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Abstract 

An engineering level method, the free vortex model (FVM) method, which was 

developed for supersonic flow has been extended to subsonic incompressible Mach 

numbers. The method was applied to predict lee side flow features for a tangent ogive 

missile with very low aspect ratio wings in the ‘+’ orientation. Simulations were 

carried out for three different span to body diameter ratios, namely 1.25, 1.50 and 

1.75. Prediction results were validated by comparing aerodynamic loads and vortex 

positions to validated CFD data as well as another established engineering method 

namely the discrete vortex model (DVM) method. The normal force was well 

predicted while the centre-of-pressure position predictions were reasonable. The 

vortex positions were not predicted with the acceptable level of accuracy and is 

therefore a limitation of the method at incompressible speeds. It was shown that the 

FVM method is less suitable for span to body diameter ratios above 1.25 for which 

the DVM method is more suitable. 
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Nomenclature 

AR   Aspect ratio 

    Body radius (m) 

c    Speed of sound (m/s) 

   
   Section drag coefficient 

      Centroid of the planform area coefficient 

      Drag coefficient 

       Crossflow drag coefficient 

      Lift coefficient 

(   
)
 

  Lift-curve slope of the wing at zero angle of attack 

      Pitching moment coefficient about the nose 

      Normal force coefficient 

           
   Normal force coefficient due to forebody 

          
   Normal force coefficient due to aftbody 

     
   Normal force coefficient due to wing-body section 

      Loss in nondimensional maximum mainstream dynamic head 

       Volume coefficient 

D    Body diameter (m) 

     Fineness ratio,      ⁄  

F    Force (N) 

      Body carryover factor for wing deflection  
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      Wing deflection factor  

  ( )   Ratio of body lift to wing alone lift 

     Factor relating the lift of the wing alone and wing-body 

combination 

      Ratio of nose lift to wing alone lift 

  ( )   Ratio of wing lift (in the presence of body) to wing alone lift 

      Sideslip interference factor 

      Forebody length (m) 

     Total body length (m) 

     Lift (N)  

      Lift of wing-body combination (N) 

      Lift of wing alone (N) 

M    Mach number 

q    Dynamic pressure (Pa) 

ro    Circle radius in the ν–plane 

      Reynolds number 

       Reynolds number based on body diameter 

s    Span (m) 

sm    Semi-span (m) 

S    Reference area (m
2
) 

Sb    Base area (m
2
) 

Sp    Planform area (m
2
) 

V    Velocity (m/s) 
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     Distance in x-direction (m) 

      Distance from the nose tip to the moment reference centre (m) 

     Distance from the nose tip to the centroid of the planform area 

(m) 

   
    Centre-of-pressure position (calibers) 

y    Distance in y-direction (m) 

z    Distance in z-direction (m) 

 

Greek Symbols 

     Angle of attack (degrees/°) 

      Angle between the body axis and the wind velocity vector 

       Equivalent angle of attack (degrees/°) 

(    ) 
   Induced change in angle due to vortex interaction 

       Change in local upwash due to the vortex field 

     Sideslip angle (degrees/°) 

     Wing deflection angle (degrees/°) 

     Ratio of specific heats 

     Vortex strength 

     Crosflow proportionality factor  

     Taper ratio 

     Leading edge sweep angle (degrees/°) 

     Circle complex crossflow plane,      
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      Complex distance between the vortex and its image vortex 

     Density (kg/m
3
) 

     Physical complex crossflow plane,      

     Velocity potential 

      Roll angle  

 

Subscripts 

B    Relating to the body 

n    Relating to the nose  

N   Normal to surface 

t    Relating to time 

T    Relating to the tail 

W    Relating to the wing 

x    Relating to the x-direction 

y    Relating to the y-direction 

z    Relating to the z-direction 

     Relating to free stream  
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1. Introduction 

Often in practice a given set of specifications should be met when designing a 

missile. It is then essential for an engineer to be able to predict the outcome of a 

design to a certain level of accuracy before further study. Therefore, the prediction of 

flow around missiles of varying types has extensively been studied since the early 

1930’s. The large variety of missile configurations has developed a need for 

prediction methods that are widely applicable to different geometries as well as flow 

regimes.  

The method relevant to this study is the Free Vortex Model (FVM) method developed 

by Tuling
 [1] [2]

 in 2013. The FVM method was developed to predict the centre-of-

pressure, normal force and vortex positions of a slender body with low aspect ratio 

wings. The method was restricted to body-wing combinations in the “+” orientation 

and was previously applied to the supersonic flow regime. The extension of the FVM 

method to subsonic flow is the topic of this study as will be described in the 

subsequent sections.  

The FVM method is based in the two-dimensional (2-D) slender body theory (SBT)
 

[1]
, which is known to be an incompressible formulation

 [3].
 The successful extension 

of the FVM method to subsonic flow for configurations with very low aspect ratio 

wings (strakes), will increase the preliminary design capabilities, which are essential 

in the missile design phase. The application to incompressible flow, which is of 

particular interest in this study, will allow for the assessment of the base theory from 

which the method derived. This will provide a platform for the extension of the 

method to larger subsonic to transonic speeds, as the limitations of the theoretical 
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assumptions, inherent in SBT method will have been assessed. It was recommended
 

[1]
 that the applicability of the FVM method to subsonic Mach numbers as well as 

non-zero roll angles be assessed.   

Most engineering level codes have been developed using largely slender body theory 

and often these codes involve empirical data. Some codes require initial values for 

certain flow aspects, such as the crossflow drag coefficient or initial vortex positions 

and strengths which are obtained from experimental data, in order to solve a series of 

partial differential equations (PDE’s). A few examples of existing engineering codes 

are Missile Datcom
 [4] [5]

, MISSILE I, II and III
 [6] [7]

, MISSILE (ONERA)
 [8]

, ESDU
 

[9] [10] [11]
, NSWC & APC

 [12] [13]
, AERODYN

 [14] [15]
 and NASA W-B-T

 [16]
. The 

advantages of using these engineering codes include low computational cost for 

reasonable accuracy (error below 20%). However the licenses for these codes are 

only available to a select amount of countries outside of the USA. Thus it is 

beneficial to continue developing “in-house” semi-empirical methods that may be 

applied using computing languages (such as Matlab, C++ etc.  

Of particular interest in predictive methods is the calculation of the influence of the 

wing-body section, which includes the loads due to vortex shedding. Primarily, two 

main methods of determining the influence of wing vortices have been used in the 

past. The first type of method determines the load component due to the wing vortex 

by modelling the vortex as a single concentrated vortex (SCV)
 [17]

. The second 

method defines the wing vortex as multiple discrete vortices
 [18] [2]

 instead of a single 

rolled up vortex. The FVM method, which is investigated in this study, models the 

vortex as a SCV.  
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In this study a wing-body combination is considered with constant body diameter and 

wings of very low aspect ratio. The terms “very low aspect ratio wings” and “strakes” 

will be used interchangeably in this dissertation. Three configurations with varying 

span to body diameter ratios (s/D) are considered: 

1. s/D = 1.25, AR = 0.011 

2. s/D = 1.5, AR = 0.022 

3. s/D = 1.75, AR = 0.033 

 

Figure 1: Configuration illustrating wing span (s) and body diameter (D) 

All three wing configurations consist of a rectangular wing with a 45° leading edge 

sweep and straight trailing edge. The following research limitations also apply: 

 Configurations with a tangent ogive nose of length 3D  

 Configurations with a strake-body section of length 11.25D 

 Four strakes arranged in the “+” orientation 

 Leading edge sweep of 45° 

 Flow regime is incompressible;       

 Angle of attack range between 0° and 25° 

It should be noted that “3D” refers to 3 times the body diameter, with the unit in 

calibers. In this dissertation low angles of attack (α) are considered to be     , 

moderate angles of attack are then above 4° up to 15° and higher angles are 
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considered to be from 15° to 25°. Angles of attack above 25° will be referred to as 

high angles of attack.  

1.1. Dissertation outline 

In the subsequent chapters in this dissertation the available literature is reviewed 

followed by a summary of the research approach. The core engineering method, the 

FVM method, is then described in detail followed by a chapter on the DVM method. 

The reference data for validating the predicted FVM and DVM results is presented in 

the form of experimentally validated CFD simulations. This is followed by a detailed 

description of the engineering method results after which a chapter is dedicated to the 

discussion of result. Finally conclusions are drawn with some recommendations for 

further study.  

  



 

5 

 

2. Literature survey 

The following section discusses important aerodynamic aspects of bodies alone, 

wings alone and wing-body combinations. The survey includes a discussion of 

available theories and prediction methods and their applicability to various missile 

configurations. Experimental observations by a number of authors are also 

considered.  

2.1. Aerodynamics of Circular Slender Bodies 

This part of the survey describes an overview of the theories developed for 

calculating the aerodynamic loads of bodies with a high fineness ratio (above 10 – 

also referred to as slender bodies) and no additional surfaces i.e. wings, strakes, 

canards etc. The fineness ratio of a body is defined as the ratio of the total body 

length to the maximum body diameter or  

       ⁄  . (1) 

2.1.1. Potential Theory 

The velocity potential   is a scalar function of position in time and is defined
 [19]

 as 

follows: 

   (       )  (2) 

     (3) 

where   is the velocity vector and   is the gradient operator (note that bold letters 

represent vectors). In missile aerodynamics a partial differential equation (PDE) for 
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the velocity potential is solved and the velocities may be obtained by differentiation 

of  . This PDE is called the potential equation
 [3]

. Two axes systems are considered 

in the derivation of the potential equation, one fixed in the missile and fluid 

respectively (Figure 2).  

 

Figure 2: Missile axes system [3] 

If the missile is stationary with the fluid moving at velocity   , then the full nonlinear 

equation takes the following shape: 

[  
  

   

 
  

  (   ) (   
  ̅

    ̅
    ̅

 

 
)] (  ̅ ̅    ̅ ̅    ̅ ̅)

     (  ̅
   ̅ ̅    ̅

   ̅ ̅    ̅
   ̅ ̅)

  (  ̅  ̅  ̅ ̅    ̅  ̅  ̅ ̅    ̅  ̅  ̅ ̅)

  (  ̅  ̅    ̅  ̅    ̅  ̅ ) (4) 

where  ∞ is the free stream speed of sound and   is the ratio of specific heats. When 

Equation (4) is linearized all second order terms are reduced to first order or less 

which results in the condensed equation 

(  
  

   

 
  )          

   ̅ ̅       ̅    (5) 

 

𝑉  
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In terms of free stream Mach number
 [20]

 

  ̅ ̅(    
 )    ̅ ̅    ̅ ̅  

 

  
 
     

  

  
  ̅    (6) 

If the body is sufficiently slender (   ) it may be assumed that changes in the x 

direction are small, reducing Equation (6) to a 2-D problem around a circle in the y-z-

plane, 

   

   
 

   

   
     

(7) 

2.1.2. Slender body theory  

Reference [3] describes how inviscid slender body theory (SBT) is derived from 

linear potential theory, which results in the following formulas for the normal and 

side force on circular slender bodies: 

  

  
              

  

  
    ( ) 

(8) 

where    is the free stream dynamic pressure, Fy is the side force, Fz is the normal 

force, α is the angle of attack and S(x) is the circular cross-sectional area as a 

function of x. From Equation (8), with the base area as reference area, the lift 

coefficient may then be given as  

   
 

   
 

  

    
    

(9) 

where Sb is the base area. Thus, the lift-curve slope 
   

  
 for SBT is two based on the 

body’s base area. One of the limitations of SBT is its applicability when viscous 
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effects are present in the flow, such as vortex shedding. SBT suggests that the 

pressure distribution is symmetric about the horizontal plane (see Figure 3).  In 

Figure 4 this expected pressure recovery of SBT is compared to experimental data for 

a slender body at 20
o
 angle of attack, Mach number of 1.96 and at 7.6 calibres along 

the body. The experimental pressure distribution shows a decrease similar to that of 

SBT, but poor pressure recovery occurs near the 0
o
 point after which a near-constant 

pressure distribution is observed
 [3]

. This was attributed
 [3]

 to the forming of a region 

of near-uniform pressure on the lee side of the body due to the boundary layer 

separation. 

 

 

 

 

 

 

 

 

 

 

 

 

Horizontal 

Symmetry Plane 

0o 

 

90o 

 

-90o 

Figure 3: Description of the crossflow plane of a cylindrical slender body 

Figure 4: Pressure distribution around circular body as predicted by SBT [3] 

Vertical 

Symmetry Plane 
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2.1.3. Vortex Theory 

The formation of vortices significantly influence the aerodynamics of missiles, 

therefore it is worth devoting some attention to vortex theory. Hans J. Lugt
 [21] 

provides three mechanisms for the generation of vortices in fluid motion. Briefly, 

they are as follows: 

 Rotational flow is expected with when a fluid is in motion in an enclosed 

space. This is especially true for incompressible flow due to the 

conservation of mass. 

 A vortex may form when fluid elements with vorticity accumulate at a 

point in the flow.  

 Vortices may develop through instability in the flow field. 

For a slender body of revolution at an angle of incidence below 90°, the flow around 

the body separates along a line toward the lee side of the body as show in Figure 5 

(A). The rolled-up body vortices form due to vortex filaments that ascend after the 

boundary layer separation
 [3]

. The position along the x-axis where vortices start 

forming (i.e. point of separation) is strongly influenced by the angle of attack and 

body geometry, as well as the Reynolds number and Mach number, which cause 

adverse pressure gradients in the boundary layer that drive separation
 [3]

.  
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Figure 5: Vortex shedding from a body of revolution [18] 

It is generally accepted 
[22]

 that, at low angles of attack, the flow remains attached 

along the length of the body. As the angle of attack increases, boundary layer 

separation occurs. At moderate angles of attack the vortices that form are symmetric, 

but at higher angles of attack asymmetric vortex shedding patterns occur
 [23]

. Point P 

in Figure 5 (B) illustrates an arbitrary point at which the vortex sheet breaks away and 

forms a free vortex, after which a new vortex sheet forms immediately in its place. 

