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Abstract 

The Value-at-Risk (VaR) measurement – which is a single summary, distribution independent 

statistical measure of losses arising as a result of market movements – has become the market 

standard for measuring downside risk. There are some diverse ways to computing VaR and with 

this diversity comes the problem of determining which methods accurately measure and forecast 

Value-at-Risk. The problem is two-fold. First, what is the distribution of returns for the 

underlying asset? When dealing with linear financial instruments – where the relationship between 

the return on the financial asset and the return on the underlying is linear– we can assume 

normality of returns. This assumption becomes problematic for non-linear financial instruments 

such as options. Secondly, there are different methods of measuring the volatility of the 

underlying asset. These range from the univariate GARCH to the multivariate GARCH models. 

Recent studies have introduced the Independent Component Analysis (ICA) GARCH 

methodology which is aimed at computational efficiency for the multivariate GARCH 

methodologies. In our study, we focus on non-linear financial instruments and contribute to the 

body of knowledge by determining the optimal combination for the measure for volatility of the 

underlying (univariate-GARCH, EWMA, ICA-GARCH) and the distributional assumption of 

returns for the financial instrument (assumption of normality, the Johnson translation system). 

We use back-testing and out-of-sample tests to validate the performance of each of these 

combinations which give rise to six different methods for value-at-risk computations.  
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1 Introduction 

The Value at Risk (VaR) measurement is a risk assessment technique which generalises the 

likelihood of underperforming by providing a statistical measure of downside risk. VaR assesses 

the potential losses on a portfolio over a given future period of time with a given degree of 

confidence. (ActEd Financial Economics Notes, 2016).  

The recent past has seen regulatory requirements being geared almost exclusively toward a Value 

at Risk (VaR) concept as a measure of downside market risk. (Xu and Wirjanto, 2013). This has 

led to an increasing need for more efficient and more accurate methods of measuring and 

forecasting VaR for investment portfolio risk management.  

1.1 Objectives of the Research 

Previous research focusing on VaR modelling in South African financial markets (McMillan and 

Thupayagale, 2010) focused on the univariate Generalised Auto-Regressive Heteroscedasticity 

(GARCH) models for modelling and forecasting Value-at-Risk. A univariate model takes into 

account only one variable and ignores the temporal dependence of that particular variable to 

other variables. In reality, financial volatilities move together over time across different assets 

and markets.  

Multivariate GARCH (MGARCH) models step away from the more simplified univariate 

GARCH models so as to model volatility and correlation transmission as well as spill over 

effects. (Silvennoinen & Terasvirta, 2008). However, the multivariate GARCH models – vector 

error correction (VEC) GARCH model (Bollerslev, Engle and Wooldridge, 1988); Baba-Engle-

Kraft-Kroner (BEKK) model; Matrix Exponential GARCH model (Kawakatsu, 2006) – contain 

a large number of parameters rendering them computationally intensive and therefore less 

tractable. 
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Independent Component Analysis (Hyvärinen, 1999), can be used to transform the observed 

multidimensional financial time series vector into components that are statistically as 

independent from each other as possible. In previous research (Oja, Kiviluoto and Malaroiu, 

2000; Wu, YU and LI, 2006; Xu and Wirjanto, 2013) VaR was modelled using the ICA-GARCH 

approach for linear asset portfolios. In their experimental results, Wu, YU and LI, 2006, show 

that the ICA-GARCH models are more effective at modelling Value-at-Risk for risk 

management purposes than existing methods, including Dynamic Conditional Correlation 

(DCC), Principal Component Analysis (PCA-GARCH), and Exponentially Weighted Moving 

Average (EWMA)  

When dealing with linear financial instruments – where the change in the return on the financial 

asset and the change in the return on the underlying are linearly related – we can assume 

normality of returns as in the work of Wu, YU and LI, (2006). This assumption becomes 

problematic for non-linear financial instruments such as options. In this research, we step away 

from the linear asset portfolio to model the multivariate portfolio VaR for non-linear assets using 

the ICA-GARCH approach. We look at the case where we do not assume a distribution for the 

returns of the financial asset but use Johnson (1949)’s translation system to determine the 

distribution from the first four moments of the returns. In doing so, our objective is to analyse 

the performance of the ICA-GARCH approach to measuring multivariate portfolio VaR for 

non-linear assets. We carry out back-testing and out-of-sample tests of the performance of the 

ICA-GARCH model for VaR estimation and compare this with the Risk-Metrics (1996) 

Exponentially Weighted Moving Average (EWMA) approach as well as the univariate GARCH 

approach of McMillan and Thupayagale (2010). 
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1.2 Research Questions 

If applied to non-linear financial assets in South African financial markets, does the ICA-GARCH 

approach to computing multivariate portfolio VaR where the underlying distribution is estimated 

using the Johnson’s distribution lead to better performing estimate of VaR and more quickly 

converging VaR computations as well as more accurate VaR estimates and forecasts than the 

univariate GARCH and EWMA approaches?  

1.3 Brief Literature Review 

Value at risk (VaR) estimation falls into one of three approaches: historical simulations, Monte 

Carlo simulation and parametric approaches. With parametric approaches, we mostly rely on 

both an approximation of the portfolio and strong assumptions about the distribution of the 

risk factors’ returns (usually that the risk factors are jointly normally distributed). VaR is then 

computed by using the standard deviations (s.d.) and correlations 𝜌 of financial returns under 

the assumption that these returns are normally distributed. (RiskMetrics, 1996) 

In practice, the assumption of return normality has proven to be extremely risky. This was the 

biggest mistake that Long Term Capital Management (LTCM) made and as a result 

underestimating their portfolio risks at the extremes Jorion (2000). If we are to proceed without 

making any assumptions about the distribution of the underlying financial returns then we can 

make use of the Johnson (1949) translation system to estimate the distribution of returns. 

The other issue concerns the method used to compute the standard deviations of financial 

returns. In the original RiskMetrics framework, the risk factors’ log-returns were assumed to be 

conditionally normally distributed (having a multivariate normal distribution), the conditionality 

being on the variance-covariance matrix of returns. RiskMetrics (1996) mainly focus on the 
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Exponential Weighted Moving Average (EWMA) to forecast the parameters of the multivariate 

conditional normal distribution.  

However, there are now more accurate methods of estimating the standard deviations and 

correlations for VaR purposes. Some of these methods are Extreme Value Techniques 

(Parkinson, 1980), Two-Step Regression Analysis (Davidian and Carroll, 1987), GARCH 

(Bollerslev, 1986), Stochastic Volatility (Harvey et. al, 1994) and Applications of Chaotic 

Dynamics (LeBaron, 1994). 

The importance of the multivariate approaches is that a univariate model takes into account only 

one variable and ignores the temporal dependence of that particular variable to other variables. 

In reality, financial volatilities move together over time across different assets and markets. 

Multivariate GARCH (MGARCH) models step away from the more simplified univariate 

GARCH models so as to model volatility and correlation transmission as well as spill over effects 

(Silvennoinen & Terasvirta, 2008). The first multivariate GARCH model was proposed by 

Bollerslev, Engle and Wooldridge, 1988 as an extension of the univariate GARCH model. 

However, the number of parameters to estimate in a typical multivariate model are often very 

large, and the restrictions to guarantee the positive definiteness of the conditional covariance 

matrix are often difficult to enforce in practice. (Xu and Wirjanto, 2013). Wu, YU and LI, 2006 

propose the use Independent Component Analysis (ICA-GARCH) models which are 

computationally more efficient for estimating the multivariate volatilities as compared to the 

multivariate GARCH model proposed by Bollerslev, Engle and Wooldridge, 1988 

We can then combine the distribution derived using the Johnson translation system and the 

volatility estimated using the ICA-GARCH approach to possibly come up with a method that 

performs better than other existing methodologies such as the EWMA and the univariate-

GARCH. 
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1.4 Research Approach 

For our study, we will be analysing the performance of the following methods for computing 

the VaR for non-linear financial assets: 

i. Univariate GARCH assuming normality of returns 

ii. Univariate GARCH using Johnson’s Translation System 

iii. EWMA assuming normality of returns 

iv. EWMA using Johnson’s Translation System 

v. ICA-GARCH assuming normality of returns 

vi. ICA-GARCH using Johnson’s Translation System 

For the simple VaR methodology where we assume normality of returns, Value at Risk can be 

computed using 1.6449 multiplied by the standard deviation of 𝑟𝑝,�̂� (the return on the portfolio). 

1.6449 is the 5th percentile of the standard normal distribution. The standard deviation will be 

calculated using the three methodologies (ICA-GARCH, univariate GARCH & EWMA) 

For the VaR where we use Johnson’s Translation System we follow the following steps: 

Step 1. We estimate delta (δ̃𝑖), the rate of change of the value of the financial instrument with 

respect to the changes in the underlying's price, gamma (Γ̃𝑖), the rate of change in the delta with 

respect to the change in the underlying’ price, theta (θ̃𝑖) (the sensitivity of the value of the 

financial instrument to time. These parameters are derived from the Black-Scholes formula for 

options. We also calculate 𝜎2
𝑖,𝑡 where 𝜎2

𝑖,𝑡 is the volatility of the underlying asset, i at time t 

and is calculated using the ICA-GARCH, univariate GARCH & EWMA methods. 

Step 2. We calculate the mean, variance, skewness coefficient and kurtosis coefficient of the non-

linear financial assets. 
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Step 3. We then use Slifker and Shapiro (1980)’s selection criteria to determine the distribution 

and estimates of the parameters 𝛾, 𝛿, 𝜉and 𝜆 for the asset. 𝛾 and 𝛿 are shape parameters, 

𝜆 is a scale parameter and 𝜉 is a location parameter for the normalising transformation. 

Step 4. We compute the percentiles of 𝑟𝑖,�̂� (the return on the non-linear financial asset) 

distributions using some transformations. 

Step 5. Use this percentile for VaR calculations. 

Finally, we will use back-testing and out-of-sample tests to validate the performance of each of 

the six combinations and methods for value-at-risk computations. 

1.5 Data Requirements 

Our portfolio will be made up of is made up of 3 non-linear financial assets as follows: 

i. A long call on the FTSE/JSE TOP40 Index  

ii. A long put option on the USD/ ZAR currency exchange rate.   

iii. A short call on the gold price 

The dataset is from the periods of January 1, 2011 to December 31, 2016 representing 1302 daily 

observations. For model comparison with the univariate GARCH and EWMA, we divide the 

dataset into two parts. The first 1102 observations are for model training while the remaining 200 

observations make up the out-of-sample dataset for the evaluation of forecasting precision. 

1.6 Conclusion 

In this chapter, we have laid down the framework within which we will be operating to solve the 

research problem. In the following chapter, we have lay down in greater detail the method of 

computing VaR that we shall be using and the steps we will be following. We have also briefly laid 

down our research approach as well as the data requirement necessary for our research study. 
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2 On Value-at-Risk and Volatility Measures 

In this chapter, we highlight and explore the literature relevant to our work by first looking at 

VaR (Value-at-Risk). Value-at Risk is first defined and some of the methods used in practice to 

measure it are briefly explored. Much focus is given on VaR measurement using the RiskMetrics 

approach before introducing the ICA and ICA-GARCH concepts. 

2.1 Defining VaR 

Perhaps the risk measure of choice used in the financial industry due to its simplicity of 

computation and interpretation, value-at-risk (VaR) is a single summary, distribution 

independent statistical measure of losses arising as a result of “typical” market movements 

(Danı´elsson. 2011). The importance of Value-at-Risk lies in the fact that it measures the loss on 

a portfolio in such a way that we can attach a probability 𝑝 of losses being equal to or exceeding 

VaR and a probability (1 − 𝑝) of these losses being lower than VaR which makes it a relatively 

easy risk measure to understand. 

In statistical terms, if we define Q as a random variable representing the distribution of the profit 

or loss (P/L) on a portfolio, and if we also define q as a particular realisation of Q, VaR can be 

represented statistically as: 

Pr[𝑄 ≤ −𝑉𝑎𝑅(𝑝)] = 𝑝 (2.1) 

or 

𝑝 = ∫ 𝑓𝑞(𝑥)𝑑𝑥
−𝑉𝑎𝑅(𝑝)

−∞

(2.2) 

where; 𝑓𝑞(∙) is the probability density function of the profit or loss (P/L) function. 
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Graphically, we can represent VaR as follows:  

 
Figure 1: P/L density, 𝑓𝑞(∙), and VaR 

 

Figure 2: Left tail of 𝑓𝑞(∙) and VaR 

Figure 1 shows the entire density of the P/L function whereas Figure 2 zooms in on the left tail. 

The shaded areas identify the 1% and 5% probabilities. (Danı´elsson. 2011) 

 
Figure 3: P/L distribution, 𝐹𝑞(∙), and VaR 
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Figure 4: Tail of 𝐹𝑞(∙) and VaR 

Figure 3 shows the entire distribution of the P/L function while Figure 4 shows the left part of 

the distribution. (Danı´elsson. 2011) 

So important is VaR that it has become the new regulatory framework’s yardstick for quantifying 

investment portfolio risk but problems sometimes arise with the way VaR is used to assess and 

measure an investment portfolio’s risk. The case of Long Term Capital Management (LTCM)'s 

failure has been widely ascribed to the way the hedge fund used Value at Risk (VaR) (Jorion, 

2000). Jorion (2000) finds that in the case of LTCM, VaR itself was not the culprit but the way 

it was parameterised. One example of the inappropriate parameters used was the 10-day horizon 

used to set the amount of equity capital needed. Typically, the horizon must be related to the 

liquidity of the assets or alternatively the time it would take to raise additional funds or implement 

corrective action. 10 days is adequate for a commercial bank as it is assumed that 

investors/depositors take on average 10 days to liquidate their assets but is insufficient for a 

hedge fund where investors get in and out of positions more frequently and where there is more 

wide use of leverages. This was clearly so in the case of LTCM.  

