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ABSTRACT 

Petrol and diesel fumes are known to be anthropogenic sources of air pollutants that 

have a negative impact on both environmental and human health. In developing 

countries, attendants are still employed to pump fuel for customers. In South Africa gas 

pump attendants refuel vehicles with various octane unleaded petrol, lead replacement 

petrol (LRP) and diesel on a daily basis. Attendants are particularly at risk to adverse 

health effects associated with inhalation of hazardous air pollutants (HAPs). Of 

increasing concern in recent years are the volatile organic compounds (VOCs), with 

particular reference to the six aromatic hydrocarbons (benzene, toluene, ethyl benzene 

and three isomeric xylenes), namely the BTEX.  

These pollutants are known to be potentially hazardous to human and environmental 

health. BTEX emissions have been found to cause central nervous system depression, 

organ failure, teratogenic effects and gastrointestinal disorders. Other studies have 

argued that the release of gases can also be detrimental as they have carcinogenic 

agents, while other gases attack the respiratory tracts and act as asphyxiants. Regular air 

quality monitoring and hazard risk assessments are significant within a developing world 

context as relevant air monitoring information is limited.  

This study analyses the concentrations and health risks of BTEX monitored at a diesel-

refueling bay in Johannesburg, South Africa. Samples were obtained for the winter 

periods of June, July and August of 2013 and 2014. BTEX were analysed using gas 

chromatography (Syntech Spectras Gas Chromatography 955), coupled with a 

photoionization detector (PID), Radiello passive samplers and fuel data logs.  

Results indicate O-xylene (29-50%) and benzene (13-33%) are the most abundant 

species of the total cumulative BTEX at the site. Occupational concentrations of TEX 

concentrations were within local and international occupational exposure (OELs) limits 

throughout the monitoring period, based on 8-hour time weighted averages. However, 

benzene concentrations were above international OELs, but below national limits, 

noting a large discrepancy between these limits.  

The health risk assessment of BTEX found that there were incidences when BTX 

concentrations were above recommended standards. Furthermore, due to the poor 

ventilation and high exposure duration, at the study site, the average benzene 
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concentration over the sampling campaign exceeded the US Environmental Protection 

Agency’s chronic inhalation exposure reference concentration. Lifetime cancer risk 

estimation showed that on average there is a 3.78 x 10-4 cancer risk, corresponding to an 

average chronic daily intake of 1.38 x 10-3 mg/kg/day of benzene exposure. Additionally, 

there were incidences where individuals were at potential hazard risk of benzene and 

toluene that may pose non-carcinogenic effects to employees. 

Additionally, it was established that BTEXtotal concentrations were positively correlated 

to the volume of diesel dispensed daily and inversely correlated to temperature. Ethyl-

benzene and o-xylene indicated a positive correlation with volume of fuel dispensed. 

Proxy estimates relating to cancer and hazard risks indicate that employees are at 

potential risk to adverse health effects associated with inhalation exposure to these 

pollutants. Mitigation strategies are recommended.  
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1.1 Introduction  

For the majority of the population, exposure to petrol and diesel is generally through 

inhalation of vapours released from petrochemical refineries, industries, vehicle 

emissions and at service stations during refuelling (Figure 1.1). The release of harmful air 

pollutants (HAPs) is through the combustion or evaporative emissions from these 

activities. These emissions have been studied extensively, as they could be harmful to 

human and environmental health, and deteriorate the air quality of the area (Bruce et 

al., 2002; Brunekreef and Holgate, 2002; Fenger, 1999; Han and Naeher, 2006; 

Rekhadevi et al., 2010; Singh et al., 2013; Sydbom et al., 2001; World Health 

Organization, 2012). Thus, ambient air quality guidelines have been derived, and their 

primary basis is to ensure the protection of human health, as air quality and health 

effects are intrinsically linked (Brunekreef and Holgate, 2002; Smith, 1993).  

 

Figure 1.1: Air emissions in different environments, arising from petrol and diesel emissions, 
through evaporative and combustion activities (Source: SAPIA, 2008). 

However, due to occupational settings, some people may be further exposed to volatile 

organic compounds (VOCs) that are released from diesel and petrol emissions. Of major 

concern are employees working in petrochemical industries, fuel tanker drivers, and 

forecourt attendants at service stations, as there may be increased concentrations of 

VOCs associated with these activities. Forecourt attendants specifically are exposed to 

vehicular emissions, fumes from storage vessels, as well as vapours from refuelling.  
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At all service stations, storage vessels will be filled with petrol and/or diesel fuel for 

refuelling. However, within these storage vessels, air will be displaced from the vessel, 

causing hydrocarbon vapours to emerge. The hydrocarbon vapour is potentially harmful 

as it contains various HAPs and VOCs, with high levels of toxicity, which may be inhaled. 

In the absence of vapour recovery, this hydrocarbon vapour is emitted and pollutes 

ambient air, deteriorating air quality and potentially affecting human health. Vapour 

recovery, which can take various forms, attempts to mitigate these emissions and 

depending on the solution employed, can be very effective and reduce vapour emissions 

almost entirely (Duarte-Davidson et al., 2001). Different solutions are typically applied to 

different sectors of the distribution chain. Thus, for example, fuel pumps in the United 

States have vapour recovery nozzles placed on them to decrease vapour release during 

refuelling.  

However, in South Africa, vapour recovery has only been partially implemented, with 

complete vapour recovery being implemented only at refinery road tanker loading 

depots. As yet, there is no vapour recovery in the downstream logistics chain (tanker to 

service station storage vessel; and fuel pump to vehicle tank), in South Africa. This is of 

major concern, as fulltime forecourt attendants are employed at service stations across 

the country, as they are in many developing countries. Thus, their exposure to petrol 

and diesel during transfer from tanker to forecourt storage vessels and during refuelling 

of cars, buses and trucks, may be higher than in countries that have vapour recovery 

systems throughout the logistics chain.  

Fuel attendants in the country refuel vehicles with both diesel and petrol. However, 

studies have mainly focused on petrol vapours and resultant health effects, as diesel has 

a much lower volatility than petrol. Thus exposure to VOCs from diesel is considered to 

be considerably lower than that from petrol. However, continuous exposure to VOCs, 

especially in ‘hot spot’ areas where concentrations of VOCs may be augmented, such as 

diesel refuelling bays, may still be of concern. Thus, the focus of this thesis will be on 

diesel service stations only.  
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1.2 Regulation and fuel usage 

In South Africa, fuel levies (such as an environmental levy) exist. Thus, consumers pay a 

premium to counteract harm to the environment. The levies and government taxes are 

regulated, and thus, fuel companies have restrictions on pricing. There are four main 

fuel companies in South Africa who supply both petrol and diesel to all retail garages. 

These are BP, Shell, Engen and SASOL. Fuel types in the country include unleaded petrol, 

i.e. 93-unleaded and 95-unleaded (93-unleaded petrol is only available in the interior of 

South Africa and not in coastal areas); LRP, i.e. lead replacement petrol, for older 

vehicles; and three variants of diesel. These are ultra-low sulphur diesel (10 ppm), which 

was introduced in 2013; low sulphur diesel (50 ppm); and standard (heavy-end) diesel 

(500 ppm). Each of the fuel companies enhance their fuel by adding specific additives, 

which further changes the composition of the fuel, making monitoring and regulation 

difficult, but imperative.  

Over the past ten years, fuel has been regulated more forcefully by governments 

worldwide. Many governmental organisations have realised the effects of fuel emissions 

on air quality, human and environmental health and have placed different restrictions 

on fuel. One such restriction has been by the European Union (EU), where they have 

regulated the amount of benzene in petrol (Pavlova and Ivanova, 2003). As of 2010, only 

1% (v/v) benzene is allowed in petrol. However, despite the increasing awareness 

around the harmful VOCs released from fuel, the realisation is centred on petrol, and 

diesel fuel is still under-regulated.  

According to the South African Petroleum Industry Association (SAPIA, 2008), the 

majority of diesel usage in South Africa (59%) is at retail garages (Figure 1.2), where fuel 

pump attendants are employed. Public transport buses, which are analysed in this study, 

fall within two sectors of the South African market: that of retail garages (39%) and 

public transport (2%), as public buses are refuelled at retail garages, and are not 

captured independently. It should be noted that public buses utilise 500 ppm sulphur 

diesel, and have fuel tanks almost 3-4 larger that of a regular vehicle. Thus, vapours 

from refuelling may be more pronounced. In addition to this, emissions from exhaust 

fumes will also significantly increase levels of VOCs in surrounding areas.   
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Figure 1.2: The diesel usage in percentage by different sectors in South Africa as noted in 2008, 
by the South African Petroleum Industry Association (Source: after SAPIA, 2008). 

Studies have analysed effects from petrol vapour emissions and fumes (Askari et al., 

2005; Chang et al., 2009; Das et al., 1991; Gonzalez-Flesca et al., 2002; Hein et al., 1989; 

Karakitsios et al., 2007a; Keretetse et al., 2008; Kitwattanavong et al., 2013; Majumdar 

(neé Som) et al., 2008; Morales Terrés et al., 2010; Oesch et al., 1995; Onunkwor et al., 

2004; Pandya et al., 1975; Pinedo et al., 2012; Rekhadevi et al., 2010; Rushton et al., 

2014; Shin and Kwon, 2000; Singh et al., 2013; Udonwa et al., 2009), while other studies 

have analysed diesel particulates, and related it to health (Burtscher, 2005; Carvalho-

Oliveira, 2005; Chen et al., 2007; Crump, 2014; Ferreira et al., 2008; Nightingale et al., 

2000; Stayner et al., 1998; World Health Organization, 2012).  

However, no studies, either in South Africa or worldwide, have focused on the release of 

VOCs from diesel fuel and analysed the potential effects on health, despite full time 

forecourt attendants being employed. Additionally, as mentioned earlier, diesel fuel is 

unregulated, and thus levels of benzene in particular are not monitored or controlled, 

which may pose severe health risk consequences to employees and the public alike. 

Furthermore, with a significant increase in diesel fuelled vehicles (Figure 1.3), with the 

wide public impression that diesel is a ‘cleaner fuel’ (as compared to petrol fuelled cars), 

there is a significant increase in diesel-fuelled motor vehicles in the country.  
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Figure 1.3: Petrol and diesel consumption in South Africa from 1988 – 2013. South Africa 
utilised approximately 11.2 billion litres of petrol and 11.9 billion litres of diesel during 2013. 
There was a marginal decrease in in petrol consumption (2.1%), while diesel displayed a 0.3% 

increase in consumption, from the previous year (Source: after SAPIA, 2008). 

 

1.3  Air quality and legislative practices in South Africa 

Despite diesel fuel not being regulated specifically, air quality, public health and 

occupational safety are governed by means of a number of legislative Acts in South 

Africa, including but not limited to: 

 Customs and Excise Act (Act 91 of 1964)  

(Specifically relates to levies and government taxes associated to petrol, diesel 

and bio-diesel fuels) 

 Hazardous Substances Act (Act 5 of 1973) 

(Relates to the toxic and/or flammable nature of compounds) 

 Environment Conservation Act (Act 73 of 1989) 

(Relates to the protection and controlled utilization of the environment, 

specifically with regards to environmental pollution) 

 Occupational Health and Safety Act (Act 85 of 1993) 

(Relates to the protection of persons at work against hazards to health and 

safety arising in connection with work-related activities) 
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 Air Quality Act (Act 39 of 2004) 

(Relates to regulating air quality in order to protect the environment by 

providing reasonable measures for the prevention of pollution and ecological 

degradation). 

Previous studies on gas refuelling practices and concentration levels of HAPS around the 

world have focused on the polluting potential of petrol stations, and oil and petroleum 

plants polluting air and water; and seasonal and diurnal variations in VOC concentrations 

in urban air and its effects on human and environmental health (e.g. Caprino and Togna, 

1998; Chauhan et al., 2014.; Han and Naeher, 2006; Porta et al., 2009; Smith, 1993). 

However, no studies in South Africa focus on health risks from diesel refuelling stations, 

or sites with high diesel emissions, despite pump attendants being employed on a full 

time basis. Of major concern, at the forecourt from diesel refuelling, is the release of six 

aromatic hydrocarbons, namely benzene, toluene, ethyl-benzene, o-, m- and p-xylene 

(BTEX). According to the United States Environmental Protection Agency (US EPA), 

“BTEX is a term used for benzene, toluene, ethyl-benzene, and xylene- volatile aromatic 

compounds typically found in petroleum products, such as gasoline and diesel fuel” (US 

EPA, 2010). Thus, the following sections will focus on the health risks associated with 

BTEX, and a review of risk assessments associated with BTEX from various countries will 

be analysed. 

 

1.4  Health risks associated with BTEX  

 BTEX compounds are emitted from various sources, and concentrations are generally 

higher in urban air-sheds, due to vehicular traffic, industrial activities and chemical 

manufacturing plants being more active in these areas. Benzene, toluene, ethyl-benzene 

and xylenes, which are all aromatic hydrocarbons, are found naturally in gasoline, crude 

oil and diesel fuel, and may be included as additives to gasoline to enhance fuel 

performance. In a study undertaken by SAPIA (2008), it was noted that although 

benzene specifically is a matter of concern in petrol, PAHs need to be continually 

monitored in diesel. Furthermore, it was stated that PAHs are predominantly present in 

the heavier ends of diesel, such as motor vehicles fuelled with 500 ppm diesel. However, 

personal exposure to these aromatic hydrocarbons in occupational settings, such as 
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diesel refuelling stations has not been high on the country’s agenda, even though 

exposure to these PAHs has shown to increase one’s risk of possible health-related side 

effects (SAPIA, 2008).  Thus, each of the compounds potential health related effects will 

be discussed briefly.  

 

1.4.1 Health risks associated with benzene 

Benzene (C6H6) in its native state is a colourless, flammable liquid, with a relatively 

sweet smelling odour. However, benzene is classified as a level 1 carcinogen by the 

World Health Organization (WHO) (World Health Organization, 2012). This means that 

benzene has been found to be a known human carcinogen, and thus the WHO state that 

there should be minimal exposure to this compound. According to the ATSDR (2007a) 

acute exposure to C6H6 may result in central nervous system (CNS) disorders (including 

drowsiness, dizziness, headaches, tremors, convulsions), pulmonary disorders (including 

increased heart rate), gastrointestinal disorders (including vomiting), and may even 

result in death. Chronic exposure to this compound may impact blood system functions, 

and lead to leukaemia (cancer of the blood). 

