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Abstract

Exponential smoothing is a recursive time series technique whereby forecasts are
updated for each new incoming data values. The technique has been widely used
in forecasting, particularly in business and inventory modelling. Up until the
early 2000s, exponential smoothing methods were often criticized by statisticians
for lacking an objective statistical basis for model selection and modelling errors.
Despite this, exponential smoothing methods appealed to forecasters due to their
forecasting performance and relative ease of use. In this research report, we ap-
ply three commonly used exponential smoothing methods to two datasets which
exhibit both trend and seasonality. We apply the method directly on the data
without de-seasonalizing the data first. We also apply a seasonal naive method
for benchmarking the performance of exponential smoothing methods. We com-
pare both in-sample and out-of-sample forecasting performance of the methods.
The performance of the methods is assessed using forecast accuracy measures.
Results show that the Holt-Winters exponential smoothing method with additive
seasonality performed best for forecasting monthly rainfall data. The simple ex-
ponential smoothing method outperformed the Holt’s and Holt-Winters methods
for forecasting daily temperature data.
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Chapter 1

Introduction

1.1 Historical Overview

Exponential smoothing methods (ETS) have been used for time series forecasting

and prediction since the 1950s. The methods are well known for their simple for-

mulation and relative ease of use. In previous time series forecasting competitions

[30, 29], exponential smoothing methods performed better than well developed

and complex statistical methods like the autoregressive integrated moving aver-

ages (ARIMA).

Exponential smoothing methods can be grouped into three basic classes: simple

or single exponential smoothing, double exponential smoothing and triple expo-

nential smoothing. A common characteristic of the methods is that the stochastic

process that generated the observed data is a function of unobserved but deter-

ministic components (e.g. local level, trend and season). The components need to

be adjusted over time as the structure of the time series change.

The simple exponential smoothing method was developed independently by Brown

[8] and Holt [21]. Winters [44] then extended the Holt exponential methods to
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allow for forecasting complex time series including seasonality. Hence, the name

Holt-Winters exponential smoothing methods to acknowledge their contribution.

The original formulation of exponential smoothing methods was underpinned by

heuristics. Thus, they did not have a statistical basis for model selection as well

as for modelling the distribution of the errors. However, their ease of use meant

that businesses quickly adopted them, particularly those in inventory modelling.

While the popularity of exponential smoothing methods increased from 1960 to

1970, the statisticians interest in the methods also grew. This was particularly

motivated by the need to establish a statistical foundation for the methods. Two

significant works laid the foundation for statistical investigations into exponen-

tial smoothing methods. First, Muth [33] investigated the statistical properties of

the simple exponential methods and found that the simple exponential smoothing

method is the same as a model comprising of random walk and noise (i.e. random

walk plus noise model [7]). Therefore, the simple exponential smoothing model

could be modelled using a stochastic model. Second, Pegels [35] developed a clas-

sification scheme of the exponential smoothing methods by considering variations

in their trend and seasonal components. The classification later proved to be im-

portant as a guide to research into statistical models underlying all the exponential

smoothing methods.

However, Box and Pierce [5] developed a modelling strategy for autoregressive and

moving average models (ARIMA [6]). The Box-Jenkins approach quickly emerged

as a powerful statistical modelling framework. Most of the research in the 1970s

period was focused on the ARIMA. Research on exponential smoothing meth-

ods carried out in this era was biased towards showing that some of exponential

smoothing methods were special cases of the ARIMA models. Thus, ARIMA mod-

els may have benefited from this research rather than the exponential smoothing

methods.
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Several papers in the 1980s were vital for the future of exponential smoothing

methods. Gardner [16] provided a comprehensive review of exponential smooth-

ing methods since they were formulated in the 1950s. In fact, Gardner [16] in-

troduced new variations of exponential smoothing methods called damped expo-

nential methods. The damped exponential smoothing methods were developed

to adjust the exponential forecasts downwards in long term forecasting. Snyder

[41] demonstrated that the simple exponential smoothing method could be refor-

mulated into a model that has one source of error. This type of reformulation is

termed an innovation state space model. His work went largely unnoticed at the

time [14].

Ord, Koehler, and Snyder [34] extended the innovations state space models to

double and triple exponential smoothing methods building on the earlier work

of Snyder [41]. Finally, Hyndman, Koehler, Snyder, and Grose [25] provided

a comprehensive innovations state space framework for the exponential models.

They were able to show that exponential smoothing methods belong to a class

that is larger than that of the ARIMA methods. Gardner [17] reviewed the new

developments in the exponential smoothing methods as a way of updating their

previous work. The innovations state space framework is a major breakthrough

for exponential smoothing methods. They can now be considered on equal footing

with the ARIMA methods.

1.2 Motivation

Historically, exponential smoothing forecasting methods were viewed as heuristic

methods. They lacked a coherent statistical framework for modelling error dis-

tribution. Thus, they received little attention from among statisticians. Some

even considered them to be special cases within the ARIMA models [33, 31]. This
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situation is now different.

The development of an innovations 1 state space framework for exponential smooth-

ing methods is a major reason for this. The significance of innovations state space

models is that statistical modelling using exponential smoothing methods can be

done on an objective basis. Thus, the methods that were largely ignored by the

statistical community can now be tested in various application areas. Weather

forecasting is one potential application area of exponential smoothing methods.

It is important to assess whether or not exponential smoothing methods can be

used to forecast weather related data.

A rather indirect justification for undertaking this research is that of in-filing miss-

ing weather related time series. If weather measurements are faulty at particular

time points, then imputation methods can be used to fill in the missing obser-

vations. A possible imputation approach is back forecasting with an exponential

forecasting method. This is, however, not the main interest in this research but is

something that could be explored further.

1.3 Aims and Objectives

This research report is primarily concerned with exploring the performance of

different methods for smoothing time series. More specifically, the focus is on

comparing the performance of the exponential smoothing techniques on historical

temperature and rainfall data. Formally, the aim and objectives are as below.
1a model with a single source of error
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1.3.1 Aim

The aim of the project is to compare the performance of exponential smoothing

methods on two weather related data sets that exhibits trend and seasonality.

1.3.2 Objectives

• To present a review of exponential smoothing methods with specific emphasis

on the Holt-Winters methods,

• To perform forecasts using the exponential smoothing methods and assess

their performance through out-of-sample forecasting validation,

• To compare the performance of exponential methods against naive smooth-

ing methods on the two data sets, and

• To comment on the performance of exponential smoothing methods on the

two data sets.

1.4 Organization of the Report

The research report is structured as follows. Chapter 2 can be divided into two

parts. The first part gives a theoretical background of stochastic processes as

the umbrella statistical processes under which the research falls. The second part

introduces general time series concepts which are the basic building blocks of the

research project. Chapter 3 narrows down time series to focus solely on exponential

smoothing forecasting methods. Chapter 4 deals with the data and actual methods

used in the analysis. Chapter 5 presents the results of exponential smoothing

forecasts. Chapter 6 concludes with a summary and discussion of possible areas

for future research.
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Chapter 2

Theoretical Background

2.1 Introduction

This chapter discusses the basic theory of stochastic processes and foundational

aspects of time series. Section 2.2 introduces the basics of stochastic processes.

We present the general case for stochastic processes, of which stochastic processes

in discrete time are a special case. In Section 2.5, we consider some important

concepts in time series. Section 2.6 describes discrete stochastic models for uni-

variate time series. Section 2.7 deals with evaluating the accuracy of time series

forecasts.

2.2 Stochastic Processes

Stochastic processes theory is very well developed in literature. In this section we

give an overview of stochastic processes highlighting the aspects that are important

in time series analysis. The material presented here is based largely on Beichelt

[2], Grimmett and Stirzaker [20] and Ross [39]. These three monographs offer a

non-measure theoretical approach to stochastic processes. The section begins with
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the definition of a random variable and extends it to the notion of the stochastic

process. Further, the characteristics of stochastic processes are introduced. The

section ends with a discussion on classification of stochastic processes.

2.2.1 Random Variable

A random variable X refers to the possible values of a statistical experiment when

the conditions are fixed [2]. As conditions are fixed, any deviation to the value of

the random variable is attributable to chance alone. A change in the experimental

conditions will affect its outcome. A random variable can be redefined to take into

account the case when experimental conditions vary. A random function X(t) is

a random variable depending on a parameter t where t is deterministic. This

results in a generalization of random functions. The study of random functions is

formalized next.

Let {X(t), t ∈ T} denote a random variable X depending on a time parameter t

whose values are elements of a set T. The set T represents the sample space of the

time parameter t. The set T can be either one-dimensional or multidimensional.

In addition, assume Z to be the sample space for X(t) under T.

2.2.2 Stochastic Process

A collection of random variables {X(t), t ∈ T} with parameter space T and state

space Z is known as a stochastic process [2]. {X(t), t ∈ T} is called a stochastic

process in discrete-time if the parameter space T is countable. If parameter space

T is continuous, then {X(t), t ∈ T} refers to a stochastic process in continuous-

time. Depending on the state space Z, a stochastic process can also be discrete or

continuous. Thus, if the state space Z is countable, then {X(t), t ∈ T} refers to

a stochastic process in discrete-space. Similarly, if the state space Z is continuous,
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then the stochastic process is called a stochastic process in continuous-space. By

and large, the set T and the state space Z result in four distinct types of stochas-

tic processes. Time series are an example of a continuous-space stochastic process

in discrete-time or continuous-space stochastic process in continuous-time. Other

examples include Poisson processes which are discrete-space stochastic processes

in continuous-time, diffusion processes which is a continuous-space stochastic pro-

cesses in continuous-time and discrete-time Markov chains which are discrete-space

stochastic processes in discrete-time.

2.3 Characteristics of Stochastic Processes

A stochastic process {X(t), t ∈ T} is fully characterized by its finite-dimensional

distribution. The finite-dimensional distribution of a stochastic process {X(t), t ∈

T} is the family of all joint probability distributions of (X(t1), X(t2), . . . , X(tn))

and is given by the n-dimensional distribution functions

Ft1,t2,...,tn(x1, x2, . . . , xn) = P (Xt1 < x1, Xt2 < x2, . . . , Xtn < xn) (2.1)

where n = 1, 2, 3, . . . and t1, . . . , tn ∈ T. Modelling the dependence between any

sequence of random variables X(tn) in a generalized random experiment depends

on this complete statistical or probability characterization. The study of the

nature of time dependence between random variables is a subject of research in

time series.

2.3.1 Sample Path

A sample path of a stochastic process {X(t), t ∈ T} is any realization {x(t), t ∈ T}

of the sequentially ordered random variables {X(t), t ∈ T} observed over all t. A
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sample path describes one instance of a dynamic stochastic system. Thus, sample

paths model the possible developments of the stochastic system.

2.3.2 Trend Function

The trend function m(t) of a stochastic process {X(t), t ∈ T} refers to the ex-

pected value of X(t). It depends on the time parameter, t. In mathematical

notation, it is represented as

m(t) = E(X(t)), t ∈ T. (2.2)

There are two possible interpretations of m(t). Using theory of probability, the

Law of Large Numbers [15] states that the arithmetic mean of many independent

observations x(t) at the same time point t would be approximately equal to m(t).

The trend function m(t) can also be interpreted as the average of the realization

x(t) over time. If the probability density function ft(x) exist, then it is given by

m(t) =
∫ +∞

−∞
xft(x)dx, t ∈ T. (2.3)

2.3.3 Covariance Function

The (auto)covariance function C(s, t) of a stochastic process {X(t), t ∈ T} refers

to the covariance between two random variables X(s) and X(t) expressed in terms

of s and t. Hence, the covariance function measures the degree of statistical

dependence between X(s) and X(t). The covariance function C(s, t) is given by

C(s, t) = Cov(X(s)X(t)) = E([X(s)−m(s)][X(t)−m(t)]); s, t ∈ T. (2.4)
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Further simplification yields

C(s, t) = E(X(s)X(t))−m(s)m(t); s, t ∈ T. (2.5)

In the case of t = s, we have the formula for the variance of a stochastic process

{X(t), t ∈ T} as given by

C(t, t) = V ar(X(t)) = E[X(t)−m(t)]2; s, t ∈ T. (2.6)

2.3.4 Correlation Function

The (auto)correlation function ρ(s, t) of a stochastic process {X(t), t ∈ T} refers

to the correlation between two random variables X(s) and X(t) expressed in terms

of s and t. It is important in modelling the development of a stochastic process

through time. The covariance function ρ(s, t) is given by

ρ(s, t) = Cov(X(s)X(t))√
V ar(X(s))

√
V ar(X(t))

(2.7)

The terms autocovariance and autocorrelation refer to the fact that we are deal-

ing with the same stochastic process at different time points. If, however, we are

interested in the covariance and correlation between two different stochastic pro-

cesses, say {X(t), t ∈ T} and {Y (t), t ∈ T}, then such functions will be better

defined as cross covariance function and cross correlation function. The formulae

remain the same as the above. Autocorrelation and autocovariance functions are

very useful in time series model identification.
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2.4 Classification of Stochastic Processes

Stochastic processes can be classified by making use of their n-dimensional distri-

butions. However, this requires a simplified probability structure since it is im-

possible to observe all possible sample paths of the stochastic processes. Beichelt

[2] argues that stochastic processes are classified according to their steady-state

properties. That is, a stochastic process is characterized when its statistical prop-

erties are invariant with time. This is called a stochastic process in stationary or

steady-state. Not all stochastic processes have the stationarity property. Thus,

stationary stochastic processes can be viewed as a subset of the set of all stochas-

tic processes. In a way, stationarity reduces the class of stochastic processes and

allows for inference of the entire stochastic process. Stationarity is formalized

next.