Another mistake that LTCM made was to assume return normality and as a result underestimated 

their portfolio risks at the extremes. As a result of this shortcoming, the concept of VaR is often 

times supplemented by the use of some other more rigorous risk measures such as Conditional 
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Value-at-Risk (CVAR) also referred to as the Expected Shortfall (ES), Tail Value-at-Risk (TVaR) 

or Extreme Value Theory (EVT) which are better able to model the tails of the P/L distribution. 

Extreme Value Theory (EVT) is a branch of statistics whose main result is to model the 

distribution of values above a given threshold. The Pickans-Balkema-de Haan (PBH) theorem 

describes the distribution of these observations above a particular high threshold as a generalized 

Pareto distribution. (Levine, 2009). Artzner, Delbaen, Eber and Heath, (1999) argue that VaR 

leads to Pareto-inferior allocations where there are extreme deviations from the median of the 

probability distribution.  

In addition, VaR can also fail to appropriately account for portfolio risk diversification. (Artzner 

et al, 1999). VaR is also known to violate the sub-additivity hypothesis of the so-called coherent 

risk measures due to the fact that VaR does not reflect the entire tail of the P/L distribution. 

(Gu´eant, n.d.) 

However, despite its shortcomings, regulatory requirements have been geared almost exclusively 

toward a Value at Risk (VaR) concept as a measure of downside market risk. (Xu and Wirjanto, 

2013). In practice, most banks and insurance companies use Value at Risk for regulatory 

purposes (in particular to measure and quantify their regulatory capital) as well as also using it as 

an internal risk measure. However, due to the drawbacks outlined above, many practitioners 

supplement VaR figures with Conditional Value-at-Risk (CVAR) or Expected Shortfall (ES) 

indices, but Value-at-Risk remains a critical component for internal risk quantification and 

management. (Gu´eant, n.d.) 

2.2 Overview of Value-at-Risk Estimation 

In this section, we give a high-level laydown for Value-at-Risk Estimation. The aim is to 

introduce the methodologies for VaR estimation without getting into much mathematical rigour. 
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Later on, in Section 2.4, we give granular details of VaR estimation with more detailed 

explanations of the steps involved. 

2.2.1 VaR Computation for Linear Positions 

VaR can be easily estimated by assuming a linear relationship between the value of an asset and 

the value of its underlying. This is true of the assets themselves (where the relationship is 1-to-1 

between the value of the asset and the value of the underlying) and derivatives such as forwards 

and futures where the relationship between the value of the derivative and the underlying is 

linear. Value at risk (VaR) estimation for linear positions falls into one of three methodologies: 

historical simulations, Monte Carlo simulation and parametric approaches. 

Historical Simulations 

These are non-parametric approaches where we make an assumption that future behaviour of 

some risk factor will replay its past behaviour during a certain period of time. Some of the 

methodologies used in practice under the historical simulations approach are the Boudoukh, 

Richardson, Whitelaw (BRW), the Hull and White approach or the filtered historical simulations 

(FHS) approach. Extreme Value Theory is also used to provide better estimates for the extreme 

quantiles. (Gu´eant, n.d.) 

Monte Carlo simulation. 

The Monte-Carlo simulations use the same type of simulations as in historical approaches but 

the samples here are not assumed to be based on past realisations of the risk factors but rather 

rely on calibrated distributions of the risk factors and draw scenarios from this joint distribution. 

A direct consequence of this is that any distribution can be carved for the risk factors with the 

obvious disadvantage that a lot of parameters will need to be estimated. 



12 

 

Analytical/Parametric Approaches 

Also known as the Linear VaR or the Variance-Covariance VaR, this is the simplest VaR method 

and is the most commonly used in practice. Most parametric approaches rely on both an 

approximation of the portfolio and strong assumptions about the distribution of the risk factors’ 

returns (usually that the risk factors are jointly normally distributed). VaR is then computed by 

using the standard deviations (s.d.) and correlations 𝜌 of financial returns under the assumption 

that these returns are normally distributed. (RiskMetrics, 1996) 

Gaussian assumptions about the risk factors are the most commonly used but these do not 

necessarily hold in practice and can lead to underestimation of the tail losses (Gu´eant, n.d.). 

Portfolio exposures are assumed to be linear and since the portfolio return is a linear 

combination of normal variables, it is itself normally distributed. Thus, the portfolio volatility 

can be calculated by using the covariance matrix and weight vector easily.  

2.2.2 VaR Computation for Non-Linear Positions 

In the standard parametric methods outlined above, an assumption was made that portfolio 

exposures are linear in nature. This becomes an inaccurate assumption when dealing with non-

linear financial instruments such as options. (RiskMetrics, 1996) outline two methods to measure 

VaR for non-linear positions; analytical approximations and structured Monte Carlo Simulation. 

These two methods differ in how the value of the portfolio changes with market movements. 

While the analytical approach approximates changes in value, the structured Monte Carlo 

approach fully re-values portfolios under different scenarios. 

Structured Monte Carlo Simulation 

Structured Monte Carlo simulation involves creating a large number of possible scenarios and 

revaluing the asset under each of these scenarios. VaR is then approximated by defining it as, for 
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example, the 5th percentile of the distribution of value changes. Due to the required revaluations, 

this approach is much more computationally more intensive than the method we present below. 

Analytical Approximations 

Here we approximate the non-linear relationship using a mathematical expression that relates 

the return on the position to the return on the underlying. The methods are based on 

approximations of the portfolio using a Taylor series expansion and thus relies on the “Greeks” 

of the assets in the portfolio. (Gu´eant, n.d.). Here the change in the value of the instrument is 

approximated not just by the delta but also by the gamma (which measures the curvature of 

changes in the value) as well as the other Greeks; vega, rho, and theta. These can also be used to 

enhance the accuracy of the approximation. Two common types used here are the delta and 

delta-gamma approximations. (RiskMetrics, 1996). Other common approaches are the Greek 

Normal VaR, Delta Normal VaR or Delta-Gamma Normal VaR  

A Simple Example: 

Consider the following Portfolio example set out in (RiskMetrics, 1996): 

Asset 1: A 1-year zero-coupon bond of AUD 1 million to be received in one year’s time. The 

spot 1-year AUD rate is an effective interest rate of 10% per annum so that the current market 

value of the instrument is: 𝐴𝑈𝐷1,000,000 1.1⁄ = 𝐴𝑈𝐷909,090.9. 

Asset 2: An at-the-money AUD put/ZAR call option with a contract size of AUD 1 million and 

expiration date one month in the future. The premium of the option is 0,0105 and the spot 

exchange rate at which the contract was concluded is 1,538 AUD/ZAR. The implied volatility 

at which this option is priced is 14% p.a. 

Of course, the value of this portfolio is dependent on the AUD/ZAR exchange rate and the 1-

year AUD bond price.  
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We also make the following assumptions: 

i. Our risk horizon is 5 days 

ii. The daily volatilities of these two assets are; 

a. 𝜎1𝑦 = 0,08% 

b. 𝜎𝐴𝑈𝐷

𝑍𝐴𝑅

= 0,42% 

c. 𝜌
1𝑦,

𝐴𝑈𝐷

𝑍𝐴𝑅

= −0,17 

𝜎 is the volatility of the currencies and 𝜌 is the correlation coefficient of the two 

assets’ returns. 

Here we are going to focus on price risk alone (delta) and ignore the other risks (vega, rho, theta). 

Solution 1: Delta Normal VaR Approximation 

The simplest approach is to estimate the changes in the option value via a linear model; the delta 

approximation. We can calculate the delta for the option to be -0,4919 in this example. 

The first step is to write down the return on the portfolio whose VaR we are trying to estimate. 

The return on this portfolio, denoted by 𝑟𝑝, consisting of the zero-coupon bond and the put on 

the AUD/call on the ZAR is: 

𝑟𝑝 = 𝑟1𝑦 + 𝑟𝐴𝑈𝐷
𝑍𝐴𝑅

+ 𝛿𝑟𝐴𝑈𝐷
𝑍𝐴𝑅

(2.3) 

where: 𝑟1𝑦 = the price return on the 1-year AUD interest rates, 𝑟𝐴𝑈𝐷

𝑍𝐴𝑅

 = the return on the 

AUD⁄ZAR exchange rate and 𝛿 = the delta of the option = -0,4919.  

The idea here is to incorporate the return of the option into the return of the portfolio via the 

sensitivity of the option to the sensitivity of the underlying. The delta of an option is the rate of 

change of the value of the option with respect to the changes in the underlying share's price. 
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Later on, in Section 2.4.2 we will be demonstrating was to compute the portfolio return by 

calculating the actual return on an option using the Delta-Gamma-Theta methodology. 

Under the assumption that the portfolio returns are normally distributed, VaR at the 95% 

confidence level is then given by: 

𝑉𝑎𝑅 = 1.6449√𝜎1𝑦
2 + (1 + 𝛿)2𝜎𝐴𝑈𝐷

𝑍𝐴𝑅

2 + 2(1 + 𝛿)𝜌
1𝑦,

𝐴𝑈𝐷
𝑍𝐴𝑅

𝜎1𝑦𝜎𝐴𝑈𝐷
𝑍𝐴𝑅

(2.4) 

Here, 1.6449 is simply the 5% point of the standard normal distribution, in other words, 5% of 

the values from a standard normal distribution are greater than 1.6445 or equivalently are greater 

than 1.6445 standard deviations when approaching the mean from above: 

 

Figure 5: 5% point for the standard normal distribution 

Using the volatilities and correlations given above as well as the value for the 𝛿 of the option, 

and scaling the 1 year AUD rate to a weekly rate (using the square root of 50) the weekly VaR 

using the delta equivalent approach is given by: 

 Market value in ZAR VaR(1w) 

1-yr DEM cash flow R591 086 R1 745 

FX position - FX hedge R300 331 R4 654 

 Diversified Portfolio R891 417 R4 684 

Table 1: Total Portfolio VaR 
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The portfolio’s VaR is therefore given by R4 684. This value also demonstrates the impact of 

diversification on VaR as it is lower than the VaR values simply added together. 

Solution 2: Delta-Gamma Normal VaR Approximation 

This approach is more accurate than the earlier method above. However, this accuracy is eroded 

in extreme movements in the value of the exchange rates. This is for the simple reason that the 

delta is a linear approximation of a non-linear relationship 

 

Figure 6: AUD/ZAR exchange rate 

By including the gamma term which accounts for non-linear effects (i.e. squared returns) of 

changes in the exchange rates, we improve this approximation. 

The expression for the portfolio return is now given by: 

𝑟𝑝 = 𝑟1𝑦 + 𝑟𝐴𝑈𝐷
𝑍𝐴𝑅

+ 𝛿𝑟𝐴𝑈𝐷
𝑍𝐴𝑅

+ 0,5Γ𝑃𝐴𝑈𝐷
𝑍𝐴𝑅

(𝑟𝐴𝑈𝐷
𝑍𝐴𝑅

)
2

(2.5) 

where: 𝑟1𝑦 = the price return on the 1-year AUD interest rates, 𝑟𝐴𝑈𝐷

𝑍𝐴𝑅

 = the return on the 

AUD⁄ZAR exchange rate, 𝑃𝐴𝑈𝐷

𝑍𝐴𝑅

 the value of the AUD⁄ZAR exchange rate when the VaR 

forecast is made, 𝛿 = the delta of the option = - 0,4919 and Γ = the gamma of the option=15,14. 
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The gamma term here introduces skewness into the distribution of 𝑟𝑝. This means that the 

assumption of normality is now violated and as such we can no longer use the same approach 

as in 2.4 above. The new approach involves computing the first 4 moments of 𝑟𝑝 and finding a 

suitable distribution whose first four moments match those of 𝑟𝑝. We then compute the 5th 

percentile of 𝑟𝑝based on this distribution. We explain this methodology in greater detail in 

Section 2.4.2 below. 

Solution 3: Structured Monte-Carlo Simulation 

Given the last limitation outlined above, i.e. where the P/L distribution may not necessarily be 

normally distributed, one way of working around this problem is to use the Monte Carlo 

Methodology which instead of estimating changes in the value of the portfolio using the product 

of a rate change (𝜎) and sensitivity (𝛿, Γ) rather focuses on revaluing positions at changed rate 

levels. 

2.3 Volatility Estimation and Forecasting 

The general VaR formula can be written as: 

𝑉𝑎𝑅𝑝% = 𝜎×𝑝% 𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑃 𝐿⁄ 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ×𝜗×√𝑇 (2.6) 

where 𝜎 is the volatility of the returns for which we are computing VaR, 𝑝% 𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟 𝑃/

𝐿 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛is would be 1.6449 the P/L distribution is normal and 𝑝% = 5%, 𝜗 is the value 

of the asset and √𝑇 is necessary if the holding period is different to the period for which 𝜎 applies 

to otherwise it will just be 1. 