 

1.4.2 Health risks associated with toluene 

Toluene (C7H8), in its native state is a colourless, highly flammable liquid (ethyl-benzene 

and all three isomers of xylene have the same characteristics), and has a similar sweet 

odour as that of benzene. According to the ATSDR (2000) acute exposure to the 

compound can cause intoxication, and may cause unconsciousness, leading to death. 

C7H8 may also irritate the respiratory tract. Chronic exposure to the compound may 

result in CNS depression (including mild symptoms such tiredness, confusion, memory 

loss and impaired colour vision). However, symptoms may cease when exposure is 

discontinued.  
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1.4.3 Health risks associated with ethyl-benzene 

Ethyl-benzene (C8H10) has an odour like that of gasoline. Acute exposure causes CNS 

depression (eye irritations and dizziness) and affects the respiratory tract. Studies in 

animals have shown that chronic exposure to the compound causes damage to ears (i.e. 

hearing loss) and kidney malfunction. Ethyl-benzene is also classified as a possible 

carcinogen (ATSDR, 2007b).  

 

1.4.4 Health risks associated with xylenes 

Xylene (C8H10) (also known as dimethyl-benzene), has three isomeric compounds (viz. o- 

p- and m-xylene), and like the other PAHs, has a sweet smelling odour. Acute exposure 

to xylenes may result in the same effects as described for benzene, excluding any 

carcinogenic risk (the US EPA have concluded carcinogenic risk of xylene as inconclusive 

due to insufficient data). However, chronic exposure may cause damage to both the 

liver and kidneys (ATSDR, 2007c).  

 

1.5  Health risk assessments 

 The US National Research Council defines human health risk assessments (HRA) as “the 

evaluation of scientific information on the hazardous properties of environmental 

agents and on the extent of human exposure to those agents” (Moy, 2005). According to 

the UK Environment Agency (2000), a three step process is necessary for any (health) 

risk assessment (Figure 1.4). These three steps are: 

1. Hazard identification; 

2. Exposure assessment and/or dose-response assessment; and 

3. Risk characterization.  



10 

 

 

 

Figure 1.4: The US National Research Council’s Risk Assessment Model, as developed by the 
United States Environmental Protection Agency (US EPA) (Source: after US EPA, 2010).  

In order to provide the context for this study, and the methodological approach 

employed, the following definitions related to HRAs are offered:  

 Risk- the potential adverse effect that would be caused by a hazard (Colman 

Lerner et al., 2012).  

 Hazard- any chemical, physical or biological agent (or a combination of these), 

that have the potential to cause harm.  

Thus, the nature of the hazard, the potential exposure, occurrence and magnitude of the 

exposure, and the exposed population characteristics, determine the overall risk.  In this 

manner, a risk assessment is a process undertaken in order to recognise any likely 

negative effects of exposure. It is a commonly used tool to link environmental exposure 

to potential human health effects. Due to the characteristics of health risk assessments 

(being qualitative or quantitative), it has the benefit over other methodologies (such as 

observational studies or analytical epidemiological studies), in that they are predictive in 

nature. It uses readily available information, such as exposure data, to quantify health 

effects of exposure to a certain substance/s. Risk assessments thus, may be conducted 

over a much shorter time period than other methodologies, making them economically 

advantageous, yet provides valuable predictions (Askari et al., 2005; Colman Lerner et 

al., 2012; Kitwattanavong et al., 2013; Moy, 2005; Pinedo et al., 2012).  

 



11 

 

 

In recent times, health risk assessments, specifically regarding vehicle exhaust fumes 

and refuelling stations, have become common. These epidemiological studies include 

those that have analysed the effects of VOC emission, specifically with regard to BTEX 

emissions due to their high levels of toxicity. The studies have evaluated the incidence of 

cancers, birth defects, reproductive disorders, and respiratory diseases (Rushton et al., 

2014; Wiwanitkit, 2008).  

Other reports have conducted HRAs near areas with high levels of VOCs. These include 

petrol stations, bus stops, and areas with high traffic movement (such as road tunnels) 

across Europe and Asia (Alhaji, 2011; Frey et al., 2007; Gonzalez-Flesca et al., 2002; 

Moore and Figliozzi, 2011; Moore et al., 2012; Murena, 2007). Health risks to passengers 

using public transport buses were also analysed and, generally, levels of benzene 

exposure were found to be slightly higher in passengers exposed to diesel particulates 

(Armas et al., 2012; Chen et al., 2011; Liu et al., 2011; Yu and Li, 2014).  

Risk to auto mechanics and painters were also analysed in other studies, as these 

occupational settings also placed these employees at increased risk to potential health 

complications from inhalation exposure (Badjagbo et al., 2010; Onunkwor et al., 2004; 

Udonwa et al., 2009). These studies revealed that auto-mechanics experienced 

increased risk exposure, as compared to the general population not exposed to VOCs, 

related to vehicular emissions and particulates. However, the findings revealed that the 

risk was not as great, as occupational settings such as service station attendants, who 

experienced greater risks (Colman Lerner et al., 2012).  

In addition to this, Porta et al. (2009), concluded that epidemiological studies did not 

include all limiting factors and confounding issues, such as previous medical illnesses; 

duration of exposure; level of socio-economic status; sex; year of birth (in children); 

working conditions; and/or personal habits (such as smoking and drinking). In addition 

to these limiting factors, single and multi-site analyses provide different results, and 

sometimes inconsistent findings.  

In conclusion, health risk assessments indicate a possible and/or minor risk of cancer, 

respiratory-related diseases and birth defects of individuals exposed to high levels of 

VOCs and BTEX, due to environmental and/or occupational surroundings. Studies also 

indicate that employees of petrol refuelling stations are at risk in terms of respiratory-, 
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dermatological-, and neurological-related diseases, as well as increased chance of 

developing carcinomas (Smith, 1993). Thus, in order to not only manage emissions at 

refuelling stations, but to protect individuals, health risk assessments are vital. 

Additionally, a ‘mixed-methods’ approach is necessary in order to exclude bias and 

reduce limiting factors within the study.  

 

1.6  Aims and objectives of the study 

No health risk assessment on diesel refuelling stations has been conducted in South 

Africa, or in any developing country, to date. Thus, this research aimed to evaluate 

whether emissions at a bus depot in Johannesburg, South Africa, has the potential to 

cause adverse health effects to employees at the site, by conducting an HRA.  

The main objectives of this research were: 

1. To determine the concentrations of BTEX at a bus diesel refuelling bay, 

2. To ascertain if BTEX emissions have a diurnal variation, 

3. To determine whether BTEX emissions exceed national and/or international 

guidelines and occupational limits, and the implications thereof, and 

4. To investigate if BTEX concentrations have the potential to affect the 

occupational health and safety of workers at the site. 

 

1.7  Study area and site description 

The experiment was conducted at a refuelling bay located in Johannesburg, South Africa 

(Figure 1.5). Johannesburg, located on the interior plateau of the country, experiences 

cold, dry winters, with winter temperatures (June, July and August) ranging from −3 to 

19 °C.  

The bus depot belongs to a government owned entity, and services the public transport 

sector, throughout the Johannesburg metropolis.  The bus depot is open daily, however, 

the refuelling bay and adjacent workshops, offices and repair centres are only open 

during weekdays (Monday – Friday), 07:30-15:30.  
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The refueling bay is under cover, and has four doors, 3 m high on either end of the 30 m 

bay. There are four refueling pumps, centrally located, where two buses can be refueled 

simultaneously. The depot itself can accommodate 400 parked buses, and refuels on 

average 85 buses daily. This equates to approximately 6,700 liters of 500 ppm Sulphur 

diesel being pumped per day during the work hours. There are four full time employees 

at the refuelling bay, and over 50 employees within the bus depot in adjacent buildings. 

In close proximity to the refueling bay (Figure 1.6a) is a large enclosed workshop where 

maintenance and repairs take place (Figure 1.6b).  

 

At the study site, pump attendants wear protective gloves when refueling the buses; 

however, these are removed when busy with other activities while refuelling (Appendix 

i). Additionally, in South Africa no rubber hood is used over the delivery pump, as is the 

practice in the USA to reduce emissions (Udonwa et al., 2009). There is very little 

ventilation, despite bay doors allowing a small amount of airflow to be present, as all 

four extractor fans located near the ceiling of the bay were non-operational throughout 

the monitoring period, thus exhaust fumes are not removed rapidly (bus engines idle 

during refuelling to save costs), and may significantly contribute to recorded emissions. 

Furthermore, 36% of buses at the depot failed the smoke tests conducted by the 

company. The smoke test indicates whether exhaust fumes released by the bus are 

within the acceptable range (as determined by the bus manufacturers), as well as if 

burning of the fuel is occurring correctly. This implies that exhaust fumes within the 

refueling bay may be further intensified. Spills are also not well managed on site, which 

further deteriorates the air quality (Appendix ii).  

 

This situation however, is not unique to this site. Government-owned public bus 

companies, throughout South Africa, experience similar conditions. There are 12 urban 

bus diesel-refuelling stations across the country, all under-cover, and have little to no 

ventilation and/or filtration systems in place. Additionally, six of these refuelling bays 

service outdated buses that do not pass the smoke tests, but are still in operation, due 

to lack of funds. Moreover, all the government-owned bus depots in the country have 

full time employed fuel pump attendants. Thus, results and findings from this study can 

be generalized, and recommendations are applicable in all bus diesel-refuelling stations, 
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and other developing countries, especially in Africa. However, when contacted to 

conduct monitoring research at these sites, permission was denied. 

 

 

Figure 1.5: The location of Johannesburg situated within the province of Gauteng, South Africa 
(top left), and the refuelling bay located within the CBD of Johannesburg (GPS co-ordinates: 

26.1908° S, 28.0303° E) (map data provided by South African National Space Agency). 
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Figure 1.6: Sketches displaying the (a) fuel bay, and (b) workshop on site. The fuel bay is 
adjacent to the workshop at the bus depot (Overhead roofs and front walls have been made 

transparent for viewing purposes. Offices displayed as white boxes). 

a 

b 
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1.8 Methodological approach 

 

1.8.1  Continuous sampling strategy  

Data collection was carried out at an urban diesel-refuelling bay under normal operation 

conditions throughout the week for a three-month period from June-August 2013 

inclusively (i.e. winter season). The study period was chosen within the colder, dry 

season in Johannesburg, when air pollution is commonly higher in the city, and BTEX 

concentrations are known to be at a maximum (Gallego et al., 2008; Hoque et al., 2008; 

Schneider et al., 2001; Zalel et al., 2008), which may lead to biases in the data set, i.e. 

over-estimation compared with annual mean exposure levels. In addition, the short 

period of monitoring may increase risk of errors. However, a study conducted by Truc 

and Oanh (2007) followed a similar methodology, with the aim of determining exposure 

levels. Continuous monitoring at the refuelling bay was carried out for 24 hours, 7 days a 

week, at 15 minute intervals, during both work and non-work hours (13,300 data points 

in total); to achieve a comprehensive analysis of daily BTEX concentrations, irrespective 

of activity or inactivity within the fuel bay.  

The original study design intended to carry out a comparative summer campaign, but 

high summer temperatures in the depot caused major instrumental problems. However, 

data were successfully collected over a 72 hour period in summer, providing some 

comparative results for another season (see Chapter 3). 

As outlined by Murena (2007), sites that are deemed to have high concentrations of air 

pollutants can have major implications on human health and, thus, the use of 

automated systems can be advantageous as continuous data can be collected. For this 

reason, ambient air was sampled using the Syntech Spectras gas chromatography 955, 

with a photo ionization detector (PID) (GC955, series 600, using a capillary column AT1 

with a 100% dimethylpolysiloxane column packing). Additionally, a PID is particularly 

useful as it is suited for continuous monitoring and specifically sensitive for aromatic 

hydrocarbons, even in very low concentrations. The sampling flow was set to sample at 

15 minute intervals and sampling height of ambient BTEX was 1.5 m at the center of the 

fuel bay, with 8 mm tubing and Swagelok fittings used for connecting tubing. Following 

the methodology of Gallego et al. (2008) and Shin and Kwon (2000), helium was used as 

the carrier gas in the GC955, set at a pressure of 350 kPa. The instrument has been 
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tested for accordance to the EMC directive 89/336/EMC, test specification EN 50081-

1:1991 and EN 50082-2: 1994. The manufacturer stated error of instrumentation is <2%. 

A gas mixture (1 ppm of each BTEX) in a gas cylinder (provided by AirLiquide) was 

adopted to identify elution time and chromatographic peaks. Six aromatic hydrocarbons 

were continuously monitored (viz. benzene, toluene, ethyl-benzene, and xylenes). The 

monitoring instruments were calibrated before use (calibration was done in the range of 

0 to 10 ppb). Quality control checks were conducted during and after the monitoring 

campaign and a correction factor of 2 ppb and 4 ppb for benzene and toluene were 

determined, respectively, to counter systematic under-sampling of the instrument. 

Additionally, 97 data points (<1% of data set) were discarded, as they were distinct 

outliers.   

 

Additionally, a Davis weather instrument (with data logger CR10X), and a Luft Weather 

Sensor, with built-in temperature, humidity, wind speed and wind direction sensors, was 

deployed within the refueling bay, as ambient climatic conditions are known to affect 

pollution levels (Fenger, 1999). These were mounted at a height of 2 m above ground 

level inside the station. Temperature, pressure and humidity were recorded every 30 

minutes, throughout the entire monitoring period. Temperature recordings were 

corrected to a ±3˚C, as stated by the manufacturers. Fuel logs were obtained from 

MetroBus Pty. Ltd (which is the government owned entity that runs the bus service). 

Fuel logs are maintained at the site, based on fuel filled per bus (in litres), per day. 

 

1.8.2  Passive sampling strategy 

Sampling and monitoring of passive samplers occurred during the winter (mid-2014), as 

many studies using both active and passive sampling strategies have established that 

BTEX concentrations are elevated in winter as compared to other seasons (Gallego et al., 

2008; Hoque et al., 2008; Zabiegala et al., 2010; Zalel et al., 2008).  

