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CHAPTER 3 

MOTION WITH CONSERVED L 

3.1 The Conserved Laplace-Runge-Lenz Vector Analogue 

for the Equation of Motion r + f L + gr = 0 

The contents of §§3.1-3.4 are described in Leach and Gorringe [78]. If we intro

duce the constraint that L is constant rather than its direction as was discussed in 

Chapter 2, we may write 
1 2 1 
-L = -L·L = const. 
2 2 

(3.1.1) 

Upon differentiation of (3.1.1) we obtain 

L·L =0. (3.1.2) 

Equation (3.1.2) implies that t and L are orthogonal. It follows that equations of 

motion arising from L and combinations of other vectors orthogonal to L describe 

motion where L is conserved. One such orthogonal vector is r x L and hence the 

equation 

L+frxL=O (3.1.3) 

describes one possible class meeting the angular momentum requirement and should 

not be regarded as the most general. To generalise the results still further, we intro

duce a zero vector gr xr, allowing us to write (3.1.3) as 

rXT + frxL + grxr = o. (3.1.4) 

If we further assume that f and 9 are arbitrary functions, it follows that the equation 

T + fL + gr = 0 (3.1.5) 

describes motion subject to the constraint that L is constant. We now construct 

Laplace-Runge-Lenz analogues for (3.1.5) using the techniques described earlier by 

imposing restrictions upon the arbitrary functions f and g. It is of course also 

possible to introduce additional terms such as er X L into (3.1.3), although these 

types of problems which are connected with those described in §§2.10-2.17 are not 

investigated here. 

The vector product of r with (3.1.5) gives 

t = fLxr. (3.1.6) 
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The scalar product of (3.1.6) with L is zero since the magnitude of L was initially 

assumed constant. 

Taking the vector product of (3.1.5) with L gives 

:;'xL + 9rxL = 0 (3.1.7) 

which can equivalently be written as 

(rxL)' - frx(Lx1') +!L 1'xL = 0 
r 

(3.1.8) 

using (3.1.6). The vector triple product expansion of the middle term in (3.1.8) gives 

f r x (L x 1') = f rr L. (3.1.9) 

The term second from the right in (3.1.8) can be written using two alternate forms 

as 

and 

9 9 . 
-1'xL=--L 
r rf 

9 L 2; - 1'X = -9r r. 
r 

The two forms (3.1.10) and (3.1.11) suggest that we write 

9 = 91 + 92 

so that (3.1.8) becomes 

( . L)' f' L 91 L' 2 ; 
l' X - rr - r f - 92r l' = O. 

(3.1.10) 

(3.1.11 ) 

(3.1.12) 

(3.1.13) 

Equation (3.1.13) is trivially integrable to a constant vector if we let f = h'(r)/r, 

91 = h(r)h'(r) and 92 = k/r2. In this case we obtain 

J=rxL-h(r)L-kr (3.1.14) 

which is a conserved Laplace-Runge-Lenz vector for the system described by the 

equation of motion 

:;. + h';r) L + (h(r)h'(r) + ~ ) r = o. (3.1.15) 

It should be noted that the structure of J given in (3.1.14) is opposite in sign to that 

often used in the literature. This is done to be consistent with the results of Chapters 1 

and 2. It does not seem possible to construct a general Hamilton vector analogue for 

the equation of motion (3.1.15) although it is possible in special cases (see §3.5). 
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Taking the scalar product of io with (3.1.15) gives an energy-like scalar integral 

1'2 1 2) k 
1= 2" l' + 2" h (1' -;:. (3.1.16) 

It should be appreciated that J, L and I are not independent since 

(3.1.17) 

3.2 The Orbit Equation 

Since there is no Hamilton-like vector in general, it does not appear possible to express 

the velocity hodograph in any recognisable or useful form nor does it seem possible 

to construct a velocity hodograph from the Laplace-Runge-Lenz vector analogue. It 

is possible, however, in special cases (see §3.6). 

As in the two-dimensional case, the existence of the Laplace-Runge-Lenz-like vector 

J gives rise in a natural way to the orbit equation using J.1'. However, as the motion 

is truly three-dimensional we need one more scalar equation to specify the orbit 

completely. As in the case of planar motion we measure the polar angle () from J, 

but no longer confine () to be in the plane of the orbit. The scalar product of (3.1.14) 

with l' gives 

J.1' = (ioxL)·1' - kr (3.2.1) 

and upon rearranging 
L2 

1'=----
k + Jcos () 

(3.2.2) 

which is one of the required equations. The other equation is obtained by taking the 

scalar product of J with 1'-2¢, where cf is the azimuthal angle, giving 

. . 
rcfsin () + h() = 0 (3.2.3) 

so that 
. h() 

cf = - rsin () . (3.2.4) 

Differentiation of (3.2.2) with respect to time gives 

(3.2.5) 

and hence (3.2.4) becomes 

(3.2.6) 
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The conserved quantity L2 can be written in terms of spherical polar coordinates as 

(3.2.7) 

which combined with (3.2.6) gives 

(3.2.8) 

Thus we find that 

(3.2.9) 

Using the orbit equation (3.2.2), h(r) can be expressed in terms of 0 and (3.2.2) 

and (3.2.9) together, fully describe the orbit. In general the integration in (3.2.9) 

would not be possible in closed form, but may be done for certain forms of h(r). 

3.3 The Motion in Time 

Equation (3.2.8) can in theory be solved to give t as a function of 0 using the orbit 

equation (3.2.2) to replace functions of r. Assuming that this is possible we may 

write 

(3.3.1) 

where 
/1 (0) = loB J L3 sin 0 dO 1 • 

Bo (k + J cos O)2(J2 sin2 0 - h2(r(O))L2 r (3.3.2) 

Provided (3.3.1) can be inverted to obtain 0 as a function of t, the orbit equation 

(3.2.2) can be written as 
L2 

r(t) - -----
- k + J cos(O(t))' 

(3.3.3) 

¢(t) can in principle be obtained by solving (3.2.9), replacing occurrences of 0 with 

the inverse of (3.3.1). In practice, however, it is very unlikely that (3.2.8) can be 

solved and even less likely that the necessary inversion would be possible. 

The areal velocity or area swept out by the radius vector is given by 

dA = ~1' x T dt, 
2 

(3.3.4) 
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and after dividing (3.3.4) throughout by dt and equating the magnitudes of the 

resulting expression gives 
dA 1 . 1 - = -/1' x 1'/ = -L. 
dt 2 2 

(3.3.5) 

Since L is conserved for this class of problems, the areal velocity is constant or, in 

other words, equal areas are swept out in equal times, i.e. 

1 
A = -Lt 2 . (3.3.6) 

If the motion occurs on a recognisable surface, by expressing the area in terms of well

known geometric quantities, an expression relating the period and the geometry of 

the orbit can in theory be obtained. A less geometric approach would be to evaluate 

(3.3.1) over a suitable fraction of the period. 

3.4 Examples 

1.) The three-dimensional orbits vary considerably depending on the choice of the 

parameters. For h( r) = Ar, we have the three-dimensional isotropic harmonic oscilla

tor plus the forces AL / rand kfo / r2. The addition of the angular momentum term in 

the force changes the character of the conserved quantities from a tensorial nature to 

a vectorial expression (see §1. 7). The integration does not appear possible in closed 

form and so 

(3.4.1) 

where a 2 = j2 A -2 L -6, can only be evaluated numerically. The orbits close only 

for certain choices of the parameter k. The figures below show the orbits, velocity 

hodographs and angular momentum curves for increasing values of k for which the or

bits are closed. Figures 3.4.1 and 3.4.2 show the circular orbit and velocity hodographs 

respectively as a result of rand iJ remaining zero and ¢ = -2~ /4 throughout the 

motion. Figure 3.4.3 shows the variation of the angular momentum. Figures 3.4.4 

and 3.4.5 show the orbit and the velocity hodograph respectively for an example 

with four-fold rotational symmetry about J. Figure 3.4.6 shows the variation of 

the angular momentum. Figures 3.4.7 and 3.4.8 show the orbit and the velocity 

hodograph respectively for an example with twenty-one-fold rotational symmetry 

about J. Figure 3.4.9 shows the variation of the angular momentum. Figures 3.4.10 

and 3.4.11 show the orbit and the velocity hodograph respectively for an example 

with fourteen-fold rotational symmetry about J. Figure 3.4.12 shows the variation 

of the angular momentum. 



Figure 3.4.l. The circular orbit for k = 0, ). = 1/4, ao = 7r/4, <Po = 0, J = 2 and 

L = 2. rand iJ are zero and ¢ = -2t /4 throughout the motion which results in the 

z component of the orbit being constant and correspondingly the orbit being parallel 

to the azimuthal plane. Note that the height of the orbit above the azimuthal plane 

is given by L2 / J. The locus of radial vectors describes a right circular cone with the 

apex at the origin and the axis extending along the direction of J. The projections 

of the orbit onto planes parallel to the xy, xz and yz planes are also shown. 
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Figure 3.4.2. The circular velocity hodograph associated with Figure 3.4.1. Since 

r = r sin O;p;p, the velocity hodograph has no z component and lies in the xY-plane. 

The projections of the velocity hodograph onto planes parallel to the xy, xi and yz 
planes are also shown. 



Figure 3.4.3. The circular angular momentum curve associated with Figures 3.4.1 

and 3.4.2. In this example the angular momentum is constant in magnitude but not 

in direction. The angular momentum curve is a distance of 2~ below the origin since 

L is orthogonal to l' and L = 2. The locus of angular momentum vectors describes a 

right circular cone with the apex at the origin and the axis extending in the opposite 

direction to that of J. The projections of the angular momentum curve onto planes 

parallel to the LXLYl LxLz and LyLz planes are also shown. 



Figure 3.4.4. The orbit for k = 1.745, ,\ = 1/4, ()o = 7r/4, cPo = 0, J = 2 and L = 2. 

The value of k has been chosen to close the orbit. The orbit has four-fold rotational 

symmetry about J. The projections of the orbit onto planes parallel to the xy, xz 

and yz planes are also shown. The xy projection is reminiscent of a four-leafed clover. 



Figure 3.4.5. The velocity hodograph associated with Figure 3.4.4. The velocity 

hodograph has four-fold rotational symmetry about J. The projections of the 

velocity hodograph onto planes parallel to the xy, xi and yi planes are also shown. 



Figure 3.4.6. The angular momentum curve associated with Figures 3.4.4 and 3.4.5. 

The angular momentum curve has four-fold rotational symmetry about J. In this 

example the angular momentum is constant in magnitude but not in direction. The 

heads of the angular momentum vectors move on the surface of a zone of a sphere 

of radius L. The projections of the angular momentum curve onto planes parallel to 

the LxLy, LxLz and LyLz planes are also shown. 



Figure 3.4.7. The orbit for k = 1.947, A = 1/4, ()o = 1[/4, cPo = 0, J = 2 and L = 2. 

The value of k has been chosen to close the orbit. The motion takes place on a 

dome. The orbit has twenty-one-fold rotational symmetry about J. The projections 

of the orbit onto planes parallel to the xy, xz and yz planes are also shown. The xy 

projection is bounded by two concentric circles. 
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Figure 3.4.8. The velocity hodograph associated with Figure 3.4.7 which is 

reminiscent of a ball of string with a hollow centre. The velocity hodograph has 

twenty-one-fold rotational symmetry about J. The projections of the velocity 

hodograph onto planes parallel to the xi;, xi and i;i planes are also shown. The 

xi; projection is bounded by two concentric circles. 



Figure 3.4.9. The angular momentum curve associated with Figures 3.4.7 and 3.4.8. 

The angular momentum curve has twenty-one-fold rotational symmetry about J. In 

this example the angular momentum is constant in magnitude but not in direction. 

The heads of the angular momentum vectors move on the surface of a zone of a sphere 

of radius L. The projections of the angular momentum curve onto planes parallel to 

the LxLy, LxLz and LyLz planes are also shown. The LxLy projection is bounded by 

two concentric circles. 



Figure 3.4.10. The orbit for k = 4.097, A = 1/4, eo = 7r /4, </>0 = 0, J = 2 and 

L = 2. The value of k has been chosen to close the orbit. The motion takes place on 

a surface. The orbit has fourteen-fold rotational symmetry about J. The projections 

of the orbit onto planes parallel to the xy, xz and yz planes are also shown. The xy 

projection is bounded by two concentric circles. 



.tl 0 

Figure 3.4.11. The velocity hodograph associated with Figure 3.4.10 which is 

reminiscent of a ball of string with a hollow centre. The velocity hodograph has 

fourteen-fold rotational symmetry about J. The projections of the velocity 

hodograph onto planes parallel to the xy, xz and yz planes are also shown. The 

xy projection is bounded by two concentric circles. 



Figure 3.4.12. The angular momentum curve associated with Figures 3.4.10 and 

3.4.11. The angular momentum curve has fourteen-fold rotational symmetry about 

J. In this example the angular momentum is constant in magnitude but not in 

direction. The heads of the angular momentum vectors move on the surface of a zone 

of a sphere of radius L. The projections of the angular momentum curve onto planes 

parallel to the LXLYl LxLz and LyLz planes are also shown. The LxLy projection is 

bounded by two concentric circles. 
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2.) The equation of motion 
.. Aiox1'+F(r)1' 
l' = r3 (3.4.2) 

has been studied in some detail by Thompson [126]. He established conditions on 

F(r) in order that (3.4.2) possess an autonomous second independent first integral 

quadratic in the momenta besides the energy. He concluded the following: 

1) A = 0 and F(r) = k1 a constant which is of course the Kepler-Coulomb problem 

or, when k1 = 0, the free particle, 

2) A = ° and F(r) = k1r3 which is the three-dimensional isotropic harmonic 

oscillator or 

3) A = 1 and F(r) = k1 - l/r. 

For case 3) he found the conserved vector 

. L k' J=Lx1'+-- 11' 
r 

(3.4.3) 

which is an analogue of the Laplace-Runge-Lenz vector for the standard Kepler 

problem. Case 3) of equation (3.4.2) is of course a special case of (3.1.15) with 

h = -1/r and k = -k1. It would appear, however, that the expression Thompson 

uses for F (r) is in fact incorrect and should be F (r) = k1 + 1/ r. The error would 

appear to stem from the incorrect solution of (4.12) in his paper [126]. As a result 

the sign of the angular momentum term of (3.4.3) is also in error. Case 3) of the 

equation (3.4.2) is a specific example of the more general equation 

1'+-+ --- 1'=0 .. AL ( k A
2
). 

r3 r2 r3 (3.4.4) 

which has attracted a great deal of interest in connection with monopoles. It will be 

treated in great detail later in this chapter (see §3.5). It should further be appreciated 

that for A = 1 and F(r) = 0, (3.4.2) reduces to the equation of motion describing 

an electric charge interacting with a magnetic monopole fixed at the origin, after 

a suitable rescaling, for which it has been shown that analogues of the mechanical 

angular momentum first integrals exist as well as some additional first integrals which 

are quadratic in the momentum, but explicitly time dependent (see Moreira [101]). 

The monopole system, however, has no other (time-independent) quadratic integrals 

apart from the conserved energy (see §3.12). It should further be stressed that the 

vector approach developed above does appear to offer more general results with far 

less mathematical complexity than the approaches adopted by other writers. 
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It is possible to find closed-form solutions for <p for the equation of motion (3.4.4) 

which describes motion of an electric charge interacting with a magnetic monopole 

fixed at the origin with the additional centripetal forces kr Ir2 and _)..2r Ir3 using the 

results developed earlier in the chapter. For h(r) = -)..Ir and k = 0, using (3.2.2) 

we see that 

(3.4.5) 

This means that l' has a constant projection onto J of length L2 I J. The integration 

in (3.2.9) is easily performed using standard methods giving 

(3.4.6) 

Since the modulus of the argument of the arcsec must be greater than or equal to 

one and given that 0 is in the first quadrant, 

. 1 7r 
arCSIn 1 < 0 < -. - - 2 (1 + L2 I )..2)2 

(3.4.7) 

The geometry of this orbit and those described below are intimately connected with 

those of the Kepler problem and will be discussed at great length below. 

For h(r) = -)..Ir and k #- 0 we have a truly three-dimensional motion for which 

there exists a Laplace-Runge-Lenz analogue. The orbit mayor may not be closed 

depending on whether k > J or k ~ J. Making the substitution 'f/ = cos 0, using 

partial fractions and G&R [43, 2.266.3]' (3.2.9) can be integrated. There are three 

distinct cases 

J#-k or -k, 

1 [J:f2 - Jk - P - J es + J + k) cos 0] 8 
- arctan 1 

2 (J + k) (J~f2 sin20 - (k + JcoSO)2) 2 80 

+ 
1 [J:f + Jk - P + J es + J - k) coso] 8 
- arctan 1 

2 (J-k)e~f2sin20-(k+JcosO)2)2 8
0 

(3.4.8) 

J = k, 

1 [ ~~ - 2 - (~~ + 2) cosO ] 8 
<p = - arctan 1 , 

2 2(~~sin20 - (1 + cosO)2) 2 8
0 

(3.4.9) 
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J= -k, 

1 [ ~~ - 2 + (~~ + 2) cosO 1 (J 
~=--Mct~ 1 

2 2(~~sin20 _ (1 _ COSO)2)2" 
(Jo 

(3.4.10) 

In §3.5 the geometry and orbits of the monopole-Kepler problem will be considered 

in more detail as well as their connection with the standard Kepler problem. 

The illustrative examples above have concentrated on the monopole because of its 

physical interest, although any differentiable function h( r) could have been used. It 

should be appreciated that Laplace-Runge-Lenz vector analogues do exist for truly 

three-dimensional problems where only the magnitude of the angular momentum is 

conserved. The orbit equation was obtained using the Laplace-Runge-Lenz vector 

in two separate vector combinations. 

3.5 The Conserved Hamilton and Laplace-Runge-Lenz 

Vector Analogues and the Lie Algebras of the 

First Integrals of the Classical MICZ Problem 

The motion of a spinless test particle in the field of a Dirac monopole plus Coulomb 

potential with an additional centrifugal potential has been called the MIC problem by 

Mladenov and Tsanov [97] and the MICZ problem by Cordani [23] after the studies 

of this problem by Mcintosh and Cisneros [94] and also by Zwanziger [134]. The 

MICZ system is related to the problem of the asymptotic scattering of two self-dual 

monopoles via a canonical transformation [23] which gives the reduced Hamiltonian of 

a particle in an Euclidean Taub-NUT space. This in turn is related to the scattering 

of slowly moving Bogomol'nyi-Prasad-Sommerfield (BPS) monopoles [1,2, 89]. 

Classically the MICZ system is described by the equation of motion 

.. ).L (I-l ).2), 0 1'+- + --- 1'= , 
r3 r2 r3 

(3.5.1) 

where the mass is taken as unity, ). is the strength of the monopole and I-l is the 

strength of the Coulomb field. The system (3.5.1) possesses the Hamiltonian 

(3.5.2) 
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where p = T is not the canonical momentum since, although [Xi, XjJpB = 0 and 

[Xi,pjJpB = Dij (XiXi = ".2), the Poisson Bracket of components of the mechanical 

momentum, p, is 

(3.5.3) 

where Dij and Eijk are the Kronecker delta and Kronecker epsilon respectively. The 

MICZ system possesses two conserved vectors which can be easily derived. Taking 

the vector product of f' with (3.5.1) and integrating gives 

P = L - Ar (3.5.4) 

which is known as Poincare's vector [107J. Taking the scalar product of (3.5.4) with 

itself determines the magnitude of P as 

(3.5.5) 

Taking the vector product of (3.5.1) with L and integrating gives the second conserved 

vector 

J . AL A =f'xL+- -flf'. 
". 

(3.5.6) 

A Hamilton vector analogue can be constructed from the Laplace-Runge-Lenz vector 

analogue by taking the vector product of J with P, 

K JxP 

(r x P) x P - ~f' X P. 
". 

(3.5.7) 

Since there can be only five independent autonomous first integrals for a three

dimensional system, there must be at least two relationships between the integrals. 

They are 

(3.5.8) 

and 

(3.5.9) 

The existence of two conserved vectors is well known for a variety of two-dimensional 

problems (see Chapters 1 and 2). However, in the three-dimensional context the 

presence of both vectors gives rise to a rather special geometry which we investigate 

below. 

If the velocity r is replaced by the momentum p in P and J, the Poisson Bracket 

relations are given by [96J 

(3.5.10) 
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The Lie algebra of the first integrals under the operation of taking the Poisson 

Bracket is then 80(4), e(3) or 80(3,1) depending on whether H is negative, zero or 

positive. This is the same result as found for the standard Kepler Coulomb prob

lem. It should also be noted that the Lie algebra of the Lie symmetries of (3.5.1) 

is Al EB80(3) whereas in the Kepler-Coulomb problem case it is A2EB80(3), where 

Al and A2 are the abelian subalgebras of dimension one and two respectively [79]. 

(See §§4.1 and 4.5 respectively). 

The motion of a particle described by (3.5.1) is known to be a conic section. There 

do not, however, appear to have been any detailed studies of the geometry of the 

orbit. McIntosh and Cisneros [94] state that they did not find any simple algebraic 

expressions for the parameters of the orbit in terms of the constants of the motion. 

In what follows we will look at the geometry of the orbit in some detail to understand 

the MICZ problem more fully. One important feature which emerges is that the line 

of J intersects with the geometric centre of the orbit. A linear combination of P 

and J naturally gives rise to two vectors one of which is parallel to the normal to 

the orbital and hodographic planes and the other which is parallel to the orbital and 

hodographic planes. The latter vector also behaves like a Laplace-Runge-Lenz vector 

in that it provides the orbit equation in a natural way using a suitable scalar product. 

Although many of the geometric relationships between features on the orbit and the 

conserved quantities are fairly involved, there is a lot of insight to be gained from 

this approach. 

Since the orbit is a conic section, the different cases are treated separately. We begin 

by looking at the hyperbolic case f-l = 0 followed by the parabolic case f-l = J and 

then the more general elliptic and hyperbolic cases f-l > J and f-l < J respectively. 

Throughout the subsequent discussion, () and cjy correspond to the usual polar and 

azimuthal angles of spherical polar coordinates, respectively. The equation of motion 

(3.5.1) can be written as a standard Kepler problem by projecting the orbit into the 

cjy-plane, where now we use the line of the Poincare vector to give the direction of 

the polar axis. This is easily achieved by taking the vector product of the equation 

of motion (3.5.1) with P. The effect of this operation is to project certain vector 

quantities into the cjy-plane, followed by a 7r /2 rotation about the projection axis and 

a scaling by P. Since l' X P = l' X Land l' and L are orthogonal, the vector product 

of (3.5.1) with P can be written as 

.. ( f-lL
3 

) (1'XP) + l1'xPl3 (1'XP)=O. (3.5.11) 
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Equation (3.5.11) is the equation of motion for the Kepler problem in the new variable 

l' X P. It should also be appreciated that in the new coordinates one focus of the 

orbit is centred at the origin. For the general equation of motion (3.5.1) the orbit 

plane is lifted onto the cone. However, the origin remains on the ¢>-plane, out of the 

plane of the conic section. It will also become clear how the vector first integrals for 

the MICZ problems can be projected into the ¢>-plane where they become important 

features of the planar Kepler problem. In the case of the elliptic orbit, the analogues 

of Kepler's three laws of motion are demonstrated on the cone and shown to have 

remarkable similarities with the planar problem. 

3.6 Geometric Preliminaries and the Connection with the 

Kepler Problem 

Before discussing the detailed geometry, there are certain geometric features of the 

problem which apply in general. We let Ti - a and f3 be the angles between P and l' 

and P and J respectively. 

Taking the scalar product between P (3.5.4) and l' gives 

cos a = )"/P. 

The scalar product between P (3.5.4) and J (3.5.6) gives 

)../1 
cos f3 = pJ" 

(3.6.1) 

(3.6.2) 

If we let the angle between J and l' be Ti - 'ljJ, the scalar product between J (3.5.6) 

and 1', after rearranging, gives the orbit equation 

L2 
r-----

- /1- J cos'ljJ· (3.6.3) 

Equation (3.6.3) describes a surface of revolution with the line of J being the axis of 

symmetry and one focus of the surface centred at the origin. Since any cross-section 

of the the surface of revolution in a plane parallel to J is a plane conic section, the 

ratio J / /1 determines the shape of the surface. The constancy of the angle between 

P and l' means that the particle moves on the surface of a cone with vertex at the 

origin. The curve of intersection of the cone and the surface of revolution (which 

is termed a conicoid) is the orbit of the particle and also a plane conic section. By 

virtue of (3.5.4), P, Land l' are always coplanar. However, the scalar triple product 

(3.6.4) 
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implies that P, J and l' are only co-planar when r is zero, i. e. at the extremities of 

the motion. It is convenient to introduce the conserved vector 

). 
N= P--J. 

/1 

Taking the scalar product of N with l' gives 

(3.6.5) 

(3.6.6) 

which confirms that the orbit lies on a plane. However, the origin does not lie on 

the plane since the scalar product produces a non-zero constant. It should also be 

obvious that the vector N is parallel to the normal to the orbital plane. This vector 

is also orthogonal to the velocity hodograph since 

N . r = (p - ~J) . r = o. 
/1 

(3.6.7) 

Clearly the origin lies on the same plane as the velocity hodograph and N is also 

normal to the hodographic plane. This also means that the hodographic and orbital 

planes are parallel to each other, as will be obvious from the diagrams later in the 

chapter. It is also possible to construct a vector S which is a linear combination of P 

and J which is parallel to the orbital plane. Using the requirement that S . N = 0, 

one suitable vector is found to be 

(3.6.8) 

The angle, e, between P and N is found by taking the scalar product between these 

two vectors which gives 

(3.6.9) 

where I = 1['/2 - e is the angle between the orbital plane and the vector P which can 

be used to find the cartesian equation of the plane. Similarly, the angle between J 

and N is found by taking the scalar product between these two vectors which gives 

-2HL)' 
(3.6.10) 

Using (3.6.6) the projection of l' onto N which defines the orbital plane is given by 

A )'L 
l' . N = r cos ( = 1 , 

(2H).2 + /1 2 )2" 
(3.6.11) 
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where ( is the angle between l' and N. If we fix P to lie along the -k direction and 

rotate the orbit about P so that the major axis of the orbit lies in the xz-plane, the 

unit normal is given by N = (cos 1,0, sin I) and correspondingly the equation of the 

orbital plane described by (3.6.11) can be expressed in terms of cartesian components 

as 
. )..P . 

x cos I + z sm I = - sm I, 
11 

(3.6.12) 

where I is the angle between P and the plane of the orbit. The cartesian represen

tation for the trajectory in spherical polar coordinates is given by 

x r sin a cos </J 

y r sin a sin </J 

z r cos a. 

Substituting the above expressions for x, y and z into (3.6.12) gives 

)..P sin I I 11 

r = cos a sin I + sin a cos I cos </J 

which can be equated with the orbit equation (3.6.3) to give 

_ ()..2 11 - L2(2H p 2 + 112)~ cos </J) 
'ljJ - arccos P2J . 

(3.6.13) 

(3.6.14) 

(3.6.15) 

The general features of the motion are as follows: the particle moves on a plane 

section of a cone with axis of symmetry along the line of P and semi-vertex an

gle determined by )..1 P. The ratio J 111 determines whether the orbit is an ellipse, 

parabola or hyperbola. As l' moves over the cone, L, which is coplanar with l' and P, 

describes a circle on its own cone which has semi-vertex angle 7r 12 - a with P its axis 

of symmetry. The vector N is parallel to the normal to the orbital and hodographic 

planes whilst the vector S is parallel to the orbital and hodographic planes. 

Since the projected orbit in the </J-plane is a focus-centred comc section, it is 

instructive to consider this orbit in conjunction with the orbit on a cone to 

provide a better understanding of the underlying geometry. In the planar prob

lem the conserved Laplace-Runge-Lenz vector is given by Jl. = J x P, where J is 

of course the Laplace-Runge-Lenz vector for the complete system (3.5.1). We use 

Jl. to denote the Laplace-Runge-Lenz vector in the </J-plane and obtain the form 

Jl. = (r x P)xP -I1L1' xP. (3.6.16) 

Taking the scalar product of (3.6.16) with (1' x P) gives 

Jl.. (1' X P) = Jl.Lr cos </J = P2L2 -I1L2r, (3.6.17) 



and so 
p 2L 

11' x PI = Lr = --~-
/1 + J.1. / L cos ¢ , 
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(3.6.18) 

where the azimuthal angle ¢ is measured from the line joining the focus (which is also 

the origin and the point where P cuts the ¢-plane) and the point of closest approach 

to the focus of the curve in the plane. Equation (3.6.18) describes the usual planar 

focus-centred conic section depending on the size of the eccentricity e = J.1./(L/1) , 

i. e. elliptical for e < 1, parabolic for e = 1, hyperbolic for e > 1 and a straight line 

for e = 00. This equation will be investigated in conjunction with the orbit on the 

cone later in the chapter. Taking the scalar product of J.1. with itself gives 

It can also be shown that 

J.1. 2 (J x P) . (J x P) 

L2(2H p2 + /12). 

as it should be since the motion in the projected system is planar. 

The angular momentum for the planar Kepler problem (3.5.11) is given by 

L K = (1' X P) X (T x P) = L 2 P 

and the energy integral 

(3.6.19) 

(3.6.20) 

(3.6.21 ) 

(3.6.22) 

In addition to these integrals (3.5.11), which is the equation of motion for the Kepler 

problem in the variable l' X P, has the usual Hamilton's and Laplace-Runge-Lenz 

conserved vectors which are found as follows. Using the substitution u = l' xP, 

equation (3.6.21) can alternatively be expressed as 

(3.6.23) 

The equation of motion (3.5.11) can be expressed in terms of u as 

(3.6.24) 

which on multiplying the it term both top and bottom by ¢ can be integrated to give 

(3.6.25) 



Now, P, it and ;p are orthogonal with 

so (3.6.25) becomes 

ttL A -(1' X P)" - pP X (1' X P) 

(1' X P)" - ~'{'P X (1' X P), 

and similarly J K is found from K K X LK which gives 

L2 
L2 (1' X P)" xP - ~1' X P. 

'(' 
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(3.6.26) 

(3.6.27) 

(3.6.28) 

It is now apparent that (3.6.27) and (3.6.28) can be obtained directly from the stan

dard Kepler conserved vectors (1.5.7) and (1.5.8) using the variable substitutions 

tt --t ttL 3 , l' --t l' X P, T --t T x P, L --t L K. It is also possible to show that 

K.l P X (J x P) = p2 K K = p2 J - AttP , 

1 
J.l = J x P = - J K" L2 ' (3.6.29) 

which indicate that the conserved vectors for the MICZ problem are consistent with 

those of the equivalent two-dimensional Kepler problem. 

As can be expected, the presence of a Hamilton vector for the planar problem indicates 

the existence of a planar velocity hodograph for the projection of the velocities in the 

¢-plane. Using the techniques of §1.2 and assuming that KK is in the direction of 

the cartesian unit vector i and P along the direction k, it is possible to show using 

K K in (3.6.27) that (ignoring any rotations) 

.2 (. KK)2 
X + y--p (3.6.30) 

which is a circle of radius ttL/ p2 with centre at KK / P along the y-axis. 

The presence of two orthogonal vectors in the xy-plane would seem to suggest the 

existence of additional vectors lying out of the plane which would project onto the 

lines of J K and K K in the xy-plane, respectively. Two such vectors are given by 

AJ u= ±J x P--P 
L ' 

(3.6.31 ) 
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where the top vector passes through the point marked E on the cone 

(see Figures 3.8.1, 3.9.1 and 3.10.1) and the bottom vector passes through the cor-

responding point on the opposite side of the cone. Two other such vectors are given 

by 
>"K.1. 

T = ±P x (J x P) - LP P, (3.6.32) 

which lie on the surface of the cone collinear with the two vectors directed from 

the origin to the points of closest and furthest approach (infinity in the case of 

the parabola and the hyperbola, see Figures 3.8.1, 3.9.1 and 3.10.1), respectively. 

Note that P x U = ±K.1. and P x T = ~P2J.1.. Different linear combinations 

of the vectors shown above can also be made. However, they are not nearly as 

important as those described above because they do not appear to provide any useful 

additional geometric information on the MICZ problem. In some three-dimensional 

problems such as the one described here, linear combinations of conserved vectors can 

be used to simplify the construction of the orbit equation as will be demonstrated 

in §§3.7-3.10. 

We will now consider the different types of orbits possible depending on the choice 

of /1. 

3.7 The Geometry of the MICZ Problem with J-l = 0 

When /1 = 0, (3.6.2) gIVes (3 = 7r /2, i.e. J is normal to P. From (3.6.3), 

r cos 'lj; = L2 / J, (the sign is positive since in this case the angle between J and 

l' is acute), i. e. the projection of l' onto J is L2 / J along the line of J and the motion 

is in a plane normal to J or parallel to P. The orbit is correspondingly an hyperbola 

and the motion is unbounded. The salient features of the geometry are depicted in 

Figure 3.7.1 which shows the orientation of the larger orbital and smaller angular mo

mentum cones which meet at the origin. A typical hyperbolic orbit is shown together 

with the construction of the Poincare vector P from Land T and the orientation of 

the vector J. Note that Land l' are orthogonal throughout the motion and that 

P, Land l' are coplanar at any instant in time. The vectors P, J and l' are only 

coplanar at the turning points of the motion. It is easy to show that 

AB = >"L/J OB = PL/J. (3.7.1) 



Figure 3.7.1. The typical geometry of the MICZ orbit when 11 = O. The larger orbital 

and smaller angular momentum cones are shown together with a typical hyperbolic 

orbit and the orientation of P, J, -N and S. The origin 0 is at the point of contact 

between the two cones, F is the focus of the hyperbola and A marks the geometric 

centre of the hyperbola. The line segment AF lies along the axis of symmetry of the 

hyperbola. a and 7r /2 - a are the the semi-vertex angles of the orbital and angular 

momentum cones respectively, 'ljJ is the angle between J and rand f3 is between P 

and J. 
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Figure 3.7.2 shows the plane of the typical hyperbolic orbit together with the asymp

totes which coincide with the images or outline of the cone when projected onto 

the orbital plane. The focus can be found by considering the plane of the orbit 

(see Figure 3.7.2). The equation of the hyperbola is 

and the asymptotes are given by 

v u 
~±b = o. 

The modulus of the gradient of the asymptotes is given by cot a so that 

a ). 
-
b L· 

At B, the point of closest approach, v = )'L j J so that 

)'L 
a=-

J 

L2 
b= -

J 

and the eccentricity, given by e2 = 1 + b2 j a2
, is 

e=Pj).. 

(3.7.2) 

(3.7.3) 

(3.7.4) 

(3.7.5) 

(3.7.6) 

The distance AF = ae = P L j J = 0 B. In other words the distance of the focus 

from the line of J equals the distance of closest approach of the orbit to the origin. 

Finally we observe that the line of J passes through the geometric centre of the 

double hyperbola. 

It is a simple procedure to obtain the cartesian equation for the orbit. The equation 

of the plane of the hyperbola on the cone is given by (3.6.12) putting I = 0 which 

gIves 
L2 

x=j. 

Using the first equation of (3.6.13) gives 

L2 
r = -coseca sec <p, 

J 

which can be substituted into the remaining equations of (3.6.13) to give 

L2 
X - -

J 

L2 
Y j tan <p 

L2 
Z j cot a sec <p. 

(3.7.7) 

(3.7.8) 

(3.7.9) 
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Figure 3.7.2. The plane of the typical hyperbolic orbit when J.l = o. The dashed lines 

indicate the asymptotes which are also the images of the cone, F marks the focus of 

the hyperbola, B the vertex and A the geometric centre. 
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Replacing cot a in (3.7.9) using (3.6.1), the y and z components of (3.7.9) can be 

manipulated into the form 

(3.7.10) 

which is the standard cartesian representation for a hyperbola (P2.17) symmet

rically placed about the y = ° axis, with vertices at (L2 I J, 0, ±)"LI J), foci at 

(L2IJ,0,±PLIJ), eccentricity of PI).. and centred at (L2IJ,0,0). The height of 

the top vertex a distance )"LI J above the xy-plane agrees (as it should) with the 

length AB (3.7.1) and the height of the focus above the centre which is a distance 

PLIJ agrees with the result found earlier for AF = OB as does (3.7.10) with (3.7.2) 

and (3.7.5). The transverse axis is the same length as the distance between the two 

vertices 2a, i. e. 2)"L I J, and the conjugate axis is twice that of b, i. e. 2L2 I J, which 

is consistent with (3.7.5). 

If we consider the equation of the orbit in the ¢>-plane, using (3.6.18) we find that 

p 2L 2 

11' x PI = Lr = J ¢>' 
.L cos 

(3.7.11) 

i.e. the projection of the orbit into the plane describes a straight line symmetrically 

placed about the ¢> = ° axis. In the case ¢> = 0, the projection of the orbit in the 

¢>-plane has the length 

(3.7.12) 

which is consistent with the earlier result for the length of the projection of l' on J, 

i.e. OA, up to the scaling factor of P. 

The equation of motion (3.5.11) for f-l = ° is 
(1'XP)··=O, (3.7.13) 

which has the solution 

l' X P = At + B, (3.7.14) 

z. e. the motion in the plane is linear with respect to time. Remembering that 

the x-component of the solution is constant in this case with the value L2 I J, A 

and B can be calculated from (3.7.9), integrating the angular momentum equation 

¢> = -LI(r2 sina) and using (3.7.8) to replace r. This gives 

(3.7.15) 
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Alternatively, an elegant vector combination can be used to calculate the plane polar 

equation of the orbit in the orbital plane. In order to extract the orbit equation using 

a scalar product a new vector must be constructed from l' which lies in the orbital 

plane and is thus parallel to P. One suitable vector is 

R = l' - 11' . .11 .1 
L2 , 

l' --J 
J ' 

(3.7.16) 

where the .1 component is the projection of l' on .1. The vector R moves in the orbital 

plane, parallel to the z-axis and is displaced from the origin by L2.1 I J. Measuring 

the angle {} which lies in the orbital plane from P gives the equation for the orbit in 

the orbital plane as 

P . R = P R cos {} = -).r. (3.7.17) 

Rearranging the expression (3.7.16) to obtain l' as the subject of the equation and 

squaring both sides of the expression produce a quadratic equation in r which can be 

solved to give 

(3.7.18) 

Note that for R = )'LI J (the minimum allowed value), r = P LI J which is consistent 

with the result for DB (3.7.1). Now substituting (3.7.18) in (3.7.17) we finally obtain 

L4 
2 2J2 

R = ((P2 ) p2 ) , 12 - 2 + 12 cos 2{) 
(3.7.19) 

which is the plane polar expression for a geometric-centred hyperbola (P2.16) 

symmetrically placed about the {} = 0 axis, eccentricity of PI). which is consistent 

with (3.7.6), vertices at (0, ±)'LIJ) and foci at (0, ±PLIJ) which are consistent with 

(3.7.10) and (3.7.5). The distance from the centre to a vertex )'LIJ agrees with the 

length AB and the distance from the centre to a focus P LI J agrees with the length 

AF. The length of the transverse and conjugate axes are given by 2)'LI J and 2L2 I J 

respectively, which are twice the lengths of a and bin (3.7.5) as expected. Since the 

plane polar equation describes a geometric-centred hyperbola on the orbital plane, 

if follows that A marks the centre of the hyperbola in the plane. 

The velocity hodograph can be obtained by individually differentiating the cartesian 

components x, y and z (3.7.9), realising that the x component of the orbit is constant 

with the value L21J and using the expression ~ = -LI(r2sina) since the orbit and 

velocity hodograph are being viewed from above with P pointing in the -k direction, 

i.e. the sense of the rotation of the orbit is clockwise. Note that, when the cone is 
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rotated about the x-axis so that P lies along k and the vectors K K and J K lie 

along the cartesian unit vectors j and i respectively and hence mimic the behaviour 

of L, K and J respectively of the standard Kepler problem, the sense of the rotation 

is counter-clockwise when viewed from k as for the Kepler problem. U sing the 

substitutions described above gives the set of equations 

x 0 

J 
Y P 

z )..J . rP 
- LP sm , (3.7.20) 

which describes a straight line of length 2)"J / LP symmetrically placed about the 

xy-plane, extending along the k direction and centred at (0, -J / P, 0). Note that 

the velocity hodograph is bounded. Since the sense of the rotation of the orbit is 

clockwise, i starts off being negative and becomes positive as rP passes through zero. 

