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Inti-oduct ion

.lie development of accelerators able to produce high 

energy heavy-ion beams with high energy resolution and 

convenient energy variability has been responsible for an 

upsurge of both experimental and theoretical activity in 
the field of hcavy-ion physics.

In comparison with single nucleon induced reactions, 

heavy-ion processes involve a much larger number of reaction 

channels because of the complex nature of the interactions 

involving the possibility of high energy and momentum transfer. 

One of the more exciting aspects in the study of these 

processes is the possibility of gaining insight into fusion 

reactions leading to the creation of superheavy elements.

The nature of the heavy-ion process depends strongly 

on whether the incident ion is able to probe the nuclear 

forces of the target ion. The nuclear forces are sh ^t- 

ranged and are only effective when the separation of the 

nuclei is less than the sum, Rc , of the radii of the charge 

distributions of the interacting ions.

RC = RC1 + RC2 = ro (AlV3 + A2V3 ) (1.1)

Therefore the nature of the process will change when 

the total kinetic energy of the interaction in the centrc-of- 

mass system becomes larger than the Coulomb barrier Ec .
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Fig. 1.1. Pure Rutherford-type elastic scattering of 27-FeV H 0 ion: 
on gold.

However at higher energies the nuclear forces are 

probed and large deviations from pure Coulomb scattering 

predictions arc observed (Fig. 1.2) :

v
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The criterion for classical behaviour is that the 

fonnerfeld parameter, n , must be greater than unity, i.e.

n = 7,1ZpeP > 1 (i.
fvv

If ri>l the particle orbits can be taken to he pure 
Rutherford orbits.

When the projectile and target particles are identical 

nuclei we expect the Mott scattering predictions to be 

fulfilled. We expect oscillations in the cross-sections to 

be present and, because of the indistinguishability of 

scattered and recoil particles, to have symmetry about 

0=90° in the centre-of-mass system. Figs. 1.3a-e show how 

this is observed for 160-'60 scattering and the deviations 

from the Mott predictions at energies above the Coulomb
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The observed analogy between the behaviour of the 

excitation function:; for heavy-ion collisions and the 

observed diffraction effects in classical optics initially 

led to a focus of interest on the explanation of heavy-ion 

collisions in terms of semi-classical methods. In 

Chap er II the application of diffraction techniques to the
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tv nvy-i:-n scattering problem is discussed.

iiowevt. r for u Letter insight into the underlying 

r ;ir.y-V- Jy problem one would like to develop models which 

sh.ow or. explicit Uopondanco on quantities such as the value 

of the relative coordinate and for which a Cchrodingcr 

equation can he formulated and solved. This led to the 

development of optical potentials for these react,ions.

The concept of a nuclear molecule increased interest in the 

development cf such models. The fir -t potentials 

proposed were derived from phenomenological f^ts and arc 

discussed in Chapter III.
In Chapter IV the extended liquid drop model is 

discussed which provides a semi-microscopic foundation 

for the derivation of the real potential in the heavy-ion

scattering process.
The extended liquid drop method treats average 

properties of the nucleus. In such a treatment the effects 

of the presence of nuclear shells is neglected. Chapter V 

outlines how the shell effects can be incorporated into the 

extended liquid drop model within the framewoi k of a two-

centre shell mode?.
In heavy-ion collisions the presence of intermediate 

structure in the excitation functions is clearly seen.

Much of this structure can be explained in terms of 

resonances between quasibound molecules and virtual states 

of a quas."molecule. * The coupled channels approach, 

discussed in Chapter VI, explicitly allows for such effects.



of the approaches that have been adopted in 

deriving a n.,,re fundamental derivation of the imaginary 

potential are d% cursed in Chapter VII. There it is 

seen that there exists the possibility for a dynamic 

treatment of the problem using momentum space consideration 

ihiw. .trproac:. provides a parameter free imaginary potential

Chapter VIII deals with the use of the folding method 

to derive the form of the real potential. Various forms 

for the nucleon-nucleon interaction are postulated and 

corresponding nucleus-nucleus potentials derived.

The treatments outlined up till Chapter VIII lack a 

convincing microscopic model of the real potential having 

an energy dependence and no free parameters. In Chapter 

IX an energy dependant, parameter free real potential is 

developed from momentum space considerations. The 

potential is derived in the two extreme cases of adiabatic 

and sudden approximation. This real potential is used 

along with the parameter free, energy dependant imaginary 

potential described in Chapter VII to predict the cross- 
section for " 0 - " 0  scattering.
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At energies above the Coulomb barrier the form of the 

angular dependance and the gross structure of the scattering 

cross-section indicates a close analogy with optical 

diffraction pr cesses. It was for this reason that the 

diffraction model was among the earliest models put 

forward to understand the nature of the interaction in 

heavy-ion collisions. By using a diffraction model it is 

possible to bypass having to solve a Schrodinger equation 

and to get good agreement with experiment by a suitable 

variation ex the parameters involved.

For low values of n the form of the cross-section is 

of the type associated with Fraunhofer diffraction and for 

high values of n the form is of Fresnel type. The 

transition from the one form to the other can be clearly 

seen in the angular distributions of 158 MeV lo0 ions 

elastically scattered on nuclides having progressively 

higher atomic number.



o  z 4 b » IU IC !'• 'U tv tt. t-.
Scottcrmq onijie u (CM) ►

bs
§>
b

I -1 
I 2
1 Oi 
0 0 -  

0 6 * . 

0 4
02 
0

-rrrr - r~ n - -r-y t-i '*1 T-'T '-r
(b) Ni (l60, “0)

I 4
I 2
1 0 
OR 
06 
0 4
02 
0

0- / V  12* 16* 20* 24*20* 32* 36* 40*44*46* 
Scotienng ongie 0 (CM) *

■ i' | r  h t  ' i | i - i - n ' T  l ' i - r

(c) '97Au(,60, “0) w7Au

•••• A

' 1 L ,t_l 1-i-l X
o - i - l  -t-u I 1 ‘ *

8* 14* 20* 26* ?2 30 44 50
Scotlenng ongle 6 (CM) »

otructurc for v Ni, (c) Prccncl structure for ,,Au.



9.

I’he t'uij condition for diffraction of a wave by an 

opaque object is that th • wavelength be sr.all compared with 

the linear Jinvmuion a cf the object. That is, we require

If d is the shorter of the two distances d-, between source 

point and object, and , between observation point and 

object, then

Since k and a have magnitudes of the order of the size 

of the nucleus and since d will be of the order of 

centimetres we would expect that the second condition is 

never met. However, closer consideration of the physics of 

the problem shows that this is not the case.

Consider the elast'c scattering of a projectile, mass m-, 

by the Coulomb field of a spherical target nucleus, mass m^. 

The coulomb field distorts tne incoming wave such that there 

is appreciable curvature of the wavefront < /er the region of 

the nucleus. For strongly absorbing nuclei this corresponds 

to Fresncl diffraction by a black sphere.

The scattering angle for a collision as illustrated in 

Fig.2.2, is related to the impact parameter b by

k a  >>  1

k a • << 1 implies Fraunhofer diffraction 
d

(2.1a)

and ka2 > 1 implies Fresnel diffraction 
*d '

(2.1b)

b = n cot 6 
k 2

(2 .2 )

For a given classical trajectory the distance of 

closest approach, D, is
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;) = T, ( l ♦ cor.ov o) 
k

Thr fvniiif, t.rn,ir>ct ory il.ho onr* for v/iiich U oqu;i 1 r» 

t hr- r.um ,H, of I In' tniy.ot. and projectile rm'ii and wr* deline 

the critical anjle 0,. an the nr a Iter inf. ancle correr.pond i nc 

to that trajectory

R = n (1 ♦ ronec f'c  ) ( 2 . ^ )
k  ?

Thin f.iver, the corresponding impact parameter he an

be = o cot Oc 
k 2

(2.5)

Particles which are scattered through the angle 0c 

appear to originate from a virtual poi.f source at a finite 

distance, d, from the scattering centre and in this way 

condition 2.1b can be fulfilled. Large values of n 

correspond to small values of d and thus to Prcsnel 

diffraction whereas small values of n correspond to large 

values of d and thus to Fraunhofer diffraction.

Fig. 2.2. Schematic representation of charged- 
particle scattering phenomenon. Ihe circle 
represents the otrorgly absorbing sphere

One can derive a simple expression for the critical 

angle 0c from equation 4, namely

6c * arctg 3 
A

(2.6)
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where A is an angular momentum related to R by

A = kR (1 - 2_n)‘ (2. ( )
kR

Using these parameters and introducing a quantity d

which describes the diffuseness of the nuclear surface, we

are able, using classical diffraction relations, to give a
(2 )qualitative description of the scattering

Firstly, we consider the scattering as a function of 

scattering angle. Two regions can be identified in the 

scattering. One, associated with 0<Qc, where Coulomb 

scattering dominates and the other, associated with 0>6c, 

where the nuclear potential is probed.
For heavy nuclei Fresnel-type oscillations appear in 

the Coulomb region. In the nuclear scattering region o/0R
decreases monotonically with an exponential fall-off rate. 

8>>0c, o “ exp [-2ttA(0-0c)J (2.8)

where the rate of fall-off is related to the diffuseness 

of the nuclear surface d , through

A = kd 1 -  n /%p ( 2 . 9 )

J ~ (2n/kR)

For light target nuclei the angle 0c is relatively small 

and so the condition for nuclear scattering to occur is 

predominantly fulfilled. The decrease of o/0 is still 

given by equation 2.8, but the fall-off is no longer 

monotonic. Oscillations can now arise having a period

* "/A

with an amplitude given by
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A ( 0 ) = ' exp (-2tiA0c )

= 2 exp (-.-Trnd) 
R

(2.10)

We will now consider excitation functions, i.e. the 

variation of the differential cross-section with the 

energy of the collision. We can again identify two regions 

for the scattering.

where E(, is the Coulomb barrier then E>E^ implies that the 
nuclear potential is being probed and E<ER implies that the 
scattering is Coulomb scattering. For E>Sy an exponential 
decrease in the scattering cross-section is predicted for 
heavy nuclei

and C(0)is a function of scattering angle only. For 

lighter nuclei, oscillations of period T and amplitude A 

are predicted where T and A go as :

The period of the oscillations can be seen to increase 

with increasing energy and to decrease with increasing 

scattering angle. The amplitude of these oscillations 

decrease with increasing energy and increase strongly 

with decreasing diffuseness of the surface.

c (1+coscc 0)
2

(2 .11)

(2 .12)

where y = (2-1^2 c" pR)*

V e /f -ILc
(2.13)

(2.14)
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Var: - us nod--la have been proposed to account for the 

-ati ring t ehaviour in general situations. We will 

restrict ourselves her- to the case of zero-spin particles 

for which the scattering amplitude is
CO

f(0) = A 7. (21+1) [hp-l] p» (cose) (2.15)
2l 1=0

where n^ = exp Zio^ and + iS^ +
a- describes t.ie deviation from the Coulomb phase shift 

arising from tn > nuclear contribution.describes the 

effect of absorption by the nucleus. The Coulomb phase 

shifts are given by:

exo 2io. = i’d  + i + in) ( ’ 1^)
a rd+'i-TFH'

n. = exp [21(Re 6, +iln 6£) j

= A, exp [2i Ro 5t j

is the partial-wave nuclear scattering amplitude. Now we 

have (eqnz,:) that the impact parameter b is given by

b = Z. Z , c c cot (6_)
_£_£—  2

mv2

The classical orbital momentum of the incident particle,

1c t = m vb (2.17)

lcf = Z1Z2 e2 cot (0) (2.18)

is therefore given by

1 :

and the distance of closest approach by

r’'ir s Zn Zp9" (1 + cosec 0.) (2.19)
2E“
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.vov Unit K, to the distance of cloo. st

•i; : Vv :ich is reached when r . = R = the sum of the particlem;n
v u .. i :. The corrc sp ::din,* critical orbital momentum 1 ’, 

can be given in its quantum mechanical form as

l/ V  (V + l) = 2mR"(E-Z,Z^e") (2.20)__

One of the earliest and simplest models proposed to 

account for the scattering behaviour is the sharp cut-off, 

strong absorption approach known as the Blair model  ̂^ .

The basic assumption in the Blair model is that all 

projectiles whose orbital momentum exceeds £1 pass by the 

nucleus along Rutherford trajectories but all those having 

an orbital momentum £<_<.' are absorbed by the nucleus out 

of the incident beam and do not experience elastic 

scattering. This is equivalent to excluding all particles 

which would have a small impact parameter in the classical 

picture and c^uld thus conceivably cause interpenetration and 

give rise not only to elastic scattering but also to 

inelastic scattering.

This assumption has the effect of terminating the sum 

in the cross-section expression to:
I *

0(0) = |f (0)I 2 = \ *  I  (2£ + l) (l-nf) P. (cosG ) | 2
2l £=o

The Blair model assumes that the nuclear forces can

only affect the scattering interaction by giving rise to an

absorption. Therefore the real phase component a ? is set to 
zero. The value of Bf , the imaginary component, will 
determine the absorption. In the strong absorption model 
B;, is chosen such that:



1

e x p = 0 V  V  (2.

e x ; ' ( -  ^ ) = 1 t > Z  1

i.e. n , - o for therefore partial waves with £< & ’

experience pure Coulomb scattering. 

This parametrioation of the phases is able to bring 

out the main qualitative features of the diffraction 

scattering. In particular it is able to reproduce the 

experimental observation that at the critical value %=&', 

corresponding to r,n;n = R , the observed elastic scattering 

cross-sect ion exceeds the Rutherford value (see Fig.2.1). 

However, there is disagreement with the experimental data 

in that the calculated amplitude of the oscillations is 

much larger than the observed amplitude. Also, the 

decrease in the calculated angular distribution is slower 

than is experimentally observed.

The failure of the sharp cut-off model on these points 

is not surprising. In diffraction scattering processes, 

the nuclear surface plays an important role. In this 

model the scattering is presumed to be insensitive to the 

shape of the surface. A more realistic description of 

the scattering would allow for a more gradual transition of 

n; from zero to unity. This transition would extend over 

a range of 1 values in the vicinity of V . In the same 

way as large oscillations arise when a Fourier series is 

terminated, the strong oscillations arising from the Blair 

model can be considered to arise from the sharp cut-off of 

the partial waves. By effecting a more gradual cut-off 

these unphysical oscillations can be damped out.
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f ■ t* t hr n, wh i ■!) i iu'orpf'i’.i t <• t l i i r .  and a 11 nw foi* > lu1

Frahn and Venter were able to derive a closed and 

simple form for the scattering amplitude useful for the 

determination of the parameters by fitting the cross- 

sections to the experimental data. In this treatment 

g(t'-l) is a continuously differentiable function of

with a first derivative symmetric and peaked at <-'
A

but otherwise arbitrary. It is thus possible to apply 

the results of this analysis to a large variety of types 

of n*. The standard forms for Ren* and Imr,4 are shown in

d-Hval inn of a closed expression for t i n  scat I. e>’i ng cross­

ed, ion. A parnmot.ri sat ion which has met with much succor ,  

is t hat of Frahn and Venter Their parametr Uat ion in

of the form:

Ron* = exp(- .?fnifi.) con(?Rc6,) = g (  ̂1 ~p) 
1 A (2.2?)

