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ABSTRACT 
 

South African learners perform poorly in national and international mathematics 

assessments (Howie, 2004). A contributing factor to this poor performance is low 

mathematics knowledge of mathematics teachers in South Africa (Howie, 2003). One means 

of addressing this is professional development programs. The Wits Maths Connect 

Secondary Project runs such a program. A test is required by the project in order to assess 

whether learners are making learning gains after being taught by teachers who participated 

in this program. The focus of this study is the design of a test used to assess learners’ 

algebraic attainment. The aim is to design an informative and fair test using Rasch analysis. 

A sample of 235 learners’ responses to 47 questions was analysed using the Rasch model. In 

this study, the mean person measure was 2,87 (SD=1,38) logits, while the mean item 

measure was 0,41 (SD=2,25) logits, suggesting that overall, the test was too difficult. For the 

learners who wrote this test the person separation index is 1,78 and the person reliability 

0,76. This implies that the test may not be not sensitive enough to distinguish between 

learners of high attainment from learners with low attainment. Various ways of improving 

the test are discussed. 
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1. INTRODUCTION 
 
 

1.1 Preamble 
 

As a mathematics educator I keep in the forefront of my mind a quote from section 28(2) of 

the Constitution of South Africa: “A child’s best interests are of paramount importance in 

every matter concerning the child” (1996, p. 19). 

The current state of mathematics education in South Africa is failing to uphold this right of 

the children of the nation. The continued lack of access to quality mathematics education 

perpetuates the injustice of the political past of South Africa.  

Great change is the sum of small efforts and this research report is my small effort to effect 

some change in the current education landscape in this country. 

I am gripped by the idea of Zalman Usiskin: “People can live without algebra, but as a 

result they cannot appreciate as much of what is going on around them. They cannot 

participate fully. They are more likely to make unwise decisions and will find themselves 

with less control over their lives. They live in the same world, but they do not see or 

understand as much of its beauty, structure, and mystery” (2004, p. 150). Indeed, I am 

convinced that proficiency in algebra should be a skill as ubiquitous and as fundamental a 

human right as basic numeracy.  

This past year I have seen profound change in my life as I gave birth to my first child. This 

research report is my small contribution to South Africa, mathematics education research, 

and the world. My hope is that through my small efforts documented in this research report, 

and collaboration with the pre-existing efforts of others, as well as organisations such as the 
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Wits Maths Connect Secondary project, that the world that my daughter finds herself in in 

the future will be one where all people can better see and understand its “beauty, structure, 

and mystery”. 

 

1.2 Main argument 

 

Assessment scholar Dr Douglas J. Eder once said,  “If you don’t know where you are 

headed, you’ll probably end up someplace else.” (Eder, 2004). To begin, I must make clear 

the need for the algebra test that I will be discussing throughout this report.  

Learners in South Africa are required to write assessments on a regular, sometimes even 

daily basis (DBE, 2011). Such assessments, an example of which is the ANA (Annual 

National Assessments), reveal little about the algebraic attainment of learners (DBE, 2014). 

This is due to the flooring effect of such tests – the minimum standard scores do not 

distinguish learners with low algebraic attainment.  

The test I will be writing about in this research report is different from existing tests. The 

aim is to design a test that can effectively measure algebraic attainment of learners, and 

distinguish learners of various degrees of algebraic attainment. 

This brings me to the main argument of my research report: that it is possible to design an 

algebra test that can be used to assess the algebraic attainment of South African grade 9 

learners, and that Rasch analysis is an appropriate and useful tool that can contribute to 

improvement of the test design. It does this by contributing information about the targeting 

of the test, the extent to which items are functioning according to what they mean to do, 

and whether items are multidimensional (Reckase, 1997). 

In the following paragraphs I will give a brief overview and definition of each of the three 

terms that I have used in my title and in my argument, these are: assessment, algebraic 

attainment, and South African grade 9 learners. 
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1.2.1 Assessment 

 

The National Council on Measurement in Education defines assessment as “a tool or 

method of obtaining information from tests or other sources about the achievement or 

abilities of individuals”. Globally, much time, effort and resources are spent on assessing 

students (National Research Council, 2011). Indeed, as long as humans have been 

educating one another, they have been assessing one another (Graves, 1914).  

The aim of educational assessment is to determine how well students are learning and 

provide feedback to various stakeholders, i.e. the students themselves, parents, 

policymakers, educators and the public at large (National Research Council, 2011). 

Assessment in South Africa is especially important as it relates to mathematics and poor 

performance (Howie, 2003; Fleisch, 2008). 

The significance and importance of assessment to the improvement of education will be 

discussed further in chapter 2. Next I will discuss what is the focus of the assessment 

referred to in this research report, namely algebraic attainment. 

 

1.2.2 Algebraic attainment 

 

To lay a foundation of what I mean by algebraic attainment, I would like to start with the 

origin and definition(s) of algebra and then move on to define “algebraic attainment”. 

Algebra is a word stemming from the Arabic “al-jabr” meaning the reunion of broken 

parts (Simpson & Weiner, 2009). In the most general definition, algebra is a study of 

mathematical symbols and the rules for manipulating these symbols (Boyer, 1991). More 

detailed definitions of algebra will be provided in chapter 2.  
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Algebra is used in almost all spheres of mathematics, which adds to its significance in 

school mathematics (also discussed in chapter 2) even further. Elementary algebra forms 

school curriculums in the world and includes processes like solving equations and 

simplifying algebraic expressions (Kilpatrick & Izsák, 2008). Elementary algebra is 

generally considered fundamental to the study of mathematics, engineering, science and has 

application to medicine and economics (Usiskin, 1995). Equally important is the need for 

elementary algebra as a precursor to the study of abstract algebra - a major area of 

advanced mathematics. 

Attainment is the action or fact of achieving a goal towards which one has worked 

(Simpson & Weiner, 2009). This term is used in particular to refer to a skill learnt or an 

educational achievement. The goal of learning algebra in school is to be able to use the 

knowledge and skills learnt. An example of using an algebraic skill is solving an algebraic 

equation like 3𝑥 + 5 = 3+ 𝑥 correctly. Thus algebraic attainment can be reflected in the 

performance of a learner on test questions. In other words, the learner is able to apply their 

knowledge of algebra to provide correct responses to test questions.  

The students who are the focus of my research are South African grade 9 learners. In the 

following paragraph I will discuss these students and their particular context. 

 

1.2.3 South African grade 9 learners 

 

Elementary algebra is taught in schools worldwide (Kilpatrick & Izsák, 2008) and South 

Africa is no exception. South Africa is a country with a complex history and a young 

democracy, as well as unique idiosyncrasies. It is necessary to take into account the 

influence of these characteristics when designing an algebra test. Indeed, one such example 

of a South African idiosyncrasy is the term “learner” given to a school student (DBE, 1996) 

and hence the use of this term in the title of this thesis. Therefore in my research report I 

will use the word learners to refer to students at school. 
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The curriculum document that is followed by the teachers in South Africa is called CAPS, 

which is an acronym for Curriculum and Policy Statements. The Department of Education 

(DBE) in South Africa publishes these policy documents. They outline what knowledge 

and skills learners must know and demonstrate.  

Learners in South Africa are first introduced to elementary algebra at the start of grade 7 

when they are 12-13 years old (DBE, 2011). Grades R through to 9 are referred to as the 

General Education and Training (GET) phase of a learner’s school life. The algebra learnt 

in grade 9 is fundamental to more advanced algebra learnt in grade 10, 11 and 12, and 

culminates in a high stakes examination at the end of grade 12, called the National Senior 

Certificate (NSC), which is colloquially referred to as the “matric exam”. 

Grade 9 is an important year in the life of a South African learner. It is an “exit” year, 

which means learners are permitted to leave the formal schooling system upon completion 

of the GET certificate at the end of grade 9 (DBE, 2011). They may join the workforce, 

and/or take up studies and practical training in a Further Education and Training (FET) 

college or vocational schools. With grade 9 being such an important year in the life of a 

learner the focus of this research report is thus grade 9 learners.  

The following paragraphs will give further detail to the background and context of this 

study, and will also give the reasons for the need for a test to be designed to assess the 

algebraic attainment of South African grade 9 learners.  
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1.3 Background and Context 

 

1.3.1 The Wits Maths Connect Secondary Project1 

 

This study forms part of a research and professional development project called the Wits 

Maths Connect Secondary Project (WMCS). One of the goals of this project is to develop 

professional development (PD) models for mathematics teachers in South Africa. This is to 

strengthen the teachers’ relationship with mathematics, with the ultimate goal of learning 

gains at all levels of secondary schooling (Pournara, Hodgen, Adler & Pillay, 2015). 

Such a goal requires that a professional development program is conceptualised, designed 

and implemented. It also requires research to be carried out regarding learner attainment.  

Thus the research of the WMCS Project focuses on learning gains of learners. Learning 

gains refers to an increase in skills and knowledge over a given period of time. This study 

fits into the larger WMCS project by contributing to the design of an algebra test to assess 

the algebraic attainment of learners.  

 

1.3.2 The algebra test 

 

The focus of this study is the design of an algebra test to assess algebraic attainment of 

learners. In order to assess the efficacy of the WCMS PD model, a balanced, well-

performing test is required to accurately assess learning gains.  

                                                             
1 Further detail on WMCS is available at www.wits.ac.za/WitsMathsConnect. 
2 See also http://www.rasch.org/software.htm. 
3 http://www.winsteps.com/a/ftutorial2.pdf 
4 Average measure of items or persons 
5 Standard errors of the measures 
6 See notes at http://www.winsteps.com/winman/reliability.htm 
7 The ratio of sample or test standard deviation (corrected for estimation error) to the average estimation error. 
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An algebra test is an assessment tool that includes questions that require the learner to use 

their understanding of algebra to answer the questions. The algebra test used in this study 

covers content up to a grade 9 level in the South African syllabus outlined in the CAPS for 

Mathematics (DBE, 2011). Further detail of the content of this algebra test is given in 

chapter 3. 

 

1.3.3 Test design 

 

Test design is a lengthy and multi-faceted process. In chapter 2, I will describe the various 

considerations taken into account in the design of the algebra test referred to in this report. 

Briefly put, test design includes which questions are included in a test, as well as how the 

test is administered, length of the test (in terms of minutes and scores), who sits the test, 

how the test is scored, and how the results are analysed and used (Downing & Haladyna, 

2006 and Reynolds, Livingstone & Willson, 2007). These activities will be described in 

more detail in chapter 2. 

 

1.3.4 Rasch analysis 

 

Results of tests can be analysed statistically. One means of statistically analysing results is 

making use of Rasch analysis. 

This paragraph serves as a brief and simplified introduction to Rasch analysis, or Rasch 

Measurement Theory (RMT). RMT is a useful statistical tool for assessing responses to  

questions. Simply put, RMT can be used to identify questions that are far too easy or far too 

difficult for respondents, as well as questions that are not performing as expected. For 

example, Rasch analysis can help identify questions that are not functioning as they should, 
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that is, respondents with high ability (attainment) getting “easy” questions wrong, while 

respondents with low ability (attainment) get them right. 

In the following paragraphs I will outline core elements of this study in order to give an 

appropriate grounding to the literature review that follows. These core elements are the 

research questions, the context and the sampling of the study. 

 

1.4 Elements of the Study 
 

1.4.1 Research questions 

 

I this study I seek to answer the following main questions, with related subsidiary questions 

listed underneath each main question. 

1.  How can we go about designing a test that is fit for purpose and useful in terms of 

assessing if learners have increased in learning gains? Subsidiary questions include: 

a) What kinds of questions should be included in an algebra test? 

b) What should the length of the test be in terms of number of questions and time? 

c) Who should sit the test? 

d) Who should and how should the test be marked? 

e) What is the best way to analyse the test statistically? 

2. How does Rasch analysis help us to design such a test? 

a)  What does the analysis suggest about the difficulty of items in the test? 

b) What does the analysis suggest about the algebraic attainment of the learners? 

The aim of this study is to contribute meaningfully to the WCMS project, keeping in mind 

the larger aim of investigating whether learners of Mathematics benefit when their teachers 

participate in a PD course offered by the WMCS. This “benefit” is an increase in algebraic 

attainment, and thus the construct to be measured by the test is algebraic attainment.  
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1.4.2 Sample 

 

This study focuses on 3 schools in the Johannesburg area, 1 of which is located in the inner 

city and the other two in townships. All three schools are government (public) schools and 

co-educational. Further details of these schools will be given in chapter 3. The unit of 

analysis of this study is the responses of 235 individual learners to 47 questions.  

 

1.5 Outline of the structure of the research report 

 

Lastly, to finish up the introduction to this report, I will provide brief outlines to the five 

chapters that follow. 

In chapter 2 I review relevant literature and theory regarding mathematics education in the 

world, with particular emphasis on the teaching and learning of algebra in South Africa. 

This is followed by a description of the work of WMCS, as well as situating this study 

within that work.  

Following this I will outline steps for effective test development. Downing (2004) provides 

12 activities that he argues must take place in the design of an assessment such that 

sufficient evidence is gathered to assert validity of measurement of a construct.  

A brief history of practical additive measurement follows as a preamble to a description of  

item response theory (IRT) and Rasch measurement theory (RMT). The rationale behind 

using Rasch analysis in the design of the algebra test is presented, including examples of 

the use of RMT in mathematics education research around the world, and in South Africa. 
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Chapter 3 outlines the methods used in this research, beginning with a description of how 

sampling was carried out, and details of the algebra test. RMT is then presented (including 

the mathematical model developed by Rasch) and data analysis techniques described.  

Findings are presented in chapter 4, and then analysed, interpreted and discussed in chapter 

5. Finally the report concludes in chapter 6 with implications of this research and suggested 

directions for future studies.  
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2. LITERATURE REVIEW 

 

2.1. Overview of chapter 
 

In this chapter I situate my research in the relevant contemporary literature, by focusing on 

broad topics.  

The first broad topic is the learning of algebra. I will begin by trying to answer the 

question, what is algebra? By considering various definitions put forth in the literature, I 

will try to define algebra.  

Following this will be a review of studies that show in what ways school algebra differs 

from the academic discipline. Examples of how algebra is taught in schools globally will be 

given, with particular emphasis on algebraic activity in schools in South Africa.  

Thereafter will be a review of research on the learning of algebra, and how learners 

conceptualise algebra, as well as their thinking and reasoning. Also considered will be the 

relationship between arithmetic and algebra, as well as the problems associated with the 

transition between the two in school learning and teaching. How algebra and algebraic 

activity is defined in the South African curriculum is also considered. 

Subsequent to this I will look at the reasons such emphasis is given to learners learning 

algebra, and will transition into arguments for the importance of learning algebra. 

The second broad topic is the teaching of algebra in South Africa, including what it means 

to be a teacher of mathematics in this country, leading into the professional development 
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program offered by WMCS, and the subsequent need for a test to measure learning gains of 

learners whose teachers attend the course.  

The third broad topic is assessment and test design, including an overview of the 12 steps 

for effective test development by Downing (2004). 

The final topic reviewed in this chapter is Rasch analysis. Beginning with a discussion of 

measurement in the human sciences, I will give a brief history of practical additive 

measurement, including item response theory and finally Rasch measurement theory 

(RMT). I will include examples from around the world where RMT has been used 

successfully in the design of various assessment tools. 

