by Item Type 

Item# Item Types Note 

10000-10020 PV1, PV2 Place-value in decimal numbers. 

10021-10050 DO Ordering of decimal numbers with two or five choice 

10051-10055 PV1, PV2 Place-value identification 

10056-10059  General problems which are not used for analysis in 
this study 

10060-10069 CR Representation of common fractions 

10070-10079 NL Common fractions on the Number line 

10080-10091 CG Common fractions in graphical structures 

10092-10111 CO Common fraction ordering – two choices 

10112-10131 CE Closest number to common fraction 

10152-10171 CA Addition of common fractions 

10172-10173  General problems which are not used for analysis in 
this study 
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APPENDIX E : ONLINE LESSON STRUCTURE 

Within this Appendix I provide the details of how the online lessons and the tests were 

conducted. This supplements the overview provided in Chapter 4. 

This appendix explains the three elements used for the online lessons: the 

Information Pages, the Tests consisting of individual Test Items, and the Results Pages. 

It then outlines the structure of each of the four lessons used in this study to gather the 

information. 

Information Pages 

The information pages were structured into a set of pages that the users were required to 

open before they could move on to the next element in the lesson. The welcome pages 

introduce the online assessment process to the learners, and include details from previous 

lessons. Other information pages include remedial information to help the learners to 

understand the tests, and concluding comments which were provided at the end of each 

lesson. 

The user was restricted from jumping ahead but could move back to any previous 

information page visited. This was to allow the learners to review the information and to 

Figure 45. Example of the Information Pages during Web-based assessment 
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require them to at least view each page before moving on. I could not test whether the 

learners read the pages or simply skipped through these. 

Figure 45 shows a sample of the information pages presented to the learners. This 

page is part of the introductory materials before the first test is completed.  The user 

interface is intuitive for anyone with experience using the Web, with clear information 

on the hyperlinks, and the navigation buttons. 

Tests 

The tests were structured into a set of questions, called test items. These were provided 

to the learner one test item at a time. The learners must respond and cannot move on to 

the next test item without providing a suitable response. The learners respond by selecting 

one of the multiple choice responses, or select a check box indicating that they did not 

understand the question. The learners were also required to indicate whether they found 

the question Easy, Just Right or Difficult. 

The learners were not able to return to a previous item to change a previous 

response, and for every item they were informed how many items in the test they were 

currently completing. When the test was completed, a results page was displayed 

automatically. 

Results Pages 

The results page showed the test items in the test just completed, and included the results 

in tabular format, with a total score at the bottom of the page. Incorrect responses were 

displayed in red, while correct items were displayed in black. 

This results page also showed each entire test item as presented to the learners, 

including all mathematical notations and graphical elements used as part of both the 

questions and the various choices. 

I intended that the learners would spend some time reflecting on the results and 

analyzing their results before moving on to the next part of the lesson. 
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I now outline the details of the structure of each of the lessons as they were given 

to the first study school, and then repeated for the second study school. The individual 

lessons were planned based upon an initial analysis of the results, determining whether 

some types of items should be repeated or other types should be incorporated. Another 

decision concerned how many items to include per test and per lesson as a whole, as well 

as how much informational materials should be presented to the learners. 

Each Test, in which the learners entered their responses to a set of test items 

presented to them, was immediately followed by a display of the Results Page for this 

test and these are not indicated in the lessons structure for each Test. 

Figure 46. Sample Results Page in the Web-based assessment 
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Lesson 1 

The first lesson was structured into a small number of elements to ensure that the learners 

became familiar with the online test format. The learners quickly became familiar with 

the online lessons and there was time remaining at the end of the lesson. 

The following elements were included into this first lesson. 

Element Type Description Num 
Questions 

 INFORMATION The welcome pages introduce the online assessment site, as 
well as the nature of the research project, in particular why 
learners make the same types of mistakes in mathematics. 
There is a short introduction to the rational numbers 
including decimal fractions, common fractions and 

percentages. The MCQ format is explained and also the 

need for the learner to answer whether the learners found 
this Easy, Just Right, or Difficult, as well as when they should 
use the Don’t Know checkbox. The test structure is outlined 
to the learner, indicating that each test consists of around 
5-10 questions, followed by results, and then followed by 
some feedback. There is also information given on how to 
use the online assessment, clicking on the Continue button 
to move onto the next page. 