I m n* = c x p ( - ? r m A f ) s i n(.?Re<5f) = pdg(%'-%) 
1 1 di A

Fig. 2.3

» f  114

Fig. 2.3. Standard fom of Rent and Imn^
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Ylin ri' t 1 pit’l. of n <’h.’mr,on fi'om .".mnll valuor. ni 

.f 11 I ’ i 1 unit y nt hif.h ( by n I’Tpid I r inr i (.ion in V-I.o 

v i t* ini t y of ’iho imnf'innry part, ir, only act. i vc for

r \’ ' i-'-f l.•••: inr, t hr presence of nt.ronr. anr.nrpt-'ion at t he 

nuclear surface.
The success of the Krahn-Venter paramevrizafion in 

predicfinii the experimental values is illustrated for 

Fraunhofer-type scattering in Fig. 2.4 and for Frcsnel- 

type scattering in Fig. 2 . 5 :

JOn:on *0

Fig. 2.4. Differential cross-section for elastic scattering of C ♦ 
U C at Eiab=127 McV. ahe theoretical curve was obtained with the
Frahn-Venter diffraction model.

io"

0
Fir. 2.5. Differential cross-section ratio to the Rutherford cross- 
section for the reaction ,2C ♦ le,'ila at 122.5 MeV,
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An alternative semic»assical treatment v/aa put 

forward ty Fori and Wheeler  ̂ y and war named the "rainbow 

m ivl" because of its relation to t h e  scattering of light 

wave a from watvi* drop lets. The rainbow model takes os 

ita starting poiir the relationship for the cross-section

j(0) 5 I X i (2&+1) (c*2l6i-l) Ih (cos e) 12 
?x S - o

It is a two-pirameter, "soft-core" model in which the 

scattering nucleus is assumed to have a central attractive 

region and a non-absorptive, refractive su'face layer.

The rainbow model makes use of a number of approximations.

The phase shift 6, is replaced by the value calculated 

in J.W.K.B.L. approximation

 ̂ s 7i ( t + i )  -kro + /r (k(r)-k) dr (2.23)
 ̂ ™ o

where k = 2tt ,k (r) = [ 2m(E-V) - (2. + 1)2 1 ]"
T  rT r

and ro is the turning point of the classical motion defined

by k(r) = o.
This approximation is valid if A dV <<1.

TnV dr
The Legendre polynomial is replaced by the asymptotic 

expression

P .(cosO) 'v 2 sin[(%+l)0 + n] (2.2^)x. TJ-
irrsirO

valid for GI >> 1.
The summation over 1 is replaced by ar integral.

This is a valid procedure if many partial waves contribute 

to the scattering and if the phase shift varies slowly
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and ovhly w -th . 7no scat aring ci'oss-aecticn

becomes:

a (e ) = I f (0 ) 12 = I - 1 j ] d i.Ji + 1 [expi A+ - expio -] | 2 (2.25)
kV iioinG 

where c* = 26, ± (&+i) 0 ± tt/i,

The integrand is a rapidly varying function of &.

Only partial waves in the neighbourhood of the point of 

stationary pnase will contribute. Using the saddle-point 

nethod the scattering cross-section is given by the 

formula

o(0) = U 6*i)X -1  (2.26)
§0. 
k

sTnO

where 0̂  = 23 6p is the classical deflection function 
I T

of i where the phase <Ji is stationary.

denotes the value for which 2 d6? = t 0
r r

This derivation is not valid near the so-called 

rainbow angles where the classical deflection function has 

an extremum (Fig. 2.7):
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Fig. 2. 6 . Plot of trajectories of “ 0 nuclei incident on 2 “ Hi with 
Ec,m. = 128 MeV.

50 r
E r - M  =128 MeV

12.812.21.A , m m

Fig. 2.7. Plot of the classical deflection function against R 
illustrating the extremum
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"j <>f cf laf-jf ibsvrpuion at a:,. .11 ar.glc-;-. can be

s. i n  f i r .  . ••• Fcr thio rear th- theory ii not 

ex: •<” • i to ! ' auccer jful for r.:r.a 11 a nr i • ■ ■ ■1 11 '■ ’ '' •1 ‘-1 > •

At the rainbow angle the deflect ion I unction ztiuy be 

expar.di in the form

t), = e„ - q (i- i.r )2 (2.27)

where 0 la the value of the del lection function at the 

extremum.
The variables q and 8, are the two parameters of the 

rainbow model.

how 2 3 6. = 0 Z 
T T

Therefore this approximation for the deflection 

function gives the phase shift 6̂  as:

6 i  = £r ! i 6r ♦ 1 q(l-ir)‘

Substituting this into 2.17 leads to the tormula:

(2.28)

a r( 0 ) = 1 2 sin2 ( r̂/; ) [Ai (x) j2 (2.29)
o^TeT n q2/3

where Ai(x) is the Airy integral.

A i (x) = 1 / oxp (ixii+^ip3) du (2.30)
2 it 1

and x = q” (6-8^) ( 2 . 3 ± )

Ai(x) is an oscillating function for Q£6r (bright side) 

and decreases exponentially for 6>>&r, (dark side).

0 car. be associated with the interaction radius R r
through

R = n* [l ♦ cosec (jjr)] (2.32)
2

and q can be associated with a non-absorptive surface layer
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.'7. •) MpV 14n r . c a t t - o r e d  on 7 7 Al where 0^ nnd q h ive h u m  

net n t  O^sQlt0  nnd q - O . J O  c o r r e s p o n d  i n n  t,o r n = 1 .[>0 fm ni .U  

Alt = 0.fl3 I’m:
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Al( N, Nl Al

x y  \
•s.

~40* ~ ~50*  60*" 7 0 * 8 0 * ~90" l0 0 *  uO* I20*"i30* ,40*

Scattering onqic 0 (CM) •

Fin. 2.8. Annular distribution of elastically scattered 27.3-MeV""X 
ions on 2 7A1, "'the experimental data being compared with the 
predictions of Blair sharp cut-off theory (dashed curve) and rainbow 
scattering theory with 0^=9^° and q=0.^0 (solid curve).

We have seen that the semiclassical diffraction models 

are able to predict results having fairly good agreement 

with experiment. However the parametrisation which is 

made in these models does not lead to a deeper understanding 

of the underlying many-body problem. One may hope to 

achieve a better insight by studying an interaction potential.
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The usefulness of the optical model for hcavy-ion 

scattering was appreciated from the early days of work in 

this field ( . It is well known that the optical model 

associates the partial transmission and partial absorption 

of particles incident upon a nucleus with the real and 

imaginary parts of a complex potential in analogy with 

the propagation of light by a refractive medium in optics. 

That is, the nuclear potential takes the form:

V .(r) = U(r)+ i W(r) (3.n u c 1 ~
Since the optical model provides a method for 

predicting variations in the cross-section for elastic- 

scattering it is hoped that by varying parameters which are 

known to change from system to system one could account 

for the different cross-sections observed for different 

systems. Information about the structure of the nucleus 

can then hooefully be extracted by relating these parameter 

variations to differences in the nuclear structure and the

reaction mechanism.
There are a variety of ways to specify the radial 

dependance of the optical potential. Observing i/nat the 

n m  ear mass densities may be well approximated by Woods- 

Saxon shapes and that the nuclear forces are short ranged 

and saturating, one may assume a Woods-Saxon form for the
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v  ' part or ■ ; .ten' : .1 and a derivative of the Wood3- 

faxcn for::: or 3aussian fern: for the imaginary part of the 

potential. This approach all con for the occurrence of

.surface absorption. One then has
1 +iWo d 1

Vnuc 1 * Uo lte:<p(a l ,  U o x p 0 - ^ f )a d

"  w »  ■ -  « • »

An even r.ore extensively used approach is to assume 

a Woods-Saxon form for both real and imaginary parts, which 

corresponds to volume absorption.

V , (r) = Uo 1______ + iWo 1______  (3.3)
l +ex p ( ^ )  l+exp(^±L.)

In most heavy-.ion analyses to date a simple lour- 

parameter complex potential of the V;oods**Saxon form hao 

been used where the real and imaginary parts are considered 

to possess the same geometry.

V . (r) = (Uo + iWo) 1  v 3 •‘0
nUCl l.exp(^)

T I T . ?  Wood:. - :  ox on ,

The Ya’e group have provided optical model fits tor a
(7 )number of identical nuclei scattering processes . In 

their earliest fits (8) they chose parameters which were 

close to the known values of nuclear radii and sunace 
diffusities. Thus for 1‘O 160 scattering the parameters 

that were used were:
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!)'[;•% 7 ]  H  [ fin] n [!':,] W o  [ M r V j  I C  [Tin] n ' [i’m ]  

17.0  6 . ;  0Jl«) O . ' i tO . lH c  .m. 6 . 8  O.'OJ

Tho tot.al nuclous-miclniM pot.ont iai ha a ii'ucl«*ar, 

fun iunh and angular momotiLtim conti’ibution:-. UflinC blip 

abovi’ pnramolriv-at.ion of the nuclear contribution we can 

reprer.ent the radial depcndance of the effective potential 

as shown in Pin. 3.1 :

>
-

v,‘vw~*
l -  I -1 1-!--L_
m (Fi

-I

Pig. 3.1. Radial dependence of the real part of the optical 
potential for several partial waves.

The clastic-scattering excitation functions predicted 

by this parametrization of Maher et al. is compared to the 

experimentally observed values in Pig 3.2:



dcr
/df
l 
(r.
ib/
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0 ' t o‘ 
C L A S T I C  S C A T T f  filNf,

>

40

Ec.m.̂ MfcV)

Fig. 5.2. l‘O l,0 elastic ocattering excitation functions. The 
Bolid line representa the cnosa-oectiona calculated with the optical 
potential of Maher et al ( ).
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.> , 'ivly p.-iranetrization v/ac unable to reproduce the 

I'.r a j : at 1 in.- found in the 160-,c0 e.-:-*ltat ion function. 

:’h - diffract ! n ie.l indicates that the amplitude of the 

cucilla* : in the excitation function will incr- aac with

dt creaoind iiffu.enecs parameter. An improved fit waa

then made uniuc the following parameters -

U o [ : - : e V J  h  [ f : : . ]  a [ f m ]  W o f M e V j  R ' [ f m ]  a '  [ f m j

1 7 . 0  6 . 8  0 . 4 9  0 . 8 * 0 . 2Ec.ni. 6 . 4  0 . 1 5

The new value of a' no longer bears a relation to the 

physical structure of the nucleus. It is possible however 

to account for this requirement by incorporating an 

angular momentum dependance in the imaginary potential.

TIT." Angular momentum dependant potentials

The absorptive part of the potential in the optical 

models we have so far considered have been independant of 

angular momentum. The necessity for introducing an 

angular momentum dependance in the optical potential can 

be appreciated by considering the dependance of the optical 

model on conserved quantum numbers.

In the scattering of ,wo complex nuclei, it is in 

general not a. valid assumption to assume that each partial 

wave is attenuated at the same rate as any other wave once 

it enters the absorptive region, since one expects the 

amount of absorption* for a given partial wave to reflect 

the density of states in the compound system at that

energy and angular momentum. From a consideration of
( 9 )conserved quantum numbers, Chatwin et al were able 

modify the form of the optical potential to incluue
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. l:i cul- in Lhe : t . r o ; . ah of the absorptive 

pot ini 'i< increar. Inc angular mvir.entui::.
Further evidence for the do. irability of having an 

angular r.jr.vntum depend a nee in the imaginary potential in 

presentei by the improved fit found by th Yale group for 

the scattering of 160 on 160 . They found that i1 '"as 

necessary to reduce the diffuseness parameter to a 

physically unreasonable size to give an improved fit.

Such a variation in coordinate space is equivalent to 

having an angular momentum dependance in angular momentum 

space.
A qualitative justification for an angular momentum 

dependance can be outlined within a modified Feshbach 

formalism of reaction theory ^
Defining ?_ to be the projection operator giving 

elastic scattering into channel c and Q c= 1-PC to be the 

non-elastic operator, we have in perturbation theory the 

following expression for the optical operator:

H^pt(E) = PCHPC-E ?, HQrlnXnlQnHPc
n

+ f Wq (E')dE' + iW0 0 p t (E) (3.5)
'a Z'-E

where H is the total Hamiltonian for the system and the 

absorption operator is

Wcopt(E) = -it Z PcHQc |v,E><v,E| QCHPC
E>E' a

= 0 E<E' (3.6)— a
&  denotes the Cauchy principal value.

The states |n) and |v,E> are bound and continuum
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.-! oy o r ' M O V  Q Hu , with eirer.valuos ^  and

E 1 r . ; ively •
:;-.u cpci- itor H^;:v is diagonal in total angular

r . u r : .  a:.: parity. wince f0HQ conserves angular

r.or •ntu::; L and parity ft, the c las tic-scattering channel

with a ,:i .’on value of I " couples only to those states

| r.) , v , h 0  which have the ..ame value of iT so that in

general H;1'u is i" dependant.

Now by their construction the states |v,E > have no

incident-channel contributions. Also the operators

p HQ ana Q HP are rctationally invariant and therefore c c c c
the degree of overlap between the states !v ,E y and these 

operators is a function of the non-elastic angular 

momentum

' + i '  ( 3 . 7 )
-2

that can be carried away in the final states. ii and

i' are the final spins of the fragment nuclei which are 
- 2

generally small. So with increasing $. an increasing amount 

of angular rrcmentum , j , must be carried away in the 

relative motion of the fragments. However the repulsive 

centrifugal barrier also grows with A. Since PCHQC is a 

short-ranged operator, the overlap with will

become smaller. Consequently, the strength of the optical 

operator corresponding to absorption should decrease as % 

exceeds a certain value Jl„ which is characteristic of the 

non-elastic channels.
In order to achieve a calculational form of the theory 

a conventional optical potential is employed and a smooth



but ru: : v.!i:*:ilav mo::, ntur. of th< absorption

p.1 ■nviai bi''-:: :".h is include,!. To describe the 

situation the.: the incident nucleus can carry in rore 

angular momentum than can be carried away i a n y  of the 

reaction channels the model must show that for these 

angular momeu* u:n values the elastic wave will not be 

attenuated even in the nuclear interior, reflecting the 

poor matching of the elastic and reaction channels. The 

absorption is therefore given the following t-dependance:

W(r,t) = Wo 1 1 (3.8)
1+expC, .'g.) 1+exp

AH a

where is an average characteristic cut-off in angular 

momentum for the non-elastic channels and AH is the region 

over which the cut-off takes place.