 

2.2. Learning algebra 
 

2.2.1 What is “algebra”? 

 

There are various definitions of algebra debated in the literature.  

Derbyshire (2006) gives a broad and more philosophical view of algebra as abstract thought 

and the modelling of reality; arguing that algebra has a distinctive quality that sets it apart 

as a discipline by itself. Algebra is the “abstractions of abstractions”, which help us to 

model the real world to some degree (Derbyshire, 2006). 

Mason, Graham & Johnson-Wilder (2005) gives a definition of algebra as investigating and 

solving problems by generalising and using techniques; noting that it is unhelpful to 

describe algebra as generalised arithmetic, Generalised arithmetic means the expression of 

general arithmetical rules using letters. At the very heart of algebra is the expression of 

generality and that algebraic symbols are a language for expressing such generality. 
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Watson (2009) describes algebra as the way in which we express generalisations about 

numbers, quantities, relations and functions. Related to success in using algebra is a 

thorough understanding of the connections between numbers, quantities and relations. 

All of the definitions above frame algebra as a discipline in and of itself. It is useful for 

modelling reality and solving problems. The latter two definitions help us to understand the 

means by which this is done – namely generalising and using algebraic symbols. 

Formal definitions often differ to everyday uses of a word, and a prime example of this is 

the word algebra. School mathematics and school algebra is a selection and adaptation from 

the discipline of mathematics with different goals. This leads me to discuss in what ways 

school algebra (the focus of this research report) is different from algebra as a discipline. 

Proficiency in algebra is required for other content areas of the mathematics curriculum 

(DBE, 2011). Areas such as trigonometry and analytical geometry seem like vastly 

different subjects to algebra, yet they require deep conceptual understanding of 

simplification and solving of equations, as well as the concept of equivalence.  

Algebra is seen as a “gate-keeper” to various technical vocations (Stinson, 2004). Thus 

there is a view that due to the fact that elementary algebra is a gateway to higher 

mathematics, all school learners should have access to quality education in this topic of 

mathematics in particular (Usiskin, 2004). 

 

2.2.2 What is school algebra? 

 

There are contradictory and competing views on what constitutes school algebra. A variety 

of views have been debated as mathematics education undergoes a reform globally (Shifter 

& Fosnot, 1993). 
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As school curricula have developed since the beginnings of formal mass education during 

the industrial revolution of the 1800s, the view of algebra as a tool for manipulating 

symbols and solving problems has persisted (Kieran, 2007).  

Indeed, the perspective of school algebra as algebraic activities has been proposed: 

whereby all that is considered algebra in school could be categorised into representational 

activities (e.g. showing a linear relationship using tables and graphs), transformational 

activities (e.g. changing the appearance of expressions), generalising (e.g. finding the 

general term of a number pattern), and justifying activities (e.g. solving geometry riders) 

(Kilpatrick, Swafford & Findell, 2001). 

Watson (2009) contrasts two views of school algebra: a ‘bottom-up’ developmental 

approach (focussing on what learners can do and how their generalising and use of symbols 

develop) with a ‘top-down’ hierarchical approach (a view which states what is required in 

order to do higher mathematics).  

The ‘top-down’ view sees school algebra as a list of techniques that need to be fluent. This 

view results in research into errors made by learners and studies designed to mitigate these. 

Such research gives insight into obstacles that need to be overcome in the development of 

understanding, as well as revealing how learners think (Watson, 2009). 

The ‘bottom-up’ view, however, focuses on algebraic thinking. Algebraic thinking is the 

expression and use of general statements about relationships between variables (Watson 

2009). Algebraic thinking is an intentional shift from context to structure and arises when 

people are detecting and expressing structure (Lins, 1990).  

These two views complement one another as the ‘bottom-up’ view takes into consideration 

the development of the natural ability learners have to detect patterns and generalise them, 

and the ‘top-down’ view relates this to the increase in competence in understanding and 

using symbols. This leads onto the idea of the content of school algebra as the development 

of algebraic reasoning (Thomas & Tall, 2001). The development of algebraic reasoning is 
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the shift between procedure, process/concept, generalised arithmetic, and manipulations. In 

this view manipulation is the generation and transformation of equivalent expressions.  

I see school algebra as a way of thinking that needs to be taught such that learners “see” the 

various symbols and notations as objects, and thus are able to manipulate such objects and 

carry out meaningful procedures using these objects as tools to solve problems. I derive my 

view from learning algebra in South Africa, as well as teaching algebra in South Africa.  

Learning algebra in South Africa will be discussed in the following paragraphs when 

research into how learners learn algebra is discussed.  

 

2.2.3 The learning and teaching of algebra in South Africa 

 

Poor performance and failure in school mathematics is a problem in South Africa and other 

developing countries (Pournara, Hodgen, Sanders & Adler, 2016). The vast majority of 

South African learners are not coping in school mathematics (Spaull, 2013).  

If one takes the view that algebra is learnt by participating in a discourse, such as is argued 

by Sfard & Linchevski (1994) in the theory of commognition, or the communicational 

framework of mathematics, then it is not surprising that there would be low performance of 

South African learners. If the teachers lack the knowledge and interlocutory skills to 

present algebra as more than just examples and exercises, then learners will be unable to 

appreciate and use algebra in the context in which they find themselves.  

In addition, the ideas of Thorndike (1922) persist: that success in a subject results from 

formulaic practice of said subject – rather than conceptual understanding combined with the 

learner being enabled to make meaning out of what is being learnt and thus being able to  

articulate that in their own way.  
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This results in state resources being poured into thick mathematics textbooks replete with 

exercises, more than investing into teacher development (DBE, 2014). Indeed, this brings 

further incentive into researching whether the WMCS professional development 

intervention is effective. If it is shown using empirical data that the intervention is effective 

to increase learning gains, then with increased investment more teachers could have access 

to the course, and thus the positive effects on the learning of algebra in South Africa could 

abound still more.  

Due to the abstract nature of algebra, there is an inherent difficulty to be found when 

learning algebra (Sweller & Chandler, 1994). Learners have considerable difficulties with 

adopting the conventions of algebra (Watson, 2009). There are obstacles to be overcome in 

order to understand the meaning of letters and expressions and to use them.   

This difficulty is increased all the more due to the various social and educational challenges 

faced by South African youth. These challenges include poverty, poor service delivery, lack 

of adequate resources, and the knowledge deficit of parents and the community as a legacy 

of bantu-education under the pre-1994 apartheid regime. These all have far reaching 

effects, including the inability to achieve academically at school (Fleisch, 2008). 

Moreover, most learners do not learn in their home language. Generally, South African 

learners perform poorly in national and international mathematics assessments (Howie, 

2004, Simkins & Paterson, 2005). It could be argued that a significant contributing factor to 

this is that international assessments are written in the language of the hegemony, and not 

the average South African learner. This further disadvantages them. 

Added to this, is inadequate teaching training. It has been established that poor teacher 

knowledge is a contributor to low performance of learners (Howie, 2003). In some areas of 

South Africa, up to 79% of grade 6/7 mathematics teachers have content knowledge below 

a grade 6/7 level (Venkat & Spaul, 2015). Similarly, some grade 12 teachers are unable to 

answer up to 45% of the final school leaving examination (Bansilal, 2015).  
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Various government interventions have been put in place to address the lack of content 

knowledge of teachers. Professional development (PD) courses seek to address teachers’ 

lack of content knowledge (Borko & Putnam, 1996). This inadequate teacher training is 

further incentive for quality professional development interventions, such as the one offered 

by WCMS. 

 

2.3 Effective test development 
 

In the past, issues concerning the design of tests have received little scholarly or scientific 

attention in the academic discipline of educational measurement. Indeed, much research 

focuses on the statistical issues of testing (Downing, 2006). 

The big question in test design is one of validity – are the questions that are being asked 

actually measuring the construct that the test is designed to measure. Item response theory, 

can be incorporated into answering this question (Downing, 2006). 

In addition to this sound testing practices must be considered. Which activities form part of 

sound test design, and how do they contribute to effective test development? Answers to 

these questions are complex and varied, leading some to describe test design as 

simultaneously an art and a science (Downing, 2006). 

Downing (2006) provides activities associated with designing tests. The 12 steps he 

describes can be carried out to increase the probability that a test has sufficient validity 

evidence to support the intended score interpretations. In chapter 5 of this research report I 

present a comprehensive, coherent, scholarly (yet pragmatic) discussion of all the issues 

regarding how a test was designed, administered and analysed. 

Psychometric theory is the foundation for all the activities required in test design. Effective 

test development requires a systematic, detail-oriented approach based on sound theoretical 

educational measurement principles. In order to gain sufficient validity evidence to support 
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the proposed inferences from test scores, it is imperative that the process of test deign is 

systematic and well organised (Downing, 2006). 

 

2.3.1. Steps for effective test design 

 

Downing (2006) argues that there are twelve discrete steps that must be accomplished in 

the design of tests. This maximises the validity evidence for the intended test score 

interpretation. Test design begins with detailed planning, through to discussions of what the 

content will be, then creating these questions (items), and then to how the test is 

administered, scored and reported on. All these procedures are integral to effective test 

design. All of the procedures must be well executed in order to a test to be produced that 

estimates examinee achievement with a high degree of validity.  

Each test development activity needs to receive sufficient attention – this is to maximise the 

probability that the test is an effective measure of the construct of interest. However, the 

technical sophistication of each activity depends on the resources at hand: the human 

resources and the financial resources. Some of the suggestions in the table that follows may 

be too costly or too time consuming. Table 1. lists the twelve steps of test development and 

a brief summary of the tasks, activities and issues associated therewith. Although the steps 

appear as a linear model (or sequential timeline) they are however open to be modified or 

occur simultaneously. There is a discrete beginning and a final end point, but the tasks in 

between may be happening altogether.  

 

 

 

 



 19 

Table 1. Twelve steps for effective test development (adapted from Downing 2006, p. 5). 

 Suggestions of test design tasks 

1. Overall plan 

Systematic guidance for all test development activities construct; 
desired test interpretations; test format(s); major sources of validity 
evidence; clear purpose. 

2. Content definition 

Sampling plan for domain/universe; various methods related to purpose 
of assessment; essential source of content-related validity evidence; 
delineation of construct. 

3. Test specifications 

Operational definitions of content; framework for validity evidence 
related to the systematic, defensible sampling of content domain; norm 
or criterion referenced; desired item characteristics. 

4. Item development 

Development of effective stimuli; formats; validity evidence related to 
adherence to evidence-based principles; training of item writers, 
reviewers; effective item editing; construct-irrelevant variance (CIV) 
owing to flaws. 

5. Test design and assembly 

Designing and creating test forms; selecting items for specified test 
forms; operational sampling by planned blueprint; pretesting 
considerations 

6. Test production 

Publishing activities; printing or computer-based testing (CBT) 
packaging; security issues; validity issues concerned with quality 
control 

7. Test administration 

Validity issues concerned with standardisation; issues relating to those 
examinees with special needs/disabilities/learning difficulties; security 
issues; timing issues 

8. Scoring test responses 
Validity issues: quality control; key validation; item analysis 

9. Passing scores 

Establishing defensible passing scores; relative vs. absolute; validity 
issues concerning cut scores; comparability of standards: maintaining 
constancy of score scale (equating, linking) 

10. Reporting test scores 
Validity issues: accuracy; quality control; timely; meaningful; misuse 
issues; challenges; retakes 

11. Item banking 
Security issues; usefulness, flexibility; principles for effective item 
banking 

12. Test technical report 
Systematic, thorough, detailed documentation of validity evidence, 12-
step organisation, recommendations 
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I will return to and elaborate further on these twelve steps in my discussion and critique of 

the test that is the focus of this study in Chapter 5. 

 

2.3.2 The purpose of the test 

 

First and foremost the stated purpose of the test must be known. The purpose of this test is 

to assess the algebraic attainment of learners taught by teachers who have attended a 

professional development course. Indeed, this setting out of purpose is fundamental as all 

major decisions such as defining what content will be covered in the test, and which 

construct hypothesised to be measured by the test are all directly associated with the stated 

purpose of the test (Downing, 2006). 

The first decision to be made when beginning the design of a test is what construct is to be 

measured. For this test it was decided the construct to be measured was algebraic 

attainment – and whether there was a change in this attainment. In other words, were 

knowledge and skills gained by learners who were taught by teachers who attended the 

WMCS PD course, over and above learners who were not taught by such teachers? 

The next decision is what score interpretations are desired. For example, for this test 

reported on more full in chapter 4, the score interpretation was dichotomous i.e. zero for 

missing or wrong and 1 for correct.  

Following this is what test format or combination of formats will be used (i.e. selected 

response or constructed response/performance). This test was constructed response, i.e. 

learners had to write down their answers. After this the test administration modality is 

decided. The mode of this test was paper and pen as opposed to a computer based modality. 

In chapter 5 I will discuss the process of test design undertaken for the test that was studied, 

and compare the steps taken to the steps Downing proposes. Part of the test design was the 

use of statistical analyses to interpret the functioning of not only the learners who wrote the 
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test, but also the items (questions) in the test itself. This leads to the next part of this 

chapter, which is an introduction to the statistical analysis of assessments, and ending with 

the model that was used in this research, namely the Rasch model of measurement. 

 

2.4 Test design theory 

 

We have all experienced a test that we thought was not fair – perhaps we considered a test 

too easy and a waste of our efforts, or too difficult and thus we were not able to 

demonstrate how knowledgeable and skilful we actually were. Enter the statistical analysis 

of tests as we seek after an unbiased, objective estimation of the difficulty of a test. In 

essence, a scientific way of telling how fair a test really is.  

For the last part of this literature review I will begin with the debate regarding measurement 

in the human sciences. Following this will be a brief introduction to classical test theory, 

the precursor to item response theory (IRT). It is under item response theory that Rasch 

analysis is categorised. 

 

2.4.1 Why is measurement fundamental? 

 

The concept of using a scale to measure our weight, or a thermometer to measure 

temperature is so familiar to us that we take for granted the centuries of thought and study 

that was required to come up with scales and units to quantify these physical phenomena 

(Bond & Fox, 2012). There was a time when kilograms, and degrees Celsius did not exist. 

Thus when we think about quantifying constructs (that is, an idea or theory containing 

various conceptual elements) we may be quick to think it will be impossible, forgetting that 

the same was once thought of for physical constructs such as weight and temperature. 
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Measurement is fundamental to living and understanding the world around us. The need to 

quantify things has been a pursuit of humans since the dawn of time – how to measure 

quantities such that one unit added is the same as another no matter how much is already 

present (Bond & Fox, 2012). We could even go so far as to agree with the McNamara 

fallacy (also known as the quantitative fallacy): that if you cannot measure it, it does not 

exist (Fischer, 1970). Such ideas will be described more as the application of measurement 

to the human sciences is considered in the paragraphs below. 

 

2.4.2 Social science measurement 

 

“Is psychological measurement possible?” was first debated in the 1930s (Linacre, 2016a).  

So-called “hard” scientists such as physicists responded in the negative. From a positivist 

perspective, measurement requires a deliberate action.  

