

Improvement of the Software Systems Development Life Cycle of the

Credit Scoring Process at a Financial Institution Through the

Application of Systems Engineering

By

Nadia Meyer

A Research Report

Submitted to the Faculty of Engineering and the Built Environment in partial fulfilment of

the Requirements for the degree of

Master of Science in Engineering

i

DECLARATION

Student : Nadia Meyer

Student Number : 870445

Class : MECN 7018 (Msc. Industrial Eng (50/50))

Cell Number : 082 5551585

Email : nadiameyer50@gmail.com

I declare that this research report is my own unaided work. It is being submitted as a Degree of

Master of Science in Engineering to the University of Witwatersrand, Johannesburg. It has not

been submitted before any degree or examination to any other university. Due

acknowledgement must always be made of the use of any material contained in or derived from

this research report.

Signature of Candidate :

Date :

Approvals :

Supervisor Name Signature Date

Advisor/Promoter Bernadette Sunjka

mailto:nadiameyer50@gmail.com

ii

ABSTRACT

The research centred on improving the current software systems development life cycle (SDLC)

of the credit scoring process at a financial institution based on systems engineering principles.

The research sought ways to improve the current software SDLC in terms of cost, schedule and

performance. This paper proposes an improved software SDLC that conforms to the principles

of systems engineering.

As decisioning has been automated in financial institutions, various processes are developed

according to a software SDLC in order to ensure accuracy and validity thereof. This research

can be applied to various processes within financial institutions where software development is

conducted, verified and tested.

A comparative analysis between the current software SDLC and a recommended SDLC was

performed. Areas within the current SDLC that did not comply with systems engineering

principles were identified. These inefficiencies were found during unit testing, functional testing

and regression testing.

An SDLC is proposed that conforms to systems engineering principles and is expected to

reduce the current SDLC schedule by 20 per cent. Proposed changes include the sequence of

processes within the SDLC, increasing test coverage by extracting data from the production

environment, filtering and sampling data from the production environment, automating functional

testing using mathematical algorithms, and creating a test pack for regression testing which

adequately covers the software change.

iii

ACKNOWLEDGEMENTS

Throughout my career in finance I have been exposed to systems engineering and systems

development life cycles. This has served as a great opportunity to explore the area of systems

engineering in greater detail and to gain the necessary knowledge to be able to improve

systems and processes. I shall use the holistic approach to fully understand the system and its

interactions in future endeavours.

In submitting this work I am greatly indebted to my supervisor Bernadette Sunjka for guiding me

closely and encouraging me to follow my own initiatives and ideas. She has been vital in

ensuring that I follow the correct approach in my research.

This study would not have been possible without the various experts at the financial institution

for participating in the interviews and surveys. Their broad depth of knowledge with regards to

each area of the systems development life cycle has enabled me to understand and analyse

every aspect of the current system in great detail.

I would like to thank my lecturer Duarte Goncalves for introducing me to hard systems

methodologies. I have been able to use his teaching not only in this research but also in various

projects at work where systems knowledge is of uttermost importance.

My gratitude to all who participated and contributed in this study will remain a debt I can never

repay.

iv

DISCLAIMER AND COPYRIGHT

DISCLAIMER

The acceptance or use of the information provided in this report will in no way relieve the user of

its responsibilities in terms of any problem resolution prescription or being accountable for

decisions they take in managing their processes. The users shall satisfy themselves that the

principles and recommendations used and/or selected are all ways suitable to meet their

respective circumstances and context. The onus of ensuring that the principles and

recommendations fit the purpose shall at all times rest with the user. Nonetheless, the sole

purpose of the information contained in this report is for information and educational purposes.

All statements, comments or opinions expressed in this research report are those of the author

and do not necessarily represent the opinions or reflect official position of the University of

Witwatersrand or the author’s employers.

COPYRIGHT

Except for normal review purposes, no part of this report may be reproduced or utilised in any

form or by any means electronic or mechanical, including photocopying, recording or by any

information storage or retrieval system without the written consent of the author or the University

of Witwatersrand.

v

TABLE OF CONTENTS

DECLARATION ... i

ABSTRACT ... ii

ACKNOWLEDGEMENTS .. iii

DISCLAIMER AND COPYRIGHT ... iv

LIST OF ACRONYMS AND DEFINITIONS ... x

CHAPTER 1 – INTRODUCTION ... 1

1.1 Research Background and Context .. 1

1.2 Problem Statement .. 2

1.3 Critical Research Question ... 3

1.4 Research Objectives .. 3

1.5 Outline of the Research Method .. 4

1.6 Limitations ... 4

1.7 Outline Structure of Project ... 5

CHAPTER 2 – LITERATURE REVIEW .. 6

2.1 Introduction .. 6

2.2 Software Development .. 8

2.3 Software Development in Banking .. 19

2.4 Systems Engineering Development Models .. 22

2.4.1 The V-model .. 23

2.4.2 The Waterfall model ... 25

2.4.3 The Spiral model .. 27

2.5 Systems Engineering Principles .. 28

2.6 Framework for Comparative Analysis ... 35

2.7 Summary of the Literature Review .. 58

CHAPTER 3 – RESEARCH METHOD ... 59

3.1 Introduction .. 59

3.2 Research Design .. 60

3.3 Purpose of the Comparative Analysis ... 60

3.4 Research Instrument and Methodology .. 61

vi

3.4.1 The interview process .. 61

3.5 Data Analysis .. 72

3.6 Reliability and Validity .. 73

3.7 Limitations ... 76

3.8 Ethical Considerations ... 76

3.9 Chapter Summary .. 77

CHAPTER 4 – DATA ANALYSIS AND RESULTS ... 78

4.1 Introduction .. 78

4.2 Participant and Implementation Overview .. 79

4.3 The Current Software SDLC ... 80

4.3.1 The credit scoring process for the case site... 81

4.3.2 The software development model – current state analysis ... 83

4.3.3 The software systems development life cycle – current state analysis 93

4.4 Comparative Analysis .. 107

4.5 Chapter Summary .. 130

CHAPTER 5 - DISCUSSION .. 131

5.1 Introduction .. 131

5.2 Comparative Analysis Discussion.. 131

5.2.1 Definition and analysis of requirements ... 131

5.2.2 Optimal design of the system ... 132

5.2.3 Optimal integration and development of the system ... 133

5.2.4 Optimal verification and validation of the system .. 134

5.2.5 Successful implementation of the system .. 135

5.2.6 Intensive risk management during the entire SDLC ... 136

5.3 Comparative Analysis Implications .. 137

5.4 Chapter Summary .. 141

CHAPTER 6 – CONCLUSION AND RECOMMENDATIONS ... 142

6.1 Conclusions ... 142

6.2 Implications of the Research .. 143

6.3 Limitations ... 143

6.4 Recommendations for Future Work .. 143

BIBLIOGRAPHY ... 144

vii

APPENDICES ... 150

APPENDIX A – Interview Introductory letter .. 151

APPENDIX B – Interview Questions ... 153

APPENDIX C – Interview Transcripts ... 154

viii

LIST OF TABLES

Table 4.1 Participant information ... 80

Table 4.2 Comparative Analysis Results.. 108

Table 5.1 Recommendations ... 138

ix

LIST OF FIGURES

Figure 1.1 Study Outline ... 5

Figure 2.1 Literature Review Roadmap .. 7

Figure 2.2 The V-model (Kasser, 2007) ... 23

Figure 2.4 The Spiral Model (Boehm, 2000) .. 27

Figure 3.1 The Interview Approach (Wilkinson & Birmingham, 2003) ... 63

Figure 3.2 Determining Interview Themes for the Study .. 64

Figure 4.1 Results Road Map .. 79

Figure 4.2 The Credit Scoring Process .. 81

Figure 4.3 The V-model (Mathur & Malik, 2010) ... 83

Figure 4.4 The Software SDLC Phases ... 94

Figure 4.5 The Software SDLC Phases in Detail .. 94

Figure 4.6 Overview of the Software Development Procedure ... 95

Figure 4.7 The Requirements Analysis Phase .. 95

Figure 4.8 The Analysis and Design Phase ... 99

Figure 4.9 The Development Phase .. 101

Figure 4.10 The Testing Phase .. 103

Figure 4.11 The Implementation Phase ... 107

x

LIST OF ACRONYMS AND DEFINITIONS

Customer management strategy (CMS): The core scoring area across the bank and

interfaces with many other systems. CMS has different systems enabling the automated credit

application process, automation and control of the daily cheque account excesses, automatic

renewal and referral of overdraft limits and generation of consumer triggers for improved

efficiency and risk control together with the functionality of behavioural risk scoring. The

systems are Online(Real-time) and batch systems. CMS is responsible for the scoring across

the bank for all credit applications. It has a centralised storing collection of all credit applications.

It facilitates the use of the scoring rules and scorecards (scoring logic).

Hogan® Systems Core Technology Services: An information technology (IT) service provider

within the bank that supplies IT services and solutions to various business units. It runs,

monitors and supports systems.

Hogan Technology Quality Assurance (HTQA): Department responsible for providing testing

services to Hogan. It supports business units and channels interfacing with Hogan from a

testing and quality assurance perspective. It is responsible for the end-to-end testing of new and

existing functionalities to ensure that they are in accordance with the business requirements and

specifications.

Experian Strategy Management (SM): Software warehousing the logic for all credit scoring

decisions in the production (live) environment. This scoring engine uses information relevant to

the application and facilitates the rules and scorecards to receive a result/decision. These rules

are owned by Dynamic Decisioning. A Rules Based Decision document is housed by Dynamic

Decisioning that contains the business logic within the Strategy Management Generation 3

(SMG3) system for the scoring decisions.

Dynamic Decisioning (D2): Department responsible for the software coding of the credit

scoring logic, which includes the scoring rules and scorecards, into SM.

Integrated deposit system (IDS): Information system that contains any information on a

cheque/overdraft account with reference to account information versus personal information

which is kept on customer information systems (CIS). Therefore, it contains information such as

transaction history, statistics, overdraft information, fees and charges, accrual buckets, etc.

xi

Customer information system (CIS): Information system contains customer

demographic/profile information.

Integrated loan product (ILP): Information system that contains a month-end snapshot of sole

owned integrated loans processing account details. These loans include personal loans (PLS)

and mortgage loans (MLS) for a bank’s companies/subsidiaries.

Investment product house (IPH): Information system that contains information on all savings

and investment accounts for a bank’s companies/subsidiaries.

Online: Real time processing of credit applications.

Scoring: Consumers are assessed for affordability and risk for their credit applications.

Result: Final output data from SMG3.

Decision: An approved, referred, or declined decision passed from SMG3.

Pre-bureau: SMG3 contains rules to determine whether a customer is eligible for the loan

before costs are incurred to send the send the customer data to the credit bureau.

Post-bureau: SMG3 contains rules based on credit bureau information to determine whether a

customer is eligible for a loan.

Payment profiles: A customer’s financial history and repayment information on all credit loans.

Single application database (SAD): Single application database that stores all customer credit

application information. A SAD record is created once a customer applies for a credit loan.

Central bureau mainframe (CBM): Database that stores credit bureau information received

from the credit bureau.

Mainframe bureau gateway (MBG): Database that stores credit bureau information received

from the credit bureau as well as the aggregations of the information/data.

Aggregations: Roll up of a customer’s explicit credit bureau data. For example, worst arrears in

the last six months.

Scorecard: A mathematical model that has a combination of variables that predict the

probability a customer has of defaulting on a loan. This probability of default is mapped to a

score.

1

CHAPTER 1 – INTRODUCTION

1.1 Research Background and Context

The financial industry has evolved remarkably with the advancements of technology in recent

years. A decision on a credit application was previously a manual process where a staff

member assessed each application and made a decision based on his or her own judgment.

With the rise of technology, credit applications are assessed by logic contained in software

programs known as a credit scoring process.

Software development and the management thereof form an integral part not only in credit

scoring but also across all sectors in financial institutions today. Ismail (2012) explains that in

financial institutions all means of business occur through electronic transactions. He therefore

emphasises the importance of the integrity of software systems as improper management of the

software systems could impact daily operations significantly.

Tanrikulu and Ozcer (2011) confirm this view and emphasise the importance of systems

management by explaining that as today’s banking industry relies heavily on information

systems for most of its functions, the organisational complexity involved in system development

requires well-established processes and the proper execution thereof. They suggest that a high

percentage of software system projects fail due to poorly defined processes that reside in the

system development process. Rajkumar and Alagarsamy (2013) estimate that between 50 and

80 per cent of software development projects fail where the software deliverable did not meet

the user requirements. They attribute this to several factors including lack of customer

involvement, unclear objectives, poor requirement set, lack of resources, failure to communicate

and act as a team, project planning and scheduling, cost estimation, inappropriate estimation

methodology, cost estimation tools, poor testing, risk management and unrealistic expectations.

Kaur and Sengupta (2011) summarise these opinions by stating that an overall poor project

management process is to blame for project failure.

The case site is the central management unit in the banking institution responsible for the

development and maintenance of the software scoring system, which is known as the credit

scoring process. When a customer applies for a credit loan at the banking institution, the his or

2

her credit feasibility is determined by this process. This system includes the logic for scoring

such as the credit scorecard, limit and affordability calculations, and scoring rules. It often

occurs that changes are required to the current credit scoring logic in order to improve scoring

accuracy.

The software development process that takes place in order to make the requested change is

called the systems development life cycle (SDLC), which has been developed on the principles

of systems engineering (SE). The SDLC is a well-known software development method.

McMurtrey (2013) asserts that the SDLC to is a well-tested methodology for software

development. Areas of concern in the current SDLC include integrity of verification, life cycle

schedule and cost.

As the integrity and schedule of the credit scoring software is of utmost importance in order to

ensure decision accuracy, the establishment and execution of the proper processes are

required. This study therefore examines the systems engineering principles pertaining to SDLCs

in order to seek ways to improve the current format.

1.2 Problem Statement

It often occurs that changes need to be made to the current credit scoring logic. In order to

make the necessary changes, a project is logged and initiated so that new software can be

developed with the required changes.

The current software SDLC takes approximately 90 days to complete. Management wishes to

investigate whether the life cycle can be reduced without compromising on quality. The quality

of verification of the system is of concern as functional testing and regression testing is highly

reliant on unit testing being performed correctly. Functional testing and regression testing are

not performed on a sufficient number of customers that is representative of the customer

database. The test cases also do not cover all scenarios of the software change. Thus

functional as well as regression testing is not performed effectively.

Cost is of concern in the current SDLC as six testers are required in order to perform functional

testing. Therefore the capacity utilisation is greater than 300 per cent. Management is therefore

3

required to hire or assign more testers in order to increase the coverage of tests in the allocated

time.

The purpose of the study is to analyse the current software SDLC, compare the SDLC to

systems engineering principles, and improve the SDLC by addressing the inefficiencies found.

The current software SDLC requires analysis and investigation in order to see whether the

system can be improved in terms of cost, schedule, and quality.

1.3 Critical Research Question

How can the software SDLC be improved in terms of cost, schedule, and quality for a credit

scoring system using systems engineering principles?

1.4 Research Objectives

The research objectives were to:

 Identify areas within the current SDLC used by the case site that can be improved in

terms of cost, schedule, and performance by performing a comparative analysis

between the current software system development process and a recommended SDLC

that complies with SE principles.

 Recommend changes, based on SE principles, to the current software system

development process that will assist in the improvement in terms of cost, schedule, and

performance.

4

1.5 Outline of the Research Method

The research method consisted of the following consecutive phases:

1. Gaining a detailed understanding of the current SDLC by conducting face-to-face semi-

structured interviews with experts

2. Documenting the current software SDLC from information obtained during interviews

3. Mapping the current software SDLC process through visual sense-making from

information obtained during interviews

4. In-depth literature analysis at academic level

5. Comparative analysis between current software SDLC and literature review

6. Identification of inefficiencies in the current software SDLC according to the literature

reviewed

7. Recommendations on improving the inefficiencies in the current software SDLC based

on information obtained in the literature review and brainstorming techniques

1.6 Limitations

Current data security and privacy protocols as per the bank’s standards would apply with the

proposed changes. The disclosure and privacy of data would also have to adhere to the

Consumer Protection Act 68 of 2008 (CPA) and Payment Card Industry (PCI) regulations. The

proposed SDLC would be dependent on the interface areas being able to provide the resources

necessary for the development and implementation of the changes identified for those

interfaces. It would also be dependent on the interface areas being able to deliver on time.

The proposed SDLC would contain several risk factors. Performance issues could pose a

problem due to the increase in volume of data. There could possibly be a lack of capacity as

several additional interfaces and processes would be required. Data privacy and security could

be compromised should the method of depersonalising the data not be effective.

The research has been limited to a single case site. The case site selected is a central

management unit within the financial institution, which is responsible for the entire development

and maintenance of the credit scoring process.

5

1.7 Outline Structure of Project

Figure 1.1 summarises the key chapters of the study.

Figure 1.1 Study Outline

6

CHAPTER 2 – LITERATURE REVIEW

“Research is to see what everybody else has seen, and to think what nobody else has thought.”

~ Albert Szent-Gyorgyi

2.1 Introduction

The purpose of this literature review is to investigate the SE principles applied to SDLC in order

to perform a comparative analysis between the current SDLC and systems engineering

principles. Areas of inefficiencies in the current SDLC will be identified and the

recommendations from the literature review will be used to improve the current SDLC in terms

of cost, schedule and quality.

The chapter is divided into six parts:

 A high level analysis of software development

 A high level analysis of software development in banking

 A review of the general development models used in software development projects

 An overview of Systems Engineering as a subject

 A high level analysis of systems engineering applied to systems development life cycles

 The construction of a framework for the comparative analysis using systems engineering

principles

The emphasis of the literature review is on the application of SE on SDLC, but it will also deal

with successes and general problems experienced therein. The goal is twofold:

1. Identification of successes and issues experienced in software development life cycles

2. Integration of the different principles and methodologies emanating from systems

engineering applied to software development life cycles and incorporating other methods

and recommendations.

7

Figure 1.2 depicts the outline of the literature review presented in this chapter.

Figure 2.1 Literature Review Roadmap

8

2.2 Software Development

Maier (1999:268) describes a system as “an assemblage of components that produces behavior

or function not available from any component individually”. The author concludes that a system

is therefore independent and operates and functions independently with its own purpose. He

explains that it can be integrated into a larger system where its purpose, operations, processes

and functionality might change to fit in with the larger system to meet the objective of the larger

system. Buede (2009:3) defines a system as “a collection of hardware, software, people,

facilities, and procedures organized to accomplish some common objectives”. He suggests that

the objectives of a system are usually concerned with cost, schedule and performance.

Software has become a central and critical factor in many fields in order for companies and

institutions to remain competitive and to improve quality of life. Sweis (2015:174) defines a

software system as “software that stores, retrieves and disseminates information, thereby

supporting people and organizations and helping to accomplish their work efficiently”.

With the increase in software users across multiple industries worldwide and the increase in

complexity of these software systems, SE development has become more complex. Therefore,

it requires a more advanced development approach and the integration of different areas

(Okafor, 2011). The author explains that this has resulted in problems such as delays in the

completion of projects within deadlines, failure to adhere to budgets and less than satisfactory

quality.

Iyakutti and Alagarsamy (2011) define a project as work that is managed by a life cycle and

concludes when specific objectives have been attained. Sweis (2015) views project success in

terms of three aspects that are time, cost and quality. The author views project success as

delivering the project within the required time, cost and quality according to the users’ needs.

This aligns with Hijazi et al. (2014) who state that cost and time are the main causes for project

failure.

Patil and Yogi (2011) agree with this view and state that in software development project failure

due to untimely completion of projects or overspending of costs remains a common occurrence.

The authors explain that project failure is often associated with the inaccurate estimation of

effort and resources due to factors such as inexperience, unclear requirements, unfamiliar

future technologies, development environment and complexities in design and development.

9

They explain that there are four variables that typically control software projects: time,

requirements, resources and risks. Boehm (2000) defines risk as the probability of an event

occurring that will cause the project to fail.

Patil and Yogi (2011) conclude that it is therefore crucial to make accurate estimations

regarding time and resources as any unexpected changes to the four variables could result in

project failure. In order to make accurate estimations, risk management is crucial. “Therefore,

every project manager is required to perform methodical investigation of risk in order to avoid

cost and schedule overruns” (Patil & Yogi, 2011:262). Through their research, the authors found

the most critical risk factors to be lack of top management commitment to the project, failure to

gain user commitment, and misunderstanding the requirements.

In order to understand software development and the risks involved, an understanding of the

SDLC is required. According to Hijazi et al. (2014):

Software development process or software development life cycle (SDLC) is a

structure imposed on the development of a software system, according to this

structure the software development process involves five different phases:

Requirements Analysis and Definition, Design, Implementation and Unit Testing,

Integration and System Testing, and the Operation and Maintenance phase.

Ragunath et al. (2010) describe an SDLC as a software cycle consisting of various parts and

phases that describe or prescribe how software should be developed. Hijazi et al. (2014) state

that various risks are involved throughout the SDLC and adequate understanding of the

problems and risks are required. They list the risks that are common to all SDLC phases as:

continually changing requirements, compromising on quality due to time contention, project

funding loss, data loss due to poor documentation and team turnover and miscommunication

between people.

Khan et al. (2014) suggest that uncertainty within a project poses a major risk for quality project

completion within the allocated time and budget. They further suggest that uncertainty can be

related to organisational politics, stability of the organisational environment and the

organisational support for a project.

Patil and Yogi (2011) contend that project managers should spend sufficient time understanding

the project complexities, choosing resources, discussing the project with experts and learning

from past experiences. Critical risk factors that could influence the project should be identified

10

and listed. Risks should then be analysed, prioritised and subsequently mitigated and resolved

where necessary (Patil & Yogi, 2011).

Swarnalatha et al. (2014) emphasise the importance of proper requirements gathering and

analysis. They state that well defined requirements are critical in meeting clients’ needs. The

authors define the process of requirements gathering and analysis as requirements engineering:

“Requirement engineering is a practical and systematic approach through which the software or

system engineer collects functional or non-functional requirements from different customers and

design and develop them into the quality software development processes” (Swarnalatha et al.,

2014:5045). In their framework for software requirements engineering they propose the

following steps in order to avoid defining improper requirements:

 Identify the clients of the system and collect the raw requirements (functional and non-

functional) from all points of view through observing and interviewing

 Develop standards and constraints in order to ensure common understanding

 Analyse requirements by comparing it to user or business requirements or objectives

 Prioritise requirements

 Document requirements for future reference

 Organise and define requirements according to a hierarchy from high-level requirements

that address business objectives to low level requirements that address component

objectives

 Perform dynamic allocation by assigning the functional and non-functional requirements

to the relevant system elements

 Validate and verify requirements by reviewing them with clients, prototyping according to

requirements and comparing system documentation to clients’ objectives.

 Perform software requirements management by keeping track of and documenting all

interrelationships and dependencies of software requirements changes.

Sommerville (2006) cited in Hijazi et al. (2014) recommends conducting a feasibility study

during the requirements analysis phase in order to determine whether the software system is

possible and necessary to construct as well as to identify possible risk factors in the

development and deployment of the system. The author lists common risk factors related to a

feasibility study:

 Inadequate estimation of project time, cost, scope and other resources

11

 Unrealistic schedule causing project managers to overload resources in order to meet

project deadlines

 Unrealistic budget

 Unclear project scope as a result of project managers not having a clear and detailed

understanding of the project

 Insufficient resources

Khan et al. (2014) share similar thoughts to those listed above. They state that proper planning

and control of a project are critical risks to project success. They state that poor planning and

control lead to poor resource planning and allocation which in turn lead to unrealistic schedules

and budgets. In his research, Sweis (2015) found that the underestimation of timelines, poor

internal communication, incorrect assumptions regarding resource availability and weak

definitions of requirements and scope were some of the main factors responsible for project

failure.

Sommerville (2006) cited in Hijazi et al. (2014) further recommends that requirements elicitation

should be performed where the system deliverables, performance and constraint requirements

are gathered, reviewed and articulated with the help of the different stakeholders of the system.

Hijazi et al. (2014) list the common risk factors related to requirements elicitation:

 Unclear requirements that are not understood by the analysts and developer

 Incomplete requirements that are missing some of the user needs, constraints and other

requirements

 Inaccurate requirements that do not adequately reflect the users’ needs

 Ignoring non-functional requirements by placing more emphasis on the functional

aspects of the system

 Conflicting user requirements

 Unclear description of the real environment wherein the software system will operate

 Gold plating by adding additional functionality to the system in order to improve the

system that was not part of the initial scope

Sweis (2015) asserts that incomplete specifications at the outset of a project is one of the main

causes for project failure.

Sommerville (2006) cited in Hijazi et al. (2014) recommends conducting a requirements analysis

by “analyzing, classifying, organizing, prioritizing, and negotiating the stated requirements”

12

(Hijazi et al., 2014:217). Hijazi et al. (2014) list the common risk factors associated with

requirements analysis:

 Non-verifiable requirements where ‘a finite cost effective process’ can’t be used to verify

or validate the requirements

 Infeasible requirements where the project can’t be implemented within the constraints of

the project. For example, lack of resource availability could compromise the project

implementation

 Inconsistent requirements that contradict with other requirements

 Non-traceable requirements where the source of origin is unknown

 Unrealistic requirements that are not ‘clear, verifiable, accurate, consistent, complete

and feasible’

Khan et al. (2014) state that uncertainty in requirements pose a major risk to project success.

They contend that the frequent changing of requirements and inadequate, unclear, ambiguous

and unusable requirements are common risk factors related to requirements gathering and

analysis.

Sommerville (2006) cited in Hijazi et al. (2014) recommends validating requirements by

ensuring that the stated requirements define what the users want. Li (1990) suggests that the

requirements should be verified by manually comparing them to the service request and the

current users’ opinions. He further suggests that if any discrepancies are found, the

requirements definition and analysis procedure should be redone. Hijazi et al. (2014) assert that

common risk factors associated with the validation of requirements include terminology

developed by technical resources that are misunderstood by the end users, and expressing

user requirements in natural non-formal language which cause misinterpretation between users

and other resources.

Lastly, Sommerville (2006) cited in Hijazi et al. (2014) recommends documenting requirements

in order to serve as a means of communication between stakeholders. Hijazi et al. (2014) state

that the common risk factors associated with the documentation of requirements are

inconsistent documentation that does not correlate with stated requirements, and creating non-

modifiable requirement documents that are difficult to maintain.

During the design phase, the system architecture is established. Sommerville (2006) cited in

Hijazi et al. (2014) states that the design phase involves “examining the requirements document

13

(RD), choosing the architectural design method, choosing the programming language,

constructing the physical model, verifying, specifying, and documenting design activities” (Hijazi

et al., 2014:219).

Hijazi et al. (2014) recommend that the examination of the RD should be carried out by the

developer in order to ensure the person developing the system understands the requirements.

The authors state that a common risk factor associated with examining the RD is that

requirements are not clear for the developer due to lack of involvement during the requirements

analysis and definition phase.

Choosing the architectural design method involves defining the software components in a

systematic way based upon the project’s needs. “Choosing the programming language should

be made early in the design phase as soon as the architectural design method is chosen, since

it should support it” (Hijazi et al., 2014:220). The authors recommend choosing the

programming language carefully according to the needs of the project and the architectural

design method.

Hijazi et al. (2014) list risk factors associated with the construction of the physical model:

 A large and complex software system which could prove difficult for developers to

decompose

 A complicated design, which is not understandable

 Large size components that result in difficulty in determining the functionality of the

component and assigning functions to the components

 Unavailable expertise for reusability that result in risk due to resources involved in the

previous design no longer being available

 Less reusable components than expected as a result of inaccurate estimation of

available reusable components during the requirements analysis phase. This could

result in increase development time as components will need to be built from scratch

Khan et al. (2014) mention project complexity as a major risk to project success. They state that

project complexity is due to factors such as large number of interfaces between components,

the use of new technologies and complex automated processes.

Hijazi et al. (2014) state that the design of the system should be verified in order to ensure that it

meets the stakeholders’ requirements. The authors mention risk factors that are associated with

verification include difficulties in verifying design to requirements by the developer, too many

14

feasible solutions to the same design problem (which could make it difficult to choose the

correct one), and incorrect design that does not match some or all of the requirements.

Hijazi et al. (2014) list risk factors related to the specification of the design activity:

 Difficulties in allocating functions to components due to incorrect system decomposition

and ill-defined components and requirements

 Unnecessary extensive specification of modules processing which result an

unnecessary large design document

 Omitting data processing functions by poorly defined functional definitions

 Poor management of large amounts of passing data to be used by other components in

the component hierarchy leading to poor readability and confusion

Hijazi et al. (2014) mention the risk factors to be avoided during the documentation of the

design:

 Incomplete design document that lacks detail necessary for programmers to work

independently

 Large design document that include extensive unimportant information

 Unclear design document where the components are poorly defined and the document

is written in uncommon natural language

 Inconsistent design document as a result of duplication and overlapping between

components

Hijazi et al. (2014:223) describe the implementation and unit testing phase as “where the

programming takes place in order to execute the previously defined design as a set of programs

or program units”. They define the programming or coding of the software as “the process of

writing design modules in the predefined programming language; this includes developing the

user interfaces”. They outline several risk factors related to the programming (coding) of the

software:

 Non-readable design document that is too large or unclear making it difficult for the

programmers to understand

 Programmers cannot work independently due to incomplete design document causing

the programmers to make their own decisions regarding certain components

 Developing the wrong user functions and properties due to non-readable, inconsistent or

incomplete design document

15

 Developing the wrong user interface due to poor understanding of the users’ needs and

a poorly detailed design specification

 Programming language does not support the architectural design due to the language

not being chosen early in the design phase according to the architecture

 Modules are developed by different programmers resulting in inconsistent, complex and

ambiguous code

 Complex, ambiguous, and inconsistent code due to programmers not following coding

standards and best practices in programming

 Different versions for the same component developed by different programmers in the

team causing integration problems

 Developing components from scratch resulting in increased time and effort

 Large amount of repetitive code that results in increased time, effort and cost

 Inexperienced programmers resulting in complex and ambiguous code as well as wrong

functions, properties and user interfaces

 Too many syntax errors due to the programming language being sensitive and having

poor quality compilers and debuggers

 New and unfamiliar technology used in the project causing developers to experience

difficulties in programming accurately and efficiently

Sommerville (2006) cited in Hijazi et al. (2014) describe unit testing the process in which each

source code module is tested separately in order to verify that it is performing according to the

specifications before integrating the different components. Li (1990) suggests that unit or

module testing should be performed during the development phase and by the resource that

coded, and therefore understands, the internal details of the module. Yoon (2013) agrees with

this view and suggests that test cases should be designed by the programmer and should be

automated to allow for ease of reuse. Hijazi et al. (2014) mention several risk factors related to

unit testing:

 High fault rate in newly designed components

 Code is not understandable by reviewers resulting in developers struggling to fix errors

that caused the component defects

 Lack of complete automated testing tools resulting in a boring and monotonous testing

process and poor results

 Informal and ill-understood testing process resulting in intuitive techniques being used,

which could result in poor verification and validation of the components

16

 Not all faults are discovered in unit testing due to lack of testing automation and

inappropriate testing techniques

 Poor documentation of test cases resulting in lost knowledge for future use

 Data required by a module under test from other modules through lack of use of coding

drivers and stubs

 Coding drivers and stubs resulting in additional defects, time and cost

 Poor regression testing due to solely selecting the original test cases

During integration phase the unit software modules are iteratively integrated and tested to

produce the complete software system (Hijazi, et al., 2014). Li (1990:27) describes integration

testing as “a process of merging and testing program modules to see if they can work correctly

as a whole without contradicting the system’s internal and external specifications”. He suggests

that integration and integration testing should be performed according to the structure of the

system. He further suggests that the test cases and data should be based upon the system

specifications. The following risk factors during this phase are identified by Hijazi et al. (2014):

 Difficulties in ordering components’ integration due to not performing integration

incrementally or integrating in the wrong order

 Integrating the wrong versions of components or the wrong components resulting in

compromised functionality

 Omissions of important components resulting in compromised functionality

 Data loss across component interfaces due to the mismatch between the number and

order of parameters between components

 Difficulties in localising errors when integration is not performed incrementally

 Difficulties in repairing errors once the system has already been integrated as it is

difficult to detect where the error occurred as well as difficult to prevent secondary errors

resulting from a fixed defect

Hijazi et al. (2014:227) describe systems testing as: “The integrated software is tested to ensure

that the software system meets the software requirements and system”. Li (1990:27) describes

system testing as “verifying that the system as a whole is structurally and functionally sound”.

