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ABSTRACT 

 

Epithelial ovarian cancer (EOC) is the most insidious, fatal gynaecological malignancy that 
accounts for millions of deaths in female population. Globally, the five-year survival period is 
between 15–20% for patience with clinical late stage ovarian malignancy in spite of surgery and 
platinum treatment. This study aimed to design and develop a novel drug delivery system 
employing antibody-ligand functionalized antineoplastic-loaded nanomicelles encapsulated with 
Chitosan-Poly(vinylpyrrolidone)-Poly (N-isopropylacrylamide) (C-P-N) hydrogel to form an in situ 

forming Implant (ISFI) which is responsive to temperature (body temperature 370C), pH 
(peritoneal fluid pH ~6.6) for cancer cell-targeting following intraperitoneal implantation to 
increase the residence time of the nanomicelles at tumor sites over a period exceeding one 
month, enhancing tumor uptake of drugs and prevent recurrence and chemo-resistance. An 
engineered-fabricated nanomicelle system (MTX)NM’s was formed by a novel thermal ring 
opening co-polymerization of hydrophobic L-Aspartic acid-N-carboxyanhydride onto the 
backbone of hydrophilic PNIPAAm-NH2 to form amphiphilic poly (N-isopropylacrylamide)-block-
poly (aspartic acid) (PNIPAAm-b-PAsp) copolymer. PNIPAAm-b-PAsp copolymer exhibited 
competency in forming amphiphilic nanomicelles broadening areas of its nano-application in 
implantable drug delivery. Utilizing (PNIPAAm-b-PAsp) micelles, variables for an experimental 
design were obtained. A Face-Centred Central Composite experimental design approach 
generated thirteen formulations thoroughly screened in terms of variables (Amount of copolymer 
(mg) and homogenizer speed (rpm)) affecting responses (size (nm), drug entrapment efficiency 
(%) and mean dissolution time). Nanomicelles with sizes ranging from 51.67 to 76.45 nm, a 
yield/recovery of 46.8–89.8 mg and polydispersity index (PDI ≤ 0.5) were obtained. Drug 
encapsulation efficacy (DEE) was initially (65.3 ±0.5%) and was ultimately optimized to 
80.6±0.3%. Optimal nanomicelle formulation was surface-functionalized with anti-MUC 16 
(antibody) for the targeted delivery of methotrexate to human ovarian carcinoma (NIH:OVCAR-5) 
cells that expressed MUC 16 as a preferential form of intraperitoneal ovarian cancer 
chemotherapy. Furthermore, cross-linked interpenetrating C-P-N hydrogel was synthesized for 
the preparation of an in situ forming implant (ISFI) for ovarian carcinoma treatment. ISFI was 

fabricated by encapsulating a nanomicelle comprising of anti-MUC 16 (antibody) functionalized 
methotrexate (MTX)-loaded PNIPAAm-b-PAsp nanomicelles (AF(MTX)NM’s) within C-P-N 
hydrogel. Ex vivo endocytotic internalization via confocal fluorescent microscopy and intracellular 
imaging studies in (NIH:OVCAR-5) cells showed positive cellular uptake in both optimal 
(MTX)NM’s  and (AF(MTX)NM’s) with exemplary results for (AF(MTX)NM’s) due to improved 
intracellular delivery. Chemotherapeutic efficacy of various treatment protocols including ISFI 
were invivo tested on the optimal Athymic nude mouse model that was intraperitoneally and 
subcutaneously induced with human ovarian carcinoma cells (NIH:OVCAR-5) and tumors with 
associated  severe ascites grew within 10 days of inoculation. Results demonstrated tumor 
regression including reduction in mouse weight and tumor size, as well as a significant (p<0,05) 
reduction in mucin 16 levels in serum and ascitic fluid  and improved survival of mice after 
treatment with the experimental anti-MUC16/CA125 antibody-bound nanotherapeutic implant 
drug delivery system (p<0,05). Low quantities of drug were found in the plasma but elevated 
levels were observed in the peritoneal cavity. In addition, the drug was present in the surrounding 
tissue in high concentration even after 10 days. Based on the results of this study, the antibody-
bound nanotherapeutic implant drug delivery system should be considered a potentially important 
immuno-chemotherapeutic agent that can be employed in human clinical trials of advanced, 
and/or recurring, metastatic epithelial ovarian cancer (EOC). The development of this novel 
implantable drug delivery system may circumvent the treatment flaws experienced with 
conventional systemic therapies, effectively manage recurrent disease and ultimately prolong 
disease-free intervals in ovarian cancer patients.  
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CHAPTER 1 

INTRODUCTION 

BACKGROUND AND RATIONALE FOR THIS RESEARCH 
 

 

 

1.2. Introduction and Background on Ovarian Cancer  

 

Ovarian cancer (a highly metastatic and lethal gynaecologic malignancy) is a challenging 

disease to treat and since it presents with few early symptoms, it is usually diagnosed late 

when in advanced stages, stage III and stage IV (Auersperg et al., 2001; Seiden, 2001; 

Whitehouse and Solomons, 2003). The disease is classified as early-stage (stages I and II) 

when confined within the pelvis, and as advanced-stage (stage III and stage IV) when in the 

upper abdomen and/or lymph nodes or distant sites (pleural space, hepatic or splenic 

parenchyma). Most patients with early-stage epithelial ovarian cancer are asymptomatic or 

present vague symptoms, including abdominal fullness, dyspepsia, bloating, pelvic pain, 

ascites, pleural effusions and early satiety (Auersperg et al., 2002; Chauhan et al., 2006). Most 

ovarian cancers (90%) are epithelial in origin and, hence, are referred to as epithelial ovarian 

cancers. Epithelial ovarian cancer is the fifth leading cause of cancer deaths and the most 

lethal gynaecologic cancer in the United States (Jemal et al., 2005). Ovarian tumors exhibit 

diverse and altered cell surface antigens such as, HE4, CA 72-4, EGFR, SMRP and mucin 

(MUC16) that discriminate them from normal ovary cells and other normal cells lining the 

peritoneum (Stohlbach et al., 1979; Moore et al., 2007). Mucins are heavily glycosylated 

proteins found in the mucus layer or at the cell surface of many epitheliums (Desseyn et al., 

2008). There are two structurally distinct families of mucins, secreted and membrane- bound 

forms.  

 
The ovarian surface epithelium has a mixed epithelial mesenchyma phenotype and is the only 

region in the ovaries that expresses mucins (Auersperg et al., 1998; 2001). Normal ovaries do 

not consist of any glandular tissue or goblet cells; therefore, no secreted mucins are expected 

to be synthesized by the parenchyma of the ovary. Non-malignant ovarian epithelial cell lines 

express MUC1 and MUC5AC (Giuntoli et al., 1998) while epithelial ovarian cancers express 

more mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC, and MUC16) than normal ovarian 

surface epithelium (Giuntoli et al., 1998; Auersperg et al., 2001; Chauhan et al., 2006). The 

aberrant changes in mucin expression (mucin switching) during the transformation of normal 

ovarian surface epithelium to cancer are important in disease progression as they change 
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adhesive and anti-adhesive properties of tumor cells, thereby promoting the dissemination of 

tumor cells during metastasis (Rump et al., 2004; Gubbels et al., 2006; Tamada et al., 2007). 

The role of MUC1, MUC2, MUC3, MUC4 and MUC5AC has not been extensively studied in 

epithelial ovarian cancer development compared to MUC16. 

 

MUC16 (also known as CA125) is employed as a biomarker in ovarian cancer due to its high 

expression in ovarian carcinomas and that it is shed into the serum (Bast et al., 1981; Jacobs 

et al., 1992; Fritsche and Bast, 1998; Yin et al., 2002; Menon and Jacobs, 2002). It is a very 

large cell surface mucin and was first identified in 1981 by a monoclonal antibody (OC125) 

that was developed from mice immunized with human ovarian cancer cells (Bast et al., 1981). 

Serum MUC16 levels are used to identify ovarian cancer patients and those with residual 

disease following primary therapy to monitor the clinical course of disease. Changes in serum 

MUC16 levels reflect progression or regression of ovarian cancer more than 90% of the time 

(Niloff et al., 1986; Mogensen et al., 1990; Buller et al., 1991).  

 

The current treatment for ovarian cancer makes use of aggressive cytoreductive surgery, 

systemic chemotherapy and external beam radiotherapy (Hoskins et al., 1994; MacGibbon et 

al., 1999). Paclitaxel and cisplatin are standard chemotherapeutic drugs used for the treatment 

of ovarian cancer, with methotrexate also used as an option (Khayat et al., 2000; du Bois et 

al., 2003). The efficacy of intravenous chemotherapy for epithelial ovarian cancer (EOC) is 

limited mainly by myelotoxicity and frequently impaired by the rapid appearance of resistance 

to chemotherapeutic drugs. While many patients initially respond to surgery and 

chemotherapy, the long-term prognosis is generally unfavorable. Since the peritoneal cavity 

is the principal site of disease in ovarian cancer (Cannistra, 2004), our proposed drug delivery 

device is aimed at administering drugs directly into the peritoneal cavity to target the MUC16 

antigen expressed on the surface of ovarian cancer cells (Figure 1.1).  
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Figure 1.1: A diagrammatic illustration showing the expression of cancer-associated mucins 

accompanying the development of ovarian cancer and the intraperitoneal implant providing 

targeted therapy within the peritoneal cavity.  

 

Primary ovarian tumors disseminate cancer cells via the peritoneum resulting in a major cause 

of recurrent metastatic disease which accounts for the majority of cancer deaths (Tanya et al., 

2004). For direct targeting of epithelial ovarian cancer cells, cancer-associated mucin 

(MUC16) on the surface of epithelial ovarian cancer cells that distinguish them from normal 

cells will be targeted for the delivery of drugs with minimal side-effects (Moore et al., 2007). 

The antibody-bound-nanomicelles will be encapsulated in a temperature (body temperature) 

and pH (peritoneal fluid pH~7) sensitive hydrogel which will be implanted via injection into the 

peritoneal cavity. Following the release of antibody-bound nanomicelles from the hydrogel, 

the nanomicelles (formulated to circulate for a long time in the peritoneal fluid) will target 

specific mucin antigens significantly over-expressed on ovarian cancer cells at the primary 

tumor site (tumor confined to the ovary in stage I and stage II), those circulating in the 

peritoneal fluid during stage III and stage IV (when patients are usually diagnosed) and lastly, 

cancer cells forming nodules at distant sites in the peritoneal cavity (Figure 1.1). This targeting 

system will help reduce the tumor load responsible for adhesion at the sites of secondary 

metastasis (peritoneal and abdominal surfaces) (Niloff et al., 1986; Mogensen et al., 1990). 

The anti-MUC16 antibodies conjugated to nanomicelles has a potential to improve the tumor 

selectivity of drug-loaded nanomicelles. This approach is likely to overcome the non-specific 
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destruction of healthy tissue associated with conventional strategies and also reduce the 

particularly problematic multidrug-resistant tumors to improve disease prognosis in ovarian 

cancer patients. The success of this method might make IP chemotherapy an appealing 

treatment option for patients with ovarian cancer. 

 
 

As there is a critical need to identify new therapeutic drug delivery systems for improving the 

life of ovarian cancer patients, the proposed intraperitoneal implantable drug delivery system 

has the significant pharmacologic advantage of delivering antitumor agents directly into the 

accessible but confined space of the peritoneal cavity, the sole location of disseminated 

ovarian cancer cells. The development of this novel implantable drug delivery system may 

circumvent the treatment flaws experienced with conventional systemic therapies, effectively 

manage recurrent disease and ultimately prolong disease-free intervals in ovarian cancer 

patients. 

 

 

1.2.        Rationale and Motivation for this Research 

 

Ovarian cancer is the most commonly fatal gynaecologic malignancy in which many patients 

are diagnosed at an advanced stage when the disease has spread beyond the ovary. While 

many patients initially respond to surgery and chemotherapy, the long-term prognosis is 

generally unfavorable, with recurrence and development of chemo-resistant disease. There is 

a critical need to identify novel drug delivery strategies that prolong disease-free intervals and 

effectively manage recurrent disease (Auersperg et al., 2001; Seiden, 2001; American Cancer 

Society et al., 2010). Mice xenograft models of ovarian cancer using ovarian cancer cell lines 

(OVCAR-3) have been used as models to study tumor biology in the search for new treatments 

for ovarian cancer. The spreading of ovarian cancer cells can occur by direct contact and 

invasion into adjacent tissues, such as the uterus, fallopian tubes, bladder, sigmoid colon, or 

rectum. The exfoliated tumor cells float in the peritoneal fluid and adhere to the mesothelial 

cells that line the inner wall of the peritoneum and the outer surface of various pelvic and 

abdominal organs. Haematogenous metastasis of ovarian cancer cells is a rare phenomenon, 

and can lead to involvement of other organs, including the brain (Wang et al., 2011). The 

prognosis of women with advanced stage ovarian cancer remains poor despite extensive 

research into systemic therapies. The introduction of chemotherapy (paclitaxel and cisplatin) 

has resulted in longer progression free (15-22 months) and overall (31-44 months) survivals, 

yet at least 50-75% of these women have persistent or recurrent disease with long-term 

survival (>5 years) achieved in only 25%. In the majority of patients recurrence is seen within 

the peritoneal cavity, and in approximately 12% it occurs in the retroperitoneal lymph nodes. 

Three randomized trials in ovarian cancer patients affirmed this assumption by demonstrating 
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improved survival with intraperitoneal chemotherapy compared to similar or identical agents 

delivered systemically. The National Cancer Institute has thus recently proposed to make 

intraperitoneal chemotherapy part of the standard treatment in ovarian cancer. The 

concentration of MUC16 is raised in only a few patients with early disease and this limitation 

results in the majority of patients being diagnosed in advanced disease stages (Seiden, et al., 

2001). Some evidence supports the use of radiotherapy, particularly for chemo-resistant 

ovarian cancer. However, radiotherapy remains controversial for advanced ovarian cancer 

because of toxicity. Several studies that are in advanced stages of development and in various 

phases of clinical trials also attempt to provide monoclonal antibody-mediated 

chemotherapeutics by utilizing various conjugates and antibodies linked directly to drug 

molecules (Yap et al., 2009). However, none of these strategies utilize the concept of linking 

antibodies to nanomicelles. Therefore, this study strategically focuses on attaching the anti-

MUC16 antibody to a nanomicelle structure due to its potential pharmaceutical stability of the 

resultant targeting complex and also the fact that anti-MUC16 is extensively used in ovarian 

cancer as a biomarker. Thus, the proposed strategy would merge the concepts of 

pharmaceutical nanotechnology and mucin biomarkers for the design of an effective strategy 

to treat OC via the intraperitoneal route. 

 

The rationale for the proposed injectable intraperitoneal drug delivery strategy to provide 

therapy in ovarian cancer is based on the fact that ovarian cancer is largely confined to the 

peritoneal cavity and as ovarian cancer cells spread within the peritoneal cavity, they form 

secondary nodules by seeding to mesothelium-lined structures. Although the therapeutic 

approach for ovarian cancer is surgical removal followed by intravenous chemotherapy, 

malignant cells that might have survived the surgery are often missed (Harries et al., 2001). 

Animal models such as ovarian tumor-bearing BALB/c mice have been used successfully by 

researchers to evaluate the potential of drugs via intraperitoneal injection (Vanderhyden et al., 

2003). The approach in this study is to inject an in situ forming hydrogel-based implant loaded 

with anti-MUC16 conjugated nanomicelles in the peritoneum of ovarian tumor bearing mice 

with the aim to reduce the rate of recurrence, seen in the majority of ovarian cancer patients, 

and improve the long-term survival rate. This strategy will not only enable specificity, but will 

also increase the residence time of the drug-loaded nanomicelles at the tumor site and within 

the peritoneal cavity, enhance tumor uptake of chemotherapeutic drugs and finally aid in 

preventing metastases, recurrence and chemo-resistance. The significant pharmacologic 

advantage of delivering drugs directly into the accessible but confined space of the peritoneal 

cavity will greatly reduce recurrence. Having an intraperitonal implant (as opposed to 

conventional intravenous chemotherapy) will be more logical as the peritoneum is the 
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predominant site of the tumor and will therefore receive sustained exposure to higher 

concentrations of drugs while normal tissues, such as the bone marrow and others, are largely 

spared from the toxic side-effects of conventional intravenous chemotherapy. For the first time, 

this study will demonstrate the application of a an injectable in situ forming hydrogel-based 

intraperitoneal implant using the concept of targeted therapy (anti-MUC16 antibodies) for the 

delivery of high doses of drug-loaded nanomicelles to ovarian cancer patients who, 

unfortunately, relapse and die of their disease, indicating that benefits of surgery and 

chemotherapy, whether these may be new drugs or a new combinations of old drugs, have 

reached a plateau (Jemal et al., 2008).  
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Figure 1.2: A schematic showing the monoclonal antibody-mediated intraperitoneal drug 

delivery system. 

 

Thus having an implantable targeted drug delivery system for sustained and prolonged drug 

release will offer an alternative and improved treatment to patients suffering from recurrent 

ovarian cancer. This will provide effective targeted chemotherapy for ovarian cancer and is 

likely to overcome the non-specific destruction of healthy tissue associated with conventional 

intravenous chemotherapy. The potential for reducing multidrug-resistant tumors will also 

improve disease prognosis in ovarian cancer patients and may make this strategy of 

intraperitoneal chemotherapy appealing for patients with ovarian cancer since it would offer 

cancer cell-targeting and significantly reduce side-effects (Menon and Jacobs, 2002). The use 

of antibody-bound nanomicelles represents an innovative way to deliver drugs to ovarian 

tumor cells in a targeted manner via the peritoneal cavity. 

 

Additionally, the nanomicelle system will be formulated following a unique step-by-step 

procedure where the copolymer system will be conjugated with another polymer or small 

organic molecule (for membrane localisation), drug agent (for therapeutic effect), peptide (for 

cell penetration), and an antibody (for tumor targeting) either individually or in various 

combinations as to form antibody-attached peptide-bound drug-conjugated copolymer 

nanomicelle (APDCNm) (Figure 1.2). 
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1.3.    Novelty of this Research 

 

Since the peritoneal cavity is the principal site of disease in ovarian cancer, this study is aimed 

at targeting the administration of drugs directly into the peritoneal cavity to target the MUC16 

antigen expressed on the surface of ovarian cancer cells. Primary ovarian tumors disseminate 

cancer cells via the peritoneum resulting in a major cause of recurrent metastatic disease 

which accounts for the majority of cancer deaths (Chauhan et al., 2006). For direct targeting 

of epithelial ovarian cancer cells, cancer-associated mucin (MUC16) on the surface of 

epithelial ovarian cancer cells that distinguish them from normal cells will be targeted for the 

delivery of drugs with minimal side-effects. The antibody-bound-nanomicelles will be 

encapsulated in a temperature and pH sensitive hydrogel that will be injected into the 

peritoneal cavity to form an in situ hydrogel-based implant. Following the release of antibody-

bound nanomicelles from the hydrogel, long-circulating nanomicelles will target specific mucin 

antigens significantly over-expressed on ovarian cancer cells at the primary tumor site 

(confined to the ovary in stage I and II), those circulating in the peritoneal fluid during stage III 

and IV (when patients are usually diagnosed) and lastly, ovarian cancer cells forming nodules 

at distant sites in the peritoneal cavity (Cannistra, 2004). 

 

This strategy will help reduce the tumor load responsible for adhesion at sites of secondary 

metastasis. The anti-MUC16 antibodies conjugated to drug-loaded nanomicelles will improve 

tumor selectivity. This will also overcome the non-specific destruction of healthy tissue 

associated with conventional chemotherapy and reduce multidrug-resistant tumors to improve 

disease prognosis in ovarian cancer patients. The success of this study will make 

intraperitoneal chemotherapy an appealing treatment option for patients with ovarian cancer. 

Biocompatible and biodegradable polymers will be used to design functionalized anti-MUC 16 

drug-loaded nanomicelles fixated within an in situ forming hydrogel implant. The implant will 

be evaluated for its potential to release drugs such as paclitaxel, cisplatin and methotrexate 

in a targeted manner within the peritoneal cavity with the ability to prevent ovarian cancer cells 

from using MUC16 to disseminate to other healthy organs from the ovaries. As there is a 

critical need to identify new therapeutic strategies for improving the current therapy of ovarian 

cancer, our proposed system has the significant pharmacologic advantage of delivering drugs 

directly into the accessible but confined space of the peritoneal cavity, the sole location of 

disseminated ovarian cancer cells. This strategy may circumvent the treatment flaws 

experienced with conventional intravenous chemotherapy, effectively manage recurrent 

disease and prolong disease-free intervals in ovarian cancer patients (Menon and Jacobs, 

2002). Below is a detailed sequence of the methods to be employed in this project in order to 

achieve the aim and specific objectives of the project from a pharmaceutical formulation and 
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pre-clinical evaluation viewpoint. In addition, the project will also involve preclinical testing of 

the system in BALB/c female mice that have been used as suitable animal models to study 

ovarian cancer. 

 

1.4. Aim and Objectives of this Research 

The aim of this study was to design and develop a novel drug delivery system employing 

peptide/protein ligand conjugated to drug-loaded nanomicelles encapsulated with 

Chitosan(C)-poly(N-vinylpyrrolidone) (PVP)-N-isopropylacrylamide (NIPAAm) (C-P-N) 

hydrogel to form an In Situ Forming Implant (ISFI) for cancer cell-targeting following 

intraperitoneal implantation to increase the residence time of the nanomicelles at tumor sites, 

enhancing tumor uptake of drugs and prevent recurrence and chemo-resistance. To achieve 

this aim, the following objectives are outlined: 

 

1. To design, develop and validate a nanomicelle based system using biodegradable and 

biocompatible polymers via molecular simulations  

2. To undertake encapsulation of chemotherapeutic drugs in polymer nanomicelles in the 

form of drug copolymer conjugates 

3. To assess the feasibility of using targeted ligands to bind to specific receptors and 

selection of potent peptide sequences from phage display library as co-targeting ligands 

4. Formulation and characterization of in vitro performance (targeting) of the drug-loaded 

biodegradable peptide nanomicelles 

5. Functionalization kinetics of nanomicelles with peptide/protein for specific targeting of 

cancer cells 

6. Analysis/control of release (physicochemical) properties and targeting functionalities to 

develop new nano-drugs 

7. To perform preliminary ex vivo pharmacological studies to determine the effectiveness of 

multi-ligand nanomicelles using mice as the animal model 

8. To undertake in vivo biodistribution and biocompatibility evaluation 

9. To conduct in vivo pharmaceutical evaluation of the drug targeted system 
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1.5. Overview of this Thesis 

 

Chapter One: serves as the introduction of the thesis and describes the pathophysiology of 

epitheilial ovarian cancer (EOC) in order to highlight the problems preventing the successful 

treatment of EOC. The novelty of the work and the aims and objectives of this work are also 

discussed.  

 

 

Chapter Two: presents a comprehensive literature review focusing on the current work that 

has been conducted by other researchers in the development of nanomicelle in ovarian cancer 

chemotherapeutics. It also provides insight into the use of stimuli responsive materials as 

nanomicelle-forming systems.  

 

Chapter Three: Comprehensively describes the synthesis and development of a novel super-

viscosity amphiphilic copolymer for human ovarian carcinoma chemotherapeutics. The 

micellization process employing thermal ring-opening polymerization by which the copolymer 

is fabricated is evaluated by conducting tests to determine its yield as well as validating the 

occurrence of copolymerization in addition to numerous tests conducted to fully characterize 

the nanomicelles. Utilizing this information, variables for an experimental design were 

obtained. 

 

Chapter Four: describes the utilization of a Face-Centered Central Composite Design in the 

determination of an optimum nanomicelle formulation. Amount of copolymer (mg) and 

homogenizer speed (rpm) were the two selected variables; and size, drug entrapment efficacy 

(DEE), mean dissolution time (MDT) and cumulative release were selected as the responses 

limits. 

 

Chapter Five: describes the development and characterization of Anti-muc 16 functionalized 

PNIPAAM-b-PASP nanomicelles for the targeted delivery of methotrexate to human ovarian 

carcinoma cells. Mechanism of synthesis of anti-MUC 16 functionalized MTX-Loaded 

nanomicelle (AF(MTX)NM’s) for improved intracellular uptake is also discussed. Drug release 

was conducted using dissolution, whilst microscopy is used to confirm nanomicelle 

morphology, formation and distribution of AF(MTX)NM’s complex. 

 

Chapter Six: describes in-vitro synthesis, characterization and evaluation of a bio-responsive 

IPN nanomicelle/hydrogel composite based implant for ovarian carcinoma treatment. The 
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combination of ISFI and nanomicelles was also investigated for rheological properties, 

mechanical strength, swelling and drug release and are reported on. In vitro testing of the 

implant on NIH:OVCAR-5 cancer cell line is discussed. The use of MTT assays is described 

and the results obtained from this method of viability testing of cells are evaluated. 

 

 

Chapter Seven: reports in vivo work conducted on the optimal Athymic nude mouse model. 

Intraperitoneal and subcutaneous induction of human ovarian carcinoma of the said optimal 

mouse mode was also conducted. Chemotherapeutic Efficacy of various treatment protocols 

in EOC-inoculated Nude (NU/NU) Mice was validated. Ultra Performance Liquid 

Chromatography quantification of the amount of drug in the plasma is described and the 

results evaluated. The biocompatibility of the implant is also discussed. 

 

Chapter Eight: provides the overall the conclusive remarks on the smart ISFI and insight into 

future outlooks and recommendations in which the study can be enhanced. 
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CHAPTER 2 

A REVIEW OF NANOMICELLAR TECHNOLOGIES FOR TARGETED DRUG DELIVERY IN 

OVARIAN CANCER CHEMOTHERAPEUTICS 

 

 

2.1. Introduction 

 

Globally, epithelial ovarian carcinoma (OC) is the most fatal gynaecological disease that accounts 

for millions of deaths annually in the female population, making this malignancy a major health 

concern (Bae et al 2014; Davis et al., 2014; Rodríguez-Ayala et al., 2014; Smolle et al., 2014; WHO, 

2014). Approximately 21,9 million new patients of OC have been diagnosed with approximately 

14,270 deaths predicted in the United States in 2014 (Ovarian Cancer Research Fund Report, 

2014). According to the World Health Organization (WHO) 2014, “in developing countries OC is one 

of the most lethal genital malignancies in females and this asymptomatic disease is exacerbated by 

the lack of early diagnostic strategies and access to expensive chemotherapeutic drugs. In South 

Africa, (CANSA, 2014) confirmed more than 500 cases of ovarian carcinoma in 2014 (CANSA, 

2014). Worldwide, the five-year survival rate is only between 15–20 % for people who are sick with 

clinically late stage ovarian malignancy in spite of surgery and platinum treatment (Prat, 2014). 

 

The current treatment for OC makes use of aggressive cytoreductive surgery to remove the infected 

ovaries, uterus, fallopian tubes, cervix and lymph nodules in the peritoneum abdomen. The surgical 

approach is then followed by external beam radiotherapy or systemic chemotherapy or both, 

depending on the stage at which the OC disease is identified. Paclitaxel and cisplatin are standard 

chemotherapeutic drugs used for the treatment of OC, with methotrexate also considered as an 

option. However, conventional treatment has its drawbacks such as drug toxicity and subsequent 

disease relapse, due to the development of multidrug resistance. In addition, the chemotherapeutic 

drugs are not site-specific for OC cell targeting and hence display dose-dependent side effects 

(Mishra, 2010; Yallapu et al., 2010; Bae et al., 2013). Furthermore; the long-term prognosis is 

commonly adverse, with manifestation and progression of chemo-defiant cancer. Patients that 

survive continue to suffer from various undesirable side-effects such as excessive vomiting, hair 

loss and a decline in blood cell numbers associated with the administration of non-targeted 

antineoplastic drugs for OC therapy (Chan et al., 2005). To circumvent these treatment flaws of 

conventional drugs, several targeted drug delivery platforms have been developed to direct anti-

neoplastic drugs to specific tumor sites.  

New advances in polymeric nanotechnology with particular emphasis on micelles provide feasible 

alternatives for targeted treatment of metastatic OC and minimize systemic-toxicity associated with 



 
 

13 
 

administration of chemotherapeutic drugs. These therapeutic polymeric systems serve as new drug 

carriers for antineoplastic drugs and include nanoparticles, micelles, polymer-conjugates and 

dendrimers. The limitations of these nano-enabled formulations (polymeric systems) include 

potential inaccuracies in direct drug targeting of tumors, potential toxicity to healthy cells, instability 

in the circulatory system, rapid degradation and clearance by the immune system and a lack of 

controlled drug release over prolonged periods of time (Wang et al., 2012; Babu et al., 2013; Díaz 

and Vivas-Meji, 2013).  

 

In order to overcome these limitations for clinical applications to be feasible, current research 

focuses on preparation of nanoparticulate delivery systems (including micelles) functionalized with 

ligands such as antibodies to facilitate preferential specific targeting of tumors, release of the drug 

payload at a controlled rate and ultimately increase the therapeutic effect. Hence, prolonged 

circulation in the bloodstream, in-vivo stability, biodegradability and polymer-drug compatibility with 

sufficient retention of the drug within the carrier system are prerequisites to successful design and 

preparation of drug targeting delivery system. Furthermore, the potential synthetic building blocks 

for the carrier systems should be nontoxic, not inducing inflammatory responses or severe-toxicity. 

Other significant properties of polymeric carrier systems are the ability to be (biodegraded and) 

cleared/excreted by renal pathway after the drug is completely released and the prospect to further 

track and trace the polymeric system co-encapsulated with molecular imaging agent (Wang et al., 

2013). 

 

Therefore this chapter aims to present a comprehensive evaluation of the current advances and 

nanotherapeutic modalities employed for the chemotherapy of OC. A particular focus has been 

placed on micelle technologies as one of the most researched nano-archtypes of late for targeted 

OC treatment. The current status on OC biomarkers is also summarized, with an intergration of work 

undertaken on mucins and their possible application in early diagnosis and management of OC. 

These approaches are defined with specific intention to potentially identify the disease at an early 

stage, halt the disease progression and promote recovery.  

 

2.2. Current Nano-based Drug Delivery Approaches for Ovarian Cancer (OC) Therapy 

 

In response to the clear need for the development of efficient and selective drug transport systems 

to primary tumors and their metastases, many circulating nano-formulation delivery strategies have 

been designed including polymer-drug conjugates, dendrimers, liposomes, solid lipid nanoparticles 

and polymer micelles (Table 2.1 and Figure 2.1) (Alexisa et al., 2008; Wang et al., 2013). All these 

delivery systems offer advantages but they have their own individual limitations; hence a therapeutic 

delivery system (including polymeric micelles) needs to achieve several (biopharmaceutical) 
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prerequisites such as a marked increase in therapeutic impact compared to the free-drug, good 

biodegradibility and biocompatibility, non-toxic and non-inflammatory propensity, prospect to large 

scale-up its manufacture (Katz, 2012; Sanna et al., 2014). Preferably, a nano-formulation delivery 

system must have high drug-loading capacity; ability to dissolve the partially water soluble drugs 

within the inner core, and selective accumulation in tumor tissue through permeability and retention 

influence (passive or active targeting); thus significantly increasing treatment bioavailability, reducing 

toxic side effects of chemotherapeutic drugs in healthy tissues, and resulting in improvement in 

patient condition (Alexis et al., 2010). Therefore, advances in targeted nano-formulation delivery 

systems improve the survival of ovarian cancer patients compared to conventional 

chemotherapeutics (Li et al., 2014). In this context, this gives emphasis to the need to invent 

consistent molecular or clinical indicators for early detection via evaluation of possible novel 

molecular targets and new approaches in chemotherapeutic modalities (Díaz and Vivas-Mejia, 

2013). Several prospective biomarkers of ovarian carcinoma have been currently reported. Ovarian 

tumors exhibit diverse and altered cell surface antigens such as, HE4, CA 72-4, EGFR, SMRP, 

mesothelin, osteopontin, AFP, CTLA4, IFNα, KLK6, PLA2G2A, ErbB2, IL-10 and mucins (MUC1-16) 

that differentiate cancerous cells from normal ovarian cells and other normal cells lining the 

peritoneum (Niloff et al., 1986; Mogensen et al., 1990; Yin et al., 2002; Whitehouse and Solomon, 

2003; Rump et al., 2004; Chauhan et al., 2006; Moore et al., 2007; Felder et al., 2014). Mucins 

(especially MUC16) display potential as indicators of ovarian malignancy and micelles with surface-

attached specific antibodies (immuno-micelles) offer a wide-range of prospects for preferential 

targeting of ovarian tumor tissue (Miller, 2009). The mortality rate from ovarian disease may possibly 

be greatly reduced by engineering this innovative tool for early identification and therapy of this lethal 

illness.  

 

Micelles are uniquely assembled nano-delivery vehicles with flexible characteristics that can be 

synthesized to dissolve partially water-soluble drugs, for passive/active delivery mechanisms, and 

enable accumulation of these drugs in tumor tissue (Rapoport, 2007; Akao et al., 2010; Liang et al., 

2010; Preetham and Satish, 2011). Micelles and micelles surface-attached with specific antibodies 

offer important advantages for treatment delivery purposes. Micelles have been established as 

valuable tools in numerous medical arenas including nanomedicine, environmental science, 

toxicology, biochemistry, material science, oncology, engineering. These nano-carrier delivery 

systems are anticipated to result in major advances to tackle many unresolved challenges in clinical 

diagnosis, prevention, and treatment of various diseases, in particular ovarian cancer. These unique 

features of polymeric micelles account for their qualities as efficient drug delivery systems. For 

instance, their small size range (10–100 nanometers) ensures safe endocytotic uptake by target OC 

cells preventing nonselective destruction of healthy cells (Thassu et al., 2007). Micelles can 

penetrate and accumulate in areas with permeable vasculatures such as cancer; swollen and 
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infected regions ( et al., 2001; Thassu et al. 2007; Song et al., 2009). In conclusion, polymer 

micelles are rapidly becoming valuable tools for diagnostic purposes and OC chemotherapy owing 

to micelle nano-range (ten-hundred nanometers), excellent biocompatibility, in-vivo stability, 

capabilities to incorporate a wide range of water insoluble anticancer drugs in their micelle core, and 

prolonged blood circulation times (Arimura et al., 2005; Karel, 2012). 

 

2.3. Critical Comparison of Nanosystems to Micelles for OC Treatment  

 

Nanosystems (nanoparticles) including polymer-drug conjugates are discussed with specific 

intentions to compare them with currently presented micellar technologies (which are the main focus 

of this paper) for targeted treatment of metastatic OC. Polymer-drug conjugates are nano-sized 

macromolecular architectural particles with low molecular weight and a highly versatile 

functionalized terminal surface, which allows covalent bonding of drugs (Sawant et al., 2006; Song, 

2010). Defined physico-chemical parameters (including, pH, enzymatic modification, acid-catalyzed 

reactions) are essential for the release of treatment at the tumor site. Polymer-drug conjugates have 

been widely considered for prolonging the chemotherapeutic drug effect in the cancer, tumor 

accumulation, reduction of non-target toxicity, and improvement of anti-tumor activity (Sumer, 2008; 

Zhang et al., 2008; Guo and Huang, 2014). Therapeutics in ovarian cancer also employ dendrimers, 

synthesized from various polymers and genes; however acrylamide dendrimers are commonly 

employed. Dendrimers are composed of three important engineered subdivisions: (i) Exterior, with 

multiple prospective attachment locations, (ii) the central portion (i.e., where distinct dendrons 

delineate the separated unit stratums) coating the matrix, and (iii) the matrix for dendrons 

conjugation. The three sections of dendrimers can be modified for various applications including, 

nanodrug and DNA transport, or intrinsically performing as treatments (Parveen, 2012). Both 

polymer-drug conjugates and dendrimer nanosystems require the covalent binding of drug entities 

to the polymer carriers. This consecutively would necessitate the presence of functionalizable 

biochemical groups on the drug units, restraining the generality of this strategy. In light of the marked 

chemical stability of covalent conjugations, specific biochemical processes (such as invivo 

enzymatic degradation, acid-catalyzed hydrolysis reaction) are required to release the drug at 

peritoneal tumor sites (Sinha et al., 2010; Kim et al., 2011; Lu and Park, 2012). Furthermore, due to 

the minute-size of these nanosystems (normally, 10 nm), they are able to simply pass through 

cellular membranes in the glomeruli filtration parts of kidneys and be rapidly cleared/excreted, 

resulting in shortened survival (half-lives) in the bloodstream (Wang et al., 2013). Vital structures 

and differentiating characteristics of nanocarrier systems are shown in Table 2.1 and in Figure 2.1 

(Blanco et al., 2009).   
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Liposomes are microscopic spherical vesicles consisting of lipid bilayers enclosing an aqueous 

compartment, making biological membranes more accessible and offering a flexible platform to 

encapsulate both lipophilic and hydrophilic chemotherapeutic drugs. Lipophilic drugs are 

incorporated within the lipid bilayer while hydrophilic drugs reside in the vesicle cavity. 

Encapsulation of antineoplastic drugs in liposomes causes a change in pharmacokinetic and 

pharmacodynamic properties, resulting in potential reduction of therapeutic degradation and also 

limiting dose-limiting side effects (Sapra and Allen, 2003; Chang et al., 2009). Liposomes can be 

used for specific, selective targeting of cancer tissues, but they are rapidly cleared by immune 

system response unless special modifications via attachment of ligands are applied to the 

phospholipids’ surface to improve cellular uptake by tumor tissues, thus, enabling a pronounced 

therapeutic effect (Nobs et al., 2004; El Bayoumi and Torchilin, 2009). Solid lipid nanoparticles 

(SLN) also have similar properties to liposomes but can be well-produced on a large scale. In 

contrast, the major problems associated with liposomes are their instability and difficulty in large-

scale manufacture of sterile liposomes. Poorly water-soluble therapeutics are captured inside the 

hydrophobic inner core, however the delivery ability is tapered by membrane subverting sources. 

However, most liposomal and SLN particles are above 90 nm in size, due to intrinsic structural 

parameters, which may significantly limit their delivery in ovarian tumor tissues. To surmount the 

setbacks associated with liposomes and solid lipid nanoparticles, other nanoparticles including 

solvent emulsions, polymeric nanomolecules and polymeric micelles are employed (Blanco et al., 

2009).  
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Table 2.1: Outline of the distinguishable nanotherapeutic tools designed for ovarian cancer 

treatment. 

  

 

 

Nano-systems 
 

Polymer-drug 
conjugates 

 

Dendrimers 
 

Polymer 
micelles 

 

Liposomes 
 

Solid Lipid 
Nanoparticle  
(SLN) 

 

Size  

 

≤ 10 nm 

 

2-10 nm  

 

10-100nm 

 

100-200nm 

 

50-1000 nm 

Structural 
characteristics  

Macromolecular 
structure 

Macromolecular 
Tree-like 
structure 

Spherical 
Supramolecular 

Core  shell 
structure 

Spherical 
bilayer vesicle 
structure 

Spherical, 
bilayer  
nanocapsular 
structure 

Carrier 
composition  

Water-soluble 
polymer 

Hyperbranched 
polymer chains  

Amphiphilic di 
and tri-block 
copolymers 

Phospholipids
, cholesterol 
membrane 
lipids 

solid lipid 
emulsifier 
water 

Drug 
incorporation 
strategy  

Covalent 
conjugation 
requiring 
functional 
groups on drug 
and polymer 

Covalent 
conjugation 
requiring 
functional 
groups on drug 
and polymer 

Non-covalent 
encapsulation/ 
compatible with 
hydrophobic 
drugs  

Non-covalent 
encapsulation/ 
compatible 
with 
hydrophilic 
drugs 

Non-covalent 
encapsulation/ 
compatible 
with 
hydrophilic 
drugs 

Clinical status  PEG-paclitaxel & 
HPMA 
copolymer-
doxorubicin – 
phase II trials 
 
 
 
 
SMANCS  
&CDP870 
(Cimza)- 
Approved  

Dendrimer- 
docetaxel & 
Viva gel- phase 
II & III trials 

 

 

PSMA-targeted 
dendrimers & 
Avidimer- 
dendrimers- 
Approved 

CRLX- 
101&NKTR-102- 
phase II/III 
clinical trials 

 

 

Genexol- PM- 
Approved 

SGT53-01& 
MCC- 46 
phase I 
clinical trials  

 

 

Doxil, 
Ambisome & 
DaunoXome- 
Approved 

SLNs with 
[Gd-
DTPA(H2O)]2- 
and [Gd-
DOTA(H2O)]- 
compounds- 
preclinical 
trials 

Diazemuls & 
Diprivan- 
Approved 
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Figure 2.1: Schematic depicting examples of nano-sized delivery systems; liposomes (a-b), 

polymer drug conjugates (c-d), dendrimers (e-f) and solid lipid nanoparticles (g-h) and 
polymeric micelles (i-j) currently being exploited for transport of chemotherapeutic agents 
[(adapted from (a-b) (Jiang et-al., 2014), (c-d) (Tong et al., 2010), (e-f) Santos et al., 2010, (g-
h) Pasc et al., 2011, (i) Palivan et al., 2012; (j) Ding et al., 2015. 
 
 

2.4.  Micellar Morphology, Composition, and Mechanism of Formation  
 

Micelles are spontaneously self-assembled or aggregated versatile nanoparticles formed in 

water at certain physico-chemical parameters including concentration (above CMC - critical 

micelle concetration), temperature and conductivity employing amphiphilic surfactants 

(hydrophilic-hydrophobic polymers) with opposite-affinities toward a particular solvent (Güney 

et al., 2011). The morphology of resultant micelles is produced by hydrophilic and hydrophobic 

constituent interaction. The copolymer chain length determines the structure of the formed 

micelles, with rod shaped micelles produced when the hydrophobic segment is longer than 

the hydrophilic segment. Spherical micelles are normally a result of a lengthier hydrophilic 

segment with a shorter hydrophobic segment or when these segments are of the same length 

(Soliman et al., 2011). Compositions of the formed polymeric micelles are normally di or tri 

block, or a fixed copolymer (Figure 2.2).  