The theory commonly known as crossflow theory was developed by Allen
 [22]

 in 1949 

and was refined by Allen and Perkins
 [24]

 in 1951 to account for viscous effects such 

as vortex shedding when approximating the aerodynamic loads on slender bodies. 

Allen’s crossflow theory has been applied to both subsonic and supersonic flow the 

assumption is applied that there is no Mach number dependence between       

at least.  
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If S is the reference area, then the lift coefficient according to the Allen and Perkins 

method may be written simply as 

    (
  

 
)         

 

 
    

(
  

 
)           

(10) 

where    is the base area,   .is the plan-form area (both in m
2
) and    

 is the section 

drag coefficient. The method also includes approximations for the drag and moment 

coefficients: 

        
      (

  

 
)         

 

 
    

(
  

 
)       

and 

(11) 

   (
      (    )

  
)         

 

 
 (

  

 
) (

     

 
)       

(12) 

where   is the body length,    is the distance from the nose tip to the moment 

reference centre,    is the distance from the nose tip to the centroid of the planform 

area and D is the body diameter which may vary with axial distance.  

The first term on the right hand side of Equations (10) to (12) is the contribution of 

potential theory and the second term represents the viscous effects. In reference [22], 

at low angles of attack (    ), it is suggested that Equations (10) to (12) may be 

simplified by the following approximations: 

         

         



 

12 

 

 

This leads to the following modified equations  

    (
  

 
)     

(
  

 
)     

(13) 

            
 (

  

 
)      

(
  

 
)     

(14) 

   (
      (    )

  
)  (

  

 
) (

     

 
)     

(15) 

An alternative method was proposed by reference [25] and was compared to Allan’s 

Crossflow Theory (Equations (13) to (15)). The study concluded that crossflow 

theory shows good compatibility with experimental results, if slightly over-predicted, 

for various missile and airfoil models. However it could not be established which 

method would be more favourable.  

Jorgensen
 [16]

 re-derived the Allen & Perkins theory and extended the method to 

angles of attack from zero to 180°. The formulations were derived semi-empirically 

and were also applied to bodies with wings/fins. The normal force and pitching 

moment coefficients from the Jorgensen formulation for angles of attack between 0° 

and 90°, with small angle approximation, can be expressed as 

    (
  

 
)         

 

 
     

(
  

 
)         

(16) 

   (
      (    )

  
)         

 

 
     

(
  

 
) (

     

 
)         

(17) 
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Equations (16) and (17) are very similar to the formulations of the previous method, 

with the addition of the crossflow drag proportionality factor  . Both    
 and   are 

taken from empirical data
 [16] [25]

.  

Symmetric vortex shedding may also be estimated by what has been named the 

“lumped-vorticity approximation”
 [17]

. The method described in reference [17] 

includes approximating the rolled up vortex sheet as a single concentrated vortex 

with the assumption of a fixed vortex feeding point (or separation point) on the body 

at 40° above the horizontal symmetry line. The vortex trajectories as well as 

aerodynamic loads predicted by the single concentrated vortex (SCV) method, as 

described in reference [17], were compared to available experimental data which 

showed reasonable correlation.  

Marshall and Deffenbaugh
 [26]

 developed another method for solving the unsteady 

two-dimensional approach by modelling the wake as multiple discrete vortices. This 

method is sometimes referred to as the discrete vortex model (DVM) method
 [27]

 and 

was refined by Mendenhall
 [23]

 to include a “supersonic panel method”. The method 

was also applied to a variety of body shapes in reference [18] with good correlation to 

experimental data.  

2.1.4. Semi-empirical methods 

In recent decades a number of semi-empirical methods have been derived for 

predicting flow over bodies of revolution.  

A combination of potential theory and crossflow theory was proposed by Hopkins
 [25]

 

to predict the pitching moment and forces on bodies of revolution at moderate angles 

of attack and low Mach numbers. The method utilizes an empirical trend to identify 
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which segments of the body potential theory may be applied to. The predictions were 

applied to body fineness ratios ( ) between 4 and 12.5 and were compared to the 

method described by Allen
 [22]

 for 15 different bodies of revolution. The method of 

Hopkins was demonstrated to correlate to experimental data at least as well as that of 

Allen. Figure 6 shows the comparison of the lift coefficient for these two methods to 

potential theory as well as experimental data for two bodies. 

  

Figure 6: Lift coefficient determined by Hopkins' theory compared to Allen's crossflow theory [25] 

Another method was published in the Engineering Sciences Data Unit (ESDU)
 [11]

 in 

1983 to estimate the normal force and pitching moment of axisymmetric cylindrical 

bodies (without wings) for angles of attack up to 90°. The method was extended to 

Mach numbers below and equal to 1.2 in reference [9]  as well as Mach numbers 

above 2.0 in reference [11]. Attention was also given to the effects of Reynolds 

number, Mach number and forebody blunting. The final modified equations
 [9]

 for 

  1.2 are listed below: 
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where     is the crossflow drag coefficient,    is the pitching moment coefficient 

about the nose,     is the volume coefficient,     is the centroid of the planform area 

coefficient and    is the forebody length. The factor   , which is applied to the 

potential term, is an empirical factor and is a function of Mach number. Again the 

applicability of this modified method is constrained to axisymmetric cylindrical 

bodies at certain conditions for two different forebody shapes, noted in Table 1. 

Table 1: Constraints for the ESDU subsonic method [9]. 

Forebody 

shape 

  

 
 

 

 
 

   Angle of 

attack 

Tangent 

ogive 
1.5 to 5 6 to 19.5 0.25 to 1.2 

0° to 90° 

Cone 1.9 10 0.5 

The following three factors may influence the accuracy of the EDSU subsonic 

method (i.e. Equations (18) and (19)): 

1. The sensitivity of the normal force to surface conditions at the nose in 

the presence of asymmetric vortex flow. 

2. Unsteady effects due to the presence of asymmetric vortex flow. 

3. Variations in the body geometry 

It was also stated that the accuracy of centre-of-pressure predictions     ⁄  falls 

within   0.08. 

2.1.5. Experimental Observations 

For the three-dimensional (3-D) cylindrical body the state of the boundary layer at 

separation depends on both the angle of attack and the Reynolds number, which is 

based on body diameter. There are three regimes typically found in experimental 
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testing and are defined by four transition mechanism boundaries. In addition to 

laminar and turbulent boundary layer separation, there is a third regime known as the 

“short bubble” regime
 [9] [11]

. The short bubble is characterized by an initial laminar 

boundary layer separation after which turbulent re-attachment occurs, followed by 

final separation of the turbulent boundary layer.  

The four transition mechanism boundaries are briefly described
 [9]

 with Equations 

(20) to (23) and a graphical representation in Figure 7. 

1. Free shear-layer instability: 

    
    

    (          )
      

(20) 

2. Attachment-line instability: 

       
    

    
      

(21) 

3. Crossflow instability: 

         
          

    
      (22) 

4. Streamwise-flow instability: 

            (23) 

In general, side forces and yawing moments may arise due to out-of-plane force 

distributions that result from asymmetric vortex flow. It was noted that side forces 

reduce in magnitude as Mach number increases. Reference [9] produced a graph (see 

Figure 8) of maximum side force versus crossflow Mach number, obtained from 
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various sets of data. If a body has a pointed nose, initial asymmetry generally occurs 

near the tip. This initial asymmetry is prevented by blunting the nose with a spherical 

diameter d as demonstrated in Figure 9. 

 

 

Figure 8: Variation of maximum side force with crossflow Mach number [9] 
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Figure 7: Experimental Boundary Layer Flow Regimes [9]: 

laminar (L), bubble (B) and turbulent (T). 
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Figure 9: Graphical Illustration of Blunted Nose [9] 

An experimental investigation
 [28] 

was conducted in order to determine the point at 

which the body vortices separate from the body. This was done by measuring the 

pressure distribution around the body in any crossflow plane and it was noted that the 

point of separation occurs at the point where a constant pitot pressure is maintained 

(also see graph on pressure recovery in Figure 4). The downwash due to the wake 

vortices were also investigated and expressions for the flow angles were derived 

using potential theory with the addition of two symmetrical vortices of equal strength. 

The paths and strengths of the body vortices could also be predicted quite accurately 

but requires knowledge on the normal force. The comparisons between the derived 

theoretical expressions and experimental data showed reasonable correlation at angles 

of attack below 20°. 

2.2. Wing Alone Aerodynamics 

The aerodynamics of very low aspect ratio wings (AR ≤0.1) are of particular interest 

in this study. Low aspect ratio wings (AR   1) have been extensively studied since 

the late 1930’s
 [29] [30]

. Some wing plan forms that have been studied include delta 

wings, rectangular wings, cropped delta wings, wing-strake combinations and 

trapezoidal wings
 [31] [32]

. Some experimental observations are available on all the 
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noted wing types
 [31] [32] [33].

 In reference [34] various theoretical prediction methods 

were applied to wings with rectangular and delta plan forms while focussing on 

aspect ratios below 3. 

2.2.1. Experimental Observations 

An examination of experimental data relating to delta wings of low AR will indicate 

a non-linear relationship between angle of attack and aerodynamic coefficients
 [34]

. A 

typical example of such a lift-curve is shown in Figure 10. 

 

Figure 10: Lift curve of low aspect ratio delta wing [31]  

At low angles of attack, the lee-side flow remains attached, but as the angle of attack 

increases, the flow separates from the leading edges forming lee-side vortices
 [31]

 (see 

Figure 11). There are two simple equations relating the free stream Mach number 

(  ), angle of attack ( ) and leading edge sweep angle ( ) to the angle of attack and 

Mach number normal to the leading edges (   and    respectively): 

        
    

    
   

(24) 

     √               (25) 
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Figure 11: Lee-side flow features of a delta wing at subsonic speeds [31] 

A phenomena known as “vortex breakdown” has been shown
 [31] [32]

 to occur at high 

angles of attack. At the vortex breakdown point, an abrupt expansion of the vortex 

cores above the wing occurs, decreasing the axial velocity downstream of this point. 

The AR (and thus leading edge sweep) of the delta wing influences the angle of 

attack at which vortex breakdown will occur and it was shown by Stahl
 [32]

 that the 

critical angle of attack at which breakdown is observed, decreases with decreasing 

leading edge sweep.  

The effects of AR on the normal force coefficient (  ) are shown in Figure 12. At 

supersonic speeds,    tends to increase with increasing AR
 [31]

. At subsonic speeds 

the AR has a more complex effect on    due to the varying effect the AR has on 

vortex breakdown (or wing stall). The angle of attack at which vortex breakdown 

occurs, i.e. the peak of the   -  curve, increases with decreasing AR for 1.5 ≤ AR ≤ 

4 and decreases again for AR=1. Below angles of attack of approximately 15°,    

tends to increase with increasing AR as with the supersonic data.  
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Figure 12: Effects of AR on normal force coefficient for (a) subsonic and (b) supersonic flow [31] 

Low aspect ratio rectangular and trapezoidal wings are expected to have very similar 

flow fields as both planforms have separate leading and side edges
 [32]

 (as opposed to 

delta wings which have swept back leading edges). For thin wings with slightly 

rounded leading edges, a separation bubble was observed at the leading edge, which 

increases in size with increasing angle of incidence. The separation bubble can also 

be described as a vortex having a core that is parallel to the wing surface
 [31]

. A short 

separation bubble for a given wing cross-section is demonstrated in Figure 13.  
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Figure 13: Short Bubble Region for Wing Profile [32] 

For flat plate rectangular wings with sharp edges, the flow separates around the side 

edges. The separated flow forms a vortex sheet which rolls up into a vortex core
 [32]

. 

The side edge vortices as well as the separation bubble and other flow features as 

interpreted from skin friction lines
 [35]

 are illustrated schematically in Figure 14. 

Similarly to the delta wing,    was shown
 [31]

 to increase with increasing AR at low 

speeds below angles of attack of approximately 15°. This is illustrated in Figure 15. 

The vortex breakdown point also tends to increase with decreasing AR up to AR=0.5. 

The vortex breakdown point is then at a slightly lower angle of attack at AR=0.35 

and no vortex breakdown effect is observed at AR=0.134.  



 

23 

 

 

Figure 14: Interpretation of skin friction lines for a slender rectangular wing [35] 

Clipped delta wings have also been used in various missile designs
 [31]

. A   -  curve 

for wings with three different taper ratios (λ) are shown in Figure 16. If a rectangular 

wing (λ = 1) is modified so that the leading edges are swept back to a finite value, the 

CN-α curve changes only moderately. If the sweep angle is increased, the flow field 

will begin to approach that of a delta wing as the side edges and their effects are 

reduced.  

 

Figure 15: Effect of AR on the normal force coefficient for a rectangular wing at low speeds [31] 
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Figure 16: Effect of taper ratio on wing normal force coefficients for AR=1 and M∞=2.16 [33] 

 

As shown previously, vortex breakdown for wings at subsonic speeds causes 

significant loss of lift at high angles of attack. The vortex breakdown for swept back 

wings at large angles of attack can be delayed by adding small strakes in front of the 

wing
 [31] [32]

. The strakes generally have slender delta wing planforms and have a total 

area that is approximately 10% that of the main wing
 [31] [32]

. The strong leading edge 

vortices created by the strake increases the effective sweep of the main wing which 

stabilizes the leading edge separation of the main wing
 [31]

. An example of the strake-

wing combination and the effect on lift is shown in Figure 17. 
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Figure 17: (a) Strake-wing planform with vortex structure [31] (b) Effect of strakes on wing-body lift at 

M∞=0.5 [32] 

2.2.2. Theoretical Methods 

In 1946 a theory was proposed by Jones
 [29]

 to determine the lift of low aspect ratio 

wings for small angles of attack. The problem is approached utilising classic thin-

airfoil theory
 [36] [37]

 as well as potential theory to calculate compressibility effects. 