An important idea when considering how to go about measuring “things” is what it means 

to concatenate them: how to link them in a series such that each successive unit is as far 

from the next unit as it is from the one before. Thus a concatenation is a deliberate action 

and one cannot concatenate the minds of people (Linacre, 2016b). Examples of 

concatenation are putting sticks end to end to measure length or piling bricks one of top of 

the other to measure weight. 

In contrast “soft” scientists could not answer this question. Thus a different definition of 

measurement was devised i.e. measurement is the assignment of numbers to objects or 

events according to a rule (Stevens, 1946). Indeed, social scientists call “measures” 

whatever numbers they happen to have acquired (Linacre, 2016b). 

This caused confusion as scientists were using the same word to mean different things. For 

social scientists, any number is a measurement provided it follows a given rule. For other 

scientists, measures had to conform to strict objective criteria (Linacre, 2016b).  
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The aim of measurement in the human sciences is to quantify constructs such as attainment 

or understanding. Furthermore we seek to understand and improve the reliability of 

psychological tests. Mathematics tests are a form of psychological tests, as the examinee is 

required to think through and respond to questions posed, as opposed to standing on a scale 

to be weighed, for example. This leads us to classical test theory, which deals with 

predicting the outcomes of psychological tests. 

 

2.4.3 Classical test theory 

 

When scientists first started endeavouring to predict outcomes of psychological testing it 

was thought that a person’s score on a test was the sum of a true score and an error score. 

This idea is part of a body of related psychometric theory called classical test theory 

(Novick, 1966). 

This theory was used to predict outcomes of psychological tests such as the difficulty of 

items or the ability of the examinees. The term item is generic and used to refer to all kinds 

of informative items: multiple choice questions which have correct and incorrect responses; 

statements of questionnaires that allow respondents to indicate their level of agreement; 

questions to which the response could be present/absent, yes/no etc. 

The aim of classical test theory is to understand and improve the reliability of psychological 

tests (Allen & Yen, 2002). Classical test theory contrasts with the more recent 

psychometric theories collectively referred to as item response theory (IRT). 
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2.4.4 Item response theory 

 

The name of this theory comes from the focus of the theory on the item, as opposed to the 

test-level focus of classical test theory. Item response theory models the response of each 

examinee of a given ability to each item in a test. 

Item response theory is thus a paradigm for the design, analysis and scoring of tests that 

measure constructs. For example a questionnaire measuring a person’s perception of a 

political party, or, as is the case in this study, a test measuring a learner’s algebraic 

attainment. 

Item response theory is based on the relationship between an individual’s performance on 

an item and the individual’s levels of performance on an overall measure of the ability that 

that item was designed to measure. Furthermore, item response theory is based on the idea 

that the probability of a correct response to an item is a mathematical function of the person 

parameters and item parameters.  

The person parameter is a single latent trait (or dimension) such as intelligence or the 

strength of an attitude. Parameters on which items can be characterised include difficulty. 

This means an item can be located on a scale of difficulty. Thus item response theory is 

based on the application of mathematical models to testing data. IRT is thus regarded as 

superior to classical test theory (Hambleton, Swaminathan & Rogers, 1991) 

As ability varies, the probability of a correct response to the item also varies. The 

probability of a person with low ability responding correctly is correspondingly low, and 

the probability of a person with high ability responding correctly is correspondingly high 

(and approaches 1 asymptotically as ability increases).  

This is shown graphically using item characteristic curves (ICCs), examples of which are 

shown in figure 1 (Hambleton, Swaminathan & Rogers, 1991). 
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Figure 1. Item Characteristic Curves (Item response theory, 2017). Persons are represented 

on the horizontal axis (with low ability on the left to high ability on the right). The 

probability of a correct response is represented by the vertical axis (from 0 to 1). 

 

Figure 1 represents ICCs for a number of items. Learners are represented on the horizontal 

axis from low ability on the left to high ability on the right. The ICCs have been given 

various colours to highlight the change in the probability of a correct response for a person 

whose ability is located at the vertical line. There is a high probability that this person will 

respond correctly to the easiest items (green hues), about a 50:50 chance of responding 

correctly to the items shown by the yellow curves, and a low probability of responding 

correctly to the more difficult items (orange hues). 

Several statistical models can be used to represent both the characteristics of each item as 

well each individual examines. This makes item response theory more sophisticated than 

classical test theory, as it is not assumed each item is equally difficult. Indeed scales can be 

created and response evaluated by treating the difficulty of item (represented graphically as 

item characteristic curves) as information to incorporated into the creation of a scale of the 

items. The model put forward by Georg Rasch is an example of such a statistical model. 
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2.4.5 Georg Rasch’s “models for measurement” 

 

Returning to the introductory discussion on practical additive measurement, where the 

debate regarding whether measurement was possible in the human sciences, Georg Rasch 

showed how the strict criteria of the physical scientists could be applied to social science by 

means of Rasch models. Georg Rasch called these models “Models for Measurement.” 

(Rasch, 1961).  

Rasch devised a way of “concatenating heads” in a psychological sense in a manner that 

parallels “concatenating rods” in a physical sense. The Rasch model implements “additive” 

measurement, that is, adding one more unit means the same amount extra no matter how 

much there is already (Linacre, 2016b) 

Rasch measurement theory of testing is based on the relationship between the performance 

of individuals on a test item and the individual’s level of performance as an overall measure 

of the ability that that item was designed to measure (Bond & Fox, 2012). Ability is defined 

as the level of successful performance of the objects of measurement on the variable. The 

Rasch model is an example of a statistical model of item response theory that can be used 

to represent both the item’s characteristics and the individual’s characteristics (Linacre, 

2016b) 

In simplified terms, Rasch analysis sheds light on which items the learners are actually 

experiencing as difficult, rather than what examiners expect learners to find difficult. 

Applying the Rasch model when analysing tests helps to identify items the examinees 

found easy and items they found difficult (Jacobs et al., 2014).  

Rasch (1980) provides the simple logistic (symbolic logic) model for dichotomous items, 

where learner ability is denoted by 𝛽! and item difficulty is denoted by 𝛿!. These two 

constructs may be represented on the same scale. The equations from Rasch measurement 

theory used to calculate the probability of a correct and incorrect response to a given item 

are outlined in chapter 3. 
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2.4.6 Uses of the Rasch Model 

 

The Rasch model is a useful psychometric model used to analyse categorical data. The 

usefulness of the model comes in that the analysis is a function of the trade-off between the 

respondent’s abilities and the item’s difficulty (Bond & Fox, 2012).  

The Rasch model is used in psychometrics, educational research, the health profession as 

well as market research due to its general applicability. Rasch measurement theory (RMT) 

is a useful statistical tool for the improvement of tests. Indeed, the application of RMT to 

algebra tests can be particularly helpful (Edwards & Alcock, 2010), as is outlined in the 

following paragraphs. 

Rasch based research combines the rigorous measurement demands of the model with 

qualitative distinctions demanded by researchers in the mathematics education field 

(Callingham & Bond, 2006). 

When tests are in the process of being designed, Rasch measurement theory can help 

identify questions that should be excluded or included in an assessment based on the 

functioning of the item (Anderson, Alonzo & Tindal, 2012). The technical adequacy of the 

measures can be increased while at the same time increasing the accessibility of the items, 

especially for those learners that struggle with mathematics (Anderson et al., 2012). 

The process of assessment informed by RMT has the potential to aid both in classroom-

based assessment and systematic assessment (Dunne, Long, Craig & Venter, 2012). This is 

because the requirements of RMT echo the requirements of good educational practice 

(Dunne et al., 2012). A well-designed assessment instrument is able to provide detailed 

information of individual learners and at the same time inform external stakeholders on 

how healthy the education system actually is.  

RMT is increasingly being used in mathematics education research in recent years, both in 

South Africa and internationally (Callingham & Bond, 2006). Recent research using RMT 
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in South Africa include the analysis of assessments of teachers’ ability (Bansilal, 2015), 

sequences and series in a high-stakes examination (Jacobs, Mhakure, Fray, Holtman & 

Julie, 2014), as well as assessments of geometry thinking levels (Stols, Long & Dunne, 

2015). 

 

2.4.8 Using RMT in algebra research 

 

Internationally, RMT is used in the analysis of Trends in International Mathematics and 

Science Study (Mullis, Martin, Foy & Arora, 2012), measuring the algebra readiness of US 

middle school students (Ketterlin-Geller, Gifford & Perry, 2015), and algebra reasoning of 

UK lower secondary students (Hodge, Brown, Coe & Küchemann, 2012). 

Many researchers have used RMT when investigating the algebraic attainment of learners, 

as well as analysing how accurately an assessment is measuring this attainment. RMT can 

be used to (1) determine whether an instrument is unidimensional, (2) determine whether 

any items are anomalous and why, (3) develop a ranking of items in order of difficulty, and 

(4) measure the algebraic attainment of students within the tested population (Craig & 

Campbell, 2013). Similarly, RMT can be used to analyse the validity and reliability of 

algebra items (Nopiah, Osman, Razali, Ariff & Asshaari, 2010). Furthermore, RMT can aid 

in increasing the quality and reliability of algebra tests by reducing item gaps by identifying 

items that might need to be rephrased or replaced (Nopiah et al. 2010). 

In summary, it is possible and beneficial to make use of Rasch measurement theory when 

designing mathematics tests. Such analyses help to improve questions and to test if 

questions are functioning differentially in a cohort (e.g. success or failure on an item differs 

according to gender) (Bond & Fox, 2012). Indeed, the potential for RMT in mathematics 

education research is considerable (Dunne, Long, Craig & Venter, 2012). 
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 2.5 Summary of chapter 

 

It is clear from the literature that the learning and teaching of algebra in South Africa is 

difficult, and the country has unique challenges to improving the performance of learners. 

We can infer from the evidence that an intervention to increase the knowledge and skills of 

mathematics teachers could be a means of addressing the low performance of learners. The 

WMCS offers such an intervention. In order to assess if the intervention is effective in 

increasing the learning gains of learners a well-designed and fit-for-purpose assessment is 

required. There are various steps that can be taken to increase the likelihood that the test is 

indeed assessing the construct it was designed to assess, with a high degree of validity. The 

sources suggest that Rasch analysis is a useful and practical tool for designing such an 

assessment.  

In the next chapter, I will describe how a test was designed and Rasch analysis was used to 

analyse the test designed to assess the algebraic attainment of learners in schools around the 

Johannesburg area. 
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3. METHOD 

	

3.1 Overview of chapter 
 

 

This chapter is a description of when and how the test was administered, scored and 

analysed. Details regarding the learners who wrote the test is given. RMT is described, 

including the relevant mathematical models. 

 

3.2 Administration of the test 

 

In this study, the research instrument was an algebra test. The format of this test is 

constructed response, that is the examinees had to write down short answers. The mode of 

the test was traditional paper-and-pencil. 

There was a preliminary test administered in February 2016. This test was reviewed and 

refined to give rise to the test that was administered in June 2016. It is this June 2016 test 

that is the focus of this study, and the results of which were analysed using Rasch analysis. 

The timeline of testing is described in more detail in the following paragraphs.  

 

 

3.3. Analysing the results of the February tests 
 

The first iteration of tests was carried out in February 2017. There were 65 questions in this 

test. To see if the number of questions, type of questions or order of questions influenced 

the responses, the questions were “packaged” into 4 tests.  
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After these tests were marked, the data was organised into a scalogram (Bond & Fox, 

2012). A scalogram is a table. The items (the columns) are sorted by item score (left to 

right in descending order), and the persons (the rows) by person score (top to bottom in 

descending order). This scalogram was used to identify any questions that were very similar 

in terms of structure and score.  

The 65 questions were reduced to 47 questions described in the paragraph 3.4. Decisions 

were made to include or exclude questions for a variety of reasons.  Generally there were 

too many of questions involving algebraic expressions of similar structure. For example 

both these questions appeared in the February test: simplify 𝑏 − 6+ 6 and simplify 

𝑎 + 𝑏 + 𝑎 − 𝑏. These two questions were similar in format and both had an average of 

17,9%. An average for a question was calculated by dividing the number of learners who 

got the question correct by the number of learners who responded to the question. In the 

case of the two previously mentioned questions, the decision to only include the latter 

question was made – as it only included ‘letters’.  

 

3.4 Details of the June test 

 

3.4.1 Test layout 

The 47 questions in the June test were ordered two different ways. The test was printed on 

blank, white A4 pages. There was about 5cm of blank space underneath each question for 

the learners to write down calculations or working out. 
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3.4.2 Content of the test 

 

The questions in the test covered content up to a grade 9 level in the South African syllabus 

outlined in CAPS (DBE, 2011). Some questions were adapted from previous studies (e.g. 

Hart (1981), whereas others were created by various members of WMCS. Table 1 shows 

each question, the number of sub-questions as well as the topic. 

 

Table 2. Details of the algebra test that was analysed using Rasch analysis. (Note that 

question 3 has been omitted, with reasons for this given in the text.) 

Question Topic 

1 None Ordering of integers 

2 2 Substitution 

4 3 Equality (from Hart, 1981) 

5 10 Simplifying algebraic expressions 

6 6 Simplifying algebraic fractions 

7 3 Products 

8 4 The linear function 

9 6 Solving algebraic equations 

10 3 Factors 

11 3 Input-output flow diagram 

12 3 Factors and simplification 

13 3 Patterns 

TOTAL: 47  

 



 33 

3.4.3 Description of questions 

 

The test is included in entirety in appendix G. Below is a description of each question and 

reasons as to why they were included in terms of what intended with the design of the test. 

The focus of the content area numbers, operations and relationships is the development of 

number sense that includes the relative size of different numbers (DBE, 2011). Therefore 

question 1 was included in the test. This question involved the ordering of positive and 

negative numbers, (“Write these numbers in order from smallest to largest: 30; -35; -2; -

500; -10; 4). This question was used to test if learners had knowledge of the magnitude of 

integers.  

The rest of the questions could be categorised under the content area patterns, functions 

and algebra (DBE, 2011). The focus of this area is the description of patterns and 

relationships through the use of symbolic expressions, graphs and tables; and identification 

and analysis of regularities and change in patterns, and relationships that enable learners to 

make predictions and solve problems. (DBE, 2011). 

Question 2 involved substituting in integers in place of a variable and read, “If 𝑎 = 2, 𝑏 =

−5, 𝑐 = 3, evaluate the following. Show all your working. a) 𝑎𝑏 + 2𝑐   b) 4+ (𝑎 − 𝑏).  

Question 3 was made up of 11 sub-questions. I have omitted these  questions from the 

analysis as they involved arithmetic, that is, the adding and subtracting of integers. 

Furthermore, during the test some learners had access to calculators. This meant that the 

learners were able to get all 10 sub-questions of question 3 correct. 

Developing algebraic manipulative skills that recognize the equivalence between different 

representations of the same relationship is also a skill required by CAPS (DBE, 2011). 

Therefore question 4 was included in the test, and was adapted from Hart (1981). The 

instruction for question 4 read, “Write down the missing number in the space provided.” 

followed by these three sub-questions: 
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a) 7+ 5 = __+ 2  b) 4747+ 3945 = ___+ 3943   c)  4747+ 𝑛 =  ____  +  (𝑛 − 2) 

The notion of equality tested here, as well as the impact of the larger numbers in equations 

in b) and the generality in c).  