The projection of the velocity hodograph into the rP-plane is the point (0, -J / P). 
This result is consistent with equation (3.6.30) for a velocity hodograph with zero 

radius, which gives using (3.6.29) 

(3.7.21) 

remembering that P was chosen to lie along the -k direction in the figures which 

accounts for the discrepancy with the sign of the centre of (3.6.30). 

It does not seem possible to calculate the plane polar equation of the velocity hodo

graph on the plane using simple vector operations as was done for the orbit. 

The initial conditions were chosen so that the projection of the orbit on the cone 

into the rP-plane is identical to the corresponding free particle orbit and also that 

the projection of the velocity hodograph into the rP-plane is coincident with that 

of the free particle. This was achieved by solving a system of nonlinear equations 

which were obtained by equating certain quantities on the cone on projection into 

the rP-plane with the equivalent quantities for the free particle. In the subsequent 

discussion, the starred quantities will be used to denote the constants for the free 

particle. For convenience we choose L* = 1, /L* = 0 and J* = 2.25. With reference 

to Figure 3.7.3, the length of the projection of l' onto J must be equal in length to 

the radius vector of the free particle at rP = 0, which gives 

L2 L*2 

J J*' 
(3.7.22) 
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The centre of the projected velocity hodograph was equated with that of the free 

particle to force both the orbits and the velocity hodographs to coincide so that a 

comparison between the two problems can be made. Comparing equations (1.5.9) 

and (3.6.30) gives 

f{K = J = f{* = J* 

P P L*' 
(3.7.23) 

which combined with (3.7.22) can be solved to give 

L2 
P = L*. (3.7.24) 

It follows from the definition of P, equation (3.5.5), that 

A = f* ( L 2 - L *2) ~ . (3.7.25) 

The semi-vertex angle of the cone a is obtained from (3.6.1), (3.7.24) and (3.7.25) 

which combine to give 

a = arccos ((L
2 

LL'2) I ) = arcsin (~') , (3.7.26) 

Le. the angle a only depends on the projection of the MICZ angular momentum, 

L, onto the Kepler angular momentum, L*, which is directed along the line of P. 

Equations (3.7.23) and (3.7.24) can be used to find an expression for J, i.e. 

(3.7.27) 

The angle (3 was shown above to be 7r /2 radians. For convenience, L was chosen to 

be 1.85 and using the values for the starred quantities given above, P, A, a and J 

were calculated using (3.7.24)-(3.7.27). 

Figure 3.7.3 shows the hyperbolic orbit in the case where f1 = o. The diagram 

shows the two right circular orbital and angular momentum cones which extend 

in opposite directions along the line of P with origin and point of contact at the 

apices of the two cones. A selection of displacement and corresponding angular 

momentum vectors have been drawn from the origin to their respective positions on 

the orbital and angular momentum cones. The orbit is hyperbolic and lies on a plane 

which does not include the origin. In order to illustrate the behaviour more clearly, 

projections of the orbit onto planes parallel to the xy, xz and yz planes are shown, 

together with projections of the angular momentum curve and the projected images 

of the cones onto the respective planes. The constant magnitude of the angular 

momentum is reflected by the angular momentum vectors moving on the surface 
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Figure 3.7.3. The hyperbolic MICZ orbit and angular momentum curve for tL = 0 

with a selection of displacement and angular momentum vectors drawn from the 

origin. The radial and angular momentum vectors move on the surfaces of two right 

circular cones extending in opposite directions along the line of P with origin and 

point of contact at the apices of the two cones. The projections of the orbit and 

angular momentum curve onto planes parallel to the xy, xz, yz, LxLy, LxLz and 

LyLz planes are also shown. The constants have the values J = 7.7006, P = 3.4225, 

,\ = 2.8794, a = 0.5711, (3 = 1['/2 and L = 1.85. The origin lies out of the orbital 

plane. 
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of a cone which is truncated perpendicular to the axis of symmetry to a height of 

L2 I P below the origin. The components of the angular momentum are given by 

L = p..LcoscPIP,)"LsincPIP,-L2IP) using (3.7.9) and (3.7.20). The two short line 

segments drawn perpendicular to the angular momentum curve indicate the limits of 

extent of the angular momentum as t ranges from negative through positive infinity. 

The xy projection of the orbit is a straight-line symmetrically placed about the y = 0 

axis, as described by the first two equations of (3.7.9), which extends parallel to the 

y-axis from right to left across the page and centred at (L2 I J, 0). The perpendicular 

distance from the projected curve to the origin has the length L2 I J which is also 

the length of the projection of l' onto J, i. e. 0 A. The projected orbit is consistent 

with the planar orbit for the free particle with L * = 1, /1* = 0 and J* = 2.25. 

As t ranges from negative through positive infinity, the azimuthal angle cP ranges 

between 7r 12 and -7r 12 and so the projection ranges from (L2 I J, +00) when cP = 7r 12 
to (L2IJ,L2IJ) when cP = 7r/4 to (L2IJ,0) when cP = 0 to (L2IJ,-L2IJ) when 

cP = -7r I 4 to (L2 I J, -00) when cP = -7r 12. The projection of the angular momentum 

curve onto its corresponding plane describes part of a semi-circle with radius )"LI P 

symmetrically placed about the Lx-axis extending to the right of the Ly-axis, i. e. 

Lx 2 + Ly 2 = ()"L I P)2, Ly ~ O. As t ranges from negative through positive infinity, 

the projection ranges from (0, )"LI P) when cP = 7r 12 to ()"LI(2t P), )"LI(2t P)) when 

cP = 7r/4 to ()"LIP,O) when cP = 0 to ()"LI(2tP),-)"LI(2tP)) when cP = -7r/4 

to (0, -)..LI P) when cP = -7r 12, i.e. the semi-circle is completed. The dotted line 

completes the angular momentum cone. However, it should be remembered that the 

projection of the angular momentum vectors never crosses over the Ly-axis. 

The xz projection shows the images of the orbital and angular momentum cones with 

dotted lines, together with the projections of the orbit and angular momentum curves. 

Note that the xz projection of the orbit is a line with origin (L2 I J, )"LI J) (see the 

first and third equations of (3.7.9)) parallel to the z-axis and hence parallel to the 

axis of the orbital cone which confirms the well-known result that a cone intersected 

by a plane which is parallel but not coincident with the axis of the cone describes 

an hyperbola on the plane. The vertical height of the base of the straight line above 

the xy plane has the length )..L/J which is consistent with the length AB (3.7.1) and 

also half the length of the transverse axis of the hyperbola, i.e. a in (3.7.5). The 

orbit lies on a plane section through the orbital cone. As t ranges from negative 

through positive infinity, the projection ranges from (L2 / J, +00) when cP = 7r /2 to 

(L2IJ,2t)..L/J) when cP = 7r/4 to (L2/J,)"L/J) when cP = 0 to (L2/J,2t)..L/J) 
when cP = -7r I 4 to (L2 / J, +00) when cP = -7r /2. The LxLz projection of the angular 
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momentum curve extends a short distance along the base of the triangle describing 

the LxLz projection of the image of the angular momentum cone, perpendicular to 

the Lz-axis. As t ranges from negative through positive infinity, the projection 

ranges from (0,-L2/P) when <p = 7r/2 to ()"L/(2~P),-L2/p) to ()..L/P,-L2/P) 

when <p = ° to ()"L/(2~P), _L2/P) when <p = -7r/4 to (0, _L2/P) when <p = -7r/2, 

i. e. half the length of the base of the angular momentum triangle. In other words the 

angular momentum vectors will have swept over half the surface area of the angular 

momentum cone. The short line segment drawn perpendicular to the xz projection 

of the angular momentum curve indicates the limit of extent of the projection of the 

angular momentum as t ranges from negative through positive infinity. 

The yz projection shows the images of the orbital and angular momentum cones 

with dotted lines, together with the projections of the orbit and angular momen

tum curves. Note that the yz projection of the orbit is hyperbolic, symmetrically 

placed about the y = ° axis and flanked by the asymptotes which are in this case 

also the images of the orbital cone. The equation of the hyperbolic projection is 

given by (3.7.10) with asymptotes z = ± cot a y. The yz projection of the orbit 

does not distort the hyperbola since the projection plane is parallel to the orbital 

plane (see the second and third equations of (3.7.9)). The vertices are at (0, ±)"L/J), 
foci at (O,±PL/J), eccentricity of P/).. and centred at (0,0). The height of the top 

vertex is a distance )"L/ J above the xy plane which is consistent with the length 

AB (3.7.1) and also half the length of the transverse axis of the hyperbola, i.e. a 

in (3.7.5). The height of the focus which is a distance PL/J above the origin agrees 

with the result for AF = OB found earlier using purely geometric considerations. 

The conjugate axis has the length 2L2/J, i.e. 2b in (3.7.5). As t ranges from nega

tive through positive infinity, the projection ranges from (+00, +00) when <p = 7r /2 

to (L2/J,2~)"L/J) when <p = 7r/4 to (O,)..L/J) when <p = ° to (_L2/J,2~)"L/J) 
when <p = -7r / 4 to (-00, +00) when <p = -7r /2. The LyLz projection of the angular 

momentum curve lies along the base of the triangle describing the LyLz projection 

of the image of the angular momentum cone, perpendicular to the Lz-axis. As t 

ranges from negative through positive infinity, the line segment extends along the full 

length of the base of the angular momentum triangle from the point ()"L / P, - L2 / P) 

when <p = 7r/2 to ()"L/(2~P),-L2/p) when <p = 7r/4 to (0,-L2/P) when <p = ° 
to (-)"L/(2~P),-L2/p) when <p = -7r/4 to (-)..L/P,-L2/P) when <p = -7r/2. In 

other words the angular momentum vectors will have swept over half the surface area 

of the angular momentum cone. The two short line segments drawn perpendicular 

to the yz projection of the angular momentum curve indicate the limits of extent of 
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the projection of the angular momentum as t ranges from negative through positive 

infinity. 

The conserved vector K K which has been rotated clockwise through 7r /2 radians to 

lie along the cartesian unit vector -j is given by (3.6.29) and has length L(2H)~ as 

shown in Figure 3.7.3. The vector J K, which is perpendicular to K K, is also rotated 

clockwise through 7r /2 radians to lie along the cartesian unit vector i. J K has the 

length P L2]{K and is conveniently drawn to the same length as K K in Figure 3.7.3. 

The Poincare vector, P, which is orthogonal to J, lies along the cartesian unit vector 

-k. Note that, when the cone is rotated about the x-axis so that P lies along k, the 

vectors K K and J K lie along the cartesian unit vectors j and i respectively and hence 

mimic the behaviour of L, K and J respectively of the standard Kepler problem. The 

components of the conserved vectors are found by taking the scalar products of the 

relevant vectors with KK, JK and -P, remembering that the projected quantities 

have been rotated clockwise through 7r /2 radians to preserve the alignment with the 

orbit on the cone. The Laplace-Runge-Lenz analogue J is given by (3.5.6) with 

11 = 0 and is coincident with K K with components J = (L(2H) ~,o, 0). Note that 

the x-component of J is equal in magnitude to K K from (3.6.29) since the vector 

product with P has the effect of projecting J into the plane followed by a counter

clockwise rotation through 7r /2 radians. The angle between J and l' is acute in this 

case, which accounts for the discrepancy in the sign of the cos'IjJ term of (3.6.3). The 

Poincare vector is given by (3.5.4) and has components (0,0, _(L2 + A2)~). The 

normal vector N (3.6.5) is perpendicular to the plane of the orbit and coincident 

with -J since 11 = o. The vector S (3.6.8) is parallel to the plane of the orbit and 

coincident with P since 11 = o. 

Figure 3.7.4 shows the straight-line velocity hodograph in the case where 11 = o. 
A selection of velocity vectors corresponding to the displacement vectors shown in 

Figure 3.7.3 has been drawn from the origin to their respective positions on the 

velocity hodograph. In order to illustrate the T behaviour more clearly, projections 

of the velocity hodograph onto planes parallel to the xy, xi and yi planes are also 

shown, together with the projected images of the orbital cone onto the respective 

planes. The two short line segments drawn perpendicular to the velocity hodograph 

indicate the limits of extent of the velocity hodograph as t ranges from negative 

through positive infinity. 



Figure 3.7.4. The straight-line MICZ velocity hodograph and hyperbolic orbit for 

11 = 0 with a selection of velocity vectors drawn from the origin. The velocity vectors 

move on a plane which is parallel to the orbital plane and, as t ranges from negative 

through positive infinity, the velocity vectors sweep out a plane isoceles triangle lying 

in the yi-plane with base of length 2)'J / LP and height J / P. The projections of the 

velocity hodograph and orbit onto planes parallel to the xy, xi, yi, xy, xz and yz 

planes are also shown. The constants are chosen as for Figure 3.7.3. The origin lies 

in the hodographic plane touching one vertex of the triangle. 



164 

The xy projection of the velocity hodograph is the point (0, -J / P) as described by 

the first two equations of (3.7.20) and is consistent with the planar velocity hodograph 

for the free particle with L* = 1, /1* = 0 and J* = 2.25 and also (3.6.30) setting /1 = 0 

and reversing the sign inside the y term since the velocity hodograph is being viewed 

with P directed along the -k direction. 

The xi projection shows the images of the orbital cone with dotted lines, together 

with the respective projections of the orbit and velocity hodograph. Note that the 

xi projection of the velocity hodograph plane is a line parallel to the i-axis sym

metrically placed about the i = 0 axis, which passes through the origin and which is 

bisected by the x-axis (see the first and second equations of (3.7.20)). The projection 

of the velocity hodograph is seen to be parallel to the projection of the orbit as was 

shown in (3.6.6) and (3.6.7). As t ranges from negative through positive infinity, the 

projection ranges from the point (O,-)"J/LP) when ¢ = 7r/2 to (0,-)"J/(2~LP)) 

when ¢ = 7r /4 to (0,0) when ¢ = 0 to (0, )"J/(2~ LP)) when ¢ = -7r /4 to (0, )"J/ LP) 
when ¢ = -7r /2, i. e. the length of the projection of the velocity hodograph tends to 

2)"J / LP. The two short line segments drawn perpendicular to the xi projection of 

the velocity hodograph indicate the limits of extent of the projection of the velocity 

hodograph as t ranges from negative through positive infinity. 

The yi projection shows the images of the orbital cone with dotted lines, together 

with the respective projections of the orbit and velocity hodograph. Note that the 

yi projection of the velocity hodograph is a line parallel to the i-axis symmetrically 

placed about the i = 0 axis with centre (-J/ P, 0) and which is bisected by the 

y-axis (see the second and third equations of (3.7.20)). As t ranges from negative 

through positive infinity, the projection ranges from the point (-J / P, -)..J / LP) when 

¢ = 7r/2 to (-J/P,-)"J/(2~LP)) when ¢ = 7r/4 to (-J/P,O) when ¢ = 0 to 

(-J/P,)..J/(2}LP)) when ¢ = -7r/4 to (-J/P,)"J/LP) when ¢ = -7r/2, i.e. the 

length of the projection of the velocity hodograph tends to 2)"J / LP. The two short 

line segments drawn perpendicular to the yi projection of the velocity hodograph 

indicate the limits of extent of the projection of the velocity hodograph as t ranges 

from negative through positive infinity. 

The conserved vectors KK, J K , J and P are drawn as in Figure 3.7.3. 
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3.8 The Geometry of the MICZ Problem with f-l = J 

From (3.6.3) a parabolic orbit exists when J-l = J. The salient features of the geometry 

are depicted in Figure 3.8.1 which shows the orientation of the larger orbital and 

smaller angular momentum cones which meet at the origin. A typical parabolic orbit 

is shown together with the construction of the Poincare vector P from Land;' and 

the orientation of the vector J. Note that Land r are orthogonal throughout the 

motion and that P, Land r are coplanar at any instant in time. The vectors P, 

J and r are only coplanar at the turning points of the motion. In this case (3 = a 

which means that the line of J lies on the surface of the cone. This situation is shown 

in Figure 3.8.1 which is drawn with a < 7r /4, i.e. L < A (this does not affect the 

subsequent discussion). When e is 2a, the particle is at B. Using the orbit equation 

(3.6.3) 
2 1 o B = P /2J = BC = AB = - AC 

2 
and from the triangle AOC 

OC = ACcosa = PA/J. 

(3.8.1) 

(3.8.2) 

Figure 3.8.2 shows the plane of the typical parabolic orbit. To determine the position 

of the focus of the parabola we use the equation u2 = 4av (see Figure 3.8.2) as well 

as the knowledge of the ordinate at the point E on the parabola since 

CE = OCtana = PL/J. 

Substituting (P L/ J, P2/2J) into the equation of the parabola gives 

a = L 2/2J 

(3.8.3) 

(3.8.4) 

so that the focus, F, which is a above B is always between B and the intersection of 

the line of P with the plane of the parabola. 

It is also worth noting that the line of J could be said to be pointing to the geometric 

'centre' of the parabola which is at infinity. 

It is possible to rotate the orbital parabola on the cone into the plane. The equation 

of the plane of the parabola on the cone is given by (3.6.12) with I = a which gives 

x cos a + z sina = OC sina, (3.8.5) 

replacing AP/ J-l by OC. Substituting the general expressions for x, y and z in spherical 

polar coordinates from (3.6.13) into (3.8.5) and rearranging gives 

OC 
r = ) . (3.8.6) 

cos a(1 + cos <P 



p 

Figure 3.8.l. The typical geometry of the MICZ orbit when /1 = J. The larger orbital 

and smaller angular momentum cones are shown together with a typical parabolic 

orbit and the orientation of P, -J, -N and -So The origin 0 is at the point 

of contact between the two cones, F is the focus of the parabola and B marks the 

vertex of the parabola. The line segment AC lies along the axis of symmetry of the 

parabola. a and 7r /2 - a are the the semi-vertex angles of the orbital and angular 

momentum cones respectively, 'lj; is the angle between -J and 7', j3 is between P and 

J and ~ is between P and N. 



v 

u 

Figure 3.8.2. The plane of the typical parabolic orbit when J.l = J. The point F 

marks the focus of the parabola and B the vertex. The point C is the intersection of 

the line of P and the plane of the parabola. 
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Substituting for r (3.8.6) in (3.6.13) we obtain 

DC sin a cos ¢ 
x -

cos a(l + cos ¢) 

DC sin a sin ¢ 
y 

cos a(l + cos ¢) 

DC 
(3.8.7) z = 

(1 + cos ¢)' 

Since the orbit lies on a plane, it is convenient to rotate the plane counter-clockwise 

through (7r /2 - a) radians about the y-axis to manipulate the parametric equations 

into a recognisable form. In order to relocate the origin at DC, the z component 

has the length DC subtracted from it before performing the rotation. The rotation 

matrix is given by 

(

sin a 0 - cos a ) 
Q= 0 1 0 . 

cos a 0 sin a 

(3.8.8) 

Premultiplying the row vector formed from (3.8.7) by (3.8.8) with z -+ z - DC gives 

the parametric equations of the orbit rotated into the plane 

x = DCcos¢ 
cos a(l + cos ¢) 

y DC sin a sin ¢ 

cos a(1 + cos ¢ ) 

Z = 0, 

a cos ¢ 

b(l + cos ¢) 

csin¢ 

b(l + cos ¢) 

(3.8.9) 

where a = DC, b = cos a and c = DC sin a. The first two equations of (3.8.9) can be 

manipulated into the form 

(
X2 Y2) 2 
a 2 + ~ b

2 (1 + cos ¢) = 1 

and using the first equation of (3.8.9) it is easily shown that 

bX 
cos¢ = a _ bX 

(3.8.10) 

(3.8.11) 

Replacing cos ¢ with (3.8.11) and substituting for a, band c from above, 

equation (3.8.10) can be rearranged to give 

(3.8.12) 
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Replacing trigonometric expressions containing a using (3.6.1), (3.8.12) can be ma-

nipulated into the form 

(3.8.13) 

which is the standard cartesian representation for a parabola (P2.19) symmetrically 

placed about the Y = 0 axis, vertex at (P2/2J,0) and focus at (>..2/2J, 0). The 

distance from the origin to the vertex P2/2J agrees with the length BC in (3.8.1) 

while the distance from the origin to the focus ).2/2J agrees with the length C F 

in Figure 3.8.1. The distance between the vertex and the focus L 2 /2J agrees with 

the length BF and also (3.8.4). The Y -intercepts of (3.8.13) which have lengths 

P L/ J when measured from the origin are consistent with the length of C E (3.8.3). 

If we consider the equation of the orbit in the 1>-plane, using (3.6.18) we find that 

p 2 L 
11' x PI = J(1 + cos 1»' (3.8.14) 

i. e. the projection of the orbit into the plane decribes a parabola symmetrically placed 

about the 1> = 0 axis with the focus at the intersection of P and the 1>-plane. The 

projection of OB onto the 1>-plane has the length P L/2J, i.e. OB sin a = BC sin a 

which agrees up to a scaling factor of P with equation (3.8.14) with 1> = o. The 

projection of C E (3.8.3) onto the 1>-plane which remains unchanged in length since 

it is parallel to the 1>-plane is also consistent with equation (3.8.14) with 1> = 7r/2 

up to a scaling factor of P. 

Alternatively, an elegant vector combination can be used to calculate the plane polar 

equation of the orbit in the orbital plane. Following the procedure adopted in the 

/l = 0 case, we construct a vector R which lies in the orbital plane and is thus parallel 

to J. One suitable vector is 

(3.8.15) 

where N is the unit vector of N which is given in (3.6.5) and is normal to the 

plane of the parabola. Note that all the required scalar quantities are easily con

structed using scalar products on combinations of the conserved vectors. The vector 

R moves in the orbital plane, parallel to J and is displaced from the origin by 

>"LN / J + (p2 - 2L2) J /2J. Measuring the angle {) which lies in the orbital plane 

from J gives the equation for the orbit in the orbital plane as 
p 2 

J. R = JR cos {) = 2 - /lr. (3.8.16) 
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Rearranging the expression (3.8.15) to obtain l' as the subject of the equation and 

squaring both sides of the expression produce a quadratic equation in r which can be 

solved to give 

(3.8.17) 

Note that for R = 0 (the minimum allowed value), r = P2/2J which is consistent 

with the result for DB (3.8.1). Now substituting (3.8.17) into (3.8.16) we finally 

obtain 
R = _ 8 L 

2 
cos () 

2J (1 - cos 2{)) , 
(3.8.18) 

which is the plane polar expression for a parabola with vertex at the origin (P2.18), 

symmetrically placed about the () = 0 axis with focus at (-L2 /(2J), 0) which is 

consistent with (3.8.4). The distance from the origin or vertex to a focus L2/(2J) 

agrees with the length BF. Since the plane polar equation describes a vertex centred 

parabola on the orbital plane, it follows that B marks the vertex of the parabola in 

the plane. 

The velocity hodograph can be obtained by differentiating the cartesian components 

x, y and z (3.8.7) and substituting ~ = -L/(r2 sino:) to give 

x = L . A-
OC cos 0: SIll If' 

y 
L L 

--cos 0: cos <p - - cos 0: 
OC DC 

L . 
- DC cos 0: cot 0: SIll <p. (3.8.19) z 

Since the velocity hodograph lies on a plane, it is convenient to rotate the plane 

counter-clockwise through (7r /2 - 0:) radians about the ]i-axis to manipulate the 

parametric equations into a recognisable form. Premultiplying the row vector formed 

from (3.8.19) by Q (3.8.8) gives the parametric equations of the velocity hodograph 

rotated into the plane 

x L . A-
DC cot 0: SIll If' 

y L L 
- OC cos 0: cos <p - DC cos 0: 

z 0, (3.8.20) 
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which can be manipulated into the standard cartesian representation for an ellipse 

(P2.17) using (3.8.2) and (3.6.1) 

(X)2 (1' + ~~)2 = 
J.L + J.LL 1, 
P p2 

(3.8.21 ) 

symmetrically placed about the X = ° axis, with semi-major and semi-minor axes 

of lengths a = 11/ P and b = IlL/ p 2 respectively, eccentricity of )../ P = cos a and 

centred at (0, -IlL/ P2). This result is as expected from the projection of the velocity 

hodograph into the plane. The corresponding Kepler problem has a circular velocity 

hodograph in the plane with radius IlL/ p2 and centre (0, -IlL/ P2) from (3.6.30) 

and (3.6.29) when P is directed along the -k direction and viewed from above. Con

sequently, it is to be expected that the semi-major axis length of the ellipse described 

above has the same length as the radius of the Kepler velocity hodograph when pro

jected into the plane, i. e. a sin a = ilL / p2. However, the semi-minor axis length 

which has the same length as the radius of the velocity hodograph does not change 

in length on projection into the ¢-plane since it is parallel to the ¢-plane. The 

centre of the ellipse rotated into the ¢-plane also marks the centre of the circle at 

(0, -IlL/ P2) because the :!i-axis about which the rotation takes place passes through 

the centre of the ellipse on the hodographic plane. As with the Kepler velocity hodo

graph, the MICZ velocity hodograph only closes as t ranges from negative through 

positive infinity. The origin similarly lies on the circumference of the hodographic 

ellipse. 

It does not seem possible to calculate the plane polar equation of the velocity hodo

graph on the plane using simple vector operations as was done for the orbit. 

The initial conditions were chosen so that the projection of the orbit on the cone 

into the ¢-plane is identical to the corresponding Kepler orbit and also that the 

projection of the velocity hodograph into the ¢-plane is coincident with that of the 

Kepler problem as shown in Figure 1.5.3 of Chapter 1. This was done in much the 

same way as that described for the 11 = ° case by equating certain quantities on the 

cone on projection into the ¢-plane with the equivalent quantities for the Kepler 

problem. In the subsequent discussion, the starred quantities will be used to denote 

the constants used in Chapter 1 for the Kepler problem. The constants have the 

values, as before, 11* = 1.25, ()~ = 0, ]{* = J* = 1.25 and L * = 1. The radius of 

the projected velocity hodograph was equated with that of the Kepler problem to 

force both the orbits and the velocity hodographs to coincide so that a comparison 
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between the two problems can be made. Comparing equations (1.5.9) and (3.6.30) 

and taking square roots on both sides of the resulting equation gives 

(3.8.22) 

The perpendicular distance from the intersection between the line of P and the 

axis of symmetry of the orbit to a point on the orbit remains unchanged in length 

on projection into the ¢>-plane. This distance is equal in length to the semi-latus 

rectum of the plane conic section in the ¢>-plane which gives 

PL L*2 

f.l f.l* 

Eliminating f.l* from (3.8.22) and (3.8.23) gives 

L2 
P = L*' 

and it follows using the definition of P, equation (3.5.5), that 

A = :* ( L 2 - L *2) ~ 
and 

f.l = f.l* (:*r 
Using (3.8.24) and (3.8.25), equation (3.6.1) can be rewritten as 

( (L2_L*2)~) (L*) 
0: = arccos L = arCSIn L ' 

(3.8.23) 

(3.8.24) 

(3.8.25) 

(3.8.26) 

(3.8.27) 

z.e. the angle 0: only depends on the projection of the MICZ angular momentum, 

L, onto the Kepler angular momentum, L *, which is directed along the line of P. 

Equating the location of the projected centre of the velocity hodograph into the plane 

with the centre of the velocity hodograph of the Kepler problem gives, using (1.5.9) 

and (3.6.30) 

J* 

L*' 

which can be solved for J using (3.8.24)-(3.8.26) to give 

(3.8.28) 

(3.8.29) 

which in the parabolic case J* = f.l* reduces to (3.8.26). Using (3.6.2), (3.8.24)

(3.8.26) and (3.8.29), the angle f3 can be found to be 

(3.8.30) 
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which in the parabolic case J* = /1* reduces to (3.8.27). For convenience, L was chosen 

to be 1.85 and using the values for the starred quantities given above, 

P, .\, /1, a, J and (3 were calculated using (3.8.24)~(3.8.27), (3.8.29) and (3.8.30). 

Figure 3.8.3 shows the parabolic orbit in the case where /1 = J. The diagram shows 

the two right circular orbital and angular momentum cones which extend in opposite 

directions along the line of P with origin and point of contact at the apices of the two 

cones. A selection of displacement and corresponding angular momentum vectors has 

been drawn from the origin to their respective positions on the orbital and angular 

momentum cones. The orbit is parabolic and lies on a plane which does not include 

the origin. In order to illustrate the bahaviour more clearly, projections of the orbit 

onto planes parallel to the xy, xz and yz planes are shown, together with projections 

of the angular momentum curve and the projected images of the cones onto the re

spective planes. The constant magnitude of the angular momentum is reflected by 

the angular momentum vectors moving on the surface of a cone which is truncated 

perpendicular to the axis of symmetry to a height of L2 / P below the origin. The com

ponents of the angular momentum are given by L = ('\L cos ¢>/ P, '\L sin ¢>/ P, - L2 / P) 

using (3.8.7) and (3.8.19). 

The xy projection of the orbit is also parabolic as described by the first two equations 

of (3.8.7) which can be manipulated into the form 

y2 = -4 P L (x _ P L) 
2J 2J' 

(3.8.31) 

which is the cartesian representation of (3.8.14) scaled by P, symmetrically placed 

about the y = 0 axis, vertex at (P L/2J, 0) and focus at the origin. The distance from 

the origin to the vertex P L/2J agrees with the length of the projection of DB into 

the xy-plane, i.e. OBsina = BCsina. Since this distance is equal to a in (3.8.31), 

this confirms that the origin is at a focus. The y-intercepts of (3.8.31) which have 

lengths P L/ J when measured from the origin are consistent with the length of the 

projection of C E (3.8.3) into the xy-plane which is unchanged in length since it lies 

parallel to the xy-plane. It is worth noting that the focus of the parabola on the 

cone does not project onto the focus of the parabola projected into the xy-plane 

in general. The projected orbit is consistent with the planar parabolic Kepler orbit 

with L * = 1 and /1 = J* = 1.25. As t ranges from negative through positive infinity, 

the azimuthal angle ¢> ranges between 7r and -7r and so the projection ranges from 

(-00, +00) when ¢> = 7r to (0, P L/ J) when ¢> = 7r /2 to (P L/2J, 0) when ¢> = 0 to 

(0, -P L/ J) when ¢> = -7r /2 to (-00, -00) when ¢> = -7r. The projection of the 

angular momentum curve onto its corresponding plane describes part of a circle with 



Figure 3.8.3. The parabolic MICZ orbit and angular momentum curve for f.l = J with 

a selection of displacement and angular momentum vectors drawn from the origin. 

The radial and angular momentum vectors move on the surfaces of two right circular 

cones extending in opposite directions along the line of P with origin and point of 

contact at the apices of the two cones. The projections of the orbit and angular 

momentum curve onto planes parallel to the xy, xz, yz, LxLy, LxLz and LyLz planes 

are also shown. The constants have the values f.l = 7.9145, J = 7.9145, P = 3.4225, 

A = 2.8794, a = 0.5711, (3 = 0.5711 and L = 1.85. The origin lies out of the orbital 

plane. 
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radius ALI P symmetrically placed about the Lx-axis, i.e. Lx 2 +L/ = (ALI P)2. As t 

ranges from negative through positive infinity, the projection ranges from (-ALI P, 0) 

when <p = 7r to (0, ALI P) when <p = 7r 12 to (ALI P, 0) when <p = 0 to (0, -ALI P) 
when <p = -7r 12 to (-ALI P, 0) when <p = -7r, i.e. the circle is completed. The dotted 

line completes the angular momentum cone. However, it should be remembered that 

the projection of the angular momentum vectors only closes as t ranges from negative 

through positive infinity. 

The xz projection shows the images of the orbital and angular momentum cones 

with dotted lines, together with the projections of the orbit and angular momentum 

curves. Note that the xz projection of the orbit is obtained by manipulating the first 

and third equations of (3.8.7) into the form 

AP 
z = - cot ax + -, 

J 

PL 
-00 < x <-- - 2J' (3.8.32) 

which is the equation of a straight line with slope - cot a and z-intercept API J in 

agreement with (3.6.12). The slope of the line is the same as that of the cone and 

confirms the well-known result that a cone intersected by a plane which is parallel 

to a face of the cone describes a parabola on the plane. The z-intercept is given 

by the length of OC which is consistent with Figure 3.8.1. The orbit lies on a plane 

section through the orbital cone. As t ranges from negative through positive infinity, 

the projection ranges from (-00,+00) when <p = 7r to (O,APIJ) when <p = 7r/2 

to (P LI2J, API2J) when <p = 0 to (0, API J) when <p = -7r 12 to (-00, +00) when 

<p = -7r. The LxLz projection of the angular momentum curve extends along the base 

of the triangle describing the LxLz projection of the image of the angular momentum 

cone, perpendicular to the Lz-axis. As t ranges from negative through positive 

infinity, the projection ranges from (-ALIP,-L2IP) when <p = 7r to (0,-L2IP) 

when <p = 7r 12 to (ALI P, _L2 I P) when <p = 0 to (0, _L2 I P) when <p = -7r 12 to 

(-ALI P, _L2 I P) when <p = -7r, i.e. the full length of the base of the angular 

momentum triangle. In other words the angular momentum vectors will have swept 

over the entire surface area of the angular momentum cone. 

The yz projection shows the images of the orbital and angular momentum cones 

with dotted lines, together with the projections of the orbit and angular momentum 

curves. Note that the yz projection of the orbit is obtained by manipulating the 

second and third equations of (3.8.7) into the form 

2 PL
2 

( AP) 
y = 4 2AJ z - 2J ' (3.8.33) 
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which is the equation of a parabola symmetrically placed about the y = ° axis, ver

tex at (0, >"P /2J) and focus at (0, P3
/ (2)''J)). The distance from the origin to the 

vertex >..P/(2J) agrees with the length of the projection of OB into the yz-plane, 

i.e. OB cos D'. = BC cos D'.. The y-components of (3.8.33) when z = OC = >..P/ J 
which have the length P L/ J when measured from the origin are consistent with 

the length of the projection of C E (3.8.3) into the yz-plane which is unchanged in 

length since it lies parallel to the yz-plane. It is worth noting that the focus of 

the parabola on the cone does not project onto the focus of the parabola projected 

into the yz-plane in general. As t ranges from negative through positive infinity, 

the projection ranges from (+00, +00) when ¢ = 7r to (P L/ J, >"P / J) when ¢ = 7r /2 

to (0,>"P/2J) when ¢ = ° to (-PL/J,>"P/J) when ¢ = -7r/2 to (-00,+00) when 

¢ = -7r. The LyLz projection of the angular momentum curve lies along the base of 

the triangle describing the LyLz projection of the image of the angular momentum 

cone, perpendicular to the Lz-axis. As t ranges from negative through positive infin

ity, the line segment extends along the full length of the base of the angular momen

tum triangle from the point (0, _L2 / P) when ¢ = 7r to (>..L/ P, _L2 / P) when ¢ = 7r /2 

to (0, _L2 / P) when ¢ = ° to (->..L/ P, _L2 / P) when ¢ = -7r /2 to (0, _L2 / P) when 

¢ = -7r. In other words the angular momentum vectors will have swept over the 

entire surface area of the angular momentum cone. 

The conserved vector K K which has been rotated clockwise through 7r /2 radians to 

lie along the cartesian unit vector -j is given by (3.6.29) and has length J L/ P as 

shown in Figure 3.8.3. The vector J K, which is perpendicular to K K, is also rotated 

clockwise through 7r /2 radians to lie along the cartesian unit vector i. J K has 

the length P L2 f{K and is conveniently drawn to the same length as K K 

in Figure 3.8.3. The Poincare vector, P, no longer orthogonal to J, lies along the 

cartesian unit vector -k. Note that, when the cone is rotated about the x-axis so 

that P lies along k, the vectors K K and J K lie along the cartesian unit vectors j 

and i respectively and hence mimic the behaviour of L, K and J respectively of the 

standard Kepler problem. The components of the conserved vectors are found by 

taking the scalar products of the relevant vectors with k K, J K and - P, remember

ing that the projected quantities have been rotated clockwise through 7r /2 radians to 

preserve the alignment with the orbit on the cone. The Laplace-Runge-Lenz ana

logue J is given by (3.5.6) with J1 = J and has components J = (JL/P,O, ->"J/P). 
Note that the x-component of J is equal in magnitude to K K from (3.6.29) since 

the vector product with P has the effect of projecting J into the plane followed 

by a counter-clockwise rotation through 7r /2 radians. The Poincare vector is given 

by (3.5.4) and has components (0,0, _(L2 + >,,2)t). The normal vector N (3.6.5) 
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is perpendicular to the plane of the orbit and using (3.6.29) and (3.8.24) the com

ponents are found to be (-L* cot a, 0, -L*). The vector S (3.6.8) is parallel to the 

plane of the orbit and coincident with J from (3.6.8). 

Figure 3.8.4 shows the elliptical velocity hodograph in the case where f-l = J. A 

selection of velocity vectors corresponding to the displacement vectors shown in 

Figure 3.8.3 has been drawn from the origin to their respective positions on the 

velocity hodograph. In order to illustrate the T behavior more clearly, projections 

of the velocity hodograph onto planes parallel to the xy, xi and yi planes are also 

shown, together with the projected images of the orbital cone onto the respective 

planes. 

The xy projection of the velocity hodograph is obtained by manipulating the first 

two equations of (3.8.19) into the form 

'2 (. f-lL)2 (f-lL) 
2 

X + y + p2 = p2 ' (3.8.34) 

which is the equation of a circle in cartesian coordinates symmetrically placed about 

the x = 0 axis, radius f-lL/ p2 with origin (0, -f-lL/ P2) and is consistent with the pla

nar velocity hodograph for the parabolic Kepler orbit with L * 1 and 

f-l = J* = 1.25 and (3.6.30) reversing the sign inside the y term since the velocity hodo

graph is being viewed with P directed along the -k direction. The semi-major axis 

length of (3.8.21) projected into the xy-plane reduces to the length ofthe radius, i. e. 

a sin a = f-lL / p2, as it should. The semi-minor axis length of (3.8.21) is unchanged 

in length on projection into the xy-plane because it is parallel to that plane and the 

location of the origin agrees with that of (3.8.21) because it lies along the y-axis. 

As t ranges from negative through positive infinity, the projection ranges from the 

point (0,0) when <p = 7r to (f-lL/ p2, -f-lL/ P2) when <p = 7r /2 to (0, -2f-lL/ P 2) when 

<p = 0 to (-f-lL/P2, -f-lL/P2) when <p = -7r/2 to (0,0) when <p = -7r, i.e. the circle 

is completed. The dotted line completes the projection of the velocity hodograph. 

However, it should be remembered that the projection of the velocity vectors only 

closes as t ranges from negative through positive infinity. 

The xi projection shows the images of the orbital cone with dotted lines, together 

with the respective projections of the orbit and velocity hodograph. Note that the xi 
projection of the velocity hodograph is obtained by manipulating the first and third 

equations of (3.8.19) into the form 

1 '1 f-lL i = - cot ax, x:::; p2' (3.8.35) 



Figure 3.8.4. The elliptical MICZ velocity hodograph and parabolic orbit for J-l = J 

with a selection of velocity vectors drawn from the origin. The velocity vectors move 

on a plane which is parallel to the orbital plane and, as t ranges from negative 

through positive infinity, the heads of the velocity vectors trace out a complete 

ellipse. The projections of the velocity hodograph and orbit onto planes parallel to 

the xy, xz, yz, xy, xz and yz planes are also shown. The constants are chosen as for 

Figure 3.8.3. The origin lies on the hodographic plane and touches the circumference 

of the hodographic ellipse. 
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which is the equation of a straight line with slope - cot a which passes through the 

origin and which is bisected by the x-axis. The projection of the velocity hodograph 

is seen to be parallel to the projection of the orbit as was shown in (3.6.6) and (3.6.7). 

As t ranges from negative through positive infinity, the projection ranges from the 

point (0,0) when </> = 7r to (f-lL/P2, -f-l),,/P2) when </> = 7r/2 to (0,0) when </> = a 
to (-f-lL/P2,f-l),,/P2) when </> = -7r/2 to (0,0) when </> = -7r, i.e. the length of the 

projection of the velocity hodograph tends to 2f-l/ P. 