Elliptical, triangular and rectangular airfoil shapes were considered. The formulas 

obtained by Jones were similar to those developed by Munk’s theory
 [38]

 on airship 

hulls.  

Flax and Lawrence
 [34]

 proposed that the problem of predicting the flow over low 

aspect ratio wings divides into two parts. Firstly, estimating the lifting-surface theory 

within reasonable accuracy and time and secondly, calculating the non-linear effects. 

In the past the non-linear effects have largely been determined by semi-empirical 

means. Crossflow theory, first proposed by Allen
 [22]

 for slender bodies, was believed 

to be the best basis for deriving semi-empirical methods
 [34]

 for estimating non-linear 

effects. In order to reduce computational time the lifting-surface theory is reduced to 

the classical lifting-line theory first developed by Prandtl.  
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2.3. Aerodynamics of wing-body combinations 

2.3.1. Wing-body Interference 

The effect of wing-body interference has been largely studied throughout the history 

of missile aerodynamics due to the subject’s importance in the calculation of 

aerodynamic loads of wing-body combinations. It has been said
 [20] [39]

 that there are 

two categories of methods currently available for predicting wing-body 

characteristics; the first being theoretical methods that attempt to solve complicated 

boundary-value problems and the second being semi-empirical engineering methods 

with limited applicability. One theoretical method produced by reference [40]
 

involves a complicated solution to the linearized cylindrical potential equation. An 

attempt to derive a method with high accuracy as well as wide applicability was made 

by Nielsen and Pitts
 [39]

. The study was conducted at supersonic speeds and produced 

an extended theoretical method for determining the aerodynamic lift and centre-of-

pressure position as a function of wing aspect ratio and effective chord-radius ratio 

(i.e. ratio of wing chord length over body radius). 

The lift and centre-of-pressure prediction method developed by Pitts, Nielsen and 

Kaattari.
 [41]

 is based on slender body theory (SBT) and involves the theoretical 

estimation of wing-body interference factors at supersonic speeds. The lift of the 

wing alone and wing-body combination is represented as    and    respectively and 

are linearly related by the factor   , 

          (26) 
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   is defined as the sum of the following ratios: 

   ( ) – ratio of body lift (in the presence of wings) to wing alone lift 

   ( )  – ratio of wing lift (in the presence of body) to wing alone lift 

    – ratio of nose lift to wing alone lift 

     ( )    ( )       (27) 

By applying slender body theory SBT
 [3] [42]

the values given to these ratios are 
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where    is the wing area,   is the body radius,    is the body radius at the nose 

shoulder, (   
)
 

 is the lift-curve slope of the wing at zero angle of attack, and    is 

the maximum semi-span of the wing-body combination. The theoretical normal force 

coefficient    is then estimated as follows 

      
    ( )

    ( )
   (31) 
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)
 

    (32) 

If the wing-body combination produces more lift than the wing alone (i.e. the body 

produces positive lift interference) then   ( )>1. If   ( )<1, the body produces 

negative lift interference
 [43]

.This method has been applied to, and experimentally 

validated for, nearly 100 wing-body combinations and it was found that in most cases 

the lift was predicted to within  10% of experimental results. Modifications for finite 

and negative aftbodies were developed in references [44] [45] and [46]. 

In 1989, Nelson and Bossi
 [47]

 explored wing-body interference factors for supersonic 

missiles with elliptical cross-section fuselages. Changes in   ( ) as a function of 

span to body radius (   ) were compared for different aspect ratios of delta-wings by 

solving Euler equations. The research showed that body (fuselage) has a positive 

effect on the wing lift for small     and the effect of the body becomes negligible for 

large    -values. An investigation by Est and Nelson
 [48]

 in 1995 included effects of 

Mach number, body shape and angle of attack on   ( ) and centre-of-pressure using 

an Euler code, ZEUS. Again the study was only applied to supersonic Mach numbers 

(between 2 and 4) and concluded that   ( ) predictions do not vary significantly 

with angle of attack below 5°, but show sensitivity to Mach number, wing leading-

edge sweep angle and body shape.  

2.3.2. Equivalent Angle of Attack Concept 

The equivalent angle of attack (EAOA) method was derived in 1977 by reference 

[49] to computationally derive the aerodynamic characteristics of cruciform wing-

body combinations. The method may be applied to Mach numbers ranging from 
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subsonic to supersonic speeds and angles of attack up to 20°. The EAOA method is 

based on the principal that the normal force coefficient of a wing/fin is the same as 

the normal force coefficient of the wing/fin alone, comprised of two of the same 

wings/fin connected symmetrically at the root chord, then the other force and moment 

coefficients are also alike. The equivalent angle of attack     is then the angle of 

attack of the wing alone at which the above statement is true: if the body diameter is 

large compared to the wing span, the angle of attack experienced by the wing alone 

does not equal the body angle of attack, due to the disturbance introduced by the 

body to the flow field
 [50]

. 

The wing-body interference factors derived from slender body theory are used to 

calculate     along with small angle approximations and the assumption of linear 

superposition of the contributing factors to the lift coefficient. Additional work was 

done on the extension and application of the EAOA method in references [41] to 

[51]. The equivalent-angle-of-attack can be written as
 [47]

 

      ( )  
 

  
     (33) 

where   is the sideslip angle and    is the sideslip interference factor. Thus the 

second term on the right-hand side represents effects from fin sideslip angle. The first 

term on the right-hand side of the equation represents the contribution due to body 

upwash.  
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If vortex interaction is considered a third term may be added to Equation (33), such 

that 

      ( )  
 

  
     (    ) 

 (34) 

where (    ) 
 is the induced change in angle due to vortex interaction

 [43]
. The 

component of normal force coefficient of the wing in the presence of the body 

(   ( )
) can be written as follows, 

   ( )
  

    

  
|
   

      
(35) 

If the wing is sufficiently aft of the nose and at small angles of attack, the cylindrical 

portion of the body will produce very little or no lift
 [50]

. Therefore, lift is only 

generated due to the presence of the wing. By applying slender body theory (SBT), 

the normal force for the wing-body section may be calculated as 
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where    is the angle between the body axis and the wind velocity vector. If only the 

wing alone is considered
 [20] [50] [52]

 Equation (36) reduces to  
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Dividing Equation (36) by Equation (37) gives 

   ( )
    ( )

   

 (  
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(38) 

It was suggested by Morikawa
 [52]

 , Ward
 [53]

 and Nielsen and Kaattari
 [20]

 that the 

wing alone component be derived from linear theory or obtained from empirical data. 

This is called the modified SBT method. Equation (38) can also be rewritten
 [50] [52]

 in 

terms of the interference factors   ( ) and   ( ) as follows  

  ( )    ( )  (  
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(39) 

where  

  ( )  
   ( )

   

            
 

  ( )  
   ( )

   

           
 

The SBT formulations for the above interference factors are shown in Equations (28) 

to 30 and are plotted against the    ⁄  ratio in Figure 18. The results can however be 

improved by replacing these values by computational, semi-empirical or 

experimental values. 
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Figure 18: Slender Body Theory Wing-body Interference Factors 

If a tail is present, the normal force acting on the tail section in the presence of the 

wing is given
 [50]

 as follows 
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)    

    

  
|
   

 
(40) 

where    is the body carryover factor for wing deflection,    is the wing deflection 

factor and     is the change in local upwash due to the vortex field. The total normal 

force coefficient is then simply the sum of all the relevant components: 
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   (41) 
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By applying the EAOA method Equation (41) may be written
 [50]

 as 
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|
   

 

(42) 

where   is the wing deflection angle. The pitching moment coefficient can then be 

calculated using the centre-of-pressure estimate from references [3] and [42] together 

with the result from Equation (42). Extensions to the EAOA method includes effects 

of bank, supersonic Mach numbers and high angles of attack and are discussed 

extensively in reference [50]. 

2.3.3. Potential Methods 

Three potential methods applicable to this study, namely the single concentrated 

vortex (SCV), discrete vortex model (DVM) and free vortex model (FVM) methods. 

As previously mentioned (Section 2.1.3), the SCV method models the rolled up 

vortex sheet as two single concentrated vortices. This constitutes a line vortex that is 

concentrated at the centre of gravity of the vorticity. The SCV method was first 

proposed by reference [17] for slender bodies of revolution, but may be extended to 

wing-body combinations
 [27]

. For a case of leading edge separation on delta wings
 [54]

, 

the sharp edge is defined by the Kutta-condition in order to determine the strength 

and positions of the concentrated vortices. For bodies alone, a similar condition is 

defined such that the vortex feeding points are defined as stagnation points
 [17]

. The 
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locations of these points were estimated by experimental observation to be 

approximately 40° above the horizontal symmetry line. 

In the DVM method, the vortex sheet that separates from the strake side edge is 

represented by multiple discrete singularities (vortex filaments). The shed vortices are 

then modelled as free vortices which then move as Lagrangian fluid particles 
[27]

. In 

order to define the shed vortex it is required to first determine its initial position in 

two orthogonal directions (generally in the y-z plane as shown in Figure 2, Section 

2.1.1) as well as the strength of the vortex. The nature of the strake side edge is 

defined by the Joukowski-Kutta condition and the local velocity at the edge is 

determined from the velocity potential. The method for predicting the path of the 

discrete vortices is elucidated by references [27] and [55]. 

The predictive method that is relevant to this study is the FVM method and was 

recently developed by Tuling et al.
 [1] [2]

. The method has been applied to the 

following conditions: 

 Cruciform wing-body combination in “+” orientation 

 Wings of very low aspect ratio (below 0.1) and taper ratio greater than 

0.85 

 Constant body diameter across wing-body section 

 Wing span to body diameter ratio of 1.25 

 Wing lengths constituting more than 50% of body length 

 Supersonic speeds 

The FVM method, as with the SCV and DVM methods, reduces the three-

dimensional steady problem to a two-dimensional unsteady problem and models the 
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shed vortices as single concentrated vortices. In contrast to other existing methods, 

the FVM method models the vortex positions as a function of the shed vorticity, but 

requires initial vortex positions and strengths to solve the first order differential 

equations. The vortex strength is also determined and, together with the vortex 

positions, is used to calculate the normal force and centre-of-pressure induced by the 

vortex sheet. This is accomplished using the vortex impulse theorem. Also, the Kutta 

condition is not satisfied at any stage in the FVM solution method. The set of 

differential equations to be solved require an initial vortex position and strength
 [1] [2]

. 

Contrary to other engineering methods, the FVM method does not assume a constant 

vortex strength but determines the vortex positions using the shed vorticity. The 

normal force coefficient is calculated using a component build-up method, which is a 

summation of three components: normal force coefficient due to 

forebody (           
), wing-body section (     

) and aftbody (          
). 

    
            

      
           

   (43) 

The method was applied to four different configurations and compared to available 

experimental data at different Mach numbers. It was concluded
 [1] [2]

 that the method 

predicts the normal force for angles of attack up to 10°. The centre-of-pressure 

predictions however were poor for all four configurations and are therefore a 

limitation of the method (see Figure 19).  
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Figure 19: FVM and CFD comparison [27]  for (a) normal force coefficient and (b) centre-of-pressure 

position 

Recently both the SCV and DVM methods were applied
 [1] [27]

 to a wing body 

combination similar to the configuration described above with wings of aspect ratio 

0.025 and taper ratio of approximately 1 (also referred to as strakes). Three different 

Mach numbers were considered namely 2.0, 2.5 and 3.0. The lee side flow was 

shown to be largely influenced by the secondary vortex that arises due to the wing-

body junction. The engineering predictions were also compared to validated 

computational fluid dynamics (CFD) simulations (see Figure 20). When compared to 

configurations with delta wings, the DVM method required fewer number of time 

steps for bodies with strakes to accurately capture the shed vorticity. The SCV 

method proved less accurate for bodies with strakes as the method over-predicts 

normal forces at angles of attack larger than 4°. The concepts of these engineering 

methods are discussed in more detail in the following section, focussing on the DVM 

and FVM methods which are investigated in this study. 
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Figure 20: SCV and DVM comparison to CFD for (a) normal force coefficient and (b) centre-of-pressure 

position [27] 
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3. Research Approach 

3.1. Approach 

A database of specific flow features was created for configurations of varying span to 

body diameter ratios (  ⁄ ) at incompressible Mach numbers. The flow features 

relevant to this study include normal force, centre-of-pressure and vortex positions. 

These were determined using three different methods: 

1. CFD simulations 

2. Experimental testing 

3. Engineering method predictions 

The CFD simulations were carried out using ANSYS Fluent v15 with meshes created 

in Gambit. The simulations were run at Mach numbers 0.1 and 0.2 and angle of 

attack range of         . Full scale symmetrical models were created for the 

computational simulations as no asymmetrical/three-dimensional effects are expected 

at these low angles of attack.  

The experimental tests were carried out in order to validate the loads resulting from 

the CFD simulations. A 56% scaled model was designed for the experimental 

validation. Tests were conducted at Mach numbers 0.1, 0.2 and 0.3. The loads of 

interest, normal force and pitching moment, were measured up to an angle of attack 

of 20°.  