 

Radiello passive air samplers were arranged in both the refueling bay and workshop, 

where emissions were considered to be at their maximum. These samplers are 

considered reliable in both indoor and outdoor environments and, following the 

European standard (EN 13528-2), the Radiello passive samplers were used to analyze 

the risk exposure of BTEX in this situation (Pennequincardinal et al., 2005a, 2005b). 
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Concentrations as low as 2 μg·m−3 may be measured with the samplers, with an error 

not exceeding 0.1 μg·m−3 (according to the manufacturers). The samplers were deployed 

for 14 days as prescribed by the manufacturer. The BTEX passive samplers consist of an 

absorbing cartridge, which is placed in a micro-porous polyethylene membrane surface 

(50 mm long micro-porous cylinder; 16 mm external diameter; 300 mg of 40–60 mesh 

Carborograph 4) (Król et al., 2012; Pennequincardinal et al., 2005a).  

 

Each cartridge was secured to a triangular polycarbonate supporting plate. The sampling 

plates and cartridges were not placed within protective chambers, as wind speeds were 

low enough to avoid error (Shoeib and Harner, 2002) (average wind speeds were 2 m.s−1 

in the refueling bay and workshop, as they are undercover sites). As outlined by Gallego 

et al. (2008), each sample was labelled and initial and final sampling times were 

recorded. As soon as the sampling process was over, tubes were returned to their 

protective containers and sent to a laboratory for analysis (ChemTech Labs, 

Johannesburg, South Africa). Tubes containing the samples were stored in a dark, cool 

box. As advised by the laboratory, leaded pencils were avoided as to preclude any 

contamination of the samples. 

 

1.8.3 Risk characterization 

As has been shown in many studies, inhalation risk analysis is vital in order to determine 

the potential exposure of employees (Durmusoglu et al., 2010; Kitwattanavong et al., 

2013; Majumdar et al., 2008; Tunsaringkarn et al., 2012). Both cancer risk and hazard 

risk calculations (associated with the inhalation of air pollutants) were done for 

employees to evaluate the potential effect of BTEX on human health. Individual 

calculated cancer risk and hazard risk values were compared with the United States 

Environmental Protection Agency (US EPA) acceptable standards. 

 

To calculate cancer risk (CR) Equation (1) was applied, while Equation (2) was used to 

evaluate the non-carcinogenic hazard quotient (HQ): 

 

Cancer Risk (CR) = Lifetime Average Daily Dose (LADD) × Slope Factor               (1) 

 

Hazard Quotient (HQ) = Lifetime Average Daily Dose (LADD)/reference dose          (2) 
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Inhalation slope factor (SF) [benzene 0,0273 (mg/kg/day)−1] and reference dose (RfD) 

standard values were used [benzene 0,00855 mg·kg−1·day−1, toluene 1.43 mg·kg−1·day−1 

and xylenes 0,029 mg·kg−1.day−1] (Durmusoglu et al., 2010; Edokpolo et al., 2014). 

 

To calculate the Lifetime Average Daily Dose (LADD) of employees, Equation (3) was 

utilised: 

 

LADD = (C.CF.IR.EF.ED)/(BW.AT)                (3) 

 

where C is the contaminant concentration (average concentrations used from passive 

samplers) (μg/m3); CF is the conversion factor (1 mg/1000 μg); IR is the inhalation rate 

(US EPA standard) (20 m3/day); EF is the exposure frequency (days/year); ED is the 

exposure duration (years); BW is body weight (US EPA standard) (70 kg); and AT is the 

averaging time (exposure averaged over life time/average life expectancy for male and 

female) (days) (for specific values refer to Appendix iii). 

 

The depot operations manager provided demographic data, in order to provide 

information pertaining to individual input variables such as age, sex, exposure frequency 

and exposure duration. Where data was limited, US EPA standard values were used for 

body weight (70 kg for males and 60 kg for females) and inhalation rate (20 m3/day) 

(Durmusoglu et al., 2010). In order to calculate the exposure frequency, standard values 

were used (all employees worked a standard five days, eight hours per day and received 

a minimum of 21 days leave per annum). More detailed evaluation of confounding 

factors, such as smoking habits and home conditions, was beyond the scope of this 

study. 

 

1.8.4 Study sample 

The occupationally exposed group consisted of fuel bay attendants (FBA) from the 

refueling bay (n = 4) and diesel auto mechanics (AM) from the bus workshop (n = 16). 

Only full time employees were considered for this study. The demographic information 

provided by the bus company is illustrated in Table 1.1.  
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Table 1.1: Demographic data of participants in the fuel bay attendants (FBA) and auto-mechanics (AM). 
Data supplied by bus operating company. 

Participant ID Workplace Gender Smoker Age 
Employment 

Duration 

    (years) (years) 

FBA1 Fuel Bay Male No 27 5 

FBA2 Fuel Bay Male No 45 10 

FBA3 Fuel Bay Male No 59 33 

FBA4 Fuel Bay Male Yes 56 37 

AM1 Workshop Male Yes 27 1 

AM2 Workshop Male Yes 35 1 

AM3 Workshop Male No 25 2 

AM4 Workshop Male No 26 2 

AM5 Workshop Male No 24 2 

AM6 Workshop Male No 25 3 

AM7 Workshop Male No 29 4 

AM8 Workshop Male No 36 5 

AM9 Workshop * Female No 47 8 

AM10 Workshop * Male Yes 40 10 

AM11 Workshop Male No 41 10 

AM12 Workshop Male Yes 51 11 

AM13 Workshop Male No 40 16 

AM14 Workshop Male No 38 16 

AM15 Workshop Male No 49 28 

AM16 Workshop * Male No 63 41 

* Employee based within an enclosed office inside the workshop. 
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The majority of the employees at the site were male (only one auto-mechanic at the 

workshop was female). Overall, the majority of the employees did not smoke (75%). As 

can be seen in Table 1.1 there is a very wide range of employee ages (24 to 63 years) 

and exposure duration (from 1 to 41 years). All employees worked a standard 8 hours 

per day, 5 days a week. 

 

 

1.8.5  Limitations to methodological design 

The methodological design had subsequent flaws that should be noted. A shortcoming 

of subsequent chapters refers to the analyses of the data regarding the continuous 

sampling strategy using the GC955. The manuscripts only refer to two isomers of 

xylenes. This however is incorrect as m- and p-xylene co-elute in the GC955. Thus, where 

reference is made to only p-xylene, it should state both (unfortunately this error could 

not be re-worded as the papers have been published). 

In addition to this, due to instrumentation failure, there were slight gaps in data. 

However, with the large data set acquired, statistical validation was still possible. The 

GC955 was also problematic, and could not function in high temperatures, and thus the 

study was centred on winter monitoring campaigns. However, previous research iterates 

that BTEX concentrations are highest in winter (Gallego et al., 2008; Hoque et al., 2008; 

Król et al., 2012; Schneider et al., 2001; Zalel et al., 2008), hence results are still 

important for analyses. (Despite this, a relatively short summer campaign has been 

included to further re-iterate this point in Chapter 3.) Another restriction was that the 

site was undercover, and thus variations in climatic conditions were not as variable as 

outdoor environments. This however is not a point of concern when looking specifically 

at these types of refuelling stations in the country, as most bus refuelling stations 

operate under very similar conditions.   

Another constraint was with regard to the use of only Radiello samplers, in an area with 

high concentrations of BTEX. It has been mentioned that Radiello samplers should be 

used with caution in work environments with high concentrations of VOCs (as this may 

lead to under-sampling) (Pennequincardinal et al., 2005a, 2005b), however, the use of 

personal monitors was not possible for two reasons. The first is that the Radiello 

samplers were more economically viable, and second, permission to use personal 



22 

 

 

monitors at the site was not granted. The bus company wanted to avoid causing any 

possible anxiety amongst their employees. Thus, passive samplers were employed as the 

alternative, despite its limitations. Likewise, it should be noted that due to the 

concentrations being so high, there could have been incidences of back diffusion 

occurring in which higher concentrations may be erroneously recorded. In retrospect, 

the Radiello passive samplers should have only been deployed for 7 days (and not 14 

days), and multiple sampling campaigns should have been conducted, however, due to 

financial constraints, this was not possible. 

Overall, the combined approach of these methodologies (i.e. continuous sampling, 

passive sampling, and risk characterisation using mathematical calculations), despite 

their respective limitations, have postulated, if nothing else, proxy estimates of potential 

health risk of employees, which can facilitate future research.  

 

1.9  Structure of the thesis   

This thesis consists of the present introductory chapter (Chapter 1), a general discussion 

and conclusion chapter (Chapter 5) and the main body comprising of experimental 

chapters (Chapters 2-4) (see Table 1.2). The experimental chapters are publications 

(accepted or under review). All three chapters aim to quantify BTEX concentrations at 

the site (objective 1); with Chapter 2 focusing on diurnal variation of BTEX 

concentrations; Chapter 3 aiming to determine whether BTEX emissions exceed national 

and/or international occupational limits, and the implications thereof; while Chapter 4 

investigated the potential occupational health and safety of workers at the site. Chapter 

5 is a general discussion and providing overarching conclusions, drawing together the 

main findings. Each chapter has been formatted to the specific journal/publishers’ 

requirements, thus each of these chapters include substantial background information, 

a detailed methodological approach, as well as an abstract and a reference list. The 

tables and figures have been numbered for each journal paper and the pages of the 

thesis are numbered in chapter sequence. References are provided in each chapter.  
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Table 1.2: Overview of experimental chapters, presented as manuscripts.  

Chapter Title Aim Objectives Instruments  Data details 

Two  BTEX concentrations 
influenced by external 
factors at a diesel-
refuelling station in 
Johannesburg, South 
Africa 

To analyse the 
two main factors 
that are 
influential on 
fluctuations of 
ambient BTEX 
concentrations 

To determine the total volume of 
fuel dispensed and ambient 
temperature in relation to BTEX 
concentrations. 

Spectras Gas 
Chromatography 955 
VOC analyser; Davis 
meteorological 
weather station; fuel 
logs. 

3 months winter data  
(19 June- 30 August 2013). 
 
Daily and 15 minute BTEX 
concentrations analysed; 
daily temperature data 
analysed. 

Three  Assessment of 
occupational exposure to 
BTEX compounds at a 
bus diesel-refuelling bay: 
A case study in 
Johannesburg, South 
Africa 

To evaluate 
emission 
characteristics at 
a diesel refuelling 
station 

To collect air concentration data 
from diesel refuelling and exhaust 
emissions of BTEX; to evaluate 
whether these chemical 
concentrations are above legal 
standards, both national and 
international; and to investigate 
the variation of BTEX 
concentrations during a typical 
day on site. 

Spectras Gas 
Chromatography 955 
VOC analyser 

3 months winter data  
(19 June- 30 August 2013); 
72 hours summer data (01-
03 January 2014). 
 
Analysis made on 8 hour 
time weighted averages and 
BTEX species 

Four Occupational exposure 
of diesel station workers 
to BTEX compounds at a 
bus depot 

To conduct a 
health risk 
assessment of 
BTEX at a diesel 
service station for 
public buses 

To perform site-specific health 
risk analysis of occupational 
exposure to BTEX 

Radiello passive 
samplers; Luft 
Weather Sensor  

14 days in winter (02-15 July 
2014).  
 
Demographic data of 
employees provided by 
operations manager.  
 
Analysis using mathematical 
calculations, in relation to 
BTEX concentrations.  
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Abstract 

Public transport systems in Johannesburg, South Africa, rely on a large number of 
diesel-powered buses. These buses are fuel economical and durable. However, 
filling station attendants, bus drivers and the public are exposed to the diesel fuel 
and fumes associated with them. Fuel attendants are exposed to diesel exhaust 
fumes, as well as emissions from fuel pumps on a daily basis, and are at risk to 
adverse health effects associated with inhalation of volatile organic compounds 
(VOCs) released. The VOCs released include benzene, toluene, ethyl-benzene and 
xylenes (BTEX), which have a high level of toxicity. Studies relating to the 
concentrations of BTEX at diesel stations are limited, as most studies focus on 
petrol refuelling stations. Thus, analyses of these concentrations are significant 
within developing countries whose transport systems rely on diesel-powered 
buses, and where public health measures are often less rigorously enforced. As 
this research falls within a larger study relating to the health impact of BTEX on 
fuel attendants at a diesel-refuelling bay, an initial study was undertaken to analyse 
the two main external factors that are influential on fluctuations of ambient 
concentrations. Thus, an analysis of total volume dispensed, and ambient 
temperature at the station, both affecting the concentrations of BTEX released, 
was conducted. It was established that BTEXtotal concentrations were positively 
correlated to the volume of diesel dispensed daily and inversely correlated to 
temperature. Additionally, ethylbenzene and o-xylene indicated a positive 
correlation with volume of fuel dispensed, while toluene and p-xylene were 
negatively correlated to temperature.  
Keywords:   benzene, toluene, ethylbenzene, xylenes, diesel, temperature. 
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1 Introduction 

Diesel exhaust fumes, released from motor vehicles, buses, locomotives and other 
motorized machinery, has three major groups of sources (i.e. mobile sources, 
stationary sources and stationary point sources) [1, 2]. In addition, vapours are 
released from diesel fuel at refuelling bays and filling-garages. These vapours 
include various volatile organic compounds (VOCs), polycyclic aromatic 
hydrocarbons (PAHs) and particulates [3–5]. However, many studies have focused 
on specific VOCs, namely the BTEX group (benzene, toluene, ethyl-benzene and 
xylenes) which are released by petrol and diesel fuels. The amount of BTEX 
concentrations released from the fuel can vary according to the composition and 
additives in the fuel, as some additives may increase benzene concentrations. In 
addition, the ways in which the diesel fuel is used at specific sites, such as parking 
or refuelling bays, can affect the concentrations, as well as ambient climatic 
conditions.  
     Epidemiological studies have shown that inhalation of fuel vapours can be 
hazardous to human health, specifically to fuel attendants [6–12]. BTEX in general 
have been shown to be associated with a range of health complications such as 
cardiopulmonary disease, lung, liver, and kidney diseases [6, 7, 10]. The inhalation 
of benzene has also been linked to adverse teratogenic effects [3, 13, 14]. In recent 
years diesel exhaust has been suggested as a probable human carcinogen [1, 12, 
15, 16], however, very little research specifically on diesel vapour inhalation has 
been conducted. 
     BTEX concentrations and associated inhalation thereof vary due to several 
factors such as total fuel-dispensed, number of shifts and/or hours per shift of 
employees. Hein et al. [6] stated that exposure to fuel vapours can be markedly 
influenced not only by total volume of fuel dispensed by the attendants during 
each shift, or length of each shift, but also by changes in atmospheric temperature, 
ventilation and/or concentration of benzene in the fuel. However, very little 
literature is available on the effects of temperature and pressure, and/or total 
volume of fuel dispensed linked to fluctuations in concentrations of BTEX, 
specifically in diesel fuel. Thus, the main aim of this study was to investigate 
whether daily BTEX concentrations in diesel varied according to fuel dispensed 
in one refuelling bay, at a metropolitan bus company in Johannesburg, South 
Africa. In addition, the study evaluated whether atmospheric temperature also 
played a role in fluctuations and peaks of concentrations, at the indoor diesel-
refuelling bay.  