The yi projection shows the images of the orbital cone with dotted lines, together 

with the respective projections of the orbit and velocity hodograph. Note that the 

yi projection of the velocity hodograph is obtained by manipulating the second and 

third equations of (3.8.19) into the form 

(
y + ~~)2 (~)2_ 

l!!::. + 1'>' -1, 
p2 p2 

(3.8.36) 

which is the equation for an ellipse symmetrically placed about the i = a axis, with 

semi-major axis length f-l)../ p 2 which is just the projection of the semi-major axis 

of (3.8.21) onto the yi-plane, i.e. acosa, semi-minor axis length f-lL/P2 which is 

consistent with that of (3.8.21) since it is parallel to the yi-plane, eccentricity of 

(1_L2/)..2)t and centred at (-f-lL/P2,0) which also agrees with the centre of (3.8.21) 

which lies along the y-axis. It is worth noting that the focus of the ellipse on the cone 

does not project onto the focus of the ellipse projected into the yi-plane in general. 

As t ranges from negative through positive infinity, the projection ranges from the 

point (0, 0) when </> = 7r to (-f-lL/ p2, -f-l)../ P2) when </> = 7r /2 to (-2f-lL/ p2, 0) when 

</> = a to (-f-lL/P2,f-l),,/P2) when </> = -7r/2 to (0,0) when </> = -7r, i.e. the ellipse 

is completed. The dotted line completes the projection of the velocity hodograph. 

However, it should be remembered that the projection of the velocity vectors only 

closes as t ranges from negative through positive infinity. 

The conserved vectors K K, J K, J, P, Nand S are drawn as in Figure 3.8.3. 
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3.9 The Geometry of the MICZ Problem with J-l> J 

From (3.6.3) an elliptic orbit exists when /1 > J. The salient features of the geometry 

are depicted in Figure 3.9.1 which shows the orientation of the larger orbital and 

smaller angular momentum cones which meet at the origin. A typical elliptical orbit 

is shown together with the construction of the Poincare vector P from Land rand 

the orientation of the vector J. Note that Land 7' are orthogonal throughout the 

motion and that P, Land 7' are coplanar at any instant in time. The vectors P, J 

and 7' are only coplanar at the turning points of the motion. It follows from (3.6.1) 

and (3.6.2) that /1IJ = cos(3lcosa and so (3 < a. The particle is at A and D when 

'ljJ = a + (3 and a - (3 respectively. Making use of the orbit equation (3.6.3) 

L21J 
OA = ---'---

/1IJ-cos(a+(3) 

Using /1 I J = cos (3 I cos a, 

OD= L21J 
/11 J - cos( a - (3)" 

~ - cos( a ± (3) = tan a sin( a ± (3) 

so that (3.9.1) becomes 

OA = )"LIJ 
sin( a + (3) 

OD = )"LIJ 
sin( a - (3)" 

(3.9.1) 

(3.9.2) 

(3.9.3) 

We let the angle ACO be p. Applying the sine rule to the triangles ACO and DCO 

AC OA CD OD OD 
sin(a + (3) sinp' sin(a - (3) sin(7r - p) smp 

(3.9.4) 

so that 
AC sin(a + (3) OA 
-- --1 
CD - sin(a - (3) OD -

(3.9.5) 

from (3.9.3). Hence the line of J passes through the geometric centre of the ellipse. 

To calculate the position of the focus and the eccentricity of the ellipse we must 

establish the length of the semi-major axis, BC, and BE. To find the length of the 

semi-major axis we use the cosine rule on triangle ADO to give 

AD2 = OA2 + OD2 - 20A.OD cos 2a 

)"L 1 1 2 cos 2a ) 
( )

2 [ 1 J sin2 ( a + (3) + sin2 ( a - (3) - sin( a + (3) sin( a - (3) .(3.9.6 



cone ofr 

s 

cone of L 

p 

Figure 3.9.1. The typical geometry of the MICZ orbit when f1, > J. The larger orbital 

and smaller angular momentum cones are shown together with a typical elliptical orbit 

and the orientation of P, -J, -N and S. The origin 0 is at the point of contact 

between the two cones, F is the focus of the ellipse and C marks the geometric centre 

of the ellipse. The line segment AD lies along the axis of symmetry of the ellipse. 

Q and 7r /2 - Q are the the semi-vertex angles of the orbital and angular momentum 

cones respectively, 'IjJ is the angle between -J and 1', {J is between P and J, e is 
between P and Nand "l is between J and N. 
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After tedious, but routine, manipulation of (3.9.6) we observe that the semi-major 

axis a = ~ AD has length 

(2H)..2 + fl2)t 
a = -2H . (3.9.7) 

It should of course be remembered that for an elliptic orbit H is negative. To find 

BC and BE we need expressions for OB and ~C. Applying the cosine rule to the 

triangles ACO and DCO 

and so 

AC2 OA2 + OC2 - 20A.OC cos(o: + f3) 

CD2 OC2 + OD2 - 20C.OD cos (0: - f3) 

OC 
2[OD cos( 0: - f3) - OA cos( 0: + f3)] 

J 
-2H· (3.9.8) 

Remembering that the angle ACO was called p we apply the sine rule to the triangles 

ABO and B DO to obtain 

OB OA 

sin(p + 0: + f3) sin(p + f3) 

OB OD 

sin(p - 0: + f3) sin(p + f3). 

Dividing (3.9.9) by (3.9.10) gives 

sin(p - 0: + f3) OA sin( 0: - f3) 

sin(p + 0: + f3) OD sin( 0: + f3) 

which leads to 
cos 2f3 - cos 20: 

tanp = . 2f3 . sm 

Combining (3.9.12) with (3.9.9) after some routine manipulation we find 

OB= )"P. 
fl 

(3.9.9) 

(3.9.10) 

(3.9.11) 

(3.9.12) 

(3.9.13) 

Now applying the cosine rule to the triangle BCO, the length BC is found to be 

In the triangle BEO 
PL 

BE = OBtano: =-. 
fl 

(3.9.14) 

(3.9.15) 



The standard expression for the eccentricity is given by 

BE2 
1----

a2 - BC2 

c2 (1 + m 2
) 

m 2 (1 + c2)' 
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(3.9.16) 

where c is the slope of the plane of the ellipse (cot,) and m is the slope of the cone 

(cot a). 

The focus is located at F, ae to the left of C, and 

(3.9.17) 

By comparing (3.9.17) with (3.9.14) and recalling that H is negative we see that 

C F > C B and so the focus is between A and B. 

It is possible to rotate the orbital ellipse on the cone into the plane as was previously 

done in the parabolic case. Substituting for r (3.6.14) in (3.6.13) we obtain 

OB sin, sin a cos <p 
x = 

cos a sin, + sin a cos, cos <p 

OB sin, sin a sin <p 
y 

cos a sin, + sin a cos, cos <p 

z = 
OBsin, cos a 

(3.9.18) 
cos a sin, + sin a cos, cos <p ' 

replacing API I-l by OB. Since the orbit lies on a plane, it is convenient to rotate the 

plane counter-clockwise through (7r 12 - ,) radians about the y-axis to manipulate 

the parametric equations into a recognisable form. In order to relocate the origin 

at OB, the z component has the length OB subtracted from it before performing 

the rotation. Premultiplying the row vector formed from (3.9.18) by (3.8.8) with a 

replaced by , and z -+ z - OB gives the parametric equations of the orbit rotated 

into the plane 

x o B sin a cos <p a cos <p 

cos a sin, + sin a cos, cos <p b + c cos <p 

y OB sin, sin a sin <p d sin <p 

cos a sin, + sin a cos, cos <p b + c cos <p 

z 0, (3.9.19) 
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where a = DB sin a, b = cos a sin" e = sin a cos, and d = DB sin a sin ,. The first 

two equations of (3.9.19) can be manipulated into the form 

and using the first equation of (3.9.19) it is easily shown that 

bX cos<p = --
a-eX 

(3.9.20) 

(3.9.21) 

Replacing cos <p with (3.9.21) and substituting for a, b, e and d from above, 

equation (3.9.20) can be rearranged to give 

(3.9.22) 

Replacing trigonometric expressions containing a and, using (3.6.1) and (3.6.9), 

(3.9.22) can be manipulated into the form 

(3.9.23) 

which is the standard cartesian representation for an ellipse (P2.17) symmetrically 

placed about the Y = 0 axis, with semi-major and semi-minor axes of lengths 

a = (2H)...2 + fl2)~ /( -2H) and b = L/( -2H)~ respectively, eccentricity of 

(2Hp2 +fl2)~/(2H)...2 +fl2)~ which can be expressed in terms of e = cot, and 

m = cot a as e2 (1 + m2 )/(m2 (1 + e2
)) (ef. (3.9.16) and (3.9.25)) and centred at 

(-(2H p2 + fl2) ~ (2H)...2 + fl2) ~ /( -2H fl), 0). The semi-major axis length is consistent 

with (3.9.7) and the location of the centre of the ellipse is consistent with the result 

for the length Be (3.9.14). Similarly the eccentricity is in agreement with (3.9.16) 

and similarly b agrees with (3.9.28). The Y -intercepts of (3.9.23) which have lengths 

p L/ fl when measured from B are consistent with the length of BE (3.9.15). 

If we consider the equation of the orbit in the <p-plane, using (3.6.18) we find that 

p 2 L 
11' x PI = J / L <p' fl > J, fl +.L cos 

(3.9.24) 
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z.e. the projection of the orbit into the plane describes a focus-centred ellipse sym

metrically placed about the ¢ = 0 axis with the focus at the intersection of P and 

the ¢-plane. It is well-known that the intersection of a plane and a right circular 

cone describes a conic section on the cone. The projection of the conic section into 

the ¢-plane, perpendicular to P, also describes a conic section which has its focus 

at the apex of the cone. The eccentricity is easily seen from (3.9.24) to be 

* ll .. 1 2 21 C 
e =-=-(2HP +fl)2=_, 

Lfl fl m 
(3.9.25) 

where c is the slope of the plane of the ellipse and m is the slope of the cone. Since 

H < 0, (2H >..2 + fl2r 1 > fl- 2 and so it is clear that e* < e. Note also that the 

eccentricities of both the ellipse on the cone and in the plane are determined only by 

the respective slopes of the plane of the ellipse on the cone and of the cone itself. 

Note that (3.9.16) is equivalent to (3.9.25) when>.. = o. It should also be appreciated 

that, although P does not pass through the focus of the ellipse on the cone, it does 

mark the focus of the ellipse in the plane. The projection of the intersection point of 

the line of J and the plane of the ellipse on the cone marks the geometric centre of 

the ellipse on the ¢-plane. Note also that P behaves like L in the standard Kepler 

problem and J like the usual Laplace-Runge-Lenz vector. 

The semi-major axis length a of the ellipse on the cone is reduced in length by the 

factor sin, when projected into the plane due to its inclination with respect to P 

and so the projection 

2 · AD . flL asm, = sm, =--
-HP 

(3.9.26) 

is consistent with the result for the semi-major axis length of the projected ellipse 

from (3.9.24) 
p 2L p 2L flL 

2a* = + = --. 
fl- J.l/L fl + J.l/L -H 

(3.9.27) 

The semi-minor axis length, however, remains unchanged on projection onto the 

¢-plane, since it is parallel to the ¢-plane. This is easy to verify by calculating the 

semi-minor axis length b on the ellipse on the cone using 

2 1 L 
b=a(l-e)2= 1. 

( -2H)'i 
(3.9.28) 

Similarly the ellipse in the ¢-plane has a semi-minor axis length of 

b* *( *2)1 PL =a l-e 2= l' 

( -2H)2 
(3.9.29) 
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which is the same length as (3.9.28) up to a scaling factor of P. The relationship 

between the eccentricities, using (3.9.28), (3.9.29) and the results that b* = Pb, 

a* = Pa sin" is given by 

(3.9.30) 

The projection of AB = a - BC onto the ¢>-plane has the length (/1 L - L(2H p 2 + 
/1 2 )t)/(-2HP) which agrees up to a scaling factor of P with equation (3.9.24) with 

¢> = O. The projection of BE (3.9.15) onto the ¢>-plane is unchanged in length since 

it is parallel to the ¢>-plane and is also consistent with (3.9.24) with ¢> = 7r /2 up to 

a scaling factor of P. The projection of BD = a + BC onto the ¢>-plane has the 

length (/1L + L(2H p 2 + /1 2)t) /( -2H P) which agrees up to a scaling factor of P with 

equation (3.9.24) with ¢> = 7r. 

Alternatively, an elegant vector combination can be used to calculate the plane polar 

equation of the orbit in the orbital plane. Following the procedure adopted in the 

/1 = J case, we construct a vector R which lies in the orbital plane and is thus parallel 

to S. One suitable vector is 

R 
11" .IV I 

l' - A J 
IJ·NI 
J A 

l' - -J. 
2H 

(3.9.31) 

Note that all the required scalar quantities are easily constructed using scalar prod

ucts on combinations of the conserved vectors. The vector R moves in the orbital 

plane normal to N and is displaced from the origin by J /2H. Measuring the angle 

rJ which lies in the orbital plane from S gives rise to the equation for the orbit in the 

orbital plane. Although the origin of S is located at the apex of the cone whilst R 

has its origin at the intersection of J and the plane of the orbit, the scalar product 

of Sand R still gives rise to the orbit equation. This is because the scalar product 

between R and a combination of S and an offset dS added or subtracted to S in 

order to produce a vector which is parallel to S but originating from the same point 

as R, i.e (1 ± d)S· R = (1 ± d)SRcos rJ can be scaled throughout by 1 ± d. Taking 

the scalar product of Sand R gives 

1 
S· R = SR cos rJ = 4)"H2 (2H)..2 + /1 2

)( -2Hr - /1). (3.9.32) 

Rearranging the expression (3.9.31) to obtain l' as the subject of the equation and 

squaring both sides of the expression produce a quadratic equation in r which can be 

sol ved to give 

/1 ( L2 ) t r = -- + R2 + - (3.9.33) 
-2H 2H 
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Note that, when R = b = L/( -2H)t (the minimum allowed value), r = J-l/( -2H) 
which is consistent with the result for DQ (3.9.49). Now substituting (3.9.33) 

in (3.9.32) we finally obtain 

(3.9.34) 

which is the plane polar expression for a geometric-centred ellipse (P2.16) symmetri

cally placed about the 1J ° axis, with eccentricity of (2H p2 + J-l2)t / 
(2H).2 + J-l2)t, with semi-minor axis length L/(-2H)t and semi-major axis length 

(2H).2 + J-l2)t /( -2H) which are consistent with (3.9.16), (3.9.28) and (3.9.7) respec

tively. The distance from the origin to a focus (2H p2 + J-l2) t / (-2H) agrees with the 

length CF (3.9.17) and also the distance ae which confirms that the origin is in the 

centre of the ellipse. Since the plane polar equation describes a geometric-centred 

ellipse on the orbital plane, it follows that C marks the centre of the ellipse in the 

plane and correspondingly AC = CD which is the same result as obtained using 

geometric considerations (cf. (3.9.5)). 

The velocity hodograph can be obtained by differentiating the cartesian components 

x, y and z (3.9.18) and substituting ;p = -L/(r2 sin a) to give 

x = L . ),. 
DB cos asm <p 

y 
L L 

- DB cos a cos ¢; - DB cot, sin a 

z 
L . 

- DB cosacot,sm¢;. (3.9.35) 

Since the velocity hodograph lies on a plane, it is convenient to rotate the plane 

counter-clockwise through (7r /2 - ,) radians about the iJ axis to manipulate the 

parametric equations into a recognisable form. The rotation matrix is given by (3.8.8) 

with a replaced by,. Premultiplying the row vector formed from (3.9.35) by Q (3.8.8) 

gives the parametric equations of the velocity hodograph rotated into the plane 

L cos a . ),. 
X = ---sm<p 

OB sin, 

L ),. L . 
Y - DB coso'. cos <p - DB cot,sma 

z 0, (3.9.36) 
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which can be manipulated into the standard cartesian representation for an ellipse 

(P2.17) using (3.9.13) and (3.6.1) 

( 
X 1)2+(Y+-fo(2HP2+fl2)~)2=1 

(2H-\2+!l2)2 ~~ , 
p 

(3.9.37) 

symmetrically placed about the X = 0 axis, with semi-major and semi-minor axes of 

lengths a = (2H)..2 + fl2)~/P and b = flL/p2 respectively, eccentricity of 
1 

)"(2HP2+fl2)2/(P(2H)..2+fl2)~) and centred at (0,-L(2HP2+fl2)~/P2). This 

result is as expected from the projection of the velocity hodograph into the plane. 

The corresponding Kepler problem has a circular velocity hodograph in the plane 

with radius flL/P2 and centre (0,-L(2HP2 +fl2)~/P2) from (3.6.30) and (3.6.29) 

when P is directed along the -k direction and viewed from above. Consequently, it is 

to be expected that the semi-major axis length of the ellipse described above has the 

same length as the radius of the Kepler velocity hodograph when projected into the 

plane, i.e. a sin, = flL/ p2. However, the semi-minor axis length which has the same 

length as the radius of the velocity hodograph does not change in length on projection 

into the <p-plane since it is parallel to the <p-plane. The centre of the ellipse rotated 

into the <p-plane also marks the centre of the circle at (0, - L(2H p2 + fl2) ~ / p2) 
because the v-axis about which the rotation takes place passes through the centre 

of the ellipse on the hodographic plane. As with the Kepler velocity hodograph, the 

MICZ velocity hodograph is closed. The origin similarly lies within the circumference 

of the hodographic ellipse. 

It does not seem possible to calculate the plane polar equation of the velocity hodo

graph on the plane using simple vector operations as was done for the orbit. 

We are now in a position to describe the analogues for Kepler's three laws of motion 

on the cone (see Bates [6] for a different approach using differential geometry) :-

(i) For negative energy the orbit is elliptical. However, the origin is not coplanar 

with the ellipse. 

(ii) Equal areas are swept out on the cone in equal times. The proof of this is quite 

simple. The element of area on the cone is given by (denoting the quantities 

on the cone with the subscript M I< and those in the plane with ~ M I<) 

dAMK = ~T X r dt, (3.9.38) 
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and so 

(3.9.39) 

dAMK . 
and, since L is constant, dt IS constant. Note that for the ellipse on the 

¢>-plane 
dA-LMK 11 . I 1 

dt = 2 (1' X P) X (1' X P) = 2 L 2 P. (3.9.40) 

Note that the constant of proportionality has changed. Upon dividing (3.9.40) 

by p2, since we are dealing with an area, it is clear that the rate of in

crease in area on the cone is larger than on the projected ellipse by the factor 

P/ L = 1/ sin a> 1. 

The surface area extending from the base of the orbital cone to the line of the 

orbit is found by integrating (3.9.39) over the period of the motion which gives 

(3.9.41) 

Substituting for r2 from (3.6.14) we can express the integrand in terms of ¢> and 

obtain 

(3.9.42) 

Using G&R[43, 2.554.3 with n=2], the expression for the area becomes 

o B2 cot a tan3 
, 127r d¢> 

AMK = ---------,------ -------
2sina(cot2 atan2 ,-I) 0 cotatan,+cos¢> 

(3.9.43) 

From G&R[43, 3.661.4] we see that 

f27r __ d_x_ = 271' 1 Po ( a 1)' a > Ibl, 
Jo a + bcos x (a 2 - b2 )2" (a 2 - b2 )2" 

(3.9.44) 

where Po is the zeroth Legendre polynomial and hence (3.9.43) can be reduced 

to 
o B2 cot a tan3 , 271' 

AMK = X l' 

2sina(cot2 atan2
, - 1) (cot2 atan2 , -1)2" 

(3.9.45) 

Using (3.9.13) to replace OB, and (3.6.1) and (3.6.9) to replace trigonometric 

functions of a and " equation (3.9.45) can be simplified to give 

(3.9.46) 

The area of the ellipse projected in the plane is given by 

(3.9.47) 
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We must now try to express the geometric quantities appearing in the expres

sions for the surface area in terms of the dynamical parameters. With reference 

to Figure 3.9.1, if we place a right-handed cartesian coordinate system with 

origin at 0 with the triangle OBC lying in the xz-plane, the coordinate at 

the point Q is given by (-BC sin" CQ, BC cos, + OB). The length of OQ is 

then easily found from 

OQ2 = CQ2 + BC2 + OB2 + 20B.BC cos, 

and after routine maniplation is found to be 

Il 
OQ=-H· -2 

(3.9.48) 

(3.9.49) 

The quantity we term R, or 'generalised' semi-major axis, can be expressed as 

R = ~ ( 0 A + 0 D) = (_ ~H ) . (3.9.50) 

The expression for the surface area on the cone (3.9.46) can now be written as 

7r ilL 1 ( ) 
AMI< = (-2H)3/2 = 2"7r OA + OD CQ = 7r OQ.CQ, (3.9.51) 

and so we observe that the surface area of the section of cone between the origin 

and the line of the orbit is given by the product of the semi-minor axis length of 

the ellipse on the cone and the average of the minimum and maximum distances 

on the orbit from the origin. This is like a 'generalised' semi-major axis, except 

that the distance is now out of the plane of the ellipse. Indeed the projection of 

(OA + OD) is exactly twice the length of the semi-major axis of the projected 

ellipse. The area can also be described by the last term of (3.9.51), which is 

understandable when one considers the projection of OQ in the 1>-plane. The 

projected length OQ is the distance between the closest point on the ellipse 

from the geometric centre and the focus. For the planar ellipse this distance is 

well-known to have the same length as that of the semi-major axis. It is then 

not surprising that the area can also be expressed in this way. 

As expected the ratio of AMI< / A.1.MI< is again P / L which is the same ratio as we 

obtained for the areal velocities. Alternatively we can consider an infinitesimal 

area on the cone stretching from the origin to two closely spaced points on the 

orbit. If we project this area into the plane, it is clear that the projection is 

just ~A.1.MI< = ~AMI< sin 0: which, extended over the complete area in both 

cases, is the result we obtained previously. 
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(iii) Equation (3.9.39) can be integrated over one revolution to give an alternate 

expression for the area, 

(3.9.52) 

Equating (3.9.46) with (3.9.52) gives the analogue of Kepler's third law, i.e., 

T = 27r/1 
( -2H)~ 

3 
27r(a* / L)2 

1 

/1 2 
--1-' 

/1 2 
(3.9.53) 

where R = (OA + OD)/2 and a* is the semi-major axis length of the ellipse 

projected onto the plane. Thus it is obvious that on the cone, the 'generalised' 

semi-major axis is half of the maximum and minimum lengths of 1', just as 

the semi-major axis is in the ellipse when the focus is in the plane. It is also 

possible to express (3.9.53) in terms of the semi-minor axis of the ellipse on the 

cone which has the same length as the semi-minor axis of the projected ellipse 

after scaling by P. This expression is equivalent for both ellipses, (ignoring the 

scaling by P) 
(3.9.54) 

Bates [6] was only able to express Kepler's third law in terms of the expression 

involving the energy (the first equation of (3.9.53)) since he did not study the 

geometry of the orbit. 

The values of the constants used to draw Figures 3.9.2 and 3.9.3 were calculated 

in the same way as was done for the case /1 = J, except that J* = 0.95 as was 

chosen in Chapter 1 for the elliptic Kepler orbits. L was again chosen to be 1.85 and 

P, A, /1, 0:', J and fJ were calculated using (3.8.24)-(3.8.27), (3.8.29) and (3.8.30). 

Figure 3.9.2 shows the elliptic orbit in the case where /1 > J. The diagram shows 

the two right circular orbital and angular momentum cones which extend in opposite 

directions along the line of P with origin and point of contact at the apices of the two 

cones. A selection of displacement and corresponding angular momentum vectors has 

been drawn from the origin to their respective positions on the orbital and angular 

momentum cones. The orbit is elliptical and lies on a plane which does not include the 

origin. In order to illustrate the behaviour more clearly, projections of the orbit onto 

planes parallel to the xy, xz and yz planes are shown, together with projections of the 

angular momentum curve and the projected images of the cones onto the respective 

planes. The constant magnitude of the angular momentum is reflected by the angular 

momentum vectors moving on the surface of a cone which is truncated perpendicular 

to the axis of symmetry to a height of L2 / P below the origin. The components of the 



Figure 3.9.2. The elliptical MICZ orbit and angular momentum curve for f1 > J with 

a selection of displacement and angular momentum vectors drawn from the origin. 

The radial and angular momentum vectors move on the surfaces of two right circular 

cones extending in opposite directions along the line of P with origin and point of 

contact at the apices of the two cones. The projections of the orbit and angular 

momentum curve onto planes parallel to the xy, xz, yz, LxLy, LxLz and LyLz planes 

are also shown. The constants have the values f1 = 7.9145, J = 7.4101, P = 3.4225, 

,\ = 2.8794, a = 0.5711, {3 = 0.4542 and L = 1.85. The origin lies out of the orbital 

plane. 
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angular momentum are given by L = (>.L cos ¢>/ P,)"L sin ¢>/ P, _L2 / P) using (3.9.18) 

and (3.9.35). 

The xy projection of the orbit is also elliptical as described by the first two equations 

of (3.9.18) which can be manipulated into the form 

(
x+ ~~2 +JL2)~)2 + ( ~ )2 = 1 

-2HP (-2H); 

(3.9.55) 

which is the cartesian representation of (3.9.24) scaled by P, symmetrically placed 

about the y = 0 axis, with semi-major axis length JLL/( -2H P) (3.9.26) which 

is the projection of the semi-major axis length a of (3.9.23) onto the xy-plane, 

i.e. asill"Y, semi-minor axis length L/(-2H)~ (3.9.28) which is the same length as 

the semi-minor axis of (3.9.23) since it is parallel to the xy-plane, eccentricity of 

(2H p 2 + JL2)~ / JL which can be expressed in terms of e = cot, and m = cot a as 

e/m (ef. (3.9.16) and (3.9.25)) and centred at (-L(2Hp2 +JL2)~/(-2HP),0) which 

is the length -Be sin, and also the distance -ae which confirms that the origin is 

at a focus. The y-intercepts of (3.9.55) which have lengths P L/ JL when measured 

from the origin are consistent with the length of the projection of BE (3.9.15) into 

the xy-plane which is unchanged in length since it lies parallel to the xy-plane. 

It is worth noting that the focus of the ellipse on the cone does not project onto 

the focus of the ellipse projected into the xy-plane in general. The projected or

bit is consistent with the planar elliptical Kepler orbit with L* = 1, JL* = 1.25 and 

J* = 0.95. As t ranges over one period and choosing the azimuthal angle ¢> to range 

between 7r and -7r, the projection ranges from (-PL/(JL - q),O) when ¢> = 7r and 

q = (2Hp2 + JL2)~, to (O,PL/JL) when ¢> = 7r/2 to (PL/(JL + q),O) when ¢> = 0 to 

(O,-PL/JL) when ¢> = -7r/2 to (-PL/(JL - q),O) when ¢> = -7r. The projection 

of the angular momentum curve onto its corresponding plane describes a circle with 

radius )"L/P symmetrically placed about the Lx-axis, i.e. Lx2 + L/ = ()..L/P)2. 

As t ranges over one period, the projection ranges from (-)..L/ P, 0) when ¢> = 7r to 

(0, )"L/ P) when ¢> = 7r /2 to (>.L/ P, 0) when ¢> = 0 to (0, -)..L/ P) when ¢> = -7r /2 to 

(-)"L/ P, 0) when ¢> = -7r, i.e. the circle is completed. The projection of the angular 

momentum vectors describes a circle after one revolution of the orbit. 
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The xz projection shows the images of the orbital and angular momentum cones 

with dotted lines, together with the projections of the orbit and angular momentum 

curves. Note that the xz projection of the orbit is obtained by manipulating the first 

and third equations of (3.9.18) into the form 

)..P 
z = -cot,x +-, 

f1 
PL PL 

---<x<--
f1-q - - f1+q' (3.9.56) 

which is the equation of a straight line with slope - cot, and z-intercept )..P / f1 
in agreement with (3.6.12). The straight-line projection confirms the well-known 

result that a cone intersected by a plane which is at an angle, " to the symmetry 

axis which is larger than the angle between the sides of the cone and the symmetry 

axis, but less than 7r /2 radians describes an ellipse on the plane. The z-intercept 

is given by the length of DB which is consistent with Figure 3.9.1. The orbit lies 

on a plane section through the orbital cone. As t ranges over one period, the pro

jection ranges from (-PL/(f1-q),)..P/(f1-q)) when <p = 7r, to (O,)..P/f1) when 

<p = 7r/2 to (PL/(f1 + q), )..P/(f1 + q)) when <p = ° to (0, )"P/ f1) when <p = -7r/2 to 

(-p L/(f1 - q), )..P/(f1 - q)) when <p = -7r. The LxLz projection of the angular mo

mentum curve extends along the base of the triangle describing the LxLz projection 

of the image of the angular momentum cone, perpendicular to the Lz-axis. As t 

ranges over one period, the projection ranges from (-)"L/ P, _L2 / P) when <p = 7r 

to (0,-L2/P) when <p = 7r/2 to ()..L/P,-L2/P) when <p = ° to (0,-L2/P) when 

<p = -7r/2 to (-)"L/P, _L2/P) when <p = -7r, i.e. the full length of the base of the 

angular momentum triangle. In other words the angular momentum vectors will have 

swept over the entire surface area of the angular momentum cone. 

The yz projection shows the images of the orbital and angular momentum cones 

with dotted lines, together with the projections of the orbit and angular momentum 

curves. Note that the yz projection of the orbit is obtained by manipulating the 

second and third equations of (3.9.18) into the form 

( Z_~)2+( y)2_1 
>'(2HP2+!L2)~ L 1 -

-2HP (-2H)2 
(3.9.57) 

which is the equation of an ellipse symmetrically placed about the y = ° axis, with 

semi-major axis length )..(2Hp2 + f12)~/(-2HP) which is equivalent to the projec

tion of a (3.9.7) onto the yz-plane, i.e. acos" semi-minor axis length L/(-2H)~ 
unchanged in length from (3.9.28) since it is parallel to the yz-plane, eccentricity 

1 

of (2H p 4 + )..2 f1 2r" / ()"(2H p 2 + f12)~) which can be expressed in terms of c = cot, 
1 

and m = cot a as (c2(1 + m2) - m2) 2" /(mc) (cf. (3.9.16) and (3.9.25)) and centred 



189 

at (0, )../1/( -2H P)) where the z-component is just the projection of OC onto the 

yz-plane, i.e. OCcosf3. The y-components of (3.9.57) when z = OB = )"P//1 

which have the length P L / /1 when measured from B are consistent with the length 

of the projection of BE (3.9.15) into the yz plane which is unchanged in length since 

it lies parallel to the yz-plane. It is worth noting that the focus of the ellipse on 

the cone does not project onto the focus of the ellipse projected into the yz-plane 

in general. The relationship between the eccentricity e of the elliptical projection in 

the yz-plane and that of the elliptical projection in the xy-plane, e*, is found to be 

e2 = a*2 / a2( e*2 - 1) + 1 where the superscript * refers to the equivalent quantities in 

(3.9.55). Note that the semi-minor axis lengths of both projections are not involved 

in the relationship between the two eccentricities. The relationship between the ec

centricity e of the elliptical projection in the yz-plane and that of the ellipse on the 

cone, et , has the same structure as that shown above, with e* replaced by et . As t 

ranges over one period the projection ranges from (O,)..P / (/1 - q)) when cP = 7r to 

(PL//1,)..P//1) when cP = 7r/2 to (O,)..P/(/1+q)) when cP = ° to (-PL//1,)..P//1) when 

cP = -7r /2 to (O,)..P / (/1 - q)) when cP = -7r. The LyLz projection of the angular 

momentum curve lies along the base of the triangle describing the LyLz projection of 

the image of the angular momentum cone, perpendicular to the Lz-axis. As t ranges 

over one period the line segment extends along the full length of the base of the an

gular momentum triangle from the point (0, _L2 / P) when cP = 7r to ()"L/ P, _L2 / P) 

when cP = 7r/2 to (0,-L2/P) when cP = ° to (-)..L/P,-L2/P) when cP = -7r/2 to 

(0, _L2 / P) when cP = -7r. In other words the angular momentum vectors will have 

swept over the entire surface area of the angular momentum cone. 

The conserved vector K K which has been rotated clockwise through 7r /2 radians 

to lie along the cartesian unit vector -j is given by (3.6.29) and has length 

L(2H p 2 + /12 ) ~ / P as shown in Figure 3.9.2. The vector J K, which is perpendic

ular to K K, is also rotated clockwise through 7r /2 radians to lie along the cartesian 

unit vector i. J K has the length P L2]{K and is conveniently drawn to the same 

length as KK in Figure 3.9.2. The Poincare vector, P, no longer orthogonal to J, 

lies along the cartesian unit vector -k. Note that, when the cone is rotated about 

the x-axis so that P lies along k, the vectors K K and J K lie along the carte

sian unit vectors j and i respectively and hence mimic the behaviour of L, K and 

J respectively of the standard Kepler problem. The components of the conserved 

vectors are found by taking the scalar products of the relevant vectors with k K, 

J K and -P, remembering that the projected quantities have been rotated clock

wise through 7r /2 radians to preserve the alignment with the orbit on the cone. The 

Laplace-Runge-Lenz analogue J is given by (3.5.6) with /1 > J and has components 
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J = (L(2HP2 +/-l2)~/P,0,-)../-l/p). Note that the x-component of J is equal in 

magnitude to K K from (3.6.29) since the vector product with P has the effect of pro

jecting J into the plane followed by a counter-clockwise rotation through 7r /2 radians. 

The Poincare vector is given by (3.5.4) and has components (0,0, _(L2 + )..2)~). The 

normal vector N (3.6.5) is perpendicular to the plane of the orbit and using (3.6.29) 

and (3.8.24) the components are found to be (-L* cot" 0, -L*). The vector S (3.6.8) 

is parallel to the plane of the orbit and using (3.6.29) the components are found to 

be (/-lL(2H p 2 + /-l2)~ /(2)"H P), 0, -(2H p 2 + /-l2)/(2H P)). 

Figure 3.9.3 shows the elliptical velocity hodograph in the case where /-l > J. A 

selection of velocity vectors corresponding to the displacement vectors shown in 

Figure 3.9.2 has been drawn from the origin to their respective positions on the 

velocity hodograph. In order to illustrate the r behaviour more clearly, projections 

of the velocity hodograph onto planes parallel to the xy, xi and yi planes are also 

shown, together with the projected images of the orbital cone onto the respective 

planes. 

The xy projection of the velocity hodograph is obtained by manipulating the first 

two equations of (3.9.35) into the form 

(3.9.58) 

which is the equation of a circle in cartesian coordinates symmetrically placed about 

the x = ° axis, radius /-lL / p 2 with origin (0, - L(2H p2 + /-l2) ~ / p2) and is consis

tent with the planar velocity hodograph for the elliptical Kepler orbit with L * = 1, 

/-l = 1.25 and J* = 0.95 and (3.6.30) reversing the sign inside the y term since the 

velocity hodograph is being viewed with P directed along the -k direction. The 

semi-major axis length of (3.9.37) projected into the xy-plane reduces to the length 

of the radius, i.e. a sin, = /-lL/ p2, as it should. The semi-minor axis length of 

(3.9.37) is unchanged in length on projection into the xy-plane because it is parallel 

to that plane and the location of the origin agrees with that of (3.9.37) because it lies 

along the y-axis. As t ranges over one period, the projection ranges from the point 

(0, L(/-l-q)/ p2) when <p = 7r to (L/-l/ p2, -Lq/ P2) when <p = 7r /2 to (0, -L(/-l+q)/ p2) 

when <p = ° to (-L/-l/ p2, - Lq/ P2) when <p = -7r /2 to (0, L(/-l-q)/ p2) when <p = -7r, 

i.e. the circle is completed. The projection of the velocity vectors describes a circle 

after one revolution of the orbit. 



Figure 3.9.3. The elliptical MICZ velocity hodograph and elliptical orbit for J-l > J 

with a selection of velocity vectors drawn from the origin. The velocity vectors move 

on a plane which is parallel to the orbital plane and, as t ranges over one period, 

the heads of the velocity vectors trace out a complete ellipse. The projections of the 

velocity hodograph and orbit onto planes parallel to the xy, xz, yz, xy, xz and yz 

planes are also shown. The constants are chosen as for Figure 3.9.2. The origin lies 

on the hodographic plane inside the circumference of the hodographic ellipse. 
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The xi projection shows the images of the orbital cone with dotted lines, together 

with the respective projections of the orbit and velocity hodograph. Note that the xi 
projection of the velocity hodograph is obtained by manipulating the first and third 

equations of (3.9.35) into the form 

i = - cot ,x, 
1

'1 f1L x <- p2' (3.9.59) 

which is the equation of a straight line with slope - cot, which passes through the 

origin and which is bisected by the x-axis. The projection of the velocity hodograph 

is seen to be parallel to the projection ofthe orbit as was shown in (3.6.6) and (3.6.7). 

As t ranges over one period, the projection ranges from the point (0,0) when ¢> = 7r 

to (f1L/P2,_)..q/P2) when ¢> = 7r/2 to (0,0) when ¢> = 0 to (-f1L/P2,)..q/P2) when 

¢> = -7r /2 to (0,0) when ¢> = -7r, i. e. the length of the projection of the velocity 

hodograph tends to 2(2H)..2 + f12)~ / P. 

The iJi projection shows the images of the orbital cone with dotted lines, together 

with the respective projections of the orbit and velocity hodograph. Note that the 

iJi projection of the velocity hodograph is obtained by manipulating the second and 

third equations of (3.9.35) into the form 

(3.9.60) 

which is the equation for an ellipse symmetrically placed about the i = 0 axis, 

with semi-major axis length )..(2H p 2 + f12) ~ / p2 which is just the projection of the 

semi-major axis of (3.9.37) onto the iJi-plane, i.e. a cos" semi-minor axis length 

f1L/ p2 which is consistent with that of (3.9.37) since it is parallel to the iJi-plane, 
1 

eccentricity of (1- f12 L2 /( )..2(2H p2 + f12))) 2" and centred at (-L(2H p2 + f12) ~ / p2, 0) 

which also agrees with the centre of (3.9.37) which lies along the iJ-axis. It is worth 

noting that the focus of the ellipse on the cone does not project onto the focus of 

the ellipse projected into the iJi-plane in general. As t ranges over one period, the 

projection ranges from the point (L(f1- q) / p2 ,0) when ¢> = 7r to ( - Lq / p2, _)..q / P2) 

when ¢> = 7r /2 to ( -L(f1+q)/ p2, 0) when ¢> = 0 to (-Lq/ p2, )..q/ P2) when ¢> = -7r /2 

to (L(f1- q)/P2,0) when ¢> = -7r, i.e. the ellipse is completed. The projection of 

the velocity vectors describes an ellipse after one revolution of the orbit. 

The conserved vectors KK, JK, J, P, Nand S are drawn as in Figure 3.9.2. 
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Figure 3.9.4 geometrically demonstrates the construction of L corresponding with 

Figures 3.9.2 and 3.9.3. The parallelograms which represent the magnitude of 

L = l' X r have equal areas as a consequence of L being conserved. In this case 

the parallelograms are no longer confined to the same plane as was the case with the 

Kepler problem (see Figure 1.5.5). The orbital cone is shown together with the orbit, 

velocity hodograph and the xz and yz projections of the orbit, velocity hodograph 

and images of the cone. The dotted line linking opposite vertices divides the paral

lelogram in two which gives a geometric representation of the constant magnitude of 

the areal velocity. 

Figure 3.9.5 shows both the projected displacements and corresponding projected 

velocities in the xy and xi; planes at regular time intervals for the MICZ problem. 

The projections of the displacements and the corresponding velocities both in this 

diagram and in the following three figures are coincident with those of the standard 

Kepler problem as shown in Figures 1.5.2, 1.5.5 and 1.5.6 when the cone is rotated 

about the x-axis so that P lies along k and the vectors K K and J K lie along the 

cartesian unit vectors j and i respectively and hence mimic the behaviour of L, K 

and J respectively of the standard Kepler problem, on account of the choice of con

stants as described earlier in §3.8. The shaded regions confirm Kepler's second law 

in the plane that equal areas are swept out in equal times. This result also extends 

to the cone where equal areas are swept out on the surface of the cone in equal times. 

