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Abstract The objective of this study is to measure the axial, circumferential, shear and ra-

dial residual stress distributions in three thick-walled glass fibre reinforced plastic (GFRP)

filament-wound pipes, two of which are layered. The measurement of residual stresses was

carried out using a recently published layer removal method which overcomes the limita-

tions of previous techniques and can be applied to layered anisotropic pipes of any wall

thickness. Layers of approximately 0.3 mm thickness were incrementally ground from the

outer surface of the pipes. The resulting strains were measured on the inner surfaces. A

least-squares polynomial was fitted to each measured data set, and used to calculate the cor-

responding stress distributions. All of the resulting axial, hoop and shear stress distributions

adhere to the requirement of self-equilibrium and the radial stress distributions all vanish

to zero at the inner and outer surfaces. The radial stresses of the layered pipes showed a
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tendency to have two peaks, one for each layer, a consequence of the two-stage manufac-

turing process of these pipes. The measured axial and hoop stresses of all three pipes were

similar at the inner surfaces despite significant differences in the stiffnesses in the principal

directions arising from different wind angles.

Keywords Residual stress · Layer removal · Filament winding

1 Introduction

GFRP pipes are used in many industries due to their excellent strength to weight ratio and

good corrosion resistance. In addition, the smooth surface finish on the inner wall of GFRP

pipes allows the frictional losses associated with fluid flow to be minimised. Thick walls

are required where high operating pressures exist and this promotes the development of

residual stresses. These stresses arise from a number of factors including the cure shrinkage

of the resin system, differences in the coefficients of thermal expansion of the fibre and

resin system and changes in the stiffnesses and coefficients of thermal expansion arising

from variations in fibre direction. Although the residual stresses are typically low, the large

safety factors used in the design of thick-walled GFRP pipes results in mechanical stresses

that are comparable. Neglecting residual stresses in such cases completely misrepresents

the state of stress. The residual stresses that develop in GFRP pipes are typically tensile

on the inner surface. Stresses resulting from mechanical loading are also tensile and so the

combination of these tensile stresses makes the pipes susceptible to environmentally assisted

cracking, which tends to negate the important advantage of corrosion resistance. In addition,

in very thick-walled pipes the radial residual stresses can become sufficiently large to cause

cracking [1] that leads to delamination. It thus becomes important to be able to measure the

residual stresses within thick-walled GFRP pipes.
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The most common techniques used in determining residual stresses include the layer re-

moval method [2,3], crack compliance or slitting method [4–7], contour method [8,9], hole

drilling method [10,11] and Sachs’ method [12,13]. In cylindrical composite sections, a slit-

ting type approach is most frequently used to obtain the residual stress. An estimate of the

circumferential residual stress within a cylindrical part is obtained by cutting a slit through

the thickness down the length of the cylinder to release the inherent bending moment. Kim

and Lee [14] utilised this method together with the curved-beam theory to obtain the resid-

ual hoop stresses in thick-walled carbon fibre cylinders. Seif et al. [15,16] determined the

residual stress distribution in thin-walled composite cylinders using this method together

with optical displacement measurement. The crack compliance method is an extension to

this approach. It allows the through thickness residual stress state to be determined through

incremental slitting. Akbari et al. [17] utilised the crack compliance method, with pulse

functions and Thikhonov regularization to obtain the hoop stress distribution in a layered

carbon fibre ring.

Although the slitting technique is most frequently used to determine only the residual

stress distribution normal to the slit direction, it has been shown [4] that the axisymmetric

residual stresses in an isotropic pipe can be determined through measuring only the varia-

tion in circumferential strain as a slit is extended in the radial direction of a pipe in both

plane strain and plane stress. These results can be combined to estimate the axial, radial

and hoop residual stresses. The method could be extended to laminated composite pipes by

using the finite element method to determine the compliances of the two pipe configura-

tions. This procedure can be time consuming, however, and would need to be repeated for

every change in pipe configuration. The method of Sachs [12] has a different approach. It

relies on the boring out of the inner surface, or removal of outer surface layers of a pipe, and

can thus be considered a layer removal method. The method was originally developed for
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isotropic cylindrical bodies and has been widely used in this context [13,18,19]. It has also

been extended for application on composite pipes. Chen et al. [20] proposed a variant of the

technique that utilises an inherent strain analysis to determine the residual stress distribution

in layered isotropic pipes. Olson and Bert [21] modified Sachs’ method so that the residual

stresses in cylindrically orthotropic bars and tubes could be determined. Voyiadjis et al. [22]

presented a similar method for determining the residual stresses in cylindrically orthotropic

materials. Voyiadjis et al. [23] later presented an extension of this work to include layered

orthotropic materials. None of these methods can be used to determine the residual stresses

in very thick-walled orthotropic pipes and none can do so in anistropic pipes [24]. Car-

penter et al. [24] recently proposed a method that addresses these issues and extends the

previous capabilities to allow the residual stresses in layered anisotropic pipes of any wall

thickness to be determined. This tool makes it possible to accurately measure the residual

stresses in thick-walled filament wound pipes. The objective of the present work is to mea-

sure the residual stresses in three different filament wound pipes and discuss how these are

influenced by the manufacturing parameters.