In addition to the FVM method, another engineering level prediction method called 

the discrete vortex model (DVM) method was utilized for comparison purposes 

because of its accepted usage
 [27]

. Both the FVM and DVM methods were developed 
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for missiles with wings/strakes, therefore the load predictions using these two 

methods were carried out for the three noted body-strake configurations only. The 

loads predicted by the FVM and DVM methods do not include the total loads 

experienced by the missile, but are the component loads due to the vortex separation.  

In this study, the method for calculating the normal force over the entire 

configuration is based on the component build-up method. This allows the 

comparison to the total loads that are obtained from CFD simulations as well as 

experimental testing. The subsequent sections discuss these methods in more detail, 

including the comparisons of the predicted loads and vortex positions.  

3.2. Configuration 

Three body-strake configurations with modelled each with a different span to body 

diameter ratio (  ⁄ ) namely 1.25, 1.5 and 1.75. The general dimensions for these 

configurations are illustrated in Figure 21. 

 

Figure 21: Body-stake configurations general dimensions 

The forebody of the body-strake configurations is defined as the body section upwind 

of the strake leading edges which includes a nose of 3 diameters or calibers (3D). The 

total forebody length is thus 4.75D. At zero roll angle the strakes are in the ‘+’ 

orientation as shown on the left hand side of Figure 21. Non-zero roll angles were not 

considered in this study.  

s 
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4. Free Vortex Model Method 

The purpose of the free vortex model (FVM) method is to predict the aerodynamic 

loads and lee side flow features of slender body configurations with low aspect ratio 

wings (strakes) in the ‘+’ orientation. The method focuses on predicting the load 

component due to vortex separation; this is explained in more detail in Section 4.3. 

The calculated loads and flow features include the normal force coefficient and 

centre-of-pressure positions as well as vortex positions and strengths.  

The calculations are carried out by reducing the steady, three-dimensional (3-D) 

problem to a transient, two-dimensional (2-D) problem. This is accomplished by 

dividing the 3-D flow field into multiple planes (see Figure 22) so that a difference in 

time dt in the 2-D impulsively started flow corresponds to the axial distance between 

planes dx. Time (dt) and axial distance (dx) are related by the free stream velocity, 

   
  

  
   (44) 

 

Figure 22: Flow field divided into multiple planes for impulsively started 2-D problem 
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This simplification reduces the computing time of the engineering method and allows 

incompressible potential flow equations to be used. The calculation method of the 

FVM method is described in this section. 

4.1. Theoretical Formulation 

The linear potential equation is shown in Equation (6) and is repeated here for 

convenience: 

  ̅ ̅(    
 )    ̅ ̅    ̅ ̅  

 

  
      

  

  
  ̅    

 

Assuming 2-D flow (in the y-z plane), Equation (6) is reduced to 

  ̅ ̅    ̅ ̅      (45) 

This method of reducing a 3-D problem to a 2-D problem exists under the assumption 

that the body diameter is constant (or changes slowly) in the direction perpendicular 

to the plane considered.  

For a noncircular cross-section (which is the case for body-strake combinations) the 

potential equations are not readily available. Therefore the physical plane (    

  ) with the wing-body cross-section is transformed to a circle plane (      ) in 

order to perform the analysis. The transformation follows that of references [23], [27] 

and [56]. The physical and transformed planes are defined as in Figure 23. The 

transformation is defined any point in the σ plane can be transformed to the ν plane 

and vice versa. Thus 

   ( )   (46) 

   ( )   (47) 
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Figure 23: Cross-section physical transformation 

The transformation and its derivatives are given as: 
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where ro is the circle radius in the ν–plane. It was shown in reference [1] that the 

complex potential for two vortices with strengths    and    in the ν-plane is 
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where    is the roll angle in degrees. The complex velocity in the σ-plane at      

and generalized to the j
th

 vortex is then  
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It was also shown
 [1]

 that the equations of the rate of change for the j
th

 vortex with 

respect to the axial are  

   

  
   

 

     
 (54) 

and  

   

  
   

 

     
   (55) 

 

4.2. Vortex Induced Loads 

The vortex impulse theorem
 [57]

 states that, for a wing-body-tail combination, the 

influence of the wing wakes on the other components are due to the impulse of each 

shed vortex and its image vortex, in a transformed circle plane. The interaction of the 

wing wake is utilized to calculate the forces and moments due to the presence of shed 

vortices.  
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The impose loads can be expressed
 [1]

 as 

             (56) 

where    is the complex distance between the vortex and its image vortex in the 

circle plane. With regards to this study, the vortex impulse theorem will be applied in 

particular when a vortex sheet (or concentrated vortex) is shed from the body.  

4.3. Component build-up method 

In this study, the method for calculating the normal force over the entire 

configuration is based on the component build-up method. This allows the 

comparison to the total loads that are obtained from CFD simulations as well as 

experimental testing owing to the fact that the normal force obtained from the FVM 

method is the component due to the vortex separation. The configuration as discussed 

in Section 3.2 may be divided into three parts: the fore body section, cruciform wing-

body section and the aft body section. Each of these sections generates a normal force 

component that equals the total normal force when summed:  

              
     

           
 (57) 

where     
 is the cruciform wing-body component. According to Allen

 [22]
 the 

normal force for cruciform wing-body section is the sum of two components, namely 

the load due to an attached potential flow and a vortex induced load. The total normal 

force is then 

              
           

         
           

   (58) 
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The attached potential component is given
 [1]

 as 

          
 (   

    
)    

       (
 

 
)   (59) 

Therefore the total load can be expressed as 

              
 (   

    
)    

       (
 

 
)          

           
 (60) 

where         
 is the normal force component induced by the vortex.         

 is then 

determined using the FVM method and the accuracy with which it is predicted is the 

topic of this study.   
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5. Discrete Vortex Model Method 

Along with the experimentally validated CFD data, the free vortex model (FVM) 

method will also be compared to the discrete vortex model (DVM) method which is 

an established engineering method
 [23] [27] [58]

. Similarly to the FVM method, the DVM 

method also predicts the load component due to vortex separation and divides the lee-

side flow field into multiple two-dimensional sheets in order to reduce the steady, 

three-dimensional problem to a transient, two-dimensional problem.  

5.1. Summary of Theory 

The vortex sheet that separates from the strake side edge is represented by multiple 

discrete singularities (vortex filaments). The shed vortices are then modeled as free 

vortices which then move as Langrangian fluid particles
 [27]

. 

Similar to the FVM method, the complex potential for the flow is transformed to the 

circle plane (see Figure 23 in Section 4.1). If the complex potential is  ( ), then the 

complex velocity is given as 

  ( )

  
 

  ( )

  

  

  
   (61) 

The total complex potential  ( ) for two vortices with strengths    and    in the 

transformed (ν) plane is 
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Thus the complex velocity in the σ-plane at      and generalized to the j
th

 vortex 

was shown to be 
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(63) 

For the DVM method the Joukowski-Kutta condition is employed which states that a 

stagnation point exists at an edge with a finite angle or sharp point. Thus, for the 

potential  ( ), a stagnation condition exists at side edge in the circle plane so that 

  ( )

  
     

When the Joukowski-Kutta condition is applied to Equation (62), this then results in 

the following relationship
 [1] [27]
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(64) 

where     is the position where separation occurs in the ν-plane. The method of 

reference [59] is then utilized to calculate the vortex strengths, which assumes that 

the velocity at the initial point of separation on a sharp edge is   
 

 
  . The shed 

line vortex is propagated outward along the spanwise axis at a distance        and 

is replaced by a single concentrated vortex which, along with the discrete vortices, is 

mapped as Lagrangian fluid particles. From the potential  ( ) the complex velocities 

at the Joukowski-Kutta edge are calculated as 
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Secondary separation due to boundary layer has also been considered by using the 

criterion developed by Stratford
 [60] [61]

. Given that the separation is limited to the 

body only and that the boundary layer is laminar (as in the condition in reference 

[27]), separation occurs when the following criterion
 [60]

 is met: 

[  ( 
   

  
)

 

]            

for a constant pressure gradient (
  

  
), where   is the distance from the stagnation 

point and    
       

 

 
   

 .  

There are two variations of the DVM method that are utilized in this study; the first is 

referred to as the DVM potential method and the second as the DVM boundary layer 

(BL) method. The potential method is the base formulation initially proposed by 

Sacks et al
 [59]

 for slender wing applications. The first application of the DVM 

method to so called wing-body configurations was done by Mendenhall and 

Lesieutre
[62]

 on forebodies with chines in subsonic flow. The method was recently 

extended to cruciform wing-body combinations by Tuling [1] 
 which is applicable to 

the configurations in the present study, although the method was applied to 

supersonic speeds. The theoretical development is described in more detail in 

references [1] and [2].  

Reference [27] investigated the DVM method’s dependence on the number of 

discrete vortices used. This also translates to the number of steps used along the 

strake edge and it was found that, for vortex paths in       and      , at least 
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120 vortices were required to sufficiently model the flow over the strakes. Since the 

configurations relevant to this study are the same as that of reference [27], the same 

amount of steps was utilized in this application of the DVM method. Figure 24 gives 

an indication the vortex path as a function of step size (number of vortices) in the 

physical plane, as assessed by reference [27]. The DVM potential method was used to 

evaluate the grid sensitivity. 

 

Figure 24: Vortex paths as a function of step size [27] 

The DVM BL method was initially applied by Mendenhall and Lesieutre
 [62]

 after it 

was found that, if the initial vortex positions were placed too close to the body, 

numerical difficulties may arise in that the vortex becomes “trapped” in the BL
 [1]

. 

This then influences the vortex trajectory calculations. To prevent these difficulties, 

they proposed placing the shed vortex well outside the boundary layer at a distance of 

5% of the of the local body radius from the surface.  

There are some distinct differences between the FVM and DVM methods. Firstly, the 

computing time for the FVM method is much less than that of the DVM method. 

Where the FVM method completes a simulation in a matter of seconds, with the same 
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CPU power, the DVM method will complete a simulation in a matter of hours. 

Secondly, the DVM method divides the vortex sheet into multiple vortex filaments 

(Figure 25 (a)) and the FVM method calculates vortex positions by tracking the 

single rolled up vortices (Figure 25 (b)). The DVM method defines the Joukowski-

Kutta condition at the strake side edges, whereas the Joukowski-Kutta condition is 

not specified at any point in the FVM method. Lastly, the FVM method calculates the 

vortex strengths at each lengthwise station (see Figure 22), whereas the DVM method 

assumes a constant vortex strength throughout.  

 

 

(a) 

 

 

(b) 

Figure 25: (a) Vortices divided into multiple vortex filaments and (b) single consentrated vortex or rolled 

up vortex sheet 

5.2. DVM Results 

Prediction results for both the potential and boundary layer formulations of the DVM 

method are illustrated in Figure 26. In both methods a body vortex is specified with 

the same initial vortex positions and strengths. The results show that for the span to 

body diameter (s/D) ratios of 1.25 and 1.5 the DVM boundary layer (BL) method 
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under-predicts the normal force (  ) when compared to the potential method. The 

error between the two methods is observed to decrease with increase in strake span 

such that the two curves overlap at s/D=1.75.  

In contrast, very little difference is observed between the BL and potential prediction 

of the centre-of-pressure positions (   
). Since    

 is dependent on both the normal 

force and pitching moment (  ), this indicates that the difference in    between the 

two methods has a linear relationship to the difference in Cm predicted for the two 

methods. Thus the slope 
   

   
 remains almost constant with increase in strake span 

resulting in small differences in    
 with increasing strake span. 

 

(a) 

 

(b) 

Figure 26: DVM predictions for (a) normal force coefficient and (b) centre-of-pressure position 

These load results as well as the predicted vortex positions are discussed in more 

detail in Section 7, when compared to the FVM method and validated CFD data. 
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6. Data Validation 

6.1. Numerical Simulations 

A global loads and flow field database was compiled using CFD. A symmetric 

computational model was constructed in the assumption that no asymmetric vortices 

are expected at the low angles of attack relevant to this study (see Section 3). Mesh 

independent results were obtained with a structured mesh of 22 million cells. The 

base pressure drag was found to fluctuate the most with change in mesh density and 

is given as an example of the mesh convergence study in Figure 27. In order to 

accurately capture the nature of the vortices and their effects on the aerodynamic 

loads, the meshed volume containing the lee-side flow and shed vortices was refined 

so that the vortex core consisted of at least 8 cells (in the crossflow plane).  

 

Figure 27: Mesh convergence for base pressure drag for s/D=1.25 

The procedure of simulating the noted configurations in this part of the numerical 

study entails pre-processing in Gambit, simulations in ANSYS Fluent and post-

processing using both Tecplot 360 and MATLAB (see Figure 28).  
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Figure 28: Numerical simulation process 

6.1.1. Pre-processing 

Both the modeling of the configuration as well as the construction of the mesh was 

carried out in the code Gambit. Three bodies with strakes were simulated, each with a 

different span to body diameter ratio (  ⁄ ) namely 1.25, 1.5 and 1.75. 

The mesh boundaries are located at a distance of 100 times the length of the model 

away from the body in all directions. This is to ensure that the influences of the 

aerodynamic characteristics of the model on the wider volume of air, due to the 

conditions of subsonic flow, are included in the simulations.  