It is therefore important to have an estimate of 𝜎 in order for us to be able to calculate VaR. 
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In the original RiskMetrics framework, the risk factors’ log-returns were assumed to be 

conditionally normally distributed (having a multivariate normal distribution), the conditionality 

being on the variance-covariance matrix of returns. The returns themselves may not necessarily 

be normally distributed and have fatter tails than is otherwise predicted by the normal 

distribution.  

RiskMetrics (1996) mainly focus on the Exponential Weighted Moving Average (EWMA) to 

forecast the parameters of the multivariate conditional normal distribution. However, there are 

now more accurate methods of estimating the standard deviations and correlations for VaR 

purposes. Some of these methods are Extreme Value Techniques (Parkinson, 1980), Two-Step 

Regression Analysis (Davidian and Carroll, 1987), GARCH (Bollerslev, 1986), Stochastic 

Volatility (Harvey et. al, 1994) and Applications of Chaotic Dynamics (LeBaron, 1994). 

GARCH-type models are the most commonly used in practice. Tests of GARCH-type models 

on foreign exchange and stock markets have showed that these are better approaches to 

estimating volatility than moving averages in particular over shorter time horizons such as a day 

or a week. These models are numerous but some of the more common models used in practice 

are the generalised ARCH (GARCH), Integrated GARCH (IGARCH), Exponential GARCH 

(EGARCH) and Switching Regime ARCH (SWARCH). 

2.3.1 Univariate vs Multivariate Models 

A univariate model takes into account only one variable and ignores the temporal dependence 

of that particular variable to other variables. In reality, financial volatilities move together over 

time across different assets and markets. 

An Example: Covariance Structures 

Let us assume our data consists of the gold prices 𝑔𝑖 and exchange rates 𝑥𝑖 over several years 𝑡𝑖. 

The following separate regressions represent two univariate models: 
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𝑥𝑖 = 𝛽𝑥0
+ 𝛽𝑥1

𝑡𝑖 + 휀𝑥𝑖
(2.7𝑎) 

𝑔𝑖 = 𝛽𝑔0
+ 𝛽𝑔1

𝑡𝑖 + 휀𝑔𝑖
(2.7𝑏) 

In the univariate case, no information about the gold prices flows through to the model about 

the exchange rates and vice-verse. Analysis would be carried out on each of the models without 

regard of the relationship between the two variables. In a multivariate setting, however the gold 

prices and exchange rates would be modelled jointly, such as: 

𝐘𝑖 = [
𝑥𝑖

𝑔𝑖
] = 𝐖𝛃 + [

휀𝑥𝑖

휀𝑔𝑖
] 

= 𝐖𝛃 + 𝛆𝒊 

𝛆𝒊 ~ (𝟎, [
𝝈𝟏

𝟐 𝝈𝟏𝟐

𝝈𝟏𝟐 𝝈𝟐
𝟐 ]) 

The vectors 𝐘𝑖 and 𝛆𝒊 capture the responses and errors for the two observations that belong to 

the same subject. The errors for financial returns on the gold would now have the correlation 

given by, 

𝐶𝑜𝑟𝑟[휀𝑔𝑖
, 휀𝑥𝑖

] =
𝜎12

√𝜎1
2𝜎2

2
 

where 𝜎12 is the covariance between the gold prices and exchange rates, 𝜎1
2 and 𝜎2

2 are the 

variances of the gold prices and exchange rates. 

It is then through this correlation that information about the gold prices flows through to the 

exchange rates and vice versa. The RiskMetrics VaR approach used a univariate model of 

volatility in the form of the Exponential Weighted Moving Average (EWMA) model. Even the 

further enhancements we pointed out earlier: generalised ARCH (GARCH), Integrated GARCH 

(IGARCH), Exponential GARCH (EGARCH) and Switching Regime ARCH (SWARCH) are 
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all univariate models and suffer from this shortfall of not being able to capture the inter-

dependencies between the particular portfolio VaR in which we are interested in and the VaR 

from other portfolios and assets. It is this weakness that has led to the development of the 

multivariate GARCH models. 

2.3.2 Multivariate GARCH Models 

As we pointed out earlier, understanding the co-movements of financial time series is of great 

importance. Multivariate GARCH (MGARCH) models step away from the more simplified 

univariate GARCH models so as to model volatility and correlation transmission as well as spill 

over effects. (Silvennoinen & Terasvirta, 2008).  

The first GARCH model for the conditional covariance matrix was the vector error correction 

(VEC-GARCH) model proposed by Bollerslev, Engle and Wooldridge (1988). This also had an 

ARCH version in Engle, Granger and Kraft (1984) One of the major pitfalls of this model is 

that imposing positive definiteness of the conditional covariance matrix in this model is difficult. 

The VEC − GARCH(1,1) model is given by: 

vech(𝑯𝑡) = 𝑐 + 𝑨1vech(𝑟𝑡−1𝑟𝑡−1
′ ) + 𝑩1vech(𝑯𝑡−1) (2.8𝑎) 

The more general VEC − GARCH (p, q) model can be written as: 

vech(𝑯𝑡) = 𝑐 + ∑ 𝑨𝑗vech

𝑞

𝑗=1

(𝑟𝑡−𝑗𝑟𝑡−𝑗
′ ) + ∑ 𝑩𝑗vech

𝑝

𝑗=1

(𝑯𝑡−𝑗) (2.8𝑏) 

where: vech(∙) is an operator that stacks the columns of the lower triangular part of its argument 

square matrix, c is an 𝑁(𝑁 + 1) 2⁄ x 1 vector and 𝑨𝑗 and 𝑩𝑗 are 𝑁(𝑁 + 1) 2⁄ x 𝑁(𝑁 + 1) 2⁄  

parameter matrices. (Silvennoinen & Terasvirta, 2008)  
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The main problem arises when estimating the parameters of a VEC model since this model is 

very much computationally demanding.  The number of parameters that needs to be estimated 

equals  

(𝑝 + 𝑞)(𝑁(𝑁 + 1) 2⁄ )2 + 𝑁(𝑁 + 1) 2⁄ (2.9) 

This is very large except for the case where N is small. Bollerslev, Engle and Wooldridge (1988) 

then proposed a restricted version of the VEC model above where 𝑨𝑗 and 𝑩𝑗 are diagonal 

matrices. However, (Silvennoinen & Terasvirta, 2008) argues that this model is too restrictive 

since no interaction is allowed between the conditional variances and co-variances. 

Another model that can be viewed as a restricted version of the VEC-GARCH model is the 

Baba-Engle-Kraft-Kroner (BEKK) model taking the form 𝐵𝐸𝐾𝐾(1,1,1) 

𝑯𝑡 = 𝐶𝐶′ + 𝑨1,1
′𝑟𝑡−1𝑟𝑡−1

′ 𝑨1,1 + 𝑩1,1
′𝑯𝑡−1𝑩1,1 (2.10𝑎) 

This can be generalised to the 𝐵𝐸𝐾𝐾(𝑝, 𝑘, 𝑞) model as: 

𝑯𝑡 = 𝐶𝐶′ + ∑ ∑ 𝑨𝑘𝑗
′

𝐾

𝑘=1

𝑟𝑡−𝑗𝑟𝑡−𝑗
′ 𝑨𝑘𝑗

𝑞

𝑗=1

+ ∑ ∑ 𝑩𝑘𝑗
′𝑯𝑡−𝑗𝑩𝑘𝑗

𝐾

𝑘=1

𝑝

𝑗=1

(2.10𝑏) 

where 𝑨𝑘𝑗 , 𝑩𝑘𝑗 and C are  𝑁×𝑁 parameter matrices and C is lower triangular (Engle and Kroner, 

1995). Interpretation of the parameters of this model is not easy. Estimation of the BEKK model 

still involves heavy computations due to several matrix inversions. The number of parameters 

(𝑝 + 𝑞)𝐾𝑁2 + 𝑁(𝑁 + 1) 2⁄  in the full BEKK model is still large. 

Kawakatsu (2006) proposed the Matrix Exponential GARCH model which is a generalisation of 

the univariate Exponential (EGARCH) model of Nelson (1991). This Matrix Exponential 

EGARCH(1,1) model can be written as: 
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vech(ln 𝑯𝑡 − 𝐶) = 𝑨1𝜂𝑡−1 + 𝑭1(|𝜂𝑡−1|−𝐸|𝜂𝑡−1|) + 𝑩𝑖vech(ln 𝑯𝑡 − 𝐶) (2.11𝑎) 

This can also be written more generally as the EGARCH (p, q) model given by: 

vech(ln 𝑯𝑡 − 𝐶) = ∑ 𝑨𝑖𝜂𝑡−𝑖

𝑞

𝑖=𝑖

+ ∑ 𝑭𝑖

𝑞

𝑖=1

(|𝜂𝑡−𝑖|−𝐸|𝜂𝑡−𝑖|) + ∑ 𝑩𝑖vech

𝑝

𝑖=1

(ln 𝑯𝑡 − 𝐶) (2.11𝑏) 

where C is a symmetric 𝑁 x 𝑁 matrix and 𝑨𝑖 , 𝑩𝑖  and 𝑭𝑖 are parameter matrices of sizes 𝑁(𝑁 +

1)/2 x 𝑁, 𝑁(𝑁 +  1)/2 x 𝑁(𝑁 +  1)/2, and 𝑁(𝑁 +  1)/2 x 𝑁, respectively. This model still 

contains a large number of parameters. Let us now look at a method of estimating the 

multivariate GARCH model that is much more computationally less demanding. 

2.3.3 Independent Component Analysis 

We have discussed how some of the multivariate GARCH models – vector error correction 

(VEC) GARCH model (Bollerslev, Engle and Wooldridge, 1988); Baba-Engle-Kraft-Kroner 

(BEKK) model; Matrix Exponential GARCH model (Kawakatsu, 2006) – contain a large 

number of parameters rendering them computationally intensive and therefore less tractable. 

We now take a more detailed look at an alternative method, ICA (Hyvärinen, 1999), which is a 

statistical technique for transforming an observed multidimensional random vector into 

components that are statistically as independent from each other as possible. We shall show later 

that this method is more computationally tractable compared to the models outlined above.  

Let us assume we start with a realisation of 𝑚 continuous valued scalar multivariate random 

variables 𝑥1, 𝑥2, … , 𝑥𝑚. We then arrange the 𝑥𝑖  observed scalar multivariate variables into an 𝑚-

dimensional random vector 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑚)𝑇. The observed m scalar multivariate random 

variables 𝑥1, 𝑥2, … , 𝑥𝑚 are assumed to be a linear combination of n unknown independent 

components 𝑠1, 𝑠2, … , 𝑠𝑛. These unknown independent components are mutually statistically 
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independent with zero mean. These elements are also non-Gaussian. Also, we must assume that 

𝑛 ≤ 𝑚 (Hyv¨arinen, Karhunen, and Oja, 2001) 

If we also arrange the component variables 𝑠𝑖 into a vector 𝐬 = (𝑠1, 𝑠2, … , 𝑠𝑛)𝑇, the relationship 

can be written as:  

𝐱 = 𝐀𝐬 (2.12) 

where A is an unknown 𝑚 x 𝑛 full rank matrix called the mixing matrix. The mixing coefficients 

or elements of matrix A are unknown. The problem of ICA is to estimate the matrix A from 

which we can obtain W as the (pseudo) inverse of the estimate of the matrix A. (Hyvärinen, 

1999). The independent components are then obtained using the relationship: 

𝐬 = 𝐖𝐱 (2.13) 

The one restriction of the model is that we can only estimate non-Gaussian independent 

component except in the case where only one of the independent components is Gaussian. 

(Hyvärinen and Oja, 2000) 

An Example 

Consider two independent components 𝑠1 and 𝑠2 that have the following uniform distributions: 

𝑝(𝑠𝑖) = {

1

2√3
if |𝑠𝑖| ≤ √3

0 otherwise

(2.14) 

The joint density of 𝑠1 and 𝑠2 is then uniform on a square. This follows from the definition of 

statistical independence where 𝑝(𝑠1, 𝑠2) = 𝑝(𝑠1)𝑝(𝑠2) 

Let us then mix these two components using the following mixing matrix: 
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𝐴0 = (
2 3
2 1

) 

From this we obtain two mixed variables 𝑥1 and 𝑥2. The mixed data has a uniform distribution 

but the mixed random variables 𝑥1 and 𝑥2 are not independent anymore. To illustrate this last 

point, if 𝑥1 attains its minimum or maximum values then this completely determines the value 

taken by 𝑥2. 

The problem is estimating the date model of Independent Component Analysis is to estimate 

the matrix 𝐴0 using only information contained in the mixtures 𝑥1 and 𝑥2 

Why Restrict to Non-Gaussian Variables 

In the case of Gaussian variables, we are only able to estimate the ICA model to an orthogonal 

transformation. The matrix A is not identifiable for Gaussian independent components. 