2 Theory

The derivation of this method is based on the exact elasticity solution for a laminated pipe

presented in the textbook of Herakovich [25]. The method is fully described in the paper of

Carpenter et al. [24] and so only details germane to the problem at hand are presented here.

The term “ply” throughout the following derivation is reserved for a single lamina within

the pipe laminate, whereas the term “layer” refers to the material that has been removed

in the layer removal process. Measurement of the residual stresses through the thickness

of a ply requires the removal of a number of layers. As each layer is removed, the elastic
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response of the remaining pipe section is measured. The analytical technique that allows the

variation in strains measured in the remaining pipe section to be related to the original stress

distribution assumes that the pipe is axisymmetric, infinitely long and uniformly loaded

along its length [25]. The mechanical loads, Fx and Tx, required to exist at the ends of the

pipe are found by integrating the axial stresses and the moment of the shear stresses over the

wall thickness, respectively. The pressure loads PO and PI are uniformly distributed over the

inner and outer surfaces of the pipe.

The laminated pipe under consideration is illustrated in Fig. 1. For a fibre angle φ mea-
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Fig. 1 Laminated composite pipe

sured relative to the axial direction of the pipe, the elastic constitutive equations in the cylin-

drical coordinate system (r,θ ,x) [25] are reduced to
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

σx

σθ

σr

τxθ


=



C̄11 C̄12 C̄13 C̄16

C̄12 C̄22 C̄23 C̄26

C̄13 C̄23 C̄33 C̄36

C̄16 C̄26 C̄36 C̄66





εx

εθ

εr

γxθ


(1)

since the interlaminar shear stresses τθr and τxr are zero at points some distance from the

ends of the pipe [25]. The radial displacement [25], w, is

wk (r) = Ak
1rλ k

+Ak
2r−λ k

+Γ
k
ε

0
x r+Ω

k
γ

0r2 (2)

where ε0
x , γ0, Ak

1 and Ak
2 are constants determined by the specified boundary and loading

conditions. The terms λ k, Γ k and Ω k are constant terms dependent on the material proper-

ties of the kth ply [25]:

λ
k =

√
C̄k

22

C̄k
33

(3)

Γ
k =

C̄k
12 −C̄k

13

C̄k
33 −C̄k

22
(4)

Ω
k =

C̄k
26 −2C̄k

36

4C̄k
33 −C̄k

22
(5)

Individual ply strains, εk
x , εk

θ
and γk

xθ
, at the radial position r for the kth ply can be writ-

ten [25] as
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ε
k
x = ε

0
x (6)

ε
k
θ = Ak

1r(λ k−1) +Ak
2r(−λ k−1) +Γ

k
ε

0
x +Ω

k
γ

0r (7)

γ
k
xθ = γ

0r (8)

The stresses in the kth ply, at the radial position r, are determined using Eqs. (9) to (12) [25]:

σ
k
x =

[
C̄k

11 +
(

C̄k
13 +C̄k

12

)
Γ

k
]

ε
0
x +
[(

C̄k
12 +2C̄k

13

)
Ω

k +C̄k
16

]
γ

0r

+
[
C̄k

12 +λ
kC̄k

13

]
Ak

1r(λ k−1) +
[
C̄k

12 −λ
kC̄k

13

]
Ak

2r(−λ k−1)
(9)

σ
k
θ =

[
C̄k

12 +
(

C̄k
22 +C̄k

23

)
Γ

k
]

ε
0
x +
[(

C̄k
22 +2C̄k

23

)
Ω

k +C̄k
26

]
γ

0r

+
[
C̄k

22 +λ
kC̄k

23

]
Ak

1r(λ k−1) +
[
C̄k

22 −λ
kC̄k

23

]
Ak

2r(−λ k−1)
(10)

σ
k
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C̄k

13 +
(

C̄k
23 +C̄k

33

)
Γ

k
]

ε
0
x +
[(

C̄k
23 +2C̄k

33

)
Ω

k +C̄k
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]
γ

0r

+
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]
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]
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(11)

τ
k
xθ =
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C̄k

16 +
(

C̄k
26 +C̄k

36

)
Γ

k
]

ε
0
x +
[
C̄k
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(

C̄k
26 +2C̄k

36

)
Ω

k
]

γ
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+
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(12)
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For perfectly bonded plies, all displacements must be continuous across the interface

between plies. This requirement applies also to the radial stress, σr, and the interlaminar

shear stresses, τxr and τθr. The latter stresses vanish, however, some distance from the end

of the pipe. The radial stress at the inner and outer walls of the pipe is exactly equal and

opposite to the pressure applied on the respective surfaces. These requirements are used to

obtain the constants ε0
x and γ0 and the ply constants Ak

1 and Ak
2 [25].