2 Background 

In South Africa, public transport systems rely on a large number of diesel-powered 
buses as they are fuel economical and durable. However, filling station attendants, 
bus drivers and the public are exposed to the diesel fuel and fumes associated with 
them. Fuel attendants are exposed on a daily basis to not only diesel exhaust fumes, 
but also emissions from fuel pumps. This exposure places them at particular risk 
to adverse health effects associated with inhalation of these BTEX, which have a 
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high level of toxicity. There have been significant mechanisms introduced in South 
Africa to reduce emissions in the fuels, which include a move away from leaded 
petrol and high content sulphur diesel fuels. LRP (lead replacement petrol), 95-
unleaded petrol, 97-unleaded petrol, and 10- and 50-ppm diesel are now the 
alternatives in South Africa, which are meant to have lower rates of harmful 
emissions. However, despite these advances, diesel fuel still poses significant risk 
to fuel attendants. 

2.1 Site description 

In this study, an indoor diesel-refuelling bay was monitored. The fuel bay is 
located in the hub of Johannesburg and supplies 50ppm fuel to 400 diesel-powered 
buses. The refuelling bay has four pumps, manned by two full time employees 
(with additional employees conducting various other duties in and near the bays). 
The refuelling bay is 30m long, with 3.5m access doors on either end of the bay. 
Buses are refuelled during working hours (07:00–15:30), Monday to Friday. 

3 Materials and method 

3.1 Sampling strategy  

Continuous in situ measurements of benzene, toluene, ethyl-benzene and o- and 
p-xylenes were obtained using the SYNSPEC Spectras Gas Chromatography 955 
VOC analyser. Ambient air was sampled at a 1.5m height, at the diesel filling 
pumps, measured continuously at 15 minute intervals, for the entire winter period 
(June, July and August). The analyser was calibrated prior to the testing period 
(calibration was done in the range of 0 to 18μg/m3), and a correction factor of 2ppb 
and 4ppb for benzene and toluene were used, respectively [17]. Helium gas was 
used as a carrier gas in the GC955 analyser as it is an inert gas and thus safe at the 
diesel refuelling bays. The winter season provided the conditions for the GC 955 
analyser to operate at its optimal, as the pilot study revealed the instrument was 
non-functional in hot summer temperatures, due to levels of BTEX being too high 
and causing errors and malfunction to the software. Additionally, the winter 
season experiences a prevailing high pressure system, which allows the gaseous 
vapours to accumulate over the site. 
     Additionally, a Davis weather instrument (with data logger CR10X), was 
mounted at a height of 2m above ground level inside the station. Temperature, 
pressure and humidity were recorded every 30 minutes, throughout the entire 
monitoring period. Temperature recordings were corrected to a ±3°C error. Fuel 
logs were obtained from MetroBus Pty. Ltd (which is the government owned 
entity that runs the bus service). Fuel logs are maintained at the site, based on fuel 
filled per bus (in litres), per day.  

3.2 Statistical analysis  

An interaction term between concentration and fuel dispensed/weather 
parameters/work and non-work days was included in the analysis. Daily and 
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quarter-hourly averages of BTEX concentrations were used in order to be 
comparable to daily fuel dispensed and temperature records, respectively. 
Following the methodological approach of Keretetse et al. [9] the level of 
significance was set at 5%. Statistical analysis was undertaken with the aid of the 
SPSS 20.1 statistical software. Variables were tested for normality, and non-
normally distributed data were analysed using non-parametric tests (viz. Wilcoxon 
sign rank and Spearman’s correlation tests).   

4 Results and discussion  

4.1 The influence of fuel dispensed on daily BTEX concentrations 

Figure 1 presents concentrations of the BTEXtotal concentrations obtained at the 
site for the duration the monitoring period, showing a statistically significant 
decrease of concentrations on non-workdays (F=1.953, p=0.0403). This was also 
apparent in a study conducted by Keretetse et al. [9], where a significant 
relationship was also found between the levels of benzene, toluene and total 
VOCs, and the volume of the petrol sold. However, it is notable that this was not 
the case in the diesel-refuelling bay in this study.  

Figure 1: Daily  average  of  ambient  BTEX   concentrations  as compared to total

the total volume of diesel dispensed daily at the site during the 
monitoring period. The shaded area indicates non-work days when 
the refuelling bay is closed.  

 Despite the trend for BTEXtotal, benzene and toluene concentrations (Figure 2a, 
b) are not dependent on fuel consumption. This could be attributed to the fact that,
according to Heeb et al. [18], both of these aromatic hydrocarbons can undergo 
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prolonged photochemical decay, and this may result in increased rates of ambient 
benzene and toluene in diesel fuels. In addition, Rasmussen and Khalil [19] found 
that atmospheric benzene levels were highest during winter, which may explain 
the high levels recognised at the station, as the study period was during this season.  
     Ethylbenzene and p-Xylene on the other hand (Figure 2c, d) are positively 
correlated  to  the volume of  diesel dispensed daily (p=0.478 and 0.547, 
respectively (Table 1)). This indicates that as volume of fuel-dispensed increases, 
concentrations also increase. This finding is also in line with those of other studies 
(e.g. Keretsetse et al. [9]), indicating that volume of fuel sold significantly 
influences ethylbenzene and xylene concentrations. 
 
 

 

Figure 2: Ambient benzene (a), toluene (b), ethylbenzene (c) and xylene (d) 
concentrations as compared to fuel dispensed daily at the station, for 
winter (JJA) 2013. 

4.2 The influence of temperature on hourly BTEX concentrations 

A significant result in this study was that BTEXtotal concentrations were negatively 
correlated (p=-0.555) to temperature for the entire monitoring  period  (Table 1). 
This can be clearly seen in Figure 3, where daily ambient BTEXtotal concentrations 
and ambient temperature variations are compared. However, if the findings are 
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Table 1:  Correlation between BTEX concentrations and the influential factors 
considered. (r indicates the linear correlation coefficient between two 
variables, and p indicates the level of significance). 

Volume of diesel sold Temperature 

 VOC n r p r p 

Benzene 96 0.113 0.113 0.197 0.197 

Toluene 96 0.045 0.045 0.013 -0.816b 

Ethylbenzen
e 

96 0.478 0.478a 0.250 -0.221 

o-Xylene 96 0.139 0.139 0.390 -0.670b 

p-Xylene 96 0.547 0.547a 0.656 -0.007 

BTEXtotal 96 0.553 0.553 a 0.456 -0.555b 
aPositive significance 
bNegative significance 

Figure 3: Daily ambient  BTEXtotal concentrations as  compared to ambient 
temperature at the station during a two-week period in the winter 
season.  

evaluated against the study conducted by Keretsetse et al. [9], temperature was 
positively correlated to BTEX concentrations. One reason for this could be that 
diesel and petrol emissions may react differently to fluctuations in temperature, 
and thus, concentrations of diesel are negatively correlated to temperature.  
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     This is further illustrated when hourly concentrations are contrasted to hourly 
temperature changes, on a typical winter’s day (Figure 4). However, the 
fluctuations noted may be attributed to a time lag offset in the data, as well as 
indicative that other factors may be involved (such as humidity, wind and/or 
atmospheric pressure).  

Figure 4: Hourly ambient  BTEXtotal and ambient temperature variations on a 
single average winter’s day during July.  

     Toluene and o-xylene observe the same behavioural pattern of a negative 
correlation to temperature (Table 1). A noteworthy finding was that benzene 
concentrations were not affected by fuel dispensed (Figure 2a) or changes in 
temperature. However, it was found that peaks in concentrations were closely 
related to the timing of sunrise daily (06:30–06:45), and this inevitably influenced 
the BTEXtotal concentrations to peak at sunrise (Figure 4).  
     Further investigation into this phenomenon is imperative, as studies have 
shown that relative humidity, atmospheric pressure and/or wind speed, besides 
temperature, may contribute to fluctuations in concentrations of diesel emissions 
from fuel and fumes. 

5 Conclusions 

BTEXtotal concentrations at a diesel refuelling bay in Johannesburg, South Africa, 
have been noted to have a positive correlation with volume of diesel dispensed 
daily. Additionally BTEXtotal indicated to be negatively correlated to temperature 
changes (thus when atmospheric temperature decreases, BTEXtotal concentrations 
increase). This finding is noteworthy, as previous research indicated that total 
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BTEX concentrations are positively correlated to both volume of fuel (petrol) 
dispensed and temperature. Benzene concentrations were noted to be neither 
related to temperature or volume of diesel dispensed, which could be linked to the 
chemical properties of the benzene vapours. Despite benzene not being 
significantly related to external factors, p-xylene and ethylbenzene both showed 
positive correlations to volume of fuel dispensed, while toluene and o-xylene 
showed a negative relationship with temperature. However, other factors besides 
total volume of diesel dispensed and temperature (such as wind speed, relative 
humidity and/or atmospheric pressure) may play a role in the fluctuations of BTEX 
concentrations, and further evaluation in the future is imperative. In addition, due 
to the high levels of BTEXtotal concentrations noted at the refuelling bay, it is 
essential to analyse the health risk exposure of employees in the near future.  
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Abstract 1 

Of increasing concern is pollution by volatile organic compounds, with particular reference to five 2 

aromatic hydrocarbons (benzene, toluene, ethyl benzene and two isomeric xylenes; BTEX). These 3 

pollutants are classified as hazardous air pollutants. Due to the potential health risks associated with 4 

these pollutants, BTEX concentrations were monitored at a bus diesel-refueling bay, in Johannesburg, 5 

South Africa, using gas chromatography, coupled with a photo-ionization detector. Results indicate 6 

that o-xylene (29-50%) and benzene (13-33%) were found to be the most abundant species of total 7 

BTEX at the site. Benzene was within South African occupational limits, but above international 8 

occupational exposure limits. On the other hand, occupational concentrations of toluene, ethyl-9 

benzene and xylenes were within national and international occupational limits throughout the 10 

monitoring period, based on 8-hour workday weighted averages. Ethyl-benzene and p-xylene 11 

concentrations, during winter, correspond to activity at the site, and thus, idling of buses during 12 

refuelling may elevate results. Overall, occupational air quality at the refueling bay is a matter of 13 

health concern, especially with regards to benzene exposure, and future reduction strategies are 14 

crucial. Discrepancies between national and international limit values merit further investigation to 15 

determine whether South African guidelines for benzene are sufficiently precautionary. 16 

Key words: BTEX; Occupational exposure; Diesel; Occupational exposure limits; Buses 17 

Highlight: Occupational concentrations of benzene is considered significantly high (compared to 18 

international occupational exposure limits) at a diesel refueling bay in Johannesburg, South Africa, 19 

implying that employees could potentially face adverse health effects.  20 

 21 

1. Introduction 22 

With a global increase in urbanization and number of vehicles and road usage, there has been a concomitant 23 

deterioration of air quality in urban areas throughout the world. Thus, in recent years many studies have involved 24 

air quality monitoring in cities, pollution hotspot areas, and known hazard risk regions (Brunekreef and Holgate 25 

2002, Fenger 1999, 2009). Air quality effects are particularly significant in developing countries such as South 26 

Africa, where rapid urbanization and lack of coherent and integrated transport network planning and management 27 

have led to high pollutant emissions (Edokpolo et al 2014). Of particular concern from diesel emissions and 28 

diesel exhaust fumes are the volatile organic compounds (VOCs). A group of aromatic VOCs, namely BTEX 29 

(benzene, toluene, ethyl-benzene and xylenes), includes pollutants known to be harmful to human health, with 30 

potential carcinogenic effects (Romieu et al 1999, Keretetse et al 2008, Tunsaringkarn et al 2012, Edokpolo et al 31 

2014). This group of VOCs falls within the classification of the World Health Organization’s (WHO) hazardous 32 

air pollutants (HAPs) (Table 1). For this reason, monitoring BTEX in the lower atmosphere, specifically in 33 
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occupational settings where exposure may be greater than in urban areas generally, their effects on both human 1 

and ecosystem health has become a priority in recent years (Hoque et al 2008, Murena 2007). 2 

Table 1: Health effects associated with chronic inhalation exposure to BTEX concentrations (Romieu et al 1999, Keretetse et al 3 

2008, Tunsaringkarn et al 2012, World Health Organisation 2012, Moolla et al 2013, Edokpolo et al 2014) 4 

Compound Health effects from inhalation exposure  

Benzene  

Neurological (central nervous system (CNS) depression: drowsiness, tremors)  

Respiratory and eye irritant  

Haematological (blood disorders- aplastic anaemia)  

Reproductive/developmental (animals: low birth weight, bone marrow damage)  

Cancer (leukaemia)  

Ethyl-benzene  

Respiratory (throat irritation, chest constriction)  

Kidney, liver, eye effects  

Neurological (CNS toxicity)  

Toluene  

 Neurological (CNS depression: drowsiness, tremors)  

 Kidney, liver impairment  

 Reproductive/developmental effects  

Xylenes 

 Eye, nose, skin, throat irritation  

 Neurological (dizziness, memory loss, headache)  

 Gastrointestinal (nausea, vomiting)  

  5 

There are many potential sources of BTEX in air, for example from cigarette smoke, during combustion of 6 

gasoline and diesel in motor engines, and petrochemical industries. Research has been conducted on the spatial 7 

and temporal variations of VOCs and BTEX in the atmosphere of urban areas, in both developed and developing 8 

countries, and shown that BTEX is associated with specific activities such as petrochemical industries, oil 9 

refineries or vehicular emissions (Cetin et al 2003, Lin et al 2004, Lee et al 2002). Many studies have focused 10 

specifically on petrol refueling stations, gasoline exhaust emissions and health risks related to petrol station 11 

workers (for example Das et al 1991, Edokpolo et al 2014, Hein et al 1989, Keretetse et al 2008, Oesch et al 12 

1995, Onunkwor et al 2004, Rekhadevi et al 2010, Singh et al 2013, Udonwa et al 2009). Esteve-Turrillas et al 13 

