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Abstract 

 Thrinaxodon liorhinus, a cynodont that has been of captivating importance in the evolution of 

therapsids, is one of the best known transitional fossil taxa from non-mammaliaform cynodonts to 

mammals. The species is abundant in the South African Karoo Basin and is one of the best represented 

taxa immediately after the Permian-Triassic mass extinction. One of the key adaptive characteristics that 

may have aided in their survival was fossorialism. Numerous fossils of Thrinaxodon have been found in 

burrows or in a curled-up position, which has provided important circumstantial evidence for the 

formalization of the hypothesis of Thrinaxodon as a burrower. However, finding a fossil inside a burrow 

or even in a curled-up position only provides firm evidence for burrow use, not for burrow creation. 

Direct evidence for burrowing capability can come from the understanding of the functional morphology 

of Thrinaxodon limbs. The present study investigates internal and external structure of the Thrinaxodon 

forelimb, a variety of reptiles characterized by different behavioural patterns, and other cynodonts in 

order to advance present knowledge about the functional morphology of the transitional phase cynodont. 

The study uses Geometric Morphometric analyses, forelimb metric indices, torsion and cortical thickness 

of humeri in order to determine the extent to which, the Thrinaxodon forelimb functionally and 

structurally resembles that of a fossorial mammal versus a digging reptile. Results of the study tease apart 

the extent to which the Thrinaxodon forelimb illustrates modifications due to gait (e.g., sprawling versus 

semi-sprawling) versus a fossorial lifestyle. This would indicate that Thrinaxodon retained the reptilian 

skeletal configuration and adapted a posture that had begun to resemble parasagittal more than sprawling 

or semi-sprawling gait. Nonetheless, Thrinaxodon exhibits forelimb structural similarities to digging 

species, whether mammals or reptiles. 

Keywords: Cross-sectional properties, fossorial lifestyle, geometric morphometric, muscle attachments,

 sprawling posture. 
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Introduction 

 Cynodonts, members of the mammal-like therapsid lineage, are first documented in the Late 

Permian and include mammals as the only living group (Kemp 2005). Cynodonts are the youngest 

therapsid group whose main diversification occurred in the Triassic (Abdala and Ribeiro 2010). Non-

mammaliaform cynodonts (fossil members of the group closely related to mammals) are acknowledged as 

documenting one of the best transformational sequences in the fossil record, showing the acquisition of 

several key mammalian characteristics (Kemp 1983; Hopson 1987; Luo and Crompton 1994; Rubidge 

and Sidor 2001; Sidor and Smith 2004; Botha et al. 2004, 2007; Abdala and Ribeiro 2010). Features that 

evolve in these fossils that are present in today’s mammals are the enlargement of the masseteric fossa in 

the lower jaw, development of a complete secondary osseous palate and double occipital condyle, among 

others (Kemp 2005). 

  The Beaufort Group of the Karoo Basin in South Africa is well-known for having the most 

complete record of non-mammaliaform cynodonts in a successive sequence going from Late Permian to 

the Middle Triassic (Kemp 1983; Botha et al. 2004, 2007). This geologic unit contains diverse and 

abundant fossils that enhance our understanding of Permian-Triassic palaeocommunities (Rubidge 1995, 

2005). The earliest cynodont appears in the Tropidostoma Assemblage Zone (AZ) of the Karoo, while 

three genera have been found in the Dicynodon AZ at the end of the Permian, and four are documented 

after the Permian-Triassic extinction event (Abdala and Ribeiro 2010). The oldest evidence of cynodont 

burrowing has been found in the Lower Triassic of South Africa and has been attributed to Thrinaxodon 

(Damiani et al. 2003; Fernandez et al. 2013). 

 It was suggested that non-mammaliaform cynodonts may have evolved burrowing as a 

behavioural strategy (Damiani et al. 2003, Iqbal 2013) to escape the harsh environmental conditions 

(Bordy et al. 2009) that followed the Permian-Triassic mass extinction event 252 million years ago (MA). 

Accordingly, this mode of survival may have been instrumental to success of the lineage that gave rise to 
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mammals in the Jurassic (Ruta et al. 2013). Discovering a specimen inside a burrow is not necessarily 

indicative of the animal being fossorial, however, as animals can occupy burrows opportunistically, 

whether they have the ability to create their own burrow or not (Lamping 2012). Musculoskeletal 

structure convergent on that of known fossorial animals (e.g. wombats) would provide more definitive 

evidence for this type of adaptive behavioural strategy (and morphology) than would an association with 

a fossilized burrow cast. It is evident that the musculature of the forelimb plays an important role in the 

mode of behaviour of the organism (Abdala and Moro 2006). However, there has been a lack of internal 

(e.g., cross-sectional properties) skeletal description of Thrinaxodon’s forelimb. The forelimbs of 

fossorial species are stout and robust with large areas of muscle attachments (Milne et al. 2009; 

Elissamburu and De Santis 2011). In a recent morphological study using landmarks (Iqbal 2013, Iqbal et 

al. in prep), humeral shape of Thrinaxodon was morphologically closer to that of wombats, which is a 

well-known fossorial marsupial, than it was to that of Varanus niloticus and Thylacinus cynocephalus. 

This evidence supports the hypothesis of Thrinaxodon as a potential burrow maker (Iqbal 2013). 

However, intriguingly, the radius retained a form resembling the condition of digging reptiles, which also 

have a sprawled limb posture (Iqbal 2013). 

 In addition to selective pressures generated by fossorialism, morphology of Thrinaxodon 

forelimbs undoubtedly is shaped by selective pressures associated with gait type. Skeletal elements of the 

forelimb are likely adapted according to locomotion and habitual gait posture, as well as active 

fossorialism (Turnbull and Reed 1967; Szalay 1994; Iqbal 2013). A few morphological characteristics in 

the limb of Thrinaxodon are interpreted as to allow for larger muscle attachment (Kemp 2005), thus 

supporting the body off the ground (Kardong 2009). However, this degree of attachment decreased across 

cynodonts towards modern mammals, permitting the limbs to adopt a parasagittal posture (Blob 2001).  

Detailed quantitative studies of forelimb posture in therapsids, including Thrinaxodon, are lacking and 

this has resulted in an interpreted semi-sprawling posture for all non-mammaliaform therapsids (Jenkins 

1971).  In fact, transition from the sprawling posture of reptilian forelimbs to a more erect mammalian 
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parasagittal posture receives critical support in the semi-sprawled gait reconstruction attributed to 

Thrinaxodon (Reilly and Delancey 1997; Blob and Biewener 1999; Damiani et al. 2003; Iqbal 2013). A 

recent study (Iqbal 2013) demonstrated structural trends in broad humeral epiphyses that provide large 

areas for muscle attachment in the forelimb of Thrinaxodon, noting that they fall between those of the 

mammalian wombat and the reptilian Varanus forelimb which suggested a mosaic pattern of features 

indicating digging ability and sprawled limb posture. 

 In order to evaluate the evolutionary origins of forelimb functional morphology in Thrinaxodon 

liorhinus, comparison with a non-burrowing cynodont relative, Cynognathus, and a dicynodont, 

Cistecephalus that exhibits fossorial morphology in the forelimb, is necessary. Cynognathus was one of 

the larger carnivorous cynodonts common during the Early-Middle Triassic (Solomon et al. 2011). This 

species was estimated to be two metres in body length with the hind limbs directly underneath the body 

and the forelimbs semi-sprawled (Jenkins 1971; Palmer 1999; Nasterlack et al. 2013). Cistecephalus, a 

dicynodont from the Late Permian, is interpreted as a specialized burrower because of specialized features 

in its forelimbs resembling those of modern burrowing mammals (Cluver 1978; Palmer 1999). 

 Extant reptiles present a marked heterogeneity in terms of adaptive strategies (e.g., arboreal, rock-

dwelling, fossorial), making them an ideal comparative group for providing insight into understanding 

form-function relationships in the limb musculoskeletal anatomy of the fossil species. There are different 

types of digging behavior (e.g., occasional digger, scratch digger, generalized digger, etc.) that digging 

reptiles, as well as other fossorial animals, exhibit. These may be reflected in minor differences of the 

limb bone morphology depending on how these types of digging behavior affect the bone structure. 

 Research on posture and behaviour in the cynodont, Thrinaxodon, has not fully determined 

functional morphology of the forelimb as reflecting adaptation to fossorialism or response to the semi-

sprawling posture, nor have quantitative analyses (e.g., geometric morphometric approaches) been 

applied in addressing this issue. The main goal of this study is to enhance insight into the functional 
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morphology of the forelimb of Thrinaxodon, primarily through comparisons with those of a burrower 

mammal and a variety of reptiles with different general activity patterns. Forelimb structure is externally 

assessed using geometric morphometrics, a qualitative analysis of muscle attachment and internally 

assessed using cross-sectional geometric properties. This will allow for a comprehensive understanding of 

the overall variability in functional morphology of cynodont forelimbs, and specifically, a better 

understanding of which features drive observed morphological differences. Achieving these aims will 

allow specific hypotheses to be addressed. 

1. The forelimb of the mammal-like cynodont Thrinaxodon is adapted for burrowing. If the fossil 

taxon resemble fossorial marsupials and reptiles, these features would seem to be related to 

fossorial behavior and relatively independent of phylogeny. 

2. Alternatively, the forelimb musculoskeletal structure of Thrinaxodon may be adapted to semi-

sprawled posture and gait. Where the fossil taxon (i.e., Thrinaxodon) resemble fossorial reptiles 

only, these features could resemble either gait type or fossorial behavior, unless resemblance with 

other reptiles (e.g., non-digging reptiles) was minimal. 

3. The forelimb of Thrinaxodon, presumably adapted for digging, should exhibit greater 

configurational similarity to the forelimb of the dicynodont Cistecephalus, also regarded as a 

fossorial taxon, than Cynognathus, generally considered to be a non-fossorial cynodont. 

4. The forelimb structure of the fossil taxa, Cistecephalus and Cynognathus, share similarities with 

Thrinaxodon that are not shared by modern taxa, indicating a phylogenetic signal.  

Materials and Methods 

Materials 

 Morphological features of the right forelimb of fossil taxa were included for Thrinaxodon 

liorhinus (BPI/1/7199), which was found in a burrow cast numbered BPI/1/ 5558; Cynognathus 

(BPI/1/1675) and Cistecephalus (BPI/1/2915); which is housed at the Evolutionary Studies Institute, 
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University of the Witwatersrand. Due to time constraints, only one specimen of Thrinaxodon was used. 

Fossil specimens were compared to forelimbs of extant reptilian species characterised by non-digging and 

digging behaviours in order to infer functional components of the exhibited morphology. Extant taxa 

included: arboreal reptiles – Anolis equestris (n = 2); non-digging reptiles – Cordylus warreni (n = 1), 

Platysaurus imperator (n = 1), Pseudocordylus melanotus (n = 2); digging reptiles –Cordylus giganteus 

(n = 3), Crocodylus moreletti (n = 1), Crocodylus niloticus (n = 1), Crocodylus sp. (n = 1), Gerrhosaurus 

validus (n = 1) and Varanus niloticus (n = 2) (Table 1). Extant marsupials, Lasiorhinus kreffti (n = 1) and 

Vombatus ursinus (n = 2), were used as phylogenetic outgroups for evaluation of structural and functional 

aspects of the forelimb associated with fossorialism (Table 1). 