(Hyvärinen and Oja, 2000) 

Assume that the mixing matrix is orthogonal and that the 𝑠𝑖 are Gaussian. The variables 𝑥1 and 

𝑥2 are Gaussian, uncorrelated and have unit variance. Their joint density function is given by: 

𝑝(𝑥1, 𝑥2) =
1

2𝜋
exp (−

𝑥1
2 + 𝑥2

2

2
) (2.15) 

This distribution is of course symmetric and therefore does not contain any information about 

the directions of the columns of the mixing matrix A. In simple terms, one can prove that the 

distribution of any orthogonal transformation of the Gaussian (𝑥1, 𝑥2) has the exact same 

distribution as (𝑥1, 𝑥2) and also 𝑥1 and 𝑥2 are independent.  

Pre-Processing 
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Pre-processing the data before carrying out ICA not only simplifies the ICA algorithm but also 

reduces the number of parameters to be estimated. 

i. Centering 

We need to first make the x a zero-mean variable by subtracting its mean vector 𝐦 = 𝐸{x}. This 

automatically implies that s is zero-mean as well. This step is just to simplify the ICA algorithms. 

If we so desire, after estimating the mixing matrix A, we can add the mean vector of s (given by 

𝐀−1𝐦) back to the centred estimates of s. 

ii. Sphering or Whitening 

Here (after centering) we transform the observed vector x linearly so that we have a new vector 

�̃� whose components are uncorrelated and has equal unit variances. In other words, the 

covariance matrix of �̃� equals the identity matrix I. 

𝐸{�̃��̃�T} = 𝐈 (2.16) 

To achieve whitening, we can use the method of eigenvalue decomposition (EVD) of the 

covariance matrix: 

𝐸{𝐱𝐱T} = 𝐄𝐃𝐄T (2.17) 

where: E = the orthogonal matrix of eigenvectors of 𝐸{𝐱𝐱T} and D = is the diagonal matrix of 

its eigenvalues = diag(𝑑1, 𝑑2, … , 𝑑𝑛) 

Also, 𝐸{𝐱𝐱T} can be estimated in a standard way from the available sample 𝐱1, 𝐱2, … , 𝐱𝑛 

Sphering can now be achieved by setting: 

�̃� = 𝐄𝐃−1 2⁄ 𝐄T𝐱 (2.18) 



26 

 

where the matrix 𝐃−1 2⁄  is obtained through a component-wise operation 𝐃−1 2⁄ =

diag(𝑑1
−1 2⁄

, 𝑑2
−1 2⁄

, … , 𝑑𝑛
−1 2⁄

) 

From (2.12) and (2.18) we now have: 

�̃� = 𝐄𝐃−1 2⁄ 𝐄T𝐀𝐬 = �̃�𝐬 (2.19) 

Sphering has now the mixing matrix A into a new one �̃�. The new mixing matrix �̃� is orthogonal. 

That is: 

𝐸{�̃��̃�T} = �̃�𝐸{ssT}�̃�T = �̃��̃�T =  𝐈 (2.20) 

The ultimate result is that sphering reduces the number of parameters to be estimated. Because 

an orthogonal matrix contains 𝑛(𝑛 − 1)/2 degrees of freedom, we only need to estimate the 

new, orthogonal mixing matrix �̃�. Since an orthogonal matrix contains half of the number of 

parameters of an arbitrary matrix, we can say that we have now solved half of the ICA problem. 

Algorithms for Independent Component Analysis 

To optimise the problem set out above so as to determine the mixing matrix, there are various 

algorithms as set out in Hyvärinen (1999). The choice of a suitable algorithm depends on the 

stability of the algorithm, it’s convergence speed as well as the memory requirements.  

Some of the algorithms available are: Jutten-Hérault algorithm, Non-linear decorrelation 

algorithms, Algorithms for maximum likelihood or infomax estimation, Non-linear PCA 

algorithms, Neural one-unit learning rules, Other neural (adaptive) algorithms, Tensor-based 

algorithms, Weighted covariance methods, The FastICA algorithm 

i. The FastICA Algorithm 
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The FastICA algorithm is a computationally efficient algorithm for performing ICA estimation. 

This batch (block) algorithm uses a fixed-point iteration that has been found to be 10-100 times 

faster at converging than the conventional gradient descent methods for ICA. (Hyvärinen, 1999) 

Here we do not delve much into the construction of the of the FastICA algorithm but list some 

of the properties of this algorithm that make it more desirable compared to other methods for 

solving the ICA problem as set out in Hyvärinen and Oja, (2000):  

i. It has a much faster convergence. 

ii. The algorithm is easy to use and apply in practice. 

iii. The algorithm finds directly independent components of any non-Gaussian distribution. 

For other algorithms, some estimate of the probability distribution function has to be first 

available before the non-linearity is chosen. 

iv. One can obtain algorithms that are robust and/or of minimum variance 

v. The independent components can be estimated one by one 

vi. The algorithm is computationally simple, and requires little memory space. 

2.3.4 ICA-GARCH 

Independent Component Analysis (ICA) can be applied to model multivariate asset return 

volatilities as a linear combination of several univariate Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) models. Here we start with multivariate GARCH models and use 

Independent Component Analysis (ICA) to decompose these multivariate time series into 

statistically independent time series. (Wu, YU and LI, 2006). The resulting ICA-GARCH models 

are then used to estimate the multivariate volatilities for VaR estimation. This approach is much 

more computationally tractable (Wu, YU and LI, 2006) as compared to the multivariate GARCH 

model proposed by Bollerslev, Engle and Wooldridge (1988) for which we have already shown 

earlier that as the number of dimensions increase, the number parameters to be estimated also 

increase substantially which becomes computationally prohibitive. 
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2.4 Computing VaR: Detailed Analysis 

In this section, we now go into much more detail about VaR computations. The choice of 

approach is dependent on the type of positions that are “at risk”. In our study, we carry out VaR 

computations using two analytical approaches:  

i. Simple VaR for linear instruments 

ii. Delta-Gamma VaR for non-linear instruments 

As stated earlier, the terms linear and non-linear describe the relationship that exists between a 

position’s underlying returns to that position’s relative change in value.  

2.4.1 Simple VaR Calculations 

The example below deals with VaR estimation at the 95% confidence level. Let’s consider a 

portfolio consisting of N positions and that each of these positions consists of one cashflow on 

which we have both volatility and correlation forecasts. We denote the relative change in the 

value of the nth position at time t by 𝑟𝑛,�̂� . From this we can write the change in the value of the 

portfolio, 𝑟𝑝,�̂� as 

𝑟𝑝,�̂� = ∑ 𝜔𝑛

𝑁

𝑛=1

𝑟𝑛,�̂� = ∑ 𝜔𝑛

𝑁

𝑛=1

𝛿𝑛𝑟𝑛,𝑡 (2.21) 

where: 𝜔𝑛 is the total nominal amount (as opposed to the weight) that is invested in the nth 

position.  

The VaR on a portfolio of simple linear instruments can be computed using 1.6449 multiplied 

by the standard deviation of 𝑟𝑝,�̂�. 1.6449 is the 5th percentile of the standard normal distribution. 

If we are calculating the one day VaR (in other words when the VaR forecast horizon is one 

day), this standard deviation is calculated one day ahead. 
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The VaR estimate is given by: 

𝑉𝑎𝑅𝑡 = √�⃑�𝑡|𝑡−1𝑅𝑡|𝑡−1�⃑�𝑡|𝑡−1

𝑇

(2.22) 

where: 

�⃑�𝑡|𝑡−1 = [1.65𝜎1,𝑡|𝑡−1𝜔1𝛿1   1.65𝜎2,𝑡|𝑡−1𝜔2𝛿2    …    1.65𝜎𝑁,𝑡|𝑡−1𝜔𝑁𝛿 𝑁] (2.23𝑎) 

is the individual VaR 1 x N vector and  

𝑅𝑡|𝑡−1 = [

1
𝜌21,𝑡|𝑡−1

…
𝜌𝑁1,𝑡|𝑡−1

𝜌12,𝑡|𝑡−1

1…
⋯

…
⋯…
…

𝜌1𝑁,𝑡|𝑡−1

⋯…
1

] (2.23𝑏) 

is the 𝑁×𝑁 correlation matrix of the returns on the underlying cashflows. Here the fundamental 

assumption is that the portfolio return follows a conditional normal distribution. 

Important Point to Note on Equity Positions 

To calculate the VaR for an equity given the returns on the market index, we can use the 

equation: 

𝑉𝑎𝑅𝑡 = 𝑉𝑡 ∙ 𝛽𝑡 ∙ 1.65𝜎𝑚,𝑡 (2.24) 

where: 1.65𝜎𝑚,𝑡 = The VaR estimate of the appropriate stock index and 𝛽𝑡 = the sensitivity of 

the stock to changes in the value for the index. 

Fixed income instruments 

With a portfolio of fixed income instruments, RiskMetrics, (1996) mention two issues that arise 

around: 
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i. The correct variable to use for measuring volatility and correlations that is should we use 

the price or yields for computations.  

ii. Incorporating the “roll down” and “pull-to-par” effects of bonds in the Value-at-Risk 

calculations.  

To deal with Point i, the RiskMetrics, (1996) approach computes the price volatilities and 

correlations on fixed income instruments by first computing the zero rates for all instruments 

with a maturity of over a year and then constructing prices from these series using the expression: 

𝑃𝑡 = 𝑒−𝑦𝑡𝑁 (2.25) 

where: 𝑦𝑡 is the current yield on the N-period zero-coupon bond. For money market rates, prices 

are constructed from the formula: 

𝑃𝑡 =
1

(1 + 𝑦𝑡)𝑁
(2.26) 

However, practitioners like to think of volatilities on fixed income in terms of the yield and as 

such in terms of yield volatility. From (2.25) we have the price return calculation given by: 

𝑟𝑡 = ln(𝑃𝑡 𝑃𝑡−1) = 𝑁(⁄ 𝑦𝑡−1 − 𝑦𝑡) (2.27) 

Therefore, the standard deviation of price returns is given by: 

𝜎𝑡 = 𝑁𝜎(𝑦𝑡−1 − 𝑦𝑡) (2.28) 

where: 𝜎(𝑦𝑡−1 − 𝑦𝑡) is the standard deviation of 𝑦𝑡−1 − 𝑦𝑡. 

What the equation above is saying is that to get the price return volatility we must multiply the 

terms to maturity of the underlying instrument by the standard deviation of the absolute changes 

in the yields. 
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In a similar way, from 2.26 we can also obtain: 

𝑟𝑡 = ln(𝑃𝑡 𝑃𝑡−1) = 𝑁𝜎 [𝑙𝑛 (
1 +  𝑦𝑡−1

1 + 𝑦𝑡
)]⁄ (2.29) 

We can then obtain the standard deviation of price returns as: 

𝜎𝑡 = 𝑁𝜎 [𝑙𝑛 (
1 +  𝑦𝑡

1 + 𝑦𝑡−1
)] (2.30) 

where: 𝜎 [𝑙𝑛 (
1+ 𝑦𝑡

1+𝑦𝑡−1
)] is the standard deviation of 𝑙𝑛 (

1+ 𝑦𝑡

1+𝑦𝑡−1
) 

To deal with Point 2., Finger, (1996) points out that in the real world, the bond’s market value 

systematically increases toward it’s par value (the so-called “pull to par effect”) and its daily 

volatility decreases as it moves closer to par (the so-called “roll down” effect). This is opposed 

to the RiskMetrics, (1996) assumptions: 1) there is no expected change in the market value of 

the bond and 2) the volatility of the bond’s market value scales up with the square root of the 

time horizon, assumptions which effectively mean that cash are as if the maturity of the bond 

will always be the same. 

The correct methodology (Fisher, 1966) for measuring VaR for cashflows that occur in T days 

over a forecast horizon of t days (t<T) is given by: 

i. First use the T-t period rate, 𝑦𝑇−𝑡, to discount the cashflows that occur in T days’ time. 

We denote this discounted value by 𝑉𝑇−𝑡 

ii. Then compute VaR as 𝑉𝑇−𝑡(𝜎𝑇−𝑡√𝑡) 

These steps effectively address the pull to par and roll down effects. (RiskMetrics, 1996) 
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2.4.2 Delta-Gamma Normal VaR Calculations (Portfolios with Non-Linear Positions) 

This method allows for more accurate VaR computation for portfolios containing options. This 

can be viewed as an extension of the Delta Normal VaR methodology except that here we 

incorporate the delta, gamma and theta of individual options in the VaR calculations.  

We start with the case of a single option. Here we assume that each option is a function of one 

cashflow and write the return on the option as: 

𝑟𝑖,�̂� = δ̃𝑖𝑟𝑖,𝑡 + 0.5Γ̃𝑖𝑟𝑖,𝑡
2 + θ̃𝑖𝑛 (2.31) 

where: δ̃𝑖 = η𝑖δ𝑖 , Γ̃𝑖 = η𝑖P𝑖,𝑡Γ𝑖, 𝜂 = (
𝑉𝑡

𝑃𝑡
) , θ̃𝑖 = θ𝑖/𝑉𝑖, 𝑛 = VaR forecast horizon and 𝑉𝑖 = 

option’s premium 

Derivation of equation (2.31) has been presented in the Appendix. 

It’s important to note that equation (2.31) is a reasonable approximation when the Greeks 𝛿 and 

Γ are stable as the underlying price changes. If small changes in the underlying causes large 

changes in 𝛿 and Γ then the delta-gamma approach doesn’t perform well (RiskMetrics, 1996). 

