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Abstract  

Soil organic carbon is considered as the most determining indicator of soil fertility. The 

purpose of this research was to predict the soil organic carbon in the Mokhotlong region, 

eastern of Lesotho using in situ spectral measurements and random forest regression. Soil 

reflectance spectra were acquired by a portable field spectrometer. 

The performance of random forest regression was assessed by comparing it with one of the 

most popular models in spectroscopy, partial least square regression. Laboratory 

spectroscopy measurements of the soil samples were analysed for assessing the accuracy of 

in situ spectroscopy based-models. The effect of the Savitzky−Golay first derivative in 

improving partial least square regression and random forest regression in both spectral data 

was also assessed. 

The results indicated that the random forest regression could accurately predict the soil 

organic carbon contents on an independent dataset using in situ spectroscopy data (RPD = 

3.77, Rp
2= 0.88, RMSEP = 0.64%). The overall best predictive model was achieved with the 

derivative laboratory spectral data using random forest with the optimum number of key 

wavelengths (RPD = 3.77, Rp
2= 0.88, RMSEP = 0.64%). In contrast, partial least square 

regression was likely to overfit the calibration dataset. Important wavelengths to predict soil 

organic contents were localised around the visible range (400-700 nm). An implication of this 

research is that soil organic carbon can accurately be estimated using derivative in situ 

spectroscopy measurements and random forest regression with key wavelengths.   

Keys word: soil organic carbon, spectroscopy, regression models.  
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CHAPTER I: INTRODUCTION 

I. 1. Background 

Soil organic Carbon (SOC) is a core constituent of the soil organic matter (SOM) which plays 

a primary role in soil physical and chemical properties. In an agricultural perspective for 

example, SOC content has a huge impact on bulk density, nutrient availability, water 

retention, structural stability, hydraulic conductivity, and soil biodiversity. SOC is the most 

important terrestrial global carbon pool with approximately 1600 Pg (Petagrams) for 1 m of 

the soil depth (Novara et al., 2011). It also constitutes a very important parameter in climate 

regulation and support of primary production of ecosystems (Brevik et al., 2015).  

Under healthy and non-eroded landscapes, soil organic content remains stable over time and 

the mineralization of the soil carbon is compensated by the production of  SOM (Novara et 

al., 2011), and an important quantity of SOC is stored as partially decomposed SOM 

(Schulze et al., 2000). The remaining SOC which is not mineralized is slowly oxidized and 

stabilized as humic substances. The dynamics of SOC is induced by both microbial activities 

(Guénon et al., 2013), and abiotic process enhanced by external factors, among which erosion 

is the most fundamental one. Soil erosion is perceived as a major cause of SOC depletion on 

the arable layer (Lal, 2005), especially in uncovered mountainous regions where the slope is 

steep, transported by runoff. Both the kinetic energy of the impacting raindrops and water 

runoff force separate aggregates and expose SOM (Lal, 2005). Therefore, SOC which is 

concentrated in the top soil is preferentially removed because of its low density (Lal, 2005). 

In the United State for example, soil erosion induced by water is estimated at 15 Pg per year 

(La et al., 1998). The lateral movement of soil can drastically modify the spatio-temporal 

variability of SOC within a landscape or field (Lal, 2009).  

SOC depletion has a negative impact on food security. Lal (2009) underlined that the poor 

quality of the soil coupled with the diminution of the SOC, were major factors in food 

insecurity. The situation seems to be alarming by looking at the trend of soil degradation and 

food demand. A variety of researchers estimated that current production must be doubled by 

2050 in order to respond to the world population expansion (Lal, 2009). Consequently, a need 

for fertile soil is relevant and SOC monitoring becomes more and more important.   
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Accurate measurement of SOC at different spatio-temporal scales is a big challenge (Kuhn et 

al., 2009) because there is not yet any conventional method approved by scientists. However, 

many techniques of estimating SOC are based on grid sampling of SOC, repeated overtime. 

The drawback of this grid sampling technique is that it is very costful, time consuming and 

cannot produce a spatially-continuous map of SOC (Goidts and van Wesemael, 2007). Many 

researchers concluded that a sampling interval of less than 50 m is required to capture SOC 

spatial heterogeneity. More spatial advanced technologies need to be implemented (Stevens 

et al., 2008).  

In this respect, remote sensing is considered as a low cost, reproducible and rapid method of 

offering quantitative and continuous maps of SOC (Gehl and Rice, 2007). SOC modelling 

using remote sensing data is possible through the correlation between soil reflectance, soil 

colour and soil organic content. Satellite and airborne remote sensing have largely 

contributed to the assessment of SOC, but their major drawback is that they cannot 

discriminate SOC from partially covered vegetation (Rossel and Behrens, 2010). They 

generate a mixed pixel from soil and vegetation together. In addition, it is difficult to estimate 

the SOC using satellite and airborne remote sensing when concentrations are small because it 

results in very weak signal (Rossel and Behrens, 2010).  

Spectroscopy approach in visible and near infrared bands (VIS-NIR, 400-2500 nm) is 

commonly used to relate the SOC contents to laboratory spectral measurements and in situ 

spectral measurements (field spectroscopy measurements). This approach is rapid and non-

destructive (Guénon et al., 2013). Under laboratory conditions, SOC contents are measured 

with high precision and accurate (Cohen et al., 2007), while field spectroscopy 

measurements) are disturbed by atmospheric conditions, but are practical when laboratory 

facilities are not available (Reeves, 2010).  

Many statistical regressions have been previously tested to relate the SOC concentration to 

spectral data (Brown et al., 2006) using spectroscopy approach. Based on the root mean 

square error (RMSE) and coefficient of determination (R2), most investigations reveal that, 

among statistical regressions, PLSR performs best, followed by principal component 

regression (PCR), multi linear regression (MLR) and PCR (Vasques et al., 2008) when 

compared to other linear models. Machine learning algorithms exhibit good results when 

dealing with non-linear trends and more complex data (Rossel and Behrens, 2010). However, 
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results from these models vary according to the type of soil, thus cannot be applied 

everywhere. Rossel and Behrens (2010) explained it by the fact that soil absorption features 

are likely to overlap and shift in the location. That is why, it is very important to develop 

local models according to different regions. To the best of our knowledge, there are not 

investigations addressing SOC modelling using either laboratory or in situ measurements in 

southern Africa, especially in mountainous regions where SOC is vulnerable to erosion and 

where spectral reflectance is most variable.  

I.2. Problem statement  

SOM is of highest importance to local farmers because of its primary importance in the 

fertility of the soil (Van-Camp et al., 2004). In the Lesotho highlands, southern of Africa, 

more than 86% of the Basotho population dwell in rural areas and depend on subsistence 

agriculture (Eash et al., 2013). The main crops are maize, sorghum, peas, beans, wheat, oil 

seeds, nuts, soya, and potatoes.  

However, agricultural productivity and its share in gross domestic product have been 

declining in Lesotho (Sicili, 2010). The country produces less than 30% of food consumed by 

its population as compared to 50% produced in the 1980’s. This situation is largely explained 

by high soil erosion rates.  

Lesotho is characterized as one of the African countries with the highest eroded landscape 

(Showers, 2005). Soil erosion is a significant problem due to a combination of geologic, 

climatic, ecological and human factors (Grab and Nüsser, 2001; Mbata, 2001; Meadows and 

Hoffman, 2002). Weathering of the underlying Jurassic basalts has produced a low-strength 

mixture of silica and expansive clay minerals (Bell and Haskins, 1997). Plagioclase within 

the basalts has been affected by zeolitization and chloritization, and olivine in particular has 

been replaced by iron oxides, serpentine and clays (mainly montmorillonite) (Garzanti et al., 

2014). These weathering products make the resulting soil susceptible to erosion by surface 

sheetflow, subsurface clay expansion, slaking and soil piping, and by landslide/debris flow 

activity caused by subsurface waterlogging and failure (e.g. Edwards et al., 2016). An 

important quantity of arable soil, estimated at 40 Pg, is brought annually by soil erosion, 

resulting in SOC depletion resulting in loss of soil fertility.   
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This situation is amplified by the vulnerability of the country towards climate change. In 

2007 for example, Lesotho was affected by a very severe drought generating global food 

insecurity (Showers, 2005).  

Hence, precise and conservation agriculture which imply a good management of SOC as a 

proxy for soil fertility is very crucial in order to enhance agricultural activities by maintaining 

soil fertility. This can be done by estimating the concentration of SOC.  

However, SOC content estimation using field sampling is difficult for Lesotho highlands due 

to its poor accessibility (mountains) and heterogeneity of the region, which would probably 

require many soil samples. Laboratory based measurements are limited because of the lack of 

facilities all over the region. Therefore, in situ spectral measurements are the most suitable 

approaches because they are practical and fast (Reeves, 2010).  

We assume that RF regression will prove to be good in predicting SOC under the field 

conditions because of its high performance in other remote sensing applications, can handle 

non-linear data well (Rossel and Behrens, 2010) and is not complex to be optimized. In order 

to assess its performance, it will be compared with PLSR. 
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I. 3. Research questions 

The research questions for this study are:  

- What is the performance of the RF regression compared to the PLSR regression in 

predicting SOC in highlands of Lesotho? 

- Which are the most suitable spectral bands for SOC modelling using different 

regression equations? 

- What is the performance of field spectral measurements compared with laboratory 

spectral measurements in predicting SOC? 

- What is the impact of spectra first derivative on the performance of different models? 
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I. 4. Aim and objectives  

The aim of this research is to evaluate the performance of field spectral measurements in 

predicting SOC in an agricultural system by comparing two regression models.  

The specific objectives of this study are: 

- To identify key wavelengths for developing a reliable SOC estimation model using 

RF and PLSR methods; 

- To test the performance of the RF and PLSR regression models in predicting SOC; 

- To test the effects of spectra first derivative on the performance of different regression 

models. 

I.5. Structure of the thesis 

Apart from the introduction and conclusions, this research report is divided into four 

chapters. The second chapter reviews different topics related to this research, SOC, spectral 

reflectance, remote sensing of SOC and spectroscopy modelling. Historical and contemporary 

literatures on the topic under investigation will be discussed in order to identify the 

knowledge gaps. The third chapter will explain the methodological approaches by describing 

the site location, sampling design, spectra measurements, chemical and statistical analysis. 