However, the area swept out on the cone is larger than that swept out in the plane 

by the factor P / L. It should be obvious that the initial phase difference between the 

projected displacement and projected velocity vectors in the xy and xi; planes is 7r /2 

radians as the projected displacement lies along the +x-axis at t = 0 while the pro

jected velocity is purely along the +i;-axis. The phase difference in general between 

the projected displacement and projected velocity vectors is not constant as with the 

Kepler problem since (1' x P) . (r x P) = L2rr which is nonzero except when r = 0, 

i.e. at the extremities of the motion. This is also evident by comparing the angle 

between the corresponding projected displacement and projected velocity vectors for 

a range of time intervals using the solid round time markers on the projected orbit 

and the corresponding solid square time markers on the projected velocity hodograph 

and counting the number of round markers from the rightmost vertex of the ellipse 

in a counter-clockwise direction to the projected displacement of interest and then 

counting off the same number of square markers on the projected velocity hodograph 

starting from the square marker at the top of the projected velocity hodograph (since 

at t=O the projected velocity is purely along the +i;-axis) in a counter-clockwise 

direction to obtain the corresponding projected velocity or vice versa. Note, how-
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Figure 3.9.4. The elliptical MICZ orbit with its corresponding velocity hodograph 

associated with Figures 3.9.2 and 3.9.3 demonstrating the construction of L. The 

area of the parallelograms which are now no longer confined to a plane is equal to 

the constant magnitude of L. The orbital cone is shown together with the orbit, 

velocity hodograph and the projection of the orbit, velocity hodograph and images 

of the cone onto planes parallel to the xy, xz, yz, xy, xi and iJi planes. The dotted 

lines linking opposite vertices divide the parallelograms in two and give a geometric 

representation of the constant areal velocity. The constants are chosen as for 

Figure 3.9.2. 
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Figure 3.9.5. The projection of the MICZ orbit and corresponding velocity hodograph 

into the xy and xi; planes. The circles (-e-e-e-) show the projected displacements of 

the particle at the time intervals iT /24, i = 0, ... ,24 and the squares (-____ ) give 

the corresponding projected velocities. The phase difference between the projected 

velocity and displacement vectors is not constant although it is a constant 7r /2 radians 

between the projected displacement vector and the vector directed from the centre of 

the projected velocity hodograph to the head of the corresponding projected velocity 

vector. The constants are chosen as for Figure 3.9.2. 
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ever, that the phase difference between the projection of the radial vector into the 

xy - plane, l' X P, and the vector directed from the head of the Hamilton vector K K 

(the geometric centre of the elliptical velocity hodograph scaled by P) to the head of 

the projection of the velocity vector into the xv-plane, r x P, i.e. (r x P) - KK, 

is a constant 7r /2 radians since (1' x P) . (( r x P) - K K) = 0 which is as expected 

from the behaviour of the Kepler problem (see §1.5). It should also be noted that 

the displacement on the cone directed from the point B to the head of the vector 

1', i. e. l' + 0 B P, does not move in phase with the corresponding velocity vector on 

the hodographic plane directed from the head of the scaled Hamilton vector K K / P 

(the geometric centre of the elliptical velocity hodograph) to the head of the vector 

r, i.e. r + ]{KJXP/P, since (1' + OBP). (r + ]{KJXP/P) = )..2 rr /p2 - )..2r/J.l 

which is nonzero except when r = 0, i. e. at the extremities of the motion. This 

behaviour is also evident on superimposing the combined hodographic plots shown in 

Figure 3.9.7 with the combined displacement plots shown in Figure 3.9.6 and trans

lating the combined hodographic plots so that the common geometric centre of both 

velocity hodographs is coincident with the origin of the displacement plots. Since the 

corresponding displacements on the orbital cone and velocities on the hodographic 

plane described above have been rotated into the plane about the y, v-axis, they lie 

in the same horizontal line as those in the xy, xv projections and as a result it can 

be seen that by horizontally stretching the corresponding displacement and veloc

ity vectors of the projected problem until the respective points on the unprojected 

problem the angle between the corresponding displacement and velocity vectors is no 

longer constant at 7r /2 radians which qualitatively confirms the result shown above. 

Alternatively, if in addition to the translation and superposition described above, the 

velocity hodograph plots are rotated clockwise through 7r /2 radians about their com

mon geometric centre, it is apparent that the corresponding projected displacements, 

projected velocities and the origin are collinear which demonstrates the constant 7r /2 

phase difference, but this is not the case for the corresponding quantities on the cone 

which have been rotated into the plane. In summary, the phase difference between l' 

and r is not constant in the MICZ problem which is also the case between l' x P and 

r x P for the projected quantities of the MICZ problem, but the phase difference 

between l' x P and l' x P - K K is constant at 7r /2 radians or, in other words, the 

projection of the radial vector directed from the origin which is also a focus of the 

ellipse in the plane moves in phase with an offset projected velocity vector directed 

from the head of the scaled Hamilton vector (the geometric centre of the elliptical 

velocity hodograph scaled by P). 
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Figure 3.9.6 shows both the orbit on the cone which has been translated and then 

rotated into the xy-plane about B as given by (3.9.23) together with the xy pro

jection of the orbit as given by (3.9.55) for purposes of comparison, when the cone 

is rotated about the x-axis so that P lies along k and the vectors K K and J K 

lie along the cartesian unit vectors j and i respectively and hence mimic the be

haviour of L, K and J respectively of the standard Kepler problem. The circles 

and squares show the respective displacements of the particle at equal time intervals 

and would normally be vertically aligned with each other when viewed from above 

provided the orbital ellipse is in its usual position on the cone. Note that the circles 

are aligned with the corresponding squares along parallel horizontal lines since the 

rotation of the orbit is performed about the y-axis. Note that the centre of the el

lipse projected into the xy-plane is a distance L(2H p2 + /L 2)t j( -2H P) or ae along 

the x-axis from the origin which means that the origin marks the focus of the ellipse 

projected into the xy-plane. However, the origin or equivalently the point B does 

not have the same geometrical significance in the case of the ellipse on the cone since 

the centre of that ellipse is a distance (2Hp2 + /L 2)t(2H).2 + /L2)tj(-2H/L) or Be 
along the x-axis from the origin. The semi-major axis of the ellipse on the cone 

has length (2H).2 + /L 2)tj(-2H) which is scaled by the factor sill'/, when projected 

into the xy-plane whilst the semi-minor axes of both ellipses have the same length 

Lj( -2H)t since the semi-minor axis of the ellipse on the cone is parallel to the 

xy-plane. 

Figure 3.9.7 shows both the velocity hodograph on the hodographic plane which has 

been rotated into the xy-plane about 0 as given by (3.9.37) together with the xy 
projection of the velocity hodograph as given by (3.9.58) for purposes of comparison, 

when the cone is rotated about the x-axis so that P lies along k and the vectors K K 

and J K lie along the cartesian unit vectors j and i respectively and hence mimic the 

behaviour of L, K and J respectively of the standard Kepler problem. The circles and 

squares show the respective velocities of the particle at equal time intervals and would 

normally be vertically aligned with each other when viewed from above provided the 

hodographic ellipse is in its usual position on the hodographic plane. Note that the 

circles are aligned with the corresponding squares along parallel horizontal lines since 

the rotation of the velocity hodograph is performed about the y-axis. Note that the 

centre of the hodographic ellipse is a distance L(2H p 2 + /L2)t j p2 or ]{K j P along 

the y-axis from the origin which is also the case for the circle and so the centres 

coincide as can be seen by comparing (3.9.37) with (3.9.58). The semi-major axis of 

the ellipse on the hodographic plane has length (2H).2 + /L 2) t j P which is scaled by 

the factor sin, when projected into the xy-plane whilst the semi-minor axis of the 
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Figure 3.9.6. The elliptical orbit on the cone corresponding with Figure 3.9.2 which 

has been translated and then rotated into the xy-plane together with the xy 

projection of the orbit. The circles (-e-e-e-) show the projected displacements of 

the particle at the time intervals iT /24, i = 0, ... ,24 and the squares (-________ ) give 

the corresponding positions on the orbit on the cone when translated and rotated 

into the same plane. Note that the circles are aligned with the corresponding squares 

along parallel horizontal lines since the rotation of the orbit is performed along the 

y-axis. The constants are chosen as for Figure 3.9.2. 
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Figure 3.9.7. The elliptical velocity hodograph corresponding with Figure 3.9.3 which 

has been rotated into the xy-plane together with the xy projection of the velocity 

hodograph. The circles (-e-e-e-) show the projected velocities of the particle at the 

time intervals iT /24, i = 0, ... ,24 and the squares (-----) give the corresponding 

velocities on the hodograph on the hodographic plane when rotated into the same 

plane. Note that the circles are aligned with the corresponding squares along parallel 

horizontal lines since the rotation of the velocity hodograph is performed along the 

y-axis. The constants are chosen as for Figure 3.9.2. 
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ellipse has the same length as the radius of the circle J1L / p2 since the semi-minor 

axis of the hodographic ellipse is parallel to the xv-plane. 

The relationship between the periodic time of the orbit and the length of the gen

eralised semi-major axis is identical to that shown in Figure 1.5.22 for a family of 

ellipses which have been rotated off the cone and into the plane and have the same 

dimensions as those shown in Figure 1.5.21. It must be appreciated, however, that R, 

the generalised semi-major axis, is a factor 1/ sin a times larger than the semi-major 

axis length of the same ellipse projected into the xy-plane and that J1 is a factor 

of (1/ sin a? (using (3.8.24) and (3.8.26)) times larger than J1* for the equivalent 

problem in the plane and as a result the ratio T = 27r R~ / J1~ = 27ra*~ / J1* ~ is form 

invariant for the choice of initial conditions described in §3.8. 

3.10 The Geometry of the MICZ Problem with J-l < J 

The treatment for the hyperbolic orbit is very similar to that used in the elliptical 

case, provided we ensure that the orbit is on the top branch of the hyperbola. For 

motion along the bottom branch the directions of P and J would need to be reversed. 

From (3.6.3) a hyperbolic orbit exists when J1 < J. The salient features of the 

geometry are depicted in Figure 3.10.1 which shows the orientation of the larger 

orbital and smaller angular momentum cones which meet at the origin. A typical 

hyperbolic orbit is shown together with the construction of the Poincare vector P 

from Land T and the orientation of the vector J . Note that Land l' are orthogonal 

throughout the motion and that P, Land l' are coplanar at any instant in time. 

The vectors P, J and l' are only coplanar at the turning points of the motion. The 

particle is at A when 1/J = f3 + a and would be at D if f3 and a were changed to 7r - f3 
and 7r - a respectively giving an effective angle 1/Je = f3 - a. 

The expressions for OA and OD are as given in (3.9.3). Applying the sine rule to the 

triangles ACO and DCG, we again find that AC = DC and so the line of J passes 

through the geometric centre of the double hyperbola. Application of the cosine rule 

to the triangle ADO leads to 

(2H).2 + J12)~ 
a = AC = , 

2H 
(3.10.1) 
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cone ofL 

Figure 3.10.1. The typical geometry of the MICZ orbit when 11 < J. The larger orbital 

and smaller angular momentum cones are shown together with a typical hyperbolic 

orbit and the orientation of P, -J, -N and -So The origin 0 is at the point 

of contact between the two cones, F is the focus of the hyperbola and C marks 

the geometric centre of the hyperbola. The line segment DB lies along the axis of 

symmetry of the hyperbola. a and 7r /2 - a are the the semi-vertex angles of the 

orbital and angular momentum cones respectively, 'ljJ is the angle between -J and T, 

f3 is between P and J, ~ is between P and Nand 'f/ is between J and N. 
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where the energy is of course positive for hyperbolic motion. In fact it eventuates 

that the quantities AC, CD, AD, OA, OB, OC, OD, BC, BE, CF and e amongst 

others are the same for the hyperbola as they are for the ellipse with the exception 

that explicit occurrences of -H are replaced by H. This even extends to the location 

of the focus which is still between A and B even though the formulae for BC and 

C F are the same as their elliptical counterparts. The reason for this is that C is now 

to the right of B rather than to the left as it was in the elliptical case. 

It is possible to rotate the orbital hyperbola on the cone into the plane as was done 

previously with the elliptical case. For the hyperbolic case we obtain 

(
x - ~(2H p 2 + fl2)~ (2H)..2 + fl2)~) 2 _ (~) 2 = 1 

(2H.\2+/l2)t ~ 
2H (2H)2 

(3.10.2) 

which is the standard cartesian representation for a hyperbola (P2.17) symmetrically 

placed about the Y = 0 axis, with vertices at ((2Hp2 + fl2)~(2H)..2 + fl2)~ j(2Hfl) ± 
(2H )..2+fl2)~ j2H, 0), foci at ((2H P2+fl2)~(2H )..2+fl2)~ j(2H fl )±(2H P2+fl2) ~ j2H, 0), 
eccentricity of (2Hp2 + fl2)~ j(2H)..2 + fl2)~ which can be expressed in terms of 

c = cot, and m = cot a as c2 (1 + m2 )j(m2 (1 + c2
)) (cf. (3.9.16) and (3.9.25)) 

and centred at ((2H p2 + fl2) ~(2H)..2 + fl2)} j(2H fl), 0). The distance from the centre 

to a vertex (2H)..2 + fl2)~j2H agrees with the length AC (3.9.7) (with the sign of H 
reversed) and the distance from the centre to a focus (2H p2 + fl2)} j2H agrees with 

the length C F (3.9.17) (with the sign of H reversed). The transverse axis AD (3.9.7) 

(reversing the sign of H) is the same length as the distance between the vertices 2a 

and the length of the conjugate axis is twice that of b (3.9.28) (with the sign of H 

reversed). The location of the centre of the hyperbola is consistent with the result 

for the length BC (3.9.14) (with the sign of H reversed) and the eccentricity is in 

agreement with (3.9.16). The Y -intercepts of (3.10.2) which have lengths P Lj fl 

when measured from the origin are consistent with the length of BE (3.9.15). 

If we consider the equation of the orbit in the ¢-plane, using (3.6.18) we find that 

the projected orbit is, mutatis mutandis, the same as for the elliptical case (3.9.24). 

The projected orbit is also hyperbolic symmetrically placed about the ¢ = 0 axis and 

the focus is, as for the elliptical case, at the point where P crosses the ¢-plane. The 

eccentricity is also given by (3.9.25). The transverse axis is the same length as the 

distance between the two vertices (2a* j P) in (3.9.27) (with the sign of H reversed) 

and also agrees in length with the projection of the transverse axis of (3.10.2) onto 

the ¢-plane, i. e. 2a sin ,. The length of the conjugate axis is twice that of b* j P 

in (3.9.29) (with the sign of H reversed) which is the same length as the conjugate axis 
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of (3.10.2) since it is parallel to the </>-plane. The projection of AB onto the </>-plane 

has the length (L(2H p2 + J12) ~ - LJ1) /2H P which agrees up to a scaling factor of P 

with equation (3.9.24) with </> = o. The projection of BE (3.9.15) onto the </>-plane 

is unchanged in length since it is parallel to the </>-plane and is also consistent 

with (3.9.24) with </> = 1f /2 up to a scaling factor of P. 

Alternatively, an elegant vector combination can be used to calculate the plane polar 

equation of the orbit in the orbital plane. The procedure closely follows that described 

in the elliptical J1 > J case. The vector R is also given by (3.9.31) without any change 

of sign. Taking the scalar product of Sand R also gives (3.9.32) where T' is given 

by (3.9.33). The plane polar expression for the orbit is given by 

(3.10.3) 

which is the plane polar expression for a geometric-centred hyperbola (P2.16) sym

metrically placed about the {) = 0 axis, eccentricity of (2Hp2 + J12)~/(2HA,2 + J12)~, 
vertices at (±(2H A,2 + J12)~ /2H, 0) and foci at (±(2H p 2 + J12)~ /2H, 0). The ec

centricity is consistent with (3.9.16) and the distance from the origin to a vertex 

(2HA,2 + J12)~ /2H agrees with the length AC (3.9.7) (with the sign of H reversed). 

Similarly the distance from the origin to a focus (2H p2 + J12)~ /2H agrees with the 

length C F (3.9.17) (with the sign of H reversed) and also the distance ae which 

confirms that the origin is at the centre of the hyperbola. The length of the trans

verse and conjugate axes are (2HA,2 + J12)~/H and 2~L/H~ which are twice (3.9.7) 

and (3.9.28) respectively (with the sign of H reversed) as expected. Since the plane 

polar equation describes a geometric-centred hyperbola on the orbital plane, it follows 

that C marks the geometric centre of the hyperbola in the plane and correspond

ingly AC = CD which is the same result obtained using geometric considerations 

(cf. (3.9.5)). 

The velocity hodograph can be obtained by rotating the plane of the hyperbola on 

the cone about the y-axis in the same way as was done for the elliptical case. For the 

hyperbolic case we obtain the standard cartesian representation for an ellipse (P2.17) 

(3.10.4) 
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symmetrically placed about the X = 0 axis, with semi-major and semi-minor axes of 

lengths a = (2H)..2 + f12)~ / P and b = f1L/ p2 respectively, eccentricity of 
1 

).. (2H p 2 + f12) 2" / (P(2H)..2 + f12)~) and centred at (0, - L(2H p2 + f12) ~ / p2). This re-

sult is as expected from the projection of the velocity hodograph into the plane. The 

corresponding Kepler problem has a circular velocity hodograph in the plane with 

radius f1L/ p2 and centre (0, -L(2H p2 + f12)~ / p2) from (3.6.30) and (3.6.29) when 

P is directed along the -k direction and viewed from above. Consequently, it is to be 

expected that the semi-major axis length of the ellipse described above has the same 

length as the radius of the Kepler velocity hodograph when projected into the plane, 

i.e. a sin I = f1L/ P2. However, the semi-minor axis length which has the same length 

as the radius of the velocity hodograph does not change in length on projection into 

the </>-plane since it is parallel to the </>-plane. The centre of the ellipse rotated into 

the </>-plane also marks the centre of the circle at (0, - L(2H p2 + f12) ~ / p2) because 

the y-axis about which the rotation takes place passes through the centre of the 

ellipse on the hodographic plane. As with the Kepler velocity hodograph, the MICZ 

velocity hodograph does not close, but is bounded by the image of the asymptotes 

of the planar Kepler velocity hodograph (translated to the origin) when projected up 

onto the hodographic plane. The origin similarly lies outside the circumference of the 

completed hodographic ellipse. 

It does not seem possible to calculate the plane polar equation of the velocity hodo

graph on the plane using simple vector operations as was done for the orbit. 

The parametric equations for the asymptotes of the hyperbola on the cone can be 

found by rotating the parametric equations for the asymptotes of the hyperbola 

(3.10.2) which we denote (X, Y,O)y back onto the cone. Denoting the rotated para

metric equations by (x, y, z)Y, the equation describing the inverse transformation is 

(3.10.5) 

where a = I in the matrix Q (3.8.8). The parametric equations can now be written 

as 
x t 

y ± ((2H)t P t _ ~(2HP2 + f12)~) 
J.L (2H)2 J.L 

(3.10.6) 

z - J.L)..L(2Hp2 + f12)h + )..: 
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where the x and y components given above in (3.10.6) are also the parametric equa

tions for the projection of the asymptotes of the hyperbola on the cone into the 

xy-plane. The x and y components of the limits of extent of the elliptical velocity 

hodograph on the cone can be obtained by finding the intersection of the cartesian 

equation for the circular projection of the velocity hodograph in the xy-plane given 

by (3.6.30) and (3.6.29) 

j;2+ (y+ :2(2HP2+/12)t)2 = (~~)2, (3.10.7) 

and the cartesian equations for the projection of the asymptotes (translated to the 

origin) which are (using (3.10.6)) 

. (2H)tp .. 
y = ± x. 

/1 
(3.10.8) 

Substituting for y (3.10.8) in (3.10.7) gives 

L(2H)t /1 
± 1 

P(2H p2 + /12)2 
(3.10.9) 

2HL 
(3.10.10) Ye 

which are consistent with the expressions obtained in Chapter 1 (see (1.5.12)). The 

z component is obtained from (3.9.35) and can be written as 

. . (2H)b. 
Ze = - cot ,x = =f P . (3.10.11) 

Alternatively the limits of extent can be found from the intersection of the parametric 

equations for the asymptotes on the cone (3.10.6) (translated to the origin) with the 

parametric equations for the hodographic ellipse (3.9.35). 

The values of the constants used to draw Figures 3.10.2 and 3.10.3 were calculated 

in the same way as was done for the case /1 = J, except that J* = 2.25 as was chosen 

in Chapter 1 for the hyperbolic Kepler orbits. L was again chosen to be 1.85 and 

P, A, /1, 0:, J and f3 were calculated using (3.8.24)-(3.8.27), (3.8.29) and (3.8.30). 

Figure 3.10.2 shows the hyperbolic orbit in the case where /1 < J. The diagram 

shows the two right circular orbital and angular momentum cones which extend 

in opposite directions along the line of P with origin and point of contact at the 

apices of the two cones. A selection of displacement and corresponding angular 

momentum vectors has been drawn from the origin to their respective positions on 
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Figure 3.10.2. The hyperbolic MICZ orbit and angular momentum curve for J1 < J 

with a selection of displacement and angular momentum vectors drawn from the 

origin. The radial and angular momentum vectors move on the surfaces of two right 

circular cones extending in opposite directions along the line of P with origin and 

point of contact at the apices of the two cones. The projections of the orbit and 

angular momentum curve onto planes parallel to the xy, xz, yz, LxLy, LxLz and 

LyLz planes are also shown. The constants have the values J1 = 7.9145, J = 10.1802, 

P = 3.4225, ). = 2.8794, a = 0.5711, {J = 0.8578 and L = 1.85. The origin lies out of 

the orbital plane. 
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the orbital and angular momentum cones. The orbit is hyperbolic and lies on a plane 

which does not include the origin. In order to illustrate the behaviour more clearly, 

projections of the orbit onto planes parallel to the xy, xz and yz planes are shown, 

together with projections of the angular momentum curve and the projected images 

of the cones onto the respective planes. The constant magnitude of the angular 

momentum is reflected by the angular momentum vectors moving on the surface 

of a cone which is truncated perpendicular to the axis of symmetry to a height of 

L2 I P below the origin. The components of the angular momentum are given by 

L = ()"Lcos</JIP,)"Lsin</JIP,-L2IP) using (3.9.18) and (3.9.35). The two short line 

segments drawn perpendicular to the angular momentum curve indicate the limits of 

extent of the angular momentum as t ranges from negative through positive infinity. 

The xy projection of the orbit is also hyperbolic as described by the first two equations 

of (3.9.18) which can be manipulated into the form 

(
x - -dfp(~2 + 112)t) 2 _ ( ~ 1 ) 2 = 1 

2HP (2H)~ 

(3.10.12) 

which is the cartesian representation of (3.9.24) scaled by P, symmetrically placed 

about the y = 0 axis, with vertices at (L(2HP2 + 112)~/(2HP) ± I1LI(2HP),0), 

foci at (L(2HP 2 + 112)~/(2HP) ± L(2Hp2 + 112)t/(2HP),0), i.e. one focus is at 

the origin as expected, eccentricity of (2H p 2 + 112)t 111 which can be expressed in 

terms of c = cot, and m = cot 0: as clm (cf. (3.9.16) and (3.9.25)) and centred at 

(L(2HP 2 + 112)t/(2HP),0). The distance from the centre to a vertex I1LI(2HP) 
agrees with the length of the projection of AC onto the xy-plane, i.e. AC sin ,. 

Similarly the distance from the centre to a focus L(2H p 2 + 112)~ 1(2H P) agrees with 

the length of the projection of BC onto the xy-plane, i.e. BC sin ,. The transverse 

axis is the same length as the distance between the two vertices 2a and also agrees in 

length with the projection of the transverse axis of (3.10.2) onto the xy-plane, i.e. 

2a sin ,. The conjugate axis has the length 2b, i.e. 2t LI H~, which is the same length 

as the conjugate axis of (3.10.2) since it is parallel to the xy-plane. The location of 

the centre of the hyperbola is consistent with the result for the length of the projec

tion of BC (3.9.14) (with the sign of H reversed) into the xy-plane, i.e. BC sin" 

and also the distance ae which confirms that the origin is at a focus. The asymptotes 

are given by y = ± ((2H) t Px 111- L(2H p 2 + 112) t 1((2H) t 11))' i. e. a combination of 

the first two equations of (3.10.6). The y-intercepts of (3.10.12) which have lengths 

P LI 11 when measured from the origin are consistent with the length of the projection 

of BE (3.9.15) into the xy-plane which is unchanged in length since it lies parallel 

to the xy-plane. It is worth noting that the focus of the hyperbola on the cone 
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does not project onto the focus of the hyperbola projected into the xy-plane in gen

eral. The projected orbit is consistent with the planar hyperbolic Kepler orbit with 

L* = 1 and /-l* = 1.25, J* = 2.25. As t ranges from negative through positive infinity, 

the azimuthal angle <p ranges between 7r - arccos(1/e*) and -7r + arccos(l/e*), where 

e* (2H p 2 + /-l2) ~ / /-l and the projection ranges from (-00, +00) when 

<p = 7r - arccos(l/e*) to (O,PL//-l) when <p = 7r/2 to (PL/(/-l + q),O) when <p = 0 

where q = (2Hp2 + /-l2)~ to (O,-PL//-l) when <p = -7r/2 to (-00,-00) when 

<p = -7r + arccos(l/e*). The projection of the angular momentum curve onto its 

corresponding plane describes a circle with radius )"L/ P symmetrically placed about 

the Lx-axis, i.e. Lx2 + Ly2 = ()..L/P)2, Lx ~ -)..L/-l/(Pq). As t ranges from nega

tive through positive infinity, the projection ranges from (-)..L/-l/(Pq), (2H)~ )"L/ q) 

when <p = 7r - arccos(l/e*) to (0, )"L/ P) when <p = 7r /2 to ()"L/ P, 0) when <p = 0 

to (0, -)..L/ P) when <p = -7r /2 to (-)..L/-l/(Pq), -(2H)~ )"L/q) when <p = -7r + 
arccos(1/ e*), i.e. the circle is not completed even as t ranges from negative through 

positive infinity. The dotted line completes the angular momentum cone. However, 

it should be remembered that the projection of the angular momentum vectors never 

closes as t ranges from negative through positive infinity. 

The xz projection shows the images of the orbital and angular momentum cones 

with dotted lines, together with the projections of the orbit and angular momentum 

curves. Note that the xz projection of the orbit is obtained by manipulating the first 

and third equations of (3.9.18) into the form 

)..P 
z = -cot,x +-, 

/-l 

PL 
-00 < x <--

- - /-l+q' (3.10.13) 

which is the equation of a straight line with slope - cot, and z-intercept )..P / /-l in 

agreement with (3.6.12). The straight-line projection confirms the well-known result 

that a cone intersected by a plane which is at an angle, " to the symmetry axis which 

is smaller than the angle between the sides of the cone and the symmetry axis but 

larger than zero describes an hyperbola on the plane. The z-intercept is given by the 

length of DB which is consistent with Figure 3.10.1. The orbit lies on a plane section 

through the orbital cone. As t ranges from negative through positive infinity, the pro

jection ranges from (-00, +00) when <p = 7r-arccos(l/e*) to (0, )"P/ /-l) when <p = 7r/2 

to (PL/(/-l+q),)..P/(/-l+q)) when <p = 0 to (O,)"P//-l) when <p = -7r/2 to (-00,+00) 
when <p = -7r + arccos(1/e*). The LxLz projection of the angular momentum curve 

extends along the base of the triangle describing the LxLz projection of the image of 

the angular momentum cone, perpendicular to the Lz-axis. As t ranges from nega

tive through positive infinity, the projection ranges from (-)..L/-l/(Pq), _L2 / p) when 

<p = 7r - arccos(l/e*) to (0, _L2 / P) when <p = 7r /2 to ()"L/ P, _L2 / P) when <p = 0 to 
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(0, _L2 / P) when <p = -71"/2 to (-)..L/1/(Pq), _L2 / p) when <p = -71" + arccos(l/e*), 

i. e. only a section along the length of the base of the angular momentum triangle. In 

other words the angular momentum vectors will never sweep over the entire surface 

area of the angular momentum cone even as the time ranges from negative through 

positive infinity. The short line segment drawn perpendicular to the xz projection 

of the angular momentum curve indicates the limit of extent of the projection of the 

angular momentum as t ranges from negative through positive infinity. 

The yz projection shows the images of the orbital and angular momentum cones 

with dotted lines, together with the projections of the orbit and angular momentum 

curves. Note that the yz projection of the orbit is obtained by manipulating the 

second and third equations of (3.9.18) into the form 

( 
z + ~ ) 2 _ (_y ) 2 _ 1 

>'(2HP2+ JL2)t ~-
2HP (2H)"2 

(3.10.14) 

which is the equation of an hyperbola symmetrically placed about the y = 0 axis, 

with vertices at (0,-)../1/2HP ± )..(2Hp2 + /12)~/2HP), foci at (0,-)../1/2HP ± 
1 

(2Hp 4 + )..2/12)~/2HP), eccentricity of (2HP 4 + )..2/12)'2/()..(2HP2 + /12)~) which 
1 

can be expressed in terms of c = cot, and m = cot a as (c2 (1 + m2) - m2) '2/(mc) 

(cf. (3.9.16) and (3.9.25)) and centred at (0,-)../1/(2HP)). The distance from the 

centre to a vertex )..(2H p 2 + /12)~ /2H P agrees with the length of the projection of 

AC onto the yz-plane, i. e. AC cos,. The transverse axis is the same length as the 

distance between the two vertices 2a and also agrees in length with the projection 

of the transverse axis of (3.10.2) onto the yz-plane, i. e. 2a cos ,. The conjugate 

axis has the length 2b, i.e. 2~L/H~, which is the same length as the conjugate axis 

of (3.10.2) since it is parallel to the yz-plane. The location of the centre of the 

hyperbola is consistent with the result for the projection of OC (3.9.8) (with the sign 

of H reversed) onto the yz-plane, i.e. OC cos {3. The y-components of (3.10.14) 

when z = OB = )"P//1 which have the length PL//1 when measured from Bare 

consistent with the length of the projection of BE (3.9.15) into the yz-plane which 

is unchanged in length since it lies parallel to the yz-plane. The asymptotes are 

given by z = (±)"(2H p 2 + /12)~y /(LP(2H)~) - )../1/(2H P)) which are clearly not the 

images of the cone, i. e. z = ± cot ay. It is worth noting that the focus of the hyper

bola on the cone does not project onto the focus of the hyperbola projected into the 

yz-plane in general. The relationship between the eccentricity e of the hyperbolic 

projection in the yz-plane and that of the hyperbolic projection in the xy-plane, 

e*, is found to be e2 = a*2 / a2( e*2 - 1) + 1 where the superscript * refers to the 
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equivalent quantities in (3.10.12). Note that the semi-conjugate axis lengths of both 

projections are not involved in the relationship between the two eccentricities. The 

relationship between the eccentricity e of the hyperbolic projection in the yz-plane 

and that of the hyperbola on the cone, et , has the same structure as that shown 

above, with e* replaced by e t. As t ranges from negative through positive infinity, 

the projection ranges from (00,00) when ¢> = 7r-arccos(l/e*) to (PL//-l,>"P//-l) 

when ¢> = 7r /2 to (0, >"P/(/-l + q)) when ¢> = ° to (-P L/ /-l, >"P / /-l) when ¢> = -7r /2 to 

(-00,00) when ¢> = -7r + arccos(l/e*). The LyLz projection of the angular momen

tum curve lies along the base of the triangle describing the LyLz projection of the 

image of the angular momentum cone, perpendicular to the Lz -axis. As t ranges 

from negative through positive infinity, the line segment extends along the full length 

of the base of the angular momentum triangle from the point ((2H)~ >"L/q, _L2 / p) 

when ¢> = 7r - arccos(1/e*) to (>..L/P,-L2/P) when ¢> = 7r/2 to (0,-L2/P) when 

¢> = ° to (->..L/P,-L2/P) when ¢> = -7r/2 to (-(2H)~>"L/q,-L2/p) when 

¢> = -7r+arccos(l/e*). In other words the angular momentum vectors will have swept 

over more than half of the surface area of the angular momentum cone. The two short 

line segments drawn perpendicular to the yz projection of the angular momentum 

curve indicate the limits of extent of the projection of the angular momentum as t 

ranges from negative through positive infinity. 

The conserved vector K K which has been rotated clockwise through 7r /2 radians to lie 

along the cartesian unit vector -j is given by (3.6.29) and has length 

L(2Hp2 + /-l2)~/P as shown in Figure 3.10.2. The vector J K , which is perpendicu

lar to K K, is also rotated clockwise through 7r /2 radians to lie along the cartesian 

unit vector i. J K has the length P L2 f{K and is conveniently drawn to the same 

length as KK in Figure 3.10.2. The Poincare vector, P, no longer orthogonal to J, 

lies along the cartesian unit vector -k. Note that, when the cone is rotated about 

the x-axis so that P lies along k, the vectors K K and J K lie along the carte

sian unit vectors j and i respectively and hence mimic the behaviour of L, K and 

J respectively of the standard Kepler problem. The components of the conserved 

vectors are found by taking the scalar products of the relevant vectors with k K, 

J K and -P, remembering that the projected quantities have been rotated clock

wise through 7r /2 radians to preserve the alignment with the orbit on the cone. The 

Laplace-Runge-Lenz analogue J is given by (3.5.6) with /-l < J and has components 

J = (L(2HP2 + /-l2)t/P,0,->"/-l/p). Note that the x-component of J is equal in 

magnitude to K K from (3.6.29) since the vector product with P has the effect of pro

jecting J into the plane followed by a counter-clockwise rotation through 7r /2 radians. 

The Poincare vector is given by (3.5.4) and has components (0,0, _(L2 + >..2)~). The 
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normal vector N (3.6.5) is perpendicular to the plane of the orbit and using (3.6.29) 

and (3.8.24) the components are found to be (-L* cot " 0, -L*). The vector S (3.6.8) 
is parallel to the plane of the orbit and using (3.6.29) the components are found to 

be (J-lL(2H p2 + J-l2)~ /(2)"H P), 0, -(2H p2 + J-l2)/(2H P)). 

Figure 3.10.3 shows the elliptical velocity hodograph in the case where J-l < J. A 

selection of velocity vectors corresponding to the displacement vectors shown 

in Figure 3.10.2 has been drawn from the origin to their respective positions on 

the velocity hodograph. In order to illustrate the r behaviour more clearly, projec

tions of the velocity hodograph onto planes parallel to the xy, xi and yi planes are 

also shown, together with the projected images of the orbital cone onto the respective 

planes. The two short line segments intersecting the velocity hodograph indicate the 

limits of extent of the velocity hodograph as t ranges from negative through positive 

infinity. 

The xy projection of the velocity hodograph is obtained by manipulating the first 

two equations of (3.9.35) into the form 

. 2HL 
y <------"""7"" 

- (2H p2 + J-l2)~' (3.10.15) 

which is the equation of a section of a circle in cartesian coordinates symmetrically 

placed about the x = 0 axis, radius J-lL/P2 with origin (0,-L(2HP2 + J-l2)~/P2) 
and is consistent with the planar velocity hodograph for the hyperbolic Kepler or

bit with L* = 1, J-l = 1.25 and J* = 2.25 and (3.6.30) reversing the sign inside 

the y term since the velocity hodograph is being viewed with P directed along the 

-k direction. The semi-major axis length of (3.9.37) projected into the xy-plane 

reduces to the length of the radius, i. e. a sin, = J-lL / p2, as it should. The semi

minor axis length of (3.9.37) is unchanged in length on projection into the xy-plane 

because it is parallel to that plane and the location of the origin agrees with that 

of (3.9.37) because it lies along the y-axis. As t ranges from negative through pos

itive infinity, the projection ranges from the point ((2H)~LJ-l/(Pq), -2LH/q) when 

¢ = 7r-arccos(l/e*) to (LJ-l/P2,-Lq/P2) when ¢ = 7r/2 to (0,-L(J-l+q)/P2) when 

¢ = 0 to (-LJ-l/ p2, -Lq/ P2) when ¢ = -7r /2 to (-(2H)~ LJ-l/(Pq), -2LH/q) when 

¢ = -7r + arccos(l/e*), i.e. the circle is not completed even as t ranges from neg

ative through positive infinity. The dotted line completes the velocity hodograph. 

However, it should be remembered that the projection of the velocity vectors never 

closes as t ranges from negative through positive infinity. The two short line segments 

intersecting the xi; projection of the velocity hodograph indicate the limits of extent 



Figure 3.10.3. The elliptical MICZ velocity hodograph and hyperbolic orbit for J-l < J 

with a selection of velocity vectors drawn from the origin. The velocity vectors move 

on a plane which is parallel to the orbital plane and, as t ranges from negative 

through positive infinity, the heads of the velocity vectors trace out a section of an 

ellipse. The projections of the velocity hodograph and orbit onto planes parallel to 

the xy, xi, yi, xy, xz and yz planes are also shown. The constants are chosen as for 

Figure 3.10.2. The origin lies on the hodographic plane outside the circumference of 

the hodographic ellipse. 
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of the projection of the velocity hodograph as t ranges from negative through positive 

infinity. 

The xi projection shows the images of the orbital cone with dotted lines, together 

with the respective projections of the orbit and velocity hodograph. Note that the xi 
projection of the velocity hodograph is obtained by manipulating the first and third 

equations of (3.9.35) into the form 

i = -cot/x, , ., /1L 
x <- p2' (3.10.16) 

which is the equation of a straight line with slope - cot / which passes through the 

origin and which is bisected by the x-axis. The projection of the velocity hodograph 

is seen to be parallel to the projection of the orbit as was shown in (3.6.6) and (3.6.7). 

As t ranges from negative through positive infinity, the projection ranges from the 

point ((2H) ~ L/1/(Pq), -(2H) b..; p) when <p = 7r - arccos(l/ e*) to (/1L/ p2, _)..q/ P2) 

when <p = 7r/2 then to (0,0) when <p = 0 to (-/1L/P2,)..q/P2) when <p = -7r/2 to 

(-(2H)~L/1/(Pq), (2H)~)"/P) when <p = -7r + arccos(l/e*), i.e. the length of the 

projection of the velocity hodograph tends to 2(2H).. 2 + /1 2
) ~ / P. The two short line 

segments intersecting the xi projection of the velocity hodograph indicate the limits 

of extent of the projection of the velocity hodograph as t ranges from negative through 

positive infinity. 

The iJi projection shows the images of the orbital cone with dotted lines, together 

with the respective projections of the orbit and velocity hodograph. Note that the 

iJi projection of the velocity hodograph is obtained by manipulating the second and 

third equations of (3.9.35) into the form 

( 
z ) 2 

---------=-1 = 1 ;2 (2H p2 + /12)2 ' 
. 2HL 
y <------:

- (2H p2 + /12)~' (3.10.17) 

which is the equation for an ellipse symmetrically placed about the i = 0 axis, 

with semi-major axis length )..(2H p 2 + /12)~ / p2 which is just the projection of the 

semi-major axis of (3.9.37) onto the iJi-plane, i.e. acos/, semi-minor axis length 

/1L/ p2 which is consistent with that of (3.9.37) since it is parallel to the iJi-plane, 
1 

eccentricity of (1- /12 L2 /()..2(2H p2 + /12))) 2 and centred at (-L(2H p2 + /12) ~ / p2, 0) 
which also agrees with the centre of (3.9.37) which lies along the iJ-axis. It is worth 

noting that the focus of the ellipse on the cone does not project onto the focus of the 

ellipse projected into the iJi-plane in general. As t ranges from negative through 
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positive infinity, the projection ranges from the point (-2LH/q, -(2H) b..; p) when 

¢y = 7r - arccos(l/e*) to (_Lq/P 2 ,_>.q/p2
) when ¢Y = 7r/2 to (-L(ft + q)/P2 ,0) 

when ¢Y = 0 to (_Lq/P 2 ,>.q/P2
) when ¢Y = -7r/2 to (-2LH/q,(2H)t>./P) when 

¢Y = -7r + arccos(l/e*), i.e. the ellipse is not completed even as t ranges from 

negative through positive infinity. The dotted line completes the velocity hodograph. 

However, it should be remembered that the projection of the velocity vectors never 

closes as t ranges from negative through positive infinity. The two short line segments 

intersecting the iJi projection of the velocity hodograph indicate the limits of extent 

of the projection of the velocity hodograph as t ranges from negative through positive 

infinity. 

The conserved vectors K K, J K, J, P, Nand S are drawn as in Figure 3.10.2. 

3.11 Discussion 

Using the first integrals of the MICZ system it has been possible to describe, using 

very elementary methods, the complete geometry of the orbits. Despite the com

ments of McIntosh and Cisneros [94] referred to earlier, the orbital quantities can be 

expressed fairly simply in terms of the conserved quantities and orbit parameters. 