Determining the Distribution of the Option’s Returns 

The next task is to determine the distribution of these option returns given by 𝑟𝑖,�̂�. To do this 

we need to compute the numerical values of the moments of 𝑟𝑖,�̂� (recall that this is the returns 

on the option as opposed to 𝑟𝑖,𝑡 , the returns on the underlying asset). Also, RiskMetrics (1996) 

assume that the returns of the underlying are normally distributed with mean 0 and variance 

𝜎2
𝑖,𝑡). RiskMetrics (1996) present the table below comparing the statistical features of an option 

and its underlying return: 
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Statistical 

parameter 
Option Underlying 

Return 𝑟𝑖,�̂�. 𝑟𝑖,𝑡 

Mean 0.5Γ̃𝜎2
𝑖,𝑡 + θ̃𝑖𝑛 0 

Variance δ̃𝑖
2𝜎2

𝑖,𝑡 + 0.5Γ̃2𝜎4
𝑖,𝑡 𝜎2

𝑖,𝑡 

Skewness 3δ̃𝑖
2Γ̃𝑖𝜎

4
𝑖,𝑡 + Γ̃1

3𝜎6
𝑖,𝑡 0 

Kurtosis 12δ̃𝑖
2Γ̃1

2𝜎6
𝑖,𝑡 + 3Γ̃1

4𝜎8
𝑖,𝑡 + 3𝜎4

𝑖,𝑡 3𝜎4
𝑖,𝑡 

Table 2: Statistical Features of an Option and its Underlying Return. 

Again, δ̃𝑖 = η𝑖δ𝑖 , Γ̃𝑖 = η𝑖P𝑖,𝑡Γ𝑖, 𝜂 = (
𝑉𝑡

𝑃𝑡
) , θ̃𝑖 = θ𝑖/𝑉𝑖, 𝑛 = VaR forecast horizon and 𝑉𝑖 = 

option’s premium 

To determine these numerical values, we need the estimates of δ̃𝑖, Γ̃𝑖, θ̃𝑖 and 𝜎2
𝑖,𝑡. Estimates of 

the first three are easily found by applying a Black-Scholes type valuation. In our study, we use 

the ICA-GARCH approach to estimate the variance 𝜎2
𝑖,𝑡 of the underlying asset.  

Having obtained these first four moments of 𝑟𝑖,�̂�’s distribution, we then find a distribution that 

has the same moments for which we know what it is exactly. To do this we need to apply the 

Johnson Translation System to match the moments of 𝑟𝑖,�̂�’s distribution to one of a set of 

possible distributions called Johnson Distributions. 

The Johnson Translation System 

If we have a continuous variable X whose distribution is unknown and we wish to approximate, 

Johnson (1949) proposed three normalizing transformations having the general form: 

𝑍 = 𝛾 + 𝛿𝑓 (
𝑋 − 𝜉

𝜆
) (2.32) 

where: 𝑓( ) is a monotonic transformation function, 𝑍 is a standard normal variable, 𝛾 and 𝛿 

are shape parameters, 𝜆 is a scale parameter and 𝜉 is a location parameter. 
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Further, it is assumed that 𝛿 > 0 and 𝜆 > 0 

The transformations (George and Ramachandran, 2011) proposed by Johnson (1949) are as: 

i. Lognormal system of distributions denoted by 𝑆𝐿: 

𝑍 = 𝛾 + 𝛿𝑙𝑛 (
𝑋 − 𝜉

𝜆
) , 𝑋 > 𝜉 (2.33𝑎) 

= 𝛾∗ + 𝛿𝑙𝑛(𝑋 − 𝜉), 𝑋 > 𝜉 (2.33𝑏) 

This system covers the Lognormal distribution 

ii. The bounded system of distributions denoted by 𝑆𝐵 

𝑍 = 𝛾 + 𝛿𝑙𝑛 (
𝑋 − 𝜉

𝜉 + 𝜆 − 𝑋
) , 𝜉 < 𝑋 < 𝜉 + 𝜆 (2.34) 

This system covers the Gamma, Beta and many other distributions that are bounded on 

the lower end, upper end or both. 

iii. The unbounded system of distributions denoted by 𝑆𝑈 

𝑍 = 𝛾 + 𝛿𝑙𝑛 [(
𝑋 − 𝜉

𝜆
) + {(

𝑋 − 𝜉

𝜆
)

2

+ 1}

1 2⁄

] , −∞ < 𝑋 < ∞ (2.35𝑎) 

𝑍 = 𝛾 + 𝛿sinh−1 (
𝑋 − 𝜉

𝜆
) (2.35𝑏) 

This covers the t, normal and other distributions that are unbounded. 

After transformation of (2.32), 𝑍 follows a standard normal distribution and as such, the 

probability density function (pdf) of each of the equations in the Johnson family can be derived. 

In general, if 𝑋 follows the Johnson distribution and  

𝑌 = (
𝑋 − 𝜉

𝜆
) (2.36) 
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The pdf of 𝑋 (George and Ramachandran, 2011) is given by: 

𝑝(𝑥) =
𝛿

𝜆√2𝜋
×𝑔′ (

𝑋 − 𝜉

𝜆
) ×exp {−

1

2
[𝛾 + 𝛿 ⋅ 𝑔 (

𝑋 − 𝜉

𝜆
)]

2

} (2.37) 

for all 𝑥 ∈ 𝐻, where 

𝐻 = [𝜉, +∞) for the 𝑆𝐿 family of distributions 

𝐻 = [𝜉, 𝜉 + 𝜆] for the 𝑆𝐵 family of distributions 

𝐻 = (−∞, +∞) for the 𝑆𝑈 family of distributions 

Also: 

𝑔(𝑦) = ln (𝑦) for 𝑆𝐿 family of distributions 

𝑔(𝑦) = ln (𝑦/(1 − 𝑦)) for 𝑆𝐵 family of distributions 

𝑔(𝑦) = ln [𝑦 + √𝑦2 + 1 for 𝑆𝑈 family of distributions 

and as such 

𝑔′(𝑦) =
1

𝑦
 for 𝑆𝐿 family 

𝑔′(𝑦) =
1

[𝑦(1−𝑦)]
 for 𝑆𝐵 family 

𝑔′(𝑦) =
1

√𝑦2+1
 for 𝑆𝑈 family 

Now, to find the estimates of 𝛾, 𝛿, 𝜉 and 𝜆 we use percentile matching of the Johnson system 

which involves estimating k required parameters by matching k selected quantiles of the standard 
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normal distribution with the corresponding quantile estimates of the target population (George 

and Ramachandran, 2011).  

Slifker and Shapiro (1980) introduced a selection rule to give estimates of the Johnson 

parameters 𝛾, 𝛿, 𝜉 and 𝜆. This rule uses a function of four percentiles for selecting one of the 3 

families (Log-normal, Unbounded and Bounded). 

The rule works as follows; 

Choose any fixed value z (0<z<1) of a standard normal variate. Determine the percentile 𝑃ζ 

corresponding to ζ = -3z, -z, z, 3z: 

For example, with z = 0.5 

𝑃−1,5 =  (1 − 0,93319) ∗ 100 =  6,681%  

𝑃−0,5 =  (1 − 0,69146) ∗ 100 =  30,854%  

𝑃0,5 =  0,69146 ∗ 100 =  69,146%  

𝑃1,5 =  0,93319 ∗ 100 =  93,319%  

From the data, let 𝑥−3𝑧, 𝑥−𝑧, 𝑥𝑧 , 𝑥3𝑧 be the percentiles of data values corresponding to the four 

selected percentiles of the normal distribution above. 

The type of Johnson distribution (Slifker and Shapiro, 1980) chosen is based on the value of the 

discriminant d calculated as: 

𝑑 =
𝑚𝑛

𝑝2
(2.38) 

where: 𝑝 = 𝑥𝑧 − 𝑥−𝑧, 𝑚 = 𝑥3𝑧 − 𝑥𝑧 and 𝑛 = 𝑥−𝑧 − 𝑥−3𝑧 
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If the calculated discriminant is given by: 

𝑑 > 1.001  Unbounded 

𝑑 < 0.999  Bounded 

0.999 ≤ 𝑑 ≤ 1.001  Lognormal 

The parameter estimates for the Johnson 𝑆𝑈 distribution are: 

𝛿 =
2𝑧

cosh−1 [
1
2 (

𝑚
𝑝 +

𝑛
𝑝)]

(2.39)
 

𝛾 = 𝛿sinh−1 [

𝑛
𝑝 −

𝑚
𝑝

2 (
𝑚
𝑝

𝑛
𝑝 − 1)

1 2⁄
] (2.40) 

�̂� =
2𝑝 (

𝑚
𝑝

𝑛
𝑝 − 1)

1 2⁄

(
𝑚
𝑝 +

𝑛
𝑝 − 2) (

𝑚
𝑝 +

𝑛
𝑝 + 2)

1 2⁄
(2.41) 

and 

𝜉 =
𝑥𝑧+𝑥−𝑧

2
+

𝑝 (
𝑛
𝑝 −

𝑚
𝑝 )

2 (
𝑚
𝑝 +

𝑛
𝑝 − 2)

(2.42) 

The parameter estimates for the Johnson 𝑆𝐵 distribution are: 

𝛿 =
𝑧

cosh−1 (
1
2 [(1 +

𝑝
𝑚) (1 +

𝑝
𝑛)]

1 2⁄

)

; 𝛿 > 0 (2.43)
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𝛾 = 𝛿sinh−1 [
(

𝑝
𝑛 −

𝑝
𝑚) [(1 +

𝑝
𝑚) (1 +

𝑝
𝑛) − 4]

1 2⁄

2 (
𝑝
𝑚

𝑝
𝑛 − 1)

] (2.44) 

�̂� =
𝑝 [{(1 +

𝑝
𝑚) (1 +

𝑝
𝑛) − 2}

2

− 4]
1 2⁄

𝑝
𝑚

𝑝
𝑛 − 1

(2.45) 

and 

𝜉 =
𝑥𝑧+𝑥−𝑧

2
−

𝜆

2
+

𝑝 (
𝑝
𝑛 −

𝑝
𝑚)

2 (
𝑝
𝑚

𝑝
𝑛 − 1)

(2.46) 

The parameter estimates for the Johnson 𝑆𝐿 distribution are: 

�̂� =
2𝑧

ln (
𝑚
𝑝 )

(2.47)
 

𝛾∗ = 𝛿ln [

𝑚
𝑝 − 1

𝑝 (
𝑚
𝑝 )

1 2⁄
] ;  𝛾∗𝑖𝑠 𝑓𝑜𝑟 𝑏𝑜𝑡ℎ 𝛾 𝑎𝑛𝑑 𝜆 (2.48) 

and 

𝜉 =
𝑥𝑧+𝑥−𝑧

2
−

𝑝

2

𝑚
𝑝 + 1

𝑚
𝑝 − 1

(2.49) 

Given these estimates, we can then calculate any percentile of 𝑟𝑖,�̂�’s distribution. This 

approximate percentile is then used in the VaR calculation. 

Once we have our parameters, make the transformation from the percentile of the returns on 

the underlying to the percentile of the distribution of the returns using the transformation: 
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𝑟𝑖,�̂� = sinh (
(𝑟𝑖,𝑡 − 𝛾)

𝛿
) ∙ 𝜆 + 𝜉 Unbounded (2.50) 

𝑟𝑖,�̂� =
𝛽(𝜉 + 𝜆) + 𝜉

(1 + 𝛽)
; 𝛽 = 𝑒

(
(𝑟𝑖,𝑡−𝛾)

𝛿
)
 Bounded (2.51) 

𝑟𝑖,�̂� = 𝜆𝑒
(

(𝑟𝑖,𝑡−𝛾)

𝛿
)

+ 𝜉 Lognormal (2.52) 

Computing the VaR 

Recalling that the general VaR formula (Equation 2.6) can be written as: 

𝑉𝑎𝑅𝑝% = 𝜎×𝑝% 𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑃 𝐿⁄ 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ×𝜗×√𝑇 

where 𝜎 is the volatility of the returns for which we are computing VaR, up until now, what we 

have done is to calculate the 𝑝% 𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟 𝑃/𝐿 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 using the Johnson Translation 

System. We already know that, 𝜗 is the value of the asset and √𝑇 is necessary if the holding 

period is different to the period for which 𝜎 applies to otherwise it will just be 1. 

For a single option, 𝜎 is calculated using the formula defined in Table 2 above and as such we 

can compute our VaR estimates. However, portfolio of options below, we proceed as follows: 

Calculating p% point and 𝝈 for a Portfolio Containing Options 

For the p% point, we find the 5th percentile of 𝑟𝑝,�̂�’s distribution the same way we found the 5th 

percentile of 𝑟𝑖,�̂�’s distribution, as shown previously. The only difference is in the formal and we 

show the formulas shortly. 