 



 
 

19 
 

Poly ethylene oxide (PEO) polymers form a barrier to micelle degradation and ensuring micelle 

dissolvability in an aqueous medium (Wu, 2005; Rapport, 2007). The hydrophobic core usually 

has a biodistortable polymaterial including poly ethers, poly-(propylene oxide) (PPO) and poly-

esters (β-amino ester), which can be used as reservoirs to dissolve poorly water soluble 

pharmaceuticals, thus protect the drugs from the aqueous environment, increasing their 

bioavailability and in vivo stability (Adams; 2003; Zana, 2005; Mourya et al., 2011). 

 

 

 

Fig 2.2: Schematic representation of the supramolecular structure of polymeric micelles 

(adapted from Lu and Park, 2012).  
 

  
At low concentrations in aqueous media, these copolymers exist individually, but, when their 

molar ratio is elevated, flocculation occurs in a relatively narrow concentration range (Horacio, 

2009). Flocculates are called micelles, comprised of many copolymers in a spherical 

configuration. The amount of copolymer required for micelle formation is termed the critical 

micelle concetration (CMC) and defines the thermodynamic balance of micelle; whereas the 

degree beneath which hydrophilic-hydrophobic nanomolecules subsist as single units and 

beyond as confluences is known as the decisive micellization degree (Torchiln, 2004; Wang 

et al., 2001). When conjugation in polymer moieties is expected, compounds such as 

carboxylic (COO-) and amines (NH) are conjugated as the chain terminating groups to activate 

the hydroxyl (-OH) groups (Rapport, 2007). 

 
 

2.5.   Classification of Micelles 

 

Micelles can be classified into three main distinguishable classes namely, micelles prepared 

from aggregation of polar and non-polar molecules in aqueous medium (amphiphilic 

aggregates), polyionic micelles originating from oppositely charged polymers forming an 

agglomeration due to electrostatic interaction, and micelles originating from metal 

complexation (Wang et al., 2001; Oberoi, 2012; Gaucher, 2005; Sutton, 2011). 
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2.5.1.  Amphiphilic Micelles  
 

Amphiphilic micelles are produced by hydrophobic interactions involving the inner matrix and 

the outer surface of the surfactant molecules in the dissolving medium (Adams et al., 20013). 

A surfactant molecule possesses an amphiphilic structure and is composed of a hydrophobic 

moiety and a hydrophilic moiety (Sutton, 2011). The hydrophilic groups that constitute the 

polar head groups are based on functional groups such as carboxyl, sulfonate, ammonium, 

hydroxyl and amide. Hydrophobic groups are nonpolar tails, such as hydrocarbon chains with 

eight or more carbon atoms, and can be linear or branched structures. Both lipophilic and 

hydrophilic polymers are soluble to some degree in aqueous suspension, but assemble into 

micelles when sufficient surfactant concentration is attained. This concentration of surfactant 

at which micelles are formed is called the critical micelle concentration (CMC). Figure 2.3 

illustrates the situation where surfactant molecules are aligned at the air/water interface, and 

form micelles when submerged in a particular solvent due to the different charge attractions. 

The polar head forms the exterior hydrophilic surface of the micelles with the nonpolar tail 

forming the inner hydrophobic core.   

 
 

The quantity of drug incorporated into copolymeric micelles is affected by physicochemical 

factors including electrostatic exchanges, and complexation between block copolymers and 

charged chemotherapeutic drugs. Thus, a deeper consideration of the physicochemical trends 

could be an invaluable tool in the synthesis of drug loaded copolymeric micelles. The basic 

amphiphilic segment copolymer, Pluronic®, produces micelles in response to electrostatic 

exchanges (Bronstein et al., 2000; Wang et al., 2012). 

 

 
 

Figure 2.3: Scheme of surfactant molecules aligning on water/air interface at pre and post ‘CMC’ point 

(adapted from Mukherjee et al., 2013).   
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2.5.2.   Polycharged Composite Micelles 

 

Polycharged complex micelles (PCCMs) originate from assembly of charged polymers of 

opposite polarity to form an aggregate that is distributed in aqueous suspension by a nonionic 

hydrophilic head group, commonly poly (ethylene glycol) (PEG), covalently attached on one 

of the two charged polymers. Electrostatic interactions are the intermolecular cohesive force 

of the assembled composite; with both electrostatic and hydrophobic interactions utilized in 

the formed micelle complexes. PCCMs have some peculiar procedures such as simple 

synthetic method, spontaneous self-assembly or aggregation in aqueous milieu, physical 

stability, elevated treatment entrapment efficiency, and extended flow in the blood stream. 

PCCMs are formed by segment copolymers in water exclusive of any organic solutions, hence 

avoiding the related toxicity produced by the remaining organic solution. These micelles are 

very constant, having low decisive micelle intensity values compared with amphiphilic 

micelles, as low as 10-6 M. The central portion of the PCCMs can encapsulate several 

therapeutics including water soluble and insoluble drugs employing intermolecular cohesive 

force and hydrogen linkage interactions. Therapeutics such as cisplatin and ionic large-scale 

drugs are released from PCCMs following inducement by appropriate stimuli (Bayó-Puxan et 

al., 2011). 

 
 

2.5.3.   Non-covalently Connected Polymeric Micelles  
 

These micelles are prepared without using a segment-copolymer approach employing homo 

polymeric material, co-polymers, or monomer units with covalent bonding used as the 

cohesive force of micelle agglomeration. The inner and the outer surface are bonded at the 

polymer edges via precise intermolecular interactions including hydrogen-linkages or metal-

binding group interactions in the assembly, and for this reason these are known as 

noncovalently linked micelles. Poly (4-vinylpyridine) functionalized with carboxyl terminated 

polybutadiene has been used as the mainstay of intermolecular interaction owing to hydrogen 

linkages forming in a common organic solvent such as chloroform (Wang et al., 2001). 

 
 

 

2.6.   Polymers Used in Micelle Targeted Drug Delivery for Ovarian Cancer   
 

Surfactant polymers utilized for therapeutic delivery have either an ester or amino acid moiety 

serving as an interior core for dissolving hydrophobic chemotherapeutic drugs (Table 2.2). 

Furthermore, poly(lactic acid) (PLA), poly(q-caprolactone) (PCL), and poly(glycolic acid) 

(PLGA) are all bioocompatible, non toxic and biodegradable polyesters which form 

hydrophobic tails of micelles and are commerciallly approved by the FDA for 

biopharmaceutical applications in humans. Conversely, the soluble hydrophilic portion of the 

micelle generally exploited in drug release kinetics is comprised of poly (N-
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isopropylacrylamide) PNIPAAM, poly (vinyl pyrrolidone) and poly (ethylene glycol). In this 

context, these two polymers self-arrange into surfactant micelles in aqueous suspension, with 

the amino or ester section molecularly uncharged or linked to inner portion groups. In addition, 

protein building fragment copolymers (including drug-peptide-copolymers) are now 

considered for improved chemotherapeutic delivery due to their enhanced accumulation at 

pathological sites and enhanced endocytotic uptake into the tumor cells. Modification of a 

specific section of the amino acid sequence alters their enzymatic distortion and level of 

immune response. Furthermore, ether moieties such as segment copolymer of pluronics 

represent a new group of biomaterials that can be exploited in synthesis of micelles for 

chemotherapeutic delivery (Gaucher et al., 2005). 
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 Table 2.2: Building block sections of copolymers employed in micelle drug transport   

nanosystems (adapted from Sutton et al., 2007). 
  

 

Copolymers  

  

Abbreviation 

       

         Repeating Unit Structure 

Corona segment   

Poly (ethylene glycol)    PEG, PEO 
              

o

 

   

Poly (N-vinyl pyrrolidone)   PVP 

                 

N
O

 

 

Poly (N-isopropyacrylamide  PNIPAAM, NIPAM 

                

O NH

 

 

Poly (N-vinyl alcohol) PVA 

                OH  

   

Poly (N-(2-hydroxyproyl 

methacryamide)  

pHPMAm 

            
N

O

H

OH

 

   

Core segment    

Polyesters    

Poly (propylene oxide) PPO 
                

O
 

Poly esters    

Poly(L-lactide)   

Poly (D,L- lactide) PLA,PDLLA* 

              
O

O
OH

 

 

Poly (lactide-co -gycolide   

PLGA 
 

O

O

O

OH
O  

Poly (Ɛ-caprolactone) PCL 

  
O

H

O
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Poly (β-amino ester)  
O

R1

O

R1

O

 

Poly (lactic acid) PLA 

  

O

O

O

 

 

 

2.7. Preparation of Drug-loaded Micelles in Ovarian Cancer   
 

Preparation of therapeutic-loaded micelles involves two major categories of therapeutic 

loading reliant on physicochemical characteristics of segment copolymer (Figure 2.3) (Kedar 

et al., 2010). The first method, dissolution, entails suspension of the segment copolymer 

together with the drug in aqueous medium. This method is commonly used for comparatively 

hydrophobic polymers, including poloxamers, and may necessitate heating of the aqueous 

medium for micelle aggregation to occur utilizing dehydrated core profiling portion. This 

dissolution technique is also employed in the preparation of PCCMs, with therapeutic and 

polymer suspended seperately in aqueous solution. Micelle aggregation is impelled by mixing 

the two suspensions to balance therapeutic–polymer ionic proportions (Torchilin, 2001; Tyrrell, 

2012). The drawback of this technique is that low drug quantities are loaded in the formed 

micelles, and this has been shown by surfactant segment polymers with drug that aggregate 

in aqueous suspension producing micelles with low drug quantities (Jones, 1999; Adams, 

2003).  

 

 

The second method of therapeutic loading involves surfactant polymers which are partially 

water-soluble and for which an organic suspension communal to both the polymer and the 

therapeutic (including tert-butanol, methanol, ethyl acetic acid, toluene, dichloromethane 

(DCM), diethyl ether, chloroform) is required (Goa et al., 2013). The manner by which micelle 

aggregation is triggered is reliant on the solvent-extraction technique. For water-miscible 

organic solutions, copolymer preparations can be extracted with water via dialysis exchange 

method, whereby sluggish extraction of the organic portion activates micelle aggregation. The 

drawback of the dialysis exchange method is that drug-polymer emulsification involving usage 

of chlorinated solution is toxic and the dialysis exchange method frequently needs extra time 

(< 36 hrs) for proficient packaging of the drugs into the micelles. Alternatively, the solvent-

evaporation technique can be utilized and this involves removal of organic solution by air 

diffusion to produce a polymeric thin layer composed of polymer and a drug. Addition of water 
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to the thin layer with heating of the aqueous suspension facilitates the production of drug-

loaded micelles. Micelles formed from solution-removal technique have enhanced potential to 

dissolve greater quantities of partially water-soluble therapeutics. In addition, therapeutic-

loaded micelles may also be formed by oil-in-water (O/W) suspension technique exploiting a 

non-aqueous miscible organic solution (viz., diethyl ether, chloroform, N, N-

dimethylformamide (DMF), acetonitrile, THF). The aforementioned methods all necessitate 

sterilization and freeze-drying stabilization processes for preservation of the prepared 

injectable (parenteral) formulations. Fig. 2.4 below depicts the drug loading techniques that 

may be employed. 

 

 
 

Figure 2.4: Main methods of drug loaded micelle preparation from copolymers.  

 

The above stated confines in preparations of therapeutic-loaded micelles can be surmounted 

by exploitation of improved strategies including single-step method which involves the 

suspension of both the copolymer and the therapeutic in a water/tert-butanol (TBA) medium 

with lyophilization to produce a lyophilized powdered cake. Stable drug-loaded micelles 

spontaneously self-aggregate upon reorganization of the lyophilized powdered polymer–

therapeutic cake in aqueous medium (Fournier et al., 2004; Le Garrec et al., 2004; Gaucher 

et al., 2005). 
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2.8.   Applications of Micelles in Ovarian Cancer 
 

Micelles are considered as prospective drug carries for chemotherapeutics due to their 

prolonged blood circulation times, retained drug stability, and specific targeting of proliferating 

tumor tissue. Micelles can be employed as multifunctional nanocarriers of molecular imaging 

probes for identification (diagnosis), noninvasive screening and treatment of early ovarian 

cancer (Jones, 1999).  

 
 

2.8.1.  Diagnosis of Ovarian Cancer Employing Micelles 

 

Ovarian carcinoma is usually detected in advanced stages (International Federation of 

Gynecology and Obstetrics (FIGO) stage III–IV) due to the comparative lack of sure 

recognition and indicative medical symptoms in initial periods, shared with absence of early 

diagnostic methods (Zhang et al., 2008). The transport and management of the release of 

drug for site-specific chemotherapy and imaging indicative tools for early cancer detection are 

of great pertinence (Cheng et al., 2010; Chithrani et al., 2010). Imaging entails visualization of 

ovarian cancer disease progression, determination of the activity and biodistribution of a drug 

to tumor tissue or determination of molecular bio-indicators of the disease (Liu et al., 2008). 

Disease monitoring and screening of therapeutic efficacy can be accomplished by using 

modern clinical imaging modalities including basic radiography, anatomical scanning probes 

(CT scanning), ultrasound and magnetic resonance imaging (MRI) (Torchilin, 1999). These 

imaging techniques can be categorized according to the energy utilized to develop visual 

images (heterogeneous X-ray beams, positron emissions, photon emissions), spatial specific 

resolution accomplished (macroscopic-, meso-scale, microscopic), or the nature of the 

captured information (anatomical, physiological or molecular/cellular imaging) (Torchilin, 

2000; Zhang et al., 2008). However, these imaging techniques rely on diagnosis of cancer 

when tumors have developed to approximately 1 cm3 size and at this stage the malignancy 

has around 1 billion metastatic tumor cells (Choi et al., 2010). Furthermore, their low signal 

transmission, instability, imprecise interactions, and rapid degradation from the circulatory 

system have resulted in the invention of advanced molecular imaging probes (Stimpf, 1999). 

 

Nanotherapeutic applications incorporating non-invasive tumor molecular imaging have the 

prospect to achieve early diagnosis, increasing the accuracy, efficiency of chemotherapy, and 

enabling improved disease outcomes (Zhang et al., 2008). If distinguishing imaging modalities 

are used to visualize tumors; improved tumor resolution can be obtained with contrast agent 

nanocarrier systems than with conventional image diagnosis of tumors. Nanoparticles have 

methods for molecular targeted deposition, drug triggering, or improvement of pathological 
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areal imaging. Polymeric nanoparticles such as poly(ethylene glycol)-b-poly(Lysine) 

copolymer micelles have great potential in diagnostic molecular imaging and monitoring of 

cancer development or regression (Zhang et al., 2008). Tiny particles within the nanometer 

range, for instance gold-based particles and functionalized metallic quantum particles are the 

most commonly utilized, however additional nanomaterials for exploitation at nanometer level 

plus bio-indicators also display potential as powerful tools for possible transmission 

improvement and medicinal involvement in nanodiagnosis of diseased locations.43 Various 

one-off administered micelle-based therapeutic delivery systems for tracking and targeting of 

ovarian cancer are concisely outlined in Table 2.3.  
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Table 2.3: Polymeric Nanomicellar systems employed for treatment and diagnosis purposes (adapted 
from (Kedar et al., 2001; Chen et al., 2014). 

 

 
 

Abbreviations: DD (Drug Delivered), DA (Diagnostic Agent), P (Passive targeting), A (Active targeting), 
mPEG-b- p (HEMAm-Lacn), methoxy poly (ethylene glycol)-b-poly (N-(2 hydroxyethyl) methacryllamide)-
oligolactates: PMPC, poly (2-methacryloxyethyl) phosphorylcholine; ?-Y, RAFT, reversible addition-
fragmentation chain transfer. 
 

A number of nanomicellar designs have been developed and are presently undergoing 

extensive preclinical and clinical trials for application in chemotherapeutics and diagnostic 

imaging of ovarian cancer. Hydrophilic-hydrophobic segment copolymers that self-aggregate 

to produce double-coated micelles are prospective transporters of partial dissolving 

treatments and diagnostic tools. Partially water-soluble therapeutics or diagnostic tools can 
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be incorporated into the interior matrix or hydrophilic exterior of micelles to generate a 

balanced distribution in aqueous medium. Micelles can be used as transporters for the 

distribution and slow release of imaging agents and drugs (Chithrani et al., 2010). 

 

 
 

Diagnostic modalities for three main imaging probes are ring clustered radioactive metals for 

example indium-111 (111In) or technetium-99m (99mTc), used for scintigraphy; 

clustered/chelated magnetic metals including Gold for magnetic resonance imaging (MRI); 

and iodine for conventional X-ray computed tomography (CT). The conventional contrast 

agents employed in medical therapeutics are low-molecular weight complexes composed of 

these chemical probes. Several diagnostically significant amphiphilic composites have been 

effectively integrated into micelles including diethylenetriaminepentaacetic acid (DTPA) 

moieties, which are the most accepted chelating media for diagnostic imaging. Various 

nanomicellar platforms have been developed for utilization in MR diagnostic imaging. 

Polymeric micelle systems including iodine-containing PLL-PEG micelles are employed for 

cancer diagnostic imaging utilizing conventional computed tomography (CT) and single-

photon emission computed tomography (SPECT). Furthermore, to monitor micelles 

formulations and exchanges with the cancer disease, micelle co-encapsulated with imaging 

clustered/chelated metallic group have been employed, for example gold compounds, 

manganese oxide loaded nanoparticles have been utilized with ultrasound (US) and magnetic 

resonance imaging (MRI) (Parveen, 2012). Currently, gadolinium (Gd)-contrast medium 

including Magnevist®) are medically employed where visual contrast is elevated by limiting 

the T1 reduction period (period of high longitudinal magnetization with brighter image) of 

aqueous protons. Integration of Gd compound on the micelles’ surface can successfully 

upsurge the T1 reductivity and reactivity of diagnosis. The reactivity is further improved by 

utilization of various iron oxide nanoparticles (Superparamagnetic iron oxide nanoparticles-

SPIONS) that congregate in micelle inner core and display MRI reactivity at nanomolar rate. 

Micellar transport of both treatment and imaging agents including Rhodamine and FITC is of 

valuable significance as it permits imaging of the precise area of the treatment release inside 

the tumor tissue with distinctive structural visualization. Therefore, polymeric micelles are 

favorable as a carrier for combined diagnosis and therapeutic systems (Shaw., 2004; Feki et 

al., 2009; Fritsche and Bast, 1998).  
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2.8.2. Treatment of Ovarian Cancer using Micelles 

 

2.8.2.1   Delivery Routes of Micelles  

 

Commonly, micelles have been formulated for intravenous (IV) systemic application of 

chemotherapeutics but face many challenges of the blood circulatory system resulting in 

exposure of normal cells to drug before reaching their specific site of action in the peritoneal 

cavity (Torchilin, 2010). The peritoneal cavity is the principal site of disease in ovarian cancer 

(Gabizon, 1995). Primary ovarian tumors disseminate malignant cells throughout the 

peritoneum resulting in a focal origin of recurrent metastatic disease, which is responsible for 

high mortality rate from ovarian carcinoma (Mahmud et al., 2007). Therefore, intraperitoneal 

(IP) chemotherapy employing micelles can also be used to treat ovarian carcinoma. This 

inventive chemotherapeutic approach transports the chemotherapeutic loads directly to the 

peritoneal region, destroying malignant cells and also reducing drug interaction with normal 

cells. Clinical research findings have proven that IP chemo-treatment improves the health of 

women suffering from ovarian disease in contrast to intravenous (IV) chemo-treatment 

(Dayananda et al., 2007; Xiong et al., 2007; Madaswamy, 2009).  

 
 

 

2.8.3. Targeting strategies for micelles 

 

Selective delivery of nanosize sustained release polymeric micelles loaded with drugs is a 

prospective significant chemotherapeutic approach with distinct treatment advantages that are 

also applicable for advanced therapeutic extended systemic drug delivery (Musacchio et al., 

2009). Targeting is commonly attained as a result of two transport mechanisms as shown in 

Figure 2.5; (i) passive reactive targeting using the improved porosity and absorbency influence 

(Ro¨ sler, 2001) (ii) active targeting by attachment of precise moeities to the micelle periphery 

including linking individual antibodies to the micelle exterior surface, i.e. dynamic/active 

treatment by means of antibody-bonded micelles (Wang et al., 2001). 

 

http://cancer/
http://www.cancercenter.com/conventional-cancer-treatment/chemotherapy.cfm


 
 

31 
 

 

 

Figure 2.5: Schematic illustration of drug loaded micelles (spheres) with imaging agent 

delivery from injection location to tumor tissue. After administration, micelles (10–200 nm) 
display specific targeting of tumor growth and the nanomaterial collects at the solid cancer site 
due to the tumor vessels and passage through reticular endothelial system. Passive targeting 
is attained by cellular endocytotic uptake from exterior fluid to the cancer cells. Active targeting 
can be attained by attachment of antibody ligand molecule to the exterior of micelles that 
encourage site-precise detection and attachment (Adapted from Chen et al., 2014). 
 
 
2.8.3.1.   Passive/Reactive targeting via improved permeability of tumor blood vessels 
 

When micelles without ligand functionalization have a significant continual blood circulation 

period, and successfully accumulate in tumors through the enhanced permeability retention 

(EPR) effect, this phenomenon is known as passive targeting (Parveen, 2012). The 

therapeutic payload is exposed into the tumor extracellular matrix and distributed through the 

tumor cells and tissue. Passive targeting is also attributed to pathophysiological characteristics 

of solid tumors that are not observed in normal tissue. These characteristics include defective 

tumor blood vessel architecture (often termed “leaky vasculature”), defective lymphatic 

drainage system, and increased production of permeability mediators (Kabanov and Alakhow, 

1997; Jule et al., 2003; Mall, 2008; Solaro et al., 2010). Several passive/reactive targeting 

nanocarriers have a PEG coating for stealth and “concealment” properties. These include 

among others Genexol-PM, SP1049C, NK911, Opaxio™ (formerly Xyotax™), CRLX101, 

ProLindac™, SPI-77 and CPT-11 (Parveen, 2012). 

 

2.8.3.2.   Active targeting with ligand/antigen pairs 

 

The active targeting approach involves the attachment of functional ligands to the micelle shell 

that identify tumor-specific receptors over-expressed on the cancer cell plasma membranes, 

resulting in increased uptake and increased internalization into tumor tissue via the receptor-

mediated endocytosis process (Dash et al., 2000; Kaneko, 2003; Park et al., 2005). Commonly 
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utilized affinity ligands are classified into the following categories: small unrefined molecules, 

nucleotides (RGD sequence), oligopeptides, sugar groups, proteins, folates, monoclonal 

antibodies (mAb), and nucleic DNA/RNA aptamers (Kobayashi, 1993). Targeting the polymer 

micelles to a tumor cell is necessary in drug delivery in order to kill the cancerous cells without 

damaging normal cells. There are many technologies that are being used to target molecules 

to tumor cells. The application of a functionalizing group is a dynamic approach that is 

dependent on accurate connections at attachment location; these exchanges incorporate 

immunoglobins (antibody), antigens and functionalizing group connections (Figure 2.6). The 

“magic bullet” Ehrlich hypothesized of antibody-functionalized nanocarriers has advanced into 

a system with three components: a drug, a copolymer and functionalizing group connected as 

one formulation. This targeting treatment approach offer noticeable rewards for example high 

target specificity for the pathological/infected area and minimal toxicity to the healthy cells. 

The afore-mentioned approach also increases malignancy treatment, particularly for the 

treatment of metastatic carcinoma or premature carcinoma, when the papillary tubes are still 

immature. Targeting ligands should have a high specific affinity for the target antigen, have 

declined immunogenicity in vivo, and be efficiently cellular uptaken/internalized after attaching 

to specific antigen. The transport of treatment via dynamically accurate prolonged circulating 

micelles shows potential as an approach to advance its site specific action (Dash et al., 2000; 

Kaneko, 2003; Park et al., 2005). 
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Figure 2.6: Schematic depicting (a) active targeting, (b-g) confocal images of A431 cellular 

uptake incubated with cetuximab encapsulated micelles and lysotracker. The fluorescence 
intensity of A431 cells (b-d) treated with targeting micelles was 1.45 times higher than in cells 
incubated with antibody-free micelles (e-g) (Adapted from (Zhou et al., 2013; Zhu et al., 2013). 
 

2.9.   Mucins as Targets for Antibodies in Cancer Chemotherapeutics 
 

Most ovarian carcinomas are of epithelial origin and express mucins, which may be utilized as 

prospective diagnostic/indicative and treatment targets. Mucins are large extracellular, heavily 

glycosylated proteins found in the mucus layer and their unusual production has been 

associated with pathology of different types of malignant diseases, such as ovarian carcinoma. 

Presently, there are 20 identified mucins which have two classifications: discharged epithelial 

mucins (gelating: MUC2, MUC5AC, MUC5B, MUC6, and non-gelating: MUC7, MUC8, and 
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MUC11); and film attached mucins (MUC1, MUC3, MUC4, MUC9, MUC10, MUC12, MUC13, 

MUC16, MUC17, MUC18 and MUC20) (Bast et al., 1983; Kobayashi, 1993; Mura et al., 2013). 

Various research studies on the production of mucin antigen in ovarian cancer have identified 

overproduction of film attached mucins especially MUC4, MUC5AC, and MUC16 but their 

biological applications are not evidently defined. The role of MUC1, MUC2, MUC3, MUC4 and 

MUC5AC and MUC13 has not been extensively studied in epithelial ovarian cancer 

development compared to MUC16. MUC16 (also known as CA125) is employed as a clinical 

biomarker in ovarian cancer due to its high expression in ovarian carcinomas and that it is 

shed into the serum (Oerlemans et al., 2010; Preetham and Satish, 2011; Chen et al., 2011). 

It is a very large cell surface mucin and was first identified in 1981 by Robert Knapp, who 

detected this glycoprotein using monoclonal antibody (OC125) (Biswas et al., 2013).  Serum 

levels of CA125 are utilized to clinically diagnose OC patients and those with residual infection 

following primary chemotherapy to evaluate the clinical progression of the infection. 

Alterations in blood plasma MUC16 quantities are indicative of advancing or declining cancer 

carcinoma in above 90% of cases (Cho et al., 2013). Additionally, unusual mucin production 

can cause an immune response and possibly activate strong antibody reaction. The antibody 

reaction is indicative of disease manifestation. Antibodies aligned with mucins can have 

prospective use in advancing the identification and treatment of ovarian malignancy, but there 

is little existing literature addressing this subject matter, thus further research is necessary. 

The latest research findings confirmed the existence of MUC1 antibodies in extracted blood 

plasma analysis that showed reverse correlation with the possibility of ovarian carcinoma 

(Rivory, 1995). 

  

2.10.   Stimulus-responsive Micelles 

 

Stimuli responsive micelles (SRN) are smart nanoparticles mechanically engineered to react 

to internal intrinsic or external extrinsic stimuli of bodily, chemical or bio-compound origin to 

accomplish curtailed and sequential release of drug payloads at the precise site and duration. 

SRN deliver drug payloads by going through structural alterations in reaction to the triggering 

stimulus. The reaction may lead to degradation/disruption, polymerization or assembly of 

micelles. The common internal stimuli in a cancer microenvironment comprise of an acidic pH, 

the electrochemical redox potentials of the unit cell, and the availability of certain over-

produced matrix enzymes; whereas the external stimuli comprise of temperature, attraction 

via magnetic field, light illumination (UV, infrared or visible) and ultrasound waves (Mall, 2008). 

In this context, the preparation of micelle susceptible to external or internal stimuli may 

symbolize an alternative approach to targeted therapeutic release. However, even though in 

vitro models have provided evidence of success for a number of stimuli-responsive 
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approaches, only a small proportion have been confirmed in animal preclinical prototypes, and 

also few (thermosensitive liposomes and iron oxide nanoparticles) are at the clinical stage of 

investigation (Xuan, 2006). 

  

2.11.   Micelles in Clinical Evaluation 

 

A number of drug-incorporated polymeric micelles intended for chemotherapeutic treatment 

are under evaluation in preclinical research for evaluation of their toxicity and bioavailability 

(Chen et al., 2014). Some examples of polymeric micelles quoted are for other type of cancers 

but can also be utilized for OC treatment. Preclinical evaluations and findings have discovered 

many positive results of employing micelles as therapeutic delivery means for transport of 

hydrophobic cancer drugs (Sumer and Gao, 2008). Numerous micellar nanoformulations are 

under clinical evaluations, all being stealth micelle preparations, specifically, they have an 

exterior PEG coating for stabilization to ensure a dense conformational cloud on the exterior 

and protection against opsonization by plasma proteins (Table 2.4) (Chen et al., 2014). 

Genexol-PM is a paclitaxel-incorporated PEG-PLA micelle formulation (Sutton et al., 2007). 

NK012 is a synthetic micellar nanoformulation also composed of a PEG polymer coating with 

polyglutamate (PGlu) coupled with 7-ethyl-10-hydroxy-camptothecin (SN-38) (Chen et al., 

2014).  The PGlu portion is core-hydrophobically dissolved to induce micelle aggregation. 

Preclinical animal trials with NK012 formulations proved potent anticancer performance in 

mice. Recently, the success and suitability of NK012 formulations were investigated in phase 

II trials in breast tumor cases (Chen et al., 2014). Innovative PTX clinical formulations are 

being evaluated, including the NK105 nanomicellar formulation that is composed of PEG and 

transformed polyaspartate as the hydrophobic portion (Chen et al., 2014). PTX is indeed 

encapsulated in the central core segment by hydrophobic associations with the hydrophobic 

portion. Furthermore, a major decline in toxicity, originating from Cremophor EL plus ethanol 

following standard PTX dosage, was observed with NK105 formulations. During phase I trials 

with NK105, slight allergic responses were observed in cases with pancreatic, bile duct, 

gastric, and colonic carcinomas in contrast to standard PTX therapy (Chen et al., 2014).  
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Table 2.4: Polymeric micelle-based formulations containing chemotherapeutic drugs in clinical 

trials. 
 

 

Formulation 
Trade name   

 

Incorporated 
Drug  

 

Purpose 
 

Polymer 
 

Particle 
size(nm) 

 

Drug 
loading (%) 

 

Phase 

 

Genexol-PM 
 

Paclitaxel 
 

Solubilization  
 

Mpeg-PDLLA 
 

< 50 
 

16.7 
 

III,IV 

NK-105 Paclitaxel Targeting  PEG-P(Asp) 85 23.0 II,III 

SP-1049C Doxorubicin Anti-MDR 
effect 

Pluronic 
L61,F127 

30 8.2 I,II,III 

DTXL-TNP Doxorubicin Targeting PLA-PEG, 
PLA-PEG-
ACUPA 

100 10 I 

NC-6004 Cisplatin Targeting PEG-P(Glu)-
Cisplatin 

30 39 I,II 

NC-4016 DACH-platin Targeting PEG-P(Glu)-
DACH-platin 

20-100 25 I 

NK 012 SN-38 Targeting PEG-P(Glu)-
SN38 

20 20.0 II 

NK911 Doxorubicin Targeting PEG-(Asp)-
Dox  

40 n.a II 

 
 
 

A phase II trial in patients with highly advanced stomach carcinoma is in progress (Chen et al., 

2014). SP1049C nanoformulation has been prepared as doxorubicin (DOX)-incorporated 

Pluronic micelles. In these phase II cancer pharmaceutical studies, it was also discovered that 

SP1049C formulations displayed superior effectiveness compared to doxorubicin in treatment of 

different types of cancer (Chen et al., 2014). SP1049C formulations displayed greater anticancer 

performance, effectiveness and an elevated AUC in cancer tissue in many in vivo cancer models 

and in doxorubicin defiant malignancies in contrast to conventional doxorubicin (Chen et al., 

2014). SP1049C formulations are now evaluated in phase III in cases with spreading 

adenocancer of the gastrointestinal track. To decrease toxicty and increase the efficiency of 

cisplatin, the nanomicellar clinical formulation NC-6004 (Nanoplatin™) was invented. The NC-

6004 formulation consists of PEG with poly(γ- benzyl L-glutamate)/CDDP composite. A minor 

phase I trial, revealed that NC-6004 formulations were accepted by cancer patients that are 

affected by colorectal cancer, upper esophageal carcinoma, lung cancer, (Chen et al., 2014). 

Genexol-PM is a nanomicellar paclitaxel nanoformulation prepared from poly ethylene glycol with 

polymerized lactic acid (Rhyner, 2011). Preclinical animal trials with Genexol-PM displayed a 3-

fold elevation in the mean dissolution time (MTD) and a considerably amplified anticancer 

efficiency contrast with unconventional PTX (Chen et al., 2014). 
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2.12.   Patents in Nanomicellar Technologies for Targeted Drug Delivery  

 

In a patent by Kwon and colleagues (2012) the solubilization of gossypol (a yellow natural 

phenolic aldehyde plant pigment for inhibition of various dehydrogenase enzymes) with 

micelles was evaluated and the discovery presents suitable micelles packed with single or 

second lively bioactive. Micelles can incorporate chemotherapeutics including gossypol, and 

a mixture of nanodrugs. The micelle composition enable successful incorporation of insoluble 

drugs exclusive of a supplementary dissolving medium (Rhyner, 2011; Mukherjee et al., 2013). 

Thus; the invention provides stable and biocompatible drug formulations that improve 

bioavailability without causing toxicity. In another invention, micelles encapsulating SN-38 for 

the treatment of various cancers including OC are presented. According to one depiction, this 

invention provides a micelle comprising a multiblock copolymer having a SN-38 derivative of 

camptothecin encapsulated (Sudimack and Lee, 2000). This SN-38 has a competitive edge 

over its camptothecin derivatives in that it is not reliant on activation by the liver in animals 

(Table 2.5) (Sudimack and Lee, 2000; NanoCarrier Co, 2014). Yu Alakhov et al. (2012) 

presented the use of the block copolymer micelle of poly (oxyethylene)-poly(oxypropylene) in 

administrating an anti-neoplastic agent, providing non-covalent solubilization, which reduces 

water-instability. A number of these copolymers are commercially available under the generic 

names of "poloxamers" and "pluronics". The innovation by Perumal et al. (2012) includes 

micelle aggregates, composites having self-aggregated/assembled micelles, and techniques 

for synthesizing micelle aggregates and composites thereof. The nanoformulation also 

includes a prolamine proteins attached to a polyethylene glycol (PEG)-coated micelle. The 

innovation additionally includes techniques for incorporation of drugs utilizing the conjugates 

of the polymer protein micelle invention. In a patent by Rhyner (2008) micellar structures, 

methods of making micellar structures, methods of imaging, methods of delivering therapeutic 

agents and/or biological compounds, and the like, are provided (Pasc et al., 2011). This patent 

provided a therapeutic method using water-soluble, high molecular weight block polymer to 

enable an intraperitoneally administered anti-cancer agent to maintain long-term retention in 

the abdominal cavity to sufficiently exert the effect of the anti-cancer agent and reduce adverse 

side-effects thereof. The patent further describes a therapeutic agent-loaded micelle 

preparation, comprising a copolymer having an exterior hydrophilic moiety and a 

polycarboxylic acid derivative moiety; and an anti-cancer agent bonded to or encapsulated in 

the micelle, wherein the micelle preparation may have controlled drug release, and enables 

an extension of retention time period of the anti-cancer agent in an abdominal cavity. A 

superior life-prolonging effect was found in an intraperitoneal administration mouse model 

compared with intravenous administration. 

 

 

http://www.faqs.org/patents/inventor/glen-s-kwon-2/
http://en.wikipedia.org/wiki/Aldehyde
http://en.wikipedia.org/wiki/Pigment
http://en.wikipedia.org/wiki/Dehydrogenase
http://en.wikipedia.org/wiki/Enzyme
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Table 2.5: Nanomicellar patents issued in the area of cancer drug delivery (Adapted from Shared 

report NanoCarrier Co, 2014. 
 

 

Patent type 
 

Title  

 

Patent no 
 

Structural formula 
 

Action of 

treatment 

 

YEAR 
 

Inventor/Assignee 

Micelles C6-c18-acylated 

derivative of 

hyaluronic acid 

WO2014082609 A1 (HA)-[0(C:=0)NH-M]p AC 2014 Contipro Biotech 

S.R.O. 

Micelles Polymer conjugated 

protein micelles 

EP 2678001 A2 PEG-Prolamine AC 2014 South Dakota State 

University  

Paclitaxel 

Micelle 

(NK105) 

Micellar Preparation 

Containing Sparingly 

Water-Soluble 

Anticancer Agent 

And Novel Block 

Copolymer 

09705599.0 (poly(ethylene glycol)-copoly 

(L-aspartic acid) 

AC 2013 Nanocarrier Co. Ltd. 

Nippon Kayaku Co., 

Ltd. 

Nanoplatin® 

(NC-6004) 

Pharmaceutical 

Composition and 

Combined Agent 

098101554 (poly(ethylene glycol)-copoly 

(amino acid) 

AC 2013 TOUDAI TLO Ltd. 

DACH-Platin 

Micelle 

(NC-4016) 

Coordination 

Compound 

Composed Of 

Diaminocyclohexane 

Platinum (Ii) And 

Block 

Copolymer And Anti-

Cancer Agent 

Comprising 

The Same 

2007-520209 (poly(ethylene glycol)-copoly 

(amino acid) 

AC 2013 The University of 

Tokyo 

Protein Micelle Electrostatic 

Bonding Type 

Macromolecular 

Micelle Drug Carrier 

And Drug Carried 

Thereon 

EP2583563 A1 polyethylene glycol and 

poly(α,-β -aspartic acid) 

 

AC 2013 TOUDAI TLO Ltd. 

siRNA Micelle Polyethylene 

Glycol/Polycation 

Block Copolymer 

EP2087912 A1 PEG-PLys AC 2013 The University of 

Tokyo 

Sensor Linked 

Micelle 

Active Targeting 

Polymer Micelle 

Encapsulating Drug, 

And Pharmaceutical 

Composition 

2008-539901 

 

poly(ethylene glycol)-b-poly(2-

aminoethyl methacrylate)-b-

poly(styrene) 

AC 2013 Nanocarrier Co. Ltd. 

pH-Sensitive 

Micelle 

Novel Block 

Copolymer Used For 

Preparing Ph- 

Responsive Polymer 

Micelle, And Method 

For Producing Same 

2009-7007877 [PEG-p(Asp-Hyd-Adr)] AC 2013 The University of 

Tokyo 

Docetaxel 

Micelle 

Docetaxel Polymer 

Derivative, Method 

For Producing Same 

And Use Of Same 

2009250393 (mPEG-PDLLA) AC 2013 Nanocarrier Co. Ltd. 

Bortezomib 

Micelle 

Pharmaceutical 

composition that 

includes block 

copolymer 

EP 2692777 A1 polyethylene glycol-

polyglutamic acid 

 

AC 2013 Nanocarrier Co. Ltd. 

http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=inassignee:%22Contipro+Biotech+S.R.O.%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=inassignee:%22Contipro+Biotech+S.R.O.%22
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containing boronic 

acid compound 

Micelles Micelles for the 

solubilization of 

gossypol 

 

20120321715 

 

Poloxamer or PEG-PCL 

 

AC  2012 Wisconsin Alumni 

Research Foundation., 

US  

Abbreviations: AC (Anticancer activity including ovarian cancer and various cancers such as lung and prostate cancer), MA Microaggregates), 

PEG/PEG 2000 (poly (ethylene glycol-2000), Hyarulonic acid A (hyluric acid), C=O (carbonyl group), -Plys (polylysine), Asp (Aspartate), Hyd-Adr 

(hydrazone Adriamycin, poly-DL-lactide (PDLLA), PCL (polycaprolatone). 

 

 

2.13.   Future Recommendations 

 

Whether micelles are employed as drug carrier nano-systems, treatment agents, or image 

contrast agents, will require being extensively differentiated physiochemically, 

nanopharmacologically, and classic immunologically prior to their approval for application in 

humans. Drug efficacy of most nanoformulations for anti-cancer chemotherapy has not 

advanced to an appropriate level to evolve the prepared nanomedicine into clinical application. 

Thus, great research endeavors should be dedicated at optimization of the physicochemical 

profile of micelles. Therapeutic combination with synergistic response against ovarian cancer 

will be another approach to enhance the drug efficacy. Toxicity studies will also need to be 

conducted in both in-vitro and in-vivo models before they can attain FDA approval for clinical 

evaluations.  

 
 

The prime challenge is now linked with the interpretation of diverse successfully confirmed 

experimental inventions into clinical application. The performance of the therapeutics is 

restricted by their degradation, exchanges with unit cells, and incapability to permeate tissues 

due to their chemical character. Numerous challenges must be considered before application 

of micelle formulations into clinical application, including intricacies in accomplishing the 

optimal combination of physicochemical parameters for direct tumor targeting, effective 

clearance from the physiological environment, preferential therapeutic release and least/no 

toxicity to unit cells of organisms. Co-incorporation of two or more therapeutics in one 

nanocarrier system can be challenging due to different solubility of the optimal drug 

combination. Therapeutics activated by a positive detection of an ovarian cancer disease are 

in the near future.  
 