He states that the data and test cases for structural and functional testing should be designed

according to the system requirements specifications. He recommends using “real-life data as

the test data and the test results of the new system can be easily verified by the actual results of

the old system”.

17

Hijazi et al. (2014) mention several risk factors related to system testing:

 Unqualified testing team and programmers who misuse the available tools, resources

and techniques

 Limited testing resources such as time, budget and tools

 Inability to test the operational environment due to difficulties in delivery and installation

within time and budget constraints

 Incomplete testing by testers due to too many possible variables, combinations,

sequences, configurations and interactions

 Testers relying on process myths and designing their test cases on old requirements that

were established early in the SDLC and not the latest requirements that are

representative of the users’ needs

 Wasting time in building testing tools rather than doing testing

 The system being tested is not testable enough due to unverified requirements and poor

application of quality assurance principles

Parvez (2012:339) describes regression testing as:

…re-testing an application after its code has been modified to verify that it still

functions correctly. Regression testing consists of re-running existing test cases and

checking that code changes did not break any previously working functions,

inadvertently introduce errors or cause earlier fixed issues to reappear.

The author suggests that the test pack should be continuously updated with the latest relevant

test cases and that the execution of testing should be automated.

The importance of the team members in project success should also be emphasised (Khan et

al., 2014). Risk factors include turnover, insufficient knowledge, cooperation, communication

and motivation among team members.

Hijazi et al. (2014) describe the operation and maintenance phase as implementing the

complete and integrated system into a production environment, where it is tested and

maintained. They mention several risks related to this phase:

 Problems in installation due to inexperience, inadequate knowledge of the system’s

nature and function, and a complex system deployed in a challenging environment

 An effect on the production environment as the system is deployed

18

 A change in the environment resulting in the change of software behaviour causing the

system to not be able to be deployed correctly

 New requirements emerging while operating the system in order to meet the current

actual user needs, business, environmental, and organisational changes

 End users experiencing prolonged difficulties in using the system that thus threaten the

acceptability of the system

 User resistance to change due to being excluded from the process of making changes

made regarding the performance and behaviour of the system

 Missing capabilities that the users expect to find

 Too many software faults that were not discovered and corrected earlier in development

 Testers not performing well due to problems in the operational environment, unqualified

management, lack of tools and testing resources, and lack of the involvement of different

system stakeholders

 Difficulty in deciding whether to suspend or resume acceptance testing with the

discovery of defects

 Insufficient data handling by the software system due to large amounts of data in the

production environment that cannot be handled by the system

 The software engineer cannot reproduce the problem experienced by the end users and

can therefore not find the exact cause of the problem. This could be due to users not

describing the problem in sufficient detail

 Problems in maintainability due to system constraints and rigid architecture

 Budget contention where the budget did not cater for repeating the activities in software

development during implementation and maintenance. This could result in important

activities such as verification and validation of the system to be excluded.

Khan and Khan (2014:121) describe acceptance testing as: “Formal testing with respect to user

needs, requirements, and business processes conducted to determine the acceptability of the

system”. The acceptance of the system by the end users is of critical importance for project

success. Li (1990:27) states that the purpose of acceptance testing “is to ensure that the

software system meets the previously defined system external specifications, acceptance

criteria and system requirements definition before it is installed, integrated and checked out in

the operational environment”. He suggests that acceptance testing should be performed by the

end users with the help of the development group and the test cases and data for

implementation and acceptance testing should be developed based on the system

19

specifications and the user criteria. In order to increase the probability of acceptance, he

suggests that the end users should be involved in the early phases of the life cycle in order to

accept the implemented system.

Once the system has been accepted, the end users should provide formal acknowledgment

thereof (Li, 1990). This recommendation is supported by Khan et al. (2014). The authors state

that the lack of user involvement throughout the development of the software poses a major risk

to the project success. Sweis (2015) mentions additional factors related to user acceptance that

are responsible for project failure such as a high degree of user customisation during

application, changes in design specification late in the project, lack of user involvement and

inputs from the onset and changes in key individuals such as the project manager.

From looking at the risk factors, it is clear that the verification and validation of activities within

the SDLC are critical in order to prevent defects at all stages of the SDLC. It can therefore be

concluded that testing forms an integral part of software development. Li (1990) describes

testing as the procedure to find errors and to see if the software is and is not doing what it is

intended to do. He suggests that testing should start immediately once the project is initiated.

Tuteja and Dubey (2012) agree with this notion and recommend that software testing should be

performed as early as possible in the SDLC, preferably during the requirements analysis phase,

and should be performed during each phase and activity of development. Khan and Khan

(2014) state the benefits of testing as early as possible within the SDLC include resolving small

problems before they become bigger problems, obtaining and understanding important quality

attributes and resolving issues.

2.3 Software Development in Banking

In their research, Tanrikulu and Ozcer (2011) found that the banking and financial services

industry relies heavily on software systems for most of its functions and has the highest

software expenditure amongst industries. Iyakutti and Alagarsamy (2011) state that all

industries, including banking, have certain SDLC standards in common. In their research,

Chomal and Saini (2014) found the major causes of software project failure across all industries

to be:

20

 Large software projects with a large degree of complexity

 Lack of user or customer involvement and contribution throughout the project

 Estimating the project schedule based on time required to complete tasks instead of the

actual time spent on tasks

 Inadequate monitoring of and communication in projects resulting in poor requirements

understanding and project evaluation

 Poor requirements gathering and definition

 Lack of testing resources and poor knowledge and skills of resources

 Failure to meet with staff in order to establish proper requirements

 Failure in considering resource capabilities during project schedule planning resulting in

inaccurate estimation of project schedule

 Failure in considering budget and costs during project planning that result in

incompletion of the project or excluding important tasks

 Poor project management such as lack of creating work breakdown, lack of clearly

defining and assigning duties and responsibilities to resources over time and lack of

proper time and resource scheduling.

 Lack of risk management to identify concerns before they become problems that affect

the project delivery

 Unrealistic project expectations

 Not identifying and analysing all users and their needs

 Lack of using good engineering standards during development

 Lack of assessing resource knowledge and capabilities related to new technology used

in the project which leads to inaccurate time estimations

 Lack of top management commitment and loyalty to the project

Iyakutti and Alagarsamy (2011) recommend that the requirements phase in banking should

include analysis of the client’s requirements, assessment of the current environment, quantifying

performance and interface requirements, and developing business requirements that will satisfy

the needs of the business. They recommended that assessments and reviews be conducted in

order to identify possible risks early in the life cycle. They further recommend validating and

verifying the phase by documenting the requirements definition, analysing the cost and benefits,

reviewing the preliminary project plan, and reviewing risks and contingency plans. Through their

research, Tanrikulu and Ozcer (2011) found that a software development problem common to

banks related to the requirements analysis phase is that a formal process is not used to track

21

and control changes in the systems requirements specification (SRS) documents. This could

lead to design and development according to outdated specifications.

Iyakutti and Alagarsamy (2011) state that the design phase in banking involves translating the

business requirements into functional requirements, which enables technical design and

construction of the system according to the proposed solution. The authors recommend

proceeding with this phase once the business requirement documentation has been developed

and the completed technology assessments have been conducted. They emphasise the

importance of having detailed specifications that contain all necessary information in order to

construct the new system accurately.

They recommend validating and verifying the phase by reviewing the technical design,

reviewing estimates on the project plan, and reviewing the system test plans. Through their

research, Tanrikulu and Ozcer (2011) found that software development problems common to

banks related to the design phase are lack of reviews, tests, problem reporting and resolution,

documentation development and maintenance, test requirements development, training, risk

management and proper processes for change management.

Iyakutti and Alagarsamy (2011) state that the development phase in banking involves

development of the software and infrastructure, and the development and execution of unit

testing. They recommend proceeding with this phase once the functional specification, technical

design, system test plans, and coding and infrastructure standards have been developed. The

authors recommend that this phase should be validated and verified by reviewing the test plans

and scripts, reviewing the project plan, reviewing the code and infrastructure changes, and

reviewing the unit test results.

Through their research, Tanrikulu and Ozcer (2011) found that software development problems

common to banks related to the development phase are lack of coding standards and

procedures, software configuration plans, policies and procedures, documentation of roles and

responsibilities, a detailed implementation management plan, documentation of software unit

and system development, documentation of unit testing results, integration test plans and draft

versions of user documentation.

22

Iyakutti and Alagarsamy (2011) suggest that the testing phase in banking should involve testing

whether the system meets the specifications, whether the system is accepted by the business,

(i.e. the end user), and finally whether the system will be sustainable in a production

environment by performing regression testing. The authors recommend proceeding with this

phase once the coding scripts, test plans, and functional and technical design of the system

have been developed. They further recommend validating and verifying the phase by the test

results, verification of security assessments, approval for implementation, and user readiness

for implementation. Through their research, Tanrikulu and Ozcer (2011) found that software

development problems common to banks related to the testing phase are the lack of: integration

plans, documentation regarding problems during experienced during installation, test design

specification documents and approval of tests performed.

Iyakutti and Alagarsamy (2011) state that the implementation phase in banking involves moving

the system into a production environment after successful test results have been obtained. They

recommend proceeding with this phase once positive test results for system testing, user

acceptance testing and regression testing are obtained. They further recommend validating the

phase by confirming that migration of the system is according to the configuration management

details. Through their research, Tanrikulu and Ozcer (2011) found that software development

problems common to banks related to the implementation phase include failure to operate the

production environment according to standard operating procedures, and the lack of formal

problem management procedures and documentation procedures. The authors further found

that problems common to the banking industry and related to the maintenance phase are lack

of: implementation plans, formal approval of project completion, post-operation reviews and

process, inspection of documentation and design and process verification.

2.4 Systems Engineering Development Models

London (2012) states that various processes, known as development models, can be used in

SE development and management. He explains that these processes describe the engineering

process across the system’s life cycle. He mentions the Waterfall, Spiral, and V-model as the

most popular development models. Rather and Bhatnagar (2015) describe a development or

process model as a process that describes aspects such as specification, design, validation and

evolution.

23

Buede (2009) explains that similarities can be seen between these models although they exhibit

different characteristics. He suggests that factors such as uncertainty in requirements, risk,

maturity of technology and prioritisation should be considered when selecting a development

model. He further suggests that it should be kept in mind that there is not a standard model that

fits all situations and that the development models can be used in combination if needed.

2.4.1 The V-model

Figure 2.2 The V-model (Kasser, 2007)

24

Buede (2009) states that the V-model as represented in Figure 2.2 is one of the most popular

development models. He describes the V-model as a sequential model in which software is

designed on the left-hand (downhill) part of the model, and built and tested on the right-hand

(uphill) part of the model. He states that the correspondence between the left and right hand

activities are depicted by the lines across the middle of the V-model, which shows the levels

from component testing at the bottom, integration and system testing, and acceptance testing at

the top level.

The benefits of this development model include that it is focused on keeping stakeholders

involved throughout the entire development process, concurrent opportunity and risk

management, and verification and validation of each development activity leading to early

problem resolution. Early problem resolution can save time and money as problems that are

detected earlier in the development process are often easier and less expensive to fix (Buede,

2009). Mooz and Forsberg (2004) describe the V-model as being beneficial in terms of

addressing software development complexity, decomposition, definitions, integration and

verification.

Kasser (2007) warns that a shortcoming of the V-model is that although it allows for detecting

defects, it does not allow for avoiding defects. When defects are identified and avoided at the

outset, a project may experience greater cost saving and reduced risks. He suggests that

defects should be kept in mind during the development phase so that these are not built into the

system. He recommends that testers communicate the defects to the development team once

they become aware of them. He further suggests that requirements should be updated to avoid

defects to start with.

Rather and Bhatnagar (2015) state that for software development, the V-model necessitates

that the requirements be clearly defined before the project starts at it is expensive to go back

and implement changes once the software is implemented. They therefore suggest that it would

not be the most appropriate model for projects where the requirements have a high risk of

changing but suggest that it would be a good choice for critical projects. They state that the

model emphasises risk analysis, allows for early production, and is easy to manage and

understand.

However, they warn that it is a costly model that would not be suitable for projects that are

small, long and ongoing, and object oriented. Munassar and Govardhan (2010) suggest that the

rigidity of the model does not allow for enough flexibility and causes the adjustment of scope to

25

be difficult and expensive. They mention that an additional disadvantage is that the model does

not describe or prescribe a clear way to resolve software defects.

2.4.2 The Waterfall model

Figure 2.3 The Waterfall Model (Royce, 1988)

Buede (2009) states that the waterfall model as represented in Figure 2.3 is one of the earlier

developmental model designs in SE which is characterised by sequentially moving through the

different life cycle phases. He describes the model as developing a system by moving from one

phase to the sequential phase where iteration can only occur between the adjacent phases thus

not allowing movement more than one phase forward or backward. Mooz and Forsberg (2004:4)

assert: “The model promotes knowing the requirements before designing and designing before

coding, etcetera.”

26

In terms of software development, Rather and Bhatnagar (2015) state that the Waterfall model

necessitates that all the requirements be stated at the start of the project. The authors conclude

that the model presents disadvantages such as problems remaining undiscovered until testing,

unclear requirements, lack of risk management, difficulty in making changes and late delivery.

They state that although the model is easy to understand, it should be used in projects that are

simple and have strict deadlines. Munassar and Govardhan (2010) contend that it is unrealistic

to expect accurate requirements so early in a project and that it is costly and difficult to make

changes to projects. Although the model allows for planning early stages, the software is

delivered late in the project, which could delay the discovery of serious errors.

Buede (2009) states the design of the Waterfall model as a limitation as each step is not tested

and verified before proceeding to the next which could result in detecting problems later in the

development process. Kasser (2007) agrees that the design is limited and states that it might be

necessary to go more than one step back to improve or adjust a previous step in the model.

27

2.4.3 The Spiral model

Figure 2.4 The Spiral Model (Boehm, 2000)

Buede (2009) describes the Spiral model as represented in Figure 2.4 as a model that has a

spiral-shaped design with four major sequential processes, namely (i) design, (ii) evaluation and

risk analysis, (iii) development and testing, and (v) planning. He states that these processes will

be repeated as needed until the final implemented product meets the requirements of the

stakeholders.

Mooz and Forsberg (2004:4) contend:

The model promotes resolving requirements, feasibility and operational risks prior to

proceeding with traditional waterfall phases. The objective is to involve users and

stakeholders in resolving recognized software development issues preceding

28

design. Although designed for software the model is also applicable to hardware and

system development.

Boehm (2000) describes the Spiral model as a risk driven model that seeks to decrease risk

throughout the development and implementation of the project and obtains agreement and

commitment from the stakeholders on requirements throughout the life cycle. He explains that

different processes and prototypes within the Spiral model are chosen for different projects

according to the planning and risk analysis that was performed.

Buede (2009) suggests an advantage of this model is that it allows for different prototypes to be

developed to determine which requirements will have the most impact on cost, schedule, and

performance. Thus the benefits include improving requirements, eliminating nonviable options,

avoiding rework of processes and providing early functionality. He suggests that another

advantage is that it shortens the development life cycle by reducing the time between the

stakeholders’ requirements and the implementation of the final product. Thus risks such as

change of requirements due to system changes can be prevented. Rather and Bhatnagar

(2015) state that the Spiral model in software development allows for new prototypes to be

developed continuously, reuse capabilities, improved productivity and elimination of errors in

early stages of development.

A limitation of this model is that it looks at the risks separately instead of looking at the system

as a whole from the beginning (Buede, 2009). Although the Spiral model allows for risk analysis

in software development, it is a complex development model where the cost of risk analysis on

large projects could be high. Another disadvantage as inadequate time and cost estimation

(Rather & Bhatnagar, 2015). Munassar and Govardhan (2010) warn that by using this model the

project’s success is highly dependent upon risk analysis, which requires a high level of expertise

in order to be conducted successfully.

2.5 Systems Engineering Principles

Hari et al. (2008) state that companies and organisations operate in a modern market where

“products and systems are more complex, customers’ budgets are limited, and competition is

29

tougher”. The authors suggest that “in order to succeed in such a market, an organization must

continuously improve the profitability of its products and services”.

 London (2012:15) describes SE as:

…an interdisciplinary field that emerged as an effective way to manage complexity

and change. It focuses on defining customer needs and required functionality early

in the development cycle, and proceeding through design synthesis to system

validation while considering the complete problem. Systems engineering is based on

a holistic perspective of problems and design. Practitioners consider how systems fit

into the larger context, how they impact it, and how they are influenced. Just as

importantly, they consider how the interacting system components relate to each

other.

One of the aims of SE is to ensure that the stakeholders’ needs are met cost-effectively and

timeously. SE also translates the stakeholders’ needs into requirements and facilitates the

selection and implementation of the best design from other alternatives. London (2012)

continues that decision making is accomplished through the use of a disciplined and

collaborative approach between system engineers and interdisciplinary teams.

Through his research, Honour (2004) found that SE improves cost, scheduling and quality within

projects. He also found that the quality of SE plays a major role in the outcome of projects.

London (2012) states that a combination of methods is used to accomplish SE objectives.

These methods can also be referred to as SE principles, techniques, practices or concepts.

Buede (2009) asserts that a major principle of systems engineering is the consideration of the

entire system at each activity throughout the life cycle. “Ignoring any part of the life cycle while

engineering the system can lead to sufficiently negative consequences, including failure at the

extreme” (Buede 2009:3). Sweeney et al. (2011) state that this principle involves formulating

and refining operational, functional, and performance requirements, identifying and

decomposing the system’s functionality, implementing functionality into a feasible, useful

product, verifying the system’s requirements, functionality and implementation, and managing

inherent operational, technical and programmatic risks.

Friedman and Sage (2003) support this view, proposing that the design activities in SE are

performed from the viewpoint of the entire life cycle and not just the development phase. “A

balanced blend of all methods, measurements, technologies, and processes shall be employed

30

in support of an effective life cycle” (Friedman & Sage, 2003:94). Funding support should be

maintained throughout the project’s life cycle and the development activities should recognise

the total life cycle cost.

According to SE, the system life cycle has to be understood and areas of weakness should be

identified by modelling the life cycle according to a systems development model (El-Sayar et al.,

2013). College (2001) suggests that progress should be monitored, alternatives should be

evaluated and selected, and data and decisions should be documented. The author further

states that tools such as modelling, simulation, experimentation, and testing should be used to

provide a rigorous quantitative basis for selecting performance, functional and design

requirements and to evaluate alternative approaches to satisfy requirements and objectives.

The stakeholders’ requirements should be analysed and defined in engineering terms and

converted into specifications for the system and its components, segments and elements. “It is

critical that this design process be broad in perspective so that nothing is left out and every

contingency is considered” (Buede 2009:5). The specifications should be developed by

considering the objectives of the stakeholders. The specifications should be detailed enough by

specifying what the system must do, how well it must do it and how it should be verified and

tested in order to adequately and correctly develop the system and its components (Buede,

2009).

College (2001:32) recommends that the requirements should be:

 …understandable, unambiguous, comprehensive, complete, and concise.

Requirements analysis must clarify and define functional requirements and design

constraints. Functional requirements define quantity (how many), quality (how

good), coverage (how far), time lines (when and how long), and availability (how

often). Design constraints define those factors that limit design flexibility, such as:

environmental conditions or limits; defence against internal or external threats; and

contract, customer or regulatory standards.

The author describes the process of functional analysis as:

Functions are analyzed by decomposing higher-level functions identified through

requirements analysis into lower-level functions. The performance requirements

associated with the higher level are allocated to lower functions. The result is a

description of the product or item in terms of what it does logically and in terms of the

31

performance required. This description is often called the functional architecture of

the product or item. Functional analysis and allocation allows for a better

understanding of what the system has to do, in what ways it can do it, and to some

extent, the priorities and conflicts associated with lower-level functions. It provides

information essential to optimizing physical solutions.

Each function should have a corresponding requirement (College, 2001). Givens (2012) states

that a core SE principle related to the requirements analysis phase is that problems should be

clearly defined and a high level description of the functions that the system must perform should

be generated. Sweeney et al. (2011) suggest that software requirements should be categorised,

reviewed in order to identify duplicate and non-specific user needs, and assessed according to

the user objectives in order to align with SE principles. The authors suggest that the functional

analysis of the software system should include the preliminary design and planning activities by

the developers, documenting the traceability between requirements and desired capabilities,

relating the development plans into requirements, and detailing how the requirements should be

implemented. El-Sayar et al. (2013) suggest that systems engineering requires that functional

and non-functional requirements be gathered and analysed.

According to Friedman and Sage (2003), the following SE principles are related to the

requirements phase:

 Requirements should flow from higher level to lower level requirements in a coherent

and traceable manner

 Knowledge should be shared between resources and the user regarding all technical

aspects of the system

 Users should be thoroughly involved in the development of the requirements

An important SE principle is the integration of the system. El-Sayar et al. (2013:7376) describe

systems integration as “designing interfaces and bringing system elements together so they

work as a whole”. They explain that integration “requires extensive communication and

coordination. Interfaces between different subsystems, the main system and the customers

must be designed. Subsystems should be defined to minimize the amount of information to be

exchanged between the subsystems”.

College (2001:32) explains design as:

32

…the process of defining the product or item in terms of the physical and software

elements which together make up and define the item. The result is often referred to

as the physical architecture. Each part must meet at least one functional requirement,

and any part may support many functions. The physical architecture is the basic

structure for generating the specifications and baselines.

The author states that the functional architecture should be revisited in order to verify that the

physical design can perform the required functions and the required level of performance. Thus,

it is possible to reconsider how the system will achieve its objective and permitting optimisation

of the design. Friedman and Sage (2003) assert SE principles related to the design and

development phases are:

 Establishing the system baseline architecture early in the systems development

 Involving technical issues, customer needs, political pressures and funding in the

baseline architecture

 Performing judgment on issues by the development team and end user

 Designing the system in a logical and orderly manner according to the system functional

architecture through functional decomposition and design traceability

 Sharing systems design responsibility between development team and end user

 Ensuring that each interface and integration step throughout the life cycle support total

system functionality

 Ensuring that the system is integrated and interfaced with other systems

 Ensuring that all operational systems are compatible with each other

El-Sayar et al. (2013:7373) state that “it is required to view the enterprise, design, plan,

implement, and govern the enterprise architecture”. Buede (2009) suggests that integration

should be planned during the design phase in a manner that simplifies verification and

validation. He further suggests that likely alternatives to the integration order should be

considered and the design should therefore be flexible enough to allow for these changes. El-

Sayar et al. (2013) substantiates this opinion and states that proposed alternative solutions

should be explored and assessed.

A core SE principle related to the design phase is that “alternative designs are created and

evaluated based on multiple criteria, including performance, schedule, cost, and risk. Preferred

options are modelled and evaluated, creating simulation data for analysis. Trials are ultimately

run on the model system of choice” (Givens, 2012:68). The author explains that the preferred

33

alternative is then used to manage the system life cycle. Givens (2012:69) further explains that

“the system is integrated into other systems with which it must interact. The outcome of effective

integration is improved efficiency”.

“For each application of the systems engineering process, the solution will be compared to the

requirements. This part of the process is called the verification loop, or more commonly,

Verification” (College, 2001:32). The author states that each requirement should be verifiable

and the requirements documentation should detail the method of verification for each

requirement.

El-Sayar et al. (2013:7376) contends that SE principles related to system verification and

validation require “any system to verify and assess its performance, cost, and risk to ensure it is

on track for fulfilling customer needs, also to verify and continuously assess system

performance that is useful for feedback and re-evaluating the system”. Friedman and Sage

(2003) add that SE principles related to the testing phase are: testing every requirement,

determining the success criteria and measures for testing early in the life cycle, involving users

in the verification and validation of requirements and making the users the final approvers of the

test outcomes.

Sweeney et al. (2011) suggest that SE applied to software testing requires that test cases

should be clearly defined by describing and documenting each test case and mapping the test

cases to the requirements. The test cases should be reviewed, modified and refined before test

execution. They further suggest that a test results matrix should be developed and the results

should be documented and archived for future reference.

Core SE principles related to implementation are that those operating the system are

comfortable and knowledgeable regarding the functions of the system, the performance is

assessed using ideally quantitative performance metrics, and the outputs of the system are

observed in order to modify the system where necessary (Givens, 2012). Friedman and Sage

(2003) mention the following SE principles are related to the implementation phase:

 During implementation testing the project team should maintain the appropriate technical

capabilities to gather, analyse and recommend changes where necessary

 Implementation testing is performed by both the project team and end user, and

reengineering is conducted where changes in design are necessary

34

 All data gathered during implementation testing is used for recommendations on future

improvements

Sweeney et al. (2011) suggest that risks related to software development should be identified,

planned, mitigated and tracked throughout the project across all aspects of the project. The

risks should be identified by any team member and that all risks should be reviewed by the

systems engineer and project manager in order to assess their relevance and probability. The

authors suggest that a mitigation plan should be developed, executed and monitored to avoid

the realisation of the risk. Once the risks have been found to be successfully mitigated, they

could be retired. Friedman and Sage (2003) support this view, adding that according to SE, risk

should identified, prioritised and mitigated early at every level of detail at all levels in the life

cycle. According to College (2001:33), “risk management, configuration management, data

management and performance-based progress measurement” should be conducted in order to

ensure that:

 Alternative solutions “are made only after evaluating the impact on system effectiveness,

life cycle resources, risk, and customer requirements”

 Traceability from inputs to outputs is maintained

 “Schedules for development and delivery are mutually supportive”

 “Required technical disciplines are integrated into the systems engineering effort”

 “Impacts of customer requirements on resulting functional and performance

requirements are examined for validity, consistency, desirability, and attainability”

 “Product and process design requirements are directly traceable to the functional and

performance requirements they were designed to fulfil, and vice versa”

Anderson and Nolte (n.d.:2) recommend that risk management in SE should address six

elements:

1. “Identification of the potential sources of risk, and their drivers”

2. “Quantification of risks, including the probability of occurrence and seriousness of

impact, and an assessment of their impacts on cost (including life-cycle costs), schedule,

and performance”

3. “Determination of the sensitivity of these risks to program assumptions, and the degree

of correlation among the risks”

4. “Definition and evaluation of alternatives to mitigate risks”

35

5. “Assurance that risk is factored into decisions on program objectives and design

alternative analysis”

6. “Tracking risk items to ensure mitigation plans are effective, the potential impact on the

program does not increase, and identify when risks become realized and become

impediments to achievement of program goals”

An SE principle worth noting here is to constantly involve people from different backgrounds

throughout the entire development process. Buede (2009:14) states that “in order to accomplish

this difficult job of engineering a system, people with many different specialties must be involved

on the systems engineering team”. He suggests that resources from the various technical and

management areas as well the final users of the system should be involved throughout the

entire life cycle.

2.6 Framework for Comparative Analysis

In order to perform the comparative analysis provided in Chapter 4, the major principles of SE

as well as recommendations in the literature review that assist in the achievement of these

principles are used as a baseline to compare to the current SDLC at the case site. These major

principles are:

 Consideration of the entire system during each activity within the SDLC

 Definition and analysis of requirements that will achieve the users’ objectives

 Optimal design and integration of the system

 Optimal verification and validation of the system

 Intensive risk management during the entire SDLC

 Involvement of resources and users from all relevant disciplines throughout the entire

SDLC

The recommendations obtained through the literature review in order to achieve these principles

are tabulated and presented in Table 2.1.

