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Abstract

The 37kDa/67kDa laminin receptor (LRP/LR) is a central receptor mediating interactions between tumour cells and the
basement membrane and is thereby a key player in adhesion and invasion, essential processes in metastatic cancer. To
affect continued tumour growth, tumours induce angiogenesis for the constant delivery of nutrients and oxygen. This study
aims to determine the blocking effect of the anti-LRP/LR specific antibody, W3 on the angiogenic potential of HUVE (human
umbilical vein endothelial) cells. Flow cytometric analysis revealed that 97% of HUVE cells display cell surface LRP/LR. An
angiogenesis assay was conducted employing HUVE cells seeded on the basement membrane reconstituent MatrigelTM

supplemented with the pro-angiogenic factor vascular endothelial growth factor (VEGF). Post 18h incubation at 37uC
tubular structures, namely tube lengths were assessed. Treatment of established tubular structures with 100 mg/ml anti-
LRP/LR specific antibody completely blocked angiogenesis. Our findings suggest a central role of the 37kDa/67kDa LRP/LR
in tube formation and recommends anti-LRP/LR specific antibodies as potential therapeutic tools for treatment of tumour
angiogenesis.
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Introduction

Angiogenesis, the formation of new blood vessels from pre-

existing capillaries[1], is a physiologically vital process involved in

embryonic development, wound healing; the female menstrual

cycle, tissue growth[1] and vascular remodeling.[2] This process is

highly regulated in healthy individuals. However, the de-regula-

tion of angiogenesis has been implicated in numerous diseases

including rheumatoid arthritis, ischemic heart and limb disease

and retinopathy.[1] Angiogenesis is also a vital event in tumour

growth and metastasis.[3]

The endothelial cells involved in the angiogenic process are

responsive to two sets of cellular signals namely: soluble factors and

cell signaling events transduced through the interactions with the

extracellular matrix.[4,5] Soluble pro-angiogenic factors include:

basic fibroblast growth factor (bFGF), transforming growth factor-

a (TGFa), platelet derived endothelial cell growth factor (PDGF),

insulin-like factors (IGF1 and IGF2) and tumour necrosis factor a

(TNFa)[6] all of which are constituents of MatrigelTM, the

basement reconstituent employed in angiogenesis investigations.

Furthermore, the vascular endothelial growth factor (VEGF), is

the principle angiogenic inducer.[6,7,8] Angiogenesis is a multi-

step process involving endothelial cell activation and subsequent

degradation of the surrounding extracellular matrix or basal

lamina.[1] This results in protease activation and subsequent

release of pro-angiogenic factors/ peptides which in turn stimulate

endothelial cell migration towards the angiogenic signal, prolifer-

ation and differentiation.[1,3]

Tumour angiogenesis involves tumour blood vessels that

support continued tumour growth.[2] Once tumours exceed a

certain maximal diameter, diffusion of oxygen and nutrients

become limited and the resultant hypoxia and nutrient deprivation

results in the secretion of growth factors and ultimately the onset of

angiogenesis and subsequent tumour progression. Thus tumour

cells affect vascular endothelial cells by paracrine mechanisms.[9]
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Owing to the crucial role of angiogenesis in tumour progression

and metastasis, selective inhibition of tumour angiogenesis has

become a promising approach in anti-cancer therapy.[10]

As previously stated, cell-ECM interactions are imperative in

angiogenesis and the basement membrane is of particular

importance in this regard. Laminins are cross-shaped trimeric

glycoproteins critical in the maintenance of basal membrane

structure.[3,11] Of the 15 available laminin isoforms- laminin-1

(a1b1èÈ1) is of particular interest in angiogenesis as it mediates

endothelial cell adhesion and differentiation[1], tube formation

and furthermore modulates the activity of endostatin, an

angiogenic inhibitor that blocks tube formation[12]. This laminin

isoform is the major glycoprotein component of MatrigelTM. [3]