In general the cut-off H^ is a function of energy 

because the maximum angular momentum increases as energy 

increases. A classical argument can be made which 

produces the following relationsnip:

Hc = kc (E)Rc (3.9)

where kc (E) represents an average wave number for the 

non-elastic channels, and Rc reflects the average oize of 

the interacting system.
 ̂*1 T \It has been possible 1' to understand some properties 

of the angular momentum dependant potential in terms of 

the strong absorption model. If the reflection coefficients 

calculated with an angular momentum independant imaginary 

potential arc denoted by nQ(H) and those obtained by



I n - ' l u i h .  * 1 h e  . - r i u C L h  c u r - c . ' f  a v t -  d e n o t e d  b y  t h e

f o i l  Lr. :: r e l  . t i o n  i n  d e r i v e d  :

( 3 . 10)

where f(i) is he angular n ament urn dopcndance of the

ir.i -ir.ary potential given by f(t) = ---------—
1+exp ( jc )

A/

(3.1D

This equation implies that for values of ?-c which are 

large compared to the grazing angular momentum J-0 the ?■ 

cut-off will h' e no effect since l (i)=1 lor those n values 

for which the nuclear phase shift is different from zero,

On the other hand very small values of i-c mey bo 

excluded since this gives a potential that is transparent 

for low partial waves which are strongly absorbed.

An angular momentum cut-off effect will only be 

observed for values of t-c not too different from the 

grazing angular momentum. This limits the value oi &c 

to values around iQ .

The standard optical model potential is not adequate 

to explain the elastic scattering for very strongly bound 

nuclei such as 1e0-180 and **0-**Ca since these are not 

easily excited. However the extension of the optical 

model to include an angular momentum dependant absorption 

term i~ able to give a better description of the data.

: fit of an optical potential having an angular 

momentum dependant imaginary part for the 160-160 interaction 

is seen to give excellent agreement up to a centre of mass 

energy of about 35 MeV (Fig. 3.3) :

i.e. j \| = |n . (1) | for i c> > z:j. io is defined by | no (̂ 0 ) | =1.
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I

^  mb/sr 
du

0 X 9 0 ' )

 Lj 1 1  1 _

70
ECm [MeV]

i s a  with"a w : s x . : r : : m a w ,
too fast in conparison with the experimental curve.

However above 35 XcV the predicted croao-ocction 10 

oeen to have oscillations which vary more rapidly than 

those observed for the experimental cross-section.
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The Thor.a;'-Fermi approximation , a statistical 

theory, has proved ,o be easier to handle than the 

Hart ree-Foek method in the investigation of nuclear structure. 

Following the success enjoyed by the statistical theory in 

treating nuclear-surfaee effects " " the theory was 

applied to finite nuclei By making assumptions on

the energy density and then expressing the total energy of 

the many nucleon system as a functional, E[p], of the local 

density, p(r ), it is possible to find the ground-state 

density distribution by minimization of E[pj with respect 

to P(r). The need for a more fundamental description of 

the heavy-ion interaction led to the statistical approach 

being extended to derive the potentials present in 

heavy-ion collisions.

IV.2 The Energy Functional

For a complete treatment of a collision of finite 

nuclei a knowledge of the nuclear two-body force as well 

as a method for treating the many-body problem is 

necessary. However for such a treatment it is necessary 

to calculate the self-consistent average potential
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( 4 . 1 )

i  r . f  1 r. 1 * •» n u c l e a r  v.ui t . e r  h o w e v e r  t h e  P r o b l e m  i

• r . i c h  .• i : : ; p i  I f :  e d  a:-  t r a r . a l a t i o n a l  i n v a r i a n c e  e x i u t : ;  a n d  t h e  

C o u l i  mb e n v r . : y  '

vector;, which are plane wave.* and the celf-conoistency 

problem re iucec to the definition of the single-particle 
energies

We would therefore like to make extensive use of 

infinite nuclear matter results for the description of 

finite nuclei. The Thomas-Fermi approximation proves to 

be a suitable framework in which to exploit these results.

the energy can be expressed as a unique functional of the 

density. As t; 's functional is complicated and unknown 

we attempt, by application of the statistical theory, to 

approximate it in some seniclassical fashion.

For slowxy varying densities, an expansion of the 

energy in powers o f  the density gradient can be made. 

Since the shell struct c m  be considered to arise from 

the quantum oscillations created by the vanishing of the 

density outside the nucleus, such a procedure would lose 

this structure. The Thomas-Fermi approximation consists 

in assuming that the energy dependance in the density is 

locally the same as that of a homogeneous medium in the 

ground state. This is equivalent to assuming that the

= h i  + U ( p )
F 2m

(4.2)

It has been shown that for a quantum-mechanical system
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hvtŵ o-!-. .’iucl'.-o:..; in inf:nil." nuclear Matter and la 

kr.w/n ua the i cal dv-ncity approxinsat ion. When the

density la low, the dv iroglie wavelength associated with 

each nucleon became;", relatively large and thin theory breaks 

down. We now investigate "a energy functional that must 

be minimized.

It has been pointed out that the energy functional is 

a complicated and unknown function of the density. It has 

therefore become the p r a c t i c e ' t o  assume some kind 

of reasonable schematic expression to represent this 

functional dependence. The approach we consid r is that 

proposed by Scheid and Greiner in Ref(15). This approach 

allows the nuclear density to be found as the solution of 

linear differential equations.

They consider the dependence of the binding energy 

E[o] of a nucleus consisting of A nucleons and Z protons 

on the nuclear density distribution p.

rirrr-
■'o i"'1 Bi ki'Csi

Efol = W A * C r(0-0.)! <Jt»: V, / ; o(r,) e" '-’.""z /v. (o(r,)-o(r,) )
0  z r  0  i = i  ^  -1 i v T r r  1 -2  -1

dr, qt-,

* )(#)' ;/ dTl dT2 * ~  dT (H.3)
Irj-rjl 20= lA >

The first term is an energy proportional to the number 

of nucleons. The second term allows for the effect of

compression and is essentially repulsive. The next term 

describes two interactions of Yukawa type with ranges u.. and 

potential strengths V,. Two interactions are included for



36.

v . . •-1 it i. only no ;onsary to hnv>* a single

inter ".ion Yuk.-.wa typ*. to reproduce the la. tie-

n c a f  : ' i : . - ;  c i x  n o - r . v c t i o n  q u  : t v -  w- • .  1 .  T h e  fourth t o r ! : ,  i n

e x p r e o v i o n  i s  t h e  c l a s s i c a l  C o u l o r . L  e n e r g y . T h e  f i r . a .

t e r : : ;  i . i n r l u  : e d  t o  d e s c r i b e  s y m m e t r y  e f f e c t s .

d i f f e r e n t  p r o t o n  a n d  n e u t r o n  d e n s i t i e s  a r e  p r e s e n t  t h e y

c a n  b e  a l l o w e d  f o r  b y  r e p l a c i n g  t h e  f i n a l  t e r m  b y

; I ( p . - b x - ) 2 d r ,  where p .  a n d  p . .  a r e  t h e  p r o t o n  a n d  

a P .
n e u t r o n  d e n s i t y  d i s t r i b u t i o n s  r e s p e c t i v e l y .

Making use of same physical constraints one is able 

to derive a set of differential equations from the 

expression (4.3). One requires constant particle 

number A, i.e.

A - /pdT (4.4)

and that the nucleus has a surface at r=R, i.e.

p(R) 4 i tR 2 6R > / • '  6pdr = o (4.5)o

The Yukawa and Coulomb potentials ^  and Q are given by

î .(r) = V. / e 1 ~ ~ 1 p(r') dt * (4.6)
▲ — i  - —

|r-r'|

and *(r) = eZ f ■- - P(r') dT, (4.7)
A Ir-r |

The Yukawa potential satisfies :

V2 * • - 1 _ ip. * -V o (4.8)
uT7  1 1

and the Coulo: u potential satisfies:

V1 ' = - 4 %"d p (4.9)
A

Rearranging, equation 4 . 3  becomes:



O n e  w-.vL'j.: t h v  b i n d l n f; e n e r g y  w i t h  r e s p e c t  t o  t h e  

d e n s i t y .  a sour, i n . ;  a  s u r f a c e  a t  r = R ,  w e  o b t a i n :

£E = / (J 2 _  n . ^  ♦ *2 . ^  6 dT
^ 7  A

* ( - L _  » (R> * * 1 (R) ’ * 2 (R) * f  ♦<«>) p (R)4,R'6R

, _L. (o' - 1_ p2 (R)) i)uR2 6R (4.12)
2»0

Equation .̂5 fives us p(R) 4nR*6R= -/6pdr

Substituting this in 4.10 and imposing the condition 

6E=0 requires that :

c
P + 0, + v? + eZ $ = const (4.13)

p, v2 1 2 T

and p(R) = vpc (4.14)

The system of equations has a unique solution for a

stable equilibrium density. In the absence of Coulomb,

symmetry and Yukawa forces the density distribution is

found to be of square well shape with constant value P=P0 *

The Yukawa force causes surface effects leading to a

decrease in the density in the nuclear surface if the force
• .

is attractive.

It is possible to postulate a general solution to 

these equations. It has the form



A u; v:'ul .id in . Iving these equations is the integral:

H - | ' | /p
'o    —  j (arf ) d x '

|r-r'|

— ' T { j (or) - e" l/U(co3 aR + 1_ sinaR) j /ir, }
u~ +CX wu '“u

(4.16)

Making use of the fact that this integral provides the 

homogeneous and the inhomogcneous solutions to equation 4.8 

and that the sum of the inhomogcneous solutions must 

separately vanish, fixes the parameters a., as the roots 

of an equation cubic in a - 2 .

— ^ ---  f----— —  + 4ir(eZ )2 •
v J A * 0 ''

Demanding that the sum of the mhomogeneous solutions 

of the two Yukawa potentials also vanish gives two relations 

for the a ..

3
Z a ■ 1 cos a R + 1 sinaR - 0 k = l,2 (4.15)

i = 1 ‘ p'2»a2 “k“

A third condition arises from the boundary condition

4.14.

I a. j0 (aiR) =‘ vpo (4.19)
i • 1

It is now possible to express the &• as a function of the
nuclear radius R and thus obtain the equation

3
A = 4i7R 3 Z a,j., (a.R) (4.20)

— —
Equation 4.20 can be solved by an iterative method.
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v: -on. : how ' : r,. ' V: (, C , ,) , Vj , V ,

u ana J il'v ; : nr.ir.o.i. Wo i-e.w.rict ourselves to the 

p:v oi* vr.e attractive Yukawa force having

para;-, zr V.
The vul . f G L. determined by requiring the proper

ratio of for t variation of binding energy with respect 
A

to W ., o and V can be fixed by three experimental
A

values; narv-ly the mean square radius of on^ arbitrary 

nucleus and the binding energies of two other arbitrary 

nuclei. ?h_ only two remaining parameters C and u are 

determined by observing what values of these parameters 

give the best fit to the elastic-scattering cross-section 

data. Thus the data of two nuclei fix all the parameters.

The dependance of the results or. the choice of the 

parameters C and u can be seen for the case of 1G0-' '0 

scattering by choosing two different sets of value.- for 

C and u .
The first choice is C= I 'W1 MeV and p= 0.8 fm.

9
This leads to the following values for the other parameters:

_  7
W = -16.0 Mev p„ = 0.188 fmo o
V = -469 MeV fm G = 70 MeV (4.21

The seconu choice is C = 80 MeV and v =0.3 fm.

This leads to the following values for the other parameters:

Wo =-15.3 MeV • pQ = 0.176 fm"3

V - -13012 HeV fm G = 70 MeV (4.22
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t lif* bindinr, m e r r y  n(' a n u c l e o n  in i n f i n i t e l y  e x t e n d e d  
n u c l e a r  m a t t e r  in t'iven hy :

It in thus ponniblc to plot the variation of hindinc 

enerny of nuclear matter with nuclear density according to 

equation H . 2 ) . This plot is shown in Fig.4.1 and is 

compared to the saturation curve obtained in the Brucckncr 

theory of nuclear matter.

Fig. 4.1. Ihc binding cnert7/ per nucleon in infinite nuclear matter 
with an e q u a l  number of protons and neutrons and without Couloml) 
energy. The solid line represents Brucckncr's results. Curves 2 
arxl 3 (dotted) are calculated with the parameter sets 4.21 and 4.22 
respectively.

It is also possible to plot the binding energy per 

nucleon, the proton number Z, the constant of the surface 

thickness Y, the equivalent rad .us R|X) and the surface 

thickness t as functions of the nucleon n v  er A. This is 

done in Figs. 4.2 and 4.3 for the two sots of parameters 

4.21 and 4.22. The radial density diatrioution for two 

different nuclei is also shown.

+ )• C no (o - 1 ) (4.23)

01
D C N S I l t  I f m ' * /
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ri%. &.J. 7;io bindir^ c : p e r  nuclco: 
the proton nui.her Z, the co, ont of the
furface tension y, the equivalent radius 
R ruvi the surface t l ickness t as 
functions of the nucleon nurber A. In 
addition the '.adial density distribution 
for two different nuclei A = 10 and 
A = 250 are shown for parameter set 4.21.

41.
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Fig. 4.3 7ne same quantities as 
in Fig. 4.2, but for parameter 
set 4.22.

I V .  4 T h e  R e a l  P a r t  o f  t h e  P o t e n t i a l

We will now consider how the above theory can be 

applied to derive the real part of the optical potential 

for ion-ion collisions. We consider the particular case 

of * *0-1*0 scattering. As the nuclei begin to interpenetrate 
distinct processes may occur. There are two extreme 

possibilities. In the one, compression of nuclear matter
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i* • ■ I V ' f i  i : I ' M.  T h v  •» i i  ‘ i t n c ’ w n  ni*. i . i i ' '

i i I, i i : • ' • •(} j . I ' "i: r c r p i ’Ct. i v i ■ 1 y .