Table 1: Sample Composition 

Category Taxon 
Specimen 

number 
Common Name Source

* Behavioural 

Category 

Therapsid 

Thrinaxodon 

liorhinus BPI/1/7199   ESI Fossorial 

Therapsid Cynognathus BPI/1/1675 

 

ESI Non-fossorial 

Therapsid Cistecephalus BPI/1/2915 

 

ESI Fossorial 

Reptile Anolis equestris R59327 

Cuban Knight 

Anoles MCZ Arboreal 

Reptile Anolis equestris R59328 

Cuban Knight 

Anoles MCZ Arboreal 

Reptile  

Cordylus 

warreni R45805 

Warren’s 

Girdled Lizard MCZ Rock-dweller 

Reptile  

Platysaurus 

imperator R67614 

Emperor Flat 

Lizard MCZ Rock-dweller 

Reptile  

Pseudocordylus 

melanotus R184420 

Drakensberg 

Crag Lizard MCZ Rock-dweller 

Reptile  

Pseudocordylus 

melanotus TMS 143 

Drakensberg 

Crag Lizard DNMNH Rock-dweller 

Reptile  

Cordylus 

giganteus R39384 

Giant Girdled 

Lizard MCZ Fossorial 

Reptile 

Cordylus 

giganteus TMS 133 

Giant Girdled 

Lizard DNMNH Fossorial 

Reptile 

Cordylus 

giganteus TMS 137 

Giant Girdled 

Lizard DNMNH Fossorial 

Reptile 

Crocodylus 

moreletti R8047 

Morelet’s 

Crocodile MCZ Fossorial 

Reptile  

Crocodylus 

niloticus TMS 150 Nile Crocodile DNMNH Fossorial 
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Reptile Crocodylus sp. ZA913 Crocodile SAS Fossorial 

Reptile** Crocodylus sp. Fresh Specimen Crocodile SAS Fossorial 

Reptile  

Gerrhosaurus 

validus R44579 

Giant Plated 

Lizard MCZ Fossorial 

Reptile  

Varanus 

niloticus VN1 Nile monitor APES Fossorial 

Reptile  

Varanus 

niloticus VN2 Nile monitor APES Fossorial 

Mammal 

Lasiorhinus 

kreffti J14051 

Northern 

Hairy-nosed 

Wombat TM Fossorial 

Mammal 

Vombatus 

ursinus M10000 

Common 

Wombat ANWC Fossorial 

Mammal 

Vombatus 

ursinus A1258 

Common 

Wombat QM Fossorial 

* ESI: Evolutionary Studies Institute at the University of the Witwatersrand (South Africa); APES: 

Animal, Plants and Environmental Sciences Museum at the University of the Witwatersrand (South 

Africa); SAS: School of Anatomical Sciences at the University of the Witwatersrand (South Africa); 

DNMNH: Ditsong National Museum of Natural History (South Africa); MCZ: Museum of Comparative 

Zoology at Harvard University (Massachusetts); ANWC: Australian National Wildlife Collection 

(Canberra); QM: Queensland Museum (Brisbane); TM: Tasmanian Museum (Hobart) 

** The fresh specimen that was used for dissecting purposes was obtain from the School of Anatomical 

Sciences at the University of the Witwatersrand with the help of Prof. Paul Manger and Mr. Brendon 

Billings. 

 

The forelimb of Varanus niloticus and that of Vombatus ursinus and Lasiorhinus kreffti, have 

been examined previously (Iqbal 2013; Iqbal et al. In prep), and were shown to be broadly comparable to 

that of Thrinaxodon. These four specimens allowed for a better understanding of the extent to which 

Thrinaxodon forelimb resembles either fossorial mammals or reptiles. 

Gerrhosaurus sp. is fossorial, and is adapted to living on rocky out-crops (Branch 1998; 

Alexander and Marais 2007). Cordylus giganteus is a sungazing lizard that lives in burrows (Branch 

1998; Alexander and Marais 2007). Crocodylus niloticus is the second largest extant reptile, and is found 

throughout Sub-Saharan Africa (Branch 1998). Juveniles of this species often dig burrows to inhabit for 

up to four years (Branch 1998). They exhibit short but strong limbs (Alexander and Marais 2007). 

Cordylus warreni is one of the few non-digging reptiles in southern Africa (Branch 1998). They are found 

on mountainous slopes that are rocky with deep fractures that allow sheltering during hot-dry seasons 
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(Branch 1998; Alexander and Marais 2007). Platysaurus imperators are rock-dwelling, non-digging, 

savanna lizards (Branch 1998; Alexander and Marais 2007). Pseudocordylus melanotus, a non-digging 

reptile, is found in large colonies in rocky outcrops (Alexander and Marais 2007). Anolis equestris is 

native to Cuba and are strictly arboreal lizards (Nicholson and Richards 2011). 

Methods 

The forelimbs of Cynognathus BPI/1/1675, Cistecephalus BPI/1/2915, Cordylus giganteus (TMS 

133 and TMS 137), Crocodylus ZA 913, Crocodylus niloticus TMS 150, Pseudocordylus melanotus TMS 

143 and Varanus niloticus were scanned using high resolution computed tomography (CT). The Nikon 

Metrology XT H 225 LC microCT scanner located in the Evolutionary Studies Institute (ESI) at the 

University of the Witwatersrand (www.wits.ac.za/microCT) (see Table 2 for scan parameters) and the 

Skyscan 1173 microCT at the Museum of Comparative Zoology (www.mcz.harvard.edu) was used for 

acquiring data from the above-mentioned species (Table 2). Other material, such as the Thrinaxodon 

liorhinus specimen (BPI/1/ 7199), was scanned at the European Synchrotron Radiation Facility (ESRF, 

France, Grenoble) on ID 17 beamline using a monochromatic beam 96 keV, isotropic voxels of 45.5 

microns, and 4000 projections (Fernandez et al. 2013; Iqbal et al. In prep). The marsupial specimens 

(Lasiorhinus kreffti J14051, Vombatus ursinus A1258 and M10000) were scanned with a medical CT 

scanner using different scan parameters: tube voltage = 120 kV; tube current = 200mA-300mA; slice 

thickness = 0.5-0.625 mm, reconstruction increment = 0.4 mm; 512x512 voxel matrix (Carlson et al. 

2013).  

 

 

 

 

http://www.wits.ac.za/microCT
http://www.mcz.harvard.edu/
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Table 2: Scan parameters that used to CT-scan specimens at the ESI and MCZ 

Species 
Species 

number 
Location 

Tube 

voltage 

(kV) 

Tube 

current 

(µA) 

Frames 

per 

second 

Projections 

Isotropic 

voxel 

size 

(micron) 

Cynognathus BPI1675 ESI 85 100 1 3600 57.3 

Cistecephalus BPI2915 ESI 110 155 1 4000 35.9 

Cordylus 

giganteus 

TMS133 

and 

TMS137 

ESI 50 195 1  2000 16.6 

Crocodylus ZA913 ESI 70 125 1  2000 84.3 

Crocodylus 

niloticus 

TMS150 
ESI 50 195 1 2000 16.6 

Pseudocordylus 

melanotus 

TMS143 
ESI 50 195 1  2000 16.6 

Varanus 

niloticus 

VN1 and 

VN2 
ESI 75 115 1 360 50 

Crocodylus 

moreletti 

R8047 
MCZ 130 61  2240 33.04 

Cordylus 

giganteus 

R39384 
MCZ 130 61  2240 35.53 

Gerrhosaurus 

validus 

R44579 
MCZ 130 61  2240 35.53 

Cordylus 

warreni 

R45805 
MCZ 130 61  2240 31.97 

Platysaurus 

imperator 

R67614 
MCZ 130 61  2240 35.17 

Pseudocordylus 

melanotus 

R184420 
MCZ 130 61  2240 31.97 

* Anolis equestris, R59327 and R59328, scan parameters were not given for this research and were 

scanned at the Museum of Comparative Zoology (MCZ) using a skyscan. 

 

The 3D rendering of skeletal elements that were generated from the resultant image stacks were 

produced using VG Studio Max 2.1 (Volume Graphics, Heidelberg, Germany) and/or Avizo Standard 

7.1.1 (VSG, Merignac, France). Segmenting and separating elements that remained in contact with other 

elements in image stacks was performed using Avizo 7.1.1. Shape analyses and quantifications of internal 

structure were performed using these programs, as well as other analytical software (example: ImageJ 

v1.48, Mophologica v2.5).  
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Using the digital calipers option in Avizo 7.1.1, seven linear measurements (Figure 1) were taken, 

from which five functional indices were calculated. These indices reflect mechanical usage of muscles 

related to humerus and ulna function (Elissamburu and Vizcaino 2004; Elissamburu and De Santis 2011): 

 Shoulder moment index (SMI) – length of the deltoid insertion on the humerus (DLH) divided by 

the functional length of the humerus (HL). 

 Humerus robustness index (HRI) – transverse diameter of the humerus midshaft (TDH) divided 

by the functional length of the humerus (HL). 

 Epicondyle index (EI) – epicondylar width of the humerus (DEH) divided by the functional 

length of the humerus (HL). 

 Index of fossorial ability (IFA) – proximo-distal length of the olecranon process (OL) divided by 

the functional ulna length (FUL). 

 Ulna robustness index (URI) – transverse diameter of the ulna midshaft (TDU) divided by the 

functional ulna length (FUL). 

 

Figure 1: A, B: humerus; C: ulna. Measurements taken for the indices. DEH – diameter of the

 epicondyles; DLH – deltoid length of the humerus; HL – functional humerus length; OL –

 olecranon length from the tip of the olecranon process to the centre of the trochlear notch; TDH –

 transverse diameter of the humerus at the midpoint; TDU – transverse diameter of the ulna at the

A: B: C: 
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 midpoint; UL – functional ulna length (Figure adapted from Elissamburu and Vizcaino 2004;

 Elissamburu and De Santis 2011). 

