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Summary 

Five different Al-Zn-Mg-Cu alloys were produced by rheo-high pressure die 

casting (R-HPDC) of which the as-cast microstructures were characterised with 

scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy 

(EDX). The primary aluminium grains and eutectic phases were observed with SEM 

backscattered electrons (BSE). The overall compositions of the eutectics were 

measured with EDX and were found to be relatively similar, regardless of the alloy 

composition. Two further Al-Zn-Mg-Cu alloys were produced with the same 

compositions as the eutectics in the R-HPDC alloys. These eutectic alloys were also 

characterised with SEM and EDX. One of the R-HPDC alloys was also cooled in 

vacuum and characterised with SEM and EDX. 

The as-cast alloys were characterised with differential scanning calorimetry (DSC) 

and X-ray diffraction (XRD). DSC results showed that all the as-cast alloys had 

different melting points depending on the phases present in the solidified alloy. XRD 

showed that the as-cast alloy eutectics had one of two crystal structures for the 

second component besides the (Al) phase, which were hexagonal or cubic, or a 

combination of both depending on the overall composition and cooling rate. 

Modelling of non-equilibrium alloy solidification was also done using Thermo-Calc 

with the most recent aluminium database. It was found that the calculated and 

measured results compared favourably. 

The remaining phases in all the alloys, after homogenisation and artificial ageing, 

were characterised with SEM and EDX to assess the influence of impurity elements. 

It was found that Fe and Mn react with Cu, and Si with Mg. 

Experiments were also conducted to assess the effect of composition on the 

hardness and yield strength of all the alloys after homogenisation and artificial 

ageing. A precipitate composition for the T6 condition, from literature, was used for 

the calculations. It was found that there were reasonable straight line relationships if 

the impurity elements were neglected. On the other hand, there were near perfect 

linear fits when the influence of impurity elements was taken into account. 

The optimum Al-Zn-Mg-Cu alloying ratio for a dilute aluminium alloy is the 

composition of the precipitate modelled. The ratios were Al7.4Zn45.4Mg38.6Cu8.6 for the 

T6 condition and Al15Zn39Mg33Cu13 for the T73 condition. 
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1. Introduction 

Aluminium alloys are attractive because of their low density compared to steel. 

Heat treatable high strength aluminium alloys are valuable structural materials. The 

absolute strengths of some of these alloys are in the range of low alloy steels [1]. 

Aerospace and automotive products rely heavily on fossil fuels, which are becoming 

increasingly expensive [1]. Replacement of steel components with aluminium 

components, for the same level of performance is very attractive, especially for direct 

energy conservation and efficiency by weight saving [1]. 

Figure 1.1 is a summary of the different aluminium alloy systems [2], and  

Figure 1.1 is laid out by alloy families increasing in strength. Properties presented for 

each alloy family will be shortly discussed in order of strength, for the reader to 

appreciate the significance of this study. 

 

Figure 1.1. Graphical summary of aluminium alloy systems [2]. 

Commercially pure aluminium (Al), the 1xxx series, has the lowest strength but is 

very ductile. This family of alloys has high corrosion resistance due to the absence of 

alloying elements that interfere with the formation of the protective oxide layer that 

imparts corrosion resistance. The anodising properties are also very good for the 

same reason, which these properties make the 1xxx series Al alloys attractive for 
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packaging. The 1xxx series alloys are also good electrical conductors due to their 

purity [1]. 

The 3xxx series of aluminium alloys with manganese (Mn) as the major alloying 

element are non-heat treatable, but have about 20% more strength than the 1xxx 

series alloys. These alloys have moderate strength but have good workability, and 

are used for a wide variety of applications including cooking utensils, heat 

exchangers, general construction and architecture. The 1xxx series alloys also have 

good corrosion resistance [1]. 

The 5xxx series aluminium alloys are alloyed mainly with magnesium (Mg). This 

alloy series is also work-hardenable with a moderate strength, but higher strengths 

can be achieved than with 3xxx series alloys. The 5xxx series alloys have good 

corrosion resistance and are good for marine applications, and they are also used 

from beverage cans to crane parts [1]. 

The alloy families described above, 1xxx, 3xxx and 5xxx, are non-heat treatable 

alloys. The next alloy families, 6xxx, 2xxx and 7xxx, are all heat treatable or 

precipitation-hardenable alloys, meaning that their properties can be influenced by 

thermal treatments [1]. 

The 6xxx series alloys are mainly alloyed with magnesium (Mg) and silicon (Si) 

and are the most dilute of the heat treatable wrought alloys. The alloys have good 

corrosion resistance, formability, weldability, machinability, with moderate strength. 

Precipitation is improved with the addition of copper (Cu). Applications for these 

alloys are mostly structural [1]. 

The 2xxx series alloys are mainly alloyed with Cu. Alloys in this family can achieve 

strengths comparable to, or sometimes exceeding, low carbon steels by precipitation 

hardening. Precipitation can be enhanced with the addition of Mg. These alloys have 

limited weldability due to presence of Cu (>0.4 wt%) which has a larger shrinkage 

factor than the matrix (Al) upon solidification. Applications include automobile and 

aerospace parts which require good strength up 150 °C [1]. 

The 7xxx series alloys are the most highly alloyed series and are alloyed with zinc 

(Zn) and Mg. The addition of Cu to this family of alloys results in the highest strength 

aluminium alloys, in the peak-aged condition (T6). An example of a work-horse 7xxx 

series alloy is AA7075 with typical yield strength, ultimate tensile strength and 

ductility of 500 MPa, 570 MPa and 11 % respectively, in the peak-aged (T6) 
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condition. Unfortunately, Cu also reduces the stress corrosion resistance (exposure 

to a corrosive environment under stress (SCC)). These alloys are therefore used in 

the over-aged condition (T7) to improve corrosion resistance at the expense of some 

strength. Some high strength Al-Zn-Mg-Cu alloys have been developed to strike a 

balance between strength and resistance to SCC [1]. Weldability of these alloys is 

also poor, due to the difference of shrinkage coefficient between the alloying 

elements and the matrix upon solidification. Applications are mainly for highly 

stressed parts in the aerospace industry [1]. 

New Al-Zn-Mg-Cu wrought aluminium alloys are still being developed by 

international companies for improved properties [3,4], although a large number of  

Al-Zn-Mg-Cu alloys are already registered with the Aluminum Association. It is not 

clear what the optimum Al-Zn-Mg-Cu ratio is, but it probably depends on the 

application. Major alloying elements include: Zn between 4.5 - 8.2 wt%, Mg between  

2.0 – 3.0 wt% and Cu between 1.0 - 2.5 wt% [1]. 

Al-Zn-Mg-Cu alloys are conventionally produced by the cost intensive wrought 

manufacturing route [1]. The process includes: melting, alloying, ingot casting, ingot 

homogenisation to reduce or eliminate segregation of alloying elements, annealing to 

soften the ingot, hot and/or cold working, solution heat treatment to take the alloying 

elements into solid solution in the matrix, quenching to keep the alloying elements in 

solid solution and natural and/or artificial ageing to control material properties by 

precipitation from the solid solution state. The wrought process produces thick 

section material in semi-finished shapes such as billet, bar or plate. Thin section 

sheet is a product produced from plate. Thick semi-finished products are then cut, 

pre-formed (by extrusion or forging) and machined to the final shape for smaller 

components, producing large volumes of scrap; 60-80 wt% is not  

uncommon [1]. 

The Council for Scientific and Industrial Research (CSIR) in South Africa 

developed and patented [5] the CSIR Rheocasting System (CSIR-RCS), which is a 

device that conditions (rheo-processes) liquid metal to a mixture of liquid and solid 

before final casting by high pressure die casting (HPDC). This manufacturing 

technology is called rheo-high pressure die casting (R-HPDC). A major focus at the 

CSIR is commercialising patented technologies. The overall aim of this research is to 

contribute towards commercialisation of the CSIR R-HPDC Technology. The CSIR 

R-HPDC technology can process any aluminium alloy, including high purity 
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aluminium [6], unmodified Al-Si binary eutectic [7], casting aluminium alloys [8,9], 

wrought aluminium alloys [10], aluminium metal matrix composites [11] and casting 

magnesium alloys [12]. A comprehensive overview can be found by Curle et al. [13]. 

The R-HPDC process competes with the wrought process by its ability to produce 

Al-Zn-Mg-Cu alloy components in near-net shape, thus avoiding the large volumes of 

scrap [14], thus avoiding the large volumes of scrap. R-HPDC processing consists of 

melting, alloying, controlled partial solidification during rheo-processing, complete 

solidification during HPDC, homogenisation of the casting, quenching, and natural 

and/or artificial ageing. 

The similarities between the R-HPDC and wrought processes include the 

following: melting, alloying, casting. The appropriate metal melt must first be 

prepared by melting and cleaned by degasing and de-drossing. Thereafter, alloying 

is done if the metal melt was pure aluminium or alloy adjustment if the melt was 

prepared with some percentage of recycled scrap [1]. The liquid alloy is then cast 

into an ingot, for the wrought process, or a component in the case of R-HPDC. It 

could be expected, were it not for the controlled partial solidification of the R-HPDC 

process mentioned in the previous paragraph, after these processing steps, that 

these as-cast microstructures would have similarities. 

One objective of this research is to investigate and explain the solidification 

properties of different R-HPDC processed Al-Zn-Mg-Cu aluminium alloy 

compositions in comparison with properties of wrought alloys of the same family from 

the published literature. 

The next similarity between the R-HPDC and wrought processes is 

homogenisation. Homogenisation of the ingot in the wrought process is performed to 

eliminate microsegregation of alloying elements that distributed to grain boundaries 

during the non-equilibrium solidification process [1]. Homogenisation for the rheo-

cast components also has to be performed because of the microsegregation of the 

liquid phase that takes place during R-HPDC. 

After homogenisation, comes quenching for the R-HPDC process; wrought alloy 

ingots are normally not quenched because of their large size; quench cracks can 

form and the quench rates are highly variable between the surface and the centre of 

the ingot [1]. On the other hand with R-HPDC, the components are small and a more 

standard quench rate can be obtained. 
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A difference between the two processes, R-HPDC and wrought, is that R-HPDC 

misses the hot or cold deformation step after annealing (to soften the alloy to 

facilitate the production of semi-finished wrought products [1]) because the R-HPDC 

formed component is already in a near-net shape after casting. 

The alloying elements for heat treatable aluminium alloys, e.g. Al-Zn-Mg-Cu 

alloys, have to be supersaturated in the FCC solid solution, therefore a solution heat 

treatment is before being wrought [1]. A state of supersaturation is also reached for 

heat treatable aluminium alloys that were processed be R-HPDC. Material in the R-

HPDC process does not go through a softening step and the solution heat treatment 

step can therefore also be counted as a continuation from the homogenisation step, 

providing the homogenisation step takes place at the solution heat treatment 

temperature. Quenching is then done after the solution heat treatment [1]. 

Lastly, a similarity between the R-HPDC and wrought processes is that the heat 

treatable alloy has to be artificially aged. For the wrought and R-HPDC these 

temperatures and times are similar [1]. 

The R-HPDC process is a more economical option in comparison to the wrought 

process, to produce near-net shape components, because expensive capital cost 

forming equipment for basic shape forming is eliminated and scrap associated per 

component can be reduced to around 10-20 wt%. 

Alloying is a challenge, not only for the wrought process, but also for semi-solid 

metal (SSM) processing. The SSM processing (thixo- and rheo-processing) of typical 

wrought aluminium alloys achieves close to typical wrought alloy strengths, but with 

very low ductility [15]. Attention has been given to alloy adjustment of typical 7xxx 

series wrought aluminium alloy compositions, mainly with the aim of alleviating the 

processing problems, e.g. castability [16]. Little attention has been given to alloy 

development for improved material properties in the semi-solid processing 

knowledge domain [17-23]. 

The novel R-HPDC manufacturing technology [14] has the potential to be 

extremely cost competitive in producing high strength aluminium alloy components if 

the processed alloys are better understood. It is therefore important to explain phase 

evolution for R-HPDC processed alloys, as well as modelling material properties to 

enable alloy development for improvement. 

The primary objective of this research is to model the T6 and T73 mechanical 

properties of R-HPDC processed alloys on a semi-theoretical base as a function of 
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alloy composition and testing the applicability of the model to wrought processed 

alloys. 

The last objective is to propose an overall optimum Al:Zn:Mg:Cu ratio for  

Al-Zn-Mg-Cu aluminium alloys, for alloy development. 
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2. Literature survey 

 R-HPDC 2.1.

Semi-solid material has thixotropic properties, implying that the material will flow if 

a shear stress is applied, but will retain its shape if left undisturbed. Figure 2.1 is an 

example of an alloy that displays thixotropic behaviour whereby the material flows 

when a shear force is applied [24]. 

 

Figure 2.1. Time sequence of thixotropic behaviour of a semi-solid metal billet, where a  
semi-solid metal slug was placed upright and subsequently deformed, showing the flow 

behavior on applying shear forces [24]. 

Semi-solid metal processing is a technique whereby metal is processed in the 

two-phase state, liquid plus solid. This can be achieved by the two ways shown 

schematically in Figure 2.2. Firstly, the alloy can be cast into a basic shape of a bar, 

with a globular microstructure, and cooled to room temperature. This material is then 

feedstock material for thixo-processing [24]. The alloy is then heated again to the 

liquid + solid phase field, as shown by the red line in Figure 2.2. The  

thixo-processed material is then formed. On the other hand, rheo-processing is 

where the alloy is cooled directly to the liquid + solid phase field and then formed 

[24]. The thermal process is depicted schematically by the green line in Figure 2.2. 

The rheo-processing route results in a considerable energy saving. The SSM alloy 

can then be shaped by forging for high solid fractions or casting for low solid 

fractions [13]. 
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Figure 2.2. Schematic thermal diagram of rheo- and thixo-processing, adapted from [24]. 

Advantages of SSM processing are normally compared to the casting process 

because casting alloys are usually used for research. However, the advantages 

should be compared to the wrought process for wrought alloys such as the  

Al-Zn-Mg-Cu aluminium alloy system. Especially, R-HPDC [14] has the advantage 

that components can be cast directly to near-net shape, without the difficulties 

associated with this traditionally difficult to cast alloy system, i.e. hot tearing and 

shrinkage porosity. Shrinkage porosity and hot tearing can be eliminated with the aid 

of intensification pressure during HPDC. 

 The Al-Zn-Mg-(Cu) alloy system 2.2.

Rheo-high pressure die casting of Al-Zn-Mg-Cu aluminium alloys might lead to 

unique microstructures and as-cast properties compared to microstructures and 

properties of similar alloys produced with ingot casting during the wrought process. 

The objective of alloying Al with Zn, Mg and Cu is to improve mechanical 

properties relative to the unalloyed metal. New phases could appear during non-

equilibrium solidification as compositions become more complex. 

Solidification has a composition-temperature-time relationship. 

Thermodynamically, the two solidification models followed at the different time 

extremes, to calculate the phases that should appear in an alloy, from the elemental 

composition are the Lever and Scheil models [25]. 

The Lever model is used for equilibrium conditions, implying infinitely low 

solidification rates, where there is enough time for diffusion of alloying elements to 

take place. Alloying elements diffuse into the matrix phase to form solid solution 

phases depending on the solid solubility limits [25]. 
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The Scheil model is used for non-equilibrium conditions, implying infinitely high 

solidification rates. In this case, there is not enough time for diffusion of alloying 

elements to occur into the matrix phase. It results in a situation where the last liquid 

to solidify is enriched with alloying elements [25]. 

The Back-Diffusion model is followed for rates in between. In this case, there is 

some time available for diffusion of alloying elements to occur into the matrix phase, 

but not to the same extent as with equilibrium conditions. Ingot casting is probably 

more related to the Back-Diffusion model, while HPDC probably follows the Scheil 

model; each model has its own phase predictions [25]. 

Solidification rates are governed by the chosen manufacturing process, as shown 

in Table 2.1. Normally, manufacturing of wrought aluminium alloy products is 

accomplished by ingot metallurgy. Table 2.1 also shows the compositions of a 

number of different Al-Zn-Mg-Cu aluminium alloys [26-36]; the alloy labels are used 

for differentiation in subsequent tables and figures in this section. 

Table 2.1. Alloy compositions and solidification rates of Al-Zn-Mg-Cu aluminium alloys 
[26-36]. 

 

Zn Mg Cu

Alloy Designation Cooling rate Reference

A AA7050 6.56 2.37 2.60 0.45 °C/min [26]

B AA7055 8.00 1.80 2.60 ~ 15 °C/min [27]

C AA7055 8.00 2.00 2.30 ~ 15 °C/min [27]

D AA7085 7.81 1.62 1.81 Ingot [28]

E AA7050 6.31 2.33 1.70 SC 200 mm [29]

F AA7010 6.32 2.40 2.32 SC 200 mm [30]

G 7B04 6.13 2.65 1.61 DC SC 120 mm [31]

H AA7050 6.24 2.26 2.32 DC 100 mm [32]

I AA7278 6.70 2.60 2.00 R-HPDC [33]

J 7A55 7.86 2.09 2.06 SC 400 mm [34]

K not specified 8.10 2.05 2.30 Ingot [35]

L AA7050 6.10 2.30 2.20 DC 120 mm [36]

7B04: Equivalent to AA7075 7A55: Equivalent to AA7055

SC: Semi-continuous cast DC SC: Direct chill Semi-continuous cast

DC: Direct Chill R-HPDC: Rheo-high pressure die casting

wt%
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Equilibrium phases and reactions can be predicted thermodynamically with the aid 

of equilibrium phase diagrams. Figure 2.3 shows the Al-Zn-Mg projected liquidus 

surface [37]. The area in which all the alloy compositions in Table 2.1 fall is 

demarcated by the blue shaded area, near the Al corner of the diagram. An 

approximation can be assumed by adding the Cu contents of the alloys in Table 2.1 

to their respective Zn fraction. Since all the alloys fall between the two red lines, the 

solidification paths would reach the monovariant line between e1 and U1. Equation 

2.1 is the eutectic reaction equation for e1: 

𝐿 ↔  (𝐴𝑙)  +  τ     2.1 

where L is the liquid phase, (Al) is face centred cubic (FCC) aluminium  solid solution 

and τ is the Mg32(Zn,Al)48 cubic structure phase. 

Equation 2.2 is the quasi-peritectic invariant reaction equation for U1: 

𝐿 +  τ ↔  (𝐴𝑙)  +  𝜂    2.2 

where L, (Al), and τ have the same meanings as before; η is the MgZn2 hexagonal 

structure phase. The phases that can coexist upon final solidification after reaction 

U1 are 𝜏1 +  (𝐴𝑙)  +  𝜂. 

In the Al-Mg-Cu system [38], there are two phases which have isotypic crystal 

structures to those of Equation 2.2. The one similar to τ1 is the cubic structure  

T phase with the formula Mg32(Cu,Al)48. The other one, similar to η, is the hexagonal 

structure λ3 phase with the formula Mg(Cu,Al)2. 

Table 2.2 shows the crystallographic properties of the relevant phases in the  

Al-Mg-Zn and Al-Mg-Cu systems respectively. 
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Figure 2.3. Projection of the liquidus surface for the Al-Zn-Mg system [37] with shaded area 
for compositions in Table 2.1. 