. -Ml'” ' a; ;vr . : m , •■qtmt. ion . /», .'Hid 't.h«

;• 111 i • i -i i /  i t v ; 1 r  t h e  1'' > m ii- l f  i i ;• ur.cd to  r . iv o  th o

v- 11 ; i r ! . , V { r )  , oi '  t in'  potent in i  r- i non :

v,r>* comi-numl ny.l rn' * '•osynlcJ

''' ' i "  '‘o:iy.itora1 is th0 binding energy of the " 0
nucleus.

The density of the compound system is given in 

sudden approximation by:

* P i > 0 ( Z l ) * °1 ‘0 i 1*2i

The meaning of r, , r., and r arc made clearer in Fig. 4.4 :

Oic

Fig. ti.4. Ihe superposition' of the densities: (a) The coordinates
i"; and r-i a/v irr-asured from the centres of the nuclei. The 
coordinate r denotes the relativ. distance of the two centres.
(b) The density distributions of nuclei 1 and 2 overlap in the region 
3 shown by the unadow.xl area, in which the matter is cor,pressed.
The lower diagram contains the density distribution along an intercept 
through the centres of the 1*0 nuclei.
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T; i ■ ; ; i .' i ' V u  f  1 h t '  l l 1 !■' 1 t ' U “ M' . O i <’ Uf '  :■ V - ■ t.i Nil i ; i l i o w n

i I ’l:i ’ ’ i M o f  i |)o r.< i' ii' it inn d i n t a n e o ,  nr.r.tiii 1 di: Llio 

f i  idi'ii nppr< x i m.it i n n , i i ' i r , . ' i . ' j :

0 3  r

0.2
'! \

r>

0.2 -

w

0.2r

-10 z(fm)
Pig. <1.5. IT.c density of the nucleus-nucleus system in a sudden 
nucirus-nuclcus collision for various distances between the two 
nuclei.

All integrals appearing in equation 4.24 can oe 

solved analytically for the density distribution given by 

equation ‘..15. The basic integral that appears has the 

form
R "*|r "*r *-p|/u

I(r,a,fl,:i)s 1 /0 /  j g / a r i )  e -2..:.'. j  (Sr-) dr.dt- ( 4 . 2 5 )

H  I r ^ - r l



V(
1 1.]

2

- 'T H 3 p,c(l-r )2 (1 + r ) 0 (1-r ,
T  ~ i 7R

w h e r t  ( x ;  i s  • h o  s t o p  f u n c t i  n  d e f i n e d  b y  :

(4.26)

0 (:<) = 1

0 x<0

If there is no overlapping of the nuclei, only the 

Coulo::.; interaction is effective. The Coulomb barrier is 

lowerea by the attractive Yukawa force. As the decree of 

overlap increases, the presence of repulsive forces becomes 

more and more marked and there is a rapid increase in the 

potential. Furthermore the density in the overlap region 

is highly cc-pressed.

It is also possible to derive the shape of the 

potential in the adiabatic approximation. This is 

achieved by requiring that matter is nowhere compressed.

The important difference between the potentials derived in 

adiabatic and sudden approximation is that no hard core 

is present for the adiabatic potential. This results from 

foibidding compression effects. The potentials in adiabatic 

and sudden approximation, with centrifugal potential added, 

are compared in Fig. 4.6 :
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In* r :uc l ' 'n

. ' n o l i  : : . odv - l  i . n c  b e e n  e x t e n s i v e l y  a p p l i e d  t o

; z v b V  r .o i n  n  . ^ e a r  p h y s i c s .  I n  p a r t i c u l a r  r . a n y  a t t e m p t s

h  . v .  L :  n' .ade t o  i n t e r p r e t  f i s s i o n  p h e n o m e n a  b y  t h e  u s e  o f

a s h e l l  r . : d e l  m o d i f i e d  t o  a l l o w  f o r  a d e f o r m a t i o n  d e g r e e

o f  f r e e d  o r . .  i n w e v e r  i n  n u c l e a r  f i s s i o n ,  w h e r e  t h e  n u c l e u s

s p l i t ,  t o  f o r m  t w o  s e p a r a t e  n u c l e i ,  i t  b e c o m e s  e v i d e n t  t h a t

a  m o d e l  w h i c h  p r o v i d e s  f o r  m o r e  t h a n  o n e  c e n t r e  o f  f o r c e

w o u l d  b e  m o r e  a p p r o p r i a t e .  S u c h  a  m o d e l ,  t h e  t w o - c e n t r e

(17)
s h e l l  me d e l ,  w a s  i n i t i a l l y  d e v e l o p e d  ' t o  c o p e  w i t h  t . . c  

p h e n o m e n o n  o f  n u c l e a r  f i s s i o n  a n d  w a s  f o u n d  t o  b e  

s u c c e s s f u l  i n  o v e r c o m i n g  d i f f i c u l t i e s  w h i c h  h a d  a r i s e n  

f r . , m  a p p l y i n g  t h e  d e f o r m e d  s h e ^ i  m o d e l  t o  t h e  i  i c s i o n  

p r o b l e m .

T h e  d i f f i c u l t i e s  i n  a p p l y i n g  t h e  d e f o r m e d  s h e l l  m o d e l  

a r i s e  f r o m  t h e  f a c t  t h a t  t h e  s u m  o i  s i n g l e - p a r t i c l e  e n e r g i e s  

d i v e r g e s  t o  i n f i n i t y  f o r  l a r g e  d e f o r m a t i o n s .  T h i s  i n  

t u r n  c o m e s  a b o u t  b e c a u s e  t h e  s i n g l e - p a r t i c l e  e n e r g i e s  h a v e  

a  s u r f a c e  e n e r g y  t e r m  a n d  t h e  s u r f a c e  o f  t h e  d e f o r m e d  

s h e l l  m o d e l  g o e s  t o  i n f i n i t y  f o r  l a r g e  d e f o r m a t i o n s .

H o w e v e r  t h e  s u r f a c e  a n  t h e  t w o - c e n t r e  s h e l l  m od e  1 d o e s  

n o t  d i v e r g e  f o r  l a r g e  s e p a r a t i o n s  o f  t h e  c e n t r e s  a n d  t h u s  

t h e  m a j o r  p r o b l e m  o f  t h e  d e f o r m e d  s h e l l  m o d e l  d o e s  n o t  

a r i s e .  B e c a u s e  o f  i t s  s u i t a b i l i t y  i n  t h i s  r e s p e c t  a n d



, •Jii. • . Ic--;.ia t a .-.ol--(>u3ar tyj. • - structure for
{18)

• .cl us '' ' apr - ic.vion v:a. extended

th" ;a' ion r.- Ion potent .als in her,vy-ion

c.'-.tt v h .:'.

V. •: :

.ne iinr.lltoritn of the two-centre shell mod--I is 

Given in cylindrical coordinates by:

H = < 2 9* + U(p,s) + V(Z,p) (5.D
2m

In this treatment we will consider the potential of 

eacn centre to have the form of a simple harmonic oscillator 

as the.e can be handled mathematically. I’he wave functions 

car. be arrived at analytically and can serve as a basis 

for improvement of the model.

V (Z,p) is then Given by:

V(Z,p) = m (Z-Zo1) + w^ p " z>0

(5.2)
m w 2 (Z + ZCp) + w p‘ 2 <0 
2 Z, *2

where Zo,, Zo2 is the distance from the origin of the two

centres, w,, and u are the oscillator frequencies in the 
"1 P1

2 and p directions respectively for the one centre
and and w are the oscillator frequencies in the Z and

2 P2
p ilr-ctions respectively for the other centr .
U (t ,s) the momentum dependant potential, which is a direct 

generalization of the hilsson potential , is giver, by .
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H V  1 • r.oi::--ntu::. i r : . i '..x** a;; >" ■ v n by

■ ... wo cc:. cider :.ly

= -r.' i ■ + V(. ,p)
2 m

it can vayily be rhown that the ■ ne. .'3y oicvr.va . .ca o; .ia

-n: an, i'.,r the 3v v =u =w re g i L y  :
P1 p 2

E = (n, +i) Tiu.. ♦ (Np + 1) Trjp=( +}/ T. . +(Nptl) fjwp
1 1  *-

wh .*re X. is the quantum nvmber of the oscill itor in the 

p direction
and n.. and n7 give the quantum number for the motion in 

"1 -J2 
the Z direction.

By analogy with the usual Nilsson model we therefore 

have for V  :

I 2 = ( n 7 +N ) (n7 +K^+3)Z1 p " Z>_o

26if (5.4)
(n.. +Np) (n7 +N *3)
^2_______  2 Z^o

26if

The Kronecker delta indicates that only diagonal matrix

elements of v  re considered.

We can write 12 ar: ;
I2 = N(N+3) (5*5)

2
where V is identical with the principle quantum number

for Z +Z^ = o or “ .
° 1 2
The expression (VVx^ ) in equation 5•3 can be related 

to the angular momentum with respect to the two centres.

In particular for Z>o we have = V'vxp
mw 2



S.vro j • 2 iv.-.uribv the- angular amentum with

. % cc two •utv :•< o at and %=.' .
2

7h : • ; . .0 to the following form for the momentura-

d'- ron.:ant {. otviv. Lai :

U (i ,) = -Khw ' - i h(X + 3)) ]
0 (5.7)

-Kt.u [ 2^.3 . -iN(M*3)) ] Z>0O ~ £ ' <-

Detail.; of the v.athcmatical solution of equation a.-

are given in Ref (17). There it is shown how the
Hamiltonian can be diagonal!zed and the energy .pectrum can 

be determined. This treatment can be carried cut both : or 

syrjr.ctrical an-; asymmetrical break-up. »no uinglu- 

particle level... thus obtained are illustrated in Fig o.wa 

for symmetric break up and in Fig b•kb ior asymmetric 

break up.
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C E N U R  S I  P A R  A T  I O N

Fig. 5.2a. The single particle 
levels for the syrrmetric break-up 
in the two centre shell model.

Fig. 5.2b. The single particle 
levels for the asyi,metric break­
up in the two centre shell model.

The appearance of the- new fragment shells , which are 

doubly degenerate in the symmetric break-up case and which 

lead to two different fragment shell levels in the asymmetric 

break-up, is evident.

For each two-centre separation distance, R=2Z , the 

single-particle energies e ■(R ) of the two-centre Hamiltonian 

(as given in equation 5.1) car be calculated. An instantaneous 

internal energy, ’) (R), can be got by filling the lowest states



;u.: ■ :• : rt i v in : h- nucioi.

1 = 1 -
(5.8)

. . be '.•.•- •it .  I:. ■ Lnvt a : ' . t , a n e . . u o  v a l u  • atvl 

• V ■ ;:e . - p a i M t i o n  1/ I n f i n i t e  yi< l i t  ti,.- r-'-.l n u c l e a r

• i r t , '. r  , • - .v L v o  ; n - i o r .  p o t e n t  l u ^  r  = i . .

V(H) = U(R) -j(«) (5.9)

The :• %• of the radius parameter Is assumed in the 

tv.-;>-ev.;t.-v ■ e : . later by the frequency. This a,; a in alio...

for the possibility of distinguishing between the sudden and 

adialstic ;recesses. Setting u*w , i.e. keeping the 

oscillator constants unchanged during the collision, gives 

the sudd r. approximation. On the other hand, if the 

requirement w=m (R), where the index v stands for vo.um 

censer vat... r. of the equipotent ials, is met then in- uuiabatic 

approximation is operative.

The degree of adiabaticity or non-adinb.v ieity of the 

process can be described by parametrizing the oscillator 

frequency. The instantaneous oscillator frequency for 

separation R is given by :

u>(:0 = uiv (R) + f(E,&) (oc-uv (R)) (5.10)

where f(H,i) describes the time behaviour of the 
system.

f(I -, i) depends on energy E and angular tomentum ■ . 

for slow collisions, where the adiabatic approximation is 

consider,-a to be operative, f(E,&)-»o. For fast collisions 

f  (E , ■'.) ter.ds to unity and we have the condition for the 

sudden approximation fulfilled.



, k 0 - “ 0  - O . . 1;' . . .  in ; , i i i : , i . r i i i c  a m i  r.utldcn n p p r o ^ x i o n ,

iV • . Mi i • ' . r , .  ’>* St
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Pic- 5.3. Sir,;lo particle levels for 0lt:0lt collisions with-r.u. - 
13.f2 a;#! spin or: it stre:,'; h < " 0,03 as a function of relative
distance H. T;.o ru i sen and ndiaoatic cases arc depicted on the left 
(v4 rirut h.v/1 si le, respective*y. Tne l c v e * s  are ascipxied in the 
cruer they split at i.ar̂ e distance. foe shape oi the nucleus- 
nucleus system is shown on the top of the ficoi'o.

The corresponding nucleus-nucleus potentials for 

various parameter choices are shown in Fig. 5.4.

o - o

Fig. 5.4. Tl.e nual nuclcus-rvucleus potentials for the 0̂  -0*k sy.tem, 
The sudden 0l‘-0“ -potentials have at P. •» 0 the values 264.40 , 239.02 
and 211.73 ,' eV for < - 0,0.08 ard 0.166 respectively.



• .• r- .'ul -' n bv- .'I'.-ar.y .:v.-n 'li. M." plot

f • 1:..; ,r*. lc: v  o::-.-:-.- mcut of • : . to' • have a

.•h v, i r .  e n e r g y  a: ' ho . • • • para :  I n  <11 ;• tarnv * er.Ur. to

Z'.-v ■ . A : .1 r; linur: appears ; a the ::-uciucn po" oat I a 1 a'

. . lc:. a! a r ane* ■ < %ual to a ho1.: twice th • nac lof r raa.u...

Ihlu can I" interpreted aa an attractive inter :tion between 

ihe nucloor.n at the Fermi surface.
The adiabatic potentials are expected to have a value 

of - .4 Kc.’ at H= in • ae 1 c0- 16C case. Kow-vnr, th twe-

cer.tre shell model is not able to correctly predict the

binding energies of nuclei in either th • sudden r adiabatic 

case... The extended liquid drop model, however, i: able 

tc predict the ; inuine enerpi s. A renorr.alizat. n 

procedure is thus employed. The extended liquid drop 

model is used to calculate the real part of the nuciviis- 

.

to correct the extended liquid drop model potential for

shell effects. A method for performing this type of
no)

renormalization was developed by Strutinsky  ̂ in 

connection with fission problems.

y . A  T h "  f h s'. 1 :■:'• r  ' :■ "hod

Two different single particle models are proposed.