 

Cortical thickness was analysed only for humeri as the internal properties proved to be 

challenging to quantify during the segmentation process. It was not always possible to reliably discern 

medullary cavities in the ulna and radius. The images were taken in Avizo 7.1.1 where the humeral bone 

was aligned so that the frontal, longitudinal and transverse planes were centred before taking snapshots of 

midshaft cross-sections (50% of full length). The scale for images was analysed on ImageJ, and then 

imported into Scion Image (release Beta 4.0.2). Resultant images were analysed using custom-written 

macros (Carlson 2005). Briefly, this involved inverting images and establishing an upper and lower 

threshold range that highlighted the cortical bone in the cross section. Subsequently, cortical bone was 

selected in order to calculate cross-sectional properties. Standard cross-sectional properties were acquired: 

Periosteal Area (Ps.Ar), Cortical Area (Ct.Ar), second moments of area about anteroposterior (AP) (Iy) 

and mediolateral (ML) (Ix), principal moments of area (Imax, Imin) and the principal angle (Ө) (Carlson 

2014). Percentage cortical area (% Ct.Ar) was computed as Ct.Ar. divided by Ps.Ar, and multiplied by 

100. The polar moment of area (J), was calculated as the sum of Imax and Imin. J quantifies resistance to 

torsion whereas the average bending rigidity (J/2) represents a measure of overall bending rigidity of the 

diaphysis. Cross-sectional properties (Iy, Ix, Imax, Imin and J) were standardised by natural logging the 

variable divided by the length of the humerus to the fourth power, i.e., [ln(variable/length)
4
]. 

Standardising cross-sectional properties is customary, as these are known to exhibit allometric 

relationships with body size. Cross-sectional properties determines stress and displacement of a bone that 

undergoes bending and torsional loads (O’Neill and Ruff 2004; Lieberman et al. 2004; Ruff and Larson 

2014). 

Each rendered element was aligned to a common morphospace and then standardized (equalised 

in length) to the length of respective elements of a representative Vombatus ursinus (M10000) (Table 3). 

This permitted exclusively analysing shape changes of the proximal and distal ends as well as torsion 
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amongst the elements. By standardizing bones to equal lengths, direct effects of allometry were reduced. 

The purpose of the analysis was to assess configurational differences rather than size differences. 

Geometric morphometric (GM) landmark-based analyses were used to measure morphological 

similarities between each element of the forelimb elements (humerus, radius and ulna) in order to assess 

functional similarities. Landmarks were placed on analogous structures of rendered elements using Avizo 

7.1.1. The chosen landmarks emphasize articular surfaces and muscle attachment areas (Milne et al. 

2009). A combined total of 70 landmarks were chosen on the forelimb skeleton: twenty-nine humeral 

(Table A3), eighteen radial (Table A4) and twenty-three ulnar (Table A5) (Iqbal 2013; Iqbal et al. In 

prep). 

Table 3: The scale factor that was used to standardize the elements to the length of Vombatus ursinus

 M10000. 

  Humeri Radii Ulnae 

Vombatus ursinus M10000 To 117.73 mm To 104.55 mm To 136.03 mm 

Vombatus ursinus A1258 Scaled by: 1.171 Scaled by: 0.91 Scaled by: 1.115 

Lasiorhinus kreffti J14051 Scaled by: 1.025 Scaled by: 0.92 Scaled by: 0.99 

Thrinaxodon liorhinus BPI5558 Scaled by: 3.675 Scaled by: 3.69 Scaled by: 4.68 

Cynognathus BPI 1675 (large)* Scaled by: 1.25 Scaled by: 0.95 Scaled by: 0.99 

Cynognathus BPI 1675 (small)*   Scaled by: 1.2 Scaled by: 1.7 

Cistecephalus BPI2915 Scaled by: 3.7 Scaled by: 5 Scaled by: 5 

Anolis equestris R59327 Scaled by: 15 Scaled by: 18 Scaled by: 23 

Anolis equestris R59328 Scaled by: 16 Scaled by: 19 Scaled by: 23 

Cordylus warreni R45805 Scaled by: 6.5 Scaled by: 9 Scaled by: 11 

Platysaurus imperator R67614 Scaled by:5 Scaled by: 7 Scaled by: 9 

Pseudocordylus melanotus R184420 Scaled by: 9 Scaled by: 13 Scaled by: 15 

Pseudocordylus melanotus TMS143 Scaled by: 8 Scaled by: 10 Scaled by: 12 

Cordylus giganteus R39384 Scaled by: 5 Scaled by: 7 Scaled by: 7 

Cordylus giganteus TMS133 Scaled by: 4 Scaled by: 5 Scaled by: 6 

Cordylus giganteus TMS137 Scaled by: 5 Scaled by: 6.5 Scaled by: 8 
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Crocodylus moreletti R8047 Scaled by: 5 Scaled by: 7 Scaled by: 8 

Crocodylus niloticus TMS150 Scaled by: 6 Scaled by: 8 Scaled by: 9 

Crocodylus ZA913 Scaled by: 0.75 Scaled by: 1.2 Scaled by: 1.4 

Gerrhosaurus validus R44579 Scaled by: 11 Scaled by: 13 Scaled by: 16 

Varanus niloticus VN1 Scaled by: 2.315 Scaled by: 2.88 Scaled by: 3.25 

Varanus niloticus VN2 Scaled by: 2.2735 Scaled by: 2.72 Scaled by: 3 

* Two different sized radius and ulna of Cynognathus was used for analyses. 

 

Torsion is the twist of the longitudinal shaft of one end of the bone (proximal) relative to the 

other end (distal) due to a strain acting upon the bone (Shah et al. 2006). Humeral torsion has been 

attributed to fossorial behavior and is linked to the expansion of muscle attachment area (Meier et al. 

2013), however this does not characterised solely fossorial taxa (Evans 1978). Humeral torsion was 

calculated using the cross-product (vector product) of two vectors characterizing the proximal and distal 

ends of humeral shaft (Jashashvili et al. 2011). The torsion angle was computed as the inverse cosine of 

the product of two vectors, multiplied by 180 and then divided by pi (π = 3.141592), i.e., [(Acos(product 

of vectors)*180)/3.141592].  

MorphoTools 1.1 (Specht et al. 2007; Swiss NFS projects N° 205321-102024/1 and 205320-

109303/1; Lebrun 2008; Lebrun et al. 2010) was used to apply GM analyses on the landmark 3D 

coordinates. First, a sample scheme was applied where each .stl and .ver files was specified so that 

MorphoTools would recognise the landmark data. This was followed by conducting principal component 

analyses (PCA) on the landmarks in order to assess configurational variation in the sample. MorphoTools 

allows the landmarks to be altered in a common morphospace essentially by deforming the original 

rendering along each principal component (Zelditch et al. 2004; Iqbal et al. In prep). In order to visualise 

variability of landmark configuration in morphospace, each principal component (PC) was plotted and 

deformed renderings at regular intervals were produced. The PC scores were analysed to illustrate 

configurational relationships between elements using JMP 11 (SAS, SAS Institute Inc., 2014). Lastly, a 
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regression was performed in order to explain the predictive relationship of the variables to one another. 

Logged centroid size was used as the independent variable in all regressions since it provides a useful 

approximation of overall size and is independent of shape. When a PC of interest is not correlated with 

logged centroid size, it reflects variance in the sample predominantly due to shape. For all statistical 

testing in the study, statistical significance was achieved when p < 0.05. 

Muscle attachment sites 

Muscle attachment scars on original fossils (or renderings of fossils) were used to define, when 

discernible, the extent of muscle attachment sites (Figure A7-A10). In some cases, this was not possible. 

As an alternative, the right forelimb of a single fresh specimen, Crocodylus, from the School of 

Anatomical Sciences at the University of the Witwatersrand was dissected and examined in order to infer 

origin and insertion sites of muscle attachments in the fossil taxa under investigation. It is understood that 

the musculoskeletal anatomy of Crocodylus may not entirely be suitable for representing the 

musculoskeletal anatomy of the fossil taxa, but it provided a basis for inference when none was possible 

otherwise. 

Results 

Geometric morphometric landmark-based analyses 

Principal component analyses (PCAs) of landmark configurations were performed on the 

standardized forelimb, where the F-ratio was the sum of squares reflecting different sources of variability. 

For the humeri, PC1 (52.03%), PC2 (21.40%) and PC 3 (8.70%) explain most of the variation in the 

sample where PC1 (Figure 2) corresponds to shape (r
2
 = 0.00, F-ratio = 0.05, p > 0.82) (Table 4, Figure 

A1) and PC2 (Figure 4) corresponds to width size (r
2
 = 0.15, F-ratio = 3.29, p > 0.09) (Table 4, Figure 

A2). The correspondence of PC1 to shape and PC2 to size is evident in the warp factor when the slider is 

moved along respective PC axes and the wireframes/renderings are deformed accordingly. PC1 (37.92%, 
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r
2
 = 0.09, F-ratio = 2.06, p > 0.17) and PC2 (23.70%, r

2
 = 0.00, F-ratio = 0.00, p > 0.98) explain the most 

variation in radial configurations while PC3 accounts for 13.10% (Figure 6, Figure 8). PC1 (48.38%, r
2
 = 

0.30, F-ratio = 8.40, p < 0.01), PC2 (23.51%, r
2
 = 0.00, F-ratio = 0.00, p > 0.98) and PC 3 (9.35%) 

accounts for the variation in the ulnae (Figure 10, Figure 12). 

Humerus 

Plotting PC1 vs. PC2 for humeri, illustrates no overlap along PC1 for Thrinaxodon, however, it 

lies on the axis that separates Cynoganthus and Varanus (digging reptile) from the fossorial mammals 

(Figure 2), i.e., Thrinaxodon is closest to fossorial mammals. The digging and non-digging reptiles 

overlap across PC1 (Figure 2). Cistecephalus overlaps with non-digging reptiles and digging reptiles 

along PC1 (Figure 2). Cynognathus is found to have the lowest PC1 score and the arboreal reptiles have 

the highest PC1 score (Figure 2). Cynognathus overlaps with the non-digging reptile, Pseudocordylus 

melanotus along PC2 (Figure 2, Figure 4). The arboreal reptiles, Anolis equestris, overlap along PC2 with 

fossorial mammals (Figure 2). A non-digging reptile, Cordylus warreni, overlaps with a digging reptile, 

Cordylus giganteus, along PC1 and PC2 (Figure 2). 

Cistecephalus shows no overlaps along PC2 and PC3 (Figure 4). Thrinaxodon overlaps with the 

digging reptile, Varanus, along PC3 (Figure 4).There is no clear differentiation among the behavioural 

groups as each quadrant has digging and non-digging species (Figure 2, Figure 4). Figure 3 illustrates 

PC1 and Figure 5 PC2 for humeral displacement of the species under investigation with a humeral 

rendering in anterior view. The series of renderings visualise reduction of the deltopectoral crest, as well 

as decreased width at the proximal and distal ends. 
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Figure 2: Plot of PC1 (x-axis) vs. PC2 (y-axis) for humeri. Aequestris: Anolis equestris, arboreal reptile.

 Cgiganteus: Cordylus giganteus, digging reptile. Cistecephalus, fossil. Cniloticus: Crocodylus

 niloticus, digging reptile. Crocmorelleti: Crocodylus moreletti, digging reptile. Crocodile, digging

 reptile. Cwarreni: Cordylus warreni, non-digging reptile. Cynognathus, fossil. Gvalidus:

 Gerrhosaurus validus, digging reptile. Lasiorhinus_Wombat: Lasiorhinus kreffti, fossorial

 mammal. Pimperator: Platysaurus imperator, non-digging reptile. Pmelanotus: Pseudocordylus

 melanotus, non-digging reptile. Thrinaxodon: Thrinaxodon liorhinus, fossil. Varanus: Varanus

 niloticus, digging reptile. Vombatus: Vombatus ursinus, fossorial mammal. 

