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Abstract
Woody biomass dynamics are an expression of ecosystem function, yet biomass estimates

do not provide information on the spatial distribution of woody vegetation within the vertical

vegetation subcanopy. We demonstrate the ability of airborne light detection and ranging

(LiDAR) to measure aboveground biomass and subcanopy structure, as an explanatory

tool to unravel vegetation dynamics in structurally heterogeneous landscapes. We sampled

three communal rangelands in Bushbuckridge, South Africa, utilised by rural communities

for fuelwood harvesting. Woody biomass estimates ranged between 9 Mg ha-1 on gabbro

geology sites to 27 Mg ha-1 on granitic geology sites. Despite predictions of woodland de-

pletion due to unsustainable fuelwood extraction in previous studies, biomass in all the com-

munal rangelands increased between 2008 and 2012. Annual biomass productivity

estimates (10–14% p.a.) were higher than previous estimates of 4% and likely a significant

contributor to the previous underestimations of modelled biomass supply. We show that bio-

mass increases are attributable to growth of vegetation <5 m in height, and that, in the high

wood extraction rangeland, 79% of the changes in the vertical vegetation subcanopy are

gains in the 1-3m height class. The higher the wood extraction pressure on the rangelands,

the greater the biomass increases in the low height classes within the subcanopy, likely a

strong resprouting response to intensive harvesting. Yet, fuelwood shortages are still occur-

ring, as evidenced by the losses in the tall tree height class in the high extraction rangeland.

Loss of large trees and gain in subcanopy shrubs could result in a structurally simple land-

scape with reduced functional capacity. This research demonstrates that intensive harvest-

ing can, paradoxically, increase biomass and this has implications for the sustainability of
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ecosystem service provision. The structural implications of biomass increases in communal

rangelands could be misinterpreted as woodland recovery in the absence of three-dimen-

sional, subcanopy information.

Introduction
Woody biomass is a fundamental expression of terrestrial ecosystem functioning, (e.g. primary
productivity, land-atmosphere gas exchange and nutrient regulation), and can be used for the
quantification of ecosystem services, such as fuelwood and carbon sequestration. Biomass dis-
tribution reflects the spatial pattern of topo-edaphic and climatic gradients [1–3] and responses
to disturbance [4–7]. However, biomass estimation remains challenging, particularly in envi-
ronments with highly variable species composition and structural complexity [8–10].

Savannas, as complex tree-grass ecosystems, are structurally heterogeneous and are best de-
scribed by three-dimensional metrics [11]. As such, savannas are ideal for examining the bio-
mass dynamics in structurally complex vegetation. While total precipitation sets the upper
boundaries on woody cover in savannas [12], their ‘woody cover potential’ is often unrealised
[13–14] as a result of disturbances, such as fire [15–19] and herbivory [20–22]. A major driver
in savanna ecosystem structure and function is the influence of people on the landscape
[15,23], particularly through natural resource use, such as fuelwood harvesting [24]. Yet, the
contributions of anthropogenic changes to savanna biomass dynamics are poorly understood.

Millions of people in Africa rely on woody vegetation for energy, extracted from both com-
munal [25–27] and protected areas [28–29]. Within southern Africa, South Africa has a high
per-capita use of fuelwood as a primary energy supply; despite having substantial access to elec-
tricity (66% of national population) [30]. Within this context, 93% of current fuelwood de-
mands are no longer met by collection of dead wood [31]. Thus, live wood harvesting occurs
around settlements and is a major driving force in woodland degradation in semi-arid ecosys-
tems in southern Africa, particularly in the South African Lowveld (low altitude) savannas
[7,24,32]. This is concerning because localised fuelwood scarcity is already being experienced,
and the situation is unlikely to improve in the future [33]. Indeed, localised fuelwood shortages
have facilitated the development of fuelwood markets [34–35], effectively increasing the har-
vestable area and thus the impacts of fuelwood extraction may become less of a localised phe-
nomenon. Despite fuelwood markets contributing to rural livelihoods [34–35], they have the
unfortunate knock-on effect of artificially maintaining perceptions of fuelwood abundance
[36]. Although a depletion of woodland biomass was predicted to occur in Bushbuckridge,
South Africa, by 2011 [24] and more recently, by 2024, at current extraction rates [32], the in-
teractions between socioeconomic and environmental factors driving natural resource use are
complex, non-linear systems that are difficult to quantify [37]. However, the above predictions
do raise the concern that woody vegetation harvesting, driven by increased demand and greater
extraction amounts is unsustainable [38] and reduces the ability of ecosystems to provide eco-
system goods and services, fuelling the link between rural poverty and environmental impover-
ishment [39].