The one model is a realistic shell model having non-uniform 

energy sp icings an : level degeneracies. The other mode 1 is 

a smoothed-out form of the single-particle model. Hero 

the energy spacings and level degeneracies are given a 

uniform distribution. The principle of the renorn. ili :av on



is. - h i t!. i* my . y. teir.ni ■ rrcr. -  a r i t u n r  f ro n  th«- 

■ - .ier •• ; o f  ca lcu l i ;  t- n. ; t iv *. o i. a - o n t , y  . i- u

t . c i c " • : :v 1 W  %  1 L • car Co . . cm ou*, t V •' uatr'.-ot. .

th • t t .1 energy of tr.e smoothed diet: i but .on d" ; 1 rr 

t) ■ •: of the r» all ..tic slv 11 r.odel. " ho rema'rnin-: 

v- 1 r. thcli r e f  lv  : t t!'.- • • h' L : C i i '  1j i-

.

L v  S . ;  1 t o  - s o  l i q u i d  drop e n o r j y  express: i .

We s -c ,  frorti equat ion I . 3 ,  th a t  the r e a l i s t i c  oh' i .

( . . d e l  d i s t r i b u t i o n  h a s  a n  e n e r g y

A
U ( R )  = Z c . ( R )

1 = 1 1

T h e  u n i f o r m  d i s t r i b u t i o n ,  o n  t h e  o t h e r  h a n d , w i l .  

g i v e  a n  e n e r g y

U ( R )  = f  e ( r )  g  ( e  ) d e  v a . l l )
— oo

w h e r e  g ( e ) i s  a u n i f o r m  d i s t r i b u t i o n  o f  n u c l e o n  s t a v e ^

X i s  t h e  F e r m i  e n e r g y  c o r r e s p o n d i n g  t o  g  a n d  i s  d e t e r m i n e d  

f r o m  t h e  c o n d i t i o n  o f  n u m b e r  c o n s e r v a t i o n

A = / A g ( e ) d c  ( 5 . 1 2 ^
—  00

I n  o i e r  t o  k e e p  t h e  u n i f o r m  d i s t r i b u t i o n  c o n s i s t e n t  

w i t h  t h e  o v e r a l l  s h e l l  d i s t r i b u t i o n ,  t h e  s h e l l  d i s t r i b u t  o n  

i s  a v e r a g e d  o v e r  a n  i n t e r v a l  l a r g e -  e n o u g h  t o  l o s e  a i l  s h e l l  

e f f e c t s .  T h i s  a v e r a g i n g  i n  p e r f o r m e d  b y  u s i n g  a  w e i g h t i n g  

f u n c t i o n .  S e v e r a l  d i f f e r e n t  f o r m s  c a n  b e  u s e d ,  o n e  o f  

w h i c h  y i e l d s  t h e  f o l l o w i n g  e x p r e s s i o n  f o r  g  :

g ( e ) = % e x p  [ y  U - S ,  ) 2 ]  ( ‘u . 1 3 )
n



;> • • '! .• w- " the- number vf !• 7e] :• I a the

* ■ • i;VVv . &t ei:ejv;y . If y i. taken

X • cf t:. or: * . f ti. • < nor , ' difference between ohollo

-rv cenc:* iv. to • iv exact value of y .

• i.vrry c; rr?cti.n ir then
A .

6 = V - I = :: e. - / c c(e) dc (5.14)
v -3 *

final'y cur corrected expression for the energy w o u l d  

E ( R )  -  E-- ,  -x v (R )  + 6 U (R )
. v • .U • 1 Z • •

2 . L . :  d o n s '  % e x t e n d e d  l i q u i d  d r o p  m o d e l .  T h e

i o n - i o n  : o t e n t i a l  a t  r = H  i s  t h e n  g i v e n  b y

V(R> • h . L . D . ' A . W  ' W(!<) - EE.L.D.M.(“ > - 4U'”>
(5.15)
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il . :*. .

v1 Li x !:' Ai r, ja ill

!• ;■... .'lulu • ) do.-.crii.e heavy-ion colliuions in

t; . of c::l i ovvntialu. The interaction ia however 

bttir i'/.-, a riled if the potential:, have both an energy and 

an.' .', .r r:vntum dependance. ■’uch i dependence ol a potential 

ir.pl; the presence of a non-local potential - a situation 

>:• ex; acted in a complex many-body problem. How 

replacing a a t  of coupled equations describing a system by 

a single uziccspied equation leads to non- .oca. potentials .

I t  i s  t h e r e f o r e  n o t  u n r e a s o n a b l e  t o  e x p e c t  t h a t  a  s y s t e m  o f  

c o  : p i e u  e q u a t i o n s  c o u l d  ? c a d  t o  a  g o o d  d e s c r i p t i o n  o f  t h e  

h e a v y - i o n  s c a t t e r i n g  s i t u a t i o n .

f u r t h e r , t h e  i m a g i n a r y  p a r t  o f  t h e  o p t i c a l  p o t e n t i a l  i s  

m o s t  i m p o r t a n t  i n  t h e  d e s c r i p t i o n  o f  t h e  i n t e r a c t i o n .

S i n c e  t h e  i m a g i n a r y  p o t e n t i  i l  i s  d u e  t o  t h e  c o u p l i n g  o f  t h e  

e n t r a n c e  c h a n n e l  t o  t h e  o t h e r  r e a c t i o n  c h a n n e l s  t h e  e x p l i c i t  

i n c l u s i v e ,  o f  a t  l e a s t  a  f e w  c h a n n e l s  b y  m e a n s  o f  c o u p l e d  

e q u a t i o n s  s h o u l d  p r o v i d e  i n s i g h t  i n t o  t h e  s c a t t e r i n g  p r o c e s s .

I n  o r d e r  t o  d o  h i s  a s y s t e m  o f  c o u p l e d  S c h r o d i n g e r  e q u a t i o n s

(20)
c a n  b e  c o n s t r u c t e d  t o  d e s c r i b e  t h e  s y s t e m  v " >y. I t  t h e n  

b e c o m e s  n e c e s s a r y  t o .  s o l v e  t h i s  s y s t e m  o f  c o u p l e d  

d i f f e r e n t i a l  e q u a t i o n s .  I f  ' * •   ̂ i s  t h e  d i a g o n a l  p o t e n t  i  a  a 

f o r  t h e  

b e t w e e n

i t h  c h a n n e l  a n d  u . ; i s  t h e  c o u p l i n g  p o t e n t i a l  

t h e  i t h  a n d  j t h  c h a n n e l s  we  h a v e  :
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r . -  r i = i , ( 6 . 1 )- • -1 -‘■j j
J =i

. ' h v  a i v i t . * .  o f  p o j  wu . 1 H)" o u c h  u . » y a t v : : i  ! o t h a t

.

:v;d • ::j ;y c u; led ir.oluotic channels. huch

.•alou: at lorn* hox •vei- arc o-nr.n-lcated ana in general are

: ifi-ni ty reotrioting the number of coupled channel::
( '•1 ̂

. t v a i l . i :  l .  . . a w i t o c n e r  "  h a  a p e r f o r m e d  c a l c u l a t i o n s  f o r

1 6C - 16 ' .-.’h e r e  t h e  o n l y  a l l o w e d  e x c i t a t i o n  io t h e  l ”  e x c i t a t i o n  

w h i c h  w a r  s u p p o s e d  t o  r e p r e s e n t  t h e  1 “  6 . 1 4  MeV s t a t e  I n  

16o.  F u r t h e r  i n t e r e s t  i n  t . . . e  u s e  o f  c o u p l e d  e q u a t i o n s  w a s  

s t i m u l a t e d  b y  t h e  p r o p o s i t i o n  t h a t  m u c h  o f  t h e  

I n t e r - . - H a t e  s t r u c t u r e  i n  t h e  e x c i t a '  I o n  functions f o r  

h e a v y - i c n  c o l l i s i o n ,  c a n  u e  e x p l a i n e d  i n  ^ r r r . s  o f  t r a n s i t i o n s  

b e t .  e o n  q u a s i b o u n u  a r . l  v i r t u a l  s t a t  e s  c f  a  q u a s  1 m o l e c u l e .

VI.2 The I •rible-H'-s onanoo Effect

W h e n  t w o  n u c l e i  c o l l i d e  a g a i n s t  e a c h  o t h e r  t n c r c  w i l l  

b e  a n  a t t r a c t i o n  a t  t h e  s u r f a c e  o f  ; h e i r  d e n s i t y  d i s t r i b u t i o n s  

d u e  t o  t h e  l o n g  r a n g e  p a r t  o f  t h e  n u c l e a r  f o r c e s .  T h e r e  

w i l l  a t  t h e  s a m e  t i m e  b e  f o r c e s  t e n d i n g  t o  s e p a r a t e  t h e  

n u c l e i  a r i s i n g  f r o m  t h e i r  r o t a t i o n  a n d  t h e  r e p u l s i v e  

c e n t r i f u g a l  b a r r i e r .  When  a l l  t h e s e  f o r c e s  a r c  i n  

e q u i l i b r i u m  t h e  p o s s i b i l i t y  o f  h a v i n g  a  n u c l e a r  m o l e c u l e  

e x i s t s

r i g .  1 s h o w s  t h e  t y p i c a l  f o r m  o f  t h e  r e a l  p o t e n t i a l  

i n  h e a v y - i o n  s c a t t e r i n g .
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0 10 1282
rig. 6.1. 7;.c real potential for 0U -0U -r.cattoriin the r,ud;lon
ap; rcxiration. 7nc centrifugal potential io inch. tod. _ '.he virtual 
otiter, (i > 12) .'lTc shov,r. ao dashed horizontal lines, while tr.o 
quosibctnl states («■ < 10) arc full horizontal lines. Tne position of 
there states ins been chosen such that the nuclear phase shift has the 
value 6; = v / 2 at those energies. Tne phase shifts arc obtained 
from a phase snift analysis.

The nucleus-nucieus system may perform stable rotations 

and vibrations in these potentials. A requirement for such 

rotations to occur with angular momentum 1 at a separation 

distance d is;

~  (V(r) t :(: + !) fi2)l = j (6.2)
ur T u f t  '  r-b

The potential thus contains states up to a certain
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. inj vrvnn;- of a coupled channel u calculation In

- •

It is net p.:u.:i:le to directly excite the quasi bound states 

in ,: r. v, ..lie scattering col li.iion because of the impenetrability 

f • lie ! ' at : . barrier. however, virtual excitations of

tl.es ■ qua: ibour.d states is possible if we allow for a double 

i’. s nance . if :he ions are incident with energy and 

lose kinetic energy E* by inelastic excitations after they 

nave crossed the potential barrier they will be able to form 

a quasi-molecule if their relative energy :-%-E coincides 

with the energy of a quasibound state. For such a process 

to occur it is necessary however for the inelastic and 

clastic channels to be sufficiently strongly coupled among 

each other, cut only weakly coupled to the compound states.

VI. 3 :!■■■ Hamiltonian of the Model

The Hamiltonian describing the scattering of two nuclei 

can be written as :

1! = Tr (r) + H- (1) ♦ H2(2) ♦ W(r,l,2) (6.3)

where T„ describes the kinetic energy of 1 he relative motion. 

H. and I--, are the intrinsic Hamiltonians of the two nuclei and 

X (r ,1,2) is the interaction energy for the two nuclei.



: : •  ' : : Xi : ■ 'V • : h -r ■ ' •

■ « V .1 t ; .. :r, ) y,.. ; (  :.»)
' >::-

•

v : .■ • :.e r " l : L i v t  a t . :  ir/rincic ru • ion.

Th-* e - j c i . c t  a-.or, o f  l ! ic  i n d i v i d u a l  n u c l e i  a r e  t h e  

ociui • V the i n t r i n s i c  l i a r . l l t o n i a n s  :

:v(i) \,Xi) = Xai(i) 1 = 1,2 (G-S)

u represent a the set of quantum numbers describing the

particular • tax s.
The solution 0 of the Hamiltonian b can be expressed v‘ ̂

as :
* = Z Ru v (r) [i4,(n) X »JX(1.2)1 U ' (6.6 )

with the channel wave function :

5JA i1 > ̂ ; ^1 + ,va a/' u. (l)xXa (2) + (-)\^ ■ 2 )xXa  ̂(D ]

A = (a1,a 2) (6.7)

It is now necessary to symmetrize the channel wave

function with respect to the exchange of the two nuclei.

The wave function is symmetrized in the entrance channel 

and, sir.ee the Hamiltonian conserves symmetry, onl.* 

symmetrized intrinsic wave functions can couple with the

entrance channel.
A; v lyirit’ the Schrodinc -r equation, the set of functions 

C.C '•niC.7 v’ve rise to a set of coupled equations. . ntojra' m.

over the Intrinsic coordinates and the inglo U c. tne relative 

distance rives :



\ ■ ■ : : :> = <; ■ i >

. . r : + ' (r) + -+1 r/ + ' , +  ̂ -1:1 < , i",■ — --------— —— - a *'
*. .. dr  Uv . u i ‘ ‘ 1

This cot o; equations can L- restricted :c accourt-. v M y  

• .'ban: olr which couple strongly to the '.-ntronc 

cl.am-. .1. By i:.ukire simplifying assumptions on the nature

of the ex-itod states it is possible to acrive the fo:lowing

e:<:•:• 1 for ‘ no transition where an * 6C nucleus in the

state a, = (I - ,n, ) is incident on an 160 target in the
1 1 m x

(2%)state v ,

S , , ' 1'.»> V ‘v ; ‘-rt V i
+ z i[n(2t+l)]: (I NLI/.JJMj)

x ( i p : i *) ( iq jv .~| ( v r . ' J «|lm) 

*[(l+a^^)(l+6a_ 'a ;

K '̂ 'm' '

One of the nuclei is measured in the state u .1 in the 

direction 0 , the other is measured in the opposite direction 

in t h e  state

VIJj C-r par ' s ' n with Kxr -.-r :m"nt

The model has been applied as an illustrative example to 

the case of 1 ‘0- 160 scattering between 19 and 22.5 V “  •



. ■ . . ' ; . : . : i. ' ' i:. . u iuv;. ::: yi\ •' i' ;■ n.

• x.'l: ion " ..e > ar.i /tat".: In one

i * v v: c . r ;. '.'ncivi'"re r evi ;*y

• » I ntu;:; I the eii;ht channels riv-.-n below

, n.*' i".’" 1 :

V 1 1 J 1 * 1
in : n-• : • ■'  ̂s > 5, i-i, :+i, -♦3

' 1  vie + a s : -,1, . , » ♦.?

Th- following forms were taken for simplicity for the 

: ..cos :..: I’ix elements.