(2007) assessed the air quality of BTEX inside vehicles when paused at gasoline filling stations. It was found that 14 

risk of exposure to carcinogenic compounds was a calculable risk to human health due to poor insulation or 15 

ventilation of vehicle interiors during refueling. In the same manner, it was noted that non-occupationally exposed 16 

commuters living and driving in high vehicular traffic areas were also prone to health side effects (such as 17 

increased carcinogenic risk). According to Lemire et al (2004), there were elevated levels of gasoline components 18 

in the blood tests of this sample population in Mexico City. This finding was further reiterated in studies 19 

conducted in Iran, by Azari et al (2011) and Zoleikha et al (2015) where relatively high levels of benzene were 20 

found amongst occupationally exposed petrol pump workers.  21 
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Benzene levels in gasoline fuel are regulated to 1% content in Australia, Europe and the USA (Caprino and Togna 1 

1998). However, these levels are generally regulated in petrol, while diesel is not a priority. Nelson et al (2008) 2 

stress that additives to fuels and fuel composition can affect BTEX concentrations and emissions. The differences 3 

in practices between developed and developing countries are also amplified, as pump attendants are not as 4 

common in developed as they are in developing countries, thus making the issue of occupational health and safety 5 

in particular, a developing world issue. As has been noted by Udonwa et al (2009), there may be an enhanced 6 

level of exposure where pump attendants dispense fuel into the vehicles without using protective devices. 7 

However, there is limited research that examines the effects of diesel exhausts and emissions on air quality (e.g. 8 

Carvalho-Oliveira 2005, Fujita et al 2011, Heeb et al 2000, Tang et al 2007, Tsai et al 2012) and there are very 9 

few studies considering diesel refueling stations and their possible health impacts. In a study conducted on rats 10 

exposed to diesel exhaust inhaled chronically at a high concentrations, pulmonary carcinogenicity was noted 11 

(Mauderly et al 1987). However, none of these studies have focused on BTEX emissions specifically, despite the 12 

high toxicity levels of these HAPs. As has been acknowledged by the US Environmental Protection Agency (US 13 

EPA), there is growing recognition that diesel fumes and diesel exhaust emissions can have harmful effects on 14 

both air quality and human health (Tang et al 2007). 15 

Additionally, very little research has been conducted in the Southern hemisphere, and specifically Southern 16 

Africa, where vehicular traffic; regulations and compliance; and planning and management may differ from 17 

developed countries.  18 

In South Africa, no legislation outlining acceptable levels of VOCs in ambient air exists, making monitoring and 19 

emission reduction plans harder to enact (Hoque et al 2008). Benzene is the only pollutant that is regularly 20 

monitored and is limited in ambient air under legislation by the South African government, despite TEX (toluene, 21 

ethyl-benzene and xylenes) also proving harmful to health. This situation however is not unique to South Africa, 22 

as there are no standards for TEX in many developed countries either. Nevertheless, there has been a push in 23 

South Africa to include limits and guideline values for TEX as they are considered ozone precursor substances 24 

(SANS 2011). Moreover, as VOC levels are on the rise (Lee et al 2002), the South African government intends to 25 

implement a further reduction of benzene limits from 3 ppb to 1.5 ppb by 2016, with no exceedances (above 26 

limits) to be allowed (SANS 2011). The primary objective of this study is to evaluate emission characteristics at a 27 

diesel bus refueling station in Johannesburg, South Africa. The research includes the following tasks: (a) to 28 

collect air concentration data from diesel refueling and exhaust emissions of benzene, toluene, ethyl-benzene, 29 

ortho-xylene (o-xylene), and para-xylene (p-xylene); (b) to evaluate whether these chemical concentrations are 30 

above legal standards, both national and international; and (c) to investigate the variation of BTEX values during 31 

a typical day on site.  32 

 33 

 34 
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2. Site Description 1 

 2 

The monitoring campaign was carried out at a diesel-refueling bay located in Johannesburg, South Africa (Figure 3 

1). The bus-refueling depot is a government-owned entity that services the public transport sector of the northern 4 

suburbs in and around Johannesburg. The refueling bay is under cover with in- and out-flow of fresh air, through 5 

four garage doors (which remain open throughout the day and night), 3 m high on either end of the 30 m bay. 6 

 7 

There are four refueling pumps, centrally located, where two buses can be refueled simultaneously (Figure 2). 8 

The hours of operation are Monday-Friday, 07:30-15:30, and the depot refuels on average 85 buses daily (with on 9 

average 6,700 liters pumped per day) during the work hours; with 500 ppm Sulphur diesel. Four full time 10 

employees at the depot conduct refueling of the buses on a daily basis. 11 

 12 

At the study site, pump attendants wear protective gloves when refueling the buses; however, in South Africa no 13 

rubber hood is used over the delivery pump, as is the practice in the USA to reduce emissions (Udonwa et al 14 

2009). Additionally, there is very little ventilation, despite bay doors allowing a small amount of airflow to be 15 

present, as all four extractor fans located near the ceiling of the bay were non-operational throughout the 16 

monitoring period, thus exhaust fumes are not removed rapidly, and may significantly contribute to recorded 17 

emissions. Furthermore, 36% of buses at the depot failed the smoke tests conducted by the company. The smoke 18 

test indicates whether exhaust fumes released by the bus are within the acceptable range (as determined by the 19 

bus manufacturers), as well as if burning of the fuel is occurring correctly. This implies that exhaust fumes within 20 

the refueling bay may be further intensified. Spills are also not well managed on site, which further deteriorates 21 

the air quality.  22 

This situation however, is not unique to this site. Government-owned public bus companies, throughout South 23 

Africa, experience similar conditions. There are 12 urban bus diesel-refuelling stations across the country, all 24 

under-cover, and have little to no ventilation and/or filtration systems in place. Additionally, 6 of these refuelling 25 

bays service outdated buses that do not pass the smoke tests, but are nevertheless still in operation, due to lack of 26 

funds. Moreover, all the government-owned bus depots in the country have full time employed fuel pump 27 

attendants. Thus, results and findings from this study can be generalized, and recommendations are applicable in 28 

all bus diesel-refuelling stations, and other developing countries, especially in Africa.  29 

 30 



6 
 

 1 

Figure 1: Map identifying the diesel bus refuelling station situated in Johannesburg CBD, which is in the Gauteng province of South 2 
Africa (scale and co-ordinates representative of the Johannesburg region). 3 

 4 
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 1 

 2 

Figure 2: Diagrammatic representation of the fuel bay on site. The inlet feed for the GC955 instrument (indicated by a red *) was 3 

located between the diesel pumps at a height of 1.5 m. Arrows indicate direction of traffic in refuelling bay 4 

 5 

3. Materials and methods 6 

Data collection was carried out at an urban diesel-refuelling bay under normal operation conditions throughout 7 

the week for a three-month period from June-August 2013 (i.e. winter season). The study period was chosen 8 

within the colder, dry season in Johannesburg, when air pollution is commonly higher in the city, and BTEX 9 

concentrations are known to be at a maximum (Azari et al 2011, Gallego et al 2008, Hoque et al 2008, Schneider 10 

et al 2001, Zalel et al 2008), which may lead to biases in the data set, i.e. over-estimation compared with annual 11 

mean exposure levels. In addition, the short period of monitoring may increase risk of errors. However, a similar 12 

study conducted by Truc and Oanh (2007) followed a similar methodology, with the aim to determine exposure 13 

levels. Continuous monitoring was carried out for 24 hours, 7 days a week, during both work and non-work hours 14 

(13,300 data points in total); to achieve a comprehensive analysis of daily BTEX concentrations, irrespective of 15 

activity or inactivity within the fuel bay. The original study design intended to carry out a comparative summer 16 

campaign, but high temperatures in the depot caused major instrumental problems. However, data were 17 

successfully collected over a 72 hour period in summer, providing some comparative results for another season. 18 

As outlined by Murena (2007), sites that are deemed to have high concentrations of air pollutants can have major 19 

implications on human health and, thus, the use of automated systems can be advantageous as continuous data can 20 

be collected. For this reason, ambient air was sampled using the Syntech Spectras gas chromatography 955 21 

(GC955), with a photo ionization detector (PID). Additionally, a PID is particularly useful, as it is suited for 22 
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continuous monitoring and specifically sensitive for aromatic hydrocarbons, even in very low concentrations. The 1 

sampling flow was set to sample at 15 minute intervals and sampling height of ambient BTEX was 1.5 m at the 2 

center of the fuel bay, with 8 mm tubing and Swagelok fittings used for connecting tubing. Following the 3 

methodology of Gallego et al (2008) and Shin and Kwon (2000), helium was used as the carrier gas in the 4 

GC955, set at a pressure of 350 kPa. The instrument has been tested for accordance to the EMC directive 5 

89/336/EMC, test specification EN 50081-1:1991 and EN 50082-2: 1994. The manufacturer stated error of 6 

instrumentation is <2%. A gas mixture (1 ppm of each BTEX) in a gas cylinder (provided by AirLiquide) was 7 

adopted to identify elution time and chromatographic peaks. Five aromatic hydrocarbons were continuously 8 

monitored (viz. benzene, toluene, ethyl-benzene, and two isomeric xylenes; ortho- and para-xylene). The 9 

monitoring instruments were calibrated before use (calibration was done in the range of 0 to 10 ppb). Quality 10 

control checks were conducted during and after the monitoring campaign and a correction factor of 2 ppb and 4 11 

ppb for benzene and toluene were used, respectively to counter systematic under-sampling of the instrument. 12 

Additionally, 97 data points (<1% of data set) were discarded, as they were distinct outliers.   13 

 14 

4. Results 15 

The concentrations measured for the winter season of 2013 are shown in Figures 3-4. According to the WHO 16 

(World Health Organisation 2012), benzene should not be present in air, as it has been classified as a Group A 17 

carcinogen (i.e. known human carcinogen), thus the guideline is set to 0 ppb. Eight hour time-weighted averages 18 

(TWA) of TEX concentrations are within South African and US occupational exposure limits (OELs) (Table 2). 19 

However, benzene 8-hour TWA concentrations (Figure 3) are above both the United States’ National Institute for 20 

Occupational Safety and Health (NIOSH) limit and WHO occupational exposure guidelines throughout the 21 

monitoring period. This is significant as concentrations are based on operational hours (07:30-15:30), and are 20 22 

times above occupational limits.  23 

Table 2: Eight hour-time weighted Occupational Exposure Limits (OELs) of NIOSH and South African Occupational Health and Safety 24 
(SAOHS) limits, in ppb. 8 hour TWA based on occupational hours (07:30-15:30) (n=4,440) (No OELs available for ethyl-benzene). 25 

  
Maximum 

concentration 

Minimum 

concentration 

Mean 

concentration 
S.D. Occupational Exposure Limits 

          SAOHS  NIOSH 

Benzene 350,00 290,00 313,16 15,18 500 101 

Toluene 450,05 38,05 188,43 110,85 46432 99498 

Ethyl-benzene 639,41 0 63,72 162,56  n/d n/d 

Xylenes 1375,70 456,63 850,97 286,63 100186 100186 

 26 



9 
 

 1 

Figure 3: Benzene 8hour time weighted average (TWA) concentrations for the winter monitoring period of 2013, indicating that 2 
concentrations during occupational hours (07:30-15:30) were significantly higher than the World Health Organization’s (WHO) 3 
guidelines and National Institute for Occupational Safety and Health (NIOSH) limits throughout the monitoring period, but are 4 

within South African Occupational Health and Safety (SAOHS) national standards. 5 

 6 

As can be noted in Figure 4, there is a distinct pattern with regards to the BTEX concentrations in both summer 7 

and winter. However, due to the fact that the instrument malfunctioned in hotter temperatures (thus a lack of data 8 

capturing during 09:00-12:00), some findings are inconclusive. Additionally, the summer monitoring campaign 9 

only consisted of 72 hours of data (1,080 data points), and thus may not be fully indicative of the pattern 10 

throughout the season. Nevertheless, BTEXtotal (where BTEXtotal is a cumulative amount of individual BTEX 11 

species), is significantly higher in the winter season, even in the southern hemisphere, where synoptic climate 12 

conditions may differ.  13 

 14 
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 1 

Figure 4: A typical day, indicating levels of BTEX species, in winter (13 July 2013) and summer (02 January 2014) conditions. 2 

 3 

5. Discussion 4 

Benzene is naturally ubiquitous in the atmosphere, however, high levels of exposure to benzene is considered a 5 

risk to the health of workers. Thus, at this site, a matter of concern is that benzene concentrations are above both 6 

the NIOSH and WHO occupational exposure guidelines (Figure 3) which can lead to adverse health effects of 7 

employees at the site, as many studies have argued that long term inhalation of benzene increases carcinogenic or 8 

mutagenic incidences (Perry and Gee 1995). However, results are still within South African Occupational Health 9 

and Safety (SAOHS) standards. It is also noteworthy to mention the significant difference in international and 10 

national OELs reflected in Table 2, of benzene, toluene and xylenes. International limits for benzene are 11 

significantly lower than South African national standards, while the reverse is true for toluene limits. This in itself 12 

is a point of concern as benzene is a carcinogen, even at low level exposure.  13 

There are some interesting features of the current dataset which are worth emphasising. In general, it is expected 14 

that emissions should increase throughout the day as refuelling continues. In winter, the pattern noted at this site 15 
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relates to the refuelling pattern of the buses at the site. Ethyl-benzene and p-xylene concentrations occurred only 1 

from 08:00; 30 minutes after refuelling begins at the site, and occurs mainly during refuelling times (i.e. opening 2 

times). Similar trends were noted by Zalel et al (2008), where specific concentrations increase during refuelling.  3 

Changes in levels of BTEX can be attributed to traffic movement, with buses frequently idling during refueling, 4 

as well as vapours from refueling itself. In Antwerp, Belgium, where road reconstruction projects took place to 5 

reduce air pollution by reducing the number of lanes for vehicular traffic on a high traffic route, it was noted that 6 

air quality deteriorated (Buczynska et al 2009). This deterioration was attributed to intensified traffic and ‘stand-7 

still traffic’, thus exhaust emissions increased, placing pressure on air quality limits. In other studies, it was found 8 

that there were high concentrations of BTEX inside air environments of passenger buses in Changsha, China, and 9 

that toluene and xylene were also above local indoor air quality standards (Chen et al 2011). However, exposure 10 

time was shorter, as commuters exited the buses on reaching their destination. Elsewhere in China, Yu and Li 11 

