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Abstract

This Dissertation focuses on the Jacobi polynomial. Specifically, it discusses certain

aspects of the zeros of the Jacobi polynomial such as the interlacing property and quasi-

orthogonality. Also found in the Dissertation is a chapter on the inequalities of the zeros

of the Jacobi polynomial, mainly those developed by Walter Gautschi.
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Chapter 1

Introduction

The area of so called “special functions” is a vast field of mathematics that includes the

well known logarithmic, exponential and trigonometric functions. Over many years, this

field has been extended to include the beta, gamma and zeta functions along with classes

of orthogonal polynomials. In essence, we think of special functions as organising points

for mathematical calculations.

These special functions have many and varied applications in pure mathematics and nu-

merous applied sciences such as astronomy, heat conduction, electric circuits, quantum

mechanics, electrostatic interpretation and mathematical statistics, for examples see, [3]

,[36], [47], [52].

Many famous mathematicians are credited with creating new special functions and dis-

covering new properties of existing functions. For example, in the 1700s, famed Swiss

mathematician Leonhard Euler developed the gamma and the zeta functions as well as

defining Bessel functions for circular drums [52]. In the 1800s, Carl Friedrich Gauss in-

vestigated the hypergeometric series and paid special attention to the 2F1 series. By this

time, most special functions that we use and recognise today had been established and

known throughout the mathematical world.

Then, there is the class of orthogonal polynomials whose origins can be traced to Legen-

dre’s work on planetary motion [12]. Orthogonal polynomials are connected with trigono-
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metric, hypergeometric, Bessel and elliptical functions [47]. The systems of orthogonal

polynomials associated with the names of Hermite, Laguerre and Jacobi are the most

extensively studied and widely applied systems. These functions are also referred to as

classical orthogonal polynomials.

This dissertation aims to study aspects of Jacobi polynomials and their zeros. These

topics will include the interlacing of zeros and the inequality conjectures associated with

the zeros.

The dissertation is structured as follows. Chapter 2 provides an introduction to all the

preliminary mathematics pertaining to special functions that is required for the work.

Chapter 3 introduces the concept of orthogonal polynomials and gives properties of a few

particular orthogonal polynomials that will be used in subsequent chapters. Chapter 4

concentrates on the zeros of Jacobi polynomials. The interlacing property is discussed

along with the ideas of quadrature and quasi-orthogonality. Chapter 5 aims to discuss

the inequalities associated with the zeros of Jacobi polynomials. Various papers are used

to support the investigation.
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Chapter 2

Mathematical Preliminaries

This chapter aims to introduce basic definitions and theorems that will be used in sub-

sequent chapters. Readers may consult the relevant texts for further details relating to

the proofs even though the proofs of the theorems are provided.

2.1 The Pochhammer Symbol

The Pochhammer symbol was introduced by Leo August Pochhammer (1841-1920) [31]

and is often used in special functions. Typically, the gamma function uses the Pochham-

mer symbol extensively in certain definitions and theorems as will be shown later in this

chapter.

There are various representations of the Pochhammer symbol used throughout the many

fields of mathematics. Here are a few common notations:

(a,m) ≡ (a)m ≡ (a|m),

where m is a non-negative integer and a is a real or complex number.

Note: In this dissertation, the (a)m notation will be used to denote the Pochhammer

symbol.
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Definition 2.1.1 From, [2], [32] and [42], the Pochhammer symbol is defined as

follows:

(a)m =


1 if m = 0

a(a+ 1)...(a+m− 1) if m = 1, 2, 3, ... .

Note: It is interesting that the Pochhammer symbol is occasionally called the shifted or

rising factorial function, as

(1)n = n!

where n is a non-negative integer.

The theorem below from [31] expresses the binomial coefficients in terms of the Pochham-

mer symbol.

Theorem 2.1.1

(
a

m

)
=
a(a− 1)(a− 2)...(a−m+ 1)

m!
=

(−1)m(−a)m
m!

where m is a non-negative integer and a ∈ R where m ≤ a.

Proof

(
a

m

)
=
a(a− 1)(a− 2)...(a−m+ 1)(a−m)!

m!(a−m)!

=
a(a− 1)(a− 2)...(a−m+ 1)

m!

=
(−1)m(−a)(−a+ 1)(−a+ 2)...(−a+m− 1))

m!
=

(−1)m(−a)m
m1

Listed below are various identities of the Pochhammer symbol that might be useful and

can be found in [17].

Definition 2.1.2 The following identities hold true for m, n ∈ N:

(1) (x)m+n = (x)m(x+m)n for m,n ∈ N

(2) (x)m = (−1)m(1−m− x)m

(3) (x)m−k = (x)m(−1)k
(1−m−x)n , 0 ≤ k ≤ m.
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2.2 The Gamma Function

The gamma function, denoted Γ(x), was developed by Euler in the 1720s when he in-

troduced it as an interpolating function for the factorials defined by n! =
∏n

k=1 k [29].

However, through a series of letters sent to Christian Goldbach (1690-1764) from Daniel

Bernoulli (1700-1782) in 1729, it was discovered that Bernoulli, in fact, gave the initial

representation of a function that interpolated factorials. He did so in the form of the

following infinite product, [7],

x! = lim
n→∞

(
n+ 1 +

x

2

)x−1 n∏
i=1

i+ 1

i+ x
.

During this time, Leonard Euler (1707-1785) stayed with Bernoulli and his eagerness to

help Goldbach and Bernoulli in their research on interpolating various sequences, paved

the way for the creation of the gamma function [43]. He went above and beyond Bernoulli

by obtaining new representations and theorems for the gamma function [29].

The gamma function is quite simple and has become important in the field of special

functions. It is often a prerequisite for the study of other special functions such as the

beta function.

The gamma function has several representations, which can be found in [2], [20], [6], [36].

From ([20], p57), we have Euler’s Integral representation for the gamma function given

by the definition below.

Definition 2.2.1 Euler’s Integral representation of the gamma function is an im-

proper integral of the form

Γ(x) =

∞∫
0

tx−1e−t dt ,

where x may be a real or complex variable with Re(x) > 0.

From ([2], p3), we have Euler’s limit formula defined as follows.

5



Definition 2.2.2 Euler’s Limit Formula for the gamma function has the following

form for all complex numbers x 6= 0,−1,−2, ...,

Γ(x) = lim
k→∞

k!kx−1

(x)k
,

where (x)k is the Pochhammer symbol and k is any real constant.

We have Weierstrass’ Infinite Product, from ([20], p64), which is defined below.

Definition 2.2.3 Weierstrass’ Infinite Product

For all real numbers n 6= 0,−1,−2, ... and finite values of x ∈ C,

1

Γ(x)
= xeγx

∞∏
n=1

((
1 +

x

n

)
e−

x
n

)
,

where γ is Euler’s constant given by

γ = lim
n→∞

(
n∑
k=1

1

k
− log n

)
= 0, 577215665.

Definition 2.2.1 is used as the primary definition for the gamma function.

The gamma function can also be represented as

Γ(x+ 1) = x!, for x = 0, 1, 2, ... .

It follows from this identity that when x = 0 then Γ(1) = 1.

Apart from Euler, mathematicians such as Hermann Hankel (1839-1873) and Karl Theodor

Weierstrass (1815-1897) developed other representations of the gamma function using

various mathematical instruments. Hankel’s representation can be found in ([20], p64),

Weierstrass’ formula is given above.

Two useful theorems for the gamma function are given below. The proofs of these stan-

dard results may be found in the following text, ([36], p3) even though the proofs are

provided below.
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Theorem 2.2.1 The Reduction formula for the gamma function is given by

Γ(x+ 1) = xΓ(x)

where Re(x) ≥ 0, x 6= 0,−1,−2, ... .

Proof

Using Euler’s integral representation for the gamma function and integration by parts,

we have

Γ(x+ 1) =

∫ ∞
0

txe−tdt

= −e−ttx|∞0 −
∫ ∞
0

−xtx−1e−tdt

= 0 + x

∫ ∞
0

tx−1e−tdt

= xΓ(x).

The following theorem demonstrates how the Pochhammer symbol can be written in

terms of the gamma function.

Theorem 2.2.2 For any positive integers n and x 6= 0,−1,−2, ... ,

(x)n =
Γ(x+ n)

Γ(x)
.

Proof

Using the reduction formula given in Theorem 2.2.1,

Γ(x+ 1) = xΓ(x)

Γ(x+ 2) = (x+ 1)Γ(x+ 1) = x(x+ 1)Γ(x).

Repeated use of the reduction formula leads to the following

Γ(x+ n) = x(x+ 1)(x+ 2)...(x+ n− 2)(x+ n− 1)Γ(x)

= (x)nΓ(x),
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which leads us to the final identity

(x)n =
Γ(x+ n)

Γ(x)
.

An interesting result of the gamma function is given below, the proof of which can be

found in ([6], p25).

Theorem 2.2.3

Γ

(
1

2

)
= 2

∫ ∞
0

e−t
2

dt =
√
π.

Proof

Using Euler’s integral representation of the gamma function, we put x = 1
2

and t = r2,

so dt = 2rdr. Then we have the following expression

Γ

(
1

2

)
=

∫ ∞
0

(r2)−
1
2 e−r

2

2rdr

=

∫ ∞
0

2e−r
2

dr.

To evaluate this integral, proceed as follows: Let

I =

∫ ∞
0

e−x
2

dx =

∫ ∞
0

e−y
2

dy.

Then,

I2 =

∫ ∞
0

e−x
2

dx

∫ ∞
0

e−y
2

dy

=

∞∫
0

∞∫
0

e−x
2

e−y
2

dxdy,

which is clearly a double integral. In a geometric sense, the area of integration represents

the whole of the first quadrant. We can change to polar coordinates. Therefore, we put

x = r cos θ and y = r sin θ with unit area dxdy = rdrdθ where 0 ≤ θ ≤ π
2
.
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Thus, we have the following,

I2 =

∞∫
0

π
2∫

0

e−r
2

rdrdθ

=
π

2

∫ ∞
0

re−r
2

dr

=
π

2

[
−1

2
e−r

2

]∞
0

=
π

4
.

Therefore, we have that

Γ

(
1

2

)
= 2I

= 2

√
π

4

=
2

2

√
π

=
√
π ,

as required.

It is interesting to note that alternative integral representations of the gamma function

exist and some can be found in ([2], p60). Two such representations are given below:

Theorem 2.2.4 The gamma function has the following representations,

(1) Γ(x) = 2
∫∞
0
e−t

2
t2x−1dt

(2) Γ(x) = αx
∫∞
0
e−αrrx−1dr.

Proof:

(1) Let t = y2 then dt = 2ydy. We then use Euler’s integral for the gamma function

i.e. Γ(x) =
∫∞
0
e−ttx−1dx, and substitute the new value for t to obtain,

Γ(x) =

∫ ∞
0

e−y
2

(y2)x−12ydy

=

∫ ∞
0

e−y
2

y2x−22ydy
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= 2

∫ ∞
0

e−y
2

y2x−1dy.

(2) Here, we set t = αr so that dt = αdr. We, once again, subsitute the new value for

t into the Euler integral definition of the gamma function, Γ(x) =
∫∞
0
e−ttx−1dx,

and get the following,

Γ(x) =

∫ ∞
0

e−αr(αr)x−1αdr

=

∫ ∞
0

e−αr(α)x−1rxr−1αdr

=

∫ ∞
0

e−αr(α)xrx−1dr.

We then have the final result

Γ(x) = αx
∫ ∞
0

e−αrrx−1dr. (2.1)

2.3 The Beta Function

The beta function was developed in connection with the gamma function. Certain useful

results, that might be needed in later chapters are given below. It is interesting to note

that the beta function is sometimes called the Euler integral of the first kind ([50], p103).

The following is a definition of the beta function that can be found in [2], [20], [6] and

[36].

Definition 2.3.1 The beta function has the form

B(x, y) =

1∫
0

tx−1(1− t)y−1dt ,

for Re(x) > 0 and Re(y) > 0.

The theorem below represents the beta function in terms of the gamma function. It is

extremely useful and its proof can be found in ([2], p5).
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Theorem 2.3.1 For Re(x) > 0 and Re(y) > 0, the beta function is given by

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

Proof:

Use the definition of the beta function, B(x, y) =
1∫
0

tx−1(1−t)y−1dt, with the substitution

u = t
1−t . In other words, put t = u

u+1
so that dt = du

(1+u)2
and change the limits since

t = 0⇒ u = 0 and when t→ 1 , u→∞.

Hence, we obtain

B(x, y) =

∫ ∞
0

(
u

1 + u

)x−1(
1− u

u+ 1

)y−1(
1

(1 + u)2

)
du

=

∫ ∞
0

(
u

1 + u

)x−1(
1

u+ 1

)y−1(
1

(1 + u)2

)
du

=

∫ ∞
0

ux−1(1 + u)−(x+y)du

We then use Equation (2.1), Γ(x) = αx
∫∞
0
e−αttx−1 dt, but replace α with u + 1 and

replace x with x+ y. Using these substitutions we get

∫ ∞
0

e−(1+u)ttx+y−1 dt =
Γ(x+ y)

(1 + u)(x+y)
.

We now make (1 + u)−(x+y) the subject of the equation which gives,

1

Γ(x+ y)

∫ ∞
0

e−(1+u)ttx+y−1 dt = (1 + u)−(x+y). (2.2)

Next, substitute the left hand side of Equation (2.2) into the earlier result to obtain

B(x, y) =

∫ ∞
0

ux−1
1

Γ(x+ y)

∫ ∞
0

e−(1+u)ttx+y−1 dtdu.

Swopping the order of integration yields

B(x, y) =
1

Γ(x+ y)

∫ ∞
0

tx+y−1e−t
∫ ∞
0

ux−1e−ut dudt
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=
1

Γ(x+ y)

∫ ∞
0

tx+y−1e−t
Γ(x)

tx
dt,

by Equation (2.1), with r = u and α = t. Hence,

B(x, y) =
Γ(x)

Γ(x+ y)

∫ ∞
0

ty−1e−tdt

=
Γ(x)Γ(y)

Γ(x+ y)
,

as required.

The next theorem illustrates the symmetry of the beta function and can be proved easily

by making the substituting u = 1 − t in the definition of the beta function. An explicit

proof can be found in ([20], p77).

Theorem 2.3.2 The symmetry property of the beta function is shown below for Re(x) >

0 and Re(y) > 0:

B(x, y) = B(y, x).

Proof:

Let u = 1− t, then du = −1dt therefore t = 1− u. We then have the following:

B(x, y) =

∫ 0

1

−(u− 1)x−1uy−1du

=

∫ 1

0

(u− 1)x−1uy−1du

= B(y, x).

The next two theorems contain interesting results pertaining to the beta function.

The proof of Theorem 2.3.3 below, makes use of the gamma function result, Γ(1
2
) =
√
π

and will not be proved in this text. However, a proof of this theorem is given in ([6],

p24).