The fourth chapter will present different findings of the research. The discussion of the 

results and its wider implication will be addressed in chapter five. 

I.6. Scope of study  

This study is limited at developing spectral model using random forest and PLS regressions 

to quantify SOC concentration. Mapping consideration was not covered in this research. Due 

to the brevity of the time, the investigation was conducted in a specific farm system located at 

the east of Lesotho.  
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CHAPTER II:  LITERATURE REVIEW  

II.1. Soil organic carbon  

Soils contain carbon both in organic and inorganic forms. Inorganic soil carbon is a product 

of both carbonic acid and of weathering of rocks in the soil, precipitating as carbonate 

minerals (Lal, 2009), while organic soil carbon comes from soil organisms, manure, 

branches, plant roots and leaf litter (Walcott et al., 2009). SOC is the carbon occurring in the 

SOM and represents almost 58 percent of the SOM on average (Corsi et al., 2012). SOC is 

strongly influenced by human activities and environmental conditions like shape, geology, 

climate and time (Walcott et al., 2009) 

II.1.1. Role of SOC in agriculture  

SOC storage is presently one of the most topical research fields because of  greenhouse gases 

increase, food demand expansion and severity of human-induced soil degradation  (Brevik et 

al., 2015). SOC increase has a positive impact on agricultural productivity because many 

organisms (insects, spiders, snails, mites, nematodes and some mammals) and 

microorganisms (bacteria, fungi, algae and protozoa) use the SOM as food (Walcott et al., 

2009). Researchers have qualified SOC like a ‘universal keystone variable’ in the 

management of soil quality (Loveland and Webb, 2003) making it the most important 

indicators for managing soil fertility in sub-Saharan Africa. In this region, chemical fertilizers 

are sometimes not accessible because of the farmers’ low income (Hossain, 2001).  

Compared to chemical fertilizers, SOC is well integrated in smallholder farmers’ 

communities, not only because it is affordable, but also farmers are aware of its implications 

for fertility (Hossain, 2001). Farmers already know that dark or black soil is associated with a 

high agricultural productivity (Hossain, 2001).  

SOM participates in nutrient storage and exchange, constitutes an important parameter of 

cation exchange capacity, and improves permeability, aeration, infiltration, aggregate 

stability and structure. It is the source of phosphorus (Walcott et al., 2009), and reservoir of 

water and nutrients. In relation with the erosion control, SOC contributes to the stabilization 

of other parts of the soil and formation of aggregates which make the soil more resistant to 

erosion. The SOC participates also in the absorption of many pesticides and buffers the soil 

against pH changes (Walcott et al., 2009).  
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Concerning its interaction with soil water, SOC increases the infiltration rate, as well as the 

holding capacity of the soil water (Walcott et al., 2009).  

II.1.2. SOC and climate change  

SOC is not only important for agriculture but, also plays a crucial role in climate change. 

According to the Intergovernmental Panel on Climate Change (2014), the concentration of 

greenhouse gases has increased from 280 ppm (parts per million) to 349 ppm for CO2 in the 

atmosphere between the pre-industrial era and 2005. As a consequence, the global average 

temperature has risen (from 13.6 °C to 14.4 °C) all over the 20th century, as well as the sea 

level (15.2 cm to 22.9 cm). The arctic average cover sea ice has decreased at the rate of 2.7% 

per decade.  

Between 1850 and 2000, the fossil fuel combustion was the major source of CO2 in the 

atmosphere, but early scientists proved that from the 1940s to now, a big quantity of CO2 was 

released by terrestrial sources rather than from fossil fuels (Lal, 2009). The soil contains more 

than 1500 Gt of carbon and is known as the greatest terrestrial carbon pool (Smith, 2008). A 

small release of CO2 and CH4 from the decomposition of SOC in the atmosphere will have 

adverse impacts in the carbon cycle.  

In Europe for example, SOC storage on farms can approximate 20% of the global reduction 

needed during the first commitment period of the Kyoto Protocol (8% of reduction between 

2008 and 2012 from a 1990 base) (EU Soil Thematic Strategy, 2004). This role makes it a 

good proxy for land degradation assessment.  

Currently, the post-Kyoto agreements are attempting to consider SOC in the carbon trade 

(United Nations, 2015), but much still has to be done, among which, the ability to monitor, 

report and verify the levels of SOC are the major concerns (Walcott et al., 2009). The fact 

that SOC may be considered in carbon trading is a great opportunity for developing countries 

to be involved in the carbon trade by selling carbon credits from sustainable soil management 

through precision agriculture.  
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II.2. Spectral reflectance and SOC properties 

II.2.1. Characteristics of the soil spectral reflectance  

Soil spectral reflectance is mainly affected by biochemical determinants such as SOM, soil 

moisture and soil mineralogy, and physical structure such as particle size and surface 

roughness (Lobell and Asner, 2002; Shepherd and Walsh, 2002). Infrared spectroscopy is 

governed by the principle of the radiation absorbance at molecular vibration frequencies 

(Soriano-Disla et al., 2014). Soil spectral signatures are explained by the reflectance of the 

electromagnetic spectrum as a function of wavelength (Ben-Dor et al., 1997). The vibrational 

stretching and bending structure of atoms and their electronic transitions define the spectral 

absorption features.  

Vibrations of atoms mostly occur in the thermal and mid-infrared bands (2500-25000 nm), 

with weaker signals located at the VIS-NIR (Soriano-Disla et al., 2014). Carboxyl, hydroxyl 

and amine functional groups are biochemical groups which are related to absorption features 

(Al-Abbas et al., 1972). NIR works according to the absorption of solar radiation in the NIR 

(780-2500 nm) and interacts with C-H, N-H and O-H (Workman and Shenk, 2004). Atoms 

such as C-O, C-C and O-H do not exhibit absorption of the soil spectra in the NIR region, 

except when stronger soil absorbers like C-H, N-H and O-H do not dominate weak 

absorbance (Kramer et al., 2004).  

Molecular electronic transition is another phenomenon caused by the excitation of electrons 

from lower to higher energy levels. According to Rossel and Behrens (2010), the 

phenomenon is moreover correlated with iron oxides and enhances absorption features in the 

visible region. It is important to underline that absorption features can slightly differ 

according to the type of soil. Figure 1 describes different types of soil with the location of soil 

spectral absorption features. In the visible portion, broad absorption feature are correlated 

with SOM and iron oxide (FeO2). For upland peat, broad absorption features are between 677 

and 1108 nm as shown by Rossel and Behrens (2010). Specific absorption features around 

the NIR and SWIR are correlated with peak constituents such as lignin and cellulose at 1120 

nm and 2100 nm, respectively, as noted by McMorrow et al. (2004). Fine absorption features 

of soil in SWIR are related to clay and carbonates, at around 2200 nm and 2300 nm, 
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respectively. Strong absorption caused by water can be perceived around 1400 nm and 1900 

nm, but also slightly around 950 nm and 1200 nm (Rossel and Behrens, 2010). 

 

Figure 1. Spectral reflectance of three types of soil, giving examples of the impact of different 

biochemical properties on feature absorption (Rossel and Behrens, 2010) 

Many researchers have used diverse portions of the electromagnetic spectrum to predict SOC, 

but the most common are the VIS (visible), NIR and MIR (mid infrared) regions. The MIR 

provides better results compared to VIS, NIR, VIS-NIR because it contains much more soil 

spectral information (Soriano-Disla et al., 2014). However, MIR spectrometers are not 

commonly used because they are easily affected by water content and sample heterogeneity 

(Soriano-Disla et al., 2014). However, the MIR is not always superior to NIR to predict SOC. 

Some studies reported that both are similarly powerful to predict the SOC (Stevens et al., 

2008; Vohland et al., 2014).  

II.2.2. SOM and soil reflectance 

It is unanimously recognized that there is soil reflectance which is correlated with the SOM 

(Aber et al., 1990). According to Hoffer and Johannsen, (1969), SOM in the portion of 400-

2500 nm, is inversely proportional to the total reflectance. Dematte et al. (2003) found higher 

reflectance around 450-2500 nm after removing the SOM component using 30% H2O2. 

Similarly, Mathew et al. (1973) confirmed the same results after removing SOM component 

using 10% H2O2. Figure 2 illustrates how different layers of the soil associated with different 
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proportions of SOM can modify the spectral reflectance of the soil. The conclusion is that the 

mode the depth is big corresponct to the   

 

 

 

 

In addition to the quantity of SOM in soil, different decomposition stages of SOM can change 

the spectral reflectance of the soil. Stoner and Baumgardner (1981) explained it by comparing 

three organic soils with different ages, sapric (completely decomposed), hemic 

(intermediately decomposed), and fibric (slightly decomposed). They found that fibric 

material which has a high level of (84.8%) shows the highest reflectance, followed by hemic 

(54.4%) and sapric (76.4%). Similar results were also found by Ben-Dor et al. (1997). This 

can be explained by the presence of many absorption features occuring in the functional 

groups. The most important difference observed in the slope value between 400-1100 nm and 

this slope decreases with increasing decomposition age.  

Some scientists have oriented their studies more on the percentage below or above which soil 

may affect spectral reflectance. Different researchers came up with different results. 

Baumgardner et al. (1970) found that below 2.0%, SOM had a non-significant effect on soil 

reflectance. Montgomery (1976) found a content of 9% did not inhibit the effect of some soil 

characteristics on spectral reflectance. Nonetheless, He et al. (2005) could accurately predict 

soil content with a range between 1.06 and 1.65% using PLSR in NIR region. This result can 

be justified because the spectral resolution was high (Ben-Dor, 2002). The most important 

portions of the NIR for predicting SOC content are presented in Table 1. Visible portions are 

more related to the third overtone N-H stretching.   

 

(a) 

aa

da

a 

(b) 

aada

a 

Figure 2. Average spectral reflectance curves of three different depths with different SOM of two soil 

types: (a) lithic distrochrept, and (b) typic fluvent (Mathew et al., 1973). 
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Table 1. The most frequent NIR bands of organic compounds (Stuart, 2004). 