The a1 chain of laminin-1 contains an IKAV (isoleucine, lysine,

alanine and valine) site which promotes collagenase, plasminogen

and metalloprotease activity.[3,13,14] The activation of these

enzymes results in matrix degradation thereby permitting cellular

detachment and migration and the release of matrix-sequestered

pro-angiogenic factors, all of which are central to successful tube

formation.[3]

A central receptor in mediating the cell growth, movement and

differentiation properties of laminin is the non-integrin 37kDa/

67kDa laminin receptor (LRP/LR) which binds to the ECM

component with high affinity.[15,16] LRP/LR possess two

laminin-1 binding sites, a direct binding domain termed a peptide

G sequence (161aa–180aa) and an indirect binding domain

located towards the carboxyl-terminus (205aa–229aa).[15,16] This

type-II transmembrane receptor is overexpressed in numerous

cancers (gastric[17], breast[18], cervical[19], colon[20], colorec-

tal[21], lung[22], ovarian, pancreatic[23] and prostate[24]) ,

correlates with cancer aggressiveness and it has been proposed that

LRP/LR may be indicative of tumour prognosis.[23,24,25] LRP/

LR downregulation has been shown to induce apoptosis and

potentially hamper proliferation in cancer cell lines.[26] LPR/LR

is implicated in numerous tumourigenic processes which are akin

to angiogenesis namely (tumour) cell adhesion, invasion[27,28],

viability, proliferation and migration.[15,16] Within classical

tumour biology these processes are required for the cell invasion

and the formation of metastasis.

Moreover, it is the interaction between LRP/LR and laminin-1

that results in proteolytic activation, a process central to

angiogenesis, as previously discussed. Furthermore, a role for

LRP/LR in tube formation has previously been proposed.[4] This

study aimed to investigate the angiogenic blocking effect of anti-

LRP/LR specific antibodies on the in vitro angiogenesis of the

primary endothelial cell line, human umbilical vein endothelial

(HUVE) cells.

Materials and Methods

Cell culture and conditions
HUVE cells (Invitrogen, Gibco) were cultured in Medium 200

(Invitrogen, Gibco) supplemented with Low Serum Growth

supplement (LSG) (Invitrogen, Gibco) such that the resultant

media consisted of: 2% (v/v) fetal bovine serum; 1 mg/ml

hydrocortisone; 10 ng/ml human epidermal growth factor

(EGF); 3 ng/ml basic fibroblast growth factor (bFGF) and

10 mg/ml heparin.

Reagents and Antibodies
MatrigelTM, employed to induce tube formation is derived from

the Engelbreth-Holm-Swarm (EHS) mouse sarcoma, serving as a

reconstituted basement membrane, was obtained from BD

Biosciences.

Polyclonal anti-LRP/LR antibody W3 was produced as

described previously by Rieger et al., (1997). [29]

IgG1-HD37 was recombinantly produced in a mammalian

expression system as described by Zuber et al., (2008).[27] In brief,

human embryonic kidney cells (HEK293 EBNA) expressing the

EBNA-1 gene were transiently co-transfected, by calcium phos-

phate methodology, with plasmids encoding the heavy (p EU1.2

VH_HD37) and light chains (p EU4.2 VL_HD37) of the anti-

Figure 1. Detection of cell surface 37kDa/ 67kDa LRP/LR and CD31 on HUVE cells by immunofluorescence microscopy. HUVE cells
were seeded on coverslips and allowed to proliferate until 30–40% confluency was reached. Non-permeabilised cells were fixed and were indirectly
labeled with either an anti-human FITC (fluorescein- isothiocyanate) coupled antibody (Cell Lab) for LRP/LR detection (A) or anti-CD31-FITC antibody
(Sigma-Aldrich) (D) . CD31 is an endothelial cell marker and serves as a positive control. Cells were subsequently stained with the Hoechst 33342
nuclear stain (Sigma-Aldrich) (B and E). Merged images (C and F) illustrate cell surface detection of LRP/LR and CD31 in conjunction with nuclear
staining, respectively. Magnification: x63. An Olympus IX71 Immunofluorescence Microscope and Analysis Get It Research Software were employed
for image acquisition.
doi:10.1371/journal.pone.0058888.g001

LRP/LR Is Implicated in Tumour Angiogenesis
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Cluster of differentiation 19 (CD19) antibody IgG1-HD37.