 
2.14. Concluding Remarks 

 
The novel micellar technologies developed to date are focused on enhancing the 

pharmacodynamics and pharmacokinetic profiles of the incorporated therapeutic agent, along 

with enhancing the safety and comfort of the delivery mechanism to improve the survival rate 

http://www.faqs.org/patents/assignee/wisconsin-alumni-research-foundation/
http://www.faqs.org/patents/assignee/wisconsin-alumni-research-foundation/
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of ovarian cancer patients. Micelles have developed as a significant therapeutic delivery 

system due to their smart design formulated by self-assembly or regulated accumulation in a 

solvent medium. Micelles can be simply loaded with a broad range of partially soluble 

nanomedicines, hence ensuring improved bio-availability of these drugs, including those 

neglected due to insolubility and toxicity challenges. Micelles’ capability to incorporate a 

second or more additional agents including drugs and imaging modalities introduces a dual 

detection and delivery strategy to the fields of oncology. Polymeric multipurpose micelles have 

superior attributes as drug delivery nanosystems, and have shown considerable 

accomplishment in the scope of clinical diagnosis and chemotherapeutics. Polymeric micelles 

functionalized with antibody ligands facilitate specific active targeting of tumor proliferation 

than other nanocarrier therapeutic delivery systems, and therefore improve therapeutic 

outcomes in ovarian chemotherapy.  
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CHAPTER 3 

SYNTHESIS OF NOVEL AMPHIPHILIC POLY(N-ISOPROPYLACRYLAMIDE)-B-

POLY(ASPARTIC ACID) NANOMICELLES FOR POTENTIAL TARGETED 

CHEMOTHERAPY IN OVARIAN CANCER 
 

 

 

3.1.   Introduction 

Amphiphilic copolymers have versatile properties that make them suitable for the delivery of 

hydrophilic and hydrophobic chemotherapeutic drugs (Qiao et al., 2010; Jin et al., 2012; Zhang 

et al., 2009). These copolymers may be synthesized from aqueous miscible and partially 

soluble polymers that agglomerate to form a myriad of structures including nanomicelles, 

tubular cylinders or vesicles. The inner core can be equilibrated by an outer shell-like surface 

that is dependent on the copolymer block size, polymer ratios, vehicle composition or external 

stimuli such as pH, temperature or ionic strength within the aqueous medium during synthesis 

(Nakayama et al., 2006; Frank et al., 2010; Topp et al., 1997). Recently, significant interest 

has been placed on the synthesis of stimuli-responsive polymers to form nanomicelles with 

modified physicochemical parameters. The most commonly used stimuli are temperature and 

pH that induce polymer transitions when prepared from amphiphilic surfactant copolymers for 

application in clinical nano-enabled chemotherapeutics (Lee et al., 1999).  

 

Poly(N-isopropylacrylamide) (PNIPAAm) is categorized as a thermo-responsive polymer with 

a LCST of 32°C. Furthermore, it is aqueous-miscible at physiological temperatures lower than 

the LCST value. However, when the LCST is exceeded it transforms into impenetrable 

hydrophobic agglomerates (Eeckman et al., 2001; Zhang et al., 2001; Chung et al.,1998; 

Bergbreiter et al.,1998). Polyaspartic acid (PAsp) is another synthetic polymer that is of 

pharmaceutical significance to deliver partially soluble drugs and has been used for numerous 

biomedical applications such as dialysis membranes, artificial skin and orthopedic implants 

(Rao et al., 1993; Nita et al., 2011; Nakato et al., 1998; Wang et al., 2010; Liu et al., 2010). In 

particular, PAsp nanomicelles with hydrophilic segments have been explored previously as a 

potential drug delivery vehicle for sparingly soluble chemotherapeutic drugs commonly 

entrapped in hydrophobic domains (Soppimath et al., 2005; Veronese et al., 1991; Kohori et 

al., 1998). Combination of PNIPAAm and PAsp as an amphiphilic copolymeric nanomicelle 

structure may potentially enhance the bioavailability, stability, physicochemical parameters 



 
 

42 
 

and targeted release of chemotherapeutic drugs (Bertrand et al., 2009; Wei et al., 2006; Cheng 

et al., 2006).  

 

To our knowledge, stimuli-responsive nanomicelles of PNIPAAm-b-PAsp prepared via thermal 

ring-cleavage polymerization for potential application as a targeted form of chemotherapy in 

Ovarian Cancer (OC) has not yet been explored. This is despite the fact that PNIPAAm has 

been widely used with other polyamino acids as a blend to produce inter-incisive polymeric 

networks (Malonnea et al., 2005; Bonina et al., 2004; Chung et al., 1997). Therefore this study 

provides an innovative approach to firstly synthesize PNIPAAm-b-PAsp employing PNIPAAm-

NH2 for copolymerization onto PAsp. This novel copolymer was subsequently used as a 

framework for the preparation of drug-loaded nanomicelles as a targeted form of 

chemotherapy in OC. Special interest was placed on the nanomicelle properties as well as 

their drug encapsulation efficiency and pharmaceutical stability. 

 
3.2.   Materials and Methods  

 

3.2.1   Materials 

 

Poly(N-isopropylacrylamide) (PNIPAAm) was purchased from Sigma Aldrich (St. Louis, MO, 

USA) that was hexane recrystallized, vacuum dried at 20°C and the 2,2’-azoisobutyronitrile 

(AIBN) initiator agent was ethanol-recrystallized prior to use. Aspartic acid, 2-amino 

ethanethiol hydrochloride (AET-HCl) and triphosgene were procured from Sigma Aldrich (St. 

Louis, MO, USA) and vacuum dried at 20°C. N,N’-dimethylformamide (DMF) (98%), 

tetrahydrofuran (THF), ethyl ether and petroleum ether (30-60°C) was purchased from Merck 

Chemicals Co. (Pty) Ltd. (Darmstadt, Germany) and were used as received. All other reagents 

and organic solvents were of analytical grade and vacuum dried prior to use. 

 

 

3.2.2. Synthesis of amino poly (N- isopropylacrylamide) (PNIPAAm-NH2) 

 

PNIPAAm-NH2 was synthesized by radical polymerization employing a chain transfer agent 

2-amino ethanethiol HCl (AET-HCl) and an initiating agent AIBN. N-isopropylacrylamide 

(4×10−3mol), AIBN (0.8×10−5mol) and AET-HCl (0.6 ×10−4 mol) were dissolved in 10mL DMF. 

The mixture was degassed by purging with N2 for 1 hour and then refluxed at 70°C for 10 

hours. Following the polymerization reaction, the solution was concentrated by condensed 

pressure distillation to evaporate the DMF. The yield was precipitated by introduction of diethyl 

ether followed by vacuum drying. Excess triethanolamine (TEA) in THF was added drop-wise 

to this polymer mixture at 20°C to convert PNIPAAm-NH2-HCl into PNIPAAm-NH2. The 
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resultant polymer was further purified by precipitation in excess diethyl ether followed by 

filtration with a 0.22µm filter membrane and finally the yield was vacuum dried at 30°C.  

 
 

3.2.3. Synthesis of L-aspartic acid-N-carboxyanhydride using a triphosgene approach 

A triphosgene approach was employed to synthesize L-Asp-NCA. Briefly, 11g of excess 

triphosgene was introduced into a 7% aspartic acid tetrahydrofuran solution at 50°C. In order 

to remove the phosgene gas, the solution was bubbled with N2 for 30 minutes until the solution 

increased in clarity. L-Asp-NCA precipitated after the introduction of the solution into excess 

petroleum ether (30-60°C) and finally the yield was vacuum dried at 30°C. 

 

 
3.2.4. Synthesis of the amphiphilic poly-N-isopropylacrylamide-b-polyaspartic acid 

copolymer  

 

The 8.9mg PNIPAAm-b-PAsp copolymer was synthesized by ring-cleavage polymerization of 

L-Asp-NCA. The reaction scheme is shown in Scheme 1(A-D). PNIPAAm-NH2 was suspended 

in DMF and the reaction mixture was degassed by purging with N2 for 30 minutes followed by 

introduction of L-Asp-NCA. All reactions were conducted at 20°C for 72 hours. The resultant 

copolymer was purified by precipitation of excess diethyl and finally the yield was vacuum 

dried at 30°C.  

 

3.2.5. Establishment of the copolymer molecular mass 

 

The mean molecular mass of the synthesized copolymer in aqueous solution was determined 

utilizing the partially-proportional Mark-Houwink relationship (Equation 3.1) that correlated the 

inherent/intrinsic viscosity [ᶯ] with the molar mass (M). 

 

   [ᶯ] = KMa                                                                                                                                       (3.1) 

 

Where, ‘a’ is a specific solvent-polymer interaction parameter and ‘K’ is an empirical 

proportionality constant. Solvents with value of ‘a’=0.5 is suggestive of a theta solvent. A value 

of ‘a’=0.8 represents an ideal solvent. Flexible polymers have values between 0.5≤a≤0.8 and 

partially-flexible polymers the value of ‘a’ ≥0.8. In this study, water was utilized as the preferred 

solvent which interacted with the biopolymer sequence hence displaying an elastically 

expandable molecular arrangement with an ‘a’ value of 0.8 and an empirical proportionality ‘K’ 

value of 6.31×10−5. Viscosity evaluation of 0.01%, 0.001% and 0.0001% concentrations of 

aqueous suspensions of the synthesized copolymer were undertaken on a Haake Modular 

https://en.wikipedia.org/wiki/Theta_solvent
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Advanced Rheometer System (MARS) with the mean viscosity of the dilutions evaluated and 

used to compute the mean molecular mass of the copolymer.  

 

3.2.6. Establishment of the nanomicellization process 
 

 

MTX-loaded nanomicelles were synthesized by a dialysis tubing technique (Qiao et al., 2010). 

Briefly, 10mg of PNIPAAm-b-PAsp and 7mg MTX were suspended in 4mL DMF and added 

into a dialysis membrane (molecular weight cut-off: 3500kDa) and dialyzed against 2L of 

deionized water that was altered every 3 hours in a 24 hour cycle. The solution was then 

filtered through a 0.45µm filter to remove any agglomerates and subsequently lyophilized at -

80°C on a lyophilizer machine (FreeZone® 2.5, Labconco®, Kansas City, MS, USA) to yield a 

powder. 

 

3.2.7. Micelle size and stability determination 

 

Micelle size, zeta-potential and polydispersity index (PdI) were determined by initial dispersion 

of 2mg of the lyophilized nanomicelles in deionized water.Results were acquired by active 

dynamic beam scattering (DLS) on a Zeta-sizer Nano-ZS machine (Malvern Instruments, 

Worcestershire, United Kingdom).  

 

3.2.8. Determination of the MTX loading efficiency within the nanomicelles 

 

15mg of Lyophilized nanomicelle samples were weighed and suspended in 10mL phosphate 

buffered saline (PBS) (pH 7; 37°C) and centrifuged at 10,000rpm for 60 minutes. The 

supernatant was filtered through a 0.22μm filter (Millipore Corp., Bedford, MA, USA) in order 

to remove any insoluble copolymer residue. The drug entrapment efficiency (DEE) was 

measured from the calibration curve Figure 3.1 at 306 nm utilizing a linearity profile (r2 =0.99) 

with a Cecil 3021 UV Spectrophotometer and using Equation 3.2. 
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Figure 3.1: Calibration curve of the absorbance of Methotrexate in PBS (pH 7) using Cecil 
3021 UV spectroscopy at 306 nm (in all cases n=3 and SD<0.025). 

 

 The MTX-loading capacity (%w/w) was computed using Equation 3.3. All measurements were 

performed in triplicate. 

 

DEE % = Mass of MTX in Nanomicelles × 100                             (3.2) 

                          Mass of Nanomicelles 

 

MTX Loading (%w/w) = Mass of MTX in Nanomicelles × 100             (3.3) 

                                          Mass of Nanomicelle Yield 

 

3.2.9. Determination of the Critical Micelle Concentration of the PNIPAAm-b-PAsp 

nanomicelles 

 

 

Firstly, preliminary formulations of PNIPAAm-b-PAsp nanomicelle solutions with a series of 

concentrations ranging from 0.05-1mg/mL were prepared according to the dialysis tubing 

technique as previously discussed in this chapter, section 3.2.6. Aliquots of FITC stock 

solution (10-6-10-7M in methanol, 50μL) were introduced into glass test tubes and methanol 

was air evaporated. The nanomicelle solutions (5mL) with varying concentrations were then 

transferred to the glass test tubes with FITC residue to produce a final FITC concentration of 

6×10−5M. The combined solutions of FITC and the nanomicelles were maintained in the dark 

at room temperature under gradual agitation for 24 hours prior to evaluation. Thereafter, the 

fluorescence spectrum of each sample was recorded using a Fluorescence 

Spectrophotometer (Cecil 9000 series, England). Emission spectra were determined at 390nm 

(I1) and 310nm (I3), whereas the excitation emission wavelength was set at 400nm. The CMC 
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value was calculated by obtaining the midpoint of the block copolymer ratio at which the 

relative intensity ratio (I1/I3) changed. 

 

3.2.10. Investigation of the chemical structure integrity of the PNIPAAm-b-PAsp 

copolymer 

 

Overall vibrational spectroscopy investigations were undertaken on the originally synthesized 

polymers (PNIPAAm-NH2 and PAsp) and the block copolymer PNIPAAm-b-PAsp to evaluate, 

determine and correlate the structural modifications that occurred. Vibrational spectroscopy 

studies were undertaken on a Perkin Elmer Spectra 2000 Vibrational Spectrometer with a 

MIRTGS Sensor (PerkinElmer spectroscopy 100, Lantrisant, Wales, UK) using a vibrational 

unit with a diamond gemstone interior indicator component. Analysis was performed between 

650-4000cm−1 wavenumber series with a 4cm−1 resolution and 64 scans per spectrum. 

 

3.2.11. Thermodynamic stability analysis of the PNIPAAm-b-PAsp copolymer  

 

Relative Differential Scanning Calorimetry (DSC) scans were generated on PNIPAAm, PAsp-

NCA and the block copolymer  PNIPAAm-b-PAsp employing a Mettler Toledo, DSC1, STARe 

Instrument (Schwerzenback, Switzerland) at a temperature ramp of 10°C/min from -10-325°C 

in a stable stream of N2 gas. Precisely weighed samples (10-15±0.1mg) of each test material 

were introduced into enclosed aluminium pans. Indium steel (99.99%) was utilized to 

standardize the DSC modulus scans. A blank sample pan was utilized as a point of reference 

and investigational scans were generated by warming the weighed samples from -10-125°C 

with a stable isotherm for 15 minutes. DSC thermograms were then evaluated for changes in 

thermal episodes. 

 

3.2.12. Thermogravimetric (TGA) analysis of the PNIPAAm-b-PAsp copolymer  

 

TGA facilitated rapid degradation analysis by approximating the deformation speed 

(dependent on the time of collection) and the specific heat. TGA was carried out by connecting 

the TGA software (PerkinElmer STA 6000, Beaconsfield, United Kingdom) to a FTIR 

instrument (PerkinElmer Spectrum 100, Beaconsfield, United Kingdom) to elucidate the 

thermal characteristics of PNIPAm-b-PASP copolymer and its constituents. Heating was 

undertaken from 30-600°C at a rate of 10°C/min. Duration dependent software was utilized 

for vibrational spectroscopic data elucidation and plotting of a Gram-Schmidt profile. The 

copolymer sample that displayed constancy was assessed by pulverizing the sample into a 

fine powder. TGA analysis was performed in triplicate for each sample (N=3). Each sample 

comprised fine particles of 10-20mg in mass. 
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3.2.13. In vitro MTX release studies from the PNIPAAm-b-PAsp nanomicelles 

 

 

In vitro release of MTX from the nanomicelles was investigated at 37°C in PBS of pH 6.75 to 

represent a simulated tumor micro-environment as well as at pH 7.4 (normal physiological 

conditions). To open the pores, the dialysis tubing (Mw=3500kDa) was first soaked in warm 

water. Nanomicelles were then introduced into the dialysis tubing and immersed into 200ml 

dissolution medium in an orbital shaking incubator set at 25rpm at 37°C. At predetermined 

time intervals 3mL samples were removed in order to determine MTX concentration by UV 

spectroscopy (Cecil 3021 UV Spectrophotometer) at 306nm and 3mL of drug-free PBS was 

added to preserve sink conditions. This approach was sufficiently sensitive for investigating 

rapid release of drug from nanomicelles with release intervals >1 hour (Lin et al., 2005; 

Saadat., et al., 2014). 

 
 

3.2.14. In vitro Kinetic evaluation of drug release from the MTX-loaded Nanomicelles 

 

Modelling of drug release kinetics was determined by substituting drug release data in 

Equations 3.4-3.8, being Zero Order, First Order, Higuchi model, Hixson-Crowell and 

Korsmeyer-Peppas kinetics release equations. Sigma Design 12 software (Systat program, 

Inc., California, USA) was utilized for arithmetical and statistical investigations. The zero-order 

model (Equation 3.4) represents a stable release process.  

    

                                  𝑌 = 𝑎0 + 𝐾0𝑡                                                     (3.4)                                                                                                                  

 

The first-order rate model (Equation 3.5) describes incorporation and/or dispersion of the drug 

in a permeable matrix with drug release rate independent of its concentration. 

 

                                𝐿𝑜𝑔 𝑌 = 𝑙𝑜𝑔 𝑎0 + 𝐾1𝑡                               (3.5) 

 

Higuchi’s square root of time reliant model was established from the Fickian law of diffusion 

(Equation 3.6) for therapeutic release from a matrix structure.   

 

                                𝑌 = 𝐾𝑡1/2                                                                        (3.6)          

For validation of the process of therapeutic release, the initial 60% of released therapeutic was 

substituted in Korsmeyer-Peppas model (Equation 3.7). 

 

                                𝐹 =
𝑀𝑡

𝑀∞
= 𝐾𝑡𝑛                                                        (3.7) 
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Where Mt/M∞ is the quantity of released ratio at time t, Mt is the quantity of therapeutic released 

at any specific period of time, M∞ is the greatest quantity (weight/load) accessible for release, 

t is the release period of time, k is the kinetic constant, and n is a characteristic release power. 

Owing to the distended nanoparticle magnitude after incorporation of therapeutics, the Hixson-

Crowell law (Equation 3.8) was employed to determine the release reliant on transformation 

in surface region and size of the nanoparticle.  

 

                       √𝑄𝑎
          3 − √𝑄𝑚

3 = 𝐾𝑘𝑡                                                       (3.8) 

                                                                            

The kinetic model with the greatest R2 value was regarded as the best fitting model for 

validating the release of MTX from the nanomicelles. The n release power value for 

Korsmeyer-Peppas law was utilized for determining the type of release (Fickian or non-Fickian 

diffusion, anomalous diffusion, or erosion). 

  

3.3. Results and Discussion 

 

3.3.1. Assessment of the copolymerization strategy and nanomicelle synthesis 
 

In this study Thermal Ring-Cleavage polymerization (TRC) was used to synthesize the novel 

blocks copolymer PNIPAAm-b-PAsp. This is a type of chain-expanding polymerization with 

the polymer chain terminals acting as a reactive-site where additional cyclic polymers can 

respond by slicing the ring structure in order to produce an extended polymer sequence. The 

propagating site can be a free radical that is positively or negatively charged (Kumar et al 

2012; Bawa et al 2011; Fernandes et al 2005). A few norbornene or cyclo-octadiene ring 

forming monomers can be co-polymerized into high molecular mass polymers via metal 

catalysts. However, in this study a non-metallic catalyst (triphosgene) was employed. TRC is 

the most flexible technique for assembling key biopolymer groups especially when needed in 

larger quantities (Lin et al 2005; Yoksan et al 2004). The initiator for ring-cleavage of cyclic 

polymers is via the split in attachment-angle tension (steric-repulsions) between particles at 

the inner-core of the ring. Hence, as in other polymerization approaches, the enthalpy 

transition in TRC polymerization is negative (Gao et al 1998).  

 

The current study was based on amphiphilic copolymers synthesized from a group of 

hydrophobic and hydrophilic polymers using TRC. Results demonstrated the exceptionality of 

preparing PNIPAAm-b-PAsp inclusive of monomer utilization that can be explained by a 

copolymerization mechanism. A copolymerization reaction mechanism was used to determine 

the synthesis process parameters. Briefly, radical polymerization of NIPAm produced an 

amino terminated PNIPAAm using AET-HCl as a chain-transfer agent to introduce amino ions 

http://en.wikipedia.org/wiki/Chain-growth_polymerization
http://en.wikipedia.org/wiki/Polymer
http://en.wikipedia.org/wiki/Reactive_center
http://en.wikipedia.org/wiki/Radical_(chemistry)
http://en.wikipedia.org/wiki/Anion
http://en.wikipedia.org/wiki/Norbornene
http://en.wikipedia.org/wiki/Cyclooctadiene
http://en.wikipedia.org/wiki/Polymerization
http://en.wikipedia.org/wiki/Molecular_mass
http://en.wikipedia.org/wiki/Catalysis
http://en.wikipedia.org/wiki/Ring_strain
http://en.wikipedia.org/wiki/Steric_effects
http://en.wikipedia.org/wiki/Enthalpy
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and AIBN used as an activating agent as shown in Scheme 1(a). This was also used in aspartic 

acid carboxylation via the triphosgene approach followed by thermal ring opening of L-Asp-

NCA with the amino terminated PNIPAAm shown in Scheme 1(b-c). Interestingly, the amino 

terminated PNIPAAm played a binary role by primarily splitting the polymers and in so doing 

facilitated the production of free radicals that resulted in assembly of the high molecular mass 

block copolymer PNIPAAm-b-PASP. Therefore, the attachment of amino ions to PNIPAAm 

was influential for the bonding of PNIPAAm directly onto N-carboxylate functionalized PAsp 

chains that finalized the ring cleavage copolymerization process. In agreement with the 

aforementioned discussion, the likelihood of generating single homopolymer material was very 

low with strong bond interferences, atomic rigidity abridged via N-carboxyanhydride cleavage 

with an amine charge. The synthesized amphiphilic block copolymer PNIPAAm-b-PASP was 

further confirmed with correlation from chemical structural formula and NMR peak 

assignments (Figure 3.2).  
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Scheme 1: Synthesis of amino terminated poly (N-isopropylacrylamide) by free-radical 

polymerization of NIPAm (a), carboxylation of aspartic acid (Asp) using triphosgene method 
(b) and thermal ring opening polymerization of Aspartic acid-N-carboxyanhydride using amino-
terminated NIPAm to form the PNIPAAm-b-PASP amphiphilic copolymer product (c). 
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Fig 3.2: 1H NMR spectra of PNIPAAm-b-PASP in CDCl3 and peak assignment confirming the 

structure of the synthesized amphiphilic copolymer.  
 
 
3.3.2. Establishment of the molecular mass of the synthesized PNIPAAm-b-PASP 

copolymer 

 

The copolymer sample that demonstrated stable rheological properties (a viscoelastic profile 

with increased structural recovery after distortion) (Venugopal et al. 2010), mechanical 

robustness (ability to endure high shear stress >70dynes/cm2) and ideal swelling dynamics 

(reduced swelling in order to diminish the potential shear effects when used in OC) was 

confirmed. This optimized copolymer was used for nanomicelle preparation. The viscosity of 

the 0.01%, 0.001% and 0.0001% concentrations of the synthesized copolymer was measured 

and the mean inherent viscosity at each concentration (IV=494.527mPas) was calculated from 

the profiles shown in Figure 3.3. The mean viscosity-based molecular mass of the synthesized 

copolymer in aqueous solution was then determined utilizing the partially-proportional Mark-

Houwink formula (Equation 3.1), which correlated the inherent viscosity [ᶯ] with the molar mass 

(M). In the logarithmic form the Mark-Houwink formula permitted rapid evaluation of the 

parameters used by simple substitution in the linear Equation 3.9.  

 

Log [ᶯ] = logK + a log M                                                    (3.9)                                                                                                     

                                             

                                                                                              
 

Thus, the mean viscosity-based molecular mass was calculated to be 2.217×106kDa.  
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 Figure 3.3: Flow curves shear stress ( ), Viscosity (η) versus shear strain (γ) at various concentrations of amphiphilic copolymer synthesized (a-c). 

 

  
 

 

3.3.3. Quantitative image assessment of PNIPAAm-b-PASP copolymer morphology  

  

The PNIPAAm-b-PASP copolymer topology is a significant factor that influences their physical properties and potential applications. To regulate 

copolymer topology, a specific architecture is now a focal theme in polymer nanotechnology with the purpose of producing macromolecules with 

innovative properties (Santos et al 2010). SEM images were used to demonstrate a broad-spectrum analysis of the copolymer microstructure and 

to confirm the morphological variations of the different forms of the synthesized PNIPAAm-b-PAsp amphiphilic copolymer. Initially, the copolymer 

in powdered form (Figure 3.4a-b) was compared with thin-films (Figure 3.4c-d) that were non-porous followed by lyophilized samples (Figure 

3.4e-h) with a high degree of pore distribution. In di-block and tri-block copolymers, two modal peaks are commonly examined if the blocks are 

of similar size. Indeed in this study the PNIPAAm-b-PAsp copolymer displayed two thermal transitions as confirmed by DSC thermograms in 

Figure 3.8.  
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Figure 3.4: Scanning electron microscopy (SEM) images of synthesized copolymer in powder 

form (a-b), Surface of copolymer in film form (c-d), lyophilized copolymer displaying pore 
distribution and pore diameter variation (e-h). 
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3.3.4. Assessment of the nanomicellization process and MTX entrapment efficiency 

 

The new PNIPAAm-b-PAsp copolymer synthesized was used to formulate a nanomicelle 

carrier system by the dialysis technique for direct MTX delivery in OC treatment (Scheme 2). 

The structure of the nanomicelles was observed with SEM and TEM (Figure 3.5) and was 

confirmed to be of spherical shape and 90nm in size. This also validated that dispersion 

occurred in the interior of the nanomicelles demonstrating hydrophobic copolymeric self-

aggregation into a phase-separated interior region owing to the hydrophobic influence. The 

water-soluble exterior shield separated the assembled hydrophobic interior region of the 

nanomicelle from the aqueous medium. The nanomicelle size is a significant factor to ensure 

controlled loading and release of MTX for targeted delivery to an OC tumor environment. 

Nanomicelles displayed a mean particle size of 90nm, a zeta-potential value of -0.539mV and 

polydispersity index (PdI) of <0.5 which was indicative of a homogenous nanomicelle size 

distribution. The zeta-potential value suggested that the MTX-loaded PNIPAAm-b-PASP 

nanomicelles were electrostatically controlled although they had the propensity for reversible 

flocculation. The results of this study demonstrated stable MTX loading into the partially water 

soluble inner core of the PNIPAAm-b-PASP nanomicelles with a DEE of >77%. The loading 

of hydrophobic drugs in the inner core (PAsp region) of the nanomicelles resulted in improved 

solubility, metabolic stability and prolonged distribution time of MTX. The copolymer showed 

improved solubility in a broad-spectrum of organic solvents including DMF, dioxane as the 

concentration of PAsp increased. The DEE value relied on the electrostatic exchange between 

MTX and the interior core of the nanomicelles. MTX-copolymer exchange indicated that the 

largest quantity of MTX loading per nanomicelle was attained when the inner-core of the 

nanomicelles was appropriately coordinated with the MTX. Thus, in order to improve the DEE 

value of MTX coupling between MTX and the copolymer should be elevated.      
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Scheme 2: Incorporation of methotrexate with copolymer employing micellization process to 

form micelles which have potential application in cancer treatment as antineoplastic drug 

delivery systems, also included is the structural transformation due to changes in temperature 

and pH resulting in drug release.  

 

 

 
 

Figure 3.5: SEM (a) and TEM (b) images depicting self-assembled PNIPAAm-b-PASP 

copolymeric nanomicellar formulation. The scale for all images is 90 nm. 
 

3.3.5. Analysis of the Critical Micelle Concentration value of the nanomicelles 

 

The self-aggregation of amphiphilic polymers is initiated as the concentration of the copolymer 

reaches the CMC. Therefore, the CMC value is a significant parameter displaying the self-

aggregation capability of polymers to form nanomicelles. The CMC value of the PNIPAAM-b-

PASP copolymer was determined by using the FITC fluorescence probe technique. FITC is a 

molecular fluorescent probe with the intensity ratio of the first crest (390nm) and the third crest 

(290 nm) I1/I3 in its emission spectrum that is highly responsive to the ionic charge of the 
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solution. Thus, the fluorescence intensity ratio-(I1/I3) displayed a noticeable change. The 

typical fluorescence spectra of PNIPAAm-b-PASP copolymers with increased concentrations 

are shown in Figure 3.6a. Figure 3.6b displays the intensity ratio (I3/I333) of the FITC excitation 

spectra versus concentrations of PNIPAAM-b-PASP copolymer. The CMC was computed as 

the midpoint of the PNIPAAm-b-PASP copolymer concentration at which the I1/I3 intensity ratio 

considerably decreased and was determined to be at a value of 0.09mg/mL. 

 

 
 
 

Figure 3.6: (a) FITC emission spectra of PNIPAAM-b-PAsp solutions. (b) I390/I290 intensity ratio 
for FITC as a function of the concentration of PNIPAAM-b-PAsp copolymer in deionized water.  
The CMC was obtained as the midpoint value of copolymer concentration at which the I1/I3 

intensity ratio considerably decreases. 
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3.3.6. Influence of nanomicelle size 

Micelle size is a prime factor since it influences the MTX encapsulation, therapeutic release, 

and ultimately site-specific release of methotrexate across the reticular endothelial system 

(RES). The micelle size obtained from the nanomicelles was 90 nm and remained the same 

upon utilization of solvent evaporation method to further enhance the MTX entrapment efficacy 

(Figure 3.7). For intraperitoneal chemotherapeutic interventions, the size of the nanomicelles 

would be favorable for dissemination into the tumor-cellular structure with pore size of 100nm 

or less at the site of treatment. The RES penetration also has to be taken into consideration 

as nanomicelle with a size greater than 100nm may not be able to escape through the RES.  

 

 

Figure 3.7: (a) Zeta size graphs illustrating the hydrodynamic size of PNIPAm-b-PAsp 

nanomicelle formulation, (b) size intensity distribution for the optimized monotype PNIPAm-b-
PAsp nanomicelle. 
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The mean zeta-potential values of the experimental MTX-loaded nanomicelles did not vary 

greatly and ranged from −0.02383mV to −1.89mV. These zeta potential values showed that 

the MTX-encapsulated PNIPAAm-b-PAsp nanomicelles were only partially stabilized by 

electrostatic forces but may have high propensity of aggregation outside the designated 

parameters. Design of a nano-enclatherating neurodeformable polymeric carrier could be 

employed for stabilization and delivery of the nanomicelles to the tumor site. 

 

3.3.7. Analysis of the copolymer chemical structure integrity and transformation  

 

Figure 3.8 displays the vibrational spectroscopy profiles of the homopolymers PNIPAAm-NH2 

and L-Asp-NCA with the resultant porous PNIPAAm-b-PAsp copolymer also shown. In the 

spectrum of PNIPAAm-NH2, the peaks at 3286cm−1 and 1635cm−1 were indicative of N-H 

pulsation. Furthermore, a noticeable peak at 1638cm−1 was attributed to an amide carbonyl 

functional set. In the FTIR spectrum of L-ASP-NCA the peak at 2945cm−1 was allocated to a 

regular elongating pulsation of the amide attachment. The vibrational spectrum also displays 

the C=O broadening group of NCA at 1746cm−1 and 1704 cm−1 and CH3 vibrations were 

allocated to peaks at 1386cm−1 and 1283cm−1. 

 

 

 
 

Figure 3.8: Overall Vibrational-Spectroscopy of Poly-N-isopropylacrylamide-block-poly 
aspartic acid (PNIPAAm-b-PAsp), L-Asp-NCA, Poly NIPAAm-NH2 (descending order). 
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As for the PNIPAAm-b-PAsp, peaks at 1746cm−1 and 1704cm−1 were displaced and signified 

that the acid anhydride structure was destructed. A peaks at 1638cm−1 was allocated to the 

C=O group. The peak at 1535cm−1 was the absorption peak of the amide group coupled with 

the slanting vibration of the amide attachment and elongating vibration of the cyanide 

attachment. Episodes of copolymerization were confirmed with 1H NMR for differentiating the 

arrangement of the formed amphiphilic copolymer. The methine proton in PNIPAAm was 

allocated at the 4.1ppm peak and the PAsp methine proton peak was at 4.2ppm. All 1H NMR 

vibrations were ascribed to PNIPAAm-NH2 and PAsp components shown in Figure 3.2. These 

results are consistent with previous studies on thermal ring opening copolymerization of 

PNIPAAm-NH2 onto polyamino acids (Kang et al. 1997; Wei et al. 2009; Huang et al. 2008; 

Rimmer et al. 2007). 

 
 

3.3.8. Assessment of the thermodynamic stability of the PNIPAAm-b-PAsp copolymer 
 

Figure 3.9 shows the DSC scans for the thermal events of L-ASP-NCA, PNIPAAM-NH2 and 

PNIPAAm-b-PAsp, respectively. The onset to melting and the end of melting points are shown 

with a shift to the left of the melting temperature peak for the combinational PNIPAAM-b-PAsp 

shown in Figure 3.9. For the PNIPAAM-b-PAsp, the heat transition emerged at 160°C despite 

the fact that the thermal peaks varied in terms of the range and depth of the final peaks for 

confirmation of the structural properties of the combinational PNIPAAM-b-PAsp copolymer as 

supported by the FTIR results. 
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Figure 3.9: (a) DSC scan of (a) L-ASP-NCA (b) PNIPAAM-NH2, PNIPAAM-b-PAsp copolymer 

formed from the combination of PNIPAAm-NH2 and L-ASP-NCA via ring opening 

polymerization. 

 

3.3.9. Thermal degradation analysis of the PNIPAAm-b-PASP copolymer  

 

Figure 3.10 shows the TGA profiles acquired and revealed the rate of mass variation that is 

useful in defining the temperature of the first onset of breakdown for each mass loss incidence. 

The peak at 210°C indicated the evaporation of the residual DMF from the PNIPAAm-b-PAsp 

copolymer that was not removed via lyophilization. This was followed by degradation of 

PNIPAAm and PAsp between 300-500°C. Within this region CO2 and residual bound water 

was released which resulted in mass variation due to oxidation. Elevating the heating rate (6-

10°C/min) increased the degradation rate and activation energy as displayed
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in the Figure 3.10. Three heating rates are shown in Figure 3.10 as they were used to determine the decomposition kinetics. The heating rates 

became comparable after 450°C due to decomposition of all carbon based materials. 

 

 
 

Figure 3.10: TGA properties of PNIPAAm-NH2 (A), L-ASP-NCA (B) and PNIPAAm-b-PASP (C) depicting various melting points. 
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3.3.10. In vitro analysis of MTX release from the PNIPAAm-b-PASP nanomicelles 

 

 

Figure 3.11 demonstrates the MTX release profile from thermosensitive polymeric micelles in 

ultra-pure distilled water, which is a stable pH/thermosensitive controlled release behavior. 

Below lower critical solution temperature (LCST) at 25 0C, only small quantity (40%) of MTX 

was released from polymeric micelles during the 72 h study. One of the smart features of 

PNIPAAm micelles as drug nano-carriers is their intellectual property to external temperature 

variations. However, when the temperature was increased to 370C (exceeding LCST), the 

complete MTX release increased to 70% due to the temperature-impelled structural 

modifications of the micelles. Above LCST the PNIPAAm surface became hydrophobic, which 

led to the exterior shell degradation. The degradation of the amphiphilic nanoparticles 

triggered the release of the encapsulated MTX. Figure 3.11 illustrates that the MTX release 

does not reach 100%; this might be due to the fact that fractional drugs were entrapped in the 

deformed micelles for the interactions between nano-carriers and MTX.  

 

 

 
 
 

Figure 3.11: Methotrexate release from PNIPAAm-b-PASP copolymeric nanomicelles in 

acidic (pH 6.75) at 38 degrees and normal physiological conditions (pH 7.4) at 37 degrees. 
Each point depicts mean ±SD (n=3).  
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3.3.11. In vitro kinetic evaluation of drug release from the MTX-loaded Nanomicelles 
 

The experimental release profile of PNIPAAm-b-PASP micelle displayed continual drug 

release in the MTX-loaded nanomicelles (Figure 3.11). Modeling of drug release kinetics was 

undertaken by fitting drug release data to equations of Zero Order kinetics, First Order, Higuchi 

model, Hixson Crowell and Korsmeyer Peppas (Table 3.1). Prolonged release up to 72 h was 

attained due to the degradation of the biopolymer material and slowed dispersion of the 

therapeutic from the micelle interior core. MTX release from the nanomicelle was best 

described by the Higuchi model (R2=0.8459), which in this case describes the release of MTX 

through the collapsed outer hydrophobic PNIPAAm as a square root of time dependent 

process based on Fickian diffusion. For the Korsmeyer-Peppas law, the fit was only average 

(R2 =0.6626). According to this law, if the release power coefficient (n value) is greater than 

0.45 and smaller than 0.89, it implies that the therapeutic release is due to anomalous 

transport behavior (Non-Fickian diffusion), while n<0.45 implies that the drug release was due 

to Fickian diffusion law. For release from the MTX-loaded nanomicelle, the ‘n value’ which was 

established to be 0.1552, implying that the drug release was due to Fickian diffusion of the 

MTX from the inner core through the collapsed PNIPAAm, which is congruent with the fit with 

Higuchi’s square root law. The rate of diffusion/dispersion was also confirmed by the 

aforementioned amorphous state established for MTX and slackening of the micelle 

hydrophobic core. This suggests that MTX-loaded PNIPAAm-PASP amphiphilic nanomicelles 

are significant for encapsulation of hydrophobic drugs (Zhang et al. 2005; Jeong et al. 2009; 

Lin et al. 2015). 

 

Table 3.1: Drug release kinetics results for various models of methotrexate-loaded 

nanomicelles for site-specific targeted therapeutic delivery. 
  

           Model 

  

Equation R-squared R-squared   

adjusted 

 n-value  

(a) Zero-order  Y = a0 + Kot 

 

0.6368  0.5964                                   Not relevant 

(b) First-order rate 
model 

Log Y = log a0 – K1t 

 

0.8037 0.7710                                                               Not relevant  

(c) Higuchi’s square 
root law                                                                                                    

Y = Kt1/2 

 

0.8459 0.8202 Not relevant  

(d) Korsmeyer-Peppas 
law 

F = Mt/M∞ = Ktn 

 

0.6626 0.6251                                                                0.1552 

(e) Hixson-Crowell law ∛Qa - ∛Qm = kkt 0.5089 0.4543 Not relevant  
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Furthermore, the pharmaceutical applicability of the uniquely merged amphiphilic PNIPAm-b-

PAsp copolymeric nanomicelles for the targeted delivery of MTX was evaluated by incubation 

with OC cells (NIH:OVAR-5) and the treated cells were analyzed by the use of a MTT assay, 

confocal microscope for evaluation of the cytotoxic and uptake ability of the MTX-loaded 

nanomicelles as described later in Chapter 5, section 5.2.6. 

 

3.3.12. Conclusions 

 

A new PNIPAAm-b-PAsp amphiphilic copolymer with high molecular mass was synthesized 

by free radical polymerization and self-aggregated in aqueous solution to form nanomicelles 

of 90nm in size. Vibrational spectroscopy and DSC results validated the assembly of 

PNIPAAM-NH2, L-Asp-NCA into the PNIPAAm-b-PAsp nanomicelles. The results further 

confirmed stable MTX entrapment into the partially-water soluble inner core of the PNIPAAm-

b-PASP nanomicelles with a DEE value of >77%. The premise that this amphiphilic copolymer 

self-assembled into nanomicelles in aqueous solution was further validated by the relatively 

low CMC value (0.09mg/mL). MTX release from the nanomicelles was controlled by the pH 

and temperature of the release medium. This was favourable for the potential application of 

the nanosystem for targeted chemotherapy in OC as a new stimuli-responsive 

chemotherapeutic nanocarrier system. 
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CHAPTER 4 

OPTIMIZED DESIGN OF COMBINATIONAL (POLY N-ISOPROPYLACRYLAMIDE)-

BLOCK-POLY (ASPARTIC ACID) NANOMICELLES FOR TUMOR-SPECIFIC 

MICROENVIRONMENTAL RELEASE OF METHOTREXATE DELIVERY 
 

 

 

 

4.1. Introduction 

Drug carrier approaches, which are intended for transporting chemotherapeutics at preferred 

rate and to a specific location for optimal treatment at the targeted infected area of the body, 

are utilized to surmount the drawbacks of clinical systemic administrations (Liu et al., 2005; 

Hu et al., 2008; Mukherjee et al., 2008). A range of therapeutic delivery approaches, including 

polymeric nanoparticles, micelles, polymer-conjugates, dendrimers, liposomes and 

lipids/mineral nanomolecules, have attained technological advancement in terms of preferred 

release rate and site-specific therapeutic delivery (Gupta et al., 2000; Pignatello et al., 2002; 

Hou et al., 2003). Thus far, bio-compatible and bio-degradable nanomicelles are a highly 

favoured nanosystem for therapeutic transport (Veronese et al., 1991, Soppimath et al., 2001; 

Soppimath et al., 2005). Core shell polymeric nanomicelles have been widely explored for 

drug delivery purposes, and recently for the transport of anti-neoplastic drugs. Nanomicelles 

have a hydrophobic interior and hydrophilic outer surface, offering important advantages. The 

hydrophobic interior specifically serves as a nano-reservoir for partially water soluble drugs 

and the hydrophilic surface serves as a protective coating against the reticular endothelial 

retention system (RES). The findings of Thunemann et al. (Thünemann et al., 2000) revealed 

that ion intricate nanomicelles involving poly (ethylene oxide)-b-poly (L-lysine)s (PEO-PLL) 

with all-trans retinoic acid displayed the assemblage of core-shell nanomicelles (Thünemann 

et al., 2000). 

 

 

Methotrexate (MTX) was the model antineoplastic drug utilized in this study for 

chemotherapeutic treatment of intraperitoneal ovarian cancer, chemical structure is illustrated 

in Figure 4.1. MTX is an antagonistic metabolic analogue of folic acid that acts by impeding 

the malignant cell division and multiplication, by restraining the dihydrofolate reductase 

enzyme activity. This reductase enzyme usually transforms folic acid into tetrahydrofolic acid 

metabolites, which are vital for the preparation of nucleic acid (DNA) inside the unit cell. Cell 

units are incapable of mitosis, proliferation and resurgence without tetrahydrofolic acid 

producing new genetic material (DNA). Since MTX digests cell units of this metabolic nutrient, 

it destroys malignant cells and impedes the tumor growth. Unfortunately, MTX has its own 

share of detrimental toxic side-effects including toxicity to normal mitotic cells, therapeutic 
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resistance, renal toxicity, bone marrow repression, severe persistent hepanoxious, and 

persistent interstitial disruptive pulmonary infection (Zhang et al., 2005).  
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Figure 4.1: Methotrexate structure with IUPAC name (S)-2-(4-(((2,4-diaminopteridin-6-
yl)methylamino) benzamido) pentanedioic acid, molar mass 454,46 g/mol, chemical formula 
C20H22N8O5 with all possible binding sites also depicted.  
 