Theorem 2.3.3

B

(
1

2
,
1

2

)
= π.
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The theorem below establishes a type of iterative formula for the beta function. This

theorem, together with its proof, is given in ([2], p5).

Theorem 2.3.4 For Re(x) > 0 and Re(y) > 0,

B(x, y) =
x+ y

y
B(x, y + 1).

Proof: For Re(x) > 0 and Re(y) > 0,

B(x, y + 1) =

∫ 1

0

tx−1(1− t)(1− t)y−1dt

=

∫ 1

0

tx−1(1− t)y−1dt−
∫ 1

0

tx(1− t)y−1dt

= B(x, y)−B(x+ 1, y), (2.3)

However, integration by parts gives

B(x, y + 1) =

∫ 1

0

tx−1(1− t)y dt

=

[
1

x
tx(1− t)y

]1
0

+
y

x

∫ 1

0

tx(1− t)y−1 dt

= 0 +
y

x
B(x+ 1, y).

In other words,

B(x+ 1, y) =
x

y
B(x, y + 1). (2.4)

Substitute Equation (2.4) into Equation (2.3) to get

B(x, y + 1) = B(x, y)− x

y
B(x, y + 1)

and the result follows.

2.4 The Bessel Function

Bessel functions are important in pure mathematics as they are used for many problems

in number theory, integral transforms and evaluations of integrals to name a few [21].

13



The astronomer Friedrich Wilhelm Bessel (1784-1846) was the first mathematician to

systematise these functions [21]. However, the Bessel functions were first discovered by

Daniel Bernoulli when he studied the oscillations of a heavy yet flexible chain that was

suspended while its lower end was free [51]. He came up with an equation which was a

particular case of an equation that Bessel formulated 100 years later, [39].

Bessel functions are solutions to the Bessel differential equation of order p which is given

by

x2
d2y

dx2
+ x

dy

dx
+ (x2 − p2)y = 0.

This definition can be found in [20]. As this is a second order differential equation, two

linearly independent sets of functions, Jp and Yp, form the general solution

y(x) = c1Jp(x) + c2Yp(x),

where c1 and c2 are arbitrary constants.

The method used to solve the Bessel equation is the Fröbenius method and this is illus-

trated in ([20], p225-227). In the general solution, Jp(x), is called the Bessel function of

the first kind of order p. The following definition can be found in [2] and [51].

Definition 2.4.1 Bessel functions of the first kind are given by

Jp(x) =
∞∑
k=0

(−1)k

k!Γ(p+ k + 1)

(x
2

)p+2k

,

where k = 0, 1, 2, ... , and |x| <∞ and p ∈ Z.

The following definition, which illustrates the relationship between the Bessel functions

when the parameter p is negative, can be found in [18].

Definition 2.4.2

J−p(x) = (−1)pJp(x).

The next definition is the second solution to the Bessel equation, also known as the Bessel

equation of the second kind. A method to obtain this function is found in ([6], p225).
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Definition 2.4.3 Bessel functions of the second kind have the form

Yp(x) =
Jp(x) cosπp− J−p(x)

sin πp
,

where p ∈ Z.

Note: Higher order Bessel functions can be represented by Bessel functions of lower order,

forming a recurrence relation. For example,

Jn+1(x) =
2n

x
Jn(x)− Jn−1(x),

where n ∈ N.

2.5 The Hypergeometric Series

In 1812, Gauss presented a paper to the Royal Society of Sciences at Göttingen. In this

paper, he looked at the following infinite series:

1 +
ab

1.c
z +

a(a+ 1)b(b+ 1)

1.2.c(c+ 1)
z2 +

a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

1.2.3.c(c+ 1)(c+ 2)
z3 + ...

as a function of a, b, c and z where c is not zero or a negative integer.

This series was given the name ‘hypergeometric series’ by Ernst Eduard Kummer (1810-

1883) [22]. Along with Gauss, other mathematicians such as Kummer and Euler studied

this series quite extensively. However, it was Bernhard Riemann who first characterised

the series as satisfyng a second order differential equation with regular singularities [2].

The series can be used in applications of various real-world problems such as the simple

pendulum and a one-dimensional oscillator [45].

The 2F1 Gauss hypergeometric function is a particular solution to the differential equation

z(1− z)w′′ + [c− (a+ b+ 1)z]w′ − abw = 0.

A definition of the 2F1 Gauss hypergeometric function, which can be found in ([2], p64),
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is given below.

Definition 2.5.1 The 2F1 Gauss hypergeometric series for a, b, c, z ∈ C, c 6=

0,−1,−2, ... and |z| < 1 is given by

2F1(a, b; c; z) = 1 +
∞∑
k=1

(a)k(b)k
(c)k

zk

k!
=
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
.

Note: There are many notations for the 2F1 Gauss hypergeometric function such as

2F1(z); others can be found in [12] and [42]. However, the notation on the left hand side

of Definition 2.5.1 will be used.

In the Gauss hypergeometric function given in Definition 2.5.1, it is obvious that no pa-

rameter in the denominator can be zero or a negative integer.

The definition for the general pFq hypergeometric function is given below and can be

found in ([45], p34).

Definition 2.5.2 The generalised hypergeometric series, pFq(z), is defined to be

pFq(a1, a2, a3, ..., ap; b1, b2, ..., bq; z) = 1 +
∞∑
n=1

(a1)k(a2)k...(ap)k
(b1)k(b2)k...(bq)k

zk

k!

where a1, a2, a3, ..., ap, b1, b2, ..., bq, z can be part of the real or complex number set. How-

ever, b1, b2, ..., bq are not zero or negative integers.

From the above definition, it is clear that the Gauss hypergeometric function is the hy-

pergeometric function when p = 2 and when q = 1.

The hypergeometric function is quite useful in that it can be used to represent many well-

known functions. For example: arcsin z = z 2F1(
1
2
, 1
2
; 3
2
; z2) and ln(1+z) = z 2F1(1, 1; 2;−z).

Below is a theorem that contains Euler’s Integral representation of the 2F1 series, a proof

of which can be found in ([2], p65).
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Theorem 2.5.1 If |z| < 1 holds for the z-plane cut along the real axis from 1 to ∞ and

Re(c) > Re(b) > 0 then Euler’s integral representation has the form

2F1 (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

1∫
0

tb−1(1− t)c−b−1(1− zt)−adt.

Proof:

Begin by using the definition of the Gauss hypergeometric function and arranging it in

terms of the gamma function by using the identity Γ(z + n) = (z)nΓ(z) to obtain

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!

=
∞∑
n=0

Γ(b+ n)

Γ(b)

Γ(c)

Γ(c+ n)

(a)nz
n

n!
.

Furthermore, for Re(c) > Re(b) > 0,

Γ(b+ n)Γ(c)

Γ(b)Γ(c+ n)
=

Γ(c)

Γ(b)Γ(c− b)
Γ(c− b)Γ(b+ n)

Γ(c+ n)

=
Γ(c)

Γ(b)Γ(c− b)
B(b+ n, c− b)

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb+n−1(1− t)c−b−1dt.

We then have

2F1 (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∞∑
n=0

(a)n
n!

∫ 1

0

tb+n−1(1− t)c−b−1zndt

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1
∞∑
n=0

(a)n
n!

(tz)ndt.

We recall the binomial theorem i.e (1− y)−α =
∑∞

n=0
(α)n
n!
yn.

Continue by letting α = a and y = zt to get (1− zt)−a =
∑∞

n=0
(a)n
n!

(zt)n.
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The following result is then obtained

2F1 (a, b; c;x) =
Γ(c)

Γ(b)Γ(c− b)

1∫
0

tb−1(1− t)c−b−1(1− xt)−adt.

When one or more of the upper parameters is a negative integer the 2F1 series is finite,

which is illustrated in the theorem below. The proof of Theorem 2.5.2 can be found in

([2], p67). It is also referred to as the the Chu-Vandermonde transformation.

Theorem 2.5.2 The Chu-Vandermonde transformation is defined as

2F1(−n, a; c; 1) =
(c− a)n

(c)n
,

where n ∈ Z+.

The following transformation is called Pfaff’s transformation and can be found in ([36],

p247) along with its proof.

Theorem 2.5.3 Pfaff’s Transformation is given by

F (a, b; c;x) = (1− x)−a 2F1

(
a, c− b; c; −x

1− x

)
,

where |arg(1− x)| < π.

Pfaff’s transformation can be used to prove certain relationships as shown below.

arctanx = x 2F1

(
1
2
, 1; 3

2
;−x2

)
= x√

1+x2 2F1

(
1
2
, 1
2
; 3
2
; x2

1+x2

)
= arcsin x

1+x2
.
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Chapter 3

Orthogonal Polynomials

Orthogonal polynomials appear to have been developed by Legendre and Laplace whilst

working on celestial mechanics. This work dealt with specific sets of orthogonal poly-

nomials. Some of the first polynomials to be proven as orthogonal were the symmetric

beta functions on the interval (−1, 1), and then the normal distribution on the whole

real line. The general theory began with Pafnuty Lvovich Chebyshev (1821-1894) in the

1850s [7], as his work was motivated by analogies with Fourier series and the theory of

continued fractions. Orthogonal polynomials are used in solving many problems such as

the birth-death process [49].

Orthogonal polynomials can be classified further into various types of orthogonal poly-

nomials, such as:

• Classical Orthogonal Polynomials (Jacobi, Laguerre, Hermite and their special cases

i.e Gegenbauer, Chebyshev and Legendre)

• Wilson Polynomials - these generalise the Jacobi Polynomials

• Askey-Wilson Polynomials - these introduce an extra parameter q into the Wilson

Polynomials.

The following definition of the orthogonality of polynomials is found in [2] and [32].

Definition 3.0.1 A sequence of polynomials {pn(x)}∞n=0 where pn(x) is of exact degree

n, is orthogonal on the interval [a, b] with respect to a weight function w(x), which is
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greater than zero if ∫ b

a

pn(x)pm(x)w(x)dx = hnδnm

where

δnm =


0 if n 6= m

1 if n = m.

Note:

1. A “weight function” is a mathematical instrument used when performing a sum,

integral, or average to give some elements more weight or influence on the final

result than other elements found in the set.

Instead of the term “weight function” the term “norm function” is sometimes seen in

literature. The expression “distribution” also occurs in the classical interpretaiton

of dα(x) as a mass distribution (continuous or discontinuous) of a continuous func-

tion α(x) in the interval [a, b]. We will consider a non- negative weight function

w(x) for which
∫ b
a
w(x)dx > 0, [47].

2. With the above definition, if m = 0 and n ≥ 1, we have the integral

∫ b

a

pn(x)w(x)dx = 0,

since p0(x) is constant.

The definition below is worth noting and it can be found in reference text [42].

Definition 3.0.2 A sequence of orthogonal polynomials {pn(x)}∞n=0 is orthogonal on the

interval [a, b] with respect to the weight function w(x) > 0 if and only if

∫ b

a

pn(x)w(x)xkdx = 0

for all k = 0, 1, ..., (n− 1) and n is non-negative.

The following definition can be found in [[2], p283].
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Definition 3.0.3 Given a sequence a0, a1, a2, ... the function

f(x) = a0 + a1x+ a2x
2 + ...+ =

∞∑
n=0

anx
n,

is called the generating function for the given sequence.

Orthogonal polynomials satisy three-term recurrence relations which illustrate their con-

nection to continued fractions.

The following theorem, the proof of which can be found in ([2], p245), says that a se-

quence of orthogonal polynomials {pn(x)}∞n=0 satisfies a three-term recurrence relation.

Theorem 3.0.1 A sequence of orthogonal polynomials {pn(x)}∞n=0 satisfies a three-term

recurrence relation

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x)

for n ≥ 0, where we set p−1(x) = 0. Here An, Bn and Cn are real constants, n = 0, 1, 2, ...

and An−1AnCn > 0 for n = 1, 2, 3, ....

If the highest coefficient of pn(x) is Kn > 0, then:

An =
Kn+1

Kn

,

Cn+1 =
An+1

An

hn+1

hn

where hn is given by Definition 3.0.1.

Proof :

Since pn+1(x) has degree exactly (n+ 1) as does x pn(x), we can determine An such that

pn+1 (x)− An x pn(x)

is a polynomial of degree at most n. Thus for some constants bk,

pn+1(x)− Anx pn(x) =
n∑
k=0

bk pk(x). (3.1)
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If Q(x) is any polynomial of degree m < n, we know from Definition 3.0.1 that∫ b
a
Pn(x)Q(x)w(x) dx = 0.

Multiply both sides of Equation (3.1) by w(x)pm(x) where m ∈ {0, 1... , n− 2} to get (on

integrating)

∫ b

a

pn+1(x)pm(x)w(x)dx−
∫ b

a

Anxpm(x)pn(x)w(x)dx =
m∑
k=0

∫ b

a

bkpk(x)pm(x)w(x) dx.

But, the left hand side of the above equation is zero for each m ∈ {0, 1, ... n− 2} noting

that xpm(x) is then a polynomial of degree (m+ 1) which is less than or equal to (n− 1).

On the right hand side of the equation, as K runs from 0 to n, the only integral in the

sum that is not equal to zero, is the one involving K = m.

Thus, bmhm = 0 for each m ∈ {0, 1, ... , n − 2} and since hm 6= 0, we have bm = 0 for

m = 0, 1, ... , n− 2.

Therefore,

pn+1(x)−An xpn(x) = bn−1pn−1(x)+bnpn(x) or pn+1(x) = (An x+bn)pn(x)+bn−1pn−1(x).

Now let bn = Bn and bn−1 = −Cn then we obtain

pn+1(x) = (An x+Bn)pn(x)− Cnpn−1(x), (3.2)

which is the required three-term recurrence relation.

It should be clear from Equation (3.2) that An = Kn+1

Kn
.

To prove the final part multiply Equation (3.2) by pn−1(x)w(x) and integrate. Then

0 = An

∫ b

a

x pn(x)pn−1(x)w(x)dx− Cn
∫ b

a

p2n−1(x)w(x) dx. (3.3)

Now, pn−1 = Kn−1x
n−1+ a polynomial of degree ≤ n− 2.

Thus, pn(x) = Knx
n+ a polyomial of degree ≤ n− 1.

Then x pn−1(x) = Kn−1

Kn
pn(x) +

∑n−1
k=0 dkpk(x).
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We see that from Equation (3.3)

0 = An
Kn−1

Kn

hn − Cn hn−1.

Since

An =
Kn+1

Kn

,

we have

Cn+1 =
An+1

An

hn+1

hn

which proves the result.

This form of the recurrence relation becomes useful when calculating pn+1 as you already

have pn and pn−1.

An important result of the three-term recurrence relation is the Christoffel-Darboux for-

mula. It is found in, ([2], p246) ([12], p23) and ([47], p43) along with its proof.

Theorem 3.0.2 Suppose {pn(x)}∞n=0 is a sequence of orthogonal polynomials with respect

to the weight function w(x) on interval [a, b] where a, b ∈ R. Suppose also, that the leading

coefficient of pn(x) is kn and that

∫ b

a

p2n(x)w(x)dx = hn 6= 0.