Three structured meshes with increasing number of cells were investigated and the 

finest mesh with 22 million cells was found to be mesh-independent. Figure 29 shows 

a section of the final mesh. The boundary layer was simulated with near-wall 

treatment such that at least three cells were present in the viscous sub-layer, for 

which the wall y+-values are calculated by the Fluent code to be less than 1.  
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Figure 29: Mesh section of body-strakes configuration 

6.1.2.  Simulations 

The CFD simulations were performed using ANSYS Fluent v15, implementing a 

coupled pressure-velocity algorithm with second order upwind spatial discretization 

scheme. The Spalart-Allmaras turbulence model was used as it is less costly while still 

robust. The Spalart-Allmaras model was also specifically designed for aerospace 

applications and since the results were shown to be highly accurate (as discussed in the 

following section), no additional turbulence models were simulated. Simulations were 

run on 48 nodes taking approximately 20 CPU hours. The solutions were considered 

converged when the residuals had reduced by a third order of magnitude and the loads 

asymptoted to constant values. The simulations were run at Mach numbers of 0.1 and 

0.2 and angles of attack from 0° to 25°. For each angle of attack the flow angle is 

changed in the inlet and outlet boundary conditions, so that only one mesh is required 

for each configuration. The inlet boundary condition is specified as a pressure-far-field 

condition with a pressure outlet. The inlet and outlet conditions for the relevant Mach 
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numbers were determined to be the same as that of the wind tunnel conditions for 

comparison, these are given in Table 2.  

Table 2: CFD input flow conditions 

Mach Number 0.1 0.2 

Static Pressure 48.6 kPa 47.6 kPa 

Static Temperature 283K 286 K 

ReD 88.7x10
3
 174.3 x10

3
 

 

The relevant loads were extracted from the Fluent results and were plotted against the 

available experimental data. In addition to the loads, the body and wing vortex 

positions were also extracted from the CFD data. The CFD results and the 

comparisons to experimental data are given in the subsequent sections for all 

configurations. 

6.1.3. CFD Results 

Aerodynamic loads 

The simulation load results for normal force coefficient (  ), pitching moment 

coefficient (  ), centre-of-pressure position (   
) and axial force coefficient (  ) are 

shown in Figures 30 and 31. It should be noted that no Mach number dependence is 

observed for both    and   . As expected both, these coefficients increase with 

increasing wing span. Values of    
 (in calibers) are also shown to be Mach 

independent and only small differences exist for varying wing spans. At angles of 

attack (α) below 5°,    
 moves further aft with increase in wing span. Between 5° 
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and 15° angle of attack, however,    
 shifts further forward toward the nose with 

increase in wing span. Above 15° the change in    
 with wing span is negligible. 

There is a near linear relationship between the increase in    and    as the strake 

span increases, thus the slope 
   

   
 remains almost constant with increase in strake 

span. Since    
 is directly related to 

   

   
, the increase in strake span has a very small 

effect on    
. 

 

(a) 

 

(b) 

Figure 30: (a) Normal force and (b) centre-of-pressure position CFD results for all Mach numbers and 

configurations 
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(a) 

 

(b) 

Figure 31: (a) Pitching moment and (b) axial force position CFD results for all Mach numbers and 

configurations 

A reduction in    is observed with increase in Mach number and subsequent increase 

in Reynolds number based on body diameter (ReD), although little difference is 

observed in the curve slopes for each configuration. For s/D=1.25 however, no 

difference is observed in the absolute     value for     . Above 10°     for Mach 

0.2 is offset by a near-constant value. These     results indicate critical ReD behavior 

usually observed in cylinder crossflow as shown in Figure 32. It may be observed 

that the crossflow in the presence of the strakes imitate crossflow in the presence of a 

transitional bubble. This effect decreases with decreasing strake span, resulting in 

transcritical behavior at      for s/D=1.25 where     remains constant with 

increase in ReD. 
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Figure 32: Drag bucket curve for a cylinder in crossflow [63] 

Vortex shedding 

The positions of the vortices shed from the strakes are given in this section for all 

configurations and Mach numbers. The lateral and vertical vortex positions are 

plotted against normalized axial positions in calibers for angles of attack of 6°, 10°, 

15°, 20° and 25° in Figures 33 to 37. The lateral (y) and vertical (z) distances are 

non-dimensionalised by the body radius (a).  

 

(a) 

 

(b) 

Figure 33: CFD (a) vertical and (b) lateral vortex positions for α=6° 
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(a) 

 

(b) 

Figure 34: CFD (a) vertical and (b) lateral vortex positions for α=10° 

 

 

(a) 

 

(b) 

Figure 35: CFD (a) vertical and (b) lateral vortex positions for α=15° 
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(a) 

 

(b) 

Figure 36: CFD (a) vertical and (b) lateral vortex positions for α=20° 

 

(a) 

 

(b) 

Figure 37: CFD (a) vertical and (b) lateral vortex positions for α=25° 
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axial direction. This motion was initially thought to be a result of body vortex 

interaction with the strake vortex, however it was found that the body vortex 

dissipates at x/D above 8.5. Thus the wavelike spanwise movement of the vortex may 

be the natural movement of the vortex in the presence of the body.  

The vertical vortex positions for the different s/D ratios become more similar with 

increase in angle of attack. At      the vortices move away from the body with 

increasing axial distance. The vortices detach at the leading edge of the strake and 

move further away from the body with increasing wing span, particularly toward the 

rear of the body. At       the vertical positions of the concentrated vortex along 

the axial direction move further away with increase in wing span between 6D and 

10D. Above 10D the slope decreases and the vertical positions at the end of the body 

for the three wing spans seem very similar. At       the vertical vortex positions 

for all three configurations are very similar, with very little differences in height and 

slope. At      , however, there is very little variation in the vertical vortex 

positions between the three different wing spans up to an axial position of 13.5D, 

after which a decrease in slope is observed for the s/D=1.25 vortex. This decrease in 

the s/D=1.25 slope appears further forward, around 11D, at      . At this angle 

the variations in vertical vortex positions for all three configurations up to 11D are 

even less and the positions for the s/D=1.5 and 1.75 configurations continue to 

correspond beyond 11D. Since the vertical positions are largely influence by the 

position of strake leading edges, there is less variation in the vertical vortex positions 

as the leading edge positions remain constant with increasing strake span. 

The increase in spanwise vortex positions with increasing strake span is expected as 

the origin of the vortices is greatly influenced by the location of the strake side edges. 
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Thus the increase in strake span automatically results in an offset in spanwise 

location of the vortices. At       a body vortex is also present, which was found to 

be independent of the strake profiles as it develops near the nose of the missile. At 

these higher angles of attack the wing vortices are also influenced by the presence of 

the body vortex. The decrease in vertical positions at       points towards a 

decrease in the influence of the body vortex. This results from the dissipation or 

separation of the body vortex from the wing vortex. 
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6.2.  Experimental Validation for CFD Results 

6.2.1. Experimental Setup 

The benefit of CFD simulations is that it provides qualitative information on the flow 

that would not be possible in experimental testing. It is, however, essential that the 

CFD data be validated experimentally due to the complex nature of the flow around 

circular slender bodies at subsonic speeds. The comparison will determine the level 

of accuracy of the CFD simulations at the relevant Mach numbers and angles of 

attack. The experimental tests were conducted in the low speed facility of the CSIR. 

The low speed wind tunnel (LSWT) is a closed loop atmospheric wind tunnel with 

maximum speed of 110 m/s (Mach 0.35) and a 2.2m x 1.5m test section. A 56% 

scaled model was designed for the experimental tests with a maximum body diameter 

of 45mm. The tunnel blockage was is determined as follows: 

          
 

   
     (66) 

where     is the test section cross-section area in m
2
. Thus the blockage at 0° angle 

of attack (α) for the LSWT tests were determined to be 

          

 

 
(     ) 

       
                     

In reference [64] an aircraft model with a 18 inch (≈ 0.46 m) wingspan was tested in 

a 3ft x 4ft (≈ 0.9m x 1.2m) transonic wind tunnel with 0.59% blockage as well as a 

12ft (≈ 3.66m) subsonic wind tunnel with 0.05% blockage. The results obtained in 

the 12ft wind tunnel were found to be essentially interference free. In a study
 [65]

 of 

the global blockage effects in a transonic wind tunnel with a 1.5 x 1.5m test section, 
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two different sized models with 0.85 and 0.05% blockage ratios were considered. 

Tests were conducted for Mach numbers 0.3, 1.0 and 1.2 and it was concluded that, 

for the typical transonic wind tunnel, the larger model with 0.85% blockage should 

not be significantly influenced by blockage effects.  

The configurations tested include the three body-strakes configurations with different 

span to body diameter ratios (s/D) as discussed in the previous section. The tests were 

conducted at three different Mach numbers namely 0.1, 0.2 and 0.3. The test 

conditions at the various Mach numbers are given in Table 3.  

Table 3: LSWT Test Conditions 

 Mach number Units 

 0.1 0.2 0.3 --- 

PStatic 86500 86910 88240 Pa 

PDynamic 595.4 2445.1 5512.8 Pa 

TTotal 294.37 298.36 304.25 K 

Density 1.0256 1.0228 1.0282 kg/m
3
 

Velocity 34.44 69.18 102.84 m/s 

Re/m 1.95 3.95 6.01 million/m 

The loads of interest, normal force and pitching moment, were measured up to a pitch 

angle of 20° (the angles of attack vary according to the flow angularity and offsets). 

The model was mounted on a C-strut with the following hardware: 

 Sting  

 Sting extension  

 “12mm K” balance 

 Model consisting of 3 configurations  
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The Experimental setup is shown in Figure 38.  

  

Figure 38: Model Setup in LSWT 

The model parameters are listed in Table 4 with the model definitions illustrated in 

Figure 39. 

Table 4:  Wing-Body Model parameters 

Parameter Value Unit 

Total Length 19 D (calibers) 

Nose length 3 D (calibers) 

Strake length 11.25 D (calibers) 

Aft body length 3 D (calibers) 

mrc 0 (Nose tip) D (calibers) 

Model Diameter 45 mm 

 
Figure 39: Model dimensions including sting extension 

Sting extension 
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All configurations were tested at the same conditions i.e. the same three Mach 

numbers. Force and moment data was corrected for flow angularity and model 

offsets. The test matrix is summarized in Table 5. 

Table 5: Test Matrix 

Scan Roll angle Pitch angle Mach Number 

1 0° -4° to 17° 0.1, 0.2, 0.3 

2 180° -20° to 4° 0.1, 0.2, 0.3 

The balance measures the aerodynamic loads acting on the body in the presence of 

free stream air flow and yields an output in millivolts (mV), which is used to define 

the loads in engineering units by the process of data reduction. A detailed description 

of this process and the experimental procedures is given in Appendix A. The 

calculated balance uncertainties, based on a coverage factor of k=2, are listed in 

Table 6. A detailed explanation of the uncertainty calculations are also given in 

Appendix A.  

Table 6: Balance Uncertainties 

 Mach number 

Component 0.1 0.2 0.3 

Normal Force     0.278 0.0677 0.0300 

Pitching Moment     0.502 0.1220 0.0542 

For Mach 0.1 the uncertainty in the centre-of-pressure (    
) is greater than 1 

caliber for angles of attack below 13°, with a minimum uncertainty of 0.4 calibers at 

20°. The centre-of-pressure uncertainty is reduced significantly at the higher Mach 

numbers. At Mach 0.2     
 exceeds 1 caliber below angles of attack of 4°, with a 
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minimum uncertainty of 0.09 calibers at 20°. At Mach 0.3 the maximum     
 is 2.45 

calibers at 0° angle of attack and less than 1 caliber for all angles above 0°.  

In addition to the aerodynamic loads, surface flow visualization by means of oil flow 

was also carried out during the LSWT tests. A titanium dioxide-oil (TDO) mixture 

was applied to the surface of the body and the body was covered with a black 

coating. This dark background is necessary to provide contrast between the body and 

the white of the TDO mixture for clear visual indications of the surface flow. The 

flow over the model surface was photographed for selected angles of attack and this 

technique provided a clear indication of the flow separation lines by forming so-

called “oil ridges” as demonstrated in Figure 40. 

 

Figure 40: Schematic of oil ridges forming in the crossflow plane of a circular body [16] 

These oil ridges form lines of separation in the three-dimensional set-up. The areas 

where the oil has been removed from the body are as a result of attached flow. The 

attached flow provides a high wall shear stress (  ), measured in Pascals (Pa), which 

directly related to flow velocity as follows
 [19]

:  

    
  

  
|
   

 
(67) 

where   is the viscosity of the air,   is the velocity component in the axial direction 

and   is the distance normal to the body surface. For separation points, as 
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demonstrated in Figure 41 (d) the wall shear stress will be zero, whereas 
  

  
   for 

the attached flow (Figure 41 (a)).  

 

Figure 41: Effect of pressure gradient on boundary layer profiles; PI = point of inflection [19] 
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6.2.2.  Comparison of CFD and Experimental Results 

Aerodynamic Loads 

The loads of interest, normal force and pitching moment coefficients, for the three 

configurations are shown in Figures 42 to 44. The CFD simulations correlate well 

with the available experimental data. However, for s/D of 1.25, there is a measurable 

discrepancy between the experimental and CFD normal force coefficient    at 20° 

angle of attack, though this error is small and still falls within the calculated balance 

uncertainties. From these results it was established that the CFD simulations 

predicted the lee side flow accurately and can be used as a reference for comparisons 

with the engineering prediction methods. Also notice that the experimental    

indicates no Mach number dependence.  