 

II.3. Remote sensing of SOC  

Many remote sensing approaches have been used to estimate SOC in the last couple of 

decades. They are mostly based on remote spectroscopy (hyperspectral), on satellite or 

airborne mounted, and field and laboratory spectroscopy.   

Laboratory measurements have been widely used to predict SOC contents (McCarty et al., 

2002). This is because they are less expensive and faster than traditional estimation of SOC. 

However, steps like collection, grinding, sieving and drying of soil which are crucial during 

this process, makes it a little bit slow when compared to field measurements (Stevens et al., 

2008). The laboratory method is not only the most widely used, but the most accurate due to 

its high analytical precision. Laboratory measurements is recognized as an alternative for 

traditional SOC content estimation.  

In case where laboratory facilities are not available, field spectroscopy measurements are 

preferable (Reeves, 2010). Field spectroscopy measurements are mostly used to quantify 

SOC content within a field (small scale) and offers many advantages for application like 

precise agriculture (Barnes et al., 2003). Accommodated with high sampling interval, field 

spectroscopy is also useful for temporal change of SOC over short time periods. More 

information about the application of field spectroscopy are provided by Milton et al. (2009). 

In general, analytical spectral devices (ASD) such as AgriSpec and Fieldspec are mostly used 

as measuring instruments (Rossel et al., 2009). In precise agriculture for exemple, ASD is 

mostly mounted on tractors (Bricklemyer and Brown, 2010) to measure the soil properties. 
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Field spectroscopy measurements are generally less accurate compared to laboratory 

measurements because of the surface roughness and moisture contents (Christy, 2008; 

Morgan et al., 2009). However, Stevens et al. (2010) demonstrated that field spectroscopy 

measurements can be as accurate as laboratory measurements. All of these results are specific 

to different characteristics of the study area. Stevens et al. (2010) compared the efficiency of 

the laboratory, field and airborne spectroscopy to predict the SOC using PLSR. They have 

concluded that the RMSE of the field spectroscopy was similar to that of the Walkley and 

Black method and airborne spectroscopy was inaccurate. 

Satellite sensors as well as airborne ones can be seen as a great opportunity to monitor SOC 

because of the temporal repetitiveness of the satellite and the large field of view, but few 

studies have addressed the contribution of satellite images in the assessment of SOC. In most 

cases, empirical models which integrate phenomena (land management, clay, topography and 

moisture) that affect the spatiotemporal dynamic of SOC are used as covariates (Croft et al., 

2012). Those models are applied on large scales. Physical based models which use the 

spectral information are limited by some factors such as the signal noise/ratio, soil type, soil 

moisture, soil roughness, bidirectional reflectance distribution function and variable spatial 

resolution and atmospheric disturbances (Vasques et al., 2008). Satellite images are not 

effective to model SOC. Gomez et al. (2008) evaluated the performance of the Hyperion 

sensor to predict the SOC; they found an R2 of 0.51 and suggested to investigate on the 

EnMAP hyperspectral satellite, a German sensor which can hold a good Signal to Noise 

Ratio. In contrast to satellite sensors, airborne platforms have shown a good performance 

with R2 between 0.62 and 0.97. Selige et al. (2006) developed a multivariate statistical 

regression to model SOC concentration using EnMAP sensor, and found a result of R2 = 

0.89. An example of the SOC model developed with different platforms/sensors associated 

with accuracy assessment are provided in Table 2.   
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Table 2. Examples of different sensors/platforms performance in prediction SOC content, including 

calibration and predicted models. 

Lab/ground/ 

air/sat 

Geographic 

origin 

Sensor Predictive 

model 

Wavelengths/ 

Ranges (nm) 

Var 

R
2 

RMSE References 

Laboratory NSW, 

Australia 

AgriSpec VIS-NIR 

Spectrometer 

PLSR  

 

350-2500  

0.82 0.96  

Rossel and 

Behrens, 

(2010) 

MARS 0.80 1.02 

SVM 0.84 0.92 

BT 0.62 1.49 

RF 0.71 1.23 

Laboratory Santa Fe 

river, 

Florida, 

USA 

 

Quality Spect pro 

SpectroRadiometer 

SMLR  

 

350-2500  

0.82 0.199 Vasques et 

al. (2008) PCR 0.76 0.224 

PLSR 0.82 0.193 

RT 0.67 0.191 

Laboratory Turkey and 

UK 

LabSpec2500 Near 

Infrared Analyzer 

ANN 350-2500  

0.92 

 

 

0.82 

Mouazen 

(2014) 

Laboratory Qinghai-

Tibet, China 

ASD FieldSpect 

Portable 

SpectroRadiometer 

 

PLS 

 

400-2500 

 

0.85 

 

7.28 

Li et al. 

(2015) 

Laboratory Hubei and 

Jiangsu 

ASD FieldSpect 

Pro FR 

SPA 350-2500  

0.73 

2.78 Peng et 

al.(2014)  

Ground Ortho and 

Attert, 

Belgium 

ASD FieldSpect 

Pro FR 

PLS 400-2500  

0.82 

1.00 Stevens et 

al. (2008) 

Ground Qinghai-

Tibet, China 

ASD FieldSpect 

Pro FR 

 

LS-SVM 400-2500 0.81 8.40 Li et al. 

(2015) 

Aerial Ortho and 

Attert, 

Belgium 

CASI PLSR 405-950  

0.85 

- Stevens et 

al. (2010) 

Aerial Luxemburg AHS-160 sensor PLSR 430-2540   

0.89 

 

- Stevens et 

al. (2010) 

Satellite NS, 

Australia 

Hyperion PLSR 400-2500   

0.51 

 

- Gomez et 

al. (2008) 

 

II.4. Spectroscopy modelling methods of SOC 

There are various calibration methods to estimate the SOC but the most useful in the 

literature review are addressed here: partial least square regression, support vector machine 

regression, random forest regression, artificial neural network regression, principal 

component regression, least square regression and stepwise linear regression. 
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II.4.1. Linear models  

Initially, (multi linear regression) MLR was applied to predict SOC using spectral data, but 

the issue related to multicollinearity was a major problem. Multicollinearity is a source of 

many uncertainties in model interpretations and decreases the model performance (Martens 

and Martens, 1986). This problem can be overcome by using least square regression like 

variable subset selection, ridge regression, PCR, and PLSR. These methods assumed that 

there is lack of correlation among predictors (Adnan et al., 2006). In addition to the 

multicollinearity problem, in much software, multiple linear models cannot be computed 

when the number of variables is superior to the number of observations.  

 

Stepwise multiple linear regressions also can deal with highly correlated predictors. A subset 

of predictors that correctly explain the response variable can be identified. However, the 

interpretability is generally decreased (Martens and Martens, 1986). Hruschka (1987) noticed 

that when the sample size is great enough, the model leads to the problem of over fitting. 

Principal component analysis (PCA) is one of the statistical analyses applied to reduce the 

dimensionality of variables. PCA reduces it by creating uncorrelated new latent variables or 

components (Adnan et al., 2006). Latent variables form linear combinations of the original 

variables so that the first component explains the most variation of the new data, followed by 

the second component which is orthogonal to the first one. Latent variables are uncorrelated 

to each other (Adnan et al., 2006). This technique was for the first time used for the analysis 

of soil spectral reflectance by Condit (1970). In contrast, Adnan et al. (2006) stated that it 

performs less well when data are uncorrelated and when one is dealing with a great amount of 

data, as in spectroscopy. The manual selection of variable becomes very difficult. 

Currently, PLSR is commonly used to predict SOC (Li et al., 2015). Its popularity is 

explained by the fact that it handles well with accessible and easy-manipulated software and 

is not complex to understand and interpret (Soriano-Disla et al., 2014). PLSR has an ability to 

reduce multi-dimensional data, mainly when there are a greater number of predictor variables 

than observations (Boulesteix and Stimmer, 2007). Furthermore, PLSR is also the best among 

linear regression models compared to the stepwise multiple linear regression (SMLR), 

principal components regression tree and committee trees (Vasques et al., 2008). The 

superiority of PLSR over other linear regressions is attributed to the fact that PLSR: (1) 

selects predictors automatically, (2) handles well with a diverse of works, and (3) is 
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recommended for large datasets because the computation is very fast (Boulesteix and 

Stimmer, 2007). 

PLSR requires linearity between spectral data and chemical components, but this is not 

always the case (Peng et al., 2014). This prediction method can be improved by using for 

example the local PLSR when samples are collected from many land uses. For instance, 

Nocita et al. (2014) performed local PLSR by using the laboratory based VIS-NIR 

spectroscopy to model the SOC all over the European Union. The local regression was 

improved by adding some covariates (geomorphological and texture information). The 

prediction was applied in cropland, grassland and woodland. The prediction was accurate 

under cropland and grassland and less accurate under woodland and organic soils. The 

prediction under woodland and organic soils was largely improved by adding the sand 

content as a covariate. The final result showed the ability of the local PLSR to deal with large 

datasets. Many researchers have shown that the use of key spectrum can make the calibration 

model more robust. Vohland et al. (2014) tested the performance of the competitive adaptive 

reweighted sampling (CARS) to select suitable bands that would be calibrated in PLSR in the 

laboratory; they concluded that the CARS-PLSR calibration model was better than the one 

obtained by PLSR alone.  

II.4.2. Non-linear models  

Linear datasets are rarely found in the nature, especially in the domain of spectroscopy. In 

analysing non-linear data, many researchers have applied machine learning models such as 

support vector machine, artificial neural network, multivariate adaptive regression spline, and 

boosted regression tree and compared them with PLSR. Mouazen (2014) for example, 

compared ANN to PLSR in terms of model efficiency. The results revealed that the ANN 

performed better than PLSR. The algorithm also copes well with a non-linear trend and 

complex data (Croft et al., 2012).  

MARS was first applied by Friedman (1991). The model generates a recursive partitioning 

regression approach like classification and regression (Breiman et al., 1984), which produces 

piece-wise linear models instead of piece-wise constant models. Boosted regression trees are 

less similar to multivariate adaptive regression spline. The algorithm generates an additive 
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regression model (Friedman, 2001). It is based on multiple modelling integrating both 

resampling and weighing approaches.  