Question 5 was made up of 10 sub-questions, which mirrored question 3 in terms of asking 

the learners to simplify the expressions, and included the use of different letter and 

brackets: 

a) 2𝑎 + 5𝑎 = b) 2𝑎 + 5𝑏 + 𝑎 = c) 𝑎 + 𝑏 + 𝑎 = d) 𝑎 +  𝑏 𝑏 = e) 𝑏 𝑎 –  𝑏 =  

f) 𝑏 𝑎 –  𝑏 = g) 𝑎 + 4 + 𝑎 − 4 = h) 3𝑎 − 𝑏 + 𝑎 = i) 5 − 𝑎 + 𝑎 = j) 𝑎 +  𝑏 +  𝑎 −  𝑏 = 

Question 6 was a mix of sub-questions with algebraic fractions involving using the laws of 

exponents and adding like/unlike terms. A common theme was the use of a vinculum in 

each sub-question indicating the operation division. The instruction read, “Simplify the 

following. No denominator is zero”. 

a) !×!
!

!!
 b) !×!

!

!!
 c) !!

!

!!
 d) !"!!!!

!
 e) !"!!!!

!!"
 f) !"!"!!!

!!
!!"

 

 

In grade 8 (DBE, 2011) learners are taught the commutative property of multiplication for 

the multiplication of variables. Question 7 was designed to test this, and involved the 

simplification of algebraic expressions that would result in products. The instruction read, 

“Multiply out”. 

a) (2𝑥 + 1)(𝑥 + 4) b) 3 𝑥 + 2 ! c) 8 𝑝 − 5 𝑝 + 5  

  

Learners are introduced to the concept of function beginning with spider diagrams (see the 

example of a spider diagram in question 11). The concept of function as a machine when 
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numbers are put in (“input numbers”) and after undergoing transformation, a resulting 

number comes out (“output numbers”), is though to lead to an understanding of the 

graphing of functions such as the linear graph (Howse, Molina, Taylor, Kent & Gil, 2001). 

Question 11 included such a spider diagram, and read “The diagram below show inputs and 

outputs for the machine diagram. Work out the missing information and write your answers 

in the spaces provided.” 

 

 

Learners are required to understand various representations and descriptions of situations in 

algebraic language, formulae, expressions, equations and graphs (DBE, 2011). Question 8 

included characteristics of a straight-line graph, and read, “Look at the diagram below 

which shows a straight-line graph”.  

 

 

 

a) Write down the 𝑥-intercept of the 
graph. 

b) Write down the 𝑦-intercept of the 
graph. 

c) Write the equation of the straight 
line in the form 𝑦 = 𝑚𝑥 + 𝑐. 

d) Sketch the graph of  𝑦 = −𝑥 + 3 
on the set of axes given above. 
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One of the most fundamental skills to be learnt in elementary algebra is the solving of 

equations (Filloy & Rojano, 1989). Question 9 required the learners to solve linear 

equations and equations involving algebraic fractions: 

 

a) 3𝑥 − 1 = 5 b) 3𝑥 − 1 = 4+ 𝑥 c) 1− 3𝑥 = 5− 𝑥 

d) 2𝑝 𝑝 − 4 − 8 = 2𝑝! − 7𝑝 + 3 e) !!!
!
= 2 f) !!!

!
+ !!!!

!
= !!!

!
 

 

Learners are introduced to factorising algebraic expressions in grade 9 (DBE, 2011). 

Question 10 involved factorising of the following expressions: 

a) 7𝑥 − 28 b) 7− 28𝑥 c) 7𝑥! − 28 

 

Question 12 was a compound question, in that it combined factorisation of expressions, and 

the simplification of an algebraic fraction that included those expressions:  

a) Factorise fully: i) 𝑥! − 4𝑥 ii) 𝑥! − 2𝑥 − 8  

b) Simplify. The denominator is not equal to zero. !!!!!
!!!!!!!

  

The purpose of this question was to see if learners saw the link between factorising the 

expressions of a) which are repeated as the numerator and denominator of b).  

 

Learners are required to investigate numerical and geometric patterns to establish the 

relationships between variables, and must be able to express rules governing patterns in 

algebraic language or symbol (DBE, 2011). Therefore question 13 involved a pattern: 

which read, “Matchsticks are arranged as shown” 
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 Figure 1                     Figure 2                                 Figure 3 

 
a) How many matchsticks are required for Figure 36? 
b) Which Figure would need exactly 51 matches? Explain how you got your answer.  
c) Give an expression for the number of matches required for the nth figure.   

 

3.5 Test implementation 
 

The instrument was administered to the learners under test conditions, and learners were 

given 1 hour to write the test. The principals of the schools were given detailed feedback of 

the results so that they could be informed of areas that could be improved. The 235 learners 

were in grade 9 in 3 high schools (sample sizes from each school were 158, 45 and 32). 

These high schools are situated in areas surrounding Johannesburg, South Africa. Two of 

the schools are located in townships and one in the inner city. The medium of instruction of 

each of the schools is English. 

 

3.6 Data analysis 
 
 

3.6.1 Coding of responses 

 

The learners’ responses were all coded by the author, and moderated by senior project staff 

of WMCS. Only final answers were considered i.e. missing and incorrect responses were 

coded 0, correct answers were coded 1. Issues related to only coding final answers are 

discussed in chapter 5. 
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Codes were captured and combined into a scalogram, and subsequently imported into 

WINSTEPS®2 (Linacre, 2016) for analysis.  

 

3.6.2 Fit statistics of the data to the Rasch model 

 

In order to claim measurement is working within the framework of RMT it is important that 

the data fits the model. Indeed the properties of Rasch measurement are only applicable 

according to how well the data fits the requirements of the model (Bond & Fox, 2012). 

When data fits the Rasch model, raw total scores for persons and frequencies of 

correct/incorrect responses for each question can be appropriately transformed (Dunne et al, 

2012). This allows estimates for learner attainment and question difficulty. These estimates 

can then be represented on the same scale (or linear dimension) i.e. adding one unit 

increases the total by the same amount, no matter how much there was to start with 

(Linacre, 2016b). This allows inferences to made based on interpreting the results in the 

given context.  

Fit statistics give an indication of discrepancies between data collected and the 

prescriptions of the Rasch model. An indication of how well data fit the Rasch model is 

given by chi-square statistics3. The expected mean of a chi-square distribution is its 

“degrees of freedom” (d.f.), the number of independent squared unit-normal distributions it 

represents. If we divide a chi-square value by its degrees of freedom, then we have a mean-

square value. The total item chi-square for this test was 5481,00 and total d.f. = 5488,00. 

Dividing these two values yields a mean-square value of 0,998, which is very close to the 
expected value of a mean-square i.e. 1,0. This indicates that the data is productive for 
measurement and fits the Rasch model. 

                                                             
2 See also http://www.rasch.org/software.htm. 
3 http://www.winsteps.com/a/ftutorial2.pdf 
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3.6.3 Analysis of the test data using Rasch measurement theory 

 

Once it was established that the data could be analysed using Rasch measurement theory, 

the test was analysed. The paragraphs that follow describe how the Rasch model was used 

to analyse the data. 

 

3.7 Initial analysis 
 

WINSTEPS® software was used to run the Rasch analysis. The software is deigned to test 

whether the data is close to the theoretical pattern predicted by the model. WINSTEPS® 

reports fit statistics in terms of person (learner) and item (question) fit residual statistics. 

These fit residual statistics are an indication of the differences between their actual and 

expected responses. In addition, WINSTEPS® reports item-trait interaction chi-square 

statistics. Item-trait interaction chi square statistic is a reflection of the property of 

invariance across the trait.  

In chapter 4 the results of the initial Rasch analysis are presented. This analysis generates 

fit statistics, a person-item (learner-question) location distribution as well as a person-item 

(learner-question) map. 

 

3.7.1 The Rasch dichotomous model 

 

The mathematical theory underlying the Rasch model is a special case of item response 

theory. Rasch presents several mathematical models (Rasch, 1980). His model for 

dichotomous responses (e.g. right or wrong, yes or no, present or absent). by persons to 

items has become known as the Rasch Model (Linacre, 2016b). 
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The Rasch dichotomous model states the equation for the log-odds of person 𝑛 succeeding 

on item 𝐼 as: log!
!!"

!!!!"
= 𝐵! − 𝐷! where 𝐵! is the ability of person 𝑛 and 𝐷! is the 

difficulty of item 𝑖. 𝑃 is the probability of success and 1− 𝑃 is the probability of failure. 

Since either success or failure must always happen, when we add their probabilities they 

must sum to 1: i.e. (probability it does happen) + (probability it does not happen) 

=  𝑃 +  1− 𝑃 =  1 (Rasch, 1960). 

Rasch (1980) provides the simple logistic (symbolic logic) model for dichotomous items, 

where learner ability is denoted by 𝛽! and item difficulty is denoted by 𝛿!. These two 

constructs may be represented on the same scale. The equations from Rasch measurement 

theory used to calculate the probability of a correct and incorrect response to a given item 

are as follows. Let 𝑋!" = 𝑥 ∈  {0, 1} be a dichotomous random variable. 𝑥 = 1 denotes a 

correct response and 𝑥 = 0 denotes an incorrect response to a question. In the Rasch model 

for dichotomous data, the probability of the outcome 𝑋!" = 1 (success) is given by: 

𝑃 𝑋!" = 1 = !!!!!!

!!!!!!!!
 . Similarly, the probability of 𝑋!" = 0 (failure) is given by: 

  𝑃 𝑋!" = 0 = 1− !!!!!!

!!!!!!!!
= !!!!!!!!!!!!!!!

!!!!!!!!
= !

!!!!!!!!
  

Where 𝑃 is the probability of a correct answer, 𝑋!" is the item score variable allocated to a 

response of person 𝑣, 𝛽! is the ability of person 𝑣, 𝑖 is a dichotomous item and 𝛿! is the 

difficulty of item 𝑖 

 

3.7.2 Making use of the Rasch model  

 

 

These equations relate the ability of persons and the difficulty of items. It expresses the 

probability of a person 𝑣, with ability 𝛽! responding successfully on a dichotomous item 𝑖 

(with two ordered categories, designated as 0 and 1).  
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If a person 𝑣 is placed at the same location on the scale as the item 𝑖, then 𝛽! = 𝛿!  (i.e. 

𝛽! − 𝛿! = 0) and the probability is equal to 0,5 or 50%. This is because !!!!!

!!!!!!!!
= !!

!!!!
=

!
!!!

= !
!
= 0,5 

Therefore one can say that any person will have a 50% chance of achieving a correct 

response to an item whose difficulty level is at the same location as the person’s ability 

level. If the item’s difficulty level is above a person’s ability location, then the person will 

have a less than 50% chance of obtaining a correct answer.  

If the item’s difficulty level is below a person’s ability location, then the person will have a 

greater than 50% chance of obtaining a correct answer (Bond & Fox, 2012). For example, 

suppose a learner has an ability of 0,4 logits, and in a test such a learner meets a question 

which is a difficulty of 0,4 logits, it would be predicted that such a learner would have a 

50/50 chance of getting that question correct.  

Figure 2. shows the probability of responding correctly and incorrectly to an item of 

particular difficulty. The point on the ability scale where the curves of 0 and 1 intersect is 

the location of the item. This is the point at which the probability of an incorrect response 

(0) and a correct response (1) are equally like i.e. 50% for either response. Around this 

point, the probability of a correct response decreases as ability decreases, and increases as 

ability increases. 
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Figure 2. Category Probability Curves. These curves represent the probabilities of scores 0 

and 1 on a single item as a function of ability (Bansilal, 2015). 

 

3.8 Summary of chapter 
 

 

In this chapter I outlined how the test was administered and to whom. I also included 

details on the content of the test and how it was coded. The Rasch model was presented and 

how it was used in this study explained.  

In the next chapter I will describe the results of the test as well as what the Rasch analysis 

revealed about the difficulty of the questions in the test. 
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4. FINDINGS 
 

4.1 Overview of chapter 
 

In this chapter I present the findings of the test that was used in this study. I present 

summary statistics of the results of the June test, before the results of the Rasch analysis are 

reported in the subsection individual item analysis. The statistics presented here give an 

indication of which questions were functioning as predicted and which were not. In other 

words, the statistics help us to identify questions that are easy for learners of low 

attainment, but difficult for learners of high attainment, and vice versa. 

Next, the test statistics are presented and the person-item (learner-question) map is 

discussed. These are graphical representations of the position of the algebraic attainment of 

learners relative to one another, and relative to the questions, as they are presented along 

one scale. 

Lastly, the locations of the questions are presented to indicate types of questions that the 

learners found easy, and others that they were generally unable to answer. How learners 

may have used arithmetic for the former, and the algebra necessary to answer the latter is 

briefly discussed before elaborated on further in chapter 5. 
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4.2 Descriptive statistics 

 

Generally learners performed poorly on this test, with an average of 21,87% (SD=7,14%) 

and a range 73% (MIN= 2%, MAX=75%). Indeed, the results of the top 9 learners are 

considered outliers when considered with the results of the rest of the sample (see figure 

3.).   

Figure 3. is a box and whisker plot of the results of the 235 learners who wrote the test. The 

median was 20%, which indicates half the learners scored below 20% and half above 20%, 

with the interquartile range being 14%.  

 

Figure 3. Box and whisker plot of the results of 235 learners who wrote the test in June. 

Box indicates the results of 50% of the learners and outliers are indicated by solid squares.  
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The top 9 learners (who scored 48%, 50%, 50%, 50%, 54%, 54%, 57%, 63%, and 75%) are 

considered statistical outliers in comparison with the results of their peers. 226 out of the 

235 learners scored 45% and below for this test. 

These results give an indication that overall the learners performed poorly in the test. 

Further analysis using Rasch measurement theory, such as the results presented in the next 

paragraph, allow more detail to be seen with regards to the difficulty of the individual 

questions. 

 

4.3 Results of the Rasch analysis  

 

Rasch analysis enables us to “see” far more from the data than basic descriptive statistics 

can show us. Rasch analysis enables us to measure the difficulty of each question on a 

scale. This enables us to compare the difficulty of the questions with the attainment of the 

learners (Bond & Fox, 2012). 

 

4.3.1 Initial analysis 

 

The model standard error is the precision of the Rasch measures when the data fit the 

model. The fact that the data fit the model and the degree to which this is true was 

discussed previously in chapter 3. The initial analysis of all 47 questions is summarised in 

table 3. 
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Table 3. Initial summary statistics. The mean and standard deviation of the locations and 

standard errors of the learners and question are shown. Units are logits. 

 Questions [n=47] Learners [n=235] 

 Location (Standard error) Location (Fit residual) 

Mean 0,42 (0,47) -2,87 (0,60) 

SD 1,5 (0,48) 1,38 (0,24) 

 

For the 47 questions in this test, the mean measure4 is 0,41 (SD=1,5) logits. The model 

standard error for the questions is 0,475 (SD=0,48). For the 235 persons, the mean measure 

is -2,87 (SD=1,38). The model standard error for the persons is 0,60 (SD=0,24).  

This indicates that the mean attainment of the learners is lower than the mean difficulty of 

the questions. This means that learners generally found the test difficult, which echoes the 

results of the descriptive statistics presented previously. The average learner in the sample 

has algebraic attainment lower than a question of average difficulty on this test.  