Affinity chromatography employing protein A sepharose was

utilized for antibody purification.

Indirect Immunofluorescence microscopy
HUVE cells were seeded on sterilised cover slips and upon

attaining 30–40%, the culture media was aspirated and cells fixed.

Cell surface proteins of interest were detected with the appropriate

primary antibodies, anti-LRP/LR specific antibody IgG1-iS18 or

anti-cluster of differentiation 31 (CD31) coupled to fluorescein

isothiocyanate (FITC) (Sigma Aldrich). These proteins were

detected on separate cellular samples. Antibodies were diluted in

0.5% PBS-BSA. Post overnight incubation at 4uC, secondary

antibody anti-human-FITC (Beckman Coulter) was added to cells

treated with IgG1-iS18 and consequently incubated for 1h (in the

dark at room temperature). As the CD31 antibody is a conjugated

antibody this step was not performed. Thereafter, cells were

subjected to Hoechst 33342 nuclear staining. Fluorescent images

were acquired using the Olympus IX71 Immunofluorescence

Microscope and Analysis Get It Research Software.

Flow cytometric Analysis
Flow cytometry was employed to determine LRP/LR levels on

the surface of non-permeabilised HUVE cells as described by [28].

Control samples were re-suspended in 100 ml of sheath fluid,

whilst the experimental samples were re-suspended in 100 ml anti-

LRP/LR specific antibody (IgG1-iS18) solution (30 mg/ml). Post

an 1h incubation at room temperature samples were subsequently

incubated in the presence of 100 ml anti-human-FITC secondary

antibody (20 mg/ml) for 1h. Samples incubated solely with the

secondary antibody served to control for background emission and

the possible non-specificity of this antibody. Post final incubation,

10 000 cells per sample were analysed employing a Beckman

Coulter EPICSH XL-MCL flow cytometer. Data shown is

representative of three biological replicates.

Angiogenesis Assay
To determine the endothelial tube formation potential of

HUVE cells and establish the optimal vascular endothelial growth

factor (VEGF) concentration required for the induction of HUVE

cell tube formation, an angiogenesis assay employing varying

VEGF concentrations was conducted. A volume of 50 ml of

MatrigelTM (BD Biosciences) was affixed to the wells of a pre-

chilled 96 well plate and incubated at 37uC for 1h to allow for

MatrigelTM to polymerise. Cell suspensions, in which VEGF

(Sigma Aldrich) had been exogenously applied to achieve the

varying concentrations (10 ng/ml, 15 ng/ml, 20 ng/ml, 25 ng/ml

and 30 ng/ml), were prepared (using Medium 200) and 46104

cells were seeded in each well. Post incubation at 37uC for 18h,

tubular morphology was assessed. A Zeiss inverted microscope was

employed to examine tube formation and a Canon Camera V6.0.

for imaging the cultures. Remote Capture version 2.7.3.23 and

AxioVision LE 4.3 software were used for tube length analysis.

To examine the role of LRP/LR in endothelial tube formation

and to evaluate the efficacy of the anti-LRP/LR antibody as an

angiogenic inhibitor, an angiogenesis assay (as described above)

was performed. Post MatrigelTM preparation, cell suspensions

containing 15 ng/ml exogenous VEGF, were employed for cell

seeding and post 18h incubation at 37uC, tube length was

measured. Conditioned media was gently aspirated so as to

minimise tubular disruption, varying antibody concentrations

(5 mg/ml, 50 mg/ml and 100 mg/ml) of polyclonal anti-LRP

antibody, W3 and IgG1-HD37 (negative control) were composed

in Medium 200 and administered to cells. Post 24h incubation at

37uC, cells were again examined and tubular morphology

analysed. Comparisons in measurements prior to and post

antibody treatment of the same cells were conducted.