SVM uses an implicit mapping of the input into high dimensional feature space defined by a 

kernel function (Karatzoglou et al., 2008). ANN is based on the back propagation algorithm 

(Rumelhart et al., 1986). Back propagation is a technique for computing the gradient of the 

case-wise error function with respect to the network to minimize the overall network error 

(Sarle, 1995).  

RF is a recent and robust algorithm used in data mining (Breiman, 2001). What makes it 

different from other models is its robustness to deal with many covariates, outliers, few 

samples and noise. It does not over fit, does not require any data pre-selection before, handles 

continuous predictors as well as categorical data, and the output is independent to monotone 

transformations of the predictors (Díaz-Uriarte and Alvarez de Andrés, 2006). 

Rossel and Behrens (2010) have compared all of these models, linear and non-linear. They 

found that SVM were more powerful than multiple linear regressions, partial least square 

regression, multiple adaptive regression spline, random forest, boosted tree and artificial 

neural network. Li et al. (2015) found that the least-squares SVM performed better compared 

to PLSR. However, these authors did not show the effect of derivatives on the robustness of 

SVM and all other algorithms. The soil spectra were resampled at 10 nm spatial resolution. 

No models have been implemented with the whole spectral data, which seems to be complex 

to handle with. The question remains if all these models, especially SVM, will still be valid if 

all spectral information is considered. Other studies have also mentioned the robustness of 

SVM. SVM is a very complex model and it can be simplified once combined with a selection 

method like principal component analysis (PCA) or the successive projections algorithm 

(SPA). Peng et al. (2014) assessed the performance of SPA-SVM compared to PLSR in 

laboratory conditions. The result was that the SVM model can perform better in the presence 

of noise and outliers than PLSR (Peng et al., 2014). In the same view, Stevens et al. (2010) 

compared the SVM to PLSR to predict SOC using the Airborne Hyperspectral Sensor 160; 

they concluded that the SVM is more suitable for large data sets. RF algorithm has not been 

much used in SOC prediction. Rossel and Behrens (2010) evaluated its performance for SOC 

prediction in laboratory conditions, the model does not perform well compared to other data 

mining algorithms. Although none of these calibration methods have achieved universal 
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acceptance, SVM seems to be the best performing. Also it is worth noting that these models 

were tested under laboratory conditions where all disturbances are controlled. Few studies 

investigated on field spectroscopy measurements or have compared both field and laboratory 

measurements.   
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CHAPTER III: MATERIALS AND METHODS 

III.1. Study area 

The research was conducted in the east of Lesotho, in the region of Mokhotlong. Lesotho 

covers an area of 30 588 km2 and has approximately 1 876 633 inhabitants (Coburn et al., 

2013) (Fig. 3). Four morphological zones characterizes Lesotho, the lowlands (17%), 

foothills (15%), mountains (59 %) and Senqu River valley (9%) (Bureau of Statistic and 

Planning, 2007). In the eastern part of the country, Thabana-Ntenyana, the mountains rise to 

3 482 m above sea level and is dominated by some river valleys with stunted peach trees near 

homesteads and denuded grassland (Bureau of Statistic and Planning, 2007). The mean 

annual rainfall is 775 mm and the average temperature is 11°C (Saha, 2011). The peak of 

precipitation occurs during the summer season. Almost 85% of annual rainfall occurs 

between the months of October and March, but  during winter, the Monthly mean minimum 

temperatures range from -6.3 °C to 5.1 °C and the monthly mean maximum temperature 

occurs from November to February 16.5 °C at high altitudes and 29 °C in the lowlands) 

(Mason, 1996). 

 

Figure 3. Site location showing the position of field samples taken. 
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III.2. Soil sampling and spectral measurements 

Fieldwork was conducted along the Mokhotlong River in eastern Lesotho (Fig. 3) in October 

2015 (spring/summer) between 0800 and 1200 hours. This river flows east to west and has 

incised through Jurassic basalts, giving rise to a highly meandering river pattern with bedrock 

spurs and steep valley sides. The river floodplain is very narrow with small strip agricultural 

fields located adjacent to the river channel and, where slopes sediments are available, 

terraced fields are present along the lower valley slope. Higher elevation areas at the tops of 

valley sides and on plateau summits (~2600–2900 m asl) are not enclosed and are 

characterised by tussocky, xerophytic, low-nutrient grasslands (Fig. 3). 

The reflectance of the soil spectra was measured by the ASD FieldSpec Pro FR spectrometer 

(Analytical Spectral Devices Inc., Boulder CO, USA) at the field and laboratory levels. The 

wavelength of the instrument stretches from 350 to 2500 nm and with 3–10 nm of spectral 

resolution. Spectra were recorded for the region 350-1000 nm with a sampling interval of 1.4 

nm and 2 nm for the region 1000-2500 nm (Table 3). 

Table 3. Waveband range of Analytical Spectral Devices (ASD, 2005). 
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III.2.1. Spectral measurement at the field level  

Purposive sampling was conducted due to the landscape of the sites. Purposive sampling is 

based entirely on the operator’s judgment in purposely or deliberately, selecting 

“representative” sample sites (McCoy, 2005). Sampling points at all locations (n=109) were 

generated randomly using Hawth’s Analysis Tool within ArcMap. All points were converted 

to latitude longitude and a handheld GPS was used to navigate to the site (Fig. 4). Once the 

sampling point was located, a plot of 10 m by 10 m was drawn and the coordinates of the 

sampling point which were considered as the centroid of the plot. Within each plot, 3 sub-

plots of 2 m by 2 m dimensions were randomly selected in order to take into consideration all 

the variability within the plot. Five spectral measurements from the nadir at about 1 m and 

with 5° field of view above soil were scanned in each sub-plots and averaged, in total 15 

spectral measurements for each plot. For every measurement, the white reference panel was 

used to calibrate atmosphere conditions and irradiance of the sun. After the field was 

completed, spectral measurements were done at the laboratory level.    

 

 

 

 

 

 

  

 

 

 

 

 

III.2.2. Spectral measurement at the laboratory level  

A surface (top 5 cm) soil sample of ~400 g was taken from each of these three sub-plots for 

laboratory analysis. Measurements were done under a black plate and plastic a day after the 

field sampling. The soils were scanned using a contact probe of the ASD FieldSpect Pro FR 

spectrometer. As for the spectral measurements at the field level, we referred to the 

spectralon for white referencing. 

(a) (b) 

Figure 4. Field based spectroscopy for SOC content measurement: (a) Spectral measurement by ASD; 

(b) site localisation (Pictures captured by Dr. Elhadi Adams). 
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III.3. SOC analysis 

In the laboratory, soil samples were first dried and crushed before being sieved. The Madison 

test sieve was used to sieve the samples. Only grain sizes of less than 2000 microns were 

used to estimate concentration of SOC. The loss ignition method (LOI) was chosen in this 

research to quantify SOC concentration. LOI is one of the most useful methods for SOC 

concentration assessment, fast, reliable and constitutes an inexpensive alternative method in 

contrast to automated carbon–nitrogen–sulfur (Konen et al., 2002). This method involves 

only physical destruction of SOM. LOI is more precise when compared to other commonly 

used method, like weight oxidation which also involved chemical destruction, resulting in 

partial oxidation of SOC. However, it is important to underline that there is no standard 

procedure in LOI. In general, three steps are used: (1) incomplete combustion of soil at low 

temperatures (Ball, 1964); (2) the structural water removal from clay minerals (Sun et al., 

2009); and (3) the soil carbonate decomposition at large temperatures (Kasozi et al., 2009). In 

this study, approximately 200 mg (milligrams) of sieved soil were added to a crucible. The 

empty porcelain crucibles were first weighed and then the crucible plus the soil.  The crucible 

plus the soil were placed in a muffle furnace for 8 hours at 430 °C (Fig. 5). After ignition, the 

crucible plus the soil were reweighed. LOI was estimated as the difference between the oven-

dry soil mass and the soil mass after combustion, divided by the oven-dry soil mass weighted 

(Schulte and Hopkins 1996), according to the following equation:  

LOI430 = ((DW–DW430)/DW)*100 (1) 

Where LOI430 represents LOI at 430 °C, DW represents the weight of sample of; DW430 

represents the dry weight of sample after combustion at 430 °C.  

 

 

 

 

 

  

 

 

 

 

(a) (b) (c) 

Figure 5. SOC analysis: (a) crushing; (b) sieving and (c) burning. (Pictures captured by Freddy 

Bangelesa) 
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II.4. Spectra pre-processing and transformation  

Most of the time, the spectrum is affected by a low intensity of incoming light, the baseline 

variation and the overlapping peaks (Kooistra et al., 2003). That is why, before modelling, 

the noisy ends were removed in order to correct the low intensity radiation appearing at the 

spectra edge. The spectrum below 400 nm was removed. The water vapour absorption 

features ranging between 1350-1460, 1790-1960 and 2350-2500 nm which can affect the 

model were also removed (Smith et al., 2003; Kooistra et al., 2003 ) (Fig. 6b). The laboratory 

and field spectra first derivative transformation was applied in order to enhance the spectral 

signal (Fig. 6c). The Savitzky−Golay (SG) derivative was used because it is the most useful. 

Both spectra pre-processing and transformation were implemented in R statistical package 

version 3.1.3 (R Development Core Team, 2012). 

 

Figure 6. Spectral data: (a) original spectra; (b) with noisy regions removed (1350–1640, 1790–1960, 

2350–2500 nm); (c) and first derivative spectra. 

III.5. Statistical analysis  

Before modelling, 70% of the data (training dataset) was randomly selected to perform the 

calibration model and the rest (30%) as the testing dataset (Efron and Tibshirani, 1993). The 

choosing of a random selection is justified by the fact that we wanted to prevent any 
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systematic bias like spatial correlation between nearest observations which will eventually 

affect the robustness of the models. To be evident that there is no any significant variability 

within the training dataset and testing dataset, the Kruskal-Wallis test was performed. The 

Kruskal-Wallis test evaluates if two or more samples which do not come from a normal 

distribution are statistically significant. The null hypothesis states that samples are the same. 