2.4.1 Stationary Processes

Strict Stationarity

A stochastic process {X(t), t ∈ T} is defined as strictly or strongly stationary if

joint distribution functions of random vectors

(Xt1 , Xt2 , . . . , Xtn) and (Xt1+u, Xt2+u, . . . , Xtn+u) (2.8)

are identical for all t, possible integer n, and t1, t1, . . . , tn ∈ T satisfying the con-

ditions tj + u ∈ T, j = 1, . . . , n. That is,

Ft1,t2,...,tn(x1, x2, . . . , xn) = Ft1+u,t2+u,...,tn+u(x1, x2, . . . , xn). (2.9)
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This means that a stochastic process is strongly stationary if joint distribution

functions of a set of random vectors is not changed with a displacement in the time

origin, u. A strongly stationary process is not very useful for practical applications

since it is very difficult to verify that a process is strongly stationary. This gives

rise to the concept of weakly stationary processes.

Weak Stationarity

A stochastic process {X(t), t ∈ T} is referred to as weakly or wide-sense stationary

if it satisfies the following conditions:

• E|X(t)|2 <∞ for all t ∈ T

• m(t) = E(X(t)) = µ for all t ∈ T where µ is a constant, and

• C(s, t) = C(0, t− s) for all s, t ∈ T where C(s, t) = Cov(X(s)X(t)).

In other words, a stochastic process is weakly stationary if it has finite first and

second moments and a covariance function that depends only on the interval

length (i.e. covariance stationary). The (auto)covariance function for a stationary

stochastic process {X(t), t ∈ T} can be written as C(s, t) = C(0, t − s) for all

s, t ∈ T. Therefore, the (auto)covariance function of the process can be expressed

in terms of just one variable τ as

C(τ) ≡ C(0, τ) = Cov(X(t+ τ)X(t)) for all t, τ ∈ T. (2.10)

2.4.2 Homogeneity and Independent Increments

Homogeneous Increments

A stochastic process {X(t), t ∈ T} is said to have homogeneous increments if, for

arbitrary but fixed t1, t2 ∈ T, the increment X(t2 + τ) −X(t1 + τ) has the same
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probability distribution for all τ with property t1 + τ ∈ T, t2 + τ ∈ T.

Independent Increments

A stochastic process {X(t), t ∈ T} is said to have independent increments if for

all n = 2, 3, . . . and for all n−tuples (t1, t2, . . . , tn) ∈ T and t1 < t2 < · · · < tn, the

increments

X(t2)−X(t1), X(t3)−X(t2), . . . , X(tn)−X(tn−1) (2.11)

are independent random variables.

2.4.3 Gaussian Processes

A stochastic process {X(t), t ∈ T} is said to be Gaussian if the random vectors

(X(t1), X(t2), . . . , X(tn)) have multivariate normal distributions for all n−tuples

(t1, t2, . . . , tn) ∈ T and t1 < t2 < · · · < tn; n = 1, 2, . . . . That is, all finite-

dimensional distributions of the process are joint Gaussian distributions. If µ =

(µt1 , µt2 , . . . , µtn)′ be the mean vector and Σ denotes the n× n covariance matrix

of the process, then the probability density function of the multivariate normal

distribution is given by:

f(x) = (2π)−n
2 |Σ|−

1
2 exp{−1

2(x− µ)′Σ−1(x− µ)} (2.12)

where |A| is the determinant of a quadratic matrix A. The covariance matrix

must also be positive definite. An important characteristic of a Gaussian process

is that its finite-dimensional distribution is fully characterized by its first and

second moments. This means that it is characterized by its mean and covariance

functions. In this special case, weak stationarity implies strong stationarity. The
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reverse is always true if the underlying stochastic process is a second order process.

2.4.4 Markov Processes

A stochastic process {X(t), t ∈ T} in discrete state space is said to have the

Markov(ian) property if for all (n + 1)−tuples (t1, t2, . . . , tn + 1) ∈ T, t1 < t2 <

· · · < tn+1 and j,

P{X(tn+1) = j|X(t0) = i0, X(t1) = i1, . . . , X(tn) = i} = P{X(tn+1) = j|X(tn) = i}.

(2.13)

In non-technical terms, the Markov property states that the probability of any

future behaviour of a stochastic process, if the current state is exactly known, will

not be changed by information concerning the process’ past behaviour.

2.5 Univariate Time Series

This section outlines the general context in which our study of time series analysis

takes place. We restrict our context to time series in time domain only. We begin

by defining the elementary concepts associated with time series. Then Section

2.5.3 introduces the notion of classical decomposition, setting the scene for the

rest of the report. The section ends by introducing the concept of smoothing in

time series. All the concepts introduced in this section can be considered to be

primary tools for time series modelling.

2.5.1 Time Series as a Stochastic Process

A time series is a set of realized values of a stochastic process {X(t), t ∈ T}

indexed by time. Hence, a time series cannot be a stochastic process. It is the
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sample path of a stochastic process if you stick to the strict definition above.

Dagum [13] notes that, unlike in cross sectional studies, in time series analysis

ordered observations are dependent through time. That is, observations are related

through their index in time. Dagum [13] also states that the time dependence of

observations is of importance in time series. A question that often arises in time

series is what constitute a time series: the data or the data generating process?

Brockwell and Davis [7] suggest that both the data and data generating process of

which the time series is a sample path can be referred to as a time series. Figure

2.1 shows a time series plot of the Rand/Dollar exchange rates over the period

2000 and 2015. The exchange rates fluctuates between R5 and R15 per $1. A
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Figure 2.1: Example of a time series

stochastic process approach to time series modelling requires that observed time

series data be treated as a finite component of a sample path. Then, the stochastic

model serves as the theoretical model that generated the data series. This view

of time series allows the use of the theoretical models developed for probability
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and stochastic processes. In essence, all the properties of stochastic processes

mentioned in Sections 2.2, 2.3 and 2.4 are applicable to time series. In particular,

the concept of stationarity is very much central to time series modelling.

2.5.2 Wold Decomposition Theorem

The Wold Decomposition Theorem is an important theorem in time series. Put

simply, the theorem states that any discrete stationary stochastic process can

be expressed as a superposition of a purely deterministic process and a purely

non-deterministic process [7]. A purely deterministic process, such as a function

of time, is always uncorrelated to any other genuine stochastic processes. Also,

a deterministic process is a general stochastic process. Any stationary process

{X(t), t ∈ T} of which µ is the expected value can be decomposed into two

uncorrelated components:

X(t) = Z(t) + V (t), cov(Z(t), V (t)) ≡ 0, ∀t ∈ T (2.14)

where

V (t) = µ+
∞∑
j=1

[αjsin(λjt) + βjcos(λjt)], 0 < λj ≤ π (2.15)

Z(t) =
∞∑
j=0

Ψjat−j, Ψ0 = 1,
∞∑
j=1

Ψ2 ≤ ∞ (2.16)

where at is a white noise process and αj and βj are sequences of uncorrelated

random variables with mean zero ∀j. An application of the Wold Decomposition

Theorem is found in the classical decomposition of time series.
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2.5.3 Classical Decomposition

Classical decomposition of a time series has its origins in the work of Persons [36]

and Persons [37]. His work on developing business indices was among the first to

explicitly define the generating processes of a time series. While there has been

lots of developments in time series analysis ever since, the classical decomposition

method has remained largely unchanged. The method proposes the components

of the stochastic process underlying a general time series. It states that any time

series {X(t), t ∈ T} can be expressed as a function of its major components.

Chatfield [12] lists the components as:

• Trend Component (T (t)) which accounts for the long term increase or de-

crease in the mean of the series,

• Seasonal Component (S(t)) which accounts for cyclical fluctuations related

to calendar time (e.g. hour, day, month or quarter),

• Cycle Component (C(t)) which accounts for other cyclical fluctuations (e.g.

business cycles) which may or may not be permanent, and

• Random Noise Component (R(t)) which measures other random fluctuations

and is assumed to be stationary.

In practice, trend and cycle components of a time series can be combined into

trend-cycle. Components T (t), S(t) and C(t) are deterministic while R(t) is non-

deterministic thereby satisfying the Wold Decomposition Theorem. Brockwell

and Davis [7] argue that the aim of classical decomposition is to estimate the

deterministic components and if the model is correct the random noise component

would be a stationary random process. In mathematical notation, the stochastic

process underlying a time series is given by:

X(t) = f(T (t), S(t), C(t), R(t)). (2.17)
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Traditionally, the sources of variations in a time series have been assumed to be

deterministic and therefore independent of each other. Hence, the time series can

be specified by means of an additive superposition model as:

X(t) = T (t) + S(t) + C(t) +R(t) (2.18)

where X(t) denotes the observed series at time t, T (t) the trend component at

time t, S(t) seasonal component at time t, C(t) is the cycle component at time

t and R(t) the random noise or irregular component at time t. The additive

decomposition model is appropriate in situations where the amplitude of seasonal

component S(t) does not change with changes in time series level.

There are cases when the additive model is not suitable. For example, when there

is dependence among the underlying components of the stochastic process. That

is, the amplitude of the seasonal component S(t) varies with the level of the time

series. In such cases, decomposition is specified through a multiplicative model as

follows

X(t) = T (t)S(t)C(t)R(t) (2.19)

where now S(t) and R(t) are expressed in proportion to the trend T (t) and C(t). A

logarithmic transformation makes this model an additive model (i.e. log(X(t)) =

log(T (t)) + log(S(t)) + log(C(t)) + log(R(t))). A third group of decomposition

models makes use of a combination of the additive and multiplicative models. An

example of such models is the pseudo-additive model given below

Y (t) = [T (t) + S(t) + C(t)]R(t) (2.20)

where the variables are as mentioned above. Seasonally adjusted time series can be

formed by removing the seasonal component S(t) from observed data. This results

in a time series Y ∗(t) which is a function of trend and random error components
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only. The seasonal adjusted time series are Y ∗(t) = Y (t) − S(t) and Y ∗(t) =

Y (t)/S(t) for the additive and multiplicative models respectively.

2.5.4 Types of Smoothing

Smoothing techniques are efficient methods to identify important and non-important

fluctuations within an observed time series. The techniques allow for easy iden-

tification of the trend component T (t) of the series. Smoothing is an important

element of time series forecasting. Smoothing theory presented here is based on

Chatfield [12] and Shumway and Stoffer [40]. Smoothing has its origins in the

theory of linear systems. A linear filter maps a given time series {xt, t ∈ T} into

a new time series {yt, t ∈ T} as follows:

yt =
∞∑

j=−∞
wjxt−j, t ∈ T. (2.21)

where wj are the filter weights assigned to the values xj of a time series. For a

given interval, say [−a, b], the weights satisfy the following normalizing condition:

b∑
j=−a

wj = 1 (2.22)

The interval [−a, b] determines the bandwidth of the filter.

Moving Average Smoothing

The moving average is a type of a linear filter with the interval [−a, a] with 2a+ 1

time points. The weights assigned by a moving average smoother are all the same

and equal to

wj =


1

2a+1 for j = −a,−a+ 1, . . . , a− 1, a

0 Otherwise.
(2.23)
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Kernel Smoothing

Kernel smoothers are sometimes referred to as density estimators. Examples in-

clude the Gaussian and Epanechnikov kernels. The Gaussian kernel uses the Gaus-

sian (normal) distribution function as the weights. The weights for the Epanech-

nikov kernel using the bandwidth [−a, a] are given by

wj = c

[
1− j2

(a+ 1)2

]
for j = 0,±1, . . . ,±a. (2.24)

Ideally, the wider the bandwidth the smoother the kernel. In order for∑a
j=−awj =

1 to be satisfied, it follows that the factor c is given by

c =
[
a(4a+ 5)
3(a+ 1)

]−1

(2.25)

Exponential Smoothing

In exponential smoothing, the past and present values of a time series {xt, t ∈

1 . . . n} are used to calculate yk from the observations xk, xk−1, . . . , x0 according

to the following rule

yk = λl(k)xk + λ(1− λ)l(k)xk−1 + · · ·+ λ(1− λ)kl(k)x0, k = 0, 1, . . . , n. (2.26)

where the parameter λ satisfies 0 < λ < 1. The weights under exponential smooth-

ing are given by

w−j = λ(1− λ)jl(k), for j = k, k − 1, . . . , 1, 0. (2.27)
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The bandwidth is such that a = a(k) = k+1 and b = 0. In order for ∑b
j=−awj = 1

to be satisfied, it follows that the multiplier c(k) is given by

c(k) = 1
1− (1− λ)k+1 (2.28)

If the parameter λ is small, this implies a strong smoothing on xj since observations

that are far in time will have a non-negligible effect on smoothing. Exponential

smoothing methods for forecasting are dealt with in depth in Chapter 3.

2.6 Models for Discrete Time Series

This section describes stochastic processes in discrete time that are useful for time

series modelling. A more detailed discussion of the probability models described

here can be found in Beichelt and Fatti [3] and Chatfield [12]. Unless stated

otherwise, the information presented in this section comes from these two books.

2.6.1 Purely Random Process

A stochastic process in discrete time is defined as a purely random or white noise

process if it is made up of a sequence of independent and identically distributed

random variables {εt}. The random variables {εt} are assumed to be from a normal

distribution with mean zero and variance σ2
ε . Thus, a purely random process has

constant mean and variance. The covariance function of a purely random process

is given by

γ(k) = Cov(εt, εt+k) =


σ2
ε k = 0

0 k = ±1,±2, . . .
(2.29)

The mean and autocovariance function of a purely random process are independent

of time. This means that a purely random process is covariance stationary. The
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assumption of independence guarantees that the process is also strictly stationary.