The standard deviation for the question measure is 2,25 (which is above the ideal value of 

1), while the standard deviation of the learner measure is 1,38 (closer to the ideal of 1). This 

suggests that the distribution of the learner measure is spread out, rather than clustered 

together. This leads me to discuss in the next paragraph the idea of learner separation and 

why it is relevant. 

 

 

                                                             
4 Average measure of items or persons 
5 Standard errors of the measures 
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4.3.2 Separation of measures and reliability6 

 

Learners are classified using person separation. The person separation index is an estimate 

of the internal consistency of the scale. Separation is considered low when the person 

separation index7 is less than 2 and the person reliability is less than 0,8.  

Table. 4. Separation of measures. The separation index and reliability statistics give an 

indication of how well learners and questions are separated along the common scale. 

 Separation index (Reliability) 

Questions [n=47] 3,21 (0,91) 

Questions [n=45] 3,22 (0,91) 

Learners [n=235] 1,78 (0,76) 

 

Item hierarchy is verified using item separation. Item separation is considered low when 

the item separation index is less than 3 and the item reliability is less than 0,9. For the 

questions in this test the item separation index is 3,21 and the item reliability 0,91. This 

implies that the sample size is sufficient to confirm the question difficulty hierarchy (that is, 

the construct validity) of the test (Linacre, 2016b). 

Point-measure correlation is a measure we can be used to determine which questions are 

not 'acting' as they should. In other words, learners with high attainment are getting these 

                                                             
6 See notes at http://www.winsteps.com/winman/reliability.htm 
7 The ratio of sample or test standard deviation (corrected for estimation error) to the average estimation error. 

This is the number of statistically different levels of performance that can be distinguished in a normal 

distribution with the same “true” standard deviation as the current sample. When separation = 2, then high 

measures are statistically different to low measures. 
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questions incorrect, while learners with low attainment are getting them right. It helps us to 

answer the question “Do the responses to this question align with the attainment of the 

learner?” Negative correlations indicate that the responses to the question contradict the 

direction of the latent variable. This would indicate a need to check the question for 

reversed question wording, and rescore (Linacre, 2016b).  

None of the questions in this test had zero or negative correlation. However, 2 questions 

were identified as having misfit statistics outside the recommended limits of -2,5 logits to 

2,5 logits (Bond & Fox, 2012): 

Question 7c) Multiply out: 8 p− 5 p+ 5  

 Question 5i) Simplify: 5− a+ a 

Subsequent to the removal of these questions the learner-question location distribution was 

generated, as well as the learner-question map, reducing the number of questions from 47 to 

45. Once these two questions were removed from the analysis, the question separation 

increased to 3,22; while the question reliability remained the same (i.e. 0,91). 

Once the samples size is shown to be sufficient, the statistics regarding the learners can be 

considered. A reliability of 0,8 is necessary to reliably distinguish between learners with 

high attainment and learners with low attainment. For the 235 learners who wrote the test 

the separation index is 1,78 and the reliability 0,76. This implies two things: the test may 

not be sensitive enough to distinguish between learners of high attainment from learners 

with low attainment, and perhaps more questions in the test are needed in order to 

distinguish them (Linacre, 2016b).  

Person reliability depends on sample ability variance; number of categories per question 

(more categories means higher person reliability); as well length of test (Linacre, 2016b). 

The lower the variance in the attainment of learners in a sample the higher the person 

reliability statistic. The greater the number of categories per question also increases the 

person reliability statistic. The rating scale length influences this statistic as well. In other 
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words, the longer the test (in terms of the number of questions it has), the higher the 

reliability. 

 

4.3.3 Learner-question location distribution 

 

How learners and questions are distributed relative to one another is shown in the learner-

question distribution (figure 4). This figure allows a visual comparison of the learners with 

varying degrees of algebraic attainment (the upper histogram) with questions of varying 

degrees of difficulty (the lower histogram).  

 LEARNERS 

N
um

be
r o

f l
ea

rn
er

s 

 

N
um

be
r o

f q
ue

st
io

ns
 

 QUESTIONS 

 

Figure 4. Learner-question location distribution. The upper histogram is the frequency of 

learners at various intervals of algebraic attainment, and the lower histogram indicates the 

number of questions at each location of difficulty. 
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The highest number of learners were located at -3,0 logits. The left-skewedness of the 

lower histogram contrasts with the right skewedness of the upper histogram. This indicates 

the learners have low algebraic attainment compared to the high difficulty of the questions. 

In other words, generally the difficulty of the questions is located above the attainment of 

the learners. This global view is described in more detail in the table 5. 

Table 5. Location of questions and learners. Range and mean of locations of questions and 

learners. 

 Range Mean (SD) 

Questions [n=45] 8,65 0,43 (2,29) 

Learners [n=235] 8,45 -2,85 (1,41) 

 

The locations of the questions range from -3,77 logits to 4,88 logits, with a mean of 0,43 

(SD=2,29). The learner locations are estimated between -6,46 logits to 1,99 logits, with a 

mean of  -2,85 (SD=1,41). The fact that the question location is higher than the mean of the 

question location, suggests that this algebra test was too difficult for this group of learners. 

 

4.3.4 An analysis of the item location distribution 

 

Rasch analysis enables the algebraic attainment of the learners to be compared with the 

difficulty of the questions are they are spread out along a common scale. This is represented 

in Figure 5.  



 51 

 

Figure 5. Learner-question map. This map approximates the algebraic attainment of the 

learners and the difficulty of the questions on a common scale.  (# = Up to 2 learners. M 

= mean of learner or question distribution. S= 1 SD from the learner or question mean. 

T=2 SD from the learner or question mean.) 

 

This map echoes the distribution in that the locations of the algebraic attainment of the 

learners (indicated by the hash marks) are generally below the location of questions to 

the right of the scale. Some questions have the same or similar difficulty and therefore 

might be considered unnecessary in terms of distinguishing learners. These questions and 

their respective locations are outline in the table below. 
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Table 6. Non-discriminating questions. Questions with the similar location i.e. of similar 

level of difficulty are listed in the same row with the respective location. 

Question Location (logits) 

6a Simplify !×!
!

!!
 -1,23 and -1,10 

2b If 𝑎 = 2, 𝑏 = −5, 𝑐 = 3, evaluate the following: 4 + (𝑎 − 𝑏) 

2a If 𝑎 = 2, 𝑏 = −5, 𝑐 = 3, evaluate the following: 𝑎𝑏 + 2𝑐 
-0,86; -0.90 and -0,79 

5b Simplify: 2𝑎 + 5𝑏 + 𝑎 = 

13a How many matchsticks are required for Figure 36? 

5e Simplify 𝑏 𝑎 –  𝑏  -0,51 

9b Solve 3𝑥 − 1 = 4 + 𝑥 

6b Simplify !×!
!

!!
 -0,23 and -0,13 

8a Write down the 𝑥-intercept of the graph. 

 

When questions have the same or a similar location on the learner-question map it means 

that they have the same or a similar level of difficulty. Therefore they are not 

discriminating between learners with different algebraic attainment well, and one or more 

question may be unnecessary. One or more questions could possibly be removed from 

the test, although considerations other than location might be considered important.  For 

example the algebraic structure of a question, or content covered by a question e.g. 

solving a linear equation, or simplifying an expression that included brackets. Further 

considerations for the inclusion of questions in this test will be discussed in chapter 5. 

In the paragraphs that follow I will be considering patterns of attainment, i.e. which 

questions were of low difficulty for learners and similarities in these questions. We can 

see various patterns when considering the locations of questions in this test. Questions 

can be group in certain ways according to different aspects of algebra is assessed. 
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In Table 7 the location as well as the score of 11 questions are presented. These 11 

questions were the 11 easiest questions for the learners. The questions were all located at 

-1,10 logits or less, the easiest being 5a, which asked the learners to simplify 5𝑎 + 2𝑎; 

followed by the ‘spider’ diagram question (11i and 11ii). 

The questions are better described as arithmetic questions. This is because they all 

require knowledge of the four basic operations (addition, subtraction, multiplication and 

division) and are reminiscent of the structure of primary school mathematics questions. 

Further nuances of these 11 questions discussed in chapter 5. 

Table 7. Arithmetic questions. The 11 easiest questions of the test are presented 

including the location and score of each question, as well as a description. 

Questions (N=11) Location 
(logits) 

Score 
(and %) 

5a Simplify 2𝑎 + 5𝑎 -3,77 156 (66) 

11i 7 → +3 →×2 →? -3,62 150 (64) 

11ii ?→ +3 →×2 → 50 -3,32 138 (59) 

1 
Write these numbers in order from smallest to largest: 30; -35; -2; -500; -
10; 4 -3,16 131 (56) 

4a 
Write down the missing number in the space provided. 7 +  5 =
 ________ + 2  -2,69 111 (47) 

9a 3𝑥 − 1 = 5 -2,07 85 (36) 

4b 
Write down the missing number in the space provided: 4747 + 3945 =
__ + 3943 -1,69 70 (30) 

6d Simplify !"!!!!
!

 -1,50 63 (24) 

13b Which Figure would need exactly 51 matches? -1,32 57 (24) 

6a Simplify !×!
!

!!
 -1,23 54 (23) 

2b If 𝑎 = 2, 𝑏 = −5, 𝑐 = 3, evaluate the following: 4 + (𝑎 − 𝑏) -1,10 50 (21) 

 
 

Following these questions are 19 questions which less than 20% of the learners got 

correct. These questions were located between -0,90 and 0,68 logits. They involve 

elementary algebra, such as simplifying algebraic expressions including more than 1 

variable (e.g. 5b Simplify: 2𝑎 + 5𝑏 + 𝑎), and the product of two binomials (e.g. 7a 
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Multiply out (2𝑥 + 1)(𝑥 + 4).) The common characteristics of these 19 questions are 

discussed in chapter 5. 

 

Table 8. Grade 8 questions. Questions testing algebraic attainment to a grade 8 level are 

presented including the location and score of each question, as well as a description. 

Question (N=47) Location 
(logits) 

Score 
(and %) 

5b Simplify: 2𝑎 + 5𝑏 + 𝑎 = -0,90 44 (19) 

2a If 𝑎 = 2, 𝑏 = −5, 𝑐 = 3, evaluate the following: 𝑎𝑏 + 2𝑐 -0,86 43 (18) 

13a How many matchsticks are required for Figure 36? -0,79 41 (17) 

5e Simplify 𝑏 𝑎 –  𝑏  -0,51 34 (15) 

9b Solve 3𝑥 − 1 = 4 + 𝑥 -0,51 34 (15) 

5h Simplify 3𝑎 − 𝑏 + 𝑎 -0,37 31 (13) 

6b Simplify !×!
!

!!
 -0,23 28 (12) 

8a Write down the 𝑥-intercept of the graph. -0,13 26 (11) 

5g Simplify 𝑎 + 4 + 𝑎 − 4 = -0,07 25 (11) 

8b Write down the 𝑦-intercept of the graph. 0,04 23 (10) 

9e Solve !!!
!
= 2 0,04 23 (10) 

5c Simplify 𝑎 + 𝑏 + 𝑎 0,16 21 (9) 

5j Simplify 𝑎 +  𝑏 +  𝑎 −  𝑏 0,16 21 (9) 

4c 
Write down the missing number in the space provided: 4747   +
   𝑛   =    ______  +  (𝑛 − 2) 0,36 18 (8) 

5d Simplify 𝑎 +  𝑏 𝑏 0,36 18 (8) 

6c Simplify !!
!

!!
 0,44 17 (7) 

7a Multiply out (2𝑥 + 1)(𝑥 + 4) 0,44 17 (7) 

13c 
Give an expression for the number of matches required for the nth 
figure. 0,51 16 (7) 

9c Solve 1 − 3𝑥 = 5 − 𝑥 0,68 14 (6) 
 

 

Lastly, the 15 questions that tested algebraic attainment at a grade 9 level are grouped 

together in table 9. These include equations with fractions (e.g. 9f Solve !!!
!
+ !!!!

!
= !!!

!
); 
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factors (e.g. 12ai Factorise 𝑥! − 4𝑥); and straight-line graphs (e.g. 8d Sketch the graph of  

𝑦 = −𝑥 + 3). Less than 4% of the learners got 9f correct, with locations ranging from 1,10 

to 4,88.  

 

Table 9. Grade 9 questions. Questions testing algebraic attainment to a grade 9 level are 

presented including the location and score of each question, as well as a description. 

Question (N=15) Location 
(logits) 

Score 

9f Solve !!!
!
+ !!!!

!
= !!!

!
 1,10 10 (4) 

12ai Factorise 𝑥! − 4𝑥 1,10 10 (4) 

10a Factorise 7𝑥 − 28 1,36 8 (3) 

9d Solve 2𝑝 𝑝 − 4 − 8 = 2𝑝! − 7𝑝 + 3 1,91 5 (2) 

10b Factorise 7 − 28𝑥 1,91 5 (2) 

5f Simplify 𝑏 𝑎 –  𝑏 = 2,48 3 (1) 

6f Simplify !"!"!!!
!!

!!"
 2,92 2 (1) 

7b Multiply out 3 𝑥 + 2 ! 2,92 2 (1) 

8d Sketch the graph of  𝑦 = −𝑥 + 3 . 3,65 1 (0) 

11iii 𝑥 → +3 →×2 →? 3,65 1 (0) 

12aii Factorise 𝑥! − 2𝑥 − 8 3,65 1 (0) 

6e Simplify !"!!!!
!!"

 4,88 0 (0) 

8c Write the equation of the straight line in the form 𝑦 = 𝑚𝑥 + 𝑐. 4,88 0 (0) 

10c Factorise 7𝑥! − 28 4,88 0 (0) 

12b Simplify !!!!!
!!!!!!!

 4,88 0 (0) 
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4.4 Summary of chapter. 

 

Generally the learners performed very poorly on the test. The data suggests that the learners 

struggled to answer most of the questions in the test, and that the vast majority of questions 

were located beyond the algebraic attainment of the learners in this sample.  

In chapter 5 I will be discussing the findings and presenting possible reasons for the 

patterns presented in section 4.3. Also discussed are ways in which the implementation, 

format and content of the test could be changed based on the findings in chapter 4. 
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5. DISCUSSION 

 

5.1 Overview of chapter 
 

I begin the chapter with a discussion of the descriptive statistics before moving onto 

individual item analysis. The algebra involved in particular questions will be discussed. 

Following this I will discuss the design of this test before finishing off with 

recommendations for possible changes that could be made to the test in the future. 

 

5.2. Descriptive statistics 
 

Generally the learners performed very poorly on the test, as indicated by a median of 20%, 

and an average of 22% (figure 3). However, this average is higher than the national average 

(11%) for grade 9 mathematics  (DBE, 2014). Nationally 90% of South African grade 9 

learners function at the not achieved level (0-29%) in grade 9 mathematics and about 1% of 

learners function at high achievement levels (80-100%) (DBE, 2014). 

This result is unfortunate, and does not give one hope for the learners advancing to grade 

10 and who eventually want to complete matric with mathematics as a subject. That being 

said, it does give further incentive for PD programs to be developed, such as the one 

offered by WMCS, in order to equip teachers address the low algebraic attainment. 
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The learners’ results are important, nevertheless the main aim of the study is the design of 

the algebra test, and especially the individual questions. The results of the Rasch analysis 

give greater insight into the functioning of the questions of the test. These results are 

discussed in the paragraphs that follow. 