Wood harvesting changes not only biomass, but also vertical stratification of vegetation.
Vertical vegetation complexity has relevance to ecosystem function as canopy height is related
to biomass and productivity [40], biodiversity [41–43] and contributes to structural heteroge-
neity [44]. We submit that a method of understanding and, potentially, improving biomass
change estimations, is to examine the vertical vegetation structure. We believe that by
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observing the interplay between woody biomass change and subcanopy structural change, driv-
ers of biomass dynamics may be revealed.

Vertical subcanopy structure of vegetation canopies, however, cannot be derived from tradi-
tional two-dimensional remote sensing methods and top of canopy cover is a poor predictor of
subcanopy cover [45]; three-dimensional (3-D) field-based efforts are impractical at landscape
scales. Light detection and ranging (LiDAR) is a valuable tool for repeat estimation and moni-
toring of biomass, whilst providing subcanopy information, over large geographic areas and
with fine-scale detail [46]. Repeat LiDAR campaigns have enabled tracking of woody biomass
change as well as variation in the 3-D structure of the vegetation, providing the means to test
previous fuelwood supply-demand model predictions [24,32], and to make inferences about
the sustainability of wood provision under continued wood extraction pressure. The aim of
this research is to utilize the power of airborne LiDAR to assess changes in aboveground bio-
mass and subcanopy structure, as a unique window into unravelling vegetation dynamics in
structurally heterogeneous landscapes.

Methods

Study Site
Permission to conduct fieldwork in the Bushbuckridge communal rangelands was granted by
the local headmen. This study is part of a broad, long-standing relationship with the local com-
munity and the University of the Witwatersrand to conduct ecological research in their com-
munal land. The field studies did not involve endangered or protected species. The study sites
were located within the Bushbuckridge Municipality in the Lowveld region, a semi-arid savan-
na in South Africa. Summer rainfall (October to May) usually falls in convective thunderstorms
and ranges between>900 mm per annum in the west and 500 mm per annum in the east with
an mean annual precipitation (MAP) coefficient of variation of 25%. Summers are hot and
humid with mean daily maxima of 30°C and winters are mild and dry with mean daily maxima
of 23°C. Droughts can be prolonged and may be experienced every ten years. Within the time-
frame of this study (2008–2012), the 2006–2007 and 2007–2008 summer rainfall was below av-
erage and the 2011–2012 was a particularly wet summer. Within seasons, notable rainfall peaks
occurred in April 2010 (4.1-fold more rain than the monthly 8-year average) and January 2012
(2.4-fold higher than the monthly 8-year average).

The terrain is shallowly undulating and the geology is dominated by granite with local Tim-
bavati gabbro intrusions. Classic catenal sequences are common in areas with shallow, sandy,
dystrophic soils on the uplands and deeper, clayey, eutrophic soils on the bottom slopes [7].
The predominant vegetation type is granite lowveld, but the region also contains gabbro grassy
bushveld and legogote sour bushveld [47]. Common plant species on the granite Lowveld up-
lands include: Terminalia sericea, Combretum zeyheri and C. apiculatum; the bottom slopes are
characterised by Acacia nigrescens, Dichrostachys cinerea and Grewia bicolor [47]. Other fre-
quently occurring species are Sclerocarya birrea, Lannea schweinfurthii, Ziziphus mucronata,
Dalbergia melanoxylon, Peltophorum africanum and Pterocarpus rotundifolius. The majority of
the woody biomass in the region is formed from S. birrea, Pterocarpus angolensis and A. nigres-
cens [7].