The purely random process is not particularly interesting in itself but can be used

to build more complex time series (e.g. autoregressive moving averages). Figure

2.2 below shows an example of a purely random process simulated from a standard

normal distribution.
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Figure 2.2: Purely random process

2.6.2 Random Walk

Let εt denote a discrete-time, purely random process having mean µ and variance

σ2
ε . The process {Yt} is called a random walk if

Yt = Yt−1 + εt. (2.30)

By convention, the process starts at zero when t = 0 so that Y1 = ε1 and Yt =∑t
i=1 εi. The mean, E(Yt) = tµ, and variance, V ar(Yt) = tσ2

ε , increase with time
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thus the process is not stationary. A first difference of the random walk process,

5Yt = εt, results in a purely random process and therefore the first difference of

a random walk is stationary. This insight is important in modelling time series

whose behaviour is a random walk such as is the movement in share prices in

successive time periods. An example of random walk process is shown in Figure

2.3 below.
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Figure 2.3: Random walk process

2.6.3 Autoregressive Process (AR)

A stochastic process {Yt} is called an autoregressive process of order p, denoted

by AR(p), if it is defined by

Yt =
p∑
i=1

φiYt−i + εt (2.31)
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where p is an integer, φ1, . . . , φi are fixed constants of the autoregressive terms

and {εt} denotes a sequence of independent random variables with mean 0 and

variance σ2. The model is similar to multiple linear regression with the exception

that Yt is regressed on historical values of Yt rather than on separate predictors.

If p = 1, the AR(1) process is called a first-order AR process and is defined by

Yt = φ1Yt−1 + ε. When p > 1, the process is a general order AR process. Upon

applying the backward shift operator BYt = Yt−1, AR(p) becomes

(1− φ1B − φ2B
2 − · · · − φpBp)Yt = εt (2.32)

which can be written compactly as φ(B)Yt = εt where

φ(B) = 1− φ1B − φ2B
2 − · · · − φpBp (2.33)

is called the autoregressive operator and Yt = φ(B)−1εt is an infinite series. {Yt} is

covariance stationary if all the roots of the equation φ(B) = 0 lie outside the unit

circle. A necessary condition for stationarity is that ∑p
i=1 φ < 1. Autoregressive

processes are useful for modelling time series whereby the current value is linearly

related to its preceding value plus some random noise.

2.6.4 Moving Average Process (MA)

A stochastic process {Yt} is called a moving average process of order q, denoted

by MA(q), if it satisfies

Yt =
q∑
j=0

θjεt−j (2.34)

where q is an integer, θ1, . . . , θq are fixed constants of moving average process,

θ0 = 1 and {εt} is a sequence of independent random variables such that mean is 0

and variance σ2. If q = 1, the MA(1) process is a first order process and is defined
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by Yt = θ0εt + θ1εt−1. When q > 1, the process is a general order MA process. It

is clear that E(Yt) = 0 and V ar(Yt) = σ2
ε

∑q
i=0 β

2
i , because ε′js are independent.

The covariance function of the MA(q) is given by

γ(k) = Cov(Yt, Yt+k) =


0 k > q

σ2
ε

∑q−k
i=0 θiθi+k k = 0, 1, . . . , q

γ(−k) k < 0.

(2.35)

The mean and covariance of MA(q) are independent of t so the process is covariance

stationary for all values of θ. If the εt are normally distributed then the MA(q)

will be strictly stationary. Using the backward shift operator,B, the MA equation

can be expressed in the form

Yt = θ(B)εt (2.36)

where θ(B) = 1 − θ1B − θ2B
2 − · · · − θpBq. Unlike the autoregressive processes,

there is no restriction on the θi for stationarity. However, for the process to be

invertible, the roots of the polynomial θ(B) = 0 must lie outside of the unit

circle. This means that a moving average process can be expressed in terms of an

autoregressive process whose coefficients satisfy θ(B) = 0.

The moving average process MA(q) is a finite stochastic process because the order

q is an integer. When the order is unbounded, we have a moving average process

of unbounded denoted by MA(∞). A stochastic process is an MA(∞) if it can

be expressed as Yt = ∑∞
j=0 θjεt−j and provided that ∑∞j=0 θ

2
j converges. The im-

portance of an MA(∞) is that any AR(p) can be expressed as MA(∞). Similarly,

subject to being an invertible process, an MA(q) can be expressed as AR(∞).
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2.6.5 Autoregressive Moving Average Process (ARMA)

A new class of time series models is formed by combining AR and MA processes.

An autoregressive moving average process, ARMA(p, q) of a time series Yt is de-

fined by

Yt =
p∑
i=1

φiYt−i +
q∑
j=0

θjεt−j (2.37)

where p is the number of AR terms, q is the number of MA terms, φ refers to

the coefficients of the AR terms, θ refers to the coefficients of the MA terms

and constant and {εt} is a purely random process. Using the backward shift

operator,B, the equation above can be expressed in the form

φ(B)Yt = θ(B)εt (2.38)

where φ(B) = 1−φ1B−φ2B
2−· · ·−φpBp and θ(B) = 1−θ1B−θ2B

2−· · ·−θpBq.

The values of {φi} and {θi} which make the process stationary are the roots of

φ(B) = 0 and θ(B) = 0 respectively. All the roots must lie outside of the unit

circle. The ARMA(p, q) is very flexible in that stationary time series can be

modelled using an ARMA with fewer parameters than a pure AR or MA on its

own.

2.6.6 Integrated ARMA Process (ARIMA)

An autoregressive integrated moving average process, ARIMA(p, d, q), is an ex-

tension of the ARMA process to data that are not stationary. If data are non-

stationary, then it is necessary to make it stationary before an ARMA can be

applied to the data. One common method of making a time series stationary is by

differencing the series, expressed as 5dYt. d denotes the number of differences to

the original data Yt required before the series is stationary. When Yt is replaced by
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5dYt in the ARMA model then the model is referred to as an integrated model.

The term integrated is due to the fact that a stationary model has been fit to

differenced data have to be summed to provide a model for the original data (i.e.

non-stationary). Integration is a form of summing, hence the term. A time series

Yt is said to be of the ARIMA(p, d, q) if 5dYt is a stationary ARMA process and

the parameters as stated previously. The general ARIMA model is of the form

φ(B)(1−B)dYt = θ(B)εt (2.39)

where B, φ(B) and θ(B) are as in ARMA. A generalization of the ARIMA model

to deal with non-seasonal data is found in Box and Pierce [5]. Such a model is

referred to as a SARIMA.

2.6.7 General Linear Process

A general class of linear processes may be written as a moving average process, of

possibly infinite order, in the form

Yt =
∞∑
i=0

φXt−i. (2.40)

A sufficient condition for the sum to converge and hence the process to be sta-

tionary is that ∑∞i=0 |φ| < ∞. Stationary AR and ARMA processes can also be

expressed in terms of the general linear process.

2.6.8 Box-Jenkins Forecasting with ARIMA

The Box-Jenkins procedure [6] is a forecasting strategy based on the autoregressive

integrated moving average (ARIMA) models. It emphasizes an iterative process

to forecasting model building as follows:
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1. Model identification Explore the data to select a suitable model from the

ARIMA family,

2. Estimation Estimate model parameters for the selected model,

3. Diagnostic checking Assess residuals from the fitted model to see if it does

not violate model assumptions, and

4. Consideration for alternative models If the chosen model is not adequate,

repeat the above process until a suitable model can be found.

2.7 Forecasting in Time Series

Forecasting refers to the process of estimating the future trajectory of a sequence

of observations (i.e. how the time series will continue into the future).

2.7.1 Portmanteau Tests

When fitting a time series model the distribution of residuals is of importance to

the modeller. We are interested in finding whether or not the residuals of the

estimated model are white noise. A plot of the autocorrelation function (ACF)

can show if the residuals are uncorrelated, have mean zero and constant variance.

However, it is often not sufficient. A portmanteau test is a formal test for the

independence of residuals up to a lag m. The most commonly used portmanteau

tests are described below.

28



Box-Pierce Test

This classical test was proposed by Box and Pierce [5]. The test statistic for

Box-Pierce test is given by

Q = n
m∑
k=1

r2
k (2.41)

where rk is sample autocorrelation of order k, m is the maximum lag considered

and n is the number of observations. Under the null hypothesis that the model

is adequate (i.e. residuals are white noise), Q follows the χ2 distribution with

(m − P ) degrees of freedom. The constant P is a count of model parameters. If

the r′ks are very small (i.e. close to zero), then the value of Q will be small. If

some r′ks are large, then Q will be large. The Box-Pierce test performs poorly in

small samples.

Ljung-Box Test

Ljung and Box [27] developed an alternative test to deal with the perceived short-

comings of the Box-Pierce test. Their test is designed to work well with small

samples. The test statistic for the Ljung-Box test is given by

Q∗ = n(n+ 2)
m∑
k=1

r2
k

n− k
(2.42)

where rk is sample autocorrelation of order k, m denotes the maximum lag and n

is the total observations. Under the null hypothesis that the residuals are white

noise, Q∗ follows the χ2 distribution with (m−P ) degrees of freedom where P is a

count of parameters in the model. If the r′ks are small (i.e. in the neighbourhood

of zero), then Q∗ will be small. Conversely, if some r′ks are large, then Q∗ will be

large.
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2.7.2 Cross Validation

Measuring how well a statistical algorithm (method) performs on a given dataset

is an integral part of statistical modelling. A common approach is to train (fit) an

algorithm to a dataset and then use the fitted model to predict the observed values.

The extent to which the predicted values deviates from the observed values gives

a measure of performance of the method. This kind of approach evaluates the

method on the full dataset and may yield downward biased estimates. The cross

validation approach was developed to deal with perceived weaknesses of evaluating

an algorithm on same data it was trained on [26, 32, 42, 18]. In its simplest form,

cross validation involves splitting a dataset into two sub-datasets. The split ratio

depends on the features and size of the dataset, though a ratio of 70 : 30 is usually

recommended. One of the datasets is used to train the algorithm and the other

is used to evaluate its statistical performance. If a split is performed only once,

it gives a validation estimate while averaging over multiple splits it is known as a

cross validation estimate. Often an assumption is made that the sub-datasets are

independent and identically distributed.

The approach to cross validation described above fails when data are dependent,

such as is time series data. This is because observations left out during training of

the algorithm are necessarily correlated with those used in the training of it. Asso-

ciated information therefore remained in the evaluation data making it difficult to

assess the performance of the algorithm (method). However, Burman, Chow, and

Nolan [10] demonstrate that cross validation can be extended to the dependent

data, where the data form a stationary sequence. They suggest an h−block cross

validation obtained by removing h observations in the neighbourhood of the test

observation. Arlot and Celisse [1] provide a comprehensive survey of research into

cross validation for both independent and dependent data.

For time series forecasting, Hyndman and Athanasopoulos [22] propose the fol-
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lowing method to cross validation:

• Fit a time series model to the data Y1, . . . , Yt,

• Let Ŷt+1 be the forecast value of the next time point,

• Calculate the forecast error (e∗t+1 = Yt+1 − Ŷt+1) for the forecast value,

• Redo the process for t = m, . . . , n − 1 where m is the smallest number of

observations needed to fit the model and

• Calculate forecast accuracy measures (e.g. mean square error) from e∗m+1, . . . , e
∗
n.

2.7.3 Forecast Accuracy Measures

The performance of an exponential smoothing method is assessed by considering

its forecasting accuracy. There are a number of evaluation criteria which are used

to estimate forecast accuracy [24]. Hyndman and Athanasopoulos [22] provide

a useful grouping for forecasting accuracy measures. They classify forecasting

accuracy measures as scale-dependent, percentage and scaled. We present six

accuracy measures used in this report, according to the grouping.

Scale Dependent Measures

Scale dependent accuracy measures are measures which are based on the same

scale as the data values. They are, therefore, sensitive to the data values. The

forecast error itself is based on the data values and thus is scale dependent. Any

accuracy measure that is a function of the forecast error only and not the data

values is scale dependent. This means such accuracy measures can not be used

for comparing time series measured on different scale. The most common scale

dependent measures are defined below. Mean Error (ME) is calculated as the
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average of the forecast errors over n observations.

ME = 1
n

n∑
t=1

et (2.43)

Mean Absolute Error (MAE) is calculated as the average of the absolute forecast

error values over n data points.

MAE = 1
n

n∑
t=1
|et| (2.44)

Mean Square Error (MSE) is calculated as the average of the total squared forecast

errors over n data points.

MSE = 1
n

n∑
t=1

e2
t (2.45)

Root Mean Square Error (RMSE) is calculated by taking the square root of MSE

(i.e.
√

(MSE)).

Percentage Measures

Percentage accuracy measures are independent of measurement scale. Thus, they

are suitable for comparing the performance of time series that are measured on

different scales. The common ones include the mean percentage error and mean

absolute percentage error. They are undefined on time series with zero values

and give extreme estimates with data values in the neighbourhood of zero. Mean

Percentage Error (MPE) is the average of forecast errors with respect to the actual

values over n data points.

MPE = 1
n

n∑
t=1

et
yt

(2.46)
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Mean Absolute Percentage Error (MAPE) is calculated by taking the average of

forecast errors with respect to the true values over n data points.

MAPE = 1
n

n∑
t=1

|et|
yt

(2.47)

Scaled Measures

The scaled measures deal with the weaknesses of the percentage errors [24]. They

do not become undefined or produce extreme values. A common scaled measure is

the mean absolute scale error defined below. Mean Absolute Scaled Error (MASE)

is the average absolute error produced by the actual forecast over n data points.

MASE = 1
n

n∑
t=1

(
|et|

1
n−1

∑n−1
i=2 |yi − yi−1|

)
(2.48)

By and large, all the accuracy measures are based on how close the forecasts are

to the eventual (or observed) outcomes. In practical applications, however, the

measures are known to give completely different results. As such, evaluating the

accuracy of a time series require that one use more than one accuracy measure.