ε0k
x = ε0

x (k = 1, ... ,N) (13)

γ0k
= γ0 (k = 1, ... ,N) (14)

wk = wk+1 (Interface at rk k = 1, ... ,N −1) (15)

σ k
r = σ k+1

r (Interface at rk k = 1, ... ,N −1) (16)

σr (RI) = −PI (17)

σr (RO) = −PO (18)

In the above, P is the pressure and the subscripts I and O refer to the inner and outer surfaces,

respectively.
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Obtaining residual stresses

The residual stress distribution is determined by progressively releasing stress through the

removal of material, and measuring the associated changes in strain elsewhere in the pipe.

It is assumed in this work that the removal of material progresses inwards from the outside

of the pipe and that the strain is measured on the inner surface. Removal of material in the

reverse direction can, however, easily be accommodated. The assumption is made that the

removal of a layer of material from the outer surface of the pipe causes a purely elastic

mechanical response in the remaining pipe section. Strain gauge rosettes are required so

that the axial strain, εx, hoop strain, εθ , and in-plane shear strain, γxθ , responses can be

determined. Since the constants ε0
x and γ0 that arise in the response to the release of residual

stress in the removed layer are invariant throughout the remaining wall thickness, εx = ε0
x

and γxθ = γ0RI .

The depth of each layer removed is entirely independent of the thickness of each ply.

The measured strains after the removal of m layers allow the calculation of the residual load

that has been released. The load can be modelled as an axial force and torque applied to the

remaining pipe of N plies, as well as an external pressure applied at the newly exposed outer

surface. The requirement is that the application of these loads must result in the same strains

that are measured after the removal of all m layers of material from the outside of the pipe.

Prior to the calculation of the loads applied to the remaining pipe thickness, the ply

constants Ak
1 and Ak

2 are determined in this section. The number of plies remaining is equal

to N which means that N constants Ak
1 and N constants Ak

2 must be determined, or 2(N) un-

knowns in total. This is done by utilising Eq. (11) where the radial stress at the inner surface

of the pipe is always zero, and Eq. (7) where the measured strain is analytically expressed in

relation to the required constants. Additionally, the 2(N −1) equilibrium conditions are si-
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multaneously applied in the form of Eqs. (16) and (15) at each ply interface, which requires

the use of Eqs. (11) and (2). In the case of the layered pipes in question, the number of plies

is equal to two. The resulting equations for the case where N = 2 are given [24] by:



β 1r(λ
1−1)

0 δ 1r(−λ 1−1)
0 0 0

r(λ
1−1)

0 r(−λ 1−1)
0 0 0

β 1r(λ
1−1)

1 δ 1r(−λ 1−1)
1 −β 2r(λ

2−1)
1 −δ 2r(−λ 2−1)

1

rλ 1

1 r−λ 1

1 −rλ 2

1 −r−λ 2

1





A1
1

A1
2

A2
1

A2
2



=



−η1ε0
x −κ1γ0r0

εm
θ
−Γ 1ε0

x −Ω 1γ0r0

−η1ε0
x −κ1γ0r1 +η2ε0

x +κ2γ0r1

−Γ 1ε0
x r1 −Ω 1γ0r2

1 +Γ 2ε0
x r1 +Ω 2γ0r2

1



(19)

where

β
k = C̄k

23 +λ
kC̄k

33 (20)

δ
k = C̄k

23 −λ
kC̄k

33 (21)

η
k = C̄k

13 +
[
C̄k

23 +C̄k
33

]
Γ

k (22)

κ
k =

[
C̄k

23 +2C̄k
33

]
Ω

k +C̄k
36 (23)
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Reverting to the general case, once the constants in the remaining pipe section are

known, the internal stresses and the pressure applied to the outer surface can be found using

Eqs. (9) to (12) while invoking Eq. (18). These stresses result from the removal of the outer

m layers of pipe section and are modelled as externally applied loads acting in the remaining

pipe thickness. The axial force, Fx, and torque, Tx, existing at the ends of the remaining pipe

of N plies are shown in Eqs. (24) and (25), respectively.

Fx =2π

N

∑
k=1

[(
C̄k

11 +
{

C̄k
13 +C̄k

12

}
Γ

k
)

ε
0
x

(
r2

k − r2
k−1

2

)

+
(

C̄k
16 +

{
C̄k

12 +2C̄k
13

}
Ω

k
)

γ
0

(
r3

k − r3
k−1

3

)

+

(
C̄k

12 +λ kC̄k
13
)

λ k +1
Ak

1

(
r(

λ k+1)
k − r(

λ k+1)
k−1

)
+

(
C̄k

12 −λ kC̄k
13
)

−λ k +1
Ak

2

(
r(

−λ k+1)
k − r(

−λ k+1)
k−1

)]
(24)

Tx =2π

N

∑
k=1

[(
C̄k

16 +
{

C̄k
26 +C̄k

36

}
Γ

k
)

ε
0
x

(
r3

k − r3
k−1

3

)

+
(

C̄k
66 +

{
C̄k

26 +2C̄k
36

}
Ω

k
)

γ
0

(
r4

k − r4
k−1

4

)