 

5.3. Results of the Rasch analysis 
 

The mean measure of the algebraic attainment of learners (1,38) is lower than the average 

measure of the questions (2,25) (table 3). This indicates that learners generally found the 

test difficult. In other words, the average learner has attainment lower than a question of 

average difficulty on this test. This means that the majority of the learners did have 

sufficient algebraic attainment to answer most of the questions in the test. 

An important question in the design of the test was whether the test was measuring the 

desired construct (i.e. algebraic attainment) and if there were any questions that were not 

functioning as they should.  

The test did measure the desired construct, and there were no questions with a negative 

correlation. A negative correlation would indicate learners with low attainment were getting 

the question correct while learners with high attainment were getting the question incorrect. 

The separation index of the questions (3,21) was sufficient to confirm the hierarchy of 

question difficulty (table 4), and increased when two items that had misfit statistics were 

removed from the analysis.  

The general rule of assessment is all questions must be about the same thing (our intended 

latent variable i.e. what we are trying to measure), but then be as different as possible, so 

that they tell us different things about the latent variable (Linacre, 2016b) A test which 

shows all participants are doing very well or very badly (which Bond & Fox, 2012 call 
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“coarse-grained”) is unlikely to inform the researchers about the spread of the attainment of 

the learners (Bertram & Christiansen, 2015).  

The test included very few questions that were easy for the learners (figure 4). Most of the 

questions were located beyond the attainment of most of the learners. This is a contributing 

factor to the low performance of learners on the test (figure 3).   

The question of least difficulty was 5a that read, “Simplify 2𝑎 + 5𝑎”. However, it is 

important to note that the location of 5a is -3,77 logits, a position on the scale above the 

algebraic attainment of 65 (27,66%) learners in the sample (N=235). 

It is concerning that the easiest question of the test is located above the algebraic attainment 

of almost 30% of the learners (figure 5). In addition, almost one quarter of the test was 

made up of questions that were located above the attainment of all the learners (figure 5). 

The majority of these questions tested grade 9 algebra, and will be discussed in more detail 

in paragraphs that follow. 

 

5.4 Questions involving arithmetic and algebra 

 

I categorised questions in table 7 as questions that can be answered by using arithmetic. By 

this I mean that the learners can use arithmetic reasoning to answer the questions. For 

example the question 5a which read “Simplify 2a+5a” could be successfully answered by 

adding the numbers 2 and 5 followed by an ‘a’, rather than seeing the letter ‘a’ as an 

unknown. A similar train of thought could be used to answer question 6d “Simplify !"!!!!
!

” 

by adding and then dividing the natural numbers and ignoring 𝑥. 

Generally, learners coped better with questions that involved the use of arithmetic (table 7), 

however they struggled to answer questions testing grade 8 algebra (table 8), and grade 9 

algebra (table 9). These questions involved algebraic structures such as letters, numbers and 
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exponents. Watson (2009) argues that in order for learners to understand algebraic 

symbolisation, they must have an understanding of the underlying operations, and be fluent 

with the notational rules. For example, the difference between the operations and notation 

of expressions that are similar in appearance, such as 2! and 𝑥!. The question of least 

difficulty (5a that read, “Simplify 2𝑎 + 5𝑎”) is structurally simple, and mirrors the bond 

2+ 5. 

The meaning and the symbol are essentially two kinds of learning, and seem to be most 

successfully learnt when learners know what is being expressed and also have sufficient 

time to become fluent at using the notation (Watson, 2009). In order to answer such 

questions, learners need to understand the nature and role of letters. Mapping symbols to 

meaning is learnt through repeated experience (Watson, 2009).  

It appears that generally the learners have not successfully learnt how to read what is being 

expressed in algebraic structures, nor have they become fluent in the notation required to 

answer questions required algebraic knowledge and skill. The questions that involved the 

use of arithmetic were generally better answered. Despite the fact that such questions are 

not necessarily testing algebra, it is important that they are included in an algebra test as the 

responses to such questions give insight not only into whether learners are able to compute 

arithmetically, but also whether they have successfully transitioned from arithmetical 

thinking to algebraic thinking. This is a critical step in learning algebra. 

 

5.4.1 Transition from arithmetic to algebra 

 

The 11 easiest questions in the test ranged from -3,77 to -1,10 logits (table 7). These 

questions included expressions that could be described as structurally simple, and almost all 

of them involve arithmetic, and very little, if any, algebra.  
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The transition from arithmetic to algebra is not easy for most learners (Watson, 2009). 

Learners meet new concepts when they start learning algebra such as equations, formulae, 

functions, variables and parameters (Vergnaud, 1998). Symbols are higher order objects 

and become mathematical objects in and of themselves (Sfard & Linchevski, 1994). 

Expressing generalities; solving equations; and working with functions are three 

approaches to enabling learners to transition from arithmetic to algebra (Watson, 2009). All 

three approaches have shortcomings. There is a strong commitment to arithmetic in the 

United States, particularly an emphasis on proficiency in fractions; which is seen as an 

essential precursor to algebra (Watson, 2009). The South African curriculum parallels the 

syllabus in the United Kingdom, in which secondary algebra is not taught separately from 

other mathematics. Rather than fractions leading to algebra, fractions are seen as particular 

instances of algebraic structures that can be calculated. Fraction calculations can be seen as 

enactments of relationships between rational structures, with those generalised enactments 

being expressed as algorithms (Watson, 2009). The difficulties learners had with the 

questions in the test involving algebraic fractions is discussed later in the chapter. 

Part of the transition from arithmetic to algebra is learners realising for themselves the 

advantages of using algebra over arithmetic. Allowing learners to have the mind-set that 

any method that gives the right answer is as good as any other locks learners into methods 

that might be inappropriate, such as counting on (additive procedures) where multiplicative 

ones would be more appropriate (Watson, 2009).  Question 6a, which read “Simplify !×!
!

!!
” 

in an example of where learners were locked into multiplicative methods, rather than using 

exponential methods that were by far more appropriate in this context. Many learners used 

long multiplication (sometimes unsuccessfully) to compute 5! and 5!, rather than using the 

law of exponents to simplify the expression. 

Algebraic understanding of exponent laws is required for questions involving algebraic 

fractions. A misleading oversimplification is the view that algebraic understanding is solely 

a generalisation of arithmetic. Arithmetic involves the four basic mathematical operations, 
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and not the laws of exponents. Indeed, number sense does precede formal algebra, but 

algebraic understanding is not wholly based on number sense (Watson, 2009).  

The relationship between arithmetic and algebra is not a direct conceptual hierarchy or 

necessarily helpful. Learners can use arithmetic to solve some questions involving algebra, 

but arithmetic is limited, as are test-and-guess methods. Learners have to see for themselves 

the algebraic methods required for generalising, as well as solving equations where the 

unknown appears on both sides of the equals sign. This is described as the cognitive gap. 

 

5.4.2 The cognitive gap 

 

As previously mentioned, problems arise for the teaching and learning of algebra when 

algebra is seen solely as generalised arithmetic (Watson, 2009). Generalised arithmetic 

means the expression of general arithmetical rules using letters. The term ‘cognitive gap’ is 

used to describe difficulties seen as learners transition from arithmetic to algebra (Filloy & 

Rojano, 1989; Herscovics & Linchevski, 1994).  

An example of a question that can be solved using arithmetic is question 9a, which read 

“Solve 3𝑥 − 1 = 5”. This question was answered correctly by 36% of the learners, and was 

located at -2,07 logits. This question is an example of an equation of the form 𝑎𝑥 + 𝑏 = 𝑐. 

Learners tend deal arithmetically with such equations, by using inverse operations on the 

number to complete the arithmetical statement. This approach is considered arithmetical 

because it depends only on using operations to find a hidden number (Filloy & Rojano, 

1989). That being said, the location of this question was above the attainment of more than 

two-thirds of the learners. Few learners were able to answer this question correctly; 

indicating that they were did not have sufficient arithmetic nor algebraic attainment to do 

solve for the unknown. 
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In contrast are questions such as 9b Solve 3𝑥 − 1 = 4+ 𝑥 and 9c Solve 1− 3𝑥 = 5− 𝑥. 

These questions are examples of equations of the form 𝑎𝑥 + 𝑏 = 𝑐𝑥 + 𝑑 where the 

unknown appears on both sides of the equals sign. Learners have to use mathematical 

operations to maintain the equation by manipulating the expressions on either side of the 

equals sign. Adding to the difficulty learners experience in answering these questions is the 

appearance of the negative signs. Negative signs cannot be related to concrete 

understanding (Filloy & Rojano, 1989), and require a major shift from concrete models to a 

focus on structure (Vlassis, 2002). 

I have included the following examples of possible solutions to question 9a to elucidate 

what I mean by an arithmetic means of answering the question, as opposed to an algebraic 

method that relies on an previously established concept of structure.  

Arithmetic 

(“How can I add/subtract/multiply/divide to find the answer?”) 

Algebraic 

(“How can I use the 

structure of the equation to 

find the unknown?”) 

3𝑥 − 1 = 5 

Learners may use mental maths to think through what 𝑥 could 

possibly be, often choosing natural numbers, and starting with 

one. If they played around with the idea that 𝑥 was one that 

would have calculated that the answer is 2 and thus try the 

“next” number i.e. 2, which just so happens to be the correct 

answer to this question. Thus a learner with low algebra 

attainment is able to get the correct answer as they are able to 

use their knowledge of arithmetic. Another method is for them 

to ask themselves, “What times 3 and then minus 1 will equal 

5”. This is an example of mental maths strategy. 

3𝑥 − 1 = 5 

Importance here is the 

maintenance of 

equivalence  

3𝑥 − 1+ 1 = 5+ 1 

3𝑥 = 6 

3𝑥
3 =

6
3 

𝑥 = 2 
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The transition from arithmetic to algebra requires learners to observe structure, and deal 

with abstract concepts such as negative numbers. Added to this are letters appearing in 

expressions and equations, and these letters have new and various uses and meanings.  

 

5.4.3 The meaning of letters 

 

This shift from arithmetic to algebra includes a change in the meaning of notation. Learners 

have to learn to tell the difference between similar notations used for arithmetic and algebra 

(Wong, 1997). For example, 3(4+ 5) is an expression that can be calculated. However an 

algebraic expression that looks similar, such as 𝑎(𝑏 + 𝑐) is a structure of operations 

(Watson, 2009). When there is a mixture of letters and numbers in an expression such as 

3 𝑏 + 5 , students assume this can be calculated and confusion can occur (Wong, 1997). 

Question 6e, which read “Simplify !"!!!!
!!"

” is an example of such a question. The structure 

of such an expression was particularly confusing to the learners as no learner was able to 

simplify the expression to !
!
. 

Added to the change of the meaning of notation is the fact that the algebra of unknowns is 

different to the algebra of variables. The algebra of variables is about expressing and 

transforming relations between numbers. The ‘variable’ view is dependent on the idea that 

expressions linked by the equals sign are not only equal numerically but also are also 

equivalent (Watson, 2009). That being said, leaners still need to retain the concept of 

‘unknown’ when setting up and solving equations that have finite solutions. For example, 

10− 5 = 5(2𝑥 − 1) is an equivalent statement where 𝑥 is a variable. In contrast 

10𝑥 − 5 = 2𝑥 + 1 defines a value for a variable in which this equality is true (Watson, 

2009).  

In the question involving equality in the algebra test, half the learners were able to write 

down the missing number in the statement 7+ 5 = ___+ 2, whereas less than a third were 
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able to do this for the statement 4747 +  3945 =  ___  + 3943.  This demonstrates the 

potential for confusion between equality and equivalence as it relates to finding unknowns 

and expressing relationships between variables. Equivalence is when graphs coincide and 

equality is when graphs intercept.  The equals sign has different uses – sometimes it means 

equality and sometimes equivalence – and learners have to learn the difference. It appears 

that generally the learners in this sample have yet to do so. 

When simplifying algebraic expressions, learners need to understand that algebraic 

structures can be represented in equivalent forms, as well as which kind of manipulations 

can be carried out in order to do this. The performance of learners with regards to 

successfully simplifying algebraic expressions such as 𝑎(𝑎 + 𝑏) is of particular importance 

to gain insight into algebraic attainment. 

 

5.4.4 Simplifying algebraic expressions 
 
 

As discussed in chapter 2, school algebra can described as: the manipulation and 

transformation of symbolic statements; generalisations of laws about numbers and patterns, 

the study of structures and systems abstracted from computations and relations; rules for 

transforming and solving equations; learning about variables, functions and expressing 

change and relationships; as well as modelling the mathematical structures of situation 

within and outside mathematics (Watson, 2009). Given this description, the sample of 

learners knows very little school algebra.  

Question 5 included short (one, two or three terms) algebraic expressions that required the 

learners to simplify. The fact that many learners struggled with question 5 indicates that 

basic algebra remains a challenge for them. Therefore when they attempt questions 

involving the application of these basic algebraic principles, such as straight-line graphs 

(question 8), they are unable to succeed at answering them. The learners’ performance 

regarding straight-line graphs will be discussed later on in the chapter. 
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In algebra the equals sign has an expanding meaning (Watson, 2009). In the arithmetic 

learners are exposed to in primary school it comes to mean ‘calculate’. In contrast, the 

algebra of high school using the equals sign to mean ‘is equal to’ or ‘is equivalent to’. This 

leads onto ideas of algebra being about expressing and transforming equivalent forms – not 

simply finding an answer or computing (Watson, 2009). 

Many experiences are required to help learners recognise that an algebraic equation or 

equivalence is a statement about the relation between quantities of a combination of 

operations on quantities (Watson, 2009). Learners often reject ‘answers’ that are made up 

of more than one term as they are unfamiliar with such expressions. In other words, 

students want ‘closure’ and achieve this by compressing algebraic expressions into one 

term or into a whole number (Hart, 1981). This demonstrates a lack of understanding of 

what is being expressed (Watson, 2009) 

Learners have to understand the meaning of the equals sign depends on the context of the 

question, as well as the order of operations that need to be carried out in order to 

manipulate the expression. BEDMAS is an acronym (i.e. brackets, exponents, division, 

multiplication, addition and subtraction) that is taught to help learners decide on the order 

of carrying out operations. Despite this, learners often simplify by combining terms by 

reading operations from left to right, or by ignoring notations such as brackets (Watson, 

2009). Learners often do not understand the purpose of conventions and notations in 

algebra. 

An example of this is learners not seeing the need for brackets when there are multiple 

operations. In algebra, brackets are sometimes necessary and at other times irrelevant. 

Associativity is the property that 𝑎 +  (𝑏 + 𝑐) is the same as (𝑎 + 𝑏)+ 𝑐. This property 

applies to multiplication as well. In such instances BEDMAS is unnecessary. Students get 

confused as to how to ‘undo’ such related operations, and how to undo other paired 

operations that are not associative (Brown & Coles, 1999). New rules such as BODMAS 

can be misused and do not effectively replace old rules based on familiarity, habit and 

arithmetic. 



 67 

The learners performed poorly on questions requiring the use of the associative property. 