 

1 INFORMATION The introduction to the place-value types of question, and a 
small example is given using the decimal fraction 2.375. 

 

2 INFORMATION The specific question types from the next test are explained 
using a sample question with its answer. 

 

3 TEST 1 Decimal place names – selecting the digit at a particular 
place name, and selecting the place name of a particular 
digit. 

10 

4/5 INFORMATION There are 5 pages which explain the process. Detailed 
examples of questions are analyzed. These information 
pages also show how the names TENTHS, HUNDREDTHS etc. 
are created and how to recognize them in decimal numbers. 

 

6 TEST 2 Decimal place names – selecting the digit at a particular 
place name, and selecting the place name of a particular 
digit. 

5 

7 INFORMATION Five detailed examples of the questions are given, and 
explained in detail. 

 

8 TEST 3 Decimal place-values – last 5 questions repeated from the 
first test in this lesson. 

10 

9 INFORMATION A short note on what will be covered in the following week  
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Lesson 2 

Following from the first lesson, I adapted the content for the second lesson to meet the 

level of the learner’s knowledge, and to place more emphasis on a few types of questions 

rather than to include too many individual types of questions. 

For this second lesson, I continued the testing of the place-value, and introduced 

decimal ordering. 

In School B, there had been a problem with setting up the computers with the 

FireFox browser for Lesson 1, and this resulted in some learners not completing the 

second test, so this was repeated as the first step in this second lesson. 

Element Type Description Num 
Questions 

 INFORMATION Introductory notes about what happened in the previous 
lesson. 

 

1 INFORMATION Introducing the place-value again as a refresh of the types of 
examples given in Lesson 1. 

 

2 TEST 1 Decimal Place-Value – being the repeat of the last test from 
the first lesson. 

10 

3 INFORMATION Summarizing the place-value tests.  

4 TEST 2 Decimal Ordering by selecting the larger or smaller of two 
decimal numbers 

20 

5 INFORMATION A number of worked examples are provided, with detailed 
explanations for why some numbers are larger than others. 

 

6 TEST 3 Decimal Ordering by selecting the larger or smaller of two 
decimal numbers 

10 

7 INFORMATION A short explanation of place-value and worked examples, prior 
to commencing the next test. 

 

8 TEST 4 Decimal Place-Value additional questions. 5 

9 INFORMATION Closing notes for this lesson  

10 TEST 5 Extra Tests for those who complete the other tests on time 4 

Lesson 3 

In Lesson 3 I decided to extend the range of the tests to include additional test types to 

help identify the various misconceptions within the areas of common fraction estimation, 

common fraction values on the number line and common fraction graphics. There was 

also an additional set of test tests on the common fraction ordering which were introduced 

in Lesson 2. 
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Element Type Description Num 
Questions 

 INFORMATION This is a short summary of the previous lesson and introducing 
this lesson 

 

1 INFORMATION This summarizes the work for this lesson and reminds the 
learners about how to use the online assessment system. 

 

2 INFORMATION Explaining the questions of the common fractions in the next 
test. 

 

3 TEST 1 Common Fraction Estimation – which is the closest to a given 
word description of a common fraction. 

10 

4 INFORMATION Short explanation of the estimation  

5 INFORMATION Number Line - introduction to the types of questions in the 
following test 

 

6 TEST 2 Common Fraction Number Line – what is the value of the red 
arrow (which is pointing to a place on the number line). 

10 

7 INFORMATION An explanation of the number line, following the results of the 
tests. 

 

8 INFORMATION Fraction Graphics – introduction to the graphical questions  

9 TEST 3 Common Fraction Graphics – a range of questions in which 
various graphical objects are structured in terms of questions, 
such as what is the fraction which represents the blue squares 
in a set of blue and red squares. 