36

Systems Engineering Principle Recommendations to Achieve Principle Source

Consideration of the entire system

during each activity within the

SDLC

Formulating, and refining operational, functional, and

performance requirements

Sweeney et al. (2011)

 Identifying and decomposing the system’s functionality

Sweeney et al. (2011)

 Implementing functionality into a feasible useful product

Sweeney et al. (2011)

 Verifying the system’s requirements, functionality and

implementation

Sweeney et al. (2011)

 Managing inherent operational, technical and programmatic

risks

Sweeney et al. (2011)

 Performing design activities from the viewpoint of the entire life

cycle

Friedman and Sage (2003)

 Using a balanced blend of methods, measurements,

technologies, and processes that support the entire life cycle

Friedman and Sage (2003)

 Maintaining funding support throughout the life cycle

Friedman and Sage (2003)

 Ensuring development activities recognise the total life cycle Friedman and Sage (2003)

37

costs

 Gaining a thorough understanding of the system’s life cycle

El-Sayar et al. (2013)

 Understanding weaknesses by modelling the life cycle

according to an SE development model

El-Sayar et al. (2013)

 Monitoring project progress

College (2001)

 Evaluating and selecting alternatives

College (2001)

 Documenting data and decisions

College (2001)

 Ensuring performance, functional, and design requirements,

and alternative approaches satisfy requirements selected

based on quantitative approaches

College (2001)

Detailed definition and analysis of

requirements that will achieve the

users’ objectives

Obtaining a clear description of the environment wherein the

software will operate

Hijazi et al. (2014); Iyakutti

and Alagarsamy (2011)

 Identifying all the clients and collecting the raw requirements

and objectives (functional and non-functional) from all points of

view through observing and interviewing

Swarnalatha et al. (2014);

Sommerville (2006) cited

in Hijazi et al. (2014);

38

 Chomal and Saini (2014)

 Scheduling meetings with users and resources to obtain,

analyse and review requirements

Chomal and Saini (2014);

Iyakutti and Alagarsamy

 Developing standards and constraints in order to ensure

common understanding

Swarnalatha et al. (2014);

Hijazi et al. (2014)

 Defining problems clearly

Hijazi et al. (2014);

Swarnalatha et al. (2014);

Chomal and Saini (2014)

 Defining and analysing requirements in engineering terms and

converting them into specifications for the system, its

components, segments, and elements

Hijazi et al. (2014); Buede

(2009)

 Analysing requirements by comparing it to user or business

requirements or objectives

Swarnalatha et al. (2014);

Iyakutti and Alagarsamy

(2011); Buede (2009)

 Quantifying performance and interface requirements

Iyakutti and Alagarsamy

(2011)

 Prioritising, categorising, reviewing, and assessing

requirements according to users’ objectives

Swarnalatha et al. (2014);

Sweeney et al. (2011)

 Organising and defining requirements according to a hierarchy Swarnalatha et al. (2014);

39

from high level requirements that address business

requirements to low level requirements that address

component requirements in a coherent and traceable manner

Friedman and Sage (2003)

 Performing dynamic allocation by assigning the functional and

non-functional requirements to the relevant system elements

Swarnalatha et al. (2014)

 Ensuring that requirements are clear, detailed,

understandable, unambiguous, comprehensive, complete and

accurate

Hijazi et al. (2014);

Swarnalatha et al. (2014);

Sweis (2015); Khan et al.

(2014); Chomal and Saini

(2014); College (2001);

Givens (2012)

 Ensuring that requirements specify what the system must do,

how well it must do it, and how the system should be verified

and validated

Iyakutti and Alagarsamy

(2011); Buede (2009);

Givens (2012)

 Defining and clarifying functional requirements and design

constraints

College (2001); Givens

(2012)

 Performing functional analysis and preliminary design and

planning activities by developers, documenting traceability

between requirements and desired capabilities, relating

development plans into requirements, and detailing how

Sweeney et al. (2011)

40

requirements should be implemented

 Developing requirements for each function

College (2001)

 Placing equal importance on functional and non-functional

aspects

Hijazi et al. (2014);

El-Sayar et al. (2013)

 Resolving conflicting user requirements by choosing the most

relevant requirements that will achieve the users’ objectives

Hijazi et al. (2014)

 Validating and verifying requirements by reviewing the

requirements with clients, prototyping according to

requirements and comparing system documentation to clients’

requirements and objectives

Swarnalatha et al. (2014);

Sommerville (2006) cited

in Hijazi et al. (2014); Li

(1990)

 Negotiating the requirements with resources and end users

Chomal and Saini (2014);

Iyakutti and Alagarsamy

(2011)

 Performing software requirements management by keeping

track of and documenting all interrelationships and

dependencies of software requirements changes

Swarnalatha et al. (2014)

 Thoroughly involving developers, end users and other

necessary resources during requirements development

Hijazi et al. (2014);

Friedman and Sage (2003)

41

 Documenting requirements for future reference and ensuring

that these are consistent with requirements

Swarnalatha et al. (2014);

Sommerville (2006) cited

in Hijazi et al. (2014);

Iyakutti and Alagarsamy

(2011)

 Analysing cost and benefits

Iyakutti and Alagarsamy

(2011)

 Reviewing preliminary project plans

Iyakutti and Alagarsamy

(2011)

 Reviewing risks and contingency plans

Iyakutti and Alagarsamy

(2011)

 Ensuring there is a formal process to track and control

changes to specifications

Tanrikulu and Ozcer

(2011)

 Ensuring there is knowledge sharing between resources and

users regarding technical aspects of system

Khan et al. (2014);

Friedman and Sage (2003)

 Providing appropriate documentation on processes and past

project successes and failures

Hijazi et al. (2014);

Tanrikulu and Ozcer

(2011); Sweeney et al.

(2011)

42

Optimal design of the system

Ensuring extensive communication and coordination between

resources and users

El-Sayar et al. (2013)

 Creating and evaluating proposed alternative designs

(solutions) based on multiple criteria, including performance,

schedule, cost and risk

Givens (2012)

 Modelling and evaluating preferred options and run trials

Givens (2012)

 Using preferred alternative design to manage the system life

cycle

Givens (2012)

 Defining subsystems

El-Sayar et al. (2013)

 Proceeding with design once business requirement has been

received and completed technology assessments have been

conducted

Iyakutti and Alagarsamy

(2011)

 Ensuring design is broad in perspective and every contingency

is considered

Buede (2009)

 Designing the system in a logical and orderly manner

according to the system functional architecture

Friedman and Sage (2003)

 Choosing architectural design method and programming Hijazi et al. (2014);

43

language early in the design phase and according to the

project’s need

Friedman and Sage (2003)

 Revisiting functional architecture in order to verify that the

design can perform the required functions and the required

level of performance

College (2001)

 Involving technical issues, customer needs, political pressures

and funding in the architectural design

Friedman and Sage (2003)

 Ensuring flexible architecture

Hijazi et al. (2014)

 Ensuring design is as simple as possible and understandable

Hijazi et al. (2014); Khan

et al. (2014)

 Providing complete, clear and consistent documentation of the

design process free from unnecessary information

Hijazi et al. (2014);

Tanrikulu and Ozcer

(2011)

 Performing judgment on issues and sharing systems design

responsibility between the development team and end user

Friedman and Sage (2003)

 Ensuring maintenance of design document and specifications

Hijazi et al. (2014);

Tanrikulu and Ozcer

(2011)

 Accurately estimating available reusable components during Hijazi et al. (2014)

44

requirements analysis

 Validating and verifying design by comparing to requirements

documentation, reviewing technical design, reviewing

estimates on the project plan and reviewing system test plans

Iyakutti and Alagarsamy

(2011)

 Testing requirements development

Tanrikulu and Ozcer

(2011)

 Setting up integration plan in a manner that simplifies

verification and validation

Buede (2009)

 Exploring and assessing likely alternatives to the integration

order and ensuring design is flexible enough to allow for

changes

Buede (2009); El-Sayar et

al. (2013)

Optimal integration and

development of the system

Developing the system once functional specification, technical

design, system test plans and coding and infrastructure

standards have been developed

Iyakutti and Alagarsamy

(2011)

 Correcting system decomposition and ensuring well-defined

components and requirements

Hijazi et al. (2014)

 Ensuring each interface and integration step throughout the life Friedman and Sage (2003)

45

cycle supports total system functionality

 Ensuring that the system is integrated and interfaced between

different subsystems, systems, the main system and the

customers

El-Sayar et al. (2013);

Friedman and Sage

(2003); Givens (2012)

 Ensuring all operational systems are compatible with each

other

Friedman and Sage (2003)

 Excluding unnecessary specification of modules processing

Hijazi et al. (2014)

 Providing well defined functional definitions

Hijazi et al. (2014)

 Using one developer if possible

Hijazi et al. (2014)

 Following coding standards and best practices as well as good

engineering standards

Hijazi et al. (2014);

Chomal and Saini (2014);

Tanrikulu and Ozcer

(2011)

 Avoiding repetitive code

Hijazi et al. (2014)

 Ensuring reviewers can understand the code

Hijazi et al. (2014)

 Reusing components where necessary Hijazi et al. (2014)

46

 Using experienced programmers

Hijazi et al. (2014)

 Ensuring good quality compilers and debuggers

Hijazi et al. (2014)

 Understanding of new technology before development

Hijazi et al. (2014)

 Performing integration incrementally according to the structure

of the system

Hijazi et al. (2014); Li

(1990)

 Ensuring correct versions and correct components are used

for integration

Hijazi et al. (2014)

 Performing integration testing after each integration step

Li (1990)

 Validating and verifying the development phase by reviewing

test plans and scripts, reviewing the project plan, reviewing the

code and infrastructure changes, and reviewing the unit test

results

Iyakutti and Alagarsamy

(2011)

 Documenting software unit and system development

Hijazi et al. (2014);

Tanrikulu and Ozcer

(2011)

 Documenting roles and responsibilities Tanrikulu and Ozcer

47

 (2011)

 Documenting unit testing results and integration test plans

Hijazi et al. (2014);

Tanrikulu and Ozcer

(2011)

Optimal verification and validation

of the system

Proceeding with testing phase once coding scripts, test plans,

and functional and technical design of the system has been

developed

Iyakutti and Alagarsamy

(2011)

 Ensuring that each requirement is verifiable, tested, and that

the requirements documentation details the method of

verification for each requirement

Hijazi et al. (2014); College

(2001); Friedman and

Sage (2003)

 Determining the success criteria and measures for testing

early in the life cycle

Friedman and Sage (2003)

 Involving users in the verification and validation of

requirements

Hijazi et al. (2014);

Friedman and Sage (2003)

 Making the users the final approvers of the test outcomes

Friedman and Sage (2003)

 Setting up the test design specifications document

Tanrikulu and Ozcer

(2011)

 Ensuring unit testing is performed during development phase Li (1990); Yoon (2013)

48

by the developer that coded the software

 Using complete automated testing tools and appropriate

testing techniques

Hijazi et al. (2014); Yoon

(2013)

 Ensuring development of formal well-understood testing

process

Hijazi et al. (2014)

 Documenting test cases for future use

Hijazi et al. (2014)

 Ensuring adequate regression testing by selecting all relevant

test cases

Hijazi et al. (2014)

 Ensuring integration testing performed according to the

structure of the system

Li (1990)

 Clearly defining test cases by describing and mapping each

test case to the requirements

Li (1990); Sweeney et al.

(2011)

 Reviewing, modifying, and refining test cases before test

execution

Sweeney et al. (2011)

 Developing test results matrix Sweeney et al. (2011)

49

 Documenting and archiving test results for future reference

Sweeney et al. (2011)

 Testing cases and data based upon system specifications

Li (1990)

 Using real-life data

Li (1990)

 Using qualified testing team

Hijazi et al. (2014);

Chomal and Saini (2014)

 Ensuring sufficient number of testing resources

Hijazi et al. (2014);

Chomal and Saini (2014)

 Allowing sufficient time for testers to test the entire system

Hijazi et al. (2014)

 Using latest verified requirements to test

Hijazi et al. (2014)

 Ensuring performance, stress and load testing is performed

Hijazi et al. (2014)

 Verifying and validating the testing phase performed by

checking test results, verification of security assessments,

approval for implementation, and user readiness for

implementation

Iyakutti and Alagarsamy

(2011)

 Ensuring formal approval of tests is performed

Tanrikulu and Ozcer

(2011)

50

 Ensuring acceptance testing is performed by end users with

the help of development team

Li (1990)

 Receiving formal acceptance of the system

Li (1990); Khan et al.

(2014)

 Ensuring automated unit and regression testing

Parvez (2012)

 Updating regression test pack with latest test cases

Parvez (2012)

 Involving programmers with the design of unit test cases

Yoon (2013)

Successful implementation of the

system

Proceeding with implementation phase once positive test

results for system testing, acceptance testing, and regression

testing have been obtained

Iyakutti and Alagarsamy

(2011)

 Developing detailed implementation management plan

Tanrikulu and Ozcer

(2011)

 Operating system according to standard operating procedures,

formal problem management procedures and documentation

procedures

Tanrikulu and Ozcer

(2011)

 Ensuring that those operating the system are knowledgeable

and comfortable regarding the functions of the system

Hijazi et al. (2014); Givens

(2012)

51

 Assessing performance of system using quantitative metrics

Givens (2012)

 Observing outputs of system in order to modify system where

necessary

Givens (2012)

 Ensuring project team maintains the appropriate technical

capabilities to gather, analyse, and recommend changes

where necessary

Friedman and Sage (2003)

 Ensuring implementation testing is conducted by both the

project team and end user

Friedman and Sage (2003)

 Conducting reengineering where changes in design are

necessary

Friedman and Sage (2003)

 Using all data gathered during implementation testing for

recommendations on future improvements

Friedman and Sage (2003)

 Ensuring documentation of problems experienced during

implementation

Tanrikulu and Ozcer

(2011)

 Validating phase by confirming migration of the system is

according to configuration management details

Iyakutti and Alagarsamy

(2011)

52

 Obtaining formal approval of project completion

Tanrikulu and Ozcer

(2011)

 Providing post-operation review process established

Tanrikulu and Ozcer

(2011)

 Ensuring design and process verification

Tanrikulu and Ozcer

(2011)

 Inspecting documentation

Tanrikulu and Ozcer

(2011)

Intensive risk management during

the entire SDLC

Creating work breakdown, clearly defining and assigning

duties and responsibilities to resources over time

Chomal and Saini (2014)

 Understanding project complexities and choosing resources

accordingly in order to have a clear project scope

Hijazi et al. (2014); Khan

et al. (2014); Patil and

Yogi (2011)

 Discussing project with experts

Patil and Yogi (2011)

 Learning from past experiences

Patil and Yogi (2011)

 Conducting assessments and reviews conducted early in the

life cycle to mitigate risks

Iyakutti and Alagarsamy

(2011)

 Identifying, listing, analysing, prioritising, mitigating and Patil and Yogi (2011);

53

resolving risks and their drivers early in the project and

throughout the project

Chomal and Saini (2014);

Sweeney et al. (2011);

Friedman and Sage

(2003); Anderson and

Nolte (n.d.)

 Retiring risks once successfully mitigated

Sweeney et al. (2011);

Friedman and Sage (2003)

 Quantifying risks, including probability of occurrence,

seriousness of impact, and assessing impact on cost,

schedule, and performance

Anderson and Nolte (n.d.)

 Determining sensitivity of risks to program assumptions and

the degree of correlation among risks

Anderson and Nolte (n.d.)

 Defining and evaluating alternatives to mitigate risks

Anderson and Nolte (n.d.)

 Factoring risk into decisions on program objectives and

designing alternative analysis

Anderson and Nolte (n.d.)

 Tracking risks to ensure mitigation plans are effective and the

potential impact on the project does not increase

Sweeney et al. (2011);

Anderson and Nolte (n.d.)

 Identifying when risks become realised and become

impediments to achievement of program goals

Anderson and Nolte (n.d.)

54

 Ensuring risks are identified by any team members

Sweeney et al. (2011)

 Ensuring risks are reviewed by project manager in order to

assess their relevance and probability

Sweeney et al. (2011)

 Monitoring and reporting on project performance throughout

life cycle

College (2001)

 Adequately estimating project time, cost, scope and resources

Hijazi et al. (2014); Khan

et al. (2014); Patil and

Yogi (2011); Sweis (2015);

Chomal and Saini (2014)

 Assessing all resource knowledge and capabilities before

scheduling

Hijazi et al. (2014);

Chomal and Saini (2014)

 Estimating schedule based on time spent on tasks and

resource capabilities

Chomal and Saini (2014)

 Ensuring proper project planning and control in order to ensure

realistic project schedule and budget

Hijazi et al. (2014); Khan

et al. (2014); Chomal and

Saini (2014)

 Ensuring good internal communication

Sweis (2015); Chomal and

Saini (2014)

55

 Avoiding assumptions

Sweis (2015)

 Providing verification and validation of each activity within the

SDLC

Hijazi et al. (2014); Li

(1990); Tuteja and Dubey

(2012); Khan and Khan

(2014); Tanrikulu and

Ozcer (2011)

 Ensuring end users are involved throughout the entire SDLC

and development activities especially from the start of the

project

Sommerville (2006) cited

in Hijazi et al. (2014); Li

(1990); Khan et al. (2014);

Sweis (2015);Chomal and

Saini (2014)

 Ensuring design changes made by end users result in

timelines; revisiting requirements and project planning

College (2001)

 Monitoring project activities and milestones

Chomal and Saini (2014)

 Providing adequate training of resources

Khan et al. (2014); Sweis

(2015); Chomal and Saini

(2014); Tanrikulu and

Ozcer (2011)

 Arranging regular planned meetings with all resources and end

users to manage and agree on expectations, obtaining

commitment from all involved and discussing results and

Khan et al. (2014); Chomal

and Saini (2014); Iyakutti

and Alagarsamy (2011)

56

status of the project

 Analysing requirements and resources to ensure realistic

project expectations

Chomal and Saini (2014)

 Establishing proper processes for change management

Tanrikulu and Ozcer

(2011)

 Providing a detailed implementation management plan

Tanrikulu and Ozcer

(2011)

 Performing testing early in the requirements analysis phase

Tuteja and Dubey (2012);

Khan and Khan (2014)

 Documenting resource knowledge

Sweis (2015)

Involvement of resources and

users from all relevant disciplines

throughout the entire SDLC

Encouraging knowledge sharing among team members

Friedman and Sage

(2003); Khan et al. (2014);

Hijazi et al. (2014);

Chomal and Saini (2014)

 Ensuring good cooperation and communication among team

members

Khan et al. (2014); Hijazi

et al. (2014); Sweis (2015);

Chomal and Saini (2014);

El-Sayar (2013)

57

 Ensuring good motivation among team members

Khan et al. (2014)

 Involving resources from the various technical and

management areas as well as the end users throughout the

entire life cycle especially at the start of the project

Chomal and Saini (2014);

Buede (2009)

58

Table 2.1 shows that the various SE principles and recommendations are interdependent. For

example, involvement of all relevant disciplines assists risk management and a detailed

requirements definition assists in successful implementation of the system.

2.7 Summary of the Literature Review

The literature review has covered all aspects of SE related to the development life cycle. SE

principles and recommendations on how to align systems development life cycles to SE

principles were analysed. This chapter forms the basis of the comparative analysis between the

literature review and the current system presented in Chapter 4.

59

CHAPTER 3 – RESEARCH METHOD

“If we knew what it was we were doing, it would not be called research, would it?”

~ Albert Einstein

3.1 Introduction

There are various ways of gathering information from participants for the purposes of

conducting research. In this chapter, the research methodology for collecting and organising

appropriate research data is discussed and analysed.

The purpose of this chapter is to:

 Describe the overall research strategy to be used in the study and the roadmap followed

to achieve the objectives presented in Chapter 1;

 Introduce the research instruments, namely face-to-face semi-structured interviews,

visual sense making and process mapping;

 Discuss and justify the data analysis techniques used in the study; and

 Outline some limitations and ethical considerations considered in the study.

The primary objective of the study is to perform a comparative analysis between the current

software SDLC and a recommended SDLC according SE principles. Following this, the study

aims to identify areas where the current SDLC does not comply with SE principles and to

provide recommendations on how to improve these areas.

The approach is to obtain information on the current system from the experts involved in the

different phases of the SDLC and perform a comparison with SE as outlined in the literature

review. Areas in the current SDLC that do not coincide with the recommendations in the

literature are identified and recommendations are provided to improve these areas in terms of

cost, schedule and quality.

60

3.2 Research Design

The study is an attempt to improve the current software SDLC in terms of cost, schedule and

performance. Problems in the current SDLC experienced by management at a prominent South

African financial institution include a long SDLC schedule, poor system verification, high

resource capacity utilisation and high cost.

The research is primarily qualitative hence the study strategy is anchored on capturing the

information from experts involved in the relevant areas.

The research project involved the following seven consecutive steps:

1. Gaining a detailed understanding of the current SDLC by conducting face-to-face semi-

structure interviews with experts

2. Documenting the current software SDLC from information obtained during interviews

3. Mapping the current software SDLC process through visual sense-making from

information obtained during interviews

4. Conducting an in-depth literature analysis at an academic level

5. Undertaking a comparative analysis between current software SDLC and the literature

reviewed

6. Identifying inefficiencies in the current software SDLC according to the literature

reviewed

7. Providing recommendations for improving the inefficiencies in the current software SDLC

3.3 Purpose of the Comparative Analysis

Walk (1998) states that the purpose of a comparative analysis methodology is to compare and

contrast two or more things that can have similarities or commonalities yet can have crucial

differences. Pickvance (2005) explains that a comparative analysis focuses on the explanation

of differences and similarities. This research is aimed at seeking ways to improve the current

SDLC by comparing the SDLC processes to systems engineering principles related to software

systems development life cycles. The differences in the processes are analysed in order to

identify opportunities for improvement.

61

The main objectives of the comparative analysis were to understand the shortfalls in the current

software SDLC and recommend improvements that can be made to the current SDLC.

3.4 Research Instrument and Methodology

In order to elicit the knowledge and perspectives of experts in the various areas of the current

software system regarding the current SDLC, qualitative, semi-structured, in-depth, face-to-face

interviews are conducted.

3.4.1 The interview process

Strauss and Corbin (1990:17) describe qualitative research as “any kind of research that

produces findings not arrived at by means of statistical procedures or other means of

quantification”. The authors explain that qualitative research can be used to gain new

perspectives, examine new phenomenon, and gain greater in-depth understanding of the topic –

all of which might be difficult to obtain via quantitative methods. Therefore a qualitative

approach for this study is chosen as this research methodology allowed the researcher to gain

an in-depth knowledge of the topic based on industry expert experiences and knowledge

(Patton, 1987). Wengraf (2001:6) defines depth as gaining “a sense of how the apparently

straightforward is actually more complicated, of how the ‘surface appearances’ may be quite

misleading about ‘depth realities’”.

During the interviews for this study, a qualitative approach allowed the researcher to be able to

respond and interact with the participants, provide immediate feedback, interpret non-verbal

communication, collect information on multiple levels simultaneously, and to gain and probe

further for explanations (Lincoln & Guba, 1985). Wilkinson and Birmingham (2003) explain that

interviews are used to obtain detailed information about a topic or subject.

Face-to-face interviews (as opposed to questionnaires) allowed the researcher to obtain more of

an insight into the meaning and significance of what is happening. This is because the face-to-

face interviews with each participant concluded only once the researcher had obtained sufficient

62

information. Additionally, face-to-face interviews provided constant interaction between the

researcher and participants where the researcher’s understanding was validated by the

participant. More data and insight was therefore obtained during the interviews as any

uncertainties and confusions were addressed (Wilkinson & Birmingham, 2003). However,

Creswell (2007) mentions that when deciding to conduct one-on-one interviews, it is important

to select participants that are not afraid to talk and share ideas in order to avoid obtaining

insufficient inadequate information. This was considered during the participant selection

process.

There are different types of interviews – namely, semi-structured, structured and unstructured

interviews. Wilkinson and Birmingham (2003) explain that semi-structured interviews allow the

researcher to direct the interview more closely, using the predetermined questions but allowing

enough flexibility for the researcher to determine the flow of information. Therefore semi-

structured interviews were chosen for this study, in order to plan the scope of questioning and

therefore assist the participants in remaining on topic.

However, there was enough flexibility to allow for additional questions or a change in direction of

conversation when needed. The researcher’s knowledge of the subject and case site was

limited, therefore it was often necessary to ask additional questions or have an interactive

discussion with participants in order to gain a holistic in-depth view of the topic.

The researcher followed the approach as detailed in Figure 3.1 in conducting the interviews.

63

Figure 3.1 The Interview Approach (Wilkinson & Birmingham, 2003)

Step one: Draft the interview

Flick (2009:98) recommends “formulating research questions in concrete terms with the aim of

clarifying what the field contacts are supposed to reveal”. In order to draft the interview the

following steps were followed:

Prepare themes or question areas. Wilkinson and Birmingham (2003:47) recommend the

preparation of themes or question areas: “In any interview – structured, semi-structured, or

unstructured – it is important for the interviewer to prepare a list of key questions to be covered

so that important issues are not overlooked and the interview follows a logical progression.”

Themes are identified that relate to the different aspects of the system that require analysis

namely, the structure of the system, the function of the system, the operation of the system, and

strengths and weaknesses in the system. Open-ended questions are asked to ensure that the

maximum amount of information is obtained. Irrelevant answers are disregarded. Creswell

64

(2007) suggests that open-ended questions should be designed to allow the participant to freely

express his or her opinions. However, Flick (2009) suggests that although the openness should

be applied to the questions, it is important to clearly formulate and define the research questions

as to avoid having to analyse large amounts of data that are not relevant to the critical research

question.

In order to understand the structure of the system, participants were asked to describe the

particular area of the SDLC that they were responsible for, describe the processes involved,

describe the chronological order of the processes, and describe the inputs and outputs for the

different processes or stages. In gaining an understanding of the function and operation of the

system, participants were asked to explain how each stage or process worked, describe the

relevant inputs and outputs, and provide details of the resources, departments and timelines

involved. Lastly, in order to understand the strengths and weaknesses in the system,

participants were asked what they perceived the problems and successes of the system to be

while taking into account the entire life cycle and how they thought the problems could be

addressed.

Figure 3.2 illustrates how the interview questions were divided into the different themes.

Figure 3.2 Determining Interview Themes for the Study

65

Clarify the number, type and sequence of questions. Wilkinson and Birmingham (2003)

recommend to determine the number, type and sequence of questions and to ensure that the

questions are necessary and clearly stated in order to gather as much information as possible.

Flick (2009) recommends that the number of questions should be based on obtaining the

important or necessary aspects of the research field. Therefore there is no recommended

number, type or sequence of questions. The author suggests that the number, type, and

sequence of questioning should be determined by how well it enables the researcher to answer

the critical research questions.

The questions related to the different themes are reviewed in order to determine whether they

are necessary, clearly stated as to avoid confusion for the participant, and to determine whether

additional questions are necessary to understand the different aspects of the SDLC in detail.

Decide how interviews will be recorded. Creswell (2007) states that adequate recording

procedures and equipment should be used when conducting one-on-one interviews. How the

interviews will be recorded are finally determined at the drafting stage. Wilkinson and

Birmingham (2003) state that audio recordings have been extensively used by researchers in

the past. The authors state that an advantage of audio recordings is that they are able to be

transcribed which provide more accurate and detailed information of the interviews as opposed

to notes or summaries as they are records of every word that was spoken between the

interviewer and interviewee.

It is therefore decided that interviews be audio-recorded and subsequently transcribed in order

to capture all information during the interview. Video recordings are not chosen as the benefits

that video recording provide such as visual cues, body language, and identification of who is

speaking in a group environment are not necessary for the purposes of this study.

Step two: Determine pilot questions

Wilkinson and Birmingham (2003:52) state the importance of piloting interview questions:

“Piloting is crucial. It assists in eliminating ambiguous questions as well as in generating useful

feedback on the structure and flow of your intended interview. As with other research

instruments, interview questions should be easy to understand.” Creswell (2007) agrees with

this notion and suggests that the interview questions and procedures should be refined through

pilot testing. This idea is confirmed by Flick (2009) who states that research questions are

refined and reformulated as the research proceeds.

66

The interview questions were piloted on three participants working in various areas of the

SDLC. These participants were not the experts with which the official research interviews are

conducted. The responses of these participants were assessed in order to determine whether

sufficient information would be obtained to understand the entire development life cycle. It was

found that the feedback from the participants provided sufficient information in order to construct

and understand the current SDLC. As the questions were open-ended and allowed for constant

communication and feedback, it was possible to construct the processes of the SDLC

accurately.

Step three: Selecting participants

Wilkinson and Birmingham (2003) state that because a tremendous amount of effort is involved

in conducting interviews, the selection of the sample group must be representative of the data

as well as sensible. The authors recommend that the central research question should guide the

researcher in determining who to interview and how many interviews will be required. Leedy and

Ormrod (2005) describe sampling as selecting a portion of the population that is representative

of the entire population.

There are two main sampling methodologies used for selecting sample groups, namely random

probability sampling and purposeful sampling. Patton (1990) explains that random probability

sampling permits generalisation from the sample to the population it represents. Therefore,

probability sampling often proves useful in quantitative studies, whereas purposeful sampling is

focused on obtaining information rich cases regarding issues of central importance for in-depth

study. Coyne (1997) describes purposeful sampling as selecting a sample based on the

purpose or aim of the research.

Koerber and McMichael (2008) state that there are three major categories of sampling, which

are convenience sampling, purposive sampling and theoretical sampling. They suggest that

although convenience sampling is not ideal in all situations in can be applicable in some

situations. The authors caution against over-generalising due to a narrow sample group. The

authors explain that theoretical sampling differs from purposive sampling in that sampling

develops along with the study and is not determined before the study takes place.

There was little benefit in seeking random sampling as the participants chosen were unable to

provide the in-depth knowledge that was required (Cohen, et al., 2007). Purposeful sampling

was chosen as the sampling methodology of choice because a thorough detailed understanding

67

of the current software SDLC processes was required. Convenience sampling would therefore

not have been sufficient in obtaining broad in-depth knowledge on the subject matter. As it was

necessary to select participants prior to the field work in order to ensure information accuracy,

theoretical sampling was not considered.

In selecting a purposeful sampling methodology, it was important to avoid several pitfalls as

outlined by Koerber and McMichael (2008):

 Selecting a sample that would not be large enough to represent the variation in the

population. For example, selecting participants with similar knowledge and experience.

 Selecting a sample that would provide the results that suited researcher bias. This could

be avoided by selecting participants from different organisations or areas within an

organisation.

 Selecting a sample that would not achieve the purpose of the research.

From these pitfalls, it is evident that variability and applicability when selecting a purposeful

sampling methodology are essential.

Patton (1990) as well as Miles and Huberman (1994) mention several purposeful sampling

methodologies:

 Extreme or deviant case sampling: This approach focuses on cases that are unusual

in some way. The lessons learnt from unusual cases can assist in improving typical

cases.

 Intensity sampling: This method of sampling selects participants who experience the

phenomenon in question intensely but not extremely.

 Maximum variation sampling: This method aims at capturing the central themes that

emerge across participant variation. Participants who have unique experiences are

selected, their variance in experience as well as common themes are analysed. Creswell

(2007:126) states that maximum variation sampling is a common sampling technique

that is often selected. “This approach is often selected because when a researcher

maximizes differences at the beginning of a study, it increases the likelihood that the

findings will reflect differences or different perspectives – an ideal in qualitative

research.”

 Homogeneous sampling: This methodology selects a particular subgroup to obtain in-

depth understanding.

68

 Typical case sampling: Through the use of key informants participants are identified

whose knowledge and experience will provide typical cases of the phenomenon in

question. This methodology does not provide a generalisation of all participants’ views,

but only that of the selected participants.

 Stratified purposeful sampling: This methodology combines typical case sampling

with selecting participants that could provide information on below average and above

average cases. The idea is to not only look at typical core cases, but also to investigate

variation from the norm.

 Critical case sampling: Participants who could provide information that is critical or

essential are selected. The information they provide is regarded as having the greatest

impact on the development of knowledge.