2.7.4 Prediction Intervals

A prediction interval (PI) measures the extent of uncertainty around forecast

or predicted values. It consists of lower and upper bounds which a forecast or

predicted value is expected to be bounded with a specified confidence level. The

PI is dependent on the forecasting method used. The 100(1 − α)% prediction

interval for yt+h is given by

ŷt(h) ± zα/2

√
V ar[εt(h)] (2.49)
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where εt(h) = yt+h − ŷt(h) is the forecast error made at time t when forecasting

h steps ahead, zα/2 is a multiplier from the standard normal distribution at α/2

and V ar is the variance of the errors.
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Chapter 3

Exponential Smoothing Methods

(ETS)

3.1 Introduction

The main idea behind the exponential smoothing method is to smooth a time se-

ries by allocating more importance to recent observations and less importance to

observations that are located far in time. It does so by allocating unequal weights

to the observations. The largest weight is given to the current observation, less

weight to the immediately preceding observation, even less weight to the obser-

vation before that, and so on. The weights assigned to time series observations

older in time decrease exponentially. By and large, exponential smoothing de-

pends more on recent observations than old observations to forecast. Exponential

smoothing methods have three main forms: single exponential smoothing, double

exponential smoothing and triple exponential smoothing methods. General expo-

nential smoothing (GES) methods are less well known but are also discussed at

the end. Differences between Holt-Winters and GES methods are highlighted.
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3.2 Single Exponential Smoothing

This method is commonly known as simple exponential smoothing (SES). The

terms are used interchangeably in this report. Simple exponential smoothing is

mainly used for short-term forecasting, usually for periods not longer than one

month [12]. The method assumes that the time series fluctuates around a stable

mean (i.e. the time series is stationary). Thus, there is no trend or seasonality in

the time series. The general formula for simple exponential smoothing is:

Yt = αXt + (1− α)Yt−1 (3.1)

where Yt is the smoothed current smoothed value, Xt is the current observation

and α is a smoothing parameter such that 0 < α < 1. In the SES, setting of the

initial value of Yt is critical. A recursive application of the method shows that the

weights decay geometrically.

Yt = αXt + (1− α)Yt−1 (3.2)

= αXt + (1− α)[αXt−1 + (1− α)Yt−2] (3.3)

= αXt + α(1− α)Xt−1 + (1− α)2Yt−2 (3.4)

= αXt + α(1− α)Xt−1 + α(1− α)2Xt−2 + · · ·+ α(1− α)t−1X1 + (1− α)tY0

(3.5)

The weights assigned to past observations are proportionate to terms in the ge-

ometric series {1, (1 − α), (1 − α)2, (1 − α)3, . . . }. The geometric series is the

discrete case of the exponential function, hence the name exponential smoothing.

The forecast equation for the SES is given by:

Ft+h|t = Yt, h = 1, 2, 3, . . . (3.6)
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where h is the number of forecast steps into future and its associated forecast error

at time t is

et+h|t = Xt+h − Ft+h|t = Xt+h − Yt. (3.7)

Simple exponential smoothing smoothing can also be seen as updating the local

mean level of a time series, Lt. This simply means replacing Yt by Lt in the above

equations. This notation and interpretation is used in the next method.

3.3 Double Exponential Smoothing

Double exponential smoothing is a generalization of exponential smoothing to time

series showing both changing local level and trend. The method is commonly

known as Holt’s method. It involves exponentially updating (or adjusting) the

level and trend of the series at the end of each period. The level (Lt) is estimated

by the smoothed data value at the end of each period. The trend (Tt) is estimated

by the smoothed average increase at the end of the period. The equations for

updating the level and trend of the series are:

Lt = αXt + (1− α)(Lt−1 + Tt−1), 0 < α < 1 (3.8)

Tt = γ(Lt − Lt−1) + (1− γ)Tt−1, 0 < γ < 1 (3.9)

where α and γ are smoothing parameters for level and trend respectively. The

values of α and γ need not be the same. The forecast equation of the Holt’s

method at time t is given by:

Ft+h = Lt + hTt, h = 1, 2, 3, . . . (3.10)

37



where h is the number of forecast steps into future and its associated forecast error

at time t is given by

et+h|t = Xt+h − Ft+h = Xt+h − Lt − hTt. (3.11)

3.4 Triple Exponential Smoothing

Triple exponential smoothing extends the double exponential smoothing to model

time series with seasonality. The method is also known as the Holt-Winters in

recognition of the name of the inventors. Winters improved the Holt’s method by

adding a third parameter to deal with seasonality. Thus, the method allows for

smoothing time series when the level, trend and seasonality can vary. There are

two main variations of the triple exponential model and they depend on the type

of seasonality. Section 2.5.3 has alluded to the seasonality models as additive or

multiplicative model. If the seasonality is multiplicative (i.e. non-linear), then the

three smoothing equations pertaining to level, trend and seasonality of p-period

cycles are given by:

Lt = α(Xt/It−p) + (1− α)(Lt−1 + Tt−1) (3.12)

Tt = γ(Lt − Lt−1) + (1− γ)Tt−1 (3.13)

It = δ(Xt/Lt) + (1− δ)It−p) (3.14)

where It is seasonality adjusting equation, p is the number of period in seasonal

cycle and δ is its smoothing parameter such that 0 < δ < 1. The forecast equation

h-steps ahead at time t from the Holt-Winters with multiplicative seasonality is

given by

Ft+h = (Lt + hTt)It−p+h, h = 1, 2, 3, . . . (3.15)
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and its associated forecast error at time t is

et+h = Xt+h − Ft+h = Xt+h − (Lt + hTt)It−p+h. (3.16)

If the seasonality is additive (i.e. linear), the smoothing equations are given by

Lt = α(Xt − It−12) + (1− α)(Lt−1 + Tt−1) (3.17)

Tt = γ(Lt − Lt−1) + (1− γ)Tt−1 (3.18)

It = δ(Xt − Lt) + (1− δ)It−p (3.19)

where It is seasonality adjusting equation and δ is its smoothing parameter such

that 0 < δ < 1. Hyndman and Athanasopoulos [22] note that the additive model

is seldom used in practice. The forecast equation at time t from the Holt-Winters

method with additive seasonality is given by

Ft+h = Lt + hTt + It−p+h, h = 1, 2, 3, . . . (3.20)

and its associated forecast error at time t is

et+h = Xt+h − Fx+h = Xt+h − Lt − hTt − It−p+h. (3.21)

All the three main exponential methods are relatively simple to apply, with the

SES being the simplest. However, it can be seen as the least realistic for application

to real world time series. The exponential methods have been extended to include a

“damping” factor which allows for a more conservative forecasting horizon [16, 22].

The exponential smoothing methods are based on recurrence relations. They

require initial values of the series of the recurrence equation to be set first. That

is, the initial value of Yt in the SES, the initial values of Lt and Tt in Holt’s

method and the initial values of Lt, Tt and It in the Holt-Winters method. It
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would appear that the smaller the values of α, β and γ, the more important is

the choice of initial values. The study by Makridakis and Hibon [28] comparing

the effect of five choices of starting values (i.e. least squares, backcasting, training

set, convenient, and zero starting values) on post-sample forecasting accuracy did

not find significant effect caused by the choice of starting values. Recent work by

Hyndman et al. [25] use optimization methods to derive starting values.

3.5 General Exponential Smoothing

Brown [9] introduced the idea of general exponential smoothing (GES) or adaptive

smoothing. The method uses discounted least squares to fit certain functions of

time to a time series. Examples of fitting functions include polynomials, exponen-

tials, sinusoids as well as combinations of their sums or products. In particular,

the seasonal component of a time series is modelled by using Fourier functions

of time [16]. This use of functions of time is in contrast with the Holt-Winters

methods where weights are attached to the data itself. The GES is, perhaps, not

as popular as the Holt-Winters methods as a result of mathematical complexity

introduced by the use of Fourier functions. The model formulation is described

below.

Let fi(h) be local fitting functions of time. The forecast at time t is a linear

combination of locally fitted functions fi(h) and is given by

Ft+h =
n∑
i=1

ai(t)fi(h) = a′tf(h) (3.22)

where at is a vector of coefficients. at is obtained by minimizing

t∑
j=0

βj[Xt−j − a′tf(−j)]2. (3.23)
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For large t, Gardner [16] suggests that the solution to the above equation is of the

form,

F =
∞∑
j=0

βjf(−j)f ′(−j). (3.24)

Unlike Holt-Winters where the time series components are smoothed, the GES

smoothes the model parameters. The solution, in an error correction form, is

given by

at = L′at−1 + het (3.25)

where e is an error vector and L is a square matrix which depends on functions of

time only and satisfying f = Lft−1 and h = F−1f(0) denotes a smoothing vector

dependent on functions of time and parameter β. The smoothing vector is as

important as the smoothing parameters in the Holt-Winters methods. The GES

is useful only in cases where the data are seasonal. The GES method has some

strengths over the Holt-Winters. First, forecast errors for GES have a finite vari-

ance owing to the use of a single parameter, β, 0 < β < 1. Second, the GES should

adapt to changing seasonal patterns better than Holt-Winters methods since the

seasonal terms are adjusted with each data point [16]. The main weakness of the

GES over the Holt-Winters methods is that it has a limited scope of application

(i.e. where data are seasonal).

3.6 Classification of Exponential Smoothing Meth-

ods

The most common exponential smoothing methods described in Section 2.5.4 dif-

fer due to trend and seasonality. Pegels [35] developed a classification scheme of

the methods by considering variations in the trend and seasonal components. The

classification is known as a taxonomy. It has been extended further by Gardner
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[16] and Taylor [43] to allow for damped trends in time series forecasting. Table

3.1 presents an comprehensive list of all variants of the exponential smoothing

methods. Each cell represent an exponential smoothing methods. The most com-

mon ones are the Simple Exponential Smoothing denoted by cell (N,N), Double

Exponential Smoothing denoted by cell (A,N) as well as Holt-Winters Methods in

cells (A,A) and (AM).

Table 3.1: Taxonomy of exponential smoothing methods
Seasonal
N (None) A (Additive) M (Multiplicative)

Trend N (None) N,N N,A N,M
A (Additive) A,N A,A A,M
Ad (Additive damped) Ad,N Ad,A Ad,M
M (Multiplicative) M,N M,A M,M
Md (Multiplicative damped) Md,N Md,A Md,M

3.7 Innovations State Space Models

Statistical models that form the basis for exponential smoothing methods are

known as innovations state space models. The innovations models provide a

general framework for statistical modelling with exponential smoothing methods.

Thus, they allow for an objective model selection. The state space models allow

for the estimation of both point forecasts as well as prediction intervals. They can

explicitly model the forecast error distribution, which was not possible in the past

and had seen them labelled as ad-hoc. A detailed exposition of the innovations

state space models is found in Ord et al. [34], Hyndman et al. [25] and Hyndman

and Athanasopoulos [22].

In the state space models, for each exponential method there exist two equivalent

exponential models: one whose error distribution is additive and another whose

error distribution is multiplicative. Hyndman and Athanasopoulos [22] note that
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there are 30 variations of the exponential smoothing methods in total which cor-

respond to the ones in Table 3.1 with either additive or multiplicative errors. The

point forecasts generated by the two models are the same but they do not neces-

sarily generate the same the prediction intervals. This apparent lack of uniqueness

make them more suitable for real world applications.

3.7.1 Exponential Smoothing Equivalents in State Space

Form

The exponential smoothing methods as described in Sections 3.2, 3.3 and 3.4 can

be expressed in their error correction forms. Unless stated otherwise, the for-

mulation presented here is summarized from Hyndman and Athanasopoulos [22].

Simple exponential smoothing (SES) is expressed as local level model governed by

the recursive relationship below:

yt = lt−1 + εt (3.26)

lt = lt−1 + αεt (3.27)

where yt is a smoothed value, α is a smoothing parameter such that 0 ≤ α ≤ 1 and

ε is a random error component. The random error follows the normal distribution

and is identically distributed with mean zero and constant variance. Similarly,

Double exponential smoothing (Holt’s) is formulated as a local trend model with

the following recurrence relation:

yt = lt−1 + bt−1 + εt (3.28)

lt = lt−1 + bt−1 + αεt (3.29)

bt = bt−1 + βεt (3.30)
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where lt adjusts local level, bt adjust for local growth, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and

ε is a random error also assumed to be white noise as with the SES. The Triple

exponential smoothing (Holt-Winters) with additive is formulated as below. As

seasonality can be additive or multiplicative, we present the additive seasonality

model as follows

yt = lt−1 + bt−1 + st−m + εt (3.31)

lt = lt−1 + bt−1 + αεt (3.32)

bt = bt−1 + βεt (3.33)

st = st−m + γεt (3.34)

where lt adjusts local level, bt adjust for local growth, st adjusts for seasonality, m

is the number of seasons in period (e.g. in a year), 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and ε is

a random error assumed to be white noise. The multiplicative seasonal model is

not presented here but is very much similar to the additive model. Note that, in

all the three models, the equations together with distribution of the error terms

result in a fully specified statistical model. Also since the source of randomness

in these models is only via the random error term, ε, they are referred to as

innovations models. Hyndman and Athanasopoulos [22] argue that this is to

distinguish innovations state space models from models that have multiple sources

of errors.

3.8 Forecasting with Exponential Methods

The main steps in setting up a Holt-Winters exponential forecasting model ac-

cording to Chatfield [12] are as follows:

1. Examine the data to select an appropriate model,
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2. Initialize starting values for L1, T1 and seasonal indices, say I1, I2, . . . , In

using the first n observations in the series,

3. Estimate values for smoothing parameters α, γ and σ by minimizing the

error sum of squares or other suitable measure,

4. Normalize the seasonal indices at regular intervals if appropriate,

5. Estimate model using a fully automatic approach or non-automatic ap-

proach, and

6. Estimate forecast accuracy of the estimated model.
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Chapter 4

Data and Methods

4.1 Introduction

In this chapter we discuss the data and methods used in this research. Datasets are

introduced in Section 4.2. In Section 4.3, we describe the exponential smoothing

methods used in the study as well as the seasonal naive method. Section 4.4 deals

with the statistical software used in the analysis.

4.2 Data Description

4.2.1 Rainfall Dataset

The dataset comprises 780 time series of rainfall measurements taken from the

nine provinces of South Africa. The data are monthly averages for each of the

nine provinces. The rainfall data are characterized by strong seasonality. The data

were collected over the period 1950 to 2014. As rainfall is not very frequent all the

seasons in South Africa, daily rainfall time series would have provided data with

lots of zero values in some seasons. Thus, average monthly data were considered
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to be more useful. The methodology of averaging the data is not provided but has

been assumed to be simple averages of daily rainfall. Not all provinces data will

be used for the report, only data from Gauteng will be used.