To find 𝜎, Let’s consider 𝑟𝑝,�̂� the portfolio return for a portfolio made up of 3 options given by: 

𝑟𝑝,�̂� = 𝜔1𝑟1,�̂� + 𝜔2𝑟2,�̂� + 𝜔3𝑟3,�̂� (2.53) 



40 

 

where  

𝜔𝑖 =
𝑉𝑖

∑ 𝑉𝑖
3
𝑖=1

(2.53𝑎) 

To compute the moments of 𝑟𝑝,�̂� we need the covariance matrix ∑ of the underlying returns 

{𝑟1,𝑡, 𝑟2,𝑡, 𝑟3,𝑡} and the 𝛿, Γ and 𝜃 cashflow vectors as: 

𝛿 = [

𝛿1

𝛿2

𝛿3

] , Γ̃ = [

Γ̃1 0 0

0 Γ̃2 0

0 0 Γ̃3

] , and �̃� = [

�̃�1

�̃�2

�̃�3

] (2.54) 

Once again, we use the ICA-GARCH method to determine ∑. To find the 5th percentile of 𝑟𝑝,�̂�’s 

distribution, we apply the same method as we did to find the 5th percentile of 𝑟𝑖,�̂�’s distribution 

as shown in an earlier section. 

The expressions for the first two moments is now given by: 

𝜇𝑝,𝑡 = 0.5 ∙ trace[Γ̃∑] + ∑ �̃�𝑖

3

𝑖=1

(2.55) 

𝜎𝑝,𝑡
2 = 𝛿𝑇∑�̂� + 0.5 ∙ trace [(Γ̃∑)

2
] (2.56) 

Here we add an adjustment factor compared to the linear cases where Γ = 0. The trace of the 

matrix Γ̃∑ is the sum of the N eigenvalues of Γ̃∑. The trace of (Γ̃∑)
2
 is the sum of the squared 

eigenvalues of Γ̃∑ and so forth (Pichler & Selitsch, 1999). 

If we standardise the portfolio returns by letting: 

𝑟𝑝,𝑡 =
𝑟𝑝,�̂�−𝜇𝑝,𝑡

𝜎𝑝,𝑡
, the higher moments of 𝑟𝑝,𝑡 with 𝜅 ≥ 3 are given by: 
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𝐸(𝑟𝑝,𝑡
𝑘) =

1
2 𝜅! 𝛿𝑇∑[Γ∑]𝜅−2�̂� +

1
2

(𝜅 − 1)! ∙ trace[Γ∑]𝜅

𝜎𝑝,𝑡
𝜅 2⁄

(2.57) 

𝜅 = 3 gives the skewness and 𝜅 = 4 gives the kurtosis (Pichler & Selitsch, 1999). 

So, to summarise, the steps to follow to compute the VaR for a non-linear asset are: 

Step 1. We estimate δ̃𝑖, Γ̃𝑖, θ̃𝑖 for each option (from the Black-Scholes formula) and 𝜎2
𝑖,𝑡(from 

the volatility modelling methodologies, GARCH, EWMA and ICA-GARCH 

methodologies)  

Step 2. We calculate the mean, variance, skewness coefficient and kurtosis coefficient using the 

formulae in Table 3.1 

Step 3. We then use Slifker and Shapiro (1980)’s selection criteria to determine the distribution 

and estimates of the parameters 𝛾, 𝛿, 𝜉 and 𝜆. 𝛾 and 𝛿 are shape parameters, 𝜆 is a scale 

parameter and 𝜉 is a location parameter for the normalising transformation. 

Step 4. Compute the percentiles of 𝑟𝑖,�̂�’s distributions based on the transformations in (2.50), 

(2.51) and (2.52) 

Step 5. Calculate the 𝜎 for the portfolio 

Step 5. Compute the VaR calculation. 

2.5 Research Instruments 

We use the following Applications for our analysis: 

EViews 8: For regression analysis and estimating our volatility models. 



42 

 

MATLAB: For running the fast ICA algorithm. We used the robust fast ICA algorithm based 

on Hyvärinen and Oja, (2000) to estimate the Independent Components for our data. 

MS Excel: For building our VaR computations. This also include coding in VBA for iterations 

that calculate the trace function as necessitated by equations in Section 2.4.2 above. 

2.6 Data Requirements 

We computed VaR calculations on a portfolio made up of 3 linear financial assets as follows: 

i. A long call option on the GOLDS Index 

i. A long put option on the FTSE/JSE TOP 40 Index  

ii. A long call option on the ZAR/USD currency exchange rate.   

These were largely obtained from the Bloomberg terminal. 

Our period of observations is the period from December 31, 2010 to December 31, 2016. We 

further split the time series further into an in-sample period for model training and out-of-sample 

data for the evaluation of forecasting precision. In essence, we split our data as follows: 

  Dates Observations Proportions 

In-Sample Period 2010/12/31 to 2015/12/31 1305 83 % 

Out-Of-Sample Period 2015/12/31 to 2016/12/31 261 17% 

Total 2010/12/31 to 2016/12/31 1565 100% 

Table 3: In and Out-of-Sample Split 

We obtained data from the Bloomberg Terminal using the following Bloomberg tickers: 

i. Equities – FTSE/JSE Africa Top40 Tradeable Index (TOP40) 

ii. Commodities – Gold Spot $/OZ Commodity Index (GOLDS)  

iii. Foreign Exchange – USD/ZAR Exchange Rates  
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2.7 Pre-processing 

We lay-out in detail the steps we followed to make sure that the data is the right structure for our 

analysis in Section 4.1 below. However, at a glance, we first test the raw price data for stationarity. 

For this we use the Augmented Dickey-Fuller test performed on the price data for the different 

indices. The hypothesis is as follows, 

𝐻0: 𝑦𝑡~𝐼(1) Null hypothesis series is non-stationery - has a unit root  

𝐻1: 𝑦𝑡~𝐼(0) Alternative hypothesis the series is stationary - does not have a unit root 

If we establish that the data is stationary, we transform it into another form by some sort of 

transformation which here will be differencing or taking logs before differencing. By stationary, 

we mean here that the statistical properties of the data such as its joint probability distribution 

(strict stationarity) as well as its first two moments (weak stationarity) remain constant over time. 

Further, we use log-linear interpolation to deal with discontinuities in the data which could possibly 

give rise to discontinuities. Before we perform the Independent Component Analysis, we also 

center and whiten the data as laid out in Section 2.3.3 above. Once we have carried out these tasks 

and made one final test for stationarity on the processed data, we will then continue with our 

analysis. 

Further, we use the following system of equations to fit the EWMA and GARCH model onto the 

data: 

Univariate GARCH(1,1) 

In order to fit the 𝐺𝐴𝑅𝐶𝐻(1,1) model to our data, we use the following model: 

𝜎𝑡
2 = 𝛾𝑉𝐿 + 𝛼𝑢𝑡−1

2 + 𝛽𝜎𝑡−1
2  

Or equivalently: 
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𝜎𝑡
2 = 𝜔 + 𝛼𝑢𝑡−1

2 + 𝛽𝜎𝑡−1
2  

where: 𝜎𝑡
2 is the conditional variance, 𝑉𝐿 is the long-term average volatility, 𝑢𝑡−1

2  is the square if 

the previous period residual, 𝜎𝑡−1
2  is the fitted variance from the model during the previous 

period and 𝛾, 𝛼 & 𝛽 are the parameters of the model  

The log-likelihood function for the 𝐺𝐴𝑅𝐶𝐻(1,1) model with normal distribution becomes: 

𝐿𝑁(𝜃) = 𝑙𝑛 ∏
1

√(2𝜋𝜎𝑡
2)

𝑡

𝑒
−

𝑢𝑡
2

2𝜎𝑡
2
 

= −
1

2
∑ [𝑙𝑛(2𝜋) + 𝑙𝑛(𝜎𝑡

2) +
𝑢𝑡

2

𝜎𝑡
2]

𝑡

 

So, in Excel we will use Solver to solve the following optimisation problem: 

min 𝐿𝑁(𝜃) =
1

2
∑ [𝑙𝑛(2𝜋) + 𝑙𝑛(𝜎𝑡

2) +
𝑢𝑡

2

𝜎𝑡
2]

𝑡

 

subject to 

𝜎𝑡
2 − 𝜔 − 𝛼𝑢𝑡−1

2 − 𝛽𝜎𝑡−1
2 = 0 

−𝜔 ≤ 0 

−𝛼 ≤ 0 

−𝛽 ≤ 0 

𝛼 + 𝛽 − 1 ≤ 0 

The optimisation problem above leads to estimates of 𝛾, 𝛼 & 𝛽 

Exponentially Weighted Moving Average (EWMA) 

The exponentially weighted moving average (𝜎𝑡) is calculated as: 
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𝜎𝑡
2 = 𝜆𝜎𝑡−1

2 + (1 − 𝜆)𝑟𝑡−1
2  

where: 𝑟𝑡 is the value of the time series at time t and 𝜆 is the smoothing parameter (a non-

negative constant between 0 and 1) 

Now, the EWMA is a special case of the 𝐺𝐴𝑅𝐶𝐻(1,1) and the 𝐺𝐴𝑅𝐶𝐻(1,1) is a generalised 

case of the EWMA. The main difference between these two models is that GARCH includes the 

additional term for mean reversion, the 𝛾𝑉𝐿 term. To go from 𝐺𝐴𝑅𝐶𝐻(1,1) to EWMA, 

consider the model below: 

𝐺𝐴𝑅𝐶𝐻(1,1) = 𝜎𝑡
2 =  𝜔 +  𝛼𝑢𝑡−1

2 +  𝛽𝜎𝑡−1
2  

Letting 𝜔 = 0 and (𝛼 + 𝛽) = 1, the above expression simplifies to: 

𝐺𝐴𝑅𝐶𝐻(1,1) = 𝜎𝑡
2 = 𝛼𝑢𝑡−1

2 + (1 − 𝛼)𝜎𝑡−1
2  

This is now equivalent to the formula for the EWMA: 

𝐸𝑊𝑀𝐴 = 𝜎𝑡
2 = 𝛼𝑢𝑡−1,𝑡

2 + (1 − 𝛼)𝜎𝑡−1
2  

𝜎𝑡
2 = 𝜆𝜎𝑡−1

2 + (1 − 𝜆)𝑢𝑡−1,𝑡
2  

The 𝜆 is the “decay” parameter. RiskMetrics (1996) proposed a value for the decay factor 𝜆 of 0,94 

for daily data at a level of tolerance (𝛾𝑡𝑜𝑙) of 0,01. The relationship linking the decay parameter, 

level of tolerance and required number of historical returns is given by: 

1 − 𝜆𝑛 = (1 − 𝛾𝑡𝑜𝑙) 

We can then re-write the EWMA model as: 

𝜎𝑡
2 = 0,94𝜎𝑡−1

2 + (0,06)𝑢𝑡−1
2  

ICA-GARCH(1,1) 

The procedure for the ICA-GARCH(1,1) is the same as that for the Univariate-GARCH(1,1) 

except that now we run the FastICA algorithm on the data to obtain the Independent Components 

before fitting a GARCH(1,1) onto these Independent Components. 
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2.8 Back testing 

Here we present a simple method of determining the appropriateness of the models. We construct 

1-day VaR forecasts over a selected period say 6-months period. We then compare these forecasts 

to the actual realized profits or losses represented here by the 1-day returns. 

Recall that our portfolio return is calculated as: 

𝑟𝑝,𝑡 = ∑ 𝑤𝑖𝑟𝑖,𝑡
2
𝑖=1   

where 𝑤𝑖 is the weight of each asset and 𝑟𝑖,𝑡 is the return of each asset in the portfolio. 

The Value-at-Risk was computed and presented in the preceding sections. 

Assessing Model Performance 

The simplest measure of performance which we employ here is a count of the number of times 

that the VaR estimate falls short in predicting future losses/gains. In other words, “under 

estimates” future losses/gains. Here we assume that on each particular day there is a 5% chance 

that the observed loss exceeds the forecast VaR 

To give more perspective, let us start with a random variable X(t) on any day t such that X(t) = 1 

if the realised loss is greater than the forecast VaR and X(t) = 0 otherwise. 

The distribution of X(t) can be thought of as a Bernoulli distribution written in the form: 

𝑓(𝑋(𝑡)|0,05) = {0,05𝑋(𝑡)(1 − 0,05)1−𝑋(𝑡) 𝑋(𝑡) = 0 𝑜𝑟 1
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Let’s suppose we observe X(t) for a total of T days, t=1,2,3,…,T. The random variable X(t) has an 

expected value of 0,05 (from the mean of the Bernoulli distribution). The total number of 

violations of VaR over this period of time is given by 
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𝑋𝑇 = ∑ 𝑋(𝑡)
𝑇

𝑡=1
 

Given our level of confidence a, the expected value of 𝑋𝑇 which is the expected number of 

violations of VaR violations over T Days is given by 

𝑇×𝑎 

So, in the case where we are dealing with say 𝑎 = 5% over 260 days, the expected number of 

violations of VaR is 13. Therefore, we expect to observe 1 violation of VaR every 20 days. 

The importance of this simplified method lies in the fact that the probability of observing 

violations of VaR over T days is the same as the probability of observing violations of VaR at any 

point in time t. 