12 

10 INFORMATION A short explanation of the graphical questions as a round up  

11 INFORMATION Common Fraction Ordering – an explanation of the questions 
to follow. 

 

12 TEST 4 Common Fraction Ordering 2 numbers 10 

13 INFORMATION A detailed explanation of the types of questions and how to 
resolve them. This includes analysis of different situations of 
fraction ordering. 

 

14 TEST 5 Common Fraction Ordering 10 

15 INFORMATION Final Notes  

TEST 1 concerned the estimation of the value of common fractions. All of the 

questions were of the form: “Which of the following most closely represents the fraction 

‘five and six-ninths’?” where four choices were presented to the learners in fraction 

notation. 

TEST 2 used the number line, and asked the learners to select one of the given 

fractions as being the best representation for the number identified at this point. Most of 

these had the form: “What is the value of the red arrow on the number line as a common 

fraction?”, where four choices were presented to the learner for selection. 
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TEST 3 used graphical elements for solving particular fraction problems, such as 

“which fraction best represents the diagram?”, with a corresponding diagram, and four 

possible fractional choices. 

TEST 4 was based upon a comparison of fractions, asking which is the smaller of 

two common fractions. This was then followed by TEST 5 in which the question asked 

the learner which is the larger of two common fractions. 

Lesson 4 

This final assessment lesson introduced a few more types of test items, and returned to 

others. 

Element Type Description Num 
Questions 

1 INFORMATION  Summarizing the structure of this lesson and what will be 
covered 

 

2 INFORMATION Example of common fractions and an example of a question  

3 TEST 1 Common Fraction Estimation 5 

4 INFORMATION Explanation of the previous problem with a few worked 
examples. 

 

5 TEST 2 Common Fraction Estimation 5 

6 INFORMATION Explaining the different types of common fractions including 
proper, improper, and mixed. 

 

7 TEST 3 Common Fraction Ordering 5 

8 INFORMATION This includes five pages that explain the various cases of 
common fraction ordering with examples. 

 

9 TEST 4 Common Fraction Orders 5 

10 INFORMATION A simple example of common fraction addition as a prelude to 
the test. 

 

11 TEST 5 Common Fraction Addition 5 

12 INFORMATION Worked example of common fraction addition.   

13 TEST 6 Common Fraction Addition 5 

14 INFORMATION Final Notes  

There were six tests included in this final lesson, all of which were shorter than 

the previous tests in past lessons. 

TESTS 1 and 2 introduced a new type of test item, that required finding the closest 

decimal number to a given fraction. A more complex version of this type of test, originally 

derived from the TIMSS 2003 study (IEA, 2007), was included in to the pretest. These 
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tests were structured in the form “Which is the closest number to the fraction N/M”, with 

four options provided, including both whole numbers and decimal numbers. 

TESTS 3 and 4 returned to the common fraction comparison, to gather more data 

for this type of test. 

TESTS 5 and 6 address the addition of common fractions. 

This marks the end of the lesson designs, and a number of the original questions 

types used in the pretest, and which had been considered for inclusion, were not 

eventually included. 

The reasons for the exclusion of some item types were that there was a limitation 

on what could be included into four lessons, and I decided it was better to focus on some 

test items in detail to demonstrate the principles of diagnostic assessment rather than to 

cover too broad a field, thus depth was prioritized over breadth while also providing 

sufficient breadth to enable many micro-domains to be included. 

Structure of the Individual Online Tests 

Within this section I provide further details on each of the individual tests conducted 

within each of the four lessons, in terms of the specific test items used from the item 

bank as described in Appendix D : 

The Item Bank for Online Tests. Some of the test items were repeated from one lesson 

to the next. 