(2014) found that many different factors affected air quality near bus stops; including distance to road-side, height 12 

of curb, and traffic intensity; where diesel fueled public buses were located; however, the focus of this study was 13 

not on BTEX emissions. 14 

Despite benzene comprising at most one third of the BTEX species (o-xylene was found to be the most abundant 15 

species varying from 29-50% of BTEXtotal at the site, while benzene comprised 13-33%), with similar patterns 16 

observed in a study by Hoque et al (2008), benzene is a matter of concern due its worldwide distribution and 17 

known carcinogenic effects, even in lower concentrations (Duarte-Davidson et al 2001, World Health 18 

Organisation 2012). It has a relatively long life span, low reactivity and is stable in the atmosphere. However, 19 

during summer months, where benzene concentrations are observed to be lower than in winter, benzene 20 

undergoes chemical degradation (Gallego et al 2008, Hoque et al 2008, Schneider et al 2001, Zalel et al 2008). 21 

Benzene also evaporates rapidly at room temperature, is highly flammable and can be inhaled, or ingested 22 

through the skin easily on contact. The fact that benzene levels are significantly high at the site should indicate 23 

the need for continuous monitoring and regulatory systems in place. 24 

On the other hand, toluene and xylenes are shown to evaporate in hotter climates, decreasing ground level 25 

concentrations (GLCs) (Hoque et al 2008). Whilst it is understood that toluene and xylenes have a lower toxicity 26 

level than that of benzene, when exposed to photochemical reactions in the atmosphere they too can react to form 27 

new compounds which can result in adverse health effects (Gallego et al 2008).  28 

 29 

6. Conclusions and future work 30 

This paper demonstrates that of the five aromatic hydrocarbons analyzed, only benzene exceeded international 31 

occupational limits, but by as much as a factor of 20, throughout the winter monitoring period. Such exceedances 32 
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of allowed exposure limits in the workplace imply many potential long-term health effects potentially include 1 

cancers, neurological, respiratory, hematological and/or reproductive disorders, for employees at the site.  2 

Furthermore, at retail gasoline stations in South Africa, where attendants refuel motor vehicles, trucks and buses 3 

with both petrol and diesel on a daily basis, no protective gear is worn by attendants, nor are the stations “self-4 

service” as is the case in many developed countries. This has implications for retail stations, where no studies 5 

have examined the effects on diesel pump attendants, despite being exposed to these vapours and fumes on a daily 6 

basis. Thus, research on this topic is not only important, but wider studies are imperative to analyze potential 7 

environmental exposure risk directly to employees.  8 

At sites such as these where occupational limits are highly exceeded, it is imperative for ventilation and filtration 9 

systems to be put into place and maintained. Other factors which exacerbate air quality problems should also be 10 

urgently addressed. BTEX concentrations may be elevated by fuel spillages or idling of buses, releasing exhaust 11 

fumes, during refueling. Protocols for dealing with accidental spillages and unnecessary exposure to emissions 12 

should be implemented in such situations as a matter of priority. 13 

 14 
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Abstract: Diesel fuel is known to emit pollutants that have a negative impact on 

environmental and human health. In developing countries like South Africa, attendants are 

employed to pump fuel for customers at service stations. Attendants refuel vehicles with 

various octane unleaded fuel, lead-replacement petrol and diesel fuel, on a daily basis. 

Attendants are at risk to adverse health effects associated with the inhalation of volatile organic 

compounds released from these fuels. The pollutants released include benzene, toluene, 

ethylbenzene and xylenes (BTEX), which are significant due to their high level of toxicity. In 

this study, a risk assessment of BTEX was conducted at a diesel service station for public 

buses. Using Radiello passive samplers, it was found that benzene concentrations were above 

recommended international standards. Due to poor ventilation and high exposure duration, the 

average benzene concentration over the sampling campaign exceeded the US Environmental 

Protection Agency’s chronic inhalation exposure reference concentration. Lifetime cancer risk 

estimation showed that on average there is a 3.78 × 10−4 cancer risk, corresponding to an 

average chronic daily intake of 1.38 × 10−3 mg/kg/day of benzene exposure. Additionally, there 

were incidences where individuals were at potential hazard risk of benzene and toluene that 

may pose non-carcinogenic effects to employees. 

Keywords: diesel; BTEX; health risk assessment; lifetime cancer risk; hazard quotient 
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1. Introduction 

Inhalation of pollutants such as volatile organic compounds (VOCs) has been shown to have many 

side-effects on human health. A group referred to as BTEX (benzene, toluene, ethylbenzene and the 

three isomers of xylene) has been found to be potentially hazardous to environmental and human 

health [1]. Human exposure to BTEX, both through inhalation or ingestion, can have serious health 

impacts, such as neurological diseases, cancers, and teratogenic effects [2–4]. This is of major concern, 

as Chauhan et al. [2] state that 50% of BTEX inhaled by humans over a person’s lifespan is actually 

absorbed into the body. The World Health Organization (WHO) estimate that 4 in 1 million people are 

at risk of developing leukemia in their lifetime when exposed to 1 mg/m3 of benzene [5]. 

In South Africa, as is the case in many developing countries, people are still employed to refuel 

vehicles, trucks and buses at gas stations. In South Africa petrol pump attendants refuel vehicles with 

lead replacement petrol (LRP); 93-unleaded and 95-unleaded petrol; and 200, 50, or 10 ppm sulphur 

diesel, on a daily basis [6]. As such, attendants are particularly at risk to adverse health effects 

associated with inhalation of hazardous air pollutants (HAPs), such as BTEX which are released from 

these fuels. These attendants are thus exposed to both petrol and diesel fumes daily. However, despite 

numerous studies investigating the effects of gasoline inhalation on petrol pump workers and auto 

mechanics, there are no health risk assessment (HRA) studies focusing on diesel pump workers, 

despite most retail garages in developing countries providing both petrol and diesel services (Table 1). 

The purpose of this paper is to perform a site-specific health risk analysis to investigate the occupational 

exposure to BTEX, and inhalation risk, of workers at a diesel refueling station in South Africa. As many 

auto mechanics also face the risk of adverse health effects when exposed to BTEX, the health analysis 

will focus on both diesel pump attendants, as well as auto mechanics at a bus depot. 

Table 1. A review of health risk assessments (HRAs), of various volatile organic 

compounds (VOC), specifically benzene, toluene, ethyl-benzene and xylenes (BTEX) 

studies, and conducted at/near petrol (gasoline) filling stations, in chronological date order.  

(BTX—Benzene, toluene and xylenes). 

Location Focus Area Sampling Method Ref. 

Rangoon, Burma Occupational benzene exposure in petrol filling stations Urine samples [7] 

Kanpur/Lucknow, India Environmental impact on health of workers at retail petrol pumps Rotheroe and Mitchell personal samplers [8] 

Mexico City Environmental exposure to VOCs among workers  
Passive organic vapour badges and blood 

samples 
[9] 

Prunay, France BTX concentrations near a stage II implemented petrol station 
Gas chromatography + flame  

ionisation detector 
[10] 

-- 
Occupational exposure to benzene in gasoline filling  

station attendants 
Radiello passive samplers and urine samples [11] 

Valencia, Spain Air quality of BTEX inside vehicles and at gasoline filing stations semipermeable membrane devices [3] 

Ioannina, Greece 
Ambient benzene concentrations in the vicinity of petrol stations and 

associated health risk 
Passive and active samplers [12] 
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Table 1. Cont. 

Location Focus Area Sampling Method Ref. 

Ioannina, Greece 
Assessment and prediction of exposure to benzene of filling  

station employees 
Active and passive samplers [13] 

Chonburi, Thailand HRA of VOCs in gas service station workers Urine samples and air samplers [14] 

Kolkata, India VOCs at petrol pumps: Exposure of workers and HRA Personal air samplers [15] 

Calaba, Nigeria 
Exposure of petrol station attendants and auto mechanics to  

petrol fumes 

Structured questionnaires, venous blood 

samples analysis 
[6] 

Hyderabad, India 
Geno-toxicity of filling station attendants exposed to  

petroleum hydrocarbons 
Blood samples and Comet Assay [16] 

Murcia, Spain 
Assessing the impact of petrol stations on their  

immediate surroundings 
Radiello passive samplers [17] 

Montreal, Canada BTEX exposures in automobile mechanics and health risks 
Active chemical ionisation mass 

spectrometry 
[18] 

Bangkok, Thailand Occupational exposure of gasoline station workers to BTEX compounds Active samplers [19] 

India Occupational health exposure at petroleum refinery Organic vapour samplers [20] 

Bangkok, Thailand 
HRA of petrol station workers and assessing exposure of  

inhaling BTEX 
Personal air samplers [21] 

Multiple areas HRA of BTX in gasoline service stations BTX exposure data from scientific literature [22] 

Australia Leukaemia and exposure to benzene in petroleum workers Diagnostic information [23] 

Johannesburg, South Africa Air quality of BTEX at a diesel filing station 
Gas chromatography + photo  

ionisation detector 
[24] 

As a case study, this work is applied to a bus depot where there is significant movement of diesel 

buses. This analysis can thus provide useful information about potential health risks associated with 

BTEX vapours released from diesel refueling pumps and exhaust emissions. 

2. Experimental Section 

2.1. Study Site 

The monitoring campaign was carried out at a bus depot located in central Johannesburg, South 

Africa. A government owned entity, which supplies the public transportation routes in central and 

northern Johannesburg, manages the depot. The bus depot accommodates 400 buses, where refueling, 

repairs and general maintenance of the buses are handled. The operating hours of the refueling bay and 

adjacent workshop is from 07:30 to 15:30, Monday–Friday. 

The buses are fueled with standard 500 ppm diesel, in the refueling bay on site. The refueling bay 

consists of four diesel pumps, with four full time employed personnel. The refueling bay is 

undercover, with large 3 m high doors on either end of the bay. Bus engines continue running while 

refueling, thus exhaust fumes are present in the bay as well as vapors from refueling. In close 

proximity to the refueling bay (Figure 1a) is a large enclosed workshop where maintenance and repairs 

take place (Figure 1b). There is very little ventilation in the workshop, and all filters and extraction 

fans on site are out of order in both workspaces. 
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Figure 1. Radiello passive sampler positions in the (a) fuel bay and (b) workshop.  

Passive samplers were positioned equidistant as possible, at 2 m heights. (Overhead roofs 

and front walls have been made transparent for viewing purposes. Offices are displayed as 

white boxes). The fuel bay is adjacent to the workshop at the bus depot. 

2.2. Study Sample 

The occupationally exposed group consisted of fuel bay attendants (FBA) from the refueling bay  

(n = 4) and diesel auto mechanics (AM) from the bus workshop (n = 16). Only full time employees 

were considered for this study. The demographic information provided by the bus company is 

illustrated in Table 2. All employees worked a standard 8 hours per day, 5 days a week. 

The majority of the employees at the site were male (only one auto-mechanic at the workshop was 

female). Overall, the majority of the employees did not smoke (75%). As can be seen in Table 2 there 

is a very wide range of employee ages (24 to 63 years) and exposure duration (from 1 to 41 years). 

Table 2. Demographic data of participants in the fuel bay attendants (FBA) and  

auto-mechanics (AM). Data supplied by bus operating company. 

Participant ID Workplace Gender Smoker Age Employment Duration 

    (years) (years) 

FBA1 Fuel Bay Male No 27 5 
FBA2 Fuel Bay Male No 45 10 
FBA3 Fuel Bay Male No 59 33 
FBA4 Fuel Bay Male Yes 56 37 
AM1 Workshop Male Yes 27 1 
AM2 Workshop Male Yes 35 1 
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Table 2. Cont. 

Participant ID Workplace Gender Smoker Age Employment Duration 

    (years) (years) 

AM3 Workshop Male No 25 2 
AM4 Workshop Male No 26 2 
AM5 Workshop Male No 24 2 
AM6 Workshop Male No 25 3 
AM7 Workshop Male No 29 4 
AM8 Workshop Male No 36 5 
AM9 Workshop * Female No 47 8 

AM10 Workshop * Male Yes 40 10 
AM11 Workshop Male No 41 10 
AM12 Workshop Male Yes 51 11 
AM13 Workshop Male No 40 16 
AM14 Workshop Male No 38 16 
AM15 Workshop Male No 49 28 
AM16 Workshop * Male No 63 41 

* Employee based within an enclosed office inside the workshop. 

2.3. Passive Sampling Strategy 

Sampling and monitoring occurred during the winter, as many studies using both active and passive 

sampling strategies have established that BTEX concentrations are elevated in winter as compared to 

other seasons [4,25–27]. Johannesburg, located on the interior plateau of the country, experiences cold, 

dry winters, with temperatures ranging from −3 to 19 °C. A Luft Weather Sensor, with built-in 

temperature, humidity, wind speed and wind direction sensors, was deployed within the refueling bay, as 

there are garage doors that can allow for in/out flow of fresh air. 

Radiello passive air samplers were arranged in both the refueling bay and workshop (Figure 1), 

where emissions were considered to be at their maximum. These samplers are considered reliable in 

both indoor and outdoor environments, and following the European standard (EN 13528-2), the 

Radiello passive samplers were used to analyze the risk exposure of BTEX in this situation [28]. 

Concentrations as low as 2 μg·m−3 may be measured with the samplers, with an error not exceeding 

0.1 μg·m−3. The samplers were deployed for 14 days as prescribed by the manufacturer. The BTEX 

passive samplers consist of an absorbing cartridge, which is placed in a micro-porous polyethylene 

membrane surface (50 mm long micro-porous cylinder; 16 mm external diameter; 300 mg of 40–60 

mesh Carborograph 4) [28,29]. Each cartridge was secured to a triangular polycarbonate supporting plate. 

The sampling plates and cartridges were not placed within protective chambers, as wind speeds were low 

enough to avoid error [30] (average wind speeds were 2 m·s−1 in the refueling bay and workshop, as 

they are undercover sites). As outlined by Gallego et al. [25], each sample was labelled, and initial and 

final sampling times were recorded. As soon as the sampling process was over, tubes were returned to 

their protective containers and sent to a laboratory for analysis (ChemTech Labs, Johannesburg, South 

Africa). Tubes containing the samples were stored in a dark, cool box. As advised by the laboratory, 

leaded pencils were avoided as to preclude any contamination of the samples. 
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2.4. Risk Characterization 

As has been shown in many studies, inhalation risk analysis is vital in order to determine the 

potential exposure of employees [15,19,21,31]. Both cancer risk and hazard risk calculations 

(associated with the inhalation of air pollutants) were done for employees to evaluate the potential 

effect of BTEX on human health. Individual calculated cancer risk and hazard risk values were 

compared with the United States Environmental Protection Agency (US EPA) acceptable standards. 