 Snowball or chain sampling: Information-rich key informants are selected by asking

resources associated with the phenomenon in question who the best possible resource

is to speak to. As many resources are asked, key names will get mentioned repeatedly.

 Criterion sampling: Participants are selected based on predetermined criteria deemed

important, such as participants who are involved in areas of weaknesses. These

weaknesses can therefore be addressed in order to facilitate system improvements.

 Theory based sampling: Participants are selected based on important theoretical

constructs.

 Confirming and disconfirming cases: Participants are selected who provide

confirmation or disconfirmation on the information and knowledge obtained. These

participants provide richness, depth, credibility on findings as well as boundaries on

confirmed findings.

 Opportunistic sampling: The sample selection emerges during field work. As data is

collected, new sources of information are identified.

 Purposeful random sampling: Participants are randomly selected according to the

credibility that they provide to the information. This avoids questions as to why only

certain participants were selected and does not allow generalisations to be made to the

entire population.

 Sampling politically important cases: Participants are selected based on their political

importance. Their political view could provide additional perspectives that could prove to

be useful.

 Convenience sampling: Participants who are simple and easy to study are selected.

Factors such as ease of access and low costs determine the sampling group.

69

For the purposes of this research a combination of intensity sampling, maximum variation

sampling, typical case sampling, critical case sampling, chain sampling, criterion sampling,

confirming and disconfirming cases, and opportunistic sampling was used. Intensity sampling

was chosen as participants who were most involved within the particular area of the SDLC were

selected.

Maximum variation sampling was chosen as participants were selected based on their

experience in the unique areas within the SDLC. Variety in job description, duties and

responsibilities and area of experience within the SDLC were factors in selecting participants.

This was done to ensure that all aspects of the SDLC were covered.

Typical case sampling was chosen as the participants who were selected possessed knowledge

on the general or typical SDLC processes. Critical case sampling was chosen as participants

who were viewed as experts in their field and therefore presented the greatest possibility of

obtaining accurate in-depth knowledge.

Chain sampling was chosen as participants were identified by asking all resources and project

managers involved in the various areas of the SDLC who the most knowledgeable and

experienced resource on the subject matter would be. Criterion sampling was chosen as

participants who were involved in areas of the SDLC reported by management to have

weaknesses in quality and schedule of project delivery were selected. Confirming and

disconfirming cases were chosen as some participants who had the same job description as

well as experience and knowledge of the same areas within the SDLC as other participants

were selected. This was done to ensure that information obtained from participants was

accurate. Finally, opportunistic sampling was chosen as some experts were identified as

necessary once further information regarding the processes was obtained.

Creswell (2007:126) emphasises that both the sampling strategy and the sampling size are

important considerations when selecting the sample. “One general guideline in qualitative

research is not only to study a few sites or individuals but also to collect extensive detail about

each site or individual studied.”

The central research question of this study is concerned with all aspects pertaining to the

current software SDLC. Therefore, the experts responsible for the various areas in the SDLC

were selected in order to ensure that variability and applicability would be maintained. This

70

strategy additionally ensured that extensive in-depth knowledge was obtained about all the

various processes within the SDLC.

Step four: Conducting the interviews and data analysis

Wilkinson and Birmingham (2003) states that the setting where the interview is conducted forms

an integral part of the interview and should not appear confrontational or intimidating. Creswell

(2007:134) further suggests selecting a quiet place that is free from distractions and that allows

adequate recording of the interview. The author further recommends having the interviewee

complete a consent form prior to conducting the interview. He recommends that the researcher

“go over the purpose of the study, the amount of time that will be needed to complete the

interview, and plans for using the results from the interview”.

Wilkinson and Birmingham (2003) recommend that the interviewer should sit alongside the

interviewee with the recording device placed so as to not distract the interviewee. The authors

suggest that note taking should be kept to a minimum so as to not distract the interviewee. They

recommend that the interviewer introduce him or herself, explain the purpose of the study as

well as its structure and format, how the data will be used, and how anonymity will be ensured.

They suggest that open-ended questions should be asked in order to encourage the interviewee

to provide as much information as possible and suggest taking note of the interviewee providing

comforting signs or acceptance cues such as head nodding, having an attentive posture, and

keeping eye contact. The authors suggest that the interviewer restate part or all of the

interviewee’s responses in order to clarify what the interviewee has said and to encourage the

interviewee to elaborate on what he or she has said.

They encourage the interviewer to use silence to encourage the interviewee to elaborate on his

or her response. Creswell (2007) suggests that the interviewer should focus on being a good

listener rather than a frequent speaker. He further recommends taking notes in addition to audio

recordings in case the audio recordings do not work.

Finally, in concluding the interview, the interviewer should paraphrase what has been discussed

in order to allow the interviewee to correct any statements or add information, thank the

interviewee, and provide a summary of the interview and information (Wilkinson and

Birmingham, 2003). Creswell (2007:135) further suggests that the researcher “write out the

closing comments that thank the interviewee after the interview and request follow up

information, if needed, from them”.

71

The research was conducted at the financial institution in a meeting room where the interviewer

and interviewee sat alongside each other. Introductions were made and information was

provided on the purpose of the study, how the data was intended to be formatted, structured

and used, and how anonymity would be kept. Open-ended questions relating to the SDLC were

asked.

Data analysis took place during and after the interview. Wilkinson and Birmingham (2003)

recommend that once all relevant data is gathered, data should be structured by grouping the

information into themes, issues or concerns. The interviews were recorded with an audio

recorder and process maps of the SDLC were drawn up by the interviewer during the interview

as the interviewee provided information.

The process maps were drawn up by using sense making through the use of visual analytics.

Shrinivasan (2010:1) explains the sense making process as follows:

Visual analytics is the science of analytical reasoning facilitated by interactive visual

interfaces. It involves representing information visually and allowing the human to

directly interact with it, to gain insight, to draw conclusions, and to ultimately make

better decisions. It aims to support the sense making process in which information is

collected, organized and analysed to form new knowledge and inform further action.

The visual sense making process consists of two phases:

1. Capture and organise findings

2. Review and revise analysis

Capture and organise findings. Findings can be captured and organised by grouping themes

from notes according to topics and sub-topics and creating casual relationships between notes

(Shrinivasan, 2010). Denzin and Lincoln (1994) suggest that qualitative information should be

sorted into meaningful categories.

The researcher recorded the information using audio recordings and documentation. Firstly, the

interviewees were asked open-ended questions and the entire response and explanation of the

particular area of the SDLC was documented and recorded. Responses were restated and

silence was used where necessary. In instances where more information was necessary, the

interviewees were asked to elaborate. Additional questions were asked where it was deemed

necessary in order to fully understand the SDLC.

72

From the notes, the information was grouped into the different processes and functions within

the particular area of the SDLC. Important aspects were captured and main processes were

derived. The relationships between processes and chronological order of the different

processes have been indicated using arrows.

Review and revise analysis. Shrinivasan (2010) suggests that visualisation states should be

revisited via notes and recent steps should be reviewed to compare results or undo actions. The

author additionally suggests that alternative solutions should be considered.

After the process maps were drawn up, each process was reviewed by revisiting the information

gathered in the notes. The process maps were subsequently shown and explained to the

interviewees in order to allow the interviewees to comment on the accuracy. Adjustments were

made where necessary.

In concluding the interview, the interviewer paraphrased what had been said and discussed,

thanked in the interviewees and provided a copy of the transcript.

The final stage of analysis involved reviewing the transcripts in order to capture the information

related to the process maps and to verify the accuracy thereof. Data was grouped according to

the main processes and information was documented in chronological order.

3.5 Data Analysis

Once the analysis for the current system had been reviewed and revised, an in-depth literature

review was conducted. Literature on SE that pertains to all aspects of an SDLC was reviewed.

Subsequently, a comparative analysis between the literature reviewed and the current SDLC

was performed.

The comparative analysis was conducted as follows:

1. SE principles obtained through the literature review have been listed

2. Recommendations on aligning each life cycle phase to SE principles obtained through

the literature review have been listed

3. Each of the current SDLC phases have been compared to the recommendations

73

4. Activities that did not coincide with the literature review recommendations have been

indicated in the final column. These activities have been noted as the inefficiencies in the

current system.

 Finally, recommendations have been made to change the inefficiencies in the current system to

coincide with the SE principles obtained from the literature review.

3.6 Reliability and Validity

Golafshani (2003) states that qualitative analysis results differ from quantitative analysis results

due the fact that different participant views are formed from different paradigms. The concepts

of reliability and validity need to be redefined in a qualitative study in order to reflect the various

ways of obtaining the results. The author continues to explain that reliability and validity are not

viewed separately in qualitative research, but rather terminology that encompasses both, such

as quality, rigor and trustworthiness are used.

Golafshani (2003) suggests that, in order to determine the quality of the study, aspects such as

credibility, neutrality or confirmability, consistency or dependability, and applicability or

transferability should be considered to measure the quality of the study. The rigor of the study

should be determined by exploring subjectivity, reflexivity, and the social interaction of

interviewing. Finally, the author suggests that the trustworthiness of the study should be

determined by establishing confidence in the findings.

The following aspects were considered in order to determine the reliability and validity of this

study:

 Rigour in documentation: “Rigour in documentation ensures that there is a correlation

between the steps of the research process and the study in question, commencing with

the phenomenon of interest and following through to the recommendations and

implications of practice” (Coughlan, et al., 2007:742). The study closely followed the

research process recommended by Wilkinson and Birmingham (2003) and Shrinivasan

(2010) in Section 3.3.

74

 Procedural rigour: “Procedural rigour refers to appropriate and precise data collection

techniques and incorporates a reflective/critical component in order to reduce bias and

misinterpretations” (Coughlan, et al., 2007:743). During the data collection process, the

data was constantly reviewed by the researcher in order to determine if the participants’

statements made logical sense relative to other statements and data received. Visual

sense making was used to ensure that a holistic understanding of the information was

obtained. The information was constantly restated and shown to encourage the

interviewee to reflect on the information. The selection of interview questions was a

threat to procedural rigour. The selection of interview questions could possibly have

been limited without encompassing the aspects of the entire SDLC. To address this

threat, the questions were piloted as detailed in Section 3.3.

 Ethical rigour: “Ethical rigour describes how confidentiality issues and the rights of

participants are dealt with during the research process” (Coughlan, et al., 2007:743).

Responses from the interviews conducted are treated completely confidentially. Consent

forms are signed by all participants. Information regarding the participant is not

documented or recorded. Any sensitive information is not transcribed. Information solely

related to the current software SDLC is transcribed. Copies of the transcriptions are

given to the participants.

 Credibility: “Credibility addresses the issue of whether there is consistency between the

participants’ views and the researcher’s representation of them” (Coughlan, et al.,

2007:743). The process as outlined for procedural rigour ensured that credibility was

maintained during the research process. A possible threat to credibility was the selection

of the sample group of participants. Participants’ own experiences and knowledge were

taken into account for data collection. Therefore, there was a risk that the information

could be biased and limiting. To address this issue, experts that covered all areas of the

software SDLC were selected for interviews. Open-ended questions were asked, silence

was used, and information was restated to the participant in order to obtain as much

information as possible. Answers were constantly compared to information received from

other participants as well as the same participant in order to ensure that the information

made logical sense.

75

 Dependability: Coughlan, et al. (2007:743) describe dependability as: “Dependability

involves the researcher giving the reader sufficient information to determine how

dependable the study and the researcher are. A study may be deemed auditable when

another researcher can clearly follow the trail used by the investigator and potentially

arrive at the same or comparable conclusions.” The authors suggest: “It is also

necessary for each stage of the research to be traceable and clearly documented”. A

detailed explanation of the research methodology, data analysis and results have been

outlined in this research study.

 Transferability: “Transferability refers to whether or not findings can be applied outside

the context of the study situation” (Coughlan, et al., 2007:743). In today’s banking and

financial industry, decisioning is largely automated by the use of software. Software

development across industries and companies follows a life cycle with similar

characteristics and phases to the SDLC of this study. The findings of this study do not

solely relate to credit scoring processes within financial institutions, but can be

transferred to any industry or environment where software development takes place.

 Confirmability: “Confirmability requires the researcher to demonstrate how conclusions

and interpretations have been reached” (Coughlan, et al., 2007:743). The reasoning

behind the results and conclusions are detailed in Chapter 5 and Chapter 6.

 Goodness: “Goodness needs to be evident in the philosophical background and study

design, providing explicit explanations regarding the study context, data collection and

management and the interpretation and presentation process” (Coughlan, et al.,

2007:743). The goodness of the study has been defended in Section 3.1 to Section 3.3

of this paper.

76

3.7 Limitations

The following limitations were found during this research:

 The information obtained of the current software system was limited to the knowledge

and experience of the participants involved in this study. Lack of documentation on

current processes within the current software SDLC caused the study to be highly reliant

on the information obtained from interviews conducted with the participants. Critical

information could therefore have been excluded.

 To an extent the research depended on the participants’ and researcher’s interpretation.

This introduced a degree of bias into the study.

 SE literature is vast. Therefore it was difficult to select and refine information relevant to

the study and this was done so subjectively.

To address these limitations the researcher ensured:

 The selection of the participant sample group covered all areas of the current

software SDLC are encompassed. Expert participants responsible for the various

areas of the current software SDLC were selected to optimise the chances of

gathering adequate and detailed information.

 Information was recorded accurately.

 The logic of the information and own biases were continuously reflected on.

 Clarification was sought in areas that were seen to introduce bias.

 A thorough literature review was conducted and research questions were continually

refined to focus the investigation.

3.8 Ethical Considerations

The 1948 UN Declaration of Human Rights, the 1996 Constitution of the Republic of South

Africa, and the ethical issues in research as outlined by Leedy and Ormrod (2005) guided the

ethical considerations in this study. In addition, the following measures were adhered to:

 Informed consent: expert participation in the interviews was voluntary

77

 Confidentiality and anonymity: the research study respected the participants’ right to

privacy and their contribution has remained anonymous throughout the study

 The University of Witwatersrand Ethics Policy for non-medical research

Ethics clearance was obtained through the School Ethics Committee with School Ethics

Clearance number of MIAEC 044/15. Above all, professional membership and the respective

code of ethics of governing body INCOSE has been honoured in this study.

3.9 Chapter Summary

This chapter has provided a detailed description of the research approach. Information on the

current software SDLC was gathered by conducting interviews with expert participants. Data

was analysed during the process of sense making through the use of visual analytics. Insight

obtained from the in-depth literature review was applied and a comparative analysis was

performed between the current software SDLC and the literature review was conducted. Areas

of inefficiencies in the current software SDLC were identified that did not align with SE principles

and recommendations have been made on how to improve these areas.

78

CHAPTER 4 – DATA ANALYSIS AND RESULTS

“It is a capital mistake to theorize before one has data.”

~ Sherlock Holmes

4.1 Introduction

The research question, as stated in Chapter 1 is:

How can the software SDLC be improved in terms of cost, schedule, and

performance for a credit scoring system using systems engineering

principles?

In Chapter 3, the research methodology was discussed, which aimed to answer the research

question by establishing the following:

1. Gaining a detailed understanding of the current SDLC by conducting face-to-face semi-

structured interviews with experts

2. Documenting the current software SDLC from information obtained during interviews

3. Mapping the current software SDLC process through visual sense-making from

information obtained during interviews

4. Gaining an in-depth literature analysis at academic level

5. Undertaking a comparative analysis between current software SDLC and

recommendations obtained through the literature review

6. Identifying inefficiencies in the current software SDLC according to the literature

reviewed

7. Providing recommendations on improving the inefficiencies in the current software SDLC

based on information obtained in the literature review

79

This chapter contains the data analysis for the current software system as well as the results of

the comparative analysis performed between the current system and the literature review as

outlined in Chapter 2. The results presentation follows the approach shown in Figure 4.1.

Figure 4.1 Results Road Map

4.2 Participant and Implementation Overview

Ten experts were identified to be key resources from whom a detailed understanding of the

current system could be obtained. All 10 experts participated in the study. The participants were

considered experts based on their seniority, level of involvement in the SDLC on a monthly

basis, and years of experience in software development systems. The experts’ knowledge

covered the different phases of the SDLC in detail. The participants’ roles in the current system

are detailed in the Table 4.1.

80

Table 4.1 Participant information

Expert Role Phase of the SDLC

covered

Number of years

experience in SDLCs

Participant 1 Project Manager All SDLC phases 9 years

Participant 2 Developer Testing phase 15 years

Participant 3 Quantitative Analyst Requirements

analysis phase,

Design phase,

Testing phase

15 years

Participant 4 Test Analyst Testing phase 11 years

Participant 5 Systems Analyst Requirements

analysis phase,

Design phase

25 years

Participant 6 Business Analyst Requirements

analysis phase,

Design phase

9 years

Participant 7 Test Analyst Requirements

analysis phase,

Testing phase

10 years

Participant 8 Test Manager Testing phase 12 years

Participant 9 Business Unit Analyst All SDLC phases 16 years

Participant 10 Project Manager All SDLC phases 20 years

4.3 The Current Software SDLC

This section contains information regarding the current software SDLC from interviews

conducted with participants at a prominent South African financial institution. Open-ended

questions were asked and each participant’s entire response and explanation of the particular

area of the SDLC was documented and recorded. Important aspects were captured and main

processes were derived from the data. The information was grouped into the different processes

and functions within the particular area of the SDLC. Information was collated and process

maps were drawn up by documenting information from the different participants in chronological

81

order. Each process was reviewed by the participants and the interviewee. Adjustments were

made where necessary. The information obtained from the various participants is detailed in

Table 4.1. Interview transcripts are presented in Appendix D.

4.3.1 The credit scoring process for the case site

Figure 4.2 The Credit Scoring Process

Figure 4.2 represents the credit scoring process for the case site as illustrated by the

researcher. Currently, when a customer submits a credit application, the application is captured

by the respective banking channel and submitted to the customer management system (CMS),

which generates the application on a single application database (SAD). CMS also populates

the rules interface and then sends the data to the strategy design studio system (in this case the

82

Strategy Management Generation 3 or SMG3), which runs the customer’s data through the pre-

bureau rules. If the customer infringes any of the rules, the customer is declined, and the result

is updated on the SAD by the CMS. The banking channel then displays the result and the

customer is informed that he or she does not qualify for a credit loan.

However, if the customer passes all the pre-bureau rules, the customer’s data from the credit

bureau is requested via either the credit bureau mainframe (CBM) or mainframe bureau

gateway (MBG). In the case of bureau data requested via CBM, the customer’s SAD record is

updated with this credit bureau data.

A request to the different product houses is subsequently performed (known as cross company

call) in order to obtain any internal company credit history for the customer. Should the

customer have internal credit information, the corresponding record from the bureau is deleted

and only the internal record is kept. Subsequently the rules interface is populated by CMS

where after SMG3 runs the customer’s data through the applicable credit origination scorecard,

limit and affordability calculations, and post-bureau rules in order to obtain the customer’s score,

final approval, and limit offered. These results are updated on SAD, the results are displayed

and the customer is informed of the decision. The fulfilment process subsequently takes place.

Should the customer’s credit bureau data be requested via MBG, an enquiry is performed to the

bureau aggregations database (BAD), which stores all previous customer data received from

the credit bureau. If the customer’s credit bureau data does not appear on BAD, an enquiry is

performed to the credit bureau in order to obtain the customer’s credit bureau information. BAD

is then updated with this customer’s credit bureau data and the customer’s SAD record is

updated with this information. A request to the different product houses is subsequently

performed (cross company call) in order to obtain any internal company credit history for the

customer.

Should the customer have internal credit information, the corresponding record from the bureau

is deleted and only the internal record kept. Subsequently the rules interface is populated by

CMS, where after SMG3 runs the customer’s data through the applicable credit origination

scorecard, limit and affordability calculations, and post-Bureau rules in order to obtain the

customer’s score, final approval, and limit offered. These results are updated on SAD. The

results are finally displayed and the customer is informed of the decision where after the

fulfilment process takes place.

83

 In the case of a valid record being available on BAD, the SAD application is updated and the

same subsequent process is followed.

4.3.2 The software development model – current state analysis

This section describes the software SDLC of the credit scoring process in terms of the software

development model it is designed upon:

Figure 4.3 The V-model (Mathur & Malik, 2010)

84

The V-development model

It often occurs that changes need to be made to the current credit scoring logic, which includes

the credit origination scorecard, limit and affordability calculations, pre-bureau rules and post-

bureau rules. These changes could include new a new scorecard, calculations, rules, or

amendments to the current scorecard, calculations, or rules.

When these changes are requested, a project is logged and initiated in order to develop a new

software system that contains the software changes. The current software development process

that is involved in making a software change is developed according to a traditional V-model

design as depicted in Figure 4.3.

 The V-model has a corresponding test activity for every development activity. Analysis and

design of tests begin during the corresponding development activity for each level. The design

of the V-model allows for risk management.

There are various risk factors involved in testing such as risks relating to schedule,

requirements, human resources, and quality. Risks in schedule are related to unrealistic project

schedules requested by the relevant business unit. Therefore expectations are managed during

the requirements analysis phase in order to avoid this as far as possible. The project could face

several risks due to user requirements. This could be due to lack of clarity in user requirements,

ambiguous requirement definitions, changes in the requirements or unrealistic requirements.

Testers are involved in reviewing the specifications as soon as possible in the lifecycle, in order

to pick up defects in the specifications early on. Factors such as unrealistic schedules, lack of

resources, and frequent requirement changes could compound the risk of poor quality of the

system. Therefore not only are business expectations managed as far as possible, but

requirements analysis is also performed in detail in order to develop an optimal and realistic

requirements definition. The project could face risks if there is a lack of human resources

available with the necessary skills required in the project. These issues are therefore addressed

during impact analysis, project sizing and scheduling meetings.

Quality is another risk factor of a project. Therefore testing is conducted at all levels of software

development in order to ensure that defects are not present at a particular level and then later

built into larger parts of the software system.

85

Testing the developed software is required in order to ensure that the level of quality is on par

with the specifications, to provide information for decision making, to prevent defects, and to

mitigate risk. Testing involves analysing the tests, designing test cases, implementing the tests,

executing the tests and finally, comparing the test results. Various types of testing are

performed at all stages of the V-model to test for changes that were made to the software.

The test analysis and design begins early in the development process followed by testers

reviewing the development documentation. Testing is already performed early in the lifecycle in

order to ensure optimal quality of the process. This approach to testing is costly and time-

consuming but ensures that the correct results are achieved by the end of the project.

If tests are designed as early as possible, defects in the specifications will be found early in the

process when they are still inexpensive to fix. If the testing is done too late in the lifecycle, time

and effort may well be saved but testing quality could be compromised as defects could be

found much later when they are more expensive to fix. In addition, the defects in the higher

levels, such as the requirements specification, will be found late. These defects are the most

critical and important as defects in the higher levels will be built into the lower levels of the V-

model.

Another reason the tests are designed early according to the V-model is to ensure that the order

in which the system should be put together for testing is defined during the design phase. The

order of software development is specified before it is built. Testers are thus not constrained by

the order in which software is built as tests are designed early in the lifecycle according to the

specifications and do not rely on the software to be built first in order to initiate testing. This

allows the integration of the system to be known early therefore the system can be built based

on the known integration. This can greatly reduce development time later on as development

activities and verification of these activities are performed early.

Testing time is reduced as testing activities are broken down to be performed at different stages

of the life cycle. For example, the first integration can be built and tested before continuing to

integrate more parts. This also allows integration testing to be performed concurrently with

development of the system, thus saving time but not necessarily effort. When problems are

picked up, they are immediately fixed before proceeding. If testing is only done once at the end

of the process when the entire system has been put together, it might be difficult to find the

cause of the defects as the cause could be at any of the levels in the V-model.

86

In summary, the benefit of designing tests as early as possible is that quality is built in, costs are

reduced, and time is saved as fewer defects are found. Therefore, quality is built into the

software development process.

Testing is performed according to specifications, which dictate what the correct results of the

testing should be. Specifications are documented in order to ensure that there is no

misunderstanding or lack of clarity. Specifications are designed by taking testing into

consideration. Knowing how the tests will be performed assists in developing the specifications

for development. The specifications therefore simplify the process of setting up test cases.

Testing reveals defects in code, parts of the system, the system as a whole, or the user’s view

of the system. Specifications are compiled in all levels of the V-model, from a business

requirement specification to a specification for the code. The tester, quantitative analyst or

developer performs a test comparison that detects the differences between the actual test

results and the expected test results by using the business requirement specifications. The

business requirements are validated by discussing them with users in the business unit and

comparing them against the knowledge of the business unit’s working practices.

If a defect is detected at any stage of testing, the defect is reported and subsequently resolved

by recoding the software. A new version of the software is released containing the fixed defect.

Before being able to continue to the next phase of testing, re-testing is performed on the latest

software version in order to ensure that the defect has been fixed correctly and the rest of the

system is still working as per the requirements. Re-testing is executed in the same environment

and using the same test cases. The reason that all of the test cases are executed again and not

just the test case pertaining to the defect is that the fixed defect could possibly introduce new

unexpected defects elsewhere in the system. This might however still not be picked up as only

one part of the system has been tested. Regression testing is finally performed in order to

address this issue.

Regression testing tests whether the changes made to a particular part of the software has not

caused secondary problems elsewhere in the software system. This ensures that modifications

in the software or environment still meet the original requirements without causing unintended

side effects in the system. It is performed every time changes to the software or environment

are made. Regression testing is performed at all levels in the V-model in order to ensure that

the requirements are met at all levels. In order to simplify the process, regression testing is

87

automated through the use of mathematical algorithms that are applied to a set of test cases.

The test cases currently consist of only one customer profile with account data.

Component development and testing

The lowest level in the V-model is component development and testing. A component is a small

piece of software that is one of the building blocks of the software. A piece of software could be

a few lines of code, a small program or several database modules. The component is thus the

lowest level item that is testable and is tested in isolation if possible in order to ensure that it is

tested in detail. The purpose of component testing is thus to test the detail of the coded

software.

Once the software component has been coded by the developer, the component’s functionality,

structure and interfaces are tested in the development environment. If defects are detected,

they are resolved as soon as they are found by recoding the software. The defects are recorded

as this might assist with detecting and solving defects in other parts of the system.

Once the component has been coded by the developer, component testing is performed by the

quantitative analyst and the developer. The developer is able to find defects and their causes

quickly as he or she understands the logical flow of the code.

If component testing were to be performed by someone other than the developer, this could

result in more time spent on testing as it would take another resource much longer to find the

cause of the defects and each defect would have to be documented, reported and explained to

the developer. The developer would then have to review and analyse the reports and fix them.

Before component testing is performed, the tests are designed by the developer based on the

component specifications and code. Both functional and structural test cases are designed

depending on the risks, importance and complexity involved.

Integration development testing

The next level of the V-model is integration development and testing. Integration development

and testing is performed by combining components that have already been tested into larger

assemblies so that testing can be performed on the newly formed assembly. Testing on the

88

assembled part is performed by testing that the components correctly function together by

looking at the interfaces between them. This assists in detecting defects that were not

previously detected when the components were tested in isolation. It can occur that when

components are combined, certain aspects of one component could result in functional failure of

another component. For example, although interfaces were tested during component testing in

order to ensure that communication occurred from one side, integration testing could pick up

that the communication between the different interfaces is not working from all sides.

The objective of integration testing is thus to test the interactions of the integrated software part.

Integration testing is based on the software system design, architecture, and test cases. During

integration testing, not only is the functionality of the interfaces tested, but non-functional quality

characteristics are also tested such as performance and structure. It is important to pick up

performance and structural issues earlier in the process as performance and structural changes

may occur as more and more parts are assembled. Resources are planned before integration

testing commences.

Integration development and testing is performed at multiple levels of the V-model, such as at

component development and integration testing and system development and integration

testing. Component integration testing involves testing the interfaces and interactions between

components that have been combined. It is performed just after component testing has been

conducted by the Hogan technology quality assurance (HTQA) testing team. System integration

testing involves testing the interfaces and interactions between smaller parts of the system,

including hardware and software, that have been combined to form the final bigger meta-

system. This is performed just after sub-system testing by the HTQA testing team.

Integrating systems and components can be a complex task when many different components,

systems, interfaces and areas of the organisation (business units) are involved. Therefore,

integration is done in increments or steps based on the architectural design of the system.

Components are combined into an assembled part and tested. This ensures that the basic parts

are integrated and tested first before continuing to more complex integration. This is followed by

combining the different tested assembled parts and testing it as a new assembled part. This

continues until the entire system has been integrated and tested.

Thus a bigger part of the system is assembled only when the smaller parts have proved to be

working and are trusted. This process is known as incremental integration. Incremental

89

integration is performed in order to discover and fix defects easily and at the earliest opportunity

but also offers faster and easier recovery if defects are detected.

In order to ensure that integration testing is performed as efficiently as possible, the testers of

the HTQA team are involved as early as possible in the development of the software. Before

integration testing commences, the test analyst determines the integration strategy by

determining how many components need to combined in each step and the sequence of

combining the components. This is done by looking at the architecture, functional tasks, and

processing sequence.

The test analysts of the HTQA team prepare test cases according to the test strategy, prepare

the test data, test according to the requirements and design, compare test results and manage

defects. The testing team has a thorough understanding of the software architecture, which

assists them in performing integration testing. The testers first plan the order in which the tests

will be integrated. The order in which the actual components or system is integrated is therefore

based on the order of integration testing. This results in more efficient testing as well as reduced

time spent on development.

System development and testing

System development and testing is performed at all stages of the V-model, which combines and

tests the system as a whole. System testing is performed by the HTQA testers on the entire

system in a realistic environment. It involves functional, non-functional and structural testing.

Tests are based on system and functional specifications.

Firstly, functional testing is carried out in order to ensure that the system is functioning

according to the specifications. Non-functional and structural tests are subsequently performed

on the system to ensure testing thoroughness. The environment in which system testing is

carried out is realistic and representative of the production environment in order to ensure that

the same factors are taken into account and therefore environmental defects are avoided.

Functional testing assesses the behaviour of the software in order to determine whether it is

functioning according to the requirements detailed in the functional specification that specifies

exactly what the system does and how. Test design is based upon these requirements. The

90

requirements as well as the tests are subsequently prioritised based on risk criteria. This

ensures that the most important and most critical tests are performed.

Non-functional testing assesses how the system is performing according to the schedule.

Quantifiable units of measurement are defined in order to determine exactly how well the

system is performing. Testing is performed according to requirements specifications and is

performed in a realistic environment that resembles the production environment. Examples of

non-functional testing performed include performance testing, load testing, stress testing,

maintainability testing, reliability testing, portability testing and usability testing.