Table 44. Test Items used by Test 

Lesson Test Test Items 

1 1 10001-10010 

1 2 10011-10015 

1 3 10016-10020, 10006-10010 

2 1 10016-10020, 10006-10010 

2 2 10021-10040 

2 3 10041-10050 

2 4 10051-10055 

2 5 10056-10059 

3 1 10061-10069 
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3 2 10070-10079 

3 3 10080-10091 

3 4 10092-10101 

3 5 10102-10111 

4 3 10112-10121 

4 5 10122-10131 

4 7 10092-10101 

4 9 10102-10111 

4 11 10152-10161 

4 13 10162-10171 

4 15 10172-10173 
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APPENDIX F : 

RASCH ANALYSIS USING WINSTEPS 

Much of my analysis in Chapter 6 uses the Rasch method, and I use the WinSteps program 

(Linacre, 2013) which provides a wide range of outputs and calculated measures for the 

analysis of test item responses and learner proficiencies. 

The inputs to WinSteps are: 

 the set of test items used, each identified by a code; 

 the set of the learners, also each identified by a code, and 

 the set of learner responses to each test item. 

The responses are coded as 0 (for an incorrect response) or 1 (for a correct 

response). Missing values are accommodated and are coded using a period (.), and these 

are automatically omitted from the analysis, with the Rasch analysis providing a valid 

result for learner ability and item difficulty while accommodating missing values. 

The primary outputs from the Rasch analysis are the grading of the test items on 

a scale of difficulty, centered on zero, and the grading of the learners using a calculated 

ability scale. The scales of item difficulty and learner ability are the same, which is a 

unique feature of the Rasch analysis technique. 

Other outputs from the Rasch analysis are the fit of the response data to the Rasch 

model. The Rasch method finds the best-fitting model to the input data as provided, and 

there will be data which fits this model and data which does not fit, which are outliers. 

These are called “misfitting” data in terms of the model. The Rasch method structures the 

test items on a scale of “difficulty” and the learners onto a scale of “ability”. In the Rasch 

method the more proficient learners answer more of the difficult items correctly and the 

easy items are answered correctly by all of the learners. Misfitting data will distort the 

model and it is recommended by Linacre (2013) that these be removed prior to running 

the Rasch model again. Misfit test items are those for which the results are inconsistent, 

and these are removed to reduce the distortion in the model. Misfit learners are also 

removed, for cases where the learner responses do not fit the data results, and such misfits 

in learner data may be an indication of guessing, where the relationship between learner 

capability and item difficulty cannot be determined due to inconsistency in the responses 

from these misfit learners. 
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I apply Rasch analysis in two different ways within this study. Firstly, in 

determining the proficiency of learners on the basis of the test items presented, to identify 

and remove proficient learners from further analysis of the incorrect responses. If a 

learner has demonstrated proficiency, which is the STABLE stage of my model, then they 

will not have made enough mistakes to warrant the analysis of their misconceptions and 

any such mistakes are more likely to be slips. This is the traditional approach to Rasch 

analysis, in which the trait being measured is the learner’s “ability”, and this traditional 

approach is generally not suitable for the measurement of misconceptions (Stacey & 

Steinle, 2006). 

The second way I apply Rasch analysis is by addressing particular misconceptions 

that would cause the rich distractors to be selected in the MCQs, and I analyze these 

responses to determine which test items are good indicators of each specific 

misconception, and also which learners have evidence of the usage of the misconception. 

Thus the trait I am measuring here is not “ability”, in its traditional meaning, but rather 

the extent to which the learners’ responses can be accounted for by their usage of a 

particular way of thinking. 

The WinSteps program requires the creation of a control file which instructs 

WinSteps on the input data provided, the calculations to perform, and the reports to 

produce. Building this control file for each Rasch analysis is a relatively complex and 

time-consuming process, and I have semi-automated this process in my combined results 

database, using the WinSteps parameters that are of interest. WinSteps has a large number 

of controllable parameters, each of which influences the input, processing and output of 

the data and results. 

I now outline how I have used the WinSteps approach to Rasch analysis 

throughout the detailed analyses in Chapter 6. 

The control variables for WinSteps are provided at the top of the control file and 

inform WinSteps of the input, processing and output for each analysis run. 