Before the implementation of the Kruskal-Wallis test, the normality of the both datasets 

(training and testing) was checked using the Kolmogorov-Smirnov goodness of fit test. The 

Kolmogorov-Smirnov test assumes that if the two samples are identical, the histograms of the 

two samples should be very similar (Shorack and Wellner, 2009). The test is based on the 

cumulative distribution function of the histograms, which shows the percentage of 

observations lying below certain points, and is obtained by adding the numbers in successive 

categories of the histogram (Shorack and Wellner, 2009). Hotelling’s T2 for multivariate 

analysis for outliers detection was performed (Jackson, 1991). This test is based on the use of 

the squared Mahalanobis distance.  

III.5.1. PLSR and variable selection 

The PLSR method was implemented in order to construct predictive models when predictors 

are many, noisy and highly collinear such as hyperspectral reflectance data (Wold et al., 

1995). The logic behind the PLSR is almost the same with the one of the PCR. Both 

regression methods reduce the data dimensionality. The PCR converts the predictor variables 

to principal components and ranks them according to their respectively variances (Li et al., 

2015). The selection of predictors in PCR is done manually. With PLSR by contrast, this 

arbitrary selection is avoided. Instead, the number of predictor variables is reduced by 

selecting successive orthogonal factors from the variance-covariance matrixes in a manner to 

maximize the covariance between the predictors and the dependent variables (Li et al., 2015). 

The concepts explaining MLR and PLSR are described by Martens and Martens (1986) (Fig 

7.) With MLR, Y is directly modelled by all X variables, while in PLSR1, the latent variable 

(T) from X is used to model Y.  
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Figure 7. Conceptualization of (a) MLR and (b) PLRS (Martens and Martens, 1986). 

The regression model (PLSR) identifies factors from the independent variables that are 

simultaneously important for the dependent variables and selects the most important ones 

(Wold, 1995). In case of the over-fitting or under-fitting problem, the leave-one-out cross-

validation (LOOCV) method was applied to find the optimal number of components that 

reduces the prediction error variance (Li et al., 2015). The logic behind it is that a single 

sample is removed and the operation is repeated many times (Gomez-Carracedo et al., 2007). 

It is important to mention that LOOCV sometimes selects unnecessarily large numbers of 

components. To get round this situation, an external validation set is of highest importance 

(Gomez-Carracedo et al., 2007).  

They are many algorithms developed in PLSR to select the most important predictors 

(wrapper, filter and embedded). The filter method which is subdivided into the loading 

weight coefficient, the regression coefficient and variable important in projection (VIP) 

method, was used because it is computationally fast and easy to manipulate. The VIP method 

was finally chosen to reduce the spectral dimensionally in PLSR. VIP was first introduced by 

Wold et al. (1995). The logic is to assemble the relevance of every variable being reflected by 

the weight from every component. The variance importace mathematic model is described by 

Wold et al. (1995). 

𝐹𝑆𝑉𝐼𝑃𝑘  (𝑎) = 𝐾 ∑ 𝑤 ∗ 𝑤𝑎𝑘 ∗ (
𝑆𝑆𝑌𝑎

𝑆𝑆𝑌𝑡  𝑎  ) (2) 
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Where VIPk (a) refers to the importance of the K predictor variable based on a model with a 

factors. K is the total number of  predictor variables. Wak is the corresponding loading weight 

of the K variable in the ath PLSR factor, SSYa is the explained sum of squares of the 

response variable, by a PSLR model with a factors, SSYt is the total sum of squaress of the 

response variable, and K is the total number of predictor variables (Rossel and Behrens, 

2010). The variable can be eliminated if the value is under the defined threshold. A more 

relevant threshold is between 0.83 and 1.21 (Mehmood et al., 2012). A threshold of 1 was 

used in this study because it is commonly used in different studies (Chong and Jun, 2005). 

III.5.2. Random forest regression and variable selection  

The RF regression is a machine learning algorithm and a bagging method based on the CART 

regression tree (Breiman, 2001). The model was implemented in the RF package (Liaw and 

Weiner, 2002). The model uses recursive partitioning to split the data (spectra) into different 

homogeneous groups named regression trees (ntree). Each tree is individually grown to its 

optimum size based on a bootstrap sample from the training data set (approximately 70%) 

without any pruning (a continuous selection of input variables at every node). In terms of RF 

regression, a random subset of variables (mtry) are selected to determine the split at each 

node (Breiman, 2001). The model uses a deterministic algorithm to select the number of 

random samples and variable from the training dataset. In each tree, the data that are not in 

the tree (the out-of-bag: OOB data, approximately 30%) are predicted and the OOB error is 

produced in term of mean square errors through the difference between OOB data, therefore, 

it can be used to grow the regression trees (Breiman, 2001; Maindonald and Braun, 2006). 

The OOB error provides an estimation of the important variables by calculating how much 

OOB error of estimate increases when a variable is permuted, whilst all others remained 

unchanged (Archer and Kimes, 2008). Therefore, can be used like feature selection method.  

In this study, the RF algorithm was implemented for both spectra and laboratory data sets. 

Because of a big number of variables, the model optimization which is computationally 

intense was not implemented. The default setting for mtry (1/3 of the total number of 

wavelength) and ntree (500) was used. The wavelengths were ranked according to their 

importance in predicting SOC concentration.  
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A recursive feature selection (Kohavi and John, 1997; Guyon and Elisseeff, 2003) was 

performed to determine the least number of wavelengths that predict SOC concentration with 

great accuracy. The recursive feature elimination algorithm is a wrapper feature selection 

method that uses all features (variables) as a starting point (Kittler, 1978). Models with low 

accuracy are removed from current subset. The procedure ends when the given numbers of 

variables are dropped (Kittler, 1978). One of the drawbacks of the method is that it is very 

slow compared to other methods, but provides accurate results (Kittler, 1978).  

III.5.3. Model validation  

Many parameters can be used to evaluate the efficiency of models in spectroscopy. Spectral 

model are generally evaluated using the coefficient of determination (R2) and root mean 

square error (RMSE). Other parameters like the Akaike Information Criterion (AIC), the ratio 

of prediction to deviation (RPD), the root mean square error of calibration (RMSEC) and 

validation (RMSEP) are also useful for assessing model performances. RMSEC is the 

standard deviation of the difference between the measured and the estimated values for 

samples in the training set, while the RMSEP is computed within the validation set. RMSEC 

is expressed as: 

𝑅𝑀𝑆𝐸𝐶 = √
∑(𝑦𝑚 − 𝑦𝑝 )

2

𝑁
 and  𝑅𝑀𝑆𝐸𝑃 = √

∑(𝑦𝑚 − 𝑦𝑣
)2

𝑁
   (𝟑) 

Where ym  are measured the direct values of SOC obtained from the laboratory measurement, 

yp are predicted values derived from spectral data using either PLSR or RF, yv are predicted 

values estimated using the validation set, and N refers to the number of samples. The model 

with a lowest coefficient root mean square error is the best.  

 

The overall variation accounted for the regression model (PLSR or RF) was measured by the 

coefficient of determination (Rc
2). The predicted coefficient determination (Rp

2) measures the 

proportion of total variation accounted for the model using validation analysis. The model 

with a high coefficient of determination is the best (Table 4).  
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Table 4. Interpretation of R

2
 in calibrating SOC using NIR spectroscopy (Williams, 2001). 

 

 

Another parameter to compare calibration models in these studies is the AIC. AIC 

compromises between prediction accuracy and parsimony (Akaike, 1973). By model 

parsimony, we mean least complexity, more information gain and least number of variables. 

AIC was estimated by: 

𝐴𝐼𝐶 = 𝑛 𝑙𝑛𝑅𝑀𝑆𝐸 + 2𝑝   (𝟒) 

Where n is the number samples and p the number of variables used in the model. The 

predictive model with the smallest AIC is considered as the best.  

At least, the RPD were also used to compare the performance of model of different datasets, 

as well as their practicability. In this study, RPD was taken as the most important indicator to 

compare different models because it computes the accuracy by integrating the training and 

testing datasets. RPD is the ratio of standard error of prediction to the standard deviation of 

reference data in the testing set: 

𝑅𝑃𝐷 =  
𝑆𝑇𝐷𝐸𝑉(𝑦)

𝑅𝑀𝑆𝐸𝑃
    (𝟓) 

Where STDEV(y) refers to the standard deviation of the training data and RMSEP refers the 

root mean square error of prediction. 

 

The six categories of interpretation as recommended by Rossel et al. (2006) were given as 

follows:  
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 RPD greater than 2.5 implies excellent models/predictions;  

 RPD between 2.0 and 2.5 implies very good, quantitative models/ prediction; 

 RPD between 1.8 and 2.0 implies good models/predictions, where quantitative 

predictions are possible;  

 RPD between 1.4 and 1.8 implies fair models/ predictions, which can be used for 

assessment and correlation;  

 RPD between 1.0 and 1.4  implies poor models/predictions, where only high and low 

values are distinguishable;  

 And RPD less than 1.0 implies very poor models/predictions, and their uses are not 

distinguishable.   
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CHAPTER IV: RESULTS   

IV.1. SOC sample descriptive analysis 

Of 109 soil samples collected in the study area, only 94 were analysed. Outlier’s and 

incomplete samples were removed. Hotelling’s test detected 4 outliers with a horizontal cut 

off limit of 6.32845 and vertical cut off limit of 3.98695 (Fig. 8).  

 

 

 

 

 

 

 

 

 

From the 94 samples analysed, 70% (65) were randomly assigned to calibration dataset and 

30% (29) to validation dataset. The descriptive statistic of SOC for the calibration dataset, 

validation dataset and the whole dataset are described in Table 5. The variation of SOC 

ranged from 1.93% to 10.66% with a mean value of 5.14% and the coefficient of variation of 

41.45%. The coefficient of variation within the calibration and validation are almost the 

same, 40% and 43%, respectively. The Kolmogorov-Smirnov test revealed that all datasets 

were not normally distributed at 5% significant level with p-values of 0.01266, 0.002 and 

0.21 for the whole dataset, calibration dataset and validation dataset, respectively. All subsets 

have a skewed distribution. The Kruskal-Wallis test for a skewed distribution indicated that 

there is no significant difference among the three datasets at 5% significant level (p-value = 

0.64). Thus, both calibration and validation datasets statistically represent the total dataset.  