 Performance testing measures the performance of the software by performing timing tests such

as response times. It monitors the behaviour of the system by logging the number of

transactions and response times of these transactions. Reports are produced based on the logs

and graphs of these load versus response times. Performance testing tools, such as a user

interface or test harness, are used to generate realistic loads on the system, database, or

environment in order to determine the behaviour of the system.

Load testing is performed by testing a volume of records that is representative of the production

environment in order to verify that the system will be able to handle the volume of records in the

actual production environment. During load testing, aspects such as processing throughput and

the number of connected terminals are tested.

Storage testing is performed by testing whether the objectives for storing are being met. There

can be various objectives for storage. For example, a limited amount of space on the server

may be used for certain operations or a limited amount of customer data may be kept in the

data warehouse for certain customer profiles. Storage testing is usually applicable to embedded

software, for example software embedded into the various data warehouses.

Portability and interoperability testing is performed in order to ensure that the system will be

able to operate in the different configurations. Testing is performed in a representative set of

configurations of the production environment. Configurations refer to the versions of the

software. For example, configurations used by the business unit (user) could be the different

versions of the credit scoring system. One version of the credit scoring system could be used for

monitoring and another version could be used for applications.

Portability and interoperability testing also involves testing the interconnected data paths in the

system. This is especially important when a part of the system has been upgraded as this can

91

now result in conflict with other parts of the system that have not been changed. Lastly,

portability and interoperability testing is performed in the final production environment as the

production environment may have physical characteristics that can influence the behaviour of

the system. The same system could behave differently in different environments due to the

different physical attributes of the different environments.

Reliability testing is performed in order to determine how reliable the system is. Reliability refers

to whether the system has a low probability of failure. Stress testing methods are used to

conduct reliability testing. Stress testing is performed by testing whether a volume of records

beyond those found in the production environment can be handled by the system. This serves

as a safety and risk measure to ensure that the system will be able to handle additional number

of records added to the system in a production environment.

Usability testing is performed by the business unit (users) in order to determine how usable the

system is for them. The reason for testing is performed by the users instead of the technical

staff is that it is often difficult for people from a strong technical background to know whether the

users will experience the system as being user-friendly as they might perceive a more complex

system as quite simplistic due to their computer-literate skills.

Qualities such as reliability, maintainability, portability, and availability are defined in measurable

terms in order for testing to be performed. If these qualities are not defined in measurable terms

it will be difficult to analyse the results of the tests. This is because it would be prone to

subjective testing that is not reliable as it could differ from person to person. An example of a

quantifiable or measurable quality is the time taken to make a change.

Once the system has been moved to the production environment, maintenance testing is

initiated in order to ensure that the system remains functioning as per the requirements and that

the quality of the system is maintained. Maintenance testing is also performed when changes to

the existing system in the production environment are made.

Aspects of sample changes made to the system are tested. These changes can be due to

modifications, migration to new platforms or retirement of the system. Examples of modifications

to the existing system include fixing of defects and enhancements and upgrades of the system

such as changing the infrastructure or upgrades to the software. Modifications could also

include corrective and emergency fixes and environment changes.

92

Maintenance testing is performed by the testers of the HTQA team. The testing of changes is in

depth and focuses on the specific areas where the changes have occurred. It is performed by

testing the entire integrated system first in order to see the effect on the whole system. Once the

results are satisfactory, the specific area where the change was made is then tested.

Production testing is easier than testing during development as live data is available and it is

therefore not necessary to go through the process of building test data. Maintenance testing

also involves performing regression testing. Regression testing needs to be performed as the

software changes made can cause other areas of the system to be affected. Regular testing of

changes may not pick up all possible defects as this only involves testing the area of the

software pertaining to the change. Once the system has gone live (i.e. moved to a production

environment), monitoring is set up to observe the system going forward for any defects. This

information is continuously analysed and verified to assist with the traceability of defects.

Structural testing is performed by testing the architecture of the system or component in order to

determine how thorough the testing up to a certain point has been. The architecture refers to the

process logic of the credit scoring software. This testing complements functional testing by

testing a set of conditions that cover different elements of the architecture. It provides a

measure of how thorough the tests have been in order to establish if more tests are needed to

gain the necessary coverage of test cases. Structural testing is performed at all levels of the V-

model where it is deemed necessary. For example, it is performed at component level in order

to test the code coverage, integration level in order to test the module coverage, system level in

order to test the final system coverage, and finally at acceptance level to test the business

model coverage.

Acceptance testing

After system testing has been completed, acceptance testing is performed. This is the final

stage of validation. User acceptance testing is mainly performed at the end of the development

process when the entire system has been integrated. Testing is performed by the final users of

the system in order for them to gain confidence in the system and to determine whether the

system is ready to be transferred to the production environment. It is therefore the responsibility

of the users to ensure that the system is working according to their initial requirements.

93

The business unit is involved in developing the specification for acceptance testing. This is done

at the beginning of the project, thus at the beginning of the system development. The business

unit is involved in reviews throughout the project and in the design of integration system testing.

This ensures that the final product (i.e. system) is built correctly according to the business

specifications and ensures that the business unit understands the system and it’s complexities

in detail.

Acceptance testing is performed by executing any test cases that the users deem necessary in

a different test environment. Technically, not many defects should be present at this phase of

testing as most of the defects should have been resolved during functional and regression

testing. Acceptance testing occurs at various levels of the V-model. Acceptance testing is

performed after component testing to ensure that the components are usable and it is

performed after system testing or system integration testing to ensure that the functionality of

the system is aligned with the user specifications. Typical defects found during acceptance

testing are mismatches with business needs and misunderstandings of business processes.

After user acceptance testing has been performed and the business unit has found that the

system validates, sign-off is given by the business unit in the form of a mail stating that the

results proved to be satisfactory.

4.3.3 The software systems development life cycle – current state

analysis

The process of the software SDLC pertaining to the credit scoring process in the financial

institution is dealt with in this section.

In the event of a change requested to the rules, scorecard, or affordability and limit calculations,

software is developed in order to make the relevant change. This also includes cases where a

new scorecard has been developed and requires implementation. The software development

process is made up of a development life cycle, which contains the different phases of

development as depicted in Figure 4.4, which presents the researcher’s schematic illustration.

Figure 4.5 details the SDLC at the case site. Figure 4.6 provides a high level overview of the

entire software development procedure that is initiated when a change is requested to the

software. This provides a high level explanation of the software SDLC.

94

Figure 4.4 The Software SDLC Phases

Figure 4.5 The Software SDLC Phases in Detail

95

Figure 4.6 Overview of the Software Development Procedure

Requirements analysis phase

Figure 4.7 The Requirements Analysis Phase

96

The requirements analysis phase as represented in Figure 4.7 is where the requirements of the

business are determined and analysed. The business unit defines and analyses their own

needs and transforms it into a requirements specification. Once the business requirements are

developed by the relevant business unit, it is submitted to the analytics team in the form a

business requirement specification (BRS) document. This allows the business unit to formally

request the changes. The BRS contains specifications of the development required.

The requirements are logged as a project and a project manager and project team is assigned.

The project team consists of the resources from the various disciplines involved in the SDLC

such as the analysts, developers, project manager, divisional managers, and testers. The BRS

is reviewed by the project team in order to determine if the information provided is sufficient for

development. The project team also determines whether the requirements (functional and non-

functional) are realistic and whether it will achieve the desired objective of the business unit

(stakeholders).

Communication with the business unit requesting the change is initiated in order to confirm the

details of the requirements and understand and define the problems and objectives. Should the

information provided be insufficient, the BRS is sent back to the business unit for amendments

to be made. Afterwards the project team will once again review the specification.

Once the project team finds the information provided to be sufficient, it is submitted for a high

level impact assessment. The project team, project manager and the business unit (end users)

are involved in the high level impact assessment. During the high level impact assessment the

project is sized, dependencies and impact on other areas are determined, and additional

information is requested if required. Standard language is defined in order to ensure that all the

resources and stakeholders have a mutual understanding. Factors such as technical size,

technical complexity, technical quality, technical value, project duration, project cost and risk are

taken into account and discussed. The current environment is assessed and performance,

operational, functional, and interface requirements are formulated, quantified, and refined

according to the business’ needs.

All possible solutions are considered so that the optimal solution can be reached. The best

requirements and solution are selected by comparing them to the business’ objectives. It is

ensured that the requirements are clear, unambiguous, accurate and complete. The

requirements include details on how the problem should be solved (how the system should be

97

designed), how well the problem should be solved and how the system should be verified and

validated.

Security requirements are developed in order to conform to the Information Security Standards

(ISS). Design constraints are defined and clarified. The resources from the various disciplines

and divisions in the SDLC as well as end users provide comment, raise concerns, and give their

opinions on how to proceed. The outcome of these meetings is that all involved understand the

entire system, the trade-offs, the derived problem definition, and that agreement is obtained so

that everyone including the stakeholders will accept the solution.

Risk is considered during the selection of users’ objectives and design. Knowledge regarding

the technical aspects of the system is shared between the project team resources and end

users. Successes and similarities of previous projects and lessons learnt by the different

resources are discussed and taken into account in order to reduce the probability of defects and

improve quality and schedule. The implications of changes made, the external and internal

influences on the system, and the probability of successful completion of the project within

budget and schedule are determined. Risks are identified, listed, quantified, analysed and

prioritised. The probability of risk occurrence, seriousness of impact, assessment of impact on

cost, schedule, and performance, sensitivity to assumptions, and degree of correlation amongst

risks are determined.

Alternatives to mitigate risks are defined and evaluated. Preventative and contingency

measures are set in place. Risks are tracked throughout the SDLC to ensure that mitigation

plans are effective and the potential impact on the project does not increase.

Agreement is obtained on timelines and funding required. Commitment by all involved is

obtained. Finally, the requirements are prioritised and categorised in order to ensure that the

critical requirements are met first should all the requirements not be able to be completed within

schedule. The requirements are subsequently organised from high level to low level

requirements in an understandable and traceable manner. Finally, the functional and non-

functional requirements are allocated to the relevant system elements.

After the impact assessment, the project is scheduled. During scheduling aspects such as the

business priority, areas involved, dependencies on other projects, and whether a functional

requirement specification (FRS) is required are determined by the project manager and project

team members. The FRS specifies the changes required on a functional level and contains the

98

integrate picture of the system. The FRS is developed by identifying and decomposing the

system’s functions and is detailed enough in order to construct the system accurately. The

system functional architecture is designed in a logical and orderly manner according to

customer needs and technical capabilities. Development activities are planned, a preliminary

system design is developed and the development activities are translated into requirements.

Requirements are developed for each function.

After the project has been scheduled, the project scope is confirmed. The project manager,

project team members and business unit is involved in the scoping session. The business unit

presents the project outline and gives an overview of the changes and requirements involved.

The project is once again examined in order to determine if anything has changed. If changes

have been made, the process is repeated from the impact assessment phase. Otherwise, the

requirements are finalised and whether a FRS is required is finally determined. Should it be

required, the business analyst develops the FRS. The project manager estimates the time, cost,

scope and resources according to the specifications and risk.

Throughout the SDLC, the project manager is responsible for planning the project according to

the desired timelines and budget, developing a work breakdown for all resources, ensuring that

the duties and responsibilities of all involved are executed according to the schedule, ensuring

that the different elements, components and interfaces are combined and tested in an efficient

way in order to meet the stakeholders’ requirements, and keeping track of and documenting

requirements changes. The project manager is therefore responsible for having a thorough

understanding of the SDLC, its complexities, weaknesses, strengths, interdependencies,

processes, and the environment in which the system will operate, and assigning resources

accordingly. The stakeholders are kept involved throughout the entire process in order to ensure

that the system is being developed according to their needs. The identification, mitigation and

resolution of risks proceed throughout the SDLC by the project manager.

This phase is validated and verified by analysing and reviewing the requirements and by

comparing them to the business unit objectives. Validation is also done by documenting the

requirements definition, analysing the cost and benefits, as well as reviewing the preliminary

project plan, risks and contingency plans.

The outputs of this phase are the approved project scope and objectives, and initial estimation

of cost and benefit, project priority, a preliminary project plan, a tentative release date, approved

99

business requirements, assessment of all technology involved, and a project life cycle

assignment.

The deliverables are the BRS and FRS. Concerns regarding this phase are the changing of

requirements by users during later phases in the SDLC and inadequate information regarding

previous similar projects.

Analysis and design phase

Figure 4.8 The Analysis and Design Phase

The analysis and design phase is initiated once the outputs of the requirements phase have

been concluded. The analysis and design phase is represented in the researcher’s illustration

depicted in Figure 4.8. This is where detailed requirements are transformed into a complete

detailed design of the system by focusing on how to deliver the required functionality.

The systems analyst designs the system according to the system functional architecture as

detailed in the BRS and FRS. The design involves detailing the function and performance of the

system, developing the required architecture and defining how the system should be verified.

The various elements and subsystems are defined. The design includes the interfaces between

different elements, subsystems and systems. For example, the design includes investigating

how to send the data to SM and other business units as well as investigating which information

100

is required from the various business units in order to develop the system as per the

requirements. The system is analysed by identifying all interacting components and systems

involved, considering all possible solutions that would address the problem and determining the

system boundary. Alternative design solutions are evaluated based on aspects such as

performance, schedule, cost and risk. The system is therefore designed by considering the

entire system life cycle.

The most optimal design solution is selected by developing different models and prototypes of

the different solutions and running trials in order to identify the solution that produces the best

outcome. It is ensured that the design is simple and understandable by the developers and end

users. Input and review from other resources and the end users are obtained. The systems

analyst produces an SRS that specifies the changes required to the current system. The SRS

specifies where in the system and how the functional changes are going to occur. It is ensured

that the SRS is detailed, clear and accurate. The technical design is verified and validated by

ensuring that the functional architecture can perform the required functions and required level of

performance according to the BRS and FRS.

The resultant designed architecture is approved by the Hogan Technical Board (HTB).

Subsequently, the Hogan Channel Design Forum (CDF) approves the required changes to the

business functions.

Parallel to this, the test analyst proceeds to develop the test requirements and design the test

strategy. The test analyst analyses the FRS and documents the testing requirements in a test

plan document by drafting the process of the test roll-out with start and end dates for each test

case.

The project plan and system test plans are reviewed by the project team members and project

manager. The outputs of this phase are a detailed technical design detailed in the SRS, a test

plan and project status review. The project status review involves assessing the status of the

project in terms of timelines, objectives achieved, cost incurred in relation to budget, and a

review of risks. This phase takes approximately four to eight weeks to complete. Available

resources during this phase are the project manager, project team members and end users. A

concern of this phase is inadequate information available on previous project designs.

101

Development phase

Figure 4.9 The Development Phase

During the development phase, which is depicted in the researcher’s illustration in Figure 4.9,

the design is converted into a complete information system. The test analyst designs the test

cases to match the BRS specification. This involves creating a set of conditions or scenarios

under which the tester determines whether a project is working according to the user needs.

The test analyst then tracks the test coverage by means of a documented test coverage matrix

(TCM). A TCM is constructed by creating a checklist which ensures that the functionality of each

software unit is checked in all possible combinations (positive as well as negative, and special

conditions). The outcome is in the form of a matrix document. This is done to ensure that all

probable conditions and cases for a feature to be tested are thought through. It also assists in

identifying probable gaps. The test cases and scripts are reviewed, modified and refined by the

testing team.

The test analyst proceeds to create the test data. This involves setting up the variables and

fields necessary for testing. The test data is manually manufactured by the test analyst by

developing scenarios that test the software robustness. These scenarios cover all possible

combinations related to the software change: once the testers have determined which scenarios

need to be tested, they create a customer record that relates to each scenario. Approximately

20 to 30 customer profiles are manufactured. Parallel to creating test cases, the CMS and the

102

developer acquire and install their respective system environments (e.g. integration testing or

INT, and the quality assurance or QA) and proceed to create and test the databases. This

usually involves changing and adding segments to the existing databases as well as refining

programs. The test plan and scripts as well as the project plan is reviewed.

System development occurs once the outputs of the design phase are concluded. The

developer performs integration by coding the software changes into SM according to the SRS,

FRS, test plans and coding and infrastructure standards. The developer and quantitative analyst

subsequently proceed to perform unit testing (component testing). During unit testing, the

developer tests whether the coded input is resulting in output, but does not test whether the

results are correct.

Once this has been done, approval is given by the developer that the coded changes in SM

have been completed. The quantitative analyst proceeds to verify the code by testing whether

the coded changes made to SM are resulting in the correct output. This is done by developing

test cases that test the different scenarios related to the change. Mathematical algorithms are

used in order to automate unit testing. These algorithms run the test cases through the data

obtained from the production environment. Once the code has been verified, the quantitative

analyst provides sign-off confirming that unit testing has been completed. Unit testing code is

stored in order to be re-used during post-implementation testing or another change request.

The developer integrates the system incrementally according to the technical design and

ensures that each integration step achieves the desired system functionality. The developer

ensures that the system is integrated and interfaced with other systems as required, that all

operational systems are compatible with each other, and that the correct versions of and correct

components are used for integration.

Finally, the testing team performs a test readiness review in order to verify whether everything

at this stage is ready for the testing phase to commence. The scope, risks and issues are

analysed. Procurement activities are performed to ensure that the appropriate resources are

allocated to the phases that follow. The project plan, code and infrastructure changes, and unit

test results are reviewed by the project manager. This phase takes approximately two to six

weeks to complete. The available resources are the test analyst, CMS, the developer, the D2

analyst and the testing team. The deliverables are the coded solution into SM software, the test

pack, the test plan, code scripts, unit test results, code and infrastructure reviews, review of

103

project status, scope, risks and issues. A concern of this phase poor verification due to limited

test data created.

Testing phase

Figure 4.10 The Testing Phase

The testing phase commences once the outputs of the development phase have concluded.

During the testing phase as depicted in the researcher’s flow chart depicted in Figure 4.10,

Hogan conducts performance or load testing. A large number of records, which exceeds the

number of records in a production environment, are executed through the newly developed

software. This is conducted in order to verify that the system will be able to handle a realistic

amount of records in the production environment. It also assists in verifying that the integrity of

the data is not comprised. Reports are produced and analysed.

Compatibility testing is performed. This tests for compatibility with other channels, operating

systems, old or new versions and target environments. The outcome is presented in the form of

a test case document.

Compatibility testing is followed by integration testing. Integration testing consists of two

separate phases: the integration testing phase (INT) and the quality assurance testing phase

(QA).

104

Functional testing is performed during the INT phase on the integrated components and system

by the test analysts. Functional testing is performed in order to demonstrate that the developed

system conforms to the requirements as specified in the functional requirements document. It is

performed by conducting component integration testing, system integration testing, and finally

system testing. It involves both positive and negative testing.

The test analysts proceed to manually manipulate the relevant input of each manufactured

customer record to see if the desired output is obtained. For example, a requirement is to

decline all customers for a loan that have a monthly net income of less than R 10 000. The test

analyst extracts a customer record where the customer has a net monthly income of less than R

10 000 to verify that the application is declined (positive testing) and a customer record where

the customer has a net monthly income of more than R 10 000 to verify that the application is

not declined (negative testing). The test analyst thus verifies that the customer is approved or

declined correctly. The outcome is in the form of screen shots. Test results are documented and

archived for future use.

Structural testing is performed against the SRS by the test analysts to complement functional

testing. This ensures that testing has been performed thoroughly by testing different scenarios

that pass through the different flows in the architectural design. For example, a customer who

has an income greater than R 10 000 per month might pass through different scoring logic

compared to a customer who has an income less than R 10 000 per month. Test analysis

reports are produced during this stage.

Should defects be discovered during functional testing, the test analyst will resolve the defects

with the developer and retest the defects in order to ensure that the problem has been resolved.

The test manager will proceed to produce a defect and test coverage report in order to verify

that possible scenarios were not left out. The changes are subsequently approved in order to

migrate the system to the QA phase. The deliverables are the test case execution and

functional testing. The available resources are the project manager, technical team lead,

developer, business analyst and test analyst. The INT phase takes approximately four weeks to

complete.

QA testing follows functional testing. During QA testing, the test analyst performs regression

testing. In the current SDLC, a regression test pack is used that consists of one customer profile

that is manipulated according to the test cases that cover the change in order to verify that the

correct output is obtained. Positive testing is performed on the customer profile. For example, if

105

the change was to approve customers with a monthly net income of greater than R 10 000, a

customer profile is selected from the production environment that has a monthly net income

greater than R 10 000 to verify that the customer is approved. However, tests are not conducted

to verify that customers with a net monthly income less than R 10 000 are approved. Automated

regression is performed that use test execution tools in order to execute the tests. The outcome

is in the form of a test results document and screen shots.

The available resources are the project manager, the technical team lead, the developer, the

business analyst and the test analyst. The QA phase takes two weeks to complete. If any

defects are picked up during regression testing, the defects are resolved with the developer.

The test analyst compiles a defects list which is a matrix of defects, showing the description of

the defect, the date the defect was identified and the person the defect is assigned to. The test

analyst finally retests the defects until the results are satisfactory.

Once testing has obtained the desired results, the test manager produces a test coverage and

sanity report of the cycle. The testing team subsequently approves the migration of the system

into the production environment. Available resources during this stage are the project team

members, project manager and business unit. The deliverables are the test coverage report,

defect report and project status review.

In order to validate the system, acceptance testing is performed by the relevant business unit

with the help of the development team. The objective of user acceptance testing is to allow the

business unit to gain confidence in any aspect of the system, determine whether the system

meets their needs, and determine whether the system is ready to implement. The business unit

tests a random selection of data in order to determine whether the business requirements are

met. The business unit uses any test environment and performs any test they deem necessary.

The business unit designs their tests at the same time as developing the BRS. This helps the

business unit to ensure that their requirements are logical and realistic. Otherwise, the business

unit may realise only at the end of the development process that their requirements are

incorrect. This will result in requesting changes late in the SDLC that can cause the schedule,

cost, and quality to be compromised.

Once the business unit has accepted the system, the project status is reviewed and formal

approval is given to implement the system into the production environment. The outputs of this

phase are the test results, the users’ approval to implement the system, handoff of the

106

operational technology, and reviews of project status. Concerns of this phase are long timelines,

high costs and poor confidence in verification results.

Implementation and maintenance phase

The implementation phase as depicted in the researcher’s flow chart in Figure 4.11 includes the

preparation and implementation of the system into a production environment. Once business

unit acceptance is received and positive test results are obtained for system and regression

testing, Hogan submits the change for implementation by producing the final package to install

into the live (production) system. The data is then migrated from the QA environment to the

production environment according to the configuration management details. Subsequently, the

analytics team and business unit extract a sample of records to verify whether the data is

flowing through the correct path of logic.

Finally, the system is implemented into a production environment. The system is operated

according to standard system operating and management procedures. Once the system is in

production, the test analysts performs maintenance testing which is known as post-

implementation testing (PIT) in order to verify that the environment is stable and that nothing is

broken (i.e. that defaults do not appear in the production environment).

Data from the production environment is extracted and the data is run through the same logic

used during unit testing. The system is monitored in order to make changes where necessary

and reports on the stability of the system are produced. Depending on the scope of the changes

required, previous life cycle phases are revisited where necessary. A QA report is subsequently

produced in order to state that the system is stable and that no defects are occurring. Site

acceptance testing is performed by the business unit to ensure that the system is still validating

in the production environment.

Maintenance of the system is initiated once the system has been moved to the production

environment, the system has been verified and validated, and the project has been signed off.

Maintenance involves assigning resources to ensure that the different components and system

as a whole is functioning. Maintenance testing is conducted on a daily basis in order to ensure

that the system is still functioning according to the requirements.

107

Improvements and adjustments are continually made where necessary in order to ensure that

the system keeps on working as required. The available resources are the project team

members, project manager and business unit. The deliverables are the post-implementation

review, the configuration management records and the project closure. Concerns of this phase

are that changes are often requested by the business unit at the final stages of the project and

that defects are detected that should have been picked up during the testing phase.

Figure 4.11 The Implementation Phase

4.4 Comparative Analysis

A comparative analysis between the current software SDLC and a SDLC that conforms to the

principles of systems engineering according to the literature review was performed. Main

processes and sub-processes of the current software SDLC were derived from Section 4.2 and

tabulated in Table 4.2. The description of these processes between the current system and the

literature review were tabulated and compared. Activities in the current system that did not align

with systems engineering principles according to the literature review are indicated in bold and

italic.

108

Table 4.1 Comparative Analysis Results

Systems Engineering Principle Recommendations to achieve principle Source

Consideration of the entire system

during each activity within the

SDLC

Formulating, and refining operational, functional, and

performance requirements

Sweeney et al. (2011)

 Identifying and decomposing the system’s functionality

Sweeney et al. (2011)

 Implementing functionality into a feasible useful product

Sweeney et al. (2011)

 Verifying the system’s requirements, functionality and

implementation

Sweeney et al. (2011)

 Managing inherent operational, technical and programmatic

risks

Sweeney et al. (2011)

 Designing activities performed from the viewpoint of the entire

life cycle

Friedman and Sage (2003)

 Using a balanced blend of methods, measurements,

technologies, and processes that support the entire life cycle

Friedman and Sage (2003)

 Maintaining funding support throughout the life cycle Friedman and Sage (2003)

109

 Ensuring that development activities recognise the total life

cycle costs

Friedman and Sage (2003)

 Providing a thorough understanding of the system’s life cycle

El-Sayar et al. (2013)

 Understanding weaknesses in the life cycle understood by

modelling the life cycle according to an SE development model

El-Sayar et al. (2013)

 Monitoring project progress

College (2001)

 Evaluating and selecting alternatives

College (2001)

 Documenting data and decisions

College (2001)

 Selecting performance, functional, and design requirements,

and alternative approaches to satisfy requirements based on

quantitative approaches

College (2001)

Detailed definition and analysis of

requirements that will achieve the

users’ objectives

Obtaining a clear description of the environment wherein the

software will operate

Hijazi et al. (2014); Iyakutti

and Alagarsamy (2011)

110

 Identifying all the clients of the system and collecting the raw

requirements and objectives (functional and non-functional)

from all points of view through observing and interviewing

Swarnalatha et al. (2014);

Sommerville (2006) cited

in Hijazi et al. (2014);

Chomal and Saini (2014)

 Scheduling meetings with users and resources to obtain,

analyse and review requirements

Chomal and Saini (2014);

Iyakutti and Alagarsamy

 Developing standards and constraints in order to ensure

common understanding

Swarnalatha et al. (2014);

Hijazi et al. (2014)

 Defining problems clearly

Hijazi et al. (2014);

Swarnalatha et al. (2014);

Chomal and Saini (2014)

 Defining and analysing requirements in engineering terms and

converting them into specifications for the system, its

components, segments and elements

Hijazi et al. (2014); Buede

(2009)

 Analysing requirements by comparing them to user or

business requirements or objectives

Swarnalatha et al. (2014);

Iyakutti and Alagarsamy

(2011); Buede (2009)

 Quantifying performance and interface requirements

Iyakutti and Alagarsamy

(2011)

 Prioritising, categorising, reviewing, and assessing Swarnalatha et al. (2014);

111

requirements according to users’ objectives

Sweeney et al. (2011)

 Organising and defining requirements according to a hierarchy

from high level requirements that address business

requirements to low level requirements that address

component requirements in a coherent and traceable manner

Swarnalatha et al. (2014);

Friedman and Sage (2003)

 Performing dynamic allocation by assigning the functional and

non-functional requirements to the relevant system elements

Swarnalatha et al. (2014)

 Ensuring that requirements are clear, detailed,

understandable, unambiguous, comprehensive, complete and

accurate

Hijazi et al. (2014);

Swarnalatha et al. (2014);

Sweis (2015); Khan et al.

(2014); Chomal and Saini

(2014); College (2001);

Givens (2012)

 Ensuring that requirements specify what the system must do,

how well it must do it, and how the system should be verified

and validated

Iyakutti and Alagarsamy

(2011); Buede (2009);

Givens (2012)

 Defining and clarifying functional requirements and design

constraints

College (2001); Givens

(2012)

 Performing functional analysis, preliminary design and Sweeney et al. (2011)

112

planning activities by developers, documenting traceability

between requirements and desired capabilities, translating

development plans into requirements, and detailing how

requirements should be implemented

 Developing requirement for each function

College (2001)

 Placing equal importance on functional and non-functional

aspects

Hijazi et al. (2014); El-

Sayar et al. (2013)

 Resolving conflicting user requirements by choosing the most

relevant requirements that will achieve the users’ objectives

Hijazi et al. (2014)

 Validating and verifying requirements by reviewing the

requirements with clients, prototyping according to

requirements and comparing system documentation to clients’

requirements and objectives

Swarnalatha et al. (2014);

Sommerville (2006) cited

in Hijazi et al. (2014); Li

(1990)

 Negotiating the requirements with resources and end users

Chomal and Saini (2014);

Iyakutti and Alagarsamy

(2011)

 Performing software requirements management by keeping

track of and documenting all interrelationships and

dependencies of software requirements changes

Swarnalatha et al. (2014)

113

 Thoroughly involving developers, end users and other

necessary resources during requirements development

Hijazi et al. (2014);

Friedman and Sage (2003)

 Documenting requirements for future reference and ensure

that it is consistent with requirements

Swarnalatha et al. (2014);

Sommerville (2006) cited

in Hijazi et al. (2014);

Iyakutti and Alagarsamy

(2011)

 Analysing cost and benefits

Iyakutti and Alagarsamy

(2011)

 Reviewing preliminary project plans

Iyakutti and Alagarsamy

(2011)

 Reviewing risks and contingency plans

Iyakutti and Alagarsamy

(2011)

 Establishing a formal process to track and control changes to

specifications

Tanrikulu and Ozcer

(2011)

 Encouraging knowledge sharing between resources and users

regarding technical aspects of system

Khan et al. (2014);

Friedman and Sage (2003)

 Providing appropriate documentation on processes and

past project successes and failures

Hijazi et al. (2014);

Tanrikulu and Ozcer

114

 (2011); Sweeney et al.