4.2.2 Temperature Dataset

The dataset consists of 21535 empirical time series of temperature recorded at the

Johannesburg Weather Station (formerly Jan Smuts) over the period from 1956

to 2014. The South African Weather Service provided the data. The time series is

made up of hourly readings from the station. The majority of the time series are

positive values, with handful of negative values. The data exhibit clear seasonal

pattern along as well as evidence of a trend. The time series are nevertheless char-

acterized by levels of noise. However, this is not uncommon in time series datasets.

Less than 1% of the time series are missing data. The missing observations were

replaced by values obtained from fitting a local spline function to neighbouring

non-missing values. This is to facilitate exponential smoothing forecasting.

The two datasets contain seasonal time series that are of a univariate nature. No

covariates were measured together with the time series. For example, atmospheric

pressure and humidity could be important predictors of temperature and humidity.

However, the purpose of this research is to compare the performance of the uni-

variate exponential smoothing models. Figure 4.1 below shows time series plots

as well as histograms obtained from the two data sets. Figure 4.1(a) describes

the average monthly rainfall in Gauteng for the period 1950 to 2014. We see that

there is a seasonal pattern to the series with high fluctuations. Most of the rainfall

amounts received in Gauteng fall below 100 mm. There is evidence of outlying val-

ues with rainfall amounts exceeding 200 mm. Figure 4.1(b) describes the hourly

temperature in Johannesburg over the period 1956 to 2014. The time series is

characterized by strong seasonality, with temperatures ranging between 5◦C and
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Figure 4.1: Datasets Plots

25◦C. Figures 4.1(c) and 4.1(d) depicts the distribution of rain and temperature

within each year respectively.

4.2.3 Training and Test Datasets

Both datasets are split into training (in-sample) and test (out-of-sample) datasets

using a ratio of 80 : 20. That is, 80% of the data are used to fit the exponential

smoothing models while 20% of the data are used to evaluate the forecasting

performance of the models.
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4.3 Methodology Description

4.3.1 Methods

Exponential smoothing methods as described in 3.6 are applied to rainfall and

temperature data sets. Both data sets have level, stable trend and seasonality. A

seasonal naive method is fitted to the same data sets for comparative purposes.

The algorithm for the seasonal naive method can be described as follows. The

forecast value is the last observed value from the time series at same time and

season of the year. For monthly data, that would be last observed data point from

the same month of the same season. The forecast for the seasonal naive for time

T + h is written as

YT+h−km (4.1)

where m = seasonal period, k = b(h− 1)/mc + 1, and buc denotes the integer

part of u [22]. An exponential smoothing method that performs worse than this

method is not useful for forecasting purposes. The seasonal naive methods there-

fore provides a benchmark for the performance of exponential smoothing methods.

4.3.2 Model Estimation

Exponential smoothing methods require starting values as well as smoothing pa-

rameters, both of which are estimated from the data. The estimation procedure is

as follows. First, apply all the models to the data using parameters obtained via

maximum likelihood estimation (MLE). Second, select the best model. Details of

likelihood theory can be found in Brockwell and Davis [7]. The forecast package

developed by Hyndman and Khandakar [23] provides automated procedures to

estimate the smoothing parameters.
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4.3.3 Model Selection

The statistical models that underlie the exponential smoothing methods allow

the use of information criteria for model selection. Information criteria measures

how well an estimated model fits with data in comparison with other models.

According to Hyndman and Athanasopoulos [22], the following information criteria

are appropriate for time series data.

The Akaike’s Information Criterion (AIC) for time series is defined as

AIC = −2log(L) + 2k, (4.2)

where L is the likelihood function of the model and k is the total number of esti-

mated parameters as well as estimated initial states.

The Akaike’s Information Criterion corrected for small sample bias (AICc) is de-

fined as

AICc = AIC + 2(k + 1)(k + 2)
T − k

, (4.3)

where T is the number of observations used to estimate the model and k is the

total number of estimated parameters in the model and

The Bayesian Information Criterion (BIC) for time series is defined as

BIC = AIC + k[log(T )− 2] (4.4)

where T is the number of observations used to estimate the model and k is the

total number of estimated parameters in the model.

The AIC, AICc and BIC are used here to determine which of the exponential

smoothing models is most appropriate for a given time series. In automatic fore-

casting, the statistical software handles the model selection by comparing various

models and choosing the one that minimizes the AIC, AICc and BIC. This is

consistent with work by Billah, King, Snyder, and Koehler [4] which argue that
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information criteria perform best for model selection purposes compared to other

approaches. The accuracy of the selected forecasting model is evaluated using an

out-of-sample evaluation.

4.4 Statistical Software

The statistical software used in this research project is the R Language [38] and

is free to download from www.R-project.org. The forecast package [23] contains

implementations of most of the univariate time series algorithms and modelling

frameworks. It includes automatic forecasting for both exponential smoothing

and ARIMA methods. The algorithms have been shown to compare favourably to

many proprietary software [23]. The base R time series package ts also contains

the exponential smoothing functions but is limited for complex and large time

series analyses.
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Chapter 5

Analysis and Results

5.1 Introduction

The purpose of this research is to apply exponential smoothing forecasting meth-

ods to two weather related datasets and to assess their forecasting performance

using time series out-of-sample validation. In addition, we sought to compare

the performance of exponential methods against the naive seasonal forecasting

method. The chapter is structured as follows. Section 5.2 presents the findings of

applying exponential smoothing methods and the seasonal naive method to the

monthly rainfall dataset. Section 5.3 presents the results of applying the same

methods to the daily temperature dataset.

5.2 Application to Rainfall Data

5.2.1 Data Exploration

Exploratory data analysis (EDA) is crucial to any successful statistical modelling

[11]. It involves an in-depth description and assessment of the quality of the data.
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Descriptive measures such as summary statistics and graphical methods are used

to gain insight into the data. Missing data, outlying and influential data values are

checked for to prevent distortions of the data generating process(es). By and large,

the initial examination of the data helps in model selection and fitting. Results

from the exploratory data analysis follow below.

We begin by looking at the average monthly rainfall recorded over the period

1950 to 2014. Table 5.1 presents summary statistics for the rainfall quantities

received over the period. The time series comprises 780 monthly observations.

The estimated average monthly rainfall received over the period is 58mm. It

ranges over zero (no rain received at all) to 351mm As mentioned in the data

description, the distribution of rainfall amounts is skewed.

Table 5.1: Descriptive Statistics: Rainfall

Statistic N Mean St. Dev. Min Max
Rainfall 780 58.239 55.705 0.000 351.100

The summary statistics, whilst useful, do not shed much insight into the rainfall

pattern over time. We looked at the distribution of rainfall within each year.

Figure 5.1 presents a box-and-whisker plot of the rainfall quantities received each

year. It shows that the mean rainfall was relatively stable at about 58mm. Most

of the rainfall recorded is between 0mm and 100mm. There appear to be a few

outlying observations in the rainfall time series whose quantities exceed 150mm. A

review of the data and checking with the data providers suggests that the data are

indeed correct and it is not a case of faulty recording. The outlying observations

are therefore left in the data for analysis as they are a feature of the data rather

than an artefact.

53



1950 1957 1964 1971 1978 1985 1992 1999 2006 2013

0
50

15
0

25
0

35
0

Year

R
ai

nf
al

l (
m

m
)

Figure 5.1: Rainfall Box-and-whisker plot

Time series observations are correlated through time. Therefore, it is important

to assess the nature of the autocorrelation and indeed check if autocorrelation is

present. Figure 5.2 shows a lagged scatter plot (lag plot) with nine lags. In this

case, the lag represents the preceding months. If the points lie on the diagonal,

this implies a linear relationship between the time series observation and its lag.

There is evidence of strong linearity between an observation and its lag (see top

left plot). The relationship with observations relatively far in time is that of a

structured curvature which suggests a non-linear dependence.
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Figure 5.2: Rainfall Lag Plot

The lag plot does not show whether or not the non-linear dependence is seasonal.

The autocorrelation (ACF) plot can be used to identify seasonal time series. Figure

5.3 presents the autocorrelation plot of the rainfall time series. The time series

is clearly non-linear and the ACF plot shows that the relationship has a strong

seasonality. The season has a period of 12 months.
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Figure 5.3: Rainfall Autocorrelation Plot

Now that we have more insight into the rainfall time series, we investigate the

components of the time series. We make use of classical decomposition of the

time series. Figure 5.4 depicts the separate components of the rainfall time series.

This suggests that if the nature of the series is additive, the time series can be

expressed as an additive function of level, trend and season. In summary, the

exploratory data analysis has shown that the average rainfall received in Gauteng

can be modelled by a non-linear time series. The time series has a seasonal pattern

but the mean is relatively stable at 58mm. The strength of linearity of observation

dependence diminish as the lag increases.

5.2.2 Model Identification and Fitting

The rainfall dataset was divided into two: 80% in-sample and 20% out-of-sample.

As mentioned previously, the in-sample dataset was used for model fitting and the

out-of-sample was used to validate the fitted models. The rainfall observations

were displaced upwards with a small constant (i.e. y∗t = yt + 0.00005) to remove

zero values. Accuracy measures such as percentage errors are undefined in the
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Figure 5.4: Rainfall Classical Decomposition

presence of zero values. The adjustment itself will not affect the analysis all the

observations are adjusted by the same constant. It is worth noting that, while the

adjustment prevents measures such as MAPE from being undefined, it still yields

very large values of MAPE. Thus, caution need to be exercised when interpreting

measures sensitive to near zero values. A total of four time series models were fit to

the dataset. They include seasonal naive method, simple exponential smoothing

(SES), Holt’s method and Holt-Winters method. The inclusion of the seasonal

naive method is to see how it compares to the exponential smoothing methods. It

is standard practice in time series modelling to compare the methods under review

to naive methods. It is assumed the other methods will outperform naive methods.

Thus, if naive methods outperform the methods being tested, then it means the

methods being tested are not worth being used for forecasting or prediction. The

process of model fitting uses an automated procedure provided for in the forecast

package. They use information criteria to select the best model parameters.
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Table 5.2: Estimated Model Parameters: Rainfall

Parameter SES Holt H-W Add H-W Mult
Alpha (α) 0.7689 0.7692 0.0145 0.0319
Beta (β) 0.0001 0.0001 0.0001

Gamma (γ) 0.0001 0.0408

When fitting exponential smoothing models the values of smoothing parameters

are of interest. Table 5.2 presents the estimated parameters for the SES, Holt and

Holt-Winters methods. SES depends on the smoothing parameter α which adjusts

for the local level of the series. The local level α of the rainfall series is estimated

to be 0.7689. This is implies that more weight is placed on recent observations

than observations far in time in our estimated SES model. A large value of the

smoothing parameter α is indicative of a time series with a level that is changing

rapidly. This is consistent with monthly rainfall fluctuations as depicted in the

time series plots earlier.

Holt’s exponential smoothing method is controlled by two parameters: level of

the series α and trend of the series β. The estimated value of α is 0.7692 and

that of β is 0.0001. The value of α is high telling us that more weight is placed

on recent observations than older observations to adjust for the local level of the

rainfall series. The value of β is close to zero meaning that the trend of the rainfall

time series is changing rather slowly. Relatively little weight is applied to recent

observations when forecasting rainfall with estimated Holt’s model. It is worth

noting that the estimated level parameters between SES and Holt’s method are

almost the same. Thus, these two models are likely to give similar forecasting

accuracy.

Three parameters need to be estimated in the Holt-Winters exponential smoothing

method. These are α for the level of the series, β for the trend of the series and γ

for the season component. We considered the Holt-Winters method with additive
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seasonality and with multiplicative seasonality. First, we present the estimated

smoothing parameters for the Holt-Winters method with additive seasonality. The

estimated value for the level α of the series is 0.0145, the trend β of the series is

0.0001 and the seasonal component γ is 0.0001. All the smoothing parameters are

close to zero. This implies that the fitted model has slowly changing level, trend

and season. The level of the rainfall series α is changing relatively faster than the

trend and season. The estimated values in this model suggest that relatively little

weight is placed on recent observations compared to less recent ones. Second, we

now look at the Holt-Winters method with multiplicative seasonality. The esti-

mated parameters are 0.0319, 0.0001 and 0.0408 for α, β and γ respectively. The

level parameter α is very low suggesting a low weighting on recent observations

than less recent observations. The smoothing values for the trend and seasonal

components are also close to zero. This means that the trend and seasonal com-

ponents are updating slowly and that little weight is placed on recent observations

as well as observations far in time.

We also check model assumptions. An assumption underlying the use of state

space exponential smoothing methods is that the model residuals are normally

and independently distributed with mean zero and constant variance. Histograms

of residuals in Figure A.6 suggests that assumption is not violated for all the expo-

nential smoothing models fitted in this research. Both Ljung-Box and Box-Pierce

portmanteau tests returned large p−values indicating that the model residuals

were indeed white noise. Thus, the models are a good fit for the rainfall data.

5.2.3 Model Accuracy

We evaluate how well the exponential time series models fit the rainfall data by

computing a number of in-sample accuracy measures. This is to check how well

the model fits the data on which it is modelled. In a way, it gives a sense of
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internal consistency of the fitted model. The accuracy measures obtained from

fitting the four rainfall time series models are presented in Table 5.3. Across the

accuracy measures, the seasonal naive method outperforms both the SES and

Holt’s methods. The Holt-Winters exponential smoothing methods performed

best. In fact, the Holt-Winters model with additive seasonality performed best

across the measures for in-sample accuracy. It performed better than the Holt-

Winters exponential model with multiplicative seasonality.