+

(
C̄k

26 +λ kC̄k
36

)
λ k +2

Ak
1

(
r(

λ k+2)
k − r(

λ k+2)
k−1

)
+

(
C̄k

26 −λ kC̄k
36

)
−λ k +2

Ak
2

(
r(

−λ k+2)
k − r(

−λ k+2)
k−1

)]
(25)

The loads released by each individual layer, F m̄
x and T m̄

x , are found by subtracting the loads

that exist after m−1 layers are removed from those that exist after m layers are removed.
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F m̄
x =


Fm

x (for m = 1)

Fm
x −Fm−1

x (for m > 1)
(26)

T m̄
x =


T m

x (for m = 1)

T m
x −T m−1

x (for m > 1)
(27)

The applied pressure, Pm
O , is found by using Eqs. (11) and (18). The resultant radial stress at

the surface, after the removal of m layers, is the sum of the radial residual stress that existed

prior to the removal of the outer layers and the calculated radial stress that arises due to the

removal of these layers. The resultant radial stress at the outer surface of the remaining pipe

must be zero, and so the residual radial stress is equal the the negative of the radial stress

calculated using Eq. (11) and is thus exactly equal to the applied pressure Pm
O .

The stresses at the mid-radius of the newly removed layer m can be determined consider-

ing that the calculation of these stresses requires knowledge of the four constants A1, A2, ε0
x

and γ0 within this layer. These four unknowns are determined making use of the four bound-

ary conditions arising from the application of the axial and torsional loads, F m̄
x and T m̄

x , and

the known radial residual stresses that were obtained for the inner and outer surfaces of this

layer. If the removed layer contains an interface between two different materials, the appro-

priate boundary conditions of Eqs. (15) and (16) must also be included into the solution.

Special mention must be made that it is assumed that the values of ε0
x and γ0 are constant

within the removed layer. Although these terms are constant when the pipe is mechanically

loaded as prescribed in Fig. 1, the original residual stresses within the pipe were produced by

processes that can be highly non-linear. As a consequence, it is improbable that the terms ε0
x

and γ0 are uniform within the pipe or the layer that is removed. The variation in the residual
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stress that existed within each removed layer cannot therefore be found when considering

only that individual layer. The thinner the layer that is removed, however, the more likely

it is that the values of ε0
x and γ0 can be assumed constant within that layer. Additionally, if

the removed layers are thin enough, the average stress calculated at the mid radius is very

similar to the residual stress that existed at the mid-radius of the layer. Thus the variation in

the original residual stress is found by the combination of the stress results at the mid-radius

of every removed layer.

Error analysis

The error in each of the axial, hoop, radial and shear stresses in the removed layer m can be

expressed [26] as

em
σi
=

√(
∂σm

i
∂εm

x
em

εx

)2

+

(
∂σm

i
∂εm

θ

em
εθ

)2

+

(
∂σm

i
∂γm

xθ

em
γxθ

)2

(28)

where σi represents each of the stress components in layer m and em
εi

is the corresponding

error. Should a polynomial be fitted to the data to represent the strain distribution, the error

in strain is taken to be either the difference between the polynomial value and the measured

strain, or the actual strain measurement uncertainty, whichever is the greater. This approach

is the same as described by Prime and Hill [27] when employing the slitting method.

Since the stresses are not calculated directly from the measured strains, the partial

derivative terms of Eq. (28) cannot be found in a straightforward way. Instead, the errors

are estimated by considering the response of the stress components to the loads applied to

each layer. In this case, the error in each stress component in layer m can be described as
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em
σi
=

√(
∂σm

i
∂F m̄

x
em

Fx

)2

+

(
∂σm

i
∂T m̄

x
em

Tx

)2

+

(
∂σm

i
∂Pm

i
em

PI

)2

+

(
∂σm

i
∂Pm

O
em

PO

)2

(29)

where em
Fx

, em
Tx

, em
PI

and em
PO

represent the errors in each of the loads applied to layer m. The

error associated with each of the applied loads of Eq. (29) can be expressed as

em
Li
=

√(
∂Lm̄

i
∂εm

x
em

εx

)2

+

(
∂Lm̄

i
∂εm

θ

em
εθ

)2

+

(
∂Lm̄

i
∂γm

xθ

em
γxθ

)2

(30)

where Lm̄
i represents each of the loads applied to layer m, and em

εx , em
εθ

and em
γxθ

represent the

error in each of the measured strain components. The partial derivative terms of Eq. (30)

are estimated by finding each term separately. This is done numerically by varying the term

in question, while holding the other measurement terms constant. It should be recognized

that as a consequence of Eqs. (26) and (27), the error terms em
Fx

and em
Tx

depend on the errors

associated with Fx and Tx after the removal of m and m−1 layers, and so

em
Fx =

√(
êm

Fx

)2
+
(
êm−1

Fx

)2
(31)

em
Tx =

√(
êm

Tx

)2
+
(
êm−1

Tx

)2
(32)

where êm
Fx

, êm
Tx

, êm−1
Fx

and êm−1
Tx

are the errors associated with the applied axial and torque

loads after the removal of m and m−1 layers, respectively.