Statistics
Statistical analyses were performed using a two-tailed Students’

t-test with a 95% confidence interval. p-values , 0.05 were

considered significant

Results

Human umbilical vein endothelial cells express LRP/LR on
their cell surface

As LRP/LR is a key receptor in mediating cellular adhesion,

proliferation and migration, mediating the cellular effects of

laminin-1 and has previously been implicated in angiogenesis, we

examined whether the receptor was expressed on the surface of the

HUVE cell model employed in this study. HUVE cells displayed

LRP/LR on their cell surface as is depicted by the positive staining

Figure 2. Flow cytometric detection of 37kDa/67kDa LRP/LR
levels on the surface of HUVE cells. Cell surface LRP/LR levels on
the surface of non-permeabilised HUVE cells were ascertained primarily
by incubating cells with IgG1-iS18 followed by incubation with anti-
human-FITC coupled secondary antibodies (Sigma-Aldrich). The red
curve represents the no antibody control, whilst the blue curve
represents treatment with both antibodies. The percentage represents
the proportion of cells exhibiting LRP/LR on their cell surface and was
calculated using a linked marker from the point of intersection between
the curves and the end of the blue curve. A Coulter EPICSH XL-MCL flow
cytometer was employed and ten thousand cellular events were
counted.
doi:10.1371/journal.pone.0058888.g002

Table 1. Effect of varying vascular endothelial growth factor
(VEGF) concentrations on in vitro HUVE cell angiogenesis.a

VEGF concentration (ng/ml) Average Tube length (mm)

0 12.13

10 12.17

15 13.68

20 10.98

25 12.31

30 10.34

aCells were seeded on MatrigelTM (BD Biosciences) at a density of 46104 cells/
well and incubated in 5% CO2 humidified atmosphere (37uC) for 18h.
doi:10.1371/journal.pone.0058888.t001

LRP/LR Is Implicated in Tumour Angiogenesis
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in Fig.1A. Moreover, flow cytometric analysis revealed that 97%

of HUVE cells (Fig.2) exhibited LRP/LR on their cell surface

further verifying the results obtained by immunofluorescence

microscopy. The cluster of differentiation 31 (CD31), also called

platelet endothelial cell adhesion molecule (PECAM-1), is an

abundantly expressed cell surface marker of endothelial cells

involved in wound healing and angiogenesis[30,31] and served as

the positive control (Fig.1D).

Optimal VEGF concentration for in vitro angiogenesis of
HUVE cells

VEGF, the major pro-angiogenic factor, is up-regulated by

hypoxia and is a key soluble factor secreted by tumour cells to

induce angiogenic processes in endothelial cells (paracrine

signaling). Furthermore, VEGF receptors are expressed on

endothelial cells such as the HUVE cells but are present on few

other cell types. As exogenous VEGF administration is required

for tube formation on MatrigelTM, we evaluated the concentration

of VEGF which would provide maximal angiogenesis, as gauged

Table 2. Percentage reductiona of endothelial tube length in HUVE cells.

W3 IgG1-HD37

Percentage reduction in
tube length (%) p-value

Percentage reduction
in tube length (%) p-value

Antibody concentration
(mg/ml)

5 –21.62b 0.2980 1.85 0.9674

50 64.72 0.0082 50.87 0.243

100 100 0.0024 40.10 0.0544

aReductions are calculated based on comparisons between the tube lengths of antibody treatments and no antibody treatments. Average tube length of the ‘‘No
antibody’’ treatment was set to 100%.
bThe negative value is indicative that the average tube length was 21.62% greater than that on the ‘‘ No antibody’’ treatment (therefore 121.62%) and therefore rather
than a tube reduction an increase was observed.
doi:10.1371/journal.pone.0058888.t002