Table 5.3: In-Sample Accuracy Measures: Rainfall

METHOD ME RMSE MAE MPE MAPE MASE
Naive -9.072 33.221 24.091 -83.730 112.605 0.737
SES -58.843 66.167 58.843 -411.018 411.018 1.801
Holt -59.192 66.522 59.192 -413.175 413.175 1.812

H-W Add -19.920 30.749 22.528 -104.448 114.303 0.689
H-W Mult -23.270 35.314 26.699 -99.977 114.299 0.817

While in-sample evaluation of the models is important, it does not imply that the

models will necessarily forecast well. Using the models estimated, we performed

an out-of-sample evaluation. This evaluation shows which of the models captures

well the future evolution of the rainfall time series. Table 5.4 shows the results of

the evaluation. The results are similar to the in-sample ones with one exception.

The Holt-Winters exponential model with multiplicative errors performed very

poorly, even worse than the other methods. Still the Holt-Winters method with

additive seasonality performed best followed by seasonal naive method. Since the

data clearly has seasonality, it is to be expected that the Holt-Winters method

(i.e. the model allows for seasonality) performs best. It suggests that ignoring

seasonality, when it is presented, does not improve rainfall forecasting ability of a

model.
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Table 5.4: Out-of-Sample Accuracy Measures: Rainfall

METHOD ME RMSE MAE MPE MAPE MASE
Naive -9.072 33.221 24.091 -83.730 112.605 0.737
SES -58.843 66.167 58.843 -411.018 411.018 1.801
Holt -59.192 66.522 59.192 -413.175 413.175 1.812

H-W Add -19.920 30.749 22.528 -104.448 114.303 0.689
H-W Mult -23.270 35.314 26.699 -99.977 114.299 0.817

5.3 Application to Temperature Data

5.3.1 Data Exploration

We follow the same approach with temperature as we did with rainfall time series.

We use descriptive statistics and exploratory plots to better understand the data.

We check for the presence of missing data, outlying and influential data values.

The insight gained from the exploratory analysis is useful for model selection and

fitting. The temperature dataset comprises daily average temperatures recorded

in Johannesburg from 1956 to 2014.

Table 5.5 presents the overall descriptive statistics of the temperature time series

dataset. The dataset comprises 21535 observations, which is approximately 365

observations per year. The size of the data means we will able to capture the

essential underlying structure of the time series, better than in the rainfall dataset.

The temperatures recorded at the weather station ranged between −2 and 27

Degrees Celsius. Thus, the coldest day, on average, had a temperature below zero.

Similarly, the warmest day, on average, exceeded 25 degrees Celsius. The mean

temperature over the period was 15.8 Degrees Celsius, with a spread of about 4

Degrees Celsius.
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Table 5.5: Descriptive Statistics: Temperature

Statistic N Mean St. Dev. Min Max
Temperature 21,535 15.670 4.314 −1.171 26.692

We performed a graphical analysis to understand the distribution of time series

over this period. Figure 5.5 shows an annual box-and-whisker plot for the temper-

ature time series. The plot suggest a stable distribution of temperatures within

the years. As can be seen, the median temperature is approximately 15 Degree

Celsius. There is substantial shift in the overall distributions between the year,

perhaps only wider distributions in years. Most of temperature lie in a band be-

tween 10 and 20 Degrees Celsius. There is evidence of outlying observations. In

this case, we consider outliers the observations below 5 Degrees Celsius. It appears

that most years have some days which are much colder than normal. Most of the

coldest days are Winter days and this is not unexpected. The box-and-whisker

plot, on the whole, suggests that the temperatures do not change significantly over

time.
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Figure 5.5: Temperature Box-and-whisker plot

Figure 5.6 shows the lagged scatter plot up to nine lags. Here we are looking at
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the correlation between the current and preceding observations. The plot shows

a very strong linear relationship between the observations up to lag nine. Since

this is a high frequency dataset, any non-linearity if present will show in lags far

removed from the current observation. Therefore, the figure does not contain a

definitive trend. Further autocorrelation checks were performed.
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Figure 5.6: Temperature Lag Plot

The autocorrelation plot is able to pick up a non-linear relationship even in high

frequency data. Figure 5.7 depicts the relationship between successive observations

in the temperature time series. Unlike the lagged scatter plot, the ACF shows

strong non-linear relationship as well as evidence of seasonality. This is what we

expected. The lagged plot might have been slightly misleading.
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We end the exploratory data analysis by performing classical decomposition as

a means to understand the underlying structure. We used the additive decom-

position seeing it performed best in the rainfall data set. Again, if the additive

seasonality is the correct type of seasonality, we can separate the noise from the

features that deterministic components of level, trend and seasonality. Figure 5.8

suggest that temperature has been steadily rising, albeit over a very long period.
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Figure 5.8: Temperature Classical Decomposition

In summing up the exploratory analysis, we note that the temperature time series

has strong seasonality and a possible trend. Next, we fit the exponential smoothing

models to the data.

5.3.2 Model Identification and Fitting

As with rainfall dataset, the temperature dataset was divided into 80% in-sample

and 20% out-of-sample. The observations were also adjusted with a constant to

make the series positive (i.e. y∗t = yt − min(yt) + 0.00005). The forecasts can

be transformed back to the original by subtracting/adding the adjustment. The

accuracy measures are affected in the presence of zeros and negative observations.

Four models were fit to the data. They are seasonal naive, simple exponential

smoothing (SES), Holt’s (double exponential smoothing) and Holt-Winters (triple

exponential smoothing). Holt-Winters models with additive seasonality and mul-

tiplicative seasonality were fit separately. The models were selected via the in-
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formation criteria and parameters estimated via maximum likelihood estimation.

The estimated model smoothing parameters are as shown in Table 5.6.

Table 5.6: Estimated Model Parameters: Temperature

Parameter SES Holt H-W Add H-W Mult
Alpha (α) 0.9999 0.9999 0.8756 0.7241
Beta (β) 0.0001 0 0

Gamma (γ) 1 0.4419

We describe the estimated parameters from the SES, Holt’s and Holt-Winters

exponential smoothing models. The estimated value of the level parameter α for

the SES model is 0.9999. The value is very high indicating that the local level of

the temperature time series is based on very recent observations. The level of the

time series is changing quickly.

The Holt’s method requires the estimation of the local level parameter α and trend

parameter β. The estimated smoothing values for the Holt’s method are 0.9999

and 0.0001 for α and β respectively. The very high value of α implies that more

weight is placed on recent observations than older observations. This is a sign

of rapidly changing local level of the temperature. The trend parameter is close

to zero meaning that there is little updating of the trend over time. Thus, the

temperature time series is slowly changing over time. This is consistent with the

finding of the exploratory analysis.

Two Holt-Winters exponential smoothing models were fit to the temperature

dataset. One with additive seasonality and another with multiplicative season-

ality. Each model requires estimation of three parameters: α, β and γ. The

estimated values of the smoothing parameters for the Holt-Winters model with

additive seasonality are 0.8756, 0 and 1 for α, β and γ respectively. The estimated

α is high which means the local level is updating rapidly and more weight is placed

on recent observations than older ones. The smoothing parameter for the trend β
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is zero meaning the trend of the temperature time series is not adjusted over time.

Its current value remains the initial trend value. The trend of the temperature

time series is unchanging over time. The smoothing parameter for the season is

1 which is very high indicating that it is based on the most recent observation.

The estimated values for the Holt-Winters model with multiplicative seasonality

are 0.7241, 0 and 0.4419 for α, β and γ respectively. The multiplicative model

suggests a high value of α indicating that the local level is based on recent obser-

vations. As with the additive model, the value of β suggests no updating of the

trend in the temperature time series. The value of the seasonal component γ is

relatively low indicating that both recent and less recent observations are used to

estimate the seasonal component. Overall, all the three models indicate that tem-

perature time series has a rapidly changing local level. In addition, the Holt and

Holt-Winters models indicate that the temperature time series has stable trend

(i.e. not changing over time). We check the assumption of normally distributed

model residuals for the temperature exponential smoothing models. Figure A.7

suggests that residuals are normally and independently distributed with constant

variance. The formal portmanteau tests, Ljung-Box and Box-Pierce, confirmed

with large p−values that the residuals were white noise. We assess the model fit

and forecasting performance using in-sample and out-of-sample accuracy measures

respectively.

5.3.3 Model Accuracy

The results of model in-sample performance are presented in Table 5.7. All the

models outperformed the seasonal naive method. In fact, all the models perform

very well with very high accuracy in mean error (ME), root mean square error

(RMSE), mean absolute error (MAE). They performed worse on mean percent-

age error (MPE) and mean absolute percentage error (MAPE). SES and Holt
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performed better than the Holt-Winters models in most measures. In terms of

the Holt-Winters, the additive model outperform the multiplicative model. The

performance of all the models is indication that we have selected the appropriate

models. As stated before, in-sample performance is not necessarily an indicator

of forecasting performance.

Table 5.7: In-Sample Accuracy Measures: Temperature

METHOD ME RMSE MAE MPE MAPE MASE
Naive 0.012 3.653 2.838 -11, 672.380 11, 688.510 1
SES 0.0001 2.036 1.535 -3, 397.768 3, 407.303 0.541
Holt 0.001 2.036 1.535 -3, 395.517 3, 405.058 0.541

H-W Add 0.0001 2.331 1.768 5, 115.279 5, 126.968 0.622
H-W Mult -0.075 2.467 1.863 6, 381.416 6, 394.349 0.655

We proceed to investigate the out-of-sample performance of the chosen models.

Table 5.8 shows the accuracy measures based on the out-of-sample data, i.e.,

data which has not been used in the model fitting. As expected, the seasonal

naive method performed worst across most of the measures. Although all the ex-

ponential smoothing methods produced good out-of-sample forecasts, the simple

exponential smoothing methods performed best. This was followed by the Holt’s

exponential smoothing method. Interestingly, the Holt-Winters with multiplica-

tive seasonality performed better than the Holt-Winters with additive seasonality.

This is unlike the rainfall dataset. Also, all the accuracy measures in the out-of-

Table 5.8: Out-of-sample Accuracy Measures: Temperature

METHOD ME RMSE MAE MPE MAPE MASE
Naive 0.301 3.641 2.784 −1.829 18.748 0.981
SES −1.461 3.107 1.863 −9.287 10.982 0.656
Holt −1.463 3.109 1.864 −9.300 10.987 0.657

H-W Add −1.491 3.596 2.788 −13.548 19.970 0.982
H-W Mult −0.326 3.466 2.674 −4.668 17.915 0.942

sample evaluation were worse than in in-sample evaluation. This adds to the view
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that the predictive ability of a fitted forecasting model is best done using the data

the model has not seen before. Since the model has been fitted using in-sample

data, it is has already been tuned to this data hence higher predictive power on

the in-sample data than the out-of-sample data.
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Chapter 6

Discussion and Conclusion

6.1 Introduction

This chapter looks at the extent to which aims and objectives of the research report

have been met. Section 6.2 presents a summary and discussion of the exponential

smoothing forecasting results. Section 6.3 outlines areas in which the exponential

smoothing methods can be furthered. The chapter ends with conclusions.

6.2 Summary of Findings

This section presents a summary of the results of the applying exponential smooth-

ing methods to two weather related datasets. In total, four methods were applied

to the rainfall and temperature datasets. They include the three exponential

smoothing methods and a seasonal naive method. The Holt-Winters method with

additive seasonality was the best method for forecasting rainfall time series. The

SES and Holt’s methods performed worse than the seasonal naive so as to be dis-

regarded for modelling monthly rainfall time series. The Holt-Winters model is,

therefore, the most likely data generating process for the average rainfall received
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in Gauteng Province.

The simple exponential smoothing method (SES) performed best for forecasting

daily temperature time series. The three exponential time series models consid-

ered generally performed well across all the accuracy measures. All the expo-

nential smoothing methods performed better than the seasonal naive method in

forecasting daily temperature time series. The multiplicative Holt-Winters meth-

ods performed better than the additive model. From a theoretical point of view,

we were expecting the Holt-Winters method to emerge as the most accurate. How-

ever, the temperature time series showed that simplest of them was most accurate.

Since the rainfall data was already modified, the exponential smoothing methods

performed relatively poorly. The temperature data had minimal modification and

the exponential smoothing methods performed well. This suggests real life data

contain information more information than manipulated ones. The SES is the

most likely process that generated the daily temperature data recorded at the

Johannesburg Weather Station.

A limitation of the research is the lack of a Monte-Carlo simulation. This means

that the study did not investigate the properties of the smoothing parameters α,

β and γ. Such a study would have resulted in more certainty around the study

results.

6.3 Future Research

The statistical properties of exponential smoothing methods are still to be fully

understood. There are areas for which this research could be extended to. For

instance, the exploratory analysis highlighted the potential issue of outlying values.

It would be a worthwhile statistical pursuit to assess the robustness of the methods

in the presence of outliers or influential points. A paper by Gelper, Fried, and
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Croux [19] found that the Holt-Winters exponential smoothing methods can be

affected by outlying observations.

There are more directions into which the research could be taken:

• Performing Monte-Carlo simulations on the exponential smoothing methods

• Comparison of Holt-Winters exponential smoothing methods with General

exponential smoothing (GES) methods and

• Comparison of Holt-Winters exponential methods with the ARIMA models

on these data.

Overall, the empirical investigation showed that the performance of exponential

smoothing methods vary depending on the quality of data available for modelling.