Bushbuckridge is surrounded by conservation land (both state-owned and private) [48]
which increases the pressure for grazing and harvesting outside of protected areas. An over-
grazing land-use legacy exists from intensively stocked, white-owned cattle farms from 1913
onwards [49]. Apartheid followed in 1948, with the Promotion of Bantu Self-Government Act
of 1959, which forced black South Africans to live in ‘homelands’ [49]—centralised settlements
on farms of 1000–2000 ha. Bushbuckridge Municipality was formed from the joining of Mhala
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in Gazankulu and Mpulaneng in Lebowa [2], with settlement boundaries defined by the old ca-
dastral borders of the historical cattle ranches [50]. Although Bushbuckridge falls under state
control, there is customary communal land tenure controlled by headmen who zone the land
into residential, arable and communal areas for grazing of livestock and collection of timber
and non-timber products (e.g. thatch, fruit, medicine) [51]. The settlements range from small,
isolated villages to larger, dense settlements along major roads [33]. Human population density
sharply increased between 1972 and 1994 to approximately 300 people/km2 [49] but these
growth rates have declined over the past ten years [35]. Commensurate with human population
growth in the area, the spatial footprint of the residential regions has expanded [37,52]. A fore-
boding of this decline was an observed reduction in the size-class distribution of the woodland
vegetation with increasing distance from certain settlements [53].

Within Bushbuckridge, three communal rangelands were chosen to represent different lev-
els of natural resource utilisation. These rangelands are zoned for use by the following villages:
Justicia; Croquetlawn, Ireagh and Kildare; Xanthia and Agincourt (Fig 1). The rangelands were
classified according to the relative wood extraction pressure assessed using 2008 data on the
number of people and households accessing a given rangeland and relative to this correspond-
ing rangeland area: high (9.2 people ha-1, 1.56 households ha-1; using 2155 ha of rangeland); in-
termediate (1.8 people ha-1, 0.35 households ha-1; using 1815 ha of rangeland); and low (0.21
people ha-1, 0.04 households ha-1; using 4425 ha of rangeland) (see [53] for detailed demo-
graphic data). Although each rangeland is used by its corresponding settlements, use is not ex-
clusive to these villages and foreigners (both local and cross-border immigrants) are known to
harvest from these areas [38]. The intermediate-use intensity rangeland (Justicia) is the only
example of exclusive access, as it is fenced on two sides by private conservation land and its lo-
cation makes it more difficult to access from other villages [32].

Field-derived biomass estimates
All field data were collected concurrently with the airborne LiDAR campaigns in April 2012.
Field-plots (total n = 56; high extraction site n = 16; intermediate extraction site n = 20; low ex-
traction site n = 20) of 25 m x 25 m were established within the extent of the communal range-
lands LiDAR coverage, and their locations recorded with a differential Global Positioning
System (Trimble GeoXH Handheld GPS). All heights and basal stem diameters on stems
thicker than 5 cm on trees taller than 1.5 m in height were recorded. A ‘tree’may refer to a sin-
gle-stemmed or multi-stemmed individual derived from the same rootstock, whilst ‘stem’ re-
fers to the all branches derived from a single point on the ground. These height and basal stem
diameter field data were used to estimate field biomass using allometric relationships from Col-
gan et al. [9], an extensive harvesting study with the same woody species composition as Bush-
buckridge, in the form:

m ¼ 0:109Dð1:39þ0:14 lnðDÞÞH0:73r0:80

wherem is dry aboveground stem mass (kg), D is stem diameter (cm), H is height (m) and ρ is
a unitless wood-specific gravity constant. The individual stem masses where then summed
within each 25 m x 25 m plot to obtain plot-level field biomass, reported in Mg ha-1.