To calculate cancer risk (CR) Equation (1) was applied, while Equation (2) was used to evaluate the 

non-carcinogenic hazard quotient (HQ): 

Cancer Risk (CR) = Lifetime Average Daily Dose (LADD) × Slope Factor (1)

Hazard Quotient (HQ) = Lifetime Average Daily Dose (LADD)/reference dose (2)

Inhalation slope factor (SF) [benzene 0,0273 (mg/kg/day)−1] and reference dose (RfD) standard 

values were used [benzene 0,00855 mg·kg−1·day−1, toluene 1.43 mg·kg−1·day−1 and xylenes  

0,029 mg·kg−1·day−1] [22,31]. 

To calculate the Lifetime Average Daily Dose (LADD) of employees, Equation (3) was utilised: 

LADD = (C.CF.IR.EF.ED)/(BW.AT) (3)

where C is the contaminant concentration (average concentrations used from passive samplers) 

(μg/m3); CF is the conversion factor (1 mg/1000 μg); IR is the inhalation rate (US EPA standard)  

(20 m3/day); EF is the exposure frequency (days/year); ED is the exposure duration (years); BW is 

body weight (US EPA standard) (70 kg); and AT is the averaging time (exposure averaged over life 

time/average life expectancy for male and female) (days). 

Demographic data were provided by the operations manager, in order to provide information 

pertaining to individual input variables such as age, sex, exposure frequency and exposure duration 

(Table 2). Where data were limited, US EPA standard values were used for body weight (70 kg for 

males and 60 kg for females) and inhalation rate (20 m3/day) [31]. In order to calculate the exposure 

frequency, standard values were used (all employees worked a standard five days, eight hours per day 

and received a minimum of 21 days leave per annum). More detailed evaluation of confounding 

factors, such as smoking habits and home conditions, was beyond the scope of this study. 

3. Results 

3.1. BTEX Monitoring 

BTEX concentrations from passive samplers are shown in Table 3. Averages of these concentrations 

have been used to analyse the potential risk of employees (i.e., contaminant concentration (Equation (3)). 

The average benzene ambient concentration results in the general fuel bay and workshop areas as well 

as the workshop offices (Table 3) pose a potential cancer risk for employees, as the World Health 

Organisation (WHO) states that benzene is a known human carcinogen and thus no safe level of 

exposure can be recommended. Regarding the workshop, there is a statistically insignificant difference 

between concentrations found within individual offices and the general area of the workshop; however, 

concentrations are slightly lower in the offices. One important factor to note is the higher levels of 
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toluene and xylenes in the general area of the workshop (maximum concentrations of 11.93 and  

13.12 ppb, respectively), as compared to all other workspaces at the study site. 

Table 3. Average BTEX concentrations (in ppb) from Radiello passive samplers in the 

refueling bay and workshop (average atmospheric temperature during the monitoring 

period was 14.3 °C; six samplers were placed in each workspace). 

Benzene Toluene Ethylbenzene Xylenes 

Fuel Bay General Area     

Geometric Mean 1.21 2.26 0.57 3.52 
Max 1.26 2.43 0.87 4.97 
Min 1.16 2.13 0.42 2.09 
s.d 0.15 0.57 1.06 2.72 

Workshop—General Area 

Geometric Mean 1.41 3.22 0.64 3.97 
Max 1.65 11.93 3.35 13.12 
Min 1.25 2.33 0.41 2.25 
s.d 0.66 9.82 7.30 10.03 

Workshop—Offices 

Geometric Mean 1.38 2.76 0.67 4.10 
Max 1.48 3.00 0.96 4.79 
Min 1.29 2.46 0.50 2.84 
s.d 0.32 1.08 1.05 4.40 

3.2. Health Risk Assessment 

According to the US EPA, a cancer risk above 1 × 10−6 is unfavourable, as it significantly increases 

carcinogenic potential in humans. All employees exceed the critical guideline value at this study site 

(Table 4). Of particular concern are participants FBA4 and AM16 (Table 4), as they have a potential 

risk of 1 in 1000 chance of developing cancer (1 × 10−3). These two employees have been employed 

the longest, at 37 and 41 years, respectively. 

Table 4. Lifetime potential cancer risk for individual participants from exposure to benzene. 

The potential risk of 1 × 10−5 = 1 in 100,000; 1 × 10−4 = 1 in 10,000; and 1 × 10−3 = 1 in 

1000 is based on the probability of developing cancer in a population sample. 

Participant ID Cancer Risk 

FBA1 1.37 × 10−4 
FBA2 2.74 × 10−4 
FBA3 9.03 × 10−4 
FBA4 1.01 × 10−3 
AM1 3.24 × 10−5 
AM2 3.24 × 10−5 
AM3 6.47 × 10−5 
AM4 6.47 × 10−5 
AM5 6.47 × 10−5 
AM6 9.71 × 10−5 
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Table 4. Cont. 

Participant ID Cancer Risk 

AM7 1.29 × 10−4 
AM8 1.62 × 10−4 
AM9 2.72 × 10−4 

AM10 3.07 × 10−4 
AM11 3.24 × 10−4 
AM12 3.56 × 10−4 
AM13 5.18 × 10−4 
AM14 5.18 × 10−4 
AM15 9.06 × 10−4 
AM16 1.39 × 10−3 

A hazard quotient (HQ) is a measure of potential overall hazard risk. A HQ of ≥1 is considered as an 

“adverse non-carcinogenic effect of concern”; while a value of <1 considered an “acceptable level” [19]. 

Thus, xylene concentrations at the site pose a low potential hazard risk, and are within acceptable 

standards (Table 5). However, benzene and toluene HQ are high, implying potential adverse health 

effects to employees. 

Table 5. The hazard quotient (HQ) for benzene, toluene and xylenes; indicating the potential 

hazard risk to employees on exposure to compounds. An HQ >1 is considered an adverse  

non-carcinogenic effect of concern. HQ levels ≥1 are in bold for individual participants. 

Participant ID 
Hazard Quotient 

Benzene Toluene Xylenes

FBA1 0.717 1.588 0.046 
FBA2 1.433 3.176 0.092 
FBA3 4.731 10.480 0.305 
FBA4 5.304 11.751 0.342 
AM1 0.170 0.452 0.012 
AM2 0.170 0.452 0.012 
AM3 0.339 0.904 0.024 
AM4 0.339 0.904 0.024 
AM5 0.339 0.904 0.024 
AM6 0.509 1.356 0.036 
AM7 0.678 1.808 0.048 
AM8 0.848 2.260 0.060 
AM9 1.424 3.559 0.115 

AM10 1.610 3.848 0.124 
AM11 1.695 4.521 0.120 
AM12 1.865 4.973 0.132 
AM13 2.712 7.233 0.192 
AM14 2.712 7.233 0.192 
AM15 4.746 12.659 0.335 
AM16 7.261 15.778 0.509 
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Employees that have worked for more than 30 years are especially at risk to adverse  

non-carcinogenic effects (i.e., FBA3-4 and AM15-16). This is further illustrated in Figure 2, where it 

is evident that with increasing work duration, there is a significant increase in both potential cancer and 

hazard risks. In addition to exposure duration playing a role in potential risk, placement within the 

workshop also plays a role. Thus, the range of risk is large at times, where inhalation exposures differ. 

 

Figure 2. Cancer risk and hazard quotient (combined benzene, toluene and xylene hazard 

quotients) as compared to number of years employed. 

4. Discussion 

4.1. BTEX Monitoring 

The average benzene concentrations from the passive samplers measured at this site (Table 3) are 

significantly higher than the average concentrations of benzene measured in the atmospheric air of 

many European cities (e.g., Belgium, Greece, Italy, etc.). However, concentrations from the European 

studies are annual average concentrations, where concentrations may be decreased in summer months.  

Higher concentrations of benzene are generally reported in winter months, as a lower average ambient 

temperature has been noted to contribute to the accumulation of pollutants in the atmosphere as there is 

reduced movement of air masses in the upper atmosphere [29]. This study was conducted during the 

winter season, and consequently, results may be elevated relative to annual means. Furthermore, the 

ambient measurements from the European cities may not be site specific, compared to refuelling bays 

and workshops where levels may be intensified, as they may be generalised ambient air quality 

monitoring campaigns. However, mean benzene concentration in the fuel bay and workshop general 

areas, as well as the workshop offices (1.20; 1.40; 1.37 ppb, respectively) exceeds the US EPA’s 

inhalation exposure reference concentration (1.2 ppb) and the chronic inhalation reference 

concentration (3 × 10−5 ppb), as well as the WHO air quality guideline (0 ppb). 
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When buses are re-fuelled, diesel vaporisation and diesel exhaust emissions from the idling buses 

contribute to the increased benzene concentrations. The fuel bay serves as a source of diesel fuel in this 

study, however average benzene emissions are higher in the workshop than the fuel bay. There is not 

sufficient evidence to explain this relationship, but it does reveal the importance of diesel exhaust 

emissions when considering human health in occupational environments, as ventilation and extraction 

mechanisms are not in place at the study site. It should be noted that the workshop is generally more 

active with idling buses being repaired by auto-mechanics throughout the day, with spray painting 

activities also occurring, which may increase BTEX concentrations. 

Although adjustments have been made to reduce the percentage volume of benzene in diesel fuel there 

is still a global trend of increased benzene emissions near fuel stations [19,24,29,32]. Edokpolo et al. [22] 

postulate that vaporisation inside fuel stations is the main sources of benzene in the atmosphere 

nearby. In a study conducted by Karakitsios et al. in Greece, similar studies indicated that even in 

developed countries where vapour recovery systems exist, filling station attendants are still exposed to 

high benzene concentrations (5–16 ppb) [13]. Benzene levels were also found to be directly 

proportional to volume of fuel dispensed [12,13]. 

4.2. Quantitative Risk Analysis 

Results from the lifetime cancer risk estimation on employees at the bus depot show that on average 

there is a 3.78 × 10−4 cancer risk, corresponding to an average chronic daily intake of  

1.38 × 10−3 mg·kg−1·day−1 of benzene exposure. This implies that, on average, there is 3-in-10,000 

chance that employees at the site may develop cancer in their lifetime, with some employees 

experiencing even higher probabilities (Table 4). The lifetime cancer risk thus exceeds the US EPA 

standard of 1 × 10−6 for all employees (Table 4). Health risk assessments conducted in a wide variety 

of environments reiterate this finding. Studies indicate that cancer risks of sample groups exposed to 

benzene concentrations generally exceed the US EPA cancer risk limit [32–37]. 

It was determined by Guo et al. [38] that inhalation exposure to benzene accounts for more than 

40% of cancer risks for various indoor environments. This finding was confirmed in other studies 

where benzene baseline blood levels were higher in groups exposed to constant BTEX emissions, 

compared to those that are not exposed. It was found that benzene levels in blood were directly 

proportional to benzene concentrations in the atmosphere, specifically in fuel stations [9,33].  

Romieu et al. [9] also determined that the blood baseline benzene levels of fuel attendants did not 

increase over the work shift as expected. This was attributed to chronic level of exposure, and not short 

term exposure, thus determining potential lifetime cancer risks is essential in high risk areas. 

At this study site, the majority of the employees did not smoke, however many studies have 

confirmed that long term exposure to volatile organic compounds from diesel exhaust emissions 

increased the cancer risk among smokers and non-smokers alike [39]. Weisel [40] found that benzene 

inhalation exposure in occupational settings may be increased in employees who smoke. However, 

Oesch et al. [41] suggested that smokers are sporadically less affected to BTEX inhalation as smoking 

has a detoxifying effect. Regrettably, this study could not take into account the exact effect of smoking 

when exposed to high levels of BTEX, and analyze the potential cancer and hazard risks. However, 

whether employees smoked or not, it was determined that long term exposure to BTEX increased 
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hazard in high-risk areas, such as fuel bays, repair centers and spray painting centers [41]. This was 

also noted in the current study, where higher concentrations of BTEX were noted in the workshop 

(where auto-mechanics operate) as compared to the fuel bay (Table 3). This is further illustrated in Table 

5 where a greater proportion of auto-mechanics face potential hazard risks, as compared to fuel bay 

attendants. Colman Lerner et al. [32] showed that when compared to many different occupational 

settings, auto-mechanics and car painting centers showed the highest levels of VOCs, including BTEX. 

In both the fuel bay and workshop, there is very little ventilation and no filtration/extraction fans. 

However, the fuel bay experiences some natural ventilation as air flow occurs through the open doors. 

This is not the case in the workshop where little to no natural ventilation occurs. This further increases 

CR and HQ estimates. In Montréal, Canada, BTEX exposure among auto mechanics and painters were 

within standards; levels were low and did not cause a hazard or cancer risk. However, when both 

mechanical and natural ventilation systems were used, BTEX concentrations were significantly 

reduced, as opposed to only natural ventilation system usage [18]. This indicates the urgent need for 

mechanical ventilation systems to be fixed at the study site and to be maintained properly for such 

working environments in general. 

In addition to lack of ventilation and extraction systems, exposure duration also plays a major role 

in potential lifetime risks, to both hazard and cancer. Results in this study illustrate that with 

continuous exposure, CR and HQ exponentially increase, especially for personnel employed for over 

30 years (Figure 2). Das et al. [8] argued that long term exposure led to increased hazard risk.  

The researchers found that health related signs were commonly observed in workers employed for 

more than 5 years at retail petrol pump stations. Workers suffered from neurological symptoms  

(such as headaches) and eye irritations at these sites. In another study, mean lifetime cancer risks for 

workers exposed to benzene and ethyl-benzene for 30 years in gas stations in Bangkok, Thailand, was 

estimated to be 1.75 × 10−4 and 9.55 × 10−7, respectively [19]. Exposure to these VOCs significantly 

led to fatigue. These findings are similar to results found in this study (Table 4), where exposure to 

benzene yielded a mean lifetime cancer risk of 2.19 × 10−4. 

In addition to smoking habits, ventilation systems and exposure duration, proximity to high levels 

of BTEX also affects potential risk estimations. Thus, findings revealed that employees placed within 

offices, further away from direct exhaust emissions, were exposed to slightly lower concentrations of 

BTEX, and thus experienced lower hazard quotients (Table 5). McKenzie et al. [42] determined that 

the distance from gas wells was significantly associated to the health risks associated with VOC 

exposure. It was shown that residents < 1km from the gas well were at higher risk of chronic and acute 

health risks [42]. This was also found by Karakitsios et al. [12] in Epirus, Greece, where cancer risk for 

the general population in close proximity to filling stations increased by 3% to 21%. Thus, many 

different factors contribute to increased inhalation exposure, and inevitably lead to increased potential 

health risk. 