 

A range of MTX-loaded micelle carrier nanosystems with small sizes (up to 100 nm) enabling 

cellular uptake including cellular permeation have been developed to surmount the described 

toxicity challenges. The exterior ionic charge of the micelle is also a significant factor in 

facilitating escape of nanomicelles from endocytotic attack and enabling delivery of 

chemotherapeutic drugs directly to tumor intracellular locations (Jeong et al., 2009). Kang et 

al. (Kanget al., 2002) findings revealed that MTX/copolymer composite comprised of poly 

ethylene glycol /poly (2-hydroxyethyl L-aspartamide) in aqueous solution self-aggregated into 

nanomicelles for continuous release of MTX at 370C, pH 7.4 (Kang et al., 2002). MTX was 

encapsulated into self–agglomerates of poly (2-hydroxyethyl aspartamide) complex by 

attachment. Tri A-B-A block multifunctional copolymers were also assembled to encapsulate 

MTX, however entrapment efficacy was only between 7-30 % w/w of the biopolymer material. 

Low drug entrapment efficacy has been a major drawback of the fabricated drug encapsulated 

nanomicelles (Zhang and Zhuo, 2005). 

 
 

Several micellization methods have been employed to enhance drug entrapment efficacy 

including solvent evaporation, dialysis, microphase separation, self-emulsion evaporation, oil-

in-water emulsion approach and rapid heating procedures (Alexisa et al., 2008; Katz et al., 

2012; Wang et al., 2013; Sanna et al., 2014). Drug incorporation into the nanomicelles can be 

accomplished by integration of the drug during micelle preparation (Vyas et al., 2008). Poly 

aspartic acid (PAsp) is one of the mainly frequently utilized polyanionic, hydrophobic and 

biodegradable poly (amino acids). As PAsp contains pendant carboxylic groups, it is pH-

sensitive (pKa = 3.9) exhibiting minimal swelling at acidic pH and increased swelling at neutral 

pH. It is therefore an ideal pH sensitive material for localized delivery of drugs. Several 

nanomicelles prepared from PAsp-based surfactant copolymers have been evaluated for 
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various clinical nano-chemotherapeutic platforms (Skarda et al., 1993; Tsubokawa et al., 

1994; Giammona., 1996; Giammona et al., 1998; Iwata et al., 1998; Li et al., 2008). Poly(N-

isopropylacrylamide)(PNIPAAm) is a popular hydrophilic thermoresponsive polymer 

demonstrating a sharp phase transition at temperatures exceeding its lower critical solution 

temperature (LCST). Previous investigations have utilized poly(N-isopropylacrylamide) with 

polyamino acids as a mixture to formulate inter-penetrating polymer networks (Cammas and 

Kataoka, 1995; Bonina et al., 2004; Malonnea et al; 2005). In this investigation, the 

combination of poly(N-isopropylacrylamide)-b-(polyaspartic acid) (PNIPAAm-b-PAsp) was 

formulated as nanomicelles via dialysis and solvent evaporation techniques for exploitation of 

their temperature- and pH-responsive capabilities as a tumor-specific controlled delivery 

system. 

 
 

The purpose of this work was to enhance the encorporation efficiency of MTX and properties 

for cancer targeting (i.e. size and drug release capabilities), which could lead to minimization 

of cytotoxicity of MTX and enhanced therapeutic outcomes, by inclusion of MTX in the 

nanomicelles utilizing the PNIPAAm-b-PASP copolymeric composite to generate a superior 

antineoplastic chemotherapeutic nanosystem. The PNIPAAm-b-PAsp nanomicellar 

formulations were extensively characterized and experimentally optimized for appropriate 

size, drug incorporation, and controlled MTX release capability. Both PAsp and PNIPAAm 

have ionic features in aqueous media resulting in polyion compound development involving 

anionic (negatively charged) MTX, with cationic (positively charged) PAsp forming the inner 

core of the designed polymeric nanomicelle.  

 
4.2. Materials and Methods 

 

4.2.1. Materials 

 

N-isopropylacrylamide polymer (Sigma Aldrich, St. Louis, MO, USA) was hexane 

recrystallized, vacuum dried at 200C and 2, 2’-azoisobutyronitrile was ethanol recrystallized 

prior to its usage. Aspartic acid, 2-Amino ethanethiol hydrochloride (AET-HCl) and triphosgene 

were procured from (Sigma Aldrich, St. Louis, MO, USA), vacuum dried at 200C; and 

methotrexate (MTX) was also procured from Sigma Aldrich (St Louis, MO, United States of 

America). 98% N,N’- dimethylformamide (DMF), Tetrahydrofuran (THF), ethyl ether and 

petroleum ether (30–60 ◦C) were obtained from Merck SA. All other reagents and organic 

solvents were of analytical grade prior to their usage. 
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4.2.2. Determination of Critical Micelle Concentration of PNIPAAm-b-PASP 

 

The optimized PNIPAm-b-PAsp copolymer formulation was utilized for the synthesis of 

micelles. Formation of the micelle employing PNIPAAm-b-PAsp copolymer was studied by 

fluorescence spectroscopy. Here, FITC was used as an extrinsic fluorescent hydrophobic 

probe molecule, and the CMC was determined from the fluorescence emission wavelength 

and excitation spectra as FITC partitions between the aqueous and micellar milieus. Briefly, 

FITC (10-6-10-7 M) in methanol was introduced to a series of glass test tubes and the methanol 

was air evaporated. Deionized water (10ml) with different concentrations of the block 

copolymer from 0.05 to 1 g/mL was introduced to each test tube and the solutions were 

incubated for 24 hours at room temperature under mild mixing. Subsequently, the 

fluorescence of each sample was measured utilizing a fluorescence spectrophotometer (Cecil 

9000 series, Cambridge, England, UK). Emission spectra were determined at 390 nm (I1) and 

310 nm (I3), whereas the excitation wavelength was set at 400 nm. The FITC fluorescence 

intensity ratios of I3/I1 as a function of the copolymer concentration in the FITC emission 

spectra are shown in Figure 4.2. The critical micelle concentration (CMC) was calculated by 

obtaining the midpoint of the block copolymer ratio at which the relative intensity ratio (I1/I3) 

changed (Figure 4.2). 

 

 

4.2.3. Formulation of the Methotrexate-encapsulated PNIPAAm-b-Pasp nanomicelles 
 

 

Nanomicelle formation with MTX incorporation into the nanomicelles was achieved employing 

a solvent evaporation method – this approach yielded enhanced drug entrapment compared 

to the dialysis approach employed in preliminary investigations. In dialysis tubing method, 

MTX (7mg) and 10-125mg PNIPAAm-b-PAsp copolymer were dissolved in 4mL N,N’-

dimethylformamide (DMF) with mild magnetic stirring at 25°C for 30 min (Figure 4.1). 

Deionized water (6 ml) was added dropwise to the solution with homogenization at various 

speeds (300-2000rpm) on a homoginizer machine ((Virtis Tempest I.Q. 2 Homogenizer, 

Sentry Microprocessor, Kent City, MI) for 5 minutes at room temperature. Thereafter the 

solutions were introduced into a dialysis tubing (molecular weight cut-off: 3500kDa) and 

dialyzed with two litres of deionised water at 10 ◦C for 6 hours. During dialysis tubing 

procedure, deionised water was replaced every two hours to get rid of DMF (Figure 4.1). The 

nanomicellar suspension was filtered to eliminate agglomerates (0.45µm Millipore filter, 

Billerica, United States of America) and lyophilized to yield a powder (FreeZone® 2.5, 

Labconco®, Kansas City, MS, USA). Furthermore, solvent evaporation method was fabricated 

in the same manner as the dialysis tubing method except that the solvent was removed by a 

rotary vacuum evaporator. 
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A Face-Centered Central Composite design (CCD) approach was developed for optimization 

of the effect of pertinent MTX-encapsulated nanomicelle formulation variables on selected 

response. CCDs are highly systematic and flexible, providing considerably information on 

experimental variable influence and overall investigational error in a least number of significant 

runs. The accuracy of various varieties of CCDs supports their use under varied experimental 

settings of focus and operability. CCDs consists of an embedded factorial or fractional factorial 

design with central points augmented with clusters of star points (axial points) that allow 

evaluation of curvature of the response of the formulation variables to the outcome hence 

providing an idea of the response surface and allowing evaluation of interactions (Hu et al., 

2008). In the present study, the amount of copolymer (mg) and homogenizer speed (rpm) 

were the two selected variables; and size, drug entrapment efficacy (DEE), mean dissolution 

time (MDT) and cumulative release were selected as responses (Table 4.1), central points 

were run 6 times for generation of the 13 experimental design nanoformulations employing 

Minitab V15 software (Minitab® Incorporation, PA, USA) (Table 4.2).  

 
 

 

 
 
 

Figure 4.2: Schematic of amphiphilic PNIPAAm-b-Pasp copolymer assemblage in aqueous 

media to form spherical nanomicelles.  
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Table 4.1:  Nano-formulation variables and responses employed in design   

• MDT: Mean Dissolution time  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                         

                      Levels 

          

            Objective 

 
     

Upper 

                

            Lower 
 

Parameters    

Copolymer amount (mg)       125                 10  

Homogenizer speed 

(rpm) 

      2000                 300  

Responses    

Size                Minimize 

DEE               Maximize 

•MDT               Minimize 
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Table 4.2: Depiction of the 32 factor central composite design for micelle formulation  
   

 

Formulation number 

 

Copolymer   amount (mg) 

 

Homogenizer speed (rpm) 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

 

67.5 

67.5 

67.5 

125 

67.5 

10 

125 

67.5 

10 

67.5 

67.5 

125 

10 

 

1150 

1150 

1150 

1150 

1150 

2000 

2000 

1150 

300 

2000 

300 

300 

1150 

 
 
 

4.2.4      Characterization of Nanomicelles 

 

Micelle size, zeta-potential and polydispersity index (PdI) were determined as previously 

described in Chapter 3, Section 3.2.7 employing active dynamic beam scattering (DLS) on a 

Zetasizer NanoZS instrument (Malvern Instruments (Pty) Ltd., Worcestershire, UK). The drug 

entrapment efficiency (DEE) and in vitro release of MTX from the nanomicelles were also 

measured as previously described in Chapter 3, section 3.2.8. and 3.2.13.   
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4.2.5. Optimization of the Nanomicelle Formulation 

 

Following generation of the polynomial equations relating the dependent and independent 

variables, the formulation process was optimized under constrained conditions for the 

responses. Simultaneous equation solving for optimization of the formulation process was 

performed to obtain the levels of independent variables for enhancing the performance of the 

nanomicelle system employing Minitab® V15. 

 

4.2.6. Characterization of the Optimum Nanomicelle Formulation 

  

4.2.7. In vitro Kinetic evaluation of drug release from the optimum nanoformulation 

 

Modeling of drug release kinetics was determined by substituting drug release data in 

Equations 3.4-3.8, being Zero Order, First Order, Higuchi model, Hixson Crowell and 

Korsmeyer Peppas kinetics release equations as previously described in Chapter 3, section 

3.2.14. 

 

4.2.8. Fourier Transform Infrared spectroscopic characterization of the Nanomicelle 

Molecular Arrangement  

 

Methotrexate-loaded and blank nanomicelles formulations were investigated and compared 

via Fourier Transform Infrared spectroscopic analysis employing a PerkinElmer® Spectrum 

100 Series fitted with a universal ATR Polarization Accessory (PerkinElmer Ltd., Beaconsfield, 

UK). Spectra were recorded over the range 4000-625cm-1, with a resolution of 4cm-1 and 32 

accumulations. 

 

 

4.2.9. Nanomicelle morphological characterization 

 

The morphology of the nanomicelles was investigated utilizing scanning electron microscope 

(SEM; Joel JSM-840, Japan) and transmission electron microscopy (TEM, JEM-100S, JOEL 

Pty Ltd, Tokyo, Japan). Samples for TEM were prepared by placing one drop of the micelle 

suspension onto a film coated carbon copper grid. Excess suspension was wiped-away with 

the filter paper, and the copper grid was air dried for a day. The sample on the grid was not 

stained. Sample analysis was conducted utilizing TEM instrument (JEM-100S, JOEL Pty Ltd, 

Tokyo, Japan) at an accelerating voltage of 100 kilovolts (kV). Prior to SEM analysis, a drop 

of micelle suspension were fixed on a sticky carbon tape on aluminium stumps and were gold-

platinum sputter coated for seven minutes. The micelle specimen was observed via SEM at 

accelerating voltage of 20 kV at several magnifications.  
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4.2.10. Differential scanning calorimery for elucidation of thermal events of the 

methotrexate-loaded nanomicelles  

 

Differential Scanning Calorimetry (DSC) studies were conducted employing a Mettler-Toledo 

advanced DSC 1 STARe instrument (Ohio, USA). The Mettler-STARe software program 

(version-9.x), was utilized for DSC results acquisition and interpretation. A blank specimen 

pan was used as point of reference and investigational scans were conducted by warming the 

weighed samples from -100C-1250C with a stable isotherm for fifteen minutes. The lyophilized 

powder specimens (10mg) were placed into a DSC aluminium-pan and compressed sealed. 

Relative DSC scans were conducted on blank micelles, optimized MTX-loaded micelles and 

pure MTX at a heating rate of 100C/minute from -10-325 0C in a stable stream of nitrogen gas. 

Fresh sample analysis was conducted in triplicate for method development and validation 

purposes. DSC thermograms were then evaluated for changes in thermal episodes. The 

phase changes of the drug-free micelle and MTX were correlated with the phase changes of 

the optimized MTX-loaded PNIPAAm-b-PAsp nanomicelles.  

 

 

4.3.     Results and Discussion 
 
 

4.3.1   Critical Micelle Concentration Determination 

 

As for a surfactant, the self-aggregation of amphiphilic polymer is initiated as the concentration 

of the copolymer reaches the verge/threshold concentration (CMC); therefore, the CMC is a 

significant parameter in displaying the self-aggregation capability. The CMC values of the 

optimized PNIPAAM-b-PASP micelles were determined by using the FITC fluorescence probe 

technique. FITC is a molecular fluorescent probe with the intensity ratio of the first crest (390 

nm) and the third crest (290 nm) I1/I3 in its emission spectrum very responsive to the ionic 

charge of the solution. Thus, the fluorescence intensity ratio-(I1/I3) would reveal a noticeable 

change. The typical fluorescence spectra of PNIPAAM-b-PASP micelle with intensifying 

micelle concentration are depicted in Figure 4.2a. Figure 4.2b displays the intensity ratio (I1/I3) 

of the FITC excitation spectra versus concentrations of PNIPAAM-b-PAsp copolymer. The 

CMC is the midpoint of PNIPAAm-b-Pasp micelle concentration at which the I1/I3 intensity ratio 

considerably decreases and was determined to be 0.09mg/mL. 
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Figure 4.3: (a) FITC emission spectra of PNIPAAM-b-PASP solutions. (b) I390/I290 intensity 
ratio for FITC as a function of the concentration of PNIPAAM-b-PASP copolymer in deionized 

water. The CMC was obtained as the midpoint value of copolymer concentration at which the 
I1/I3 intensity ratio considerably decreases. 
 
 
4.3.2. Analysis of the Experimental Design Formulations and Statistical Optimization of 

the PNIPAAm-b-PAsp Nanomicelles 

 

The purpose of this study was to synthesize MTX-loaded nanomicelles by solvent evaporation 

method, and to optimize the influence of independent variables on formulation responses. The 

solubility and partitioning features of MTX in the PNIPAAm-PAsp copolymer were highly 

influential in the selection of the organic solution employed. Formulation of therapeutic-loaded 

nanomicelles involved two major methods of therapeutic loading reliant on physicochemical 

features of segment copolymer. The dialysis tubing technique was initially employed to 
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prepare the experimental design PNIPAAm-b-PASP polymeric micelles and exhibited 

satisfactory encapsulation of MTX into the copolymer (Optimised). The exchange flow of water 

and organic solvent into the composite MTX-PNIPAAm-b-PASP system determined the 

development of the nanomicelles. From the resultant responses for the various dialysis 

methods nano-formulations, the target-particle size, MTX-entrapment efficiency, and the MDT 

were utilized for the optimization procedure (Table 4.3). The optimized nano-emulsion was 

generated as per the variable levels in Figure 4.4 and possessed a size of 65nm, MDT of 

40.867, and a DEE of 80.6%.  

 
Table 4.3: Responses data obtained for the 32 factor central composite experimental design 

micelle formulations. 
 

 
 
 

 

 

Formulation 
number 

Size (nm) DEE (%) 
 

MDT Cumulative release     
at 72 hrs (%) 

1 76.45 73.2 40.609 0.277 

2 57.66 72.9 41.276 0.289 

3 66.64 73.1 40.776 0.278 

4 66.33 84.8 39.031 0.259 

5 63.23 82.6 41.943 0.283 

6 78.63 70.7 37.489 0.238 

7 66.35 89.8 25.214 0.242 

8 68.11 73.8 39.276 0.281 

9 63.21 76.4 40.393 0.266 

10 60.13 77.5 39.014 0.249 

11 52.46 86.7 38.727 0.249 

12 57.8 73.6 40.251 0.258 

13 51.67 86.7 41.503 0.263 

Optimized 

(O) 

65 65.3 40.867 0.261 

Optimized 1 
(O1) 

65.0 80.6 40.000 0.264 
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Figure 4.4: Desirability graphs for optimized showing the crucial variables for generating 
PNIPAAm-PAsp micelles with the desired targeted responses. 
 
 
 

4.3.3. Influence of independent variables nanomicelle size, incorporation efficiency and 

drug release  

 

 

Micelle size is a prime factor since it influences the MTX encapsulation, therapeutic release, 

and ultimately site-specific release of methotrexate across the reticular endothelial system 

(RES) as previously disussed in Chapter 3, section 3.3.6. The micelle size obtained from the 

optimized nanomicelles was 65 nm and remained the same upon utilization of solvent 

evaporation method to further enhance the MTX entrapment efficacy (Figure 4.5& 4.6). For 

intraperitoneal chemotherapeutic interventions, the size of the optimized nanomicelles would 

be favorable for dissemination into the tumor-cellular structure with pore size of 100nm or less 

at the site of treatment. The RES penetration also has to be taken into consideration as 

nanomicelle with a size greater than 100nm may not be able to escape through the RES. 

Response surface analysis as visualized via the surface plots highlighted that nanomicelle 

size was lowest at median copolymer amounts; these levels being optimal for formation of 

small and compact micellar structures (Figure 4.6). 
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Figure 4.5: (a) Zeta size graphs illustrating the hydrodynamic size of PNIPAAm-b-PASP 

nanomicelle formulation, (b) size intensity distribution for the optimized monotype PNIPAAm-
b-PASP nanomicelle.  
 
 

 
 

Figure 4.6: Three dimensional surface graphs produced by the 32 factor central composite 

experimental design approach investigating the influence of copolymer amount and 
homogenizer speed on size of the synthesized nanomicelles. 
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The mean zeta-potential values of the experimental design nanomicellar formulations did not 

vary greatly and ranged from −0.02383mV to −1.89mV. These zeta potential values showed 

that the MTX-encapsulated PNIPAAm-b-PAsp nanomicelles were only partially stabilized by 

electrostatic forces but may have high propensity of aggregation outside the designated 

parameters as previously discussed in Chapter 3, section 3.3.6. Design of a nano-

enclatherating neurodeformable polymeric carrier could be employed for stabilization and 

delivery of the nanomicelles to the tumor site.  

 

Nanomicelle formulations from the experimental design exhibited good MTX encapsulation 

efficiency (Table 4.4) due to the amphiphilic PNIPAAm-b-PAsp copolymer self-assembly in 

water effectively forming micelles while incorporating chemotherapeutic drug (MTX) in their 

interior core (Chung et al., 1997). The encapsulation was greatest when a greater amount of 

copolymer was used in combination with a high homogenizer speed during nanomicelle 

formation. Slower drug release (a lower MDT) was achieved when high levels of copolymer 

were employed and a high homogenizer speed was used, which correlated with the variable 

settings for attaining enhanced MTX incorporation. The interaction between these formulatory 

variables had a significant effect on the MDT (p = 0.042). An increased amount of copolymer 

better entrapped the drug within the core, while providing a more compact micellar structure, 

following contraction of the PNIPAAm component of the nanomicelle in response to 

temperature, for controlling MTX release to a greater extent. 

 

4.3.4. Statistical optimization of the Face-Centred Central Composite Design 

 

Statistical regression (average least squares) was utilized to fit the results by predicting the 

influences of the independent variables [Copolymer amount (mg) and Homogenizer speed 

(rpm)] on responses (size, DEE and MDT) such that the sum of squared variations between 

estimated and experimental responses was reduced by optimization Eq 4.1 and Table 4.4. 

The standard inaccuracy of the model (S) and the R2 coefficient value of the proposed model 

showed the goodness of fit the mathematical model outlined in Table 4.5. Polynomial 

regression equations produced for size, DEE, MDT and cumulative release are as depicted 

by polynomial Equation 4.1, Table 4.4 and Table 4.5. Output  response 

 

Y= c + fX1 + gX2+ hX1 X2 + iX1
2 + jX2

2                                                                                                                                          (4.1) 
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Table 4.4: Coefficients for equations, r2 value for several dependent variables of methotrexate 

loaded PNIPAAm-b-ASP micelles 
 
  

 

Coefficients  
      

Coefficient data for dependent variables  

           Size        MDT          DEE        Cumulative Release 

c 62.4211 35.1010 85.2222 0.246508 

f -0.4456 0.0988 -0.1811 0.000256 

g 0.0385 0.0107 -0.0030 0.000046 

h 0.0043 -0.0005 0.0007 -0.000003 

i -0.0000 -0.0000 -0.0000 0.000000 

j -0.0001 -0.0001 0.0001 0.000000 

r2 62.2 81.3 33.0 82.3 

 
 

 

Table 4.5: Model S-values and the coefficient of determination (R2) data acquired for the linear 

regression equations 
 

 
 

Size 

 

MDT͙* 

 

DEE 

 

Cumulative Release 

 

S 

 

7.979 

 

2.435 

 

7.027 

 

0.008557 

R2 62.2 81.3 33.0 82.3 

    Mean Dissolution Time = , MDT͙*= Average/Mean Dissolution Time  

  
The Mean Dissolution Time (MDT) was calculated for each of the formulations using Equation 

4.2 and a maximum MDT is the fastest drug release rate achievable (Govender et al., 2005). 

  

𝑀𝐷𝑇 =  ∑𝑡𝑖 
𝑀𝑡

𝑀 ∝

𝑛

𝑖=1

……………………………………………………………………………………… . .4.2 

 
Where Mt is the fraction of dose released in time (ti = ti +ti-1)/2 and M∞ corresponds with the 

loading dose. 

 

Following generation of the polynomial equations (Eq 4.1) relating the dependent and 

independent variables, the formulation process was optimized under constrained conditions 

for the responses (as previously discussed in section 4.2.5 of this chapter). Simultaneous 
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equation solving for optimization of the formulation process was performed to obtain the 

optimal levels of independent variables for enhancing the performance of the nanomicelle 

system employing Minitab® V15 as summarized in Table 4.1. Table 4.6 presented the obtained 

values for the responses with the optimized formulation as well as the predicted values and 

desirability. 

Table 4.6: Summary of the obtained values for each of the responses and the predicted values 

and desirability. 

Response  Obtained  Predicted  Desirability  
 

 
Size 
 

 
65 

 
65.5 

 
1.0000 

MDT 40 
 

42.4 40.0000 

DEE 80.7493 84.622 1.0000 

 

The lower model S-value implies the improved combination/fit of the model. The model S-

value for size is relatively small and the model-R2 coefficient value also indicates the good fit 

of this mathematical model (Table 4.5). MDT has a lower fit with a smaller R2 coefficients, and 

DEE values were also combination. A significant p value ≤0.05 indicated that the expected 

influence of the independent variable can be regarded to be of significance (Table 4.7).  

    Table 4.7: Probabilities of the effects of the variables on the outcomes 
  

Term  p-value 

 Size MDT DIE Cumulative Release 

Copolymer      
Amount (mg) 

0.088 0.193 0.390 0.232 

Homogenizer speed (rpm) 0.055 0.074 0.843 0.039 

Copolymer Amount (mg) * 
Copolymer Amount (mg) 

 
0.021 

 
0.277 

 
0.603 

0.078 

Homogenizer speed (rpm)* 
Homogenizer speed (rpm) 

 
0.091 

 
0.070 

 
0.759 

0.009 

Copolymer Amount (mg) * 
Homogenizer speed (rpm) 
 

 
0.213 

 
0.042 

 
0.163 

 
0.304 

  

 
 

4.3.5. Statistical analysis of the residual error in the experimental design 

  

Analysis of the residual error is of significant consideration in the establishment of the 

cumulative release, size, mean dissolution time (MDT) and drug entrapment efficacy (DEE) of 

an investigational design. Figure 4.7 display a variety of residual graphs that necessitate 

evaluation. The standard probability graphs (a-d) for all the responses demonstrated fairly 

accurate straight lines indicative of normal residuals dispersion. The normal residuals against 

fitted distributed graphs (e-h) exhibited arbitrary dispersion of the residuals around 0 as 
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anticipated. This graph offers detection of non-stable variation, with absence of upper order 

terms and outer parameters. None of these observations were encountered in the fitted plots. 

Residual graphs against the data order are utilized to establish the time reliance of the 

residuals. The plotted graphs (i-l) showed no lucid pattern indicative of a lack of reliance. 

Histograms, fitting residuals versus frequency (m-p) were inconsistent; some were bell-

shaped curves (m-n), but others were not bell-shaped (o-p) and seemed to be indicative of 

existence of outliers (i.e. big residuals data points). Since the specimen size is diminutive (<65) 

a histogram is not regarded as the premium option in the assessment of normality and the 

normal probability graphs is highly responsive. 
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Figure 4.7: Residual graphs of the data for cumulative release, size, MDT and DEE for the micelle nano-emulsions.  

 Cumulative Release Size MDT DEE 

 
 
Normal probability 
plots of the residuals 

 

a) 

 

b) 

 

c) 
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4.3.6. Characterization of the Optimized Nanomicelle Formulation 

 

4.3.7. Molecular transitions of the PNIPAAm-b-PAsp nanomicelles 
 

The FTIR spectra of the MTX, blank micelles and MTX-loaded optimized nanomicelle 

formulation were compared. Variations were noticeable in FTIR spectra involving the blank 

micelles and MTX-loaded micelle nanoformulations (Figure 4.8). The additional peaks that 

were noted in the MTX-loaded nanoformulations compared to the drug-free micelles were due 

to the existence of a 1,3 replacement composite (1516.53–1451.23cm−1) and a phenyl amino 

compound (1647.22–1451cm−1). This indicated that MTX was entrapped in the nanomicelle 

hydrophobic interior core either by weak electrostatic H-bonds involving the COO-assemblage 

of MTX and the OH-grouping of aspartic acid, or by charged ionic attachments involving the 

NH2 bonds of MTX and the COO-bonds existing in PNIPAAm-b-PAsp. This enabled effective 

MTX incorporation and controlled diffusion from the PNIPAAm-b-PAsp matrix (potentially in 

the amorphous form). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

86 
 

 

 

 

 

Figure 4.8: FTIR spectrum of MTX, blank micelles and MTX- loaded PNIPAAm-b-PAsp nanomicelles depicting the variations in the spectra. 
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4.3.8. PNIPAAm-b-PAsp micelle morphological characterization 

 

Scanning electron micrographs were utilized to describe the nanomicelle surface morphology 

(Figure 4.9a). The SEM images also displayed micelle agglomerates that were attached onto 

an even plane (Figure 4.9a). TEM imagery showed the development of amphiphilic 

nanomicelles with an outer lighter hydrophilic shell and inner darker (more intense) 

hydrophobic core structural arrangement (Figure 4.9b). In addition, it was also observed that 

all specimens were spherical with a smooth outer shell with a size distribution in congruence 

with the data attained through active-dynamic beam scattering (DLS) measurements. These 

darker inner portions were ascribed to the PAsp segment of the block-copolymer and the 

electrostatically-encapsulated MTX and the lighter outer shell represented the hydrophilic 

groups of PNIPAAm (Figure 4.9b). This type of hydrophobic–hydrophilic arrangement of 

PNIPAAm-b-PAsp nanomicelles has a significant function in offering prolonged blood 

distribution periods since the PNIPAAm hydrophilic exterior of the nanomicelles creates a 

barrier to impede the identification of the nanomicelles the by immune system which 

consequently diminish their uptake in the RES (Qiao et al., 2010; Owens III & Peppas, 2006).  

 

 

 
 
 

Figure 4.9:(a) Scanning electron microscopy (SEM) image showing the shell morphology of 
the optimized PNIPAAm-b-PAsp nanomicelle formulation with average size of 65nm and (b) 
TEM images depicting of the optimized spherical MTX-loaded PNIPAAm-b-PAsp nanomicelle 
formulation, also with average size of 65nm. 
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4.3.9. Analysis of the thermal features of the drug-free and MTX-loaded PNIPAAm-b-

PAsp nanomicelles 

 

Differential scanning calorimetric investigations were conducted to observe the drug’s physical 

form in the nanomicelle, since this could affect the drug release from the delivery system. DSC 

thermograms of MTX, blank micelles and MTX-loaded micelles are depicted in Figure 4.10. 

The DSC curve of the MTX displayed a critical melting peak at 125°C. MTX-loaded micelles 

displayed the melting peak for the drug at 145◦C. Incorporation of MTX within the nanomicelle 

thus elevated the melting point indicative of enhanced thermal stability of the drug as 

previously observed (Vadia and Rajput, 2012). This would suggest that on incorporation of the 

partially soluble crystalline MTX within the hydrophobic core it was converted to a less 

crystalline form and resulting in improved MTX entrapment efficacy of 80.6±0.3%. The glass 

transition temperature (Tg) of the copolymeric nanomicelles is also evident at ~150°C, 

correlating with previous findings (Liu et al., 2012). 
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Figure 4.10: DSC thermograms of (a) pure MTX (b) blank micelle nanoformulation (c) MTX-
loaded micelle formulation and (d) temperature variations and shifts in the curves of MTX, 
blank micelles and MTX-loaded micelles. 
 

 

4.3.10. Methotrexate release behavior from the optimized nanomicelle under normal 

and tumoral conditions 

 

MTX release from the optimized nanomicelles was performed at physiological pH (7.4) and 

tumoral pH (6.75) (Figure 4.11). A pH of 7.4 also represents the intracellular pH of tumor cells 

and release behavior at this pH would thus also be demonstrative of release from the 

nanomicelle following tumor cell uptake. The size of the nanomicelles as well as 

responsiveness to the tumoral microenvironment is pertinent for achieving targeted delivery 

to the tumor site. Release profiles revealed controlled release of MTX from the optimized 

micelle nano-formulation. The basis of MTX release was to a certain level regulated by the 

distinctive performance of the essential constituent amphiphilic polymers in the release 

medium. One of the smartest attributes of PNIPAAm synthesized micelles as therapeutic 

nano-carriers is their thermosensitivity to surface temperature transitions. The nanomicelle 
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release results displayed that temperature transitions of the release medium served to control 

and prolong therapeutic release. PNIPAAm is water soluble at room temperature; however, 

LCST of PNIPAAm (32°C), it is more likely to gel with a transition temperature very similar to 

the body temperature, with predominance of the hydrophobic interactions. Further, the 

presence of the hydrophobic aspartic acid monomer results in a potential LCST decrease. 

Thus, at temperatures below LCST, the hydrogen bonds predominate between the polymer 

amide groups. At temperatures exceeding the LCST of PNIPAAm the hydrogen bonds could 

dissociate with the nanomicelles expelling water, dehydrating and becoming more 

hydrophobic, thus contracting or shrinking (shielding effect) to allow the MTX from the core 

through the outer PNIPAAm cloud, while controlling the release rate at the same time (Almeida 

et al., 2012). The release of MTX was controlled over the 72 hours period of observation 

(Figure 4.11). 

 

 

 
 
 

Figure 4.11: Methotrexate release from the optimized PNIPAAm-b-PASP copolymeric 
nanomicelles in acidic (pH 6.75, ie tumor simulated micro-environment) at 38 0C and normal 
physiological conditions (pH 7.4) at 37 0C. Each point depicts mean ±SD (n=3). 
 

In the pH 6.75 tumor milieu, approximately 40% of MTX release was observed from 

nanomicelles in the initial first 10 hours at 37◦C due some swelling of the PAsp core of the 

PNIPAAm-b-PAsp nanomicelle in concert with contraction of the PNIPAAm, compared to at 

pH 7.4 when ~50% MTX release has occurred due to further swelling of the PAsp component 

of the micelle. Several therapeutic nanocarrier systems have been formed to regulate the MTX 

release, however in PNIPAAm-synthesized micelles, sustained release for prolonged periods 

is still a challenge. Notably, the new PNIPAAm-b-PAsp as a therapeutic nanocarrier extends 

the release period to 72 h with the released quantity limited by temperature and pH transitions. 
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As established, temperature-sensitive polymers such as PNIPAAm are not easily degraded, 

and this is one of the hurdles in employing these polymers in nanomedicine. The peptide-

connection of the poly(L-aspartic) sequence can be deformed to safe monomer chains by 

enzymatic degradation. Thus, the bio-adjustability and deformability of the PAsp has potential 

to enhance the degradation of the biopolymer material.  

 

The design of a controlled/sustained-release nanoparticulate system as demonstrated from 

the release profile achieved from the nanomicelle is proffered as an effective and efficient 

therapeutic tool for spatio-temporal local drug delivery, for a few major reasons. Firstly, 

nanosized systems can enhance drug uptake into the tumor, thus reducing systemic toxicity 

by avoiding drug delivery to non-malignant tissue. Secondly, the nanomicelle can provide 

controlled and sustained drug release into the tumor cells for a long period of time, leading to 

increased drug effectiveness and decreased dosing frequency. Ultimately, this nanomicellar 

system can circumvent drug resistance (Lin et al. 2015). Hence, the PNIPAAm-b-PAsp 

copolymeric micelles show potential as degradable therapeutic transport system for regulated 

release at the tumor site. 

 

4.3.11. In vitro kinetic evaluation of drug release from the optimum nanoformulation 

 

The experimental release profile of PNIPAAm-b-PASP micelle displayed continual drug 

release in the optimized nanoformulation (Figure 11). Modeling of drug release kinetics was 

determined by fitting drug release data to equations of Zero Order kinetics, First Order, Higuchi 

model, Hixson Crowell and Korsmeyer Peppas (Table 4.8 and Figure 4.12). Prolonged release 

up to 72 h was attained due to the degradation of the biopolymer material and slowed 

dispersion of the therapeutic from the micelle interior core. MTX release from the nanomicelle 

was best described by the Higuchi model (R2=0.8459), which in this case describes the 

release of MTX through the collapsed outer hydrophobic PNIPAAm as a square root of time 

dependent process based on Fickian diffusion. For the Korsmeyer-Peppas law, the fit was 

only average (R2 =0.6626). According to this law, if the release power coefficient (n value) is 

greater than 0.45 and smaller than 0.89, it implies that the therapeutic release is due to 

anomalous transport behavior (Non-Fickian diffusion), while n<0.45 implies that the drug 

release was due to Fickian diffusion law. For release from the optimized nanomicelle, the ‘n 

value’ which was established to be 0.1552, implying that the drug release was due to Fickian 

diffusion of the MTX from the inner core through the collapsed PNIPAAm, which is congruent 

with the fit with Higuchi’s square root law. The rate of diffusion/dispersion was also confirmed 

by the aforementioned amorphous state established for MTX and slackening of the micelle 

hydrophobic core. This suggests that MTX-loaded PNIPAAm-PASP amphiphilic nanomicelles 
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are significant for encapsulation of hydrophobic drugs (Chung et al., 2004; Zhang et al., 2005; 

Jeong, et al., 2009). 

 

Table 4.8: Drug release kinetics results for various models of optimized methotrexate-loaded 
nanomicelles for site-specific targeted therapeutic delivery. 
 

           Model 

  

Equation R-squared R-squared   

adjusted 

 n-value  

(a) Zero-order  Y = a0 + Kot 

 

0.6368  0.5964                                   Not relevant 

(b) First-order rate 
model 

Log Y = log a0 – K1t 

 

0.8037 0.7710                                                               Not relevant  

(c) Higuchi’s square 
root law                                                                                                    

Y = Kt1/2 

 

0.8459 0.8202 Not relevant  

(d) Korsmeyer-Peppas 
law 

F = Mt/M∞ = Ktn 

 

0.6626 0.6251                                                                0.1552 

(e) Hixson-Crowell law ∛Qa - ∛Qm = kkt 0.5089 0.4543 Not relevant  
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Figure 4.12: In vitro Kinetic analysis of drug release, Zero Order kinetics, First Order release, 

Higuchi Hixson law and Crowell Korsmeyer law. 
 

Furthermore, the pharmaceutical applicability of the optimized MTX-loaded nanomicelles for 

the targeted delivery of MTX was evaluated by incubation with OC cells (NIH:OVAR-5) and 

the treated cells were analyzed by the use of a MTT assay, confocal microscope for evaluation 

of the cytotoxic and uptake ability of the optimized MTX-loaded nanomicelles as described 

later in Chapter 5, section 5.2.6. 

 

 
(a) Zero order                                                             (b)  First order          

 
 

            (c)   Korsmeyer-Peppas model                                         (d)    Higuchi’s model                                                       

  
                                                             (e) Hixson-Crowell law 
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4.4. Concluding Remarks 

 

MTX-loaded PNIPAAm-b-PAsp nanomicelles were optimized utilizing a Face-Centred Central 

Composite Design. Nanoformulations of PNIPAAm-b-PAsp nanomicelles were initially 

synthesized employing a dialysis tubing method, however, the DEE was further enhanced by 

employing a solvent evaporation method. Design optimization investigations revealed the 

notable influence of the variables, namely amount of copolymer and homogenizer speed, on 

the dependent variables (size, MDT, DIE, cumulative release). These variables interacted 

significantly to affect the MDT (p=0.042). The MTX-entrapment efficacy was considerably 

enhanced through MTX encapsulation onto the inner hydrophobic core of the amphiphilic 

PNIPAAm-b-PAsp nanomicelle. The development of amphiphilic core-shell nanomicelles with 

adequately small size was verified utilizing scanning electron microscope and transmission 

electron microscope imagery. The MTX release kinetics of the optimized formulation was best 

described by the Higuchi square root model with an R2 value of 0.8459 indicative of drug 

release from the nanomicelles as a square-root of time-reliant mechanism confirmed by 

Fickian diffusion law. The MTX-loaded nanomicelles also noticeably minimized the cytotoxic 

side-effects of MTX and enhanced therapeutic efficiency to tumor cells, by inclusion of MTX 

in the nanomicelles utilizing the PNIPAAm-b-PASP copolymeric composite to generate a 

superior antineoplastic chemotherapeutic nanosystem. Owing to the prospective use in 

targeted treatment, it is anticipated that the PNIPAAm-b-PAsp micelles are being further 

evaluated in an ovarian cancer cell line and mouse tumor model.  
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CHAPTER 5 

ANTI-MUC 16 FUNCTIONALIZED PNIPAAM-B-PASP NANOMICELLES FOR THE 

TARGETED DELIVERY OF METHOTREXATE TO HUMAN OVARIAN CARCINOMA 

CELLS 
 

 

 

5.1. Introduction 

Ovarian carcinoma (OC) is a challenging disease to treat since it is usually diagnosed in 

advanced stages (International Federation of Gynecology and Obstetrics (FIGO) stage III–IV) 

due to the lack of early indicative medical symptoms and the absence of early diagnostic 

methods . Targeted treatment using biomarkers for OC holds great promise to improve the 

survival of patients with OC. Actively targeted chemotherapy has considerably advanced to 

passive-targeting based on the Enhanced Permeability and Retention (EPR) effect. To this 

end, actively targeted chemotherapeutic drug delivery employing nanotechnology has had a 

remarkable impact on cancer treatment with the following advantages: 1) able to deliver 

antineoplastic drugs to treat specific cancer metastatic sites; 2) can reduce the quantity of 

drug necessary to achieve a required therapeutic dose at the target cancer tissue; and 3) 

reduces the quantity of drug to healthy cells thus decreases cell cytotoxicity (William et al., 

2009; Song et al., 2010; Sawant et al., 2012). In this context, the coating of nanomicelles with 

specific antibody targeting ligands can assist in conjugation of the nanomicelles to precise 

biomarkers and antigen receptors over-expressed on OC cells in order to target tumors with 

improved accuracy (Batrakova et al., 2004; Wang et al., 2007). The flexibility of coated 

amphiphilic nanomicelles is amenable to modified forms of chemotherapy. Targeting cancer 

cells at a molecular level using nanocarriers such as nanomicelles may be the ultimate goal 

for more personalized chemotherapy. Antibodies are the most significant target ligands that 

have offered a broad-spectrum of possibilities in terms of drug targeting and accuracy of 

interaction. Antibody-targeted nanomicelles (or immunomicelles) can be engineered by 

composite conjugation of antibodies (or nanobodies) onto the trigger (exposed free terminal) 

of a hydrophilic segment of the nanomicelle. This ensures active targeting nanomicelle 

preparation without any steric-hindrance for the ligand-antibody (Torchilin, 2002; Xie et al., 

2010).  