The centre-of-pressure positions    
 also show no dependence on Mach number 

above angles of attack of 6°. The discrepancies below 6° have been attributed to the 

large increase in uncertainty at very low loads. For Mach 0.1, 0.2 and 0.3 the 

uncertainties     
 at these low angles are approximately 11.8, 5.3 and 2.5 calibers 

respectively. At angles of attack above 6°,     
 reduces to 2, 0.2, and 0.1 for Mach 

0.1, 0.2 and 0.3 respectively. The increase in uncertainty at      is due to the low 

loads experienced at these low angles: the normal force and pitching moment are in 

the lower 10% of the load range of the balance. Since    
 is dependent on both 

normal force and pitching moment, this increases the level uncertainty of    
at these 

low angles of attack. Additional graphs illustrating the    
load uncertainties may be 

found in Appendix A. 
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(a) 

 

(b) 

Figure 42: Validation of CFD (a) CN and (b) XCp results for s/D=1.25 

 

(a) 

 

(b) 

Figure 43: Validation of CFD (a) CN and (b) XCp results for s/D=1.5 
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(a) 

 

(b) 

Figure 44: Validation of CFD (a) CN and (b) XCp results for s/D=1.75 

Flow Visualization 

The flow visualization tests were limited to Mach 0.2 as the load results were already 

shown to have no Mach number dependence. The experimental oil flow was 

compared to the CFD wall shear stress (  ) as well as surface pathlines using the “oil 

flow” function in Fluent for angles of attack (α) of 10°, 15° and 20°.. The surface 

flow images for α = 15° are shown in this section and the additional images (for 10° 

and 20°) may be observed in Appendix B. A comparison of the side views are shown 

in Figures 45 to 47 for the three strake-body configurations and α = 15°.  
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(a) 

            (  )  

 
(b) 

     

(c ) 

Figure 45: Side view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa) with 

(c) CFD pathlines for s/D = 1.25 and α = 15° 
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(a) 

            (  )  

 
(b) 

     

(c)  

Figure 46: Side view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa) with 

(c) CFD pathlines for s/D = 1.5 and α = 15° 
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(a) 

            (  )  

 

(b) 

 

 

   

  

(c) 

Figure 47: Side view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa) with 

(c) CFD pathlines for s/D = 1.75 and α = 15° 
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In the experimental flow visualization, a prominent separation line is observed 

extending from the wing tip to the base of the body as indicated by the gathering of 

the titanium dioxide-oil (TDO) mixture (white contour). Intermittent cleared 

spots/lines are observed due to the presence of imperfections on the body surface (pin 

holes, screws, particles in the oil itself) which produces short wakes. These 

imperfections are not present in the CFD simulations, although the flow features are 

present in the CFD simulations as characterized by the    plots. In Fluent    is 

determined using the properties of the flow adjacent to the wall (for no-slip 

conditions) with the use of wall functions specific to the Spalart-Allmaras turbulence 

model. The contours of low shear stress (    ) indicate attached flow (as 

discussed in Section 6.2.1) which correlate well to the dark lines/contours in the 

experimental flow visualization that also indicate attached flow. It should be noted 

that the experimental photographs differ from that of the CFD images in both scale 

and orientation of the bodies. 

Similar flow features are observed for all three configurations with slight changes in 

the flow separation at the nose which is as expected with the increase in angle of 

attack. These separation lines correspond well to that of the experimental TDO flow 

visualizations. Additionally, it was observed in the CFD pathlines around the strake 

leading edge that the separation line initially moves upward before attaching to the 

strake for a short distance. The separation line then travels upward along the length of 

the body, indicating the movement of the shed vortex sheet. This is shown in more 

detail in Figure 48. 
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To gain a better understanding of the behavior of the flow, the top views of the flow 

visualization are also compared. The top views of the surface flow for the three s/D 

configurations at       are given in Figures 49 to 51. 

 

Figure 48: Separation lines indicating shed vortex sheet 

 
(a) 

            (  )  

 
(b) 

     
(c) 

Figure 49: Top view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa) with 

(c) CFD pathlines for s/D = 1.25 and α = 15° 

Separation line 
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(a) 

            (  ) 

 

(b) 

      

(c) 

Figure 50: Top view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa) with 

(c) CFD pathlines for s/D = 1.5 and α = 15° 
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(a) 

            (  ) 

 

(b)  

      

(c) 

Figure 51: Top view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa)* with 

(c) CFD pathlines for s/D = 1.75 and α = 15° 

 

 

* Note that red filled contours represent          
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In the experimental top view photographs the perspective of the model is 

significantly different from the top view plane of the CFD images. However some 

similarities in flow features are still observed. On the leading edge (LE) of the strakes 

a pattern of separation lines are observed in the experimental photographs that 

correspond to the CFD    contours as well as the shown pathlines around the LE. 

These pathlines are as expected when considering wing alone theory as discussed in 

Section 2.2.  

An interesting observation is that, in the experimental photographs, the separation 

lines originating at the LE move to the strake tip after the LE sweep and continues at 

the strake tips along the length of the strake for a distance before thickening and 

moving inward toward the root of the strake. As an example, the top view of the 

s/D=1.5 configuration at α = 15° is repeated in Figure 52 and compared to CFD 

pathlines at the relevant wing section with estimated separation and reattachment 

areas. This is typical of the results obtained at all configurations and angles of attack. 

 
(a) 

 

  
 

(b)  

Figure 52: Top view of the (a) experimental oil flow and (b) CFD pathlines for the s/D=1.75 configuration at 

α = 15° 

Separation  

Reattachment  
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The first section of dark/cleared wing surface (Figure 52 (a)) is consistent with the 

forming of a primary vortex sheet where the air flows toward the strake tip away 

from the body and then flows upward with the flow coming from below the wing 

forming the visible primary separation line at the strake tip. This is demonstrated for 

a wing alone cross-section in Figure 11, Section 2.2.1 and Figure 53 below. 

 

Figure 53: Leading edge separation for a delta wing [37] 

In the presence of a secondary vortex, with circulation opposite to that of the primary 

vortex, a secondary attachment line exists with the flow moving toward the body 

away from the strake tip. It is thus believed that the change in separation lines on the 

strake surface observed in the experimental photographs can be attributed to the 

presence of a secondary vortex. Although the CFD    contours do not demonstrate 

this effect as visibly, the CFD pathlines shown in Figure 52 (b) indicate a change in 

the surface flow direction. The air flows inward toward the body which is expected 

when a secondary vortex is present, although the separation and reattachment lines 

are not as clearly visible from the CFD oil flow as in the experimental flow 

visualization. The dominance of the secondary vortex flow on the strake surface 
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indicates that the primary vortex has separated while the secondary vortex remains 

attached.  

The change in separation lines on the strake surface (Figure 52 (a)) for the various 

configurations and angles of attack, which will be referred to as the “secondary 

separation point”, was also observed to change with increasing s/D and angles of 

attack: 

 For a given angle of attack, the secondary separation point will move 

further downstream with increasing s/D and further upstream with 

decreasing s/D. 

 For a given s/D, the secondary vortex point will move upward with 

increasing angle of attack. This consistent with the knowledge of flow 

separation with increasing angle of attack. 

The additional comparisons at 10° and 20° angle of attack may be observed in 

Appendix B. 
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Vortex positions 

Some experimental vortex positions were previously compiled by Tuling 
[1]

. These 

tests were also conducted in the LSWT facility at the CSIR. The tests were conducted 

on the current wing-body combination with s/D=1.25 only, but were sufficient in 

validating the CFD data given that the aerodynamic loads have also been successfully 

validated for all three configurations. Validation of the vortex positions for s/D=1.25 

is still of importance given that errors in vortex positions may occur if the vortex 

strengths are not correct, even though    and    
 are accurate. Figures 54 to 58 

illustrate the comparison of the CFD vortex positions and the LSWT data for 

s/D=1.25. 

 

 

(a) 

 

(b) 

Figure 54: Validation of CFD (a) vertical and (b) lateral vortex positions for α=6° 
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(a) 

 

(b) 

Figure 55: Validation of CFD (a) vertical and (b) lateral vortex positions for α=10° 

 

(a) 

 

(b) 

Figure 56: Validation of CFD (a) vertical and (b) lateral vortex positions for α=15° 
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(a) 

 

(b) 

Figure 57: Validation of CFD (a) vertical and (b) lateral vortex positions for α=20° 

 

(a) 

 

(b) 

Figure 58: Validation of CFD (a) vertical and (b) lateral vortex positions for α=25° 
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For angles of attack (α) between 6° and 15° the vertical and lateral vortex positions 

from the CFD simulations compare well to the LSWT data. The oscillations observed 

in the LSWT data at       indicates body vortex interaction, which is not captured 

by the CFD simulations. Despite these fluctuations, the CFD vortex positions at the 

higher angles of attack also correlate well to the LSWT results.  

 

6.3. Summary 

The following may be concluded for the experimental validation of CFD simulations: 

 The normal force coefficients from the CFD simulations were observed to 

correlate very well with the experimental data.  

 Despite large uncertainties in the experimental centre-of-pressure data at low 

angles of attack, the CFD and experimental centre-of-pressure positions 

showed very similar trends and good correlation of data at angles of attack 

above 6° for most of the test range.  

 By observing surface flow visualizations from both experimental tests and 

CFD simulations, it was found that all the expected flow features are present 

in both cases.  

 Despite some discrepancies between the experimental and CFD vortex 

positions at the higher angles of attack, good correlation was observed for the 

most part particularly at      . 

These results provided a sufficient level of confidence in the CFD data, which was 

considered a suitable reference for the validation of the engineering methods relevant 

to this study. 
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7. Results 

As discussed previously, in the presence of body vortices, the FVM method requires 

an initial vortex position and strength in order to solve the relevant partial differential 

equations. In cases where no body vortices are present, the FVM method may be 

modified to exclude these vortices, therefore requiring no initial vortex input data. In 

this investigation both techniques were applied in order to investigate the method’s 

dependence on these initial vortex inputs. For this study the vortex positions and 

strengths were extracted from the validated CFD data. It was found that body vortices 

occur at angles of attack from 15° to 25°, so any differences in the FVM simulations 

with and without external vortices are only observed at these angles of attack. In this 

section all the FVM method results will be compared to the validated CFD data as 

well as the results from the two DVM method formulations as discussed in the 

previous section.  

It should be noted that for engineering method load predictions, the widely accepted 

accuracy is a percentage error of 20% or less when compared to the real loads. In this 

case the reference loads are represented by the validated CFD data.  

 

7.1. Aerodynamic loads 

The load results for the s/D=1.25 configuration are shown in Figure 59. The normal 

force coefficients (  ) predicted by the FVM method with and without external 

vortices are observed to be very similar with a slight deviation at an angle of attack 

(α) of 20°. The DVM results show that, at         , the two DVM formulations 

yield very similar    results. Above   of 10°, the DVM method with boundary layer 
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(BL) modeling accurately predicts the   , whereas the DVM potential method shows 

an increase in   -α slope which results in the over-prediction of    by more than 

20% compared to the CFD data.  

The centre-of-pressure positions (   
) predicted by the FVM method (both with and 

without body vortices) correlates very well with the CFD data, with full scale errors 

(hereafter referred to simply as ‘error’) below 10% over the α range. Above 6° the 

FVM method predicts that    
 is further forward (towards the nose) when compared 

to the CFD. For this configuration the exclusion of body vortices (at          ) 

yields less accurate    
 results, predicting     further forward than the FVM 

simulations which include body vortices. The    
 results for the DVM potential 

method are well predicted up to α of 10°, while predicting that     lies further 

backward than that of the CFD data at           with errors below 8%. The 

DVM method with BL modeling predicts    
 much further back (away from the 

nose) compared to the CFD data for          with errors over 40%. At       

the DVM BL method predicts the    
 slightly more forward than that of the CFD 

data with errors below 10%. 
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(a) 

 

(b) 

Figure 59: (a) Normal force coefficient CN and (b) centre-of-pressure position XCp comparison for 

prediction methods for s/D=1.25 

Figure 60 shows the load results for the s/D=1.5 configuration. For all engineering 

calculations    is observed to be well predicted up to α of 10°, with the FVM method 

being the least accurate at      . Above 10° the FVM predictions with body 

vortices shows a decrease in the   -  slope, under-predicting    by less than 20%. 

For the FVM method in the absence of body vortices    correlates fairly well to the 

CFD data with errors less than 10% at      . When compared to the CFD data, the 

error of    as predicted by the DVM potential method is less than 10% for all angles 

of attack, making it the most accurate prediction of    for the s/D = 1.5 

configuration. For          the DVM method with BL modeling under-predicts 

   with an error, compared to the CFD data, of less than 10%. At 25° the   -  slope 

decreases so that the error for    for the DVM BL method is 17%, which falls within 

the acceptable error of 20% for engineering methods.  

For this configuration the FVM method without body vortices predicts      further 

back for      and further forward for          when compared to the CFD 
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data. The largest error for the predictions both with body vortices occurs at   of 10° 

with an error of 11%. The      predictions for the DVM potential method predicts 

     further back compared to the CFD data below α of 6°, but predict      further 

forward above 6° with a maximum error of 8%. The DVM BL modeling method does 

not differ significantly from the potential formulation for         . At   of 25°, 

   
 is predicted to be further forward compared to the potential formulation, 

deviating from the CFD data with an error of 12%.  

 

(a) 

 

(b) 

Figure 60: (a) Normal force coefficient CN and (b) centre-of-pressure position XCp comparison for 

prediction methods for s/D=1.5 

Figure 61 shows the load results for the s/D=1.75 configuration. The two FVM 

simulations yield very similar    results with a slight deviation at α of 25°. The FVM 

method with and without body vortices under-predicts    with the only acceptable 

results (errors below 20%) obtained at 2°  α    °. The two DVM method 

formulations do not significantly differ from one another across the entire angle of 

attack range with errors below 10% compared to the CFD   .  
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For this configuration all engineering methods predict    
 further back for α    . 

Above 6° the FVM method without body vortices and both DVM formulations yield 

approximately the same    
 results. For these methods    

 is predicted further 

forward for          when compared to the CFD data, all with errors below 

10%. The most accurate    
 results are obtained with the FVM method with body 

vortices, which shows good correlation with CFD for         .  