Th- <JX | '<j l0> were taken to be constant

+ = c^ec-r)
4 ‘ a

and O ’ !Q,|0> = C?8(l-r)
J a

where a = 7 fms and the constants C., and C;. are taken

from experiment.
As the relative energy of the nuclei becomes quite

snail after a collision the quasibound molecules exist at an

CT.er/y where only few compound states exist. One ;hure. ore

exsects only small volume absorption. A sun.ace peaKcu

imaginary potential is consequently chosen for the inelastic

chaar.c is.
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V t‘ t, * im.'l :c c . - c t  ion required

V -v. r. - V. ' f.) -n ; %^ = 4XeV.

k: -. 6 . c. . ;.owi th* potential;} used in the'calc ilation 

vf the . in: .structure in the 1 cO- 160 interaction.

----

r

a

4 "

f(!m) ,

'is. 6.2. Surriary of the potentials used in the calculation :or 
ntenrodiate structure in the Ol6-026-scatterans between 19 and 22 /eV.

r’is* 6.3 shows the calculated excitation function .or the 

elastic and inelastic ,60-lt0 scattering in the energy interval 

19 to 22.5 MeV in comparison with experiment.
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Because of sue double resonance m c h a m s m  the presence 

of coupling gives rise so intermediate structure of width 
about ICO kcV in the excitation function. Such ..vructurc 

not predicted in optical model calculations. For a coupling 

node 1 to provide a full description of a hcavy-ion scattering 

process it is however ncccsoar, to determ ne all channels 

which will contribute to the cross-section and include then-.

in the coupled equat .ona.



 u

h:.vv th'it the addition oi* ar. hlajin ry p.1

int : th o p ’ leal : tentioT ; >«ovidec node 13 able to t;ive

:• bl" a . r.t xivh experimental . -ill.... I n

; art i _• ul'-.r Cl.atwin ot al provided a soni-phenomena ; epical 

an.julur nonentuni dependant imaginary potential v/hicn 

previavd a r; a ;h improved optical potential. However thuce 

potential.: are aeon to give agreement with experiment only 

over a 1imitei ran ;e. 71 was also found that tnc intro Suction

: a ; araretri ted enerpy-dopoi.dance f Or the in a n a r y  pni - 

of th" potential gives closer agreer.x.nt with expor ir.ent.

However such potentials are not unique. Microscop:c 

approaches have therefore been made to derive a parameter

imaginary potential.

V 7 T . , ;ons ! durat i ' r j 7 Transit: or... f r o m  HI a.: tic ‘ o , np- .a: , i_c

Pru.'.:. ' has shown from formal aspects oi reaction

theory that the Hamiltonian of an A-nucleon system in th° 

centre-of-mass frame,

H • T . Z Vlk - ?c.M. <7’i
I*'/

where T . is the kinetic energy of the centre o: ms, . , 

can be reduced to the optical model i or elastic sCuttoT ̂ r.b
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t V lv;. 1 v; {.uoioi

•• - : : y - >\Y ,1 *. ,:::

' - l ie > (7.3)
.

Tiu.x v:f v) = - :: ; < )|vj v,c > •’ p . (%-.1 <>-:<|vh;<> )
2ur2 '24 + 1

(7.4)

Here . is the projection operator onto the non-

elastic chanrv. i. and i  ariir s as the solution of the non-o
v 1 as* :c j. nr* f the total wave function.

it the density of states .

A consideration of the transition probability from 

elastic into inelastic channels v:'-' provides a more tractable 

for the imaginary potential 7.4.

The transition probability for decay from the molecular
♦

state into the compound states of density pJ?(E ) i; given 

in first-order perturbation theory by the golden rule:

- P i (E ) | <  compound |V| elastic) |2 
f. e4 f u ' average

(7.5)

and the imaginary potential W is given by:

v't = "if* (7.6)
T

The imaginary potential can be seen to be proportional 

to the density o r>(E ) of the states It is thus clear

that the imaginary potential shows a strong angular momentum 

and energy depondance.
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; ■ V  ' t h: wid‘ n

)%' • 1 ::v lar* V.- i ' a . tiLxlc bv 1 .v.;v c< :.p'ire i t o thv

1 v : .■ v th;.1; .'i.at *.t 1 cal approx:! ionr,

r • • v< : ti ?r.:‘ avo v:il . d a;.d r he 1.rar.;a! t : n matrix

;]t' can . •> iv-r . ;..-d, .'lace a y  a fc w ir." laat - c

ci. ir.a I ' v:'ur. at higher angular na inentum these

will a ’ t  b e  V u l f i l l c - d  a n d  i t  i r .  t h e n  n e c e s s a r y

t r - .  ;• h v s e  a . a n n u l . :  e x p l i c i t l y  i n  a  c o u p l e d  c h a n n e l s  

c a I c u l a t i o n .

; l c u l a t i  o i *  t h e  i m a g i n a r y  p o t e n t i a l  h a v e  b e e n  

p e r f o r . : ) - c  . o n  • e b a r  i s  o f  e q u a t i o n s  7 . 5  **nd 7 . 6 .

A t y r i c a l  t i m e  p e r i o d  f o r  h e a v y  - i v :  c o l l i  r, i o n . :  r,

o f  t h  ,  r d ' _ r  • " s e e s .  I n  t h i s  p e r i o d  a p r e c o m p o u n d

r r a c l ' .  . . r  c a n  b e  c o r .  r i d e  r e d  t o  b e  f o r m e d  w h i c h  w i l l  b e  t h e
.

 ̂ . y  . t a t "  f o r  a l l  1 n o  l a s  t i c  p r o c e s s e s . A f t e r  a b o u t  

1 C “ ‘  1 s e c o n d s  s t a t i s t i c a l  e q u i l i b r i u m  i s  r e a c h e d  a n d  t h e  

c o r ; r a n  i . . u c l e u s  f o r m e d .  O u r  c x p r  s .  i o n  7 . 6  f o r  t h e  

2 . r . a g i n a r y  p o t e n t i a l  d e s c r i b e s  t h e  f o r m a t i o n  o f  t h e  

j ■ r . r  . u r . . n u c i v u s .  E q u a t i o n s  7 . 5  a n d  7 . 6  a r e  v a l i d

i n  a n e v u r - c c : : .  . - b a c k  a p p r o x i m a t i o n .  T o  f u r t h e r  

s i m p l i f y  t h e  p r o b l e m  t h e  c o m p o u n d  a n d  p r e c o m p o u n d  n u c l e i  

: r e  c o n s i d e r e d  t o  h a v e  t h e  s a m e  l e v e l  d e n s i t y  g i v e n  b y  :

p ( . .  ) = c o x ;  . l / a i T  ]  1' ' + 1 )  e x p  [ -  ( 1+ £  j  ( 7 . 7 )
% 20- 20:

*
T h e  e x c i t a t i o n  e n e r g y  o f  t h e  c o m p o u n d  s t a t e s  E i s  

r 1 \  ,-n b y  s u m n ' n ;  t h e  b o m b a r d i n g  e n e r g y  a n d  t h e  d i f f e r e n c e  i n  

t h e  b i n d i n g  e n e r g y  o f  t h e  c o m p o u n d  s y s t e m  a n d  o f  t h e  t w o  

i n c i d e n t  n u c l e i .



i t : , ;  1 n <>!.• :• *y nu .p |f> r  , in:?,  -i' i.h-

:u. . " , • ne y. . ■"■Vt . , x :.• t. for the c mpounU

w ,1" /  Ulii i ' i . 'U ' . ' l ined 1 f. b<
♦

• r . ' i * .  v:ii.ich -V. ' on-. i\'y K iv. tv.’inaformed in' o

r • .’ : 1 • .. .

= X U ".:.x *1; %  (7 .8)

the r.er. .?nt f inertia and is aar.ur.vd to b-. constant.

T h e  • . t -  :’ !* 1 i h h r i e t -  r  a i n  e q u a t i o n  7 . 7  i  s e h o u o n  s o  t h a t

t h e  e x v e n -  n t i a l  f u n c t i o n  i n  e q u a t i o n  7 . .  d e c r e a s e s  t o  t h e

v a l u e  . f o r  «. = £ . T h i s  l o a d s  t o  a l i n e a r  d o p o n d a n c c -  o n
ir .ax

o : o n  Z

(7.S)

A n  a c c u r a t e  d e t e r m i n a t i o n  o f  t ' r e r a d i a l  d e p e r d a n c e  

o f  t h e  m a t r i x  e l e m e n t  w h i c h  i r i s e s  i n  e q u a t i o n  7 . b c a n  o n l y  

b e  d e r i v u . i  f r o m  a n  e x p l i c i t  s i n g l e - p a r t i c l e  m o d e l . H o w e v e r  

a s i m p l e  a n d  p l a u s i b l e  r a c i a l  d e p e n d a n c c  c a n  b e  p r o v i d e d  b y  

.■ - - t t i n g  t h e  s q u a r e  o f  t h e  a v e r a g e  m a t r i x  e l e m e n t  p r o p o r t i o n a l  

t o  t h e  n u m b e r  o f  n  l o o n s  i n  t h e  r e g i o n  o f  o v e r l a p  b e t w e e n  

t h e  t w o  c o l l i d i n g  n u c l e i .
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Kir. 7.i. i.u 111:* of nucloons ccnt.aincd in U»o re,lion W t c  the 
ilicr. of i ho two 1 Wnuolei over Lip as function of the relative

distance Li U-.cn tl-e two centres of the 1 fcO-nuclci.

The i i n a r y  potential, riven by equation 16, becomes 

by use of equations 7.5 and 7.7 :

= -in exp [2 xa£* 1 ?) •-. exp [-(E.i)] 1 / p.t (7.10)
^  L O v e r l a p

where 3 = _̂ 
ft2

and the parameter a is given by :

a = 0.0035(A-12) MeV*1 for 15<A<70

The parameters a and 3 are adjusted for the particular 

nuclei in the .experiment. For example the values found by 

Helling et al l'l"'vV' for 1 40- 40 scattering were

a = 1.1x10*3 XeV and 3 = 1.9 XoV*1

Tne use of such a potential is able to reproduce the 

excitation function quite well up to an energy of abou* 3?

XeV. (Fig. 7.2) :



!

70.

9
#

<

y : , * .  7 . 2 .  ? ..e  f x c i u t i o n  f u n c t i  r.r f o r  t h e  c l a s t i c  s c : . U r > r i z . :  o f  
»<•; n a  “ 0 .  7 . , '  c-xj* . rL-.-.x-. tal  point:, a r c  i v a c m v i  a t  - o . j  , C r ,
6-). i \  c X p  a n ;  90°  b y  t h e  V a l c r O r o u p .  ' . no  t h e o r e t i c a l  c a r v e  i s  
c n i c u i a t f * . :  w i t h  * Vale r  ?al  p o t e n t i a l  ana w i t h  th .• a b c c r y f v i v e  
p o t e n t i a l  a c c o r d i n g  to c q . ' . .  . VV.e p a r ;ijnct o r e  o :  th? absorptive

- ' rooa
s e c t io n  sh wo the  c o r r e c t  p o a X - to -v a l lc y  ratio ar.d decrease^  
sufficiently at h i fin e r bom baixiir^ energies.

VII. 3 Dynar.lc Absorption 7od..‘l

The starting point for this model  ̂ ' is Goldbcrger'a

"frivolous scattering model" which escribes the absorption

of free nucleons in nuclei.
It is possible to describe the nucleus as a refractive 

meaiun with complex refractive index for an incident nucleon. 

The refractive index .n, is determined by the energy, E, of 

the incident nucleon and the optical potential V+iW

« /̂Y-fV^iV•il (7.11)
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II

I-!,*. 7.:. ?,.c oxcilation functirr.r, for tho oinr.tic r.CaLLnr.:.: of 
U J f:. “ 0. cx; >rL":T.tal poir.t.'r. arc* ixxu-.m'ci av -v. j if,
69..T*', • O.;-5 o M  C'.'° by tz.o Yalv-fJroup. Tnc t.r.corolica; carve is 
caiculnt^i with tzv'* Yale real potential an 1 witz. th’■ absorptive 
potent al accozxi ir.t to cq. '. . il’no par.„-a?tcrr, o: t:.e absorptive
potent.al arc f̂ -nd as a-l.lxlO X V and 5-1.9 Xo'/***. T̂ .e cross 
section sio-ws the coia’cct pcak-to-va^lcy ratio ar.d decreases 
sufficiently at hifthcr bombardin' energies.

VI:. 3 wvnar.ic Absorption Xodel

The starting point for this model  ̂ ' is Goldbergor1o

"frivolous scattering model" which describes the absorption

of free nucleons in nuclei.
It is possible to describe the nucleus as a refractive 

medium with complex refractive index for an incident nucleon. 

The refractive index .n, is determined by the energy. E, of 

the incident nucleon and the optical potential. Vti*

= AE-fVfiW) (7.11)



. !1 . ' vOJi  I..-.:.' ;:iC .

1:.; ‘ : i u c l -  a.-, it v: 1.1 have

k* : r; . = f  (:■ . . - v - i }
J  — —

(7.13)

(7.14)

f i '

• i •. Ji'pt i cc- f fie ‘ uht.

r’ron tl.i;; the relationship

v; = f;2 < + ‘u (E-. •• *V)
-  V ~  r r  c "-

v  :v, ■ author-- uia-i t.-.o stal-clac.iical for:, for a,
given by :

v;(r:,H)= ifiV (r:,R) <

where v is vhvelocity of an incident nucleon.

In eder t calculate < or its inverse, the mean free 

path X , one consider, the colliding nuclei in phase space 

where they occupy restricted six-dimensional regi'ns separated 

by the distance vector "i and t he relative momentum per 

nucleon X. Fermi-type mass sistributions are a; warned.

The intrinsic momentum is determined by associating a Fermi 

sphere, whose radius k* is determined by the compound mass 

iensity s, with every point. The relationship between the 

Fermi me menturn an; the density will be derived in the section 

on the energy dependant real potential. It is found that

(7.15)
y  (r.H) .

whore the second term is an inhomogeneity correction and

C = ! •
9



7.°.

! vy oar. calculated i:i elLhc-r

.

Lh l ay. ,  a " c .. ab r . r y  : irr -ao l d-. ; r-r. n l y  weakly

re oa; .. pr •.• o a iz. 'o ‘.he dor.iinant factor is the 

c. 11 - :• v i v>. r. -n; a;. .
".3 the- . lidinc r.ualc ' be ;in to overlap, . ; -ah at at os 

will be orv.v vd :y the scattering of nucleons into states

.

aia transfer processes can arise from these states which 

car. be regarded a., the doorway states for all non-elastic 

channels. In particular thermalizatior leads to compound 

eta*, v.-. The ah sort tion coefficient < x therefore 

determined by th-. formation cron . ition a of these 

d :orway slat -s, On* can obtain k as a function of K and % 

by folhinj this formation cross-section, o (r,h,K), with 

the densities of the scattering nuclei at all points r.