Figure 3. The anti-angiogenic effects of W3 on HUVE cell tube formation. HUVE cell suspensions were prepared with 15 ng/ml exogenously
administered VEGF and plated on MatrigelTM (BD Biosciences) at a density of 46104 cells/ well. Post 18h incubation, tubular structures were
microscopically analysed and enumerated by Canon Camera V.6., Remote Capture Version 2.7.3.23 and Axio Vision LE 4.3 software, respectively. Post
assessment conditioned media was gently aspirated to ensure minimal disruption of formed tubes, and fresh media with varying concentrations
(5 mg/ml, 50 mg/ml and 100 mg/ml) of W3 (B, F, J) or IgG1-HD37 (negative control) (D, H, L) were administered the respective samples. Tubular
morphology was assessed (as previously described) 24h post antibody treatment. Magnification: x40
doi:10.1371/journal.pone.0058888.g003

LRP/LR Is Implicated in Tumour Angiogenesis
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according to tube length. Statistical evaluation of these results

revealed no significant difference between the VEGF treatments

(data not shown). However, the 15 ng/ml VEGF treatment

displayed the highest average tube length (Table 1) and as such

was the concentration employed for subsequent experimentation.

Anti-LRP/LR specific antibody reverses HUVE cell
angiogenesis

The role of LRP/LR in the induction of angiogenesis has been

proposed owing to its close association with tumourigenic

processes, its interaction with laminin-1 and its role in the

activation of matrix-remodeling enzymes. Thus we investigated

whether impedance of the receptor by anti-LRP/LR specific

antibody W3 would influence tubular morphology. Treatment of

tubular structures with 50 mg/ml of W3 resulted in a significant

reduction in tube length of 64.72%, whereas treatment with

100 mg/ml of W3 resulted in a significant 100% reduction in tube

length (Fig.3 and Table 2). Treatment of tubular structures with

IgG1 HD37 directed against CD19 did not significantly reduce

tube length (Fig.3 and Table 2).

Discussion

Angiogenesis has received considerable attention over the past

few decades as a possible target for pathological diseases which

require vascularisation, most notably cancer.[9] Through selective

inhibition of tumour angiogenesis, tumour growth and progression

and the success of metastatic tumourigenic cells at distal sites,

owing to oxygen and nutrient deprivation, will be halted. Thus

therapeutics aimed at decreasing vascularisation are promising

anti-cancer tools which may be effective against numerous

cancers.

The rate-limiting step in the angiogenic process is the

degradation of the basement membrane which is promptly

followed by endothelial cell detachment, proliferation and re-

organisation into tubular structures. A key receptor in cellular

adhesion to the basal membrane is the 37kDa/67kDa LRP/

LR.[28] Through interactions with the laminin-1, the major

glycoprotein component of the basal lamina and MatrigelTM basal

membrane reconstituent employed here, LRP/LR mediates

cellular attachment and induces proteolytic activation of type IV

collagenase and other matrix metalloproteases.[32,33] These in

turn degrade the basal membrane, release matrix-sequestered pro-

angiogenic factors and allow for cellular migration towards the

angiogenic stimulus. Thus, since angiogenesis requires basal

membrane degradation and LRP/LR plays a fundamental role

in this process, immunofluorescence microscopy and flow cytom-

etry analyses were performed to detect and determine the

proportion of HUVE cells which expressed LPR/LR on their

cell surface. Once LRP/LR was confirmed to be located on the

cell surface of HUVE cells (Fig.1A), flow cytometric analysis

revealed that 97% of the examined cells displayed LRP/LR on

their cell surface (Fig.2). It has been reported that neoplastic cell

lines express very high levels of LRP/LR on their cellular surface

when compared to non-tumorigenic controls[27,28] and that these

elevated levels correlate with an increased invasive poten-

tial.[27,28] Although HUVE cells are non-tumorigenic, the high

LRP/LR levels correlates to the invasive role of these cells as they

Figure 4. The effects of antibody treatment on the average tube length of HUVE cells. HUVE cell suspensions containing 15 ng/ml VEGF
were prepared and plated on MatrigelTM as previously described. Post treatment with varying concentrations of (5 mg/ml, 50 mg/ml and 100 mg/ml)
W3 or IgG1-HD37, tube length was enumerated. The bar graph depicts the average tube length post treatment. Error bars represent sd. *p,0.05;
Student’s t-test.
doi:10.1371/journal.pone.0058888.g004