 

Figure 8. Hotelling’s T2 for multivariate outlier detection. 
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 Table 5. Descriptive statistics of SOC contents (in %) within three different datasets. 

Data set  N  Min  Max Mean Median  Std 

Whole dataset 94 1.93 10.66 5.14 4.97 2.13 

Calibration dataset 65 2.172 9.570 4.97 4.87 1.99 

Validation dataset  29 1.936 10.665 5.55 5.55 2.42 

 

IV.2. Comparison of field and laboratory spectra 

Figure 9 shows mean reflectance of field and laboratory measurements for all 94 samples. 

Spectral absorption feature positions are also shown. Because bands were averaged, the 

interpretation becomes complex. Nevertheless, only water absorption feature located around 

1400 and 1900 nm can be perceived. In general, the reflectance of the laboratory spectral 

measurements is visually higher than that of the field. This is verified by  one tailed student’s 

t test, which shows that laboratory spectral measurements are significantly greater than field 

ones at 5% level (p value = 0.024). The Pearson correlation test reveals that both spectral 

measurements are strongly correlated at 5% significant level (R= 99, 97%, p-value < 

0.00000000000000002).  

 

Figure 9. Average laboratory and field VIS-NIR spectra; (orange): field spectra data; (blue): 

laboratory spectra data. 
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IV.3. Key wavelength selection 

IV.3.1. VIP algorithms  

VIP algorithms were computed with PLRS for both field and laboratory spectra. Values 

where peak maximum above 1 were taken as key wavelengths to predict SOC contents (Fig 

10). The algorithm has selected 80, 720, 57 and 881 key wavelengths for the laboratory first 

derivative laboratory spectra, the laboratory raw spectra, the field first derivative spectra and 

raw field spectra, respectively. Key wavelengths were distinctively selected with derivative 

spectra (field and laboratory) with two peaks, around 750 nm and 950 nm for the field first 

derivative spectra (Fig. 10c) and one around 680 nm for the laboratory first derivative spectra 

(Fig. 10d). For the raw spectra data (field and laboratory), key wavelengths were broadly 

selected from 1200 nm to 2200 nm and some others around 800 nm (Fig. 10a; Fig 10b).   

 

Figure 10. Variable important in projection for key wavelength selection: (a) field raw spectra, (b) 

laboratory raw spectra; (c) field first derivative spectra; (d) laboratory first derivative spectra. 
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IV.3.2. Recursive feature selection and percent increase in MSE 

Figure 11 shows the outcome of the recursive feature selection in both laboratory and field 

spectral data. The algorithm was performed with 5 fold cross validation for selecting the most 

important wavelengths. The smallest average numbers of wavelength for each model that 

would offer the best predictive of random forest were identified. The lowest number of key 

wavelengths (49) was obtained with the first derivative field spectra with a RMSE of 0.61%. 

The use of 105 wavelengths produced the lowest RMSE (0.62%) for the laboratory first 

derivative spectral data. For the laboratory raw spectral data, the use of 105 variables 

produced the lowest RMSE (0.6109%). For the field raw spectral data, the use of 789 

variables produced the lowest RMSE (1.059%).  

 

Figure 11. Recursive feature selection: (a) field raw spectra, (b) laboratory raw spectra; (c) field first 

derivative spectra; (d) laboratory first derivative spectra. 

Figure 12 below shows the position of wavelengths according to the percent increase in mean 

MSE implemented with the RF regression algorithm. The recursive feature selection 
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combined with the percentage increase in MSE selects around half of key wavelengths in all 

datasets between the range of 600 and 900 nm. Important wavelengths are selected 

distinctively within the raw spectra (laboratory and field) and are mostly located around the 

visible range. One peak around 780 nm is identified for the field spectral data (Fig. 12a) and 

two for the laboratory spectral data, around 780 nm and 900 nm (Fig. 12b). In the field first 

derivative spectra, key wavelengths are located around 780 nm (Fig. 20c), the same with the 

raw field spectral data.  The same location of important wavelengths with the laboratory field 

spectral data is observed within the first derivative laboratory spectral data (12.d)   

 

Figure 12. Percent increase in MSE: (a) field raw spectra (b) laboratory raw spectra; (c) field first 

derivative spectra; (d) laboratory first derivative spectra.  

IV.3.3. Position of key wavelengths and interpretation  

Table 6 compares in more detail the performance of the VIP algorithm and recursive feature 

selection combined with the percent decrease in MSE in term of selecting key wavelengths. 
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For interpretation purposes, the functional group and vibration mode of wavelength as 

suggested by Stuart (2004) are also presented. The recursive feature selection combined with 

the percent decrease in MSE has selected around half of key wavelengths in all datasets 

between the range of 400 and 700 nm. The VIP algorithm implemented under the first 

derivative spectral data (laboratory and field) has also selected most key wavelengths in the 

same range. Only the VIP algorithm implemented in the derivative datasets (laboratory and 

field) did not select most of wavelengths within the visible range. 

Table 6. Comparison of VIP algorithm and recursive feature selection combined with percent 

decrease in MSE in selecting key wavelengths.  

 

 VIP  (PLSR)  RF 

Wavelength 

(nm) 

Possible Assignment  Lab Field  Lab  Field  

Raw FD Raw FD Raw FD Raw FD 

2200-2450 Comb C-H stret - - - - + - - - 

2000-2200 Comb N-H stret, comb O-stret ++ - - - + + - + 

1790-1960 Water  + + + + + - + - 

1650-1780 1st overt C-H stret + - ++ - - - + - 

1400-1500 1st overt N-H stret and O-H stret ++ - ++ - - - ++ - 

1300-1420 Comb C-H stret + - - - + - + - 

1350-1460 Water  + - ++ + - - - + 

1100-1225 2nd overt C-H stret + - + - + ++ + + 

950-1100 2nd overt N-H stret and O-H stret - - - + +  + + + 

850-950 3rd overt C-H stret + - + + ++ + ++ + 

775-850 3rd overt N-H stret + - + + ++ + + + 

400-700 Mineral (Fe oxides)  - +++ + +++ +++ +++ +++ +++ 

∗ str = stretching vibration mode; comb= combination vibration mode; Overt = overtone; FD = first 

order derivative. The relative importance is indicated by ‘+’, ‘++’ and ‘+++’, where ‘+++’ indicates 

wavelength > 40 percent, ‘++’ wavelength between 40 and 20 percent, ‘+’ wavelength < 10 percent 

and ‘-‘ indicates and absence of wavelengths. 

IV.4. Model development  

In total, 16 models were developed using different datasets (field and laboratory) and spectral 

pre-processing data (raw, Savitzky-Golay derivative, key wavelengths and the combination of 

Savatzky-Golay and key wavelengths), 8 with PLRS and 8 for Radom forest regression. 

Models developed with PLRS are: 
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 F-PLSR: the field PLSR raw model with all wavelengths; 

 F-FD-PLSR: the field first derivative PLSR model; 

 F-K-PLSR: the field PLSR model with key wavelengths; 

 F-FD-K-PLSR: the field first derivative PLSR model with key wavelengths; 

 L-PLSR: the laboratory PLSR raw model with all wavelengths; 

 L-FD-PLSR: the laboratory first derivative PLSR model; 

 L-K-PLSR: the laboratory PLSR model with key wavelengths; 

 L-FD-K-PLSR: the laboratory first derivative PLSR model with key wavelengths. 

Model developed with RF regression are:  

 F-RF: the field RF raw model with all wavelengths; 

 F-FD-RF: the field first derivative RF model; 

 F-K-RF: the field RF model with key wavelengths; 

 F-FD-K-RF: the field first derivative RF model with key wavelengths; 

 L-RF: the laboratory RF raw model with all wavelengths; 

 L-FD-RF: the laboratory first derivative RF model; 

 L-K-RF: the laboratory RF model with key wavelengths; 

 L-FD-K-RF: the laboratory first derivative RF model with key wavelengths. 

The best prediction model was selected according to its performance with respect to fitting to 

the validation dataset. The RPD was considered as the most important criteria. 

IV.4.1. PLSR optimum number of component  

PLSR requires the optimization of the number of components in order to minimize the 

overfitting problem. Figure 13 indicates the optimum component to be chosen based on the 

value of the root mean square error of cross validation (RMSECV) implemented with 65 

leave-one-out segments. The numbers of components with a lowest RMSECV were used to 

fit the model. The L-FD-K-PLSR selects the fewer numbers of components, 3 with RMSECV 

of 0.79%. L-FD-PLSR used, 4 (RMSECV=0.785%) compared to others. The L-PLSR used 5 

components (RMSECV = 0.719%). The F-FD-K-PLSR used 6 components (RMSECV = 

0.89%). The F-FD-PLSR used 8 components (RMSECV = 0.695%), the F-K-PLRS used 8 
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components (0.766%). The L-K-PLSR used 12 number of components (RMSECV = 0.762%) 

and the F-PLSR used 15 number of components (0.497%).  

 

Figure 13. PLSR optimum number of components: (a) field PLSR raw model with all wavelengths; 

(b) laboratory PLSR raw model with all wavelengths; (c) the field first derivative PLSR model; (d) 

the laboratory first derivative PLSR model; (e) field PLSR model with key wavelengths; (f) the 

laboratory PLSR model with key wavelengths; (g) the field first derivative PLSR model with key 

wavelengths; (h) the laboratory first derivative PLSR model with key wavelengths. 

IV.4.2. PLSR model performances within the laboratory dataset 

All PLSR models developed under laboratory conditions (L-PLSR, L-FD-PLSR, L-K-PLSR, 

L-FD-K-PLSR) show a very good model prediction (2.0 <RPD<2.5) (Fig. 14). The best 

predictive model was achieved with L-PLSR (RPD = 2.27, Rp2= 0.86, RMSEP = 0.87%). 