(2011)

Optimal design of the system

Ensuring extensive communication and coordination between

resources and users

El-Sayar et al. (2013)

 Creating and evaluating proposed alternative designs

(solutions) based on multiple criteria, including performance,

schedule, cost and risk

Givens (2012)

 Modelling and evaluating preferred options and run trials

Givens (2012)

 Using preferred alternative design to manage the system life

cycle

Givens (2012)

 Defining subsystems

El-Sayar et al. (2013)

 Proceeding with design once business requirement has been

received and completed technology assessments have been

conducted

Iyakutti and Alagarsamy

(2011)

 Ensuring design is broad in perspective and every contingency

is considered

Buede (2009)

 Designing the system in a logical and orderly manner Friedman and Sage (2003)

115

according to the system functional architecture

 Choosing architectural design method and programming

language early in the design phase and according to the

project’s need

Hijazi et al. (2014);

Friedman and Sage (2003)

 Revisiting functional architecture in order to verify that the

design can perform the required functions and the required

level of performance

College (2001)

 Involving technical issues, customer needs, political pressures

and funding in the architectural design

Friedman and Sage (2003)

 Ensuring flexible architecture

Hijazi et al. (2014)

 Ensuring design is as simple as possible and understandable

Hijazi et al. (2014); Khan

et al. (2014)

 Providing complete, clear and consistent documentation of the

design process free from unnecessary information

Hijazi et al. (2014);

Tanrikulu and Ozcer

(2011)

 Performing judgment on issues and share systems design

responsibility between the development team and end

user

Friedman and Sage (2003)

116

 Maintaining design document and specifications

Hijazi et al. (2014);

Tanrikulu and Ozcer

(2011)

 Providing an accurate estimation of available reusable

components during requirements analysis

Hijazi et al. (2014)

 Validating and verifying design by comparing to requirements

documentation, reviewing technical design; reviewing

estimates on the project plan and reviewing system test plans

Iyakutti and Alagarsamy

(2011)

 Testing requirements development

Tanrikulu and Ozcer

(2011)

 Setting up integration plan in a manner that simplifies

verification and validation

Buede (2009)

 Exploring and assessing likely alternatives to the

integration order and ensure design is flexible enough to

allow for changes

Buede (2009); El-Sayar et

al. (2013)

Optimal integration and

development of the system

Developing system once functional specification, technical

design, system test plans and coding and infrastructure

standards have been developed

Iyakutti and Alagarsamy

(2011)

117

 Correcting system decomposition and well-defined

components and requirements

Hijazi et al. (2014)

 Ensuring each interface and integration step throughout the life

cycle supports total system functionality

Friedman and Sage (2003)

 Ensuring that the system is integrated and interfaced between

different subsystems, systems, the main system and the

customers

El-Sayar et al. (2013);

Friedman and Sage

(2003); Givens (2012)

 Ensuring all operational systems are compatible with each

other

Friedman and Sage (2003)

 Excluding unnecessary specification of modules processing

Hijazi et al. (2014)

 Providing well-defined functional definitions

Hijazi et al. (2014)

 Using one developer if possible

Hijazi et al. (2014)

 Following coding standards and best practices as well as good

engineering standards

Hijazi et al. (2014);

Chomal and Saini (2014);

Tanrikulu and Ozcer

(2011)

 Avoiding repetitive code and Hijazi et al. (2014)

118

 Ensuring code is understandable by reviewers

Hijazi et al. (2014)

 Reusing components where necessary

Hijazi et al. (2014)

 Using experienced programmers

Hijazi et al. (2014)

 Ensuring good quality compilers and debuggers

Hijazi et al. (2014)

 Understanding new technology before development

Hijazi et al. (2014)

 Performing integration incrementally according to the structure

of the system

Hijazi et al. (2014); Li

(1990)

 Ensuring correct versions and correct components are used

for integration

Hijazi et al. (2014)

 Performing integration testing after each integration step

Li (1990)

 Validating and verifying the development phase by reviewing

test plans and scripts, the project plan, the code and

infrastructure changes, and the unit test results

Iyakutti and Alagarsamy

(2011)

 Documenting software unit and system development Hijazi et al. (2014);

119

 Tanrikulu and Ozcer

(2011)

 Documenting roles and responsibilities

Tanrikulu and Ozcer

(2011)

 Documenting unit testing results and integration test

plans

Hijazi et al. (2014);

Tanrikulu and Ozcer

(2011)

Optimal verification and validation

of the system

Proceeding with testing phase once coding scripts, test plans,

and functional and technical design of the system has been

developed

Iyakutti and Alagarsamy

(2011)

 Ensuring that each requirement is verifiable, tested, and that

the requirements documentation details the method of

verification for each requirement

Hijazi et al. (2014); College

(2001); Friedman and

Sage (2003)

 Determining the success criteria and measures for testing

early in the life cycle

Friedman and Sage (2003)

 Involving users in the verification and validation of

requirements

Hijazi et al. (2014);

Friedman and Sage (2003)

 Making the users the final approvers of the test outcomes

Friedman and Sage (2003)

120

 Setting up a test design specifications document

Tanrikulu and Ozcer

(2011)

 Performing unit testing during development phase by the

developer that coded the software

Li (1990); Yoon (2013)

 Using completely automated testing tools and appropriate

testing techniques

Hijazi et al. (2014); Yoon

(2013)

 Developing formal well-understood testing process

Hijazi et al. (2014)

 Documenting test cases for future use

Hijazi et al. (2014)

 Ensuring adequate regression testing by selecting all

relevant test cases

Hijazi et al. (2014)

 Performing integration testing performed according to the

structure of the system

Li (1990)

 Clearly defining test cases by describing and mapping each

test case to the requirements

Li (1990); Sweeney et al.

(2011)

 Reviewing, modifying, and refining test cases before test

execution

Sweeney et al. (2011)

121

 Developing test results matrix

Sweeney et al. (2011)

 Documenting and archiving test results for future reference

Sweeney et al. (2011)

 Testing cases and data based upon system specifications

Li (1990)

 Using real-life data

Li (1990)

 Using qualified testing team

Hijazi et al. (2014);

Chomal and Saini (2014)

 Ensuring sufficient number of testing resources

Hijazi et al. (2014);

Chomal and Saini (2014)

 Allowing sufficient time for testers to test the entire system

Hijazi et al. (2014)

 Testing latest verified requirements

Hijazi et al. (2014)

 Conducting performance, stress and load testing

Hijazi et al. (2014)

 Verifying and validating of the testing phase performed by test

results, verification of security assessments, approval for

implementation and user readiness for implementation

Iyakutti and Alagarsamy

(2011)

 Performing formal approval of tests

Tanrikulu and Ozcer

(2011)

122

 Ensuring acceptance testing is performed by end users with

the help of development team

Li (1990)

 Receiving formal acceptance of the system

Li (1990); Khan et al.

(2014)

 Ensuring automated unit and regression testing

Parvez (2012)

 Updating regression test pack with latest test cases

Parvez (2012)

 Involving programmers with the design of unit test cases

Yoon (2013)

Successful implementation of the

system

Proceeding with implementation phase once positive test

results for system testing, acceptance testing, and regression

testing have been obtained

Iyakutti and Alagarsamy

(2011)

 Developing of a detailed implementation management plan

Tanrikulu and Ozcer

(2011)

 Operating system according to standard operating procedures,

formal problem management procedures and documentation

procedures

Tanrikulu and Ozcer

(2011)

 Ensuring that those operating the system are

knowledgeable and comfortable regarding the functions

Hijazi et al. (2014); Givens

(2012)

123

of the system

 Assessing performance of system using quantitative metrics

Givens (2012)

 Observing outputs of system in order to modify system where

necessary

Givens (2012)

 Ensuring project team maintains the appropriate technical

capabilities to gather, analyse, and recommend changes

where necessary

Friedman and Sage (2003)

 Conducting implementation testing is by both the project

team and end user

Friedman and Sage (2003)

 Conducting reengineering where changes in design are

necessary

Friedman and Sage (2003)

 Using all data gathered during implementation testing for

recommendations on future improvements

Friedman and Sage (2003)

 Documenting problems experienced during

implementation

Tanrikulu and Ozcer

(2011)

 Validating phase by confirming migration of the system is Iyakutti and Alagarsamy

124

according to configuration management details

(2011)

 Obtaining formal approval of project completion

Tanrikulu and Ozcer

(2011)

 Establishing the post-operation review process established

Tanrikulu and Ozcer

(2011)

 Designing and processing verification

Tanrikulu and Ozcer

(2011)

 Inspecting documentation

Tanrikulu and Ozcer

(2011)

Intensive risk management during

the entire SDLC

Creating work breakdown, clearly defining and assigning

duties and responsibilities to resources over time

Chomal and Saini (2014)

 Understanding project complexities and choosing resources

accordingly in order to have a clear project scope

Hijazi et al. (2014); Khan

et al. (2014); Patil and

Yogi (2011)

 Discussing project with experts

Patil and Yogi (2011)

 Learning from past experiences

Patil and Yogi (2011)

 Conducting assessments and reviews early in the life cycle to

mitigate risks

Iyakutti and Alagarsamy

(2011)

125

 Identifying, listing, analysing, prioritising, mitigating and

resolving risks and their drivers early in the project and

throughout the project

Patil and Yogi (2011);

Chomal and Saini (2014);

Sweeney et al. (2011);

Friedman and Sage

(2003); Anderson and

Nolte (n.d.)

 Retiring risks once successfully mitigated

Sweeney et al. (2011);

Friedman and Sage (2003)

 Quantifying risks, including probability of occurrence,

seriousness of impact, and assessment of impact on cost,

schedule, and performance

Anderson and Nolte (n.d.)

 Determining sensitivity of risks to program assumptions and

the degree of correlation among risks

Anderson and Nolte (n.d.)

 Defining and evaluating alternatives to mitigate risks

Anderson and Nolte (n.d.)

 Factoring risk into decisions on program objectives and design

alternative analysis

Anderson and Nolte (n.d.)

 Tracking risks to ensure mitigation plans are effective and the

potential impact on the project does not increase

Sweeney et al. (2011);

Anderson and Nolte (n.d.)

 Identifying when risks become realised and become Anderson and Nolte (n.d.)

126

impediments to achievement of program goals

 Ensuring risks are identified by any team members

Sweeney et al. (2011)

 Ensuring risks are reviewed by project manager in order to

assess their relevance and probability

Sweeney et al. (2011)

 Ensuring that project performance is monitored and reported

throughout life cycle

College (2001)

 Providing an adequate estimation of project time, cost, scope

and resources

Hijazi et al. (2014); Khan

et al. (2014); Patil and

Yogi (2011); Sweis (2015);

Chomal and Saini (2014)

 Assessing all resource knowledge and capabilities before

scheduling

Hijazi et al. (2014);

Chomal and Saini (2014)

 Estimating the schedule based on time spent on tasks and

resource capabilities

Chomal and Saini (2014)

 Ensuring proper project planning and control in order to ensure

realistic project schedule and budget

Hijazi et al. (2014); Khan

et al. (2014); Chomal and

Saini (2014)

 Ensuring good internal communication Sweis (2015); Chomal and

127

 Saini (2014)

 Avoiding of assumptions

Sweis (2015)

 Verifying and validating each activity within the SDLC

Hijazi et al. (2014); Li

(1990); Tuteja and Dubey

(2012); Khan and Khan

(2014); Tanrikulu and

Ozcer (2011)

 Ensuring end users are involved throughout the entire

SDLC and development activities, especially from the start

of the project

Sommerville (2006) cited

in Hijazi et al. (2014); Li

(1990); Khan et al. (2014);

Sweis (2015);Chomal and

Saini (2014)

 Ensuring design changes made by end users result in

timelines; revisiting requirements and project planning

College (2001)

 Monitoring project activities and milestones

Chomal and Saini (2014)

 Ensuring adequate training of resources

Khan et al. (2014); Sweis

(2015); Chomal and Saini

(2014); Tanrikulu and

Ozcer (2011)

 Establishing regular planned meetings with all resources and

end users to manage and agree on expectations, obtain

Khan et al. (2014); Chomal

and Saini (2014); Iyakutti

128

commitment from all involved and discuss results and status of

project

and Alagarsamy (2011)

 Analysing requirements and resources to ensure realistic

project expectations

Chomal and Saini (2014)

 Establishing proper processes for change management

Tanrikulu and Ozcer

(2011)

 Providing a detailed implementation management plan

Tanrikulu and Ozcer

(2011)

 Performing testing early in the requirements analysis phase

Tuteja and Dubey (2012);

Khan and Khan (2014)

 Ensuring documentation of resource knowledge

Sweis (2015)

Involvement of resources and

users from all relevant disciplines

throughout the entire SDLC

Encouraging knowledge sharing among team members

Friedman and Sage

(2003); Khan et al. (2014);

Hijazi et al. (2014);

Chomal and Saini (2014)

 Ensuring good cooperation and communication among team

members

Khan et al. (2014); Hijazi

et al. (2014); Sweis (2015);

Chomal and Saini (2014);

129

El-Sayar (2013)

 Ensuring good motivation among team members

Khan et al. (2014)

 Involving resources from the various technical and

management areas as well as the end users throughout the

entire life cycle, especially at the start of the project

Chomal and Saini (2014);

Buede (2009)

130

4.5 Chapter Summary

The primary objective of this study is to identify areas within the current SDLC used by the case

site that can be improved in terms of cost, schedule, and performance by performing a

comparative analysis between the current software system development process and a

recommended SDLC that complies with systems engineering principles. Secondly, this study

aims to recommend changes to the current software system development process that will

assist in the improvement in terms of cost, schedule, and performance.

This chapter presented the detailed results from the comparative analysis and identified

activities in the SDLC that do not align with systems engineering principles. It is noteworthy to

mention that the information provided by the high calibre experts greatly contributed to

presenting the current system accurately and therefore conducting the comparative analysis

effectively. The next chapter analyses and explains the findings in relation to the research

objective.

131

CHAPTER 5 - DISCUSSION

“Discussion is an exchange of knowledge; an argument an exchange of ignorance.”

~ Robert Quillen

5.1 Introduction

This chapter analyses and discusses the findings presented in Chapter 4 in relation to the

research objectives and in conjunction with the literature reviewed in Chapter 2. The aim of this

chapter is to find answers to the research question:

How can the software SDLC be improved in terms of cost, schedule, and

performance for a credit scoring system using systems engineering

principles?

It was found that the current software SDLC could be improved in terms of cost, schedule and

performance. This is outlined in Section 5.3 based on the recommendations detailed in Section

5.2.

5.2 Comparative Analysis Discussion

This section discusses the results from the comparative analysis. The aspects of the current

system that were found to be inefficient according to systems engineering principles and the

recommendations to align these aspects with systems engineering principles are detailed.

5.2.1 Definition and analysis of requirements

Appropriate documentation on processes and past project successes and failures: Past

project successes and failures are discussed among resources during the requirements

132

analysis phase. However, knowledge on processes and past project details is not gathered from

documentation but rather from the discussion regarding the resources’ past experiences.

Lessons learnt from past projects are not documented. It is thus recommended that each

resource document the processes as well as the successes and failures they experience during

the project (Hijazi et al., 2014; Tanrikulu & Ozcer, 2011; Sweeney et al., 2011). These

documents can be used for future reference to improve future projects and avoid similar pitfalls.

Knowledge would therefore not be lost in cases of staff turnover.

Estimation of schedule based on time spent on tasks and resource capabilities: It is

recommended that the project manager consider the current resource knowledge and

capabilities in estimating the project schedule.

5.2.2 Optimal design of the system

Flexible architecture: Currently, the system is designed according to the chosen solution.

However, flexibility is not built into the design to allow for alternative design solutions should an

one prove to be best later in the life cycle. It is recommended that flexibility be built into the

system that would allow for the most likely alternative design solutions (Hijazi et al., 2014).

Perform judgment on issues and share systems design responsibility between the

development team and end user: Although the design is reviewed by the end user,

responsibility is not shared among the systems analyst, developer and end user. It is

recommended that responsibility be equally shared thus allowing the end user to obtain a

detailed understanding of the system from the start of the project, which will in turn increase the

probability of user acceptance later in the life cycle (Friedman & Sage, 2003).

Accurate estimation of available reusable components during requirements analysis: It is

recommended that the developer estimate the available reusable components during this phase

as these could have a significant impact on the project timelines and cost (Hijazi et al., 2014).

The use of reusable components will shorten development timelines. The project manager

would then be able to more accurately estimate project timelines.

Set up integration plan in a manner that simplifies verification and validation: The

developer currently integrates the system according to the structural design of the system as

133

specified in the requirements documents. However, an official integration plan is not set up. It is

recommended that the developer set up an integration plan according to the functional

architecture while at the same time considering the validation and verification of the system

(Buede, 2009). This will result in simplified integration testing and thus reduced development

timelines.

Explore and assess likely alternatives to the integration order and ensure design is

flexible enough to allow for changes: It is recommended that the developer explore and

assess likely alternatives to the integration order and ensure that the design is flexible enough

to allow for an alternative integration order during development (Buede, 2009; El-Sayar et al.,

2013).

5.2.3 Optimal integration and development of the system

Use of experienced programmers: Not all projects currently use experienced programmers

(developers). Programmers are selected based on availability. As lack of documentation and

staff turnover results in lost knowledge and new programmers often lack the necessary

knowledge, Hijazi et al. (2014) suggest that programmers should be experienced.

It is therefore recommended that development processes and knowledge be adequately

documented by developers for each project. It is also recommended that new programmers

shadow experienced programmers during the first few projects until the new programmers gain

confidence in the development process.

Understanding of new technology before development: It is currently not ensured that new

technology is well understood before development takes place. Hijazi et al. (2014) suggest that

new technology should be thoroughly understood before development takes place. It is

therefore recommended that adequate training of new technology takes place before project

schedule and development.

Documentation of software unit and system development: It is recommended that unit

development and system development be documented in detail for future reference (Hijazi et

al., 2014; Tanrikulu & Ozcer, 2011). This will assist in verification, validation and knowledge

gathering regarding lessons learnt.

134

Documentation of unit testing results and integration test plans: It is recommended that

test plans and test results be documented in detail to simplify verification, validation, and

knowledge accumulation (Hijazi et al., 2014; Tanrikulu & Ozcer, 2011).

5.2.4 Optimal verification and validation of the system

Involve users in the verification and validation of requirements: Hijazi et al. (2014) and

Friedman and Sage (2003) recommend that the end users should be involved in the verification

and validation of requirements. Currently, the users are solely involved during the requirements

analysis and user acceptance testing phases. It is recommended that the users be involved

during unit, functional, and complete system testing. This is expected to simplify the user

acceptance testing as the users will already be familiar with the testing details.

Make users the final approvers of the test outcomes: It is recommended that the users be

assigned as the final approvers of the test outcomes of unit, functional, and complete system

testing as this will increase the probability of user acceptance testing (Friedman & Sage, 2003).

Use of complete automated testing tools and appropriate testing techniques: Hijazi et al.

(2014) and Yoon (2013) recommend that complete automated testing tools and appropriate

testing techniques should be used during testing. Functional testing is currently a manual

process in which 20 to 30 customer profiles are manually created, manipulated and tested

according to test case scenarios. This process is time consuming and costly as it requires on

average six test analysts to perform functional testing. Verification is additionally compromised

as the entire customer data base is not tested.

It is recommended that functional testing be improved by executing test cases on a large set of

customer data in order to adequately cover the software change that was made. It is

recommended that the following procedure be followed to achieve this:

 Extract a sample of approximately 10 to 15 per cent of customer account data from the

production environment for test cases.

 Extract data from the different data warehouses in order to obtain the necessary field

information.

135

 Set up filtering requirements in order to have a variety in spread and selection of data.

This will result in an increase in test coverage as well as testing a wider variety of

scenarios.

 As testing is performed in an uncontrolled environment (which means that the testers will

be able to view actual customer data), desensitise and depersonalise the data by

breaking the link from the production profile to the test data. Re-match the customer

account data by means of algorithms when it needs to be sent to the credit bureau to

obtain the customers’ credit information. Use the same logic to depersonalise the

records once it is receive back from the credit bureau.

 Automate functional testing by running mathematical algorithms through the entire

sample.

Adequate regression testing by selecting all relevant test cases: It is recommended that a

test pack be created that adequately covers the software changes that were made (Hijazi et al.,

2014). The regression test pack should be continuously updated by adding the same test data

that is recommended for functional testing to the test pack (Parvez, 2012). This test pack will

thus contain a sample customer data base that is representative of the customer data base in

the production environment. The tester is therefore able to perform regression testing on this

entire sample instead of only one customer. The tester will also be able to perform negative

testing on this sample in order to see whether the system is producing the expected results.

Use of real life data: It is recommended that functional and regression testing be performed on

a representative sample of the production customer data base (Li, 1990).

5.2.5 Successful implementation of the system

Ensure that those operating the system are knowledgeable and comfortable regarding

the functions of the system: Hijazi et al. (2014) and Givens (2012) recommend that those

operating the system should be knowledgeable and comfortable regarding the functions of the

system. It is therefore recommended that users are more involved in design, development, and

testing in order to ensure that they are comfortable and knowledgeable regarding the functions

of the system.

136

Implementation testing is conducted by both the project team and end user: Currently,

implementation testing is conducted by the project team. It is recommended that the users be

involved to reduce the probability of defects and rework (Friedman & Sage, 2003).

Use all data gathered during implementation testing for recommendations on future

improvements: It is recommended that data gathered be analysed and documented (Friedman

& Sage, 2003). It is also suggested that recommendations for future projects be documented

during the post-implementation review meeting.

Documentation of problems experienced during implementation: It is recommended that

problems and successes experienced during implementation be documented in order to avoid

similar pitfalls and make improvements during future projects (Tanrikulu & Ozcer, 2011).

Inspection of documentation: It is recommended that all documentation be reviewed by the

project team, project manager and end users to avoid defects (Tanrikulu & Ozcer, 2011).

5.2.6 Intensive risk management during the entire SDLC

End users involved throughout the entire SDLC and development activities especially

from the start of the project: It is recommended that the end users should be thoroughly

involved in all development activities within the life cycle (Sommerville, 2006 cited in Hijazi et al.,

2014; Li, 1990; Khan et al., 2014; Sweis, 2015; Chomal & Saini, 2014). It is therefore

recommended that users play a more significant role during the design, development, and

testing phases in order to avoid defects and rework and improve the probability of user

acceptance.

Adequate training of resources: It is recommended that resources should be adequately

trained in order to perform their work as efficiently and effectively as possible (Khan et al., 2014;

Sweis, 2015; Chomal & Saini, 2014; Tanrikulu & Ozcer, 2011). It is therefore recommended that

resource training be supplemented by documentation on system processes, successes and

failures.

137

5.3 Comparative Analysis Implications

The current SDLC has a 90 day schedule and requires on average 20 resources per project of

which six are test analysts. Forty per cent of projects at the case site were not successfully

completed during 2015 according to the end users’ needs within the required timelines. These

projects were therefore rescheduled for the following annual release dates. It is suggested that

once the recommendations are implemented, the project manager should monitor the projects

in the subsequent six months in terms of project schedule, resources required per system area,

and percentage of projects successfully completed.

Table 5.1 details how the recommendations are expected to improve cost, quality and schedule:

138

Table 5.1 Recommendations

Recommendation How recommendation is expected to improve cost, schedule and quality

Appropriate documentation on processes

and past project successes and failures

Reduces the probability of defects and rework as pitfalls are avoided. Past

successes on similar projects are used to develop the system efficiently.

Estimation of schedule based on time spent

on tasks and resource capabilities

Project manager is able to more accurately schedule the project and assign

resources therefore increasing the probability of delivering the project on time with

the desired capabilities.

Flexible architecture Reduces rework required in the event that an alternative design is required at a

later stage of the life cycle.

Perform judgment on issues and share

systems design responsibility between the

development team and end user

Results in users being involved throughout the SDLC thus improving the likelihood

of user acceptance at the end stage of the SDLC and reducing the likelihood of

rework in the event that the system does not completely meet the users’

requirements.

Accurate estimation of available reusable

components during requirements analysis

Project manager is able to schedule the project more accurately, which increases

the likelihood of delivering the project within the required timeline with the desired

capabilities.

Set up integration plan in a manner that

simplifies verification and validation

Reduces schedule thus improving cost and quality by simplifying the verification

and validation process.

Explore and assess likely alternatives to the Reduces rework required in the event that an alternative integration order and

139

integration order and ensure design is

flexible enough to allow for changes

design is required at a later stage of the life cycle.

Use of experienced programmers Reduces the likelihood of defaults and rework.

Understanding of new technology before

development

Reduces schedule and the likelihood of defects as developers do not spend time

during the project life cycle trying to understand the new technology and develop

the system accordingly.

Documentation of software unit and system

development

Improves quality of verification and validation. Schedule and cost is reduced as

time is not wasted trying to understand system activities when revisiting previous

phases or projects.

Documentation of unit testing results and

integration test plans

Improves quality of verification and validation. Schedule and cost is reduced as

time is not wasted trying to understand system activities and results when revisiting

previous phases or projects.

Involve users in the verification and

validation of requirements

Reduces defaults and rework as the likelihood of user acceptance is increased.

Make users the final approvers of the test

outcomes

Reduces defaults and rework as the likelihood of user acceptance is increased.

Use of complete automated testing tools

and appropriate testing techniques

Reduces the number of testing analysts required. Improves quality by testing a

larger customer data base.

Adequate regression testing by selecting all

relevant test cases

Improves verification quality by testing a larger number of customer profiles.

140

Use of real life data Improves verification quality by testing a larger number of customer profiles. Thus

reducing probability of defects and rework.

Ensure that those operating the system are

knowledgeable and comfortable regarding

the functions of the system

Keeps users involved throughout the SDLC thereby increasing the likelihood of

user acceptance at the end of the life cycle.

Implementation testing conducted by both

the project team and end user

Increases the likelihood of user acceptance thereby reducing the likelihood of

defects and rework.

Use all data gathered during

implementation testing for

recommendations on future improvements

Avoids similar pitfalls and uses lessons learn to improve schedule and quality of

future projects thereby reducing project costs.

Documentation of problems experienced

during implementation

Avoids similar pitfalls and uses lessons learn to improve schedule and quality of

future projects thereby reducing project costs.

Inspection of documentation Ensures accuracy of documentation on the system to improve verification and

validation quality and schedule.

End users involved throughout the entire

SDLC and development activities especially

from the start of the project

Increases the likelihood of user acceptance at the end of the life cycle as end users

are involved in the verification and validation at each phase of the life cycle.

Adequate training of resources Adequate training of resources before the project commences reduces the

likelihood that defects are built into the system thus reducing the likelihood of

rework. It also improves the quality and schedule of the project as resources do not

spend time during the life cycle trying to understand aspects of the system.

141

5.4 Chapter Summary

The intention of the comparative analysis was to seek ways to improve the current software

SDLC in terms of cost, schedule and performance. This chapter discussed the results obtained

from the comparative analysis. Inefficiencies in the current SDLC were identified that did not

align with SE principles and recommendations were made to improve the current SDLC by

aligning it with these principles.

142

CHAPTER 6 – CONCLUSION AND

RECOMMENDATIONS

“I think and think for months and years. Ninety-nine times the conclusion is false. The hundredth

time I am right.”

~ Albert Einstein

6.1 Conclusions

The objective of this research was to determine whether the current software SDLC can be

improved in terms of cost, schedule, and performance. The current system was analysed by

conducting face-to-face semi-structured interviews and using visual sense making techniques.

An in-depth literature review was conducted in order to investigate SE principles and to find

recommendations on how to align projects with SE principles. A comparative analysis was

subsequently conducted between the current software SDLC and the recommendations

obtained through the literature review.

Areas of inefficiencies in the current software SDLC were found that did not fully align with

systems engineering principles or were partly aligned with systems engineering principles but

could be improved. Insight obtained from the literature review was used to make

recommendations to improve these areas of inefficiencies in terms of cost, schedule and

performance.

As stated in the literature review, project success is generally determined by meeting the end

users’ objectives in terms of time, cost and quality. Additionally, these three aspects are stated

in the literature review to be the main causes of project success or failure. It is therefore

necessary to improve the current SDLC in terms of these aspects.

143

6.2 Implications of the Research

The study can be applied to various systems development life cycles in a variety of industries. It

contributes to a good starting point for developing a SE framework that can be applied to

software SDLCs within multiple industries.

6.3 Limitations

Limited documentation on the current software SDLC was available. The research was

therefore limited to the opinions of the current resources and experts from the various

disciplines. The research was additionally limited to a single case site at a banking institution

and did not incorporate SDLC aspects of other financial institutions.

6.4 Recommendations for Future Work

The research concentrated on improving the software SDLC within the case site. There are a

few areas that require further study:

1. Examining the impact and true value of the recommendations made to the case site.

2. Conducting a replication study at other financial institutions in order to establish a

general framework for applying SE principles to software development processes.

144

BIBLIOGRAPHY

Anderson, N. and Nolte, W. (n.d.) Systems engineering principles applied to basic research and

development. Albuquerque: Air Force Research Laboratory.

Boehm, B. (2000) Spiral development: experience, principles and refinement. Pittsburg: Carnegie Mellon

University.

Buede, D. M. (2009) The engineering design of systems – Models and methods. New Jersey: John Wiley

& Sons, Inc.

Chomal, V. S. and Saini, D. J. R. (2014) Cataloguing most severe causes that lead software projects to fail.

International Journal on Recent and Innovation Trends in Computing and Communication, vol.2, no.5, pp.

1143 – 1147.

Cohen, L., Manion, L. and Morrison, K. (2007) Research methods in education. 6th ed. New York:

Routhledge.

Department of Defense Systems Management College (2001) Systems engineering fundamentals.

Belvoir: Defense Acquisition University Press.

Coughlan, M., Cronin, P. and Ryan, F. (2007) Step-by-step guide to critiquing research. Part 2: qualitative

research. British Journal of Nursing, vol.16, no.11, pp. 738 – 744.

Coyne, I. T. (1997) Sampling in qualitative research. Purposeful and theoretical sampling: Merging or

clear boundaries? Journal of Advanced Nursing, vol.26, no.3, pp. 624.

Creswell, J. W. (2007) Qualitative inquiry and research design. Choosing among 5 approaches. 2nd ed.

Thousand Oaks: Sage Publications.

Deming, W. (1966) Some theory of sampling. New York: Dover Publications.

Denzin, N. K. and Lincoln, Y. S. (1994) Handbook of qualitative research. Thousand Oaks: Sage

Publications.

145

El-Sayar, N. M., Afefy, I. H. A. and El-kamash, A. (2013) Addressing problems by systems engineering

methods, techniques, and tools-model framework. International Journal of Innovative Research in

Science, Engineering and Technology, vol.2, no.12, pp. 7373 – 7376.

Flick, U. (2009) An introduction to qualitative research. 4th ed. Thousand Oaks: Sage Publications.

Friedman, G. and Sage, A. P. (2003) Case studies of systems engineering and management in systems

acquisition. Systems Engineering, 22 September, pp. 90 – 96.

Givens, A. (2012) A systems-based approach to intelligence reform. Journal of Strategic Security,

vol.5,no.1, pp. 68 – 69.

Golafshani, N. (2003) Understanding reliability and validity in qualitative research. The Qualitative

Report, Vol.8, pp. 597 – 607.

Hari, A., Shoval, S. and Kasser, J. (2008) Conceptual design to cost: A new systems engineering tool.

INCOSE.