In particular the distance from the origin to the geometric centre of the orbit, OC, 

is proportional to J in both the elliptical and hyperbolic cases. The distance from 

the origin to the intersection of the axis of symmetry of the cone and the plane of 

the orbit, OB, is proportional to P. It is also of physical interest that OC becomes 

shorter with increasing magnitude of the energy and that OB becomes shorter with 

increasing Coulomb constant and longer with increasing monopole strength. The 

orbit of the MICZ problem is described by the intersection of a plane and a right cir

cular cone, and the projection of the orbit into the ¢Y-plane is a focus-centred conic 

section which corresponds naturally with the orbit of the standard Kepler problem. 

Analogues of Kepler's three laws of motion have been obtained and shown to be 

natural extensions of the laws in the plane. 

The roles of the two vectors P and J are very similar to their analogues in the 

classical Kepler-Coulomb problem in that P, like the angular momentum, determines 

the orientation in space and J, like the Laplace-Runge-Lenz vector, determines the 

orientation of the orbit within the orientation induced by P by pointing along the 

direction of the location of the geometric centre of the orbit and the direction of the 

major axis. A linear combination of P and J naturally gives rise to two vectors 
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one of which is parallel to the normal to the orbital and hodographic planes and the 

other which is parallel to the orbital and hodographic planes. The latter vector S also 

behaves like the Laplace-Runge-Lenz vector in that it provides the orbit equation 

for the orbit on the tilted plane in a natural way. 

3.12 The Lie Algebras of the Classical Monopole-Oscillator 

and Related Problems 

The Lie point symmetries of the equation of motion for an electric charge interacting 

with a magnetic monopole (taken as fixed at the origin) have been studied by Moreira 

et al. [101]. They concluded that the equation of motion describing the above system 

(3.12.1) 

possessed SIX symmetries (see §4.1) and the corresponding Lie algebra 

30(2,1)E930(3). In addition to the well-known Poincare vector [107] 

(3.12.2) 

with which the algebra 30(3) is usually associated they further obtained another three 

scalar first integrals 

1 .. 
- r·r 
2 

(tT - r)·r 

(tT - r). (tT - r) 

the first by inspection and 12 and 13 using Lutzky's method [87]. 

(3.12.3) 

(3.12.4) 

(3.12.5) 

Jackiw [56] applied Noether's theorem to the Lagrangian corresponding to (3.12.1) 

(with an additional potential term proportional to ,-2). He obtained the integrals 

(3.12.3)-(3.12.5) which also included the contribution from the extra potential term 

and observed that the commutators of the integrals possessed the algebra 0(2, 1). 

He emphasized the close connection between the monopole problem and the Kepler

Coulomb problem by observing that the algebras of the commutation relations of the 

first integrals are in both cases six-dimensional although there are some differences 

in detail. As far as the Lie algebras of the symmetries of the differential equations are 

concerned, the monopole has the six-dimensional algebra 30(2, 1) E9 30(3) whereas the 

Kepler-Coulomb problem has the five-dimensional algebra A2 E9 30(3) (see Leach and 
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Gorringe [79]). The A2 contribution to the algebra is as a result of invariance under 

time translation and rescaling. It was also demonstrated in Gorringe and Leach [40] 

that the Lie algebra corresponding to the Kepler-Coulomb problem is also found for 

all central force problem where the force obeys a power law. 

In their study of the Lie point symmetries of the differential equation 

:;. + f(r)L + g(r)1' = 0 (3.12.6) 

Leach and Gorringe [79] discovered that the equation 

.. A (I-" ) 1'+-L+ --c 1'=0 
r3 r 4 (3.12.7) 

possessed the algebra 81(2, R) EB 80(3), regardless of the values of the parameters A, I-" 

and c provided that both A and I-" are not simultaneously zero. In the case where A 

and I-" are both zero, (3.12.7) would have the twenty-four element algebra, 81(5, R), 
of the three-dimensional linear system. 

It was also observed that, for c = 0, the 81(2,R) algebra associated with (3.12.7) 

consisted of invariance under time translation, a self-similar transformation and a 

conformal transformation. The introduction of c replaces the latter two symmetries, 

(see §4.4), but the algebra remains 81(2, R). We note that in Leach and Gorringe [79] 

the algebra 81(2, R), which is isomorphic to 80(2,1), is preferred to the 80(2, 1) which 

is often used in the literature. The elements of this algebra generate infinitesimal 

transformations in (r, t) space and we believe it is better to use 81(2, R) to avoid the 

suggestion of rotation in the physical space. 

When c = _w2
, (3.12.7) is referred to as the monopole-oscillator, although strictly 

speaking it is not due to the presence of the I-"r- 41' term. For the special case I-" = - A 2 

McIntosh and Cisneros [94] observed an increase in the number of first integrals. The 

reason for the increase will become clear in the subsequent discussion. Curiously the 

presence of the r-2 potential relates the problem more closely to currently studied 

physical models of monopole motion (see for example Mladenov and Tsanov [97], 

Cordani [23], Atiyah and Hitchin [1, 2] and Manton [89]). 
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We now study the properties of the first integrals of (3.12.7) for general values of f1 

and for E: = _w2 (monopole-oscillator), E: = 0 (monopole-free particle) and E: = w 2 

(monopole-repulsor). When wl= - A 2 , we find that the Lie algebra of the six first 

integrals under the operation of taking the Poisson Bracket is 81(2, R) EEl 80(3) which 

is the same algebra as for the point symmetries of the differential equation under 

the operation of taking the Lie Bracket. The orbit equations are then constructed 

using the energy-like first integral and the roles played by the parameters A and f1 

are investigated especially in the case f1 = _A2. 

3.13 The Lie Algebras of the First Integrals of the 

Monopole-Oscillator, Monopole-Free Particle 

and Monopole-Repulsor 

We consider the three related problems. 

1) The monopole-oscillator 

2) The monopole-free particle 

3) The monopole-repulsor 

.. A L (f1 2) 0 1'+- + --w 1'= . 
r3 r4 

(3.13.1) 

(3.13.2) 

(3.13.3) 

Taking the vector product of l' with (3.13.1), (3.13.2) and (3.13.3) separately yields 

in all cases Poincare's vector 

P = L - AT. (3.13.4) 

In component form, (3.13.4) can be written as 

(3.13.5) 
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where the mechanical momentum p = (Pl,P2,P3) = r. Using the mechanical momen

tum the basic Poisson Bracket relations are 

and we immediately obtain the well-known result (see Mladenov [96]) 

[Pi, Pj]PB = CijkPk 

and the usual 80(3) symmetry. 

(3.13.6) 

(3.13.7) 

Taking the scalar product of (3.13.1) with r, r sin2wt and r cos2wt in turn and 

integrating by parts we obtain 

1 ( 11 2 2) 11 = - p.p - - + w ; 
2 ;2 

(3.13.8) 

1. ( 11 2 2) - sm 2wt p.p - - - w; - wp·r cos 2wt 
2 ;2 

(3.13.9) 

1 ( 11 2 2) . 13 = 2" cos 2wt p.p - ;2 - w; + wp·r sm 2wt. (3.13.10) 

11 is, of course, the Hamiltonian of the system. The Poisson Bracket relations amongst 

the Is are 

(3.13.11) 

and so the algebra of the Is is 81(2, R). It can be shown that 

[Pi,!j]PB = 0 Vi,j, (3.13.12) 

which confirms that the algebra of the first integrals of (3.13.1) IS given by 

81(2, R) EB 80(3). The integrals are not independent since 

(3.13.13) 

which is a hyperboloid of one sheet in the six-dimensional space of first integrals. 

We now turn our attention to the second equation of motion (3.13.2). Taking the 

scalar product of (3.13.2) with r, tr and t 2 r in turn and integrating by parts we find 

that 

J1 ~ (p.p - ~) 2 ;2 
(3.13.14) 

J2 ~ t (p.p - ~ ) - ~ p·r 
2 ;2 2 

(3.13.15) 

J3 
12( 11) 1 2 - t p.p - - - tp·r + - ; . 
2 ;2 2 

(3.13.16) 
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11 represents the Hamiltonian. The Poisson Bracket relations amongst the 1 s are 

(3.13.17) 

which is an alternate representation of 81(2, R). Replacing I by 1 in (3.13.12) leaves 

the result unchanged and so the algebra is 81(2, R) EB 80(3). The integrals are related 

by 

A 2 + f1 = p2 + 41i - 41113 

which is the same surface as given by (3.13.13). 

(3.13.18) 

The above procedure is again repeated for the third equation (3.13.3). The scalar 

product of T, T sinh 2wt and T cosh 2wt with (3.13.3) gives 

J{1 1 ( f1 2 2) (3.13.19) - - p.p - - - w , 2 ,2 
1 

sinh 2wt (p.p - ~ + W2
,2) - wp'l' cosh 2wt (3.13.20) J{2 -

2 

1 
cosh 2wt (p.p - ~ + W2

,2) + wp'l' sinh 2wt. (3.13.21) J{3 - -
2 

J{1 is the Hamiltonian of the systen and the Poisson Bracket relations amongst the 

J{s are 

(3.13.22) 

which is again 81(2, R). All the Poisson Brackets between Ps and J{s are zero as in 

the previous cases and so the algebra of the first integrals is again 81(2, R) EB 80(3). 
The integrals are related to each other through 

(3.13.23) 

which is again an hyperboloid of one sheet. 

The structure of (3.13.18) can be manipulated more into the form of (3.13.13) and 

(3.13.23) by defining 

211 = J~ + J~ (3.13.24) 

so that (3.13.18) becomes 

(3.13.25) 
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On close inspection of (3.13.13), (3.13.23) and (3.13.25) the structure is similar, but in 

each case the ordering of the indices different. This could be rectified by relabelling, 

but the above exercise shows that K 1 , K 2 , K3 for instance are not obtained from 

III 12 , 13 respectively under a canonical transformation. In fact the associations are 

Kl +-+h, K 2+-+I2 , K3 +-+11 . This phenomenon was observed some time ago in connec

tion with the quadratic first integrals of systems possessing quadratic Hamiltonians 

(see Leach [71]). 

The monopole-oscillator problem can be treated in much the same way as the 

monopole-Kepler problem. By taking the vector product of P with the equation 

of motion (3.13.1) the equation on the cone can be projected into the plane, further 

rotated through 7r /2 about the projection axis, and scaled by P. The differential 

equation becomes 

(3.13.26) 

Note that the angular momentum component of the equation of motion contributes 

to the centripetal force term of the equivalent central force problem. Similarly the 

equation of motion for the monopole-free particle (3.13.2) can be written as 

(.,. x P)"" + (L4().2 + ~)).,. X P = 0 
I.,. xPI 

and for the monopole-repulsor (3.13.3) as 

(3.13.27) 

(3.13.28) 

Note that in the case f1 = _,X2, (3.13.26) becomes a three-dimensional isotropic 

harmonic oscillator in terms of the vector.,. X P. The three-dimensional isotropic 

harmonic oscillator has twenty one first integrals quadratic in the velocities (Lij gives 

three, Aij six, Bij six and Gij six, see §3.20) and the orbit of .,. x P can be obtained 

from the nine autonomous integrals. 
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3.14 The Geometry of the Monopole-Oscillator 

Let the angle between Poincare's vector, P, and f be 7r - a. Using (3.13.4) the scalar 

product of P with f gives 
A 

cos a = p (3.14.1) 

which confirms that the motion is on the surface of a right circular cone of semi-vertex 

angle a and axis of symmetry along the line of P. Although the angular momentum, 

L, is not conserved, its magnitude, L, is. Since [P, L, 1'] is zero, L describes a right 

circular cone of semi-vertex angle (7r /2 - a). The salient features of the geometry 

are depicted in Figure 3.14.1 which shows the orientation of the larger orbital and 

smaller angular momentum cones which meet at the origin and a typical orbit for 

the case J.l = - A 2 . Note from the diagram how the vector P is constructed from the 

vectors Land - A f, where - A f is in the opposite direction to l' and scaled by A. 

From (3.13.4) and (3.14.1) it follows that 

. L 
sma = p. (3.14.2) 

Since the plane polar angle a is constant, 

2· . 
L = r sma¢, (3.14.3) 

where ¢ is the azimuthal angle in the plane through 0, perpendicular to P. The 

orbit equation is easily obtained by rewriting (3.13.8) in terms of r 
1 

r = (211 _ (L2r~ J.l) _w2r2) 2 

Using (3.14.2) and (3.14.3), r can be expressed in terms of ¢ as follows 

. P dr 
r = r2 d¢ 

(3.14.4) 

(3.14.5) 

and r in (3.14.4) can be replaced using (3.14.5) and solved to give the orbit equation 

L2 - J.l r2 = __________________ ~--~------~----~ 
II - (If - w2 (L2 - fl)) t cos (2 (J;2;f2 ) t (¢ - ¢o)) 

(3.14.6) 

provided Ii> w2(L2_fl) > o. It is now a simple matter to plot the orbit remembering 

that the plane polar angle a remains constant. In cartesian coordinates 

x r sin a cos ¢ 

y r sin a sin ¢ 

z r cos a, (3.14.7) 



cone of r 

cone of L 

Figure 3.14.1. The typical geometry of the monopole-oscillator orbit when fl = _).2. 

The larger orbital and smaller angular momentum cones are shown together with a 

typical orbit and the orientation of P. The origin 0 is at the point of contact between 

the two cones, A marks one of the two points of furthest approach from 0 and E 

one of the two points of closest approach. The orbit is not a conic section although 

certain projections are conic sections. a and 7r /2 - a are the the semi-vertex angles 

of the orbital and angular momentum cones respectively. 
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where r is calculated from (3.14.6), and 0: is determined from (3.14.1) or (3.14.2). 

Equation (3.14.6) is very reminiscent of the orbit equation for the three-dimensional 

isotropic harmonic oscillator (see (1.7.16)). This comes as no surprise since, for 

J-l = _,\2, (3.13.1) can be rewritten as a three-dimensional isotropic harmonic oscilla

tor as shown earlier in (3.13.26). In this case (3.14.6) is equivalent to equation (1. 7.16) 

where the role of L2 has now been replaced by p2 and ,\2 by w2. The roles of J-l and 
1 1 

,\ can be seen in (3.14.6). The orbit is not closed unless (L2 - J-l) 2" and (L2 + ,\2) 2" 

are commensurate. The orbit precesses counter-clockwise if L2 - J-l < L2 + ,\2 and 

clockwise if L2 - J-l > L2 + ,\2. For J-l = _,\2 the orbit closes after one revolution and 

the projection of the orbit onto the </>-plane is an ellipse. The orbit on the cone is 

not elliptical, but rather is as if the ellipse were lifted from the plane and bent to fit 

onto the surface of the cone. 

The angular momentum for the planar three-dimensional isotropic harmonic 

oscillator (3.13.26) with J-l = _,\2 is given by 

Lo = (1' X P) X (r x P) = L 2 P (3.14.8) 

and the energy integral by 

(3.14.9) 

In addition to these integrals a unit Laplace--Runge-Lenz vector can be constructed 

for the equation of motion of the three-dimensional isotropic harmonic oscillator in 

the variable l' X P using a variation of Fradkin's method described in §§1.6 and 1. 7 

which gives 

(3.14.10) 

where U = 1/11' x PI = ulLand F = (Eo + (E~ - w2 L~)1/2 _ L~U2) 1/2 I 
(4E~ - 4w2 L~)1/4. Making the necessary substitutions, (3.14.10) can be simplified 

and scaled by Jo to give 

1 1 

Jo = ± (~~) 2" [Eo + wJo - L~U2r2" ((Eo + wJo )1' -;-P-

U(rxP)xLo), (3.14.11) 
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where 

(3.14.12) 

The choice of the arbitrary function Q( Eo) is again motivated by the structure of 

the Jauch-Hill-Fradkin analogue and is found to be 

Q(Eo) = Eo 
w 

(3.14.13) 

which is consistent with (1.7.4). Equation (3.14.11) can be simplified following the 

procedure described in §1.7 to give 

1 ( b
2 

) J 0 = ±Jo 1 l' X P - p2 L2 (.;. x P) x P , 
e (11' x P 12 - b2) 2 

(3.14.14) 

and similarly the corresponding Hamilton vector can be constructed using 

Ko P x J o 

±Jo (1- e
2
)t 1 (P~~2 (.;. X P) X P - l' X p) . (3.14.15) 

e(a2 -11' x P12)2 

The same restrictions apply as for the three-dimensional isotropic harmonic oscillator 

regarding the discontinuities and the choice of sign of the Laplace-Runge-Lenz and 

Hamilton vector analogues. In fact (3.14.14) and (3.14.15) are identical in form 

to (1.7.7) and (1.7.8) using the variable substitutions A ---+ W, l' ---+ l' X P, .;. ---+ .;. x P, 

L ---+ Lo remembering that the semi-major and semi-minor axis lengths are scaled 

by P as a result of the projection and so a2 / p 2 and b2 / p2 in (3.14.15) and (3.14.14) 

respectively have the same length as a2 and b2 respectively in (1.7.8) and (1.7.7). 

It should also be noted that j 0 and Ii 0 as given by (3.14.14) and (3.14.15) are 

rotated counter-clockwise through 7r /2 radians from the expected positions i and -j 

respectively. This is in agreement with the projection of the orbit into the </>-plane 

which is also rotated counter-clockwise through 7r /2 radians and scaled by P. In the 

diagrams that follow J 0 and K 0 will be rotated clockwise through 7r /2 radians to lie 

along the cartesian unit vectors i and - j respectively in such a way that when the 

cone is rotated about the x-axis so that P lies along k, J 0 and K 0 lie along the 

cartesian vectors i and j respectively and hence mimic the behaviour of L, J and K 

respectively of the three-dimensional isotropic harmonic oscillator. 

The choice of the arbitrary function Q(Eo) (3.14.13) gives rise to the Jauch-Hill

Fradkin tensor analogue 
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Aij [Q(EO) ± [Q 2(Eo) - L~]}] fOiJ~j + 

[Q(EO) =F [Q 2 (Eo) - L~]}] (p x iO)i (p X io) j 

(3.14.16) 

Making the substitution l' X P = u and scaling (3.14.16) by w gives the equation of 

the velocity hodograph 

it7 (2EoI - A) U = w 2 L~. (3.14.17) 

Since P is constant, the motion is planar and for convenience we assign U3 to be the 

variable in the direction of P. The eigenvalues of the 2x2 matrix in (3.14.17) which 

determine the velocity hodograph in the plane, are 
1 

). = Eo ± (E~ - w 2 Lb ) 2 , (3.14.18) 

and, if we rotate the velocity hodograph (3.14.17) so that the cartesian unit vectors 

i and j become principal axes we obtain 

( 
it1 ) 2 ( U2 ) 2 

------------.--1 + 1 = 1. 
(Eo - (Eb - w2Lb)}r (Eo + (Eb - w2Lb)}r 

(3.14.19) 

Equation (3.14.19) can be simplified to obtain 

( ++(1f~P')!)! ) , + ( L(I'-(1f~'P')!)! ) , = 1 (3.14.20) 

which is the equation of an ellipse symmetrically placed about the x-axis, with 
1 

semi-major axis of length L (II + (112 - w2 P2)} ) 2/ P, semi-minor axis of length 
1 1 1 

L (11-(112 _w2 P2)}) 2/ P and eccentricity (4(11 2 _w2 P2)) 4" (11-(112 _w2 P2)}) 2/(WP). 

The equation of the orbit is then given by 

uT (2EoI - A) u = Lb. (3.14.21) 

If we rotate the orbit (3.14.21) so that the cartesian unit vectors i and j become the 

principal axes we obtain 

(3.14.22) 
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Equation (3.14.22) can be simplified to obtain 

(3.14.23) 

which is the equation of an ellipse symmetrically placed about the x-axis, concentric 
1 

to (3.14.20), with semi-major axis of length L(11 + (11 2 
- w2 P2)t) 2" /(wP), semi-

1 1 

minor axis of length L (11 - (11 2 
- w2 P2) ~ ) 2" / (wP) and eccentricity (4(11 2 

_ w2 P2)) 4" 
1 

(11- (11 2 _w2P2)~)2"/(wP). Note that both (3.14.20) and (3.14.23) describe the 

projection of the velocity hodograph and the orbit in the q'>-plane without the scaling 

by P since the equations are now written in terms of the components of T and T rather 

than those of T x P and T x P respectively. 

The presence of two orthogonal vectors in the xy-plane would seem to suggest the 

existence of additional vectors lying out of the plane which would project onto the 

line of J 0 and K 0 in the xy-plane. Two such vectors are given by 

)"Jo ' 
U=±Jo--P 

L 
(3.14.24) 

which lie on the surface of the cone collinear with the two vectors directed from the 

origin to the two points of closest approach. Two other such vectors are given by 

)..J{o ' 
V=±Ko---P 

L 
(3.14.25) 

which lie on the surface of the cone collinear with the two vectors directed from 

the origin to the two points of furthest approach. Note that P x U = ±K 0 and 

P x V = ~J o. Different linear combinations of the vectors shown above can also 

be constructed. However, they are not nearly as important as those described above 

because they do not appear to provide any useful additional geometric information 

on the monopole-oscillator problem. 

In the case f.1 = _)..2 the parametric equations for the orbit can be obtained by 

substituting for T' from (3.14.6) in (3.14.7) to give 
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L cos cjJ 
X 1 

(11 - (Ii - w2 P2) ~ cos 2cjJ) 2 

L sin cjJ 
y 1 

(11 - (Ii - w2 P2) ~ cos 2cjJ) 2 

A 
(3.14.26) z 1 • 

(11 - (Ii - w2 P2) ~ cos 2cjJ) 2 

For this case the equation of motion (3.13.26) becomes that of the three-dimensional 

isotropic harmonic oscillator in the variable l' X P. The orbit equation is then given 

by 
L2p2 

11' X PI2 = L2r2 = l' 

11 - (112 - w2 p2) 2 cos 2cjJ 
(3.14.27) 

z. e. the projection of the orbit into the cjJ-plane describes a geometric-centred ellipse 

symmetrically placed about the x-axis with the centre at the intersection of P and 

the cjJ-plane. It is well-known that the intersection of a plane and a right circular 

cone describes a conic section on the cone. However, in this case, although the 

projection of the orbit on the cone into the cjJ-plane describes a geometric-centred 

ellipse, the orbit on the cone does not lie on a plane. The xz and yz projections 

of the orbit on the cone will be studied later in the section where it will be shown 

that this peculiar geometry is the result of the intersection between the cone and a 

surface which is closely related to two different conic sections. This association gives 

an interesting geometric interpretation as to why the three-dimensional isotropic 

harmonic oscillator ellipse differs from that of the Kepler problem. The eccentricity 

of the ellipse is given by 

w~ (4(I; - w2 P2)) t (11 - (I; - w2 P2)~) ~ (3.14.28) 

which no longer appears to be related in a transparent way to the slope of the cone 

(cot (1) as was the case in the MICZ problem. Note also that P behaves like L in the 

three-dimensional isotropic harmonic oscillator. 
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It is easy to show using the orbit equation (3.14.6) that the maximum length of the 

vector 1', r max on the surface of the cone is reduced in length by the factor sin a 

when projected into the ¢>-plane due to its inclination with respect to P and so the 

projection 

. L ( 2 2 2 1) ~ 1 
rmax sma = wP II + (II -w P)2 = pl1' x Plmax, (3.14.29) 

is consistent with the result for the semi-major axis length of the projected ellipse 

from (3.14.27) up to a scaling factor of P and ignoring the rotation brought about 

by the transformation. Similarly the minimum length of the vector 1', rmin on the 

surface of the cone is reduced in length by the same factor sin a when projected into 

the ¢>-plane due to its inclination with respect to P and so the projection 

. L ( 2 2 2 1) ~ 1 I 
rmin sma = wP II - (II - W P)2 = P l' X Plmin (3.14.30) 

is consistent with the result for the semi-minor axis length of the projected ellipse 

from (3.14.27) up to a scaling factor of P and ignoring the rotation brought about 

by the transformation. Note also that the orbit on the cone does not lie in a plane 

as was the case for the monopole-Kepler problem. The orbit resembles the outline 

of a saddle which is draped over the cone in such a way that its projection describes 

a geometric-centred ellipse. 

The parametric equations for the velocity hodograph can be obtained by differentiat

ing the cartesian components x, y and z (3.14.26), substituting for ¢> = - Lj(r2 sin a) 

to give 

x 
(II + (If - w2 P2)~) sin a sin ¢> 

1 

(II - (If - w2 P2) ~ cos 2¢» 2 

(II - (If - w2 P 2
) ~ ) sin a cos ¢> 

1 

(II - (If - w2 P2)~ cos 2¢» 2 

y 

z 
(If - w2 P2)~ cos a sin 2¢> 

1 • 

(II - (If - w2 P2)~ cos 2¢» 2 

(3.14.31) 
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The analogues of Kepler's three laws of motion for this system then become :-

(i) For positive energies the orbit resembles the outline of a saddle which is draped 

over the cone in such a way that its projection describes a geometric-centred 

ellipse. The origin is not coplanar with the orbit. 

(ii) Equal areas are swept out on the cone in equal times. As in the monopole

Kepler problem, the area swept out on the cone is given by (denoting the 

quantities on the cone with the subscript MO and those in the plane 

with -1 MO) 

dAMo = ~1' X r dt (3.14.32) 

and so 
dAMo 1 
-- = -L = const. 

dt 2 
(3.14.33) 

Similarly for the ellipse in the </>-plane 

dA.LMO 11 . I 1 2 
dt = 2" (1' X P) X (1' X P) = 2" L P. (3.14.34) 

After rescaling dA.LMo/dt by p2, since we are dealing with an area, it is clear 

that the rate of increse in area on the cone is larger than on the projected ellipse 

by the factor P / L = 1/ sin a as was the case for the MICZ elliptical orbit. 

The surface area extending from the base of the orbital cone to the line of the 

orbit is found by integrating (3.14.33) over the period of the motion which gives 

1 1211" . A MO = - r2 sin a</> dt. 
2 0 

(3.14.35) 

Substituting for r2 from (3.14.6) we can express the integrand in terms of </> and 

obtain 
1 1211" p 2 d</> 

AMO = - sin a l' 

2 0 11 - (If - w2 P2)7: cos 2</> 

Making the substitution", = 2</> gives 

p 2 sin a 111" d", 
AMO = I 1 , 

1 0 1 - (1 - w2 p2 / In 7: cos '" 

which can be integrated using G&R[43, 3.613.1 with n=O] to give 

7fL 
AMO =-. 

w 

The area of the ellipse projected in the plane is given by 

7fPL2 

A.LMO = 7fab = --, 
w 

(3.14.36) 

(3.14.37) 

(3.14.38) 

(3.14.39) 



which upon rescaling by p 2 gives 

7r L2 
A.LMO = -- = AMO sin 0:, 

Pw 
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(3.14.40) 

and so we observe that the surface area of the section of cone between the origin 

and the line of the orbit is inversely proportional to w. 

As expected the ratio of AMKIA.LMK is again PI L which is the same ratio as we 

obtained for the areal velocities. Alternatively we can consider an infinitesimal 

area on the cone stretching from the origin to two closely spaced points on the 

orbit. If we project this area into the plane, it is clear that the projection is just 

b.A.LMO = b.AMo sin 0: which, extended over the complete area in both cases, 

is the result we obtained previously. 

(iii) Equation (3.14.33) can be integrated over one revolution to give an alternate 

expression for the area, 

(3.14.41) 

Equating (3.14.38) with (4.14.41) gives the analogue of Kepler's third law, i.e., 

T = 27r 

w 
(3.14.42) 

for both the orbit on the cone and the orbit in the plane, z. e. the period is 

inversely proportional to w. 

The initial conditions were chosen so that the projection of the orbit on the cone 

into the ¢-plane is identical to the corresponding three-dimensional isotropic har

monic oscillator orbit and also that the projection of the velocity hodograph into 

the ¢-plane is coincident with that of the oscillator as shown in Figure 1.7.2 of 

Chapter 1. This was done in much the same way as that described for the MICZ 

problem by equating certain quantities on the cone on projection into the ¢-plane 

with the equivalent quantities for the three-dimensional isotropic harmonic oscillator. 

In the subsequent discussion, the starred quantities will be used to denote the con

stants used in Chapter 1 for the oscillator. The constants have the values, as before, 

f-lk = 1.25, ()~ = 0, ak = 1.8939, A* = (f-lklak3)~, E* = 0.4694 and L* = 1. Combina

tions of the semi-major and semi-minor axis lengths for both the projections of the 

velocity hodograph and the orbit of the monopole-oscillator were equated with the 

corresponding expressions for the three-dimensional isotropic harmonic oscillator to 

force both the the velocity hodographs and the orbits to coincide so that a comparison 

between the two problems can be made. Multiplying the squares of the lengths of the 

semi-major and semi-minor axes for both the projection of the monopole-oscillator 
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velocity hodograph (3.14.20) and making a comparison with the same quantity in the 

case of the three-dimensional isotropic harmonic oscillator gives 

)"*PL* 
W= 

L2 (3.14.43) 

Summing the squares of the lengths of the semi-major and semi-minor axes for both 

the projection of the monopole-oscillator velocity hodograph (3.14.20) and making 

a comparison with the same quantity in the case of the three-dimensional isotropic 

harmonic oscillator gives, using (3.14.43), 

(3.14.44 ) 

Repeating the above procedures for the projection of the monopole-oscillator orbit 

(3.14.23) and making the same comparisons with the three-dimensional isotropic 

harmonic oscillator gives 
)"*L2 

W=-
PL* ' 

and eliminating W from (3.14.43) and (3.14.45) gives 

L2 
P = L*' 

(3.14.45) 

(3.14.46) 

which is the same result obtained previously for the MICZ problem, and substituting 

this result in either (3.14.43) or (3.14.45) gives 

W = )"*, 

and similarly substituting (3.14.46) in (3.14.44) gives 

L2 
II = L*2 E *. 

Using the definition of P it can be shown that 

and using (3.14.1) and (3.14.2) 

Q = arews (L' -LU')t) = arcsin (~') , 

(3.14.4 7) 

(3.14.48) 

(3.14.49) 

(3.14.50) 
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as was found for the MICZ problem. Note that the angle a only depends on the pro

jection of the monopole-oscillator angular momentum L onto the three-dimensional 

isotropic harmonic oscillator angular momentum L * which is directed along the line 

of P. The magnitude of J o can also be expressed in terms of Land L* using the 

above expressions (3.14.46)-(3.14.48) to obtain 

(3.14.51) 

For convenience, L was chosen to be 1.85 and using the values for the starred quan

tities given above, P, w, II, ,x, a and Jo were calculated using (3.14.46)-(3.14.51). 

Figure 3.14.2 shows the orbit for the monopole-oscillator where {l = _,X2. The dia

gram shows the two right circular orbital and angular momentum cones which extend 

in opposite directions along the line of P with origin and point of contact at the apices 

of the two cones. A selection of displacement and corresponding angular momentum 

vectors has been drawn from the origin to their respective positions on the orbital 

and angular momentum cones. The orbit resembles the outline of a saddle which 

is draped over the cone in such a way that its xy projection describes a geometric

centred ellipse. The origin is not enclosed by the orbit. In order to illustrate the 

behaviour more clearly, projections of the orbit onto planes parallel to the xv, xz and 

yz planes are shown, together with projections of the angular momentum curve and 

the projected images of the cones onto the respective planes. The constant magnitude 

of the angular momentum is reflected by the angular momentum vectors moving on 

the surface of a cone which is truncated perpendicular to the axis of symmetry to 

a height of L2 / P below the origin. The components of the angular momentum are 

given by L = ('xL cos ¢/ P,'xL sin ¢/ P, _L2 / P) using (3.14.26) and (3.14.31). 

The xy projection of the orbit is elliptical as described by the first two equations of 

(3.14.26) which can be manipulated into the form 

(3.14.52) 

which is the cartesian representation of an ellipse symmetrically placed about the 
1 

x = 0 and y = 0 axes, with semi-major axis length a = L(I1 + (1/ _w2 P2)~) 2" /(wP) 
which is the projection of rmax onto the xv-plane, i.e. rmax sin a, semi-minor axis 

1 

of length b = L(I1 - (112 - W2P2)~) 2" /(wP), which is the projection of rmin onto the 
1 1 

xv-plane, i.e. rrninsin a, eccentricity of (4(11 2 _w2 P2)) 4" (II - (11 2 _w2P2)~) 2" /(wP) 
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Figure 3.14.2. The monopole-oscillator orbit and angular momentum curve for 

f-l = _,\2 with a selection of displacement and angular momentum vectors drawn 

from the origin. The radial and angular momentum vectors move on the surfaces 

of two right circular cones extending in opposite directions along the line of P with 

origin and point of contact at the apices of the two cones. The projections of the orbit 

and angular momentum curve onto planes parallel to the xy, xz, yz, LxLy, LxLz and 

LyLz planes are also shown. The constants have the values w = 0.4289, P = 3.4225, 

,\ = 2.8794, a = 0.5711, L = 1.85 and 11 = 1.6065. The origin is not enclosed by the 

orbit. 



224 

and centred at the origin. The projected orbit is consistent with the planar ellip

tical three-dimensional isotropic harmonic oscillator orbit with 11k = 1.25, ()~ = 0, 

ak = 1.8939, A* = (11k/ant, E* = 0.4694 and L* = 1. As t ranges over one pe

riod and choosing the azimuthal angle ¢> to range between 7r and -7r, the projection 

ranges from (-a,O) when ¢> = 7r where a = T'maxsina and b = T'minsina to (O,b) 

when ¢> = 7r/2 to (a,O) when ¢> = 0 to (O,-b) when ¢> = -7r/2 to (-a,O) when 

¢> = -7r. The projection of the angular momentum curve onto its corresponding 

plane describes a circle with radius AL/ P symmetrically placed about the Lx-axis, 

i.e. Lx 2 + Ly 2 = (AL/ P)2. As t ranges over one period, the projection ranges from 

(-AL/ P, 0) when ¢> = 7r to (0, AL/ P) when ¢> = 7r /2 to (AL/ P, 0) when ¢> = 0 to 

(O,-AL/P) when ¢> = -7r/2 to (-AL/P, 0) when ¢> = -7r, i.e. the circle is com

pleted. The projection of the angular momentum vectors describes a circle after one 

revolution of the orbit. 

The xz projection shows the images of the orbital and angular momentum cones 

with dotted lines, together with the projections of the orbit and angular momentum 

curves. Note that the xz projection of the orbit is obtained by manipulating the first 

and third equations of (3.14.26) into the form 

(3.14.53) 

subject to the condition that 

(3.14.54) 

which is the cartesian representation of a section of a hyperbola symmetrically placed 

about the x = 0 and z = 0 axes, with vertices at (0, ±a) where a = A(II - (Ii -
1 1 

w2 P2)t) 2" / (wP) and b = L/ (4(Ii - w2 P2)) "4 foci at (0, ±( a2 + b2)t), eccentricity of 

(a 2 + b2)t /a and centred at the origin. The distance from the centre to a vertex a 

agrees with the length of the projection of T'min onto the xz-plane, i. e. T'min cos a. 

The transverse axis is the same length as the distance between the two vertices 2a. 

The conjugate axis has the length 2b. The asymptotes are given by z = ax/b, i.e. 

a combination of the first and third equations of (3.14.26). The relationship between 

the eccentricity e of the hyperbolic projection in the xz-plane and that of the ellip

tical projection in the xy-plane, e*, is found to be e2 = 1/m2b2/(a*2(1 - e*2)) + 1, 

where m is the slope of the cone (cot a) and the superscript * refers to the equiv

alent quantities in (3.14.52). Note that the semi-transverse axis length of (3.14.53) 
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and the semi-minor axis length of (3.14.52) are not involved in the relationship be

tween the two eccentricities. The magnitude of the limits of extent of the variable 

x which are indicated with two dotted lines parallel to the z-axis agree with the 

length of the projection of 7'max onto the xy-plane, i.e. 7'max sin 0:. The magnitude 

of z at these two points agrees with the height of the projection of 7'max onto the 

xz-plane, i. e. 7'max cos 0:. As t ranges over one period, the projection ranges from 

(-c, d) when <p = 7r where a = 7'min cos 0:, C = 7'max sin 0: and d = 7'max cos 0: to (0, a) 

when <p = 7r /2 to (c, d) when <p = 0 to (0, a) when <p = -7r /2 to (-c, d) when <p = -7r. 

The LxLz projection of the angular momentum curve extends along the base of the 

triangle describing the LxLz projection of the image of the angular momentum cone, 

perpendicular to the Lz-axis. As t ranges over one period, the projection ranges 

from (-).,L/ P, _L2 / P) when <p = 7r to (0, _L2 / P) when <p = 7r /2 to ().,L/ P, _L2 / P) 

when <p = 0 to (0,-L2/P) when <p = -7r/2 to (-).,L/P,-L2/P) when <p = -7r, i.e. 
the full length of the base of the angular momentum triangle. In other words the 

angular momentum vectors will have swept over the entire surface area of the angular 

momentum cone. 

The yz projection shows the images of the orbital and angular momentum cones 

with dotted lines, together with the projections of the orbit and angular momentum 

curves. Note that the yz projection of the orbit is obtained by manipulating the 

second and third equations of (3.14.26) into the form 

(3.14.55) 

subject to the condition that 

(3.14.56) 

which is the equation of a section of an ellipse symmetrically placed about the 
1 

y = 0 and z = 0 axes, with semi-major axis length a = ).,(11 + (Il-w2 P2)t) 2" /(wP), 
which is equivalent to the projection of 7'max onto the yz-plane, i.e. 7'max cos 0:, semi-

1 

minor axis length b = L/(4(Il-w2p 2)r", eccentricity of (a 2 - b2)t/a and centred 

at the origin. The relationship between the eccentricity e of the elliptical projection 

in the xz-plane and that of the elliptical projection in the xy-plane, e*, is found 

to be e2 = 1/m2b2(e*2 - 1)/b*2 + 1, where m is the slope of the cone, (cot 0:), and 

the superscript * refers to the equivalent quantities in (3.14.52). Note that the semi

major axis lengths of both projections are not involved in the relationship between 
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the two eccentricities. The magnitude of the limits of extent of the variable y which 

are indicated with two dotted lines parallel to the z-axis agree with the length of 

the projection of 7'min onto the xy-plane, i.e. 7'min sin CY. The magnitude of z at these 

two points agrees with the height of the projection of 7'min onto the xz-plane, i.e. 

7'min cos CY. As t ranges over one period, the projection ranges from (O,a) when <p = 7r 

where a = 7'max cos CY, c = 7'min sin CY and d = 7'min cos CY to (c, d) when <p = 7r /2 to (0, a) 
when <p = ° to (-c, d) when <p = -7r /2 to (0, a) when <p = -7r. The LyLz projection 

of the angular momentum curve lies along the base of the triangle describing the 

LyLz projection of the image of the angular momentum cone, perpendicular to the 

Lz-axis. As t ranges over one period, the line segment extends along the full length 

of the base of the angular momentum triangle from the point (0, - L2 / P) when <p = 7r 

to (>.L/P,-L 2 /P) when <p = 7r/2 to (0,-L 2 /P) when <p = ° to (-).L/P,-L 2 /P) 

when <p = -7r /2 to (0, - L2 / P) when <p = -7r. In other words the angular momentum 

vectors will have swept over the entire surface area of the angular momentum cone. 

The conserved vector K 0 which has been rotated clockwise through 7r /2 radians 

to lie along the cartesian unit vector -j is given by (3.14.15) and has length 

(E~/W2 - L~)t and is scaled by L for convenience in Figure 3.14.2. The vector 

J 0, which is perpendicular to K 0, is also rotated clockwise through 7r /2 radians to 

lie along the cartesian unit vector i. J 0 also has the length (E~ / w 2 
- L ~)} and 

is similarly scaled by L in Figure 3.14.2. The Poincare vector, P, lies along the 

cartesian unit vector -k. Note that, when the cone is rotated about the x-axis so 

that P lies along k, the vectors K 0 and J 0 lie along the cartesian unit vectors j 

and i respectively and hence mimic the behaviour of L, K and J respectively of 

the standard three-dimensional isotropic harmonic oscillator. The Poincare vector is 

given by (3.13.4) and has components (0,0, _(L2 + ).2)}). 