 

 

 

 

 

 

 

 

Figure 3: Anterior displacement of the humeral PC1 – to PC1 + from -0.2, -0.1, 0, 0.1, 0.2 respectively.  
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Figure 4: Plot of PC2 (x-axis) vs. PC3 (y-axis) for humeri. Aequestris: Anolis equestris, arboreal reptile.

 Cgiganteus: Cordylus giganteus, digging reptile. Cistecephalus, fossil. Cniloticus: Crocodylus

 niloticus, digging reptile. Crocmorelleti: Crocodylus moreletti, digging reptile. Crocodile, digging

 reptile. Cwarreni: Cordylus warreni, non-digging reptile. Cynognathus, fossil. Gvalidus:

 Gerrhosaurus validus, digging reptile. Lasiorhinus_Wombat: Lasiorhinus kreffti, fossorial

 mammal. Pimperator: Platysaurus imperator, non-digging reptile. Pmelanotus: Pseudocordylus

 melanotus, non-digging reptile. Thrinaxodon: Thrinaxodon liorhinus, fossil. Varanus: Varanus

 niloticus, digging reptile. Vombatus: Vombatus ursinus, fossorial mammal. 

 

 

 

 

 

 

 

 

Figure 5: Anterior displacement of the humeral PC2 – to PC2 + from -0.2, -0.1, 0, 0.1 respectively.  
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Radius 

Thrinaxodon does not overlap with any species along PC1 and PC2 (Figure 6). However, it shares 

the same quadrant as Cynognathus, Cistecephalus and Crocodylus, i.e., the therapsid fossil taxa are 

grouped together in relation to the extant species (Figure 6). No overlap occurs for Cistecephalus along 

PC1 (Figure 6), however, does overlap with digging reptiles along PC2 (Figure 8). The fossorial 

mammals overlap with digging reptiles, Cordylus giganteus, Gerrhosaurus validus and Crocodylus 

niloticus along PC1 for the radii (Figure 6). The arboreal species overlap with non-digging and digging 

reptiles along PC1 and PC2 (Figure 6). Cynognathus overlaps with digging and non-digging reptiles 

along PC2 (Figure 6). 

Thrinaxodon does not overlap with any species, but lies closest to the extant reptiles in the 

positive axes (Figure 8). The fossorial mammals overlap with Cynognathus and the digging reptiles, 

Cordylus giganteus and Crocodylus, along PC3 (Figure 8). There is differentiation amongst the fossorial 

mammals and the extant reptiles (Figure 6, Figure 8). Figure 7 illustrates PC1 and Figure 9 PC2 radial 

displacement of the species under investigation with a posterior view, explaining a decrease in width of 

the overall radial bone. 
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Figure 6: Plot of PC1 (x-axis) vs. PC2 (y-axis) for radii. Aequestris: Anolis equestris, arboreal reptile.

 Cgiganteus: Cordylus giganteus, digging reptile. Cistecephalus, fossil. Cniloticus: Crocodylus

 niloticus, digging reptile. Crocmorelleti: Crocodylus moreletti, digging reptile. Crocodile, digging

 reptile. Cwarreni: Cordylus warreni, non-digging reptile. Cynognathus, fossil. Gvalidus:

 Gerrhosaurus validus, digging reptile. Lasiorhinus_Wombat: Lasiorhinus kreffti, fossorial

 mammal. Pimperator: Platysaurus imperator, non-digging reptile. Pmelanotus: Pseudocordylus

 melanotus, non-digging reptile. Thrinaxodon: Thrinaxodon liorhinus, fossil. Varanus: Varanus

 niloticus, digging reptile. Vombatus: Vombatus ursinus, fossorial mammal. 

 

 

 

 

 

 

 

Figure 7: Posterior displacement of the radial PC1 – to PC1 + from -0.1, 0, 0.1 respectively.  
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Figure 8: Plot of PC2 (x-axis) vs. PC3 (y-axis) for radii. Aequestris: Anolis equestris, arboreal reptile.

 Cgiganteus: Cordylus giganteus, digging reptile. Cistecephalus, fossil. Cniloticus: Crocodylus

 niloticus, digging reptile. Crocmorelleti: Crocodylus moreletti, digging reptile. Crocodile, digging

 reptile. Cwarreni: Cordylus warreni, non-digging reptile. Cynognathus, fossil. Gvalidus:

 Gerrhosaurus validus, digging reptile. Lasiorhinus_Wombat: Lasiorhinus kreffti, fossorial

 mammal. Pimperator: Platysaurus imperator, non-digging reptile. Pmelanotus: Pseudocordylus

 melanotus, non-digging reptile. Thrinaxodon: Thrinaxodon liorhinus, fossil. Varanus: Varanus

 niloticus, digging reptile. Vombatus: Vombatus ursinus, fossorial mammal. 

 

 

 

 

 

 

 

Figure 9: Posterior displacement of the radial PC2 – to PC2 + from -0.1, 0, 0.1 respectively.  
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Ulna 

Thrinaxodon overlaps with non-digging reptiles, Cordylus warreni and Pseudocordylus 

melanotus (specimen R184420) along PC1 (Figure 10). The fossorial mammals do not overlap with any 

species along PC1 (Figure 10). It is worth noting that the fossorial mammals are the only species to 

exhibit an olecranon process on the ulna. Cynognathus (small) and the digging reptile, Crocodylus 

moreletti R8047 overlap along PC1, and Cynognathus (large) overlap with the digging reptiles, Cordylus 

giganteus (specimen TMS133) and Crocodylus, along PC1 (Figure 10). A non-digging reptile, 

Platysaurus imperator, overlaps with a digging reptile, Crocodylus niloticus (specimen TMS150), along 

PC1 (Figure 10). Cistecephalus overlap with digging reptiles along PC1 (Figure 10). Varanus niloticus 

(specimen VN1) overlaps with Vombatus ursinus (specimen A1258) along PC2 (Figure 10, Figure 12). 

This illustrates overlap amongst digging reptiles and fossorial mammals. There is minimal overlap along 

PC2 between Cistecephalus and Cynognathus (small) (Figure 10). 

Thrinaxodon overlaps with the fossorial mammal, Lasiorhinus kreffti, along PC2 (Figure 12). It 

may be noted, that the therapsid fossils separate from extant species along PC2 (Figure 12). Gerrhosaurus 

validus and Lasiorhinus kreffti overlap along PC2 (Figure 10, Figure 12). Explaining overlap does occur 

between digging reptiles and fossorial mammals. The arboreal reptiles overlap with digging and non-

digging reptiles along PC2 (Figure 12). There is overlap along PC3 between arboreal reptiles and 

fossorial mammals (Figure 12). In figure 10, there is clear separation amongst the fossorial mammals with 

the therapsid fossils and the extant reptiles. However, figure 12 illustrates separation amongst the 

therapsids fossils and the extant species, where the fossorial mammals overlap with the extant reptiles. 

Figure 11 illustrates PC1 ulnae displacement of the species under investigation with a lateral view, 

explaining the reduction of the proximal end and a decrease in width along the entire shaft for PC2 

(Figure 13). 
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Figure 10: Plot of PC1 (x-axis) vs. PC2 (y-axis) for ulnae. Aequestris: Anolis equestris, arboreal reptile.

 Cgiganteus: Cordylus giganteus, digging reptile. Cistecephalus, fossil. Cniloticus: Crocodylus

 niloticus, digging reptile. Crocmorelleti: Crocodylus moreletti, digging reptile. Crocodile, digging

 reptile. Cwarreni: Cordylus warreni, non-digging reptile. Cynognathus, fossil. Gvalidus:

 Gerrhosaurus validus, digging reptile. Lasiorhinus_Wombat: Lasiorhinus kreffti, fossorial

 mammal. Pimperator: Platysaurus imperator, non-digging reptile. Pmelanotus: Pseudocordylus

 melanotus, non-digging reptile. Thrinaxodon: Thrinaxodon liorhinus, fossil. Varanus: Varanus

 niloticus, digging reptile. Vombatus: Vombatus ursinus, fossorial mammal. 

 

 

 

 

 

 

 

Figure 11: Lateral displacement of the ulnae PC1 – to PC1 + from -0.2, -0.1, 0, 0.1 respectively.  
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Figure 12: Plot of PC2 (x-axis) vs. PC3 (y-axis) for ulnae. Aequestris: Anolis equestris, arboreal reptile.

 Cgiganteus: Cordylus giganteus, digging reptile. Cistecephalus, fossil. Cniloticus: Crocodylus

 niloticus, digging reptile. Crocmorelleti: Crocodylus moreletti, digging reptile. Crocodile, digging

 reptile. Cwarreni: Cordylus warreni, non-digging reptile. Cynognathus, fossil. Gvalidus:

 Gerrhosaurus validus, digging reptile. Lasiorhinus_Wombat: Lasiorhinus kreffti, fossorial

 mammal. Pimperator: Platysaurus imperator, non-digging reptile. Pmelanotus: Pseudocordylus

 melanotus, non-digging reptile. Thrinaxodon: Thrinaxodon liorhinus, fossil. Varanus: Varanus

 niloticus, digging reptile. Vombatus: Vombatus ursinus, fossorial mammal. 

 

 

 

 

 

 

 

Figure 13: Lateral displacement of the ulnae PC2 – to PC2 + from -0.17, -0.1, 0, 0.1 respectively. 
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Table 4: Regression of the PC for the humeri, radii and ulnae vs. In Centroid Size 

Humerus 
R-

squared 
D.F 

Sum of 

Squares 
Mean Square F Ratio Prob > F 

PC1 model 
0,003 

1 0,001 0,001 
0,050 0,825 

PC1 error 19 0,331 0,174 

PC2 model 
0,148 

1 0,020 0,202 
3,292 0,085 

PC2 error 19 0,117 0,006 

         

Radius 
R-

squared 
D.F 

Sum of 

Squares 
Mean Square F Ratio Prob > F 

PC1 model 
0,094 

1 0,005 0,005 
2,063 0,166 

PC1 error 20 0,048 0,002 

PC2 model 
0 

1 0 0 
0 0,985 

PC2 error 20 0,033 0,002 

           

Ulna 
R-

squared 
D.F 

Sum of 

Squares 
Mean Square F Ratio Prob > F 

PC1 model 
0,296 

1 0,046 0,046 
8,398 0,009 

PC1 error 20 0,109 0,005 

PC2 model 
0 

1 0 0 
0,001 0,979 

PC2 error 20 0,075 0,004 

 

Indices 

1) Shoulder Moment Index (SMI) 

  Thrinaxodon has a SMI of 54.80%, which represents an average efficiency (Figure 14, 

Table A1). Lasiorhinus kreffti has the highest SMI with a 61.26% mechanical advantage (Table A1). 