Once the errors in the loads applied to each layer m are estimated, the error in each stress

component of Eq. (29) is estimated. This is done using an approach similar to that used to
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find the errors in load. Each partial differential term of Eq. (29) is determined numerically by

varying each term in turn while keeping the other terms fixed. Since no smoothing functions

are used in determining the error bounds for each data point, the method assumes that all

the noise around the strain curve are possible results of the stress distribution. The method

is therefore quite conservative. Also, the magnitude of the error in stress within a removed

layer depends heavily on the thickness of the layer itself. This is because the error in load

is determined from the mechanical behaviour of the remaining pipe. For the same error in

load, two layers of different thickness will result in different errors in stress. The thinner

layer will produce larger errors because the error in load is distributed over a smaller surface

area. There thus exists a trade off, in its current format, between, on the one hand, the

number of data points needed to accurately define the residual stress distribution and also

ensure that ε0
x and γ0 can be assumed constant within each layer and, on the other hand, the

error associated with the measurement itself.

3 Experiment

Test pieces

The experimental work was performed on three filament wound GFRP pipes manufactured

by GRP Tubing (Pty) Ltd of South Africa. All three pipes had an inner diameter of 80 mm

with a wall-thickness of 15 mm. This yields a thickness to inner diameter ratio (t/di) of

0.1875. The fibre used was E-glass and the epoxy resin system was Epikote L 1100 with the

Epikure 294 curing agent. The fibre volume fraction was specified by the manufacturer to

be in the range of 0.529 to 0.567. For the purposes of this work, the fibre volume fraction

was taken as 0.548, the mean value within the specified range. Due to the impracticality

of measuring the material properties of the curved laminate making up the wall thickness,
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the material properties in the fibre coordinate system were estimated using micromechanics

and are listed in Table 1. The fibre properties used in this analysis are well documented [25,

28] and the matrix properties were experimentally measured. The first of the pipes was

wound entirely at the industry standard winding angle of ±55°. The cure cycle consisted

of curing the pipe at room temperature for a period of 12 hours, followed by 2 hours at

60°C and then 8 hours at 80°C. Once cured, the pipe was ground to the desired thickness

and then removed from the steel mandrel. The two remaining pipes were each made up of

two different winding angles. These laminated pipes had an inner ply thickness of 5 mm

and an outer ply thickness of 10 mm. The first of these pipes had an inner winding angle

of ±65° and outer winding angle of ±47°. The second was wound at ±75° and ±36°. The

laminated pipes were manufactured in two stages. The first stage consisted of winding the

inner section and curing it in the same manner as the ±55° pipe. The inner section was

then ground to the desired thickness of 5 mm, after which the outer section was wound,

and cured. After the final cure, the pipes were ground to the overall desired thickness of 15

mm and the mandrel was removed. The length of each pipe section used for experimental

purposes was the subject of some investigation. It was necessary for each pipe section to

be comparatively short so that the inner surface of the mid-length region could be properly

accessed to accurately align the strain gauges and properly solder the lead wires. If the pipe

was too short, however, far-field conditions would not be reached in the mid-length region

of the pipe. To establish the required length, a finite element analysis was performed using

axisymmetric models. The self-equilibriating thermal stresses that exist in pipes of varying

lengths were compared to those in a pipe of infinite length which was modelled by imposing

constant axial strain. It was found that the pipes needed to be about 220 mm in length for far-

field conditions to exist. This length was too long, however, for practicality. Pipe sections of

120 mm in length were found to experience stresses within 5% of the far-field stresses. This
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accuracy was considered acceptable for the purposes of this investigation and pipe sections

of 120 mm length were consequently used. Three sets of strain gauge rosettes (orientated

at 0°, 45° and 90° relative to the axial direction) were bonded to the inner surface at the

mid-length of each test section, located circumferentially at 120° to one another, as seen in

Fig. 2.

Table 1 Material properties

Longitudinal modulus, E1 (MPa) 40887

Transverse modulus, E2 = E3 (MPa) 7905

Shear modulus, G12 = G13 (MPa) 2437

Shear modulus, G23 (MPa) 2855

Poissons ratio, ν12 = ν13 0.298

Poissons ratio, ν23 0.384

 
 

120120
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0 

m
m

40 mm

60
 m

m

55 mm

Fig. 2 Test piece geometry and strain gauge rosette positioning
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Method

Before testing commenced, each of the pipes was carefully examined for cracks that would

prevent use of the data of Table 1 in this analysis. None of the three pipes used in this work

contained cracks of any sort and the analytical approach used is therefore valid. The analyti-

cal approach to this method also assumes that the removal of layers does not induce residual

stresses in the remaining pipe. The layers were consequently removed using a cylindrical

grinding machine. It should be mentioned that it is not necessary to remove each ply in a

single measuring process. Typically the material removed in each measurement is far smaller

than the thickness of the ply. The lead wires of the strain gauges were tucked into the pipe

cavity during the grinding process. Grinding forces and heat input were minimised by only

taking 0.025 mm off the wall thickness during each pass of the grinding wheel. The use of a

thermal imaging camera revealed that the maximum surface temperature that the test pieces

reached during machining was in the region of 42°C, as seen in the enclosed area, Ar1, of

Fig. 3, which is well below the peak cure temperature of 80°C. Under these conditions it is

reasonable to assume that the induced machining stresses are negligible.