Figure 3.14.3 shows the velocity hodograph for the monopole-oscillator where 

f1 = -).2. A selection of velocity vectors corresponding to the displacement vectors 

shown in Figure 3.14.2 has been drawn from the origin to their respective positions 

on the velocity hodograph. In order to illustrate the r behaviour more clearly, pro

jections of the velocity hodograph onto planes parallel to the xy, xi and yi planes are 

also shown, together with the projected images of the orbital cone onto the respective 

planes. 



Figure 3.14.3. The monopole-oscillator velocity hodograph and orbit for I-l = _).2 

with a selection of velocity vectors drawn from the origin. The velocity vectors are 

not confined to a plane although, as t ranges over one period, the heads of the velocity 

vectors projected into the xy-plane trace out a complete ellipse. The projections of 

the velocity hodograph and orbit onto planes parallel to the xy, xz, yz, xy, xz and 

yz planes are also shown. The constants are chosen as for Figure 3.14.2. The origin 

is enclosed by the velocity hodograph. 
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The xy projection of the velocity hodograph is obtained by manipulating the first 

two equations of (3.14.31) into the form 

(3.14.57) 

which is the cartesian equation of an ellipse concentric to (3.14.52) symmetrically 

placed about the x = 0 and y = 0 axes, with semi-major axis of length a = L (11 + 
1 1 

(112 - w2 P 2)}) 2" / P, semi-minor axis of length b = L (11 - (112 - w2 P 2)}) 2" / P and 
1 1 

eccentricity (4(112 - w2 P 2) ) "4 (11 - (112 - w2 P 2)} ) 2" / (wP) and centred at the origin. 

The projected velocity hodograph is consistent with the planar velocity hodograph for 

the elliptical three-dimensional isotropic harmonic oscillator with 11k = 1.25, e~ = 0, 

ak = 1.8939, ,\* = (l1k/ak3)}, E* = 0.4694 and L* = 1. As t ranges over one period, 

the projection ranges from the point (0, b) when cP = 7r where a = wrmax sin ex and 

b = wrmin sin ex to (a, 0) when cP = 7r /2 to (0, -b) when cP = 0 to (-a, 0) when 

cP = -7r /2 to (0, b) when cP = -7r, i. e. the ellipse is completed. The projection of the 

velocity vectors describes an ellipse after one revolution of the orbit. 

The xi projection shows the images of the orbital cone with dotted lines, together 

with the respective projections of the orbit and velocity hodograph. Note that the xi 
projection of the velocity hodograph is obtained by manipulating the first and third 

equations of (3.14.31) into the form 

i 2 = 4B2 cot
2 exx2 ( (A + B) sin

2 
ex - x2 ) 

(A+B) (A+B)2 sin2ex-2Bx2 ' 
(3.14.58) 

where A = 11 and B = (1{ - w 2 P 2
)}, which describes a butterfly-shaped curve 

symmetrically placed about the x = 0 axis and is reminiscent of quartic curves such as 

the lemniscates of Bernoulli and Gerono. As t ranges over one period, the projection 

ranges from the point (0,0) when cP = 7r where a = wrmax sin ex and b = wrmin sin ex to 

(a,O) when cP = 7r/2 to (0,0) when cP = 0 to (-a,O) when cP = -7r/2 to (0,0) when 

cP=-7r· 

The yi projection shows the images of the orbital cone with dotted lines, together 

with the respective projections of the orbit and velocity hodograph. Note that the 

yi projection of the velocity hodograph is obtained by manipulating the second and 

third equations of (3.14.31) into the form 

.2 4B2 cot 2 exy2 ( y2 + (B - A) sin2 ex ) 
z = ) ) 2 , (3.14.59) (B - A (B - A 2 sin ex + 2By2 
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where A = II and B = (I; - w2P2)t, which describes a butterfly-shaped curve 

symmetrically placed about the if = 0 axis and is reminiscent of quartic curves such as 

the lemniscates of Bernoulli and Gerono. As t ranges over one period, the projection 

ranges from the point (b,O) when ¢ = 7r where a = wrmax sin a and b = wrmin sin a to 

(0,0) when ¢ = 7r /2 to (-b, 0) when ¢ = 0 to (0,0) when ¢ = -7r /2 to (b,O) when 

¢ = -7r. 

The conserved vectors K 0 and J 0 are scaled by L for convenience while P is drawn 

as in Figure 3.14.2 

Figure 3.14.4 shows the same orbit and velocity hodograph as those shown in Figure 

3.14.3 but rotated about the z, i-axis in such a way that the i-maxima are vertically 

aligned above the x, x axis. This was done to investigate whether the xi and yi 
projections of the velocity hodograph could be rotated onto principal axes in both 

orthogonal planes in such a way that their structure became more transparent. The 

angle of rotation about the i-axis was calculated as follows. Replacing occurrences 

of ¢ with p to avoid confusion, the i component of (3.14.31) becomes 

. (A-. _ ) _ Bcosasin2p 
z,+,-p - l' 

(A - B cos 2p)"2 
(3.14.60) 

where A = II and B = (If - w2 P 2
) t, which can be differentiated with respect to p 

to give 

di 

dp 

B2 cos a (cos 2 2p - ¥ cos 2p + 1) 
3 

(A - B cos 2p)"2 
(3.14.61 ) 

To calculate p at a maximum or a minimum we set (3.14.61) equal to zero and solve 

the resulting quadratic equation in cos 2p to obtain 

(3.14.62) 

Only the smaller of the two solutions shown in (3.14.62) is of physical interest. The 

azimuthal angle at the maximum or minimum i value is given by 

( 
y (¢ = p)) ( (B - A) (1 + cos 2 p ) t ) 

I = arctan . (A-. _ ) = arctan ± (B A) 1. , 
X '+' - P + (1 - cos 2¢) 2 

(3.14.63) 

using the first two equations of (3.14.31), which can be solved using the smaller of 

the two solutions in (3.14.62) to obtain 

( 3) (A - B)"4 
I = =f arctan 3 , 

(A + B)"4 
(3.14.64) 



Figure 3.14.4. A counter-clockwise rotation of the monopole-oscillator velocity 

hodograph and orbit for J1 = _,\2 as shown in Figure 3.14.3 through 0.4826 radians 

about the z, i-axis so that the i maxima are vertically aligned above the x, x-axis. 

The projections of the velocity hodograph and orbit onto planes parallel to the xy, 
xi, yi, xy, xz and yz planes are also shown. Note that the conic section properties 

of the xz and yz projections of the orbit are no longer apparent and also the lack of 

any recognisable structure for the xi and yi projections of the velocity hodograph. 

The constants are chosen as for Figure 3.14.2. 
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where the top sign gives the azimuthal angle for the i-maximum and the lower sign 

the angle for the i-minimum. The second i-maximum is separated from the first 

i-maximum by 7r radians which is also the case for the two i-minima. Substituting 

the values for the constants as used in Figures 3.14.2 and 3.14.3, the azimuthal 

angle I corresponding to the i-maximum value closest to the origin was found to 

be I = -0.4826 radians. The conserved vectors K 0 and J 0 are scaled by L for 

convenience while P is drawn as in Figure 3.14.2. 

Figure 3.14.4 shows the results of performing a counter-clockwise rotation of both 

the orbit and the velocity hodograph by 0.4826 radians about the z, i-axis. The 

rotated coordinates (X, Y, Z? are obtained from the equation 

(
X) ( c~s I - sin I 0) ( x ) 
Y sm I cos lOy . 

ZOO 1 z 

(3.14.65) 

Referring to Figure 3.14.4 it can be seen that the projection of the orbit into the 

xy-plane describes an ellipse rotated about the z-axis whilst the xz and yz pro

jections now resemble figure-of-eight shaped curves which would not be obviously 

associated with conic sections (cf. Figure 3.14.3). This shows the importance of using 

principal axes in order to study the xz, xi, yz and iJi projections of the orbit and 

velocity hodograph in particular. 

The projection of the velocity hodograph into the xy plane also describes an 

ellipse rotated about the i-axis whilst in the case of the iJi projection of the ve

locity hodograph, the i-maxima now coincide at a point along the i-axis unlike 

the iJi projection shown in Figure 3.14.3. The fact that this projection is not de

scribed by a single line shows that the velocity hodograph cannot be obtained from 

two intersecting sheets as was the case with the orbit (see (3.14.53) and (3.14.55)). 

The xi projection is seen to retain a figure-of-eight shape which is again not a sin

gle line. In conclusion it appears that the velocity hodograph cannot be simplified 

through rotation onto suitable principal axes and only the xy projection appears 

to be associated with a conic section. The short dotted line segments joining the 

i-maxima and minima on the velocity hodograph have also been projected into the 

xy-plane where they confirm that the i-maxima lie along the x, x-axis while the 

i-minima lie in a line which on projection into the xy-plane is not orthogonal to 

the x, x-axis. Alternatively, referring to equation (3.14.63), a i-maximum and its 

closest i-minimum are separated by an azimuthal angle of 2111 =I- 7r /2 radians. This 

further indicates that the xi and iJi projections are not described by single lines. 
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The conserved vectors K 0 and J 0 are scaled by L for convenience while P is drawn 

as in Figure 3.14.3 

Figure 3.14.5 geometrically demonstrates the construction of L corresponding with 

Figures 3.14.2 and 3.14.3. The parallelograms which represent the magnitude of 

L = l' X r have equal areas as a consequence of L being conserved. In this case the 

parallelograms are no longer confined to the same plane as was the case with the 

three-dimensional isotropic harmonic oscillator (see Figure 1.7.3). The orbital cone 

is shown together with the orbit, velocity hodograph and the xz and yz projections of 

the orbit, velocity hodograph and images of the cone. The dotted line linking opposite 

vertices divides the parallelogram in two which gives a geometric representation of 

the constant magnitude of the areal velocity. 

Figure 3.14.6 shows both the projected displacements and corresponding projected 

velocities in the xy and xi; planes at regular time intervals for the monopole-oscillator 

problem. The projections of the displacements and the corresponding velocities both 

in this diagram and in the following three figures are coincident with those of the 

three-dimensional isotropic harmonic oscillator problem as shown in Figures 1.7.2, 

1. 7.3 and 1.7.4 when the cone is rotated about the x-axis so that P lies along k 

and the vectors K K and J K lie along the cartesian unit vectors j and i respectively 

and hence mimic the behaviour of L, K and J respectively of the three-dimensional 

isotropic harmonic oscillator problem, on account of the choice of constants as de

scribed earlier in §3.14. The shaded regions confirm Kepler's second law in the plane 

that equal areas are swept out in equal times. This result also extends to the cone 

where equal areas are swept out on the surface of the cone in equal times. However, 

the area swept out on the cone is larger than that swept out in the plane by the fac

tor P / L. It should be obvious that the initial phase difference between the projected 

displacement and projected velocity vectors in the xy and xi; planes is 7r /2 radians 

as the projected displacement lies along the +x-axis at t = 0 while the projected 

velocity is purely along the +i;-axis. The phase difference in general between the pro

jected displacement and projected velocity vectors is not constant as with the three

dimensional isotropic harmonic oscillator problem since (1' X P) . (r x P) = L2rr 

which is nonzero except when r = 0, i. e. at the extremities of the motion. This is 

also evident by comparing the angle between the corresponding projected displace

ment and projected velocity vectors for a range of time intervals using the solid round 

time markers on the projected orbit and the corresponding solid square time markers 

on the projected velocity hodograph and counting the number of round markers from 

the rightmost vertex of the ellipse in a counter-clockwise direction to the projected 



Figure 3.14.5. The monopole-oscillator orbit with its corresponding velocity 

hodograph associated with Figures 3.14.2 and 3.14.3 demonstrating the construction 

of L. The area of the parallelograms which are now no longer confined to a plane 

is equal to the constant magnitude of L. The orbital cone is shown together with 

the orbit, velocity hodograph and the projection of the orbit, velocity hodograph 

and images of the cone onto planes parallel to the xy, xz, yz, xy, xi and yi planes. 

The dotted lines linking opposite vertices divide the parallelograms in two and give 

a geometric representation of the constant areal velocity. The constants are chosen 

as for Figure 3.14.2. 



-3.5 -2.5 2.5 . 
x,x 

Figure 3.14.6. The projection of the monopole-oscillator orbit and corresponding 

velocity hodograph into the xy and xi; planes. The circles (-e-e-e-) show the 

projected displacements of the particle at the time intervals iT /24, i = 0, ... ,24 

and the squares (-_____ ) give the corresponding projected velocities. The phase 

difference between the projected velocity and displacement vectors is not constant 

although the projected displacement vector shifted in time by 7r /2 radians moves in 

phase with the corresponding projected velocity vector. The constants are chosen as 

for Figure 3.14.2. 



231 

displacement of interest and then counting off the same number of square markers 

on the projected velocity hodograph starting from the square marker at the top of 

the projected velocity hodograph (since at t=O the projected velocity is purely along 

the +y-axis) in a counter-clockwise direction to obtain the corresponding projected 

velocity or vice versa. Alternatively, if the projected velocity hodograph plot is ro

tated clockwise through 7r /2 radians about the geometric centre of the ellipse, it is 

apparent that the corresponding projected displacements, projected velocities and 

the origin are not collinear except at the vertices of the ellipses. Note, however, that 

the projected radial vector (1' X P)(t) with the addition of 7r/2 radians to its argu

ment, i.e. (1' X P)(7r/2+t) moves in phase with the vector (70 x P)(t) since projected 

radii drawn from the origin to the solid round time markers on the projected orbit 

also pass through the solid square time markers on the projected velocity hodograph. 

This behaviour is also apparent from the parametric representation of the plane polar 

angle between the projected displacement and the x-axis which can be expressed in 

terms of the tangent of a function of t which can be converted into an equation of 

the same form as that for the parametric representation of the plane polar angle be

tween the projected velocity and the x-axis which involves a cotangent of the same 

function of t through the addition of 7r /2 radians to the argument of the tangent 

function and vice versa (see (1.7.21)-(1.7.22)). Further, as in the case of the three

dimensional isotropic harmonic oscillator (see Figure 1.7.3), the sum of the plane 

polar angle between the projected displacement and the x-axis at the time (7r /2 - t) 
and the plane polar angle between the projected velocity and the x-axis at the time 

t is equal to 7r radians realising that the solid round and solid square time markers on 

the projected orbit and projected velocity hodograph respectively represent the pro

jected displacement and projected velocity of the particle at the regular time intervals 

iT/24 = i7r/(12)'*), i = 0, ... ,24 and so an addition of 7r/2 radians to the argument 

of time represents a shift of 6 consecutive time markers along either the projected 

orbit or the projected velocity hodograph which does not necessarily correspond with 

a plane polar angular shift of 7r /2 radians. In other words the regular time intervals 

do not correspond with regular increments of the plane polar angles and as a result 

the collinearity between the origin, the projected displacements shifted in time by 

7r /2 radians and the projected velocities is no longer present when the markers are 

drawn at regular increments in terms of the plane polar angles. In summary, the 

phase difference between l' and 70 is not constant in the monopole-oscillator prob

lem which is also the case between l' X P and 70 x P for the projected quantities of 

the monopole-oscillator problem although in the projected problem the origin, the 

displacements shifted in time by 7r /2 radians and the velocities are collinear. 
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The relationship between the periodic time of the orbit and the length of the gener

alised semi-major axis 'r max is identical to that shown in Figure 1. 7.11 for the family 

of orbits which have the same generalised semi-major axis lengths as those shown 

in Figure 1.7.10. It must be appreciated, however, that R, the generalised semi

major axis, is a factor 1/ sin a times larger than the semi-major axis length of the 

orbit projected into the xv-plane whilst 11 is equal in magnitude to ,\* for the equiv

alent problem in the plane and as a result the ratio T = 21l' /w = 21l' /,\* is form 

invariant for the choice of initial conditions described earlier in §3.14. 

From (3.14.55) we obtain a rather important result. The intersection of a suitable 

elliptical cylinder with axis of symmetry lying in the ¢-plane and a right circular 

cone with apex on the ¢-plane and axis of symmetry perpendicular to the plane 

has a projection in the ¢-plane which describes a geometric-centred ellipse. Al

ternatively from (3.14.53) the intersection of a suitable hyperbolic sheet with axis 

of symmetry lying in the ¢-plane and the right circular cone described above also 

has a geometric-centred elliptical projection in the ¢-plane. In contrast, the MICZ 

problem showed that the intersection of a plane and a right circular cone with apex 

on the ¢-plane and axis of symmetry perpendicular to the plane has a projection 

in the ¢-plane which describes a focus-centred conic. These two results give a geo

metric interpretation of the reasons for the difference in location of the origin in both 

the Kepler and three-dimensional isotropic harmonic oscillator problems. In most 

textbooks dealing with the subject, the connection between the orbit of the Kepler 

problem and the plane section of the cone is usually mentioned. However, no expla

nation as to why this is the case has been proposed. In fact the geometric-centred 

elliptical orbit of the three-dimensional isotropic harmonic oscillator is also an ellip

tical conic section, although from what we have seen above its connection with the 

cone is more involved. The results above demonstrate that the plane section of the 

cone is naturally associated with the plane polar focus-centred representation of the 

conic section and the intersection of the elliptical cylinder with the cone with the 

geometric-centred cartesian representation of an ellipse. 

Figure 3.14.7 shows the orbit for the monopole-oscillator where 11 = 8L2 /9 - ,\2/9. 

The diagram shows the right circular orbital cone extending along the line of P with 

origin at the apex of the cone. The equation of motion in this case is given by (3.13.1) 

with the corresponding orbit equation (3.14.6) whilst for the projection of the motion 

into the ¢-plane, the equation of motion is given by (3.13.26) with corresponding 

orbit equation 11' X PI 2 equal to L2 times equation (3.14.6). The energy of this 

orbit, 11 , is chosen to be 1.1824 whilst the argument of the cosine term in (3.14.6) is 



Figure 3.14.7. The monopole-oscillator orbit for JL = 8L2 /9_)..2 /9. The radial vectors 

move on the surface of a right circular cone extending along the line of P with origin 

at the apex of the cone. The heads of the radial vectors move on the surface of a 

frustrum of the orbital cone. The orbit has two-fold rotational symmetry about P 

and circles the origin three times before closing. The projections of the orbit onto 

planes parallel to the xy, xz and y z planes are also shown. The constants have the 

values w = 0.4289, P = 3.4225, ).. = 2.8794, a = 0.5711, L = 1.85 and 11 = 1.1824. 

The origin is not enclosed by the orbit. 
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2(</y - </Yo)/3. The orbit is closed since (L2 - p)t and (L2 + ,\2)t are commensurate 

and circles the origin three times before closing. The tips of the radial vectors move 

on the surface of a frustrum of the orbital cone whilst the orbit in the </y-plane has 

two interlocking lobes which are a reflection of the periodicity of the cosine term of 

(3.14.6). The orbit on the cone has two-fold rotational symmetry about P. The 

origin is not enclosed by the orbit. In order to illustrate the behaviour more clearly, 

projections of the orbit onto planes parallel to the xy, xz and yz planes are shown, 

together with the projected images of the cones onto the respective planes. The 

magnitude of the angular momentum is constant throughout the motion. 

Figure 3.14.8 shows the velocity hodograph for the monopole-oscillator where 

p = 8L2 /9 - ,\2/9. In order to illustrate the r behaviour more clearly, projections of 

the velocity hodograph onto planes parallel to the xi and yi planes are also shown 

and seen to display a certain symmetry. The velocity hodograph is also closed. 

Figure 3.14.9 shows the orbit for the monopole-oscillator where p = -8L2 - 9,\2. 

The diagram shows the right circular orbital cone extending along the line of P with 

origin at the apex of the cone. The equation of motion in this case is given by (3.13.1) 

with the corresponding orbit equation (3.14.6) whilst for the projection of the motion 

into the </y-plane, the equation of motion is given by (3.13.26) with corresponding 

orbit equation Ir x PI 2 equal to L2 times equation (3.14.6). The energy of this 

orbit, II, is chosen to be 5.4230 whilst the argument of the cosine term in (3.14.6) 

is 6(</y - </Yo). The orbit is closed since (L2 - p)t and (L2 + ,\2)t are commensurate 

and circles the origin only once before closing. The tips of the radial vectors move on 

the surface of a frustrum of the orbital cone whilst the orbit in the </y-plane has six 

distinct bulges which are a reflection of the periodicity of the cosine term of (3.14.6). 

The orbit on the cone has six-fold rotational symmetry about P. The origin is not 

enclosed by the orbit. In order to illustrate the behaviour more clearly, projections 

of the orbit onto planes parallel to the xy, xz and yz planes are shown, together with 

the projected images of the cones onto the respective planes. The magnitude of the 

angular momentum is constant throughout the motion. 

Figure 3.14.10 shows the velocity hodograph for the monopole-oscillator where 

p = -8L2 - 9,\2. In order to illustrate the r behaviour more clearly, projections 

of the velocity hodograph onto planes parallel to the xi and yi planes are also shown 

and seen to display a certain symmetry. The velocity hodograph is also closed. 



Figure 3.14.8. The monopole-oscillator velocity hodograph for f1 = 8L2 /9 - ).2/9. 

The projections of the velocity hodograph onto planes parallel to the xi and iJi planes 

are also shown. The constants are chosen as for Figure 3.14.7. The origin is enclosed 

by the velocity hodograph. 



Figure 3.14.9. The monopole-oscillator orbit for J1 = -8L2 - 9,\2. The radial vectors 

move on the surface of a right circular cone extending along the line of P with origin 

at the apex of the cone. The heads of the radial vectors move on the surface of a 

frustrum of the orbital cone. The orbit has six-fold rotational symmetry about P 

and circles the origin only once before closing. The projections of the orbit onto 

planes parallel to the xy, xz and yz planes are also shown. The constants have the 

values w = 0.4289, P = 3.4225, ,\ = 2.8794, 0:' = 0.5711, L = 1.85 and II = 5.4230. 

The origin is not enclosed by the orbit. 
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Figure 3.14.10. The monopole-oscillator velocity hodograph for 11 = -SL2 -9,\,2. The 

projections of the velocity hodograph onto planes parallel to the xi and iJi planes 

are also shown. The constants are chosen as for Figure 3.14.9. The origin is enclosed 

by the velocity hodograph. 



234 

3.15 The Geometry of the Monopole-Free Particle 

The treatment of the monopole-free particle closely follows that for the monopole

oscillator problem. Again the motion takes place on a right circular cone of semi

vertex angle a and axis of symmetry along the line of P. Although the angular 

momentum, L, is not conserved, its magnitude, L, is. Since [P,L,1'j is zero, L 

describes a right circular cone of semi-vertex angle (7r /2 - a). The salient features of 

the geometry are depicted in Figure 3.15.1 which shows the orientation of the larger 

orbital and smaller angular momentum cones which meet at the origin and a typical 

orbit for the case J.l = -A2. Note from the diagram how the vector P is constructed 

from the vectors L and -AT, where -AT is in the opposite direction to l' and scaled 

by A. 

Applying the same method as used to determine the orbit equation of the monopole

oscillator gives using (3.13.14) and (3.14.5) 

(3.15.1) 

where we have chosen the positive root of (3.15.1), i.e. the argument of the cosine 

is restricted to the interval (-7r /2, 7r /2). When J.l = _A2
, the projection of the orbit 

on the </>-plane is a straight line and so the orbit on the cone is a hyperbola. When 

J.l =I _A2
, the projection of the orbit on the </>-plane is reminiscent of a Newton-Cotes 

spiral and the orbit on the cone is a twisted hyperbola. Some representative orbits 

and their projections are depicted in Figures 3.15.2-3.15.7. 

The monopole-free particle with J.l = _A2 belongs to the class of problems studied 

previously in §§3.1-3.11 which possess a Laplace-Runge-Lenz analogue. Using the 

notation of equation (3.1.15) with h(r) = -A/r and k = 0, the Laplace-Runge-Lenz 

analogue (3.1.14) is found to be 

J = rxL + ~L = rxP. 
r 

(3.15.2) 

The scalar product of (3.15.2) with P is zero and hence J is perpendicular to P and 

lies on the plane. The scalar product of (3.15.2) with l' reveals that the projection of 

l' onto J is a constant L2 / J = L / (2H) ~ and so the motion is on a plane perpendicular 

to J and hence parallel to P. This is consistent with the orbit on the cone describing 

a hyperbola. 



J,-N 

cone ofL 

Figure 3.15.1. The typical geometry of the monopole-free particle orbit when 

/l = _,\2. The larger orbital and smaller angular momentum cones are shown 

together with a typical hyperbolic orbit and the orientation of P, J, -N and S. 

The origin 0 is at the point of contact between the two cones, F is the focus of the 

hyperbola and A marks the geometric centre of the hyperbola. B marks the point 

of closest approach from O. The orbit is a conic section as are certain projections. 

a and 7r /2 - a are the semi-vertex angles of the orbital and angular momentum cones 

respectively, 'lj; is the angle between J and l' and f3 is between P and J. 
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The geometry of the monopole-free particle in the case f.l = -,A 2 is identical to that 

described in Figures 3.7.3 and 3.7.4. Figure 3.15.2 shows the hyperbolic orbit for 

the monopole-free particle where f.l = _,A2 for a different set of initial conditions 

from those used in Figure 3.7.3. The diagram shows the right circular orbital cone 

extending along the line of P with origin at the apex of the cone. The equation 

of motion in this case is given by (3.13.2) with the corresponding orbit equation 

(3.15.1) whilst for the projection of the motion into the </>-plane, the equation of mo

tion is given by (3.13.27) with corresponding orbit equation 11' x PI equal to L times 

equation (3.15.1). The energy of this orbit, J1 , is chosen to be 0.4771 whilst the argu

ment of the cosine term in (3.15.1) is (</> - </>0). The orbit is not closed and approaches 

asymptotically before leaving asymptotically, a process which is repeated for the pro

jection of the orbit in the </>-plane. The orbit on the cone is hyperbolic as is the yz 

projection of the orbit and correspondingly the xy and xz projections of the orbit 

are straight lines. The orbit on the cone has no rotational symmetry about P. The 

origin is not enclosed by the orbit. In order to illustrate the behaviour more clearly, 

projections of the orbit onto planes parallel to the xy, xz and yz planes are shown, 

together with projections of the angular momentum curve and the projected images 

of the cones onto the respective planes. The magnitude of the angular momentum is 

constant throughout the motion. 

Figure 3.15.3 shows the straight-line velocity hodograph for the monopole-free par

ticle where f.l = _,A2 for a different set of initial conditions from those used in 

Figure 3.7.4. In order to illustrate the r behaviour more clearly, projections of the 

velocity hodograph onto planes parallel to the xy, xi and yi planes are also shown, 

together with the projected images of the orbital cone onto the respective planes. 

The velocity hodograph is bounded at both ends by the tangents to the asymptotes 

of the orbit on the cone. 

From (3.7.10) we obtain a rather important result. The intersection of a suitable 

hyperbolic sheet with axis of symmetry lying perpendicular to the </>-plane and a 

right circular cone with apex on the </>-plane and axis of symmetry perpendicular 

to the plane has a projection in the </>-plane which describes a straight line. Al

ternatively from (3.7.9.1) and (3.7.9.2) the intersection of a plane perpendicular to 

</>-plane and the right circular cone described above also has a straight-line projec

tion in the </>-plane. Since the monopole-free particle problem with f.l = -P is also 

an MICZ monopole, the degenerate conic section in the </>-plane describing the three

dimensional free particle orbit (3.7.11) is consistent with either the projection of a 



cP!O 
Figure 3.15.2. The monopole-free particle hyperbolic orbit and angular momentum 

curve for f1 = _).2 with a selection of displacement and angular momentum vectors 

drawn from the origin. The radial and angular momentum vectors move on the 

surfaces of two right circular cones extending in opposite directions along the line of 

P with origin and point of contact at the apices of the two cones. The projections 

of the orbit and angular momentum curve onto planes parallel to the xy, xz, yz, 

LxLy, LxLz and LyLz planes are also shown. The constants have the values w = 0, 

P = 3.4225, ). = 2.8794, a = 0.5711, L = 1.85 and J1 = 0.4771. The origin lies out 

of the orbital plane. 



Figure 3.15.3. The monopole-free particle straight-line velocity hodograph and 

hyperbolic orbit for f1 = -.\2 with a selection of velocity vectors drawn from the 

origin. The velocity vectors move on a plane which is parallel to the orbital plane 

and, as t ranges from negative through positive infinity, the velocity vectors sweep 

out a plane isoceles triangle lying in the yi-plane with base of length 2.\J / LP and 

height J / P. The projections of the velocity hodograph and orbit onto planes parallel 

to the xy, xz, yz, xy, xz and yz planes are also shown. The constants are chosen as 

for Figure 3.15.2. The origin lies in the hodographic plane touching one vertex of the 

triangle. 
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plane conic section or the projection of the intersection of a hyperbolic sheet with a 

right circular cone. 

Figure 3.15.4 shows the orbit for the monopole-free particle where f1 = 35L2 /36 -

,\2/36. The diagram shows the right circular orbital cone extending along the line of 

P with origin at the apex of the cone. The equation of motion in this case is given 

by (3.13.2) with the corresponding orbit equation (3.15.1) whilst for the projection 

of the motion into the ¢-plane, the equation of motion is given by (3.13.27) with 

corresponding orbit equation 11' x PI equal to L times equation (3.15.1). The energy 

of this orbit, J1 , is chosen to be 0.0133 whilst the argument of the cosine term 

in (3.15.1) is (¢ - ¢0)/6. The orbit is not closed and spirals inwards asymptotically, 

circles the origin twice before spiralling outwards asymptotically, a process which is 

repeated for the projection of the orbit in the ¢-plane. The orbit on the cone has no 

rotational symmetry about P. The origin is not enclosed by the orbit. In order to 

illustrate the behaviour more clearly, projections of the orbit onto planes parallel to 

the xy, xz and yz planes are shown, together with the projected images of the cones 

onto the respective planes. The magnitude of the angular momentum is constant 

throughout the motion. 

Figure 3.15.5 shows the velocity hodograph for the monopole-free particle where 

f1 = 35L2 /36 - ,\2/36. In order to illustrate the r behaviour more clearly, projections 

of the velocity hodograph onto planes parallel to the xi and yi planes are also shown 

and seen to display a certain symmetry. The velocity hodograph is bounded at both 

ends by the tangents to the asymptotes of the orbit on the cone. 

Figure 3.15.6 shows the orbit for the monopole-free particle where f1 = -3L2 - 4,\2. 

The diagram shows the right circular orbital cone extending along the line of P with 

origin at the apex of the cone. The equation of motion in this case is given by (3.13.2) 

with the corresponding orbit equation (3.15.1) whilst for the projection of the motion 

into the ¢-plane, the equation of motion is given by (3.13.27) with corresponding 

orbit equation 11' x PI equal to L times equation (3.15.1). The energy of this orbit, J1 , 

is chosen to be 1.9083 whilst the argument of the cosine term in (3.15.1) is 2( ¢ - ¢o). 

The orbit is not closed and approaches asymptotically before leaving asymptotically, 

a process which is repeated for the projection of the orbit in the ¢-plane. The 

orbit on the cone is hyperbolic as are the xy and xz projections of the orbit and 

correspondingly the xz projection of the orbit is a straight line. The orbit on the 

cone has no rotational symmetry about P. The origin is not enclosed by the orbit. 

In order to illustrate the behaviour more clearly, projections of the orbit onto planes 



Figure 3.15.4. The monopole-free particle orbit for J.l = 35L2 /36 - ,\2/36. The 

radial vectors move on the surface of a right circular cone extending along the line 

of P with origin at the apex of the cone. The orbit on the cone resembles a twisted 

hyperbola which approaches asymptotically, circles the origin twice before leaving 

asymptotically. The projections of the orbit onto planes parallel to the xy, xz and yz 

planes are also shown. The constants have the values w = 0, P = 3.4225, ,\ = 2.8794, 

Q' = 0.5711, L = 1.85 and J1 = 0.0133. The origin is not enclosed by the orbit. 



Figure 3.15.5. The monopole-free particle velocity hodograph for J1 = 35L2 /36 -

.,\2/36. The projections of the velocity hodograph onto planes parallel to the xi and 

iJi planes are also shown. The constants are chosen as for Figure 3.15.4. The origin 

is enclosed by the velocity hodograph. 



Figure 3.15.6. The monopole-free particle orbit for J-l = -3L2 - 4).2. The radial 

vectors move on the surface of a right circular cone extending along the line of P 

with origin at the apex of the cone. The orbit on the cone is hyperbolic. The 

projections of the orbit onto planes parallel to the xy, xz and yz planes are also 

shown. The constants have the values w = 0, P = 3.4225, ). = 2.8794, a = 0.5711, 

L = 1.85 and J1 = 1.9083. The xy and yz projections of the orbit are also hyperbolic 

while the xz projection is a straight-line. The origin is not enclosed by the orbit. 



.t-l 0 

Figure 3.15.7. The monopole-free particle velocity hodograph for f1 = -3L2 - 4).2. 

The projections of the velocity hodograph onto planes parallel to the xi and yi planes 

are also shown. The constants are chosen as for Figure 3.15.6. 
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parallel to the xy, xz and yz planes are shown, together with the projected images 

of the cones onto the respective planes. The magnitude of the angular momentum is 

constant throughout the motion. 

Figure 3.15.7 shows the velocity hodograph for the monopole-free particle where 

fl = -3L2 - 4A2. In order to illustrate the r behaviour more clearly, projections of 

the velocity hodograph onto planes parallel to the xz and yz planes are also shown. 

The velocity hodograph is bounded at both ends by the tangents to the asymptotes 

of the orbit on the cone. 

3.16 The Geometry of the Monopole-Repulsor 

The treatment of the monopole-repulsor closely follows that for the monopole

oscillator problem. Again the motion takes place on a right circular cone of semi

vertex angle a and axis of symmetry along the line of P. Although the angular 

momentum, L, is not conserved, its magnitude, L, is. Since [P, L, 1'l is zero, L de

scribes a right circular cone of semi-vertex angle (7r /2 - a). The salient features of 

the geometry are depicted in Figure 3.16.1 which shows the orientation of the larger 

orbital and smaller angular momentum cones which meet at the origin and a typical 

orbit for the case fl = _A2. Note from the diagram how the vector P is constructed 

from the vectors L and -AT, where -AT is in the opposite direction to l' and scaled 

by A. 

Using the methods described earlier, (3.13.19) and (3.14.5) can be solved to obtain 

the orbit equation 

(3.16.1) 

provided L2 - fl > O. The value of T' becomes infinite when the denominator 

of (3.16.1) becomes zero. This happens for 

/{l 
cos 21f; = - 1 , 

(/{; + w2 (L2 - fl)) 2 

(3.16.2) 



cone ofr 

cone of L 

Figure 3.16.1. The typical geometry of the monopole-repulsor orbit when J1 = _).2. 

The larger orbital and smaller angular momentum cones are shown together with a 

typical orbit and the orientation of P. The origin 0 is at the point of contact between 

the two cones and A marks the point of closest approach from O. The orbit is not 

a conic section although certain projections are conic sections. 0: and 7r /2 - 0: are 

the semi-vertex angles of the orbital and angular momentum cones respectively. The 

angular momentum is constant in magnitude but not in direction. 
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where'ljJ denotes the argument of the cosine function in (3.16.1). In the case fl = _,\2 

the projection of the orbit in the 1>-plane is an hyperbola centred on O. On the 

cone, however, the orbit is no longer hyperbolic, but fits the cone in such a way 

that the projection remains hyperbolic. It is now a simple matter to plot the orbit 

remembering that the polar angle a remains constant. In cartesian coordinates 

x r sin a cos 1> 

y r sin a sin 1> 

z r cos a, (3.16.3) 

where r is calculated from (3.16.1), and a is determined either from (3.14.1) 

or (3.14.2). Equation (3.16.1) is very reminiscent of the orbit equation for the three

dimensional isotropic repulsor which is not surprising since for fl = _,\ 2
, (3.13.3) 

can be rewritten as an isotropic repulsor as shown earlier in (3.13.28). The roles of 
1 1 

fl and ,\ can be seen in (3.16.1). When (L2 - fl)2 > (L2 + ,\2)2, the range of 1> is 
1 1 

reduced. However, when (L2 - fl)2 < (L2 + ,\2)2, the range of 1> is increased and 

the projection of the orbit in the azimuthal plane may spiral around the origin if 
1 1 

(L2 - fl)2 /(L2 + ,\2)2 is sufficiently small. For fl = _,\2 the orbit is unbounded as 

t ranges from negative through positive infinity and the projection of the orbit onto 

the azimuthal plane is hyperbolic. The orbit on the cone is not hyperbolic, but rather 

is as if the hyperbola were lifted from the plane and bent to fit onto the surface of 

the cone. 

The treatment for the monopole-repulsor closely follows that for the monopole

oscillator. The angular momentum for the planar three-dimensional isotropic re

pulsor (3.13.28) with fl = _,\2 is given by 

LR = (r x P) x (r x P) = L2 P (3.16.4) 

and the energy integral by 

ER = ~(r x P) . (r x P) - ~W2( r x P) . (r x P) = L 2 f{l. 
2 2 

(3.16.5) 

In addition to these integrals a unit Laplace-Runge-Lenz vector can be constructed 

for the equation of motion of the three-dimensional isotropic repulsor in the variable 

r x P using a variation of Fradkin's method described in §§1.6 and 1.7 which gives 

(3.16.6) 
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where U = 1/11' x PI = u/ Land F = (L'hU2 + (Ek + w2 L'h)1/2 - ERr/2
/ 

(4Ek + 4w2 L'h)1/4. Making the necessary substitutions, (3.16.6) can be simplified 

and scaled by JR to give 

where 

J R = ± (:~) t [wJR - ER + L~U2] -t ((wJR - ER)1' XP + 

U(r x P) x L R ), (3.16.7) 

(3.16.8) 

The choice of the arbitrary function Q(ER ) is again motivated by the structure of 

the Jauch-HilI-Fradkin analogue and is also found to be 

(3.16.9) 

which is consistent with (1.7.4). Equation (3.16.7) can be simplified following the 

procedure described in §1. 7 to give 

(3.16.10) 

and similarly the corresponding Hamilton vector can be constructed using 

The same restrictions apply as for the three-dimensional isotropic harmonic oscillator 

regarding the discontinuities and the choice of sign of the Laplace-Runge-Lenz and 

Hamilton vector analogues. In fact (3.16.10) and (3.16.11) are identical in form to 

the Laplace-Runge-Lenz and Hamilton vector analogues for the three-dimensional 

isotropic repulsor using the variable substitutions A ---+ W, l' ---+ l' X P, r ---+ r x P, 

L ---+ La remembering that the semi-transverse and semi-conjugate axis lengths 

are scaled by P as a result of the projection and so a2 / p 2 and b2 / p 2 in (3.16.11) 

and (3.16.10) respectively have the same length as a2 and b2 in the case of the three

dimensional isotropic repulsor. It should also be noted that j R and Ii R as given by 

(3.16.10) and (3.16.11) are rotated counter-clockwise through 7r/2 radians from the 

expected positions i and - j respectively. This is in agreement with the projection 

of the orbit into the fj>-plane which is also rotated counter-clockwise through 7r /2 

radians and scaled by P. In the diagrams that follow J Rand K R will be rotated 
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clockwise through 7r /2 radians to lie along the cartesian unit vectors i and - j respec

tively in such a way that when the cone is rotated about the x-axis so that Plies 

along k, J 0 and K 0 lie along the cartesian vectors i and j respectively and hence 

mimic the behaviour of L, J and K respectively of the standard three-dimensional 

isotropic repulsor. 

The choice of the arbitrary function Q(ER ) (3.16.9) gives rise to the Jauch-Hill

Fradkin tensor analogue 

Aj = [Q(ER) =t= [Q 2(ER) + L~]~] fRiJ~j + 

[Q(ER) ± [Q2(ER) + L~]~] (p X iR)i (p x iR) j 

~ ((r x P)i(r x P)j - w2 (1' X P). (1' X P).) . 
W 1 J 

(3.16.12) 

Making the substitution l' x P = u and scaling (3.16.12) by w gives the equation of 

the velocity hodograph 

(3.16.13) 

Since P is constant, the motion is planar and for convenience we assign U3 to be the 

variable in the direction of P. The eigenvalues of the 2x2 matrix in (3.16.13) which 

determine the velocity hodograph in the plane are 

1 

).. = ER =t= (E1 + w2L~r, (3.16.14) 

and, if we rotate the velocity hodograph (3.16.13) so that the cartesian unit vectors 

i and j become principal axes we obtain 

( 
UI ) 2 _ ( U2 ) 2 _ 1 

(ER+(Ek+w2Lh)~)~ ((Ek+W2Lh)~-ER)~ -. 
(3.16.15) 

Equation (3.16.15) can be simplified to obtain 

(3.16.16) 
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which is the equation of a hyperbola symmetrically placed about the y-axis with 
1 ' 

vertices at (0,±L(K1 + (Kf +W2P2)t)2/p), foci at (0,±L(4(Kf +W2P2))t/p), 
1 1 

eccentricity of (4(K12 + W2P2)) 4" ((I<12 +W2P2)t -K1 )2/(WP) and centre at (0,0). 