 

A significant consideration when preparing such nanomicelles is to ensure that 

functionalization with the antibodies do not significantly enlarge their size, since delivery and 

accumulation at the tumor environment is dependent on the magnitude of particle size limits 

posed by the compromised tumor blood vessels (Hobbs et al., 1998).  
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Therefore, this study has innovatively focused on the use of mucins (specifically MUC1, MUC4 

and MUC16) for the advanced design of a novel intraperitoneally administered (as opposed 

to conventional intravenous chemotherapy) OC cell-targeting nanomicelle drug delivery 

system to significantly improve the chemotherapy of OC. The uniqueness of the delivery 

system is via the use of antibody-functionalized nanomicelles to specifically target mucin 

antigens known to be over-expressed on OC cells. To our knowledge this has not been 

investigated before. Ovarian tumors display diverse and modified cell surface antigens such 

as HE4, CA 72-4, EGFR, SMRP, mesothelin, osteopontin, AFP, CTLA4, IFNα, KLK6, KLK6, 

PLA2G2A, ERBB2, IL-10 and mucins (MUC1-16) that differentiate cancerous cells from 

normal ovarian cells as well as from other healthy cells lining the peritoneum (Niloff et al., 

1986; Mogensen et al., 1990; Yin et al., 2002; Whitehouse and Solomon, 2003; Rump e al., 

2004; Chauhan et al., 2006; Moore et al., 2007). MUC16 specifically is an eminent cell surface 

antigen in OC that is shed into the serum and therefore it is also widely used clinically for the 

diagnosis and management of epithelial OC (Mogensen et al., 1992; Ja¨ ger et al., 2007; 

Teicher, 2009; Felder et al., 2014). The non-specific delivery of chemotherapeutics to healthy 

tissues other than the OC tumors is one of the leading cytoxicity challenges of chemotherapy. 

Therefore this study also endeavoured on surmounting this challenge by designing MUC16 

antibody-functionalized antineoplastic drug-loaded nanomicelles to specifically target OC cells 

via the peritoneum. Methotrexate (MTX) was used as a model drug in this study. The 

amphiphilic MTX-loaded nanomicelles were prepared by self-assembly and thereafter 

functionalized with anti-mucin16 (anti-MUC 16) antibody, resulting in the nanomicelle 

antibody-functionalized MTX nanomicelles. The composite was then incubated with OC cells 

(NIH: OVAR-5) with over-expression of MUC 16 and the treated cells were analyzed by the 

use of a MTT assay, confocal microscope and cell-Elisa Kit for evaluation of the targeting 

ability of the nanomicelle. 

  
 

5.2. Materials and Methods 

 

5.2.1. Materials 

 

Methotrexate (MTX), 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), 

100 IU/mL penicillin/100mg/mL streptomycin, RPMI 1640, 10% heat-inactivated fetal bovine 

serum (FBS) and 0.25%w/v trypsine 0.03%w/v EDTA solution were purchased from Sigma 

Aldrich (St. Louis, MO, USA). NIH: OVCAR-5 cells were purchased from Dr. Tom Hamilton 

(Fox Chase Cancer Institute, PA, USA). RayBio® Human CA-125 (MUC16) Elisa Kit for serum, 

plasma, cell culture supernatants, and urine (96-wells) were purchased from Biocom Biotech 

(Pty) Ltd. (Centurion, Pretoria, RSA). Anti-MUC16 antibody [OC125] ab693 was procured from 
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Abcam Inc. (Cambridge, USA). Purified deionized water was prepared by a Milli-Q System 

(Millipore Co., Billerica, MA, USA). 98% DMSO, N,N’-dimethylformamide (DMF), 

tetrahydrofuran (THF), ethyl ether and petroleum ether (30-60°C) was obtained from Merck 

Chemicals Co. (Pty) Ltd. (Darmstadt, Germany) and were of analytical grade. Culture plates 

were purchased from Corning Inc. (NY, USA). All OC cells were grown in an incubator from 

RS Biotechnological Galaxy (Irvine, UK) maintained at 37°C in a fully humidified atmosphere 

of 5% CO2. All cell experiments were performed in the logarithmic phase of growth. 

 

 

5.2.2. Preparation of the Anti-MUC 16 Functionalized MTX-Loaded Nanomicelle 

 

 

5.2.2.1. Synthesis of the amphiphilic PNIPAAm-b-PASP copolymer for the Nanomicelle  

 

Firstly, a copolymer comprising PNIPAAm-b-PASP was synthesized by solvent evaporation 

as described previously (Lu et al., 2003; Daman et al., 2014). Thereafter the PNIPAAm-b-

PASP copolymer (0,125g, 0.0079mmol), anti-MUC 16 antibody (0.2mL, 0.022mmol), NHS 

(0.60mg, 0.0522mmol) and DCC (10.8mg, 0.0522mmol) were dissolved in 10mL DMF. The 

solution was mixed under a N2 atmosphere at room temperature in the dark for 14 hours before 

dilution with 25mL deionized water followed by centrifugation to extract DCU. The aqueous 

supernatant was further extracted by membrane dialysis against deionized water for 24 hours 

with subsequent lyophilization. 

 

 

5.2.2.2. Preparation of the MTX-loaded Nanomicelle  

  

MTX-loaded nanomicelles were prepared by solvent evaporation as reported previously (Wei 

et al., 2009). Briefly, 7mg MTX and 25mg of PNIPAAm-b-PASP were dissolved in 5mL DMF 

with 20mL distilled water added dropwise to the solution under homogenization at 360rpm for 

5 minutes at room temperature. This was followed by solvent removal using a rotary vacuum 

evaporator to obtain a nanomicelle solution that was then filtrated through a 0.2μm filter 

membrane to remove any residual MTX with subsequent lyophilization. The anti-MUC 16 

antibody functionalized MTX-loaded nanomicelles were prepared with modifications by 

introducing the anti-MUC 16 functionalized block copolymer (Fig. 5.7) (Bae et al., 2007; Wang 

et al., 2007; Bae et al., 2009). Furthermore, blank FITC-labeled targeted nanomicelles were 

prepared with modifications of replacement by a FITC-labeled block copolymer. The FITC-

labeled block copolymer was prepared as reported previously (Zhang et al., 2010). 
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5.2.3. Evaluation of the Molecular Structural Integrity of the Functionalized 

Nanomicelles  

 

Fourier Transform Infrared (FTIR) spectroscopy (Perkin Elmer Life and Analytical Sciences 

Inc., Shelton, CT, USA) was utilized to differentiate the molecular structure of the block 

copolymer Nanomicelle following nanomicelle coating with the anti-MUC 16 antibody. Firstly, 

a background IR spectrum of a native KBr was scanned. Nanomicelle samples of 20mg were 

triturated with 2g KBr and 8 tons using a 13mm die to produce a compact thin pellet. Pure 

MTX, blank nanomicelles, MTX-loaded nanomicelles and the MTX-loaded Nanomicelle was 

characterized by FTIR in the mid-IR region between 650-4000cm-1. 

 

5.2.4. Particle Size, Zeta Potential and Morphological Analysis of the Nanomicelle 

 

The nanomicelle size (with and without anti-MUC 16), the zeta potential and polydispersity 

index (PdI) were determined using a ZetaSizer NanoZS instrument (Malvern Instruments, 

Worcestershire, UK). Briefly, 2mg of nanomicelle samples were initially dispersed in deionized 

water. The nanomicelle solution was subsequently filtered with a 0.22μm Millipore filter 

(Billerica, USA) to remove any polymer aggregates. The results were determined utilizing 

active dynamic light beam scattering (DLS). Transmission Electron Microscopy (TEM) and 

Scanning Electron Microscopy (SEM) (Jeol 1200 EX, Japan) were also used to determine the 

morphology of the nanomicelles. The in vitro release profiles of MTX from the MTX-loaded 

nanomicelles  and the MTX-loaded Nanomicelle was undertaken in a simulated tumor 

environment (PBS; pH 6.5; 37°C) by a membrane dialysis method previously reported by 

(Zhang et al., 2010). 

 
 

5.2.5. Determination of MTX Encapsulation into the Nanomicelle 

   

Drug encapsulation efficiency (DEE %) was determined using Equations 3.2 and 3.3. The 

quantity of MTX encapsulated within the nanomicelles was measured by introducing a 

weighed quantity of nanomicelles into 10mL PBS (pH 7.4; 37°C) followed by centrifugation at 

5000rpm for 60 minutes and the supernatant was sampled. The DEE% value was measured 

at ʎ306nm utilizing a linearity profile r2=0.99 with a Cecil 3021 UV spectrophotometer and 

instituting Equation 3.2 and MTX-encapsulation (%w/w) using Equation 3.3. Equation 3.2 and 

3.3 are described in Chapter 3, section 3.2.8. All measurements were performed in triplicate. 
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5.2.6. In vitro cytotoxicity assay 

 

The in vitro cytotoxicity of the Nanomicelle was investigated by a Methylthiazole Tetrazolium 

salt (MTT) Assay of NIH: OVCAR-5 cells. In order to determine the cytotoxicity of the MTX-

loaded nanomicelles and the effectiveness of anti-MUC 16 Nanomicelle for cellular 

internalization, NIH: OVCAR-5 ovarian cells that over-expressed the MUC 16 antigen on the 

cell surface were cultured in 96-well plates at the confluence/density of 10000 cells per well. 

After 1 day of incubation at 37°C with a 5% CO2 atmosphere the medium was removed and 

the cells were resuspended for 48 hours in fresh culture media comprising the MTX-loaded 

Nanomicelle, MTX-loaded nanomicelles, blank nanomicelles and pure MTX at various 

concentrations ranging from 0.01-10µg/mL. After 48 hours of cell incubation with the various 

treatments, the cell survival rate was measured using a tetrazolium salt MTT assay. At 

predetermined time intervals, 180µL of fresh RPMI growth medium and 20µL of MTT 

(5mg/mL) solution were added to each well. The plates were incubated for further 6 hours, 

and then 200µL of DMSO (for cell lysis) was introduced to each well to suspend any purple 

formazan crystals formed. The microplates were vigorously agitated before evaluating the 

relative color intensity. The purple formazan absorbance at 570nm of each well was measured 

by a Thermo Labsystems Multiskan Mk3 microplate reader.  

 

 
 

5.2.7. Confocal Microscopic Analysis of the Nanomicelle on NIH: OVCAR-5 

 

Cell mounting media was prepared by dissolving 2-4g paraformaldehyde and 2-0.4g NaOH in 

100mL of PBS. The PBS solution was prepared by adding NaH2PO4 (1.68g) and the pH was 

adjusted in the range of 7.5-8.0 by adding NaOH. Fluorescence specimen mounting media 

containing 20mM Tris (pH 8.0), 0.5% N-propyl gallate and 50-90% glycerol was also prepared. 



Intrinsic fluorescence of MTX was undertaken to investigate the permeation and internalization 

of the MTX loaded into the nanomicelles. NIH:OVCAR-5 cells were cultured on microscope 

glass coverslips (1cm) at a confluence/density of 1600 cells/slip placed in petri dishes and 

incubated for 24 hours at 37°C in FBS-free RPMI 1640 medium. The growth medium was 

replaced with 0.1% FITC-labeled MTX-loaded Nanomicelle samples in FBS-free RPMI 1640 

medium and incubated for 2.5 hours at 37°C. Following incubation the loading solution was 

removed, the cells were washed thrice with PBS to remove non-internalized MTX, then 

exposed to 4% buffered paraformaldehyde for 20 minutes at 48°C, rinsed thrice with PBS, and 

mounted on microscope glass slides using a mounting gel. The slides were observed under a 

confocal laser fluorescence scanning microscope (Leica TCS SP2, Germany). A sequence of 

images were obtained in the z-axis (0.5mm apart) with an Olympus FV300 confocal laser 
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fluorescence scanning unit coupled to an Olympus BX61 upright microscope. Images were 

developed by FluoviewTM software. 

 
 

5.3. Results and Discussion 

 
5.3.1. Analysis of the Molecular Structure Integrity of the Functionalized Nanomicelle 

 

FTIR spectral analysis is one of the most robust analytical techniques to evaluate the 

molecular structure block copolymer functional groups (Weers and Scheuing, 1991). FTIR 

spectra were analyzed to describe the interactions of the MTX-loaded nanomicelles and anti-

MUC 16. Data on the FTIR spectra for pure MTX, blank nanomicelles, MTX-loaded 

Nanomicelle and MTX-loaded nanomicelles are shown in Figure 1. As demonstrated, there 

were distinct chemical structure transitions for the functionalized MTX-loaded nanomicelles 

compared with the non-functionalized MTX-loaded nanomicelles. The FTIR spectra of the 

blank nanomicelles and MTX-loaded Nanomicelle were congruent with those of the native 

polymers PNIPAAm and ASP (Rimmer et al., 2007). This result showed that the polymer 

transformation occurred with minor chemical modification during the polymerization process. 

Hence, it was the nanomicelles revealed elemental chemical features that were representative 

of the native polymers. In addition, variations were also noted in the FTIR spectrum of the 

blank nanomicelles and MTX-loaded nanomicelles in Figure 5.1. The other peaks that were 

recorded in the MTX-loaded nanomicelles were due to the 1, 3 replacement composite 

(1516.53–1451.23cm−1) and a phenyl amino compound (1647.22-1451.13cm−1). This 

indicated that MTX was entrapped within the hydrophobic interior of the nanomicelle structure 

by weak electrostatic H-bonds involving the COO- moiety of MTX and the OH-group of aspartic 

acid or by the charged ionic groups involving the NH2 bonds of MTX and the COO-bonds 

existing in PNIPAAm-b-PASP. MTX was diffused within the PNIPAAm-b-PASP matrix in the 

amorphous form exclusive of any polymorphic transformation or alteration in the aqueous 

form. The anti-MUC 16 amine groups (N-H) were observed by the 1660.20cm-1 peak as well 

as the derived amine groups induced by the broad range O-H group and the C-H group 

observed between 1090.30-1310.11cm-1 that also overlapped the 1000.12-1200.22cm-1 

describing C-O groups that were attributed to the PNIPAAm-b-PASP copolymer. These 

transitions indicated that there was intensity of interaction with prominent interactions between 

the MTX-loaded nanomicelles and the anti-MUC 16 antibody that confirmed the surface 

coated functionalization of the MTX-loaded Nanomicelle. 



 
 

101 
 

 

 
 

Figure 5.1: FTIR spectra illustrating the molecular structural transitions of MTX, blank micelles, AF(MTX)NM’s and (MTX)NM’s. 
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5.3.2. Assessment of Particle Size, Zeta Potential and Morphology of the Nanomicelle 

 

The physicochemical analysis and MTX-loading limits of the nanomicelles were evaluated as 

shown in Table 5.1. Nanomicelle size is a key factor due to its influence in MTX entrapment, 

release and passive targeting ability via the Reticular Endothelial System (RES). The particle 

sizes recorded for the MTX-loaded nanomicelles and the MTX-loaded Nanomicelle were 

65nm and 75nm respectively with desirable PDI values of ≤ 0.5 (Figure 5.2). The MTX-loaded 

nanomicelles and MTX-loaded Nanomicelle displayed similar negative surface charges. The 

mean zeta potential values varied between -3.132mV for the MTX-loaded nanomicelles to -

4.712mV for the MTX-loaded Nanomicelle. These zeta potential values indicated that the 

MTX-loaded nanomicelles were balanced by electrostatic forces with potential aggregation 

outside the recorded limits. The nanomicelle aggregation can be overcome by decreasing or 

diluting the quantity of copolymer (PNIPAAm-b-PASP) used to prepare the MTX-loaded 

nanomicelles. 

 
Table 5.1: The physicochemical analysis of MTX-loaded polymeric nanomicelles with and 
without antibody (n=triplicate). 
 
 

 

Formulation 
 

Micelle size (nm) 
 

Zeta potential (mV) 
 

PDI 
 

DEE% 

MTX(NM’s 65 -3.132 0.104 80.6 

AF(MTX)NM’s 75 -4.712 0.078 78.6 

 
 

It can be seen from Table 5.1 that functionalization of the nanomicelle surface with anti-MUC 

16 has a slight influence on MTX DEE%. However, the DEE% of the MTX-loaded Nanomicelle 

remained as high as 78%. As shown in Table 5.1, the in vitro release behavior of the MTX-

loaded nanomicelles and the MTX-loaded Nanomicelle had similar release patterns with 80% 

of MTX released within 72 hours. The results also indicated that the controlled attachment of 

anti-MUC 16 did not significantly impact the in vitro release profile of the nanomicelles (Figure 

5.3).  
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Figure 5.2: Dynamic light scattering (DLS) plots of (MTX)NMs without (a) and (b) with anti-
mucin 16 antibody modified including PNIPAAm-b-PASP micelle hydrodynamic size and 
monotype size distribution (c) (MTX)NMs (65 nm), AF(MTX)NMs (75 nm).  
 
 
 

 
  
Figure 5.3: Methotrexate release from (MTX)NM’s and AF(MTX)NM’s in PBS (pH 7.4) at 37 

degrees. Each point depicts mean ±SD (n=3).  
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5.3.3. Morphological Characterization of the Nanomicelle 

 

TEM images revealed homogeneity and uniformity in the non-functionalized and 

functionalized nanomicelle formulations (Figure 5.4a and 5.4 b). These TEM images also 

showed that the non-functionalized and functionalized nanomicelles produced were at the 

nanoscale and spherical in shape. SEM images of the functionalized nanomicelles also 

displayed uniformity in surface morphology. These results further validated that the anti-

MUC16 ligands were coated onto the surface of the nanomicelles by covalent or non-covalent 

bonding and contributed to the surface morphology (Figure 5.4c and 5.4 d). 

 

 
 

 

Figure 5.4: TEM (a and b) and SEM images (c and d) of native NMs (a and c) and antibody- 
functionalized NMs (b and d) for interaction with mucin 16 particles. 
 
 

 

5.3.4. Cell Culture and In Vitro Cytotoxicity Assay  

 

In order to fully understand the potential of using the PNIPAAm-b-PASP nanomicelles for 

intracellular chemotherapeutics, the first factor that had to be observed was the cytotoxicity. 

The MTT assay as depicted in Figure 5.5 generated for pure MTX, the MTX-loaded 

nanomicelles, the MTX-loaded Nanomicelle and the blank nanomicelles showed increasing 

cytotoxicity with regression in cell viability after incubation for 72 hours as the formulation 
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concentration increased. While PNIPAAM-b-PAsp displayed superior biocompatibility in vitro 

even at the highest concentration of 0.01mg/mL a value of 86% cell viability was recorded. 

This high cell survival rate for PNIPAAm-b-PASP confirmed that the hydrophobic and Asp 

inner core offers excellent biocompatibility for intracellular biomedical applications. Although 

the cytotoxicity of the blank nanomicelles against NIH:OVAR 5 cells was insignificant (86% 

and 82% cell viability, respectively), increasing the concentration of MTX or the MTX-loaded 

nanomicelles (1-10 mg/mL) after 72 hours of incubation displayed a pronounced anti-

proliferation effect (45% and 40% cell viability). The results also showed that all MTX 

concentrations of 0.01µg/mL, 0.1µg/mL, 1µg/mL and 10µg/mL exhibited lower cytotoxicity 

than those of the MTX-loaded nanomicelles at the same concentration of MTX [cell viability of 

86±1% vs. 80±1% (0.01µg/mL MTX), 82±1% vs. 76±1% (0.1µg/mL MTX), 40±1% vs. 35±1% 

(10µg/mL MTX). This was also observed in all the MTX-loaded Nanomicelle formulations with 

concentrations of 0.01µg/mL, 0.1µg/mL, 1µg/mL and 10µg/mL that exhibited higher 

cytotoxicity compared with the MTX-loaded nanomicelles at the same concentration of MTX 

[cell viability of 80±1% vs. 76±1% (0.01µg/mL MTX), 76±1% vs. 70±1% (0.1µg/mL MTX), 

45±1% vs. 43±1% (1µg/mL MTX), 39±1% vs. 35±1% (10µg/mL), respectively. The cellular 

anti-proliferation effect due to MTX increased with encapsulation and further increased with 

the addition of the targeting ligand anti-MUC 16 to the encapsulating nanomicelles. The in 

vitro cytotoxicity caused by the MTX-loaded nanomicelles was due to the passive EPR 

influence whilst the enhanced cytotoxicity resulting from the MTX-loaded Nanomicelle was 

attributed to active MUC 16 receptor targeting and functionalization with anti-MUC 16 onto the 

PNIPAAm-b-PASP amphiphilic copolymeric nanomicelles. Thus, the enhanced cytotoxicity of 

the MTX-loaded Nanomicelle was due to the synergistic influence of MUC 16 mediated 

receptor targeting and modulation of OC cells by PNIPAAM-b-PASP copolymeric 

nanomicelles. 
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Figure 5.5: Tetrazolium salt MTT assay to evaluate the effect of MTX, (MTX)NM’s and 

AF(MTX)NM’s formulations on percentage viability of NIH:OVCAR-5 cells, blank micelles were 
utilllized as control, invitro cytotoxicity of MTX-incorporated polymeric micelles with and 
without antibody including control against NIH:OVCAR-5 cells (a,b). All NM’s were incubated 
with ovarian cells for 72 hours prior to cell viability evaluation in each treatment group. Each 
point depicts average ±SD (n =3). 
 

5.3.5. Confocal Microscopy Analysis of the Nanomicelle 

 

In order to confirm the intracellular distribution of the nanomicelles with and without anti-MUC 

16 functionalization, samples were labeled with FITC and observed under a fluorescence 

microscope. The intracellular distribution of FITC-labeled MTX-loaded nanomicelles and the 

MTX-loaded Nanomicelle was investigated to prove the targeted delivery of the MTX-loaded 

Nanomicelle into NIH: OVCAR-5 cells. Fluorescence microscopy analysis confirmed that the 

OC cells incubated with the MTX-loaded nanomicelles fluoresced (green) and was indicative 

of the MTX-loaded nanomicelle attachment to the surface of the NIH:OVCAR-5 cells and were 

not removed with PBS or aqueous medium (Figures 5.6b-c). On the other hand, OC cells 

incubated with the MTX-loaded Nanomicelle exhibited stronger fluorescent signals (bright 

green) and were also not removed with PBS or medium. This implied that the MTX-loaded 

Nanomicelle specifically targeted the NIH: OVCAR-5 cancer cells that over-expressed MUC 
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16 on the cell surface (Figures 6e-f). Surface engineering of the nanomicelles with anti-MUC 

16 was therefore a useful strategy to increase the cellular uptake of the MTX-loaded 

NnaoComposite. 

 

 
 

Figure 5.6: Confocal fluorescence microscopy for determination and analysis of cell uptake 
with antibody binding on the surface of micelles [(a-b) control micelle transmission images, (b-
f) fluorescence overlay images of NIH:OVCAR-5 cells treated with (MTX)NMs (b-c) and  
AF(MTX)NMs (e-f) formulations showing selective enhanced uptake following 24 hour 
incubation.  
 

5.3.6. Mechanism of Synthesis of the Anti-MUC 16 MTX-Loaded Nanomicelle  

 

Amphiphilic block copolymers are expected to offer improved applications in 

chemotherapeutics owing to nanomicelles used as nanocarriers for ionic and non-ionic drug 

loading (Qiao 2010; Abolmaali et al., 2013; Bastakoti et al., 2013). Ionic 

complexes/composites involving anionic antineoplastic drugs and aspartic acid can be 

produced and nanomicelles further synthesized by self-assembly of the drug and amphiphilic 

copolymer in an aqueous medium. In this amphiphilic structure, the hydrophilic surface shields 

the hydrophobic interior from the interaction of the inner core with the surrounding aqueous 

environment that confers the nanomicelles to be used as a vehicle for targeted drug delivery. 

The limitations of nanomicelles include the inaccuracy in directly targeting tumor tissue, its 

potential toxicity, relative instability in the circulatory system, rapid degradation and clearance 

by the immune system and the lack of controlled drug release over prolonged periods of time 

(Jeong et al., 2009; Wang et al., 2012; Díaz and Vivas-Mejia, 2013). In order to overcome 

these limitations, this work focused on preparing functionalized nanomicelles with anti-MUC 
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16 ligands to facilitate specific targeting of OC cells and. To date, a wide range of active 

targeting approaches including the use of folates, antibodies, peptides, aptamers transferring 

and oligosaccharides have been utilized to achieve site-specific targeting of nanomicelles to 

cancer cells (Duncan, 2006; Sun et al., 2008; Prabaharan et al., 2009). 

 

 

In this study, a more efficient strategy (under moderate formulation conditions) was utilized to 

ensure superior targeting of the functionalized core-shell nanomicelles using a simplified 

synthetic approach outlined in Figure 3.1 and Figure 5.7. The physical synthesis comprised 

two synthetic steps: 1) the block copolymer constituted an aspartic backbone and PNIPAAm 

outer surface in order to self-assemble the MTX-loaded core-shell nanomicelles by solvent 

evaporation in an aqueous medium. The polycationic backbone formed between PASP and 

MTX generated the inner core of the nanomicelle while the non-ionic PNIPAAm formed the 

outer hydrophilic shell. PASP was used to conjugate the MTX (a carboxylic drug) to its amine 

groups to form an amide (CO-NH) linkage. Furthermore, the anti-MUC16 antibody was surface 

coated to the nanomicelles via carbodiimide-sulpho-NHS mediated conjugation through 

carboxylic (COOH) linkage of PNIPAAm-b-PASP copolymer. This linkage was also significant 

for the elucidation of the orientation of the anti-MUC 16 to ensure binding affinity and stability. 

In this case, the MTX-loaded nanomicelles were incubated with 1-ethyl-3-(3-

dimethylaminopropyl)-carbodiimide and N-hydroxysuccinimide for 15 minutes at room 

temperature. The resulting activated nanomicelles were then covalently linked to the anti-

MUC16 antibody (1% weight compared with the polymer concentration) (Figure 5.7). The 

resultant anti-MUC16 antibody-functionalized MTX-loaded nanomicelles (the Nanomicelle) 

were then lyophilized (Freezone 6, Model 79340, Labconco, MO, USA). Furthermore, the 

prepared Nanomicelle was directly targeted and interacted with the NIH: OVAR 5 cancer cells 

for intracellular uptake into the cytoplasm via receptor-mediated endocytosis through amide-

carboxyl linkage (Figure 5.8). MTX was then released from the Nanomicelle and inhibited 

malignant cell division and multiplication in their late G2 or M phases by restraining the 

dihydrofolate reductase enzyme activity and reduced/eliminated OC cells. 

 



 
 

109 
 

-CH-CH2 SCH2CH2NH C

O

NH H

NH

CH(CH3)2

C O

2

34 5

6

7

8

9

CH

CH2COOH

1

nn

PNIPAm-b-PAsp

N

N

N N

NH2

H2N

CH2

N CH3

C
O

N
H

CH COOH
H2
C

H2
C

3

4

2

1

HOOC

Micellization by  solvent evaporation
method

Functionalization 
by antibody attachment

Methotrexate

to form Methotrexate loaded micelles

(NHS/EDC)

 
 
 

Figure 5.7: A schematic illustration of monoclonal antibody-mediated methotrexate loaded 

nanomicelle drug delivery system. 
 
 

The results of this study confirmed that MTX can be loaded into the inner core of the 

PNIPAAm-b-PAsp nanomicelles and the carboxyl-amine-groups of the nanomicelles were 

amenable to surface coating with the anti-MUC 16 antibody. The resultant functionalized MTX-

loaded nanomicelles directly targeted OC cells while leaving healthy cells without expression 

of the MUC 16 antigen untouched. 
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Figure 5.8: Schematic illustration of (antibody-antigen interaction) the anti-mucin 16 

methotrexate loaded micelle interaction with mucin 16 (as known as CA 125) receptor.  
 

 
It is well known that MUC 16 is highly expressed on malignant cells and not on healthy cells 

and therefore the Nanomicelle can impede tumor growth and even stem metastasis based on 

the binding to MUC 16. In addition, it is important to note that OC cells also use MUC 16 as a 

mechanism for metastasis via mucoadhesion to other organs within the peritoneum. Thus the 

developed Nanomicelle has far-reaching potential for the targeted treatment and management 

of OC using advanced nanochemotherapeutics. 

 
 

 

5.4. Concluding Remarks 

 

In this study, biodegradable copolymeric PNIPAAm-b-PAsp nanomicelles functionalized with 

anti-MUC 16 was developed an evaluated for the ability to provide targeted receptor-mediated 

endocytotic delivery of MTX to OC cells. Characterization studies confirmed that the 

Nanomicelle was pharmaceutical stable and cellular uptake studies showed that the MTX-

loaded Nanomicelle exhibited improved intracellular uptake compared with the MTX-loaded 

nanomicelles when exposed to NIH: OVAR5 cells that over-express MUC 16 receptors. The 

Nanomicelle also noticeably minimized the cytotoxic side-effects of MTX. In conclusion, the 

Nanomicelle can directly target and specifically reduce or eliminate OC cells in a targeted 

manner and thus shows great promise for application in clinical OC detection, targeting and 

chemotherapy.  
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CHAPTER 6 

IN-VITRO SYNTHESIS, CHARACTERIZATION AND EVALUATION OF A BIO-

RESPONSIVE IPN NANOMICELLE/HYDROGEL COMPOSITE BASED IMPLANT FOR 

HUMAN OVARIAN CARCINOMA TREATMENT 

 

 

 

6.1.  Introduction  

While the advancements in novel chemotherapeutic drugs continue, focus has been stirred to 

improve targeted drug delivery platforms (Weinberg et al., 2008). Recently, there has been 

great deal of interest in hydrogel matrix development for the controlled delivery of various 

chemotherapeutic agents (Ma et al., 2012). Hydrogels are hydrophilic three-dimensional 

network systems fabricated from synthetic and/or natural biomaterials which can strongly 

absorb and hold large quantities of water. The molecular structure of the hydrogel is formed 

by the hydrophilic monomers or functional domains in biopolymeric system upon the gel 

hydration in aqueous solution (Rosiak & Yoshii, 1999). Hydrogels are classified as permanent 

chemical gels when they are stable covalently cross-linked systems and reach equilibrium 

swelling rate depending on the polymer-water interaction and crosslink nework density 

(Rosiak & Yoshii, 1999). Hydrogels are also classified as reversible physical gels when the 

polymer networks are connected together by molecular bonds, and/or secondary 

intermolecular forces including covalent hydrogen bonding or hydrophobic and ionic 

interactions. In physically cross-linked network hydrogels, dissolution is hindered by physical 

intermolecular interactions between various polymer structures (Hennink & Nostrum, 2002). 

All these interactions are flexible, and are disrupted by modifications in physical settings or 

the utilization of strain (Rosiak & Yoshii, 1999). 

 

The water absorption capacity and porosity are the most significant properties of a cross-

linked hydrogel. The hydrophilic segments are foremostly hydrated upon interaction with 

aqueous solution which results in the development of primary bound aqueous solution. Thus, 

the network system swells exposing hydrophobic segments that are also water miscible. The 

network system also absorbs free water, due to the osmotic active force of the network system 

towards increased dilution. The further swelling is balanced by the covalent or physical 

networks, resulting in an elastic network negation force. As a result the hydrogel system will 

reach an equilibrium swelling rate that is dependent on the nature and constituents of the 

hydrogel network. The next phase is the degradation and/or disintegration if the network 

structure or cross-interfaces are dissolvable. Due to their increased water absorption and 
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biocompatibility, disintegratable hydrogels comprising of labile-bonds have been utilized in 

many applications (Rosiak & Yoshii, 1999; Hoffman, 2002; Nho et al., 2005; Benamer et al., 

2006).  

 

Generally, hydrogel systems have excellent compatibility since their hydrophilic exterior has a 

low intermolecular free energy when subjected to biological fluids, which leads to a low 

propensity for cells, peptides and proteins to attach to these exterior surfaces. Furthermore, 

the soft and rubbery form of hydrogels diminishes irritation to the local tissue (Anderson & 

Langone, 1999; Smetana, 1993). The networks between various polymer interchains lead to 

viscoelasticy and sometimes good elastic behavior while contributing to the gel structure 

(hardness) and stickiness. It is possible to modify the chemistry of hydrogels by controlling 

their polarization, surface functionality, mechanical strength and swelling kinetics (Syed et al., 

2011).  

 

The various modification techniques include adopted include reversible physical cross-linking, 

permanent chemical cross-linking, grafting copolymerization and direct or indirect radiation 

cross-linking (Hennink & Nostrum, 2002; Barbucci et al., 2004; Said et al., 2004; Fei et al., 

2000; Liu et al., 2002b). Such transformations can enhance the mechanical strength and 

viscoelasticity of hydrogels for biomedical and biopharmaceutical applications (Barbucci et al., 

2004; Nho & Lee, 2005; Rosiak et al., 1995; Rosiak & Yoshii, 1999). Various cross-linking 

agents including formaldehyde, epichlorohydrin, glutaraldehyde (GA), genipin and N,N-

methylenebisacrylamide have been employed to improve stability and applicability of 

hydrogels in drug delivery platforms. The mechanical or rheological properties of Poly(Vinyl 

Alcohol)-Chitosan-Poly(Acrylic acid) hydrogels have been validated to be controlled by 

thermal susceptibility, pH, cross-linkers and polymers used during preparation (Wang et al., 

2007). 

 

Implantable hydrogels for solid intratumors can be fabricated to release chemotherapeutic 

drugs overprolonged periods of weeks, or even months, thus diminishing the dire-need for 

daily administration of systemic chemotherapy. The intraperitoneal conditions that surround 

the tumor tissue including pH, temperature and electric charge vary quite considerably 

compared to surrounding conditions of health body cells. This facilitates stimuli-responsive 

drug delivery. The small chemotherapeutic delivery through implantable gels may not be an 

effective solution due to prolonged stable gel formation and may result in an initial burst 

release (Jain, 1999; Krupka et al., 2006; Shim et al., 2007). However, the use of multifunctional 

micelles and the distribution of immunodilators to the specific tumor site have potential for the 

effective cancer chemotherapy through implantable gels (Ma et al., 2012; Lee et al., 1999). 
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The implant response parameters are controlled by the molecular mass, constituency and 

ratio of the polymers utilized in forming the implant.  

 

Therefore the purpose of this phase of the study was to synthesize a cross-linked C-P-N 

hydrogel for the preparation of an in situ forming implant (ISFI) for ovarian carcinoma 

treatment. ISFI was fabricated by encapsulating a nanomicelle comprising of anti-MUC 16 

(antibody) functionalized methotrexate (MTX)-loaded PNIPAAm-b-PASP nanomicelles within 

non-fluorescence or fluorescence-labeled C-P-N hydrogel. Nanomicelles were fabricated as 

per protocol described in Chapter 5, Section 5.2.2.2. The C-P-N hydrogels were synthesized 

by radical polymerization of NIPAAm monomers in presence of glutaraldehyde (G) and N,N-

methylenebisacrylamide as crosslinkers as well as chitosan and poly(N-vinylpyrrolidone. The 

C-P-N hydrogels were characterized of their physicochemical and physicomechenical 

properties. The in vitro stability, morphology and biodistribution of nanomicelles post-

encapsulation within the C-P-N hydrogel of the ISFI and fluorescence-labeled nanomicelles 

were visualized employing real-time fibered fluorescence microscopy and optical Immuno-

fluorescence microscopy. 

 

6.2. Materials and Method 

6.2.1. Materials 

Natural and synthetic biopolymers such as Chitosan (MW=600.000) and Poly(N-

vinylpyrrolidone) (MW= 40.000) purchased from Sigma-Aldrich (Steinhelm, Germany). N-

isopropylacrylamide (MW=113), poly(N-vinylpyrrolidone) (MW=40.000), N,N-

methylenebisacrylamide, glutaraldehyde (GA) (25%), ammonium persulfate and methotrexate 

were purchased from Sigma Aldrich (St. Louis, MO, USA). Hydrochloric acid, potassium 

chloride, disodium hydrogen phosphate, and potassium dihydrogen phosphate were 

purchased from Merck Chemicals (Pty) Ltd. (Darmstadt, Germany).  Purified deionized water 

was prepared by a Milli-Q System (Millipore Co., Billerica, MA, USA). All other reagents used 

were of analytical grade and were employed as purchased. 

 

6.2.2. Synthesis of the Chitosan-PVP-PNIPAAm (C-P-N) hydrogel 

IPNs were prepared by free radical polymerization of N-isopropylacrylamide monomers in the 

presence of chitosan and poly(N-vinylpyrrolidone) (PVP). Poly (N-vinylpyrrolidone), N-

isopropylacrylamide (NIPAAm) monomers, N,N-methylenebisacrylamide, and glutaraldehyde 

crosslinkers were dissolved in aqueous chitosan solution (20 mL, 2% in 1.6% acetic acid), and 

stirred. Chitosan(C), poly(N-vinylpyrrolidone) (PVP), and N-isopropylacrylamide (NIPAAm) 
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were employed in 2.0:2.0:45 weight ratio. The ratios (w/w) between glutaraldehyde and 

chitosan in IPNs were 1%, 2%, and 4%. The weight ratio between N,N-

methylenebisacrylamide and NIPAAm was 4%. N,N,N’,N’-Tetramethylethylenediamine 

(TEMED)/ammonium persulfate (APS) solution was utilized as initiator in the cross-linking 

process of NIPAAm. Thereafter, APS-TEMED solution (24μL, 4%) was subsequently added 

to this reaction mixture. A cross-linked Chitosan-PVP-PNIPAAm (C-P-N) hydrogel formed 

within 1 hour of polymerization reaction at 250C. After 24 hours, the IPN hydrogels were 

washed with deionised water, dried in air/vacuum. The samples prepared were named as F1= 

C-P-N/1, F2= C-P-N/2, and F3=C-P-N/3 IPNs employing different concentrations of crosslinker. 

 

6.2.3. Physico-chemical characterization of the cross-linked C-P-N hydrogel 

6.2.3.1. Nuclear Magnetic Resonance (NMR) Spectroscopic analysis  
 

I1H-NMR measurements were applied to the C-P-N components for the confirmation of the 

copolymer structure and composition. For 1H-NMR measurement, 5 mg sample vacuum dried 

at 50oC for 48 hours was added into a 5mmᶲ NMR test tube, and further vacuum dried at 50 

0C for 48 hours, to which 500 µl D20 solvent was introduced, and lastly the test tube was 

vortexed to dissolve the polymer in solution. The NMR spectrum was generated using a Bruker 

DRX400 spectrometer (Bruker, Germany). 

 

6.2.3.2. Determination of Polymeric Structural variations  

Molecular structural changes in the polymer backbone may alter the inherent chain stability 

and therefore affect the physicochemical and physicomechanical properties of the selected 

polymer type for the intended purpose. The molecular structure of native polymers (CHT, PVP, 

PNIPAAm) the non-cross-linked, and cross-linked C-P-N hydrogel, blank micelles and drug-

loaded micelles were analyzed using FTIR spectroscopy to elucidate any variations in 

vibrational frequencies and subsequent polymeric structure as a result of drug–co-polymer 

interaction during nanostructure and hydrogel formation. Samples were analyzed in triplicate 

at high resolution with scans ranging from 4000 to 400cm−1 on a PerkinElmer Spectrum 100 

Series FTIR spectrometer coupled with Spectrum FTIR research grade software (Perkin Elmer 

Life And Analytical Sciences Inc., USA).  
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6.2.3.3. Differential Scanning Calorimetry analysis 

Thermal analysis of the native CHT, PVP and PNIPAAm, and cross-linked lyophilized C-P-N 

hydrogel were evaluated using differential scanning calorimetry (DSC) (Mettler Toledo DSC1 

STARe System, Switzerland). The samples were weighed (5-8mg) and sealed in perforated 

aluminum pans. The samples were further scanned at a temperature gradient of 10-260°C, at 

a rate of 10°C/min under an 8kPa N2 atmosphere. Indium steel (99.99%) served as a reference 

for all DSC scans. 

 
6.2.3.4. Thermogravimetric analysis  

Thermogravimetric analysis (TGA) of the native CHT, PVP and PNIPAAm and the C-P-N 

hydrogel was carried out by connecting the TGA software (PerkinElmer STA 6000, 

Beaconsfield, United Kingdom) to a Fourier transmission infrared (FTIR) spectrophotometer 

(PerkinElmer Spectrum 100, Beaconsfield, United Kingdom) to elucidate the chemical 

reactions and/or temperature changes that occurred when native polymeric components were 

blended together in the presence of GA as a cross-linking agent. The following parameters 

were employed for the analysis: heat from 30-450/500°C at a rate of 10°C/min and nitrogen 

gas (N2). The percentage mass loss was calculated using delta Y software against maximum 

decomposition temperature-initial decomposition temperature. 

 

6.2.4. Physicomechanical characterization of the fabricated C-P-N hydrogel system 

The micromechanical properties of the crosslinked hydrogel may directly influence the ability 

of the nanomicelles to diffuse out of the polymer matrix. Textural profile analysis was therefore 

conducted in a 2-fold approach: (a) micro-scale: Texture Analyzer (TA.XT plus Stable 

Microsystems, Surrey, UK) and (b) nano-scale: Hysitron’s nanomechanical instrument suite 

(nanoTensileTM 5000, Hysitron Incorporated, Minneapolis MN, USA), on the hydrated samples 

of the crosslinked polymer framework to characterize the 3D salient core regions of the 

crosslinked network in terms of Serial Force–Time/Distance profiles for necessary 

computations of Matrix Resilience, Energy of Deformation, Work performed in deformation 

and the Brinell Hardness Number. The parameter settings employed for the analysis are 

outlined in Table 6.1. Samples were analyzed for variations in MH (N/mm2), DE (J) and 

MR (%) (Table 6.1). 
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Table 6.1: Textural parameters employed for determination of C-P-N hydrogel matrix 
hardness, deformation energy and matrix resilience  
 

 

Parameters  
 

MHa(N/mm2)  
 

DEb (J)  
 

MRc (%)  
 

 

 

Pre-test speed  
 

 
 

1.00 mm/s  

 
 

1.00 mm/s  

 
 

1.00 mm/s  

Test speed  
 

2.00 mm/s  2.00 mm/s  2.00 mm/s  

Post-test speed  
 

10.0 mm/s  10.0 mm/s  10.0 mm/s  

Target mode  
 

Force  Force  10 % strain  

Target force  
 

0.98067 N  0.98067 N  -  

Trigger type  
 

Auto (force)  Auto (force)  Auto (force)  

Trigger force  
 

0.04903 N  0.04903 N  0.04903 N  

Load cell  
 

5 kg  5 kg  5 kg  

 
 

aMH: Matrix hardness, bDE: Deformation energy, cMR: Matrix resilience 

 

6.3.5.1. Water content of the cross-linked C-P-N hydrogel 

The C-P-N hydrogel samples were analyzed for water content determination using the Karl- 

Fischer Titrator (Mettler Toledo V30 Volumetric KF Titrator, Mettler Toledo Instruments Inc., 

Greifensee, Switzerland). Different percentage water volumes in the cross-linked C-P-N 

hydrogel were observed, being 10% water content for F1, 9% for F2 and 7% for F3. In the case 

of the ISFI, was influenced by cryoprotectant employed to preserve drug-loaded functionalized 

nanomicelles during the embedding process (Chen et al., 2010). 