To ensure that accurate results were obtained, polynomial curves were fitted to the mea-

sured strain data which removed the undue influence of any single datum point. This ap-

proach requires that many data points are obtained to provide the necessary redundancy in

measurement. For this reason, the strains were measured at every 0.3 mm of removed wall

thickness. This required that the test pieces were removed from the grinder and taken to a

room in the basement where the temperature was fairly stable. Strain measurements were

recorded 4 hours after each layer was removed. The lead wires of the strain gauges were

soldered to a National Instruments data acquisition system equipped with SCXI-1520 and

SCXI-1521/B strain cards. The time delay allowed the temperature of the test sections and
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Fig. 3 Thermal image during grinding

the consequent strain measurements to stabilise at the ambient temperature. Due to the time

required for each measurement, the entire test took a number of weeks to complete. Over

this period, the temperature in the testing environment drifted gradually. For this reason,

temperature compensation was used. This was achieved by heating the test environment at

every tenth removed layer, and noting the strain response with temperature. From this data,

polynomial curves of strain response with temperature over the full cut depth were gen-

erated. The measured strain data were then referenced to a single temperature. It was not

possible to continue the grinding process beyond about 0.6 mm wall thickness because the

test sections became increasingly fragile. The final strain measured for zero wall thickness

was consequently obtained by a parting procedure where the wall around the strain gauge

rosette was cut through after the strain reading had been recorded for the last layer removal.

This effectively released the remaining residual stress, and the final measured strains in each

rosette were assumed to be exactly equal and opposite to the residual strains that existed in

the inner surface of the pipe prior to any machining process.
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Analysis and results

The process of filament winding produces a pipe which is woven in a complex pattern at both

the positive and negative values of the desired fibre angle. For this reason, the pipes were

assumed to have orthotropic material properties at the bulk scale. The resulting stiffness

matrix consequently has no shear coupling terms.

The results measured by the three strain gauge rosettes on each pipe section of a partic-

ular layup were found to be very similar. To aid in the clarity of presentation therefore, only

the results from a single rosette are shown for each pipe configuration. The measured strain

data from one of the rosettes used on the ±55° test section are illustrated in Fig. 4. A poly-

nomial is fitted to each set of strain data and is used in the calculation of the residual stress

distributions. A fifth order polynomial was used for each distribution. Although better fits

are possible with higher order polynomials, these curves tend to introduce distinct waviness

into the resultant stress distributions. There is no particular reason why such variation should

occur and, as a consequence, the order of the polynomial fits was limited to the highest that

did not introduce waviness. This approach tends to result in slightly larger error bars than

are possible with higher order fits. This is because differences between any measurement

and the polynomial fit contribute to the uncertainties surrounding the stress measurements

as explained in section 2. Additionally, scatter in individual strain measurements affects the

error between the polynomial fit and the measurement. This results in scatter in the magni-

tude of the error bars. In general, though, the sensitivity of the measurement increases as the

wall thickness is progressively removed, and as a consequence, the magnitude of the error

bars tends to reduce towards the inner surface of the pipe.

The through-thickness distributions of the axial residual stress, σx, and hoop residual

stress, σθ , and associated error bars, are illustrated in Figs. 5 and 6, respectively. The stresses
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Fig. 4 Measured strain data and polynomial fits for ±55° pipe

at the inner surface are represented using the × symbol. These were calculated under the

plain stress assumption, using the values of the polynomials fitted to the strain data. As ex-

pected, the axial and hoop stresses of Figs. 5 and 6 are largely linear, with the hoop stress

having a larger maximum value than that of the axial stress. Both stress distributions are

compressive on the outer walls of the pipe, becoming increasingly tensile toward the inner

wall. Extrapolations of the stress distributions to zero wall thickness agree well with the

residual stresses at the inner surface of the pipe. Since the value of the inner surface stress is

based upon the polynomial fitted to the measured strain distribution, good agreement is ex-

pected despite the difference in the procedure for determining these stresses. The axial and

hoop stresses were integrated over the wall thickness by assuming that the stress distribu-

tions varied linearly between the points on either side of the extrapolation. It was determined

that the requirement of self-equilibrium was satisfied within a very small experimental error.