The equation of the orbit is then given by 

(3.16.17) 

If we rotate the orbit (3.16.17) so that the cartesian unit vectors i and j become the 

principal axes we obtain 

(3.16.18) 

Equation (3.16.18) can be simplified to obtain 

(3.16.19) 

which is the equation of a hyperbola symmetrically placed about the x-axis, vertices 
1 1 

at (±L ((I<f + w2 P2)t - Kl) 2 /(wP), 0), foci at (±L (4(Kf + w2 P2)) 4" /(wP), 0), 
1 1 

eccentricity of (4(I<12 + w2 P2)) 4" ((I<12 + w2 P2)~ + Kl) 2/(WP) and centre at (0,0). 

Note also that w 2 times equation (3.16.16) is conjugate to (3.16.19) and also that the 

sum of the inverse squares of the eccentricities of (3.16.19) and (3.16.16) add to unity 

as for a conjugate pair of hyperbolae. The asymptotes for both sets of hyperbolae 
1 1 

are given by y = ± (Kl + (Kf + w2 P2)t) 2 x/ ((I<f + w2 P2)~ - Kl) 2. Note that 

both (3.16.16) and (3.16.19) describe the projection of the velocity hodograph and the 

orbit in the ¢-plane without the scaling by P since the equations are now written in 

terms of the components of rand l' rather than those of r x P and l' x P respectively. 

The presence of two orthogonal vectors in the xy-plane would seem to suggest the 

existence of additional vectors lying out of the plane but which would project onto 

the line of J Rand K R in the xy plane. Two such vectors are given by 

)"JR A 

U=±JR--P 
L ' 

(3.16.20) 
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which lie on the surface of the cone collinear with the two vectors directed from the 

origin to the points of closest and furthest approach (infinity), respectively. Two 

other such vectors are given by 

(3.16.21) 

Note that P x U ±K Rand P x V = ~J R. Different linear combinations of 

the vectors shown above can also be constructed. However, they are not nearly as 

important as those described above because they do not appear to provide any useful 

additional geometric information on the monopole-oscillator problem. 

In the case fl = _.\2 the parametric equations for the orbit can be obtained by 

substituting for r from (3.16.1) in (3.16.3) to give 

L cos cjJ 
x = 1 

(Kl + (Kf + w2 P2) ~ cos 2cjJ) 2 

L sin cjJ 
y 1 

(Kl + (I<f + w2 P2) ~ cos 2cjJ) 2 

z 1 • 

(I<l + (Kf + w2 P2)~ cos 2cjJ r (3.16.22) 

For this case the equation of motion (3.13.28) becomes that of the three-dimensional 

isotropic repulsor in the variable l' X P. The orbit equation is then given by 

L2p2 
11' X PI 2 = L2r2 = 1, 

Kl + (Kl 2 + w2 p2) 2 cos 2cjJ 
(3.16.23) 

z.e. the projection of the orbit into the cjJ-plane describes a geometric-centred hy

perbola symmetrically placed about the x-axis with the centre at the intersection of 

P and the cjJ-plane. It is well known that the intersection of a plane and a right cir

cular cone describes a conic section on the cone. However, in this case, although the 

projection of the orbit on the cone into the cjJ-plane describes a geometric-centred 

hyperbola, the orbit on the cone does not lie on a plane. The xz and yz projections of 

the orbit will be studied later in the section where it will be shown that this peculiar 

geometry is the result of the intersection between the cone and a surface which is 

closely related to two different conic sections. This association gives an interesting 

geometric interpretation as to why the repulsor hyperbola differs from that of the 
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Kepler problem. The eccentricity of the orbital hyperbola is given by 

(3.16.24) 

which no longer appears to be related in a transparent way to the slope of the cone 

(cot 0:) as was the case in the MICZ problem. Note also that P behaves like L in the 

standard three-dimensional isotropic repulsor. 

It is easy to show using the orbit equation (3.16.1) that the minimum length of the 

vector 1', r min on the surface of the cone is reduced in length by the factor sin 0: 

when projected into the </>-plane due to its inclination with respect to P and so the 

projection 

. L (( 2 2 2)1 T)~ 11 I rminsmo: = wP Kl +w P 2 -lil = P l' X P min, (3.16.25) 

IS consistent with the result for the semi-transverse axis length of the projected 

hyperbola from (3.16.19) up to a scaling factor of P and ignoring the rotation brought 

about by the transformation. Note also that the orbit on the cone does not lie in a 

plane as was the case for the monopole-Kepler problem. The orbit resembles a bent 

hyperbola which is draped over the cone in such a way that its projection describes 

a geometric-centred hyperbola. 

The parametric equations for the velocity hodograph can be obtained by differen

tiating the cartesian components x, y and z (3.16.22) and substituting for </> = 

-L/(r2 sin 0:) to give 

x 
((I<; + w2 P 2

) ~ - K 1) sin 0: sin </> 
1 

(I<1 + (Kf + w2 P2)~ cos 2</> r 
(I<1 + (K; + w2 P2)~) sin 0: cos </> 

1 

(Kl + (I<f + W2P2)~ cos2</» 2 

y 

z 
(K; + w2 P2)~ cos 0: sin 2</> 

1 • 

(I<1 + (Kf + W2P2)~ cos2</» 2 

(3.16.26) 
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The values of the constants used to draw Figures 3.16.2 and 3.16.3 were calculated 

in the same way as was done for the monopole-oscillator case, except that the cal

culations were done using the semi-transverse and semi-conjugate axes in place of 

the semi-major and semi-minor axes respectively, in the equivalent calculations to 

those determining equations (3.14.43)-(3.14.50). In the subsequent discussion, the 

starred quantites will be used to denote the constants used in the three-dimensional 

isotropic repulsor. The resulting equations for P, w, ]{1, .\ and a were found to be 

identical in structure to those of (3.14.46)-(3.14.50) replacing occurences of 11 by the 

energy of the monopole-repulsor, ]{1, and E* by the energy of the three-dimensional 

isotropic repulsor. The constants have the values Ilk = 1.25, ()~ = 0, ak = 1.8939, 

.\* = (llk/ak3)t, E* = -0.1906 and L* = 1. For convenience, L was chosen to be 1.85 

and using the values for the starred quantities given above, P, w, ]{1, .\ and a were 

calculated using (3.14.46)-(3.14.50). The magnitude of J R was found to be 

(3.16.27) 

Figure 3.16.2 shows the orbit for the monopole-repulsor where 11 = -.\2. The diagram 

shows the two right circular orbital and angular momentum cones which extend in 

opposite directions along the line of P with origin and point of contact at the apices 

of the two cones. A selection of displacement and corresponding angular momentum 

vectors has been drawn from the origin to their respective positions on the orbital and 

angular momentum cones. The orbit resembles a bent hyperbola which is draped over 

the cone in such a way that its xy projection describes a geometric-centred hyperbola. 

The origin is not enclosed by the orbit. In order to illustrate the behaviour more 

clearly, projections of the orbit onto planes parallel to the xy, xz and yz planes are 

shown, together with projections of the angular momentum curve and the projected 

images of the cones onto the respective planes. The constant magnitude of the angular 

momentum is reflected by the angular momentum vectors moving on the surface of 

a cone which is truncated perpendicular to the axis of symmetry to a height of 

L2 I P below the origin. The components of the angular momentum are given by 

L = ('\L cos <PI P,.\L sin <PI P, _L2 I P) using (3.16.22) and (3.16.26). The two short 

line segments drawn perpendicular to the angular momentum curve indicate the 

limits of extent of the angular momentum as t ranges from negative through positive 

infinity. 
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Figure 3.16.2. The monopole-repulsor orbit and angular momentum curve for 

f1. = _).,2 with a selection of displacement and angular momentum vectors drawn 

from the origin. The radial and angular momentum vectors move on the surfaces 

of two right circular cone extending in opposite directions along the line of P with 

origin and point of contact at the apices of the two cones. The projections of the orbit 

and angular momentum curve onto planes parallel to the xy, xz, yz, LxLy, LxLz and 

LyLz planes are also shown. The constants have the values w = 0.4289, P = 3.4225, 

)., = 2.8794, a = 0.5711, L = 1.85 and J{l = -0.6524. The origin is not enclosed by 

the orbit. 
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The xy projection of the orbit is hyperbolic as described by the first two equations 

of (3.16.22) which can be manipulated into the form 

(3.16.28) 

which is the cartesian representation of a hyperbola symmetrically placed about the 

x = 0 and y = 0 axes, with vertices at (±a,O) where a = L((I<; +W2P2)t_ 
1 1 

Kl) 2/(WP) and b = L (Kl + (I<; +w2 P2)t) 2/(WP), foci at (±( a2+b2)t, 0), eccentric-

ityof (a2+b2)t / a and centred at the origin. The distance from the centre to a vertex a 
agrees with the length of the projection of lmin onto the <p-plane, i. e. Imin sin a. The 

transverse axis is the same length as the distance between the two vertices 2a. The 

conjugate axis has the length 2b. The asymptotes are given by y = bx/a, i.e. a combi

nation of the first and second equations of (3.16.22). The projected orbit is consistent 

with the planar hyperbolic three-dimensional isotropic repulsor orbit with 11k = 1.25, 

O~ = 0, ak = 1.8939, ,\* = (l1k/ak3)t, E* = -0.1906 and L* = 1. As t ranges from neg

ative through positive infinity, the azimuthal angle <p ranges between 1T /2 - 8 where 

8 = arccos (Kd(K; + w2 P2)~) /2 and -1T /2 + 8 and the projection ranges from 

(+00,+00) when <p = 1T/2 - 8 to (c,d) when <p = 1T/6 where c = 3b~L/(2(2Kl + 
1 1 

(K;+w2 P2)t) 2) and d = 2~ L/ (2( 2Kl +(K;+w2 P2)t r), to (a, 0) when <p = 0 where 

a = lmin sin a to (c, -d) when <p = -1T /6 to (+00, -00) when <p = -1T /2 + 8. The 

projection of the angular momentum curve onto its corresponding plane describes 

a section of a circle with radius ,\L / P symmetrically placed about the Lx-axis, 
i.e. Lx2 +L/ = (,\L/P)2. As t ranges from negative through positive infin

ity, the projection ranges from (f, g) when <p = 1T /2 - 8 where f = ,\L ((I<; + 
1 1 1 

w2 P2)t _ Kl) 2/ (2P2(K; +w2 P2)~) 2 and g = '\L( Kl + (K; +w2 P2)t) 2/ (2P2(K; + 
1 

w2 P2)t) 2 and to (3t ,\L/(2P), ,\L/(2P)) when <p = 1T /6 to ('\L/ P, 0) when <p = 0 to 

(3~'\L/(2P),-'\L/(2P)) when <p = -1T/6 to (f,-g) when <p = -1T/2+8, i.e. the 

circle is not completed even as t ranges from negative through positive infinity. The 

dotted line completes the angular momentum cone. However, it should be remem

bered that the projection of the angular momentum vectors never closes as t ranges 

from negative through positive infinity. 
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The xz projection shows the images of the orbital and angular momentum cones 

with dotted lines, together with the projections of the orbit and angular momentum 

curves. Note that the xz projection of the orbit is obtained by manipulating the first 

and third equations of (3.16.22) into the form 

(3.16.29) 

subject to the condition that 

(3.16.30) 

which is the cartesian representation of a section of a hyperbola symmetrically placed 

about the x = 0 and z = 0 axes, with vertices at (±a,O) where a = L/(4(Kf+ 
1 1 

w2 P2)) 4 and b = >. (Kl + (Kf + w2 P2)t) 2" /(wP), foci at (±( a2 + b2)t, 0), eccentricity 

of (a 2 + b2
) t / a and centred at the origin. The transverse axis is the same length 

as the distance between the two vertices 2a. The conjugate axis has the length 2b. 
The asymptotes are given by z = bx / a, i. e. a combination of the first and third 

equations of (3.16.22). The relationship between the eccentricity e of the hyperbolic 

projection in the xz-plane and that of the hyperbolic projection in the xy-plane, 

e*, is found to be e2 = m2a*2(e*2 - 1)/a2 + 1, where m is the slope of the cone, 

(cot a), and the superscript * refers to the equivalent quantities in (3.16.28). Note 

that the semi-conjugate axis lengths of both projections are not involved in the 

relationship between the two eccentricities. The magnitude of the lower limit of 

extent of the variable x which is indicated with a dotted line parallel to the z-axis 

agrees with the length of the projection of 7'min onto the xy-plane, i.e. 7'min sin a. 

The magnitude of z at this point agrees with the height of the projection of 7'min onto 

the xz-plane, i.e. 7'min cos a. As t ranges from negative through positive infinity, the 

projection ranges from (+00, +(0) when <p = 7r /2 - 8 where 8 = arccos (KI/(Kf + 
1 

w2P2)t)/2 to (c,d) when <p = 7r/6 where c = 3btL/(2(2Kl + (I{f + W2P2)t) 2") 
1 

and d = 2t>'/(2Kl + (I{f + w2p 2)tr, to (7'minsina,7'mincosa) when <p = 0 to 

(c,d) when <p = -7r/6 to (+00,+00) when <p = -7r/2 + 8. The LxLz projection of 

the angular momentum curve extends along the base of the triangle describing the 

LxLz projection of the image of the angular momentum cone, perpendicular to the 

Lz-axis. As t ranges from negative through positive infinity, the projection ranges 
1 

from (j, _L2 / P) when <p = 7r /2 - 8 where f = >'L( (I{f +w2 P2)t - K1r / (2P2(Kf + 
1 

W2P2)t)2" to (3~>'L/(2P),-L2/P) when <p = 7r/6 to (>'L/P,-L2/P) when <p = 0 
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to (3bIL/(2P),-L2/P) when <p = -7r/6 to (j,_L2/P) when <p = -7r/2 + 8, i.e. 
only a section along the length of the base of the angular momentum triangle. In 
other words the angular momentum vectors will never sweep over the entire surface 

area of the angular momentum cone even as the time ranges from negative through 

positive infinity. The short line segment drawn perpendicular to the xz projection 

of the angular momentum curve indicates the limit of extent of the projection of the 

angular momentum as t ranges from negative through positive infinity. 

The yz projection shows the images of the orbital and angular momentum cones 

with dotted lines, together with the projections of the orbit and angular momentum 

curves. Note that the yz projection of the orbit is obtained by manipulating the 

second and third equations of (3.16.22) into the form 

(3.16.31) 

which is the equation of a hyperbola symmetrically placed about the y = 0 and 
1 

z = 0 axes, with vertices at (O,±a) where a = >'((Ki +W2P2)t - K1 )2/(WP) and 
1 

b = L/(4(Ki + W2P2)) 4", foci at (0,±(a2 + b2)t), eccentricity of (a2 + b2)t/a and 

centred at the origin. The distance from the centre to a vertex a agrees with the 

length of the projection of 7'min onto the yz-plane, i.e. 7'mincosa. The transverse 

axis is the same length as the distance between the two vertices 2a. The conjugate 

axis has the length 2b. The asymptotes are given by z = ay / b, i. e. a combination 

of the second and third equations of (3.16.22). The relationship between the eccen

tricity e of the hyperbolic projection in the yz-plane and that of the hyperbolic 

projection in the xy-plane, e*, is found to be e2 = 1/m2b2(e*2 - 1)/b*2 + 1, where 

m is the slope of the cone, (cot a), and the superscript * refers to the equivalent 

quantities in (3.16.28). Note that the semi-transverse axis lengths of both projec

tions are not involved in the relationship between the two eccentricities. As t ranges 

from negative through positive infinity, the projection ranges from (+00, +00) when 

<p = 7r/2 - 8 where 8 = arccos(KI/(I<i + W2P2)t)/2 to (c,d) when <p = 7r/6 where 
1 1 

c = 2tL/(2(2Kl + (Ki + W2P2)t)2) and d = 2t>'/(2Kl + (Ki + w2p2)tr, 
to (0, 7'min cos a) when <p = 0 to (-c, d) when <p = -7r /6 to (-00, +00) when 

<p = -7r /2 + 8. The LxLz projection of the angular momentum curve extends along 

the base of the triangle describing the LxLz projection of the image of the angular 

momentum cone, perpendicular to the Lz-axis. As t ranges from negative through 

positive infinity, the projection ranges from (g, - L2 / P) when <p = 7r /2 - 8 where 
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1 1 

9 = )..L(KI + (K; +W2P2)~)2/(2P2(K; +W2p2)~r to ()..L/(2P),-L2/P) when 

<p = 7r/6 to (0,-L2/P) when <p = ° to (-)..L/(2P),-L2/P) when <p = -7r/6 to 

(_g,_L2/P) when <p = -7r/2 + 8, i.e. only a section along the length of the base 

of the angular momentum triangle. In other words the angular momentum vectors 

will never sweep over the entire surface area of the angular momentum cone even as 

the time ranges from negative through positive infinity. The two short line segments 

drawn perpendicular to the yz projection of the angular momentum curve indicate 

the limits of extent of the projection of the angular momentum as t ranges from 

negative through positive infinity. 

The conserved vector K R which has been rotated clockwise through 7r /2 radians to lie 

along the cartesian unit vector -j is given by (3.16.11) and has length 

(Ek/w2 + L~J~ and is scaled by L2 for convenience in Figure 3.16.2. The vector 

J R, which is perpendicular to K R, is also rotated clockwise through 7r /2 radians to 

lie along the cartesian unit vector i. KR also has the length (Ek/w 2 + L~J~ and 

is similarly scaled by L2 in Figure 3.16.2. The Poincare vector, P, lies along the 

cartesian unit vector -k. Note that, when the cone is rotated about the x-axis so 

that P lies along k, the vectors K Rand J R lie along the cartesian unit vectors j 

and i respectively and hence mimic the behaviour of L, K and J respectively of 

the standard three-dimensional isotropic repulsor. The Poincare vector is given by 

(3.13.4) and has components (0,0, _(L2 + )..2)~). 

Figure 3.16.3 shows the velocity hodograph for the monopole-repulsor where 

J-l = _)..2. A selection of velocity vectors corresponding to the displacement vectors 

shown in Figure 3.16.2 has been drawn from the origin to their respective positions 

on the velocity hodograph. In order to illustrate the T behaviour more clearly, pro

jections of the velocity hodograph onto planes parallel to the xy, xz and yz planes are 

also shown, together with the projected images of the orbital cone onto the respective 

planes. 

The xy projection of the velocity hodograph is obtained by manipulating the first 

two equations of (3.16.26) into the form 

(3.16.32) 
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Figure 3.16.3. The monopole-repulsor velocity hodograph and orbit for f.l = _).2 

with a selection of velocity vectors drawn from the origin. The velocity vectors 

are not confined to a plane although, as t ranges from negative through positive 

infinity, the heads of the velocity vectors projected into the xy-plane trace out a 

hyperbola. The projections of the velocity hodograph and orbit onto planes parallel 

to the xy, xi, yi, xy, xz and yz planes are also shown. The constants are chosen as for 

Figure 3.16.2. 
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which is the cartesian equation of a hyperbola symmetrically placed about the x = 0 
1 

and if = 0 axes, with vertices at (O,±a) where a = L(KI + (I<i +W2P2)t)2 /P and 
1 

b = L ((K;+W2 P2)t -K1) 2 / P, foci at (0, ±( a2+b2)t), eccentricity of (a2+b2)t / a and 

centred at the origin. The transverse axis is the same length as the distance between 

the two vertices 2a. The conjugate axis has the length 2b. The asymptotes are 

given by if = ax/b, i.e. a combination of the first and second equations of (3.16.26). 

Note that the asymptotes of (3.16.32) have the same gradient as the asymptotes 

of (3.16.28) which confirms that w2 times (3.16.32) is conjugate to (3.16.28). The 

projected velocity hodograph is consistent with the planar velocity hodograph for the 

hyperbolic three-dimensional isotropic repulsor with 11k = 1.25, ()~ = 0, ak = 1.8939, 

).* = (l1k/ ak3)t, E* = -0.1906 and L* = 1. As t ranges from negative through 

positive infinity, the projection ranges from (-00, -(0) when ¢ = 71'/2 - 8 to (-c, -d) 
1 

when ¢ = 71'/6 where c = 2t L((I<; +w2 P2)t - Kl) / (2P( 2Kl + (K; +w2 P2)t) 2) and 
1 

d = 3t2~L( Kl + (K; + w2 P2)t)/ (2P(2Kl + (I<i + w2 P2)t) 2) and to (0, -a) when 
1 

¢ = 0 where a = L (Kl + (K; +w2 P2)t) 2 / P which is w times the semi-conjugate axis 

length of (3.16.28), to (c,-d) when ¢ = -71'/6 to (+00,-00) when ¢ = -71'/2+8, i.e. 
the projection of the velocity vectors describes a hyperbola as t ranges from negative 

through positive infinity. 

The xi projection shows the images of the orbital cone with dotted lines, together 

with the respective projections of the orbit and velocity hodograph. Note that the xi 
projection of the velocity hodograph is obtained by manipulating the first and third 

equations of (3.16.26) into the form 

.2 4B2 cot2 o:x2 ( (B - A) sin2 
0: + x2 ) 

Z = (B _ A) (B - A)2 sin2 0: + 2Bx2 ' (3.16.33) 

where A = Kl and B = (I<; + w2 P2)t, which is closely related to (3.14.58). As t 
ranges from negative through positive infinity, the projection ranges from (-00, -(0) 

when ¢ = 71'/2-8 to (-c,-d) when ¢ = 71'/6 where c = 2tL((I<i+w2P2)t-
1 

Kl)/(2P(2Kl + (K; +w2p2)tr) and d = 3bL\(K; +W2P2)t/(2P(2Kl + (K; + 
1 

w2 P2)t r) and to (0,0) when ¢ = 0 to (c, d) when ¢ = -71'/6 to (+00, +(0) when 

¢ = -71'/2 + 8. 
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The iJi projection shows the images of the orbital cone with dotted lines, together 

with the respective projections of the orbit and velocity hodograph. Note that the 

iJi projection of the velocity hodograph is obtained by manipulating the second and 

third equations of (3.16.26) into the form 

.2 = 4B2 cot 2 aiJ2 ( iJ2 - (A + B) sin2 a ) 
z (A+B) 2BiJ2-(A+B)2sin2a' (3.16.34) 

where A = Kl and B = (K; + w2 P2)t, which is symmetrically placed about the 

i = 0 axis and closely related to (3.14.59). As t ranges from negative through positive 

infinity, the projection ranges from (-00, -00) when ¢ = 7f /2 - 8 to (-c, -d) when 
1 

¢ = 7f/6 where c = 3b t L(Kl + (K; +W2P2)t)/(2P(2Kl + (K; + W2P2)t) 2") and 
1 

d = 3t2LX(K; + w2 P2)t / (2P( 2Kl + (K; + w2 P2)t) 2") and to (-a, 0) when ¢ = 0 
1 

where a = L(KI + (K; + W2P2)ty /P which is w times the semi-conjugate axis 

length of (3.16.28), to (-c, d) when ¢ = -7f /6 to (-00, +00) when ¢ = -7f /2 + 8. 

The conserved vectors K Rand J R are scaled by L2 for convenience while P is drawn 

as in Figure 3.16.2 

From (3.16.29) we obtain a rather important result. The intersection of a suitable 

hyperbolic sheet with axis of symmetry lying in the ¢-plane and a right circular 

cone with apex on the ¢-plane and axis of symmetry perpendicular to the plane has 

a projection in the ¢-plane which describes a geometric-centred hyperbola. Alter

natively from (3.16.31) the intersection of a different hyperbolic sheet with axis of 

symmetry perpendicular to the ¢-plane and the right circular cone described above 

also has a geometric-centred hyperbolic projection in the ¢-plane. In contrast, the 

MICZ problem showed that the intersection of a plane and a right circular cone with 

apex on the ¢-plane and axis of symmetry perpendicular to the plane has a projec

tion in the ¢-plane which describes a focus-centred conic. These two results give 

a geometric interpretation of the reasons for the difference in location of the origin 

in both the hyperbolic Kepler and three-dimensional isotropic repulsor problems. In 

most textbooks dealing with the subject, the connection between the orbit of the 

Kepler problem and the plane section of the cone is usually mentioned. However, 

no explanation as to why this is the case has been proposed. In fact the geometric

centred hyperbolic orbit of the repulsor is also a hyperbolic conic section, although 

from what we have seen above its connection with the cone is more involved. The 

results above demonstrate that the plane section of the cone is naturally associated 
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with the plane polar focus-centred representation of the conic section and the inter

section of the hyperbolic sheet with the cone with the geometric-centred cartesian 

representation of the hyperbola. 

Figure 3.16.4 shows the orbit for the monopole-repulsor where J-l = 63L2 /64 -,\2/64. 

The diagram shows the right circular orbital cone extending along the line of P with 

origin at the apex of the cone. The equation of motion in this case is given by (3.13.3) 

with the corresponding orbit equation (3.16.1) whilst for the projection of the motion 

into the </>-plane, the equation of motion is given by (3.13.28) with corresponding 

orbit equation 11' x PI 2 equal to L2 times equation (3.16.1). The energy of this 

orbit, Kl, is chosen to be zero whilst the argument of the cosine term in (3.16.1) is 

(</> - </>0)/4. The orbit on the cone spirals inwards asymptotically, circles the origin 

twice before spiralling outwards asymptotically and ultimately closes as t ranges from 

negative through positive infinity, a process which is repeated for the projection of 

the orbit in the </>-plane. The orbit on the cone has no rotational symmetry about 

P. The origin is not enclosed by the orbit. In order to illustrate the behaviour more 

clearly, projections of the orbit onto planes parallel to the xy, xz and yz planes are 

shown, together with the projected images of the cones onto the respective planes. 

The magnitude of the angular momentum is constant throughout the motion. 

Figure 3.16.5 shows the velocity hodograph for the monopole-repulsor where 

J-l = 63L2 /64 - ,\2/64. In order to illustrate the;' behaviour more clearly, projections 

of the velocity hodograph onto planes parallel to the xi and iJi planes are also shown 

and seen to display a certain symmetry. The velocity hodograph is bounded at both 

ends by the tangents to the asymptotes of the orbit on the cone. 

Figure 3.16.6 shows the orbit for the monopole-repulsor where J-l = -3L2 - 4,\2. The 

diagram shows the right circular orbital cone extending along the line of P with origin 

at the apex of the cone. The equation of motion in this case is given by (3.13.3) with 

the corresponding orbit equation (3.16.1) whilst for the projection of the motion into 

the </>-plane, the equation of motion is given by (3.13.28) with corresponding orbit 

equation 11' X PI 2 equal to L2 times equation (3.16.1). The energy of this orbit, K 1, 

is chosen to be 0.7789 whilst the argument of the cosine term in (3.16.1) is 4( </> - </>0). 

The orbit is not closed and approaches asymptotically before leaving asymptotically, 

a process which is repeated for the projection of the orbit in the </>-plane. The orbit 

on the cone is not hyperbolic and neither are the xv, xz and yz projections of the 

orbit. The orbit on the cone has no rotational symmetry about P. The origin is not 

enclosed by the orbit. In order to illustrate the behaviour more clearly, projections 



Figure 3.16.4. The monopole-repulsor orbit for f.l = 63L2 /64 - ,\2/64. The radial 

vectors move on the surface of a right circular cone extending along the line of P 

with origin at the apex of the cone. The orbit on the cone approaches asymptotically, 

circles the origin twice before leaving asymptotically. Both branches of the orbit meet 

at infinity. The projections of the orbit onto planes parallel to the xy, xz and yz 

planes are also shown. The constants have the values w = 0.4289, P = 3.4225, 

,\ = 2.8794, a = 0.5711, L = 1.85 and ]{l = O. The origin is not enclosed by the 

orbit. 
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Figure 3.16.5. The monopole-repulsor velocity hodograph for f-l = 63L2 /64 - ).2/64. 

The projections of the velocity hodograph onto planes parallel to the xi and yi planes 

are also shown. The constants are chosen as for Figure 3.16.4. The origin is enclosed 

by the velocity hodograph. 



Figure 3.16.6. The monopole-repulsor orbit for f-l = -3L2 - 4,\2. The radial vectors 

move on the surface of a right circular cone extending along the line of P with origin 

at the apex of the cone. The orbit on the cone is not hyperbolic and nor are the 

projections of the orbit into the respective planes. The projections of the orbit onto 

planes parallel to the xy, xz and yz planes are also shown. The constants have the 

values w = 0.4289, P = 3.4225, ,\ = 2.8794, 0:' = 0.5711, L = 1.85 and Kl = 0.7789. 

The origin is not enclosed by the orbit. 
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Figure 3.16.7. The monopole-repulsor velocity hodograph for f1 = -3L2 - 4,,\2. The 

projections of the velocity hodograph onto planes parallel to the xz and yz planes 

are also shown. The constants are chosen as for Figure 3.16.6. 
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of the orbit onto planes parallel to the xy, xz and yz planes are shown, together with 

the projected images of the cones onto the respective planes. The magnitude of the 

angular momentum is constant throughout the motion. 

Figure 3.16.7 shows the velocity hodograph for the monopole-repulsor where 

11 = -3L2 - 4,\2. In order to illustrate the r behaviour more clearly, projections of 

the velocity hodograph onto planes parallel to the xz and yz planes are also shown. 

The velocity hodograph is bounded at both ends by the tangents to the asymptotes 

of the orbit on the cone. 

3.17 The Stationary Solutions 

In the preceding discussion we have studied dynamical solutions to 

equations (3.13.1)-(3.13.3). There has been some interest in the existence of static 

solutions of the Bogomolny-Prasad-Sommerfield equations (cf. Manton [88]). For 

completeness we consider the existence of static solutions to the equations of motion 

mentioned above. The requirement for a static solution is that T remain constant, in 

which case both i- and L are zero. 

3.17.1 The Monopole-Oscillator 

From the equation of motion (3.13.1), a static solution is obtained when 

4 11 r =--
2 ' W 

(3.17.1) 

z.e. 11 must be negative. The first integrals (3.13.8)-(3.13.10) take the values 

h=O. (3.17.2) 

3.17.2 The Monopole-Free Particle 

From the equation of motion (3.13.2) a static solution is only possible if 11 = O. The 

values of the first integrals (3.13.14)-(3.13.16) are then 

where the value of r is arbitrary. 

1 2 
13 =-r 

2 
(3.17.3) 



3.17.3 The Monopole-Repulsor 

From the equation of motion (3.13.3) a static solution is possible when 

4 J-l 
r = -2' 

W 
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(3.17.4) 

z.e. J-l must be positive. The values of the integrals (3.13.19)-(3.13.21) are then 

(3.17.5) 

In each case a stationary solution is possible. In the case of the monopole-oscillator 

and the monopole-repulsor the radial distance is determined by the relative strengths 

of the centrifugal potential and the oscillator or repulsor respectively. For the free 

particle no forces are acting and so there is no restriction on the value which l' can 

take. 

3.18 Discussion 

The equations of motion (3.13.1)-(3.13.3) for the monopole-oscillator, monopole

free particle and monopole-repulsor admit a rich structure. For general ,\ and J-l they 

are unusual in that the Lie algebra of the commutators of the point symmetries of 

the equations of motion is the same as that of the Poisson Brackets of the six first 

integrals namely 8l(2, R) EB 80(3). The orbit equations are very characteristic of the 

two-dimensional analogues except that now the two-dimensional curves are lifted 

onto the surface of a cone which is a characteristic of the monopole. The possibility 

of a 'hyperbolic' orbit wrapping itself round on an invisible cone a number of times 

is in itself interesting. 

It is interesting to note that the orbits on the cone are in general not conic sections. 

However, the projections when J-l = _,\2 are either conic sections or lie along conic 

sections except in the case of the monopole-free particle where the orbit, an hyper

bola, is a conic section. This may indeed be related to the existence of a conserved 

Laplace-Runge-Lenz vector for the latter problem, which is perpendicular to P. In 

the case J-l = _,\2, the orbit of the monopole-oscillator is described by the inter

section of an elliptical cylinder and a right circular cone and the projection of the 

orbit into the </>-plane is a geometric-centred ellipse which corresponds naturally 

with the orbit of the three-dimensional isotropic harmonic oscillator. Analogues of 

Kepler's three laws of motion have been obtained and shown to be natural extensions 

of the results for the three-dimensional isotropic harmonic oscillator in the plane. 
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The vector P determines the orientation of the orbit in space. Similarly, in the case 

J.l = _.\2, the orbit of the monopole-repulsor is described by the intersection of a 

hyperbolic sheet and a right circular cone and the projection of the orbit into the 

¢-plane is a geomteric-centred hyperbola which corresponds naturally with the orbit 

of the three-dimensional isotropic repulsor. 

3.19 The First Integrals Associated with the Lie 

Symmetries of the Monopole-Oscillator 

The monopole-oscillator, with equation of motion 

T + :3 L + (~ + w2
) l' = 0 

has the following Lie symmetry generators 

. a a 
sm 2wt at + wr cos 2wt or 

a . 2 a 
cos 2wt at - wr sm wt or 

a a 
z--y-

oy oz 

a a 
x--z-

oz ox 

a a 
G6 = y--x-. 

ox oy 

For complete details of the derivation of the generators see Chapter 4. 

(3.19.1) 

(3.19.2) 
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In §P3.2 we noted that for a three-dimensional problem we would find five indepen

dent first integrals per generator provided the equations for the characteristics can 

be solved. An example of this has been given by Leach in his treatment of the Kepler 

problem [72] in which all of the autonomous first integrals, energy, angular momentum 

and Laplace-Runge-Lenz vector were found from the generator of time translations 

a j at. Certain first integrals are naturally associated with certain generators: a j at 
is associated with energy, and the generators zajay - yajaz, xajaz - zajax and 

ya j ax - xa jay with rotational invariance (in this problem not angular momentum 

which is not conserved). The integrals which naturally relate to G2 and G3 are not 

a priori obvious and will be investigated below. It must, however, be stressed that 

each generator is capable of providing the full set of integrals, although the manipu

lations involved may be rather contrived. 

According to the Lie method as described in §P3.2, a function I(t, qi, ... ,qi) which 

is associated with a symmetry G is a first integral if 

(3.19.3) 

and 

dII _ 0 
dt E=O - , 

(3.19.4) 

where E (t, % ... , qi) = 0 is the equation of motion (3.19.1). Substituting the first 

extension of the time invariance symmetry G I in (3.19.3) gives the characteristics as 

solutions to the associated Lagrange's system 

They are 

dt 
1 

dx dy dz d± 
000 0 

UI = X VI = X 

U2 = Y V2 = Y 

dy di 
o 0 

(3.19.5) 

(3.19.6) 

which are individually invariant under the infinitesimal transformation generated by 

G~IJ. Substituting for the equation of motion reveals 

VI = -Ar-3( U2V3 - U3V2) - (flr-4 + W2)UI 

V2 = -Ar-3(u3vI - UIV3) - (flr-4 + W2)U2 

V3 = -Ar-3( UI V2 - U2VI) - (flr-4 + W2)U3, (3.19.7) 



and the corresponding Lagrange's system for (3.19.4) is 

dU2 dU3 dV1 
V2 V3 -Ar-3(U2V3 - U3V2) - (/-lr- 4 + W 2)U1 

dV2 

-Ar-3( U3V1 - U1 V3) - (/-lr- 4 + W 2)U2 
dV3 
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(3.19.8) 

Our interest is in finding a first integral which is invariant under time translation and 

thus we do not need to introduce an auxiliary time variable [55]. For convenience 

we shall denote the ith member of (3.19.8) as (3.19.8.i, i = 1, 6) and then form the 

combination 

which gives 

(/-lr- 4 + w2) [U1(3.19.8.1) + u2(3.19.8.2) + U3(3.19.8.3)] + 

v1(3.19.8.4) + v2(3.19.8.5) + v3(3.19.8.6) 

d [.!. v2 + .!. v2 + .!. v2 - .!. IIr-2 + .!. w2(U 2 + u2 + u2)] 21 22 23 2"'" 2 1 2 3 

o 

(3.19.9) 

(3.19.10) 

which is just the differential of the required characteristic and, reverting to the original 

coordinates, becomes 

I 1 (. . /-l 2 2) 1=- 1"1'--+wr . 
2 r2 

(3.19.11) 

The result for w = 0 is obvious. 

If Is is a first integral associated with G6 , then the characteristics of (3.19.3) are 

found from 
dy dz d.i dy di-dt dx 

- -
0 y -x 0 y -x 0 

(3.19.12) 

and are 

(3.19.13) 
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Since 

UI = 1 

U2 = 2(U2VI)~(1 - Vn~ V2 = (1 - V~)~(U2VI)-~ {X1'-3 [(1- Vn~U2V3 - U3(U2VI)~] 

- VI V2 + U2V2 (/-l1'- 4 + w2) } 

(3.19.14) 

where 1'2 = U2 + ul, the characteristics of (3.19.4) are found from 

dU2 dU3 
1 1 --

2(U2VI)~(1 - v~)~ V3 

(3.19.15) 

Making the combination 

~ [VIV2(U2Vlr~ + AU31'-3] (3.19.15.2) - AU21'-3(3.19.15.3) 

1 1 1 + 2" u2 v2(u2vd- 2(3.19.15.4) + (u2vd~(3.19.15.5) (3.19.16) 

gIves 

which gives the first integral 

d [V2(U2VI)~ - AU31'-I] 

o 

. . AZ h = xy -yx --. 
l' 

(3.19.17) 

(3.19.18) 

Similarly 14 and Is corresponding to G4 and Gs can be determined by cyclic permu

tations 

. . AX 
yz - zy -

l' 

. . Ay 
zx - xz --. 

l' 
(3.19.19) 
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We immediately recognize that 14 , Is and 16 are the components of the conserved 

vector 

P = L - A'" (3.19.20) 

which is just the Poincare's vector for the simple charge monopole problem [107,101]. 

It is interesting to note that the additional term (J.lr- 4 + w2 )1' does not destroy the 

structure of this vector. In light of the algebra of the two problems being identical 

this should not really be surprising. The result is unchanged for w2 = O. 

If 12 is the first integral associated with G2 , the characteristics of (3.19.3) are 

Since 

x 2 

UI = 
sin 2wt 

y2 
U2 = --

sin 2wt 

Z2 
U3= --

sin 2wt 

sin 2wt 

sin 2wt 

sin 2wt 

VI = sin 2wt(.:i; - wx cot 2wt)2 

V2 = sin 2wt(iJ - wy cot 2wt)2 

V3 = sin 2wt(z - wz cot 2wt)2. (3.19.21) 

where p = UI + U2 + U3, the characteristics of (3.19.4) are found from the associated 

Lagrange's system 
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dU2 dU3 
1 - 1 

(U2V2)2" (U3 V 3) 2" 

(3.19.23) 

(If it were necessary to introduce time as an auxiliary variable in (3.19.23), it would 

be in the form 2dt/sin2wt as can be seen from (3.19.22)). Making the combination 

(;2 - w2
) [(3.19.23.1) + (3.19.23.2) + (3.19.23.3)] + dVI + dV2 + dV3 (3.19.24) 

d [VI + V2 + V3 - ~ - w2p] 
o (3.19.25) 

and again the term in parentheses is the characteristic. Rewriting in terms of physical 

coordinates and scaling by a factor of t we obtain 

I 1. 2 ( . . f-l 2 2) . 2 2 = - sm wt 1" l' - - - W l' - W1' . l' cos wt. 
2 1'2 

(3.19.26) 

Adopting a similar technique for G3 yields 

I 1 2 ( . . f-l 2 2) . . 2 
3 = 2" cos wt 1" l' - 1'2 - W l' + W1' • l' sm wt. (3.19.27) 

As can be expected, 11, 12 and 13 are not independent. Taking the product P . P 

where P is given in (3.19.20), gives 

(3.19.28) 

and so L2 is a constant. It can then be shown that 

(3.19.29) 
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For W = 0 the integrals reduce to 

(3.19.30) 

which is just lim (I2/2w), and 
w->o 

I 1 2 (" /-l) . 1 3 = - t 1" l' - - - t1' . l' + - l' . l' 
2 ,2 2 (3.19.31) 

3.20 Discussion 

The monopole-oscillator with or without the extra force described by the equation 

of motion 

T + ~ L + (~ + w2
) l' = 0 (3.20.1) 

is rather interesting in terms of its algebra. From a geometric point of view its pos

session of the six-dimensional symmetry algebra sl(2, R) EB so(3) is unusual. It should 

be remembered that the Kepler problem has only a five-dimensional algebra. For the 

monopole-oscillator, the algebra is insensitive to the values of the parameters A, /-l, 

and w 2 . The algebra only degenerates to the twenty-four element sl(5, R) when both 

A and /-l are zero. The parameters A and /-l can be separately zero without affect

ing the algebra which implies that the two terms are equivalent in their symmetry 

breaking effect. 