Arboreal reptiles have the lowest SMI (Figure 14) with the Anolis equestris (specimen R59328) having a 

mechanical advantage of 9.84% (Table A1). Amongst extant comparative taxa, the SMI of non-digging 

reptiles ranges from 21.21% to 23.99%, while the SMI of digging reptiles ranges from 16.34% to 39.43% 

and that of fossorial mammals ranges from 60.12% to 61.26% (Figure 14, Table A1). The fossorial 

mammals, and Cynognathus and Thrinaxodon are the only species with over 50% mechanical advantage 

(Figure 14, Table A1). 
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Figure 14: Box plot of the Shoulder Moment Index (SMI) for therapsid fossils, fossorial mammals and

 reptiles with different locomotor adaptations. 

 

2) Humerus Robustness Index (HRI) 

  Thrinaxodon has a HRI of 15.33%, which is the third highest in the sample behind 

Lasiorhinus kreffti (specimen J14051) at 17.42% and Vombatus ursinus (specimen A1258) at 16.48% 

(Figure 15, Table A1). The arboreal reptiles, Anolis equestris, have the lowest HRI, 7.38% and 7.92% 

(Figure 15, Table A1). Cynognathus and Cistecephalus have HRI’s of 13.16% and 14.61%, respectively 

(Figure 15, Table A1). From the digging reptile group, Crocodylus (specimen ZA913) has the highest 

HRI of 12.37% and Varanus niloticus (specimen VN1)  has the second highest HRI of 11.81%, while the 

other digging reptiles are lower in HRI’s, ranging around 9.0% HRI (Table A1). The non-digging reptiles 

have even lower HRI’s ranging between 7.86% and 8.83% (Figure 15).  
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Figure 15: Box plot of the Humerus Robustness Index (HRI) for therapsid fossils, fossorial mammals and

 reptiles with different locomotor adaptations. 

 

3) Epicondyle Index (EI) 

  Thrinaxodon has the highest EI of 52.92% followed by Cynognathus at 50.31% and 

Cistecephalus at 50.10% (Figure 16, Table A1). The fossorial mammals have an EI ranging between 

42.98% and 46.50% (Figure 16). Anolis equestris, the arboreal reptiles, have an EI of 23.74% and 24.18% 

(Figure 16, Table A1). There are only three digging reptiles that have EI % values in the 30s: 

Gerrhosaurus validus at 34.71%, Varanus niloticus (specimen VN1) at 37.16% and Varanus niloticus 

(specimen VN2) at 33.64% (Table A1). Amongst the digging reptiles, Crocodylus moreletti, has the 

lowest EI at 20.75% (Table A1). The other reptiles, either digging or non-digging, have EI % values in 

the 20s (Table A1). 
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Figure 16: Box plot of the Epicondyle Index (EI) for therapsid fossils, fossorial mammals and reptiles

 with different locomotor adaptations. 

 

4) Index of Fossorial Ability (IFA) 

  Thrinaxodon has an IFA of 2.06% and Cistecephalus has an IFA of 7.95% (Figure 17). 

Lasiorhinus kreffti and Vombatus have the highest IFA of 20.40% to 23.11%, respectively (Figure 17, 

Table A1). Two different individuals of Cynognathus ulnae were analysed. The larger ulna had an IFA of 

3.60%, while the smaller ulna had an IFA of 2.83% (Figure 17, Table A1).  The digging reptiles have an 

IFA ranging between 1.28% and 4.99%, however, Crocodylus (specimen ZA913) has an IFA at 6.50% 

(Table A1). Anolis equestris (specimen R59327) has an IFA of 2.45% and Anolis equestris (specimen 

R59328) has an IFA of 5.63% (Table A1).  
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Figure 17: Box plot of the Index of Fossorial Ability (IFA) for therapsid fossils, fossorial mammals and

 reptiles with different locomotor adaptations. 

 

5) Ulna Robustness Index (URI) 

  Thrinaxodon has a URI of 6.95% (Figure 18). Cistecephalus has the highest URI at 

12.64% and Crocodylus (specimen ZA913) has the second highest URI at 10.16% (Figure 18, Table A1). 

Platysaurus imperator and Pseudocordylus melanotus (specimen R184420) have the lowest URI’s of 

4.45% and 4.63%, respectively (Table A1). The URI’s for fossorial mammals, arboreal reptiles, digging 

and non-digging reptiles overlap between 5.16% and 9.66% (Figure 18, Table A1). 
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Figure 18: Box plot of the Ulna Robustness Index (URI) for therapsid fossils, fossorial mammals and

 reptiles with different locomotor adaptations. 

 

Cortical thickness 

1) Percentage Cortical Area (%Ct.Ar). 

Thrinaxodon exhibits the third highest %Ct.Ar at 89.76% (Figure 19, Table A2). The 

highest %Ct.Ar is exhibited by the non-digging reptile, Pseudocordylus melanotus (specimen R184420), 

at 94.52% (Table A2). The lowest %Ct.Ar. is exhibited by Cynognathus at 49.13% (Figure 19, Table A2). 

There is overlap amongst the arboreal reptiles, digging reptiles, fossorial mammals and the non-digging 

reptiles, with a range between 75.02% and 91.12% (Figure 19). 
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Figure 19: Box plot of the percentage cortical area (%Ct.Ar) for humeral structure at 50% region of

 interest. 

 

2) Anteroposterior (AP) bending rigidity [Ix (mm
4
)] 

  Thrinaxodon has a scaled Ix at 5.31 mm
4
 (Figure 20, Table A2) and the highest (12.70 

mm
4
) bending in the AP direction was found to be for the digging reptile, Crocodylus (specimen ZA913) 

(Figure 20, Table A2). The arboreal reptiles had the lowest bending in the AP direction at 2.17 – 3.02 

mm
4
 (Figure 20, Table A2). The non-digging reptiles had a scaled Ix range of 4.19 – 6.19 mm

4
 (Figure 

20).  

3) Mediolateral bending rigidity [Iy (mm
4
)] 

  Thrinaxodon had a ML bending at 5.47 mm
4
 (Figure 20). The digging reptiles had the 

highest bending in the ML (mediolateral) direction at 12.60 mm
4
 (Figure 20, Table A2). The arboreal 
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reptiles had the lowest ML at 2.04 mm
4
. The fossorial mammals had an ML range between 10.50 mm

4 

and 11.27 mm
4
 (Table A2).  

 

Figure 20: Box plot of the anteroposterior (AP) bending rigidity [ln Ix (mm
4
)] and mediolateral bending

 rigidity [ln Iy (mm
4
)] for humeral structure at 50% region of interest.  - Ix and   - Iy 

  

Thrinaxodon has an AP that is equal to its ML (Figure 21). The fossorial mammals ML (Iy) are 

higher than its AP (Ix) (Figure 21). Whereas, Cynognathus and Cistecephalus have an AP value higher 

than its ML (Figure 21). Most of the species under investigation have an AP equal to its ML (Figure 21). 

This illustrates that Ix is a good indicator of Iy, i.e., as Ix increases for a species so does the Iy. 
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Figure 21: Scatter plot of the anteroposterior (AP) bending rigidity [ln Ix (mm
4
)] versus mediolateral

 bending rigidity [ln Iy (mm
4
)] for humeral structure at 50% region of interest, Iy = -0.239 + 1.047

 * Ix, r
2 
= 0.98, F-ratio = 972.71, p < 0.0001 

 

4) Rigidity index (Iy/Ix) and shape ratio (Imax/Imin) 

  Thrinaxodon had an Iy/Ix of 1.03 and a shape ratio (Imax/Imin) of 0.93 (Figure 22, Table 

A2). Thrinaxodon overlaps with digging reptiles in the rigidity index and shape ratio (Figure 22). The 

fossorial mammal, Vombatus ursinusA1258, had the highest rigidity index of 1.14 (Figure 22, Table A2). 

The arboreal reptiles had the lowest rigidity index of 0.92 (Figure 22, Table A2). The highest shape ratio 

was Crocodylus ZA913 of 0.99 and Anolis equestris R59327 had the lowest ratio of 0.92 (Figure 22).  
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Figure 22: Box plot of the ratio of second moments of area (Iy/Ix and Imax/Imin) at the midshaft (50%)

 region of interest.  - Imax/Imin and  - Iy/Ix. 

 

5) Polar moment of area, torsional rigidity (J) 

Thrinaxodon had a J at 10.81 mm
4
 (Figure 23). The digging reptile, Crocodylus 

(specimen ZA913), had the highest torsion (J) at 25.29 mm
4
 and the arboreal reptiles had the lowest J at 

4.21 mm
4
 (Figure231, Table A2). Thrinaxodon overlaps with the digging reptiles (Figure 23). 
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Figure 23: Box plot of the polar moment of area, torsional rigidity (ln J) for humeral structure at 50%

 region of interest. 

 

6) Average bending rigidity (J/2) 

Thrinaxodon had a J/2 at 5.41 (Table 2A). The highest value (J/2) was exhibited by the 

digging reptile, Crocodylus (specimen ZA913) (Figure 24) at 12.65 (Table 2A). And the lowest bending 

rigidity was found to be for the arboreal reptiles at 2.11 (Figure 24). 
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Figure 24: Box plot of the average bending rigidity (J/2) for humeral structure at 50% region of interest. 

 

Torsion 

Thrinaxodon has the highest torsion with an angle of 73.88° (Figure 25). Fossorial mammals have 

an average torsion angle between 38.90° and 39.31° (Figure 25). Cistecephalus has a torsion angle of 

44.45° which is the lowest angle amongst the fossil species under investigation (Figure 25). Reptilian 

diggers have an angle ranging from 7.38° to 44.50° (Figure 25). From the four non-digging reptiles, three 

species have angles ranging between 38.11° and 46.93°, while the fourth species (i.e., Platysaurus 

imperator) has an angle of 72.22° (Figure 25).  The two arboreal specimens, Anolis equestris, have an 

angle of 48.89° and 70.80° (Figure 25). 

J
/2

 



41 

 

 

Figure 25: Box plot of the torsion angle for fossil species and extant species where the latter are grouped

 into behavioural categories. 

 

 

Discussion 

General configuration 

The general shape of the Thrinaxodon humerus resembles that of fossorial species whether being 

fossorial mammals or digging reptiles. This morphology relies on the fact that the epiphyseal ends are 

both broad with slight torsion of the shaft which is a typical morphological characteristic of diggers 

(Jenkins 1973; Kemp 1980; Kardong 2002; Sanchez-Villagra et al. 2004; Meier et al. 2013). Thrinaxodon 

humerus shape is closest to that of fossorial mammals and furthest away from the arboreal reptiles along 

PC1 (Figure 2). The humeral displacement (Figure 3) illustrates that the deltopectoral crest decreases 

from fossorial to arboreal species. The decline in width of the deltopectoral crest reduces the area that is 

available for muscle attachment. Musculoskeletal anatomy of the fossorial mammals as well as the 
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digging reptiles is specialised for joint stability and increased force during activity (Grand and Barboza 

2001). Fossorial species require powerful muscles that are attached to broad bony structures (Turnbull 

and Reed 1967) on the epiphyses and short robust diaphyses (Warburton et al. 2013). These muscles are 

needed in relation to the type of digging behaviour the species exhibits. The shortness of forelimb bones 

relative to the body increases the mechanical advantage of attaching muscles during a function such as 

digging (Hildebrand and Gloslow 2001).  