When it comes to algebraic expressions, learners may react to the visual appearance, 

without thinking about the meaning. An example of an expression with structure is  

97− 49+ 49. If the emphasis is on computing then the learners will first attempt to 

subtract (potentially getting that wrong) and then add, rather than recognizing −49+ 49 =

0 and therefore the answer is 97. This may have happened in what would have seemed the 

simplest questions in the test i.e. 𝑎 + 4+ 𝑎 − 4 = ; 5− 𝑎 + 𝑎 = and 𝑎 +  𝑏 +  𝑎 –  𝑏 =. 

Furthermore, the inclusion of an equals sign after these questions may have made the 

learners think they must compute rather than observe structure (Watson, 2009). Perhaps this 

equals sign needs to be removed in subsequent iterations of this test to avoid this 

possibility.  

The difficulty learners have simplifying algebraic expression demonstrate the five inherent 

difficulties in making direct shifts between arithmetic and algebra (Kieran 1981, 1989, 

1992). Firstly, in algebra the focus is on relations rather than calculations. Secondly, 

students must not only understand operations but also the inverses of operations. Thirdly, 

learners need to convert the written word in an equivalent algebraic statement. Fourthly, 

letters and numbers are used together such that it could be required that the numbers be 

treated as symbols in a structure and therefore not evaluated. Lastly, in algebra the equals 

sign has expanded meaning. In arithmetic it is taken to mean ‘calculate’, whereas in algebra 

it more often means ‘is equal to’ or ‘is equivalent to’.  

Such difficulties are not easily overcome. Function machines, substitution and patterns are 

all used to help learners transition from arithmetic to algebra. 

 

5.4.5 Function machines, substitution and patterns 

 

In the test, the question involving the “spider diagram” or “function machine” was well 

answered in comparison with the other questions. Function machines can lead to better 
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understanding of what an equation is and the variable nature of 𝑥 (Vergnaud, 1998), and 

appear in primary school mathematics (DBE, 2011). Questions involving the use of the 

function machine, and reversing it had similar locations (-3,62 and -3,32). Reversing the 

function machine was more difficult as learners who understand inversion might not 

understand that, when inverting a sequence of operations, the inverse operations cannot just 

be carried out in any order i.e. the order in which they are carried out influences the result. 

Learners seem reluctant to make use of brackets to indicate priority of operation in an 

expression. 

Another algebraic activity involving the use of brackets is substitution. Many of the 

textbooks I have come across while teaching begin the topic of algebra in grade 8 with 

many exercises involving substituting values in place of letters in algebraic expressions. 

Overemphasis on substitution can mean that learners become preoccupied with   

arithmetical meaning and rules, rather than being able to recognise structure. Furthermore, 

substitution is problematic as it may contribute to the idea that expressions must be 

calculated, rather than helping learners to see the structure of such expressions, and that 

such structure has meaning in and of itself (Kieran, 1983). The focus should be on how 

structure is expressed rather than focusing on substituting in values so that the expression 

can be calculated. Although substitution can understand and verify relationships, it does not 

help learners understand what an expression means (Kieran, 1983). In addition, substitution 

may reinforce the idea that a letter can have only one value in one situation, and that 

different letters must have different values. Substitution is useful for learners to explore the 

equivalence of expressions but it may be a distraction to learners developing their algebraic 

thinking. Thus the poor performance of the learners on question 2 (the substitution question 

in this test) might not be telling us very much about their algebraic thinking, and because of 

this could possibly be removed from the algebra test in future. 

A precursor to algebraic thinking is explaining a general result or structure using full 

sentences (Watson, 2009). Some questions in the algebra test asked for an explanation of an 

answer, however this was not scored. A verbal description enables students to bridge 

between observing relations and writing them algebraically. Instead of finding the general 
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term perhaps the question should rather ask the learners to write the generality of the 

pattern of matchsticks in words. Furthermore, the use of a diagram could be adding 

difficulties to an already difficult subject. Indeed term-to-term descriptions are far easier 

when data is expressed sequentially such as in a table (Reed, 1972) 

One approach to address inherent difficulties in algebra is to draw on our natural inclination 

to observe patterns and to impose patterns on disparate experiences (Reed, 1972). Like the 

need to find the general term for a pattern in order to find terms such as T100, the 

expectation is that this generates a need for algebraic symbolization, similar to the need to 

use algebra to solve algebraic equations, where test-and-guess is not helpful and time-

consuming. 

 

5.4.6 Solving algebraic equations 

 

One of the most fundamental skills of algebra is solving for an unknown in a linear 

equation such as 3𝑥 − 1 = 4+ 𝑥. Often part of solving equations is simplifying 

expressions of each side of the equals sign. Rules for transforming expressions and solving 

equations are often confused, misapplied or forgotten by learners (Watson, 2009). 

Furthermore, learners may try to apply arithmetical meanings to algebraic expressions. For 

example for question 6d Simplify !"!!!!
!

, some learners assumed 𝑥 to be 1 and gave an answer 

of 3 and not 3𝑥. Answers such as theses are associated with notational manipulation, or 

generalised arithmetic, being over-emphasised, resulting in learners seeking to get as 

concise an answer as possible. An understanding of inverse operations (i.e. addition is the 

opposite of subtraction, and multiplication is the inverse of division, for example) is mostly 

notably demonstrated in the solving of equations. The equations in this test were very 

poorly answered. When solving equations, many students guess and check, rather than 

“undoing: the algebraic structure (Watson, 2009). 
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This inability to not structure and manipulate expressions is also demonstrated by the poor 

performance of learners on questions involving algebraic fractions. Students can be 

confused by expressions that combine numbers and letters such that learners need to learn 

to ‘read’ expressions structurally even when numbers are involved (Watson, 2009). 

 

5.4.7 Simplifying algebraic fractions 

 

There are inevitable confusions that arise in symbolic conventions. Therefore division and 

rational structures are problematic such as questions like 6b simplify !×!
!

!!
 than 6c simplify 

!!!

!!
. Learners may have found question 6c to be more difficult as 6b is very clearly in the 

realm of algebra and rules about letters as it only includes letter. (Wong, 1997). Learners 

are confused by expressions that include numbers and letters (Watson, 2009). Expressions 

such as these are required to be read structurally, even when numbers are involved. 

Learners have to shift from seeing !
!
 as ‘one pizza shared amongst four family members’ to 

seeing !
!
 (and fractions in general) as expressions with meaningful structure. Rational 

structures are a specific class of objects indicating a particular quantitative relationship 

(Watson, 2009). Learners have to come to realise that division is a tool for constructing a 

rational expression, and not solely about sharing. 

So far the algebraic expressions considered have been for questions that are at a grade 8 

level (DBE, 2011), or can be solved using arithmetic. If learners are struggling with 

questions such as these it is not surprising that they struggle with questions involving grade 

9 algebra, especially products, factors and straight-line graphs. 
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5.4.8 Grade 9 algebra 

 

If learners’ main experience of algebra is to simplify expressions, the shift to using the new 

kinds of transformations afforded by algebra is hindered (Dettori, Garutti, and Lemut, 

2001). To understand algebraic notation requires an understanding that terms made up of 

additive, multiplicative and exponential operations e.g. 4𝑎!𝑏 − 8𝑎 are variables rather than 

instruction to calculate, and have a structure and equivalent forms. 

The poor performance of learners on questions requiring them to multiply or factorise 

algebraic expressions means the learners are not seeing expressions as structures (Carpenter 

and Levi, 2000). These need to be seen as relations, by combining operations and inverses. 

This seeing relationship seems to depend on the ability to discern details (Piaget, 1969) and 

an application of an intelligent sense of structure (Wertheimer, 1960), as well as knowing 

when to handle specifics and when to stay with structure. The most difficult questions were 

questions involving expressions that included rational structures, parameter, and the need to 

manipulate into equivalent forms: 

Question 6e Simplify !"!!!!
!!"

 

Question 8c Write down the equation of the straight line in the form 𝑦 = 𝑚𝑥 + 𝑐 

Question 10c Factorise 7𝑥! − 28 

Simplify 12b Simplify !!!!!
!!!!!!!

 

Indeed, none of the learners in the sample got any of the aforementioned questions correct. 

These learners have not developed a structural perspective on algebraic expressions. 

The root of algebraic development is learners understanding of the meaning of letters, and 

how one goes about using letters to express mathematical relationships. School algebra 

involves the use of different nature and roles of letters, that is, as unknowns, variables, 

constants and parameters (Watson, 2009). For example, 8c asked the learners to write the 

equation of the graph into a standard form 𝑦 = 𝑚𝑥 + 𝑐. This requires that the learners 
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know that 𝑚 and 𝑐 are parameters i.e. the gradient and the ordinate of the point of 

interception of the graph with the vertical axis. A parameter is a value that defines the 

structure of a relation. For 𝑦 = 𝑚𝑥 + 𝑐, variables are 𝑥 and 𝑦, while 𝑚 and 𝑐 define the 

relationship. The parameters have to be fixed before we can consider the covariation of 𝑥 

and 𝑦.  It is difficult to explain how to know the difference between a parameter, a constant 

and a variable. Interpretation is relation to the context: an algebraic equation, expression, 

equivalence, function or other relation. The learners have not yet undergone the critical 

shift from seeing a letter representing an unknown, or ‘hidden’, number defined within a 

number sentence such as 3+ 𝑥 = 8 to seeing it as a variable, as in 3+ 𝑥 = 𝑦. 

Understanding 𝑥 as some kind of generalised number which can take a range of values is 

seen as a bridge from the idea of unknown to that of variables (Bednarz, Kieran and Lee, 

1996).  

That being said, a central issue is that in most contexts for a letter to represent anything, the 

learner must understand what is being represented, yet it is often only by the use of a letter 

that what is being represented can be understood. This is an essential shift in abstraction. 

This shift takes multiple experiences. The learners may not have had sufficient exposure to 

dealing with the various representations of products, factors and straight-line graphs by the 

time this test was written. The timing of the test is discussed of the next section of this 

chapter, as well issues relating to sampling, questions, coding and administration. 

 

5.5. Recommendations 

 

5.5.1 Sample 

 

The Rasch analysis revealed that the learner separation index is 1,78 and the learner 

reliability 0,76. This implies that the test may not be sensitive enough to distinguish 

between learners of high attainment from learners with low attainment (Linacre, 2016b). 
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There are two possible changes that could be made for the next iteration of the test. One is 

that learners from a greater range of attainment sit the test. The second change is that the 

test could be lengthened (i.e. more questions are included). However, the aim of the 

February test was to pilot questions in order to minimise the amount of questions in the 

June test. Thus it would not be consistent with this aim to lengthen the test by adding more 

questions. Later on in this discussion, I will speak to a possible solution to this problem. 

 

5.5.2 Types of questions 

 

It is imperative that a test be constructed with questions ranging in difficulty. This test had 

too many difficult questions (figure 4), and perhaps more questions that would be 

considered at a grade 6 or 7 level could be included.  

Considering the learner-question map in figure 5, including questions targeting the 

attainment levels of the learners located between 1 (which read, “write these numbers in 

order from smallest to largest: 30;  −35;  −2;  500;  −10;  4”) and 4a (“write down the 

missing number in the space provided 7 + 5 + =  ___  +  2”) as well as 4a and 9a (“Solve: 

3𝑥 − 1 = 5") would be beneficial to differentiating learners at this a lower level of 

algebraic attainment.  

The test needs more middle difficulty questions and fewer very hard questions. That being 

said, in the case of this test, “very hard” questions are indeed questions testing knowledge 

and skills required at a grade 9 level. It would be counterproductive to exclude questions 

solely on the basis that learners found them difficult. Such questions must be included in 

order to see if grade 9 learners are indeed learning algebra that is expected at a grade 9 

level. Furthermore, if the purpose of the test is to gauge if the learners have increased in 

learning gains, then it is necessary to have questions that they might find difficult at the 

beginning of grade 9, but which they are able to master at the end of grade 9. 
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This leads me to argue that the test told us more about what the learners do not know, that 

about what they do know. If the majority of questions are located above the algebraic 

attainment majority of learners, we are essentially being told very little about their algebraic 

attainment. 

The questions that were in fact located at a similar position to the majority of the learners 

have a fairly even spread (compared to the rest of the questions) and what appears to be a 

linear progression (figure 5). When there are few questions close to the algebraic attainment 

of learners a question-targeting problem exists (Linacre, 2016b). For dichotomous tests, no 

nearby questions means less precision of measurement. This in turn means larger learner 

standard errors (Bond & Fox, 2012).  

Questions from a grade 4,5,6 level could be included as precursors to questions at a 7,8,9 

level. For example, moving from whole number to monomial to binomial expressions in 

questions in involving the simplification of algebraic fractions. Consider a suggested 

formatting of a question involving division is given below: 

Simplify the following 

a) !
!"

 

b) !
!!

 

c) !
!!!
!

 

A similar approach could be taken to multiplication 

a) 3×24 

b) 2𝑥(𝑥) 

c) 5(𝑥 + 1) 
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If, for example, we have learners responding correctly to questions in the example above 

labelled a, we can assume they are at a grade 6 level; if they respond correctly to questions 

labelled b, we can conclude they are at a grade 8 level etc. This is an oversimplification, but 

my main point is to gather questions that tell us more about what learners do know, than 

what they do not know. 

 

5.5.3 Purpose of the test 

 

There may possibly be confusion as to the purpose of this test. Although the main aim of 

administering the test is to measure algebraic attainment of learners, there is incentive for 

research to include questions, such as ones involving brackets and other symbolic 

structures. Such questions are useful for insight into topics of interest such as the 

conceptual understanding by learners of the solving of equations.  

Still further is the obligation on the part of the project to give feedback to principals of the 

schools involved in the sampling as to which topics learners need remediation. Indeed the 

test must be of some resemblance to what the teachers and learners are used to in terms of a 

typical grade 9 mathematics test. This may lead to a confusion of aim and an overload of 

some topic areas (such as equations previously mentioned) and a neglect of others.  

What is necessary, in my opinion, is a distillation of the key algebraic skills required for 

successful progression to the higher grades, and then for the precursors to such skills to be 

identified and tested, alongside these skills. 

That being said, the learners may not have had sufficient time by the time the test was 

written to have multiple experiences of working with algebraic expressions, particularly 

those involving products, factors and the straight-line graphs. This leads to a critique on 

how the test was administered, as well as possible improvements. 
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5.5.4 Administration of the test 

 

This test was written by grade 9 learners in the middle of their grade 9 year. Some skills 

tested in this test might not have yet been taught in class yet, and might not have been 

mastered in grade 8.  

This could be particularly true for the question involving the straight-line graph and 

factorisation. These sub-questions were above the attainment of the majority of learners, 

indicating they were possibly unfamiliar with such questions regarding graph interpretation 

and using factorisation to simplify algebraic fractions. An example from my experience of 

marking these scripts was that if learners had just learnt factorisation in class they tended to 

do very well at the questions involving factorisation, yet they also applied these skills to 

questions involving products, leading to unnecessary and irrelevant solutions. Perhaps the 

timing of this test should be at the end of school holiday, when skills learnt very recently in 

class are not applied inappropriately.  

The previous example highlights the issues that occur when a method of coding is used. 