 

Table 2.2. Crystallographic properties of Al-Mg-Zn system [37] and Al-Mg-Cu system [38] 
phases. 

 

 

Phase Formula Crystal system Space group Prototype

τ 1 Mg32(Al,Zn)48 Cubic Im-3 Mg32(Al,Zn)48

η MgZn2 Hexagonal P63/mmc MgZn2

Phase Formula Crystal system Space group Prototype

T Mg32(Cu,Al)48 Cubic Im-3 Mg32(Al,Zn)48

λ3 Mg(Cu,Al)2 Hexagonal P63/mmc MgZn2

Al-Mg-Zn system

Al-Mg-Cu system
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 Al-Zn-Mg-Cu as-cast microstructures 2.3.

The majority of work in wrought Al-Zn-Mg-Cu aluminium alloy literature 

determined phase evolution during solidification and homogenisation  

[26-32,34-36]. Heat treatable alloys are mostly used in the artificially aged condition, 

subsequent to homogenisation and solution heat treatment, to ensure that all the 

precipitate strengthening elements are dissolved. Insoluble phases at the 

homogenisation and solution heat treatment temperatures reduce the ductility of the 

alloy, do not contribute to the strength and reduce the corrosion resistance. 

A large ingot has a relatively slow cooling rate, allowing time for back diffusion of 

alloying elements during solidification. The result is that a number of equilibrium 

phases can appear. 

Figures 2.4 to 2.13 show the Al-Zn-Mg-Cu eutectic structures and phases found in 

a number of the wrought alloys, i.e. η (MgZn2), T (Al2Mg3Zn3), S (Al2MgCu) and  

θ (Al2Cu) [26-32,34-36], whereas Figure 2.10 that shows a R-HPDC alloy [33]. 

In R-HPDC, the solidification rate is extremely fast [39] because of the relatively 

small size of the casting, as well as the thermal gradients and heat transfer between 

the liquid alloy and the dies. This forces non-equilibrium solidification reactions. The 

result is that, seemingly at the lower magnification, a binary eutectic structure forms  

(Figure 2.10) which consists of all the major alloying elements, i.e. σ (Mg(Al,Cu,Zn)2) 

[33], together with solid solution Al as the other phase. The morphology of this 

eutectic structure was lamellar. It was proposed that the composition of the phase 

containing Al, Zn, Mg and Cu is based on the η phase with Al and Cu substituting for 

Zn [40]. 

Figures 2.4 to 2.13 also show the morphology of the lamellar eutectics. Some 

eutectics were accompanied by impurity element intermetallic phases. They were an 

Al-Cu-Fe-Cr-Mn-Si containing intermetallic phase (labelled 2) and an  

Al-Mg-Cu-Fe-Mn intermetallic phase (labelled 3) in Figure 2.8. The phase labelled 

1,2 and 3 in Figure 2.9 was the Al-Zn-Mg-Cu phase in the eutectic.  Figure 2.10 

shows a low magnification image of the eutectic in Alloy I. In Figure 2.11, the 

intermetallic phases labelled A and B were both Al7FeCu2; the regions labelled C, D 

and E were Al-Zn-Mg-Cu eutectics. In Figure 2.12, the intermetallic phase was 

Al7FeCu2 (labelled A); the phases labelled B and C were Al-Zn-Mg-Cu eutectics. 

Both phases labelled 1 and 2 in Figure 2.13 were Al-Zn-Mg-Cu eutectics. 



13 
 

 

 

Figure 2.4. Eutectic phases found in as-cast Alloy A in Table 2.1 [26]. 

 

 

Figure 2.5. Eutectic phases found in as-cast Alloy B in Table 2.1 [27]. 
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Figure 2.6. Eutectic phases found in as-cast Alloy D in Table 2.1 [28]. 

 

 

Figure 2.7. Eutectic phases found in as-cast Alloy E in Table 2.1 [29]. 
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Figure 2.8. Eutectic phases found in as-cast Alloy G in Table 2.1 [31]. 

 

 

Figure 2.9. Eutectic phases found in as-cast Alloy H in Table 2.1 [32]. 
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Figure 2.10. Eutectic phases found in as-cast Alloy I in Table 2.1 [33]. 

 

 

Figure 2.11. Eutectic phases found in as-cast Alloy J in Table 2.1 [34]. 
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Figure 2.12. Eutectic phases found in as-cast Alloy K in Table 2.1 [35]. 

 

 

Figure 2.13. Eutectic phases found in as-cast Alloy L in Table 2.1 [36]. 
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 Eutectic compositions 2.4.

Table 2.3 shows the overall eutectic compositions of the structures indicated in 

some of the alloys in Table 2.1, determined by EDX. It is clear that the eutectic 

structures consisted of Al, Zn, Mg and Cu in narrow ranges, indicating that there 

might be phase similarities regardless of the differing bulk alloy compositions in 

Table 2.1. It is unusual from an experimental viewpoint that the compositions in 

Table 2.3 were report to two decimal places instead of one. 

 

Table 2.3. Overall compositions of the different eutectic structures for alloys in Table 2.1  
[28,29,31,33-36]. 

 

 

 XRD analyses 2.5.

Figures 2.14 to 2.17 show the phases that were identified in the different  

Al-Zn-Mg-Cu as-cast alloys in Table 2.1 by X-ray diffraction (XRD) [27-29,34]. The 

large peaks were always the (Al) matrix, while the most common secondary crystal 

structure found was hexagonal MgZn2. The S phase (Al2MgCu) and  

T phase (Al2Mg3Zn3) were sometimes reported, but are questionable because of the 

very small peaks, as for the S phase in the top curve of Figure 2.14. Iron-containing 

intermetallic phases were also identified in Figure 2.17, but overlapped with the η 

phase and if present, were a result of Fe impurities in the alloy. 

 

Al Zn Mg Cu

Alloy

D 39.08 18.98 26.98 14.96 [28]

E 51.47 16.42 19.35 12.76 [29]

G 47.77 19.95 21.65 10.63 [31]

I 58.00 16.00 18.00 8.00 [33]

J 58.47 15.21 17.65 8.67 [34]

K 62.43 13.00 16.55 8.02 [34]

L 62.65 16.34 13.97 7.04 [36]

at.%
Reference
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Figure 2.14. XRD patterns of as-cast Alloys B and C in Table 2.1 [27]. 

 

 

Figure 2.15. XRD patterns of as-cast Alloy D in Table 2.1 [28]. 
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Figure 2.16. XRD patterns of as-cast Alloy E in Table 2.1 [29]. 

 

 

Figure 2.17. XRD patterns of as-cast Alloy J in Table 2.1 [34]. 
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 DSC analyses 2.6.

Figures 2.18 to 2.22 show differential scanning calorimetry (DSC) curves for some 

of the alloys in Table 2.1 [28,30,31,34,35]. The curves show the onset of melting of 

the eutectic in Al-Zn-Mg-Cu alloys in the as-cast condition. In all cases, the peaks 

were sharp, indicating a reaction with the formation of liquid. The onsets are in a 

narrow range, even if the various alloy compositions differed more widely. It was not 

clear and no reason was given why the endothermic peak for Alloy F was in the 

opposite sense (exothermic) for heating of the alloy, Figure 2.19 [30]. 

 

Figure 2.18. DSC curve of as-cast Alloy D in Table 2.1 [28]. 

 

Figure 2.19. DSC curve of as-cast Alloy F in Table 2.1 [30]. 
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Figure 2.20. DSC curve of as-cast Alloy G in Table 2.1 [31]. 

 

 

Figure 2.21. DSC curve of as-cast Alloy J in Table 2.1 [34]. 
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Figure 2.22. DSC curve of as-cast Alloy K in Table 2.1 [35]. 

Table 2.4 is a summary of the phases and melting points reported in Figures 2.1 to 2.22. 

Table 2.4. Melting points and structures of the secondary phases of some of the the alloys in 
Table 2.1 [27-31,34,35]. 

 

 Homogenisation heat treatment 2.7.

Homogenisation heat treatments are done on large cast ingots to dissolve the 

non-equilibrium phases that formed upon solidification during the casting process, 

that is, to take the alloying elements into solid solution in the primary Al-rich phase 

[1]. The preceding sections clearly showed the phases and thermal properties of 

such cast ingots. 

Alloy Melting peak (°C) "Hexagonal phase" "Cubic phase" Reference

B - Yes Yes [27]

C - Yes Yes [27]

D 475 Yes - [28]

E - Yes - [29]

F 474 - - [30]

G 478 - - [31]

J 478 Yes - [34]

K 474 - - [35]
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Specific homogenisation heat treatments had been developed for specific Al-Zn-

Mg-Cu aluminium alloys [1]. These programs include slow heating rates to take 

different types of furnaces into account and to minimise the temperature gradient in 

large sized ingot caused heat transfer considerations [1]. 

The maximum homogenisation temperature must be below the melting point of 

the alloy. A common maximum temperature is in the range of 460 °C to 470 °C. The 

DSC results in the Section 2.5 showed that melting of as-cast Al-Zn-Mg-Cu 

aluminium alloys start at around 476 °C. 

Homogenisation times can vary as a consequence of the cooling rate that the 

alloy was subjected to during solidification. Industrial homogenisation times for ingots 

can be as long as 48 hours [41]. 

These alloys are then typically annealed to the O condition (fully soft) in 

preparation for the forming process. Precipitation of the alloying elements occurs 

during annealing [1]. 

 Solution heat treatment 2.8.

A solution heat treatment has to be performed after the forming process. It is 

necessary to dissolve the alloying elements into solid solution again. Typical 

temperatures used depend on the form that the material is in, e.g. extruded rod, 

extruded bar, rolled plate or sheet [1]. Al-Zn-Mg-Cu aluminium alloys (7xxx series 

alloys) are not cast and therefore no solution heat treatment specified. Solution heat 

treatment times also depend on the form the alloy is in. Rolled sheet requires a 

shorter solution heat treatment than large forgings. Thermal gradients are again a 

major consideration [1]. 

 Quenching 2.9.

Products have to be quenched after solution heat treatment to keep the alloying 

elements in solid solution at room temperature. Different quenching media can be 

used in order to acquire the highest practical cooling rate [1]. 

Thermal gradients again play a role. Quench cracks can form if the thermal 

gradient becomes too large. Distortion of the material is another problem, if the rate 

of cooling is not that same over thick and thin sections. Once quenched, the alloy is 

now ready for subsequent heat treatments [1]. 
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 Artificial ageing heat treatments 2.10.

Precipitation is a diffusion related process by which compositions of the matrix 

and precipitates change with temperature and time [4]. The precipitation sequence, 

by which Al-Zn-Mg-Cu aluminium alloys obtain their strength, is given by  

Equation 2.3: 

𝐺𝑃 𝑧𝑜𝑛𝑒𝑠 →  𝜂′ →  𝜂    2.3 

where GP zones are Gunier-Preston zones, ηʹ are precipitates coherent with the 

matrix and η are equilibrium precipitates. 

Although outside the scope of this study, it is worth mentioning that η’ was the 

precipitate thought to be responsible for the maximum strength (T6) obtained by heat 

treatment of Al-Zn-Mg-Cu aluminium alloys and η for stress corrosion resistance 

(T73) [42]. Figure 2.23 shows the relationship of tensile strength as a function of heat 

treatment [2]. Maximum strength is reached in the T6 condition, while strength was 

the lowest in the T61 and T73 conditions. T73 is of great importance because of the 

increased stress corrosion resistance of Al-Zn-Mg-Cu aluminium alloys in this 

condition. 

 

Figure 2.23. Tensile strength as a function of heat treatment condition [2]. 

Figure 2.24 is the iso-yield strength map for wrought AA7075 as a function of time 

and temperature [1]. The peak aged condition results in maximum strength. The 

time-temperature combinations for the shaded area labelled T6 are intended for 

saving time during industrial processing. The T73 condition can be achieved by a 

combination of times and temperatures indicated by the shaded area labelled T73 in 

Figure 2.24. Table 2.5 is an excerpt from AMS 2770J [43] which shows that the 

procedures to produce the T73 condition were different for different alloy 
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designations. Table 2.5 also shows that the Mandatory, Preferred and Alternative 

procedures differed. 

 

Figure 2.24. Iso-yield strength map for AA7075 indicating the experimental relationship 
between time, temperature and strength upon artificial ageing [1] and the red dot marks the 

artificial ageing heat treatment in this study. 

Table 2.5. Heat treatment procedure excerpt from AMS 2770J for Al-Zn-Mg-Cu aluminium 
alloys of different designations [43]. 
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 Material properties modelling as a function of composition 2.11.

No publication, to the knowledge of the author, was available on the modelling of 

Al-Zn-Mg-Cu aluminium alloy mechanical properties as a function of composition for 

the peak-aged (T6) condition. The publication by Starink and Wang [44] was highly-

cited and comprehensively modelled the influence of composition, precipitation 

during artificial ageing, and grain structure on the yield strength of  

Al-Zn-Mg-Cu aluminium alloys in specifically the over-aged (T7) condition. In this 

case for the composition modelling, it took into account the effect of iron as an 

impurity element in forming Al7FeCu2. Silicon as an impurity element, forming Mg2Si, 

was neglected in the model because of its absence, or presence in limited amounts, 

in some commercial 7xxx series of aluminium alloys. The model predicts the yield 

strength of an alloy by a combination of the chemistry, ageing behaviour and the 

grain structure. 

Unfortunately, hardness was not modelled by Starnik and Wang [44]. Hardness is 

a very convenient measure of material properties. It can indicate that changes in a 

material have reached some type of equilibrium by reaching a plateau with time for a 

given set of conditions. It is also reasonable to assume that the hardness is related 

to alloy composition for a given set of ageing conditions and microstructures, and 

that alloys can be directly compared. 

The reason for the lack of material property modelling as a function of composition 

is undoubtedly the difficulty in obtaining a number of alloys with different composition 

ranges. The wrought process is a long and expensive route to produce alloys for 

research. Alloy material is in any case difficult to source, even for the choice not to 

custom produce alloys. 

The aim with this section was to ascertain whether the hardness and yield 

strength of the Al-Zn-Mg-Cu aluminium alloys tested in this study were functions of 

the structure and chemical composition as presented by Equation 2.4: 

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 ∝ 𝑓(𝑔𝑟𝑎𝑖𝑛 𝑠𝑖𝑧𝑒, 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)  2.4 
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3. Experimental procedure 

Alloyed castings were received from the CSIR in the as-cast state. Castings of 

four of the alloys were in the form of taper rods, while one alloy was in the form of a 

plate. 

Sections 3.1 to 3.4 deal with the production of castings by the CSIR, with the 

CSIR R-HPDC process. 

Section 3.5 deals with the heat treatments to which the alloys were subjected. 

Section 3.6 deals with a commercial wrought alloy that was used for comparison 

and validation of the hardness-composition model. 

Section 3.7 describes the experimental techniques used. 

Section 3.8 describes sample preparation procedure in detail. 

 Alloying 3.1.

Alloys were made by melting super purity aluminium (99.99 %Al) in a resistance 

furnace with a capacity of 25 kg. Addition of alloying elements started once the liquid 

aluminium (melting point: 660 °C) reached a temperature of 700 °C. The required 

weight of high purity Zn was first added with the required weight of high purity Cu. 

The alloy was then mechanically stirred for 20 minutes. The required weight of high 

purity Mg was then added. The alloy was then again stirred for 10 minutes. The 

liquid alloy was then de-gassed for 30 minutes with argon through a carbon lance 

after alloying, to remove any dissolved hydrogen and inclusions. 

A reduced pressure test (RPT) was used to assess the quality of the melt. The 

RPT works by pouring the liquid metal into a cup and solidifying under vacuum to 

exaggerate growth of any dissolved gas in the solidifying alloy. The solidified metal 

billet was cut with a band saw and ground on a linisher, and the exposed surface 

was then inspected for porosity. High quality melts were known to have been 

achieved by observing no macro porosity in the vacuum solidified material.  

Figure 3.1 shows the RPT device, the cup and the billet that was solidified under 

vacuum. 

The sample solidified under vacuum was also used for comparison to samples 

that were solidified under the high cooling rates of R-HPDC. 
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Figure 3.1. Reduced pressure test device used for vacuum cooling. 

 Bulk alloy compositions 3.2.

A sample of each alloy was poured into a cup from the furnace to determine the 

bulk alloy compositions. Table 3.1 shows the alloy compositions that resulted from 

the alloying procedure. 

Table 3.1. Bulk alloy compositions of the five alloys, as received. 

 

 

 R-HPDC 3.3.

Rheo-processing was performed with the small scale CSIR Rheocasting System 

(CSIR-RCS) device. This device consisted of an induction coil which was integrated 

with a compressed air coil for forced air cooling [5]. 

Zn Mg Cu Si Fe Mn Al

Alloy

7A 7.78 2.13 0.91 - 0.02 0.35 88.81

7B 8.09 2.19 1.00 - 0.01 0.11 91.45

7C 9.73 3.94 2.05 0.12 0.09 - 87.17

7D 7.80 3.07 1.64 - 0.02 0.39 89.63

7E 6.70 2.55 2.00 - 0.06 - 90.00

wt%

Vacuum hood 

Solidification cup 

Vacuum generator box 

Vacuumed sample 
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3.3.1. CSIR rheo-processing 

Figure 3.2 shows that R-HPDC cell. The ladle furnace is shown as well as the 

small scale CSIR-RCS device and the HPDC machine. 

R-HPDC processing at the CSIR for alloys as was described by Curle et al. [13] 

and follows. The melt was prepared in the furnace and a sample was poured for 

chemical analysis with an optical emission spectrometer (OES) on site. The actual 

composition from the OES was then used as input to a thermodynamic database 

(ProCast) to calculate the theoretical thermal properties of the liquid alloy, including 

the liquidus temperature and the 0.3 solid fraction temperature (Tfs
0.3). The pouring 

temperature with a superheat of between 10 and 20 °C was calculated and the 

furnace temperature was set to stabilise and control at the calculated pouring 

temperature. Processing was ready to commence at this point. 

The processing sequence started by ladling the liquid alloy into the processing 

cup and transferring to the CSIR-RCS. The cup was positioned in the processing 

coils where the cooling rate was controlled by the forced air cooling, while the 

contactless stirring action was controlled by the power input into the induction coil. 

Processing continued until the Tfs
0.3 temperature was reached, at which point the 

processing cup was ejected from the processing coil. The SSM material in the cup 

was then transferred to the HPDC machine and emptied into the shot sleeve and 

subsequently HPDC. 

 

3.3.2. Modified CSIR rheo-processing 

The process above was adapted due to the temperature measurement 

thermocouple inside the cup causing poor casting flow of the semi-sold metal. This 

effect was due to the liquid metal solidifying on the thermocouple and leaving a hole 

in the middle of the semi-solid billet after the thermocouple was extracted 

subsequent to rheo-processing. 