Then from Definition 3.0.1

n∑
m=0

pm(x)pm(y)

hm
=

kn
kn+1

pn+1(x)pn(y)− pn+1(y)pn(x)

(x− y)hn
.

Proof:

The recurrence relation given in Theorem 3.0.1 gives

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x),

where An = Kn+1

Kn
and Cn+1 = An+1

An

hn+1

hn
.
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Multiply through by pn(y) to get

pn+1(x)pn(y) = (Anx+Bn)pn(x)pn(y)− Cnpn−1(x)pn(y) (3.4)

and similiarly

pn+1(y)pn(x) = (Any +Bn)pn(y)pn(x)− Cnpn−1(y)pn(x). (3.5)

Subtract Equation (3.5) from Equation (3.4) to obtain

pn+1(x)pn(y)− pn+1(y)pn(x) = An(x− y)pn(x)pn(y)− Cn[pn−1(x)pn(y)− pn−1(y)pn(x)].

Divide through by Anhn(x− y) to get

1

An

pn+1(x)pn(y)− pn+1(y)pn(x)

hn(x− y)
=
pn(x)pn(y)

hn
− 1

An−1

[
pn−1(x)pn(y)− pn−1(y)pn(x)

hn−1(x− y)

]
.

Repeated application of this gives the required result, when we observe that An = Kn+1

Kn
.

In this work, we are only interested in the group of classical orthogonal polynomials such

as the Hermite, Laguerre and Jacobi polynomials.

Classical orthogonal polynomials have the following characteristics:

1. The family of derivatives, p′n(x), is also an orthogonal system.

2. The polynomial pn(x) satisfies a second order linear differential equation of the

type:

A(x)y′′ +B(x)y′ + λny = 0

where A and B are variables that do not depend on n and λn is also independent

of x.
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3. There is a Rodrigues formula having the general form:

pn(x) =
1

anwn(x)

dn

dxn
{w(x)[Q(x)]n},

where Q(x) is a polynomial in x with coefficients that do not depend on n. Fur-

thermore an does not depend on x as it is a constant and w(x) is a positive weight

function.

The Rodrigues formula is useful in providing immediate information on the following:

1. the interval of orthogonality

2. the weight function

3. the range of parameters for which the orthogonality holds.

3.1 Hermite Polynomials

The Hermite polynomials, denoted Hn(x), were first studied by Laplace and Chebyshev

but were named after Charles Hermite (1822-1901). They appear in probability theory,

combinatorics [2] and even in physics, such as in the quantum harmonic oscillator.

The generating function of the Hermite polynomial is provided below. This definition

can be found in ([20], p178).

Definition 3.1.1 The Hermite polynomials, denoted Hn(x), can be defined by their gen-

erating function

e2xt−t
2

=
∞∑
n=0

tn

n!
Hn(x),

where |t|, |x| <∞.

The orthogonality property of Hn(x) is shown in the following theorem, found in ([47],

p105) along with its proof.

Theorem 3.1.1 The orthogonality property of the Hermite polynomials is given below:

∫ ∞
−∞

Hn(x)Hm(x)e−x
2

dx = 2nn!
√
πδnm
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where n, m are real, e−x
2

is the positive weight function and δnm is defined as in Definition

3.0.1.

Proof :

Begin by using the generating function of the Hermite polynomial, that is

e2xt−t
2

=
∞∑
n=0

tn

n!
Hn(x). (3.6)

This can be written as

e2sx−s
2

=
∞∑
m=0

sm

m!
Hm(x), (3.7)

Next multiply Equations (3.6) and (3.7) to obtain

e2xt−t
2+2sx−s2 =

∞∑
n=0

∞∑
m=0

tnsm

n!m!
Hn(x)Hm(x). (3.8)

Then multiply both sides of Equation (3.8) by e−x
2

and integrate it with respect to x

from −∞ to ∞ to obtain

∫ ∞
−∞

e[−(−x+s+t)
2+2st]dx =

∞∑
n=0

∞∑
m=0

tnsm

n!m!

∫ ∞
−∞

e−x
2

Hn(x)Hm(x) dx. (3.9)

In the above Equation (3.9), the left hand side is equal to

e2st
∫ ∞
−∞

e−(−x+s+t)
2

dx.

But from Theorem 2.2.3, we have that
∫∞
−∞ e

−(x+s+t)2dx =
√
π. Therefore, the left hand

side becomes

e2st
√
π =
√
π
∞∑
m=0

2msmtm

m!
(3.10)

=
∞∑
n=0

∞∑
m=0

tnsm

n!m!

∫ ∞
−∞

e−x
2

Hn(x)Hm(x) dx. (3.11)

Now, let m = n and equate the coefficients of sntn as follows,

2n
√
π

n!
=

1

(n!)2

∫ ∞
−∞

e−x
2

H2
n(x) dx.
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However, when m 6= n, the powers of t and s are always equal for each term on the right

hand side of Equation (3.8). So, if one equates the coefficients of tntm when m 6= n, we

obtain

1

n!m!

∫ ∞
−∞

e−x
2

Hn(x)Hm(x) dx = 0,

which proves the result.

Now, we give the Rodrigues formula which is found in [20].

Theorem 3.1.2 The Rodrigues formula for Hermite polynomials has the form:

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

Proof :

Start by using the generating function for a Hermite polynomial.

e2xt−t
2

=
∞∑
n=0

tn

n!
Hn(x).

Next, use Taylor’s expansion around t = 0 to obtain

∞∑
n=0

[
∂n

∂tn
e2tx−t

2

]
t=0

tn

n!
=
∞∑
n=0

tn

n!
Hn(x).

Continue by equating coefficients of tn to obtain

Hn(x) =

[
∂n

∂tn
e2xt−t

2

]
t=0

=

[
∂n

∂tn
ex

2−(x−t)2
]
t=0

= ex
2

[
∂n

∂tn
e−(x−t)

2

]
t=0

We note that ∂n

∂tn
f(x− t) = (−1)n ∂n

∂xn
f(x− t) for all functions f .

This leads to

Hn(x) = ex
2

[
∂n

∂tn
e−(x−t)

2

]
t=0
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= (−1)nex
2

[
∂n

∂xn
e−(x−t)

2

]
t=0

Thus we have the required result.

The next theorem gives us the three-term recurrence relation for the Hermite polynomials,

given in([23], p31).

Theorem 3.1.3 Hermite polynomials satisfy the recurrence relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x),

where n = 1, 2, ... and x ∈ R.

Proof :

Differentiating the generating function, given in Definition 3.1.1, with respect to t gives

2(x− t)e2xt−t2 =
∞∑
n=1

tn−1

(n− 1)!
Hn(x),

and then changing the running index on the right hand side yields

2(x− t)
∞∑
n=0

Hn(x)tn

n!
=
∞∑
n=0

tn

n!
Hn+1(x).

Equate coefficients of tn on both sides so that

2x
Hn(x)

n!
− 2Hn−1(x)

(n− 1)!
=
Hn+1(x)

n!
,

which implies that 2xHn(x)− 2nHn−1(x) = Hn+1(x). This proves the result.

Another recurrence relation which is interesting to note, is found in ([2], p280).

Theorem 3.1.4

H ′n(x) = 2nHn−1(x),

where n ∈ R and n ≥ 1.
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Proof :

Differentiating the generating function, given in Definition 3.1.1, with respect to x gives

2t
∞∑
n=0

Hn(x)tn

n!
=
∞∑
n=0

H ′n(x)tn

n!
.

Equating coefficients of tn on both sides gives us

2Hn−1(x)

(n− 1)!
=
H ′n(x)

n!

from which it follows that

2nHn−1(x) = H ′n(x),

thus proving the result.

The Hermite differential equation (see [42], p188) is as follows:

y′′ − 2xy′ + 2ny = 0,

where y = Hn.

3.2 Laguerre Polynomials

Laguerre polynomials, denoted Lαn(x), are orthogonal with respect to the gamma dis-

tribution, exx−α. Already, we notice that the Laguerre polynomial has a parameter α,

unlike the Hermite polynomial.

The following definition may be found in [2] and [42].

Definition 3.2.1 The Laguerre polynomial is defined as

Lαn(x) =
(α + 1)n

n!

n∑
k=0

(−n)kx
k

(α + 1)kk!
,

where α > −1 and n = 0, 1, 2, ... .

One can see that the right hand side of the equation is a 1F1 hypergeometric series, that
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is, Lαn(x) = (α+1)n
n! 1F1(−n, α + 1;x).

The Rodrigues formula for the Laguerre polynomial can be found in ([42], p204).

Theorem 3.2.1 The Rodrigues formula for Laguerre polynomials is

Lαn(x) =
x−αex

n!

dn

dxn
[e−xxn+α],

where α > −1 and n = 1, 2, 3, ... .

Proof :

We use Leibnitz’s rule for the nth derivative of a product, which is given by

dn

dxn
{f(x)g(x)} =

n∑
k=0

(
n

k

)[
dk

dxk
f(x)

] [
dn−k

dxn−k
g(x)

]
.

Applying this rule to the right hand side of the Rodrigues formula and letting D = d
dx

,

gives

x−αex

n!

dn

dxn
[e−xxn+α] =

x−αex

n!

n∑
k=0

(
n

k

)
Dk(e−x)Dn−k(xn+α)

=
x−αex

n!

n∑
k=0

(
n

k

)
(−1)ke−x

(1 + α)n
(1 + α)k

xk+α

=
n∑
k=0

(−x)k(1 + α)n
(n− k)!k!(1 + α)k

=
(1 + α)n

n!

n∑
k=0

n!(−1)k

(n− k)!

1

(1 + α)k

xk

k!

=
(1 + α)n

n!

n∑
k=0

(−n)k
(1 + α)k

xk

k!

= Lαn(x),

as required.

Below is the orthogonality property of the Laguerre polynomial ([44], p301), along with

a brief proof. It can be seen that the Laguerre polynomial is orthogonal on the real line

with respect to the gamma distribution.
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Theorem 3.2.2 ∫ α

n

Lαn(x)Lαm(x)e−xxα =
Γ(α + n+ 1)

n!
δnm

for α > −1 and n,m = 0, 1, 2, ... .

Proof :

We consider three cases:

(1) The first case is when m < n. Begin by using the Rodrigues formula for the

Laguerre polynomial, given in Theorem 3.2.1. Hence we have

∫ ∞
0

Lαn(x)Lαm(x)xαe−x dx

=
1

n!

∫ ∞
0

Lαm(x)

[
dn

dxn
e−xxn+α

]
dx

=
1

n!

[
Lαm(x)

dn−1

dxn−1
e−xxn+α

]∞
0

− 1

n!

∫ ∞
0

[
dn−1

dxn
e−xxn+α

] [
d

dx
Lαm(x)

]
dx,

The first term is zero. We integrate by parts n times. This gives the value zero due

to the fact that Lαm(x) is a polynomial of degree m and so the derivative vanishes

because m < n.

(2) The second case is when m > n. To do this, we reverse the order of the argument

in case 1.

(3) The third case takes m = n. When m = n, we observe that dn

dxn
Lαn(x) = (−1)n.

Then

∫ ∞
0

(Lαn(x))2 xαe−xdx =
1

n!

∫ ∞
0

Lαn(x)

[
dn

dxn
e−xxn+α

]
dx

and integration by parts n times gives

∫ ∞
0

(Lαn(x))2 xαe−xdx =
(−1)n

n!

∫ ∞
0

e−xxn+α
[
dn

dxn
Lαn(x)

]
dx

=
(−1)n

n!
(−1)n

∫ ∞
0

e−xxn+αdx
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=
1

n!
Γ(n+ α + 1),

which proves the result.

The definition given below is that of the generating function of the Laguerre polynomial.

This definition can be found in [[32], p99] and is used in the proof of the following theorem.

Definition 3.2.2 The generating function of the Laguerre polynomial is given

as

1

(1− t)α+1
e

−xt
1−t =

∞∑
n=0

Lαn(x)tn,

where |t| < 1.

The next theorem gives the three-term recurrence relation. The proof can be found in

([2], p283).

Theorem 3.2.3 The Laguerre polynomial satisfies the following three- term recurrence

relation

(n+ 1)Lαn+1(x) = (2n+ α + 1− x)Lαn(x)− (n+ α)Lαn−1(x),

when α > −1 and n = 1, 2, 3, ...

Proof :

We use the generating function for a Laguerre polynomial given by

1

(1− t)α+1
e

−xt
1−t =

∞∑
n=0

Lαn(x)tn,

where |t| < 1.

Next, differentiate both sides of the generating function with respect to t to get

− 1

1− t
x

(1− t)2
e

−xt
1−t +

1

(1− t)2
e

−xt
1−t =

∞∑
n=0

nLαn(x)tn−1.
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Once again, using the generating function gives

− x

(1− t)2
∞∑
n=0

Lαn(x)tn +
1

(1− t)

∞∑
n=0

Lαn(x)tn =
∞∑
n=0

nLαn(x)tn−1.

Now, multiply both sides by (1− t)2,

−x
∞∑
n=0

Lαn(x)tn + (1− t)
∞∑
n=0

Lαn(x)tn = (1− 2t+ t2)
∞∑
n=0

nLαn(x)tn−1.

Lastly, equate coefficients of tn so that one has

(n+ 1)Lαn(x) = (2n+ 1− x)Lαn − nLn(x)tn−1

which proves the result.

There are a few useful relationships between the Laguerre and Hermite polynomials,

which can also be found in ([12], p284).

• H2m(x) = (−1)m22mm!L
− 1

2
m (x2), x ∈ R,m = 0, 1, 2, ...

• H2m+1(x) = (−1)m22m+1m!xL
1
2
m(x2), x ∈ R,m = 0, 1, 2, ...

The Laguerre differential equation from ([12], p149) is given below:

xy′′ + (α + 1− x)y′ + ny = 0,

where y = Lαn(x). It should be noted that the Laguerre polynomial is the solution to the

Laguerre second-order differential equation.

3.3 Jacobi Polynomials

As the Jacobi polynomial is the central topic of study in this paper, this section shall be

slightly more detailed than previous sections.

The Jacobi polynomial is an orthogonal polynomial that has two parameters, usually
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denoted by α and β. The formal definition can be found below and is given in reference

texts ([4], p7), ([42], p143) and ([34], p218).

Definition 3.3.1 The Jacobi polynomials of degree n are defined by

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β

dn

dxn
[
(1− x)n+α(1 + x)n+β

]
where α, β > −1 and −1 < x < 1.

Note:

1. When α = β = 0, we have the Legendre polynomial.

2. When α = β = 1
2
, we have the Chebyshev polynomials of the second kind.

3. When α = β = −1
2
, we have the Chebyshev polynomials of the first kind.

4. When α = β, we have the Gegenbauer polynomial.

Jacobi polynomials can also be defined via a hypergeometric series:

P (α,β)
n (x) =

(α + 1)n
n!