The structure of the integrals II, 12 and 13 illustrates a feature previously observed 

with the first integrals of quadratic Hamiltonians [56J. The three-dimensional isotropic 

harmonic oscillator with equation of motion 

has the following first integrals which are quadratic in the velocities: 

X',X'+X'X' 1 J 1 J 

(x(i: j - XiXj) sin 2wt - W(XiXj + XiXj) cos 2wt 

(XiXj - XiXj) cos 2wt + W(XiXj + XiXj) sin 2wt, 

(3.20.2) 

(3.20.3) 
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where the indices range over the values 1, 2, 3. These integrals correspond to our 

G1 , G2 and G3 of the monopole-oscillator problem which are in fact symmetries 

of (3.20.2) as well. The f1, and A terms of (3.20.1) seem to dispose of the non

diagonal terms (i =I- j terms). Something else worth noting is that the XiXj term in 

the Aij tensor changes sign in both the Bij and Cij terms. For (3.20.1), however, it 

is only the sign of the harmonic component and not the inverse square part of the 

potential which changes sign in both 12 and 13 , which would imply that the inverse 

square potential adds to the angular momentum contribution to the kinetic energy 

of the motion. 

It can be seen that the generators obtained via Lie's method do give rise to the first 

integrals, although a certain amount of mental dexterity may in fact be required. 

Our emphasis has so far been on the natural first integral associated with a par

ticular generator. It turns out that a more transparent derivation of h (3.19.18) 

would be through (3.19.23) which has a simpler and more symmetric structure. The 

combination is 

[(v2/ud~ + A(U3//)~] (3.19.23.1) - [(VdU2)~ - A(U3/p3)~] (3.19.23.2)

A(U3//)-~(Ul + u2)(3.19.23.3) - (U2/Vl)~(3.19.23.4) + 

(3.20.4) 

Although it can be argued that either the direct method or Noether's theorem are far 

more mechanical to apply, one must remember that the latter requires the existence 

of a Lagrangian as well as a guess at the velocity dependence of the integral and, in 

the former, the velocity dependence condition. If, however, there exist integrals which 

are not linear or quadratic in the velocities, the correct choice of velocity dependence 

can be very difficult, if not impossible. 



CHAPTER 4 

SYMMETRIES AND THE EXISTENCE OF CONSERVED 

VECTORS 

4.1 Preliminaries 

A second order differential equation is invariant under a Lie point transformation 

generated by a symmetry generator, G, if the twice extended symmetry generator, 

G[2] , acting on the differential equation is zero whenever the differential equation 

holds, i.e., 
G[2]E (q. q'. q ... )J = o. 

t, t, t E=O (4.1.1) 

In a three-dimensional cartesian basis G is given by (see (P3.17)) 

( 4.1.2) 

where T, e, TJ and ( are functions of t, x, y and z. The twice extended generator in 

this basis is then 

G[2] = G (t .. ) a ( . . .) a (; .. ) a + <" - XT ax + TJ - yT aiJ + ':, - ZT az 

..... ... a .. '" ... a ..... ... a 
+ (e-2XT-XT) ax +(TJ-2YT-YT) afj +((-2ZT-ZT) az·(4.1.3) 

The total derivatives of T can be expressed in terms of partial derivatives as 

T = ( 4.1.4) 

T 

. 2 a2T . 2 a2T . 2 a2T .. a2T 
+ x ax2 + y ay2 + Z az2 + 2xy axay 

., a2T .. a2T .. aT .. aT .. aT 
+ 2yz ayaz + 2zx azax + x ax + y ay + Z az ( 4.1.5) 

and similarly for the total derivatives of e, TJ and (. 
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Application of (4.1.3) to the standard Kepler problem gives rise to the following 

symmetry generators [110] 

a 
G1 = at 

a 2( a a a) t-+- x-+y-+z-at 3 ax ay az 
a a z--y-ay az 
a a x--z-az ax 
a a 

G5 = y - -x-ax ay (4.1.6) 

which have the following non-zero commutation relations 

(4.1.7) 

from which it is evident that the Lie algebra is the direct sum A2 EB 80(3). G3 , G4 

and G5 are a result of the invariance of (1.5.1) under rotation, G1 represents in

variance under time translation and G2 , the generator often associated with the 

Laplace-Runge-Lenz vector, indicates invariance under the similarity transformation 

(t,1') --+ (t, l' : t = ,t, l' = ,t1'). It should of course be realised that any of the first 

integrals can in fact be constructed from any of the generators (4.1.6) and so the as

sociation is not strictly accurate in a mathematical sense although it is in a geometric 

sense. The two-dimensional algebra A2 connected with G1 and G2 has recently found 

application in the analysis of one-dimensional nonlinear second order differential 

equations [76, 11]. 

Since the Kepler problem and the time-dependent Kepler problem are related by a 

point transformation, they both possess the same algebraic structure [73]. 
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The symmetries of the charge-monopole described by the equation 

( 4.1.8) 

have been studied in some detail by Moreira et a1. [101]. They found the following 

set of generators 

a 
at 

a 1( a a a) t-+- x-+y-+z-at 2 ax ay az 

( a a a a) t t-+x-+y-+z-at ax ay az 
a a z--y-ay az 
a a x--z-az ax 
a a 

G6 = y--x-ax ay 
which possess the non-zero commutation relations 

( 4.1.9) 

( 4.1.10) 

In this case the algebra is the direct sum of the subalgebras {G1 , G2 , G3 } and 

{G4 , Gs, G6 } and is sl(2, R) EB so(3). (Moreira et a1. [101] use so(2, 1) rather than 

sl(2,R)). Since the algebraic structure of (4.1.8) is more complex than that of the 

Kepler problem (1.5.1), as Thompson [126] has already noted, the charge monopole 

problem cannot be related to the Kepler problem by a point transformation. 



4.2 The Lie Symmetries of the Equation of Motion 

r + f(r)L + g(r)r = 0 
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It would seem sensible to consider the symmetries of the more general equation 

r + f(1")L + g(1")1' = 0 (4.2.1) 

since for f = 0 and g(1") = /1/1"3 we regain the Kepler problem, and for f(1") = /1/1"3 
and g(1") = 0 we obtain the charge monopole problem. One further class of problems 

which are also described by (4.2.1) has the equation of motion 

r + h'~1") L + (h(1")h'(1") + ~) r = 0 (4.2.2) 

which has already been shown in §3.1 to possess Laplace-Runge-Lenz-like vectors. 

Since the angular momentum has a regular structure in a cartesian basis, it makes 

sense to do the calculation in this basis to provide a further computational check 

through certain regularities in the determining equations. Thus we may write (4.2.1) 

as 

x + f(yz - zi;) + gx = 0 

y + f(zx-xz)+gy=O 

z + f( xi; - yx) + gz = O. (4.2.3) 

The second extension (4.1.3) is now applied to (4.2.3) individually with all the deriva

tives expanded using (4.1.4) and (4.1.5). Upon each subsequent application of (4.1.3) 

X, y, i are replaced in (4.1.3) using (4.2.3). Since we have assumed a point transfor

mation, the terms can be collected as coefficients of various combinations of powers 

of the total time derivatives X, i; and z and coefficients of linearly independent com

binations then set to zero. This operation is extremely tedious to do by hand and 

the symbolic manipulation code REDUCE [112J was used to obtain the determining 

equations which were subsequently solved by hand. Forty eight partial differential 

equations were obtained, twelve of which were repeats of the six second-order equa

tions for T (4.2.4) below. The equations are listed in groups according to the order 

in which they were analysed. 



82e 
8x2 

82e 
8y2 

82e 
8z2 

82e 
2--

8x8y 

82e 2--
8y8z 

82e 2--
8z8x 

82T 
8x2 = 0 

82T 
--=0 
8x8y 

82T 
8y2 = 0 

82T 
--=0 
8y8z 

82T 
8z2 = 0 

82T 
--=0 
8z8x 

2--+f y--z-8
2
T (8T 8T) 

8x8t 8z 8y 

fz 8T 
8y 

8T 
-fy-

8z 

8
2
T (8T 8T) 2--+f 2z--x-

8y8t 8x 8z 

f z--y-(8T 8T) 
8z 8y 

8
2
T (8T 8T) 2 -- + f x - - 2y -

8z8t 8y 8x 

8T 
-fz-

8x 

8
2
T (8T 8T) 2--+f z--x-

8y8t 8x 8z 

fx 8T 
8z 
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(4.2.4) 

(4.2.5) 
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a2", a2T (aT aT) 2-- 2--+1 y--2z-axay axat az ay 
a2", a2T (aT aT) 2-- - 2--+12x--y-ayaz azat ay ax 
a2", (aT aT) 2-- - 1 x--z- (4.2.6) azax ax az 

a2( 1 aT = y-ax2 ax 
a2( aT 

= -1x-ay2 ay 
a2( a2T (aT aT) 2--+1 x--y-az2 azat ay ax 
a2( (aT aT) 2-- = 1 y--x-axay ay ax 
a2( a2T (aT aT) 2-- = 2--+1 z--2x-ayaz ayat ax az 
a2( a2T (aT aT) (4.2.7) 2-- - 2--+12y--z-azax axat az ay 

a2e a2T (a( ae ae a",) (aT aT aT) 2-- - -+1 y-+y--z--z- +g 3x-+y-+z- =0 axat at2 ax az ay ax ax ay az 

2 -- - - + 1 z - + z - - x - - x - + g x - + 3y - + z - = 0 a2", a2T (ae a", a", a() (aT aT aT) 
ayat at2 ay ax az ay ax ay az 

a2( a2T (a", a( a( ae) (aT aT aT) 2 -- - - + 1 x - + x - - y - - y - + g x - + y - + 3z - = 0 azat at2 az ay ax az ax ay az 
(4.2.8) 
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2 a
2

e + 1 (Y a( + z ae _ x ae _ z a1] _ ( _ z aT) _ z1' (xe + Y1] + zO 
ayat ay ax az ay at r 

aT 
+ 2xg ay = 0 

a2e (a( ae ae a1] aT) y1' 2 -- + 1 y - + x - - y - - z - + 1] + y - + -( xe + y1] + z() azat az ay ax az at r 

aT 
+ 2xg az = 0 

a2 1] (ae a1] a1] a( aT) z1' 2--+1 z-+y--z--x-+(+z- + -(xe+Y1]+zO axat ax az ay ax at r 

aT 
+ 2zg ay = 0 

(4.2.9) 

xg' 
+ -(xe + Y1] + zO = 0 

r 

a
2

1] + 1 (z ae _ x a() + 9 (1] + 2y aT _ x a1] _ y a1] _ z a1]) 
at2 at at at ax ay az 

yg' 
+ -(xe+Y1]+zO=O 

r 



269 

;P( + f (X a'f! _ y ae) + 9 (( + 2z a7 _ X a( _ y a( _ z a() 
at2 at at at ax ay az 

zg' 
+ -(xe+y'f!+z()=O 

r 

( 4.2.10) 
where' denotes differentiation with respect to r. 

The solution of (4.2.4) is 

7 = a(t) + b(t)x + c(t)y + d(t)z. (4.2.11) 

Substituting 7 (4.2.11) into (4.2.5) gives rise to consistency requirements between 

third order mixed derivatives. Two distinct cases emerge. If f = 0, b, c and d remain 

unspecified. If f =I- 0, b, c and d are simultaneously zero. We analyse these cases in 

more detail. 

4.3 The Case f = 0 

The solutions of (4.2.5), (4.2.6) and (4.2.7) are 

e (hx + cy + dz) x + kx + ly + mz + n 

'f! (hx + cy + dz) y + px + qy + r z + s 

(hx + cy + dz) z + tx + uy + vz + w, (4.3.1) 

where the functions k through w depend only on time. (In circumstances where 

confusion may arise between the functions r(t) and t(t), and the variables rand t, 
clarification will be given). 

Substituting (4.2.11) and (4.3.1) into (4.2.9) forces I, m, p, r, t and u to be constant 

and, if 9 is not constant, b, c and d to be zero as well. For the sake of completeness 

we consider the case 9 = a, a constant. Then b, c and d satisfy the equations 

c + ac = 0, d + ad = o. (4.3.2) 

Solving (4.2.8) we obtain 

2k = 21] = 2iJ = a, (4.3.3) 
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and from (4.2.10) 

k + 2cwi = 0 ii + an = 0 

q + 2mi = 0 s + as = 0 

v + 2aa = 0 w+aw = O. (4.3.4) 

Solving (4.3.2) gives rise to six free constants, two for each of the b, c and d, three 

for a from (4.3.3) and (4.3.4), k, q and veach add one more and n, sand w give 

six more. In addition to these eighteen, I, m, p, r, t and u are constant, making 

twenty-four in total. Hence the Lie algebra is the twenty-four-dimensional sl(5, R). 
This is not surprising as for a > 0 we have the three-dimensional isotropic harmonic 

oscillator, for a = 0 the three-dimensional free particle and for a < 0 the three

dimensional isotropic repulsor. 

When 9 is a nontrivial function, I, m, p, r, t and u are constants from (4.2.11), 

(4.3.1) and (4.2.9) and b, c and d are zero. Using (4.2.8) we again obtain (4.3.3) 

which can be integrated to give 

k = ~ (a + K), q= ~(a+Q), 

m = ~M 
2 ' 

1 
p= 2 P, 

1 
r = - R 

2 ' 

1 . 
v = 2 (a + V), 

1 
1 = - L 

2 ' 

1 
t = - T 

2 ' 
1 

u=-U 
2 ' 

( 4.3.5) 

where the constants are denoted by upper case symbols. Equations (4.2.10) now 

become 
I 

a(3)x + 2ii + 2g(n + 2xa) + x: [ar 2 + x(Kx + Ly + Mz + 2n) 

+ y(Px + Qy + Rz + 2s) + z(Tx + Uy + Vz + 2w)] = 0 (4.3.6) 

I 

a(3)y + 2s+2g(s+2ya)+Y: [ar 2 +x(Kx+Ly+Mz+2n) 

+ y(Px + Qy + Rz + 2s) + z(Tx + Uy + Vz + 2w)] = 0 (4.3.7) 

I 

a(3)z + 2w + 2g(w + 2za) + z: [ar2 + x(Kx + Ly + Mz + 2n) 

+ y(Px + Qy + Rz + 2s) + z(Tx + Uy + Vz + 2w)] = 0, ( 4.3.8) 

where a(3) represents d3a/dt3. This convention is also used below. 
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Combining y x (4.3.6)-x x (4.3.7) and z x (4.3.6)-x x (4.3.8) and suitably rearranging 

we obtain 

(yn - xs)g -(yn - xs) 

(zn - xw)g -(zii - xiV) (4.3.9) 

and, since 9 is a nontrivial function of r, it follows that n, sand ware zero. 

Equations (4.3.6), (4.3.7) and (4.3.8) reduce to the single equation 

(Kx+Ly+Mz)x+(Px+Qy+Rz)y+(Tx+Uy+ Vz)z = - ;, [a(3) +4ga+g'ra]. 

( 4.3.10) 

The partial derivative of (4.3.10) with respect to time gives 

a(4) + (4g + g'r)o' = O. (4.3.11 ) 

If 9 is to be unspecified, 

a 0 

a ( 4.3.12) 

Equation (4.3.10) now becomes 

(K x + Ly + M z) x + (P x + Qy + Rz) y + (T x + U Y + V z ) z = - ~ ( 4g + g' r ) AI. 
g' 

(4.3.13) 

It is evident that P = -L, T = -M and U = -R which gives rise to the so(3) 

subalgebra. For general g, K = Q = V = Al = 0 and the algebra is Al EBso(3), where 

the subalgebras Al and A2 used throughout are not to be confused with constants 

having the same symbol. However, if 9 is to be specified through (4.3.13), we can 

have K = Q = V and (4.3.13) becomes 

( 4.3.14) 

from which we find that for Al nonzero 

( 4.3.15) 

which can equivalently be written as 

( 4.3.16) 



where a = -4Ad(AI + J{). The generators are then 

a 
at 

a a 
z--y-

ay az 

a a 
x--z-

az ax 

a a 
G5 = y - -x-

ax ay 

272 

(4.3.17) 

which have the algebra A2 EEl 80(3) as was found for the Kepler problem (1.5.1) by 

Prince and Eliezer [110] and Leach [72]. The Kepler problem is recovered when 

Al + J{ = ~ AI. G2 can be more concisely written as G2 = ta/at - 2/ara/ar in the 

notation of (4.3.16). See §1.8. 

Equation (4.3.11) may alternatively be written as 

rg' + 4g -4E 

o 

which gives 
f-l 9 = --E 
r 4 

and 

( 4.3.18) 

( 4.3.19) 

( 4.3.20) 

(4.3.21 ) 

Substituting (4.3.19)~( 4.3.21) into (4.3.10) we see that, for E = 0, J{ = Q = V = 

A3 = 0 and P = - L, T = - M and U = - R. Thus the equation of motion 

( 4.3.22) 
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has the symmetries 

G1 
a 
at 

G2 
a a a a 2t- + x - + y - + z-at ax ay az 

G3 
(a a a a) t t-+x-+y-+z-at ax ay az 

G4 
a a z--y-ay az 

Gs 
a a x--z-az ax 

G6 
a a 

( 4.3.23) - y --x-. ax ay 
The Lie algebra of the generators is 5l(2, R) EB 50(3) which we recognize as the same 

as that found for the charge monopole problem (4.1.8) by Moreira et al. [lOlJ. 

When E 1= 0, f{ = Q = V = Al = 0 and P = - L, T = - M and U = - R. The 

equation of motion 

has the symmetries 

.. (J1 ) 
l' + 1'4 - E l' = 0 

a 
at 

2t€1/2 ( -1/2 a a a a ) e E -+x-+y-+z-at ax ay az 

a a z--y-ay az 
a a x--z-az ax 
a a 

G6 = Y - -x-. ax ay 
The algebra is again 5l(2, R) EB 50(3). 

( 4.3.24) 

( 4.3.25) 



274 

To summarize the case f = 0, we have three distinct results with increasing richness 

as 9 is more tightly specified. For the central force problem 

r+g(r)1' =0 ( 4.3.26) 

we have the usual four symmetries associated with invariance under a time translation 

as well as under rotation. When 9 is a power law so that the equation of motion is 

( 4.3.27) 

the above four symmetries are replicated plus a further one added indicating invari

ance under a similarity transformation. For the equation 

( 4.3.28) 

there is the further addition of an inversion transformation between t and r the 

third equation of (4.3.23), as is found in the case of the symmetry of the one

dimensional free particle (this generator can in fact be written more concisely as 

t (t a/at + r a / ar ) ) . 

When the equation of motion takes the form 

r+(~-E)1'=O, ( 4.3.29) 

the generator corresponding to self-similar transformations disappears, yet the al

gebra remains the six-dimensional 8l(2, R) EB 80(3). Finally, when the equation of 

motion takes the form 

r + E1' = 0, ( 4.3.30) 

which describes a three-dimensional isotropic harmonic oscillator for E > 0, the 

three-dimensional free particle for E = ° and the three-dimensional isotropic repulsor 

for E < 0, the algebra becomes the twenty-four-dimensional 8l(5, R). 

Despite the existence of a Laplace-Runge-Lenz vector in the classical Kepler prob

lem, we have shown that this does little to influence the construction of the sym

metry algebra. Apart from the three-dimensional isotropic harmonic oscillator, all 

power law central force problems possess the same number of symmetries, yet global 

(or even local) representations for a Laplace-Runge-Lenz-like vector are rarely pos

sible. Although the Kepler problem is regarded as unusual because of the Laplace

Runge-Lenz vector, in terms of the symmetry algebra of its equation of motion it is 

just one of an infinite number of problems. 
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4.4 The Case f i= 0 

We now return to the general equation (4.2.1) and attempt to obtain the symmetries. 

We recall that b, c and d were zero and this simplifies (4.2.11) and (4.3.1) to give 

T a 

e kx + 1y + mz + n 

'rJ px + qy + r z + s 

tx + uy + vz + w, (4.4.1) 

where all lower case latin letters excluding x, y and z are functions of time. The set 

of equations (4.2.8) now reduces to 

which give 

2k a+f[y(m+t)-z(l+p)] =0 

2q - a+f[z(l+p)-x(r+u)) =0 

2iJ - a+f[x(r+u)-y(m+t)] =0 

2k = 2q = 2iJ = a 

1 + p = 0, m + t = 0, r + u = O. 

Equations (4.2.9) now become 

21 
zI' . 
-<I>+f[z(k-q-v-a)-w) =0 

r 

2m yf' . 
+ --;:-cI>+f[ -y(k-q-v-a)+s) =0 

2i-
xI' 
-cI>+f[ -x(k-q+v+a)-n] =0 

r 

zI' 
2p + -cI>+f[z(k-q+v+a)+w] =0 

r 

2t 
yf' 
-<I>+f[ -y(k+q-v+a)-s] =0 

r 

xI' 
2it + -<I>+f[x(k+q-v+a)+n] =0, 

r 

( 4.4.2) 

( 4.4.3) 

( 4.4.4) 

( 4.4.5) 

( 4.4.6) 

(4.4.7) 

( 4.4.8) 

( 4.4.9) 

( 4.4.10) 
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where <I> = x( kx + n) + y( qy + 8) + Z( vz + w) and the r in the denominator is the 
variable r and not the function r(t). 

Adding (4.4.5) to (4.4.8), (4.4.6) to (4.4.9), (4.4.7) to (4.4.10) and using the results 

of (4.4.4) we find that 

k=q=v 

<I> = kr2 + xn + y8 + zw. 

(4.4.11) 

(4.4.12) 

This reduces the number of independent equations in (4.4.5) to (4.4.10) to three, 

say (4.4.5), (4.4.7) and (4.4.9). Multiplying these by z, x and y respectively and 

adding we obtain 

x [2r - (rJ' + J)n] + y [2i - (rJ' + J)8] + Z [2i - (rJ' + J)w] 

r2 [kr l' + (k + a)!] = 0 

from which it is evident that 

krJ' + (k + a)! 

2r - (rJ' + J)n 

2i - (r l' + J)8 

2i - (rJ' + J)w 

Equation (4.4.14) has a solution for ! if 

k + a = 11k 

where 11 is a constant and correspondingly 

o 

o 

o 

o. 

(4.4.13) 

( 4.4.14) 

( 4.4.15) 

(4.4.16) 

(4.4.17) 

( 4.4.18) 

( 4.4.19) 

for A also a constant. The possibility k = a = 0 leads to just the four symmetry case 

with algebra Al E9 80(3). Otherwise! will be zero and this case has been treated 

in §4.3. Combining (4.4.3) and (4.4.18) gives 

li(3 - 11) = o. ( 4.4.20) 

We treat the cases 11 = 3 and 11 -1= 3 separately. If 11 = 3, (4.4.15)-(4.4.17) immediately 

gives n = 8 = W = 0 and r t, 1, p, m and u constant. Using (4.4.4) these constants 

give the 80(3) subalgebra. Equations (4.2.10) all reduce to 

I k 
rg + 4g = - k = -4E, (4.4.21 ) 
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using it = 2k from (4.4.18), and E is a constant. Solving equation (4.4.21) gives 

For E = 0, 

f 

g 

k 

a 

11 
g=4"-E. 

r 

A 
r3 

11 
r4 

Al + A2t 

Ao + 2AIt + A2t2 

( 4.4.22) 

( 4.4.23) 

which give rise to three symmetries in addition to the usual 80(3) generators, viz. 

a 
at 

a a a a 
2t -+x -+y -+z-

at ax ay az 

G3 = t2.i + t (x ~ + y ~ + z ~) 
at ax ay az 

and the algebra is 8/(2, R) EEl 80(3). 

( 4.4.24) 

As shown before, the vector product of l' with the equation of motion corresponding 

to (4.4.23) 
.. A L 11 
l' + - + -1' = 0 

r3 r4 ( 4.4.25) 

gives rise to Poincare's vector P 

P = L - AT ( 4.4.26) 

after integrating with respect to time. This vector is incidentally also conserved for 

the equation of motion of the charge-monopole problem (4.1.8). Taking the vector 

product of the equation of motion (4.4.25) with (4.4.26) gives the projected and 

rotated equation of motion 

( 4.4.27) 

which is equivalent to the central force case (4.3.22) in the variable l' X P 

(see §3.5 for a geometric interpretation of taking the vector product with P). 
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For E ::I 0, 

f 

g 

k 

a ( 4.4.28) 

In addition to the 80(3) generators we obtain 

( 
1/2 a a a a ) 

E- - + x - + y - + z -ai ax ay az 

( 4.4.29) 

and again the algebra is 81(2, R) EB 80(3). Similarly, taking the vector product of the 

equation of motion corresponding to (4.4.28) 

., .xL (11 ) 1'+- + --E 1'=0 
1'"3 1'"4 

( 4.4.30) 

with P gives the projected and rotated equation of motion 

(4.4.31 ) 

which is equivalent to the central force case (4.3.24) in the variable l' x P. 

When 1/ ::I 3, from (4.4.20) and (4.4.3) 

a = Ao + Ali, k = Ko. ( 4.4.32) 

From (4.4.18) 

Al = (1/ -l)Ko ( 4.4.33) 

and, if 1/ = 1, Al is zero. Equations (4.2.10) yield Ko zero, the usual 80(3) constants 

and n = 8 = W = 0 so that the algebra is Al EB 80(3). For 1/ ::I 1, (4.2.10) again gives 

Ko zero and so Al from (4.4.33). The algebra is again Al EB 80(3). 
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4.5 Discussion 

The equation of motion 

T + f(r)L + g(r)1' = 0 (4.5.1) 

is seen to possess the algebra Al EEl 80(3) for general f and 9 with Al representing 

invariance under time translation and 80(3) the usual rotational invariance. Special 

cases of (4.5.1) with additional symmetry are 

.. J1-
l' + 4"1' = 0 

r 

.. (J1- ) l' + r 4 - E l' = 0 

T + E1' = 0 

.. A J1-
l' + - L + -1' = 0 

r3 r4 

.. A (J1- ) l' + -L + - - E l' = o. 
r3 r4 

(4.5.2) 

( 4.5.3) 

(4.5.4) 

( 4.5.5) 

(4.5.6) 

(4.5.7) 

The five-dimensional algebra of (4.5.2) was found to be A2 EEl 80(3) where the A2 

algebra represents invariance under the self-similar transformation 

t = It ( 4.5.8) 

as well as invariance under time translation. The interesting point about (4.5.2) 

is that, as far as symmetries are concerned, there is no distinction made between 

the Kepler problem and any other power law central force apart from the three

dimensional isotropic harmonic oscillator. 

The equations of motion (4.5.3) and (4.5.4) both possess the algebra 81(2, R) EEl 80(3) 

regardless of the values of the parameters. They may be regarded as direct exten

sions of the results of Moreira et al. [101] for the algebra of the charge monopole 

problem. Equation (4.5.5) has the twenty-four-dimensional algebra 81(5, R) of the 

three-dimensional isotropic harmonic oscillator, free particle or repulsor depending 

on whether E >, =, < 0 respectively. Equations (4.5.6) and (4.5.7) have the algebra 

81(2, R) EEl 80(3) and also possess Poincare vectors which project and rotate them onto 

equations of motion equivalent to (4.5.3) and (4.5.4) respectively, in terms of the 

vector l' X P . 
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The term f1T'T'-4 can be interpreted as a centripetal force (Newton-Cotes) and the 

term ET represents a three-dimensional isotropic harmonic oscillator, free particle or 

repulsor depending on whether E >, =, < 0 respectively. The latter term does not 

affect the algebra nor the integrability of the equation. It should also be observed 

that L is constant in both (4.5.6) and (4.5.7). We note that the motion continues to 

be on the surface of a cone. Another scalar integral 

1 (. 2 f1 2) 1=2" T - 'T'2 - E'T' (4.5.9) 

also exists. Equation (4.5.7) does not belong to the class of problems (4.2.2) treated 

by Leach and Gorringe [78]. However, when f1 = _,X2, (4.5.6) does and in addition 

to the three integrals above, there is also the conserved vector 

J . L ,X 
T X +-L 

'T' 

T x P ( 4.5.10) 

from which the orbit equation is easily obtained by taking the scalar product with T 

(see §3.7). 

It is at first glance surprising, however, that the four-dimensional algebra of the MICZ 

problem (3.5.1), Al EB 50(3), is different from that of the five-dimensional algebra of 

the Kepler problem (1.5.1), A2 EB 50(3), since the MICZ problem has a conserved 

Poincare vector which projects and rotates it onto the equation of motion for the 

Kepler problem in terms of the vector T xP (see (3.5.11)). It should also be pointed 

out that in the case of the Kepler problem, the self-similar symmetry is a harbinger 

of Kepler's third law (1.5.48), while in the MICZ problem, although an analogue of 

this conservation law is present (3.9.53), it goes undetected using the symmetry treat

ment. Similarly, the six-dimensional algebra of the monopole-oscillator (3.13.1) with 

f1 = _,X2, 51(2, R) EB 50(3), is different from that of the twenty-four-dimensional 

algebra of the three-dimensional isotropic harmonic oscillator (1.7.1), 51(5,R), al

though the monopole-oscillator has a conserved Poincare vector which projects and 

rotates it onto the equation of motion for the three-dimensional isotropic harmonic 

oscillator in terms of the vector T xP (see (3.13.26) with f1 = _,X2). In the case of 

the three-dimensional isotropic harmonic oscillator, the self-similar symmetry also 

signals a Kepler-type third law (1.7.48), whilst in the monopole-oscillator problem, 

despite having an analogue of this conservation law (3.14.42), it is again overlooked 

by the symmetry treatment. One obvious drawback of using the Lie method is that, 

although the relationship between the MICZ and monopole-oscillator problems with 

the Kepler and oscillator problems respectively is obvious from a geometric point of 
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view (i. e., a simple projection and rotation), this relationship goes undetected us

ing the Lie analysis. It is not surprising then that the conservation laws (3.9.53) 

and (3.14.42) are not obviously apparent by looking at the symmetries of the equa

tions of motion of the MICZ and monopole-oscillator problems respectively, since the 

conservation laws are not obviously associated with a point transformation as with 

their central force counterparts. 

From these results it can also be concluded that the existence of symmetry and 

the existence of conserved vectors of the Laplace-Runge-Lenz type appear to be 

unrelated. The reason would appear to stem from two inherently dissimilar structures 

which in the case of the Kepler problem and the charge monopole problem, neatly , 
overlap. 



CONCLUSIONS 

The technique of applying vector operations directly to the equation of motion for the 

type of problems discussed in the earlier chapters has been shown to be very effective 

in the determination of conserved vectors. It is also very economical in terms of the 

amount of algebra required to obtain a solution. Due to the vector nature of the first 

integrals obtained using this method, the results are much easier to interpret than 

those which provide the integrals as separate components. For these reasons this , 
approach should be tried initially before resorting to more involved techniques such 

as Fradkin's method [29], the Lie technique, Noether's theorem or Whittaker's direct 

method [129]. 

The role of the angular momentum for these types of vector equations of motion is seen 

to be rather important. In Chapter 1 problems arising from the requirement that both 

the magnitude and direction of the angular momentum be restricted were studied in 

some detail. A general technique for finding conserved vectors of the Laplace-Runge

Lenz type was outlined and applied to the Kepler problem amongst other radially 

and angularly dependent equations of motion. Two non-conserved orthogonal vectors 

which are closely related to the scalar Lagrangian and also the Hamilton and Laplace

Runge-Lenz vectors were investigated for the Kepler problem and a possible method 

of construction was also developed for more general problems. Fradkin's method 

of finding conserved vectors and tensors was also studied and applied to the three

dimensional isotropic harmonic oscillator. A non-conserved tensor which is closely 

related to the scalar Lagrangian and also the Jauch-Hill-Fradkin tensor was also 

investigated for the three-dimensional isotropic harmonic oscillator together with a 

possible method of construction for more general problems. A comparison between 

the Kepler problem and the three-dimensional isotropic harmonic oscillator was done 

in order to illustrate the inherent similarities and differences between the two most 

important central force problems. Analogues of Kepler's laws of motion were obtained 

for the oscillator and the third law was shown to have a connection to that of the 

Kepler problem. The self-similar symmetry of the general central force problem was 

used to construct first integrals for the general central force problem and the Kepler 

problem was shown to be anomalous in that it is the only central force problem 

(apart from the free particle) which has a Laplace-Runge-Lenz vector analogue which 

is quadratric in the velocity. It was also possible to find a more general class of non

autonomous, radially dependent equations of motion possessing a Laplace-Runge

Lenz analogue which had previously been obtained using more involved techniques, 

by applying simple vector operations directly to the equations of motion. 
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In Chapter 2 it was shown that only the conservation of the direction of the angular 

momentum is required to fix the orbit in a plane. Making use of this relaxed angular 

momentum requirement it was possible to construct general classes of radially and 

angularly dependent problems having conserved Laplace-Runge-Lenz analogues, one 

of which had appeared previously in the literature in connection with the most general 

quadratic invariants for a two-dimensional integrable time-independent Hamiltonian. 

The time invariance Lie symmetry was then used to determine the components of the 

Laplace-Runge-Lenz vector as well as another integral which was previously obtained 

by calculating the Poisson bracket between the two components of the Laplace

Runge-Lenz vector in order to show that all conserved quantities can be obtained from 

any of the Lie symmetries and not only from the geometrically associated symmetry. 

Another class of velocity dependent and radially dependent problems was found which 

had conserved Laplace-Runge-Lenz vectors, of which one particular case was well

known in the literature in connection with the low level motion of artificial satellites. 

Two classes of related problems having focus-centred and geometric-centred conic 

section orbits were studied in some detail because of their connection with the Kepler 

problem and the three-dimensional isotropic harmonic oscillator. The presence of a 

conserved tensor for the oscillator-like equation of motion led to the application of 

Fradkin's method in this non-conservative system. A connection between certain 

classes of these problems and the usual central force problems was also obtained. 

For two restricted classes of problems selected from those mentioned above, it was 

also possible to find analogues of Kepler's three laws of motion and relate the period 

of elliptical motion to a fractional power of the semi-major axis length and also 

to investigate the role that eccentricity plays in the analogue of Kepler's third law. 

The self-similar Lie symmetry was also used in both of these problems to verify the 

eccentricity dependence of Kepler's third law. Interestingly, the velocity hodographs 

were no longer found to resemble their central force counterparts. 

In Chapter 3, the magnitude but not the direction of the angular momentum was now 

required to be conserved. This prompted the study of a number of angular momentum 

dependent and radially dependent problems which are well-known in the literature, 

but have not been studied in any great detail from a geometric point of view. These 

include the MICZ monopole, the monopole-free particle, the monopole-oscillator and 

monopole-repulsor which are closely related to the Kepler problem, the free parti

cle, the three-dimensional isotropic harmonic oscillator and the three-dimensional 

isotropic repulsor respectively. This prompted a careful investigation of the similar

ity between the orbits and velocity hodographs of the Kepler problem, free-particle, 

three-dimensional isotropic harmonic oscillator and repulsor. Most textbooks men-
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tion the fact that the orbit equation for the Kepler problem is connected with a plane 

section of a cone, implying that the connection is almost coincidental. The results of 

Chapter 3 demonstrate why the Keplerian focus-centred orbit is related to a plane 

conic section. There it was shown that the projection of any plane section through a 

right circular cone perpendicular to the axis of the cone gives rise to a focus-centred 

conic, with the apex of the cone situated at one focus. In most textbooks no connec

tion between the elliptical orbits of the three-dimensional isotropic harmonic oscil

lator and the elliptical plane sections of a right circular cone is mentioned although, 

using the argument put forward by most authors regarding the Kepler problem, the 

oscillator ellipse should also be connected with the elliptical plane sections of a right 

circular cone. From the results of Chapter 3 this is not the case since the projection 

of a plane section of a right circular cone is naturally associated with a focus-centred 

conic. In the case of the three-dimensional isotropic harmonic oscillator ellipse, the 

geometrically centred orbit is naturally associated with the projection of the intersec

tion of a geometrically centred elliptical cylinder (with symmetry axis perpendicular 

to the axis of symmetry of the cone and in the plane of the apex of the cone) and the 

cone. The circular velocity hodograph for the Kepler problem was also shown to be 

associated with the projection of an elliptical plane section of a right circular cone, 

whilst the elliptical velocity hodograph for the three-dimensional isotropic harmonic 

oscillator is associated with a more complicated structure on the cone. The straight

line free particle orbit was shown to be naturally associated with either the projection 

of a plane (parallel to the symmetry axis) section of a cone, or the projection of the 

intersection of a geometrically centred hyperbolic sheet (with symmetry axis parallel 

to the axis of the cone) and the cone. The single point velocity hodograph for the free 

particle was also shown to be associated with the projection of a straight line veloc

ity hodograph perpendicular to the projection plane. The hyperbolic focus-centred 

Keplerian orbit was shown to be naturally associated with the projection of a hy

perbolic plane section of a right circular cone, whilst the geometric-centred repulsor 

orbit was naturally associated with the projection of the intersection of a geomet

rically centred hyperbolic sheet (with symmetry axis perpendicular to the axis of 

symmetry of the cone and in the plane of the apex of the cone) and the cone. The 

open circular velocity hodograph for the hyperbolic Kepler problem was also shown 

to be associated with the projection of a piece of an elliptical plane section of a right 

circular cone, whilst the hyperbolic velocity hodograph for the repulsor is associated 

with a more complicated structure on the cone. By applying vector techniques di

rectly to the equations of motion it was possible to completely describe the MICZ 

monopole, monopole-free particle, monopole-oscillator and monopole-repulsor prob

lems and obtain several new results stemming from the rich geometry of the Laplace

Runge-Lenz analogues as well as explore new classes of problems possessing conserved 
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vectors. It was also possible to apply Fradkin's technique to the projected equation 

of motion for the monopole-oscillator and monopole-repulsor problems to find con

served vectors and tensors. The Lie symmetries were also used to determine the 

conserved vectors for the monopole-oscillator problem, although this time the geo

metric symmetry associated with the conserved quantity was employed. 

It would appear at this stage that it is possible to generalise the results of 

Chapters 2 and 3 to include problems where neither the magnitude nor the direction 

of the angular momentum is conserved. Equations of motion of the form 

:;. + aL + bi- + C1' = 0 

appear to possess a generalised Poincare vector 

provided certain simplifying assumptions are made. These type of problems may well 

provide interesting comparisons with their two-dimensional analogues particularly 

regarding analogues of Kepler's third law. These are problems to be considered in 

the future. 

The results of Chapter 4 demonstrate that the Lie symmetry technique which can 

often provide very useful information on the geometric properties of differential equa

tions is not always helpful such as in situations where two differential equations can 

be transformed into one another using only simple vector operations applied to the 

equations of motion which are not described by point transformations (see §4.5). The 

advent of freely available computer software such as the program LIE [50] which can 

entirely automate the extremely tedious calculations involved in applying the Lie 

method now makes it possible to apply this technique to representative examples of 

a general equation where previously the work and the inevitable mistakes involved in 

doing the calculations by hand made it impractical. 

Due to the vector nature of many of the problems arising in electrodynamics, it would 

appear that the vector techniques applied here could be implemented successfully on 

similar types of problems. One such example of a vector equation of motion describes 

the path of an electron in a magnetic field, which moves in a helix on the surface 

of a cylinder. Other problems worth considering would be the equation of motion 

of an electric point charge in the field of a magnetic dipole, for which several first 

integrals are already known [100]. It might also be worthwhile to consider extensions 

to multipole potentials. 
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