 
6.2.4.2. Determination of the gelation temperature of the polymeric formulations 

utilizing oscillatory rheology 

Dynamic rheology is one of the most extensive methods to study rheological properties of 

polymer hydrogels, and is also the most direct and reliable way for the determination of sol–

gel transitions. Viscoelastic properties were measured with a Modular Advanced Rheometer 

system (ThermoHaake MARS Rheometer, Thermo Fischer Scientific, Karlsuhe, Germany) to 

indicate the storage modulus (G’), the loss modulus (G”), and tan δ of a aqueous solution of 

the sol, using cone plate geometry where the G’ and G” were recorded under constant 

deformation. The study of the flow properties was considered extremely significant to this 

study as it is central to the mechanisms by which the ISFI functions. At room temperature the 

implant remains in the liquid state to allow delivery via a 18G needle and at body temperature 

(37˚C) the implant forms a solid-like structure. In order to characterize and analyze the flow 
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behavior and determine the LCST or gelation temperature of the ISFI formulations, rheology 

studies were conducted using a Haake Modular Advanced Rheometer System (ThermoFisher 

Scientific, Germany). As the polymeric material acts as a visco-elastic solid, some background 

on viscoelastic solids is provided. In order to determine the lower critical solution temperature 

(LCST) and hence the gelation temperature of the ISFI formulation, the temperature of 

samples was ramped from 20-50˚C at a rate of 0.25˚C/min while applying the predetermined 

stress obtained from the stress sweeps previously described, at the frequency observed in 

that test. The gelation temperature was determined as the temperature at which the cross-

over of G' and G'' occurred i.e., the point at which the formulation was no longer acting as a 

liquid (G'') but as a solid (G'). In all cases a solvent trap was used to prevent sample 

evaporation. 

  

6.2.5. Surface morphological characterization of the cross-linked C-P-N hydrogel 

Surface morphology, surface area and porosity of the C-P-N hydrogel post-lyophilization was 

evaluated by employing SEM (JEOL JSM-Japanese Electronic Optical Laboratories, Tokyo, 

Japan) and a porosimetry analyzer (ASAP 2020 Micrometrics, Georgia, USA). Microscopic 

analysis of the surface of the nano-enabled structure of the C-P-N hydrogel was undertaken, 

by first lyophilizing the hydrogel at 25mTorr (Virtis™, Gardiner, New York, USA). The sample 

was mounted onto double-sided tape attached to a metallic sample stand and sputter-coated 

with a layer of gold. Each sample was viewed under varying magnifications at an accelerating 

voltage of 20keV. Surface properties of the C-P-N hydrogel structure were validated using a 

porosimetry analyzer (ASAP 2020, Micrometrics Georgia, USA). 

 

6.2.5.1.  Porositometric analysis 

Porosimetry was employed to determine various quantifiable aspects of the hydrogel’s porous 

nature such as total pore volume, surface area and average pore diameter which provides 

information about the distribution of macro-, meso- and micro-pores existing in the hydrogel 

illustrated in Table 6.2. These parameters were detected in triplicate using the surface area 

and porosity analyzer equipped with the ASAP 2020 V3.01 software (Micromeritics, ASAP 

2020, Norcross, GA, USA) where the porosimetric evaluations were performed in degassing 

(to remove air, gases and other adsorbed specimens from the sample surface) and analysis 

phases. 
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Table 6.2: Evacuation and Heating Phase Parameters used for Porositometric Evaluation of 

the C-P-N hydrogel.  
 

 

 

6.2.5.2 Determination of the swelling and erosion behavior 

The hydrogel system was dried by gradual replacement of water by ethanol and then drying 

in an oven at 60˚C until a constant dry mass was reached. Thereafter, they were immersed in 

PBS and allowed to swell. Samples were collected at selected time intervals using a thin 

needle, lightly dried with filter paper to remove excess PBS from the gel surface, and weighted. 

The swelling ratio (Sr, %) were calculated according Equation (6.1):  

 

 … (6.1) 

 

where, md and mw are the masses of the dry and swollen hydrogels at time t, respectively. The 

samples were then dried to constant weight (W i) in an oven at 50°C. The percentage matrix 

erosion (E, %) at time, t, were calculated using Equation (6.2): 

 

    … (6.2) 

 

where, Wdp is total weight of drug and polymer lost up to time t, W t is weight of dried partially 

eroded matrix at time t and D and P represent initial weight of drug and polymer added to the 

matrix. 

 

Sr =
mw − md

md
× 100 

𝐸 =  
 𝑊𝑖 − 𝑊𝑑𝑝  − 𝑊𝑡

𝑊𝑖 − (𝐷 + 𝑃)
 × 100 

 

Parameter  
 

Rate/target  

 

Evacuation Phase  
 

Temperature ramp rate  10°C/min  
Target temperature  40°C  
Evacuation rate  50.0mmHg/s  
Unrestricted evacuation from  30mmHg  
Vacuum set point  500μmHg  
Evacuation rate  60 min  
 

Heating phase  
 

Temperature ramp rate  10°C/min  
Hold temperature  30°C  
Hold time  900 min  
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6.2.6. Preparation of bio-responsive IPN nanomicelle/hydrogel composite based 

implant (ISFI) 

The ISFI was fabricated by encapsulating FITC labeled functionalized nanomicelle comprising 

anti-MUC 16 (antibody) functionalized methotrexate (MTX)-loaded PNIPAAm-b-PASP 

nanomicelles within the synthesized bio-responsive C-P-N hydrogel followed by freeze drying. 

Fluorescence-label nanomicelles were fabricated as per protocol described in Chapter 5, 

Section 5.2.2.2. In brief, non-FITC or FITC-labeled functionalized nanomicelles were loaded 

into the C-P-N hydrogel at a ratio of 1:5 (functionalized NM’s: C-P-N hydrogel). The FITC-

labeled functionalized nanomicelles in suspension were added drop-wise to the C-P-N 

hydrogel, and mixtures were also allowed to agitate until a homogenous mixture was attained 

under mechanical vortexing at 37°C.  

 

6.2.7. Drug encapsulation efficiency (DEE) 

DEE of the device will be calculated using Equation (6.3): 

 

𝐸 =  
 𝑊𝑖 − 𝑊𝑑𝑝  − 𝑊𝑡

𝑊𝑖 − (𝐷 + 𝑃)
 × 100 

  ... (6.3) 

 

where, Mactual and Mtheoretical are the actual drug amount and the theoretical loading amount in 

10mg of nanomiceller system, respectively.  

 

6.2.8. Determination of drug release from the ISFI at a simulated tumor site 

Drug release studies were conducted in an orbital shaker bath (37±0.5˚C, 25rpm). As 

discussed in Chapter 4, Section 4.2.6 of this thesis a dialysis tubing method similar to that 

described by Graves et al., (2007) was used. 30mL samples were drawn at the following 

intervals: 6 hours, 1 day, 3 days, 5 days, 9 days, 13 days and 17 days, 22 days, 27 days, 32 

days and 40 days. Pre-warmed buffer (30mL) was replaced at each time interval to maintain 

sink conditions. Large volumes were extracted to compensate for the poor solubility of the 

drug. Samples were passed through a 0.22μm pore size filter (Cameo Acetate membrane 

filter, Millipore Co., Bedford, MA, USA) and analyzed using a UV spectrophotometer (Specord 

40, Analytik Jena, AG, Germany) at the wavelength for methotrexate (MTX), 306nm, and the 

amounts of MTX were quantified using a calibration curve for the drug. Each ISFI formulation 

was tested in triplicate. The Mean Dissolution Time (MDT) as described by Pillay and Fassihi 
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(1998) at 30 days was calculated for each of the formulations using Equation 4.1 and a 

maximum MDT is the fastest drug release rate achievable (Govender et al., 2005). 

 

6.2.9 Ex vivo evaluation of the ISFI 

 

6.2.9.1. Cytotoxicity analysis of the polymer framework on cell culture 

The in vitro cytotoxicity and cytocompatibility of the AF(MTX)NM’s, ISFI and C-P-N 

formulations was investigated by a Methylthiazole Tetrazolium salt (MTT) Assay of NIH: 

OVCAR-5 cells as discussed in section 5.2.6. Briefly, in order to determine the cytotoxicity of 

the MTX-loaded nanomicelles and the effectiveness of anti-MUC 16 Nanomicelle for cellular 

internalization, NIH: OVCAR-5 ovarian cells that over-expressed the MUC 16 antigen on the 

cell surface were cultured in 96-well plates at the confluence/density of 10000 cells per well. 

After 1 day of incubation at 37°C with a 5% CO2 atmosphere the medium was removed and 

the cells were resuspended for 48 hours in fresh culture media comprising the AF(MTX)NM’s, 

ISFI and C-P-N at various concentrations ranging from 0.01-10µg/mL. After 48 hours of cell 

incubation with the various treatments, the cell survival rate was measured using a tetrazolium 

salt MTT assay. At predetermined time intervals, 180µL of fresh RPMI growth medium and 

20µL of MTT (5mg/mL) solution were added to each well. The plates were incubated for further 

6 hours, and then 200µL of DMSO (for cell lysis) was introduced to each well to suspend any 

purple formazan crystals formed. The microplates were vigorously agitated before evaluating 

the relative color intensity. The purple formazan absorbance at 570nm of each well was 

measured by a Thermo Labsystems Multiskan Mk3 microplate reader.  
 

 

6.2.10. Optical fluorescence imaging of fluorescence-labeled functionalized 

nanomicelles embedded within the C-P-N hydrogel framework system 

Fluorescence activities of the FITC or rhodamine-labeled functionalized NLPs embedded 

within the ISFI, C-P-N hydrogel stained with DAPI or trypan blue and double-labeled ISFI were 

further visualized using Olympus IX71 Immunofluorescence Microscopy (Olympus Co., Tokyo, 

Japan). All samples were mounted directly on a glass slide and thereafter dried under a fume 

hood prior to examination. Fluorescence measurements were executed at a different 

excitation and emission spectrum; 450/525nm for FITC, 540-625nm for rhodamine, 

540/585nm for trypan blue stain and 350/470nm for DAPI stain. The images for all samples 

were viewed at 10X magnifications. 
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6.3. Results and Discussion 

6.3.1 Synthesis of Chitosan-Poly(N-vinylpyrrolidone)-Poly(N-isopropylacrylamide) (C-

P-N) hydrogel 

Figure 6.1 illustrates the constituent chemical structures and mechanism of synthesis of the 

C-P-N composite hydrogel structure. Physicochemical characterization via NMR, FTIR, and 

TGA analysis indicated the formation of chitosan-poly(N-vinylpyrrolidone)-poly(N-

isopropylacrylamide) covalent bonds between the protonated amine groups of chitosan 

(annotated with green circles) and carboxylated groups of poly(N-vinylpyrrolidone) (annotated 

with blue circles). Both covalent crosslinking and chemical structure moderated the swelling 

of the IPN hydrogel. The synthesized C-P-N hydrogel was further confirmed with correlation 

from chemical structural formula and NMR peak assignments (Figure 6.1&6.2). 
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Figure 6.1: Illustration of constituent chemical structures and reaction mechanism forming 

composite hydrogel structure. Covalent crosslinking and chemical structure moderated the 
swelling of the IPN hydrogel 
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Figure 6.2: 1H NMR spectra of CHT-PVP-PNIPAAm hydrogel in D2O and peak assignment confirming 
the structure of the synthesized composite C-P-N.  
 

6.3.2. Assessment of polymeric structural variations of the cross-linked C-P-N hydrogel 

FTIR analysis of the C-P-N hydrogel proved successful radical polymerization of CHT, PVP 

and PNIPAAm, and interpenetration of GA within the cross-linked network (Figure 6.3).  The 

FTIR spectrum of the C-P-N hydrogel demonstrated peaks at 3428 and 1654cm−1 assigned to 

stretching vibration of –NH and –OH as well as CO vibration in the amide group, respectively. 

The peak at 1720cm−1 was attributed to the stretching vibrations of CO in the PVP-PNIPAAm 

molecule that was the difference between chitosan and the chitosan derivative (CHT-PVP). 

Figure 6.3 (b), generated from the PNIPAAm hydrogel sample exhibited significant peaks at 

1654, 1551, 1385 and 1369cm−1, which were assigned to the characteristic peaks of amide I, 

amide II and the isopropyl group, respectively. For the composite hydrogel, the intensity of 

absorption peak at 1654cm−1 was attributed to increased amide group compared with the 

CHT-PVP hydrogel due the incorporated NIPAAm. The intensity of the methyl peak and 

isopropyl peaks decreased when compared with PNIPAAm hydrogel. This indicated 

successful radical polymerization of CHT-PVP-PNIPAAm and interpenetration by GA and 

N,N-methylenebisacrylamide. 
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Figure 6.3: Vibrational-Spectroscopy-FTIR of Chitosan (a), PNIPAAm (b), PVP (c) and 

combinational CHT-PVP-PNIPAAm hydrogel (d). 
 

 

6.3.4. Assessment of thermal degradation at various heating rates 

The stability and decomposition temperatures of the native polymeric components (CHT, PVP 

and PNIPAAm) and lyophilized cross-linked C-P-N hydrogel were confirmed by TGA (Figure 

6.4). Samples were analyzed for both the initial and maximum decomposition temperature at 

30-450/500°C at a rate of 10°C/minute under N2 gas. Figure 6.4a and Appendix A(1) show the 

highest thermal stability point of the original CHT at 350°C, with less than 2% weight loss. At 

279.41°C, the CHT decomposed and its mass deplete as it vaporized with the maximum 

decomposition at 350°C. Figure 6.4b (Table in Appendix A(1)) represents thermal stability and 

decomposition of native PVP. Results show the highest thermal stability of PVP at 374.29°C. 

Initial decomposition temperature of PVP was at about 293.88°C, and the maximum 

decomposition temperature was 374.29°C. 66.31% of the mass was lost between the onset 

and offset range temperatures. Figure 6.4c and Appendix A(1) also represent thermal stability 

and degradation temperature of original PNIPAAm. The results displays the highest mass loss 

of about 95% at an initial temperature of 281.27°C and maximum temperature of 318.70°C. 

The quick depletion of mass may have been influenced by loss of water and full decomposition 

or polymer degradation, which influenced the high evaporation state. Figure 6.4d and 

a)  

b) 

c) 

d) 
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Appendix A(1) depict a thermograph of the post-lyophilized cross-linked C-P-N hydrogel 

(weight loss graph is the solid line, and its first derivative is the dashed curve). In the case of 

C-P-N, since the polymer networks are more tightly intertwined together, thermal stability of 

C-P-N is higher than those of the native polymeric components. This indicates the formation 

of C-P-N comprising of CHT, PVP, and PNAAm polymers. 

The data also demonstrated remarkable stability when native polymeric constituents (CHT, 

PVP and PNIPAAm) were mixed simultaneously in the presence of GA as a cross-linking 

agent to form the cross-linked hydrogel. Decomposition and mass depletion only occurred at 

around 350°C. This may have been influenced by the following:  

 amalgamated physicomechanical properties of each original polymer,  

 strong intermolecular and intramolecular hydrogen bonds occurring between the 

polymers in the presence of GA as a cross-linking agent.  

The data also demonstrated only single (slope)-stage degradation which shows high mass 

loss when the degradation temperature is reached. The cross-linked C-P-N hydrogel 

demonstrated a derivative temperature peak (Tp) at around 417.32°C; this observation 

could be attributed to a decomposition pattern associated with the highest amount of 

weight loss. 
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Figure 6.4: TGA thermographs of the cross-linked C-P-N hydrogel; native a) CHT, b) PVP 

and c) PNIPAAm and d) cross-linked C-P-N hydrogel. 
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6.3.5. Physicomechanical analysis of C-P-N Hydrogel  

The textural properties, water contents, hydration, swelling characteristics and rate of erosion 

were characterized on the lyophilized cross-linked C-P-N hydrogel samples post-exposure to 

a simulated tumor environment (STE) (0.1M PBS, pH 6.75; 37°C). 

 

6.3.5.1. Assessment of Textural properties of the cross-linked C-P-N hydrogel  

Textural properties of the cross-linked C-P-N hydrogel such as Matrix Hardness (MH), Matrix 

Resilience (MR) and deformation energy (DE) were measured in the unhydrated and hydrated 

state in a STE using a calibrated Texture Analyzer. Table 6.3 lists the Force-Time and Force-

Distance profiles of the cross-linked C-P-N hydrogel for determining a) DE, b) MR and c) MH. 

The unhydrated cross-linked C-P-N hydrogel showed high MR at a range of 11.53-14.42%, 

CPN/1-CP-N/3 respectively. However, when exposed to STE, the MR decreased (8.87-

13.37%). In the case of the MH value and deformation energy, the unhydrated samples 

showed high MH (10.67-12.76N/mm) and deformation energy (0.031-0.049J). However, the 

hydrated cross-linked C-P-N hydrogel had a slight decline in MH (7.97-9.65N/mm) and 

deformation energy (0.029-0.049J). These findings were influenced by hydrolysis or the 

swelling behaviour of the network structure in STE that results in chain relaxation of the C-P-

N hydrogel. 

 

Table 6.3: Textural profile of the unhydrated and hydrated cross-linked C-P-N hydrogel 
 

 

Unhydrated C-P-N hydrogel 

# F Matrix Hardness 
MH (N/mm2)  

Matrix Resilience 
MR (%) 

Deformation Energy DE 
(J) 

 

F1 
 

10.67 
 

11.53 
 

0.031 

F2 12.07 12.81 0.039 

F3 12.76 14.42 0.049 

Hydrated C-P-N hydrogel (% Decrease) 
 

F1 
 

7.97 
  

 8.87 
   

  0.029 

F2 8.87 10.38   0.036 

F3 9.65 13.37   0.040 
 

F1 = C-P-N/1, F2 = C-P-N/2, F3= C-P-N/3, F#: Formulation  

*DT= Decomposition temperature, aDelta Y= percentage weight loss from onset point until end 

point, #Peak Tp = First derivative peak temperature associated with highest rate of change on 

the weight loss. 
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Figure 6.5: Typical textual profiles of the cross-linked C-P-N hydrogel for determining, 

deformation energy, matrix resilience and matrix hardness. 
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6.3.6. Assessment of the gelation temperature using oscillatory rheology 

The crossover of the storage and loss modulus (G’ and G’’) indicates the gelation temperature 

(T˚g) for the hydrogel as illustrated in Figure 6.6 b. The storage modulus (G′) of a viscoelastic 

solid is associated with the solid properties or the elastic energy storage properties which 

indicated that the sample would return to its original state following removal of the 

deformational energy, while the loss modulus (G′′) explains the behavior of the viscoelastic 

solid when it is acting as a liquid i.e. the viscous properties of the sample representing the 

dissipation of energy after the application of the deformational stress. Hence at the point at 

which the storage modulus exceeded the loss modulus, the C-P-N hydrogel was behaving 

more like a solid than a liquid and hence this was used to determine the thermal gelation 

temperature. Gelation studies were also conducted on non-crosslinked samples and used as 

controls (Figure 6.6 a). 
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Figure 6.6: Typical profile obtained during oscillatory rheological testing of non crosslinked a) 

and crosslinked C-P-N hydrogel samples. The black circle demarcates the crossover point 
storage modulus (G′) and the loss modulus (G′′). 
 
 

6.3.7. Assessment of Surface morphological properties  

6.3.7.1. Porositometric analysis 

The morphology and architecture of the C-P-N hydrogel were observed employing Olympus 

BX 63 Pictures and SEM (Jeol JSM-120, Tokyo, Japan), Figure 6.7 (a-d) & (e-f) depicts the 

surface and cross sectional porous morphology of the C-P-N hydrogel respectively. The 

images reveal that developed structures have spherical interconnected pores with a random 

size distribution. The pore structures and size were controlled by various parameters including 

quantities of hydrophilic polymer or cross-linking agents. Furthermore, the pore shape and 

Crossover point 

point  

Crossover point 

point  

a) 

b) 
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size was influenced by the diffusion of water molecules during evaporation or lyophilization 

processes. 

 

Porosity data accumulated by employing a micrometrics Analyzer displayed linear isothermal 

adsorption and desorption indicative of highly porous C-P-N hydrogels. Different percentages 

of porosity were obtained from F1-F3. The percentage porosity showed a decrease with 

increased polymer concentration, being 90% for C-P-N hydrogel (F1), 85% for CP hydrogel 

(F2) and 80% for P-N hydrogel (F3). Typical C-P-N hydrogel formulation exhibited a type IV 

isotherm, which indicates microporosity (Figure 6.8). The isotherm was near P/Po=1, which is 

indicative of the presence of macrospores. In addition, SEM micrographs further reveal a pore 

structure with a spherical shape, an interconnected pore system and random distribution. 

Porosity distribution of the C-P-N hydrogels may have been controlled by the fabrication 

procedure, concentration of hydrophilic polymers (PNIPAAm and CHT), freezing temperature 

(-80°C, 48 hours) and freeze-drying (48 hours). The structure and architecture of developed 

porous C-P-N hydrogel exhibited essential parameters that may add advantages to prolonged 

release when drug-loaded functionalized nanomicelles escape through diffusion post-

embedded into the ISFI. Furthermore, an interconnecting pore network of the C-P-N hydrogel 

is even more important for cell culturing and proliferation studies following NIH:OVCAR-5 cells 

being cultured on the surface of the C-P-N hydrogel. 
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Figure 6.7: Digital images of the surface of the C-P-N hydrogel (a-d) and representative cross 

sectional area of C-P-N hydrogel observed by scanning electron microscope (SEM) (e-f).  
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Figure 6.8: Isotherm log plot of the polymerized C-P-N hydrogel. 

 

6.3.7.2. Assessment of the swelling and erosion behavior 

Matrix erosion (ME) of the C-P-N hydrogel in a STE was evaluated utilizing an orbital shaking 

incubator (at 20rpm, 37°C) over 30 days. Figures 6.9 a-b shows the ME of the non-cross-

linked and cross-linked C-P-N hydrogel. Figure 6.9a shows high ME on the non-cross-linked 

C-P-N hydrogel at about 65-79% weight loss over 30 days, for F1-F3 respectively. In contrast, 

Figure 6.9b displays low ME on the cross-linked C-P-N hydrogel at about 42-60% weight loss 

over 30 days, for F1-F3 respectively. The low ME is due to crosslinking decreasing hydrolytic 

cleavage. Furthermore, the presence of the biodegradable polymers such as CHT and 

PNIPAAm as building constituents of the C-P-N hydrogel may have added significant impact 

in erosion behaviors (Kean and Thanou, 2010). 
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Figure 6.9: Weight loss profiles of the C-P-N hydroge (F1-F3) in simulated tumor condition 

over 30 days; a) non-cross-linked C-P-N hydrogel and b) cross-linked C-P-N hydrogel. 
 

6.3.8. Morphological characterization of the ISFI 

Morphology of the ISFI was characterized by confocal microscopy and SEM. Figure 6.10 

evidently depicts the morphology of the drug-loaded functionalized nanomicelles post-

encapsulated into the C-P-N hydrogel of the ISFI. Figures 6.10 a-c shows the surface 

morphology of the ISFI with intact drug-loaded functionalized nanomicelles. Drug-loaded 

functionalized nanomicelles evidently possessed a uniform spherical shape previously 

demonstrated in Chapter 5, section 5.3.3 and Figure 5.4. Confocal microscopy further 

validates distribution of the labeled functionalized nanomicelles in the temporal polymeric-

based depot systems as previously discussed in Chapter 5, Section 5.3.5. Control native or 

unlabeled C-P-N hydrogel depicts no rhodamine activities. The overall results substantiates 

that drug-loaded functionalized nanomicelles remain intact post-lyophilization for 48 hours.  

 

 
 
 

Figure 6.10: Typical SEM micrographs of the drug-loaded functionalized nanomicelles post 

encapsulated within the C-P-N at 50x magnification (a &c), b) high magnification 100x of the 
ISFI.   
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6.3.9. Assessment of drug release from the ISFI at a simulated tumor site 

Studies conducted thus far had been completed employing the drug, folic acid due to its 

similarity with the chemotherapeutic drug methotrexate. With the determination of an 

optimized formulation, the release of MTX from the formulation had to be determined. To date, 

a calibration curve of MTX was prepared in order to quantify the amount of drug that had been 

released using standard UV spectroscopy. A stock solution of methotrexate in phosphate-

buffered saline was prepared at a concentration ratio of 0.4%w/v. Serial dilutions were then 

made to yield a concentration range of (0.00034-0.012 mg/mL). The solutions were then 

assayed using a UV Spectrophotometer (Specord 40, Analytik Jena, AG, Germany) using a 

wavelength of 306nm. The optimized formulation loaded with methotrexate (7mg/mL) was 

utilized as presented in Figure 6.11. Release studies as per Chapter 3, Section 3.2.13 of this 

chapter were conducted at 37°C in 0,1 M PBS of pH 6.75 to represent a simulated tumor 

micro-environment. The release profiles of MTX from the hydrogel drug delivery system 

(Figure 6.12) was established to exceed 30 days, with almost 20 % of the drug being released 

after this time. 

 

 

Figure 6.11: An optimized implantable antibody functionalized methotrexate loaded 
nanomicelles hydrogel composite delivery system. 
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Figure 6.12: Folic acid and Methotrexate release profiles from the optimized formulation over 

a month (30 days) period. 
 

 

The release of MTX from the formulation followed a pattern similar to that obtained for folic 

acid; however the MDT was 20.65 whereas formulations containing folic acid had a slighter 

higher MDT of 21.23. The pattern of release was also considered satisfactory, in that the 

formulation appears to have a fast release initially and then a steady release of drug followed 

by fast release. Weinberg et al. (2007) have suggested that a formulation would prove the 

best for the delivery of drug to solid tumors if it is able to provide an initial burst release at the 

specific site and then show continuous slow release of drug. MTX has a “time effect” i.e. the 

sensitivity of cells towards MTX increases with a time an implant releasing drug slowly will 

also be beneficial. The release of the drug in vivo will be discussed further in Chapter 7. 

 

6.3.10 Ex vivo evaluation of the ISFI 

6.3.10.1. Cytotoxicity analysis of the polymer framework on cell culture 

The cytocompatibility and/or cytotoxicity of the functionalized nanomicelles, C-P-N hydrogel 

and ISFI in the presence of NIH:OVCAR-5 cells was evaluated using MTT assay as previously 
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discussed in section 5.2.6. MTT assay as depicted in Figure 5.5 generated for functionalized 

nanomicelles, C-P-N hydrogel and ISFI showed increasing cytotoxicity with regression in cell 

viability after incubation for 72 hours as the formulation concentration increased. While C-P-N 

hydrogel displayed superior biocompatibility in vitro even at the highest concentration of 

0.01mg/mL a value of 86% cell viability was recorded, comparable to the observations in 

section 5.3.4. This high cell survival rate for PNIPAAm-b-PASP confirmed that the C-P-N 

hydrogel offers excellent biocompatibility for intracellular biomedical applications. 

Functionalized nanomicelles showed a low impact on cell viability or cytotoxicity 70±1%, while 

the effect on the C-P-N hydrogel 86±1% and ISFI 76±1% were slightly higher. These results 

validate that functionalized nanomicelles, C-P-N hydrogel and ISFI have low effect on 

extracellular methotrexate release post-cultivation in a cellular environment (37°C in a CO2 

condition) over 30 days. Slightly lower methotrexate levels in the presence of the 

functionalized nanomicelles encapsulated with C-P-N may have been influenced by the C-P-

N engineered to embed the nanomicelles. In addition, the presence of CHT also demonstrated 

a significant effect on sealing cell membrane damage through maintaining membrane integrity 

(Bhattarai et al., 2005; Heinemann et al., 2009). 
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Figure 6.13: Tetrazolium salt MTT assay to evaluate the effect of AF(MTX)NM’s, ISFI and C-

P-N formulations (a) on percentage viability of NIH:OVCAR-5 cells. AF(MTX)NM’s formulation, 
ISFI and C-P-N elutes were incubated with ovarian cells for 72 hours prior to cell viability 
evaluation in each treatment group. Each point depicts average ±SD (n =3). 
 

6.3.10.2. Fluorescence imaging of the fluorescence-labeled ISFI 

Fluorescence labeling technology in nano-pharmaceutics has been the most-often-used 

technology for validating the capability of targeting of the drug delivery system into a disease 

site (Martina et al., 2007; Wanga et al., 2010). In this chapter, fluorescence imaging was 

utilized for further validating ISFI formation and intracellular distribution. Figure 6.14 shows 

confocal fluorescence images of the ISFI. Unlabelled control micelles image (a), FITC-labeled 

functionalized nanomicelles (b-d) and C-P-N hydrogel stained with DAPI or trypan blue (e). 
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Figure 6.14: Confocal fluorescence images of the ISFI. Unlabelled control micelles image (a), 

FITC-labeled functionalized nanomicelles (b-d) and C-P-N hydrogel stained with DAPI or 
trypan blue. 
 

6.4. Concluding Remarks 

The formulated ISFI may provide an improvement to the available drug delivery systems 

and may provide adequate management of EOC in terms of chemotherapeutic efficacy, 

long-term pharmaceutical stability, specific targeted drug delivery and once-off drug 

administration. The data acquired in this chapter evidently confirmed the development of the 

ISFI formulated by encapsulating fluorescence-labeled functionalized nanomicelles within 

cross-linked C-P-N hydrogel. FTIR analysis revealed the existence of bands produced during 

molecular structural interactions or cross-linking of the polymers during the design of the C-P-

N hydrogel. In addition, these results propose that biomechanical features must also be taken 

into considation when designing the C-P-N drug delivery system.The mechanical properties 

of the permanent C-P-N hydrogel were influenced by gel flow which was observed in solid 

state rather than liquid state. In this case, G’ was greater than G’’, indicating that strong 

intermolecular interactions were obtained during C-P-N hydrogel formulation. Fluorescence 

imaging exhibited the specificity of the FITC-labeled nanomicelles post-encapsulatng within 

the double-labeled ISFI. Future studies are necessary to identify the ISFI’s ability for diagnosis 

and/or targeted chemo-treatment for afflictions such as EOC, since functionalized moieties 
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have previously been observed to have the ability for directing nanomicelles to specific sites 

of EOC. The results in this chapter also confirmed that biomechanical activivity and imaging 

techniques could be utilized as appropriate potential techniques for characterization of track-

labeled drug delivery nanomicelles post-encapsulated into an ISFI. 
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CHAPTER 7 

AN OPTIMAL MOUSE MODEL FOR HUMAN OVARIAN CARCINOMA RESEARCH AND 

EFFICACY OF VARIOUS CHEMOTHERAPEUTIC TREATMENT PROTOCOLS 

 

 

 

7.1. Introduction  

Epithelial ovarian cancer (EOC) is one of the most fatal gynaecological malignancies in which 

many patients are diagnosed at an advanced stage when the disease has already spread 

beyond the ovaries to the abdominal cavity (Whitehouse and Solomons, 2003; Wang et al., 

2011; Cho et al., 2013). Thus, some of the significant goals of ovarian carcinoma research 

include the identification of molecular markers which can be used to prevent this malignant 

disease, facilitate its earlier detection and treat it more effectively (Vanderhyden, 2003; 

Chauhan et al., 2009; Jacobs et al.,1992)). Various biomarkers have been employed to assess 

the growth of epithelial ovarian cancer and to detect the disease at an early stage (Bast et al., 

2005). Serum tumor biomarkers such as HE4, CA 72-4, EGFR, SMRP, mesothelin and various 

mucins (especially mucin 16-MUC16/CA125) have proven invaluable in the diagnosis and 

monitoring of treatment regimes in various types of ovarian cancer. MUC16 (CA125) is a well-

established clinical marker for the assessment of epithelial ovarian cancer (EOC) progression, 

regression and therapeutic response and is evaluated by quantifying serum, and ascitic fluid 

levels of the MUC 16/CA 125 antigen (Yin et al 2002; Rump et al 2004; Moore et al 2007; 

Felder et al 2014). The monoclonal antibody OC125/Mab anti-MUC16 identifies this tumor-

associated antigen which is over-expressed in epithelial ovarian cancer cells, but not in the 

epithelium of normal fetal and mature ovaries (Bast et al., 1981). Whilst being a sensitive 

biomarker, the role of CA125/MUC16 is restricted due to its elevated serum levels in some 

benign conditions including endometriosis, chronic liver disease, pleural, pericardial and 

peritoneal inflammation and pregnancy (first trimester),  to mention a few (Ja¨ger et al., 2007; 

Kafali et al.,2004). CA125/MUC16 in human ovarian carcinoma also forms a lubricating gel-

like barrier that surrounds ovarian tumor cells, protecting them against chemotherapy agents 

(Wang et al., 2008; Thériault et al., 2011).  

 

 
 

 Enzyme-linked immunosorbent assays/ELISAs for OC125 detect elevations in cancer antigen 

125 (CA125) concentrations in greater than 80 percent of epithelial ovarian cancer (EOC) 

patients’ sera but in less than 1 percent of control group sera from normal healthy women 

(Bast et al., 1983). The serum CA125/MUC 16 concentration is >35 U/ml in 60 percent of 

women with epithelial ovarian cancer. In the present study, quantification of MUC 16/CA 125 

concentration was conducted utilizing the highly sensitive Cancer Antigen 125 (CA125) 
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Human ELISA Kit (Code No. ab108653, Abcam, Cambridge, USA) with a minimum detectable 

concentration value of 5 U/ml. As part of the validation of this assay, normal healthy women 

were estimated to have CA125 concentrations below 35 units per ml which was consistent 

with the aforementioned ELISA assays. 

 

 
 

In evolving models of human ovarian malignancy, it is important to ascertain whether the 

selected model system mimics the biological behavior of ovarian cancer in human patients 

closely enough (Sallinen et al., 2006; Lin et al., 2007; Zhang et al., 2013). It has been 

established that, compared with cancer cell lines, only xenografts derived directly from fresh 

human ovarian cancer tissues are identical to the original malignancies in terms of MUC16/CA 

125 over-expression. This may be ascribed to the fact that cancer cell lines have been shown 

to transform their protein expression profiles and lose the heterogeneity implicit in in-vivo 

human carcinoma through continued in-vitro culturing (Deraco et al., 2011; Streppel et al., 

2012). A variety of mouse models of ovarian cancer have been developed, providing ample 

information regarding the genetic and developmental etiology of this disease (Denise and 

Connolly, 2009; Wang et al., 2008). There are three distinct applications for mouse model 

systems in cancer research: First, to support research into basic tumor biology (e.g. tumor 

tissue histomorphology including microvessel density/MVD and MUC 16 expression), 

secondly as a system for the refinement of chemotherapeutic drugs in preclinical trials, and 

lastly as a controlled system for testing novel clinical therapeutic agents and assays (Bruns et 

al., 2002). Intraperitoneal (IP) mouse model systems have proven essential in testing the 

therapeutic efficacy of a variety of intraperitoneal chemotherapies which has not been the case 

with the subcutaneous models. This is not altogether surprising, since peritoneal 

dissemination is the key feature of ovarian carcinomas, a feature which is thought to be related 

to MUC16 expression, since MUC16 is expressed by mesothelial cells lining the parietal and 

visceral peritoneum, as well as by the neoplastic ovarian carcinoma cells themselves. MUC16 

mediates cell contact and adhesion by binding to apical surface of the mesothelin and this 

MUC16-mesothelin interaction has a significant role in dissemination of metastasizing EOC 

cells to the peritoneal cavity. On the other hand, the subcutaneous ovarian carcinoma nodules 

do not disseminate (Orsulic et al., 2002; Roberts et al., 2002). 

 
 

Current treatment regimes for ovarian cancer make use of aggressive cytoreductive surgery, 

systemic chemotherapy and external beam radiotherapy (MacGibbon et al., 1999; Murdoch 

and Van Kirk, 2002; Borgeest, et al., 2002). While many patients initially respond to surgery 

and chemotherapy, the long-term prognosis is generally unfavorable, with recurrence and 

development of chemo-resistant disease (Khayat et al., 2000). Therefore, there is a dire need 

for improvement in early diagnosis and treatment strategies for this disease, which may 
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include the design and use of novel improved drug delivery systems that prolong drug 

bioavailability, thereby effectively minimizing the incidence of recurrent disease (Seiden, 2001; 

Cannistra, 2004). In this vein, the present study focused on the development of drug-loaded 

nanomicelles that specifically targeted MUC16/CA125 antigens on the surface of EOC cells, 

thereby improving drug bioavailability, minimizing drug-associated systemic side-effects and 

increasing overall survival rate in a mouse model.  

 

7.2.    Materials and Methods 

7.2.1. Materials  

 

Methotrexate (MTX), cisplatin [cis-dichlorodiammineplatinum(II); CDDP], 3-(4,5-dimethyl-

thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), 100 IU/mL penicillin/100mg/mL 

streptomycin, RPMI 1640, Phosphate Buffered Saline (PBS), 10% heat-inactivated fetal 

bovine serum (FBS) and 0.25%w/v trypsine 0.03%w/v EDTA solution were purchased from 

Sigma Aldrich (St. Louis, MO, USA). NIH: OVCAR-5 cells were purchased from Dr. Tom 

Hamilton (Fox Chase Cancer Institute, PA, USA). RayBio® Human CA-125 (MUC16) Elisa Kit 

for serum, plasma, ascitic fluid, cell culture supernatants, and urine (96-wells) were purchased 

from Biocom Biotech (Pty) Ltd. (Centurion, Pretoria, RSA). Anti-MUC16 antibody [OC125] 

ab693 was procured from Abcam Inc. (Cambridge, USA). Purified deionized water was 

prepared by a Milli-Q System (Millipore Co., Billerica, MA, USA). 98% DMSO, N,N’-

dimethylformamide (DMF), tetrahydrofuran (THF), ethyl ether and petroleum ether (30-60°C) 

was obtained from Merck Chemicals Co. (Pty) Ltd. (Darmstadt, Germany) and were of 

analytical grade. Culture plates were purchased from Corning Inc. (NY, USA). All OC cells 

were grown in an incubator from RS Biotechnological Galaxy (Irvine, UK) maintained at 37°C 

in a fully humidified atmosphere of 5% CO2. All cell experiments were performed in the 

logarithmic phase of growth. 

 

7.2.2. Mouse housing conditions and wellfare 

 

Four- to six-week-old female Swiss Athymic nude mice (purchased from Charles River 

Laboratories International, France, Inc.) were housed in a specific pathogen free (SPF) facility 

in IVC cages Air flow systems  ® filter top cage Type 2 L (Bioscape Eboco + Ethet Fusion, 

Emmendingen, Germany) and placed in stainless steel racks (Figure 7.1). The SPF room 

temperature was kept at 250C with 60-70 % relative humidity (RH) with a 12 hour light/dark 

rotation and then the nude mice were given a week of acclimatization before the experiments 

commenced, the details of the mice utilized in this study are illustrated in Table 7.1. Mice were 

fed ad libitum diet and water. All procedures were performed under sterile conditions in a 
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laminar flow hood. The animals were monitored daily for general health status. Animal ethics 

for in vivo studies was approved by Wits Animal Ethics Screening Committee, AESC Number: 

2012/46/05 and the study protocol adhered to these guidelines and those of the South African 

Council on Animal Care. Furthermore, approval of modifications to the study can be presented 

in Appendix B2. 

 

Table 7.1: Details of the optimal mouse model for human ovarian carcinoma research used 
in this study.   
 
 

Species Strain Sex Age/Body Mass Number required Location1 

Mice Swiss Athymic nude   F 4-6 weeks old, 
~ 26g 

120 

Central 

Animal 

Services 
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Figure 7.1:  Athymic nude mice were placed in inside sterile IVC cages air flow systems in 

SPF room at 250C with 60-700C relative humidity(RH), sterile fed ad libitum diet, water and 

bedding were also used to ensure the soothe-comfort and protection against infection.  

 

The measures which were used if needed to ensure that the animal’s welfare needs were met 

or enhanced and reduce suffering included doses, routes of administration, frequency of  

administration of analgesics. If the animals experience an anaphylactic response to the ISFI 

and its components, they were to be treated with the appropriate anti-anaphylactic agents and 

this was not encountered in this study. If the response is too severe, however, these mice 

were to be removed from the study. As a result of the growing cancer cells in the animals and 

chemotherapy, exclusion criteria included; a reduction in weight (>15%), animal distress 

possibly caused by hypersensitivity to the delivery system or drugs, characteristic sickly 

behaviour or deteriorating body condition and distinctive side effects such as neutropenia. 
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7.2.3. Cell Culture 

 

The NIH:OVCAR-5 cell line is an established ovarian carcinoma cell line that expresses the 

MUC16 antigen (Hamilton et al., 1983). This ovarian cancer cell line (NIH:OVCAR-5) was 

purchased from Dr Tom Hamilton (Fox Chase Cancer Facility, USA, Jerkitown, CA). The 

NIH:OVCAR-5 cells were cultured to 80% density and allowed to adhere in plastic tissue 

culture flasks in Roswell Park Memorial Institute (RPMI) growth medium supplemented with 

heat-inactivated fetal calf serum (FCS 10%), glutamine (2mM), penicillin/streptomycin (50 

units/mL) and insulin (50 units/mL), respectively. All the cancer cells were grown in an 

incubator from RS Biotechnological Galaxy (Irvine, UK) maintained at 37 0C in a fully 

humidified atmosphere of 5% CO2. Cells were sub-cultured weekly, harvested by trypsination, 

washed twice in PBS, stained with Trypan Blue and counted. Experiments were conducted 

after 1–2 sub-culturing cycles. A sterile hemacytometer was the instrument used for counting 

and this was done using the trypan blue exclusion assay. Trypan blue is a dye that stains the 

nuclei of non-viable or dead cells isolating them from live viable ones and allowing this 

distinction to be observed under the light microscope. A 0.4 %w/v trypan blue solution in sterile 

PBS (0.1 M, pH 7.4) was prepared for cell counting. A cell volume of 20 μL and a trypan blue 

volume of 60 μL were mixed together. The percentage of viable cells was calculated as a 

function of number of cells counted per number of quadrants counted as shown in Equation 

7.1. This was 1:3 ratio which produced a dilution factor of 4. 

 

% Viable cells =  
Number of cells couted 

    Number of quadrants counted 
  x dF  x 104   cells mL⁄  …… . Equation (7.1)  

 

 

where DF is the dilution factor used and 104
 is a constant. Only samples that exhibited viability 

of greater than 95% were employed in subsequent testing. 