2F1

(
−n, 1 + α + β + n;α + 1;

1− x
2

)
. (3.12)

Orthogonality is given by the following theorem and is found, along with the proof in

([42], p259).

Theorem 3.3.1 The orthogonality property of the Jacobi polynomials is given as follows

∫ 1

−1
(1−x)α(1+x)βP (α,β)

n (x)P (α,β)
m (x)dx = 2α+β+1 Γ(n+ α + 1)Γ(n+ β + 1)

Γ(n+ α + β + 1)(α + β + 2n+ 1)n!
δnm,

where α, β > −1 and n,m ≥ 0.

Proof :

Consider the case when m = n. We also use the identity given in Equation (3.12) along

with the definition of the beta function. The following is then calculated.

∫ 1

−1
(1− x)α(1 + x)β{Pα,β

n (x)}2dx =
(−1)n

2nn!

∫ 1

−1
P (α,β)
n (x)

[
(1− x)n+α(1 + x)n+β

]
dx
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=
(−1)n

2nn!

∫ 1

−1
Pα,β
n (x)(1− x)n+α(1 + x)n+βdx

=
(n+ α + β + 1)n

22nn!

∫ 1

−1
(1− x)n+α(1 + x)n+βdx

=
Γ(2n+ α + β + 1)

Γ(n+ α + β + 1)22nn!

∫ 1

−1
(1− x)n+α(1 + x)n+βdx.

We then use the substitution 1− x = 2t then dx = −2dt. This gives

∫ 1

−1
(1− x)n+α(1 + x)n+βdx =

∫ 1

0

(2t)n+α(2− 2t)n+β2dt

= 22n+α+β+1

∫ 1

0

tn+α(1− t)n+βdt

= B(n+ α + 1, n+ β + 1)22n+α+β+1

= 22n+α+β+1Γ(n+ α + 1)Γ(n+ β + 1)

Γ(2n+ α + β + 2)

.

Now, if we had the case where m 6= n, we may choose m to be the larger (or interchange

n and m) and conclude that

∫ 1

−1
(1− x)α(1 + x)βP (α,β)

n (x)P (α,β)
m (x) = 0.

This occurs as P
(α,β)
n (x), on the right hand side of the orthogonality condition, is a

polynomial of degree n.

Thus proving the result.

Note that when α = β = 0, we have the Legendre case for orthogonality.

An important property of the Jacobi polynomial is that the polynomial is only orthogo-

nal with respect to the weight function w(x) = (1−x)α(1+x)β when α > −1 and β > −1.

Below, we have the three-term recurrence relation for the Jacobi polynomial given in

([12], p153) as well as ([32], p84), in which the proof can be found.

Theorem 3.3.2 The Jacobi polynomials have the following three-term recurrence rela-
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tion for n = 2, 3, 4...:

2n(n+α+β)(2n+α+β−2)P (α,β)
n (x) = (2n+α+β−1)[(2n+α+β)(2n+α+β−2)x+α2−β2]

×P (α,β)
n−1 (x)− 2(n+ α− 1)(n+ β − 1)(2n+ α + β)P

(α,β)
n−2 (x).

The recurrence relation can be useful in estimating the Jacobi polynomial at the x-

coordinate (abscissa) of a point in the interval [−1, 1].

The Rodrigues formula for the Jacobi polynomial is found in ([42], p257) and is provided

below.

Theorem 3.3.3 The Rodrigues formula for the Jacobi polynomials is of the form

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β

dn

dxn
{(1− x)α(1 + x)β(1− x2)n},

for n ≥ 0 and α, β ∈ R.

Proof :

The Jacobi polynomial can be written in the form

P (α,β)
n (x) =

n∑
k=0

(1 + α)n(1 + β)n(x− 1)k(x+ 1)n−k

2nk!(n− k)!(1 + α)k(1 + β)n−k
. (3.13)

Now, if D = d
dx

then for non-negative integrals f and g,

Dfxg+α = (g + α)(g + α− 1)... (g + α− f + 1)xg−f+α

=
(1 + α)gx

g−f+α

(1 + α)g−f
.

From the above equation, we obtain the following identities,

Dk(x+ 1)n+β =
(1 + β)n(x+ 1)n−k+β

(1 + β)n−k
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and

Dn−k(x− 1)n+α =
(1 + α)n(x− 1)k+α

(1 + α)k
.

Hence, Equation (3.13) can be put into the form

P (α,β)
n (x) =

(x− 1)−α(x+ 1)−β

2nn!
×

n∑
k=0

n!

k!(n− k)!
[Dn−k(x− 1)n+α][Dk(x+ 1)n+β].

Now use Leibnitz’ rule for the derivative of a product, given below as

dn

dxn
{f(x)g(x)} =

n∑
k=0

(
n

k

)[
dk

dxk
f(x)

] [
dn−k

dxn−k
g(x)

]
,

which yields the Rodrigues formula

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β

dn

dxn
{(1− x)α(1 + x)β(1− x2)n}.

A consequence of the Rodrigues’ formula is the symmetry property of the Jacobi poly-

nomial.

To show this, we must take the nth order derivative of the Rodrigues’ formula and expand

it to get the identity

P (α,β)
n (x) =

1

2n

n∑
k=0

(
n+ α

k

)(
n+ β

n− k

)
(x− 1)n−k(x+ 1)k.

We then replace x with −x in the above formula to obtain

P (α,β)
n (−x) = −P (β,α)

n (x). (3.14)

From calculus, we know that

• If y = f(x) is an even function then f(−x) = f(x)

• If y = f(x) is an odd function then f(−x) = −f(x).

Further reading on odd and even functions can be found in ([19], p26).
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Hence, we can conclude that the Jacobi polynomial is an odd or even function depending

on the degree, n, of the polynomial.

The Jacobi polynomial is the solution the following second-order, homogeneous equation;

(1− x2)y′′ + [β − α− x(α + β + 2)]y′ + n(n+ α + β + 1)y = 0,

where y = P
(α,β)
n (x). The above equation is also known as the Jacobi differential equation,

([42], p258).

One can use any mathematical programming software (such as Maple, Matlab or Math-

ematica) to obtain the Jacobi polynomial of nth degree. Calculating the polynomial by

hand is harder and prone to error, therefore using a program is preferred.

For example, if one wanted to work out the 3rd Jacobi polynomial (i.e when n=3), in

Wolfram Mathematica 9, one would write the following code:

JacobiP[3, a, b, z],

and receive the following output:

1

6
(1+a)(2+a)(3+a)+

1

4
(2+a)(3+a)(4+a+b)(−1+z)+

1

8
(3+a)(4+a+b)(5+a+b)(−1+z)2

+
1

48
(4 + a+ b)(5 + a+ b)(6 + a+ b)(−1 + z)3.

The above polynomial is the resulting Jacobi polynomial of degree 3. Mathematica has a

built-in function, JacobiP to calculate the polynomial which is most useful. We can plot

the Jacobi polynomial of degee 3 where α = 5 and β = 5 as follows

Plot[JacobiP[3, 5, 5,x], x, -1,1]
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We see that in the interval [−1, 1] the graph cuts the x-axis at three points, hence implying

the polynomial has 3 roots, that is 3 zeros.
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Chapter 4

Zeros of the Jacobi Polynomial

The problem of determining the zeros (roots) of a polynomial dates back to approxi-

mately 1700 B.C. Evidence of this is provided in the Yale Babylon collection in which a

cuneiform (writing system that was used in ancient Middle East) table dating to roughly

the same time period is stored. This table gives a 60-base number equivalent to the

approximation of the number
√

2, ([10], p46).

In general, a polynomial of degree n has at most n distinct complex zeros ([53], p39). This

concept can be extended to the set of orthogonal polynomials. The theorem given below

is that of the zeros of orthogonal polynomials (and therefore of the Jacobi polynomial).

The theorem and its proof is provided by ([42], p149) and ([2], p253).

Theorem 4.0.1 If the sequence of real polynomials {pn(x)}∞n=0 is orthogonal with respect

to a weight function w(x) > 0 over the interval [a, b ], the zeros of {pn(x)}∞n=0 are distinct

and all lie in the interval [a,b].

Proof :

Suppose that
∫ b
a
pn(x)xkw(x)dx = 0 for all k = 0, 1, ..., (n − 1). Since xk forms a simple

set, there exists constant b(k,m) such that pm(x) =
∑m

k=0 b(k,m). This result is derived

from the well known result which states that any polynomial of degree ≤ n can be ex-

pressed as a linear combination of the elements of that simple set.
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We continute by letting m < n then

∫ b

a

pn(x)pm(x)w(x)dx =
m∑
k=0

∫ b

a

pn(x)xkw(x)dx

= 0.

The result follows as m (and hence) k are < n.

If m > n then we interchange m and n in the above argument.

Now,we suppose that
∫ b
a
pn(x)xkw(x)dx = 0 where n 6= m. Then pn(x) forms a simple

set, so that there exist constants a(m, k) such that xk =
∑k

m=0 a(m,n)pm(x). For any k

in the range 0 ≤ k < n we have

∫ b

a

pn(x)xkw(x)dx =
∞∑
m=0

a(m, k)

∫ b

a

pn(x)pm(x)w(x)dx

= 0 since m ≤ k < n so m 6= n,

thus proving the result.

There are many varied methods used to calculate the zeros of orthogonal polynomials.

Some of these methods include numerical analysis techniques. This includes the imple-

mentation of the Newton-Raphson method as shown in ([33], p230). Further reading

on numerical analysis of polynomials can be found in ([10], p45-p100). The asymptotic

approximation of zeros is another method that deserves mention. This is implemented in

great detail for orthogonal polynomials in [5] and for Jacobi polynomials in ([35], p195-

p234) and ([38], p98-p113).

A concept related to the calculation of the zeros of Jacobi polynomials is that of Gaussian

quadrature. Quadrature is the method of estimating the definite integral of a function.

This is usually stated as a sum of the weighted values of a function at specified points,

evaluated within the domain of integration. The definition of quadrature from [30] is

given below.
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Definition 4.0.1 An n-point quadrature rule is given below:

∫ b

a

f(x)dx ∼=
n∑
k=1

wkf(xk),

for a set of nodes xk and weights, denoted wk.

However, a quadrature rule is only termed as ‘Gaussian’ if the following equation holds

true for polynomials of degree ≤ 2n− 1:

∫ b

a

w(x)f(x)dx ∼=
n∑
k=1

wkf(xk).

That is for all polynomials of degree ≤ 2n − 1, the integral on the left hand side of the

equation exactly equals the expression given on the right hand side of the equation [48].

Therefore, it is sensible to note that the Gauss-Jacobi quadrature rule is associated with

the Jacobi weight function, w(x) = (1 + x)α(1− x)β and the interval [−1, 1].

When considering the Gaussian quadratures, one can see that the concept lets one have

the freedom to pick the weight functions and also the nodes at which the function will

be approximated. This allows higher order polynomials to be integrated. By choosing

the correct weight, one can make the integral exact for a class of integrands associated

with that weight. It must be noted that the weights do not have to be simple numbers.

The Fundamental Theorem of Gaussian quadratures essentially says that the nodes of

the Gaussian quadrature along with the weight function w(x) in the interval (a, b) are

exactly the zeros of the orthogonal polynomial pn(x) for the same weight function and

interval [40].

Gaussian quadrature will only produce exact and accurate results if the function is well

approximated by a polynomial function within the range [−1, 1]. It is logical, therefore,

to assume that the Gaussian quadrature will not work for singularities. Also, Gaussian

quadrature can be derived for intervals [a, b] but these intervals will have to be mapped

to the interval [−1, 1].

However, the fastest and most elegant way to calculate the zeros of the Jacobi polyno-
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mial is by using mathematical programs such as Matlab, Mathematica and Maple. These

programs are only a few of the type available to help solve mathematical problems. Pro-

grams such as Mathematica have built-in functions to compute the zeros of polynomials.

In the example below, the input is coded to calculate the zeros of the Jacobi function of

order 10 with α = 5 and β = 5. This code should return 10 roots.

N[x/.NSolve[JacobiP[10,5,5,x]=0,x],],

gives the output

{−0.838508,−0.688808,−0.512678,−0.316109,−0.106808, 0.106808,

0.316109, 0.512678, 0.688808, 0.838508},

i.e. 10 roots as required.

4.1 Properties of Zeros of Jacobi Polynomials

This section concentrates on the interlacing property of zeros. Much of the material

considered for this section may be found in [16] which investigated the constraints of the

interlacing property on the zeros of the Jacobi polynomials where α and β differ.

Before proceeding with the analysis of the results of this paper, a few theorems and

identities need to be introduced. These are essential in the further understanding of the

interlacing property and its effects on the zeros of the Jacobi polynomial.

The theorem given below can be found in [[2], p253]

Theorem 4.1.1 Given that {Pn(x)} is a sequence of orthogonal polynomials with respect

to the weight function, dα(x) on the interval [a, b]. Then the Jacobi polynomial, Pn(x)

has n simple zeros in the closed interval [a, b].

Proof:
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We are given that Jacobi polynomial Pn(x) has m distinct zeros x1, x2, ..., xm in the closed

interval [a, b] that have odd order. Then we have

Q(x) = Pn(x)(x− x1)(x− x2)...(x− xm) ≥ 0,

for x in [a, b]. If m < n, then by the property of orthogonality

∫ b

a

Q(x)dx = 0.

The inequality Pn(x)(x−x1)(x−x2)...(x−xm) ≥ 0 implies that the integral
∫ b
a
Q(x)dx = 0

should only be positive. This results in a contradiction which implies that m = n and

that the zeros of the Jacobi polynomial Pn(x) are simple.

The following theorem and its proof is provided by([2], p253).

Theorem 4.1.2 The zeros of the polynomials pn(x) and pn+1(x) separate each other

where n ∈ R.

Proof:

The proof requires the following result which can be found as a corollary in [[4], p247].

p′n(x)pn(x)− pn(x)p′n(x) > 0,

for all x.

Using the result,

p′n(x)pn(x)− pn(x)p′n(x) < 0.

Let xk,n+1 be a zero of the Jacobi polynomial pn(x), we observe that

p′n(xk,n+1)p
′
n+1(xk,n+1) > 0.

Owing to the simplicity of the zeros, p′n(xk,n+1) and p′n+1(xk,n+1) have different signs. As

the Jacobi polynomial, pn(x) is continuous, we know it has a zero between xk,n+1 and

xk+1,n+1 for k = 1, 2, ..., n. This proves the result.
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Furthermore, from ([2], p254) and ([12], p253), we have another property of the zeros of

orthogonal polynomials. The proof can be found in the relevant reference texts. Inter-

estingly, the proof of the theorem below involves the use of Gaussian quadrature and is

an extension of Theorem 4.1.1.

Theorem 4.1.3 If m < n, then between any two zeros of pm(x) there is a zero of pn(x).

Proof:

We now suppose that there is no zero between xk,m and xk+1,m of pn(x). Consider the

polynomial given below

r(x) =
pm(x)

(x− xk,m)(x− xk+1,m)
.