As an example, Table 45 shows part of the control file used for the first analysis 

for the micro-domain of place-value knowledge. Of interest here is that there are 25 items 

(NI variable on line 11), and the item codes are provided as 10001 to 10055 (lines 25-49). 

The CODES variable (line 18) indicates that the responses for this analysis are restricted 

to the values of 0 and 1, and that others will be ignored, and the CLFILE variable (lines 
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19-22) provides labels for the 0 and 1 responses. Other parameters in this example are 

used to determine the types of output, such as the CSV=1 on line 6, indicating that the 

results will also be produced as a CSV (comma-separated values) file for input into other 

systems, and the file names to be used to hold this CSV data, on lines 9 and 10. Files in 

the CSV format can be easily imported into other applications such as Excel and database 

systems. 

Table 45. Example of Control File for Rasch analysis 

1. ; -------------------------------------------------------------------------------- 

2. ; PV - SCHOOLS A+B - CORRECT 

3. ; Created on 2013-Nov-17 Sunday 

4. ; -------------------------------------------------------------------------------- 

5. TITLE=  PV - SCHOOLS A+B - CORRECT 

6. CSV=    Y 

7. HLINES= N 

8. QUOTED= N 

9. PFILE=  PV-AB-LRNR.CSV 

10. IFILE=  PV-AB-ITEM.CSV 
11. NI=      25 
12. ITEM1=  1 
13. NAME1=  41 
14. PERSON= LEARNER 
15. ITEM=   TESTITEM 
16. IMAP=   $3W3 
17. PMAP=   $1W3 
18. CODES=  01 
19. CLFILE= * 
20. 0 Not detected 
21. 1 Detected 
22. * 
23. &END 
24. ; The individual test items in this analysis 
25. 10001 
26. 10002 
27. 10003 
28. 10004 
29. 10005 
30. 10006 
31. 10007 
32. 10008 
33. 10009 
34. 10010 
35. 10011 
36. 10012 
37. 10013 
38. 10014 
39. 10015 
40. 10016 
41. 10017 
42. 10018 
43. 10019 
44. 10020 
45. 10051 
46. 10052 
47. 10053 
48. 10054 
49. 10055 
50. END NAMES      ; End of the test items, DATA follows 
51. 000000000010011.....01111               A01 
52. 000000000000010.....10101               A02 
53. 111111111111111.....11111               A03 
54. … 

The data lines of the responses are from line 51 onwards, and only three lines of 

responses have been displayed in this example. 
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The outputs from WinSteps include diagnostic tables, result tables, and plots, and 

each of these have a specific WinSteps “table number” which is shown in the first line of 

the data tables used in the analyses. 

I use the following WinSteps output tables frequently in the analysis of the 

response data: 

 TABLE 26.1 ITEM POLARITY: a diagnostic table to help identify the 

correlations of the items with the learner measures, used to help to filter out 

items which do not fit the learners’ responses. The test items are presented in 

point-measure correlation sequence. 

 TABLE 2.6: ITEM-CATEGORY MEASURES: which provides evidence of 

misfit test items, identified by the mis-ordering of the responses against the 

expected values. 

 TABLE 10.1: ITEM MISFIT: which shows the test items in the sequence of 

their misfit to the Rasch model. A good fit means that the test item difficulty 

is aligned with the learner ability, and if not then this TABLE 10.1 will show 

two special cases of misfit beyond the pure correlation provided in TABLE 

26.1. INFIT is higher when the items with measures close to a learner’s 

measure do not show an increased level of difficulty and is a weighted statistic. 

OUTFIT is an unweighted which is more sensitive to unexpected results at the 

extremes, such as caused by slips or guessing. 

 TABLE 17.1: LEARNER MEASURE ORDER: showing the results by 

learner in the sequence of their estimated ability on the trait being measured. 

For my purposes this trait is the proficiency in the micro-domain for the first 

part of my analysis, and is then the level to which they are using a specific 

misconception in the second part of my analysis. This analysis is repeated if 

there is more than one misconception to account for the responses in the 

multiple-choice options. 

ENDS 