Light detection and ranging (LiDAR) data
The communal rangelands were surveyed with airborne laser mapping as part of a Carnegie
Airborne Observatory (http://cao.ciw.edu/) campaign in April 2008 and April 2012, concur-
rently with the collected fieldwork data in 2012. Small footprint, discrete-return LiDAR is a re-
mote sensing method which estimates 3-D vegetation structure over large areas. The 2008
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LiDAR data were collected from 2 000 m a.s.l. with the CAO-Alpha system with a laser pulse
repetition frequency of 50 kHz and laser spot spacing of 1.1 m (see [54]); the 2012 data were
collected with CAO-2 AToMS with a laser pulse repetition of 100 kHz and laser spot spacing of
1m (see [55]). The LiDAR system also provides accurate geo-locational information generated
by a high performance inertial management unit (IMU) and global positioning system (GPS)
[54]. The LiDAR product is a 3-D point cloud from which a canopy height model (CHM) was
constructed from the difference between the digital terrain model (DTM, interpolated from the
last LiDAR returns) and the digital surface model (DSM, interpolated from the first LiDAR re-
turns). Spatial errors on the more coarse of the two products (2008 data) were<0.20 m verti-
cally and<0.36m horizontally [54]. Although different sensors and processing methods were
used for the 2008 and 2012 data, errors between corresponding DTM’S were<15cm.

Volumetric pixels (voxels) are formed by aggregating LiDAR laser returns into 1 m height
classes [56]. The position of each voxel is taken from the voxel centroid relative to the ground.
LiDAR return frequency, within each voxel, are reported as a percentage relative to the total
number of LiDAR points in the complete vertical column, including the ground returns. These
data are used to quantify subcanopy (i.e. vegetation beneath the canopy cover) structure.

Fig 1. Study sites in Bushbuckridgemunicipality, located in the South African Lowveld. Sites are classified (from west to east) as low, high and
intermediate wood extraction pressure based on the number of households and people utilising each rangeland. Settlements that utilise each rangeland are
shown, including the names of the major settlements, as well as the location of the gabbro intrusions in the predominantly granitic landscape.

doi:10.1371/journal.pone.0127093.g001
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LiDAR-derived biomass estimates
LiDAR-derived metrics of woody vegetation can be used to estimate allometric relationships
and infer biomass [2,8,9,32,57–58]. We derived a biomass regression model according to previ-
ously established methods by correlating the plot-level field-allometry and a corresponding
LiDAR-derived H x CC (height x canopy cover) predictor metric calculated for each 25 m x
25 m grid cell created to correspond to the 25 m x 25 m field plots; H is plot-averaged (mean
pixel height values>1.5 m) and CC is the proportion of canopy cover per plot (proportion of
pixels>1.5 m in height). Both values were extracted from the CHM (see [9] for details). The H
x CC metric is not only ecologically meaningful as it is an approximation of wood volume, but
it also gives the best results over more complex metrics [2]. The height mask (>1.5 m) was
used to account for the possibility of ground and tall grass being misclassified as vegetation.
The LiDAR-derived predictor metrics were trained against field-derived biomass for each
rangeland as they all exhibit different vegetation structural patterns, resulting from variable
rainfall, different geologies and wood extraction pressures. Not only were these site-specific
models able to explain more variation than one general equation; they were also deemed more
ecologically valid. Biomass maps were then created by applying the site-specific biomass mod-
els to the LiDAR CHM extent (masked at heights>1.5 m) for each rangeland for both 2008
and 2012. Only grid cells that fit the criteria of an average height of>1.5 m (once pixels of
<1.5 m were excluded) were used to estimate biomass as this is the vegetation that the field-
work included. However, the cells that matched these criteria varied in both number and spa-
tial location between 2008 and 2012. For the purposes of biomass change detection, only those
cells that met the average height criteria for both years in the same location were considered.
Riparian areas adjacent to streams in the rangelands were excluded from the biomass maps
as they require separate calibration [2]. Similarly, cultivated fields and built-up areas were
excluded.