Hijazi, H., Alqrainy, S., Muaidi, H. and Khdour, T. (2014) Risk factors in software development phases.

European Scientific Journal, vol.10, no.3, pp. 213 – 232.

Honour, E. C. (2004) Understanding the value of systems engineering. Penascola: INCOSE.

Howard, K. (2011) Early education from a parental perspective : A qualitative study. Michigan: University

of Michigan.

Ismail, M. S. (2012) Analysis of project management techniques within software engineering in the

financial industry. Johannesburg: University of Johannesburg.

Iyakutti, D. K. and Alagarsamy, D. K. (2011) Software development life cycle standards for banking and

financial services IT industry. International Journal of Wisdom Based Computing, Vol.1,no.3, pp. 146 –

167.

Johnson, G. B. R. (1977) Statistical concepts and methods. New York: John Wiley & Sons.

Kasser, J. (2010) Holistic thinking and how it can produce innovative solutions to difficult problems.

Stockholm: INCOSE.

146

Kasser, J. E. (2007) Eight deadly defects in systems engineering and how to fix them. Mawson Lakes:

INCOSE.

Kaur, R. and Sengupta, J. (2011), Software process models and analysis on failure of software

development projects. International Journal of Scientific & Engineering Research , vol.2,no.2, pp. 1.

Khan, K., Qadri, S., Ahmad, S., Siddique, A.B., Ayoub, A. and Saeed, S. (2014) Evaluation of PMI's risk

management framework and major causes of software development failure in software industry.

International Journal of Scientific & Technology Research, vol.3,no.11, pp. 120 – 123.

Khan, M. E. and Khan, F. (2014) Importance of Software Testing in Software Development Life Cycle,

International Journal of Computer Science, vol.11, no.2, pp. 120 – 123.

Koerber, A. and McMichael, L. (2008) Qualitative sampling methods: A primer for technical

communicators. Journal of Business and Technical Communication, vol.22, no.4, pp. 463 – 467.

Leedy, P. D. and Ormrod, J. E. (2005) Practical research: Planning and design. 8th ed. New Jersey:

Prentice Hall.

Li, E. Y. (1990) Software testing in a system development process: A life cycle perspective. Journal of

Systems Management, vol.41,no.8, pp. 23 – 31.

Lincoln, Y. and Guba, E. (1985) Naturalistic inquiry. Beverley Hills: Sage Publications Inc.

London, B. N. (2012) A model-based systems engineering framework for concept development. Boston:

Massachusetts Institute of Technology.

Luo, L. (n.d.) Software testing techniques – Technology maturation and research strategy, Pittsburgh:

Carnegie Mellon University.

Maier, M. W. (1999) Architecting principles of systems-of-systems. Chantilly: John Wiley & Sons Inc.

Martin, J. N. (2004) The seven samurai of systems engineering: Dealing with the complexity of 7

interrelated systems. Chantilly: INCOSE.

Mathur, S. and Malik, S. (2010) Advancements in the V-model. International Journal of Computer

Applications, 1(12), pp. 29 – 33.

147

McMurtrey, M. (2013) A case study of the application of the systems development life cycle (SDLC) in

the 21st century health care: Something old, something new? Journal of the Southern Association for

Information Systems, vol.1, no.1, pp. 1.

Miles, M. B. and Huberman, A. M. (1994) An expanded sourcebook: Qualitative data analysis. 2nd ed.

Thousand Oaks: Sage Publications.

Mooz, H. and Forsberg, D. K. (2004) Clearing the confusion about spiral/evolutionary development,

INCOSE, pp. 4.

Mudavanhu, T. B. (2013) Towards a sustainable framework for application of the systems engineering

approach (SEA) in non-traditional implementation areas. Johannesburg: University of Witwatersrand.

Munassar, N. M. A. and Govardhan, A. (2010) A comparison between five models of software

engineering. International Journal of Computer Science, vol.7, no.5, pp. 94 – 100.

Myers, G. J. (2004) The art of software testing. New Jersey: John Wiley & Sons, Inc.

Okafor, E. F. O. (2011) Challenges and solution of software engineering and development: A review.

International Journal of Current Research, vol.3, no.5, pp. 65 – 66.

Parvez, A. W. M. M. (2012) An efficient model for mobile application regression test for agile scrum

software development. Advances in Computer Science and its application, vol.2, no.2, pp. 339 – 343.

Patil, M. V. and Yogi, A. N. (2011) Importance of data collection and validation for systematic software

development process. International Journal of Computer Science & Information Technology, vol.3, no.2,

pp. 260 – 262.

Patton, M. (1987) How to Use Qualitative Methods in Evaluation. 2nd ed. Newbury Park: Sage

Publications.

Patton, M. (1990) Qualitative evaluation and research method. 1st ed. Beverley Hills: Sage Publications.

Pickvance, C. (2005) The four varieties of comparative analysis: the case of environmental regulation.

Kent: University of Sussex.

148

Ragunath, P. K., Velmourougan, S., Davachelvan, P., Kayalvizhi, S. and Ravimohan, R. (2010) Evolving a

new model (SDLC Model-2010) for software development life cycle (SDLC). International Journal of

Computer Science and Network Security, vol.10, no.1, pp. 112 – 118.

Rajkumar, G. and Alagarsamy, K. (2013) The most common factors for the failure of software

development project. The International Journal of Computer Science and Applications, vol.1, no.11, pp.

1.

Rather, M. A. and Bhatnagar, V. (2015) A comparative study of sftware development life cycle models.

International Journal of Application or Innovation in Engineering and Management, vol.4, no.10, pp. 23 –

28.

Royce, W. W. (1988) Managing the development of large software systems. Washington: IEEE Computer

Society Press.

Shrinivasan, Y. B. (2010) Supporting the sensemaking process in visual analytics. Eindhoven: University of

Technology.

Sommerville, I. (2006) Software engineering. 8th ed. Addison Wesley.

Strauss, A. and Corbin, J. (1990) Basics of qualitative research: Grounded theory procedures and

techniques. Newbury Park: Sage Publications.

Swarnalatha, K. S., Shrinivasan, G.N., Dravid, M., Kasera, R. and Sharma, K. (2014) A survey of software

requirement engineering for real time projects based on customer requirement. International Journal of

Advanced Research in Computer and Communication Engineering, vol.3, no.1, pp. 5045 – 5050.

Sweeney, R. L., Hamman, J. P. and Biemer, S. M. (2011) The application of systems engineering to

software development: A case study. Johns Hopkins APL Technical Digest, vol.29, no.4, pp. 329 – 336.

Sweis, R. J. (2015) An investigation of failure in information systems projects: The case of Jordan. Journal

of Management Research, vol.7, no.1, pp. 173 – 181.

Tanrikulu, Z. and Ozcer, T. (2011) Standardization of information systems development processes and

banking industry adaptations. International Journal of Software Engineering & Applications, vol.2, no.2,

pp. 1 – 3.

149

Tuteja, M. and Dubey, G. (2012) A research study on the importance of testing and quality assurance in

software development life cycle (SDLC) models. International Journal of Soft Computing and

Engineering, vol.2, no.3, pp. 251 – 156.

Walk, K. (1998) How to write a comparative analysis, http://writingcenter.fas.harvard.edu/pages/how-

write-comparative-analysis, Accessed 5 Dec 2015.

Wengraf, T. (2001) Qualitative research interviewing. London: Sage Publications.

Wilkinson, D. and Birmingham, P. (2003) Using research instruments, a guide for reserachers. 1st ed,

London: RoutledgeFalmer.

Yoon, H. (2013) Effort reduction of unit testing by supporting CFG generation and its test design,

International Journal of Smart Home, vol.7, no.5, p. 127.

http://writingcenter.fas.harvard.edu/pages/how-write-comparative-analysis
http://writingcenter.fas.harvard.edu/pages/how-write-comparative-analysis

150

APPENDICES

151

APPENDIX A – Interview Introductory letter

“Improvement of the Software Systems Development Life Cycle of the Credit

Scoring Process at a financial institution through the application of Systems

Engineering”

Feb 4, 2015

Dear Sir/Madam

We are writing to ask for your assistance with a study we are conducting focusing on the

improvement of the current software systems development life cycle of the credit scoring

process. More specifically the purpose of this research is to seek ways to improve the current

SDLC in terms of cost, schedule and performance.

A comparative analysis between the current system and the ideal system according to systems

engineering principles will be conducted. In order to perform the comparative analysis, a

detailed understanding of the current system will be required. Please regard this letter as an

invitation to participate in this research in your capacity as a subject area expert. The study will

be conducted using face-to-face in depth semi-structured interviews.

Thank you for taking the time to read this letter. Please provide feedback by 11 February 2015.

We look forward to working with you. For further information please feel free to contact the

undersigned researcher directly.

Sincerely,

152

Ms. Nadia Meyer

Researcher: Msc. Candidate

Ms. Bernadette Sunjka

Advisor (Post grad Coordinator)

Student # 870445

Cell: +27 82 555 1585

Email: nadiameyer50@gmail.com

Senior Lecturer

Cell: +27 11 717 7367

Email: Bernadette.sunjka@wits.ac.za

Faculty of Engineering and Built Environment

School of Mechanical, Industrial and Aeronautical Engineering

Private Bag 3, University of Witwatersrand, Johannesburg, 2050, South Africa

153

APPENDIX B – Interview Questions

 Describe the area you are involved in

 Describe the processes involved this area and their order

 Describe the inputs and outputs of the different processes

 Explain how each process works

 Provide detail on resources, departments and timelines involved with each process

 What do you perceive to be the problems in the current SDLC?

 What do you perceive are the strengths within the current SDLC?

 How could the problems be addressed?

154

APPENDIX C – Interview Transcripts

Interview transcript - Participant 1 (Project Manager)

Researcher: Describe the area you are involved in

Participant 1: I am the project manager responsible for the entire project development that

occurs when a change to the current credit scoring logic is requested. Credit scoring logic

usually includes the credit origination scorecard, limit and affordability calculations, pre-bureau

rules and post-bureau rules. When these changes are requested, a project is logged and

initiated in order to develop a new software system that contains the software changes.

Researcher: Describe the processes involved this area and their order

Participant 1: The current software development process that is involved in making a software

change is developed according to a traditional V-model design. The V-model has a

corresponding test activity for every development activity. Analysis and design of tests begin

during the corresponding development activity for each level. The design of the V-model allows

for risk management.

Researcher: What type of risks do you address?

Participant 1: There are various risk factors involved in testing such as risks relating to

schedule, requirements, human resources, and quality. Risks in schedule are related to

unrealistic project schedules requested by the relevant business unit. Therefore expectations

are managed during the requirements analysis phase in order to avoid this as far as possible.

The project could face several risks due to user requirements. This could be due to lack of

clarity in user requirements, ambiguous requirement definitions, changes in the requirements or

unrealistic requirements. Testers are involved in reviewing the specifications as soon as

possible in the lifecycle, in order to pick up defects in the specifications early on. Factors such

as unrealistic schedules, lack of resources, and frequent requirement changes could compound

the risk of poor quality of the system. Therefore not only are business expectations managed as

far as possible, but also requirements analysis is performed in detail in order to develop an

optimal and realistic requirements definition. The project could face risks if there is a lack of

human resources available with the necessary skills required in the project. These issues are

therefore addressed during impact analysis, project sizing and scheduling meetings. Quality is

155

another risk factor of a project. Therefore testing is conducted at all levels of software

development in order to ensure that defects are not present at a particular level and then later

built into larger parts of the software system. Testing is required to test the developed software

in order to ensure that the level of quality is on par with the specifications, to provide information

for decision making, to prevent defects, and to mitigate risk. Testing involves analyzing the

tests, designing test cases, implementing the tests, executing the tests and finally, comparing

the test results. Various types of testing are performed at all stages of the V-model to test for

changes that were made to the software. The test analysis and design begins early in the

development process followed by testers reviewing the development documentation. Testing is

already performed early in the lifecycle in order to ensure optimal quality of the process. This

approach to testing is costly and time-consuming but ensures that the correct results are

achieved by the end of the project.

Researcher: What is the V-model?

Participant1: The V-model is a software development model which describes and specifies

how software development should take place. The activities in the SDLC are carried out

according to the V-model design. The V-model design ensure that testing is performed for every

step. Thus testing is performed early.

Researcher: Why is testing early in the lifecycle so important?

Participant1: If tests are designed as early as possible, defects in the specifications will be

found early in the process when they are still inexpensive to fix. If the testing is done too late in

the lifecycle, time and effort may well be saved but testing quality could be compromised as

defects could be found much later when they are more expensive to fix. In addition, the defects

in the higher levels, such as the requirements specification, will be found late. These defects are

the most critical and important as defects in the higher levels will be built into the lower levels of

the V-model. Another reason why the tests are designed early according to the V-model is to

ensure that the order in which the system should be put together for testing is defined during the

design phase. The order of software development is specified before it is built. Testers are thus

not constrained by the order in which software is built as tests are designed early in the lifecycle

according to the specifications and do not rely on the software to be built first in order to initiate

testing. This allows the integration of the system to be known early therefore the system can be

built based on the known integration. This can greatly reduce development time later on as

development activities and verification of these activities are performed early. Testing time is

156

reduced as testing activities are broken down to be performed at different stages of the life

cycle. For example, the first integration can be built and tested first before continuing to

integrate more parts. This also allows integration testing to be performed simultaneously to

development of the system, thus saving time but not necessarily effort. When problems are

picked up, they are immediately fixed before proceeding. If testing is only done once at the end

of the process when the entire system has been put together, it might be difficult to find the

cause of the defects as the cause could be at any of the levels in the V-model. In summary, the

benefit of designing tests as early as possible is that quality is built in, costs are reduced, and

time is saved as fewer defects are found. Therefore quality is built into the software

development process.

Researcher: How is testing performed?

Participant1: Testing is performed according to specifications. The specifications specify what

the correct results of the testing should be. Specifications are documented in order to ensure

that there is no misunderstanding or lack of clarity. Specifications are designed by taking testing

into consideration. Knowing how the tests will be performed assists in developing the

specifications for development. The specifications therefore simplify the process of setting up

test cases. Testing reveals defects in code, parts of the system, the system as a whole, or the

user’s view of the system. Specifications are compiled in all levels of the V-model, from a

business requirement specification to a specification for the code. The tester, quantitative

analyst or developer performs a test comparison that detects the differences between the actual

test results and the expected test results by using the business requirement specifications. The

business requirements are validated by discussing them with users in the business unit and

comparing them against the knowledge of the business unit’s working practices. If a defect is

detected at any stage of testing, the defect is reported and subsequently resolved by recoding

the software. A new version of the software is released containing the fixed defect. Before being

able to continue to the next phase of testing, re-testing is performed on the latest software

version in order to ensure that the defect has been fixed correctly and the rest of the system is

still working as per the requirements. Re-testing is executed in the same environment and using

the same test cases.

Researcher: Why are the same test cases used?

Participant1: The reason that all of the test cases are executed again and not just the test case

pertaining to the defect is that the fixed defect could possibly introduce new unexpected defects

157

elsewhere in the system. This might however still not be picked up as only one part of the

system has been tested. Regression testing is finally performed in order to address this issue.

Researcher: What happens after re-testing has been performed?

Participant1: Regression testing is performed. Regression testing tests whether the changes

made to a particular part of the software has not caused secondary problems elsewhere in the

software system. This ensures that modifications in the software or environment still meet the

original requirements without causing unintended side effects in the system. It is performed

every time changes to the software or environment are made. Regression testing is performed

at all levels in the V-model in order to ensure that the requirements are met at all levels.

Researcher: How is regression testing performed?

Participant1: Regression testing is automated through the use of mathematical algorithms that

are applied to a set of test cases. The test cases currently consist of only one customer profile

with account data.

Researcher: Describe the inputs and outputs of the different processes

Participant1: There are main phases involved in the development process: Requirements

analysis phase, design phase, development phase, testing phase and implementation and

maintenance phase. These phases occur sequentially.

Researcher: Explain how each process or phase works and provide detail on resources,

departments and timelines involved with each process

Participant 1: The requirements analysis phase as represented is where the requirements of

the business are determined and analysed. The business unit defines and analyses their own

needs and transforms it into a requirements specification. Once the business requirements are

developed by the relevant business unit, it is submitted to analytics team in the form of a

document called a Business Requirement Specification (BRS). This allows the business unit to

formally request the changes. The BRS contains specifications of the development required.

The requirements are logged as a project and a project manager and project team is assigned.

Researcher: Who does the project team consist of?

Participant 1: The project team consists of the resources from the various disciplines involved

in the SDLC such as the analysts, developers, project manager, divisional managers, and

158

testers. The BRS is reviewed by the project team in order to determine if the information

provided is sufficient for development. The project team also determines whether the

requirements (functional and non-functional) are realistic and whether it will achieve the desired

end objective of the business unit (stakeholders). Communication with the business unit

requesting the change is initiated in order to confirm the details of the requirements and

understand and define the problems and objectives. Should the information provided be

insufficient, the BRS is sent back to the business unit for amendments to be made. Afterwards

the project team will once again review the specification. Once the project team finds the

information provided to be sufficient, it is submitted for a high level impact assessment.

Researcher: Who is involved in the high level impact assessment?

Participant 1: The project team, project manager and the business unit (end users) is involved

in the high level impact assessment. During the high level impact assessment the project is

sized, dependencies and impact on other areas are determined, and additional information is

requested if required. Standard language is defined in order to ensure that all the resources and

stakeholders have a mutual understanding. The implications of changes made, the external and

internal influences on the system, and the probability of successful completion of the project

within budget and schedule are determined. Risks are identified, listed, quantified, analysed and

prioritised. The probability of risk occurrence, seriousness of impact, assessment of impact on

cost, schedule, and performance, sensitivity to assumptions, and degree of correlation amongst

risks are determined. Alternatives to mitigate risks are defined and evaluated. Preventative and

contingency measures are set in place. Risks are tracked throughout the SDLC to ensure that

mitigation plans are effective and the potential impact on the project does not increase.

Agreement is obtained on timelines and funding required. Commitment by all involved is

obtained. After the impact assessment, the project is scheduled. During scheduling aspects

such as the business priority, areas involved, dependencies on other projects, and whether a

Functional Requirement Specification (FRS) is required are determined by the project manager

and project team members. The Functional Requirement Specification specifies the changes

required on a functional level. After the project has been scheduled, the project scope is

confirmed. The project manager, project team members and business unit is involved in the

scoping session. The business unit presents what the project is about and gives an overview of

the change and requirements involved. The project is once again examined in order to

determine if anything has changed. If changes have been made, the process is repeated from

the impact assessment phase. Otherwise, the requirements are finalised and whether a FRS is

159

required is finally determined. Should a FRS be required, the business analyst develops the

FRS.

Researcher: How is the phase verified and validated?

Participant 1: This phase is validated and verified by analysing and reviewing the requirements

by comparing it to the business unit objectives, documenting the requirements definition,

analyzing the cost and benefits, reviewing the preliminary project plan, and reviewing risks and

contingency plans.

Researcher: What are the outputs of the phase?

Participant 1: The outputs of this phase are the approved project scope and objectives, and

initial estimation of cost and benefit, project priority, a preliminary project plan, a tentative

release date, approved business requirements, assessment of all technology involved, and a

project life cycle assignment. The deliverables are the BRS and FRS.

Researcher: How long does this phase take to complete?

Participant 1: The requirements phase takes approximately 2-4 weeks to complete.

Researcher: Proceed..

Participant 1: The analysis and design phase is initiated once the outputs of the requirements

phase have been concluded. The analysis and design phase as represented in is where

detailed requirements are transformed into a complete detailed design of the system by

focusing on how to deliver the required functionality. The systems analyst produces a Systems

Requirements Specification (SRS) that specifies the changes required to the current system. It

is ensured that the SRS is detailed, clear and accurate. The technical design is verified and

validated by ensuring that the functional architecture can perform the required functions and

required level of performance according to the BRS and FRS. The resultant designed

architecture is approved by the Hogan Technical Board (HTB). The Hogan Channel Design

Forum (CDF) then approves the required changes to the business functions. Parallel to this, the

test analyst proceeds to develop the test requirements and design the test strategy. The test

analyst documents the testing requirements in a test plan document by drafting the process of

the test roll-out with start and end dates for each test case. The project plan and system test

plans are reviewed by the project team members and project manager. The outputs of this

phase are a detailed technical design detailed in the SRS, a test plan and project status review.

160

Researcher: What is a project status review?

Participant 1: The project status review involves assessing the status of the project in terms of

timelines, objectives achieved, cost incurred in relation to budget, and review of risks.

Researcher: How long does this phase take?

Participant 1: This phase takes approximately 4 – 8 weeks to complete.

Researcher: Who are the available resources?

Participant 1: The project manager, project team members and end users.

Researcher: What happens next?

Participant 1: The development phase. During the development phase the design is converted

into a complete information system. Firstly, the test analyst designs the test cases to match the

BRS specification. The test analyst proceeds to create the test data. This involves setting up the

variables and fields necessary for testing.

Researcher: How is the test data created?

Participant 1: The test data is manually manufactured by the test analyst by developing

scenarios that test the software robustness. These scenarios cover all possible combinations

related to the software change. Better explained, once the testers have determined which

scenarios need to be tested, they create a customer record that relates to each scenario.

Approximately 20 to 30 customer profiles are manufactured. Parallel to creating test cases,

CMS and the developer acquire and install their respective system environments (for example

INT or QA) and proceed to create and test the databases. This usually involves changing and

adding on segments to the existing databases as well as refining programs. The test plan and

scripts as well as the project plan is reviewed. The developer proceeds to code the software.

The developer and quantitative analyst tests the software changes. Finally, the testing team

performs a test readiness review in order to verify whether everything at this stage is ready for

the testing phase to commence. The scope, risks and issues are analysed once again.

Procurement activities are performed to ensure that the appropriate resources are allocated to

the phases that follow. The project plan, code and infrastructure changes, and unit test results

are reviewed by the project manager.

Researcher: What are the timelines for this phase?

161

Participant 1: This phase takes approximately 2 - 6 weeks to complete.

Researcher: Who are the available resources?

Participant 1: The available resources are the test analyst, CMS, the developer, the

quantitative analyst and the testing team. The deliverables are the coded solution into SM

software, the test pack, the test plan, code scripts, unit test results, code and infrastructure

reviews, review of project status, scope, risks and issues. The testing phase commences once

the outputs of the development phase have concluded. During the testing phase Hogan firstly

conducts performance or load testing. A large number of records which exceeds the number of

records in a production environment are executed through the newly developed software. This

is conducted in order to verify that the system will be able to handle a realistic amount of

records in the production environment. It also assists in verifying that the integrity of the data is

not comprised. Reports are produced and analysed. Compatibility testing is performed which is

a test for compatibility with other channels, operating systems, old or new versions, or target

environments. The outcome is in the form of a test case document. Compatibility testing is

followed by integration testing. Integration testing consists of 2 separate phases: The Integration

testing phase (INT) and the Quality Assurance testing phase (QA).Functional testing is

performed during the Integration testing phase (INT) on the integrated components and system.

Functional testing is performed in order to demonstrate that the developed system conforms to

the requirements as specified in the Functional Requirements Document. Once positive results

have been received, the phase is subsequently approved in order to migrate the system to the

Quality Assurance (QA) phase. The deliverables are the test case execution and functional

testing. The available resources are the project manager, technical team lead, developer,

business analyst, and test analyst.

Researcher: How long does this phase take to complete?

Participant 1: Approximately 4 weeks.

Researcher: What happens during the QA phase?

Participant 1: Quality Assurance testing follows functional testing. During Quality Assurance

testing, the test analyst performs regression testing. The available resources are the project

manager, the technical team lead, the developer, the business analyst, and the test analyst. The

QA phase takes 2 weeks to complete. The test analyst finally retests the defects until the results

are satisfactory. Once testing has obtained the desired results, the test manager produces a

162

test coverage and sanity report of the cycle. The testing team subsequently approves the

migration of the system into the production environment.

Researcher: Who are the available resources for this phase?

Participant 1: The project team members, project manager and business unit and the

deliverables are the test coverage report, defect report and project status review.

Researcher: What is next?

Participant 1: In order to validate the system, acceptance testing is performed by the relevant

business unit with the help of the development team. Once the business unit has accepted the

system, the project status is reviewed and formal approval is given to implement the system into

the production environment. The outputs of this phase are the test results, the users’ approval to

implement the system, handoff of the operational technology, and reviews of project status. The

implementation phase includes implementation preparation and implementation of the system

into a production environment. Once business unit acceptance is received and positive test

results are obtained for system and regression testing, Hogan submits the change for

implementation by producing the final package to install into the live environment. The data is

then migrated from the QA environment to the production environment according to the

configuration management details. Subsequently the analytics team and business unit extract a

sample of records to verify whether the data is flowing through the correct path of logic. Finally,

the system is implemented into a production environment. The system is operated according to

standard system operating and management procedures. Once the system is in production, the

test analysts performs maintenance testing which is known as Post Implementation Testing

(PIT) in order to verify that the environment is stable and that nothing is broken, i.e. that defaults

do not appear in the production environment. Maintenance of the system is initiated once the

system has been moved to the production environment, the system has been verified and

validated, and the project has been signed off. The available resources are the project team

members, project manager and business unit. The deliverables are the Post Implementation

Review, the configuration management records and the project closure. Researcher: Can you

provide examples of modifications?

Participant 1: Examples of modifications to the existing system are fixing of defects and

enhancements and upgrades of the system such as changing the infrastructure or upgrades to

the software. It could also include corrective and emergency fixes and environment changes.

163

Researcher: What do you perceive to be the problems in the current SDLC?

Participant1: The changing of requirements poses a great risk to project success. It often

occurs that that the business unit’s requirements change during the life cycle. For example, after

development the business unit realises that they need to change their requirements.

Researcher: Why does this happen?

Participant1: The business unit submits requirements that they think will achieve their

objectives. Only later in the development do they realise that what they requested is not actually

what they want.

Researcher: How could the problems be addressed?

Participant 1: By spending more time analysing the business requirements.

Researcher: What do you perceive are the strengths within the current SDLC?

Participant1: The software development follows a well-defined process by which everyone

adheres to.

164

Interview transcript - Participant 2 (Developer)

Researcher: Describe the area you are involved in

Participant 2: I am the developer responsible for coding software changes and conducting unit

testing. I work in the development area.

Researcher: Describe the processes involved this area and their order

Participant 2: I integrate the system by coding the software changes into SM according to the

SRS, FRS, test plans and coding and infrastructure standards. I integrate the system

incrementally according to the technical design and ensure that each integration step achieves

the desired system functionality. I ensure that the system is integrated and interfaced with other

systems as required, that all operational systems are compatible with each other, and that the

correct versions of and correct components are used for integration. Along with the quantitative

analyst I subsequently perform unit testing otherwise known as component testing.

Researcher: Can you describe how unit testing is performed?

Participant 2: During unit testing, I test whether the coded input is resulting in output, but do not

test whether the results are correct. Once this has been done, I provide notification to the

quantitative analyst that the coded changes in SM have been completed. The quantitative

analyst proceeds to verify the code by testing whether the coded changes made to SM are

resulting in the correct output.

Researcher: Explain how each process works and describe the inputs and outputs of the

different processes

Researcher: Provide detail on resources, departments and timelines involved with each

process

Participant 2: Software development is performed by the developer. Unit testing is conducted

by the developer and quantitative analyst. Approximately 2 weeks are provided for development

and 1 week for unit testing.

Researcher: What do you perceive to be the problems in the current SDLC?

Participant 2: Functional testing performed by the test analysts are highly reliant on the unit

testing results.

165

Researcher: How so?

Participant 2: The test analysts perform functional testing manually. They manually

manufacture a few customer profiles and manually manipulate the input fields. The problem is

that it is time consuming and the quality of testing is poor as it is not performed on a

representative customer data base.

Researcher: How could the problems be addressed?

Participant 2: By automating testing and performing testing on a sample that is representative

of the customer data base.

Researcher: What do you perceive are the strengths within the current SDLC?

Participant 2: The system design, system development, and unit testing.

166

Interview transcript - Participant 3 (Quantitative Analyst)

Researcher: Describe the area you are involved in

Participant 3: I work in the software development area. I am the quantitative analyst

responsible for conducting unit testing and assisting the test analysts with integration and

system testing.

Researcher: Describe the processes involved this area, their order as well as the inputs and

outputs of the different processes

Participant 3: Unit testing is performed by developing test cases.

Researcher: How are test cases developed?

Participant 3: Different scenarios are set up that are related to the change. Mathematical

algorithms are used in order to automate unit testing. These algorithms run the test cases

through the data obtained from the production environment. Once the code has been verified,

the quantitative analyst provides sign-off confirming that unit testing has been completed. Unit

testing code is stored in order to be re-used during Post Implementation testing or another

change request.

Researcher: What happens then?

Participant 3: The testing phase commences. The test analysts perform functional testing. It

involves both positive and negative testing. The test analysts proceed to manually manipulate

the relevant input of each manufactured customer record to see if the desired output is

obtained.

Researcher: Can you give an example?

Participant 3: For example let’s say the request was to decline all customers for a loan that

have a monthly net income of less than R10000. The test analyst would then extract a customer

record where the customer has a net monthly income of less than R10000 to verify that the

application is declined (positive testing) and a customer record where the customer has a net

monthly income of more than R10000 to verify that the application is not declined (negative

testing). The test analyst thus verifies that the customer is approved or declined correctly. The

outcome is in the form of screen shots.

167

Researcher: Are the test results documented?

Participant 3: The test results are documented and archived for future use.

Researcher: Provide detail on resources, departments and timelines involved with each

process

Participant 3: 1 weeks’ allowance is given for unit testing. Unit testing is performed by the

developer and quantitative analyst. Functional testing takes 3 weeks as the test analysts have

to manually manufacture data and perform testing.

Researcher: What do you perceive to be the problems in the current SDLC?

Participant 3: Test analysts do not adequately verify that the system has been tested. They

create a few phantom customer profiles on which to perform testing. It is not adequate.

Researcher: Why is it not adequate?

Participant 3: Testing should be performed on a representative sample of customer profiles.

This will be more representative of the live environment.

Researcher: How could the problems be addressed?

Participant 3: By extracting live customer data

Researcher: What do you perceive are the strengths within the current SDLC?

Participant 3: Project management is very good. The project managers follow a set out

process. Timelines and responsibilities are assigned which makes your own work simpler and

easier.

168

Interview transcript - Participant 4 (Test Analyst)

Researcher: Describe the area you are involved in

Participant 4: I am a test analyst in the HTQA testing team. The HTQA testing team is

responsible for testing software changes.

Researcher: What type of testing do you perform?

Participant 4: System testing thus functional and regression testing.