Followed by L-K-PLSR (RPD = 2.10, Rp2 = 0.84, RMSEP = 0.95%). Derivative models, L-

FD-PLSR (RPD = 2.00, Rp2 = 0.82, RMSEP = 0.99%) and L-FD-K-PLSR (RPD = 2.00, 

Rp2= 0.82, RMSEP = 0.99%) have poorly performed.  
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Figure 14. Performance of PLSR in predicting SOC on an independent  laboratory spectral dataset : 

(a) laboratory PLSR raw model with all wavelengths; (b) the laboratory first derivative PLSR model; 

(c) the laboratory PLSR model with key wavelengths; (d) the laboratory first derivative PLSR model 

with key wavelengths  

IV.4.3. PLSR model performances within the field dataset 

Figure 15 shows PLSR models developed under the field dataset. Only L-PLSR (RPD = 1.88, 

Rp2= 0.80, RMSEP = 1.05%) and L-FD-K-PLSR (RPD = 1.90, Rp2 = 0.80, RMSEP = 1.04%) 

show good model prediction (1.8 <RPD<2.0). The two others, F-K-PLSR and F-FD-PLSR 

showed a very good model prediction (2.0 <RPD<2.5). In overall, the best predictive PLSR 

model within the field dataset was achieved with F-K-PLSR (RPD = 2.97, Rp2= 0.86, 

RMSEP = 0.75%), and followed by F-FD-PLSR (RPD = 2.26, Rp2= 0.86, RMSEP = 0.88%). 
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Figure 15. Performance of PLSR in predicting SOC on an independent field spectral dataset: (a) field 

PLSR raw model with all wavelengths; (b) the field first derivative PLSR model; (c) field PLSR 

model with key wavelengths; (d) the field first derivative PLSR model with key wavelengths. 

IV.4.4. RF regression model performances within the laboratory dataset   

Figure 16 shows the performance of RF regression models to predict SOC contents from an 

independent laboratory dataset. All RF laboratory models exhibit an excellent model 

prediction (RPD>2.5). The combination of first derivative and key wavelength improved 

significantly the raw spectral model because the best predictive model was obtained with L-

FD-K-RF (RPD = 3.77, Rp
2= 0.88, RMSEP = 0.64%). The worse performance prediction 

model was obtained with F-RF (RPD = 3.03, Rp
2 = 0.76, RMSEP = 0.79%).  
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Figure 16. Performance of  RF regression in predicting SOC on an independent  laboratory dataset: (a) 

laboratory RF raw model with all wavelengths; (b) the laboratory  first derivative RF model; (c) the 

laboratory RF model with key wavelengths; (d) the laboratory first derivative RF model with key 

wavelengths. 

IV.4.5. RF regression models performance within the field dataset 

The performance of RF regressions to predict SOC contents from an independent dataset is 

presented in Figure 17. All the predictive models were excellent (RPD>2.5). The best 

predictive model was obtained by combining the first order derivative and key wavelengths, 

F-FD-K-RF (RPD = 3.77, Rp
2= 0.87, RMSEP = 0.64 %). And after come the F-FD-RF (RPD 

= 3.03, Rp
2= 0.89, RMSEP = 0.79 %). 
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Figure 17. Performance of  RF regression in predicting SOC on an independent field spectral dataset: 

(a) the field RF raw model with all wavelengths; (b) the field first derivative RF model; (c) field RF 

model with key wavelengths; (d) the field first derivative RF model with key wavelengths. 

IV.5. Comparison between RF regression and PLSR 

Table 7 summarizes the performance of all RF and PLRS models in the prediction of SOC 

contents. Model performances were assessed in both calibration and validation datasets. The 

results indicate that the PLSR is more likely to overfit the calibration set than RF with an Rc
2 

going up to 0.99. In terms of prediction of the independent dataset, RF regression 

outperforms PLSR. According to the model classification based on the RPD, all RF 

regression models have provided an excellent models prediction (RPD>2.5) whereas PLSR 

models provide either very good model prediction (2.0 <RPD<2.5) or good model prediction 

(1.8 <RPD<2.0). The overall best performance model was obtained with RF with the 
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laboratory dataset, L-FD-K-PLSR (RPD = 3.77, Rp

2= 0.88, RMSEP = 0.64%), followed by L-

FD-K-PLSR (RPD = 3.77, Rp
2= 0.87, RMSEP = 0.64%) with the field spectral data. 

Table 7.  Performance of all RF regression and PLSR models in the calibration and validation 

datasets. 

Models Calibration set Validation set 

 Model pretreatment  RMSEC Rc
2 AIC RMSEP Rp

2 RPD 

Field spectra PLSR none 0.89 0.99 -123 1.05 0.80 1.88 

  FD 0.550 0.99 -186 0.88 0.86 2.26 

  K 0.67 0.86 63 0.75 0.86 2.97 

  FD-K 0.64 0.89 132 1.04 0.80 1.90 

 RF none 0.9 0.79 - 0.79 0.76 3.03 

  FD 0.74 0.85 - 0.79 0.89 3.03 

  K 0.87 0.80 - 0.87 0.77 3.03 

  FD-K 0.60 0.90 - 0.64 0.88 3.77 

Lab spectra PLSR none 0.60 0.90 126 0.87 0.86 2.27 

  FD 0.46 0.94 90.98 0.99 0.82 2.00 

  K 0.12 0.99 82 0.95 0.84 2.10 

  FD-K 0.63 0.89 131.8 0.99 0.82 2.00 

 RF none 0.65 0.89 - 0.79 0.82 3.03 

  K 0.80 0.84 - 0.79 0.86 3.03 

  FD 0.64 0.89 - 0.79 0.84 3.03 

  FD-K 0.59 0.90 - 0.64 0.87 3.77 

*RF = random forest; PLSR = partial least square regression; FD = first derivative; K = Key 

wavelength selection; none = spectra without transformation; RMSEC = root mean square error of 

calibration in %; RMSEV = root mean square error of validation in %; Rp
2
 = coefficient of 

determination in the validation dataset; Rc
2 

= coefficient of determination in the calibration dataset; 

AIC = Akaike Information Criterion; RPD = Ration of prediction to deviation. 
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CHAPTER V: DISCUSSION  

V.1. Suitable spectral bands for SOC modelling  

The recursive feature selection combined with the percent decrease in MSE selected around 

half of the key wavelengths in all datasets between the range of 400 and 700 nm (Table 6). 

The VIP algorithm implemented under the first derivative spectral data (laboratory and field) 

also selects most of key wavelengths in the same range. According to Rossel et al. (2015), the 

visible portion of the soil spectrum is mostly linked to Fe oxides. According to Garzanti et 

al., (2014), the Lesotho highlands are dominated by iron oxides resulted from the weathering 

of olivine. Different soil chromophores may explain the high correlation between spectral 

data and SOC in the visible region (Mouazen et al., 2007). Referring to Stuart (2004) in 

Table 1, this range of spectra can be attributed to the third overtone N-H stretching. This 

result is in accordance with what different researchers have found (Rossel and Behrens, 2010; 

Vohland and Emmerling, 2011). Rossel et al. (2006) discovered important wavelengths 

around 410, 570, and 660 nm in the visible region of the spectra. Under laboratory 

conditions, Wang et al. (2010) reported 440, 560, 625, 740, and 1336 nm as principal spectral 

bands to predict the SOC. Nocita et al. (2014) suggested that the spectral portion between 

580, 570 and 680 nm was sufficient to predict SOC.  

However, this was not the case with the VIP algorithm computed from raw spectral data 

(field and laboratory) where most key wavelengths were broadly selected around 1200-2200 

nm with a peak at 1500 nm (Fig.10a, 10b). This may be explained by the fact that the VIP 

algorithm could be sensitive to noise. Some scientists reported the possibility of finding key 

wavelengths in those range of spectra (Rossel and Behrent, 2010; Rossel et al., 2015). 

According to Stuart (2004) in Table 1, 2000-2200 nm corresponds to the combination N-H 

stretching and combination O-stretching. Rossel et al. (2015) attributed it to the range of 

carbonyl C=O/CH stretch vibration. But it also can be attributed to the type of clay mineral 

according to Nayak and Singh (2007). Rossel and Behrent (2010) founds also important 

wavelength in the range 2000-2200 nm using VIP and explains it by the presence of Kaolin. 

Spectra around 1455 nm are mostly attributed to water but with the phenomena of spectral 

overlapping as mention by Rossel and Behrens (2010), the range between 1400 and 1500 nm 

can also be affected. Nevertheless, Stuart (2004) in Table 1 attributed the spectra portion 

between 1400 and 1500 nm to the First overtone N-H stretching, and first overtone O-H 
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stretching. Other portion of the soil spectra are also preferably selected by both feature 

selection algorithms (850-950 nm, 1110-1225 nm). The range 850-950 nm is mostly 

attributed to the second overtone N-H stretching, and second overtone O-H stretching 

according to Stuart (2004) (Table 1), but also to Fe oxides according to Nayak and Singh 

(2007). The range 1110-1225 nm corresponds to the second overtone C-H stretching (Stuart, 

2004). Most of wavelengths around the NIR are correlated to organic functional groups 

(Rossel et al., 2015). Brown et al. (2006) identified also SOC key wavelength around NIR 

(960 nm, 1100 nm, 1400 nm, 1900 nm, 2309 nm, 2180 nm, 1744 nm, and 1870nm). 

V.2. Performance of the RF regression compared to the PLSR regression in predicting 

SOC  

There is not much literature comparing the performance of RF and PLSR in predicting SOC 

contents. However, Rossel and Behrens (2010) have assessed the performance of many data 

mining algorithms to predict SOC, including PLSR and RF regression. They have found that 

PLSR was slightly better than RF. Although our results proved the contrary, RF regression 

outperforms PLRS in predicting SOC contents in an independent dataset. This difference can 

be attributed to the complexity of our data, collected in a mountainous area where different 

altitudes, slopes, soil thicknesses may have different influences on soil composition and 

spectral characteristics. In such conditions, data are not linear and machine learning 

algorithms such as RF are likely to better predict because of their robustness to non-linear 

trends (Rossel and Behrens, 2010). In addition, our research takes all the spectral data as 

collected by the ASD. Rossel and Behrens (2010) resampled the data at 10 nm spatial 

resolution, making it more complex than ours.  Diaz-Uriate and Andres (2006) reported the 

ability of RF regression to better fit the independent dataset. The weakness of PLSR to 

accurately predict SOC content in a new dataset as demonstrated in this study was also 

reported by other scientists (Chang et al., 2001; Stevens et al., 2006). 