LiDAR-derived subcanopy analysis
The voxel data (5 m x 5 m x 1 m) were resampled to 25 m x 25 m x 1 m, making the data com-
parable to the biomass grid cell sizes, and stacked into the following ecologically relevant, verti-
cal height classes: 1–3 m (shrubs and small trees in the ‘fire trap’ [16]); 3–5 m (trees in the
‘elephant trap’ [22]); 5–10 m (tall trees contribute to structural diversity and thus to ecosystem
function [59]);>10 m (very tall trees, ‘keystone structures’ [60], are often culturally important
trees conserved in the rangelands [61]). These data were used to detect changes in the distribu-
tion of the vegetation size classes within the vertical vegetation column. “LiDAR returns” refers
the percentage of laser pulses that were emitted from the sensor, hit an object and returned to
the sensor. In the results, “Total % LiDAR returns” refers to the returns for the full vegetation
column—excluding the ground returns. “% Subcanopy returns” refers to the LiDAR hits within
a particular height category. Higher subcanopy returns implies greater density of vegetation in
that height class.

Data extraction and analysis
Features of the settlements (e.g. roads, villages, crop fields) and rivers were manually digitised
using a combination of SPOT 5 imagery (panchromatic-multispectral merge (480–890 nm),
2.5 m spatial resolution, www.spotimage.com) and aerial photographs (50 cm resolution, www.
ngi.gov.za). Biomass estimates were extracted from the maximum number of randomly distrib-
uted points with a minimum enforced distance of 50 m to avoid spatial autocorrelation, based
on the results of semivariograms (calculated in ENVI v4.7). All data were analysed in R v3.0 (R
Core Team), including descriptive statistics, linear regression models and correlations. Biomass
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estimates were tested with Shapiro-Wilk Normality tests from the “fBasics” package and all
sites in both 2008 and 2012 were found to be non-normally distributed (p< 0.001). Thus, a
non-parametric Wilcoxon rank sum test was used to analyse differences between means over
time within sites.

Results

Biomass models
A strong relationship existed between the field allometry and LiDAR metrics, although the
highly heterogeneous rangeland resulted in high root mean square error (RMSE) values in
both high and low use sites on granitic substrates (18.6 and 19.1 Mg ha-1, respectively)
(Table 1). The increase in variability with increase in biomass indicated (S1 Fig) less agreement
between the field allometry and LiDAR metrics at higher biomass values. This is a common
phenomenon, termed ‘heteroskedasticity’, of model performance at higher biomass levels
where the error variance is not consistent over all the observations [62]. Most typically, model-
ling the error structure shows a fanning pattern of increasing variance with increasing biomass
[62], and this is true of the residual structure for both the high and low wood extraction sites
(S1 Fig).

Biomass dynamics
Mean biomass (± SD) in 2008 at the high, intermediate and low extraction sites was:
26.99 ± 16.43 Mg ha-1 (n = 102 cells), 9.42 ± 4.13 Mg ha-1 (n = 291 cells), and 21.18 ± 12.04 Mg
ha-1 (n = 1654 cells), respectively. Biomass increased significantly at all sites between 2008 and
2012 by an average 18.38 Mg ha-1 (highest use site: W = 3036, p<0.001), 5.45 Mg ha-1 (interme-
diate use site: W = 16780, p<0.001), and 11.34 Mg ha-1 (low use site: W = 771641, p<0.001)
(Table 2).

Variability increased with increased biomass, particularly in the high and low extraction
pressure sites (Table 2). Represented as a rate of biomass change, the mean annual woody bio-
mass productivity (± 95% spatial confidence interval) translates to 14 ± 1.39% p.a, 12 ± 0.08%
p.a. and 11 ± 0.00% p.a for the high, intermediate and low wood extraction sites, respectively.
These increases were despite ongoing wood harvesting in these rangelands. Relative to the
starting biomass, all mean increases were greater than 50% (Table 2). Extreme biomass in-
creases were related to large changes in relative height (Fig 2) and relative canopy cover (e.g.
>50% increase in canopy cover results in biomass increases of>20 Mg ha-1, Fig 3). However,
the extreme biomass changes (i,e.>40 Mg ha-1) predominantly occurred in the 1–3 m height
class (Fig 2A and Fig 3A). Biomass increases of>40 Mg ha-1 did not occur in height classes
>5 m (Fig 2C and Fig 3C). The largest increases in biomass occur in the high wood extraction
site when compared with the same increases in relative height (Fig 2A and 2B) and canopy

Table 1. Site-specific biomassmodels derived from field allometry and LiDARmetric linear regression.