 

(a) 

 

(b) 

Figure 61: (a) Normal force coefficient CN and (b) centre-of-pressure position XCp comparison for 

prediction methods for s/D=1.75 
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the graphs for 6° and 10° will contain only one curve representing the FVM method. 

Vortex positions are presented for both the DVM potential and BL methods.  

Figures 62 and 63 show the representative vortex positions for the s/D=1.25 

configuration. At       the CFD vortex positions show that the vortices originate 

at the wing leading edge, move away from the body vertically and moves inward 

toward the body laterally with increasing axial position (x). The FVM method 

predicts the vertical vortex positions much further away from the body compared to 

the CFD data with errors exceeding 20%. The lateral vortex positions predicted by 

the FVM method correspond well to the CFD data with a maximum error of 6%. The 

vertical positions predicted by the DVM method are much closer to the body whilst 

the lateral positions show the vortex moving away from the body. The potential and 

boundary layer (BL) DVM formulations predict similar trends although their results 

differ in absolute value. While the DVM BL method seems to be the most accurate 

between the two formulations, errors exceed 30% at various axial stations with 

maximum errors of over 60%.  

 

(a) 

 

(b) 

Figure 62:  (a) Vertical and (b) lateral vortex positions for α=10° and s/D=1.25 
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At           (Figure 63) the FVM method with body vortices predicts a 

"corkscrew-like motion" of the vortex, illustrated by the oscillations of the vertical 

and spanwise (lateral) position curves with short periods and high amplitudes. This is 

in contrast to the CFD vortex for which oscillations with a much larger period and 

low amplitude is observed. This motion is due to the interaction of the body vortex; 

the strake and body vortex spiral around one another in this corkscrew-like fashion as 

shown in Figure 64. The FVM method without body vortices does not predict a 

corkscrew-like rotation of the wing vortex as there is no body vortex interaction. The 

lateral vortex position trend correlates reasonably well to that of the CFD data .  

 

(a) 

 

(b) 

Figure 63: (a) Vertical and (b) lateral vortex positions for α=20° and s/D=1.25 

The DVM BL method predictions also show signs of corkscrew-like motion, 
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predicted further away from the body compared to the CFD data. 
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(a) 

 

(b) 

Figure 64: Body and strake vortex interaction for α=20° and s/D=1.25 

Figures 65 and 66 show the vortex positions for the s/D=1.5 configuration for angles 

of attack of 10° and 20° respectively. At      , the vortex positions predicted by 

the FVM method do not correspond well to the CFD data. The FVM method is the 

least accurate with errors over 40% for the larger portion of the body length. The 

DVM potential and BL vertical vortex positions correlate well to the CFD data with 

vortices predicted to be slightly nearer to the body surface. The lateral vortex 

positions are predicted to be further away from the body compared to the CFD data, 

with errors below 20%.  
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(a) 

 

(b) 

Figure 65: (a) Vertical and (b) lateral vortex positions for α=10° and s/D=1.5 

At           the FVM method with body vortices again predicts a corkscrew-

like motion for the interaction between the strake and body vortices and deviates the 

most from the CFD data. At this s/D ratio the observed oscillations, especially for 

positions in the spanwise direction, have an increased period as well as amplitude 

when compared to the smaller ratio of 1.25. Again no corkscrew-like motion is 

observed for the FVM method without body vortices, although the predicted vortex 

positions do not correlate well with the CFD data. As with the lower angles of attack, 

the DVM method gives a more accurate prediction of the vortex trajectories, 

deviating from the CFD data by less than 16% at      . For the lateral vortex 

positions the DVM BL seems most accurate although the DVM potential method also 

yields results with errors less than 20% compared to the CFD data.  

0

0.4

0.8

1.2

1.6

2

2.4

2.8

4 6 8 10 12 14 16 18

z/
a 

x/D 

DVM (potential)
DVM (BL@5%)
FVM
CFD

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 6 8 10 12 14 16 18

y/
a 

x/D 

DVM (potential)
DVM (BL@5%)
FVM
CFD



 

95 

 

 

(a) 

 

(b) 

Figure 66: (a) Vertical and (b) lateral vortex positions for α=20° and s/D=1.5 

The vortex positions for s/D = 1.75 and α of 10° and 20° are shown in Figures 67 and 

68 respectively. The FVM method again predicts the vertical vortex positions to be 

much further away from the body compared to the CFD data for      . The DVM 

potential and BL vertical vortex positions for this configuration also correlate well to 

the CFD. As with the previous configuration, the lateral vortex positions are 

predicted to be further away from the body compared to the CFD data with errors 

over 40% at      . These large errors occur due to the CFD vortex originating 

much closer to the body in the spanwise direction (y/a) at approximately 1.4 calibers. 

The DVM method instead predicts that the vortex originates at the strake tip which is 

at 1.75 calibers. 
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(a) 

 

(b) 

Figure 67: (a) Vertical and (b) lateral vortex positions for α=10° and s/D=1.75 

Similarly to the previous configuration, the FVM method with body vortices at 

          and s/D=1.75 predicts a corkscrew-like interaction between the body 

and strake vortices. The corkscrew structure again has an increased period and 

amplitude at this higher s/D ratio for the FVM method with body vortices. The FVM 

method without body vortices predict vortex trajectories that are similar to that 

without body vortices. For this configuration the FVM method does not predict the 

vortex centre with acceptable accuracy. The vertical vortex trajectories are well 

predicted by the DVM potential method. The DVM BL method predicts a rotational-

type motion of the vortices that is less regular than that of the FVM method, but 

correlates better to the CFD data.  

0

0.4

0.8

1.2

1.6

2

2.4

2.8

4 6 8 10 12 14 16 18

z/
a 

x/D 

DVM (potential)

DVM (BL@5%)

FVM

CFD

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 6 8 10 12 14 16 18

y/
a 

x/D 

DVM (potential)

DVM (BL@5%)

FVM

CFD



 

97 

 

 

(a) 

 

(b) 

Figure 68: (a) Vertical and (b) lateral vortex positions for α=20° and s/D=1.75 
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8. Discussion 

FVM Method 

The main purpose of this investigation was to evaluate the applicability of the FVM 

method to incompressible subsonic flows with the intent of extending the method to 

this speed range. The method was developed and applied to supersonic flow by 

reference [1] for a tangent ogive slender body with strakes in a '+' orientation. The 

span to body diameter ratio (s/D) of 1.25 formed part of the main application (Case A 

in reference [1]) and the results obtained showed that the normal force coefficient 

(  ) was well predicted by the method. It was found however that the centre-of-

pressure position predictions are a limitation of the method at supersonic speeds. 

These supersonic predictions are compared to the subsonic predictions in this study in 

Figures 69 and 70 for s/D=1.25. 

 
 

Figure 69: FVM predicted CN results for (a) supersonic [1] and (b) subsonic flow 
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Figure 70: FVM predicted XCp results for (a) supersonic [1] and (b) subsonic flow 
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(a) 

 

 

(b) 

Figure 71: Comparison of (a) supersonic [2] and (b) subsonic vortex positions for s/D=1.25 and α=20° 
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taken from a NASA Technical Memorandum
 [66]

 has a span to body diameter ratio of 

1.745, which is approximate to the 1.75 case applied in this study. The configuration 
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is said to represent a USA standard missile and is shown in Figure 72. The FVM 

method was applied at Mach 0.9 and 1.18, which is lower than the initial range 

developed in references [1] and [2].  

 

 

Figure 72: NASA TM-2005-213541 Triservice model configuration, dimensions in inches 

It was shown that the normal force was under-predicted by the FVM method at the 

higher angles of attack for the NASA Triservice configuration. The centre-of-

pressure was predicted to be further forward compared to the available experimental 

data. The results are compared to the s/D=1.75 case from this study in Figures 73 and 

74.  
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(a) 

 
(b) 

Figure 73: FVM normal force predictions for (a) Mach 0.9 and 1.18 [2] and (b) Mach < 0.3 with s/D=1.75 

 
(a)  

(b) 

Figure 74: FVM centre-of-pressure position predictions for (a) Mach 0.9 and 1.18 [2]  and (b) Mach < 0.3 

with s/D=1.75 

From Figure 73 it was observed that the FVM method again under-predicts the CN for 

the incompressible Mach numbers and s/D=1.75 configuration related to this study. 

The difference in    appears larger at the incompressible Mach numbers. The    
 

predictions however show significant improvement at incompressible Mach numbers 

for the FVM method at      when body vortices are specified. For predictions 

with and without body vortices    
 is predicted further back when compared to the 

validation data. Consequently it may be stated that, for s/D of around 1.75, the FVM 
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prediction of    decreases in accuracy with decreasing Mach number. The 

predictions of    
 may be improved with the specification of body vortices given 

that the initial positions and strengths are available.  

In this study it was shown that the accuracy with which the FVM method predicts the 

loads deteriorates as s/D increases. The vortex positions are also poorly predicted at 

the higher s/D ratios and angles of attack. For all three configurations analyzed in this 

study, some variation was observed in the FVM predictions that excluded body 

vortices, compared to the predictions when body vortices were specified. The y-z 

plane positions and strengths of the body vortices at the axial positions of the strake 

leading edges (x/D = 4.75) were extracted from the validated CFD simulations and 

specified in the FVM code for angles of attack of 15°, 20° and 25°. It was found that, 

if the method of extracting the vortex positions and strengths from the CFD data yield 

results that vary slightly with each attempt; both    and    
 will be influenced by 

this change in input data. This is demonstrated in Figure 75 for an angle of attack of 

25°. For a certain initial body vortex position and strength, at any α, a variation of 

double the strength will result in an increase of    by a factor of 1.2 and    
 will be 

reduced by a factor of 0.96 compared to the original load (denoted by subscript 'o' in 

Figure 75). Halving the strength will result in a decrease of    by a factor of 0.97 and 

an increase in    
 by a trivial factor of 1.008.  
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Figure 75: Factors of variation for (a) normal force and (b) centre-of-pressure position for a change in 

input body vortex strength at α=25°.  

The strake vortex trajectories are also influenced by changes in initial body vortex 

strength; vortex trajectories show less interaction with the body vortex and a 

reduction in the corkscrew-like motion with decrease in initial vortex strength. If the 

corkscrew motion is in fact a result of body vortex interaction simulated by the FVM 

method, this reduction in the corkscrew motion with decrease in initial vortex 

strength is then expected as the influence of the body vortex will decrease if the 

vortex strength is decreased. Also, since the method does not account for the physical 

merging of the body and wing vortices as is expected in these types of flow (which 

was also captured in the CFD simulations), the continued presence of the body vortex 

separate from the wing vortex will also result in poor predictive capability of vortex 

positions.  

It was found that for a certain initial body vortex position and strength at any α, a 

variation in the vortex positions with a constant strength where the vortices move 

away from the body, will result in a negligible change in both CN and xCp. However, 

if the initial vortex positions were specified closer to the body, this will result in 
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sudden increases or decreases (depending on angle of attack) in the loads. It is 

therefore essential to use accurate data for the initial body vortex positions and 

strengths in order to ensure accurate load predictions for the FVM method. In the 

present study the data obtained from the CFD simulations were shown to be accurate 

and therefore the specified initial positions and strengths of the body vortices are 

acceptable.  

DVM Method 

The differences observed in the DVM potential and BL method load predictions 

(Figures 59 to 61) are significant at s/D=1.25. These differences are however 

observed to decrease with increasing s/D:  

 At s/D=1.25, the large differences exist between the two formulations for    

at      . For    
 the potential and BL formulations yield different results 

across the  -range. 

 At s/D=1.5, these large differences for both    and    
 occur later at   

  .  

 At s/D=1.75, both formulations yield the same results for both    and    
. 

In reference [27] the DVM method (with no secondary vortex predictions) was 

applied to supersonic Mach numbers. These supersonic results are compared to the 

results from the present study in Figure 76 (SCV method results are included in the 

supersonic results, but the focus here is on the DVM method). It was shown that the 

normal force was over-predicted by the DVM method at the higher angles of attack 

for the s/D=1.25 configuration. In this study, at incompressible speeds, the normal 
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force was also over-predicted by the DVM method, with the BL formulation 

producing the best results.  

At supersonic speeds the DVM method predicted the centre-of-pressure positions to 

be further downstream compared to the presented CFD data at the relevant Mach 

numbers. In this study, at incompressible Mach numbers, the DVM BL method 

predictions for s/D = 1.25 are less accurate (see Figure 77) for the centre- of-pressure 

positions, particularly at low angles of attack. The DVM potential method is more 

suitable to the prediction of centre-of-pressure positions for s/D=1.25. 

 

(a) 
 

(b) 

Figure 76: DVM predicted CN results for (a) supersonic [27] and (b) subsonic flow for s/D=1.25 
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(a) 
 

(b) 

Figure 77: DVM predicted XCp results for (a) supersonic [27] and (b) subsonic flow for s/D=1.25 

The vortex positions predicted by the DVM method in reference [27] are poorly 

predicted compared to the CFD vortex positions above angles of attack of 6°. Similar 

results were obtained in this study as discussed in the previous section. The accuracy 

of the vortex position predictions tends to increase with increasing span to body 

diameter ratio. The loads are also predicted less accurately at the span to body 

diameter ratios above 1.25. 
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9. Conclusions and Recommendations 

9.1. Conclusions 

In this study the FVM method was successfully extended to subsonic incompressible 

speeds for applications with a span to body diameter ratio of 1.25. The method is 

currently limited to wing-body combinations with very low aspect ratio wings in the 

‘+’ orientation. The DVM method was added to the investigation as it is an 

established method with which to compare the recently developed FVM method. The 

following can be concluded:  

 Both the FVM and DVM BL methods predict the normal force coefficient 

with acceptable accuracy (percentage error ≤ 20%) for the s/D=1.25 

configuration. The centre-of-pressure positions are poorly predicted at angles 

of attack below 10° for the DVM BL method. The centre-of-pressure 

positions are, however, predicted well by both the FVM and DVM potential 

methods.  