The result show that not one of exponential smoothing methods can be used on

its own. While the Holt-Winters model was the theoretically correct model to

apply on these data, the SES outperformed it. Forecasters will have to assess the

performance of the three exponential models before they can decide which one to

use for forecasting.
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Appendix A

Additional Results

This section presents some of the tables and graphs not included in the main
chapters.
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Figure A.1: Rainfall time series plot in multiple panels
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Figure A.2: Temperature time series plot in multiple panels
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Figure A.3: Box-and-whisker plot for Temperature, 2014
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Figure A.4: Average Daily Temperature: 2000-2014
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Figure A.5: Average Monthly Rainfall: 2000-2014
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Figure A.6: Residual Plots: Rainfall
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Figure A.7: Residual Plots: Temperature
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Figure A.8: Actual versus in-sample fit: Rainfall
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Figure A.9: Actual versus in-sample fit: Temperature
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Appendix B

R Code

This section contains the R-language code that was used to generate the output
results in the research report.

setwd ("~/ Dropbox / WitsAll / analysis2015 /")
library (" Cairo ")
library (" gridExtra ")
library (" ggplot2 ")
library (" ggfortify ")
library (" lubridate ")
library (" lattice ")
library (" reshape ")
library (" scales ")
library (" dplyr ")
library (" stargazer ")
library (" forecast ")

# suppress scientific notation
options ( scipen =999)

################## RAINFALL ################

#open data set
rainfall <- readRDS ("./ rainfalldata / rainfalldata .RDS ")

#check for missing data
sum(is.na( rainfall$Rainfall ))

# descriptive
stargazer ( rainfall [" Rainfall "], type =" latex ")

# slices
rainfall$Period [ rainfall$Year >=1950 & rainfall$Year

<1970] < -"[1950 -1970)"
rainfall$Period [ rainfall$Year >=1970 & rainfall$Year

<1990] < -"[1970 -1990)"
rainfall$Period [ rainfall$Year >=1990 & rainfall$Year

<2015] < -"[1990 -2014]"
table( rainfall$Period )
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# exploratory data analysis
CairoPDF (" preplot1a .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
plot( Rainfall ~Date , data=rainfall , type ="l", col =" navy", xlab ="

Year", ylab =" Rainfall (mm)")
dev.off ()

CairoPDF (" preplot1b .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")

plot( Rainfall ~Date , data=rainfall , type ="o", col =" navy", xlab ="
Year", ylab =" Rainfall (mm)", pch =20)

dev.off ()

CairoPDF (" preplot1c .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")

boxplot ( Rainfall ~Year , data=rainfall , xlab =" Year", ylab =" Rainfall
(mm)", col =" navy", pch =20)

dev.off ()

CairoPDF (" preplot1d .pdf", height =4, width =6, pointsize =10, family
=" serif ")

hist( rainfall$Rainfall , xlab =" Rainfall (mm)", col =" navy", breaks
=99, main=NULL , prob=TRUE)

lines( density ( rainfall$Rainfall ), col =" red", lwd =1)
rug( rainfall$Rainfall )
box ()
dev.off ()

CairoPDF (" preplot1e .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")

trainfall <-ts( rainfall$Rainfall , start=c(1950 ,1) , frequency =12)
Acf(trainfall , col =" navy", main ="")
dev.off ()

CairoPDF (" preplot1f .pdf", height =8.5 , width =12.75 , pointsize =12,
family =" serif ")

trainfall <-ts( rainfall$Rainfall , start=c(1950 ,1) , frequency =12)
plot( decompose ( trainfall ), col =" navy ")
dev.off ()

CairoPDF (" preplot1g .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")

plot( Rainfall ~Date , data= rainfall [ rainfall$Year >1999 ,] , type ="l",
col =" navy", xlab =" Year", ylab =" Rainfall (mm)")

dev.off ()

CairoPDF (" preplot1h .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")

plot( Rainfall ~Date , data= rainfall [ rainfall$Year >2009 ,] , type ="l",
col =" navy", xlab =" Year", ylab =" Rainfall (mm)")

dev.off ()

CairoPDF (" preplot1i .pdf", height =8.5 , width =12.75 , pointsize =12,
family =" serif ")
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par1 <-par(mfrow=c(3 ,1))
plot( Rainfall ~Date , data= rainfall [ rainfall$Period =="[1950 -1970)

",], type ="l", col =" navy", xlab ="", ylab ="")
plot( Rainfall ~Date , data= rainfall [ rainfall$Period =="[1970 -1990)

",], type ="l", col =" navy", xlab ="", ylab =" Rainfall (mm)")
plot( Rainfall ~Date , data= rainfall [ rainfall$Period

=="[1990 -2014]" ,] , type ="l", col =" navy", xlab =" Year", ylab ="",
mgp = c(2, 1, 0))

par(par1)
dev.off ()

################## ANALYSIS .1################

# added a small quantity to prevent zero values .
epsi <- min( rainfall$Rainfall ) +0.000005
epsi
rainfall$Rainfall <- rainfall$Rainfall +epsi
min( rainfall$Rainfall )

#split into train/ testing datasets
index < -1:(0.8* nrow( rainfall ))
trainRainfall <- rainfall [index ,]
testRainfall <- rainfall [-index ,]

# convert data into time series object
alldata <- ts( rainfall$Rainfall , start=c(1950 ,1) , frequency =12)
traindata1 <- ts( trainRainfall [" Rainfall "], frequency =12, start

=1950)
testdata1 <- ts( testRainfall [" Rainfall "], frequency =12, start

=2002)

#Fit Models
naivefit <- snaive ( traindata1 )
sesfit <- ses( traindata1 )
holtfit <- holt( traindata1 )
hwfit_add <- hw(traindata1 , seasonal =" additive ")
hwfit_mult <- hw(traindata1 , seasonal =" multiplicative ")

naivefit$model
sesfit$model
holtfit$model
hwfit_add$model
hwfit_add$model

naivefit <- snaive ( traindata1 )
sesfit <- HoltWinters (traindata1 , beta=FALSE , gamma=FALSE)
holtfit <- HoltWinters (traindata1 , gamma=FALSE)
hwfit_add <- HoltWinters (traindata1 , seasonal =" additive ")
hwfit_mult <- HoltWinters (traindata1 , seasonal =" multiplicative ")

hwfit_add$alpha
hwfit_add$beta
hwfit_add$gamma

hwfit_mult$alpha
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hwfit_mult$beta
hwfit_mult$gamma

#In - sample accuracy
naiveacc <- accuracy ( naivefit )[1,]
sesacc <- accuracy ( sesfit )[1,]
holtacc <- accuracy ( holtfit )[1,]
hwacc_add <- accuracy ( hwfit_add )[1,]
hwacc_mult <- accuracy ( hwfit_mult )[1,]

accuracy1 <- data.frame(rbind(naiveacc ,sesacc ,holtacc ,hwacc_add ,
hwacc_mult ))

methods <- data.frame( METHOD =c(" Naive "," SES", "Holt", "H-W Add", "
H-W Mult "))

accuracy1 <- cbind(methods , accuracy1 )
accuracy1 <- accuracy1 [,- length ( accuracy1 )]
row.names( accuracy1 )<-NULL
accuracy1
stargazer (accuracy1 , type =" latex", summary =FALSE)

#Out of sample accuracy
naiveacc <- accuracy (naivefit , testdata1 )[2,]
sesacc <- accuracy (sesfit , testdata1 )[2,]
holtacc <- accuracy (holtfit , testdata1 )[2 ,]
hwacc_add <- accuracy (hwfit_add , testdata1 )[2,]
hwacc_mult <- accuracy (hwfit_mult , testdata1 )[2,]

accuracy1 <- data.frame(rbind(naiveacc ,sesacc ,holtacc ,hwacc_add ,
hwacc_mult ))

methods <- data.frame( METHOD =c(" Naive "," SES", "Holt", "H-W Add", "
H-W Mult "))

accuracy1 <- cbind(methods , accuracy1 )
accuracy1 <- accuracy1 [,c(-( length ( accuracy1 ) -1) ,-length ( accuracy1 ))

]
row.names( accuracy1 )<-NULL
accuracy1
stargazer (accuracy1 , type =" latex", summary =FALSE)

# diagnostic checks
res1 <- residuals ( naivefit )
res2 <- residuals ( sesfit )
res3 <- residuals ( holtfit )
res4 <- residuals ( hwfit_add )
res5 <- residuals ( hwfit_mult )

# plot of residuals
CairoPDF (" preplotr1a1 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
plot(res1 , ylab =" Rainfall (mm)", xlab =" Year", col =" navy ")
dev.off ()
CairoPDF (" preplotr1a2 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
plot(res2 , ylab =" Rainfall (mm)", xlab =" Year", col =" navy ")
dev.off ()
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CairoPDF (" preplotr1a3 .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")

plot(res3 , ylab =" Rainfall (mm)", xlab =" Year", col =" navy ")
dev.off ()
CairoPDF (" preplotr1a4 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
plot(res4 , ylab =" Rainfall (mm)", xlab =" Year", col =" navy ")
dev.off ()
CairoPDF (" preplotr1a5 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
plot(res5 , ylab =" Rainfall (mm)", xlab =" Year", col =" navy ")
dev.off ()

#ACF plots
CairoPDF (" preplotr1b1 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
Acf(res1 , main ="", col =" navy ")
dev.off ()
CairoPDF (" preplotr1b2 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
Acf(res2 , main ="", col =" navy ")
dev.off ()
CairoPDF (" preplotr1b3 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
Acf(res3 , main ="", col =" navy ")
dev.off ()
CairoPDF (" preplotr1b4 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
Acf(res4 , main ="", col =" navy ")
dev.off ()
CairoPDF (" preplotr1b5 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
Acf(res5 , main ="", col =" navy ")
dev.off ()

# histograms of residuals
CairoPDF (" preplotr1c1 .pdf", height =4, width =6, pointsize =10,

family =" serif ")
hist(res1 , main=NULL , col =" navy", breaks =99, xlab =" Residuals ",

prob=TRUE)
lines( density (res1 , na.rm=T), col =" red", lwd =1)
rug(res1)
box ()
dev.off ()
CairoPDF (" preplotr1c2 .pdf", height =4, width =6, pointsize =10,

family =" serif ")
hist(res2 , main=NULL , col =" navy", breaks =99, xlab =" Residuals ",

prob=TRUE)
lines( density (res2 , na.rm=T), col =" red", lwd =1)
rug(res2)
box ()
dev.off ()
CairoPDF (" preplotr1c3 .pdf", height =4, width =6, pointsize =10,

family =" serif ")
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hist(res3 , main=NULL , col =" navy", breaks =99, xlab =" Residuals ",
prob=TRUE)

lines( density (res3 , na.rm=T), col =" red", lwd =1)
rug(res3)
box ()
dev.off ()
CairoPDF (" preplotr1c4 .pdf", height =4, width =6, pointsize =10,

family =" serif ")
hist(res4 , main=NULL , col =" navy", breaks =99, xlab =" Residuals ",

prob=TRUE)
lines( density (res4 , na.rm=T), col =" red", lwd =1)
rug(res4)
box ()
dev.off ()
CairoPDF (" preplotr1c5 .pdf", height =4, width =6, pointsize =10,

family =" serif ")
hist(res5 , main=NULL , col =" navy", breaks =99, xlab =" Residuals ",

prob=TRUE)
lines( density (res5 , na.rm=T), col =" red", lwd =1)
rug(res5)
box ()
dev.off ()

# lag=h and fitdf=K
Box.test(res1 , lag =12, fitdf =0)
Box.test(res2 , lag =12, fitdf =0)
Box.test(res3 , lag =12, fitdf =0)
Box.test(res4 , lag =12, fitdf =0)
Box.test(res5 , lag =12, fitdf =0)

Box.test(res1 , lag =12, fitdf =0, type =" Lj")
Box.test(res2 , lag =12, fitdf =0, type =" Lj")
Box.test(res3 , lag =12, fitdf =0, type =" Lj")
Box.test(res4 , lag =12, fitdf =0, type =" Lj")
Box.test(res5 , lag =12, fitdf =0, type =" Lj")

# more descriptives
CairoPDF (" preplotd1a .pdf", height =8.5 , width =12.75 , pointsize =12,

family =" serif ")
lag.plot(testdata1 , lags =9, do.lines=FALSE , col =" navy ")
dev.off ()

CairoPDF (" preplotd1b .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")

Acf(testdata1 , col =" navy", main ="")
dev.off ()

################## TEMPERATURE ################

#open data set
temperature <- readRDS ("./ temperaturedata / temperaturedata .RDS ")

temp2 <- temperature

#check for missing data
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sum(is.na( temperature$Temperature ))

# excluding leap days
temperature <- temperature [!( temperature$month =="02" &

temperature$day =="29") ,]

# create data subsets
tdataset1 <- temperature %>% group_by (Date) %>% summarise ( MaxTemp =

max( Temperature , na.rm=TRUE), MinTemp =min( Temperature , na.rm=
TRUE), AverageTemp =mean( Temperature , na.rm=TRUE))

tdataset2 <- temperature %>% mutate (week=week(Date)) %>% group_by (
year , week) %>% summarise ( MaxTemp =max( Temperature , na.rm=TRUE)
, MinTemp =min( Temperature , na.rm=TRUE), AverageTemp =mean(
Temperature , na.rm=TRUE))

tdataset3 <- temperature %>% group_by (year , month) %>% summarise (
MaxTemp =max( Temperature , na.rm=TRUE), MinTemp =min( Temperature ,

na.rm=TRUE), AverageTemp =mean( Temperature , na.rm=TRUE))

tdataset4 <- temperature %>% mutate ( quarter = quarter (Date)) %>%
group_by (year , quarter ) %>% summarise ( MaxTemp =max( Temperature ,

na.rm=TRUE), MinTemp =min( Temperature , na.rm=TRUE),
AverageTemp =mean( Temperature , na.rm=TRUE))

tdataset5 <- temperature %>% group_by (year) %>% summarise ( MaxTemp =
max( Temperature , na.rm=TRUE), MinTemp =min( Temperature , na.rm=
TRUE), AverageTemp =mean( Temperature , na.rm=TRUE))

temperature <- tdataset1 %>% mutate ( Temperature = AverageTemp , year=
year(Date))

# slices
temperature$Period [year( temperature$Date ) >=1956 & year(

temperature$Date ) <1970] < -"[1956 -1970)"
temperature$Period [year( temperature$Date ) >=1970 & year(

temperature$Date ) <1990] < -"[1970 -1990)"
temperature$Period [year( temperature$Date ) >=1990 & year(

temperature$Date ) <2015] < -"[1990 -2014]"
table( temperature$Period )

# impute missing values
table( temperature$Date [is.na( temperature$Temperature )])
temperature$Temperature <-zoo ::na. spline ( temperature$Temperature )