LRP/LR Is Implicated in Tumour Angiogenesis
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are required to degrade the basal membrane and migrate towards

stimuli for the formation of 3D tubular structures.

Thus far, the most influential inducer of angiogenic activity is

the stimulation of the VEGF molecular signaling pathway.[34] It

has been reported that successful angiogenesis may be induced

upon administration of VEGF within the 10 ng/ml – 30 ng/ml

range.[35,36,37] However, the exogenous administration of

VEGF has been shown to possess a biphasic response.[38] In this

study, maximal tube length was observed at a VEGF concentra-

tion of 15 ng/ml (Table 1). Therefore, the application of 15 ng/ml

exogenous VEGF in subsequent experiments was justified.

Previous studies have shown that the adhesive and invasive

potential of numerous cancer types (fibrosarcoma, lung, cervical,

breast, colon and prostate) is significantly reduced upon applica-

tion of anti-LRP/LR specific antibodies, namely IgG1-

iS18.[27,28] Other tools targeting LRP/LR, including RNA

interference (RNAi) technology, the pentosan polysulfate and the

heparan mimetic HM2602[16,27,28] have similarly hampered the

invasion of tumourigenic cells. The mechanism of action whereby

these modalities are suggested to impede invasion is through the

impedance of the LRP/LR – laminin-1 interaction which

subsequently thwarts cellular adhesion, this being a vital process

preceding cellular invasion.

HUVE cell angiogenesis was similarly disrupted (50 mg/ml)

(Fig. 3F) and completely abolished (100 mg/ml) (Fig.3J) upon

administration of the anti-LRP/LR specific antibody. When

compared to the no antibody control, a significant tube length

reduction of 64.72% and 100% was observed upon treatment with

50 mg/ml and 100 mg/ml W3, respectively (Fig.4 and Table 2).

These results therefore demonstrate that anti-LRP/LR specific

antibody W3 significantly blocked tube formation by HUVE cells

– thereby reiterating the fundamental role of LRP/LR in

angiogenesis. This is depicted schematically in Fig.5. This is the

first work to demonstrate that antibodies directed against the non-

integrin laminin receptor (LRP/LR) may inhibit the morphogen-

esis of endothelial cells into tubular structures. It has also been

reported that antibodies directed against laminin-1 under similar

experimental conditions (HUVE cell induced angiogenesis on

MatrigelTM), did not inhibit cellular adhesion to the matrix but did

preclude tube formation.[39] Therefore, it may be suggested that

the anti-LRP/LR antibody W3, blocked the interaction between

LRP/LR and laminin-1, thereby ceasing differentiation of HUVE

cells into tubular structures.

In summary, the strikingly significant abolishment of tubular

structures in the HUVE cell angiogenesis model by W3, suggests

that anti-LRP/LR specific antibodies may prove a potential

therapeutic tool for the treatment of tumour angiogenesis.
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Figure 5. A schematic representation of the effect of anti-LRP/LR specific antibodies on angiogenic tube formation. (A) The
administration of anti-LRP/LR antibody W3, to HUVE cells which had established tubular structures on Matrigel

TM

, inhibited further degradation of the
basement membrane, a requirement for tube formation. This halted the development for additional tubular structures. Moreover, the antibody also
bound to existing tubes and thereby blocked the interaction between LRP/LR and Laminin-1, hence resulting in (B) the reversal of tube formation and
cells were consequently observed as single cells on the Matrigel

TM

.
doi:10.1371/journal.pone.0058888.g005
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