Although there was constant error due to there being only one coder, the coding process is 

not without fault. Only the final answer was considered in order to allocate a 0 or a 1 score. 

Coming back to the previous example where learners applied factorisation skills to products 

questions, this is essence means that although the learners could demonstrate the skill that 

they could multiply out, they would have received a 0 score, as their final answer would be 

in factored format.  

If the test will be coded in this way in future, I would consider it consistent to make the 

majority of questions have very little to no working to get the final answer. Multiple choice 

could also be a considered format for the test. However, this would depend on whether the 

learners have been exposed to such a manner of test-taking in the past, as naturally learners 

take multiple-choice to mean “multiple-guess” and tend to apply very little of their time or 

their thinking in determining the correct answer.  
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In addition, to increase depth of insight it is suggested that future iterations of this test make 

use of questions of partial credit (Masters, 1982), instead of the test solely consisting of 

dichotomous questions. Indeed this would require minimal change in the data collection 

method, but could give significant insight into how rescoring questions can lead to a fairer 

outcome (Bansilal, 2015). This could also increase the learner separation and reliability 

statistics. However, allocating partial credit means a more sophisticated and time 

consuming marking process.  

 

5.6. Overview of chapter 

 

In this chapter the descriptive statistics, and the results of the Rasch analysis were 

discussed. The degree of algebraic attainment of the learners was reviewed in light of 

research into the relationship between arithmetic and algebra. Suggestions for changes to 

the questions, timing and coding of the tests were made in order to possibly improve the 

depth of insight of the results. 
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6. CONCLUSION 
 

We can go about designing a test that is fit for purpose and useful by making use of a 

variety of strategies for effective test development (Downing, 2006), including statistical 

analysis of the results of the test. Rasch analysis is a useful tool for analysing test questions. 

Rasch analysis of this algebra test has revealed that generally this sample of grade 9 

learners have low algebraic attainment. Indeed, the attainment of the average learner in this 

sample is located below questions of average difficulty. Applying the Rasch Model to this 

assessment instrument has contributed to its improvement by shedding light on question 

hierarchy and separation. Although questions were well separated, they were too difficult 

for the learners in this sample. Means of improving this test could include increasing the 

length of the test, making use of partial credit questions, including learners of higher 

attainment and including questions that would be considered at grade 6 or 7 level. 

 

In this research report I discussed the need for an algebra test to be designed for the 

purposes of assessing the algebraic attainment of learners whose teachers attend a 

professional development course run by the WCMS. Algebraic thinking can be counter-

intuitive at times (Watson, 2009). Fluency in using algebra requires good understanding of 

the symbol system, and abstract meanings of letters that change according to context. The 

process involved in shifting from an arithmetic view to an algebraic view, and the 

reification of new ideas, are unlikely to arise naturally, and thus require the deliberate 

action of teachers and teaching (Filloy & Sutherland, 1996). Development of algebraic 

reasoning can happen in deliberately designed educational contexts (Brown & Coles, 1999) 

Teaching algebra by offering situations in which symbolic expressions make mathematical 

sense (e.g. through multiple representations, expressing generality, and equating functions) 
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is more effective in leading to algebraic thinking and skill rather than the teaching of 

technical manipulation and solution methods as isolated skills. Fluency in understanding 

symbolic expressions seems to develop through use, and also contributes to effective use – 

essentially a two way process. Algebraic understanding takes time, multiple experiences 

and clarity of purpose. Learners need support in shifting to representations of generality, 

understanding relationships and expressing these in conventional forms. Such methods 

need to occur in conjunction with complex pedagogy. 

It is my hope that this research report has contributed meaningfully to the program run by 

the WCMS that seeks to train teachers in this complex pedagogy, with the ultimate aim 

being the increase in learning gains of South African grade 9 learners of the future. 
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APPENDICES 

A: Parent Information Form 
  

 
 

Date 
 
Dear Parent 
 
My name is Samantha Ehrlich and I am a masters student in the School of Education at the University of the 
Witwatersrand. I am doing research on Learning Gains in Mathematics.  
 
In our research we want to find out whether learners of Mathematics benefit when their teachers participate in 
a professional development course offered by the Wits Maths Connect Secondary project. To do this research 
we first need to design a test for learners. We need to check that the test is fair and that it tests the maths 
concepts that we think it tests.  
 
I was wondering whether you would give consent for your child to be part of the group who will write a draft 
version of the test. Your child’s test responses will help us to see whether the questions make sense to learners 
and whether they interpret the questions in the same we expected them to interpret the questions.  
 
The test will take place at a time that is agreed with the school and will take place on the school property.   
 
Although we talk about a test, this test is not for marks and learners are not expected to study for it. Your 
child’s participation is voluntary, which means that s/he doesn’t have to do it. Also, if your child decides 
halfway through that s/he would prefer to stop, this is completely his/her choice and will not affect him/her 
negatively in any way. 
 
We will not be using your child’s own name but I will make one up so no one can identify your child. All 
information about your child will be kept confidential in all our writing about the study. Also, all collected 
information will be stored safely and destroyed 5 years after we have completed the project. 
 
Your child has also been given an information sheet and consent form. At the end of the day it is your child’s 
decision to join us in the study. 
 
Please feel free to contact me if you have any questions. 
 
Thank you   

 
Mrs Samantha Ehrlich 
Masters Student 
Wits Education Campus 
1512315@students.wits.ac.za  
072 542 5212  
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B: Parent Consent Form 
 
 
 
 
 
 
 
Please fill in and return the reply slip below indicating your willingness to allow your child to participate in 
the research project called Learning Gains in Mathematics  
 
 
 
I, ________________________ the parent of ______________________  
 
 
Permission for questionnaire/test  Circle one 
 I agree for my child to write a test for this study.   YES/NO  
 
 
Informed Consent   
I understand that: 

• My child’s name and information will be kept confidential and safe and that my child’s name and the 
name of the school will not be revealed.  

• My child does not have to answer every question and can withdraw from the study at any time.  
• All the data collected during this study will be destroyed 5 years after completion of the project. 

 
 
 
Sign_____________________________    Date___________________________  
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C: Learner Information Form 
 
 
 

 
Date 

Dear Learner 
 
My name is Samantha Ehrlich and I am a masters student in the School of Education at the University of the 
Witwatersrand. I am doing research on Learning Gains in Mathematics.  
 
In our research we want to find out whether learners of Mathematics benefit when their teachers participate in 
a professional development course offered by the Wits Maths Connect Secondary project. To do this research 
we first need to design a test for learners. We need to check that the test is fair and that it tests the maths 
concepts that we think it tests.  
 
I was wondering whether you would be part of the group who will write a draft version of the test. Your test 
responses will help us to see whether the questions make sense to learners and whether you interpret the 
questions in the same we expected you to interpret them.  
 
The test will take place at a time that is agreed with your school and will take place on the school property.   
 
Although we talk about a test, this test is not for marks and you are not expected to study for it. Your 
participation is voluntary, which means that you don’t have to do it. Also, if you decide halfway through that 
you prefer to stop, this is completely your choice and will not affect you negatively in any way. 
 
We will not be using your own name but I will make one up so no one can identify you. All information about 
you will be kept confidential in all our writing about the study. Also, all collected information will be stored 
safely and destroyed 5 years after we have completed the project. 
 
Your parents have also been given an information sheet and consent form, but at the end of the day it is your 
decision to join us in the study. 
 
I look forward to working with you! Please feel free to contact me if you have any questions. 
 
Thank you   

 
Mrs Samantha Ehrlich 
Masters Student 
Wits Education Campus 
1512315@students.wits.ac.za  
072 542 5212  
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D: Learner Consent Form 
 
 
 
 
 
 
 
 
Please fill in the reply slip below if you agree to participate in the study called: Learning Gains in 
Mathematics  
 
 
My name is: ________________________________  Grade and class: ____________________ 
 
 
Permission for questionnaire/test  Circle one 
 I agree to write a test for this study.   YES/NO  
 
 
 
 
Informed Consent   
I understand that: 

• my name and information will be kept confidential and safe and that my name and the name of my 
school will not be revealed.  

• I do not have to answer every question and can withdraw from the study at any time.  
• all the data collected during this study will be destroyed 5 years after completion of the project. 

 
 
 
Sign_____________________________    Date___________________________  
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E: School Consent Letter 
 

Date 
Dear Mr/Mrs/Miss/Ms/Dr XXX 
 
I write to you to invite XXX Secondary School to participate in research that is being conducted through the School of 
Education at the University of the Witwatersrand.  
 
The research focuses on learning gains and I’d like to give you some background to the project. In 2013 we investigated 
the impact of the Transition Maths 1 and 2 courses on learners’ gains in Mathematics over one year. We invited 5 project 
schools to participate and we tested approximately 800 Grade 10 learners in February and October of that year. There 
were 21 teachers who participated in the study, some of whom participated in a TM course and some who didn’t. The 
results showed that the learners taught by teachers who participated in a TM course made larger gains than those taught by 
teachers who did not participate in the course. However, we treat these results as indicative evidence rather than 
conclusive evidence that the TM courses have an impact on learning gains. 
 
In 2016 to 2019 we wish to conduct a more rigorous study of the impact of the TM1 course on learning gains. The first 
step of this research is to develop a new test for learners. In February 2016 approximately 120 Grade 10 Mathematics 
learners write a trial version of the test in February 2016. This trial version is being refined and in May/June 2016 I would 
like to pilot the new test with Grade 9 learners.  
 
I was wondering whether you would agree to allow me to pilot the test with one of your classes of Grade 9 learners in 
May/June 2016. This will take approximately 45 min at a time convenient to the school. The learners will not be 
advantaged or disadvantaged in any way. They will be reassured that they can withdraw their permission at 
any time during this project, including during the test, without any penalty. There are no foreseeable risks in 
participating in this study. The participants will not be paid for this study. The names of the research 
participants and identity of the school will be kept confidential at all times and in all academic writing about 
the study. Your individual privacy will be maintained in all published and written data resulting from the 
study.  All research data will be destroyed 5 years after completion of the project. 
 
Please let me know if you require any further information. I look forward to your response. 
 
Yours sincerely, 

 
Mrs Samantha Ehrlich 
Masters Student 
Wits Education Campus 
1512315@students.wits.ac.za  
072 542 5212  
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F: Ethics 
 

Ethics clearance has been granted to WMCS for this project under the protocol number and 

2016ECE003S. The protocol number for my study is 2016ECE009M. I have attached 

ethics clearance from the University of the Witwatersrand for my study and the Gauteng 

Department of Education for the project on the following pages.  
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1 

 

Wits School of Education  

27 St Andrews Road, Parktown, Johannesburg, 2193 Private Bag 3, Wits 

2050, South Africa. Tel: +27 11 717-3064 Fax: +27 11 717-3100 E-mail: enquiries@educ.wits.ac.za 

Website: www.wits.ac.za 

26 April 2016 

Student Number: 1512315  

Protocol Number: 2016ECE009M  

Dear Samantha Anne Ehrlich 

Application for Ethics Clearance: Master of Science  

Thank you very much for your ethics application. The Ethics Committee in Education of the 

Faculty of Humanities, acting on behalf of the Senate has considered your application for ethics 

clearance for your proposal entitled: 

A Rasch analysis of an algebra test written by Grade 9 learners. 

The committee recently met and I am pleased to inform you that clearance was granted. 

However, there were a few small issues which the committee would appreciate you attending 

to before embarking on your research. 

The following comments were made: 

Information Letters:  

x minor errors – insert in this line, “the questions in the same [way] we expected 

you to interpret them”  
x Approximately 120 Grade 10 Mathematics learners write a trail [trial] version of 

the test in February 2016. 

Please use the above protocol number in all correspondence to the relevant research parties 

(schools, parents, learners etc.) and include it in your research report or project on the title 

page. 

The Protocol Number above should be submitted to the Graduate Studies in Education Committee 
upon submission of your final research report.  
 

All the best with your research project. 

Yours sincerely, 
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2 
 

Wits School of Education 

011 717-3416 

Cc Supervisor:   Professor Mike Askew and Dr Craig Pournara 
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G: The research instrument 
 
1) Write these numbers in order from smallest to largest    

30     − 35      − 2      − 500      − 10         4  
 

2) If 𝑎 = 2, 𝑏 = −5, 𝑐 = 3, evaluate the following. Show all your working.  
a) 𝑎𝑏 + 2𝑐  
b) b) 4 +  (𝑎 − 𝑏)  

 
3) omitted here 

 
4) Write down the missing number in the space provided. 

a)  7 +  5 =  ________+ 2  
b)  4747   +    3945   =    ____________   +  3943 
c)  4747   +    𝑛   =    __________  +  (𝑛 − 2) 

 
5) Simplify 

a) 2𝑎 + 5𝑎 = 
b) 2𝑎 + 5𝑏 + 𝑎 = 
c) 𝑎 + 𝑏 + 𝑎 = 
d)  𝑎 +  𝑏 𝑏 =   
e) 𝑏 𝑎 –  𝑏 = 
f) 3𝑎 − 𝑏 + 𝑎 = 
g) 𝑎 + 4+ 𝑎 − 4 =  
h) 3𝑎 − 𝑏 + 𝑎 = 
i) 5− 𝑎 + 𝑎 = 
j) 𝑎 +  𝑏 +  𝑎 −  𝑏 = 

 
6) Simplify the following. No denominator is zero. 

a) !×!!

!!
  

b) !×!!

!!
  

c) !!!

!!
 

d) !"!!!!
!

 

e) !"!!!!
!!"

 

f) !"!"!!!!!
!!"

 

 

 



 90 

7) Multiply out: 
a)  (2𝑥 + 1)(𝑥 + 4) 
b) 3 𝑥 + 2 ! 
c) 8 𝑝 − 5 𝑝 + 5  

 
8) Look at the diagram below that shows a straight-line graph.  

 

a) Write down the 𝑥-intercept of the graph.  
b) Write down the 𝑦-intercept of the graph.  
c) Write the equation of the straight line in the form 𝑦 = 𝑚𝑥 + 𝑐. 
d) Sketch the graph of  𝑦 = −𝑥 + 3 on the set of axes given above. 

 
9) Solve for the unknown:   

a) 3𝑥 − 1 = 5 
b) 3𝑥 − 1 = 4+ 𝑥  
c) 1− 3𝑥 = 5− 𝑥 
d) 2𝑝 𝑝 − 4 − 8 = 2𝑝! − 7𝑝 + 3 
e)  !!!

!
= 2  

f) !!!
!
+ !!!!

!
= !!!

!
 

 
10) Factorise fully 

a) 7𝑥 − 28 
b) 7− 28𝑥 
c) 7𝑥! − 28 
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11) The diagram below shows inputs and outputs for the machine diagram. Work out the 
missing information and write your answers in the spaces provided.  

 

12) a) Factorise fully: 
i) 𝑥! − 4𝑥 
ii) 𝑥! − 2𝑥 − 8  

b) Simplify. The denominator is not equal to zero. 
                     !!!!!

!!!!!!!
  

 
13) Matchsticks are arranged as shown: 
                     

 
                        Figure 1                                Figure 2                                              Figure 3 

 
d) How many matchsticks are required for Figure 36? 
e) Which Figure would need exactly 51 matches? Explain how you got your answer.  
f) Give an expression for the number of matches required for the nth figure.   
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