Extraction pressure Model R2 n RMSE (Mg ha-1)

high y = 2312.3x - 157.14 0.78 16 18.6

intermediate y = 409.57x + 252.74 0.60 20 4.8

low y = 913.9x + 127.86 0.68 20 19.1

In the model equations, y refers to the plot-level (25 m x 25 m) biomass estimate (kg/625 m2) and x to the LiDAR-derived H x CC predictor metrics, where

H is plot-averaged height (> 1.5 m) and CC is the proportion of canopy cover (> 1.5 m in height) per plot. Root mean square error (RMSE) was reported in

Mg ha-1 for ease of interpretation and n is number of 25 m x 25 m plots.

doi:10.1371/journal.pone.0127093.t001
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cover (Fig 3A and 3B) in the other rangelands. There are no data for the high extraction site for
the 5-10m height class as there are no grid cells with an average height>5 m in this rangeland
(Fig 2C and Fig 3C).

Vegetation structural dynamics
Total % canopy returns increased between 2008 and 2012 in all rangelands, but up to 79% of
the total change in canopy returns was attributable to the increase in the 1–3 m height category
within the subcanopy (Fig 4). Losses in subcanopy returns were only found in the high wood
extraction rangeland, and only in the 5–10 m height class (Fig 4A). There was little contribu-
tion to total change in % subcanopy returns from the>10 m height class (Fig 4). Although the
high and low extraction rangelands had fairly similar overall increases in % total canopy re-
turns, this was not the case with relative change (from 2008), where the highest extraction site
was far greater (e.g. relative canopy returns for height class 1–3 m: 425%, 387% and 90% for
high, intermediate and low extraction, respectively). Thus, the order of relative change in %
canopy returns followed the gradient of wood extraction levels at the different sites.

Another indicator of shrub level increase in the rangelands is the change in the number of
cells that remained after an average height mask was applied (i.e. that fulfilled the average
height criteria threshold to be included in the biomass analysis), expressed as a percentage of
each rangeland. The high extraction rangeland changed from 10% of the rangeland that met
the average height (>1.5 m) criteria mask in 2008 to 15.9% of the rangeland in 2012 (χ21 =
107.6; p<0.001); the intermediate use site doubled in the percentage of rangeland that met the
average height criteria from 8.5% to 17.4% (χ21 = 780.8; p<0.001); and the low use rangeland
increased from 54.2% in 2008 to 63.8% of the rangeland in 2012 (χ21 = 220.7; p<0.001).

Association between biomass change and vegetation subcanopy
returns
There was a positive correlation between change in biomass and change in % subcanopy returns
(Fig 5); particularly in the 1–3 m height class in the high extraction sites (high extraction:
r = 0.22, p<0.0001; intermediate extraction: r = 0.58, p<0.0001) and the 3–5 m height class
(high extraction: r = 0.62, p<0.0001; intermediate extraction: r = 0.64, p<0.0001; low extraction:
r = 0.56, p<0.0001). Although this relationship was also present in the 5–10 m height class at all
extraction levels (r>0.31), it degraded at heights>10 m (r< 0.10) (Fig 5). It is interesting to
note that the strength of the relationship between change in biomass and change in % subcanopy
returns across all height categories was strongest at the intermediate wood extraction site (Fig 5).

Changes in biomass and height-specific subcanopy returns were spatially associated (S2
Fig). However, these changes were more apparent at<5 m (S2 Fig). Almost no change in %
subcanopy return for vegetation>10 m is evident (S2 Fig). The same biomass values for a

Table 2. Mean biomass increase (Mg ha-1) at sites under varying wood extraction pressures.