The magnitude of the error bars is directly correlated with the quality of the measured strain

data. Although great care was taken in ensuring the best possible strain data, the nature of
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the material, and the manner of measurement did introduce errors. The error bounds at each

measured point are consequently not negligible. The errors associated with the stresses on

the inner wall are negligible when compared to the errors associated with the remaining

stress distributions since they are only dependent on the difference between the measured

strain and the polynomial fit at this position, and do not depend on the errors associated with

the preceding data points. This issue is discussed in detail at a later stage in this paper.
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Fig. 5 Axial stress of ±55° pipe

The distributions of the radial residual stress, σr, and in-plane shear residual stress, τxθ ,

in the ±55° test section are presented in Figs 7 and 8, respectively. The radial stress is tensile

and, as required, vanishes to zero at the inner and outer surfaces of the pipe. The maximum

value of the radial stress is located in the region of 40% through the pipe thickness and is

about an order of magnitude smaller than those of the axial and hoop stresses. The errors in

the radial stress, however, are not significantly affected by the quality of the measured strain

data. The shear stress distribution in Fig. 8 remains very close to zero as required by the
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Fig. 6 Hoop stress of ±55° pipe

orthotropic layup of the pipe. The error bars are fairly large because of the complex weave

and stacking of the plies at both +55° and −55°. Any particular layer removed over a se-

lected strain gauge rosette almost certainly involves the removal of more material orientated

in a particular direction than the other which results in a measurable shear strain response.

It is clear from Fig. 4 that a distinct waviness in the shear strains exists as a consequence

of spatial aliasing arising from the thickness of each layer removed versus the distance over

with which the weave pattern repeats. This waviness is the source of the large error bars.

The measured strain data from one of the rosettes of the layered pipe with fibre directions

of ±75° and ±36° in the inner and outer parts of the wall, respectively, are presented in

Fig. 9 with the corresponding least squares polynomial fits. The polynomial least squares

fits have discontinuous slopes at the interfaces between the two fibre directions as is required

because of the change in material properties. The polynomial fits for the outer ±36° section

are of fifth order, and the polynomial fits for the inner ±75° section are of second order,

except for the 0° strain gauge, for which the fit is third order.
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Fig. 7 Radial stress of ±55° pipe
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Fig. 8 Shear stress of ±55° pipe

Figs. 10 and 11 present the residual stress distributions in the axial and hoop directions,

σx and σθ respectively, corresponding to the strain variations of Fig. 9. As was the case for

the ±55° pipe, extrapolations of both the axial and hoop stress distributions to zero wall

thickness are in close agreement with the stresses calculated assuming a state of plain stress

applied to the polynomial fit at the inner wall. Both stresses also satisfy the self-equilibrium
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Fig. 9 Measured strain data and polynomial fits for ±75°/±36° layered pipe

requirement. It is also evident that the stress distributions are discontinuous at the interface

between the ±75° and ±36° sections. Such discontinuities are expected as a consequence

of the change in elastic stiffness. The discontinuities in the hoop stress of Fig. 11 are, how-

ever, different from what is expected. The stress in the outer ±36° section is tensile, while

the stress of the ±75° section is compressive. It is expected that both stresses have the same

sense and that the magnitude of the hoop stress in the ±75° section is higher due to the

greater stiffness of the material in this direction. The fact that the stresses have an oppo-

site sense indicates that the residual strains are discontinuous between the two layers. This

somewhat unexpected result can be explained by considering the method by which the pipe

was manufactured. The pipe was laid up in two stages with two cure cycles. The first cure

cycle was performed after the ±75° fibres had been wound and the second was performed

after the ±36° fibres had subsequently been wound. This two-stage manufacturing process

introduces residual stresses separately into each pipe section at each stage and significantly

reduces the likelihood of the residual strains matching at the ply interface. It is apparent from
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Figs. 10 and 11 that the two-stage manufacturing process results in the formation of residual

axial and hoop stresses that are very similar at the inner surface to those of the ±55° pipe

of Figs. 5 and 6. This is an interesting result, considering the very different stiffnesses in the

principal directions as a consequence of the different winding angles of the pipe sections.

The impact of the two-stage manufacturing process on the residual stresses is further evident

when the general nature of the curves of Fig. 11 is considered. Both the inner and outer sec-

tions of the pipe follow the trend evident in Fig. 6 which shows the hoop stress of the ±55°

pipe. This indicates that each section of the layered pipe generated internal residual stresses

as it was cured, without significant interaction between the two sections.
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Fig. 10 Axial stress of ±75°/±36° layered pipe

This hypothesis is confirmed when the radial residual stress, σr, presented in Fig. 12,

is examined. It is clear that the stress distribution has two distinct peaks, each near the

mean radius of the corresponding section of the pipe. Each of the peaks results from the

development of residual stresses in that section. Although the interaction between the two
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Fig. 11 Hoop stress of ±75°/±36° layered pipe

sections is not significant, some interaction is evident because the radial residual stress is

about 0.15 MPa at the interface. Without any interaction, this stress would be zero. In com-

parison to the ±55° pipe, the errors in radial stress seem somewhat larger, but this is only

because the radial stress distribution of Fig. 12 is smaller than that of Fig. 7.

The distribution of the in-plane shear stress, τxθ , in Fig. 13 oscillates around zero stress

throughout the thickness. As with the ±55° pipe, the shear stress distribution is expected to

be zero as a consequence of the bulk-scale orthotropy. At a finer scale though, stacking of

alternating plies produces significant alternating shear stresses, and consequent oscillations

in the measured shear strain distribution. These oscillations are the source of the large error

bounds in the shear stress distribution.