< (h,K) = f  a:'r p. (r)o9(R-r) a (r,F.,K) (7.16)

The formation cross-section can be calculated by 

avert y ir.g the cross-sect ion for elementary collision oi 

couni nucleons o,(k) over the intrinsic momentum

iistributions at the position r of the scattering event.

One must take into account that the scattering centres arc 

in relative moti n . The formation cross-section is then :

0(r,! ,K) = |Vp(r)|*"2 / d'k^ / d/k? c.̂ (k) (7.17)
r\(r) F,(r) i
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.•: z.n Lc )t. ■.

r. r . .5 Lntre :;:c-■ to allow for the rol . Ive

:. ' 1. . f • ■ v rv. I r. ' c« (.tr-.:.

Thv r.icr *: jpi .• cror.o-sc-tt Lonu a, (k) dt-ocr'.bu the

■

car: bo iwrivei from the data for free nuoloon-nuoloon 

ocatt.rir.j of (k) by integrating the free nucloor.-r.uclec.i 

■ v'otterL:..; crt.;j-sections over all direction::, of the final 

relative m-.v.cr.tvrn, which lead to otateo which are allow* i 

Ly thi Pauli exclusion principle

o (k) = / a.. df i ,  , ( 7.1'-)L I ~ ~
•'b

Geometrical considerations .oterm? ne the region of 

space allowed by the Pauli principle and hence the solid 

angle Qv. • Consider the interaction of Fermi sphere i\ 

v. 11h Fvrmi sphere F ,.



R

i'ir,.?. } 7.-.o Fcrr.L cpr.oiva F; and F? L-opai’atcd by momentum K ru*; 
internee ted by the auxiliary sphere R. 6% and 02 are the ans^eo o«. the 
spherical cones cut out o:' rhand Fg*

Energy and momentum conservation require that the endpoint 

of k 1 must fall on a sphere R with radius k which cuw. 

spherical cones out of F^ and 1 g ( F i g , *  I  • ^ )

1
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: t L iu  : .m  o f  . o con . a r e

. i "a . ■ • “ ■ *• v *

f  a b ' : •• . i : .  l h : i v  ' i t : ,  a i i .  :e  •:.h* co n u - : oonc

• ; i ;. ■ .La - .1 ;  ... : ,  ' .ntc '.a r-  ■ >u v ;h .eh m  , b t a : n a

- •• : .* ' r :  ' ■ n V .

. e :  e a v r a y -  a r e a a a a L  i i r a i r y  p o t o n i  i a l S  :’o r

‘ 6 - 1 . ...• ILL . r i r .  * i a  ahewn :n  . 7 .  a

:ho  o r i j i a  o f  t l . v  e n e r g y  d e p e n d e n c e  o f  t h e  a t a o r p t . o n  

c.'.. L ■ under . : . too  . fro.r.  a c o n . ' i d e r a t i o n  c i  tn<* a c t u a t i o n  i*<

.. :v . ( • ' •  d • 7 . 3 ) .  An i n c r e a s e  i n  ' h e  :*••. '  ■ v<-

a a- atua.  V. I / a d a  t o  a de c r e a s e  i n  t h e  i a u l i - f o r b - ' d d e n  

. v r  ; r e j i  b e t  we- n ana  ̂ . More  p h a s e  a p ac e  i n

t ; .uc  ; . !■. a v a i l a b l e  a f t e r  t h e  c o l l i s i o n s  and t h e  a b s o r p t i o n

b e e - a  e e t r e a d e r .

; h e  . a a / o f  t h e  r a d i a l  d e p e n d e n c e  o f  t h e  i m a g i n a r y

F - t e n t i : . !  f o l l o w  t h e  f o r m  o f  t h e  o v e r l a p  d e n s i t y . 

t u r n ,  c u t  • ) be  b o t h  s u r f a c e  t r a n s p a r e n t  and s t r o n g l y

•

Ta.e 1 e0 - 1 60 s y s t e m  has a l a r g e r  a g g r e g a t e  r a d i u s  t h a n  

tiav 16 : - 16 0 s y s te m  and i s  more  d i f f u s e .  The o v e r l a p  d e n s i t y  

i s  dc end a n t  on t h e s e  p a r a m e te r . "  a nd  t h e  d i f  i r u c t i o n  m o d e l  

c o r r o . : ;  c n d i n g l y  p r e d i c t s  a s t r o n g e r  a b s o r p t i o n  and dam ping  

o f  t h e  p ro s ,  s t r u c t u r e  f o r  t h e  ‘ "’ O - 1 8 0 s y s t e m ,  as us 

o b s e r v e d



7 .

Ki(*. r«y.e tspherical cones. Tl.o shalcxl area is the Pauli- 
forLuUcn tv,:ion.

mi

Kî . 7.5 Lva^irary potential for “ 0-u 0 scattering



The „ Meo'-t:.' of the inv-^'tlnatior.n v '; into the rlnglc 

:iUO locn^nue Lc . pticaj. potential Bpp lyin., u i old. :ig 

: ; ent' 11 Iv . -.0 a ninilar philosophy being aaoptvd for 

th -■ tr- ent of the optical potential in heavy-icn 

cott -fir.u. In the single nucl-on optical potential

; :;V' .-t 1 ' it 1 on.' the nucleon-nucleus optical potent :al is 

obtained by . in.; all the individual internucleon 

potentials a:;J is given by

V(r) = / v(r-r’) f(r') d:>' (8.1)

where f(r') is the density of the nucleons in the 

nucleus an; v(r-r') is the auciecn-nucleon interaction 

potentla 1.
It is possible to extend this approach to tae case u*

(7Q)
aeavy-ion interactions " .

.

Xud' ' I' r : n" nt !a ]

The Fesnbach formulation of the optical potential 

allows for both ;ir@ct and exchange terms in the interaction 

between twe nuclei. The direct term describes processes 

involving the elastic channel only and yields a real local 

T • r.tial. Tne exchange termc, however, involve in< I^stic



_

; y ! < . :, -- i ’ •<'.

• . : • .... . -i* • • 1 1

’ ... . •»' • "

. ■ vL ... * .• r\v . • T 1 cr:.: :irvd v; 1 ' r. 1 d ' riilf. and

• • : ■ Vv 11 r:n ' p  von tv r, od a; arox .matioh b.v
i \  ; • n.j v. ! . *}•.• .z.-zv.' -;• in r '>tont La"; with ti.v n'uclvtr

• • cl* ! . ' t v i :  'V 1 :

. h e  .. - : v .  1 .. n ; • : ; t ; . .  L  w r i t t e n  ' •  :

\ = / ... r ) (r^-Mj'ri + exchange

w h -vo p,:r,) is the density of nucleus 1
. V (r - is the r-. tl part of the ainclo nucleon 

>. -1
: •: - f. r r. .cl< n: .

Per la:se we;arationa of the nuclei the overlap oi 

. ... : h nr.all. Since the exchange tern aria -s

fr • .-.a an* iayir.r.etr 1 uatioi. requirement for the two-nucleus

av- funct.lcn, it too w . 11 be small. fhe phil ̂ soph>

.

r .. ..turn L for wnich the top of the nucleuo-nucleus 

j .... ■ x\  barrier co i n . ' i d ' * . .  v; i t r .  t s  • ; ncidont en.-w^y. 

hr.;.,; let-; no ah,ut the scattering res., -section are * her.
in terms of d if fraction mod emr.'.oyirn$ this value 

ol' L .. The ] otential need then only be calculated up to 

the Coulomb barrier and in this event the neglect of the 
e x c h a t -  rm is consiuered to be a reasonable apr r -xi.i.uvion.

The long ran/.e part of the nucleus-nucleus interaction

is then Given by :

J *l(:l> VgCCi-S) (%.))
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. V : . y: : r,y L!tf

-

  * 1 1 f., 1

r : : •  .* : n rlxvd by h- triangular

C '■ i ' v:..' :

v tr. > •- R

7h' • u-n-: ty distribution p, rmd tho i t . oract'oi. V 

:.s.: -v ’ o r.avo Saxoti-V.'vuJ. fori..-, havi:. ■ tho :ar

• i . ck:. p no...: % -r/ but different radiu.; parameter: in 

. v ;vr derive analytical ■ 1 .tionr. to o juat 'on 3.4,

The fc ,p a..pu::.e.i are :

Pi (r)
P.

1 + exp (L__)
1

( 8 . 1,)
V.

v^ (r) = T ^ r r f - y

By a .-.uitable change of coordinates the integration reduces 

to :

7 (R) = irp̂ V I(s) ds (8.6)
Ti!

with : (n) - /_’ dt (s2-tz) !l+oxp(~*" '"'1) 1 1 + oxp
<L * *

This integration can be performed analytically to give 

I +K.,] ) (2g 2-8tt2T:)-1 f(s-2R:)3 + (c-2R2)3 ]

expcp ( '"[Rl+RgJ ) -1
T



:: r  ( . .u . ‘ n

. - : i ! n t  L.

• : 1-. ; -vv« .  : U "  - v :  r... ' - ■ f  t ; . v  Cr L' ‘ I c :  J.::

1. . ! r ' ; :• "  ’ 1<. "i: \  :*• . " - i t  f  t t v ?  V i v i d  ■ V .. . 1

. v I.- v. ‘ t : . -

*

)
a i t  a t  iv -  jc h c r .u  has  Leu:, p rc po;  ■ s w h i c h  t a k e r  i n t o

.

_

:h'. ir.-r.' ruction cf a dencity-dopendancc* in the two- 

body interaction approximately takes care of the saturation 

projA r*ivs of thi. interaction. The method employed in 

.

f;1iw in a density-dopendant two-body effective interaction 

with th■- target density to obtain the nucleon-nucleun 

potential. The nucleon-nucleus potential obtained in this 

way is then folded in with the projectile density to give 

the ion-ion potential.

In a nucleus-nucleus into.action each nucleon in the

.

density in the two-body interaction therefore should be 

computed takin: into account the contribution cf the density 

from Loth the target and the projectil' .

A suitable linear density-depondant interaction was 

use.' by Land© e al  ̂' J ' to obtain the following form for 

the tingle nucleon optical potential at a point a relativi 

to the centre of the target :



5 '■Ti :i • i t i 'u • Lpml ’ ''U 1,:. «■;--■:
(t.C)

( i = proton >n o u t ; r )

. r • :. i h . i n . *  .• nf f e e * L -fcv: vr, t ire ’• a-d projectile

1 ‘ c::. 1.: tin : : ! )-Ko'i' v- 1' tiT.i

fcv t.. : .r.-nucle into.":c' - n . a1 •uv.i 3 ’ .r-

: t- * Lvv:: lr. -'uf (: . The tavfct is c ntriei at

. ;• ..ty d . tl' LL ion '• : . :a t ‘ V . 11 -

% = : + %  -ir. : s ! = '"-t-! . P . c r/.i, the
■». *■’ -w -w '» •'*-*. *• • -

-

ex; ansi or; is made of p̂ . (C^+ln) about t. to r;nve

n n i 2*n.) « po2(c2)» ^  tc2 ) te.9)

This ir substituted into o.-: to rive :

u11‘5*§2'1 d3;,2 " •fdm2v§2 '"121 ~"221 '' '*2

/pm2(t2> "" °;r,? S2) 13 1 • "'^2

whov. U. and U, .. have the following forms :

- * P  » “

U. ,(t) = T v (|3|)oi6i d &T
i=p,n 1 ^  K K "•

\;(t) = : /p/(c,) V, . (|3,)a^i 1_ si =  p,n - *1 i< K  -  27  A

11 is therefore possible to calculate U, , 1%. and 

V, .. for any particular target independant of the projectile 

type.

(8.11)
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If.-. ; • i.t i:«1 hi a ii.< u Vrrv, i-nw.ition 1.10 in

( r 'l*--, l'«' a:. I ‘1 ̂ "nci-lfiit on '"ri in /if', 8.1.

*<c

m

ric.8.1. Th* nrlcuc-nuclnua optical potential aa a function of R, 
the dictancc between the centner, of the collidine nuclei.

V n i J *  Ur.e of a Conplex Two-I'ndy Interaction

An alternative approach to deriving the nucleur.-nucleuo 

optical potential fron an effective nuclcon-nucleon interaction 

has been developed Ly Dover and Vary .

The nuclcuc-nublcue optical potential in written an :

voPt(R> ‘ z d)ri z d ^ 2  (>2 ( *:2 )g (R+crrg)



.'v: c ■ . : - ' 1 f : < i /. i r

:■ , . : . 11 2’f t i w

v. * •. nucl- ' n • r; :t ' 1 :

: ' +r1-rn) = y 5 3 +r -v. ) .13)

. ' uin

* y f  dvr  , P, •' :• -H) ; . \ ■. - *'0
*_ . - c

. w r  and Vary take y fro.. • :.u l imit of hicn-e-norey

:, ,c . . .. - aaa 1 . a. .-attorinp as :

, = - -V f (0) f?‘ • . t)
m

v.’herc m is  the nur’ ,n mss

ana f (0> is the c< .<plex forward nucloon-nucleon 

.

i.a-ior. intfraction

V (. ) = f  (0) /  «iV p, (r '-:•.) p.,(r ') ( i . l t )Ott ~ — :-- 1 t 'r n

Thi: model was generalized to include the spin and

.

also be considered as must dispersive and binning effects

. the- interne. Fermi motion of the constituents. -he

inclusion of these effects results in an improved form

of V .(R), namely : opt
•   v , “R2/ 2

Vopt(B> = - ^ 1  # 1  '  /  d ^2 *l(ri)*2(C2)* °
* (Jr^)'/,

(8.17)
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. .. . -• :• : •• : V i ■' a  0 : . '  X

. ' ;• .

:'or* th- >'■ f fv e ; '.Vv i..Lvrr.ct lor u in ♦•■juation

. I - i . '  ; . ■  •

: = :: • • ;

r *2 i a  norr.uli;-:.- i ccr.jt :.t. 

l'..v . 3 ; -.rar.et rs ap; ear Lr. : in ti.v complex quantity ?

r . u : .  ... - r . . , . -  . n c u - r . - r i n  - /  a .

I':.' real and n'inany parts of the. folded potential

ill...'t rat - a for 1 ' f-' 3i:i in i i ,J .
.

.

a n  : t  '  a d a t a  a t  l ; . i  : : o V  w i t h  f  = - . 7 ;  + l . i l i  f " .