The solid fraction is normally expressed as a function of temperature, but the solid 

fraction can also be expressed as a function of time. The temperature and the 

processing time are related by the cooling rate which is constant. The solid fraction 

curve is commonly given as a function of temperature which can be written as some 

function of temperature, as in Equation 3.1: 
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−
𝑑𝑓𝑠

𝑑𝑇
= 𝑧(𝑇)    3.1 

where dfs is the solid fraction differential, dT the temperature differential and z(T) a 

function with temperature as the variable (this function is not linear). The negative 

sign indicates that the solid fraction increases as the temperature decreases. 

 

Figure 3.2. R-HPDC cell with dosing furnace, CSIR-RCS device and HPDC machine. 

 

The terms can be separated by elementary differential calculus equations 

according to Equation 3.2: 

𝑑𝑓𝑠 = −𝑧(𝑇)𝑑𝑇    3.2 

Ladle furnace 

HPDC machine 

CSIR-RCS device 
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Integration of Equation 3.2 therefore results in Equation 3.3: 

𝑓𝑠 − 𝑓0 = 𝑍(𝑇1) − 𝑍(𝑇2)   3.3 

where Z(Tx) is an integral function of z(T), T2 is the temperature at which the solid 

fraction is sought and T1 is the initial solid fraction temperature. T1 was taken as the 

as the calculated liquidus temperature (TL) at which temperature the solid fraction is 

marginally larger than zero and solidification starts (TL is a constant). 

 

Substitution of the above values results in Equation 3.4: 

𝑓𝑠 = 𝑍(𝑇𝐿) − 𝑍(𝑇2)   3.4 

The cooling rate, for a cup of alloy processed, is a constant and can be expressed 

as Equation 3.5: 

−
𝑑𝑇

𝑑𝑡
= 𝑘    3.5 

where the heat transfer constant, k, took into account the forced air temperature, 

pressure, flow, the cup material, cup wall thickness, heat generated during induction 

and the volume of alloy processed. 

After integration and substitution Equation 3.5 can be written as Equation 3.6: 

𝑇2 = 𝑇𝐿 − 𝑘𝑡2    3.6 

where t2 is the processing time, t1=0, k is the cooling rate constant and T2 and TL 

have the same meanings as above. 

Equation 3.7 is the result of substituting T2 in Equation 3.4 with T2 in Equation 3.6: 

𝑓𝑠 = 𝑍(𝑇𝐿) − 𝑍(𝑇𝐿 − 𝑘𝑡2)   3.7 

This shows that the solid fraction can be taken as a function of the processing 

time. It was acknowledged that the cooling rate constant was a function of the alloy 

volume poured into the cup, while the rest of the heat transfer parameters remained 

constant. Processing therefore took place for 16 to 24 seconds depending on the 

liquid metal volume in the cup. Cups with less liquid metal were processed for 

shorter times, while fuller cups were processed for longer times; for the time range 

indicated above. The aim was to achieve a smooth billet consistency in the  

semi-solid state. 
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The cup was then ejected from the processing coil and manually transferred to the 

high pressure die casting (HPDC) machine. The cup was emptied into the shot 

sleeve of the LK DCC130 cold chamber shot controlled HPDC machine. Injection by 

the piston was manually initiated once the billet was in the shot sleeve. The piston 

then followed the specified distance-speed injection shot control program, filling the 

die cavity. The casting was taken out once the die opened. These castings were 

referred to as being in the “As-cast” condition. 

 Casting geometries 3.4.

3.4.1. Taper rods 

Alloys 7A to 7D were cast into the taper rods casting geometry. Figure 3.3 shows 

of the entire casting with taper rods, runner and biscuit. 

 

 

Figure 3.3. Alloy 7A as an example of the taper rod casting with runner and biscuit. 

 

3.4.2. Plate 

One alloy, Alloy 7E, was cast into the plate geometry. Figure 3.4 shows the entire 

casting with plate, runner and biscuit of Alloy E. 

Biscuit 

Runner 

Taper rod castings 
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Figure 3.4. Plate casting with runner and biscuit of Alloy 7E. 

 

 Heat treatments 3.5.

It was not an aim of the study to evaluate different heat treatment practises for the 

R-HPDC and wrought alloys tested. It will be shown that the chosen heat treatment 

resulted in mechanical properties similar to the conventional heat treatment of  

Al-Zn-Mg-Cu aluminium alloys to the T6 condition. 

3.5.1. Homogenisation 

A Carbonite HRF 7/22 circulating air furnace was used for homogenisation and 

solution heat treatment in a single-step heat treatment. The furnace was set to  

470 °C and left to reach this temperature. The taper rod and plate samples were 

inserted into the furnace in a rack, once the furnace was at temperature. Figure 3.5 

shows the samples in the rack. The temperature fell by ~10 °C before closing the 

furnace door. The procedure was acceptable since the furnace returned to 

temperature with only a 1 °C over-shoot. The temperature was controlled to ±0.5 °C. 

The time for homogenisation was chosen to be 170 hours in order to approach near-

equilibrium conditions by allowing enough time for solute elements to dissolve 

completely.  

 

Biscuit 

Runner 

Plate casting 
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Figure 3.5. Heat treatment rack with taper rod and plate samples. 

3.5.2. Solution heat treatment 

The solution heat treatment was combined into a single step to coincide with 

homogenisation temperate. 

3.5.3. Quenching 

Figure 3.6 shows the heat treatment rack and 20 ℓ water quench container in 

which the solution heat treated samples were quenched in water at ambient 

temperature. The samples were moved around during quenching to avoid a steam 

blanket forming around the samples, which severely retards heat transfer to the 

water. 

 

Figure 3.6. Quench tank with water. 

Sample rack 

Samples 
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3.5.4. T6 artificial ageing 

Artificial ageing was performed in a second air circulating furnace,  

Carbonite HRF 7/22. The furnace temperature was set to reach 120 °C and left to 

stabilise pre-quenching. The rack with the samples was removed from the quench 

container and inserted into the artificial ageing furnace at temperature. The time for 

artificial ageing was chosen to be 50 hours. The chosen parameters, red point in 

Figure 2.24, fell in the middle of the plateau to ensure peak ageing. The temperature 

was again controlled to ±0.5 °C. This heat treatment condition was referred to as the 

T6 condition in the peak aged state. Time was not a restriction to this study as in 

industry. 

3.5.5. T73 artificial ageing 

The T73 heat treatment was performed in the same manner as the T6 heat 

treatment, except that the first step was at 120 °C for 3 hours and then the second 

step was 160 °C for 24 hours. This heat treatment was chosen to ensure full  

over-ageing and was the mandatory artificial ageing for aluminium alloy 7475, 

according to AMS 2770J [43]. 

 Wrought Al-Zn-Mg-Cu aluminium alloy 3.6.

A sample of wrought Al-Zn-Mg-Cu aluminium alloy (AA7040) plate was acquired 

through a local aerospace company. The sample was subjected to the same T6 heat 

treatment as the R-HPDC material. The only difference was that the solution heat 

treatment was for 1 hour, because the material was already homogenised. 

This wrought material was used for comparison with R-HPDC material and 

validation of the T6 hardness-composition model developed later in the study. 

 Sample preparation 3.7.

3.7.1. OES 

A piece was cut from the left arm back-end of each alloy’s taper rod, for optical 

emission spectroscopy (OES). These pieces were also placed in the furnace at  

470 °C with the taper rod samples for homogenisation and were removed after  

48 hours and quenched in a bucket of water. This heat treatment procedure softened 

the pieces for deformation with a 16 ton press. The reason for this procedure was 
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that the aperture of the OES was 15 mm, while the diameter of the back-end of the 

taper rod was only 12 mm. This procedure increased the diameter of the OES 

sample to at least 17 mm, which was sufficient for analysis. The samples were water 

ground on a polishing machine with only 800 grit SiC grinding paper at a set speed 

of 200 rpm. 

Figure 3.7 shows the deformed sample from the back-end of the taper rod as well 

as the position of the hardness sample. The arrows indicate that the OES and 

hardness measurements were made on the adjacent sides of the cut. It was difficult 

to preserve the polished surface for hardness measurement after OES measurement 

due to the destructive nature of the OES measurement of the surface. Therefore 

were the adjacent sides of the cut used for the correlation between hardness as a 

function of composition. 

 

 

 

Figure 3.7. Sectioned taper rod sample with OES and hardness samples. 

The plate sample was removed with a cut-off disk. Two millimetres of the plate 

sample was ground off. This sample was metallographically hand-prepared by water 

grinding with 80, 240, 600, 1200, 2400 and 4000 grit SiC grinding papers. The 

sample was then polished with 3 μm diamond solution, and finally polished with 50 

nm colloidal SiO2. All steps were performed at a speed of 200 rpm. The sample was 

left unetched. The sample was analysed with the OES only after the hardness 

measurements were done. The wrought sample was prepared in the same way as 

the plate sample. 

3.7.2. SEM and EDX 

A sample was taken from the right arm back-end of each alloy’s taper rod, as well 

as the plate, in the as-cast condition, by cutting with an ATM Brillant 221 precision 

cut-off machine. The samples were metallographically prepared by hand on an  

ATM Safir 550 polishing machine. Samples were water ground with 1200, 2400 and 

Deformed OES sample 

Hardness sample 

T6 condition sample 
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4000 grit SiC grinding papers and then polished with 3 μm diamond solution and 

finally polished with 50 nm colloidal silica (SiO2). A grinding speed of 200 rpm was 

used for all steps. Samples were left unetched. 

A sample was taken from the left arm back-end of each alloy’s taper rod as well 

as the plate, in T6 condition, by cutting with a precision cut-off machine. The 

samples were metallographically prepared by hand, by water grinding on 1200, 2400 

and 4000 grit SiC grinding papers. The samples were then polished with 3 μm 

diamond solution and finally polished with 50 nm colloidal SiO2. All steps were 

performed at a speed of 200 rpm. Samples were left unetched. 

Hand-preparation was preferred over mounting in Bakelite because a hot 

mounting process (160 °C for 10 min) would probably cause over-ageing of the  

T6 samples, aged at 120 °C. 

3.7.3. XRD 

The XRD samples were the same samples as the as-cast alloy samples 

mentioned in Section 3.7.2. 

3.7.4. DSC 

Cylindrical samples with a diameter of 5.5 mm were turned on a lathe from the 

back-end of each of the as-cast taper rods, including the plate. Disks were cut on the 

precision cut-off machine from these cylinders. The disks were then ground until they 

reached a weight of 32 mg for all alloys. 

3.7.5. Hardness 

Samples in the T6 condition were cut with the precision cut-off machine, again 

from the back-end of the heat treated taper rods. These cylinders were  

hand-prepared metallographically by water grinding with 1200, 2400 and 4000 grit 

SiC grinding papers. The samples were then polished with 3 μm diamond solution 

and finally polished with 50 nm colloidal SiO2. All steps were performed at a speed of 

200 rpm. Samples were left unetched. 

Figure 3.7 also shows a section that was used for hardness measurements. The 

intention was to improve the correlation between the composition analysis and the 

hardness evaluation by using adjacent sides of the cut for each type of 

measurement. The polished side of the cut was preserved for hardness because the 

OES spark damages the surface. 
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3.7.6. Grain size 

The as-cast and T6 sample, for optical light microscopy, were etched with  

0.5 % HF, after all other measurements were completed. 

 Experimental techniques 3.8.

3.8.1. OES 

Optical emission spectroscopy (OES) was performed with a Scientific ARL 

Quantris OES, at the CSIR. The OES had a calibrated Al database. 

3.8.2. SEM 

The JEOL JSM-6510 scanning electron microscope (SEM), at the CSIR, was 

used to analyse the as-cast and T6 material. Acceleration voltages of 6 kV and  

20 kV were used for observation, always in the backscattered energy (BSE) image 

mode. 

3.8.3. EDX 

A Thermo Scientific UltraDry detector was used for EDX measurements and the 

data were analysed with Thermo Fisher Scientific NSS 2.2 software. EDX 

measurements were done in BSE mode at a working distance of 10 mm and an 

acceleration voltage of 20 kV for large features, and 6 kV for very small features. The 

reason for the lower acceleration voltage used was to reduce the size of the 

interaction volume, to ensure that the signals were collected from only the regions of 

interest. The acquisition time was increased to allow for more counts. Area analysis 

was also chosen over point analysis for better representation of the area. 

Oxygen and nitrogen were also included in the analyses to assess their 

contribution to the overall analysis. Contributions of these elements were excluded 

from the calculation of the compositions of phases to find the quantitative result. 

3.8.4. Thermodynamic modelling 

The Scheil module in Thermo-Calc Classic S with the TTAl8 aluminium database 

was used, at the University of the Witwatersrand, to calculate equilibrium phase 

diagrams and non-equilibrium solid fraction curves for each alloy using the 

appropriate OES Zn, Mg, Cu and Al (balance) measured compositions as alloying 

inputs. 
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3.8.5. XRD 

The as-cast samples were outsourced for XRD to Xrd Analytical & Consulting; 

results were interpreted in collaboration with the author. XRD measurements were 

performed with a PANalytical Empyrean diffractometer with a PIXcel detector. The 

exposed measurement area was 5 mm in diameter. Fixed slits with Fe filtered Co-Kα 

radiation were used. Data were analysed with X’Pert Highscore Plus  

Version 3.05 software and the PAN-ICSD database. The weight percentages of 

phases were determined using a function in the software. 

3.8.6. DSC 

A NETZSCH STA 449F3 Jupiter was used for DSC. The thermal cycle of the 

experiment was started with argon purging, after which the sample followed a ramp 

rate of 20 °C/minute to 680 °C followed by a hold for 10 minutes and was cooled at 

the same rate as the heating rate. This fast ramp rate was chosen to exaggerate the 

appearance of non-equilibrium melting peaks. Data were analysed with  

NETZSCH Proteus Version 6.1.0 software. The melting onset temperatures were 

determined with the DCS software which used an extrapolation according to DIN and 

ISO standards, as quoted by the manufacturer. The accuracy of temperature 

measurement for this device was also quoted by the manufacturer as ±1.5 °C or  

0.25 % (whichever is greater). Note that the error of ±1.5 °C is greater than the error 

at 476 °C which was ±1.19 °C. 

3.8.7. Hardness 

Vickers hardness testing was performed with a Future-Tech FM-700 

microhardness tester. A load of 500 g was used. The hardness value of each alloy 

was calculated as the average of six measurements in the area correlating to the 

OES spark mark. 

3.8.8. Grain size measurement 

Optical light micrographs were captured at 100x magnification on a  

Leica DMI5000M microscope equipped with a Leica DFC295 digital camera and  

Image-Pro Plus Version 6.3.0.512 software. 

Grain sizes were measured by the linear intercept method according to  

Equation 3.8: 
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𝑑 =
𝑙

𝑛
    3.8 

where d was the grain diameter, l a known line length at the appropriate scale and  

n the number of grain boundary intersections with the line. Three random lines were 

used to calculate the average grain size. 
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4. Results 

 Visual examination of castings 4.1.

All casting received were visually examined. The casting had bright surfaces, no 

cold shuts and showed complete filling. Figure 4.1 shows an example of the surface 

appearance of the taper rod castings while Figure 4.2 shows the plate casting. 

 

 

Figure 4.1. Example of the surface of the taper rod castings. 

 

Figure 4.2. Surface appearance of the plate. 

 

 Alloying element macro-segregation 4.2.

Figure 4.3 shows the microstructure of the taper rods from the middle of the rod to 

the surface at a low magnification. It is clear that there is some macro-segregation of 

alloying elements at the surface. The liquid that contained the alloying elements 

segregated to the surface during casting due to the flow of semi-sold material in the 

die cavity. 
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Figure 4.3. SEM-BSE image of macro-segregation in the casting. 

 

Figure 4.4 shows a cross section of a taper rod. The yellow circle indicates the 

area from which the OES measurement was taken. The hardness measurements 

were made between the yellow boundary and red line. The aim of this procedure 

was to improve the correlation between hardness and composition measurements. 

The effect of taper of the casting on the solidification rate was also eliminated by 

this technique, because sampling was always done in the yellow area and close to 

the centre. 

 

Figure 4.4. OES and hardness measurement areas. Yellow shaded area indicates the radius 
of the OES measurement area on the deformed side of the sample. The hardness 

measurement area was between the yellow and red radii around the sample; on the polished 
adjacent side of the sample. 
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 Sample alloy compositions 4.3.

The sample alloy compositions, used from this point in this study, as measured 

with OES in the yellow shaded area indicated Figure 4.4 are given in  

Table 4.1. The alloy compositions varied significantly. Alloy 7A and 7B were very 

similar in their Zn, Mg and Cu contents and they also had the lowest Cu content. 

Alloy 7C had the highest alloy content of all. Alloy 7D had intermediate Zn and Cu 

contents among the alloys. Alloy 7E had the lowest Zn content of all, with a relatively 

high Mg content and one of the highest Cu contents. 

The impurity contents of all the alloys were very low, especially Si. Iron is one of 

the impurities that is picked up during processing, but still remained at low levels. 

Alloy 7D had the highest combined impurity contents of all. 

Alloys 7A, 7B and 7D were received from the CSIR as manganese-containing 

alloys, with the intention that adding Mn would restrict grain growth during the 

homogenisation heat treatment. 

 

Table 4.1. Experimental alloy compostions as measured with the OES. 

 

 

 

 

 

 

 

 

Zn Mg Cu Si Fe Mn Al

Alloy

7A 6.91 1.82 0.76 - 0.02 0.33 90.18

7B 6.25 1.52 0.67 - 0.01 0.11 91.45

7C 8.38 2.62 1.63 0.13 0.07 - 87.17

7D 6.50 2.14 1.32 - 0.02 0.40 89.63

7E 5.86 2.46 1.63 - 0.05 - 90.00

wt%
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 SEM observations of as-cast microstructures 4.4.

Figures 4.5 to 4.9 show the as-cast microstructures of all the alloys produced. 

Basically, two features were prominent in all the alloys, as indicated by the labels 

and arrows. The globular features, characteristic of SSM processing in general, were 

the primary (Al) phase (dilute aluminium solid solution) and were the “matrix”. The 

bright inter-globular features, between the primary (Al) phase, were the eutectic, 

containing most of the alloying elements. It was striking that the features between 

the alloys were so similar. 

The eutectic coarseness increased as the level of alloying increased. Alloy 7A 

(Figures 4.5a and b) and Alloy 7B (Figures 4.6a and b) showed the least coarse 

eutectics, while Alloy 7C (Figures 4.7a and b) and Alloy 7D (Figures 4.8a and b) 

showed the coarsest eutectics. The distribution of the eutectic in Alloy 7E  

(Figures 4.9a and b) was somewhat different from the other alloys, with both fine 

distributions and very coarse regions of eutectic. The reason could be that the 

geometry of the plate influenced the segregation flow pattern more during casting. 

The primary (Al) phase was also more dendritic than the other alloys which could 

have been the result of slight difference in processing. 

The eutectics mainly had a lamellar structure, resolved at the higher 

magnifications. The lamellar structures were very fine, although sometimes they 

were not resolved (and appeared grey). Noticeable shrinkage porosity was observed 

only in Alloy 7C, Figure 4.7b, at high magnification. One eutectic area, as shown in 

Figure 4.8b, marked by the rectangle, indicated a joint solidification front within the 

eutectic, where two eutectic colonies impinged. 