The measured strain data from one of the rosettes of the ±65°/±47° layered pipe are

presented in Fig. 14 with the corresponding least squares polynomial fits. As with the strain

data of Fig. 9, the polynomials have a discontinuous slope at the region of the layer interface

as a consequence of the differences in material properties of the ±65° and ±47° layers. The
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Fig. 12 Radial stress of ±75°/±36° layered pipe
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Fig. 13 Shear stress of ±75°/±36° layered pipe

polynomial fits corresponding to the removal of the outer ±47° section are fifth order, while

the the polynomial fits corresponding the the removal of the inner ±65° section are limited

to second order. Although the polynomials fit the data well, there is some scatter, especially

for the 45° strain gauge.
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Fig. 14 Measured strain data and polynomial fits for ±65°/±47° layered pipe

The residual axial stress, σx, and hoop stress, σθ , are presented in Figs. 15 and 16, re-

spectively. Both stress distributions are fairly linear in the outer region of the pipe, which is

wound at ±47°. In this respect, the results are slightly unexpected since it would be antic-

ipated that the stress distributions in this region would fall between those of the ±55° pipe

and that of the ±75°/±36° pipe. The axial stress distribution in the outer section of the latter

pipe is distinctly non-linear and so the near-linear variation of this stress in the ±65°/±47°

pipe is a bit unexpected. This might be explained by considering that a fairly linear distribu-

tion would be expected for a single winding angle. In the case of the ±65°/±47° pipe, the

axial material properties in the two layers are more similar that those of the ±75°/±36° pipe

and so the resultant stress distribution would be expected to be far more similar to the fairly

linear distribution of the ±55° pipe than the non-linear distribution of the ±75°/±36° pipe.

In contrast to the axial stress, the hoop stress distribution has, however, a form similar to that

anticipated and represents a strain discontinuity at the ply interface. Both the axial and hoop

stresses, like those of the ±55° and ±75°/±36° pipes, satisfy the self-equilibrium require-
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ment. Interestingly, the axial and hoop residual stresses at both the inner and outer surfaces

of the layered pipe are comparable to those of the ±55° pipe presented in Figs. 5 and 6,

despite the significant difference in stiffnesses in the principal directions of the respective

pipe sections.
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Fig. 15 Axial stress of ±65°/±47° layered pipe

The residual radial, σr, and in-plane shear stresses, τxθ , are presented in Figs. 17 and 18.

Both of these distributions conform with expectations. The twin peaks of the radial stress

are far less pronounced than those evident in Fig. 12 and the stress distribution is tending

back to the single peak of the ±55° pipe presented in Fig. 7. The in-plane shear stresses

are small with fairly significant error bars, the reason for which has already been explained.

An extrapolation of the shear stress to zero wall thickness once again satisfies the self-

equilibrium requirement.

One may have noticed that the error bars for the stress components on the inner surface

of all pipes were not shown. This is because they were very small in comparison to the
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Fig. 16 Hoop stress of ±65°/±47° layered pipe

error bars elsewhere through the thickness. This is a consequence of the error depending

only on the difference in least-fit strain and measured strain at this position, and not on any

preceding measurements. To illustrate this, the 45° strain gauge of Fig. 14 is considered. The

difference between the polynomial fit and measured value is about 100µε . This corresponds

to an error, for instance, in shear stress of 0.76 MPa, which is very small in comparison to

the error bars displayed in Fig. 13.

4 Conclusions

The residual stress distributions in three thick-walled GFRP filament-wound pipe sections

of 80 mm inner diameter and 15 mm wall thickness were measured using the layer re-

moval method proposed by Carpenter et al. [24]. The first of the pipes was the industry

standard of ±55° with a single cure cycle. The remaining pipes were layered sections with

±75°/±36° and ±65°/±47° combinations, each manufactured with a two-stage cure proce-

dure. It was found that the order of the least-squares polynomial that was fitted to each mea-
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Fig. 17 Radial stress of ±65°/±47° layered pipe
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Fig. 18 Shear stress of ±65°/±47° layered pipe

sured data set needed to be limited to minimise waviness in the resulting stress distributions.

Due to the pipe becoming increasingly fragile when very thin, the residual strain distribu-

tions could not be measured near the inner surface. A method of parting was consequently

used to obtain the inherent residual strain, and thus the residual stress, on the inner surface
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of each of the pipes. Extrapolations to the inner wall of the stress distributions obtained

using the layer removal process are in close agreement with the residual stresses measured

there using the parting method. The extrapolated axial, hoop and shear stress distributions

adhere to the requirement of self-equilibrium. In addition, the radial stress distributions all

vanish to zero at the inner and outer surfaces, as required. The resulting axial and hoop

stresses at the inner surfaces of both the layered pipes were similar in magnitude and sense

to the ±55° pipe section. The axial and hoop stresses obtained for the ±65°/±47° pipe at

the outer surface were also similar to those measured for the ±55° pipe section. It was found

that the residual strains at the interface of each of the layered pipes were discontinuous, a

consequence of the two-stage manufacturing procedure of these pipes. This suggests that

two separate stages of residual stress development occurred, which is evident also in the

tendency of the radial stresses of the layered pipes to have two distinct peaks, one for each

layer.
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