The SMI provides an indication of how efficient the deltoid muscle is in relation to the bone 

(Elissamburu and De Santis 2011). This index measures the area that is available for attachment of the M. 

deltoideus. The longer the length of the deltopectoral crest in relation to the humeral length, the more 

efficient the mechanical advantage of the deltoid will be (Elissamburu and De Santis 2011). Lasiorhinus 

kreffti is a well-known fossorial mammal that has the highest mechanical advantage when compared to 

the other extant species under investigation (Figure 14, Table A1). The SMI provides evidence of humeral 

stability for body support and digging activity. The SMI for Cynognathus was over 50% and was similar 

to that of Thrinaxodon and the fossorial mammal (Figure 14). This may reflect their large body size and 

accounts for the stability of the body rather than the fossorial behaviour. Cistecephalus SMI is very 

similar to that of digging reptiles and supports the assumption of fossorial behaviour for the dicynodont 

(Figure 14). Thrinaxodon exhibited an average SMI that demonstrates the mechanical advantage of its 

deltoid to be close to that of fossorial mammals (Figure 14). 

Overlap along PC1 in quadrant 1 (positive x-axis and positive y-axis), verify that the digging and 

non-digging reptiles, to some extent, share similarities in their humeral shape (Figure 2). Even though 

Cordylus giganteus is a digging reptile and Cordylus warreni is a non-digging reptile, there is evidence 

that they share shape (PC1) and width size (PC2) similarities in their humeri (Figure 2). This is in relation 

to the specimens being in the same genus but different species. The width of the flexor, pronator and 

supinator of the antebrachium is indicated by the EI (Elissamburu and De Santis 2011). Thrinaxodon had 

the highest EI with close values for the humerus of Cynoganthus and Cistecephalus (Figure 16), which 
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indicates the area available for larger muscle attachment. The expansion of the distal humerus seen in the 

fossils (Figure 16) may be related to the semi-sprawling posture evident in therapsids. The epiphyseal 

ends are affected by the functional activity of the forelimb (Szalay 1994) and thus, most muscle 

attachments, whether the origin or insertion, occur at the extreme ends. The other reptiles species, digging 

and non-digging, ranged between 20% and 30% (Figure 16, Table A1). This illustrates that the width of 

the epicondyle in relation to the length of the humerus is relative to the digging function as well as to 

body support (Elissamburu and Vizcaino 2004). 

For the radius, Thrinaxodon does not overlap with any of the species along PC1 and PC2, 

however, it does lie in the same quadrant as Cistecephalus, Cynognathus and Crocodylus (Figure 6). This 

reveals separation of the therapsid fossils with the extant species, i.e., evidence of a phylogenetic 

relationship. The radius bears a fraction of the body weight (Argot 2001) and thus explains that 

Thrinaxodon having semi-sprawled limbs share minimal similarities to reptiles that are sprawled limbed. 

The difference between the radii is given by the width of the radial shaft (Figure 7, Figure 9). However, it 

should be noted that radii are struturally columnar and may not reveal many structural differences 

amongst species. The enlarged area for muscle attachment is necessary to be able to withstand resistance 

from the ground during digging (Warburton et al. 2013). The arboreal species overlap with the non-

digging reptiles along PC1 and with the digging reptiles along PC2 (Figure 6). This is likely related to the 

fact that all reptiles share similarities in limb structure. The fossorial mammals overlap with digging and 

non-digging reptiles along PC3, which accounts for something other than shape and size (Figure 8). 

The Thrinaxodon ulna lies closest to that of extant reptiles along PC1 (Figure 10), and illustrates 

that fossorial mammals are an outlier in ulnar structure. This is due to mammals possessing a prominent 

olecranon process that is absent in reptiles. The structure of the ulna, for the fossils and the reptiles except 

Varanus, has a posterior proximal facet behind the articular facet and this structure would have the 

function of the olecranon process. Varanus species have a small protruding structure on the posterior 

portion of the proximal end. From the analyses of the extant Varanus ulna, this structure is not completely 
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ossified on the proximal epiphyseal end and suggests that either it may not have been fossilised in 

Thrinaxodon, Cynognathus or Cistecephalus (e.g., not ossified), or it may have been absent. This small 

bony process may account for the slight overlap along PC2 between the fossorial mammals and digging 

reptile, Varanus (Figure 10) and could possibly explain a phylogenetic relationship. The fossil species, 

however, may have had a cartilaginous olecranon or it could have been completely absent (Iqbal 2013). 

Having said this, the extant reptilian species retained their primitive structure in the ulna and overlap 

along PC1 (Figure 10). 

The IFA is in relation to the mechanical advantage of the triceps that are attached to the olecranon 

process of the ulna (Elissamburu and De Santis 2011). This index is a good statistic of fossoriality as it is 

reflects force development for digging (Hildebrand 1985; Vizcaino et al. 1999; Vizcaino and Milne 2002; 

Elissamburu and De Santis 2011). However, due to the reptilian species lacking an olecranon, there is 

overlap between the reptilian diggers and non-diggers (Table A1). The fossorial mammals have the 

highest IFA and Thrinaxodon has the lowest (Figure 17). Due to the lack of an olecranon and the 

difference in width of the epiphyseal ends, IFA may not provide enough information to the extent of 

Thrinaxodon exhibiting fossorial or reptilian features. 

The PC1 ulna displacement (Figure 11) illustrates the decline of the olecranon process on the 

proximal end, whereas the PC2 (Figure 13) explains the decrease in anteroposterior length along the ulna 

shaft. The indication of the ulna robustness is given by URI and is in relation to the insertion of muscles 

involved in pronation and supination of the antebrachium (Elissamburu and De Santis 2011).  The highest 

URI are the fossorial mammals, digging reptiles, Cistecephalus, Cynognathus and Thrinaxodon (Figure 

18). This evidence proves that there is an increase in robusticity among the species from non-digging 

reptiles to fossorial mammals (Figure 18). The URI can be use to distinguish among the different types of 

digging activity in species (Elissamburu and De Santis 2011). 
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Internal morphology 

Cortical bone thickness responds to the activity the bone endures (Meier et al. 2013). It was stated 

by Magwene (1993), that non-mammalian therapsids had less dense bones as they were subjected to 

greater bending and torsion levels (Botha 2003). However, Cistecephalus and Thrinaxodon exhibited 

%Ct.Ar that overlapped with extant species (Figure 19, Table A2). HRI provides a signal for the 

robustness of the humerus. This index is related to digging activity and body support during a function 

(Elissamburu and Vizcaino 2004; Elissamburu and De Santis 2011). When compared to all species, 

Thrinaxodon paired closely to the fossorial mammals with 15.33% robustness (Figure 15) and 3% more 

than the digging reptiles (Table A1).  

Depending on the type of burrower, the humeral diaphysis is either rounded or flattened 

anteroposterior (Ix) (Turnbull and Reed 1967). The increase in AP and ML, relates to the more strain that 

is applied to the bone (Carlson 2014). The fossorial mammals have the highest AP and ML, followed by 

Cistecephalus, Cynognathus and the digging reptiles (Figure 20, Figure 21). This would suggest that the 

digging species have a higher activity lifestyle than non-diggers or arboreal species. As the bone shortens 

proximodistally, it widens mediolaterally at its epiphyses, which allows for the enlarged muscle 

attachment areas of wrist flexors and extensors. Thrinaxodon (Figure 25) and the fossorial mammals 

(Figure 23) both exhibits high torsion angles. However, the fossorial torsion angles overlap with the non-

digging and arboreal species. This may explain that torsion observed in extant reptiles is directly related 

to their sprawling posture. It has been stated in previous research that cortical thickness and torsion have a 

corresponding relationship (Evans 1978). The cortical thickness and torsion statistical evidence alone 

supports the hypothesis that Thrinaxodon exhibit fossorial-like morphology in the forelimb.  

Limitations 

 The mass of each muscle was not reported for and through literature it is apparent that this weight 

as well as size in relation to the other muscles plays a role in whether the muscle attached to the bone is 
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well adapted for the function. As the muscle size differs across locomotor ability, the extent to which the 

muscle functions in the specific activity is unknown, i.e., the muscle mass would increase from arboreal 

to fossorial species. To account for this, a dissection from each behavioural category should be 

undertaken, where the muscles mass in relation to the bone should be noted. 

 Some of the fossil taxa’s humeral medullary space may have been filled with sediment which 

revealed little to no space in the centre during digital segmentation. And this demonstrated difficulties as 

the cavity was needed for the analyses of the cross sectional properties. To overcome the difficulty in 

visualising the medullar cavity, it may be advised to have a histological analyses for the cortical structure. 

 There have been many observational studies on the different types of digging behaviour in extant 

species and these assumptions have been made for the fossil taxon. However, the type of digging 

behaviour exhibited in the fossil form will remain unknown. The extent of digging may be better 

understood by incorporating the manus and hindlimb into research.  

Conclusions 

The research conducted aimed to examine the extent to which the Thrinaxodon forelimb reflects 

fossorial morphology or forms of reptilian gait. Ultimately, the morphology supported that Thrinaxodon 

forelimb morphology is close to that of fossorial mammals. However, due to the semi-sprawled limb 

posture, Thrinaxodon does share minimal forelimb modifications with reptiles in order to keep its trunk 

(body) from dragging on the ground. The musculoskeletal anatomy of Thrinaxodon displays adaptations 

to a fossorial lifestyle and as being the transitional species from a reptilian phase to a parasagittal gait as 

seen in extant fossorial mammals. The goal of this study was to enhance insight into the functional 

morphology of Thrinaxodon forelimb through comparisons with species of different locomotor 

behaviour, which was investigated by analyses of the indices, the PCA, and the internal and external 

examination. There are true differentiations between the reptilian and mammalian forelimb. However, 

there is evidence of gradual change among the synapsid group (Cistecephalus, Thrinaxodon and 



47 

 

Cynognathus) to illustrate these changes from the primitive state to a modern state, i.e., from reptilian to 

mammalian. Cynodonts exhibit a primitive sprawling or semi-sprawling gait and the musculoskeletal 

similarities to reptiles are postural rather than behavioural. Analyses of more therapsid species, which 

includes the hindlimb, would permit a more comprehensive interpretation of the locomotion, gait and 

behaviour among the species. This study provided direct anatomical evidence that the limb configuration 

of Thrinaxodon indicates the non-mammalian forelimb form had begun to show similarities to the 

mammalian form. 
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Appendix 1 

Table A1: The functional indices (SMI, HRI, EI, IFA and URI) calculated for the forelimb by measurement of the DLH, HL, TDH, DEH, OL,

 FUL and TDU. 