It is observed that r(x)pm(x) ≥ 0 where x 6∈ (xk,m, xk+1,m). Using the Gaussian quadra-

ture formula given in Theorem 4.0.1, we obtain

∫ b

a

pm(x)dα(x) =
n∑
j=1

g(xj,n)p(xj,n).

Since g(xj,n)p(xj,n) ≥ 0 and exists for all j = 1, ..., n, the sum on the left hand side is

positive. However, due to orthogonality properties, the integral is equal to 0. This is a

contradiction and hence the result is proved.

Consider a sequence of orthogonal polynomials pn(x)∞n=0 where the zeros are real and

simple [16]. Let the zeros of the polynomial pn(x) be denoted by

xi,n, where i = 1, ..., n.

Suppose that the zeros of pk(x) where k < n are

x1,k < x2,k < ... < xk,k,

and that

x1,k−1 < x2,k−1 < ... < xk−1,k−1,

are the zeros of polynomial pk−1(x).
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The zeros are clearly decreasing over the sequence of polynomials and by Theorem 4.1.2

for k < n, it follows that between any two consecutive zeros of pk(x) there is a zero of

Pk−1(x), that is

x1,k < x1,k−1 < x2,k < x2,k−1 < ... < xk−1,k−1 < xk,k.

This is generally known as the interlacing of zeros property. This property can be ex-

tended to the zeros of the Jacobi polynomial, see [14].

A lemma provided by the paper ([16], p321) is used repeatedly throughout the proofs of

the results.

It should be noted that in many instances, the notation used in [16] is p
(α,β)
n where it

is understood that the variable is x. This notation is retained in the statment of the

theorems. However, in the proofs of theorems p
(α,β)
n (x) will be used.

Lemma 4.1.1 We let {pn(x)}∞n be a sequence of orthogonal polynomials on the open

interval (c, d). The interval can be finite or infinite in nature. Let fn−1 be a polynomial

of degree n− 1 that satisfies the equation

fn−1(x) = an(x)pn+1(x)− (x− An)bn(x)pn(x) (4.1)

for each n ∈ N, some constant An, and some functions of x, an(x) and bn(x) with

bn(x) 6= 0 for x ∈ (c, d). Then, for each n ∈ N the following hold true:

(i) The zeros of fn−1 are all real and simple. The zeros, together with the point An

interlace with the zeros of the polynomial pn+1 if fn−1 and pn+1 are co-prime.

(ii) If fn−1 and pn+1 are not co-prime, then at x = An, a common zero is located and

the n− 1 zeros of fn−1 interlace with the remaining n zeros of pn+1.

Proof:

Let w1 < w2 < ... < wn+1 denote the zeros of pn+1.
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(i) Since pn and pn+1 are always co-prime and hence, by assumption, bn 6= 0 for all

x ∈ (c, d), and pn+1 and fn−1 are co-prime, it is implied that from (3.12) that

An 6= wk for any k ∈ 1, 2, ..., n+ 1. We now evaluate (3.12) at the zeros wk and

wk+1 to obtain

fn−1(wk)gn−1(w)k+1

pn(wk)pn(wk+1)
= (wk − An)(wk+1 − An)bn(wk)bn(wk+1), (4.2)

for each k ∈ 1, 2, ..., n. Since wk and wk+1 ∈ (c, d) while bn keeps constant in terms

of signage in the interval (c, d). Therefore, the right hand side of (4.2) is positive

iff An 6∈ (wk, wk+1). As the zeros of pn+1 and pn are interlacing, fn−1 has a different

sign at consecutive zeros of pn+1 and hence, has an odd number of zeros in each

interval (wk, wk+1) where k ∈ 1, 2, ..., n, apart from one interval that may contain

An. We then use the Intermediate Value Theorem to deduce that for each n ∈ N

the n − 1 simple zeros of fn−1, together with An, interlace with the n + 1 zeros of

pn+1.

(ii) If pn+1 and fn−1 have common zeros, it follows from (3.12)that there can only be a

single common zero at x = An as pn and pn+1 are co-prime. For x 6= An, one can

rewrite (3.12) as

Fn−2(x) = an(x)pn(x)− bn(x)pn(x), (4.3)

where (x − An)Fn−2(x) = fn−1(x) and (x − An)pn(x) = pn+1(x). Let vj where

j = 1, 2, ..., n and v1 < v2 < ... < vn be the n non-common zeros of pn+1. At most

one interval of the form (vk, vk+1) can contain the point An where k ∈ {1, ..., n−1}.

We evaluate (4.3) at vk and vk+1 for each k ∈ {1, ..., n − 1} such that the point

An 6∈ (vk, vk+1) to obtain

Fn−2(vk)Fn−2(vk+1) = bn(vkbn(vk+1)pn(vk)pn(vk+1) < 0.

It follows that Fn−2 has an odd number of zeros in each interval (vk, vk+1) that does

not contain An and for k ∈ {1, ..., n − 1}. Since there are n − 2 of these intervals

and the degree of Fn−2 is n − 2, there are at most n − 2 such intervals. We can

then deduce that An = wj and that the zeros of Fn−2 together with the point An
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interlace with the n zeros of pn. Hence we have our result from the result of Fn−2

and Pn.

We again consider the Equation (3.12) below which expresses the Jacobi polynomial in

terms of the 2F1 hypergeometric polynomial, that is

P (α,β)
n (x) =

(α + 1)n
n!

2F1

(
−n, n+ α + β + 1;α + 1;

1− x
2

)
.

The identities given below are extensions of the contiguous relations of the 2F1 hyperge-

ometric formula. They are also referred to as mixed recurrence relations. They can be

found in ([42], p50-p53). A summary of the equations can be found in ([42], p71).

Note that for the following expressions, we represent 2F1(−n, b; c; z) by Fn, 2F1(−n −

1, b + 1; c; z) by Fn+1(b+), 2F1(−n + 1, b + 1; c− 3; z) by Fn−1(b+, c− 3) and so on. We

then have the following identities which will aid in the proof of subsequent theorems in

this section.

(A)
(

b(c+n)
(b+n)(b+n+1)

− z
)
Fn = b(c+n)

(b+n)(b+n+1)
Fn+1(b+) + n(b−c)z

c(b+n)
Fn−1(c+)

(B)
(

c)
b+n+1

− z
)
Fn = c

(b+n+1)
Fn+1(b+) + (b−c)nz2

c(c+1)
Fn−1(b+, c+ 2)

(C)
(

c(c+1)
(b+1)(c+n+1)

− z
)
Fn = c+c2−bnz+cnz

(b+1)(c+n+1)
Fn+1(b+) + n(b−c)(b+n+1)z3

c(c+1)(c+2)
Fn−1(b+ 2, c+ 3)

(D)
(

1− (b+1)(2+c+2n)−cn
c(c+2)

z
)
Fn =

(
1− 2(b−c)n

c(c+2)
z − n(b−c)(1+b+n)

c(c+1)(c+2)
z2
)
Fn+1(b+)

+ a
c2(c+1)2(c+2)2(c+3)

Fn−1(b+ 3)(c+ 4), where a = (b+ 1)(b+ 2)(b− c)(c+ n+ 1)(c+

n+ 2)(1 + b+ n)z4n.

The first theorem of [16] considers the results obtained when interlacing occurs between

the zeros of Jacobi polynomials of different sequences. These polynomials have degrees

that differ by two.

Theorem 4.1.4 (i) If the Jacobi polynomials P
(α+t,β)
n−1 and P

(α,β)
n+1 are co-prime then

(a) the zeros of the polynomial P
(α+t,β)
n−1 and β2−α2+t(β−α+2n(n+β+1))

(2n+α+β+t)(2n+α+β+2)
interlace with

the zeros of P
(α,β)
n+1 when t = 0, 1, 2;
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(b) the zeros of the polynomial P
(α+3,β)
n−1 and n(n+α+β+2)+(α+2)(n−α+β)

(n+α+2)(n+α+β+2)
interlace with

the zeros of P
(α,β)
n+1 ;

(c) the zeros of the polynomial P
(α+4,β)
n−1 and 2n(n+α+β+3)+(α+3)(β−α)

2n(n+α+β+3)+(α+3)(α+β+2)
interlace with

the zeros of P
(α,β)
n+1 .

(ii) If the Jacobi polynomials P
(α+t,β)
n−1 and P

(α,β)
n+1 are not co-prime, then these polynomi-

als have only one common zero. This zero has been located at the respective points

established in (i)(a) through to (i)(c). Hence, the (n-1) zeros of P
(α+t,β)
n−1 interlace

with the remaining n zeros of P
(α,β)
n+1 .

As the proof is extremely long, we prove each section separately.

Proof (i)(a):

To prove that the zeros of P
(α+t,β)
n−1 (x) and β2−α2+t(β−α+2n(n+β+1))

(2n+α+β+t)(2n+α+β+2)
interlace with the zeros

of P
(α,β)(x)
n+1 , we must use the three-term recurrence relation of the Jacobi polynomial,

given in Theorem 3.3.2, to get an equation of the form shown in (4.1) so that the results

of Lemma 4.1.1 can be implemented.

When t = 0, it is given that the polynomials P
(α,β)
n−1 (x) and P

(α,β)
n+1 (x) are co-prime (i.e. have

no common zeros). We need to prove that the zeros of P
(α,β)
n−1 (x) and β2−α2

(2n+α+β)(2n+α+β+2)

interlace with the zeros of P
(α,β)(x)
n+1 . When t = 0, β2−α2

(2n+α+β)(2n+α+β+2)
is constant and cor-

responds to Anin (4.1).

We then write the alternate form of the three-term recurrence relation of the Jacobi

polynomial found in [47]

2(n+ 1)(n+ α + β + 1)

(2n+ α + β + 1)(2n+ α + β + 2)
P

(α,β)
n+1 (x) =

(
x− β2 − α2

(2n+ α + β)(2n+ α + β + 2)

)
P (α,β)
n (x)

− 2(n+ α)(n+ β)

(2n+ α + β)(2n+ α + β + 1)
P

(α,β)
n−1 (x),

in an equation of the form given in (4.1) where An = β2−α2

(2n+α+β)(2n+α+β+2)
. Now rearranging

49



the terms in the above difference equation, we obtain

2(n+ α)(n+ β)

(2n+ α + β)(2n+ α + β + 1)
P

(α,β)
n−1 (x) =

(
2(n+ 1)(n+ α + β + 1)

(2n+ α + β + 1)(2n+ α + β + 2)
P

(α,β(x))
n+1

)

−
(
x− β2 − α2

(2n+ α + β)(2n+ α + β + 2)

)
P (α,β(x))
n .

Then comparing this expression with Lemma 4.1.1, we see that the zeros of P
(α,β)
n−1 (x) and

β2−α2

(2n+α+β)(2n+α+β+2)
interlace with the zeros of P

(α,β)
n+1 (x). As P

(α,β)
n−1 (x) and P

(α,β)
n+1 (x) are

co-prime, the conditions for Lemma 4.1.1 are satisfied.

For t = 1, we must use identity (A) from the listed identities following Lemma 4.1.1. We

want (A) to resemble the three term recurrence relation, to be able to apply the results

of Lemma 4.1.1.

It must be proved that the zeros of P
(α+1,β)(x)
n−1 and β2−α2+(β−α+2n(n+β+1))

(2n+α+β+1)(2n+α+β+2)
interlace with

the zeros of P
(α,β)
n+1 (x).

We begin by looking at the first term in identity (A),
(

b(c+n)
(b+n)(b+n+1)

− z
)
Fn. We then let

b = α + β + n+ 1, c = α + 1 and z = 1−x
2

. We obtain the expression

(
2(α + β + n+ 1)(α + n+ 1)

(α + β + 2n+ 1)(α + β + 2n+ 2)
− 1

2
+
x

2

)
Fn,

which, when reduced, yields

1

2

(
x− β2 − α2 + (β − α + 2n(α + β + 1)

(α + β + 2n+ 1)(α + β + 2n+ 2)

)
Fn.

We can replace the Fn with 2F1(−n, b; c; z). Then use the identity given in Equation

(3.12) to get a final expression for the first term, namely

1

2

(
x− β2 − α2 + (β − α + 2n(α + β + 1)

(α + β + 2n+ 1)(α + β + 2n+ 2)

)
n!

(α + 1)n
P (α,β)
n (x). (4.4)
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The second term of identity (A),
(

b(c+n)
(b+n)(b+n+1

)
Fn+1(b+) is now considered. Keeping the

following values, b = α + β + n+ 1, c = α + 1 and z = 1−x
2

, the second term becomes

(
(α + β + n+ 1)(α + n+ 1)

(α + β + 2n+ 1)(α + β + 2n+ 2)

)
Fn+1(b+),

where Fn+1(b+) = 2F1

(
−n− 1, α + β + n+ 2;α + 1; 1−x

2

)
. Using the identity from

(3.12), the second term can be simplified to

(
α2 + 2α + 2αn+ αβ + β + βn+ 2n+ n2 + 1

(α + β + 2n+ 1)(α + β + 2n+ 2)

)
(n+ 1)!

(α + 1)n+1

P
(α,β)
n+1 (x). (4.5)

Finally, the last term of identity (A),
(
n(b−c)z
c(b+n)

)
Fn−1(c+), is evaluated using the same

values previously assigned to b, c, and z. Therefore, the third term of (A) will become

(
n(β + n)(1−x

2
)

(α + 1)(α + β + 2n+ 1)

)
Fn−1(c+).

Recall that Fn−1(c+) = 2F1

(
−n+ 1, α + β + n+ 1;α + 2; 1−x

2

)
. Applying the identity

in (3.12) to the expression, the final term will be

(
n(β + n)1−x

2

(α + 1)(α + β + 2n+ 1)

)
(n− 1)!

(α + 2)n−1
P

(α+1,β)
n−1 (x). (4.6)

When we put the reduced terms from (4.3), (4.4) and (4.5) together again and simplify,

we get the equation given below.

P
(α+1,β)
n−1 (x) =

n+ 1

(α + 1)(α + n)(α + n+ 1)(1− x)(α + β + n+ 1)

×
(
α2 + 2α + 2αn+ αβ + β + βn+ 2n+ n2 + 1

α + β + 2n+ 2

)
P

(α,β)
n+1 (x)

− P
(α,β)
n (x)

(α + n)(α + β + n+ 1)(1− x)

(
x− β2 − α2 + (β − α + 2n(n+ β + 1))

(2n+ α + β + 2)

)
.

The above equation is of the form required by Lemma 4.1.1. That is, we have

fn−1 = P
(α+1,β)
n−1 (x),

an(x) = n+1
(α+n)2(1−x)(α+β+2n+2)

,

An =
(
β2−α2+(β−α+2n(n+β+1))

(2n+α+β+2)

)
and bn(x) = α+β+2n+1

(α+n)(α+β+n+1)(1−x) .