5. Conclusions 

The health risk assessment conducted at this site indicates that employees are at risk to carcinogenic 

effects, and the CR for all employees exceeds the US EPA cancer limits. BTEX concentrations are 

higher than in other comparative studies. Lack of both mechanical and natural ventilation systems, 
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especially in the workshop, exacerbates the exposure of auto-mechanics and fuel bay attendants. 

However, despite these findings, confounding factors; such as smoking history, personal medication 

usage and baseline health status; were not accounted for in this study, and this may skew risk 

estimations. Future research design should avoid, and/or take into account these confounding factors, 

as they may affect CR and HR risk estimations. 

Overall however, results indicate that ambient concentrations and health risk estimates are generally 

above international guidelines at the site, and are a matter of concern. This study demonstrates that 

health risk assessments in conjunction with medical studies (e.g., Keretetse et al. [33]) are highly 

necessary in South Africa and elsewhere, especially in the developing world, to serve as a foundation 

to amend national exposure limits which will protect employees in high risk jobs. 
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5.1  Limitations of the study  

Case study research, whilst an appropriate research approach for this study, was not 

without limitations and problems. A major limitation of this study was a single-site 

analysis and thus lacks statistical generalisation to sites in different conditions. However, 

the goal was not one of generalisation, as much to establish whether an occupational 

risk may exist at diesel refuelling bays, as no such research exists, despite an 

announcement by WHO in 2012 indicating that diesel emissions are exceedingly harmful 

to health (World Health Organization, 2012).  The results of this study, however, are 

pertinent to discussions of occupational and risk exposure.  

The site, though specific and seemingly worst-case scenario, is not the only such diesel 

refuelling station in the country. As mentioned in Chapter 1, in South Africa, most bus 

refuelling stations operate under similar conditions, and experience similar problems 

(i.e. under cover bays, with little ventilation, lack of filtration systems, little spillage 

management, use high end 500 ppm Sulphur diesel, etc.). Thus, this research is 

pertinent as all these stations employ full-time fuel pump attendants and auto 

mechanics, making this research valuable. 

The case study used a single-site because many retail fuelling stations would not grant 

permission for the study to be conducted. These retail stations stated that they feared 

service stations would have high concentrations and, thus, they were at risk of being 

exposed as an occupational hazard. The government-owned bus depot did not have 

these fears, as research is developmental and constructive, and findings will be used to 

develop mitigation strategies. 

   

5.2  Synthesis and general conclusions 

Exposures to BTEX emissions, whether acute or chronic, are potentially harmful to 

human health. BTEX emissions, as has been noted by researchers, have been linked to 

numerous adverse health effects, including CNS disorders, respiratory diseases, organ 

failure, and gastrointestinal disorders (Badjagbo et al., 2010; Capasso et al., 2007; Chen 

et al., 2011; Demirel et al., 2014; Durmusoglu et al., 2010; Kitwattanavong et al., 2013; 

Tunsaringkarn et al., 2012; Zhang et al., 2012). Many studies have revealed that human 
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exposures to benzene, even in small concentrations; have increased carcinogenic risk, 

specifically of leukaemia (Duarte-Davidson et al., 2001; Hein et al., 1989; Huang et al., 

2013; Karakitsios et al., 2007a; Moolla et al., 2013; Pilidis et al., 2009; Rasmussen and 

Khalil, 1983; Rushton et al., 2014; Tondel et al., 1995; Wiwanitkit, 2008). Of major 

concern is that BTEX emissions worldwide have mainly been investigated in 

gasoline/petrol fuelling stations, on/near landfills or near chemical industries, but not at 

diesel stations.  

Worldwide, much research has been conducted on diesel particulates and diesel exhaust 

emissions and their resultant health effects (e.g. Crump, 2014; Kayak and Thompson, 

2007; Nightingale et al., 2000; Polosa et al., 2002, 2002; Sydbom et al., 2001; World 

Health Organization, 2012), however, none of these studies focused on occupational 

exposure to specifically BTEX concentrations associated with diesel, and health effects 

thereof. This is of major concern as BTEX compounds are naturally occurring compounds 

in diesel. The South African government recently stated that diesel, especially high-end 

diesel (such as 500 ppm Sulphur diesel), is a matter of concern, and PAHs should be 

monitored (SAPIA, 2008). However, very little on this has been done in the country.  

The research results indicate that international occupational exposure limits (OELs) for 

benzene were exceeded throughout the monitoring period (refer to Chapter 4). 

Analyses applying Radiello passive samplers (using an aggregate of 14 days exposure) 

further reiterated this finding, as benzene concentrations were also significantly high at 

both the refuelling bay and adjacent workshop. This is of concern as full time pump 

attendants and auto mechanics are employed at the depot.  

It is also important to note that BTEX concentrations follow the pattern of refueling 

activities on site (refer to Chapter 3). Benzene is present throughout the day and night, 

irrespective of refuelling activities, and/or number of buses refueled daily. However, 

ethyl-benzene and m- and p-xylene1 detectable concentrations occur only from 08:00; 

30 minutes after refuelling begins at the site, and occurs mainly during refuelling times 

(i.e. opening times).  

 

                                                           
1
 m- and p-xylene co-elute in the GC 955 
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Diurnal variations of benzene were also noted, with distinct peaks at sunrise and sunset   

(refer to Chapter 2). This could be attributed to photochemical reactions occurring at 

these times, increasing benzene concentrations (Rasmussen and Khalil, 1983; Shin and 

Kwon, 2000). This is noteworthy, as sunrise during winter in Johannesburg is very close 

to the opening time of the fuel bay, thus attendants are further exposed to high levels of 

photochemically-induced benzene at this time. Even though the site is under-cover, 

sunlight still enters the refuelling bay, and thus, photochemical reactions can still occur. 

Additionally this research further re-iterates findings that BTEXtotal (where BTEXtotal is a 

cumulative amount of individual BTEX species) is significantly higher in the winter 

season, even in the southern hemisphere, where synoptic climate conditions may differ 

to atmospheric conditions within the northern hemisphere(refer to Chapter 3).  

Furthermore, it was established that concentrations of BTEXtotal were positively 

correlated to the volume of diesel dispensed daily (refer to Chapter 2). This conclusion 

was likewise established in studies analysing the amount of petrol dispensed as 

compared to BTEX concentrations (e.g. Hein et al., 1989; Karakitsios et al., 2007a, 

2007b). It was also noted that on non-work days, BTEXtotal concentrations were 

significantly reduced. Ethyl-benzene and o-xylene also indicated a positive correlation 

with volume of fuel dispensed. It was also observed that there was a negative 

correlation between BTEXtotal and temperature. However, patterns in BTEXtotal cannot be 

extrapolated for individual compounds as the relative composition of BTEXtotal changes 

throughout the day (refer to Chapter 3). 

In South Africa, a requirement for vapour recovery systems on refuelling pumps is not 

legislated for, as is the case in many developed countries (Udonwa et al., 2009). Thus, 

pump attendants are exposed to vapours emitted during refuelling, as well exhaust 

emissions, increasing occupational risk. Figure 5.1 further illustrates the close proximity 

of attendants to exhaust fumes and vapours released from pumps, during refuelling in 

the bay. Attendants wear protective gloves only during the refueling process (Appendix 

i), but not while engaged in other activities in the fuel bay. During monitoring, it was 

noted that diesel spills were not cleaned up correctly (Appendix ii), or adequately, and 

thus a thin coating of diesel was always present on the floors and workspaces in the fuel 

bay.  
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Figure 5.1: Refuelling of buses by attendants: (a) Exhaust fumes can be seen faintly near the tyre 
well which adds to the vapours released from refuelling. (b) Close proximity to vapours during 
refuelling of buses. Protective gloves are worn during refuelling, but removed while engaged in 

other activities as can be seen in (a). 

Furthermore, due to the poor ventilation and high exposure duration, employees are 

potentially at risk to adverse health effects (refer to Chapter 4). The average inhalation 

rate of benzene over the sampling campaign exceeded the US Environmental Protection 

Agency’s chronic inhalation exposure reference concentration. Lifetime cancer risk 

estimation showed that on average there is a 3.78 x 10-4 cancer risk (US EPA 

recommends that cancer risks above 1 x 10-6 are of concern), corresponding to an 

average chronic daily intake of 1.38 x 10-3 mg/kg/day of benzene exposure. Additionally, 

there were incidences where individuals were at potential hazard risk, from benzene 

and toluene exposure, which may pose non-carcinogenic adverse health effects for 

pump attendants and auto-mechanics.  

These findings are reiterated in studies conducted in occupational settings where 

employees were exposed to BTEX concentrations on a daily basis. However, the majority 

of these studies have been conducted in petrol or gasoline situations (Badjabo et al., 

2010; Karakitsios et al., 2007a, b; Kitwattanavong et al., 2013). Nevertheless, 

concentrations above acceptable criteria for benzene were noted, with cancer risks 

estimated to be 1.82 × 10-4, in a study conducted in Bangkok, Thailand, where exposure 

of petrol station employees and automobile mechanics to BTEX was evaluated. 

However, hazard quotients amongst these employees, as is the case at this site, were 

generally within the acceptable range (Kitwattanavong et al., 2013). 

However, as suggested by Badjabo et al. (2010), multiple sources contribute to the 

occupational exposure of auto mechanics to the BTEX (for example, spray painting, 

exhaust fumes, cleaning materials), and this should always be considered, as these 
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exposures could increase their potential risk. This is important to consider at this site, as 

auto-mechanics may be further exposed to these sources (refer to Chapter 4). It should 

be noted that exposure duration also played a role, as employees employed for 30 years 

or more showed much greater potential risk, to both cancer and hazard risks. It should 

be mentioned however, that these calculations are proxy estimates, as they are based 

on a short monitoring campaign, and thus, the ‘lifetime’ cancer and hazard risks may be 

over-estimated.  

Additionally, the hazard quotient and cancer risks rely heavily on number of years 

employed. However, it was also noted that employees in areas of increased BTEX 

concentration levels (i.e. specific workshop areas, refuelling bay, etc.), also potentially 

face higher risks. Thus, these calculations are proxy estimates, as inhalation exposure 

will increase exponentially with duration of employment or work locations on site may 

change (i.e. within the refuelling or workshop bays). 

However, due to a lack of comparative national and international occupational exposure 

limits, identifying exceedances is problematic (refer to Chapter 3). This, however, does 

highlight the need for the South African government to review guidelines and limits, if 

proper management and control of air pollution hotspots is to be conducted. Also of 

significance is the fact that benzene was above international OELs, but within national 

limits (refer to Chapter 3). The differences noted in international and national OELs of 

benzene, toluene and xylenes raise many concerning questions. International 

occupational limits for benzene are significantly lower than South African national 

standards, while the reverse is true for toluene limits. This in itself is a point of concern 

as benzene is a carcinogen, even at low level exposure.  

Overall, concentrations indicate that occupational exposure at a diesel refuelling bay in 

Johannesburg, South Africa, placed employees at a significant risk to adverse health 

effects associated with inhalation exposure of BTEX.  
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5.3  Future work 

In South Africa, there is no research related to the amount of aromatic hydrocarbons 

present in diesel fuel. Thus, analysis of related emissions from exhaust fumes and 

refuelling activities is based on concentrations measured in these situations, with no 

guidelines or standards provided by the South African government. In order for 

scientifically sound research to be conducted, this is imperative. Additionally, the 

national government need to investigate acceptable levels of BTEX, as this area of 

research is vital if the health and safety of occupationally exposed workers are to be 

considered.  

A shift needs to also be seen in the perception and importance of occupational health. 

Organisations and companies, with employees in high risk professions, should allow 

research to be conducted on site. Personal monitors, testing of blood work and urine 

samples will further aid health risk analysis immensely, and ensure healthy working 

environments for workers, enabling higher productivity and lower turn-over rates in the 

long run. Longer research campaigns, at multiple sites, are also necessary as to enable 

more accurate predictions, related to health exposure. 

 

5.4  Recommendations  

Mitigation strategies such as wearing gloves constantly, cleaning up spills in the correct 

manner and ensuring clean workspaces may decrease exposure risk. In addition, 

repairing ventilation and introducing air filtration systems will enhance air quality at the 

sites, and inhalation rates of toxics may be minimised. A major area of concern is the 

idling of buses during refuelling and repair work. If bus engines are turned off, emission 

exposure can be greatly reduced in these situations. Thus, a cost-over-health approach 

should be seen as imperative.  

Exposure duration be can further reduced by ensuring that individual offices are 

properly ventilated, and by allowing meal breaks to be taken outside of the refuelling 

bay and workshop areas. Any mitigation strategy should ensure that exposure duration 

(both to fumes from refuelling and from exhausts) is kept to a minimum.  
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Appendix i 

 

 

Appendix i: Employees use rubber gloves during refuelling, however, remove them when 
engaged in other activities, despite refuelling processes still being under way. 
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Appendix ii 

 

 

 

Appendix ii: Spills on site are not well managed, and are soaked up fibre cloths 
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Appendix iii  

Table i: Inhalation rates (m3/hour) used to calculate carcinogenic risk and hazard quotient 

Participant ID Workplace Position Inhalation Rate Inhalation Rate 

      Benzene TEX 

FBA1 Fuel Bay General  3.71 22.97274 

FBA2 Fuel Bay General  3.31 20.4892 

FBA3 Fuel Bay General  1 6.20885 

FBA4 Fuel Bay General  0.5 3.104425 

AM1 Workshop General  3.32 39.56385 

AM2 Workshop General  0.24 2.825989 

AM3 Workshop Office  5.08 27.18813 

AM4 Workshop Office  0.12 1.412995 

AM5 Workshop General  1.13 9.489638 

AM6 Workshop Office  1 7.384181 

AM7 Workshop General  0.24 2.825989 

AM8 Workshop General  0.12 1.412995 

AM9 Workshop * Office 0.36 4.238984 

AM10 Workshop * Office 0.24 2.825989 

AM11 Workshop General  1.19 14.12995 

AM12 Workshop General  0.59 7.064973 

AM13 Workshop General  1.9 22.60791 

AM14 Workshop General  1.3 15.54294 

AM15 Workshop General  1.9 22.60791 

AM16 Workshop * Office 0.47 5.651978 

     

* Employee based within an enclosed office inside the workshop. 

 