# summary
stargazer (data.frame( temperature [," Temperature "]) , type =" latex ")

CairoPDF (" preplot2a .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")

plot( Temperature ~Date , data= temperature , type ="l", col =" navy",
xlab =" Year", ylab= expression ( Temperature ~( degree *C)), mgp = c
(2, 1, 0))

dev.off ()
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CairoPDF (" preplot2b .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")

plot( Temperature ~Date , data= temperature , type ="o", col =" navy",
xlab =" Year", ylab= expression ( Temperature ~( degree *C)), pch =20,

mgp = c(2, 1, 0))
dev.off ()

CairoPDF (" preplot2c .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")

boxplot ( Temperature ~year , data= temperature , xlab =" Year", ylab=
expression ( Temperature ~( degree *C)), pch =20, col =" navy", mgp =

c(2, 1, 0))
dev.off ()

CairoPDF (" preplot2c2 .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")

boxplot ( Temperature ~month(Date , label=TRUE), data= temperature [
temperature$year ==2014 ,] , type ="l", col =" navy", pch =20, xlab ="
Month", ylab= expression ( Temperature ~( degree *C)), mgp = c(2, 1,

0))
dev.off ()

CairoPDF (" preplot2c3 .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")

boxplot ( Temperature ~Hour , data=temp2 , type ="l", col =" navy", pch
=20, xlab =" Hour of Day", ylab= expression ( Temperature ~( degree *C
)), mgp = c(2, 1, 0))

dev.off ()

CairoPDF (" preplot2d .pdf", height =4, width =6, pointsize =10, family
=" serif ")

hist( temperature$Temperature , xlab= expression ( Temperature ~( degree *
C)), col =" navy", breaks =99, main=NULL , prob=TRUE , mgp = c(2,
1, 0))

lines( density ( temperature$Temperature ), col =" red", lwd =1)
rug( temperature$Temperature )
box ()
dev.off ()

CairoPDF (" preplot2e .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")

ttemperature <-ts( temperature$Temperature , start=c(1956 ,1 ,1) ,
frequency =365)

Acf( ttemperature , col =" navy", main ="")
dev.off ()

CairoPDF (" preplot2f .pdf", height =8.5 , width =12.75 , pointsize =10,
family =" serif ")

ttemperature <-ts( temperature$Temperature , start=c(1956 ,1 ,1) ,
frequency =365)

plot( decompose ( ttemperature ), col =" navy", mgp = c(2, 1, 0))
dev.off ()

CairoPDF (" preplot2g .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")
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plot( Temperature ~Date , data= temperature [ temperature$year >1999 ,] ,
type ="l", col =" navy", xlab =" Year", ylab= expression ( Temperature
~( degree *C)), mgp = c(2, 1, 0))

dev.off ()

CairoPDF (" preplot2h .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")

plot( Temperature ~Date , data= temperature [ temperature$year >2009 ,] ,
type ="l", col =" navy", xlab =" Year", ylab= expression ( Temperature
~( degree *C)), mgp = c(2, 1, 0))

dev.off ()

CairoPDF (" preplot2h2 .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")

plot( Temperature ~Date , data= temperature [ temperature$year ==2014 ,] ,
type ="l", col =" navy", xlab =" Year", ylab= expression ( Temperature
~( degree *C)), mgp = c(2, 1, 0))

dev.off ()

CairoPDF (" preplot2i .pdf", height =8.5 , width =12.75 , pointsize =12,
family =" serif ")

par1 <-par(mfrow=c(3 ,1))
plot( Temperature ~Date , data= temperature [ temperature$Period

=="[1956 -1970) ",], type ="l", col =" navy", xlab ="", ylab ="", mgp
= c(2, 1, 0))

plot( Temperature ~Date , data= temperature [ temperature$Period
=="[1970 -1990) ",], type ="l", col =" navy", xlab ="", ylab=
expression ( Temperature ~( degree *C)), mgp = c(2, 1, 0))

plot( Temperature ~Date , data= temperature [ temperature$Period
=="[1990 -2014]" ,] , type ="l", col =" navy", xlab =" Year", ylab ="",

mgp = c(2, 1, 0))
par(par1)
dev.off ()

################## ANALYSIS .2################

# added a small quantity to prevent zero values .
epsi <- -1* min( temperature$Temperature ) +0.000005
epsi
temperature$Temperature <- temperature$Temperature +epsi
min( temperature$Temperature )

#split into train/ testing datasets
index <- 1:(0.8* nrow( temperature ))

trainTemperature <- temperature [index ,]
testTemperature <- temperature [-index ,]

trainTemperature <- temperature [ temperature$year <=2002 ,]
testTemperature <- temperature [ temperature$year >=2003 ,]

# convert data into time series object
traindata2 <- ts( trainTemperature [" Temperature "], frequency =365 ,

start =1956)
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testdata2 <- ts( testTemperature [" Temperature "], frequency =365 ,
start =2003)

#Fit Models
# naivefit <- snaive ( traindata2 )
sesfit <- ses( traindata2 )
holtfit <- holt( traindata2 )
hwfit_add <- HoltWinters (traindata2 , seasonal =" additive ")
hwfit_mult <- HoltWinters (traindata2 , seasonal =" multiplicative ")

naivefit$model
sesfit$model
holtfit$model

# naivefit <- snaive ( traindata2 )
sesfit <- HoltWinters (traindata2 , beta=FALSE , gamma=FALSE)
holtfit <- HoltWinters (traindata2 , gamma=FALSE)
hwfit_add <- HoltWinters (traindata2 , seasonal =" additive ")
hwfit_mult <- HoltWinters (traindata2 , seasonal =" multiplicative ")
hwfit_mult <- HoltWinters ( traindata2 )

hwfit_add$alpha
hwfit_add$beta
hwfit_add$gamma

hwfit_mult$alpha
hwfit_mult$beta
hwfit_mult$gamma

#In - sample accuracy
naiveacc <- accuracy ( naivefit )[1,]
sesacc <- accuracy ( sesfit )[1,]
holtacc <- accuracy ( holtfit )[1,]
hwacc_add <- accuracy ( forecast ( hwfit_add ))[1,]
hwacc_mult <- accuracy ( forecast ( hwfit_mult ))[1,]

accuracy2 <- data.frame(rbind(naiveacc ,sesacc ,holtacc ,hwacc_add ,
hwacc_mult ))

methods <- data.frame( METHOD =c(" Naive "," SES", "Holt", "H-W Add", "
H-W Mult "))

accuracy2 <- cbind(methods , accuracy2 )
accuracy2 <- accuracy2 [,- length ( accuracy2 )]
row.names( accuracy2 )<-NULL
accuracy2
stargazer (accuracy2 , type =" latex", summary =FALSE)

#Out of sample accuracy
naiveacc <- accuracy (naivefit , testdata2 )[2,]
sesacc <- accuracy (sesfit , testdata2 )[2,]
holtacc <- accuracy (holtfit , testdata2 )[2,]
hwacc_add <- accuracy ( forecast ( hwfit_add ), testdata2 )[2,]
hwacc_mult <- accuracy ( forecast ( hwfit_mult ), testdata2 )[2,]

accuracy2 <- data.frame(rbind(naiveacc ,sesacc ,holtacc ,hwacc_add ,
hwacc_mult ))
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methods <- data.frame( METHOD =c(" Naive "," SES", "Holt", "H-W Add", "
H-W Mult "))

accuracy2 <- cbind(methods , accuracy2 )
accuracy2 <- accuracy2 [,c(-( length ( accuracy2 ) -1) ,-length ( accuracy2 ))

]
row.names( accuracy2 )<-NULL
accuracy2
stargazer (accuracy2 , type =" latex", summary =FALSE)

# diagnostic checks
res1 <- residuals ( naivefit )
res2 <- residuals ( sesfit )
res3 <- residuals ( holtfit )
res4 <- residuals ( hwfit_add )
res5 <- residuals ( hwfit_mult )

# plot of residuals
CairoPDF (" preplotr2a1 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
plot(res1 , ylab= expression ( Temperature ~( degree *C)), xlab =" Year",

col =" navy ")
dev.off ()
CairoPDF (" preplotr2a2 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
plot(res2 , ylab= expression ( Temperature ~( degree *C)), xlab =" Year",

col =" navy ")
dev.off ()
CairoPDF (" preplotr2a3 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
plot(res3 , ylab= expression ( Temperature ~( degree *C)), xlab =" Year",

col =" navy ")
dev.off ()
CairoPDF (" preplotr2a4 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
plot(res4 , ylab= expression ( Temperature ~( degree *C)), xlab =" Year",

col =" navy ")
dev.off ()
CairoPDF (" preplotr2a5 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
plot(res5 , ylab= expression ( Temperature ~( degree *C)), xlab =" Year",

col =" navy ")
dev.off ()

#ACF plots
CairoPDF (" preplotr2b1 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
Acf(res1 , main ="", col =" navy ")
dev.off ()
CairoPDF (" preplotr2b2 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
Acf(res2 , main ="", col =" navy ")
dev.off ()
CairoPDF (" preplotr2b3 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
Acf(res3 , main ="", col =" navy ")
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dev.off ()
CairoPDF (" preplotr2b4 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
Acf(res4 , main ="", col =" navy ")
dev.off ()
CairoPDF (" preplotr2b5 .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
Acf(res5 , main ="", col =" navy ")
dev.off ()

# histograms of residuals
CairoPDF (" preplotr2c1 .pdf", height =4, width =6, pointsize =10,

family =" serif ")
hist(res1 , main=NULL , col =" navy", breaks =99, xlab =" Residuals ",

prob=TRUE)
lines( density (res1 , na.rm=T), col =" red", lwd =1)
rug(res1)
box ()
dev.off ()
CairoPDF (" preplotr2c2 .pdf", height =4, width =6, pointsize =10,

family =" serif ")
hist(res2 , main=NULL , col =" navy", breaks =99, xlab =" Residuals ",

prob=TRUE)
lines( density (res2 , na.rm=T), col =" red", lwd =1)
rug(res2)
box ()
dev.off ()
CairoPDF (" preplotr2c3 .pdf", height =4, width =6, pointsize =10,

family =" serif ")
hist(res3 , main=NULL , col =" navy", breaks =99, xlab =" Residuals ",

prob=TRUE)
lines( density (res3 , na.rm=T), col =" red", lwd =1)
rug(res3)
box ()
dev.off ()
CairoPDF (" preplotr2c4 .pdf", height =4, width =6, pointsize =10,

family =" serif ")
hist(res4 , main=NULL , col =" navy", breaks =99, xlab =" Residuals ",

prob=TRUE)
lines( density (res4 , na.rm=T), col =" red", lwd =1)
rug(res4)
box ()
dev.off ()
CairoPDF (" preplotr2c5 .pdf", height =4, width =6, pointsize =10,

family =" serif ")
hist(res5 , main=NULL , col =" navy", breaks =99, xlab =" Residuals ",

prob=TRUE)
lines( density (res5 , na.rm=T), col =" red", lwd =1)
rug(res5)
box ()
dev.off ()

# lag=h and fitdf=K
Box.test(res1 , lag =365 , fitdf =0)
Box.test(res2 , lag =365 , fitdf =0)
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Box.test(res3 , lag =365 , fitdf =0)
Box.test(res4 , lag =365 , fitdf =0)
Box.test(res5 , lag =365 , fitdf =0)

Box.test(res1 , lag =365 , fitdf =0, type ="Lj")
Box.test(res2 , lag =365 , fitdf =0, type ="Lj")
Box.test(res3 , lag =365 , fitdf =0, type ="Lj")
Box.test(res4 , lag =365 , fitdf =0, type ="Lj")
Box.test(res5 , lag =365 , fitdf =0, type ="Lj")

# more descriptives
CairoPDF (" preplotd2a .pdf", height =8.5 , width =12.75 , pointsize =12,

family =" serif ")
lag.plot(testdata2 , lags =9, do.lines=FALSE , col =" navy ")
dev.off ()

CairoPDF (" preplotd2b .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")

Acf(testdata2 , col =" navy", main ="")
dev.off ()

#open data set
exchangerate <-read.csv ("./ exchangerate / ExchangeRateDetail .csv", as

.is = TRUE , header = TRUE , skip = 3, sep =" ,")

# housekeeping
exchangerate <- exchangerate [1:4000 ,]
names( exchangerate ) <- c(" Date", " exchangerate ")
exchangerate$Date <- ymd( exchangerate$Date )
exchangerate <- exchangerate [order( exchangerate$Date ) ,]

#time series plot
CairoPDF (" preplot0a .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
plot( exchangerate ~Date , data= exchangerate , type ="l", col =" navy",

xlab =" Year", ylab =" Exchange rate (R/$)", ylim=c(0 ,20) , xlim=c(
ymd ("2000 -01 -01") , ymd ("2016 -01 -01")))

dev.off ()

set.seed (23012016)
n <- 10000
x <- cumsum ( sample (c(-1, 1), n, TRUE))

CairoPDF (" preplot0b .pdf", height =4.5 , width =6.75 , pointsize =12,
family =" serif ")

plot(x, type ="l", col =" navy", xlab =" Index(t)", ylab= expression (y[t
]))

dev.off ()

y <- rnorm (1000 ,0 ,1)
CairoPDF (" preplot0c .pdf", height =4.5 , width =6.75 , pointsize =12,

family =" serif ")
plot(y, type ="l", col =" navy", xlab =" Index (t)", ylab= expression (y[

t]))
dev.off ()
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# create parameter tables
mydata1 <- read.csv (" parameters1 .csv", header = TRUE)
names( mydata1 ) <-gsub ("\\." ," -" , names( mydata1 ))
stargazer (mydata1 , type = "latex", summary = FALSE , rownames =

FALSE)

mydata2 <- read.csv (" parameters2 .csv", header = TRUE)
names( mydata2 ) <-gsub ("\\." ," -" , names( mydata2 ))
stargazer (mydata2 , type = "latex", summary = FALSE , rownames =

FALSE)
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