The almost-white features within all the eutectics were a result of polishing, and 

were caused by the eutectic structure that smeared easily, giving the comet shapes.  
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Figure 4.5. SEM-BSE images of the matrix and eutectic in as-cast Alloy 7A: a) low 
magnification, and b) high magnification. 

(αAl) 

eutectic 

a) 

b) 



47 
 

 

 

Figure 4.6. SEM-BSE images of the matrix and eutectic in as-cast Alloy 7B: a) low 
magnification, and b) high magnification. 

a) 

b) 
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Figure 4.7. SEM-BSE images of the matrix and eutectic in as-cast Alloy 7C: a) low 
magnification, and b) high magnification, also indicating shrinkage porosity. 

a) 

b) 

 

 

Porosity 
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Figure 4.8. SEM-BSE images of the matrix and eutectic in as-cast Alloy 7D: a) low 
magnification, and b) high magnification, also indicating eutectic colonies impinging. 

 

a) 

b) 
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Figure 4.9. SEM-BSE images of the matrix and eutectic in as-cast Alloy 7E: a) low 
magnification, and b) high magnification. 

a) 

b) 
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 EDX analyses of as-cast eutectic structures 4.5.

Figures 4.10 to 4.14 show the EDX area composition results for the eutectics of 

each alloy. It was clear that all the alloys consisted of Al, Zn, Mg and Cu.  

Figure 4.12b shows a small Fe peak which was present due to the level of Fe in the 

alloy. 

  

Figure 4.10. EDX results for as-cast Alloy 7A: a) SEM-BSE image, and b) qualitative 
analysis. 

  

Figure 4.11. EDX results for as-cast Alloy 7B: a) SEM-BSE image, and b) qualitative 
analysis. 

  

Figure 4.12. EDX results for as-cast Alloy 7C: a) SEM-BSE image, and b) qualitative 
analysis. 

b) 

b) 

b) 
a) 

a) 

a) 
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Figure 4.13. EDX results for as-cast Alloy 7D: a) SEM-BSE image, and b) qualitative 
analysis. 

  

Figure 4.14. EDX results for as-cast Alloy 7E: a) SEM-BSE image, and b) qualitative 
analysis. 

Table 4.2 shows the quantitative analysis for the eutectic of each alloy, as well as 

the percentage error for the measurement of each element, and indicates that the 

eutectic consisted of Al, Zn, Mg and Cu. Impurity elements, i.e. Fe and Si, were also 

found within the eutectic areas of the alloys that contained these elements in the 

overall composition. Manganese was an alloying element but it was not found in the 

eutectic area analyses of the Mn-containing alloys. The reason could be that it 

solidified within the matrix phase during processing. 

Inclusion of N and O in the analysis made the contributions of each alloying 

element more accurate. Otherwise the contributions of N and O in the analysis were 

added to the selected elements that were analysed. 

Table 4.2. EDX results of the overall compositions of the eutectics in the different alloys. 

 

Alloy

7A 3.4 ± 0.6 1.5 ± 0.2 14.0 ± 0.5 51.1 ± 0.3 7.1 ± 0.3 23.0 ± 0.4 - - -

7B 4.5 ± 0.6 2.6 ± 0.3 14.6 ± 0.5 49.6 ± 0.4 7.6 ± 0.3 21.2 ± 0.4 - - -

7C 3.1 ± 0.4 2.2 ± 0.2 16.0 ± 0.4 53.6 ± 0.3 6.5 ± 0.2 18.3 ± 0.3 0.3 ± 0.0 0.1 ± 0.1 -

7D 2.9 ± 0.6 2.4 ± 0.4 16.4 ± 0.5 53.7 ± 0.4 8.4 ± 0.3 16.2 ± 0.4 - - -

7E 3.6 ± 0.7 1.8 ± 0.3 16.1 ± 0.5 55.3 ± 0.4 8.4 ± 0.3 14.9 ± 0.4 0.3 ± 0.1 - -

Si K Mn K

at.%

N K O K Mg K Al K Cu K Zn K Fe K

Element & Line at 20kV

a) 
b) 

b) 
a) 
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The average compositions of the eutectic in each alloy were corrected using the 

results in Table 4.2 by removing the N and O contributions. The Al, Zn, Mg and Cu 

content of the eutectic was found by calculating the fraction of each element by 

Equation 4.1. 

𝑎𝑡.%𝑖

∑ 𝑎𝑡.%𝑖𝑖
× 100     4.1 

where 𝑖 is Al, Zn, Mg and Cu. 

Table 4.3 shows the eutectic compositions after this correction. The Cu content, of 

all the elements, was the lowest for each alloy. The amount of Zn decreased from 

the top of Table 4.3 to the bottom, to where the Zn content was even lower than that 

of Mg. It is clearly seen that Al was just over half of the eutectic composition. This 

agrees with the microstructures of the eutectics, that one of the two phases in the 

eutectic was Al-based, while the other contained the rest of the alloying elements. 

Table 4.3. Corrected overall compositions of the eutectics of different R-HPDC processed 
alloys. 

 

 

 Vacuum cooling 4.6.

The reduced pressure test of Alloy 7D was taken as an example of the vacuum 

cooled alloy (Alloy 7D-V). Figure 4.15 clearly shows that the eutectic had the same 

appearance as the other eutectics, with the same lamellar features. The whitish 

features appear to be from smearing during polishing. The EDX area analysis is 

shown in Figure 4.16, indicating the presence of Al, Zn, Mg and Cu. 

Table 4.4 shows the composition of the eutectic of the vacuum cooled sample of 

Alloy 7D. Comparing Alloys 7D and 7D-V, it can be seen that the eutectics had 

Al Zn Mg Cu

Alloy

7A 53.7 24.1 14.7 7.4

7B 53.4 22.8 15.7 8.2

7C 56.8 19.4 16.9 6.9

7D 56.7 17.1 17.3 8.9

7E 58.5 15.7 17.0 8.8

at.%
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essentially the same composition, which was anticipated since it was the same alloy, 

albeit processed differently. 

 

Figure 4.15. SEM-BSE image of Alloy 7D-V showing the eutectic at high magnification. 

  

Figure 4.16. EDX results for the eutectic of Alloy 7D-V: a) SEM-BSE image, and b) 
qualitative analysis. 

Table 4.4. Corrected eutectic composition of the vacuum cooled alloy. 

 

 

Al Zn Mg Cu

Alloy

7D-V 57.4 15.9 16.0 10.6

7D 56.7 17.1 17.3 8.9

at.%

a) b) 
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 Eutectic alloys 4.7.

Two eutectic alloys (Alloys E-A and E-B) were produced with compositions 

according to the measured EDX results of the overall eutectic compositions in Alloy 

7A and Alloy 7D, respectively. These alloys were produced by induction heating of 

the pure metals and subsequent cooling in air. 

4.7.1. Eutectic alloy A 

Figure 4.17 shows the eutectic microstructure of Alloy E-A. It clearly had a 

lamellar structure with two alternating phases. A eutectic colony boundary is visible 

on the left side of Figure 4.17, indicated by the rectangle. 

Figure 4.18 shows the analysed region and the qualitative EDX results which 

showed that the dark grey phase was Al-rich, while the light grey phase comprised  

Al-Zn-Mg-Cu. 

Figure 4.19 is a black and white image and was a binary colour threshold 

adjustment to calculate the area fraction of the light and dark grey phases in the 

microstructure. 

 

Figure 4.17. SEM-BSE image of the Al-rich (dark grey) and Al-Zn-Mg-Cu containing (light 
grey) eutectic microstructure of Alloy E-A. The rectangle indicates a colony boundry. 
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Figure 4.18. EDX results for eutectic Alloy E-A: a) SEM-BSE image, b) qualitative analysis of 
the Al-Zn-Mg-Cu containing phase (Point 1), and c) of the Al-rich phase (Point 2). 

 

 

Figure 4.19. Binary threshold colour image of Alloy E-A. 

c) b) 

a) 
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Table 4.5 shows the corrected quantitative EDX phase compositions measured for 

two different lamellae in Alloy E-A (errors assumed the same as indicated in  

Table 4.2). The measured area of each phase is also indicated as a fraction. The 

molar composition balance of Alloy E-A was the same as the intended composition 

of the eutectic in Alloy 7A (Table 4.3). 

Table 4.5. Corrected EDX compositions of the Al-rich and Al-Zn-Mg-Cu phases in eutectic 
Alloy E-A. 

 

 

4.7.2. Eutectic alloy B 

Figure 4.20 shows the lamellar microstructure of Alloy E-B, the eutectic alloy of 

the eutectic of dilute Alloy 7D. Figure 4.21 shows the qualitative EDX analyses of the 

two phases found in the eutectic. The dark grey phase was Al-rich, while the light 

grey phase was composed of Al-Zn-Mg-Cu. The wavy appearance of the  

Al-Zn-Mg-Cu phase in Figure 4.21a was a polishing artefact and not another phase. 

Figure 4.22 shows the binary black and white threshold image of the area fractions 

of the two eutectic phases. 

Table 4.6 shows the molar composition balance for Alloy E-B as calculated from 

the area fraction analysis of the two phases in combination with the EDX analyses of 

the two phases. It is clear from Table 4.6 that the calculated composition was very 

close, with marginal differences, to the targeted eutectic composition of Alloy 7D 

(Table 4.3). 

 

 

Al Zn Mg Cu

Area fraction

Al-Zn-Mg-Cu lamella 22.8 38.5 25.9 12.8 0.53

Al-rich lamella 89.2 7.7 2.2 0.9 0.47

Composition of Alloy E-A by molar balance 54.1 24.0 14.7 7.2 1.00

Overall eutectic composition of Alloy 7A 53.8 24.1 14.7 7.4

at.%
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Figure 4.20. SEM-BSE image of the Al-rich (dark grey) and Al-Zn-Mg-Cu containing (light 
grey) eutectic microstructure of Alloy E-B. 

 

  

Figure 4.21. EDX results for eutectic Alloy E-B: a) SEM-BSE image, qualitative analysis of b) 
Al-Zn-Mg-Cu containing phase (Area 1), and c) the Al-rich phase (Area 2). 

c) b) 

a) 



59 
 

 

 

 

Figure 4.22. Binary threshold colour image of Alloy E-B. 

 

 

 

Table 4.6. Adjusted EDX compositions of the Al-rich and Al-Zn-Mg-Cu phases in eutectic 
Alloy E-B. 

 

 

 

 

Al Zn Mg Cu

Area fraction

Al-Zn-Mg-Cu lamella 23.4 29.9 28.5 18.2 0.487

Al-rich lamella 87.7 6.7 2.8 2.8 0.513

Composition of Alloy E-B by molar balance 56.4 18.0 15.3 10.3 1.000

Overall eutectic composition of Alloy 7D 56.7 17.1 17.3 8.9

at.%
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4.7.3. Eutectic alloy C 

A third eutectic alloy (Alloy E-C) was produced, with an Al:Zn:Mg:Cu composition 

ratio of 5:1:1:1, in the same manner as Alloys E-A and E-B. The intention with this 

alloy was to compare the Al-Zn-Mg-Cu phase in the eutectic with the composition 

measured for the same phase of the eutectic in Alloy H (Section 2.3). 

Figure 4.23 shows the microstructure of Alloy E-C. There were three phases 

visible in the microstructure, a lamellar eutectic consisting a light grey and a dark 

grey phase and a phase with a mid-grey contrast. Figure 4.24 shows the qualitative 

EDX analyses of the phases found in the rectangle in indicated in Figure 4.23. The 

dark grey phase was Al-rich, the light grey phase contained Al-Zn-Mg-Cu and the 

mid grey phase contained Al-Cu together with a very minor amount of Mg. 

There was a fine eutectic structure as well as a coarse eutectic structure. The 

coarse parts in the microstructure were interpreted as a ternary eutectic. The Al-Cu 

phase seemed to be divorced from the other two phases in the structure. 

 

 

Figure 4.23. SEM-BSE image of the Al-rich (dark grey) and Al-Zn-Mg-Cu containing (light 
grey) eutectic microstructure and the Al-Cu phase (mid grey) of Alloy E-C. 
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Figure 4.24. EDX results for eutectic Alloy E-C: a) SEM-BSE image, qualitative analysis of b) 
light grey Al-Zn-Mg-Cu containing phase (Area 1), c) dark grey Al-rich phase (Area 2), and d) 

medium grey Al-Cu containing phase (Area 3). 

 

 Thermo-Calc predictions for as-cast alloys 4.8.

Thermo-Calc software with the most recent aluminium database (TTAL8) was a 

commercial thermodynamic package with which it was possible to calculate 

thermodynamic properties of the R-HPDC aluminium alloys. 

 

4.8.1. Equilibrium phase predictions 

Thermo-Calc was used to calculate the equilibrium phases in the alloys. Figures 

4.25 and 4.29 show the phases that would be present in Alloys 7A and 7B upon 

cooling were the (Al) solid solution, MgZn2 and the T(Al,Cu,Mg,Zn) phase. Figures 

4.27 to 4.29 show the S phase (Al2CuMg) present in Alloys 7 C to 7E, besides the 

same phases in Alloy 7A and 7B. The S phase could be expected in the alloys with a 

high Cu content. The MgZn2 phase appears around 400 °C in all the alloys. Table 

4.7 shows the onset and end of solidification of the different alloys. 

c) 

a) 

b) 

d) 
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Figure 4.25. Thermo-Calc equilibrium phase proportion-temperature plot for Alloy 7A. 

 

 

Figure 4.26. Thermo-Calc equilibrium phase proportion-temperature plot for Alloy 7B. 
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Figure 4.27. Thermo-Calc equilibrium phase proportion-temperature plot for Alloy 7C. 

 

 

Figure 4.28. Thermo-Calc equilibrium phase proportion-temperature plot for Alloy 7D. 
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Figure 4.29. Thermo-Calc equilibrium phase proportion-temperature plot for Alloy 7E. 

 

Table 4.7. Equilibrium solidification onset and end temperatures of Alloys 7A to 7E. 

 

 

4.8.2. Non-equilibrium phase predictions 

The temperature range between 450 °C and 500 °C, where the start of melting 

occurs, or in other words, the final solidification temperature, was of major interest 

for this study. The reason was that melting of the alloys had to be prevented during 

homogenisation. 

End Onset

Alloy

7A 570 637

7B 585 636

7C 508 633

7D 545 633

7E 533 633

Solidification

°C
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Confidence in the Scheil calculations with this package and database was very 

high, due to the success stated by Thermo-Calc Software by validation of the 

calculated non-equilibrium properties with experimental data [45]. 

Figures 4.30 to 4.34 show the same calculated solidification temperatures and 

phases for the different alloys. The MgZn2 and T(Al,Cu,Mg,Zn) phases appeared in 

all the calculations at the end of solidification. All alloys had relatively flat slopes near 

the onset of solidification, but very steep slopes near the end of solidification. The 

broken line in each case indicates equilibrium solidification. 

It is interesting that the T(Al,Cu,Mg,Zn) phase appears before the MgZn2 phase in 

Alloy 7A compared to the other alloys. The reason for this result was unclear but was 

experimentally verified later in Section 4.8. 

Table 4.8 shows the non-equilibrium fraction that solidified last depended on the 

extent of alloying, i.e. higher alloying resulted in larger non-equilibrium phase 

fractions. Alloy 7B had the smallest fraction, while Alloy 7C had the largest. The 

amounts of eutectic calculated with Thermo-Calc are also shown in Table 4.8. 

The final solidification temperatures of all the alloys were calculated to be the 

same at 476 °C. The solidification onset temperatures again varied according to the 

extent of alloying: increasing alloying resulted in decreasing of the solidification onset 

temperature. 

 

Figure 4.30. Thermo-Calc Scheil solidification calculation for Alloy 7A. 



66 
 

 

 

Figure 4.31. Thermo-Calc Scheil solidification calculation for Alloy 7B. 

 

 

Figure 4.32. Thermo-Calc Scheil solidification calculation for Alloy 7C. 
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Figure 4.33. Thermo-Calc Scheil solidification calculation for Alloy 7D. 

 

 

Figure 4.34. Thermo-Calc Scheil solidification calculation for Alloy 7E. 
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Table 4.8. Summary of Thermo-Calc solidification onset and end temperatures, eutectic 
percentages and the sum of major alloying elements. 

 

 

 DSC of as-cast alloys 4.9.

The main reason for the DSC measurements of the as-cast alloys was to 

determine the melting temperatures. These measurements were necessary to 

choose temperatures for homogenisation that would prevent the material from 

melting during homogenisation, but that would enhance the dissolution of the 

solidified alloying elements. 

The presentation of the DSC measurement curves here is to show the starts and 

ends of melting. Figures 4.44 to 4.48 show the results of the DSC heating 

experiments of the as-cast condition alloys. The general features of the curves 

shown were the eutectic melting peak at temperatures below 500 °C and the melting 

peak of the primary (Al) phase at higher temperatures. The DSC curves over the full 

melting range show the relative height of the eutectic reaction peaks to the total 

alloy. 

The non-equilibrium Thermo-Calc results indicate that there should be no other 

reactions besides the two major peaks. However, there seems to be slight peaks 

between the eutectic melting peak and the primary phase peak, especially Alloy 7C. 

These peaks could be reactions involving the impurity or minor alloying elements. 

End Onset Eutectic Zn + Mg + Cu

Alloy % at.%

7A 476 639 4.90 5.42

7B 476 640 4.40 4.73

7C 476 629 9.20 7.48

7D 476 636 7.20 5.87

7E 476 637 7.20 6.09

°C
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Figure 4.35. DSC heating curve of Alloy 7A. 

 

Figure 4.36. DSC heating curve of Alloy 7B. 

 

Figure 4.37. DSC heating curve of Alloy 7C. 
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Figure 4.38. DSC heating curve of Alloy 7D. 

 

Figure 4.39. DSC heating curve of Alloy 7E. 

 

Figure 4.49 shows the DSC curve of Alloy 7D-V. It would be expected that the 

features of the curve would be the same as that of Alloy 7D, but it is not the case. 

The onset of melting for Alloy 7D-V is at 475.9 °C, while that for Alloy 7D is higher at 

479.5 °C. It clearly indicates that the difference in solidification rate of the alloy 

affects the thermal behaviour. 
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Figure 4.40. DSC heating curve of Alloy 7D-V. 

 

Figures 4.50 to 4.52 show the DSC heating curves of Alloys E-A, E-B and E-C. 

The DSC curves look very similar with only one major peak. There could be a minor 

reaction in Alloy E-B as indicated by the small kink in the curve at around 465 °C. 

 

Figure 4.41. DSC heating curve of Alloy E-A. 



72 
 

 

Figure 4.42. DSC heating curve of Alloy E-B. 

 

 

Figure 4.43. DSC heating curve of Alloy E-C. 

 

Table 4.10 shows that the onset and peak temperatures for melting of Alloys E-A 

and E-B were the same. Alloy E-C had a lower onset temperature than Alloys E-A 

and E-B, which could indicate the onset of a different reaction or a different 

composition. The onset temperatures of the eutectic Alloys E-A and E-B were also 

the same as the melting temperatures for Alloys 7A, 7B, 7C and 7E. 
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Table 4.9. Summary of melting thermal events of Alloys E-A, E-B and E-C. 