 Despite errors in the centre-of- pressure predictions, the FVM method 

showed better correlation at subsonic speeds, where compressibility effects 

are negligible, than the supersonic predictions in references [1] and [2]. 

 The FVM method load predictions decrease in accuracy at the higher span to 

body diameter ratios and are therefore not applicable at s/D > 1.25.  

 The FVM vortex position predictions are only reasonable at α ≤ 10° given 

that the vertical positions are predicted with errors over 20%, but lateral 

positions are very accurate with errors below 6%. Above 15° vortex positions 

are predicted in a corkscrew-like motion which does not accurately simulate 

wing vortex and is a current limitation of the method.  
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 The DVM method is more suitable at higher span to body diameter ratios for 

the prediction of loads and vortex positions. 

As an engineering application, the FVM method is more suitable when compared to 

the DVM method for s/D=1.25 and incompressible speeds, as it has the advantage of 

low calculation costs whilst producing loads with acceptable accuracy (errors < 

20%).  

9.2. Recommendations  

For the continued development of the FVM the following is recommended: 

 Include compressibility effects to improve supersonic centre-of-pressure 

predictions. 

 Improve vortex position prediction capability.  

 Extending the method to higher subsonic and transonic speeds. 

 Extend the method to non-zero roll angles. 

 Extend the method to additional wing-body configurations. 

 The numerical simulations in this study may be compared to simulations in 

other programs such as OpenFOAM. 
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Appendix A 

Experimental Setup 

A grounding strip was installed utilizing a multimeter as shown in the diagram in 

Figure 78. The circuit is created so that a short circuit is created over the multimeter, 

which emits a warning sound when in the “Diode Test” mode (see Figure 79). The 

detailed design for the sting extension utilized in the LSWT tests is given in Figure 80 

on the following page. 

 

 

 

 

 

 

Figure 79: Diode Test Mode on Multimeter 
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Figure 78: Grounding Strip Circuit 
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Figure 80: Sting Extension Detailed Design  
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Data Reduction 

An internal strain gauge balance produces a Volt output representing the six different 

aerodynamic loads, namely normal force, pithing moment, side force, yawing 

moment, rolling moment and axial force. A matrix is used to convert a millivolt 

output to engineering units in the method of AIAA Standard R-091-2003. The forces 

and moments are denoted by the following abbreviations: 

Normal force  –  NF  

Pitching moment  –  PM  

Side force   –  SF  

Yawing moment  –  YM 

Rolling moment – RM  

Axial force   –  AF  

The order of the output loads in millivolts (mV) may be demonstrated by the 

following vector: 

 ̅     

{
 
 

 
 

  
  
  
  
  
  }

 
 

 
 

 

A 2
nd

 order 6x27 matrix converts the mV output    into engineering units    as 

follows: 
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where n is the number of loads (in this case 6),      and      represent the balance 

matrix that has been split into two separate matrices for mathematical convenience. 

Thus 
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As an example the NF (represented by    ) in Newtons (N) will be calculated as 

follows: 

For              
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Thus 

   [                      ] 

 [                             ] 

 [                               ] 

 [                               ] 

 [                             ] 

 [                   ] 

 [         ] 

The loads are also converted to the following body axes coefficients: 

Normal force coefficient   –     

Pitching moment coefficient  –     

Side force coefficient   –     

Yawing moment coefficient  –     

Rolling moment coefficient    –    

Axial force coefficient   –     
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The reference areas, lengths used are listed in Table 7. 

Table 7: Non-dimensionalisation constants 

Parameter Value Unit 

D 0.045 m  

S 0.00159 m
2
 

mrc 0 mm from nose 

 

The term “mrc” refers to the moment reference centre and the term “brc” is generally 

used for the balance reference centre. The non-dimensionalisation formulae for the 

aerodynamic coefficients are as follows  
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Sample calculation: 

Given 

 ̅  

{
 
 

 
 

        
          
         
        
        
        }

 
 

 
 

 (  ) 

The 2
nd

 order matrix B is given by  

 

B  

= 36.9446 -0.0158 0.9152 -0.0507 0.4960 0.2287 0 0 

… 

 0.0162 -0.7472 -0.0006 -0.0102 -0.0229 -0.0220 0 0 … 

 -2.8755 -0.2913 37.6165 0.2617 1.4201 -0.0949 0 0 … 

 -0.0120 0.0066 -0.0077 -0.7751 0.0130 0.0048 0 0 … 

 -0.4513 -0.0014 -0.0116 -0.0113 0.4281 0.0281 0.0053 0.00012 … 

 -0.1803 0.0491 0.5205 0.2946 -0.1373 24.9896 0.0438 0 … 

 

 

… -0.026 0.000 0.000 0.048 0.000 -0.010 0.000 0.000 … 

… 0.000 0.000 0.000 -0.005 0.000 0.000 0.000 0.000 … 

… 

0.000 

-

0.002 0.000 0.051 0.000 0.017 0.000 0.009 

… 

… 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 … 

… 0.005 0.000 0.000 -0.003 0.000 0.000 0.001 0.000 … 

… 0.029 0.015 0.000 0.466 0.007 0.049 0.000 0.000 … 
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… 

0.000 0.000 0.000 0.000 0.000 

-

0.011 0.000 0.000 

… 

… 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 … 

… 0.000 0.000 -0.012 0.000 0.000 0.000 0.000 0.000 … 

… 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 … 

… 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 … 

… 0.000 0.000 -0.051 0.000 0.000 0.065 0.000 0.000 … 

 

… 0.000 0.000 0.000 

… 0.000 0.000 0.000 

… 0.007 0.000 0.000 

… 0.000 0.000 0.000 

… 0.000 0.000 0.000 

… 0.013 0.000 0.000 

 

Matrix B is separated into  

 ̃
  36.9446 -0.0158 0.9152 -0.0507 0.4960 0.2287 

 0.0162 -0.7472 -0.0006 -0.0102 -0.0229 -0.0220 

 -2.8755 -0.2913 37.6165 0.2617 1.4201 -0.0949 

 -0.0120 0.0066 -0.0077 -0.7751 0.0130 0.0048 

 -0.4513 -0.0014 -0.0116 -0.0113 0.4281 0.0281 

 -0.1803 0.0491 0.5205 0.2946 -0.1373 24.9896 

 

and 
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 ̃
  0 0 -0.026 0 0 0.048 

 0 0 -0.010 0 0 0 

 0 0 0 0 0 0 

 0 0 0 -0.011 0 0 

 0 0 0 0 0 0 

 0 0 0 0 0 0 

 

Thus 
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     ∑∑    
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Given the following flow properties: 
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The normal force coefficient CN is then 

   
  

 

 
    

 

 
     

 

 
( )(  ) (          )

 

       

Flow angularity 

The flow angularity for the facility was calculated at all Mach numbers using the 

upright and inverted polars. The flow angularity needs to be added to the reported 

angle of attack to obtain the corrected angle of attack and similarly the coefficient 

offset needs to be added to the reported normal force coefficient to obtain the 

corrected value. For each curve in the linear region (    ) the formulas are 

          

          

Flow angularity    is then  

For          , 
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The offsets are then determined to be 

    
     

 
 

For example, given a set of data with the following properties in the linear range  

         

                         

 

Thus 
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𝛿𝛼 
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The flow angularity and offsets as calculated from the data are given in Table 8. 

Table 8: Flow Angularity and Offsets 

Configuration Mach 
No. 

Flow 
angularity 

Offsets 

s/D = 1.25 0.1 0.10509449 0.02026835 

0.2 0.04993097 0.03873343 

0.3 0.11956691 -0.0130713 

s/D = 1.5 0.1 0.29763916 0.07919894 

0.2 0.29211622 0.0615801 

0.3 0.01295183 0.03999609 

s/D = 1.75 0.1 0.72119835 0.18055145 

0.2 0.11208269 0.02559908 

0.3 0.18035523 0.03843736 

 

Examples of the data for Mach 0.2 LSWT tests with applied flow angularities and 

corrected offsets are shown in Figure 81.  

  

 

Figure 81: Flow Angularity and Offset Corrections 
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Uncertainties 

The balance uncertainties are determined during balance calibration. The balance 

uncertainties for normal force and pitching moment coefficient uncertainties are 

given as 

         

          

The load coefficient uncertainties are calculated using the method of Coleman & 

Steele which utilises a Fouries series expansion of the coefficient formula. For the 

normal force coefficient 

   
 

 

 
    

 

where   is the normal force in Newtons (N),   is the density (kg/m3), V is the free 

stream velocity (m/s) and S is the reference area. The uncertainty would then be 

calculated as 

   
  (

   

  
  )

 

 (
   

  
  )

 

 (
   

  
  )

 

 (
   

  
  )

 

 

where ρ and V are measured and S is constant, therefore   ,    and    are zero. 

Thus 
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For the non-dimensionalised centre-of-pressure position 

   
 

  

  
 

 

  
 

where D is the body diameter (m) and M is the pitching moment (N.m). The 

uncertainty would be 

    

  (
    

  
  )

 

 (
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 (
    

  
  )

 

 

Since D is constant    is zero, thus the uncertainty is only dependent on N and M 

which vary with angle of attack: 

    

  (
    

  
  )

 

 (
    

  
  )

 

 

 
 

    
(  )  

  

    
(  )  

Sample calculation: 

With the following flow properties 
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     (
 

    
)   

 (
 

( )(  ) (          )
) (     ) 

        

With D=0.045m and At α = 10° 

 N = 2.636 N 

 M = 1.877 Nm 

    

  
 

    
(  )  

  

    
(  )  

    

  
 

(     ) (     ) 
(      )  

(     ) 

(     ) (     ) 
(     )  

 

    

        

     
       

The following graphs show CN and    
 experimental results with the uncertainties as 

calculated for each different Mach number: 
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Figure 82: Experimental uncertainties for centre-of-pressure measurements for s/D=1.25 

 

Figure 83: Experimental uncertainties for centre-of-pressure measurements for s/D=1.5 
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Figure 84: Experimental uncertainties for centre-of-pressure measurements for s/D=1.75 
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Appendix B 

 

(a) 

           (  )  

 

(b)  

     

(c) 

Figure 85: Side view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa) with 

(c) CFD pathlines for s/D = 1.25 and α = 10° 
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(a) 

           (  ) 

 

(b) 

    

(c) 

Figure 86: Side view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa) with 

(c) CFD pathlines for s/D = 1.5 and α = 10° 
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(a) 

           (  ) 

 

(b)  

     

(c)  

Figure 87: Side view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa) with 

(c) CFD pathlines for s/D = 1.75 and α = 10° 
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(a) 

           (  ) 

 

(b)  

     

(c) 

Figure 88: Side view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa) with 

(c) CFD pathlines for s/D = 1.25 and α = 20° 
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(a)  

           (  ) 

 

(b)  

       

(c) 

Figure 89: Side view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa) with 

(c) CFD pathlines for s/D = 1.5 and α = 20° 
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s/D=1.75, alpha = 20deg 

 

(a)  

           (  ) 

 

(b)  

 

 

(c ) 

Figure 90: Side view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa) with 

(c) CFD pathlines for s/D = 1.75 and α = 20° 
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(a) 

           (  ) 

 

(b)  

      

(c) 

Figure 91: Top view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa) with 

(c) CFD pathlines for s/D = 1.25 and α = 10° 
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(a) 

           (  ) 

 

(b) 

       

(c) 

Figure 92: Top view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa) with 

(c) CFD pathlines for s/D = 1.5 and α = 10° 

 

 

 

 

 



 

141 

 

 

 

 

 

(a) 

           (  ) 

 

(b)  

    

 

(c) 

Figure 93: Top view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa) with 

(c) CFD pathlines for s/D = 1.75 and α = 10° 
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(a) 

           (  ) 

 

(b) 

      

(c) 

Figure 94: Top view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa) with 

(c) CFD pathlines for s/D = 1.25 and α = 20° 
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(a) 

           (  ) 

 

(b) 

     

(c) 

Figure 95: Top view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa) with 

(c) CFD pathlines for s/D = 1.5 and α = 20° 
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(a) 

           (  ) 

 

(b)  

      

(c) 

Figure 96: Top view comparison of (a) experimental surface flow and (b) CFD wall shear stress (Pa) with 

(c) CFD pathlines for s/D = 1.75 and α = 20° 
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Appendix C 

 

(a) 

 

(b) 

Figure 97: (a) Vertical and (b) lateral vortex positions for α=6° and s/D=1.25 

 

(a) 

 

(b) 

Figure 98: (a) Vertical and (b) lateral vortex positions for α=15° and s/D=1.25 
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(a) 

 

(b) 

Figure 99: (a) Vertical and (b) lateral vortex positions for α=25° and s/D=1.25 

 

(a) 

 

(b) 

Figure 100: (a) Vertical and (b) lateral vortex positions for α=6° and s/D=1.5 
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(a) 

 

(b) 

Figure 101: (a) Vertical and (b) lateral vortex positions for α=15° and s/D=1.5 

 

(a) 

 

(b) 

Figure 102: (a) Vertical and (b) lateral vortex positions for α=25° and s/D=1.5 
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(a) 

 

(b) 

Figure 103: (a) Vertical and (b) lateral vortex positions for α=6° and s/D=1.75 

 

(a) 

 

(b) 

Figure 104: (a) Vertical and (b) lateral vortex positions for α=15° and s/D=1.75 
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Figure 105: (a) Vertical and (b) lateral vortex positions for α=25° and s/D=1.75 
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