2.9 Conclusion 

In this chapter, we have explored some of the key literature and concepts for the topics relevant 

to our research. We have looked at the methods of estimating Value-at Risk and also set the tone 

on the use of univariate vs multivariate volatility estimates. Whereas multivariate volatilities are 

more accurate, the main challenge with their estimation is the ease of computation. Independent 

Component Analysis (ICA) from statistics and signal processing can be applied to model 

multivariate asset return volatilities as a linear combination of several univariate Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) models. We have also laid down in 

greater detail the method of computing VaR that we used and the steps we followed together 

with our research methodology as well as the data analysis methods and tools we used in our 

research 
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3 Results 

In this chapter, we assess the performance of the different methods for computing portfolio 

Value-at-Risk. First, we analyse the three volatility models under study (univariate GARCH, 

ICA-GARCH and EWMA). We then go on to use these volatility models to compute the VaR 

estimates for our portfolios and present the results. Finally, we use back-testing methods to 

evaluate the performance of these models.  

3.1 Volatility Models 

We used three methods for computing the volatility namely, the univariate-GARCH, EWMA 

and the ICA-GARCH approach. Before carrying out our analysis, we pre-processed the data 

using EViews 8 as follows: 

3.1.1 Data Pre-Processing 

Our stock price data for the Golds Index, Top40 Index and USDZAR exchange rate is in South 

African Rand and as such rebasing is not necessary. 

Descriptive Statistics and Time Series Analysis: 

Before carrying out any empirical project, it is necessary to perform a descriptive analysis of the 

data in order to note patterns, unusual behaviours and trends in the data. The observations noted 

will be of great use when later analysing and interpreting the results of empirical analysis. 

The graphs below are the time series plots for the price data for the Golds Index, Top40 Index 

and USDZAR for the period 2010/12/31 to 2016/12/31 in EViews 8. Note the fall in prices of 

the GOLDS index from 2012 when would commodity prices fell: 
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Figure 7: GOLS Index 

In contrast, the TOP40 index has been steadily increasing recovering from the 2008 financial 

crisis: 
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Figure 8: TOP40 Index 

In the same way as the fall in commodity prices, the rand was also depreciating over the same 

period losing its value against the US dollar: 
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Figure 9: USDZAR Exchange Rate 

There is strong evidence of trends in the price data. The impulsiveness in prices is seen with price 

increases rather than with price decreases. This is to say that for all data sets there are more 

significant spikes observed in the increase in prices and less significant spikes observed in the 

decline in prices. There are also numerous positive outliers for price increase spikes. The plots of 

the stock prices characterise the stylised features of price data. 

Stationarity Test 

Finally, we have to check whether our series are stationary or not. This is very important, for the 

stationarity or otherwise of a series can strongly influence its behaviour and properties. The 

hypothesis being tested is whether the series is non-stationary that is, contains a unit root. 

𝐻0: 𝑦𝑡~𝐼(1) Null hypothesis series is non-stationery - has a unit root  

𝐻1: 𝑦𝑡~𝐼(0) Alternative hypothesis the series is stationary - does not have a unit root 

The table below extracted from EViews 8 shows the test statistics and p-values for the Augmented 

Dickey-Fuller test performed on the price data for different indices: 
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Null Hypothesis: GOLDS has a unit root    
Number of Lags: 12    
Method: Least Squares    

  t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic  -1,2318 0,6627 

Test critical values: 1% level -3,4343  

 5% level -2,8632  

 10% level -2,5677      
*MacKinnon (1996) one-sided p-values.    

Table 4: ADF Test on Golds Index 

 

Null Hypothesis: TOP40 has a unit root    
Number of Lags: 12    
Method: Least Squares    

  t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic  -1,0164 0,7493 

Test critical values: 1% level -3,4350  

 5% level -2,8635  

 10% level -2,5679      
*MacKinnon (1996) one-sided p-values.    

Table 5: ADF test on Top40 Index 

 

Null Hypothesis: USDZAR has a unit root    
Number of Lags: 12    
Method: Least Squares    

  t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic  -1,0923 0,7209 

Test critical values: 1% level -3,4343  

 5% level -2,8632  

 10% level -2,5677      
*MacKinnon (1996) one-sided p-values.    

Table 6: ADF on USDZAR 

The test statistics in all 3 cases are less negative than the test critical values and hence there is no 

sufficient evidence to reject the null hypothesis of a unit root in the stock prices. Therefore, the 

stock prices themselves are not stationary.   



52 

 

Dealing with Non-Stationarity 

We then took log percentage returns of the prices for the three indices for the period 2010/12/31 

to 2016/12/31 to create three new series. These series were created in the form of three new series 

dgolds, dtop40 and dusdzar in EViews 8 using the following formulae: 

dIndexname = 100*dlIndexname = 100*(lIndexname – lIndexname (-1)) where lIndexname = 

log(Indexname) and Indexname = {GOLDS, TOP40 and USDZAR} 

The table below shows the test statistics and p-values for the Augmented Dickey-Fuller test 

performed on the log percentage returns for our indices: 

Null Hypothesis: DGOLDS has a unit root    
Number of Lags: 12    
Method: Least Squares    

  t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic  -39,4363 0,0000 

Test critical values: 1% level -3,4343  

 5% level -2,8632  

 10% level -2,5677      
*MacKinnon (1996) one-sided p-values.    

Table 7: ADF Test on DGolds Index 

 

Null Hypothesis: DTOP40 has a unit root    
Number of Lags: 12    
Method: Least Squares    

  t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic  -28,7226 0,0000 

Test critical values: 1% level -3,4350  

 5% level -2,8635  

 10% level -2,5679      
*MacKinnon (1996) one-sided p-values.    

Table 8: ADF test on DTop40 Index 
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Null Hypothesis: DUSDZAR has a unit 
root    
Number of Lags: 12    
Method: Least Squares    

  t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic  -39,4056 0,0000 

Test critical values: 1% level -3,4343  

 5% level -2,8632  

 10% level -2,5677      
*MacKinnon (1996) one-sided p-values.    

Table 9: ADF on DUSDZAR 

The test statistics in all three cases are more negative than the test critical values and hence the null 

hypothesis of a unit root in the log percentage returns is convincingly rejected. The log percentage 

returns are stationary and as such, our analysis is going to be based on the log percentage returns 

rather than the stock prices themselves. 

A plot of these three new series generated for the log percentage returns is shown in the figure 

below:  
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Figure 10: Daily log percentage returns for GOLDS, TOP40 and USDZAR 

Note the existence of outliers in all three plots. The time series plots show volatility clustering in 

other words, the current level of volatility seems to be positively correlated with its level during 

the preceding periods. 

Test for Normality 

Below is a histogram of the log percentage returns of the stocks for all three indices for the periods 

2010/12/31 to 2016/12/31together with the descriptive statistics. These graphs were extracted 

from EViews 8. 
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Figure 11: Histogram and stats for the indices 

From the descriptive statictics for the log percentage returns for each stock price data set, both 

series are not normally ditsibuted. The skewness for all three log percentage returns is not 0 and 
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are thus asymmetric about their mean value and have an excess kurtoses of at least 4 for all three 

cases. This however is one of the sylised fetures of financial time series data. Jarque-Bera p-values 

of 0 shows strong evidence against normality.  

Dealing with missing values 

Any GARCH analysis works with continuous data. If there are breaks in the time series due to 

holidays, EViews will throw errors and the GARCH analysis will fail. To eliminate this problem, 

we carried out a log-linear interpolation on the TOP40 index to create the TOP40b index which 

is a continuous series. The graph below is the time series plot for the price data for the Top40 

Index for the period 2010/12/31 to 2016/12/31: 
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Figure 12: TOP40B Index 

Compared to the TOP40 index we plotted earlier, 
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Figure 13: TOP40 Index 

the plots are the same except that we have now dealt with the discontinuities highlighted in red 

above. 

Our analysis of the top 40 index was thus carried out on the TOP40B index.  

Independent Component Analysis 

To carry out the ICA, we exported the data from EViews into MATLAB where we used the 

FastICA algorithm to carryout Independent Component Analysis on our data: 
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Figure 14: Plot of the mixed signals. 

These mixed signals (from top to bottom) are the original DGOLDS, DTOP40b and USDZAR 

indices before we have carried out the ICA. Notice that this is the same as the plots in Figure 10 

above. Because we can’t work with the data as time series in the FastICA algorithm, we have 

observation number and not necessarily the date on the horizontal axis. We will recombine the 

series with the dates after carrying out the Independent Component Analysis. 

Earlier we mentioned that the pre-processing of data for ICA involves centering followed by 

Sphering or Whitening. In the figure below we have plotted a graph of the whitened signals: 
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Figure 15: Plot of the whitened signals 

The figure below is a plot of the Independent Components: 

 

Figure 16: Plot of the Independent Components 

The next step after carrying out the ICA and obtaining out Independent Components is to 

export the data from MATLAB back into EViews for further analysis. 
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To put things into further perspective, we have plotted below the graphs of each of the mixed 

signals superimposed on that of the Independent Components: 
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Figure 17: Comparing the GOLDS Mixed Signals to the Independent Components 
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Figure 18: Comparing the TOP40B Mixed Signals to the Independent Components 
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Figure 19: Comparing the USDZAR Mixed Signals to the Independent Components 

Parameter Estimation of the Volatility Models 

The next step involves Parameter Estimation 

We began by estimating the parameters for the Univariate-GARCH(1,1) model. For parameter 

estimation, we fitted the GARCH(1,1) model on the data for the period 2010/12/21 to 

2015/12/31 leaving out 2016 for the out of sample tests. The results are as follows: 

Dependent Variable: DGOLDS   
Method: ML - ARCH (Marquardt) - Normal distribution  
Sample (adjusted): 1/03/2011 12/31/2015       
Variance Equation     
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)       
Variable Coefficient Std. Error z-Statistic Prob. 

C 0,0578 0,0104 5,5695 0,0000 

RESID(-1)^2 0,0784 0,0063 12,4192 0,0000 

GARCH(-1) 0,8711 0,0133 65,2792 - 
     

R-squared -0,0000     
Adjusted R-squared -0,0000     
Akaike info criterion  2,8754     
Schwarz criterion  2,8873     

Table 10: GARCH(1,1) on Golds Index 
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Dependent Variable: DTOP40B 

Method: ML - ARCH (Marquardt) - Normal distribution 

Sample (adjusted): 1/03/2011 12/30/2015 
     
Variance Equation     
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 
     
Variable Coefficient Std. Error z-Statistic Prob. 

C 0,0156 0,0050 3,1076 0,0019 

RESID(-1)^2 0,0743 0,0136 5,4810 0,0000 

GARCH(-1) 0,9124 0,0151 60,6037 - 
     

R-squared -0,0002     
Adjusted R-squared -0,0002     
Akaike info criterion  2,7364     
Schwarz criterion  2,7523     

Table 11: GARCH(1,1) on Top40 Index 

 

Dependent Variable: DUSDZAR 

Method: ML - ARCH (Marquardt) - Normal distribution 

Sample (adjusted): 1/03/2011 12/30/2015 
     
Variance Equation     
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 
          
Variable Coefficient Std. Error z-Statistic Prob. 

C 0,0468 0,0148 3,1573 0,0016 

RESID(-1)^2 0,0945 0,0147 6,4447 0,0000 

GARCH(-1) 0,8521 0,0288 29,6236 0,0000 
     

R-squared -0,0001     
Adjusted R-squared -0,0001     
Akaike info criterion  2,5968     
Schwarz criterion  2,6126     

Table 12: GARCH(1,1) on USDZAR 

Next we estimated the parameters for the ICA-GARCH(1,1) model. For parameter estimation, we 

fitted the ICA-GARCH(1,1) model on the data for the period 2010/12/21 to 2015/12/31 leaving 

out 2016 for the out of sample tests. It’s important to note that the procedure is essentially the 

same as the Univariate-GARCH(1,1) model except that here we are now fitting the GARCH(1,1) 

model on our independent components generated by the FastICA algorithm in Matlab.  The results 

are as follows:  
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Dependent Variable: DGOLDS_ICA 

Method: ML - ARCH (Marquardt) - Normal distribution 

Sample (adjusted): 1/03/2011 12/30/2015 
     
Variance Equation     
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 
     
Variable Coefficient Std. Error z-Statistic Prob. 

C 0,0421 0,0072 5,8244 0,0000 

RESID(-1)^2 0,0698 0,0055 12,7650 0,0000 

GARCH(-1) 0,8895 0,0104 85,8801 - 
     

R-squared -0,0000     
Adjusted R-squared -0,0000     
Akaike info criterion  2,7703     
Schwarz criterion  2,7763     

Table 13: ICA-GARCH(1,1) on Golds Index 

Dependent Variable: DTOP40B_ICA 

Method: ML - ARCH (Marquardt) - Normal distribution 

Sample (adjusted): 1/03/2011 12/30/2015 
     
Variance Equation     
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 
     
Variable Coefficient Std. Error z-Statistic Prob. 

C 0,0518 0,0151 3,4217 0,0006 

RESID(-1)^2 0,1090 0,0162 6,7226 0,0000 

GARCH(-1) 0,8306 0,0307 27,0448 0,0000 
     
R-squared -0,0001     
Adjusted R-squared -0,0001     
Akaike info criterion  2,5644     
Schwarz criterion  2,5803     

Table 14: ICA-GARCH(1,1) on Top40 Index 

Dependent Variable: DUSDZAR_ICA 

Method: ML - ARCH (Marquardt) - Normal distribution 

Sample (adjusted): 1/03/2011 12/30/2015 
     
Variance Equation     
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 
     
Variable Coefficient Std. Error z-Statistic Prob. 