51



Since we have reduced the original mixed recurrence relation, (A), to the form necessary

for Lemma 4.1.1 and all conditions stated by said lemma are satisfied, we can assume

that the zeros of the polynomial P
(α+t,β)
n−1 (x) and β2−α2+t(β−α+2n(n+β+1))

(2n+α+β+t)(2n+α+β+2)
interlace with the

zeros of P
(α,β)
n+1 (x) when t = 1.

For t = 2, mixed recurrence (B) is utilised. It must be proved that the zeros of P
(α+t,β)
n−1 (x)

and β2−α2+t(β−α+2n(n+β+1))
(2n+α+β+t)(2n+α+β+2)

interlace with the zeros of P
(α,β)
n+1 (x) when t = 2.

Start with the first term of the recurrence relation,

(
c

b+ n+ 1
− z
)
Fn.

Let b = α + β + n+ 1, c = α + 1 and z = 1−x
2
.

Proceed to substitute these values into the first term, which yields

(
α + 1

α + β + 2n+ 2
− 1− x

2

)
Fn,

expanding and simplifying the expression, as well as letting Fn = 2F1(−n, α + β + n +

1;α + 1; 1−x
2

) gives the equation

1

2

(
x− β + 2n− α

2(α + β + 2n+ 2)

)
Fn.

By applying identity (3.12) to Fn = 2F1(−n, α+ β + n+ 1;α+ 1; 1−x
2

), the first term of

mixed recurrence (B) is reduced to

1

2

(
x− β + 2n− α

2(α + β + 2n+ 2)

)
n!

(α + 1)n
P (α,β)
n (x). (4.7)

The second term of (B) is (
c

b+ n+ 1

)
Fn+1(b+).

Using the same values for b, c, and z as for the first term, the second term becomes

(
α + 1

α + β + 2n+ 2

)
Fn+1(b+).
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We know that Fn+1(b+) = 2F1

(
−n− 1, α + β + n+ 2;α + 1; 1−x

2

)
.Using Equation (3.12),

the second term can finally be written in the form

(
α + 1

α + β + 2n+ 2

)
(n+ 1)!

(α + 1)n
P

(α,β)
n+1 (x). (4.8)

Now, evaluate the last term of mixed recurrence relation (B):

(b− c)z2n
c(c+ 1)

Fn−1(b+, c+ 2).

Once again, let b = α + β + n + 1, c = α + 1 and z = 1−x
2

. With the new values of b, c,

and z, the third term becomes

(
n(β + n)(1− x)2

4(x+ 2)(x+ 1)

)
Fn−1(b+, c+ 2).

Replace Fn−1(b+, c + 2) with 2F1

(
−n+ 1, b+ 1;α + 2; 1−x

2

)
and simplify the equation.

This yields (
n(β + n)(1− x)2

4(α + 1)(α + 2)

)
(n− 1)!

(α + 1)n−1
P

(α+2,β)
n−1 (x). (4.9)

Take (4.7), (4.8) and (4.9) and manipulate them so we have an expression of the form

required by Lemma 4.1.1. We put the equations in an expression that is analagous to

that of Equation (3.12) to get the following

(
n(β + n)(1− x)2

4(α + 1)(α + 2)

)
(n− 1)!

(α + 1)n−1
P

(α+2,β)
n−1 (x)

=
1

2

(
x− β + 2n− α

2(α + β + 2n+ 2)

)
n!

(α + 1)n
P (α,β)
n (x)−

(
α + 1

α + β + 2n+ 2

)
(n+ 1)!

(α + 1)n
P

(α,β)
n+1 (x).

We then multiply each term of the expression by n(n−1)!
(α+1)n

to get

(
(β + n)(1− x)2(α + n+ 1)

4(α + 1)(α + 2)

)
P

(α+2,β)
n−1 (x) =

1

2

(
x− β + 2n− α

4(α + β + 2n+ 2)

)
P (α,β)
n (x)

−
(

(α + 1)(n+ 1)

α + β + 2n+ 2

)
P

(α,β)
n+1 (x).
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Simplifying the equation in terms of P
(α+2,β)
n−1 (x) gives us

P
(α+2,β)
n−1 (x) =

(
2x− β + 2n− α

4(α + β + 2n+ 2)

)
(α + 1)(α + 2)

(β + n)(1− x)2(α + n+ 1)
P (α,β)
n (x)

−
(

4(α + 1)2(α + 2)(n+ 1)

(α + β + 2n+ 2)(β + n)(1− x)2

)
P

(α,β)
n+1 (x).

This equation satisfies the conditions of Lemma 4.1.1 where

fn−1(x) = Pα+2
n−1 (x),

an(x) = − 4(α+2)(n+1)(α+1)2

(α+β+2n+2(α+n−1)1−x2) ,

An(x) = β+2n−α
4(α+β+2n+2)

,

and bn(x) = (α+n+1)(α+2)
(n+β)(1−x)2(α+n+1)

.

Therefore, it can be assumed that the zeros of P
(α+2,β)
n−1 (x) and β2−α2+2(β−α+2n(n+β+1))

(2n+α+β+2)(2n+α+β+2)

interlace with the zeros of P
(α,β)
n+1 (x) when P

(α+2)
n−1 (x) and P

(α,β)
n+1 (x) are co-prime.

Proof (i)(b): To prove that the zeros of P
(α+3,β)
n−1 (x) and n(n+α+β+2)+(α+2)(n−α+β)

(n+α+2)(n+α+β+2)
inter-

lace with the zeros of the Jacobi polynomial P
(α,β)
n+1 (x), use mixed recurrence relation (C).

In (C) replace b with α+ β + n+ 1, c with α+ 1 and z with 1−x
2

and use identity (3.12).

Simplify the equation using appropriate identities and methods to obtain the following

equation

(
x− n2 + (2α + β + 4)− (α + 2)(α− β)

(n+ α + 2)(n+ α + β + 2)

)
P (α,β)
n (x) =

(n+ 1)Q(x)P
(α,β)
n+1 (x)

(n+ α + 1)(n+ α + 2)(n+ α + β + 2)
+

(1− x)3(2n+ α + β + 2)(n+ β)

4(n+ α + 1)(n+ α + 2)
P

(α+3,β)
n−1 (x).

Note that in the above expression, Q(x) = n(n+ β)(x− 1) + 2(α + 1)(α + 2).

Lemma 4.1.1 supplies the required result.

Proof (i)(c): This requires the use of mixed recurrence relation (D) with the usual
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substitutions of b, c and z. This, along with the correct use of the identity (3.12), yields

(
x− 2n2 − (α + 3)(α− β) + 2n(α + β + 3)

Rn

)
P (α,β)
n (x) =

− (S(x))(n+ 1)

2(n+ α + 1)(α + 2)Rn

P
(α,β)
n+1 (x) +

(1− x)4Tn
8(n+ α + 1)(α + 2)Rn

P
(α+4,β)
n−1 (x),

where Rn = 2n(n+ α + β + 3) + (α + 3)(α + β + 2),

Tn = (2n + α + β + 2)(n + β)(n + α + β + 2)(n + α + β + 3) and S(x) represents a

polynomial of degree 2.

The required result is supplied from Lemma 4.1.1.

Proof (ii): This statement easily follows from the second part of Lemma 4.1.1 and the

proofs of the (i)(a), (i)(b) and (i)(c) given above.

This ends the proof of Theorem 4.1.4.

The next corollary follows directly from Theorem 4.1.1. In the previous chapter, the

symmetry property of Jacobi polynomials is described by identity (3.14). Using this

property

P (α,β)
n (x) = (−1)nP (β,α)

n (−x),

the following corollary is generated.

Corollary 4.1.1 (i) If the Jacobi polynomials P
(α,β+t)
n−1 and P

(α,β)
n+1 are co-prime then

(a) the zeros of the polynomial P
(α,β+t)
n−1 and β2−α2−t(α−β+2n(n+α+1))

(2n+α+β+t)(2n+α+β+2)
interlace with

the zeros of P
(α,β)
n+1 when t = 1, 2,

(b) the zeros of the polynomial P
(α,β+3)
n−1 and −n(n+α+β+2)+(β+2)(n+α−β)

(n+β+2)(n+α+β+2)
interlace

with the zeros of P
(α,β)
n+1 ,

(c) the zeros of the polynomial P
(α,β+4)
n−1 and − 2n(n+α+β+3)+(β+3)(α−β)

2n(n+α+β+3)+(β+3)(α+β+2)
interlace

with the zeros of P
(α,β)
n+1 .

(ii) If the Jacobi polynomials P
(α,β+t)
n−1 and P

(α,β)
n+1 are not co-prime, then these polynomi-

als have only one common zero. This zero has been located at the respective points
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established in (i)(a) through to (i)(c). Hence, the (n-1) zeros of P
(α,β+t)
n−1 interlace

with the n zeros of P
(α,β)
n+1 that are left behind.

Note that in Theorem 4.1.4 only α was varied but in Corollary 4.1.1, only β was varied.

The next theorem looks at the effect of interlacing on the zeros of Jacobi polynomials in

which α and β are varied. The proof of the following theorem is not provided as it follows

much the same reasoning as the proofs given above in Theorem 4.1.4. This theorem can

be found in [16].

Theorem 4.1.5 (i) For each fixed i, j ∈ {1, 2}, if polynomials P
(α,β)
n+1 and P

(α+i,β+j)
n−1

(a) are co-prime, then the zeros of the polynomial P
(α+x,β+y)
n−1 and

β−α−n(y−x)
α+β+2+n(4−x−y) interlace with the zeros of P

(α,β)
n+1 ;

(b) are not co-prime, they have one common zero that is located at a point in (i)(a).

The (n-1) non-common zeros of P
(α+x,β+y)
n−1 interlace with the n remaining zeros

of P
(α,β)
n+1 .

(ii) If polynomials P
(α,β)
n+1 and P

(α+3,β+1)
n−1

(a) are co-prime, then the zeros of the polynomial P
(α+3,β+1)
n−1 and

n2+n(α+β+3)−(α+2)(α−β)
n2+n(α+β+3)+(α+2)(α+β+2)

interlace with the zeros of P
(α,β)
n+1 ;

(b) are not co-prime, they have one common zero that is located at a point in

(ii)(a). The (n-1) zeros of P
(α+3,β+1)
n−1 interlace with n remaining non-common

zeros of P
(α,β)
n+1 .

(iii) If polynomials P
(α,β)
n+1 and P

(α+1,β+3)
n−1

(a) are co-prime, then the zeros of the polynomial P
(α+1,β+3)
n−1 and

−n2−n(α+β+3)−(β+2)(α−β)
n2+n(α+β+3)+(β+2)(α+β+2)

interlace with the zeros of P
(α,β)
n+1 ;

(b) are not co-prime, then one common zero can be found at the point located in

(iii)(a). The (n-1) non-common zeros of P
(α+1,β+3)
n−1 interlace with n remaning

zeros of P
(α,β)
n+1 .
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It should be noted that part (iii) is just part(ii) with the symmetrical property put into

play.

It must be remarked upon that the values of t, considered in Corollary 4.1.1, and the

values of y, considered in Theorem 4.1.4, must be restricted with respect to their ranges.

Although the degrees of the Jacobi polynomials may differ by two, the interlacing prop-

erty does not hold in general and hence restrictions on the values of t and y are necessary.

This will be illustrated by means of the example given below.

For example, if Mathematica is used to calculate the zeros of P
(19.7,−0.5)
4 and P

(20.7,0.5)
6 ,

it will be shown that the interlacing property does not hold when t = y = −1. The

degrees of the polynomials differ by two and the values of α and β are different in each

Jacobi polynomial. However, the aim is to evaluate whether interlacing holds for these

two Jacobi polynomials with degrees differing by two.

The code below provides the zeros for the Jacobi polynomial, P
(19.7,−0.5)
4 :

solns2=N[x/.NSolve[JacobiP[4,19.7,-0.5,x]=0,x]]

The zeros are {-0.987902,-0.891163,-0.696881,-0.394643}.

The following code provides the zeros for the Jacobi polynomial P
(20.7,0.5)
6 :

solns3=N[x/.NSolve[JacobiP[6,20.7,0.5,x]=0,x]]

The zeros are {-0.973436,-0.894324,-0.764257,-0.585269,-0.358125,-0.0751924}.

As can be seen from the computed zeros,, the interlacing property breaks down between

the second zeros of the polynomials, therefore providing numerical evidence to the claim

that interlacing doesn’t hold when t = y = −1.

If we write out the zeros in increasing numerical order, using bold font for the zeros for

P
(19.7,−0.5)
4 and rest being the zeros for P 20.7,0.5

6 then if the property holds, we should see

that a bold font number is followed by a number that is not bold and so on. In increasing

order, the zeros are
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-0.987902, -0.973436, -0.894324, -0.891163,....

It is not necessary to continue as we see that after the value -0.973436, the property does

not hold as two zeros of P
(20.7,0.5)
6 follow each other.

4.2 Quasi-Orthogonality and its Applications to the

Jacobi Polynomial

It has been discussed that Jacobi polynomials are orthogonal with respect to the weight

function (1− x)α(1 + x)β for α, β > −1. This is known as ‘formal orthogonality’ which is

expanded upon in [8]. The paper considered in this section, [9], looks at what happens

when certain orthogonal polynomials are not orthogonal when α, β > −1.

A definition for quasi-orthogonality of polynomials is given below and can be found in

[11] and [13].

Definition 4.2.1 Let the polynomial, Qn, be of degree n ≥ k. If Qn satisfies the following

conditions ∫ b

a

xkQn(x)w(x)


= 0 for k = 0, ..., n− 1− r,

6= 0 for k = n− r,

where w(x) > 0 on the closed interval [a, b], it is then said that Qn is quasi-orthogonal of

order r on the closed interval [a, b] with respect to the weight function, w(x).

Paper [11] contains a property of the quasi-orthogonal polynomials. T.S Chihara says

that a family of orthogonal polynomials on a closed interval [c, d] with respect to a posi-

tive weight function has to have coefficients which are numbers that can depend on the

degree n of the polynomial. In addition, the product of the first and last coefficients is

non-zero. This is referred to as the necessary and sufficient condition for a polynomial to

be quasi-orthogonal and is given as Theorem 1 in [9].

The theorem below, found in [[9], p164], states which values for the parameters α and β

allow quasi-orthogonality to occur with respect to the Jacobi polynomial.
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Theorem 4.2.1 The Jacobi polynomials P
(α−w,β−v)
n on the interval [−1, 1] are quasi-

orthogonal of order (w + v) with respect to the weight function (1 − x)α(1 + x)β where

0 > α > −1 and 0 > β > −1, w, v ∈ N and w + v < n,.

Proof:

The recurrence relations used in this proof can be found in ([1], Formulae 22.7.18 and

22.7.19) and in ([42], p265, eqns (14) and (15)) and are given below. Firstly,

(α + β + 2n)P (α,β−1)
n (x) = (α + β + n)P (α,β)

n (x) + (α + n)P
(α,β)
n−1 (x) (4.10)

and secondly,

(α + β + 2n)P (α−1,β)
n (x) = (α + β + n)P (α,β)

n (x)− (β + n)P
(α,β)
n−1 (x). (4.11)

We now use these recurrence relations to show that the Jacobi polynomial, P
(α−w,β−v)
n (x).,

can be expressed as a linear combination of the polynomials p
(α,β)
n (x),...,P

(α,β)
n−(w+v)(x).