 

 

Figures 4.53 to 4.55 show the DSC cooling curves of Alloys E-A, E-B and E-C. 

There was a change in the solidification behaviour of the eutectic alloys as the Cu 

content increased and the Zn content decreased. Figure 4.53 shows a single peak 

on cooling of Alloy E-A. Figure 4.54, of Alloy E-B, shows a large peak after the onset 

of solidification, followed by a small second peak. Figure 4.55, of Alloy E-C, shows 

that the first peak after the onset becomes much smaller relative the second peak. 

The two peaks were indicative of two solidification reactions. 

 

 

Figure 4.44. DSC cooling curve of Alloy E-A. 

Onset Peak

Alloy

E-A 475 493

E-B 475 490

E-C 467 490

°C
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Figure 4.45. DSC cooling curve of Alloy E-B. 

 

Figure 4.46. DSC cooling curve of Alloy E-C. 

 

Table 4.11 shows that the onset of solidification temperature decreases from Alloy 

E-A to E-C and also shows that the temperatures of the first peaks coincide (within 

experimental error), as well as the temperatures of the second peaks. 

Table 4.10. Summary of solidification onset and peak temperatures of Alloys EA to E-C. 

 

 

Onset Peak 1 Peak 2

Alloy

E-A 475.9 456.9 -

E-B 472.0 458.3 445.9

E-C 468.4 456.3 448.1

°C
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 XRD of as-cast alloys 4.10.

Figures 4.35 to 4.39 show the XRD results of the as-cast alloys, as excerpts of the 

XRD curves between 2θ equal to 42° and 55°. This range was chosen because it 

clearly indicates the different crystal structures found in these alloys. The complete 

curves, from 22° to 105° of 2θ, are given in Appendix A. Peak matches for the 

phases in the Al-Zn-Mg-Cu system are also shown in each figure. 

All the samples showed two major peaks at 2θ equal to 45° and 52°; these are the 

primary (Al) phase with a face centred cubic (FCC) crystal structure. This phase is 

the matrix and common to all the alloys in this investigation. 

Figures 4.35 and 4.36 show that Alloys 7A and 7B had the same patterns, and 

hence the same crystal structures. The second phase identified by XRD was MgZn2 

which has a hexagonal crystal structure. Figure 4.38 for Alloy 7D shows that there 

was a third phase present which had a cubic crystal structure. The lattice parameters 

agreed with both the τ1 phase in the Al-Zn-Mg [37] and the T phase in the Al-Cu-Mg 

[38] systems, showing that they were the same. Figures 4.37 and 4.39, for Alloys 7C 

and 7E, show that both of the above-mentioned phases, cubic and hexagonal, were 

present in the as-cast microstructures. Table 4.9 shows the results for the lattice 

parameters of the phases found in Alloys 7A to 7E and Alloys E-A and E-B. 

 

Figure 4.47. XRD pattern for as-cast Alloy 7A. 
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Figure 4.48. XRD pattern for as-cast Alloy 7B. 

 

 

Figure 4.49. XRD pattern for as-cast Alloy 7C. 
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Figure 4.50. XRD pattern for as-cast Alloy 7D. 

 

 

Figure 4.51. XRD pattern for as-cast Alloy 7E. 

 

Figure 4.40 of Alloy 7D-V shows only a match for the MgZn2 hexagonal phase and 

the (Al) cubic phase. 

Position [°2Theta] (Cobalt (Co))

45 50 55

Counts

100

400

900

1600

2500

 Alloy 7E

 Peak List

 Mg32 ( Al , Zn )49; Cubic

 Mg Zn2; Hexagonal

 Al; Cubic
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Figure 4.52. XRD pattern for as-cast Alloy 7D-V. 

Figures 4.41 to 4.43 are the XRD results for Alloys E-A, E-B and E-C which clearly 

showed the MgZn2 hexagonal crystal structure, together with the (Al) FCC crystal 

structure. 

 

Figure 4.53. XRD pattern for as-cast Alloy E-A. 
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Figure 4.54. XRD pattern for as-cast Alloy E-B. 

 

 

Figure 4.55. XRD pattern for as-cast Alloy E-C. 
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Table 4.11. Measured lattice parameters for phases in Alloys 7A to 7E, 7D-V, E-A and  E-B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Alloy (αAl) Cubic (a ) Hexagonal (a ) Hexagonal (c )

7A 405.16 - 522.27 853.30

7B 405.30 - 522.20 853.20

7C 405.40 1402.10 519.60 851.40

7D 404.94 1402.30 - -

7E 405.43 1399.20 520.53 849.22

7D-V 405.54 - 521.97 849.52

E-A 404.70 - 520.20 851.10

E-B 404.90 - 518.70 849.10
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 SEM observations of T6 microstructures 4.11.

Figures 4.56 to 4.60 show representative general appearances of the alloys in the 

T6 condition. These were taken at two different magnifications to show the general 

microstructures and the detailed microstructures. The microstructures at low 

magnification seem featureless because the micro-segregation had been eliminated 

by the homogenisation heat treatment. The micrographs at low magnification should 

be compared to the low magnification micrographs of the as-cast condition  

(Figures 4.5 to 4.9). Fine phases became apparent at high magnification. 

Figure 4.56, of Alloy 7A, shows shrinkage porosity that spheroidised during the 

solution heat treatment and appeared as black spots. Two types of particles are 

visible in Figure 4.56b. These were larger needle-shaped particles and small 

spherical-shaped particles. The needle-shaped particles seemed to be an 

intermetallic phase on the grain boundaries, while the spherical particles seemed to 

be dispersoids within the grains. 

Figure 4.57a, of Alloy 7B, shows that there were, again, a number of pores (dark 

spots) after homogenisation. These pores were shrinkage porosity that spheroidised. 

Figure 4.57b shows one bright particle that seemed to be the same as the 

dispersoids in Figure 4.40b. 

Figure 4.58, of Alloy 7C, shows dark grey globules and bright features which were 

intermetallic phases that did not dissolve, even after the long time at the specific 

solution heat treatment temperature. The globules probably spheroidised during the 

solution heat treatment. Some particles also had two contrasts, but the brighter 

contrast was due to a polishing effect. 

Figure 4.59a, of Alloy 7D, shows that there were no clearly distinguishable 

features visible at low magnification. In contrast, Figure 4.59b shows spherical 

dispersoids and a larger rounded intermetallic phase on the grain boundaries, at 

higher magnification. 

Figure 4.60, of Alloy 7E, shows some bright chunky particles left in the alloy after 

solution heat treatment. In Figure 4.60b, at higher magnification, also needle shaped 

particles are seen. There were to be two different contrast intermetallic compounds, 

they were assumed to be the same intermetallic compound at different depths from 

the surface. 



82 
 

 

 

Figure 4.56. SEM-BSE images of intermetallic phases in Alloy 7A in the T6 condition: a) low 
magnification, and b) high magnification. 

a) 

b) 



83 
 

 

 

Figure 4.57. SEM-BSE images of porosity and intermetallic phases in Alloy 7B in the T6 
condition: a) low magnification, and b) high magnification. 

a) 

b) 
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Figure 4.58. SEM-BSE images of intermetallic phases in Alloy 7C in the T6 condition: a) low 
magnification, and b) high magnification. 

a) 

b) 
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Figure 4.59. SEM-BSE images of intermetallic phases in Alloy 7D in the T6 condition: a) low 
magnification, and b) high magnification. 

a) 

b) 
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Figure 4.60. SEM-BSE images of intermetallic phases in Alloy 7E in the T6 condition: a) low 
magnification, and b) high magnification. 

a) 

b) 
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 EDX analyses of T6 condition alloys 4.12.

Figures 4.61 to 4.64 show the qualitative EDX composition analyses of the 

analysed points for the alloys in the T6 condition.  

Figure 4.61 shows a point analysis of Alloy 7A. Alloy 7A was a Mn-containing alloy 

and it was expected that the Mn probably reacted with Cu in the alloy, to give  

Al-Cu-Mn intermetallic phases on grain boundaries and dispersoids within grains. 

The EDX analysis, in Figure 4.61b, clearly shows the presence of Mn and Cu in the 

intermetallic phase. The C peaks in all the analyses were from rinsing the sample 

with ethanol after polishing. The Al peak is probably larger due to the Al matrix 

background, as was the case for all the analyses. 

Alloy 7B had the lowest Mn concentration, so it was expected that there would be 

much fewer secondary phases, as was seen in Figure 4.57b. These intermetallic 

compounds were not analysed but assumed to be the same Mn-containing 

compound as in Alloy 7A. 

 

Figure 4.61. EDX results for Alloy 7A in the T6 condition: a) SEM-BSE image, and b) 
qualitative analysis of Al-Mn-Cu dispersoid. 

Figure 4.62 shows the microstructure and qualitative analysis of intermetallic 

phases in Alloy 7C. This alloy was interesting because it did not contain any other 

impurity elements besides Fe and Si. The EDX analysis (Figure 4.62b) of the bright  

needle-like intermetallic phase in Figure 4.46a clearly shows, qualitatively, the 

presence of Fe and Cu. The EDX analysis (Figure 4.62d) of the dark intermetallic 

phase in Figure 4.62c shows the presence of Si and Mg. The EDX analysis of the 

dark intermetallic phase also shows a large O peak. From experience, this is due to 

some colloidal silica becoming lodged in the softer dark phase during polishing. 

a) 

b) 
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Figures 4.62e and 4.62f show that there were also still some undissolved  

Al-Zn-Mg-Cu eutectic left in Alloy 7C. 

 

 

 

Figure 4.62. EDX results for Alloy 7C in the T6 condition: a) SEM-BSE image of needle 
shape, b) qualitative analysis for Al7FeCu2 needle shape (7C-y), c) SEM-BSE image of 
spherical shape, d) qualitative analysis for spherical shaped Mg2Si (7C-x), e) SEM-BSE 

image of a large eutectic phase, and f) qualitative analysis of the large Al-Zn-Mg-Cu eutectic 
phase (7C-z). 

 

a) 

c) 

b) 

d) 

e) 

f) 
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Figure 4.63 shows the intermetallic phases and dispersoids of Alloy 7D. This alloy 

is again a Mn-containing alloy. The qualitative EDX analysis, in Figure 4.63, shows 

the intermetallic needle containing Mn and Cu. 

 

Figure 4.63. EDX results for Alloy 7D in the T6 condition: a) SEM-BSE image, and b) 
qualitative analysis of the Al-Mn-Cu intermetallic. 

Figure 4.64 shows the qualitative intermetallic phases analyses of Alloy 7E. This 

alloy contained Fe which reacted with Cu. This Fe phase does not dissolve at the 

solution heat treatment temperature used and was therefore a remnant. It is 

interesting to note that this intermetallic phase had a needle shape. Another 

intermetallic phase in this alloy was an Al-Mg-Cu intermetallic phase, which was left 

after the long solution heat treatment. It probably did not dissolve due to super-

saturation of the matrix in the vicinity of the inter-globular eutectic. 

Table 4.12 shows the EDX measurements of the intermetallic phases found in the 

different alloys. The intermetallic phases in Alloys 7A, 7B and 7D contained Mn and 

Cu with a ratio of ~2:1. Two intermetallic phases were found in Alloy 7C, one 

contained Fe and Cu with a ratio of ~1:2, while the other contained Mg, Si and O with 

a ratio of ~1:1:1. Alloy 7E also had two intermetallic phases, one (7E-x) the same as 

in  

Alloy 7C (7C-y) which contained Fe and Cu with a ratio of ~1:2. The other 

intermetallic phase (7E-y) contained Cu and Mg with a ratio of ~1:1. 

 

a) 

b) 



90 
 

 

 

Figure 4.64. EDX results for Alloy 7E in the T6 condition: a) SEM-BSE image of needle 
shape, b) qualitative analysis for needle shape Al7FeCu2 (7E-x), c) SEM-BSE image of 

chunky shape, and d) qualitative analysis for chunky shape Al2MgCu (7E-y). 

Table 4.12. EDX analyses of intermetallic phases identified in the alloys in the T6 condition. 

 

 

7A spherical 2.3 ± 0.4 77.0 ± 0.7 - 7.7 ± 0.4 - 13.0 ± 0.9 - - -

7C-x needle 29.9 ± 0.5 0.3 ± 0.2 - - - - 36.3 ± 0.5 33.5 ± 0.4 -

7C-y spherical 3.1 ± 0.3 69.0 ± 0.6 - 17.9 ± 0.3 10.1 ± 0.5 - - - -

7C-z chunky 2.6 ± 0.6 31.9 ± 0.8 12.7 ± 0.8 - - - - 26.7 ±1 .5 25.8 ± 1.2

7D irregular - 64.0 ± 0.6 - 12.2 ± 0.4 2.6 ± 0.6 21.2 ± 0.6 - - -

7E-x needle 3.3 ± 0.3 74.1 ± 0.7 - 14.6 ± 0.3 8.1 ± 0.5 - - - -

7E-y chunky 2.7 ± 0.2 51.1 ± 0.4 23.6 ± 0.4 - - - - 21.0 ± 0.5 1.6 ± 0.3

Element & Line at 6 kV

at.%

Compound 

shape
Alloy

Mn L Si K Mg K Zn KO K Al K Cu K Cu L Fe L

a) 

b) 

c) 

d) 
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 T73 microstructure observation and analysis 4.13.

The T73 condition alloys had precisely the same microstructure as the equivalent 

T6 sample. The artificial ageing temperatures were too low to result in a changed 

microstructure. 

 

 Grain size measurements 4.14.

Grain sizes of the Alloys 7A to 7E in the as-cast and T6 conditions were measured 

by the linear intercept method according to Equation 3.8 in Section 3.8.8 

 

4.14.1. As-cast grain sizes 

Table 4.13 shows the measured grain sizes of Alloys 7A to 7E in the as-cast 

condition. Most of the grain sizes were very similar, although Alloy 7E had the largest 

grains. A fast cooling rate normally results in small grain sizes, thus indicating that 

Alloy 7E experienced a slower cooling rate. The main difference in cooling rate could 

come from a longer transfer time of the billet between rheo-processing and HPDC. 

Table 4.13. Grain size measurements in the as-cast condition for Alloys 7A to 7E. 

 

 

4.14.2. T6 grain sizes 

Table 4.14 shows the grain sizes of Alloys 7A to 7E in the T6 condition, and 

reveals that the grain sizes in the T6 condition for Alloys 7A, 7C and 7D were very 

similar, while the grain sizes for Alloys 7B and 7E were similar. 

The grain size errors for Alloys 7D and 7E were large compared to the other 

alloys. The difference could have been caused by irregular grain shapes. 

 

Alloy

7A 47 ± 3

7B 48 ± 4

7C 54 ± 5

7D 48 ± 1

7E 68 ± 3

μm
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Table 4.14. Grain size measurements in the T6 conditions for Alloys 7A to 7E. 

 

 

 Hardness measurements 4.15.

4.15.1. T6 hardness 

Table 4.15 shows the measured hardness of each alloy in the T6 condition, as the 

average of six hardness measurements per alloy. Alloy 7C had the highest average 

hardness. Alloys 7E and 7D followed: both had similar hardness. Alloys 7B and Alloy 

7A had lower hardness: both were similar. 

 

Table 4.15. Micro-Vickers hardness measurements (at 500g load) for alloys in the T6 
condition. 

 

 

4.15.2. T7 hardness 

Table 4.16 shows the measured hardness of the T6 condition alloys, again as the 

average of six hardness measurements per alloy. Alloys 7C to 7E had similar 

hardness. Alloys 7A and 7B both had similar hardness but lower than the other three 

alloys. The overall hardnesses of the samples in the T7 heat treatment condition 

were lower than the samples in the T6 heat treatment condition. 

 

Alloy

7A 56 ± 1

7B 77 ± 5

7C 55 ± 4

7D 57 ± 8

7E 79 ± 8

μm

Alloy

7A 173 ± 3

7B 176 ± 5

7C 215 ± 1

7D 198 ± 3

7E 200 ± 2

HV
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Table 4.16. Micro-Vickers hardness measurements (at 500g load) for alloys in the T6 
condition. 

 

 

 T6 tensile property data 4.16.

4.16.1. T6 heat treatment 

Table 4.17 shows the heat treatments, by the CSIR, that were used to prepare 

samples for tensile testing of the as-received Alloys 7A to 7E. Homogenisation is 

normally followed by a solution heat treatment, but in this case, these two steps were 

combined into a single step, as mentioned in Section 3.4.1. 

Table 4.17 shows that the homogenisation time differed for the different alloys, 

which could be justified on the grounds that the extent of alloying differed, although 

the microstructures were similar. Alloys 7A and 7B were much lower alloyed than 

Alloys 7C, 7D and 7E which would require a shorter time to homogenise by diffusion, 

while longer times would be necessary for the higher alloyed material. 

The artificial ageing step is normally performed for 24 hours, at which point a 

plateau is reached in the change of properties [1]. It was shown in Section 2.10 in 

Figure 2.24 that 24 hours and 50 hours of artificial ageing both fall on the iso-yield 

strength plateau. It was therefore assumed to be equivalent. 

Table 4.17. Homogenisation/solution and artificial ageing heat treatments of Alloys 7A to 7E. 

 

Alloy

7A 152 ± 4

7B 153 ± 3

7C 189 ± 6

7D 191 ± 4

7E 191 ± 2

HV

Alloy Heat treatment

7A 470 °C/12h - Water quench - 120 °C/50h

7B 470 °C/12h - Water quench - 120 °C/50h

7C 470 °C/19h - Water quench - 120 °C/50h

7D 470 °C/24h - Water quench - 120 °C/24h

7E 465 °C/24h - Water quench - 120 °C/24h
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4.16.2. T6 tensile properties 

Table 4.18 gives the yield strength (YS), ductility (% elongation) and the ultimate 

tensile strength (UTS), and shows that Alloy 7C had the same values for the yield 

and tensile strengths. Alloy 7C failed in the elastic region of the tensile curve, the 

yield strength and ultimate tensile strength was therefore taken to be the same, only 

data for one sample was available (no errors indicated for the test). 

Table 4.18. Uni-axial tensile properties of Alloys 7A to 7E in the T6 condition, as reported by 
the CSIR. 

 

 

  

Alloy

7A 447 ± 1 507 ± 2 11.7 ± 1.7

7B 454 ± 6 500 ± 2 9.7 ± 3.7

7C 563 563 0.3

7D 518 ± 6 552 ± 12 2.0 ± 0.6

7E 522 ± 6 534 ± 10 1.8 ± 0.4

% ElongationYS (MPa) UTS (MPa)
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5. Discussion 

 Microstructure observations in the as-cast condition 5.1.

All the as-cast alloys had similar features. They all consisted of globular primary 

(αAl) grains with eutectics, enriched with alloying elements, in between. The 

exception was Alloy 7E, which had more dendritic (Al) grains. It is most likely that the 

alloy solidified differently from the other as-received alloys. It was indicated, by the 

CSIR, that Alloy 7E was produced with a higher pouring temperature. This would 

have resulted in less initial nucleation under the same processing conditions as 

Alloys 7A to 7D. The grain size, Table 4.13, and shape were largely a function of 

amount of nucleation and subsequent growth during turbulent flow during semi-solid 

processing [17-23]. Alloy 7E had the largest grain size. A fast cooling rate normally 

results in small grain sizes, thus indicating that Alloy 7E, cast into a plate, 

experienced a slower cooling rate. The main difference in cooling rate could come 

from a longer transfer time of the billet between rheo-processing and HPDC. 