 

7.2.4. Sterile preparation of ISFI formulations  

 

The IFSI formulation were fabricated as per protocol described in Chapter 6, Section 6.2.6. 

The formulations were prepared under a horizontal laminar flow unit (Labotec®, Midrand, 

South Africa) fitted with a HEPA sterile filter in a sterile room. Sterile settle plates of Trypton 

Soya Agar were placed at the corners of the laminar flow unit in order to determine the 

presence of possible contaminating micro-organisms. These plates were incubated at 37˚C 

and 25˚C for 24 hours to determine the presence of bacteria and fungi respective ly. A small 

amount of the final formulation was also streaked onto a nutrient rich blood agar plate and 

incubated at 37˚C for 24 hours to determine if the formulation was sterile. 
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7.2.5. Biocompatibility studies in mice   

 

Mice received the once-off drug loaded implant (ISFI) on Day 1 and were sacrificed after 1 

hour, 4 hours and then on days 2, 4, 6, 8 and 10. The area around the implant including skin 

and underlying muscle was resected. The flank opposite to the side of implant implantation 

was utilised as the control. The samples were preseved in formaldehyde (4%v/v) were sent to 

IDEXX laboratories where they were analyzed using routine histopathological methods. 

Briefly, sections of the samples were processed in an automated tissue histological processor 

according to a routine standard operating procedure. Following overnight tissue processing, 

wax blocks were prepared and 5μm slides were cut on a microtome before the sections were 

mounted on a microscope slide. These sections were stained with the Haematoxylin and Eosin 

staining method and mounted before microscopy was performed. 
 

 
 

 
 

7.2.6. Establishment of a model for induction of ovarian cancer using Athymic nude 

mice: Pilot study 

A pilot study was first conducted in order to evaluate feasibility and validity of the experimental 

procedures that includes; intraperitoneal injections, ovarian cancer induction, implant 

tolerance and measurement techniques for targeted drug delivery prior to performance of main 

study. All experiments were conducted inside an Esco Frontier™ DuoFume Hood in the 

specific pathogen free (SPF) facility. This pilot study confirmed ovarian cancer induction and 

no deficiencies in the design of the main study. 

 
 
 

7.2.7. Experimental design  
 
 

The study design described how the animals were allocated to experimental and control 

groups, the number of animals in each group (n), the probability level of confidence adopted, 

and how the experimental treatments were assigned to each group. A flow diagram was used 

in Figure 7.2, and the expemental design is explained in detailed in the subsequent 

subsections.  
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In vivo animal studies 
Athymic nude mice 

 

Day 1: Inoculation, all mice injected 
subcutaneously with 5 x 106 NIH:OVACAR-

5 cancer cells in 0.2µl RPMI in the 
peritoneal/s region.  

10 days after inoculation 
Tumor development will be measured 

using calipers and VEVO imager 
a volume of 2 cm3 fluid was extracted from 

peritoneal region. 
 

Experimental 
group 1 

 

10 mice injected with 

IPSI containing 

Methotrexate -loaded 

PNIPAAM-b-PASP 

nanomicelles. 

 

Experimental  
group 2 

 

10 mice injected 
 with IPSI  

containing anti- 
MUC16-targeted 

Methotrexate- 
loaded PNIPAAM-b-
PASP nanomicelles. 

 

Comparison group 3 

10 mice treated with 

15mg/Kg Methotrexate 

infused intravenously 

(i.v). 

 

Anaesthesia 

Anaesthesia achieved by subcutaneous intramuscular injection of Ketamine HCL (60mg/kg) and 
Xylazine HCL (10mg/kg).  

 

Blood Sampling 
 

Days 1, 4, 8, 16, 24, 32 after IPSI implantation 
Peritoneal fluid (2 cm3) collected with fine needle inserted through the abdomen. 

 

Placebo group 4 

10 mice injected 

with placebo IPSI 

containing 

PNIPAAM-b-PASP 

nanomicelles 

Pilot Study* 
23 mice (5 mice for each Group) 

Anaesthesia and Euthanasia 
 

- Mice will be intramuscular injected with anaesthetic followed thereafter by carbon dioxide 
inhilation to euthanize the mice after day 32. Blood sampled (4ml) collected via cardiac puncture 

 

Main Study* 
40 mice (10 mice for each Group)  
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Figure 7.2: Schematic representing of the study design and number of mice required for the 
in vivo preclinical studies using PNIPAAM-b-PASP methotrexate-loaded with/without antibody 
nanomicelles for targeting ovarian cancer cells. 
 
 
7.2.7.1. Intraperitoneal (IP) and Subcutaneous (SC) induction of Human Ovarian 

Carcinoma in Swiss Athymic Nude Mice – Pre-treament Phase 

 

The ovarian carcinoma induction stage of this study shall be referred to as the pre-treatment 

phase. All experiments were conducted inside an Esco Frontier™ DuoFume Hood in the 

specific pathogen free (SPF) facility. The model was generated by injecting female athymic 4- 

to 6-week-old nude mice SC and IP with 2 x 106 cells/ml and 2 x 108 cells/ml, respectively of 

NIH:OVCAR-5 cancer cell suspensions in 200 µl RPMI media as shown in Figure 7.3 a and b 

and protocol in appendix (D5). Inoculations were performed using a 26G gauge needle and a 

1 ml syringe.  
 

 

 

Figure 7.3: a) Inoculation of 1x106 NIH:OVCAR-5 cells/ml into the flank (SC) and b) 2 

x108 cells/ml into the peritoneal cavity of immuno-deficient Swiss nude mice respectively. 

 

Analysis 

Blood, peritoneal fluid analyzed using ELISA kit and UPLC.  
-Tumors measured using calipers and ultrasound (Vevo imaging). 

 

Harvesting of tissues for histological and immunohistochemical studies 

- Tissue surrounding tumors fixed and prepared for histopathology studies. 
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7.2.7.2. Acquisition of adequate mice stock for human ovarian carcinoma research 

 

Breeding of the nude was conducted in this study, for acquisition of sufficient stock for human 

ovarian carcinoma research. This was to surmount the cost challenges, since these animals 

are very expensive. Breeding of nude mice commenced with 15 breeders from Charles River 

France. However, breeding had its drawbacks: out of 8 liters produced only 1 or 2 were female 

nude mice and also out of 15 liters of in-bred mice only 5 or 6 survived, this was due to 

temperature fluctuations resulting in stress and cannibalism, although their ad libitium diet was 

supplemented with calcium.  
 

 

7.2.7.3. SC-inoculated mice 

To inoculate cells SC, the skin of the nude mouse was pinched between the index finger and 

thumb and the skin was dragged away from the soft-body of the mouse. Then, NIH:OVCAR-

5 cells were inoculated slowly and uniformly into the pouch formed by fingers, creating a 

single-bubble of cells underneath the skin and avoiding excessive spread of the injected-cells. 

In the SC-inoculated mice, growths were observed under the skin and were measured using 

an electronic digital Vernier caliper and a Vevo 2100® imaging system (Visualsonics Inc, 

Toronto, Canada) (Figure 7.5a-c). All tumor-bearing mice were further monitored until the 

tumors developed to their target size of 80mm3-100mm3, which was regarded as the baseline-

for initiation of treatment. Tumor sizes were evaluated using the formula 0,5 (length x breadth2) 

by measuring the surface length and breadth dimensions of the tumor every second day after 

tumor development, and also every second day after implantation of the AF(D)NMs treatment 

(Figure 7.5a). Using ultrasonography, tumor development was detected from day 1 PI-post-

inoculation (at the site of induction) until day 10 PI, and thereafter mice were scanned every 

second day after implantation of the AF(D)NMs treatment (Figure 7.4 and 7.5d).  
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Figure 7.4: Digital-image of anaesthetized SC (neck region) inoculated mouse scanned for 

tumor development using ultra sound Vevo® 2100 Imaging system (Visualsonics Inc, 
Toronto,Canada).  
 

 

7.2.7.4. IP-inoculated mice 

Mice were inspected weekly and tumor development with peritoneal carcinomatosis in the IP-

inoculated mice was monitored based on overall health using the following clinical positive 

indicators: presence of intra-abdominal nodular growths, distension of the abdominal cavity 

due to ascites, weakness, weight loss with extensive skin tenting due to dehydration and 

changes in behavior due to perceived pain (Figure 7.6a). One of the modalities used to assess 

IP tumor development was a Vevo 2100® imaging system (Visualsonics Inc, Toronto, 

Canada), which was used to detect early tumor development (Figure 7.4 and Figure 7.6b and 

c). Tumor-bearing mice were scanned from day 1 PI-post-inoculation (at the site of induction) 

until day 10 PI and thereafter mice were scanned every second day after implantation of the 

AF(D)NMs treatment, in order to evaluate treatment efficacy over the course of therapy 

(Figure.7.6b and c). 

 

7.2.7.5. Description of the anaesthetics, analgesics and drugs employed  

Mice were anaesthetized with Ketamine and Isoflurane before scanning for tumors using the 

Vevo® 2100 Imager. Description of the anaesthetics, analgesics and drugs used together with 

the doses and routes of administration are demonstrated in Table 7.2. Briefly, isoflurane is a 



 
 

152 
 

halogenated ether utilized for inhalational anesthesia; most common volatile anesthetic 

employed in veterinary medicine. The animals were place in the clean induction chamber 

disinfected with 10% ethenanol, and the chamber was closed securely. The oxygen was 

turned on so that flow rate is 1 liter/minute and the dial for isoflurane delivery was adjusted to 

3-4 %. The induction chamber was always kept functionally air-tight and animals confined in 

the closed chamber with gas flow. When animal lost righting reflex, isoflurane flow was turn 

off and induction chamber was flushed with oxygen for 20 seconds. The anaesthetized animal 

was removed onto a surface of a clean stage fitted with a heated pad; and its snout snugly 

attached onto a nose cone placed in the opening of the tube dialing isoflurane concentration 

to 1.5-2.0% and oxygen flow rate to 0.8 liters/minute. A pre-warmed gel specific to ultrasound 

imaging was smoothly applied on the inoculated area of the mouse. The imaging probe was 

properly placed on the region of interest and imaging was conducted. The imaging procedure 

was conducted by CAS trained staff to ensure appropriate mice monitoring, and as described 

in the approved protocol (chapter 1 of this thesis).  
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Table 7.2: Details of the anaesthetics, analgesics and drugs used together with the doses and 

routes of administration 
 
 

Drug/Substance Route (e.g., I.V., I.M.) Dose Frequency 

Cisplatin Intravenous  
 
 

4mg/kg 
 

Weekly administration 

IPSI (intraperitoneal) 20 mg/kg Once off injection of 

IPSI. 

Methotrexate Intravenous 10 mg/m2 Weekly administration 

IPSI (intraperitoneal) 20mg/m2 Once off injection of the 

IPSI 

Xylazine Intraperitoneal injection 10mg/kg Administered before 

injection of cancer cells, 

IPSI and prior to 

euthanasia.  

Ketamine Intraperitoneal injection 60mg/kg Administered before 

injection of cancer cells, 

IPSI and prior to 

euthanasia.  

Carbon dioxide  Inhalant 5% Administered Once off 

prior to euthanasia. 

Sodium Pentobarbitone Intracardiac injection 200mg/kg Administered once off 

to euthanasia. 

Isoflurine gas Inhalant 1.5-2% 
Once off prior to 

imaging 

Medical Oxygen Inhalant 12% 
Once off prior to 

imaging 
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Figure 7.5: a, b, c and d are SC inoculated nude mice with a tumor diameter of 4mm, measured using an electronic digital Vernier 

caliper a) and  Vevo® 2100 Imager d), respectively.  
 
 

   
 

Figure 7.6:  a) An IP-inoculated nude mouse with a moderately distended abdomen due to tumor growth, dissemination and ascites.  

b) Refers to an ultrasound image taken using the Vevo® 2100 Imager indicating a tumor diameter of 100 mm3 and c) is a 3D image of 
the circumference of the tumor. d) Reveals multiple coalescing tumor nodules disseminated throughout the peritoneal cavity (peritoneal 
carcinomatosis) as seen during the gross necropsy examination.   
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7.2.8. Experimental design 

Nude mice with growing tumors 10 days post-inoculation were then randomly allocated to four 

experimental groups including two experimental groups (a drug loaded nanomicelles ((D)NMs) 

implant and an anti-MUC16/CA125 functionalized drug loaded nanomicelles (AF(D)NMs) implant 

group), a comparison group (I.V drug only) and a placebo group of 10 mice each (n=10/group) 

(Figure 7.2). Tumor-bearing mice in the pre-treatment group were euthanized by 5% carbon 

dioxide (CO2) inhalation after 10 days once the tumors have developed to their target size of 

80mm3-100mm3, which was regarded as the baseline-for initiation of treatment. Organs including 

the liver, intestines, omentum, mesentery, lungs, pancreas, uterus, oviduct and ovaries, kidney, 

body wall (skeletal muscle lined by parietal peritoneum) and spleen, as well as solid tumors were 

collected and ascitic fluid was stored in heparinised tubes (Improve® Improvacuter® Lithium 

Heparin collection tubes, GmbH, Hamburg, Germany) at -800C. The 5mm3 tissue and organ 

samples were preserved in plastic containers filled 10% neutral buffered formalin for up to 5 days, 

whereafter the formalin- fixed (FF) samples were submitted to the Section of Pathology (SP), 

Department of Paraclinical Sciences (DPS), Faculty of Veterinary Science (FVS), University of 

Pretoria (UP), Onderstepoort (OP) for histopathology and MUC 16/CA125 

immunohistochemistry/IHC. The tumor-bearing mice in the 2 experimental, as well as the control 

and placebo groups were further subjected to chemotherapeutic efficacy studies. Survival curves 

were calculated utilizing the Kaplan-Meier method (Gu¨nther et al., 1999). Survival rate was 

evaluated as the number of days lapsed between the introduction of a chemo-treatment and 

euthanasia, and percentage (%) nude mice survival was the number of mice still alive in each test 

group following introduction of chemo-treatment.  

 

7.2.8.1. Chemotherapeutic Efficacy Studies in EOC-inoculated Nude (NU/NU) Mice 

 

Two intervention studies were conducted in this project and different model chemotherapeutic 

drugs and formulations were also employed. In the main study 1, implantable antibody- 

functionalized methotrexate-loaded PNIPAAm-b-PASP nanomicelles were utilized. While, in 

study 2, implantable antibody- functionalized cisplatin-loaded PEG-PBLG-PF68 

nanomicellesemployed for the targeted treatment of ovarian cancer. Hence, invitro results on 

cisplatin as a model drug were an essential section of study 2 not of this study 1. However, for 

clinical significance, both optimized formulation from study 1 and 2 were utilized in the invivo 

studies.   The two chemotherapeutic drugs utilized in study (1 & 2) were methotrexate (15mg/kg) 

and cisplatin (4mg/kg) respectively. In the main intervention study 1 with schematic representation 
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in Figure 7.2, anti-mucin 16/CA125 antibody-functionalized methotrexate-loaded PNIPAAm-b-

PAsp nanomicelles implants were used whereas in intervention study 2 anti-mucin 16/CA125 

antibody-functionalized cisplatin-loaded PEG-PBLG-PF68 nanomicelle implants were utilized for 

the targeted treatment of ovarian carcinoma in mice. PEG-PBLG-PF68, PNIPAAm-b-PAsp 

copolymers were utilized in the formulation of the drug-loaded nanomicelles and further 

encapsulated in hydrogel based implants. These implants were subsequently injected into the 

mice at a volume of 0.2 ml - (4mg/kg for cisplatin and 15mg/kg for Methotrexate) directly into the 

SC tumor or into a palpable tumor mass within the peritoneal cavity as depicted in Figure B(6f) 

Appendix B(6). Each mouse in the experimental group received a once-off implant (ISFI) 

treatment monitored for a period of 30 days whilst the comparison group (IV drug only) was 

administered treatment at 11-day intervals over the period of a month. Mice in all 4 groups were 

routinely weighed and tumor size was determined sonographically every five days. Mouse weights 

were consistently compared with weights at day 0 (first day of treatment administration) in order 

to determine the percentage weight variation. After a month of treatment the mice in the post-

treatment groups were euthanized in same manner as those in the pretreatment group. There 

was no difference in post mortal sample collection post-treatment compared to pre-treatment.  

 

 

7.2.8.2. Athymic nude mice Blood Sampling  

 

Blood samples from the tail and sephanus vein, via intra-cardiac puncture were collected pre-

inoculation, during the period of tumor growth, during the period of chemotherapeutic dosing and 

post-mortem respectively (Figure 7.7). This was to determine progression and regression of the 

MUC16 antigen and drug concentrations. At each time interval, 0.2 ml of blood was sampled. 

Mice were transported from the SPF unit in a closed, sterile IVC cage to the Vevo 2100 Imager 

for sonar imaging of tumor sizes. Thereafter, the mice were returned to an alternative sterile room 

in the CAS unit. Blood was sampled at each time point from different mice, to ensure that the 

maximum amount of blood was attained while simultaneously allowing each mouse to recuperate 

as shown in Appendix B2. 

 
 

Different chemotherapeutic drugs and formulations were administered and blood samples were 

obtained via intra-cardiac puncture after 1 h, 4 h and 8 h. After 24 h, 48 h and 72 h, mice were 

euthanized by carbon dioxide inhalation to sample 5mls of blood, organs and tumors, and the wet 

weight of the tissues was measured. Blood samples were collected in vacutainer tubes containing 

clotting factor to draw out serum (Figure 7.7 e). The blood tubes were allowed to rest overnight at 

4 °C for collection of plasma the following day. The supernatant, containing the plasma, was 
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carefully extracted and transferred into sterile 2 mL eppendorf tubes and were placed to freeze at 

-80 °C immediately till further analysis. The Blood and tissue immediately surrounding the implant 

samples obtained from mice were analysed with Ultra Performance Liquid Chromatography 

(UPLC) instrument and human ELISA kit, for detection of drug and MUC 16 antigen 

concentrations respectively. These were terminal procedures for each individual mouse to allow 

for adequate blood collection and organ excision (Beeton et al., 2007).  

 
 

 
 

Figure 7.7: Blood collection through the sephanus vein, during pre-inoculation, during the period 
of tumor growth, during the period of chemotherapeutic dosing (a-c), subsequently serum/plasma 
samples were extracted employing exxstat spin centrifuge from Idexx laboratories (d-e). 
 

 
 

7.2.8.3. Quantification of MUC16/CA 125 levels in Plasma and Ascitic Fluid 

 

Quantification of the MUC16/CA125 antigen in plasma and ascitic fluid was performed by means 

of the Cancer Antigen CA125 Human ELISA Kit (Code No. ab108653, Abcam, Cambridge, USA), 

which is based on the solid-phase assay system. The minimum measurable concentration of 

mucin 16/CA125 in this Elisa assay was 5 units per ml. For the purpose of Elisa-analysis, ascitic 

fluid and whole blood (obtained from cardiac punctures) were collected in heparinised tubes for 

plasma, respectively (Improve® Improvacuter® Lithium Heparin collection tubes, GmbH, 

Hamburg, Germany). The tubes were centrifuged at 3000rpm for 5 minutes to separate the cells 

from the plasma using a desktop centrifuge (Model TD5A-WS, Shanghai Luxiangyi Centrifuge 
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Instrument Co.,Ltd., Shanghai, China). The ascitic fluid and plasma were stored at -80°C, pending 

further processing. The selected Elisa employs a mouse monoclonal anti-MUC16/CA125 

antibody (Mab) against a distinctive antigenic determinant on the intact MUC16/CA125 molecule. 

The Mab was utilized for solid phase assay immobilization (on the microtiter-wells). A rabbit anti-

MUC 16/CA125 antibody conjugated to horseradish-peroxidase (HRP) was incorporated in the 

antibody-enzyme-conjugate solution. The assay sample was permitted to react together with the 

two antibodies, causing the MUC16/CA125 molecules to be sandwiched in-between the solid-

phase and enzyme-linked-antibodies. Following incubation at 37°C for 90 mins, the microtiter-

wells were rinsed with Wash-Buffer to clear unbound-labeled-antibodies. Tetramethylbenzidine 

(TMB) reagent solution was introduced and incubated for 20 mins, resulting in the formation of a 

blue color. The color-formation was quenched with the introduction of Stop Solution transfoming 

the color to yellow. The concentration of CA125 was directly proportional to the color intensity of 

the test sample. Absorbance was measured spectrophotometrically at 450 nm. 

 

7.2.8.4. Histopathology and IHC  

 

Formalin-fixed, paraffin-embedded (FFPE) organs from pre-and post-treatment mice (of both 

cisplatin-and methotrexate-treated nude mouse groups)  and  SC and  IP ovarian carcinomas 

were sectioned at 3-4 µm and routinely stained with Haematoxylin and Eosin (H&E). Additional 

3-4 µm-thick sections were submitted for IHC (specifically the immunoperoxidase labeling 

technique) to detect membrane-bound and extracellular/shed MUC16. Immunohistochemistry 

was performed by hand following validated protocols. The standard immunoperoxidase procedure 

for the detection of MUC16 included deparaffinization and hydration of slides, incubation with 3 

% hydrogen peroxide in methanol for 15 minutes to quench endogenous peroxidase activity, heat-

induced epitope retrieval/HIER (in a microwave using citrate buffer, pH of 6.0 for 14 min at 96 ᵒC) 

followed by non-specific immunoglobulin bindinga, incubation for 40 minutes with the mouse 

monoclonal anti-MUC16b antibody (diluted 1:50 in buffer c), with subsequent application of the 

Envision Polymer Detection Systemd according to manufacturer’s instructions. The reaction 

product was developed by incubating the tissue sections with a liquid 3,3’-diaminobenzidine 

(DAB) substrate/chromogen (included in the Envision Immunodetection System) for 1-2 minutes. 

Thereafter the sections were counterstained with Lilly Mayer’s hematoxylin for 20 seconds, rinsed 

with water for 10 minutes, routinely dehydrated through increasing alcohol concentrations and 

xylol, mounted using EntellanTM (Code No. 1076, Merck Millipore, Darmastadt, Germany) and 

coverslipped for examination using an Olympus BX43 light microscope. Positive-tissue controls 

included sections of mouse-inoculated human ovarian carcinoma (NIH:OVCAR-5 cell line) and 
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negative-mouse tissue controls included normal spleen, liver, omental and mesenteric fat, uterus, 

oviduct, ovary and pancreas. For negative reagent control purposes, bufferc was substituted for 

the primary antibody.  

 

7.2.8.5. Immunohistochemical Quantification of MUC16/CA125 antigens in FFPE tissue 

sections 

 

Positive labeling was identified as being brown in color and was observed in both cellular 

(cytoplasmic and cell membrane) and extracellular locations (in tubular lumina) throughout the 

neoplastic foci (Figure 7.8A). All IHC-labeled tissue slides (one slide per mouse) were scanned 

utilizing the Olympus dotSlide scanner (VS120-S6-W slide loader system in the Department of 

Anatomical Pathology at the Medical School, University of the Witwatersrand) for the generation 

of virtual slide images. The single neoplastic nodule with the most MUC16-specific positive 

labeling (as assessed with the naked eye) per slide was selected for quantification. The 

Dimension count and Measure module from the corresponding Olympus Cell Sens software 

(Wirsam Scientific and Precision Equipment PTY LD, Johannesburg, South Africa) was utilized 

to delineate and measure the area of each selected region of interest (ROI) per slide, and the 

calculation of the percentage IHC positive labeling within each ROI (per mouse) was performed 

with the assistance of the phase separation function (Figure 7.8A and B).  

 

 

Figure 7.8: A) Scanned IP-implanted, AF(D)NM’s-treated nude mouse tissue section showing a 

section (yellow ring) of ovarian carcinoma expressing MUC16/CA125 antigens (brown staining). 
MUC16/CA 125 IHC, DAB, chromogen, hematoxylin counterstain. B) Shows the region of 
interest/ROI delineated (yellow ring) and MUC16-positive signal (red) within the ROI for 
quantification using the Olympus Count and Measure function (Olympus cellSens software). 
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7.2.9. Applying Ultra Performance Liquid Chromatography (UPLC) to determine the 

Methotrexate content in blood and tissue samples 

Simple and sensitive analytical techniques for quantification are necessary in order to develop 

the understanding toward the correlation between pharmacokinetics, pharmacodynamics, 

pharmacology and the bioavailability of drug/methotrexate within a drug delivery system (Wang 

et al., 2009). Ultra Performance Liquid Chromatography (UPLC) is an exploratory method utilised 

to measure and enhances the analysis of samples encountered in pharmaceutical development 

(Wren et al., 2006). The blood and tissue samples were analyzed to collect information about the 

drug molecule through UPLC to ascertain drug concentration against time.  

  

7.2.9.1. UPLC analysis 

Detection and analysis was conducted on an Acquity® Ultra Performance Liquid Chromatography 

system (Waters®, Milford, MA, USA) fitted with an Acquity UPLC® BEH Shield RP18 1.7μm 

VanGuard precolumn (2.1x5mm) and an Acquity UPLC® BEH Shield RP18 column (2.1 x100mm, 

1.7μm particle size). The function of the guard column as the name implies was to prevent 

proteinaceous matter from reaching the column. Samples were run for 2 minutes and an injection 

volume of 15μL for plasma samples, or 10μL for tissue samples and implant samples was 

inoculated onto the column. Detection was via a photoiodide UV/Vis detector (PDA Detector). 

This allowed the recording of the full UV/Vis absorption spectra and determination of the highest 

absorption of the methotrexate as shown in Figure 7.9. Using this data, a wavelength of 310nm 

was used for the detection of methotrexate and pyrazinamide. 
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Figure 7.9: PDA plot showing the absorbance of MTX (retention time= 1.5mins) and PYZ 

(retention time= 1.1.mins). 
 
 

7.2.9.2. Preparation of weak and strong washes and mobile phases  

 

Considering the packing nature of the column, it can be easily understood that any particulate 

material in the system can cause blockages which would increase pressures and hence lead to 

failure of equipment. For this reason all solutions were prepared using double deionised water 

(DDW) (Milli-Q Gradient, Millipore, MA, USA, electrical conductivity 18.2MΩ.cm at 25˚C) and all 

solutions were freshly prepared daily and filtered under vacuum using Durapore® membrane 

filters (Millipore, Ireland). Gloves were worn at all times to minimise contamination. Priming 

solutions consisted of a weak wash (10%v/v acetonitrile) and a strong wash (90%v/v acetonitrile). 

Gradient elution was achieved using acetonitrile and phosphoric acid (0.1%v/v) as mobile phases 

in a method described in Table 7.3. 
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 Table 7.3: UPLC method for the elution of methotrexate and internal standard pyrazinamide. 
 

 

Time (min)  
 

Flow Rate(mL/min)  
 

% Phosphoric Acid  
 

% Acetonitrile  

Initial  0.400 95 5 

0.5  0.400 85 15 

1.0  0.400 75 25 

1.5  0.400 65 35 

1.6  0.400 95 5 

  

Precision and accuracy were determined by replicate injections of three concentrations of MTX. 

Intraday accuracy and precision was determined by multiple injections (n=3) of the three 

concentrations of MTX during the period of analysis on one day and inter-day accuracy and 

precision were determined by injecting the same three concentrations of MTX over 3 non-

consecutive days (n=3). Peak area and retention time were noted for each of the analyte runs. In 

order to determine the precision, the % RSD (Equation 7.2) for retention time and peak area was 

calculated. Accuracy was determined by comparing the obtained amount with the theoretical 

quantity. 

 

   % RSD =     
std dev  

mean
 X  100……………………………………………………………………Equation (7.2) 

 
 

7.2.9.3. Determination of the optimal method of extraction of drug from plasma samples  

 

Before samples of blood can be injected onto the UPLC column, proteins must be extracted. Two 

methods exist for achieving this: liquid-liquid extraction and solid phase extraction. Liquid-liquid 

extraction was chosen as solid phase extraction showed low levels of MTX in the final elute. 

Methanol was selected as the deproteinising agent in this study as other agents such as 

acetonitrile and perchloric acid proved ineffective. 

Extraction yield was determined by spiking 400μL blank plasma samples with fixed quantities of 

drug sample (100μL of a 0.1mg/mL MTX solution). To these samples differing quantities of 

methanol was added and UPLC analysis conducted on these samples was compared with 

samples of the drug solution (100μL of a 0.1mg/mL MTX solution) in the same quantity of 

methanol. The ratio of plasma to methanol in order to obtain a recovery of 99% was found to be 

1:4.2, and subsequently plasma samples were treated in this way. Plasma samples were dried 

completely under a gentle stream of nitrogen gas and reconstituted in 500μL methanol or samples 
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were dried to 500μL in a vacuum oven (Trade Raypa® Digital drying oven, Barcelona, Spain 

maintained at 50˚C, -0.6bar). 

 

7.2.9.4. Treatment of actual plasma samples  

 

 

Using the obtained ratio of 1:4.2, 400μL samples of blood were pipetted into suitable centrifuge 

tubes and 1800μL of methanol was then added. The samples were vortexed (Vortex-Genie 2, 

Scientific Industries Inc., Bohemia, NY, USA) for 15 seconds to ensure adequate mixing of the 

methanol with the plasma. The samples were then centrifuged at 1500rpm for 5 minutes (Model 

TG16-WS, Shanghai Luxiangyi Centrifuge Intrument Co., Ltd., Shanghai, China) in order to 

precipitate the proteins. Supernatants were then decanted into Eppendorf microtubes (Eppendorf 

AG, Hamburg, Germany), placed in a vacuum oven and evaporated to 500μL. Samples were 

filtered using a 0.2μm filter (GHP Acrodisc filter, Pall Life Sciences, NY, USA). Pyrazinamide was 

used as an internal standard and 2μL of a 0.5mg/mL solution was added to each sample before 

analysis.   

 

7.2.8.5. Construction of a calibration curve in order to quantify amounts of drug in actual 

plasma samples  

 
 

A calibration curve was generated in order to quantify the amount of drug in the plasma samples. 

Briefly, blank plasma samples were spiked with known quantities of MTX and the procedure 

outlined above was followed. The ratio of the area under the (AUC) of the chromatogram of drug 

to the internal standard was plotted against the corresponding drug concentrations (μg/500μL). 

The least squares method was used to determine the linearity equation and correlation coefficient 

(r2). The limit of quantification (LOQ) was defined as the concentration which produces 

chromatographic peaks with heights at least 3 times that of the baseline noise. 

 

7.2.9.6. Construction of a calibration curve in PBS  

 

A calibration curve of MTX in PBS was also conducted. The ratio of the area under the (AUC) of 

the chromatogram of the drug to internal standard was plotted against the corresponding drug 

concentrations expressed in μg/mL. The least squares method was used to determine the linearity 

equation and correlation coefficient (r2). 
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7.2.9.7. Determination of the drug content in surrounding tissue  

 

Tissue immediately surrounding the implant was collected from day 4 and day 10. The samples 

of tissue surrounding the implant were rinsed with PBS and then accurately weighed and cut into 

thin pieces using surgical scissors and/or a scalpel and placed in a mortar. Liquid nitrogen was 

then added to the mortar and a pestle was used to crush the tissue to a powder. PBS (5mL) was 

then added to the powder and the solution was homogenised for 15 seconds using a homogenizer 

(Polytron®, Kinematica Inc, Bohemia, NY, USA). The obtained solution was centrifuged at 

3000rpm for 10 mins and the supernatant was collected and filtered using filter paper (Whatman 

filter paper, Kent, England) to remove any remaining pieces of flesh or fatty tissue and then 

refiltered using 0.22μm filters. To remove protein from the samples, 400μL of the obtained filtrate 

was treated with 800μL of methanol. At this ratio of methanol to tissue sample, protein 

precipitation was observed. Samples were then vortexed for 15 seconds and centrifuged for 5 

minutes. Following final filtration of the supernatant through a 0.22μm filter into vials (Waters® 

LCMS certified vials with a pre-slit screw top, Waters, Milford, MA, USA) samples were injected 

onto the column. 

7.2.9.8. Statistical analysis 

 

All numerical data were expressed as the average of the values obtained, and the standard 

deviation (SD) was calculated. Statistical analysis was performed by repeated measures ANOVA. 

Significant differences between means of treated and untreated groups were analyzed for 

statistical significance using the two-tail Student's t-test for paired/unpaired observations. Two 

sided p-values < 0.05 were considered to be statistically significant. Kaplan-Meier mouse survival 

curves were prepared and were utilized to ascertain whether MUC16 expression correlated with 

mouse survival. Mouse Survival was calculated as the number of days lapsed between initiation 

of treatment and euthanasia, and percentage (%) of mice surviving was the number of mice 

remaining in each group (10) at the end of each week following initiation of appropriate treatment. 

Survival curves were evaluated, and the variance in mice survival was assessed for statistical 

significance. All statistical analyses were performed using the sigma plot 11 graphing software 

excel (Systat Software, Inc. Richmond, CA 94804. U.S.).  
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7.3.  Results and Discussion 

7.3.1. Sterile preparation of ISFI  
 

Post-incubation of the plates (agar plates and streaked formulation plate) for 24 hours, plates 

were observed visually to determine the growth of contamination. None of these plates exhibited 

any contamination-growth indicative of the sterility of the prepared-formulation. 

 

 

7.3.2. Bio-compatibility of the ISFI in the mouse model 

 

7.3.2.1. Implantation area and tissue-necrosis 

 

After one to six hours of inoculation of the ISFI, no inflammation was detected. Minimal, subacute 

and acute inflammation was also not detected in the 6th day samples, since it was the anticipated 

response of the tissue to a foreign material, this was indicative of the SFI superior 

biocompactibility invivo. The ISFI was observed in the tissues of organs surrounding the 

implantation site (Figure 7.10). Persistent chronic inflammation usually follows and is usually part 

of the healing course. It is a continual inflammation that poses a problem (Anderson and Langone, 

1999). The tissue necrosis particularly in the SC-fatty tissue was detected in practically all of the 

implantation areas as shown in Figure 7.11. Whilst, the reports of safety associated with the 

copolymer seem promising and indicate that the polymer itself is not the likely cause of toxicity, 

the polymer needs to be examined further. It is a possibility that the polymer is safe and the high 

calcium content of the ISFI is then most likely the causation of the necrotic regions. Further 

investigation in this regard is warranted. 
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Figure 7.10: Intraperitoneal injected mice showing ISFI in the peritoneal cavity under biopsy 

microscope viewed with digital camera. 
 

 
 

Figure 7.11: Histopathological analysis of tissue surrounding the site of implantation of the ISFI 

implant in a) control (non-treated normalmouse) b) after 4 days of implantation c) after 6 days of 
implantation and d) after 10 days of implantation.  
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7.3.3. Establishment of a model for induction of ovarian cancer using Athymic nude mice: 

Pilot study 

Growth of cancer cells in the intra-peritoneal cavity and subcutaneous region of immuno-

compromised mice are a common procedure for evaluating tumorigenic potential in vivo. These 

procedures are also utilized to evaluate the effects of chemotherapeutic interventions on tumor 

cell lines. Twenty-five mice were used in the Pilot study, 22 were utilized in the induction of ovarian 

cancer and 3 were un-infected, health nude mice for correlation purposes. Table 7.4 provides 

information on the numbers, procedure and % of the nude mice used in this study. The 22 nude 

mice were used in the pilot study in order to increase the number of mice used in SC and IP 

induction of ovarian cancer, thereby ensuring statistically relevant results (p< 0.05) and also to 

validate the process of induction of human carcinoma in this mouse model. We have found the 

athymic nude mice to be most effective in all our attempts to induce ovarian cancer with a success 

rate of 22 out of 22 attempts: 12 mice were IP injected with 0.2ml containing 2×107 cells/ml of 

ovarian carcinoma suspension and the other 15 were SC injected with 0.2ml containing 2×106 

cells/ml as shown in the protocol (Appendix 2). Charles River France Swiss nude mice were 

established as a suitable model for ovarian cancer as observed by the rapid growth of the 

NH:OVAR5 cell line in vitro (RPMI cell culture media) and formation of tumors in vivo in Swiss 

nude mice (Figure 7.5a-d and Figure 7.6a-d). There are no early detection methods for ovarian 

cancer in the clinical settings and this disease is usually diagnosed at an advanced untreatable 

stage, furthermore in the main study, emphasis was on early detection (using Vevo® 2100 

imaging techniques) and treatment of ovarian carcinoma with various chemotherapeutic 

treatment protocols, when tumor size has reached 100 mm3.  
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Table 7.4: Procedures conducted in nude mice model used for induction of ovarian cancer. 
 

 

Number of nude mice Procedure Percentage of nude mice 

4 

 

IP injected mice were euthanized 

and autopsies performed.  No 

tumors or nodules were observed, 

but high levels of ascitic fluid 

accumulated in the peritoneal 

cavity, thus indicating possible 

ovarian cancer induction. 

16% 

8 

 

IP injected. One died just before 

planned euthanasia, the others 

were euthanized for biopsy 

purposes. Both were biopsied 

32% 

5 

 

SC injected, euthanized, mice had 

reached the maximum tumor 

diameter of 10mm3 and were sickly 

(losing a lot of weight). 

20% 

 

5 

 

SC injected, euthanized for biopsy 

purposes, had reached maximum 

tumor burden of 10 mm3 and did’t 

were not sickly (gained a lot of 

weight). 

20% 

 

3 

 

Normal nude mice, euthanasia for 

biopsy purposes. 
12% 

25 

 

Total number of mice used in the 

Pilot 
100% 

 

Main study 

90 

 

Healthy and un-infected.for the 

main study 
100% 
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7.3.4. Main Study 

 
 

7.3.4.1. Intraperitoneal (IP) and Subcutaneous (SC) Induction of Human Ovarian Carcinoma 

in Athymic Swiss Nude Mice 
 

 

The main study was conducted in the same manner as the pilot study except that increased 

numbers of Athymic nude mice (n=80) were utilized in the induction of ovarian cancer. Charles 

River France Athymic Swiss nude mice (n=80) were also established as a simple, reproducible 

mouse model for the IP induction of human ovarian carcinoma using the NIH:OVCAR5 cell line, 

as was evidenced by the visible development in vivo of intra-abdominal tumor nodules with 

associated severe ascites (Figure7.6a-c). This occurred within 10 days of inoculation. Advanced 

IP ovarian carcinoma disease in the athymic nude mice was consistently associated with 

peritoneal carcinomatosis/transcoelomic metastasis, which always preceded the formation of 

severe ascites. Solid tumor nodules coated all serosal surfaces, especially within the pelvis 

(Figure 7.6d). Due to the widespread dissemination of the IP tumors, it was not feasible to analyze 

specific regions of the peritoneum in order to assess the uptake of the antibody (anti-MUC16) and 

drug-loaded nanomicelles delivery system in the peritoneum. 

  

 

7.3.4.2. Chemotherapeutic efficacy in the Treatment of Human Ovarian Carcinoma 

The chemotherapeutic efficacy of the AF(D)NM’s implant (the preferred chemotherapeutic model 

system) was evaluated against the non-functionalized (D)NM’s and the comparison group (IV 

methotrexate/cisplatin only), as well as the control/placebo group. A variety of indices were 

assessed, including tumor size (measured with calipers and sonography), mouse weight, 

quantification of mucin 16 antigen expression levels as well as survival rate of mice post-

treatment. 

 

7.3.4.3. Tumor size 

 

The tumor size was measured with calipers and sonography (Figure 7.5, Figure 7.6 and Figure 

7.12), and two chemotherapeutic drugs utilized in this study were cisplatin (4mg/kg) and 

methotrexate (15mg/kg) as illustrated in nude mice growth curves in Figure 7.13a & b 

respectively. The average tumor size in the 3 treatment groups each with 10 mice (two 

experimental groups, a comparison group (i.v drug only)) decreased significantly (p<0.05) from 

day 15 after implantation of the AF(D)NM’s treatment (Figures 7.13 a-d) and Figure 7.13.1a-d). 

Conversely, in the placebo group, the average tumor size increased steadily, indicating 

biocompatibility of the blank nanomicelle implant delivery system (placebo) in vivo. During the 
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evaluation phase, nanomicelle implant ((D)NM’s)-treated mice reached the ultimate point (of 100 

mm3 average tumor diameter) within 21 days of treatment whilst the group of AF(D)NM’s-implant 

treated mice survived until completion of the study. After necropsy examination of IP inoculated 

mouse post treatment, the AF(D)NMs implant treatment resulted in reduced average tumor size 

and ascitic fluid (Figure 7.12a-d and Figure 7.14 a-d).  

 
 

 
 

Figure 7.12: Sonographic representation of tumor growth and response to antibody-bound drug 

loaded nanomicelle hydrogel composite delivery system (AF(D)NMs). (a) Ascitic fluid 
development in a nude mouse 5 days post-induction, (b) Tumor growth 10 days post induction 
with NIH:OVAR-5 cell suspension, (c) Chemotherapeutic implant injected adjacent to tumor 
growth 11 days post-induction, c) decrease in tumor size and only a small tumor nodule was 
noticeable 15 days after implementation of the (AF(D) NMs) treatment.  
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Figure 7.13: Nude mouse tumor growth curves illustrating chemotherapeutic efficacy of the three 

treatment groups vs the control/placebo group, expressed as average tumor sizes in 
NIH:OVCAR-5 EOC-bearing nude mice. A refers to the methotrexate- and B the cisplatin-loaded 
nanomicelle implant delivery system in NIH:OVCAR-5 EOC-bearing nude mice. Each point 
depicts mean (n=10/group); bar, ±SD.  