Researcher: Describe the processes involved this area, their order, inputs and outputs

Participant 4: The test analysts firstly set up a test plan according to the business requirements

with end dates for each activity. The test plan is reviewed by the project team members.

Researcher: During which phase does this happen?

Participant 4: During the testing phase

Researcher: What happens next?

Participant 4: The test analysts design test cases according to the BRS. This involves creating

a set of conditions under which the tester determines whether a project is working according to

the user needs. The test analyst then tracks the test coverage by means of a documented test

coverage matrix (TCM). A TCM is constructed by creating a checklist which ensures that the

functionality of each software unit is checked in all possible combinations so positive as well as

negative, and special conditions. The outcome is in the form of a matrix document. This is done

to ensure that all probable conditions and cases for a feature to be tested are thought through. It

also assists in identifying probable gaps. The test cases and scripts are also reviewed, modified

and refined by the testing team. The test analysts then proceed to create the test data. This

involves creating the necessary fields required for testing.

Researcher: Can you give an example

Participant 4: For example the business requirement is to decline all customers with a Risk

Category code of 3 and above. What happens is that we create the input field “Risk Category

code” and manually manipulate it to view if the expected results are obtained.

Researcher: How do you create the test data?

169

Participant 4: Customer profiles are manually created with the necessary characteristics

required for testing. Approximately 20 to 30 customer profiles are created.

Researcher: What happens then?

Participant 4: Software development and unit testing takes place. Once the test results have

been approved, the testing phase commences. The testing phase is divided in two phases:

Integration phase and the Quality Assurance phase. During the Integration phase Functional

testing takes place. It is performed by conducting component integration testing, system

integration testing, and finally system testing. Structural testing is performed to complement

functional testing. This ensures that testing has been performed thoroughly by testing different

scenarios that pass through the different flows in the architectural design. Structural testing is

performed by testing the architecture of the system or component in order to determine how

thorough the testing up to a certain point has been.

Researcher: What do you mean by architecture?

Participant 4: The architecture refers to the process logic of the credit scoring software.

Structural testing compliments functional testing by testing a set of conditions that cover

different elements of the architecture. It provides a measure of how thorough the tests have

been in order to establish if more tests are needed to gain the necessary coverage of test

cases.

Researcher: When is structural testing performed?

Participant 4: Structural testing is performed at all levels of the V-model where it is deemed

necessary. For example, it is performed at component level in order to test the code coverage,

integration level in order to test the module coverage, system level in order to test the final

system coverage, and finally at acceptance level to test the business model coverage.

Researcher: Can you give an example of structural testing?

Participant 4: For example, a customer that has an income of above R10000 per month might

pass through different scoring logic compared to a customer that has an income of less than

R10000 per month. Test Analysis Reports are produced during this stage. Should defects be

discovered during functional testing, the test analyst will resolve the defects with the developer

170

and retest the defects in order to ensure that the problem has been resolved. The test manager

will proceed to produce a defect and test coverage report in order to verify that possible

scenarios were not left out. Once testing results are satisfactory, formal approval is given to

migrate to the QA phase. This is where regression testing is performed.

Researcher: Can you explain how regression testing is performed?

Participant 4: In the current SDLC a regression test pack is used that consists of one customer

profile that is manipulated according to the test cases that cover the change. Only positive

testing is performed on the customer profile. For example, if the change was to approve

customers with a monthly net income of greater than R10000, a customer profile is selected

from the production environment that has a monthly net income of greater than R10000 to verify

that the customer is approved. However, tests are not conducted to verify that customers with a

net monthly income of less than R10000 are approved. Regression testing is automated. Test

execution tools are used in order to execute the tests. A test results document and screen shots

are used to review the results. Once regression testing has been approved, approval is given to

move the system into the live environment. Once the system has been moved into the live

environment, maintenance testing which is known as Post Implementation testing is conducted.

Depending on the scope of the changes required, previous life cycle phases are revisited where

necessary. A quality assurance report is subsequently produced in order to state that the

system is stable and that no defects are occurring.

Researcher: Who performs PIT testing?

Participant 4: Maintenance testing is performed by the testers of the HTQA team.

Researcher: How is maintenance testing peformed?

Participant 4: The testing of changes is in depth and focus on the specific areas where the

changes have occurred. Testing is performed by testing the entire integrated system first in

order to see the effect on the whole system. Once the results are satisfactory, the specific area

where the change was made is then tested. Data from the production environment is extracted

and the data is run through the same logic used during unit testing. Production testing is easier

than testing during development as live data is available and it is therefore not necessary to go

through the process of building test data. Maintenance testing also involves performing

regression testing. Regression testing needs to be performed as the software changes made

can cause other areas of the system to be affected. Regular testing of changes may not pick up

171

all possible defects as this only involves testing the area of the software pertaining to the

change. Once the system has gone live, i.e. moved to a production environment, monitoring is

additionally set up to monitor the system going forward for any defects. This information is

continuously analysed and verified to assist with the traceability of defects. Finally, the system is

monitored in order to make changes where necessary and reports on the stability of the system

are produced.

Researcher: Provide detail on resources, departments and timelines involved with each

process

Participant 4: Available resources for testing are the test analysts, testing team, quantitative

analysts and developer. Also the project manager. Time allocated for the creating of test cases

and data is 2-6 weeks. The INT phase is 4 weeks and the QA phase is 2 weeks

Researcher: What do you perceive to be the problems in the current SDLC?

Participant 4: There is a need to automate testing of the INT phase. The manual process is

time consuming. An adequate regression test pack is required that will include customer profiles

that are representative of the production environment. 1 customer profile is not adequate.

Researcher: How could the problems be addressed?

Participant 4: Automation of system testing and using live customer data.

Researcher: What do you perceive are the strengths within the current SDLC?

Participant 4: Each activity is reviewed and approved before proceeding to the next

172

Interview transcript - Participant 5 (Systems Analyst)

Researcher: Describe the area you are involved in

Participant 5: I form part of the development team responsible for delivering the software to

meet business’ requirements.

Researcher: Can you elaborate on your role?

Participant 5: I am the systems analyst responsible for designing the software system

according to the business requirements.

Researcher: Describe the processes involved this area with their respective inputs and outputs

The BRS is sent out to the respective resources. An impact assessment is scheduled and the

various resources come to an agreement on the requirements and risks involved. Once

agreement is obtained and it is confirmed that a FRS is required, the FRS is developed.

Researcher: Who develops the FRS?

Participant 5: The business analyst

Researcher: What happens once the FRS is developed?

Participant 5: Development activities are planned and the development activities are translated

into requirements. A preliminary system design is developed and translated into an SRS.

Researcher: How is the system designed?

Participant 5: The system is designed according to the system functional architecture as

detailed in the BRS and FRS. The design involves detailing the function and performance of the

system, developing the required architecture and defining how the system should be verified.

Firstly, the various elements and subsystems are defined. The design includes the design of the

interfaces between different elements, subsystems and systems. For example, the design

includes investigating how to send the data to SM and other business units as well as

investigating which information is required from the various business units in order to develop

the system as per the requirements. The system is analysed by identifying all interacting

components and systems involved, considering all possible solutions that would address the

problem and determining the system boundary. Alternative design solutions are evaluated

173

based on aspects such as performance, schedule, cost and risk. The best design solution is

selected by developing different models and prototypes of the different solutions and running

trials in order to identify the solution that produces the best outcome.

Researcher: How is the design verified?

Participant 5: It is ensured that the design is simple and understandable by the developers and

end users. Input and review from other resources and the end users are obtained.

Researcher: Provide detail on resources, departments and timelines involved with each

process

Participant 5: The design process takes approximately 2 weeks. The systems analyst, testing

team, project manager, developer and business unit is involved in order to ensure that the

requirements are correct and the design is according to the requirements.

Researcher: What do you perceive to be the problems in the current SDLC?

Participant 5: Often requirements change. You will have designed the system and the business

unit decides that they want to change the requirements.

Researcher: How could the problems be addressed?

Participant 5: I think the business unit should be more involved in the design of the system. I

think the project should be rescheduled when the requirements change significantly. Often the

same project timelines are kept which places everyone under a lot of pressure.

Researcher: What do you perceive are the strengths within the current SDLC?

Participant 5: That requirements are well documented. If requirements are not documented,

mistakes are likely to occur as assumptions are made.

Researcher: I just have a few additional questions to ensure that I am understanding this

correctly. Functional testing involves testing only the functions of the system and is performed

by the test analysts?

Participant 5: Yes, just the functions.

Researcher: Test cases are developed according to the BRS? And it is done by developing

different scenarios of the change?

174

Participant 5: Yes that is correct. They test that for each case the change is tested.

Researcher: Integration is performed by the developer during software coding?

Participant 5: Yes the developer integrates the system and does unit testing. The developer

codes according to the SRS. He can use the FRS if required. The FRS provides extra clarity on

what the business wants related to the system.

Researcher: Do testers just perform functional and regression testing? Where does non-

functional testing fit in?

Participant 5: They perform all system testing during the INT phase. This consists of functional,

regression and structural testing. Performance testing is also performed.

Researcher: How is the SRS and FRS developed?

Participant 5: The FRS contains the functional requirements of the system for example if you

click Q it writes Q. The SRS contains the system requirements for example what the system

must look like and where the function will be placed in the system. It tells you where in the

system the functional changes are going to happen and how. For example the Q button must be

left of the W button. Testers perform integration testing during INT phase. That is known as

functional testing. The testers test whether the functionality is doing what it is supposed to do.

Testers also perform structural testing which is in the SRS.

Researcher: And then last question. The test plans are created from the FRS or BRS?

Participant 5: The testers will look at the BRS and FRS and create test plans from FRS. The

FRS contains the integrated picture of the system.

175

Interview transcript - Participant 6 (Business Analyst)

Researcher: Describe the area you are involved in

Participant 6: I am involved in the development area responsible for implementing change

requests.

Researcher: What is your role and responsibilities?

Participant 6: I am the business analyst responsible for developing the business requirements

into a functional specification that can be used to design and develop the system.

Researcher: Describe the processes involved in your area?

Participant 6: My role stretches from the requirements analysis phase through to the design

phase. During the requirements analysis phase the BRS is submitted by the business unit. The

BRS contains the business requirements. The BRS is assessed by all the resources involved.

During the impact analysis meeting the current environment is assessed and performance,

operational, functional, and interface requirements are formulated, quantified, and refined

according to the business’ needs. All possible solutions are considered so that the best solution

can be reached. The best requirements and solution are selected by comparing it to the

business’ requirements. It is ensured that the requirements are clear, unambiguous, accurate

and complete. The requirements include details on how the problem should be solved (how the

system should be designed), how well the problem should be solved and how the system

should be verified and validated. Security requirements are developed in order to conform to the

Information Security Standards (ISS). Design constraints are defined and clarified. Finally, the

requirements are prioritised and categorised in order to ensure that the critical requirements are

met first should all the requirements not be able to be completed within schedule. The

requirements are subsequently organised from high level to low level requirements in an

understandable and traceable manner.

Researcher: How is the FRS developed?

Participant 6: The FRS is developed by allocating the functional and non-functional

requirements to the different system elements. The system’s functions are decomposed and

requirements are developed for each function. It is important that the FRS is detailed enough in

176

order to construct the system accurately and that it is designed in an orderly manner according

to customer needs and technical capabilities.

Researcher: What happens next?

Participant 6: The FRS is approved by the project team. The system is subsequently

developed.

Researcher: Provide detail on resources, departments and timelines involved with each

process

Participant 6: The requirements analysis phase takes approximately 2-6 weeks depending on

scope and rework. The entire project team, developers, systems and business analysts are

involved.

Researcher: What do you perceive the problems in the current SDLC to be?

Participant 6: I find that the business unit can often not decide on their requirements. They

keep on changing their requirements throughout the development process.

Researcher: How could the problems be addressed?

Participant 6: I guess more detailed analysis of the requirements by the business unit

Researcher: What do you perceive are the strengths within the current SDLC?

Participant 6: A well defined development process by which all the resources can adhere to.

Knowing ones roles and responsibilities with timeliness assigned keeps everyone committed to

reaching the required implementation dates.

Researcher: How are timelines assigned?

Participant 6: There is a time schedule for all the phases of the SDLC which needs to be

adhered to. Task timelines are adjusted as necessary throughout the project.

177

Interview transcript - Participant 7 (Test Analyst)

Researcher: Describe the area you are involved in and your roles and responsibilities?

Participant 7: I am part of the HTQA testing team. We are responsible for testing the system for

any defects and ensuring that the system is aligned with business requirements. I am

responsible for conducting performance, load and compatibility testing.

Researcher: Which phase of the life cycle does this involve?

Participant 7: The testing phase. I am also responsible for maintenance testing which is

performed during the implementation and maintenance phase.

Researcher: Describe the processes involved this area along with their order, inputs and

outputs

Participant 7: The testing phase commences by conducting performance and compatibility

testing. Performance testing measures the performance of the software by performing timing

tests such as response times. It monitors the behaviour of the system by logging the number of

transactions and response times of these transactions. Reports are produced based on the logs

and graphs of these load versus response times. Performance testing tools such as a user

interface or test harness are used to generate realistic loads on the system, database, or

environment in order to determine the behavior of the system. Load testing is performed by

testing a volume of records that is representative of the production environment in order to verify

that the system will be able to handle the volume of records in the actual production

environment. During load testing, aspects such as processing throughput and the number of

connected terminals are tested. Storage testing is performed by testing whether the objectives

for storing are being met. There can be various objectives for storage, for example, a limited

amount of space on the server may be used for certain operations or a limited amount of

customer data may be kept in the data warehouse for certain customer profiles. Storage testing

is usually applicable to embedded software, for example software embedded into the various

data warehouses. Reliability testing is performed in order to determine how reliable the system

is. In other words whether the system has a low probability of failure. Stress testing methods are

used to conduct reliability testing. Stress testing is performed by testing whether a volume of

records that is beyond that found in the production environment can be handled by the system.

This serves as a safety and risk measure to ensure that the system will be able to handle

additional number of records added to the system in a production environment. Once these

178

tests have been concluded, the results are reviewed and sign-off is given to proceed with INT

testing.

Researcher: And maintenance testing?

Participant 7: Once the system has been moved to a production environment, maintenance

and maintenance testing is conducted. Maintenance involves assigning resources to ensure that

the different components and system as a whole is functioning. Maintenance testing is

performed in order to ensure that defects do not occur in the production environment.

Maintenance testing is also performed when changes to the existing system in the production

environment are made. These changes can be due to modifications, migration to new platforms

or retirement of the system. Maintenance testing is conducted on a daily basis in order to

ensure that the system is still functioning according to the requirements. Improvements and

adjustments are continually made where necessary in order to ensure that the system keeps on

working as required. Aspects of sample changes made to the system are tested. It is performed

in order to ensure that the system will be able to operate in the different configurations. Testing

is performed in a representative set of configurations of the production environment.

Configurations refer to the versions of the software. For example, configurations used by the

business unit could be the different versions of the credit scoring system. For example, one

version of the credit scoring system could be used for monitoring and another version could be

used for applications. Portability and interoperability testing also involves testing the

interconnected data paths in the system. This is especially important when a part of the system

has been upgraded as this can now result in conflict with other parts of the system that have not

been changed.

Researcher: Provide detail on resources, departments and timelines involved with each

process

Participant 7: The HTQA test analysts are responsible for conducting testing during the testing

phase. However the results are reviewed by the project manager, project team and business

unit. The entire testing process takes approximately 4-6 weeks however performance and

compatibility testing takes approximately 1 week.

Researcher: What do you perceive to be the problems in the current SDLC?

Participant 7: Poor quality of testing. It often occurs that defects are not picked up when it

should have been picked up. More rework is therefore required.

179

Researcher: During performance and compatibility testing?

Participant 7: No, testing during the INT and QA phases. I have tested the functionality of the

system before and I don’t think it is the most optimal process.

Researcher: How so?

Participant 7: The process is not automated which is very time consuming.

Researcher: How could the problems be addressed?

Participant 7: Automation of all testing processes. Actually all processes if possible.

Researcher: What do you perceive are the strengths within the current SDLC?

Participant 7: Accurate development of specifications and design and development according

to the specifications. The quality of verification however is a problem.

180

Interview transcript - Participant 8 (Test Manager)

Researcher: Describe the area you are involved in along with your role and responsibilities

Participant 8: I am the test manager that oversees system testing. I work in the HTQA

department which is responsible for testing software changes made to the credit scoring logic.

Researcher: Describe the processes involved in this area and their order. In other words, how

is testing in your area performed.

Participant 8: Firstly performance and compatibility testing is performed in order to see if the

system will be able to operate in the production environment and whether it will be able to be

integrated with other system. System testing is subsequently performed. Firstly functional

testing and structural testing is performed. Functional testing tests whether the system is

functioning according the requirements. Structural testing compliments functional testing by

testing the entire architectural flows of logic. Functional and structural testing form part of the

INT or Integration phase.

Researcher: You mean it is where integration testing takes place?

Participant 8: Correct, the system is tested in increments according to the integration order

during system development. Once the results prove to be satisfactory, the system is moved to

the Quality Assurance or QA phase. This is where regression testing takes place. Regression

testing tests the system by ensuring that the software change has not caused unwanted side

effects or defects.

Researcher: What happens if defects are detected?

Participant 8: If any defects are picked up during regression testing, the defects are resolved

with the developer. The test analyst compiles a defects list which is a matrix of defects, showing

the description of the defect, the date the defect was identified and the person the defect is

assigned to.

Researcher: How is regression testing performed?

Participant 8: Regression testing is performed by executing the same test cases or scenarios

as was used during functional testing. Technically regression testing should be performed on

181

real life customer data so that the live system can be accurately represented. Currently only 1

customer profile is created on which the test cases are executed. This will have to be looked at.

Researcher: Regression testing is automated, right?

Participant 8: Correct, it’s automated.

Researcher: What happens once regression testing has proved successful?

Participant 8: The system is moved to the live or production environment. Post Implementation

testing is conducted by the HTQA team in order to ensure that defect do not occur in the live

system.

Researcher: Provide detail on resources, departments and timelines involved with each

process

Participant 8: The testing phase takes 4-6 weeks to complete. This can be reduced by

improving the accuracy of testing.

Researcher: What do you perceive to be the problems in the current SDLC?

Participant 8: As stated, the quality of regression testing. The same problem exists with

functional testing where real life data is not used but instead customer profiles are

manufactured. Only a few customer profiles are created. This does not represent the live

environment accurately. Additionally due to the lack of automated testing during the INT phase.

Approximately 6 testers are required. It has been worked out that the capacity utilisation is over

300%. Unnecessary time is spent on testing.

Researcher: How could the problems be addressed?

Participant 8: This is what I suggest. We extract a sample of approximately 10-15% of

customer account data from the production environment for test cases. Data can be extracted

from the different data warehouses in order to obtain the necessary field information. Obviously

filtering requirements will have to be set up in order to have a variety in spread and selection of

data. This will also assist in achieving the necessary test coverage as well as testing a wider

variety of scenarios. As testing is performed in an uncontrolled environment which means that

the testers will be able to view actual customer data, the data will need to be desensitised and

depersonalised by breaking the link from the production profile to the test data. In other words

remove personal information such as names from the test profile. The customer account data

182

can then be re-matched by means of algorithms when it needs to be sent to the Credit Bureau

to obtain the customers’ credit bureau information. Once again the same logic can be used to

depersonalise the records once it is receive back from the credit bureau. I suggest automating

functional testing by running mathematical algorithms through the entire sample as is done with

unit testing.

Researcher: What do you perceive are the strengths within the current SDLC?

Participant 8: The expertise of our resources. Our resources carry vast amounts of knowledge

and expertise with them. The problem is when they leave. I think experience and knowledge

should perhaps be documented.

183

Interview transcript - Participant 9 (Business Unit Analyst)

Researcher: Describe the area you are involved in and your role and responsibilities?

Participant 9: I am an analyst from one of the business units in the bank. I am involved

throughout the SDLC phases. I represent the business unit and my responsibility is to ensure

that the business unit’s requirements are met throughout the entire software development

process.

Researcher: Describe the processes involved this area, their order, inputs and outputs

Participant 9: Firstly the business unit will analyse their own objectives and develop a

requirements specification known as a BRS that details the business unit’s objectives. The BRS

is subsequently sent to the project manager who will distribute it to the project team. In impact

analysis meeting is scheduled where factors such as technical size, technical complexity,

technical quality, technical value, project duration, project cost and risk are taken into account

and discussed. The resources from the various disciplines and divisions in the SDLC as well as

the business unit representative provide comment, raise concerns, and give their opinions on

how to proceed. The outcome of these meetings are to ensure that all involved understand the

entire system, the trade-offs, the derived problem definition, and that agreement is obtained so

that everyone including the stakeholders will accept the solution. Risk is considered during the

selection of users’ objectives and design. Knowledge regarding the technical aspects of the

system is shared between the project team resources and end users. Successes and

similarities of previous projects and lessons learnt by the different resources are discussed and

taken into account in order to reduce the probability of defects and improve quality and

schedule. Once agreement on the requirements is obtained by all involved the project is sized

and scheduled. The design, development and testing phase follows. The involvement of the

business unit during these phases is to review the design, code and test results. Currently the

design and code is reviewed. User acceptance testing is conducted just before implementing

the system. The objective of user acceptance testing is to allow the business unit to gain

confidence in any aspect of the system, determine whether the system meets their needs, and

determine whether the system is ready to implement. It is performed by the end users instead of

the technical staff because it is often difficult for people from a strong technical background to

know when the users will experience the system as being user-friendly as they might perceive a

more complex system as quite simplistic due to their computer-literate skills.

184

Researcher: How is user acceptance testing performed?

Participant 9: The business unit tests a random selection of data in order to determine whether

the business requirements are met. Any test environment and any test is performed that they

deem necessary. The business unit designs their tests at the same time as developing the

Business Requirement Specification. This helps the business unit to ensure that their

requirements are logical and realistic. Otherwise, the business unit may realize only at the end

of the development process that their requirements are not correct. This will results in

requesting changes very late in the SDLC that can cause schedule, cost, and quality to be

compromised. The business unit develops the specification for acceptance testing at the

beginning of the project. Technically, not many defects should be present at this phase of

testing as most of the defects should have been resolved during functional and regression

testing. Acceptance testing occurs at various phases. For example it is performed after

component testing to ensure that the components are usable and it is performed after system

testing or system integration testing to ensure that the functionality of the system is aligned with

the user specifications. Typical defects found during acceptance testing are mismatches with

business needs and misunderstandings of business processes.

Researcher: Provide detail on resources, departments and timelines involved with each

process.

Participant 9: Timelines are according to the project schedule handed out by the project

manager at the start of the project. Although roles and responsibilities are assigned to

individuals, all resources are encouraged to participate throughout the process.

Researcher: What do you perceive to be the problems in the current SDLC?

Participant 9: Inadequate testing. Problems are usually picked up during user acceptance

testing that should have been picked up earlier in the life cycle.

Researcher: How could the problems be addressed?

Participant 9: By investigating the testing process.

Researcher: What do you perceive are the strengths within the current SDLC?

Participant 9: Good communication between the resources and the project manager.

185

Interview transcript - Participant 10 (Project Manager)

Researcher: Describe the area you are involved in along with your role and responsibilities

Participant 10: I am a project manager responsible for ensuring that the system is designed,

developed and implemented according to the business requirements in the required time.

Project managers are involved throughout the entire SDLC. The project manager estimates the

time, cost, scope and resources according to the specifications and risk. Throughout the SDLC,

the project manager is responsible for planning the project according to the desired timelines

and budget, developing a work breakdown for all resources, ensuring that the duties and

responsibilities of all involved are executed according to the schedule, ensuring that the different

elements, components and interfaces are combined and tested in an efficient way in order to

meet the stakeholders’ requirements, and keeping track of and documenting requirements

changes. The project manager therefore needs to have a thorough understanding of the SDLC,

its complexities, weaknesses, strengths, interdependencies, processes, and the environment in

which the system will operate, and assigning resources accordingly. The project manager also

needs to ensure that stakeholders are kept involved throughout the entire process in order to

ensure that the system is being developed according to their needs. The project manager

identifies, mitigates and resolves risks throughout the SDLC.

Researcher: Describe the processes involved this area, their order, inputs and outputs

Participant 10: System development and testing takes place according to a development

model. The current development process is based upon a V-model design.

Researcher: How is the system developed and tested according to the V model?

Participant10: The lowest level in the V-model is component development and testing.

Researcher: What is a component?

Participant 10: A component is a small piece of software that is one of the building blocks of

the software. A piece of software could be a few lines of code, a small program or database

modules. The component is thus the lowest level item that is testable and is tested in isolation if

possible in order to ensure that it is tested in detail.

Researcher: How is component testing conducted?

186

Participant 10: The purpose of component testing is thus to test the detail of the coded

software. Once the software component has been coded by the developer, the component’s

functionality, structure and interfaces are tested in the development environment. If defects are

detected, they are resolved as soon as they are found by recoding the software. The defects are

recorded as this might assist with detecting and solving defects in other parts of the system.

Once the component has been coded by the developer, component testing is performed by the

quantitative analyst and the developer. The developer is able to find defects and their causes

quickly as he or she understands the logical flow of the code. If component testing were to be

performed by someone other than the developer, this could result in more time spent on testing

as it would take another resource much longer to find the cause of the defects and each defect

would have to be documented, reported and explained to the developer. The developer would

then have to review and analyze the reports and fix them. Before component testing is

performed, the tests are designed by the developer based on the component specifications and

code. Both functional and structural test cases are designed depending on the risks, importance

and complexity involved. The next level of the V-model is integration development and testing.

Researcher: How is this performed?

Participant 10: Integration development and testing is performed by combining components

that have already been tested into larger assemblies so that testing can be performed on the

newly formed assembly. Testing on the assembled part is performed by testing that the

components correctly function together by looking at the interfaces between them. This assists

in detecting defects that weren’t previously detected when the components were tested in

isolation. It can occur that when components are combined, certain aspects of one component

could result in functional failure of another component. For example, although interfaces were

tested during component testing in order to ensure that communication occurred from one side,

integration testing could pick up that the communication between the different interfaces aren’t

working from all sides. The objective of integration testing is thus to test the interactions of the

integrated software part. Integration testing is based upon the software system design,

architecture, and test cases. During integration testing not only is the functionality of the

interfaces tested, but non-functional quality characteristics are also tested such as performance

and structure. It is important to pick up performance and structure issues earlier in the process

as performance and structural changes may occur as more and more parts are assembled.

Resources are planned before integration testing commences. Integration development and

testing is performed at multiple levels of the V-model such as at component development and

187

integration testing and system development and integration testing. Component integration

testing involves testing the interfaces and interactions between components that have been

combined. It is performed just after component testing has been performed by the HTQA testing

team. System integration testing involves testing the interfaces and interactions between

smaller parts of the system, including hardware and software, that have been combined to form

the final bigger meta-system. This is performed just after sub-system testing by the HTQA

testing team. Integrating systems and components can be a complex task when many different

components, systems, interfaces and areas of the organisation are involved. Therefore

integration is done in increments or steps based on the architectural design of the system.

Components are combined into an assembled part and tested. This ensures that the basic parts

are integrated and tested first before continuing to more complex integration. This is followed by

combining the different tested assembled parts and testing it as a new assembled part. This

continues until the entire system has been integrated and tested. Therefore a bigger part of the

system is assembled only when the smaller parts have proved to be working and are trusted.

This process is known as incremental integration. Incremental integration is performed in order

to discover and fix defects easily and at the earliest opportunity but also offers faster and easier

recovery if defects are detected. In order to ensure that integration testing is performed as

efficiently as possible, the testers of the HTQA team are involved as early as possible in the

development of the software. Before integration testing commences, the test analyst determines

the integration strategy by determining how many components need to combined in each step

and the sequence of combining the components. This is done by looking at the architecture,

functional tasks, and processing sequence. The test analysts of the HTQA team prepare test

cases according to the test strategy, prepare the test data, test according to the requirements

and design, compare test results and manage defects. The testing team has a thorough

understanding of the software architecture which assists them in performing integration testing.

The testers first plan the order in which the tests will be integrated. The order in which the actual

components or system is integrated is therefore based on the order of integration testing. This

results in more efficient testing as well as reduced time spent on development.

Researcher: So system testing is performed at all levels?

Participant 10: System development and testing is performed at all stages of the V-model

which combines and tests the system as a whole. System testing is performed by the HTQA

testers on the entire system in a realistic environment.

188

Researcher: How is system testing performed?

Participant 10: System testing involves functional, non-functional and structural testing. Tests

are based upon system and functional specifications. Firstly, functional testing is carried out in

order to ensure that the system is functioning according to the specification. Non-functional and

structural tests are subsequently performed on the system to ensure testing thoroughness. The

environment in which system testing is carried out is realistic and representative of the

production environment in order to ensure that the same factors are taken into account and

therefore environmental defects are avoided. Functional testing tests the behaviour of the

software in order to determine whether it is functioning according to the requirements detailed in

the functional specification that specifies exactly what the system does and how. Test design is

based upon these requirements. The requirements as well as the tests are subsequently

prioritized based on risk. This ensures that the most important and most critical tests are

performed. Non-functional testing tests how the system is performing according to the schedule.

Quantifiable units of measurement are defined in order to determine exactly how well the

system is performing. Testing is always performed according to requirements specifications.

Researcher: Can you provide examples of non-functional testing?

Participant 10: Examples of non-functional testing performed include performance testing, load

testing, stress testing, maintainability testing, reliability testing, portability testing and usability

testing.

Researcher: What happens after the system has been tested?

Participant 10: After system testing has been performed, acceptance testing is performed.

Acceptance testing is the final stage of validation. User acceptance testing is mainly performed

at the end of the development process when the entire system has been integrated. Testing is

performed by the final users of the system in order for them to gain confidence in the system

and to determine whether the system is ready to be transferred to the production environment. It

is therefore the responsibility of the users to ensure that the system is working according to their

initial requirements. After user acceptance testing has been performed and the business unit

has found that the system validates, sign-off is given by the business unit in the form of a mail

stating that the results proved to be satisfactory.

Researcher: What do you perceive to be the problems in the current SDLC?

189

Participant 10: Lack of appropriate documentation on past projects and the current project. It

often occurs that previous steps need to be revisited and one has to investigate what happened.

Documentation is not available in all instances.

Researcher: How could the problems be addressed?

Participant 10: This needs to be incorporated into the standard software development process.

Researcher: What do you perceive are the strengths within the current SDLC?

Participant 10: Testing is performed throughout the SDLC. Each development activity has a

corresponding test activity. Each step in the SDLC is therefore verified and validated. This

prevents picking up problems later in the life cycle when it is more difficult and expensive to fix.