The eutectic regions were finely distributed, and coarser in the higher alloyed 

samples. The microstructures were so similar that it was difficult to visually 

distinguish between the alloys. Even at higher magnification, the eutectics of all the 

alloys again looked remarkably the same, and the inter-globular sizes of the 

eutectics were also very similar. The eutectics were lamellar and very fine, due to the 

high cooling rate, in the order of 103 Ks-1, during the HPDC processing [39]. 

The vacuum-cooled sample (Alloy 7D-V) had the same features as its R-HPDC 

alloy equivalent. The differences were that the globular primary (Al) grains and the 

lamellar structure were coarser, and the inter-globular size of the eutectic was also 

larger. 

The eutectic composition alloys, Alloys E-A and E-B, were similar to the dilute 

alloys, Alloys 7A and 7D. The primary (Al) phase was not present, as expected, 

indicating that the alloy compositions were correctly produced, as indicated by 

Tables 4.5 and 4.6 in Sections 4.7.1 and 4.7.2. It was clear that there were only two 

phases present in Alloys E-A and E-B, since the eutectic structures had the 

appearance of regular lamellar eutectics. 
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 As-cast properties 5.2.

One of the aims of this study was to determine the as-cast properties of R-HPDC 

Al-Zn-Mg-Cu aluminium alloys. A mechanism by which these properties could have 

arisen, is also proposed. 

5.2.1. Phases present in as-cast alloys 

The quantitative XRD analyses in Table 5.1 show that there were only two phases 

present besides the FCC (Al) solid solution phase. The two phase structures were a 

cubic phase and/or a hexagonal phase. Alloys 7A, 7B, 7D and 7D-V had only one of 

these structures present, but in Alloys 7C and 7E there was a mixture of these 

structures. 

Table 5.1. Weight percentages of phases found in each alloy. 

 

 

The lattice parameters of the phases detected by XRD in each alloy are given in 

Table 5.2. The lattice parameters of the similar phases in the Al-Mg-Zn system [37] 

are shown for comparison. The calculated lattice parameters of the phases present 

in the alloys were very close to the reported lattice parameters of the (Al) solid 

solution phase [37], cubic 𝜏 (Mg32(Al,Zn)48) phase [37] and hexagonal η (MgZn2) 

phase [37]. 

The lattice parameters of the phases found in eutectic Alloys E-A and E-B are also 

shown in Table 5.2. Eutectic Alloys E-A and E-B both only had the (Al) solid solution 

FCC phase and hexagonal phases present. The lattice parameters of the phases of 

Alloys E-A and E-B also correlate well with the (Al) solid solution phase and the 

hexagonal η (MgZn2) phase. 

 

Cubic phase Hexagonal phase

Alloy wt% wt%

7A - 2.73

7B - 2.90

7C 6.00 1.24

7D 5.60 -

7E 2.50 2.78

7D-V - 3.88
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Table 5.2. Lattice parameters (pm) of the phases identified with XRD in the as-cast alloys. 
Lattice parameters for Al, 𝜏 and 𝜂 from reference [37]. 

 

 

The lattice parameters of the phases measured in the alloys were marginally 

different from the reported lattice parameters for the (Al), 𝜏 and η phases [37]. The 

difference must have resulted from compositions that differed from the reported 

phases. It would seem from the above that the hexagonal phase in Alloys 7A, 7B, 7C 

and 7E was the η phase, while the cubic phase in Alloys 7C, 7D and 7E was the 𝜏 

phase. 

 

5.2.2. Thermal behaviour 

Inspecting the onset of melting temperatures measured with DSC presented in 

Table 5.3 reveal that the melting temperatures are the same for all the alloys except 

for Alloy 7D. The melting onset temperature for Alloys 7A, 7B, 7C and 7E was  

476 °C while for Alloys 7D the melting onset was 480 °C. Figure 5.1 shows that the 

onsets of melting curves started with very steep deviation from the horizontal. A 

sudden peak is normally associated with a liquid-forming reaction, e.g. an eutectic 

reaction [46]. 

 

 

 

Alloy (αAl) Cubic (a ) Hexagonal (a ) Hexagonal (c )

7A 405.16 - 522.27 853.30

7B 405.30 - 522.20 853.20

7C 405.40 1402.10 519.60 851.40

7D 404.94 1402.30 - -

7E 405.43 1399.20 520.53 849.22

7D-V 405.54 - 521.97 849.52

E-A 404.70 - 520.20 851.10

E-B 404.90 - 518.70 849.10

Al 404.96 - - -

τ - 1413.00 - -

η - - 522.00 856.70
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Table 5.3. Summary of melting onset and end temperatures of Alloys 7A to 7E and 7D-V. 

 

 

Figure 5.1 shows the relative peak heights of the different R-HPDC alloys (Alloys 

7A to 7E). The peak heights increase as the level of alloying increases. Alloy 7D 

should have had a lower peak height than Alloy 7E which was higher alloyed. Alloy 

7C should also have had the highest peak because it was alloyed the highest. The 

reason for these discrepancies probably arises from the specific volume of material 

from where the DSC sample was taken. It was demonstrated that the flow pattern 

during casting causes segregation on a macro level and differs between different 

castings [47]. It is not possible to take the same volume of material for DSC on which 

the OES was performed, in which case the problem would probably have been 

solved. Alloy 7C showed a slight change in slope which could be indicative of a 

second reaction taking place, since the 𝜏 and η phases were both present in the 

alloy. 

 

Figure 5.1. Comparison of eutectic melting peak heights between Alloys 7A to 7E. 

Onset End Onset End

Alloy

7A 475 653 639 476

7B 476 653 640 476

7C 476 635 629 476

7D 480 641 636 476

7E 476 641 637 476

7D-V 476 637 636 476

Melting (DSC) Solidification (Thermo-Calc)

°C °C

Alloy D 

Alloy C 

Alloy E 

Alloy B 

Alloy A 
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 Solidification mechanism 5.3.

5.3.1. Solidification reactions 

It appears from Section 5.2.1 and 5.2.2 that there was a strong correlation of the 

phase structures and thermal behaviours of the R-HPDC Al-Zn-Mg-Cu aluminium 

alloys with the phase structures and thermal behaviours of the equilibrium Al-Mg-Zn 

ternary system [37]. 

(The reactions in Section 2.2, Equations 2.1 and 2.2, are given again for 

reference. Equation 2.1 is the eutectic reaction at 480 °C: 

𝐿 ↔  (𝐴𝑙)  +  𝜏     2.1 

where L is the liquid phase, (Al) is face centred cubic (FCC) aluminium  solid solution 

and τ is the Mg32(Zn,Al)48 cubic structure phase. 

Equation 2.2 is the quasi-peritectic reaction at 476 °C: 

𝐿 +  𝜏 ↔  (𝐴𝑙)  +  𝜂    2.2 

where L, (Al), and τ have the same meanings as before; η is the MgZn2 hexagonal 

structure phase.) 

The phases that can coexist after solidification after the reaction of  

Equations 2.1 and 2.2 are τ +  (Al)  +  η, depending the progress of the reaction in  

Equation 2.2. 

5.3.2. Effect of solidification cooling rate 

It seemed surprising that the 𝜏 phase was present only in Alloy 7D, while  

Alloy 7D-V had only the η phase, especially given that both had the same 

composition. Alloy 7D was produced with HPDC where the cooling rate was 

extremely high, in the order of 103 Ks-1 [39], which must have suppressed equilibrium 

solidification. The result was an as-cast structure with 𝜏 being present, following 

Equation 2.1, contrary to the case of phases calculated with the Scheil model in 

Figure 4.33. 

On the other hand, Alloy 7D-V was produced by cooling in vacuum where the 

cooling rate was lower. A lower cooling rate allowed enough time for the  

quasi-peritectic reaction of Equation 2.2 to be completed. This time, the result was 

that the η phase formed. 
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5.3.3. Effect of alloy composition 

The cooling rate by HPDC for Alloys 7A to 7E was all very fast, in the order of  

103 Ks-1 for HPDC [39]. It would then be expected that all the alloys would have the 𝜏 

phase in their structures, but it was not the case, especially for Alloys 7A and 7B 

which only had the η phase. 

An over simplistic explanation could be found by inspecting the alloy compositions 

shown in Table 5.4, which also shows the Zn:Cu ratio of all the alloys. It was clear 

that a higher Zn:Cu ratio (Alloys 7A and 7B) stabilised the η phase, while the lower 

Zn:Cu ratios (Alloys 7C to 7E) stabilised the 𝜏 phase. It could be that because the 

hexagonal MgZn2 phase has a high stoichiometric Zn content of 66.6%. More Cu 

would be found in the cubic Mg32(Al,Cu)48 phase, which has an isotypic structure 

with the Mg32(Al,Zn)48 phase. The Zn:Cu ratio of Alloy 7D was an exception, falling 

between the ratios of Alloys 7C and 7E. The absolute value of Cu could maybe have 

some effect. 

Table 5.4. Bulk compositions and Zn:Cu ratio of R-HPDC alloys. 

 

 

5.3.4. Eutectic alloys 

The rationale for the eutectic Alloys E-A and E-B was to reproduce the eutectics of 

Alloys 7A and 7D on a macro-scale in order to assess the properties of the 

respective eutectics. The eutectics in Alloys E-A and E-B consisted of a dilute (Al) 

phase (Tables 4.5 and 4.6 in Sections 4.7.1 and 4.7.2) and, the other was a highly 

alloyed Al-Zn-Mg-Cu containing phase. 

Alloys E-A and E-B were targeted to be the same as the eutectic compositions of 

Alloys 7A and 7D, respectively. The comparison of Alloy E-A to Alloy 7A shows that 

in both cases a hexagonal phase was present, as expected. 

Zn Mg Cu

Alloy Zn : Cu

7A 2.98 2.11 0.34 8.88

7B 2.68 1.76 0.29 9.13

7C 3.66 3.08 0.73 5.00

7D 2.80 2.48 0.59 4.77

7E 2.52 2.85 0.72 3.49

at.%
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It was unexpected that the phases in Alloys E-B and 7D differed, the hexagonal 

phase and the cubic phase being present in different alloys, while  

FCC (Al) appeared in both structures. This was most probably due to a cooling rate 

effect discussed in Section 5.3.2, because the eutectic compositions of Alloys E-B 

and 7D were the same. 

Table 5.4 shows the average EDX results of the phases found in the two eutectic 

alloys. It was clear that as the Cu concentration of the alloy increased, so did the Cu 

concentration in the Al-Zn-Mg-Cu-containing and Al-rich phases, while the Zn 

content of these phases decreased and the Al concentration stayed constant. 

The Mg concentration in the Al-Zn-Mg-Cu phase changed slightly with the 

changes in alloying, while the Mg concentration increased in the Al-rich phase with 

increased Cu alloying and decreased Zn alloying. It can also be seen that there is a 

limit to the mutual solid solubility of Zn, Mg and Cu in Al at ~11 at.%. 

The cooling DSC results of Alloys E-A to E-C showed that a second peak 

developed. This second peak was interpreted as a ternary eutectic reaction with 

three phases co-solidifying. The relative size of the three phases was also very 

similar. The third phase, Al2Cu, sometimes seemed divorced from the other two 

phases and at other places was associated with (Al). The first reaction peak was 

Equation 2.2, while the second reaction could be a ternary eutectic reaction 

presented as Equation 5.1: 

𝐿  ↔  (𝐴𝑙)  +  𝜂 + 𝐴𝑙2𝐶𝑢    5.1 

Equation 5.1 is totally speculative because EDX were performed on the as-cast 

samples solidified in air, while the DSC analyses were at a cooling rate of 20 °C/min. 

No comment can be made on the mechanism of reaction, but this could be a future 

topic for research. 

Table 5.5 shows the adjusted EDX results of the phases found in the three 

eutectic alloys. It was clear that as the Cu concentration of the alloy increased, so 

did the Cu concentration in the Al-Zn-Mg-Cu containing and Al-rich phases, while the 

Zn content of these phases decreased and the Al concentration stayed constant. A 

third phase, Al2Cu, was found in Alloy E-C, because the alloy was probably super-

saturated with Cu. 

Eutectic Alloy E-C was produced to be compared to the Al-Zn-Mg-Cu phase of the 

eutectic in an as-cast structure from literature Alloy H [32] for which the Al:Zn:Mg:Cu 
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ratio of ~1:1:1:1 was found. Table 5.6 shows that the eutectic Alloy E-C compared 

favourably with the findings measured with TEM EDX. 

 

Table 5.5. Corrected EDX values of eutectic alloy lamellae. 

 

 

Table 5.6. Compositions of Al-Zn-Mg-Cu lamellae in Alloys E-C and H [32]. 

 

 

The Mg-content of the Al-Zn-Mg-Cu phase was ~27 at.% in the Al-Zn-Mg-Cu 

lamellae, which was different from the stoichiometric composition of the  

σ phase (Mg(Al,Cu,Zn)2) with a Mg-content at 33.3 at.%, based on the MgZn2 phase 

detected with XRD. Thus there was a Al-Zn-Mg-Cu phase with a hexagonal crystal 

structure but a different composition than MgZn2. The Mg-content was also not the 

stoichiometric content of 39.5 at.% of the  

T (Mg32(Al,Cu,Zn)48) phase. This finding could be important for modelling the crystal 

structure of the Al-Zn-Mg-Cu phase in the eutectic. 

5.3.5. Al-Mg-Zn and Al-Mg-Cu system similarities 

In the Al-Mg-Cu system [38], there are two phases that have isotypic crystal 

structures to those of Equation 2.2 in the Al-Mg-Zn system. The one phase similar to 

the τ phase was the cubic structure T phase with the formula Mg32(Al,Cu)48. The 

Al Zn Mg Cu

Alloy

E-A 22.8 38.5 25.9 12.8

E-B 21.9 31.1 28.1 18.9

E-C 24.0 25.9 28.7 21.5

E-A 89.2 7.7 2.2 0.9

E-B 89.0 7.6 1.4 2.0

E-C 89.9 6.7 1.1 2.4

Al2Cu E-C 67.2 1.6 0.4 30.8

Al lamellae

Al-Zn-Mg-Cu 

lamellae

at.%

Al Zn Mg Cu

Alloy

E-C 24.0 25.9 28.7 21.5

H 25.0 24.0 27.0 23.0

at.%

Al-Zn-Mg-Cu 

lamellae
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other one similar to the η phase is the hexagonal structured λ3 phase with the 

formula Mg(Al,Cu)2. 

After the success of producing the eutectic phases, (Alloy E-A with the eutectic 

composition of dilute Alloy 7A), it was possible to measure the composition of the  

Al-Zn-Mg-Cu-containing phase, Section 5.3.3. It was expected that because of the 

similarity of these phases that Cu could be incorporated into the Al-Mg-Zn phases. 

The quantitative analysis of the Al-Zn-Mg-Cu phase, in the eutectic  

Alloy E-A, points to the probability that there was some mixing on the Mg sub-lattice 

which was the cause that the Mg-content of the Al-Zn-Mg-Cu phase was lower than 

the Mg-content of the η phase. The atomic arrangement in the unit cell was unclear, 

and could be a future topic of research. 

The intention with Alloy E-B was to produce the eutectic of dilute Alloy 7D. The 

compositions were nearly identical (Section 4.7.2), but the crystal structures were 

different. The eutectic of the dilute alloy, Alloy 7D, had a cubic crystal structure, while 

the Al-Zn-Mg-Cu-containing phase in the eutectic alloy, Alloy E-B, had a hexagonal 

crystal structure. It was unfortunate that eutectic Alloy E-B had not turned out to 

exhibit the cubic crystal structure found in Alloy 7D and so it was also not possible to 

measure the composition for this cubic phase. 

 Microstructure observations in the T6 condition 5.4.

5.4.1. General observations 

The eutectic phases dissolved into the primary (Al) grains in all the alloys in the T6 

condition after homogenisation, indicating that ample time was given for the 

dissolution to occur. All that remained in the microstructures were intermetallic 

phases on the grain boundaries and dispersoids within grains. 

The grain sizes of the alloys in the T6 condition, Table 4.14, were larger than in 

the as-cast condition in Table 4.13. Manganese as an alloying element restricts grain 

growth during homogenisation through grain pinning by dispersoids [1], as was the 

case for Alloys 7A (0.33 wt% Mn) and 7D (0.40 wt% Mn). The level of Mn in Alloy 7B 

(0.11 wt% Mn) did not seem to have the same effect on the restriction of grain 

growth as in the other two Mn-containing alloys, Alloys 7A and 7D. 

The grain size of Alloy 7C was also unchanged. Grain growth was restricted, in 

this case, by undissolved intermetallic phases on the grain boundaries. Alloy 7E did 
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not have the same level of grain boundary intermetallic phases, and therefore 

showed some increase in grain size. 

Porosity was visible after heat treatment, which was most probably due to some 

gas that was still left after degassing. The long time, 170 h, at the homogenisation 

temperature, 470 °C, could lead to some porosity, even with small quantities of 

dissolved gas. 

5.4.2. T6 impurity phases 

The ratios of the elements in Table 4.12 are important to identify the different 

intermetallic phases. These intermetallic phases are also common to other 7xxx 

series aluminium alloys after homogenisation [1,29,30,34,36]. 

Manganese was not an impurity element, but an alloying element used for grain 

growth restriction during homogenisation. However, it formed an intermetallic 

compound with a major alloying element, namely Cu. Table 4.2 shows that Mn was 

not found in the eutectic areas of the Mn-containing alloys. In contrast,  

Figures 4.56, 4.57 and 4.59 showed that the Mn-containing intermetallic phase was 

found inside grains. This indicated that Mn was in solid solution in the grains after 

casting and that the Mn-containing intermetallic phase formed during the 

homogenisation heat treatment. 

On assessing the intermetallic compositions of the Mn-containing alloys, Alloys 7A 

and 7D in Table 4.10, the ratio of Mn:Cu on average was ~1.72:1.  

Kolobnev et al. [48] referred to Al12Mn2Cu in an aluminium alloy containing 5.1 wt% 

Cu and 0.83 wt% Mn. The experimentally measured ratios for the Al-Cu-Mn 

intermetallic phases fall within the range of the τ1 phase in the Al-Cu-Mn system [49], 

which has a composition range with the formula: Mn6+xCu4+yAl29-x-y  where 0 ≤ x ≤ 2, 

0 ≤ y ≤ 1, y ≤ x. A Mn:Cu ratio of 1.75:1 was used for subsequent calculations. 

Table 4.2 shows that Fe was present in the eutectic areas of Alloys 7C and 7E. 

This suggested that the Fe-containing intermetallic phase was present already in the 

eutectic in the as-cast condition, although not visually distinguishable with the SEM. 