 
 

 
 
 
 

 
 
 

 
 
 

 

 

                  A

Time (days)

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 T
um

or
 S

iz
e 

(m
m

3 ) 

0

20

40

60

80

100

120

AF(D)NMs implant

(D) NMs implant

I.V drug 

Placebo

 

                  B

Time (days)

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 tu
m

or
 S

iz
e 

0

20

40

60

80

100

120

AF(D)NMs Implant

I.V drug 

(D) Nms Implant

Placebo



 
 

172 
 

  

 

Figure 7.14: (a)  An IP-inoculated mouse pre-treatment (red ring), (b) distended  abdomen post-
treatment (red ring), (c1,c2) after necropsy examination, displaying intestinal nodules (white and 
red arrows), nodules in omentum (black arrow), and (d) illustrates the reduction in tumor size after 
treatment with the antibody-bound drug loaded nanomicelle hydrogel composite delivery system 
(AF(D) NMs). 
 
 
 

7.3.4.4. Whole mouse weight 

 

Mouse weights in both the comparison and control groups (IV cisplatin and methotrexate only, 

respectively) and the 2 experimental treatment groups decreased during the course of this study 

(p<0.05) (Figure 7.15a and b). While, in the placebo group body weights increased slightly and 

were normalized to baseline weight (p<0.05). The final average weight of nude mice with 

NIH:OVCAR-5 tumor treated with AF(D)NM’s formulations was 16,94±0.3 g compared with 

17,68±0.3g in mice treated with non-specific methotrexate/cisplatin–loaded nanomicelles 

((D)NM’s and 26.34±0.36g in mice administered with only the placebo injections (p<005). The IV 

drug group final average weight was 22.62±0.28 g. Baseline weights were 26.00±0.40g, 

24.00±0.33g and 19.1±0.35g for placebo and (D)NMs, IV drug and AF(D)NMs, respectively. The 

body weight of the placebo group was normalized to 26.00 g on day 30, indicative of implant 

biocompatibility and low levels of cytotoxicity (Figure 7.15a and b). 
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Figure 7.15: Nude mice average body weight curves illustrating chemotherapeutic efficacy in the 

3 treatments and control (placebo) group. A refers to the methotrexate- and B the cisplatin-loaded 
PNIPam-b-PASP nanomicelle implant delivery system in NIH:OVCAR-5 EOC-bearing nude mice. 
Each point depicts mean (n=10/group); bar, ±SD. 
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The notable reduction in tumor size and corresponding mouse weights corresponded with 

decreased MUC16/CA 125 antigen expression levels employing the ELISA technique. These 

results indicated a significant difference (p>0.01) in tumor burden between the different chemo-

treatment groups and showed that antibody functionalized combination treatment significantly 

improved chemo-therapeutic efficacy as shown by inhibition of tumor growth (p<0.05). 

 

 

 

7.3.4.5. Quantification of plasma and ascitic fluid MUC16/CA125 antigen levels  

 

Using the Cancer Antigen CA125 Human ELISA Kit, MUC16 antigen concentrations in IV-treated 

mouse plasma samples were significantly lower (p<0.05) compared with the levels in plasma 

samples from mice in the pre-treatment group. However, MUC16 antigen concentrations in mice 

treated with (D)NM’s and AF(D)NM’s were all in low levels, i.e. 1.8 – 2.4 U/ml. The MUC 16 

antigen concentration in the plasma samples was typically slightly higher than in the ascitic fluid, 

likely due to the fact that the AF(D)NM’s  are site-specific and are therefore localized in the 

peritoneal cavity;  they target MUC16 antigens expressed on ovarian  carcinoma cells  within 

tumor nodules and in ascitic fluid. The AF(D)NM’s group had significantly reduced MUC 16/CA125 

antigen concentrations in plasma compared with the (D)NM’s group and the IV chemotherapeutic 

drug only-group (p<0.05) (Figure 7.16a and b). At the time of euthanasia, the average plasma 

MUC16/CA125 value in the  AF(D)NM’s group was 1,9460 U/ml, compared to the value of 2.0180 

U/ml in the (D)NM’s group, 2,077 U/ml in the IV drug group and 2,368 U/ml in the placebo group. 

The decrease in MUC 16/CA125 antigen concentration in ascitic fluid was consistent with the 

overall reduction in ascitic fluid production and average tumor size. These results indicate that 

the AF(D) NM’s can specifically target MUC16/CA 125 antigens on the surface of EOC cells, 

thereby effectively decreasing their expression. 
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Figure 7.16: Point-of-euthenasia levels of MUC 16/CA 125 antigens in the plasma and ascitic 

fluid of mice in the experimental and control groups. (D refers to methotrexate (in graph A) and 
cisplatin (in graph B). 
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7.3.4.6. Histopathology and IHC  

 

7.3.4.7. SC and IP tumor Macropathology 

 

Gross necropsies were performed on all the pre-treatment animals that died or were euthanized 

by carbon dioxide (CO2) inhalation after 10 days once the tumors have developed to their target 

size of 80mm3-100mm3, which was regarded as the baseline-for initiation of treatment. The tumor 

nodules were scattered throughout the omentum, mesentery and had infiltrated the body wall in 

the IP-inoculated mice (Figure 7.6d). There was no difference in histomorphological appearance 

of SC-and IP-inoculated tumors. 

 

7.3.4.8. SC and IP tumor histopathology 

 

Histopathology was subsequently performed on all SC/IP nodules and in all cases, the existence 

of anaplastic ovarian carcinoma(s) was confirmed histologically (Figure 7.17). The intra-

abdominal tumors however, were far more infiltrative (widespread transcoelomic metastases and 

histopathologiy also revealed tumor emboli within lymphatic vessels) whilst SC tumors were 

localized/non-infiltrative. After a month of chemotherapy, the mice in the post-treatment groups 

were euthanized in same manner as those in the pretreatment group and full histopathology 

performed. There was no difference in post mortal sample collection post-treatment compared to 

pre-treatment.  

 

7.3.4.9. Liver histopathology 

 

Histopathology performed on IP nude mice implanted with experimental, conventional and 

placebo treatments displayed multifocally coalescing neoplastic nodules throughout the 

peritoneal cavity, as well as multiple random foci of hepatocellular coagulative necrosis 

associated with bile ‘lakes’ (so called ‘bile infarcts’) likely due to biliary outflow obstruction by 

ovarian carcinomas ((viz. in several instances, carcinomatous foci were observed immediately 

abutting extra-hepatic biliary cysts (Figure 7.17a and b). There was also evidence of neoplastic 

emboli in some sections in the placebo post-treatment group. There was very mild bile ductule 

proliferation within the liver sections as well as occasional extra-hepatic biliary cysts (lined by 

hyperplastic epithelium), the latter also embedded within an increased fibrous connective tissue 

stroma. Numerous bile ductules within the liver were bile-laden and some bile ductules were 

severely distended in portal areas and lined by hyperplastic (in places, pseudoepitheliomatous) 

epithelium. There was a mild portal peri-ductular infiltration of mature (small) lymphocytes and 

neutrophils and there was evidence of a mild to moderate multifocal portal fibrosis. There was 
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also a venous thrombus in one section of liver.  All these observations are illustrated in Figure 

7.17a and b.  

 

 

7.3.4.10. Renal histopathology  

 

Widespread but quite subtle (mild/moderate) cortical and medullary intra-tubular cast formation – 

basophilic, granular and variably vacuolated (derived from degenerate tubular epithelial cells) 

cellular detritus that filled some tubules. Outer cortex – multifocal (patchy) severe nephrosis-lytic 

necrosis of proximal convoluted tubular epithelial cells, as evidenced by clumps of ragged, 

mineralized (due to dystrophic calcification) cell debris and occasional karyolitic nuclei in affected 

tubular epithelium. In the deeper cortex there was widespread desquamation/shedding of PCT 

epithelial cells into tubular lumens, with slight condensation of nuclear chromatin in the affected 

epithelial cells. There was mild distension of occasional PCT lumens, which were lined by mildly 

attenuated epithelial cells. All these observations are illustrated in Figure 7.17c and d. 
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Figure 7.17: Microscopic view of the liver (a-b) and kidney (b-c) in AF(D)NMs, (D)NMs and IV-

drug only treatment groups, stained with H&E. (a) Cystic distension of bile ductule containing bile 

(dark brown thick arrows), foci of hepatocellular necrosis (dark blue arrow), mild bile ductule 

proliferation (dark brown thin arrows) and mild lymphocytic infiltration into portal areas (green 

arrow). (b) Multifocal to coalescing hepatocellular coagulative necrosis with (red thin arrows) or 

without associated haemorrhage (red thick arrows). (c) Severe nephrosis as evidenced by ragged 

intraluminal clumps of cell debris (black rings),.HE. (d) Basophilic (calcified), granular intra-tubular 

cellular detritus (black arrow), multifocal (segmental) karyolysis in some tubular epithelial cells, 

and multifocal mild distension of proximal convoluted tubular lumens (lined by slightly attenuated 

epithelium) HE.  
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7.3.4.11. Immunohistochemistry  

 

MUC 16/CA 125 IHC revealed positive labeling of 1-10% of the area within the specified regions 

of interest (ROI) (Figure 7.18c-h). Generally, throughout these tumors, variably-sized clusters of 

neoplastic cells labeled with the MUC16/CA 125 antibody. Labeling was both cellular (cytoplasmic 

and cell membrane) and extracellular (around shrunken apoptotic-like cells and in tubular lumina 

lined by irregularly branching papillae of neoplastic epithelial cells). There was occasional distinct 

membranous labeling of epithelial cells lining the papillary projections in some sections. However, 

most labeling appeared extracellular in the majority of tumor sections, and there was more 

cytoplasmic labeling of neoplastic cells compared to membranous labeling (Figure 7.18c-h). 

 

  

 

 

Figure 7.18: MUC16/CA125-positive labeling of EOC cells in mouse tissues and tumor foci in IP-

inoculated nude mice.  
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Individual Figure 2.3 Legends  

Figure 7.18 (a): Negative tissue control (normal mouse liver). MUC16/CA125 immunolabeling, DAB 
chromogen, hematoxylin counterstain. 
 
Figure 7.18 (b): Negative tissue control (normal mouse spleen). MUC16/CA125 immunolabeling, DAB 
chromogen, hematoxylin counterstain. 

Figure 7.18 (c): SC ovarian carcinoma. MUC16/CA125 positivity associated with EOC cells and 
extracellularly (arrows). MUC16/CA125 immunolabeling, DAB chromogen, hematoxylin counterstain. 

Figure 7.18 (d): IP ovarian carcinoma infiltrating skeletal myofibres (stars) of the body wall. EOC cell-
associated (yellow arrow) and extracellular (red arrows) MUC16-positive labeling. MUC16/CA125 
immunolabeling, DAB chromogen, hematoxylin counterstain. 

Figure 7.18 (e): IP-inoculated mouse. MUC16-positive labeling of reactive mesothelial cells on the visceral 
peritoneal (serosal) surface of the spleen (arrows). MUC16/CA125 immunolabeling, DAB chromogen, 
hematoxylin counterstain. 

Figure 7.18 (f): MUC16-positive neoplastic cells (arrows) within the IP-inoculated ovarian carcinoma (red 
line) impinging on the serosal surface of the intestine (star indicates intestinal lumen). MUC16/CA125 
immunolabeling, DAB chromogen, hematoxylin counterstain. 

Figure 7.18 (g): SC anaplastic ovarian carcinoma with MUC16-positive labeling of cytoplasmic membranes 
of EOC cells (thin arrows) and of extracellular spaces around shrunken EOC cells (fat arrows). Note the 
mitoses (yellow circles). MUC16/CA125 immunolabeling, DAB chromogen, hematoxylin counterstain. 

Figure 7.18 (h): IP-inoculated ovarian carcinoma infiltrating the pancreas (stars) with MUC16-positive 
labeling of cytoplasmic membranes of neoplastic cells (arrows). MUC16/CA125 immunolabeling, DAB 
chromogen, hematoxylin counterstain. 

 
 

 

7.3.4.12. MUC 16/CA125 IHC analysis on FFPE EOC tissue sections 

 

 

The percentage of MUC16-positive labeling per square centimeter of each selected EOC tissue 

section (one per mouse) was determined with the help of the phase separation function for both 

pre-and post-treatment mice (Figure 7.8). MUC 16 expression in pre- and post-treatment groups 

using both drugs (methotrexate and cisplatin) was up-regulated and displayed an increasing trend 

in the placebo (4.31-5.11-%), AFNM’s (D) (6.13-6.36%) and IV-drug groups (7.67-8.14%) 

(p<0.05), whilst in the NM’s (D) group, MUC 16 expression was down-regulated (2.67-3.3%) 

(Figure 7.19a & b).  
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Figure 7.19: ROI (regions of interest) measurement of IHC images on the stained slides for each 

treatment group, and the MUC 16 density in each image was calculated as percentage of MUC16-
positive labeling per square centimeter of each selected EOC tissue section (one per mouse).  (D 
refers to methotrexate (in graph A) and cisplatin (in graph B). 
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The survival rate in response to various chemotherapeutic protocols was a significant index for 

comparing antitumor efficacy between the groups. Nude mice survival rates were significantly 

different (p<0.05) between the experimental treatment and control/placebo and comparison (IV 

chemotherapy) groups as shown by means of Kaplan-Meier analysis. Mouse survival was 

significantly improved (100% over 35 days) in the AF(D)NMs test group compared to the placebo 

group, as well as all the other groups (Figure 7.20). The data also indicated that the mice in the 

AF(D)NMs test group exhibited the greatest overall reduction in tumor size and had the longest 

survival times (Figure 7.13A and B, Figure 7.20). 
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Figure 7.20: Kaplan–Meier mouse survival curves, showing the three chemo-treatment groups 
(n = 10) including nude mice injected with AF(D)NM’s, (D)NM’s and  IV chemotherapeutic drugs 
and a control placebo implant treatment group. The survival rate of mice in the AF(D)NM’s test 
group was significantly improved compared with the other groups (p<0.05).  
 
 
 

7.3.5. Construction of a calibration curve in order to measure the quantity of methotrexate 

in blood and tissue samples and precision and accuracy of the UPLC method  

 

 

Figure 7.21 shows the typical chromatograms acquired for the drug, methotrexate and the internal 

standard, pyrazinamide. As shown in Figure 7.22, a calibration curve with a high coefficient of 

determination was obtained. Table 7.5 shows the calculated precision and accuracy of the method 

when three replicate injections of three samples with known concentrations were made on the 
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same day and on three non-consecutive days. As should be noted the accuracy remained high 

even between days and % RSD remained relatively low indicating that the method had good 

precision and accuracy. The limit of quantification was determined to be 0.50ng/mL. 

 

 

Figure 7.21: Typical chromatogram obtained for methotrexate (retention time=1.408min) and 
internal standard, pyrazinamide (retention time=0.932min). 
 
 
 

 

Figure 7.22: Calibration curve of Methotrexate obtained in blank plasma 
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Table 7.5: Inter- and intra- day precision and accuracy of the method were determined (only 
one set of interday data is shown). 
  
 

  

%RSD 
(TR) 

 

%RSD 
(AUC) 

 

Accuracy 

  
 Intraday   

   

1 0.154 0.583 99% 

2 0.143 0.433 99% 

3 0.166 0.494 99 

Interday    

1 0.61 0.290 97% 

2 0.54 0.540 98% 

3 0.49 0.667 96% 
 

 %RSD= Percentage relative standard deviation;TR= Retention Time; AUC= Area under the curve 

 

The amount of MTX in the blood was low when using standard UPLC method. This could be 

indicative that the majority of the drug being released at later stages was retained at the site of 

implantation rather than distributing into the blood as depicted in Figure 7.23.  

 

 

Figure 7.23: Blood methotrexate levels in experimental nude mice (SD< 0.044). 
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7.3.5.1. Determination of methotrexate concentration in surrounding tissue  

 

Figure 7.24a and b depict the calibration curves acquired for PBS and methanol respectively. The 

area around the implant (Figure 7.24c) showed relatively high quantities of drug was still present 

at the site after 10 days. 

 

Figure 7.24: a) Calibration graph of MTX in PBS b) calibration curve of MTX in methanol c) drug 

in the surrounding tissue after 4 or 10 days.   

                                             

7.3.6. Mechanism of Intraperitoneal IFSI Delivery for human ovarian carcinoma targeting   

 

ISFI was fabricated by encapsulating a nanomicelle comprising of anti-MUC 16 (antibody) 

functionalized methotrexate (MTX)-loaded PNIPAAm-b-PASP nanomicelles (AF(MTX)NM’s) 

within C-P-N hydrogel (Figure 7.25a-b) as per protocol described in Chapter 5, Section 6.2.6.. 

Given that the peritoneal cavity is the principal site of disease in ovarian cancer, the ISFI was 

injected and released nanomicelles into the peritoneal cavity (Figure 7.25c1,c2). Following the 

release of nanomicelles from the hydrogel, the nanomicelles (formulated to circulate for prolonged 

periods in the peritoneal fluid) targeted specific mucin antigens significantly over-expressed on 

ovarian cancer cells circulating in the peritoneal fluid (when patients are usually diagnosed) and 

cancer cells forming nodules at distant sites in the peritoneal cavity (Figure 7.25d1,d2,e1,e2&f). 

This targeting system reduced the tumor load responsible for adhesion at the sites of secondary 

metastasis (peritoneal and abdominal surfaces). The anti-MUC16 antibody functionalized 

nanomicelles has great potential in improvement of tumor selectivity, eliminate/ reduce the tumor 
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load whiles improving the recovery, long term survival rate of the majority of patients suffering 

from ovarian cancer. 

 

 

Figure 7.25: (a)-Antibody functionalized drug loaded nanomicelles AF(D)NMs/nanomicelle. (b)-
AF(D)NMs encapsulated in an optimized implantable composite C-P-N delivery system (ISFI). 
(c1,c2)-ISFI injected and release nanomicelles into the peritoneal cavity. (d1,d2)-Specific antibody-
muc16 interaction or binding. (e1,e2)- Fluorescence images of targeted chemotherapy of human 
ovarian carcinoma cells. (f)-Intraperitoneal targeted chemotherapeutic mechanism congruently 
depicted. 
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7.4. Discussion 

Epithelial ovarian cancer (EOC) is the most insidious gynaecological malignancy that is 

asymptomatic during its early stages and is therefore diagnosed at an advanced, often 

untreatable stage when the disease has spread beyond the ovaries  throughout the abdominal 

cavity and even further afield (Whitehouse and Solomons, 2003; Wang et al., 2011; Cho et al., 

2013). Thus, deaths due to ovarian cancer could be significantly lowered by developing new, 

ultrasensitive, yet reliable methods for early diagnosis and by developing improved treatment 

protocols. Mucins are amongst the most promising molecular biomarkers for EOC and have 

proven invaluable in the diagnosis and monitoring of treatment regimes in various types of ovarian 

cancer. Increased mucin expression, otherwise known as ‘mucin switching’ that occurs during the 

neoplastic transformation of ovarian surface epithelium to ovarian carcinoma is important in the 

progression of this disease (Rump et al., 2004; Gubbels et al., 2006; Tamada et al., 2007). MUC16 

is an important clinical biomarker of ovarian cancer and it is a target for various immuno-

chemotherapies currently under investigation (Liu et al., 1998; Gullery et al., 2008; Oei et al., 

2008; Rustin et al., 2001).  

 

Blood serum, plasma and ascitic fluid levels of MUC16 in mice and humans have been well-

researched and are now commonly used as diagnostic markers when evaluating the effect of 

various chemo-treatments and for establishing the advent of relapse in EOC (Rustin et al., 2001; 

Nishida et al., 2004). In this study, quantification of MUC 16/CA 125 concentration was conducted 

utilizing the highly sensitive Cancer Antigen 125 (CA125) Human ELISA Kit with a date-to-date 

coefficient of sensitivity >5%. Progressively increasing MUC16/CA125 values are correlated with 

ovarian malignancy, whilst steady MUC/CA125 values, even when raised, are correlated with 

some benign conditions. Significantly, in the pre- vs post-treament groups of mice with induced 

EOC, the MUC16 antigen levels in the blood measured 2,368 in the placebo group, compared to 

1,9460 U/ml in the (AF(D)NMs) post-treatment group (Figure 7.16). Our findings also showed that 

plasma MUC16 antigen levels were consistent with tumor growth, ascitic fluid development and 

mouse survival with distinct and combination chemo-treatments, indicative of MUC16 as a 

valuable biomarker to investigate the effect of chemo-treatment or relapse in the NIH:OVCAR-5 

mice model. 

 

 

Histopathology was subsequently performed on all SC/IP nodules and in all cases, the existence 

of anaplastic ovarian carcinoma(s) was confirmed histologically (Figure 7.17). Our findings 
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revealed foci of coagulative necrosis but necrotic foci were most often associated with cholestasis 

and bile infarcts thought to be due to obstruction to bile outflow by tumor nodules. In prior studies, 

additional toxic side effects that were observed in association with the use of 

methotrexate/cisplatin included chronic interstitial, obstructive pulmonary disease, severe renal 

outer cortex nephrosis (Malonnea et al., 2005; Li et al., 2014). Immunohistochemical analysis of 

epithelial ovarian tumors in the present study confirmed an apparent over-expression MUC16 in 

all induced tumors. Significantly, cellular labeling of MUC 16 was detected both in cytoplasmic 

granular and/or (to a lesser extent) cytoplasmic membrane labeling of neoplastic cells. Our results 

showed that MUC 16 is up-regulated in most of the tumor tissue samples analyzed (Figure 7.19). 

As has been shown in previous studies, we also detected a down-regulation of MUC16 expression 

in ovarian tumors post-treatment as compared to the pretreatment stage.   At euthanasia, MUC16 

antigen expression in the ovarian carcinoma tissues significantly decreased post-treatment with 

the AF(D)NMs and only a few small pieces of cell debris stained positive in these sections (Figure 

7.8). These data indicated that the AF(D)NMs treatment can specifically target (MUC16) antigen-

associated EOC tissue. The improved survival rate associated with the AF(D)NMs treatment was 

probably at least partly due to the profound decrease in ascitic fluid formation in this group 

(p<0.01). The reduction in ascitic fluid probably occurred due to the specific and prolonged 

retention of AF(D)NMs hydrogels intra-peritoneally close to the tumor burden; intra-peritoneal 

tumor cells had close and prolonged exposure to the chemotherapeutic drugs, no doubt resulting 

in increased drug efficacy in situ. 

 
 

The novel aspect of the study was the design and implementation of an antibody-functionalized 

nanomicelles hydrogel composite to specifically target MUC 16 antigens known to be over-

expressed on ovarian cancer cells. Following the release of antibody-bound nanomicelles from 

the hydrogel, said nanomicelles targeted specific MUC 16 antigens over-expressed on ovarian 

carcinoma cells within the ascitic fluid and within neoplastic nodules at distant sites within the 

peritoneal cavity. This MUC 16 targeting system reduced the mass of neoplastic cells capable of 

adhering to parietal and visceral peritoneal surfaces at sites distant to the original tumor implant 

(Niloff et al., 1986; Mogensen et al.,1990). Chemo-treatment with AF(D)NM’s significantly (via 

reducing MUC 16 antigen expression on tumor xenografts) inhibit growth of and transcoelomic 

metastasis of EOC and reduce the production of ascitic fluid, thereby increasing longevity in 

patients with ovarian carcinoma. 
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7.5. Conclusion Remarks   
 

The present study has shown for the first time that combining anti-MUC16 antibodies with drug-

loaded nanomicellles in a hydrogel composite can inhibit intra-peritoneal tumor growth (and 

therefore peritoneal carcinomatosis), reducing the consequent production of ascites, resulting in  

increased survival of animals in a Swiss nude mouse xenograft EOC model. This functionalized 

nanomicelle treatment may provide the basis for reducing the quantity of cisplatin or methotrexate 

utilized, thereby minimizing potentially harmful (toxic) side effects without significantly impacting 

on treatment efficacy. As a result, this antibody-bound nanotherapeutic implant drug delivery 

system may be a potent immuno-chemotherapeutic treatment that can be effectively employed in 

cases of advanced, and/or recurring, metastatic EOC. 
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CHAPTER 8 
 

CONCLUSION AND RECEMMENDATIONS 
 
 

 

 

9.1. Conclusions 
 

In view of the burden of ovarian cancer and the numerous challenges associated with the systemic 

treatment of solid tumors in particular, the development of an in situ forming implant capable of 

delivering chemotherapeutics directly to tumors is certainly required. The aim of this study was to 

design and develop a novel drug delivery system employing antibody- ligand functionalized to 

drug-loaded nanomicelles encapsulated into implantable C-P-N hydrogel to form an in situ 

forming implant (ISFI) for cancer cell-targeting following intraperitoneal implantation to increase 

the residence time of the nanomicelles at tumor sites, enhancing tumor uptake of drugs and 

prevent recurrence and chemo-resistance. There is no record of an implantable, biodegradable 

intra-peritoneal chemotherapeutic formulation employing mucin antibodies hence this study 

yielded the first of its kind. Novel nanomicelles that are biodegradable, biocompatible, stable and 

have prolonged circulation for superior stability longer than a month in the peritoneum were 

developed. 

 

ISFI formulation was prepared and release fractions tested for activity against NIH:OVCAR-5 cell 

lines. In vivo testing of the implant was conducted in Athymic nude mouse model. Methotrexate 

was the model antineoplastic drug that was loaded into anti-MUC16 conjugated nanomicelle and 

reduced the tumor size. Results showed that several animals that received the ISFI loaded with 

methotrexate developed diarrhea. Animals in the control group receiving methotrexate 

intraperitoneally did not show this side-effect. Hence the side-effects were indicative of prolonged 

release of drug from the implant compared to the intraperitoneal delivery of methotrexate which 

was cleared rapidly. This was confirmed by the blood levels found in the animals receiving the 

implant. In addition, animals receiving the placebo implant did not show this side-effect either 

indicating that the diarrhea was a side-effect of the drug and not of the implant material itself.  

 

The drug delivery system surmounted cisplatin (key drug for chemotherapy) related 

disadvantages by offering a better selective accumulation. The use of antibody-bound-

nanomicelles improved tumor tissue penetration and intracellular retention of chemotherapeutic 

drug to avoid P-glycoprotein efflux of the drugs. This resulted in increased cytotoxicity at 
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suboptimal doses and improved the safety profiles of the drug. Peritoneal spread of ovarian 

tumors was decreased by formulating IP implantation of a biodegradable hydrogel responsive to 

pH and temperature and fabricated for controlling the release of drug-loaded nanomicelles over 

an extended period of time, preventing multiple surgeries and injections. The formulated drug 

delivery system has clinical potential to reduce the titer of malignant cells floating in the 

peritoneum, to reduce metastatic implantation and increase the 5-year survival rates of ovarian 

cancer patients. Optimal therapeutic efficacy was attained to eradicate the population of cells in 

the tumor that have been developed via MDR design of novel hydrogel networks for delivery of 

drug-loaded nanomicelles. The drug delivery system was also administered intravenously to 

target mucin antigens that are strongly expressed on disseminated ovarian carcinoma cells. Our 

strategy of employing monoclonal antibodies for targeting ovarian cancer cells generated 

specificity to cancer cells that express MUC16. The development of this novel implantable drug 

delivery system may circumvent the treatment flaws experienced with conventional systemic 

therapies, effectively manage recurrent disease and ultimately prolong disease-free intervals in 

ovarian cancer patients. 

 
In conclusion, in vitro and in vivo work showed promising results with the prolong release of drug 

from the implant exceeding a month and improved biocompatibility of the ISFI. 

 

9.2. Recommendations and future outlook 

 
To date there is no data on the pharmaceutical use of Chitosan-Poly(N-vinylpyrrolidone)-Poly(N-

isopropylacrylamide) (C-P-N) in situ forming implant. It is recommended that the polymer be 

investigated further. The actively targeted nature of this drug delivery system lends applicability 

to other solid tumors since targeting modalities that are specific to ovarian cancer have been 

employed. Hence, potential for use in other solid tumors should be investigated. The implant may 

offer combinational chemotherapy (as an alternative to current commercial approaches) to 

enhance the therapeutic efficacy and translate to treatment doses below those currently 

administered. The delivery system could be used for the treatment of a variety of cancers 

associated with aberrant mucin expression: pancreatic, prostate, metastatic breast cancer, 

bladder and lung. Moreover, ex vivo studies should extend to the respective cell lines that are 

applicable to other tumor subtypes. It is recommended that antineoplastic drugs to which 

resistance has been identified be incorporated into the ISFI and tested against resistant cell lines. 

Furthermore, the potential of phytochemical incorporation in overcoming drug resistance should 

be considered. Other targeted therapy will be especially beneficial for antineoplastic drugs since 
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site-specific delivery enhances cytotoxicity at the desired site while maintaining the condition of 

healthy tissue. Considering the calcification of tissues caused and the slow in vivo degradation of 

the implant, the implant (as currently formulated) is perhaps also suited for the potential delivery 

of cells (such as osteoblasts) to areas where bone formation is required. Nanomicelles, as 

described in this thesis, have theranostic potential and may be combined with ultrasound 

technology for tumor detection, imaging and monitoring the progress of therapy. Historically it has 

been acknowledged that biodegradable devices (with relative ease of implantation and lower side 

effects profile) are more applicable for short-term (hours, days) or intermediate-term (weeks, 

months) drug delivery and is all that is required to treat acute disease and where chronic therapy 

is required (>1 year) non-biodegradable devices may provide superior control of drug release, 

improved retrievability in the case of serious side-effects, and fewer invasive procedures than a 

biodegradable device. 
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APPENDIX A 

 

 
 
 

 

 

ASSESSMENT OF C-P-N HYDROGEL PROPERTIES 
 

 

 

TGA LIFE TIME KINETICS 

 

Tabulation of degradation temperature of the native polymers (CHT, PVP NIPAAm) components 
and cross-linked C-P-N hydrogel 
 

 

 

 

 

 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 

                              Decomposition points                                                        Derivative  temperature  
                              Onset                                         Offset  
                                  point           aDelta Weight           point                    Peak              Inflection  
Components         *DT 0C            Loss (%                DT 0C                  # Tp 0C          point 0C 

Chitosan 279.41 54.28 350.00 377.67 349.39 

PVP 293.88 66.31 374.29 329.17 331.20 

NIPAAm 281.27 95.24 318.71 298.18 298.85 

CPN hydrogel  382.28 93.82 417.27 402.56 404.24 
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APPENDIX B (1) 

 

 A Review of Nanomicellar Technologies for Targeted Drug Delivery in Ovarian Cancer 

Chemotherapeutics, Jonathan Pantshwa, Viness Pillay, Yahya E Choonara, Lisa C du Toit, 

Lomas K Tomar, Charu Tyagi, Pradeep Kumar, Clement Penny 2015. Submitted to Journal of 

Pharmaceutics South Africa.  
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APPENDIX B (2) 

 

    Synthesis of new superior-viscosity amphiphilic poly N-isopropylacrylamide-block-poly aspartic 

acid copolymer for ovarian cancer chemotherapeutics. Submitted to Journal of Nanoparticles, 

Jonathan Pantshwa, Pradeep Kumar, Yahya Choonara, Lisa Du Toit, Clement Penny, Viness 

Pillay 2016. 
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APPENDIX B (3) 

 

Optimized Design of Combinational Poly N-isopropylacrylamide-block Poly Aspartic Acid 

Copolymeric Nanomicelles for Methotrexate Delivery. International Journal of Pharmaceutics, 

2016, 448:267-281, Jonathan Pantshwa, Yahya Choonara, Pradeep Kumar, Lisa du Toit, 

Clement Penny, Viness Pillay 2016. 
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APPENDIX B (4) 

 

Anti-muc 16 Functionalized Pnipaam-b-Pasp Nanomicelles for the Targeted Delivery of 

Methotrexate to Human Ovarian Carcinoma Cells. Submitted to Journal of Nanoparticles, 

Jonathan Pantshwa, Yahya Choonara, Pradeep Kumar, Lisa du Toit, Clement Penny, Viness 

Pillay 2016. 
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APPENDIX B (5) 

 
In-vitro Synthesis, Characterization and assessment of a Bio-responsive IPN 

nanomicelle/hydrogel composite based implant for ovarian carcinoma treatment. To be submitted 

to Journal of Pharmaceutical Sciences. Jonathan Pantshwa, Yahya Choonara, Pradeep Kumar, 

Lisa du Toit, Clement Penny, Viness Pillay 2016. 
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APPENDIX B (6) 

 

 

Poster Title: An Optimal Mouse Model for Human Ovarian Carcinoma Research and Efficacy of 

various chemotherapeutic Treatment Protocols. The formatted research paper is to be submitted 

to the Journal of Oncology.  
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IMPORT PERMIT FOR THE ATHYMIC NUDE (E1) 
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STANDARD OPERATING PROCEDURES 
FOR HANDLING NUDE MICE 

(E2) 
 

 

Purpose: 

Nude and other immunocompromised mice are at greater risk than conventional mice for the 

development of infectious disease.  Frequently, infectious pathogens are transferred to nude mice 

by contaminated equipment or exposure to contaminated environments. The procedures 

described here are implemented to minimize the risk of infectious disease to nude mice. 

 

General Procedures: 

1. All equipment and caging is sterilized prior to using with the nude mice.  See the 
“Preparation of Nude Mouse Caging” for details. 

2. The night prior to manipulating the mice under the laminar flow hood, the hood is sprayed 
with 70% ethanol with the blower on.  After each use, the hood is sprayed with a 
disinfectant and wiped of all debris and again sprayed with the 70% ethanol. 

3. The hood blower is left on at all times.  The light is turned off when the hood is not in use. 
4. All individuals handling the nude mice must wear a steam sterilized gown, mask, hair 

bonnet, and sterile gloves.  Optimally, two individuals are present during the handling of 
the mice, one that is designated as the animal handler and maintains sterility, while the 
other handles the non-sterile items and opens the sterile materials for the handler. 

5. It is required that persons reaching into the hood wear a clean long-sleeved gown, lab 
coat or smock, mask and bonnet and the required gloves to prevent  contamination of the 
sterile interior. 

6. Aseptic technique should be used at all times when handing the nude mice.  Any objects 
or surfaces that will come in contact with the mice should have been sterilized by steam, 
UV radiation, or contact with 70% ethanol for at least 30 minutes. 

 

Unpacking Newly Arrived Mice: 

 

1. Prepare laminar flow hood as previously described.  Animal handlers must be prepped, 
as described above. 

2. Shipping labels, health reports, cable ties and animal information are removed and 
recorded. 

3. Shipping containers are sprayed with a chlorine dioxide solution before they are placed in 
the hood. 

4. The designated animal handler opens the sterile food and water under the hood.  
5. The non-sterile person opens the cage and shipping box under the hood.  Care must be 

taken by the non-sterile person to avoid contact with the inner surfaces of the hood and 
the inside of the shipping box and cage. 

6. The animal handler then adds food and water to the cage top and removes the mice from 
the shipping box and places them in the cage.  JAG cages are limited to 5 mice per cage; 
Nalgene cages will accommodate 7 mice per cage; Innovive cages allow 5 mice per cage. 

The non-sterile person will close the cage and remove it from the hood. 
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7. The animal handler should re-glove after each shipping container to avoid possible cross 
contamination of groups of animals in case the shipping container has been damaged.  

8. Container number is recorded on the cage card to track origin of the animals in case of 
illness.  

9. Place the water bottle onto the cage BEFORE removing from the hood. 
10. Unused water bottles are resealed in the container and will be stored in the room for future 

use. Unused food is given to FLSC personnel for use in the breeding colony rooms. 
11. Mice will undergo a two week acclimation period prior to experimental use. 

 

Cage changing: 

 

1. Follow all previous steps for hood preparation, gowning of personnel and cage handling. 
2. The designated animal handler should re-glove after every 6-10 cages or if gloves are 

torn, contaminated or if a cage has ill animals. 
3. Any cages with animals appearing sick will be placed at the end of the cage changing 

order to avoid possible exposure of healthy animals to pathogens or contaminants. 
4. The mouse cages are changed at least once weekly or more often, if deemed necessary. 

JAG and Nalgene cages are sterilized as a complete unit consisting of a bedded cage, 
cage top with feeder and filter bonnet and will be replaced as a unit weekly. Innovive 
products come separately as empty cages, feeders, and cage tops. Animals housed in the 
Innovive caging will require weekly cage changes. Feeders will be reused changing them 
every 4 weeks and cage bonnets will be reused and changed every 8 weeks unless there 
is a break in sterility necessitating replacement of the contaminated component.  

5. If food and/or water must be added between the scheduled cage changes, it must be done 
aseptically under the prepared hood. 

6. Water bottle preparation and sterilization are the responsibility of the PI. Water is acidified 
by adding 2 drops of 12M HCl to 8 liters of RO water.  Water is sterilized in individual 
bottles covered with foil.  Bottle lids are sterilized separately in an autoclave bag. Innovive 
water bottles are pre-sterilized and are replaced weekly unless acidified in which case 
they are changed every other week. To acidify Innovive™ water bottles, place 0.15 ml of 
12M HCl into each bottle through the lid opening. Any special diets must be provided by 
the PI. If diets are not sterilized by the manufacturer, the PI is responsible for autoclaving 
or sterilization of the food. 

7. Food and water are stored in the room with the hood. 
8. Gowns are laundered, wrapped and sterilized by FLSC staff. Should an experiment 

require daily gowning by multiple persons, disposable sterile gowns should be purchased 
by the PI and stocked in the storage cabinet in the room with the hood. 

   

 

Routine Inspection of the Mice: 

1. All animals will be checked daily, including on the weekends and holidays. 
2. Examine the mice by viewing them through the cage. The micro-isolator top should not be 

opened without the permission of the investigator or the Associate Director or the Director 
of FLSC and NEVER outside the sterile hood.  

3. In the event of a problem, the investigator (see the contact list on the door) should be 

called.  Emergencies should also be directed to Jonathan Pantshwa or Khadija Rhoda. 
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IMPORT PERMIT FOR NIH:OVCAR-5 CANCER CELL LINE (E3) 
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NIH:OVCAR-5 CANCER CELL LINE MATERIAL TRANSFER AGREEMENT (E4)  
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PROTOCOL FOR INTRA-PERITONEAL AND SUBCUTANEOUS INDUCTION 
OF (NIH:OVCAR-5) OVARIAN CARCINOMA CELLS                                                             

(E5) 
 

Growth of cells in the peritoneal cavity and subcutaneous space of immunocompromised mice are a 

common method for assaying tumorigenic potential in vivo. These techniques are also used to assess the 

effects of therapeutic interventions on cancer cell lines.  

Materials and Reagents  
            

1.         Trypsin (Invitrogen; 25300-054)  
2.         RPMI media  
3.     L-glutamine, (Invitrogen; 11965-092)  
3.      Streptomycin/Penicillin antibiotics  
4.      FBS (Invitrogen; 16000-044) 
5.      Insulin 
4.         PBS  
5.         Trypan blue (Invitrogen;15250-061)  
6.        Charles River France Swiss nude Mice  
7.         Isoflurane (usually purchased through animal facility at institution)  
 

  Equipments  
   

1.         Centrifuges  
2.         Insulin syringe  
3.         Hemocytometer  
4.         Cell culture hood  
5.         Incubator  
6.         Microscope  

   
 

Procedure    
 
 1.   45mL RPMI media with ingredients: 100µL-glutamine, 100µL Streptomycin/Penicillin antibiotics,   

5mL FBS, 100µL insulin was prepared. 
 2.      Remove growth medium from cells and wash with 5 mL of PBS.   
 3.      Aspirate PBS, add 2 mL of trypsin and incubate for 5 min, or until cells have detached, at 37 °C 
 4.      Quench trypsin by adding the RPMI medium with ingredients.  
 5.      Pellet cells by centrifugation for 5 min at 1100 RPM and 37 °C.  
 6.      Aspirate medium, wash cells with 10 mL sterile PBS, mix well with pipette and save 50 μL aliquot of 

cells for counting. 
 7.      Pellet cells by centrifugation for 5 min at 1100 RPM and 37 °C.   
 8.        Aspirate PBS, resuspend cells in fresh PBS to a concentration: 1x106 cells/100 μLfor subcutaneous 

injections and 1x107 cells/100 μL for intraperitoneal injections. 
  9.  Transfer cells to a sterile eppendorf tube. Note, the cell number required depends upon the 

aggressiveness of the tumor cells and can vary by an order of magnitude.  
 10.      (Optional) Add an equal volume of RPMI media without ingredients to cells and mix carefully with 

pipette.  
  11.     Slowly pull up 100 μL of cells alone or 200 μL of cell/RMPI mixture using an insulin syringe. Note, 

cells can be damaged by the small gauge of the insulin needle; however, insulin syringes provide a 
more accurate volume measurement. If significant death is observed, 1mL syringes with 22 gauge 
needles can be substituted.   
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12.   Inject 1x106 cells into the flanks or necks and 1x107 cells into the peritoneal cavity of immune deficient 
mice, preferably Swiss nude mice. To do this, pinch the skin of the mouse between your index finger 
and thumb and pull the skin away from the body of the mouse. Inject slowly and evenly into the pouch 
created by your fingers, creating a single bubble of cells beneath the skin and avoiding too much 
spread of the cells. Anesthetizing the mice using isoflurane makes the injection process significantly 
less stressful for the both the mice and the researcher.  

   
Recipes  
   

1.         Trypsin (0.05%)  
2.         RPMI cultural medium: supplemented with 10% fetal bovine serum, 100µL-glutamine, 100µL 

Streptomycin/Penicillin antibiotics. 

 