C 0,0169 0,0051 3,3197 0,0009 

RESID(-1)^2 0,0805 0,0144 5,5784 0,0000 

GARCH(-1) 0,9036 0,0161 56,2267 - 
     

R-squared -0,0001     
Adjusted R-squared -0,0001     
Akaike info criterion  2,6638     
Schwarz criterion  2,6796     

Table 15: ICA-GARCH(1,1) on USDZAR 
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The parameter estimates for the EWMA model are already specified as GARCH 0.94 and ARCH 

0.06 as derived in Section 3.6 above and as such we do not carry out any parameter estimation 

here and go ahead and forecast using our models estimated above 

3.2 VaR Forecasts 

After the volatility modelling and forecasting, we went ahead and built our VaR models. For this 

we created a portfolio of options as follows: 

ii. A long call option on the GOLDS Index 

iii. A long put option on the FTSE/JSE TOP 40 Index  

iv. A long call option on the ZAR/USD currency exchange rate.  

All 3 were 6 month options. The steps followed can be summarised as follows: 

Step 1. Estimate δ̃𝑖 , Γ̃𝑖, θ̃𝑖 for each option (from the Black-Scholes formula) and we have 

𝜎2
𝑖,𝑡(from the volatility modelling methodologies, GARCH, EWMA and ICA-GARCH 

methodologies above)  

Step 2. Compute the portfolio return based on the system of equations we specified earlier in 

Section 2.4.2 

Step 3. Calculate the mean, variance, skewness coefficient and kurtosis coefficient for our 

portfolio return. 

Step 4. Use Slifker and Shapiro (1980)’s selection criteria to determine the distribution and 

estimates of the parameters 𝛾, 𝛿, 𝜉 and 𝜆. 𝛾 and 𝛿 are shape parameters, 𝜆 is a scale 

parameter and 𝜉 is a location parameter for the normalising transformation. 

Step 5. Compute the percentiles of 𝑟𝑖,�̂�’s distributions based on the Johnson Translation 
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Step 6. Calculate the 𝜎 for the portfolio from the portofolio variance computed in Step 3. 

Step 7. Use the percentile in Step 4 and the 𝜎 in Step 5 to compute the VaR calculation. 

As we outlined in Section 3.9, we assess the appropriateness of a VaR model based on the total 

number of violations of VaR over a specified period of time. In the following section, we present 

the results for the out-of-sample tests. In all cases, the strike price is chosen such that the options 

are at the money at the start of the forecast period. We now present our results below: 

Results Excluding Theta (Delta-Gamma Method) 

We now show the results of the number of VaR violations for the Delta VaR compared to the 

Delta-Gamma-(Theta)-VaR when we exclude Theta from the calculations: 

 

  
 Number of 
Violations  

 Expected No of 
Violations  

Percentage of 
Violations 

Delta-Gamma VaR (Normal) 55 7 42% 

Delta-Gamma VaR (Translated) 58 7 45% 

Table 16: Results Comparison for the Univariate-GARCH Model 

  
 Number of 
Violations  

 Expected No of 
Violations  

Percentage of 
Violations 

Delta-Gamma VaR (Normal) 55 7 42% 

Delta-Gamma VaR (Translated) 58 7 45% 

Table 17: Results Comparison for the EWMA Model 

  
 Number of 
Violations  

 Expected No of 
Violations  

Percentage of 
Violations 

Delta-Gamma VaR (Normal) 51 7 39% 

Delta-Gamma VaR (Translated) 51 7 39% 

Table 18: Results Comparison for the ICA-GARCH Model 

Results Including Theta (Delta-Gamma-Theta) 

The number of VaR violations for the Delta VaR compared to the Delta-Gamma-(Theta)-VaR 

when we include Theta in the calculations are as follows: 
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Number of 
Violations 

Expected No of 
Violations 

Percentage of 
Violations 

Delta-Gamma-Theta VaR (Normal) 3 7 2% 

Delta-Gamma-Theta VaR (Translated) - 7 - 

Table 19: Results Comparison for the Univariate-GARCH Model 

  
Number of 
Violations 

Expected No of 
Violations 

Percentage of 
Violations 

Delta-Gamma-Theta VaR (Normal) 4 7 3% 

Delta-Gamma-Theta VaR (Translated) - 7 - 

Table 20: Results Comparison for the EWMA Model 

  
Number of 
Violations 

Expected No of 
Violations 

Percentage of 
Violations 

Delta-Gamma-Theta VaR (Normal) 16 7 12% 

Delta-Gamma-Theta VaR (Translated) 5 7 4% 

Table 21: Results Comparison for the ICA-GARCH Model 

From the results above, we see that for the Delta-Gamma method (excluding theta) we can still 

use the Normal Distribution percentile for the VaR computations as this leads to better VaR 

forecasts than the Translated Percentiles. However, both sets of estimates are still providing poor 

VaR forecasts with VaR violations exceeding 30% on average. 

When we include the higher moment, theta to get the Delta-Gamma-Theta forecasts, the Normal 

Distribution percentile is now producing weak forecasts with the Translated Percentiles giving 0 

violations in all three cases (Univariate-GARCH, EWMA and ICA-GARCH). On the whole, the 

Delta-Gamma-Theta methodology is a better VaR forecasting technique than the Delta-Gamma 

method.  

We also see that the ICA-GARCH methodology failed to produce better VaR forecasts for our 

sample period as it produced more VaR violations that the other 2 (Univariate-GARCH and 

EWMA).  

We now look at the translated percentiles from the Univariate-GARCH, EWMA and ICA-

GARCH under the Delta-Gamma-Theta methodology to compare the “strictness” of the forecasts 
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We now rank the absolute values of these translated percentiles: 

  Translated Percentile 

  Delta Delta-Gamma Delta-Gamma-Theta 

Univariate-GARCH 0,04 0,76 24,50 

EWMA 0,05 1,33 22,06 

ICA-GARCH 0,04 0,77 4,32 

Table 22: Absolute values of the Translated 5th Percentiles 

  Translated Percentile 

  Delta Delta-Gamma Delta-Gamma-Theta 

Univariate-GARCH 8 6 1 

EWMA 7 4 2 

ICA-GARCH 9 5 3 

Table 23: Ranking the absolute values of the Translated 5th Percentiles 

The tables above show that the 5th percentiles of the different methodologies. The Univariate-

GARCH Delta-Gamma-Theta methodology provides the best VaR estimates based on the critical 

values of the translated percentiles. 

Additionally, we now show the different VaR estimates superimposed on the same graph as the 

portfolio return: 
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Figure 20: Univariate-GARCH Delta-Gamma-Theta Normal Estimate 

 

Figure 21: EWMA Delta-Gamma-Theta Normal Estimate 

 

Figure 22: ICA-GARCH Delta-Gamma-Theta Normal Estimate 
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Figure 23: Univariate Delta-Gamma-Theta Translated Estimate 

 

Figure 24: EWMA Delta-Gamma-Theta Translated Estimate 
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Figure 25: ICA-GARCH Delta-Gamma-Theta Translated Estimate 

In all cases, we see that the Delta-Gamma-Theta VaR estimates for the translated distribution give 

better VaR forecasts than their Normal Distribution counterparts. 

3.3 Conclusion 

In this chapter, we have presented our results and findings on the different VaR computation 

methodologies we were studying. The results pointed towards the Delta-Gamma-Theta 

methodology being a superior VaR technique compared to the Delta-Gamma and subsequently 

the Delta methodology. Within the Delta-Gamma-Theta methodology itself, the Univariate-

GARCH methodology provided better estimates of VaR for the period chosen giving better 

forecasts than the ICA-GARCH and EWMA methodologies. In the next chapter, we conclude 

our study and also give recommendations for further research. 

.000

.002

.004

.006

.008

.010

.012

-12,000 -8,000 -4,000 0 2,000 4,000 6,000 8,000 12,000

ICAGARCH_RETURN Normal

ICAGARCH_VAR_TRANSLATED Normal

D
e
n
s
it
y



71 

 

4 Final Remarks and Recommendations 

The main purpose of this study was to answer the research question: If applied to non-linear 

financial assets in South African financial markets, does the ICA-GARCH approach to computing 

multivariate portfolio VaR where the underlying distribution is estimated using the Johnson’s 

distribution lead to better performing estimate of VaR and more quickly converging VaR 

computations as well as more accurate VaR estimates and forecasts than the univariate GARCH 

and EWMA approaches. 

We created a portfolio of three options, a call option on the GOLDS index, a put option on the 

TOP40 Index and a call option on the USDZAR exchange rate. All three options were at-the-

money at the beginning of the forecast period. For simplicity, we assumed that they were only 

comprised of a single cashflow which is on exercise date. From this we computed the Greeks and 

subsequently the first four moments of the portfolio. 

The first VaR estimates we computed were for the Delta-VaR method. The predictions were very 

poor with our VaR estimates failing to capture many of the losses suffered by the portfolio. We 

then looked at the Delta-Gamma and Delta-Gamma-Theta methodologies. The results showed 

that the Delta-Gamma-Theta methodology is a superior VaR technique compared to the Delta-

Gamma and subsequently the Delta methodology. The addition of the higher order theta leads to 

more accurate projections. 

In addition, within the Delta-Gamma-Theta methodology, the ICA-GARCH approach for 

computing the volatilities of the different assets in the portfolio did not lead to much better VaR 

forecasts for our sample and the chosen period. The Univariate-GARCH method provided the 

most accurate forecasts of all the three methodologies.  
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It should be noted that several factors could have influenced the outcome of our research. These 

include the choice of the number of assets in the portfolio. While we worked with three assets, for 

multivariate volatilities this could be considered too small a number. Further studies could be 

carried out to determine the results once we are dealing with a large portfolio with say more than 

20 options. Another case to consider would be the results when we have a mix of long and short 

positions in the options. This could produce different results for the correlations and as such 

different results for the portfolio variance. 

It is also interesting to note that here we used a period of 6 months from 2016/07/01 to 

2017/12/31. Since here we are incorporating theta into the calculations, it would be interesting to 

carry-out scenario analysis to determine if the results will be consistent over different forecast 

horizons. 
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Appendix: Derivation of The Equation for the Return on an 

Option 

We start with the value of the option at time t+n given a value at time t as well as the changes in 

the prices of the underlying: 

𝑉𝑡+𝑛 = 𝑉𝑡 + 𝛿 ∙ (𝑃𝑡+𝑛 − 𝑃𝑡) + 0.5 ∙ Γ ∙ (𝑃𝑡+𝑛 − 𝑃𝑡)2 + θ ∙ (𝜏𝑡+𝑛 − 𝜏𝑡) (𝐴. 1) 

This expression can be re-written as: 

𝑉𝑡+𝑛 − 𝑉𝑡 = 𝛿 ∙ (𝑃𝑡+𝑛 − 𝑃𝑡) + 0.5 ∙ Γ ∙ (𝑃𝑡+𝑛 − 𝑃𝑡)2 + θ ∙ (𝜏𝑡+𝑛 − 𝜏𝑡) (𝐴. 2) 

We can re-express this equation as: 

𝑉𝑡 ∙ (
𝑉𝑡+𝑛 − 𝑉𝑡

𝑉𝑡
) = 𝛿 ∙ 𝑃𝑡 ∙ (

(𝑃𝑡+𝑛 − 𝑃𝑡)

𝑃𝑡
) + 0.5 ∙ Γ ∙ 𝑃𝑡

2 ∙ (
(𝑃𝑡+𝑛 − 𝑃𝑡)

𝑃𝑡
)

2

+ θ ∙ (𝜏𝑡+𝑛 − 𝜏𝑡)(𝐴. 3) 

Dividing through by 𝑃𝑡 gives: 

(
𝑉𝑡

𝑃𝑡
) ∙ (

𝑉𝑡+𝑛 − 𝑉𝑡

𝑉𝑡
) = 𝛿 ∙ (

(𝑃𝑡+𝑛 − 𝑃𝑡)

𝑃𝑡
) + 0.5 ∙ Γ ∙ 𝑃𝑡 ∙ (

(𝑃𝑡+𝑛 − 𝑃𝑡)

𝑃𝑡
)

2

+ (
θ

𝑃𝑡
) ∙ (𝜏𝑡+𝑛 − 𝜏𝑡)(𝐴. 4) 

We now define the following terms: 

𝑅𝑉 = (
𝑉𝑡+𝑛 − 𝑉𝑡

𝑉𝑡
) 

𝑅𝑃 = (
(𝑃𝑡+𝑛 − 𝑃𝑡)

𝑃𝑡
) 

𝑛 = (𝜏𝑡+𝑛 − 𝜏𝑡) 

𝜂 = (
𝑉𝑡

𝑃𝑡
) 
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We can then re-write A.4. as: 

𝑅𝑉 = 𝜂𝛿𝑅𝑃 + 0.5(𝛼Γ𝑃𝑡)(𝑅𝑃)2 + (
θ

𝑉𝑡
) 𝑛 (𝐴. 5) 

𝑅𝑉 = 𝛿𝑅𝑃 + 0.5Γ̃(𝑅𝑃)2 + θ̃(𝜏𝑡+𝑛 − 𝜏𝑡) (𝐴. 6) 