It was expected because the temperatures of formation of Fe intermetallic phases 

were higher than the eutectic temperature of the alloys. Surprisingly, these 

intermetallic phases were needle-shaped and ~2 μm (Figures 4.62a and 4.64a), 

suggesting a high solidification cooling rate. 
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Alloys 7C and 7E with Fe-containing intermetallic phases had a Fe:Cu ratio  

of ~1:2, and Al:Fe close to ~7:1. This is the regularly reported intermetallic phase 

with a composition of Al7FeCu2 [1,29,30,34,36]. 

The second intermetallic phase in Alloy 7E was the regularly reported S phase 

(Al2MgCu), with an Al:Mg:Cu ratio of ~2:1:1 [1,29,30,33]. 

Table 4.2 shows that Si was also found in the eutectic of Alloy 7C. Alloy 7C had 

an intermetallic phase containing Mg-Si-O with a ratio of ~1:1:1 (which was 

expressed as ~2:2:2 for the calculation below). It was deduced that there were two 

compounds, Mg2Si [1] and SiO2. This can easily be demonstrated because half of 

the Si-content is combined with the Mg-content resulting from Mg2Si with a Mg:Si 

ratio of 2:1, while the other half of the Si-content is combined with the O-content 

resulting from SiO2 with a Si:O ratio of 1:2. The SiO2 was foreign to Alloy 7C as it 

lodged in the softer Mg2Si during final polishing with colloidal SiO2. 

The Mg2Si intermetallic phase was visually indiscernible with the SEM in the  

as-cast eutectic structure. It was unexpected since the formation temperature of the 

Mg2Si intermetallic phases was higher than the eutectic temperature of the alloy [50]. 

 

 T6 mechanical properties-grain size relationships 5.5.

5.5.1. Influence of grain size on T6 hardness 

It is not unusual to argue that the hardness measurements for the alloys in the T6 

condition were dependent on the grain size. Figure 5.2 shows a plot of the T6 

hardness (Table 4.15) as a function of the grain size (Table 4.14) according to the 

normal Hall-Petch relationship [51] presented in Equation 5.2: 

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 ∝
1

√𝐺𝑟𝑎𝑖𝑛 𝑠𝑖𝑧𝑒
   5.2 

 

It can be seen from Figure 5.2 that there is no relationship of the hardness with 

the T6 grain size. The errors in Figure 5.2 seem large, but it should be remembered 

that the error value is the inverse square root of the linear error. Michalak et al. [52] 

in 1973, found that the grain sizes for different levels of deformation for AA7075 in 

the T6 condition did not influence the hardness of the alloy, which stayed constant. 

Miura et al. [53] also found that hardness was not a function of the grain size 
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comparing single crystal and polycrystalline microstructures of AA7475 in the T6 

condition. 

 

Figure 5.2. Hardness of Alloys 7A to 7E, in the T6 condition, as a function of the inverse 
square root of the grain size. 

 

5.5.2. Influence of grain size on T6 yield strength 

It could also be argued that the yield strength measurements for the alloys in the 

T6 condition were dependent on the grain size. Figure 5.3 shows a plot of the T6 

yield strengths, in Table 4.18, as a function of the grain sizes, in  

Table 4.14, again according to the Hall-Petch relationship presented in Equation 5.1. 

It can be seen from Figure 5.3 that again there is no relationship of the yield 

strength with the T6 grain size. The spread of yield strength data is similar to the 

spread of hardness data presented in Figure 5.2. Michalak et al. [52] also found that 

the grain sizes for different levels of deformation for AA7075 in the T6 condition did 

not influence the yield strength of the alloy but stayed constant. Their data took into 

account the influence of tensile sample geometry by using the same size tensile 

specimens. 
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Figure 5.3. Yield strength of Alloys 7A to 7E, in the T6 condition, as a function of the inverse 
squar root of the grain size. 
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6. Mechanical properties modelling 

 Mechanical properties-composition model considerations 6.1.

Material properties must be related to the composition of the material, and usually 

microstructure. Three situations are possible as the level of alloying increases: 

material properties could increase, or as the matrix becomes supersaturated, 

material properties could reach a plateau, or there could also be a decline in material 

properties after supersaturtion of the matrix. 

In this study, it was postulated the hardness and/or yield strength could be 

modelled as a function of the level of alloying. Properties of the Al-Zn-Mg-Cu 

aluminium alloy family can be influenced by precipitation heat treatment by changing 

the microstructure on the nanoscale [1]. The yield strength, for instance, changes as 

a function of the artificial ageing time and temperature [1], Figure 2.24. 

Unfortunately, precipitate composition studies for Al-Zn-Mg-Cu aluminium alloys, 

specifically in the T6 condition were extremely rare. 

 T6 mechanical properties-composition model 6.2.

6.2.1. Weight fraction to atomic fraction conversion 

Microsoft Excel was used to calculate the atomic fractions of the precipitate phase 

present. Equation 6.1 is the elementary chemistry equation that relates the amount 

of moles of a substance to the weight of a substance by the molecular weight of the 

substance found in the Periodic Table: 

𝑛 =
𝑚

𝑀
     6.1 

where n is the number of moles, m is the weight and M is the molecular weight. 

Element quantity inputs in the calculations were done in weight percentage (wt%) 

(in which unit the OES results were reported). Equation 6.2, an extended form of 

Equation 6.1, was then used to convert the wt% to atomic percentages (at.%) for an 

multi-element alloy: 

𝑎𝑡. %𝑖
0 =

𝑤𝑡%𝑖
𝑀𝑖

∑
𝑤𝑡%𝑖

𝑀𝑖
𝑖

× 100    6.2 
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where 𝑎𝑡. %𝑖
0 is the initial atomic percentage of a specific element in the alloy’s 

composition and 𝑀𝑖 is the molecular weight of the specific element. 

 

6.2.2. T6 Precipitate composition 

The precipitate composition determined by Sha et al. [54] was used in the T6 

mechanical properties-composition model. The composition of the precipitate is 

given in atomic fractions in Table 6.1, Al is the balance, where purple is for Zn, blue 

for Mg and orange for Cu. 

Table 6.1. Atomic fractions of T6 precipitate by Sha et al. [54]. The Zn fraction is purple 
highlighted, the Mg fraction is blue highlighted and the Cu fraction is orange highlighted. 

 

𝑓𝑍𝑛 +  𝑓𝑀𝑔 +  𝑓𝐶𝑢 + 𝑓𝐴𝑙 = 1 

 

6.2.3. T6 precipitate volume fraction calculations 

Evaluation of the initial T6 hardness-composition model was done with the 

measured compositions of Zn, Mg and Cu. Equations 6.3 to 6.5 and the precipitate 

composition fractions in Table 6.1 were used to calculate the volume fraction of the 

precipitate. 

𝑓𝑣
𝑍𝑛 =

𝑎𝑡.%𝑍𝑛
0

𝑓𝑍𝑛
    6.3 

𝑓𝑣
𝑀𝑔 =

𝑎𝑡.%𝑀𝑔
0

𝑓𝑀𝑔
    6.4 

𝑓𝑣
𝐶𝑢 =

𝑎𝑡.%𝐶𝑢
0

𝑓𝐶𝑢
    6.5 

where fv
i expressed in a percentage is the precipitate volume fraction associated with 

each major alloying element. 

The atomic percentage available for precipitation of the precipitate should be 

governed by the element that is limiting, in other words, the calculated volume 

Element

Zn 0.454 (fZn )

Mg 0.386 (fMg )

Cu 0.086 (fCu )

Atomic fraction



110 
 

fraction of the precipitate for the element which had the smallest value. Table 6.2 

shows the calculated precipitate volume fractions according to the limiting 

composition element, calculated for each of the major alloying elements. Purple 

blocks denote Zn-limited, the blue block denotes Mg-limited, and orange blocks 

denote Cu-limited compositions respectively. Equations 6.3 to 6.5 were used for the 

calculations. 

A Zn-limited alloy infers that there was an excess of Mg and Cu relative to the 

composition of the precipitate. In turn, a Mg-limited alloy infers that there was an 

excess of Zn an Cu relative to the precipitate composition. Again, a Cu-limited alloy 

infers that there was an excess of Zn and Mg relative to the precipitate composition. 

6.2.4. T6 hardness-composition relationship 

Figure 6.1 shows the relationship of the T6 hardness as a function of precipitate 

volume fraction for the limiting element in Table 6.2. The colours of the markers have 

the same significance as the blocks in Table 6.2. Figure 6.1 shows that there is a 

reasonable linear correlation (R2 = 0.941) between the hardness and the precipitate 

volume fraction for the limiting element. The line was fitted to the points of all five  

R-HPDC alloys in the T6 condition. 

 

 

Figure 6.1. Effect of precipitate volume fraction on T6 hardness, excluding impurity 
reactions. 
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Table 6.2. Precipitate volume fraction calculations excluding impurity reactions. Purple 
blocks indicate Zn-limited, the blue block indicates Mg-limited and orange blocks indicate  
Cu-limited alloys. 

 

 

6.2.5. T6 yield strength-composition relationship 

Figure 6.2 shows the relationship for the T6 yield strengths as a function of 

precipitate volume fraction for the limiting element in Table 6.2. The colours of the 

markers have the same significance as the blocks in Table 6.2. 

Figure 6.2 shows that there is again a reasonable linear correlation  

(R2 = 0.9431) between the yield strength and the precipitate volume fraction for the 

limiting element. The line was again fitted to the points of all five R-HPDC alloys in 

the T6 condition. 

Alloy Element f v  (at.%)

Zn 6.57

Mg 5.47

Cu 3.91

Zn 5.91

Mg 4.55

Cu 3.42

Zn 8.07

Mg 7.98

Cu 8.53

Zn 6.18

Mg 6.45

Cu 6.84

Zn 5.56

Mg 7.38

Cu 8.39

7A

7B

7C

7D

7E
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Figure 6.2. Effect of precipitate volume fraction on T6 yield strength, excluding impurity 
reactions. 

 

 Improved T6 mechanical properties-composition model 6.3.

6.3.1. Improved model considerations 

It was seen from Figures 6.1 and 6.2 that there is definitely a relationship of the 

mechanical properties in the T6 condition to the alloy composition with the precipitate 

composition as an intermediary. 

The findings beg the question whether the other elements in the composition 

played a role. Could the basic mechanical properties-composition model be 

improved by taking into account the effect of the other impurity elements? 

 

6.3.2. Improved precipitate volume fraction calculations 

The reaction of impurity elements were taken into account by subtracting the 

necessary at.% amount from the specific major alloying element. The major alloying 

elements together with the reaction ratios of the phases identified in Section 5.4.2 for 

the T6 heat treated condition are given in Equations 6.6 to 6.8. 

There were no reactions with Zn by impurity elements, thus: 
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𝑎𝑡. %𝑍𝑛
𝐴  = 𝑎𝑡. %𝑍𝑛

0     6.6 

For Mg reacting with Si to form Mg2Si: 

𝑎𝑡. %𝑀𝑔
𝐴  = 𝑎𝑡. %𝑀𝑔

0 − 2 × 𝑎𝑡. %𝑆𝑖
0    6.7 

For Cu reacting with Fe and Mn to form Al7FeCu2 and Al12Mn1.75Cu: 

𝑎𝑡. %𝐶𝑢
𝐴  = 𝑎𝑡. %𝐶𝑢

0 − 2 × 𝑎𝑡. %𝐹𝑒
0 − 0.571 × 𝑎𝑡. %𝑀𝑛

0   6.8 

where 𝑎𝑡. %𝑖
𝐴, in Equations 6.6 to 6.8, are the atomic fractions available for 

precipitation. 

The precipitate composition was the same as in Table 6.1. The individual volume 

fractions for precipitation were calculated for each precipitate element using 

Equations 6.9 to 6.11: 

𝑓𝑣
𝑍𝑛+ =

𝑎𝑡.%𝑍𝑛
𝐴

𝑓𝑍𝑛
    6.9 

𝑓𝑣
𝑀𝑔+ =

𝑎𝑡.%𝑀𝑔
𝐴

𝑓𝑀𝑔
    6.10 

𝑓𝑣
𝐶𝑢+ =

𝑎𝑡.%𝐶𝑢
𝐴

𝑓𝐶𝑢
    6.11 

where fv
i+ again expressed in a percentage was the precipitate volume fraction 

associated with each major alloying element, plus taking into account the effect of 

the impurity reactions. 

Again, the atomic percentage available for precipitation of the precipitate was 

governed by the element that is limiting, in other words, the calculated volume 

fraction of the precipitate for the element which had the smallest value. 

In this case, Table 6.3 shows the calculated precipitate volume fractions according 

to the limiting composition element including impurity reactions, with the different 

colours for the different elements. Equations 6.9 to 6.11 were used for the 

calculations. Table 6.3 shows the volume fraction values results calculated for each 

of the major alloying elements taking into account the contribution of the impurity 

element reactions. 

Again, a Zn-limited alloy infers that there was an excess of Mg and Cu relative to 

the Zn composition of the precipitate. In turn, a Mg-limited alloy infers that there was 

an excess of Zn an Cu relative to the Mg precipitate composition, and a Cu-limited 
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alloy infers that there was an excess of Zn and Mg relative to the Cu precipitate 

composition. 

 

Table 6.3. Precipitate volume fractions as a function of the element found in the precipitate, 
controled by the limiting element. Purple indicates a Zn limit, blue a Mg limit and orange a 
Cu limit. 

 

 

6.3.3. Improved T6 hardness-composition relationship 

Figure 6.3 shows the effect of taking into account the impurity reactions on the 

volume fraction of the precipitate. The line in Figure 6.3 was nearly a perfect fit  

(R2 = 0.9996) in comparison with the relationship without taking into account the 

effect of impurity element reactions (R2 = 0.941), Figure 6.1. 

 

 

Alloy Element f v  (at.%)

Zn 6.57

Mg 5.47

Cu 2.61

Zn 5.91

Mg 4.55

Cu 2.96

Zn 8.07

Mg 7.30

Cu 7.69

Zn 6.18

Mg 6.45

Cu 5.25

Zn 5.56

Mg 7.38

Cu 7.83

7E

7C

7A

7B

7D
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Figure 6.3. Effect of precipitate volume fraction on T6 hardness, including impurity element 
reactions. 

 

6.3.4. Improved T6 yield strength-composition relationship 

Figure 6.4 shows the effect taking into account the impurity reactions on the 

volume fraction of the precipitate and the yield strength. The line in Figure 6.4 was 

again nearly a perfect fit (R2 = 0.9973) in comparison with the relationship without 

taking into account the effect of impurity element reactions (R2 = 0.9431), Figure 6.2. 

 T6 hardness-composition model applied to wrought alloys 6.4.

Applicability of the hardness-composition model to wrought alloys was also tested. 

Table 6.4 shows the compositions and corresponding hardness values of different 

Al-Zn-Mg-Cu aluminium alloys in the T6 condition, 120 °C for 50 h [55-58]. Alloy 

designations are also included. 

Table 6.4 also indicates the precipitate volume fractions that were calculated with 

the improved composition model in this work. It can be seen that the precipitate 

volume fractions are limited by different elements, be it Zn, Mg or Cu. Only the 

limiting volume fraction was given in the Table 6.4 for clarity. 
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Figure 6.4. Effect of precipitate volume fraction on T6 yield strength, including impurity 
element reactions. 

 

Figure 6.5 is a plot of the hardness values as a function of the precipitate volume 

fractions in Table 6.4. The wrought AA7040 material used in this study was heat 

treated the same as the R-HPDC material. It can be seen from Figure 6.5 that the T6 

hardness-composition model describes the data well. Relevance of the model to 

wrought alloys was unexpected, because of the difference in processing. 

Table 6.4. Composition and hardness data from literature [55-58] and calculated precipitate 
volume fractions, including impurity reactions. Purple blocks indicate Zn-limited, blue blocks 
indicate Mg-limited and the orange block indicates Cu-limited alloys. 

 

 

 

 

 

Zn Mg Cu Si Fe Al f v

Alloy designation HV at.% Reference

Wrought AA7040 5.32 1.49 1.31 - 0.05 91.83 189 4.45

not specified 8.02 1.75 1.99 - - 88.24 197 5.34 [55]

Wrought AA7475 5.39 2.19 1.46 0.04 0.05 90.87 194 5.09 [56]

Wrought AA7475 5.74 2.58 1.65 0.06 0.07 89.90 199 5.44 [57]

SSM AA7075 6.08 2.50 1.93 0.40 0.46 88.63 190 4.57 [58]

wt%
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Figure 6.5. Effect of precipitate volume fraction on T6 hardness, applied to wrought alloy 
literature data [55-58] (including impurity reactions). 

 

 T6 yield strength-composition model applied to AA7075 T6 6.5.

Aluminium alloy 7075 is the common standard for comparing properties of  

Al-Zn-Mg-Cu aluminium alloys due its long development history. The maximum 

tensile properties are achieved in the T6 condition for which the artificial ageing heat 

treatment is conventionally performed at 120 °C for 24 h, Figure 2.24. 

Other Al-Zn-Mg-Cu aluminium alloys have different two-step combinations in the 

temperature range from 120 °C to 177 °C to acquire the T6 condition [4]. This makes 

it difficult to directly compare typical mechanical property data of other  

Al-Zn-Mg-Cu aluminium alloys, other than the typical mechanical properties for 

AA7075. 

Table 6.5 shows the alloying ranges of elements for AA7075, as well as the 

nominal composition of major alloying and impurity elements. Lastly, Table 6.5 

shows the commonly accepted typical yield strength of AA7075 [59]. 
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Table 6.5. Composition specifications of AA7075 and the typical yield strength [59]. 

 

 

Table 6.6 shows the calculated precipitate volume fractions for the nominal 

composition of AA7075 in Table 6.5. These calculations take into account the 

reactions of the major alloying elements with impurity elements. This shows that the 

nominal composition of AA7075 in limited by the amount of Cu. 

 

Table 6.6. Precipitate volume fractions as a function of the element found in the precipitate, 
controled by the limiting element for the nominal comopostion of AA7075, including impurity 
element reactions. 

 

 

Figure 6.6 is a plot of the precipitate volume fraction from Table 6.6, and the 

typical yield strength for AA7075 in the T6 condition from Table 6.5. Again, as with 

the hardness data [55-58], it was unexpected that the yield strength-composition 

model describes the data point so well, especially considering that the R-HPDC and 

wrought alloys were processed so differently. 

 

 

 

 

 

 

 

Zn Mg Cu Si Fe Mn Al YS

AA7075 MPa

Minimum 5.10 2.10 1.20 - - - Balance

Nominal 5.60 2.50 1.60 0.20 0.25 0.15 Balance 503

Maximum 6.10 2.90 2.00 0.40 0.50 0.30 Balance

wt%

Element f v  (at.%)

Zn 5.31

Mg 6.46

Cu 4.80

AA7075
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Figure 6.6. Applying the composition model to the typical yield strength of the nominal 
composition of AA7075 in the T6 condition, including impurity reactions. 

 T73 mechanical property-composition model 6.6.

The T73 condition was a condition in which the alloys were fully over-aged. The 

hardness that resulted from this heat treatment condition could also be evaluated by 

the proposed composition model. 

 

6.6.1. T73 Precipitate composition 

The equilibrium precipitate composition measured by Marlaud et al. [4] was used 

in the T73 hardness-composition model. The composition of the precipitate is given 

in atomic fractions in Table 6.6.7, Al is the balance, where purple is for Zn, blue for 

Mg and orange for Cu as before. 