Then using the result below and the fact that α > −1 and β > −1,

∫ 1

−1
xjp(α,β)n (x)(1− x)α(1 + x)βdx = 0, j = 0, 1, ...n− 1

it follows that ∫ 1

−1
xjp(α−w,β−v)n (x)(1− x)α(1 + x)βdx = 0

when j = 0, 1, ...n− (v + w)− 1.

We now use this result to conclude how many zeros still exist in the interval (−1, 1) when

the restraints on the parameter are changed. The theorem provided below can be found

in [[9], p160].

Theorem 4.2.2 If Qn is a quasi-orthogonal polynomial of order r, with respect to a

positive weight function, on the closed interval [c, d], then Qn has at least (n− r) distinct

zeros in the open interval (c, d).

The following theorem can be found in [9].
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Theorem 4.2.3 When 0 > α > −1, 0 > β > −1 where w, v ∈ N and w + v < n, the

Jacobi polynomial P
(α−w,β−v)
n (x) has at least n− (w + v) zeros in the interval (−1, 1).

Proof:

The result follows from the Theorems 4.2.2 and 4.2.1. From Theorem 4.2.1, we know

that P
(α−w,β−v)
n (x) is a quasi-orthogonal polynomial of order (w+v) in the closed interval

[−1, 1]. From Theorem 4.2.2, we see that if a polynomial is quasi-orthogonal of order r, it

has at least (n− r) distinct zeros in (c, d). Therefore if P
(α−w,β−v)
n (x) is quasi-orthogonal

on [-1,1], with order (w + v),, the polynomial has at least n − (w + v) distinct zeros in

the open interval (-1,1). Thus, the result is proved.

Theorem 4.2.7 has uses that extend to the interlacing property of Jacobi polynomials and

is thus central to the ideas and concepts in this dissertation.

Before stating Theorem 4.2.7, however, certain other results are required. The proofs of

the next three results will not be provided but are given in [9].

Theorem 4.2.4 Consider the polynomial Qn(x) = Pn(x) + anPn−1(x). {Pn} is a family

of orthogonal polynomials with respect to a positive weight function on a closed interval

[a, b]. Let Pn have zeros a < x1,n < ... < xn,n < b and Pn−1 have zeros a < x1,n−1 < ... <

xn−1,n−1 < b. If Qn is a quasi-orthogonal polynomial of order 1 and gn = Pn(x)
Pn−1(x)

, the

following properties are held by Qn.

(i) The zeros y1 < ... < yn of Qn are simple, real and distinct. At most one of the

polynomial’s zeros lies outside the interval (a, b).

(ii) (a) If −an > 0, where an is non-zero number, then xi,n < yi < xi,n−1 where

xn,n < yn and i = 1, ..., n,

(b) If −an < 0, where an is non-zero number, then y1 < xi,n and xi−1,n−1 < yi <

xi,n where i = 2, ..., n.

(iii) If −an < gn(a) < 0 then y1 < a.

(iv) If −an > gn(b) then yn > b.
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The next two results will consider the polynomial,

Qn(x) = Pn(x) + anPn−1(x) + bnPn−2(x)

, where an 6= 0 and bn 6= 0. Qn is quasi-orthogonal of order 2. The first result, that is

Theorem 4.2.5 may be found in [46], while Theorem 4.2.6 is given in [9].

Theorem 4.2.5 If the constant bn < 0, Qn has at most two of its real and distinct zeros

outside the interval (a, b).

Theorem 4.2.6 Let y1 < ... < yn be the zeros of Qn and gn = Pn
Pn−1

. If bn < 0 then the

zeros of quasi-orthogonal polynomial, Qn, are such that y1 < x1,n−1 and xi−1,n−1 < yi <

xi,n−1 where i = 2, ..., n− 1. Also, xn−1,n−1 < yn. The following also holds true:

(i) yn < xn,n if −an − bn
gn−1(xn,n)

< 0 and yn > xn,n if −an − bn
gn−1(xn,n)

> 0,

(ii) yn < b if −an − bn
gn−1(b)

< gn(b) and yn > b if −an − bn
gn−1(b)

> gn(b),

(iii) yn < x1,n if −an − bn
gn−1(x1,n)

< 0 and yn > x1,n if −an − bn
gn−1(x1,n)

> 0,

(iv) yn < a if −an − bn
gn−1(a)

< gn(a) and yn > b if −an − bn
gn−1(a)

> gn(a).

Proof:

As a consequence of the Christoffel-Darboux Theorem (Theorem 3.0.2), we have the

below equality, which can also be found in [[47], Formula 3.2.4],

P ′n(x)Pn−1(x)− Pn(x)P ′n−1(x) =
tn
tn−1

hn−1

n−1∑
i=0

h−1i P 2
i (x),

where tn is the coefficient of xn in Pn(x) and hn =
∫ b
a
P 2
n(x)w(x)dx > 0. Now let y and z

be two consecutive zeros of Pn−1. The equality then gives the below two expressions,

P ′n(y)Pn−1(y)− Pn(y)P ′n−1(y) = −Pn(y)P ′n−1(y) > 0

and

P ′n−1(y)Pn−2(y)− Pn−1(y)P ′n−2(y) = Pn−1(y)P ′n−2(y) > 0.
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Hence Pn(y) and Pn−2(y) have opposite signs. This is also true for Pn(z) and Pn−2(z).

As bn < 0 if is clear that Pn(y) and bnPn−2(y) have the same sign. This is, once again,

true for Pn(z) and bnPn−2(z) Furthermore, Qn(y) and Qn(z) have opposite signs. Then

Qn has a zero between y and z hence proving the interlacing property.

We have that Qn=0 if and only if gn(x) = −an − bn
gn−1(x)

. In the open interval,

(xn−1,n−2,∞), gn−1(x) increases from −∞ to∞ and gn−1(xn−1,n−1) = 0. So if bn <

0,−an − bn
fn−1(x)

decreases from −an to −∞ in (xn−2,n−2, xn−1,n−1) and from ∞ to −an

in (xn−1,n−1,∞). In the open interval (xn−1,n−1,∞), we see that fn(x) increases from

negative infinity to positive infinity. Therefore, yn is greater than the zero xn−1,n−1 and

the remaining results are proved.

We are now in a position to prove the final theorem of this chapter, also found in [9].

Theorem 4.2.7 (i) Let 0 > α > −1 and 0 > β > −1. The polynomial P
(α−1,β−1)
n has

real and distinct zeros and (n − 2) of these zeros lie in the open interval (−1, 1).

The smallest zero of this polynomial is smaller than -1 and the largest zero of the

polynomial is larger than 1.

(ii) Let P
(α,β)
n have zeros x1,n < ... < xn,n and P

(α,β)
n−1 have zeros x1,n−1 < ... < xn−1,n−1:

(a) If α > −1 and −1 < β < 0, the zeros of P
(α,β−1)
n , l1 < ... < ln are distinct

and real with (n − 1) of these zeros located in the open interval (−1, 1). Also

l1 < −1 and the zeros of P
(α,β−1)
n interlace with the zeros of polynomials P

(α,β)
n

and P
(α,β)
n−1 as stated in Theorem 4.2.2(ii)(b).

(b) If β > −1 and −1 < α < 0, the zeros of P
(α−1,β)
n , l1 < ... < ln are distinct

and real with (n − 1) of these zeros located in the open interval (−1, 1). Also

l1 > 1 and the zeros of P
(α−1,β)
n interlace with the zeros of polynomials P

(α,β)
n

and P
(α,β)
n−1 as stated in Theorem 4.2.2(ii)(a).

Proof:

(i)From Equations (4.9) and (4.10), the following expression is obtained for an > 0 and

cn < 0;

P (α−1,β−1)
n (x) = an[P (α,β)

n (x) + bnP
(α,β)
n−1 (x) + cnP

(α,β)
n−2 (x)].
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This yields

bn =
(α + n− 1)(β + α + 2n)− (n+ β)(β + α + 2n− 2)

(n+ β + α)(α + β + 2n− 2)

cn =
−(α + β + 2n)(n+ α− 1)(n+ β − 1)

(α + β + n− 1)(α + β + n)(α + β + 2n− 2)
.

Therefore we can get P
(α,β)
n (1)

P
(α,β)
n−1 (1)

= n+α
n

. After manipulating the expression, we observe that

the second inequality in Theorem 4.2.6(i) is satisfied. Hence, we have that the largest

zero of P
(α−1,β−1)
n > 1.

A similar proof can be done for proving that the smallest zero of P
(α−1,β−1)
n < −1, using

the first inequality of Theorem 4.2.6(ii).

(ii)(a) We use the identity provided in (4.9) as it is associated with the second case, part

(b) of Theorem 4.2.5. Here, we have that an = n+α
α+β+n

> 0. Therefore, the results of

Theorem 4.2.5 hold. Calculating P
(α,β)
n (−11)
P

(α,β)
n (−1)

= −(β+n)
n

and using it in Theorem 4.2.5(iii),

the result follows as β < 0.

(ii)(b)Here use the same principles as for (ii)(a). Instead of using relation (4.9), however,

we use relation (4.10) in conjunction with Theorem 4.2.5(iv) with α < 0.

In conclusion, we observe that the Jacobi polynomial still retains some form of orthog-

onality when the parameter restraints are changed. This is evidenced in the fact that

some zeros still remain in the interval [c, d] after the new parameter restraints have been

imposed.
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Chapter 5

Inequalities of Jacobi Polynomials

This chapter will be a discussion on the inequalities of the Jacobi polynomial.

Walter Gautschi (1927-) has done extensive research on the inequalities of Jacobi poly-

nomials and how they affect the zeros of these polynomials. Gautschi wrote five papers,

[24], [25], [26], [27] and [28], of interest, the first being published in 2007, [24], which

he co-authored with Paul Leopardi. Each paper considers an inequality related to the

Jacobi polynomials and their zeros. The papers then further explore the properties of

this inequality through various conjectures.

Please note that in [24], the inequalities are conjectured to hold and numerical and ana-

lytical evidence is provided to support the validity and truth of these statements.

Conjectures 5.0.1 and 5.0.2 consider the special Jacobi polynomial where β = α− 1.

The main aim of [24] is to propose inequalities for the largest zero for the Jacobi poly-

nomial given as, xn = cosθ
(α)
n where 0 < θ

(α)
n π < θ. The various conjectures rely on the

inequality

P̃ (α,β)
n

(
cos

(
θ

n

))
< P̃

(α,α−1)
n+1

(
cos

(
θ

n+ 1

))
,
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where P̃n is the scaled polynomial given as

P̃ (α,α−1)
n =

P
(α,β)
n (x)

P
(α,β)
n (1)

.

The most natural way to attempt proving the above inequality is by determining if the

inequality given below,

nθ(α)n < (n+ 1)θ
(α)
n+1, (5.1)

holds or or analagous forms of (5.1) hold.

Natural questions that arise from (5.1) are:

(1) Does this inequality hold for all zeros of the Jacobi polynomial?

(2) If so, then for which domain in the (α, β)-plane is this inequality true?

Both questions are addressed by Gautschi in [26] and [27] respectively.

The conjecture below, which can be found in [24] is formed to establish for which n the

inequality (5.1) holds if α > 0.

Conjecture 5.0.1 Given that α > 0, the inequality nθ(α) < (n+ 1)θ
(α)
n+1 either holds for

all n = 1, 2, 3, ... or is false for n = 1. This means that the validity of inequality (5.1)

when n = 1 implies that the inequality is valid when n ≥ 1.

Gautshi does not prove Conjecture 5.0.1, however, the result is rather supported by

numerical and analytical evidence.

A Matlab code is generated to test the conjecture at various values of n and α. This code

can be found in [24].

Since this is a short code, it will be included here (as well as Appendix A) for ease of

reference.

ab=r_jacobi(n+1,a,a-1);

for j=1:n
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fg = gauss(j, ab);

fg1 = gauss(j+1, ab);

theta = acos(fg(j,1));

theta1 = acos(fg1(j+1,1));

if

j*theta >= (j+1)*theta1

[j*theta,(j+1)*theta1], a, k, error(’Conjecture 5.0.1 is false’)

end

end

The first line, ab = r jacobi(n+ 1, a, a− 1), creates coefficients used for the Gauss com-

mand. The Gauss command calculates the weights and nodes of the Gaussian quadra-

tures.

The code generates an error message ‘Conjecture 5.0.1 is false’ if for certain values of α

and n the inequality nθ
(α)
n ≥ (n + 1)θ

(α)
n+1, holds For example when we input n = 100 for

α = [0.5 : 0.01 : 1, 1.1 : 0.1 : 10; 5 : 0.5 : 20], the error statement is not generated, hence

the inequailty (5.1) is not true for those values.

We evaluate the code by varying a. We let n = 1, as that is the point of interest in the

conjecture. Then we vary a. After trial and error, it is observed that the error message

occurs for n = 1 and α = 0.14 as well as when n = 1 and α = 0.135. Further manipula-

tion of a reveals that the inequality (5.1) holds for all n ≥ 1 when α > α0. Due to the

code, one can narrow the interval in which α0 sits, that is 0.1351 > α0 > 0.1350.

There is a more efficient way to examine the exact value of α0 when n = 1 as shown below.

From a recurrence relation for Jacobi polynomials found in ([47], eqn (4.5.1)), we obtain

P
(α,α−1)
1 (x) =

1

2
((2α + 1)x+ 1),
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4P
(α,α−1)
2 (x) = (α + 1)((2α + 3)x2 + 2x− 1).

Therefore, the roots of these polynomials are

x
(α)
1 = − 1

2α + 1
,

and

x
(α)
2 =

1

1 +
√

2α + 4
.

This means that for n = 1, the inequality (5.1) is equivalent to

arccos

(
− 1

2α + 1

)
< 2 arccos

(
1

1 +
√

2α + 4

)
.

Using the fact that arccos(−t) = π − arccos(t), the above expression can be written as

arccos

(
1

2α + 1

)
+ 2 arccos

(
1

1 +
√

2α + 4

)
− π > 0. (5.2)

The left hand side of the inequality (5.2) is an increasing function of α, as the deriva-

tive is positive. It is negative when α = 0, as replacing α with 0, one gets arccos(1) +

arccos
(
1
3

)
− π = −0.68 radians. If we let α tend to infinity, the left hand side of the

inequality tends to 1
2
π, since arccos(0) + 2 arccos(0)− π = π

2
− 2(π

2
)− π = π

2
.

Hence, if α0 is the unique zero of

arccos

(
1

2α + 1

)
+ 2 arccos

(
1

1 +
√

2α + 4

)
− π = 0,

we find, using Matlab, that α0 = 0.13507978085964. Hence if Conjecture 5.0.1 is true

then inequality (5.1) holds for all n ≥ 1 if α > α0.