Species 
Specimen 

number * 

DLH 

(mm) 

HL 

(mm) 

SMI 

(%) 

TDH 

(mm) 

HL 

(mm) 

HRI 

(%) 

DEH 

(mm) 

HL 

(mm) 

EI 

(%) 

OL 

(mm) 

FUL 

(mm) 

IFA 

(%) 

TDU 

(mm) 

FUL 

(mm) 

URI 

(%) 

Thrinaxodon BPI7199 18.95 34.58 54.80 5.30 34.58 15.33 18.30 34.58 52.92 0.62 30.09 2.06 2.09 30.09 6.95 

**Cynognathus 

(small) 
BPI1675  - - - - - - - - - 2.30 81.29 2.83 7.38 81.29 9.08 

**Cynognathus 

(large) 
BPI1675 56.12 94.36 59.47 12.42 94.36 13.16 47.47 94.36 50.31 5.04 139.92 3.60 13.51 139.92 9.66 

Cistecephalus BPI2915 10.63 26.21 40.56 3.83 26.21 14.61 13.13 26.21 50.10 2.46 30.94 7.95 3.91 30.94 12.64 

Vombatus 

ursinus 
M10000 77.09 127.63 60.40 14.44 127.63 11.31 54.85 127.63 42.98 31.39 153.84 20.40 12.19 153.84 7.92 

Lasiorhinus 

kreffti 
J14051 76.93 125.58 61.26 21.87 125.58 17.42 58.39 125.58 46.50 33.52 155.35 21.58 9.88 155.35 6.36 

Vombatus 

ursinus 
A1258 64.55 107.36 60.12 17.69 107.36 16.48 46.07 107.36 42.91 32.37 140.08 23.11 13.37 140.08 9.54 

Varanus 

niloticus 
VN1 17.45 55.28 31.57 6.53 55.28 11.81 20.54 55.28 37.16 1.24 47.88 2.59 3.26 47.88 6.81 

Varanus 

niloticus 
VN2 20.27 56.13 36.11 5.56 56.13 9.91 18.88 56.13 33.64 0.65 50.75 1.28 2.82 50.75 5.56 

Crocodylus 

moreletti 
R 8 047 6.34 22.70 27.93 2.22 22.70 9.78 4.71 22.70 20.75 0.46 17.15 2.68 1.38 17.15 8.05 

Crocodylus ZA913 56.96 144.47 39.43 17.87 144.47 12.37 40.33 144.47 27.92 6.61 101.70 6.50 10.33 101.70 10.16 
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Crocodylus 

niloticus 
TMS150 6.68 21.59 30.94 2.12 21.59 9.82 5.04 21.59 23.34 0.57 15.88 3.59 1.15 15.88 7.24 

Cordylus 

giganteus 
R 39 384 6.46 25.55 25.28 2.38 25.55 9.32 7.47 25.55 29.24 0.51 20.76 2.46 1.24 20.76 5.97 

Cordylus 

giganteus 
TMS133 7.78 30.13 25.82 2.83 30.13 9.39 8.98 30.13 29.80 0.58 23.74 2.44 1.30 23.74 5.48 

Cordylus 

giganteus 
TMS137 5.71 23.83 23.96 2.19 23.83 9.19 6.89 23.83 28.91 0.62 18.62 3.33 0.96 18.62 5.16 

Gerrhosaurus 

validus 
R 44 579 1.86 11.38 16.34 1.08 11.38 9.49 3.95 11.38 34.71 0.39 7.81 4.99 0.60 7.81 7.68 

Anolis equestris R 59 327 0.94 8.13 11.56 0.60 8.13 7.38 1.93 8.13 23.74 0.14 5.71 2.45 0.38 5.71 6.65 

Anolis equestris R 59 328 0.72 7.32 9.84 0.58 7.32 7.92 1.77 7.32 24.18 0.31 5.51 5.63 0.34 5.51 6.17 

Cordylus 

warreni 
R 45 805 3.67 16.92 21.69 1.33 16.92 7.86 5.04 16.92 29.79 0.51 12.59 4.05 0.68 12.59 5.40 

Platysaurus 

imperator 
R 67 614 5.01 23.62 21.21 1.99 23.62 8.43 5.32 23.62 22.52 0.66 17.07 3.87 0.76 17.07 4.45 

Pseudocordylus 

melanotus 
R 184 420 2.80 12.97 21.59 1.08 12.97 8.33 3.37 12.97 25.98 0.14 9.71 1.44 0.45 9.71 4.63 

Pseudocordylus 

melanotus 
TMS143 3.86 16.09 23.99 1.42 16.09 8.83 4.73 16.09 29.40 0.23 12.03 1.91 0.71 12.03 5.90 

*Key for collection: BPI - Evolutionary Studies Institute collection at the University of the Witwatersrand (South Africa); VN - Animal, Plants and 

Environmental Sciences Museum collection at the University of the Witwatersrand (South Africa); ZA - School of Anatomical Sciences collection at the 

University of the Witwatersrand (South Africa); TMS - Ditsong National Museum of Natural History collection (South Africa); R - Museum of Comparative 

Zoology collection at Harvard University (Massachusetts); M - Australian National Wildlife Collection (Canberra); A - Queensland Museum (Brisbane); J - 

Tasmanian Museum collection (Hobart). 

**Note: Two different sized Cynognathus were used for the study, however, it shares the same specimen number due to the forelimb elements being discovered 

at the same site and was labeled accordingly. 
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Shoulder Moment Index (SMI) is defined as the humeral deltoid length (DLH) divided by the humeral functional length [(DLH/HL) x 100]; Humerus Robustness 

Index (HRI) is defined as the humerus transverse diameter (TDH) divided by the humeral functional length [(TDH/HL) x 100]; Epicondyle Index (EI) is defined 

as the width of the epicondyle (DEH) divided by the humeral functional length [(DEH/HL) x 100]; Index of Fossorial Ability (IFA) is defined by the olecranon 

length (OL) divided by the ulna functional length [(OL/FUL) x 100]; Ulna Robustness Index (URI) is defined as the ulna transverse diameter (TDU) divided by 

the ulna functional length [(TDU/FUL) x 100] follows Elissamburu and Vizcaino (2004) and Elissamburu and De Santis (2011). 

 

Table A2: Cross-sectional properties for humerii at their 50% region of interest. 

Species 
Specimen 

Number * 
Ps. Ar 

Cortical 

Area 

(mm
2
) 

% Ct. 

Ar 

Logged Moments of 

Area (mm
4
)** Principal 

Angle (Ө) 

Logged Principal 

moments of area 

(mm
4
)** Iy/Ix Imax/Imin 

Logged J 

(mm
4
)** 

J/2 

lx ly Imax Imin 

Thrinaxodon 

liorhinus 
BPI5558 279,80 251,16 89,76 5,31 5,47 56,97 5,21 5,60 1,03 0,93 10,81 5,41 

Cynognathus BPI1675 161,27 79,24 49,13 11,00 10,31 25,09 10,18 11,32 0,94 0,90 21,50 10,75 

Cistecephalus BPI2915 177,76 142,16 79,97 5,13 5,52 82,64 5,13 5,53 1,08 0,93 10,65 5,33 

Vombatus 

ursinus 
M10000 232,88 175,19 75,23 10,35 11,27 66,47 10,21 11,71 1,09 0,87 21,92 10,96 

Lasiorhinus 

kreffti 
J14051 295,22 263,62 89,29 9,97 10,50 57,37 9,72 11,15 1,05 0,87 20,87 10,44 

Vombatus 

ursinus 
A1258 219,59 196,52 89,49 9,59 10,94 75,04 9,53 11,19 1,14 0,85 20,73 10,36 

Varanus niloticus VN1 134,64 110,06 81,74 8,62 8,94 -61,47 8,51 9,11 1,04 0,93 17,62 8,81 

Varanus niloticus VN2 112,86 94,37 83,62 9,12 9,30 -59,51 9,03 9,41 1,02 0,96 18,44 9,22 

Crocodylus 
R 8 047 84,63 69,40 82,00 6,31 6,05 -8,05 6,04 6,31 0,96 0,96 12,35 6,18 
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moreletti 

Crocodylus ZA913 133,29 121,46 91,12 12,70 12,60 11,39 12,59 12,70 0,99 0,99 25,29 12,65 

Crocodylus 

niloticus 
TMS150 115,91 71,00 61,26 5,49 5,45 42,25 5,31 5,67 0,99 0,94 10,97 5,49 

Cordylus 

giganteus 
R 39 384 89,46 60,78 67,94 6,64 6,58 -38,14 6,49 6,75 0,99 0,96 13,24 6,62 

Cordylus 

giganteus 
TMS133 92,89 59,98 64,57 7,27 7,14 -35,10 7,02 7,42 0,98 0,95 14,44 7,22 

Cordylus 

giganteus 
TMS137 80,79 54,83 67,87 6,67 6,40 -22,82 6,35 6,73 0,96 0,94 13,08 6,54 

Gerrhosaurus 

validus 
R 44 579 108,83 95,47 87,72 2,96 2,84 -16,77 2,83 2,97 0,96 0,95 5,80 2,90 

Anolis equestris R 59 327 57,68 41,68 72,26 3,02 2,77 -1,79 2,77 3,02 0,92 0,92 5,78 2,89 

Anolis equestris R 59 328 67,21 56,21 83,63 2,17 2,04 -2,64 2,04 2,17 0,94 0,94 4,21 2,11 

Cordylus warreni R 45 805 82,34 72,74 88,34 5,05 5,02 -33,90 4,99 5,08 0,99 0,98 10,07 5,03 

Platysaurus 

imperator 
R 67 614 93,10 70,97 76,23 6,19 6,23 -49,52 6,09 6,34 1,01 0,96 12,44 6,22 

Pseudocordylus 

melanotus 
R184 420 73,62 69,58 94,52 4,19 4,16 -41,59 4,06 4,31 0,99 0,94 8,37 4,19 

Pseudocordylus 

melanotus 
TMS143 86,17 64,64 75,02 4,81 4,76 -40,10 4,64 4,95 0,99 0,94 9,60 4,80 

*Key for collection: BPI - Evolutionary Studies Institute collection at the University of the Witwatersrand (South Africa); VN - Animal, Plants and 

Environmental Sciences Museum collection at the University of the Witwatersrand (South Africa); ZA - School of Anatomical Sciences collection at the 

University of the Witwatersrand (South Africa); TMS - Ditsong National Museum of Natural History collection (South Africa); R - Museum of Comparative 

Zoology collection at Harvard University (Massachusetts); M - Australian National Wildlife Collection (Canberra); A - Queensland Museum (Brisbane); J - 

Tasmanian Museum collection (Hobart). 



v 

 

**Ix, Iy, Imax, Imin and J were calculated by taking the natural log of the variable divided by length to the fourth power. 