Table 6.7. Atomic fractions of T73 precipitate by Marlaud et al. [4] where the Zn fraction is 
purple highlighted, the Mg fraction is blue highlighted and the Cu fraction is orange 
highlighted. 

 

𝑓𝑍𝑛 +  𝑓𝑀𝑔 +  𝑓𝐶𝑢 + 𝑓𝐴𝑙 = 1 

Element

Zn 0.390 (fZn )

Mg 0.330 (fMg )

Cu 0.130 (fCu )

Atomic fraction
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6.6.2. T73 hardness-composition relationship 

Evaluation of the T73 hardness-composition model was done in the same way as 

in Section 6.2.3 with Equations 6.3 to 6.5, but this time with the T73 precipitate 

composition given in Table 6.7. The measured appropriate compositions of Zn, Mg 

and Cu were again used. 

In the same way as before, the atomic percentage available for precipitation of the 

precipitate was governed by the element that is limiting, in other words, the 

calculated volume fraction of the precipitate for the element which had the smallest 

value. The influence of impurities was not taken into account, at this point, in 

calculations. 

Table 6.8 shows the calculated precipitate volume fractions according to the 

limiting composition element. All the alloys were Cu-limited compositions. Table 6.8 

also shows the volume fraction values results calculated for each of the other major 

alloying elements. A Cu-limited alloy infers that there was an excess of Zn and Mg 

relative to the precipitate composition. 

Table 6.8. Precipitate volume fraction calculations excluding impurity reactions. Orange 
blocks indicate Cu-limited alloys. 

 

Alloy Element f v  (at.%)

Zn 7.65

Mg 6.40

Cu 2.58

Zn 6.88

Mg 5.33

Cu 2.26

Zn 9.39

Mg 9.34

Cu 5.64

Zn 7.20

Mg 7.54

Cu 4.52

Zn 6.47

Mg 8.63

Cu 5.55

7E

7A

7B

7C

7D
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Figure 6.7 shows the relationship of the T73 hardness as a function of precipitate 

volume fraction for the limiting element. The colours of the markers have the same 

significance as the blocks in Table 6.8. 

Figure 6.7 shows that there is a linear correlation (R2 = 0.9867) between the 

hardness and the T73 precipitate volume fraction for the limiting element. The line 

was fitted to four points of the R-HPDC alloys, excluding Alloy 7D, in the T73 

condition. 

 

Figure 6.7. Effect of precipitate volume fraction on T73 yield strength, excluding impurity 
reactions. 

 

6.6.3. Improved T73 hardness-composition relationship 

The reaction of impurity elements were now taken into account in the same way 

as described in Section 6.3.2 by Equations 6.6 to 6.8. Table 6.9 shows the 

calculated precipitate volume fractions, according to the limiting composition element 

including impurity reactions; orange blocks denote Cu-limited compositions. Again, a 

Cu-limited alloy infers that there was an excess of Zn and Mg relative to the 

precipitate composition. 
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Table 6.9. Precipitate volume fractions as a function of the element found in the precipitate, 
including impurity reactions, where orange blocks denote a Cu limited composition. 

 

 

Figure 6.8 shows the effect taking into account the impurity reactions on the 

volume fraction of the T73 precipitate and the hardness. The line in Figure 6.8 was 

nearly a perfect fit (R2 = 0.999) in comparison with the relationship without taking into 

account the effect of impurity element reactions (R2 = 0.9867), Figure 6.7. The line 

was again fitted to four points of the R-HPDC alloys, excluding Alloy, 7D condition. 

Alloy Element f v  (at.%)

Zn 7.65

Mg 6.40

Cu 1.73

Zn 6.88

Mg 5.33

Cu 1.96

Zn 9.39

Mg 8.54

Cu 5.09

Zn 7.20

Mg 7.54

Cu 3.47

Zn 6.47

Mg 8.63

Cu 5.18

7E

7A

7B

7C

7D
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Figure 6.8. Effect of precipitate volume fraction on T6 hardness, including impurity element 
reactions. 

6.6.4. A T73 hardness-composition model exception 

In Figure 6.8 it is apparent that the point for Alloy 7D was an outlier in the T73 

condition. There must have been some other contribution to the hardness of this 

alloy. The difference between Alloy 7D and the other alloys was that it contained a 

much higher concentration of Mn as an alloying element. Figure 6.9 shows the  

SEM-BSE image of the microstructure of Alloy 7D. It can be seen that there are 

many bright features in the shape of needles. These had been identified as 

Al28Mn7Cu4 intermetallic compounds in Sections 4.12 and 5.4.2. Figures 6.10 and 

6.11 show a smaller amount of Al28Mn7Cu4 needles in Alloys 7A and 7B, which also 

contained Mn. 

It could be argued that the hardness of a material is the sum of the deformation 

resistance of two contributors. If it was the case, then the T6 hardness would also 

not follow the hardness-composition relationship. It seems rather that if there are two 

contributors present that the contributor with the highest deformation resistance 

contributes the most. The intermetallics compounds and precipitates were both 

present implying the same amount of resistance in both the T6 and T73 conditions. 

The Al28Mn7Cu4 intermetallics needles in the T73 could have played a more 

significant role than the η precipitates to resist deformation compared to the role of 

the η precipitates played in the T6 condition. 
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Figure 6.9 .SEM-BSE image of AlFeMn intermetallic needles in Alloy 7D in the T73 
condition. 

 

Figure 6.10. SEM-BSE image of AlFeMn intermetallic compounds in Alloy 7A in the T73 
condition. 
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Figure 6.11. SEM-BSE image of AlFeMn intermetallic compounds in Alloy 7B in the T73 
condition. 

 

6.6.5. Improved T73 model applied to a wrought alloy 

The wrought alloy AA7040 sample was also subjected to the same T73 heat 

treatment used on the R-HPDC alloys. The limiting element calculation was again 

performed with the OES measured composition of the alloy. Table 6.10 shows the 

volume fractions of each element and shows that Cu is the limiting element. 

 

Table 6.10. Precipitate volume fractions as a function of the element found in the precipitate, 
including impurity reactions. Orange block denote a Cu limited composition. 

 

 

Element f v  (at.%)

Zn 5.85

Mg 5.21

Cu 4.08

AA7040
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The hardness of the wrought AA7040 in the T73 condition was plotted in Figure 

6.12. The hardness felled on the line, which indicates that the hardness-composition 

model was also relevant for wrought alloys. 

 

 

Figure 6.12. Applying the composition model to the hardness of wrought alloys 7040 in the 
T73 condition, including impurity reactions. 

 

 Interpretation of mechanical properties-composition model 6.7.

6.7.1. General comments 

The mechanical properties-composition model showed the expectation that 

material properties increase with increasing alloying additions is justified, in the 

range of alloying used in this study. 

The basic mechanical properties-composition model, Sections 6.2.4 (Figure 6.1) 

and 6.2.5 (Figure 6.2), showed that there is a reasonable straight line relationship 

between the hardness of the R-HPDC alloys and their compositions, as well as a 

reasonable straight line relationship between the yield strengths of the R-HPDC 

alloys and their compositions. 

On the other hand, the improved mechanical properties-composition model, 

Sections 6.3.3 (Figure 6.3) and 6.3.4 (Figure 6.4), showed that the mechanical 
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property relationships improved tremendously by including the effect of impurity 

element reactions with major alloying element reactions. 

Another reason for the near-perfect fit of the improved material properties-

composition model was the great care taken to be precise with the sampling of the 

composition with OES and correlating it to the hardness measurements in the same 

vicinity as the composition measurements. 

6.7.2. T6 and T73 precipitate compositions 

The T6 [54] and T73 [4] precipitate compositions (nano-scale) chosen were the 

intermediaries between composition and mechanical properties, hardness and yield 

strength (macro-scale), considered here. 

As mentioned in Section 6.1 precipitate compositions were little reported in 

literature due to the difficulty with measuring on the atomic level. Precipitate 

compositions, if reported, were determined with atom probe tomography (APT). No 

APT results were available in open literature for Al-Zn-Mg-Cu aluminium alloys, 

especially 7075, in the standard T6 heat treatment (120 °C for 24 h). 

Sha et al. [54] measured the composition of 𝜂-variant precipitates in an Al-Zn-Mg-

Cu aluminium alloy that was subjected to equal channel angular pressing (ECAP) by 

which material was severely deformed. They [54] postulated that the precipitates 

found after one pass of ECAP were the same as those found after conventional T6 

artificial ageing according to Equation 2.3 [42]. It seems that the postulate of Sha et 

al. [54] holds, considering that the artificial ageing heat treatment used in this study 

was basically the same as the conventional T6 artificial ageing heat treatment, 

especially for AA7075. 

It is accepted that metastable precipitates evolve to equilibrium precipitates when  

Al-Zn-Mg-Cu aluminium alloys are heat treated to the over-aged condition, 

especially, the T73 condition. Marlaud et al. [4] measured the composition of large 

surface precipitates with SEM-EDX and the precipitates contained 39 at.% Zn,  

33 at.% Mg and 13 at.% Cu and postulated that precipitate composition evolution 

finally ended in the composition of these near-equilibrium precipitates, as suggested 

by Equation 2.3. 

This mechanical properties-composition model is unique, because no more 

information was necessary about the precipitates beside their compositions. 
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6.7.3. T6 hardness-composition relationship 

It was clear from Section 5.5.1 that hardness was not a function of the grain size. 

Figure 6.7 is a re-examination of Figure 5.2, keeping in mind the results of the 

improved composition model. The lines in Figure 6.13 are for different levels of 

precipitate volume fraction. Results of the improved composition model show that 

alloys with a similar precipitate volume fractions had the same hardness level, 

irrespective of the grain size when Figure 5.2 is redrawn. 

 

Figure 6.13. Hardess of Alloys 7A to 7E in the T6 condition, as a function of the square root 
of the grain size and precipitate volume fraction. 

 

It can be concluded that Equation 2.4 can be reduced to Equation 6.13, for the 

hardness of Al-Zn-Mg-Cu aluminium alloys in the T6 condition: 

𝐻𝑎𝑟𝑑𝑛𝑒𝑠𝑠 ∝ 𝑓(𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)   6.13 

Further, application of the composition model to the hardness of wrought alloys 

validates the finding that hardness was not a function of grain size since grain sizes 

for the wrought alloys from literature, Table 6.4, was not specified but would surely 

vary. 
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6.7.4. T6 yield strength-composition relationship 

It was clear from Section 5.5.2 that the yield strength was not a function of the 

grain size for these alloys. Figure 6.8 is again a re-examination of Figure 5.3 keeping 

in mind the results of the improved composition model. The lines in Figure 6.14 are 

for different levels of precipitate volume fraction. Results of the improved 

composition model show that alloys with a similar level of precipitate volume fraction 

had the same yield strength level irrespective of the grain size when Figure 5.3 is 

redrawn. 

 

Figure 6.14. Yield strength of Alloys 7A to 7E, in the T6 condition, as a function of the grain 
size and precipitate volume fraction. 

 

It can again be concluded that Equation 2.4 can be reduced to Equation 6.14, for 

the yield strength of Al-Zn-Mg-Cu aluminium alloys in the T6 condition: 

𝑌𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ ∝ 𝑓(𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)  6.14 

Application of the composition model to the yield strength of the typical AA7075 

wrought alloy also validated the finding that yield strength was not a function of grain 

size, since this wrought alloy was processed totally differently and had a different 

microstructure. 
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6.7.5. T73 hardness-composition relationship 

It should not be surprising that the T73 hardness-composition relationship fitted 

the data well. It was important to again include the reactions of the impurity elements 

with the major alloying elements. The data point for the wrought alloy also followed 

the relationship which shows that the grain size due to difference in processing was 

not a factor. 

All the alloys were Cu-limited, due to the fact that the Cu content of the T73 

precipitate was so high. This shows that there was an excess of Zn and Mg relative 

to the Cu. 
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7. Conclusions 

The objectives of this research were to investigate and explain the solidification 

properties of different R-HPDC processed Al-Zn-Mg-Cu aluminium alloy 

compositions. The following conclusions can be drawn regarding the studied Al-Zn-

Mg-Cu aluminium alloys in the as-cast condition after R-HPDC and vacuum 

solidification: 

 Al-Zn-Mg-Cu aluminium alloys produced with R-HPDC contained the cubic  

𝜏 phase or the hexagonal η phase or a mixture of these two phases together 

with the (αAl) matrix phase in the eutectic, as determined with XRD. 

 The melting reaction temperatures, determined with DSC, were 476 °C for 

alloys containing only (𝛼𝐴𝑙)  +  𝜂 or a combination of  𝜏 + (𝛼𝐴𝑙)  +  𝜂 , while 

480 °C for the alloy containing only  (𝛼𝐴𝑙)  +  𝜏. 

 The R-HPDC alloys follow the 𝐿 ↔  (𝛼𝐴𝑙)  +  𝜏 and 𝐿 +  𝜏 ↔  (𝛼𝐴𝑙)  +  𝜂 

equilibrium reactions of the Al-Mg-Zn system. 

 Cooling rate, for the same alloy, determined the extent of the reaction. The  

𝜏 phase appeared according to 𝐿 ↔  (𝛼𝐴𝑙)  +  𝜏 for a high cooling rate  

(R-HPDC), while the η phase appeared according to 𝐿 +  𝜏 ↔  (𝛼𝐴𝑙)  +  𝜂 for 

a low cooling rate (vacuum cooling). 

 

Al-Zn-Mg-Cu eutectic alloys were produced, based on eutectic compositions of 

the dilute Al-Zn-Mg-Cu aluminium alloys, to assess the chemical and melting point of 

the phases present in the eutectic; the following was concluded: 

 The eutectic alloys had coarse regular eutectic microstructures. 

 As the Cu content of the eutectic alloys increased, so did the Cu content of 

both phases in the eutectic, up to a point where the phases were 

supersaturated. 

 Al2Cu appears in the microstructure if the Cu content becomes too high. 

 The Mg content of the Al-Zn-Mg-Cu phase was around 28 at.%, which was 

very different to the stoichiometric content of 33.3 at.% for the σ phase or  

39.5 at.% for the T phase. 

 

The primary objective of this research was to evaluate and model the T6 

mechanical properties of R-HPDC processed alloys on a semi-theoretical base as a 
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function of the composition of the alloy and testing applicability of the model to 

wrought processed alloys. 

The as-cast alloys were homogenised and artificially aged and the hardnesses of 

the five R-HPDC Al-Zn-Mg-Cu aluminium alloys were assessed and the following 

were concluded. 

 Insoluble intermetallic phases were observed for alloy alloys in the T6 

condition although not in the as-cast condition. 

 The intermetallic phases were Mg2Si, Al7FeCu2 and Al28Mn7Cu4. 

 The Mn-containing intermetallic phase seemed to have formed after 

homogenisation from Mn solid solution within Al grains. 

 Mn, Fe and Si intermetallic phases were visually indiscernible with the  

SEM-BSE from the eutectic in the as-cast condition. 

 Supersaturated alloys also exhibited major alloying element phases after 

homogenisation i.e. Al2MgCu and an Al-Zn-Mg-Cu compound. 

 

The T6 hardness and yield strength was evaluated as a function of the T6 grain 

size and the appropriate composition of the alloy and modelled through a precipitate 

composition found in literature for the strengthening precipitate: 

 No relationship for the hardness or yield strength as a function of grain size 

was found. 

 The hardness-composition relationship was shown to be linear, with a good fit 

(R2=0.941) if the reactions with impurity elements were neglected. 

 The linear fit improved to nearly perfect (R2=0.9996), after the reactions with 

impurity elements were taken into account. 

 T6 hardness data from literature were used to test the validity of the 

relationship for wrought alloys and was found to be valid. 

 The T6 yield strength depended in the same way as the hardness on the 

atomic percentage of the limiting element of the precipitate, also with a near 

perfect linear fit (R2=0.9973) when the impurity elements were taken into 

account. 

 The improved yield strength-composition model was also tested with the 

nominal composition and typical yield strength of AA7075 T6 and also 

validated the model. 
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 The precipitate composition measured by APT for the ECAP process by  

Sha et al. [54] was found to be a very good approximation for the mechanical 

properties-composition model developed in this study, indicating that the 

thermal precipitates developed by the same sequence as for the severely 

strained material of their study. 

 The model was based on the composition of the precipitate and therefore had 

a major influence on the results. 

 The limiting element according to the T6 precipitate composition determines 

the volume fraction available for precipitation. 

 Knowledge of the T6 precipitate crystal structure was not a prerequisite for the 

model, because the composition is sufficient. 

 

The T73 hardness was evaluated as a function of the appropriate composition of 

the alloy and modelled through a precipitate composition found in literature for the 

over-aged strengthening precipitate: 

 The hardness was shown to have a linear relationship with the composition of 

the alloy. The fit of the line to the data was again nearly perfect (R2 = 0.999) if 

reactions with impurity elements were included. 

 The wrought alloy data point fell on the T73 hardness-composition model line. 

 The near-equilibrium precipitate composition measured by Marlaud et al. [4] 

was found to delineate the T73 hardness-composition relationship. 

 All alloys were Cu-limited, which indicates that the Cu content required for the 

precipitate was high. 

 Knowledge of the T73 precipitate crystal structure was not a prerequisite for 

the model. 

 

The last objective was to propose an overall optimum Al:Zn:Mg:Cu ratio for Al-Zn-

Mg-Cu aluminium alloys. 

 The ratio of Al:Zn:Mg:Cu in the precipitate used in the improved mechanical 

properties-composition model was found to be the ultimate ratio for predicting 

T6 hardness and yield strength: Al7.4Zn45.4Mg38.6Cu8.6. The overall Zn, Mg and 

Cu contents in the alloy composition must also account for reactions with 

impurity or minor alloying elements. 
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 The ratio of Al:Zn:Mg:Cu in the precipitate used in the improved hardness-

composition model was found to be the ultimate ratio for predicting T73 

hardness: Al15Zn39Mg33Cu13. The overall Zn, Mg and Cu content in the alloy 

composition must again also account for reactions with impurity or minor 

alloying elements. 

 Applicability of the improved mechanical properties-composition model to 

wrought alloy data also holds promise for designing wrought Al-Zn-Mg-Cu 

aluminium alloys. 
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Appendix A 

The full ranges of angles for the XRD analyses are shown in Figures A.1 to A.9. 

 

Figure A.1. Full range XRD pattern for as-cast Alloy 7A. 
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Figure A.2. Full range XRD pattern for as-cast Alloy 7B. 
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Figure A.3. Full range XRD pattern for as-cast Alloy 7C. 
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Figure A.4. Full range XRD pattern for as-cast Alloy 7D. 
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Figure A.5. Full range XRD pattern for as-cast Alloy 7E. 
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Figure A.6. Full range XRD pattern for as-cast Alloy 7D-V. 
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Figure A.7. Full range XRD pattern for eutectic Alloy E-A. 
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Figure A.8. Full range XRD pattern for eutectic Alloy E-B. 
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Figure A.9. Full range XRD pattern for eutectic Alloy E-C. 
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