Comparing our overall models to previous studies, the RF models are more accurate than 

what Rossel and Behrens (2010) have found using 72 wavelengths under laboratory 

conditions. PLSR model performances are similar to what Rossel and Behrens (2010); 

Mouazen (2014) and Li et al. (2015) found under laboratory conditions (Table 2), and 

Stevens et al. (2008) and Rossel and Behrens (2010) under field conditions using the same 

regression.  
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V.3. Performance of field spectral measurements and laboratory spectral measurements 

in predicting SOC 

Before comparing the performance of the field and laboratory spectra, the one tailed student’s 

t test was implemented to show the dissimilarity between the field and the laboratory spectra. 

The results shows that laboratory spectral measurements are significantly different to field 

spectral measurements at 5% level (p value = 0.024). This observation can be justified by the 

presence of fresh moist soil in the field spectral measurements (Kuang and Mouazen, 2011). 

The moist soil increases the effect of forward scattering of light and enhances the abortion at 

all portions of the wavelength (Lobell and Asner, 2002). However, Rossel et al. (2009) found 

no significant difference between field and laboratory measurements. This is because they 

have removed all effects of water absorption.  

The comparison of the performance of both laboratory and field RF models seems to be 

difficult in this research because the best models for both dataset have almost the same 

performance. It is to be noted that the laboratory spectral measurements in our study were not 

dried and sieved as supported by many authors. Consequently, the influence of moisture is 

not totally removed and may reduce its accuracy at the field spectra level. The best model in 

the laboratory dataset was achieved with L-FD-K-RF (RPD =3.77, Rp2 = 0.87, RMSEP = 

0.64%), while for the field was achieved with F-FD-K-RF (RPD = 3.77, Rp2 = 0.88, RMSEP 

= 0.64%).  

However, PLSR models developed with the laboratory dataset are slightly better than the 

ones developed in the field. Li et al. (2015) also found that PLRS model achieved better 

accuracy with the laboratory spectral data than the field data. The reason why our results are 

different from the ones obtained by Li et al. (2015) may be because PLSR is not robust to 

predict both laboratory and field spectral (noisy) data with the same accuracy.  

V.4. Influence of spectra first derivative on the performance of different models 

The impact of spectra derivatives and key wavelength selection in the raw spectral data 

(laboratory and field) is effective in improving RF regression models, as well as PLSR 

models. This is because the best predictive models for RF regression (RPD = 3.77, Rp
2= 0.88, 

RMSEP = 0.64%) and PLSR-K (RPD = 2.97, Rp2= 0.86, RMSEP = 0.75%) with transformed 

spectral data, were L-FD-K-RF and F-K-PLSR, respectively. The effect of spectra derivatives 

and key wavelength selection on improving the raw model has been indicated by many other 
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scientists. Peng et al. (2014) assessed the impact of 8 pre-processing methods in improving 

the raw model and the first derivative was the best. Li et al. (2015) demonstrated the 

superiority of the first derivative with SG smoothing to improve PLSR. Vasques et al. (2008) 

also used the first SG smoothing to improve SOC models. Rossel and Behrens (2010) also 

improved the RF method by using a discrete wavelet transform algorithm like a feature 

selection method. 

V.5. Significant and limitations of the models  

The implication of this research is that field spectroscopy measurements offer a better 

perspective to predict SOC contents in mountainous landscapes with low price and 

reasonable time. RF can be used to monitor the quality of soil using SOC as a proxy. 

Furthermore, decision makers can use these models as tools to easily monitor SOC contents 

and integrate it in the soil carbon market which is not yet implemented because of the lack of 

cost effective methods. In addition to what has been obtained so far by different researchers, 

these findings have brought more insight in RF regression in term of prediction SOC in 

southern Africa mountainous landscapes. No previous research has been oriented in this way. 

Field spectroscopy measurements as demonstrated in this work show more advantages to 

predict SOC than satellite images because of the complex morphology of the region. On 

mountainous landscapes, satellite images are limited to estimate SOC because of topographic 

shading, thickness, slope processes, microclimate effects, water retention and orographic 

precipitation which have a huge impact on SOC estimation.  

Results from different models need to be applied carefully regarding the heterogeneity of the 

site location. The limitation of this investigation is that it provides overall models of SOC 

carbon in mountainous areas. The effects of different microclimate and altitude were not 

tested on the model accuracy. Also, it is not evident that the models will hold during another 

period of time, knowing that samples were collected in October, the rainy season. More 

investigation needs to be done in order to generalize our models.  
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CONCLUSIONS  

The performance of RF regression in predicting SOC contents using field measurements was 

assessed. The model was compared to the most commonly used regression, PLSR. Field 

measurements from both regressions were compared to the predictions with results from the 

same spectra measured in the laboratory. Key wavelength selection and spectra first 

derivative effects were assessed on both regression models. The results indicated that: 

 The best models in predicting SOC on an independent dataset were found with RF 

regressions, and PLSR models are more likely to overfit the calibration dataset.  

 The accuracy of PLSR models developed with laboratory spectral data were slightly 

superior to those developed with field spectra. However, with RF models, both dataset 

exhibit the same accuracy.  

 The derivative spectral models improved the raw spectral models because the best 

model with both laboratory and field spectral data were obtained with transformed 

spectral data. 

 Key wavelengths to predict SOC contents were mostly localised around the visible 

range (400-700 nm).  

However, this study offers many perspectives to conduct future research. More investigation 

need be oriented on the heterogeneity of the site location (mountains dominated) which is 

expressed here by a high coefficient of variation of SOC concentration. Therefore, we 

suggested further research on: 

 The effect of altitude variation to the overall model performance in order to increase 

the accuracy.  

 Testing the effect of the season change and different soil moisture variation on the 

model performance.    

For a wider implication to local community, we would like to orient future researches on 

interpolating SOC concentration obtained from spectroscopy by using different geostatistical 

methods in order to map SOC contents.  
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APPENDICES 

PLSR code 

# Partial least square regression code compiled by Freddy 

Bangelesa, November 2016.  

##############################################################

############# 

# remove previous datasets and clean up the workspace 

rm(list=ls()) 

##############################################################

############# 

# set working directory      

setwd("C:/Users/user/Desktop/statproject/stat project") 

# laoding packages  

library(car) 

library(pls) 

library(caret) 

library(plsVarSel) 

# laoding the data 

labreduced <- read.csv("C:/Users/user/Desktop/statproject/stat 

project/labreduced.csv") 

#random splitting of the data (70/30) 

smp_size <-floor(0.70 * nrow(labreduced)) 

set.seed(123) 

train_ind<-sample(seq_len(nrow(labreduced)), size = smp_size) 

train2<-labreduced[train_ind, ] 

test2<-labreduced[-train_ind, ] 

testy<-subset(test2, select = carbone) 

trainy<-subset(train2, select = carbone) 
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#fitting PLSR model 

m.pls <- plsr(carbone ~.,data=train2, validation="LOO", method 

= "oscorespls") 

summary(m.pls) 

# optimizating the number of components  

comp <- which.min(m.pls$validation$PRESS) 

# feature selection using variable important in selection 

algorithm 

vip <- VIP(m.pls, 1) 

matplot(vip) 

matplot(scale(cbind(vip)), type = 'l') 

write.table(vip, "C:/Users/user/Desktop/statproject/stat 

project/labderivVIP.csv",sep = "," 

            ,row.names = T,col.names = T) 

#plotting the variance explained 

par(mar = c(4, 4, 2.5, 1) + 0.1) 

plot(RMSEP(m.pls), legendpos = "topright", ylab = "Variance 

explained (RMSE)") 

#plotting the fiting val models 

par(mar = c(4, 4, 2.5, 1) + 0.1) 

plot(m.pls, ncomp = comp, asp = 1, line = TRUE) 

# subrtracting PLSR coefficients 

PLSRcoefficients <- coef(m.pls, ncomp = comp, intercept = T) 

par(mar = c(4, 4, 1.5, 1) + 0.1) 

coefplot (m.pls, ncomp = 1, legendpos = "topleft",intercept = 

FALSE, type = "l", 

         xlab = "variable", ylab = "regression coefficient") 

#PLSR calibration accuracy 

m.pred2<-predict(m.pls, train2, ncomp=comp) 



61 

 
pls.eval2<-data.frame(obs2=trainy, pred2=m.pred2[,1,1]) 

model2 = lm(Argile~pred2, data = pls.eval2) 

summary(model2)$r.squared 

summary(model2)$adj.r.squared 

summary(model2)$ sigma 

MSE2 <- mean(residuals(model2)^2) 

MSE2 

RMSE2 <-sqrt(MSE2) 

RMSE2 

AIC(model2) 

# PLSR validation accuracy 

m.pred<-predict(m.pls, test2, ncomp=comp) 

obs<-testy 

pls.eval<-data.frame(obs=testy, pred=m.pred[,1,1]) 

model = lm(carbone~pred, data = pls.eval) 

summary(model)$r.squared 

summary(model)$adj.r.squared 

summary(model)$sigma 

MSE <- mean(residuals(model)^2) 

MSE 

RMSE <-sqrt(MSE) 

RMSE 

AIC(model) 

# plotting predicted Vs observed 

obs<-pls.eval$carbone 

pred<-pls.eval$pred 

par(mar = c(4, 4, 2.5, 1) + 0.1) 
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op <- par(c(lty="solid", col="black")) 

plot(obs, pred, asp=1, xlab="Observed", ylab="Predicted") 

prline <- lm(carbone~ pred, data= pls.eval) 

abline(prline) 

par(c(lty="dashed", col="black")) 

abline(0, 1) 

# computing RPD 

SD<-sd(trainy$carbone) 

RPD<-SD/RMSE 

RPD 

 