This concept can be extended to the scaled Jacobi polynomials, which are given by

P̃ (α,β)
n =

P
(α,β)
n (x)

P
(α,β)
n (1)

, (5.3)
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where θ is considered to be in one of two intervals. These intervals are

0 < θ
(α)
1 < θ, and 0 < θ < π. (5.4)

The conjecture used for Jacobi polynomials involves the inequality

P̃ (α,α−1)
n

(
cos

(
θ

n

))
< P̃

(α,α−1)
n+1

(
cos

(
θ

n+ 1

))
, (5.5)

where cos θ
(α)
1 = x

(α)
1 = − 1

2α+1
.

A conjecture is given for the scaled polynomials given in (5.3). This can be found in [24].

Conjecture 5.0.2 If α > 0, two alternatives exist for each of the intervals described in

(5.4). Either (5.5) holds for all θ in the respective interval and for all n = 1, 2, 3... or

(5.5) is false for some θ in the respective interval when n = 1. So, if (5.5) is valid for

n = 1 it is implied that (5.5) is valid for all n ≥ 1.

To verify Conjecture 5.0.2 numerically, use the same reasoning as in the proof of Conjec-

ture 5.0.1 (Appendix A.) The extended code is given in the Appendix B.

When the code is run with values n = 100, N = 100 and α = 10.5 : 0.5 : 20 for the

interval 0 < θ < θ
(α)
1 , we find that the error message is generated. Hence, we see that

Conjecture 5.0.2 appears to be true for inequality (5.5) in interval 0 < θ < θ
(α)
1 .

In the case of interval 0 < θ < π, when N = 1000 and randomly chosen α = 1.1 : 0.1 : 10,

an error message appears when α = 0.28 and α = 0.29. Hence Conjecure 5.0.2 is valid.

Extending the Matlab routine used in the proofs of Conjecture 5.0.1 and 5.0.2 leads to

the conjecture below found in [24]. The conjecture is similiar to that of Conjecture 5.0.1,

but places restrictions on α and introduces a new parameter, β.

We now denote the largest zero of Jacobi polynomial, P
(α,β)
n (x) as x

(α,β)
n = cosθ

(α,β)
n where

α > −1, β > −1.
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The inequality considered in Conjecture 5.0.3 is given below

nθ(α,β)n < (n+ 1)θ
(α,β)
n+1 . (5.6)

Conjecture 5.0.3 If α > −1 and β > −1, two alternatives exist. Either inequality (5.6)

holds for all n = 1, 2, 3, ... or inequality (5.6) is false for n = 1. Therefore, if (5.6) is

valid for n = 1, it is valid for all n ≥ 1.

Once again, the numerical verification of Conjecture 5.0.3 can be found in [24]. The

reasoning is similar to that of the proof of Conjecture 5.0.1 and Conjectue 5.0.2.

It must be noted that when α = β = −1
2

, we consider it an exception as then left and

right sides of (5.6) will be equal to π
2
.

Gautschi went on to write three more papers that considered inequality (5.6) alone, [25],

[26], [27].

In [25], he investigated the validity of the inequality (5.6) for a change in the domain of

the parameter space (α, β).

Paper [25] uses Conjecture 5.0.3 (from [24]) to describe the conjectured domain in which

(5.6) is valid showing that the conjecture is, in fact, false in a small subregion of the

domain of parameter space (α, β). Firstly, a curve is defined as

B : β = β(α), −1 < α < 1. (5.7)

The curve is monotonically decreasing from the point (-1,0) to the point (1,-1). Between

these two points, (5.6) is true for all n = 1. However, on and below these points, the

inequality (5.6) does not hold when n = 1. Now, β = β(α) is the solution of the equation

2 arccos

(
1

α + β + 4

(
−(α− β) + 2

√
2 +

αβ − 2

α + β + 3

))
+ arccos

α− β
α + β + 2

− π = 0.

(5.8)
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In [28], it is shown that Gatteschi developed results for the asymptotic behavior of the

decreasing zeros of the Jacobi polynomial that have large degree n.

A particular result (given in [25]) is true for the kth zero where k is fixed and also for the

special case where k = 1. If α > −1 and β > −1 then we have

θ(α,β)n =
Jα,1
v

+O(n−5), (5.9)

as n tends to ∞ where Jα,1 is the first positive zero of the Bessel function Jα. Also

v =

[(
n+

α + β + 1

2

)2

+
1− α2 − 3β2

12

] 1
2

= v(n).

From Equation (5.9), the following is obtained

θ
(α,β)
n

θ
(α,β)
n+1

=

Jα,1
v(n)

+O(n−5)
Jα,1

v(n+1)
+O(n−5)

=
v(n+ 1)

v(n)
+O(n−4).

Now, expand the expression above using Mathematica or Matlab to get the expression

below in descending powers of n,

θ
(α,β)
n

θ
(α,β)
n+1

= 1+n−1− 1

2
(α+β+1)n−2+

1

6
(2α2+3αβ+3β2+3α+3β+1)n−3+O(n−4). (5.10)

Using these results the following theorem in [28] states in which domain the parameters

must lie to make sure that the inequality (5.6) is valid.

Theorem 5.0.1 The inequality (5.6) is valid for sufficiently large n when α+β+ 1 > 0.

The same is true when (α, β) is located on an open line segment from (-1,0) to (−1
2
,−1

2
)

if α + β + 1 = 0. However, the inequality does not hold for n large enough on the half-

open line segment from
(
−1

2
,−1

2

)
inclusive to (0,-1). The inequality (5.6) is false when

α + β + 1 < 0 and for n sufficiently large.

Proof:
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Inequality (5.6) can be written as follows,

θ
(α,β)
n

θ
(α,β)
n+1

< 1 + n−1. (5.11)

To prove the first part of the theorem, consider Equation (5.10). In the equation, the left

hand side’s ratio is less than 1 + n−1 when n is sufficiently large and α + β + 1 > 0.

Hence, we know that inequalities (5.6) and (5.11) hold true for sufficiently large n.

Now, to prove the second part of the theorem, evaluate the coeffiicent of n−3, i.e.

1
6
(2α2 + 3αβ + 3β2 + 3α + 3β + 1). By the substitution β = −1 − α, the expression

becomes 1
6
(2α + 1)(α + 1). For α > −1, expression is only negative, which makes the

inequality (5.6) false, when α < −1
2
. The last part is proved using the same reasoning as

in the first part of the proof.

Therefore, Theorem 5.0.1 is proved and the domain in which the inequality (5.6) is valid

is determined.

One can also disprove the conjecture. To disprove the conjecture, one needs to prove

that the domains α + β + 1 < 0 and β(α) > 0 have a non-empty intersection in

the square −1 < α < 0,−1 < β < 0. The graph provided, Figure 5.1, is of the equa-

tion β = −α − 1 − β(α). The open circle in Figure 5.1 corresponds to the point where

α = −0.75 and β = 1
2
(β(α) − α − 1), which is in the intersection. We see that (5.6) is

true for n = 1, 2 but false for 3 ≤ n ≤ 100. The intersection is very slim.

A new revised conjecture in [28], is therefore formed.

Conjecture 5.0.4 With the exception of the point α = β = −1
2
, the domain of validity in

the (α, β)-plane of the inequality (5.6) for all n ≥ 1 is the subdomain D of all admissible

{(α, β) : α > −1, β > −1} bounded below by the line segment C1 from the point (−1, 0)

to (−1
2
,−1

2
), the part C2 = {(α, β) : β = β(α),−1

2
≤ α < 1} of the curve B and the line

C3{(α, β) : 1 ≤ α <∞, β = −1}.

The only distinct difference between the Conjecture 5.0.3 and the revised Conjecture

5.0.4 above, is the replacement of the curved segment {(α, β) : β = β(α),−1 < α < −1
2
}
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Figure 5.1:

in the original boundary of the domain of validity. Conjecture 5.0.1 remains unaffected

by this change in domain however.

The Gautschi paper, [26] extends the inequality (5.6) to all the zeros of Jacobi polyno-

mials, not just the largest zero. He determines which domain in the (α, β)-plane makes

the following inequalities valid:

nθ(α,β)n,r < (n+ 1)θ
(α,β)
n+1,r, r = 1, 2, ..., n. (5.12)

The following strategy is used to evaluate the domain for the (α, β)-plane with respect

to the Jacobi polynomial, P
(α,β)
n when α > −1 and β > −1 if 1 ≤ n ≤ N . We consider

the cases where N = 50, N = 100 and N = 200. The code uses a bisection method

with steps of length 0.2 to show that inequalitiy (5.12) is valid on horizontal segments

defined as follows, H = {(α, β) : −0.5 < α ≤ −0.5, β = 0.5}. Use the same step length

for α to determine that the inequality (5.12) is valid for the diagonal downward segment

D = {(α, β) : −1 < α < −0.5, β = −α− 1}. The vertical lines are denoted Lα.

The domain can be better found using the Matlab code which is also given in [28] on

website www.cs.purdue.edu/archives/2002/wxg/codes/jacconj.m and is given in

Appendix C.
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After implementing the Matlab code, one finds that the inequalities (5.12) are valid for

all n inside horizontal strips,

H = {(α, β) : α > −1, |β| ≤ 0.5}.

These horizontal strips are cut off on the left hand side by D.

The paper, [27], extends inequality (5.6) to all zeros of the Jacobi polynomial, not just

the largest zero. This can be tested using the codes provided, while altering values for

the zero of the Jacobi polynomial.
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Chapter 6

Conclusion

This dissertation has considered the basic concepts of Special Functions such as the

Pochhammer symbol, gamma function, beta function, Bessel function and the hyperge-

ometric function. Properties of the various classical orthogonal polynomials were also

considered, results explored amongst others are the orthongality property, Rodrigues

formula for the Jacobi, Hermite and Laguerre polynomials. Mention is made of the

interlacing property of zeros of the Jacobi polynomial as well as a brief discussion on

quasi-orthogonality and Guassian quadrature is also considered. The final chapter con-

centrates on the results of some inequalities of the Jacobi polynomial.

As can be seen throughout the paper, the Jacobi polynomial is a very versatile and well

developed function. There is much known about the polynomial and various facets have

been studied such as the polynomial’s application to Gaussian quadrature and the so-

lution to equations of motion of the symmetric top. Some topics have been studied in

greater detail than others.

Some interesting questions that are not covered in this paper in detail have been asked

and answered in papers such as [14] in which the authors consider the following. For

a given pair of numbers (α, β) where α, β > −1, Dimitrov and Rodrigues ask for what

other pairs of numbers (a, b) such that a, b > −1 are the zeros of the Jacobi polynomial

P
(a,b)
n (x) are greater than (or smaller than) the zeros of the Jacobi polynomials of the form

P
(α,β)
n (x). They answer this question by using certain results established by A.Markov in
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[37] and the Routh-Hurwitz matrix. As this concept was beyond the scope of the paper,

it was not explored further. It is eventually found that the zeros of P
(a,b)
n (x) are less than

the zeros of the polynomial P
(α,β)
n (x) when a > α and b < β and vice versa.

Another interesting idea crossed the research path. While perusing [41], a table of the

products of Jacobi polynomials stood out. In particular,

4F3

(
a, b, b+

1

2
, 2b+ n; 2b, c, b− c+ 1; z

)

can be expressed as

(1)n(n!)2

(c)n(2b− c+ 1)n
P (c−1,2b−c)
n (

√
1− z)P (c−1,2b−c)

n (−
√

1− z).

The idea being the investigation as to what the zeros of the above equation were and to

outline the behaviour of said zeros.

In summary, it is clear that there exists further research scope regarding the Jacobi

polynomials and its various properties and uses, for example one can investigate the

behaviour of zeros of α and β and then provide corresponding information on the zeros

of the respective 4F3 polynomials. To my knowledge, this has not been attempted before.

A good reference for this would be [15]. This paper dealt with the products and the zeros

of two 4F3 polynomials. This work could be continued in my further studies.
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Appendices
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Appendix A

Code found below is used in proof of Conjecture 5.0.1 on pg 65 of the dissertation.

ab=r_jacobi(n+1,a,a-1);

for j=1:n

fg = gauss(j, ab);

fg1 = gauss(j+1, ab);

theta = acos(fg(j,1));

theta1 = acos(fg1(j+1,1));

if

j*theta >= (j+1)*theta1

[j*theta,(j+1)*theta1], a, k, error(’conjecture false’)

end

end
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Appendix B

Code given in this appendix is used in proof of Conjecture 5.0.2 on pg 68.

ab=r_jacobi(n+1,a,a-1);

th1=acos(-1(2*a+1)); {note that th1=pi}

for nu=1:N

th=nu*th1/(N+1);

for k=1:n

x0=1; x=cos(th/k); y=cos(th/(k+1));

p0=0; p01=1; px=0; px1=1; py=0; py1=1;

for r=1:k+1

p0m1=p0; p0=p01; pxm1=px; px=px1; pym1=py; py=py1;

p01=(x0-ab(r,1))*p0-ab(r,2)*p0m1;

px1=(x-ab(r,1))*px-ab(r,2)*pxm1;

py1=(y-ab(r,1))*py-ab(r,2)*pym1;

end

if px/p0 >= py1/p01

[px/p0, py1/p01], a, k, nu, error(’Conjecture 5.0.2 is false’)

end

end

end
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Appendix C

The following code is used in determining the domain of validity of Conjecture 5.0.4 on

pg 71.

f0=’%6.2f %12.8f %6.0f\n’;

n=50; db=.02;

aa=zeros(25,1); bb=zeros(25,1);

foria=1:25

a=.02+(ia-1)*.02;

[b0,diff]=jacconj(n,a,db);

fprintf(f0,a,b0,diff)

aa(ia)=a; bb(ia)=b0;

end

However, this function uses the following supporting codes:

function [b0,diff]=jacconj(n,a,db)

eps0=1e10*eps;

if a=-.5, b=a; else b=-a-1-db; end

b=-.5-db;

b=-.5+db;

k0=0; diff=0;

while k0==0 & b>-1

b=b+db;

b=b-db;

[k0,r0]=ineq(n,a,b);
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if k0-r0>diff, diff=k0-r0; end

end

b0=0;

if k0>0

br=b; bl=b-db;

br=b+db; bl=b;

whilebr-bl>eps0

b0=.5*(bl+br);

[k0,r0]=ineq(n,a,b0);

if k0-r0>diff, diff=k0-r0; end

if k0>0

br=b0;

bl=b0;

else

bl=b0;

br=b0;

end

end

end

and

function [k0,r0]=ineq(n,a,b)

ab=r_jacobi(n+1,a,b);

k0=0; r0=0;

for k=1:n

xw=gauss(k,ab); xw1=gauss(k+1,ab);

for r=k

for r=1:k

th=acos(xw(k+1-r,1)); th1=acos(xw1(k+2-r,1));

if k*th>=(k+1)*th1
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k0=k; r0=r;

break

end

end

if k0>0

break

end

end
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