■

I I ■
I
I,
I
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ti. v...:y . : l.-javy-ion scatter!nr u c i i . r  opt ci!

, .. i ■ :v/« ..t ion:-.i 4 . . a : • a: | M cat 1■

..y v. ; ' :.c ac: oration f the i.uclc: h,

.

-r.'v.p : a fit tine an optical nod ..1 to the experimental data 

4 ,, It has r. a come coi:.:non for optica! :: acl

ar. - •’ of heavy- lor. experiments to employ a Saxon-V/ocds 

. :.a; . f r the r_al p tvatial. however tie.:-re cxa-ts no 

a ’ ri.ri re ason for believing that the. doocr pt .on a. tne 

..ny-t interaction between two complex nuclei by means 

of a tv;'-: :y, local and 4- ir.d- pendant potent. a 1 nav ir. * a

•
•Theoretical studies have been made- to establish the 

Z-dca.endancc and energy depend a nee of the irna.'inary 

potenti 1 " a The collision between two complex

nuclei i.- also expected to have a non-local behaviour in the 

al p tent. ial. Nov; a non-local potential can be expanded 

i n t a  1 ,cal er. -rcy-depenciant one and it is therefore 

rr ;:0- . . •. study the energy dcpondance of the real potential. 

Phenom-.nAo,;;ical energy-dcpondant real potential fits have 

been ma.c for the 12C-l2C interaction ^ ;. We will her. 

attempt a ccr:-microscopic appro•ch.



• J. . *1 1 V uy *' .•••:. • • '■ .. : : tan •

'

.

: • i  of - :;o ■ !)• r y ft.' f.-r all voiur." -lv; ontc

.

v i .  :v« y  J h i f v  •• r. be related to the interaction of the 

.v ■ r v.1 • e" or.t nucleus in this element with the

•

in* y  Lon ■ .an in turn be derived fro::. ,a connaderat;on of

■

is d'.; enfant on the energy of the relative motion of the 

* wo 2. . :1c 1.

 _ L_ h ‘ h'-' ‘I:-:

’oncider a two-nucleon system with relative momentum of

■

unr.er ■ >d wave function for the unperturbed zero order 

Hamiltonian Kn

V k  = (9-1)

;f a perturi ative interaction V is allowed to act 

between the two nucleons the unperturbed wavefunction v,, 

will v over 1 o the perturbed wavefur.otion , the Ground 

o.t- v e wave function of the new Hamiltonian H._ +V with 

corresponding energy E/4A H



♦ . '

u. i ' . • ■ v r y  ft V. • ; by the pve- ■ nu-- j V

th ' . :• ■. ' .

  : :•> ... f ;.:l :-i / . n •. 1 a?, i

:

(O.J)
(-.4)

then

: . and uati: fy the car.c b-yur.d;.;*y conait: r., 

v;hich yit-ldn 1’or the energy shift

; , such that <•'. . ■' / = ^ • : , }  =

/I'-.)

gives :

(>. L )

iefir.in- the ;;-natrix, also called the reaction matrix.

t y

" ‘Vk

(J.C)

the interact ion energy for two free nucleons is

Th treatment can be ext-naed to deal wi'h. a two-

: art Lei', interaction in a r.any bo iy system.

1 n til.-;, the vij-'rtfunctions of the Hamiltonian I . . by

he around orate of tl.» ay;-tor; is . When pertur': at ion 

V is turned on the eigenfunction b. of the new Hamiltoni*w



' '-I'::..- of t h e -:' v;av

+ •- 'i »-„
:>e n' m

( ;.7)

w 1. .. • iC .. :• : : :• -It : COX : 1 ion

(.■ > = <„;• > = 1 (9. 0
. ' 1o/ "O' 0

it Ixlyi::-' the fohi'odirv-T v..mation for th- porturnxd 

. vj% .. t... : ft Ly and intc^ratin' ov-. r .11 l -..v . :

- <• i /1. > E '9.9)

Thuo

n: + c m
(9.10)

Em-"

■

Dvf Ir.irn*

G3 = _

An = </.. Vc> =

(9.11)

(9.12)

i - r tv:o interacting particles in nuclear natter the*

.•ur. o', .r n In 9.10 must be restricted to states in which
both particles lie outside the Fermi sea in order to satis.y

the Fault exclusion principle. This can be done by means

■

ar** r.pty ar. i ztro otherwise. . hen

■
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i!ia

• L -n

■ . ; • ; 1 0  ‘ 0.  ri*i ■:. ! 1 '  • X ;

. - V 1 - (n. v )

omvn?

• . Si.- • :*•; r i  : «.*r;« .* : y  f o r  tw>.  n u c ]  v  .m o : '  ! - i i ; i  v-

t v : i r .  . e 1 r .a-  - . o r  i f .

‘xk
wh r o  : /  t t v  i t i i  r r a l  e.;  .rv. i o n  ■. i

w a o n r l d ' - r  t i v -  . d x u : : - : o r .  i n  o o o r d i n a t - -  •'? - , r  

.

t.;; u m - ). iV- fnxr.n-Wouds •' : ** '-f

o:. i ... " - v r  : (1 i". )

. . Tlr. ■

■1 -■>
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' ' .  . . " ' . • :. . 1' . : -n

2 , . :• • ;.t: 1. .. . • I : v. : i ' l.v-;

r: :: ' VC L;;::.. ■:!< nt V -.nzi

j1- • r. . r.i’it y p > from i.acl. ■ ■ 1 .-,nd .t 

r. ’" :’ . ■ :. n . 1'. .. , .

i ■

.;r it i. ziiO

= ------------
1 v v xp ■ | r | “C. )/t •

'•••' :* • = ' : \ ' • [ ♦ ' ■ ■ ' + • /’ i, . V' i '  ' : ('•.IV)' i - i 

' • - the dif fup-ene -s prran.oter
Vi

- ; ■ ii: the rad ius parinvrv; r

is the r..cleon r..r.L r .

fore at any point r , when the nuclei have separation

i , *" r.. . r.:- iti-.s for the two nuclei will be giver, by :
*01

• ' . =     ( .1 ,
1 + exp (| r : - ft, )

*02
an: p, r)

1 r exp (|r-Rl-Cg)

°2

The identification of nuclear matter in the overlap 

rer:on ViV h a specific nucle ar centre is a dubious procedure. 

A :: re ri ; ore us approach should include a treatment of the

.

As th. roe cf overlap increases it is less and less

.

however is more sensitive to the shape and nature of the
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potential at the surface where the degree of overlap is 

still relatively small. For the regions of small overlap 

the Pauli exclusion principle is still expected to give a 

small effect. We therefore aim to derive an energy 

dependence of the real potential with values of which we 

can be confident in the region where overlap begins.

In any volume element the nucleons are not expected 

to remember which nucleus originally carried them into the 

collision and instead of associating the densities p1 with 

nucleus 1 and P2 with nucleus 2 one can improve the treatment 

by considering a compound density for the system. This 

can be done in the extreme limits of either the sudden 

or adiabatic approximations.
We then have at a point r^ from the centre of nucleus

1 a compound density P^.d .* Ŝ -ven ^

»c .d . = pi(ri) * e2(ri"?) (s,'19)

when the nuclei are separated by a distance h. This 

compound density is then ascribed to nucleus i with a 

density of states
PC.D.

We now have to dc ermine the energy of interaction in 

volume element AV between two nuclei where nucleus 1 has

mom m u m  K per nucleon relative to nucleus 2. A

comideration of the problem in momentum space is facilitated 

by the Thomas-Fermi theory of nuclear matter, in which a 

Fermi-momentum kp is locally associated with the density p.



VI.

_X .Jt "1.C : on.- 1 ‘ y-y. urn H<’lntir n

Con:-icier the simplified situation of an arbitrary 

one-dimensional potential V(x). Assume that for x 

sufficiently large and positive that the potential attains

All states in this potential having energy E -0 are 

assumed to be occupied and states with E>C are assumed to 

be empty. This corresponds to a Fermi energy Ep=0.

Should the Fermi potential not be equal to zero the treatment 

could be modified by adding a constant Ep to both E and V.

The wave functions can be treated to good approximation 

over most of the range of x by the W.K.B. method. The 

wave functions in the potential 9.20 are

where k', the "perpendicular momentum", is a vector in 

the y,z plane.

Then 0 satisfies

a constant value V (x) = -Vo

The potential is also assumed to have the properties

(9.20)

dV < 0 for all x 
dx

and V(o) = 0

V = 0(x) exp i k ’r (9.21)

-f,2 0" + (2E - 2V(x) -fi2 k'2) 0 = 0 (9.22)
m m

Define hi k 2 = 2E-2V(x) - tV k ’2
m m

(9.23)

Ti2 k2 = 2E-2V -fi2 k'2 ——  x „ . o —— (9.24)



For any given energy E , k 1 must satisfy

fi2 k 12 < 2(E-V ) in order to fulfil the —  om
condition f.2 > 0

m o
0(x) is a standing wave which can be normalized 

by requiring

id +  / T  cos (kx X  + a) as x -*• -»

and implies that the average density inside the 

nucleus goes to unity. The W.K.B. approximation is good

o

for kx > 0. For this region of space 0(x) is given by

2k cos (/ Xk (x ' )dx '♦3)
xo

kv(x)

0(x) x) (9.25)
o o

The total density is then

p(x)

o d(k*2)n|*(k

(9.26)

/^F0 2dkx / 1,0 02(x) d(k'2)
2„2

From 9.25

p(x) = 1 2dk /kF° \  2k 0/ (k ;x) d(k’2)
— : 0 xo x0 1 o2ir
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Now for k^(x)>0 we average the cos' factor in 2s2 to 

rive J. When k^<0 we set 2^=0. Now from 9.23 and 9.24 wo 

have :

k 2 = k 2 - const. for fixed x.
x xo

Therefore 9.27 becomes 

kF(xP ( x )  =  T T *2 r l' U ;  [k2(x) •• k* (x)] d(kx )2

= (2 k /  (9-28)
3
This expression must be corrected for the presence oi 

the inhomogeneous surface region ^ ^ 2. The corrected 

expression gives :

kp2 (r) = [3TT2p(r)] 2/s ( Ll (l~a)] s/1 ♦ [l(l+a)]*/))

t 5 C /7pV (9.29)
T?

( f J
where a = N-Z is the neutron excess parameter 

N+Z
and 5 was chosen in Ref. (14) to have the value ( = 1,.

Assuming a Saxon-Woods shape for the nucleon distribution 

we have for the compound density

pC.D. = pl * p2
P01 P02

I4exp|r|-C1 l*exp|r-R|-C2

/x2‘+y 2 + z
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In cylindrical coordinates (a.O.Z), whore 

a = /x‘ +;/' and Z is the direction of the axis joining the 

two nuclear centres, we have

(y°c.D)
2 -

W  ' (• T 7 2 )' • W

f * 5) ’ *

where p '01
C.D

l+exp(*^^+a2 -C^)

(9.30)

'02
l+exp(/z2+(a-R)2-C.

Denoting exp ( / z 2+a2 ) by

(9.3D

ana exp (/z2♦(a-R) “C-) by E? we have

3oC.D
3Z

= - [p01
b, / Z ^ - 2

♦ P02  ________
a* (1; " “  B J - /Z2 + (a-R)2 (l+Eg)2

J
(9.32)

3 pC.D
3a

= -[p01 a * P02 (a-R) 1
ET" /z7^ 2™ (l + E1)2 b j ~  /Z2 + (a-R)2 (l+Eg)2

(9.33)

Expressions 9.30, Q.32 and 9.33 can be substituted 

into equation ).29 for the inhomogeneity correction.

Since a density can be associated with any point in 

coordinate space for .oh of the colliding nuclei we are 
able to determine the region occupied in momentum space



C v o-tch point in cooi'.iinale rp.w-.

1 X.r) Moi'i'Mitnm rpncr Con:', ion:i

The value of t.hn local point.ivo momentum per nucloon 

K avii'inf. f r mi the relative motion of the nuclear centres 

determines the Reparation in momentum apace of t ho two 

I’crmi aphorev associated with t he density listr ibut ion at 

a point. I-'or two collidine nuclei, atomic number A,

incident on one another with energy n the contrc-of-

maso frame of reference, the relative moiuonv.um per nucloon, 

K, ic given by

or

•r/ (AK)2 =E
in C.M.

(9
Ati

where m is the nucloon mass.
To determine the.relative momentum per nucleon for a 

given separation distance R , we replace ^ by

in equation 9.3^, where VT (R) is the total nuclous- 

nucleus potential at that separation distance. (Fig. 9.2)

" \
i 20 .

%

;;> ,0 

i u
icm

Fig. 9.2,
r (frnl

Illustration of the local energy



If wo idopt. .ho Mppi’oaoh that at every point we 
dot •vr.in.' the Fornii mov.cntuni of r.ucleur 1 only ’ vom it;-, 
own mioleon distribution and similarly for nucleus • , 
then a number of different situations arise in moment um 
space. These are illustrated below

Fie. 9.3c. h.,p*r,"k
kp̂ .-'K

Various other cases aiise but do not yield different 

final expressions. For example an equivalent case to 

Fig. 9.3c is shown below

Fig.9.4. kp2+K<kyi 

kF2>K

The use of a compound density to describe the denr.it,v 

distribution implies that kpi = kp2 always. This is mer^y

Fig. 9.3a. kpi+kpp"h Fig• 9.3b. kp^kpp+K
kpi+k.1p>K
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• •rocHI .lituat ion for thu various cn:;o;- nbov<

Wo recall t hut v;e wi;,h to calculate the eru.-rcy of 

'ntov ’’ ion in vduoe element AV at joint r, be two on two 

nuclei hivi.iR relative momentum K per nucleon. Depending 

on the density d i at ri but inn r.t the particular point in 

question this is equivalent to calculating the interaction 

eneiyy between the two Fermi spheres in one of the cases 

ustrated in Fin* 9.3. We thus have the interaction 

energy density AF= r (k.,, .k,., ,K) where kT),. =k,,, (K ,r), i = (l,2)
L i l t :  i i . l 1 1  —  ^

Using the compound density approach

where Av is the normalisation volume,

F, and F-, denote the volume occupied by Fermi spheres 
1 and 2 respectively.

The relative momentum k is illustrated in Fig. 9.5

d 1k1 d ’k.

(9.35)

Fig. 9.5. Fcmi spheres FI and F2 in momentum 
space.

A calculation of the interaction energy density requires 
come functional form for the reaction matrix As a first
approach we will consider the problem in phase shift approxir.it ion.
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