 

 

Figure A1: Regression of PC1 vs. in humerus centroid size, with equation PC1 %var: 52.03 = -0.473 + 0.194 * Log(centroid_size), r
2
 = 0.003, p > 0.825 
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Figure A2: Regression of PC2 vs. in humerus centroid size, with equation PC2 %var: 21.40 = -2.265 + 0.930 * Log(centroid_size), r
2
 = 0.148, p > 0.085 
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Figure A3: Regression of PC1 vs. in radius centroid size, with equation PC1 %var: 37.92 = -1.428 + 0.641 * Log(centroid_size), r
2
 = 0.094, p > 0.166 
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Figure A4: Regression of PC2 vs. in radius centroid size, with equation PC2 %var: 23.70 = -0.016 + 0.007 * Log(centroid_size), r
2
 = 0, p > 0.985 
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Figure A5: Regression of PC1 vs. in ulna centroid size, with equation PC1 %var: 48.38 = -6.409 + 2.683 * Log(centroid_size), r
2
 = 0.046, p < 0.009 
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Figure A6: Regression of PC2 vs. in ulna centroid size, with equation PC2 %var: 23.51 = -0.048 + 0.020 * Log(centroid_size), r
2
 = 0, p > 0.979 
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Appendix 2 

List of Landmarks 

Table A3: Humeral landmarks for taxa in the study. 

Element View
* 

Position 

Head Anterior 1. Head anterior most 

Posterior 2. Head posterior most 

Superior 3. Head lateral 

Superior 4. Head medial 

Anterior 5. Head central of the articulating surface 

Tuberosity Superior 6. Lesser tuberosity dorsal (Posterior) 

Superior 7. Lesser tuberosity ventral (Anterior) 

Superior 8. Greater tuberosity posterior (dorsal) 

Superior 9. Greater tuberosity anterior (Ventral) 

Deltopectoral crest Lateral 10. Deltopectoral crest proximal (Under the head) 

Lateral 11. Deltopectoral crest tip (Highest point) 

Lateral 12. Deltopectoral crest contact with diaphysis (Lowest point) 

Bicipital groove Superior 13. Proximal point bicipital groove 

Entepicondylar Medial 14. Entepicondyle dorsal margin (Posterior projection) 

Medial 15. Entepicondyle ventral margin (Anterior) 

Medial 16. Contact of disto-medial-dorsal crest (Shaft meets the 

curvature) – which start in the entepicondyle 

Ectepicondylar Lateral 17. Ectepicondyle dorsal margin (Posterior – Above capitulum) 

Lateral 18. Ectepicondyle ventral margin (Anterior – above capitulum) 

Lateral 19. Proximal point of the disto-lateral crest (At the end of the 

crest) 

Distal articulation 

condyle 

Inferior 20. Distal articulation anterior (ventral-lateral) 

Inferior  21. Distal articulation anterior (ventral-medial) 

Inferior 22. Distal articulation posterior (dorsal-lateral) 

Inferior 23. Distal articulation posterior (dorsal-medial) 

Trochlea Inferior 24. Distal articulation anterior  

Inferior 25. Distal articulation posterior 

Inferior 26. Distal articulation deepest point 

Diaphysis Posterior 27. Mid shaft posterior 

Lateral 28. Mid shaft lateral 

Medial 29. Mid shaft medial 

*The view column represents the orientation of the bone when positioning landmarks. 

Table A4: Radial landmarks for taxa in the study. 

Element View
* 

Position 

Head (Proximal end) Superior 1. Posterior margin 

 Superior 2. Anterior margin 

 Superior 3. Lateral margin 

 Superior 4. Medial margin 
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 Superior 5. Central of the articulating surface 

Radial tuberosity  6. Central point 

Distal articular surface Inferior 7. Posterior margin 

 Inferior 8. Anterior margin 

 Inferior 9. Lateral margin 

 Inferior 10. Medial margin 

Diaphyseal location from 

proximal end 

 11. Posterior margin of the 50% length 

  12. Anterior margin of the 50% length 

  13. Lateral margin of the 50% length 

  14. Medial margin of the 50% length 

  15. Posterior margin of the 75% length 

  16. Anterior margin of the 75% length 

  17. Lateral margin of the 75% length 

  18. Medial margin of the 75% length 

*The view column represents the orientation of the bone when positioning landmarks. 

Table A5: Ulnar landmarks for taxa in the study. 

Element View
* 

Position 

Olecranon Superior 1. Posterior margin 

 Superior 2. Anterior margin 

 Superior 3. Lateral (Radial notch) 

 Superior 4. Medial margin 

Ulna-Trochlea notch Medial 5. Proximal anconeal process tip 

 Medial 6. Articulation deepest point 

 Medial 7. Distal point on keel of articulation 

 Medial 8. Lateral most margin 

 Medial 9. Medial most margin 

Radial-Ulna notch Lateral 10. Tip of radial notch - Lateral most margin 

 Lateral 11. Medial most margin 

Distal articular surface Inferior 12. Posterior margin 

 Inferior 13. Anterior margin  

 Inferior 14. Lateral margin 

 Inferior 15. Medial margin 

Diaphyseal location from 

proximal end 

 16. Posterior margin of the 50% length 

  17. Anterior margin of the 50% length 

  18. Lateral margin of the 50% length 

  19. Medial margin of the 50% length 

  20. Posterior margin of the 75% length 

  21. Anterior margin of the 75% length 

  22. Lateral margin of the 75% length 

  23. Medial margin of the 75% length 

*The view column represents the orientation of the bone when positioning landmarks. 
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Appendix 3 

Muscles 

From the dissection of the reptile, Crocodylus, the muscle attachment for Thrinaxodon was 

inferred with reference to the muscle scars that were observed during segmentation and landmark 

analyses of the forelimb. References used for interpretation were Grand and Barboza (2001), Meers 

(2003) and Abdala and Diogo (2010). However, it is noteworthy to state that Thrinaxodon being a 

mammal-like reptile, is similar in forelimb structure to reptiles but shares similarity to mammals in their 

muscle attachment. The muscle actions were inferred from the morphological perspective rather than the 

physiological aspect. 

M. latissimus dorsi which originates from the thoracodorsal fascia of the vertebrae, inserts on the 

lateral side of the humeral head (Figure A7). This muscle is an extensor and retracts the humerus dorsally. 

M. subscapularis is a stabiliser of the shoulder and originates on the medial surface of the 

scapula. This muscle inserts on the articular capsule of the humerus. 

M. scapulohumeralis caudalis originates from the caudal region of the scapula and inserts on the 

proximal end of the humerus by convergence (Figure A7). It elevates and protracts the humerus as well as 

stabilises the glenohumeral joint. 

M. deltoideus scapularis takes its origin from the lateral surface of the scapula and inserts on the 

lateral side of the proximal end of the humerus. This muscle acts as a stabiliser of the shoulder joint and 

abducts the humerus. M. deltoideus clavicularis originates on the cranial margin of the scapula and inserts 

on the deltopectoral crest (Figure A7). It protracts the humerus and is a flexor of the forearm. 
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Figure A7: Posterior view of Thrinaxodon humerus with muscles scars that were visible during 

analyses.    - Muscle Origin and           - Muscle Insertion. 

 

M. triceps brachii consists of five muscle heads which are the m. triceps longus lateralis, m. 

triceps longus caudalis, m. triceps brevis cranialis, m. triceps brevis intermedius and m. triceps brevis 

caudalis. The m. triceps brachii flexes the brachium and extends the antebrachium, which aids in support 

of the reptilian flexed-limb posture. M. triceps longus muscles originate on the scapula and converge to 

insert on the ulna (Figure A10). M. triceps brevis cranialis and m. triceps brevis caudalis originate from 

the humeral head and insert into the deep tendons on the lateral epicondyle (Figure A8). 

M. pectoralis originates on three different parts of the sternum and converges to insert on the 

deltopectoral crest of the humerus (Figure A8). It is a powerful ventral flexor and adductor that is 

responsible for retracting the humerus. Consequently, m. pectoralis has an important role in maintaining 

flexed limb posture in reptiles (Meers 2003). 

M. supracoracoideus longus is a muscle that protracts and adducts the humerus with an origin on 

the cranial surface of the scapula and an insertion on the apex of the deltopectoral crest of the humerus. 
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M. supracoracoideus brevis which originates from the acromion, inserts on the deltopectoral crest of the 

humerus and protracts as well as adducts the humerus. 

M. coracobrachialis brevis ventralis originates from the coracoids and inserts on the 

deltopectoral crest slightly distally on the humeral shaft (Figure A8). This muscle flexes the shoulder 

joint, and retracts and adducts the humerus. M. coracobrachialis brevis dorsalis contributes to protracting 

and flexing the forelimb. It acts as a primary stabiliser of the head of the humerus in the glenoid. It has an 

origin on the scapula and converges to insert on the articular capsule slightly distal to the head of the 

humerus. 

 

Figure A8: Anterior view of Thrinaxodon humerus with muscles scars that were visible during 

analyses.    - Muscle Origin and          - Muscle Insertion.  

 

M. Brachialis is a flexor of the antebrachium, and originates distal to the deltopectoral crest of the 

humerus and inserts on the radius together with the biceps tendon (Figure A8). The m. biceps brachii 

flexes the antebrachium and extends the humerus. This muscle originates on the coracoid and inserts 

between the radial head and the radial tuberosity. 
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The m. humeroradialis leaves a scar on the ventral surface of the humerus with an origin from the 

proximal end of the humerus (Figure A7) and an insertion on the proximal end of the radius (Figure A9). 

This muscle flexors the antebrachium. 

The m. teres major elevates the humerus, originates on the lateral surface of the scapula and 

inserts on the humerus proximally opposite the deltopectoral crest. 

 

Figure A9: Anterior view of Thrinaxodon radius with muscles scars that were visible during 

analyses.    - Muscle Origin and          - Muscle Insertion.  

 

The m. supinator of the antebrachium originates from the epicondyle of the humerus (Figure A8) 

and inserts on the shaft of the radius. 

M. extensor carpi radialis longus and m. extensor carpi ulnaris longus originate on opposite ends 

of the humeral epicondyles and insert in the wrist. The m. extensor carpi radialis brevis extends the wrist 

and adducts the hand. The extensor muscles originate on the lateral surface of the forelimb and insert on 
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its medial surface, whereas the flexor muscles originate on the medial surface and insert on its lateral 

surface. 

M. Flexor carpi ulnaris originates on the epicondyle of the humerus and inserts on the wrist. The 

m. flexor digitorum longus consists of m. flexor digitorum longus pars humeri, m. flexor digitorum longus 

pars ulnaris and m. flexor digitorum longus pars carpalis. These muscles take their origin from the 

epicondyle of the humerus, the ulna head and distal end of the ulna. It inserts and flexes the wrist and 

hand. 

The m. pronator teres originates on the epicondyle of the humerus (Figure A8) and inserts on the 

shaft of the radius. This muscle pronates the antebrachium while flexing the radiohumeral joint which 

maintains the sprawling posture. M. pronator quadratus pronates and stabilisers the antebrachium. It 

originates on the shaft of the radius (Figure A9) and inserts on the shaft of the ulna (Figure A10). 

 

Figure A10: Posterior view of Thrinaxodon ulna with muscles scars that were visible during 

analyses.   - Muscle Origin and          - Muscle Insertion. 

 