Extraction pressure

High (n = 102) Intermediate (n = 291) Low (n = 1654)

2008 (mean ± S.D.) 26.99 ± 16.43 9.42 ± 4.13 21.18 ± 12.04

2012 (mean ± S.D.) 45.37 ± 28.37 14.87 ± 6.76 32.52 ± 17.60

Absolute increase +18.38 +5.45 +11.34

Relative increase (%) +68.08 +57.80 +53.57

n is the number of 25 m x 25 m grid cells in each rangeland.

doi:10.1371/journal.pone.0127093.t002
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Fig 2. Height-specific biomass change as a function of relative height change per grid cell. Height categories are a) 1–3 m, b) 3–5 m and c) 5–10 m for
rangelands of high, intermediate and low wood extraction pressure. There were no data for the 5–10 m height class in the high wood extraction rangeland
and the >10 m height class for all rangelands as there were no grid cells with an average height over 10 m. Grid cell size: 25 m x 25 m.

doi:10.1371/journal.pone.0127093.g002
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Fig 3. Height-specific biomass change as a function of relative change in canopy cover per grid cell. Height categories are a) 1–3 m, b) 3–5 m and c)
5–10 m for rangelands of high, intermediate and low wood extraction pressure. There were no data for the 5–10 m height class in the high wood extraction
rangeland and the >10 m height class for all rangelands as there were no grid cells with an average height over 10 m. Grid cell size: 25 m x 25 m.

doi:10.1371/journal.pone.0127093.g003
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given grid cell can manifest as different structural profiles. As such, structural profiles could
change in different ways whilst maintaining the same overall biomass value outcome. For ex-
ample, if the site was dominated by grasses with several trees>5 m, that site could, theoretical-
ly, show no change in biomass value by 2012, but the structural profile may have changed to
predominant shrub cover and fewer tall trees.

Fig 4. Height-specific subcanopy returns (%) (mean ± standard deviation) for 2008 and 2012.Wood extraction levels are: a) high (n = 102 cells), b)
intermediate (n = 291 cells), and c) low wood extraction (n = 1654 cells). Contribution of height class change (subcanopy returns) to total change (total
vegetation column) (%) is the black bar represented by values on the secondary axis. e.g. In the high wood extraction rangeland, 79% of the change in the
total vegetation column was attributable to the 1–3 m height class.

doi:10.1371/journal.pone.0127093.g004

Fig 5. Height-specific correlation (p < 0.001) between change in biomass (%) and subcanopy returns (%).Wood extraction levels for each rangeland
are listed per column as high, intermediate and low.

doi:10.1371/journal.pone.0127093.g005
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Discussion
Large increases in biomass at all sites (Table 2) are in contradiction to previous fuelwood sup-
ply-demand models which predicted biomass depletion [24,32,63]. Biomass increases in Bush-
buckridge rangelands were attributable (>80%) to vegetation in the 1–3 m height class within
the subcanopy (Fig 4), with extreme biomass gains (>20 Mg ha-1) associated with vegetation
that gained>25% in height (Fig 2A) or>50% in canopy cover (Fig 3A). This agrees with an ob-
served increase in the number of thinner, taller stems within Bushbuckridge rangelands [35]
and more grid cells meeting the average height criteria in each of the rangelands between 2008
and 2012. These low height class increases probably reflect local-scale dynamics of harvesting—
more harvesting drives coppicing (resprouting from the stem or roots) in the intermediate and
high extraction sites (Fig 2A and Fig 3A)—but the relationship appears more pronounced in the
intermediate site as less of the coppice is harvested. It is likely that wood harvesting is acting as a
‘bush thinning’mechanism, changing the size specific growth rates, particularly in resprouting
from stumps with fully-developed root systems [64]. Indeed, thick stands of small-stemmed
trees can yield more woody biomass than a few, large trees as a result of divergent, size-specific
growth rates [65]. However, low height class increases in biomass could also be a result of newly
established bush encroachers which characteristically invade overgrazed and degraded range-
lands [66–68]. Biomass estimations for different height classes in a savanna woodland reveal,
collectively, greater biomass quantities are located below 4.5 m in height than above; a disparity
more prominent immediately after a disturbance [69]. Harvesting has been found to increase
the density of smaller stems without changing the height structure of the woodland [70]. Unfor-
tunately, there is a dearth of data on the preferred height of harvested species, only preferred di-
ameter size which ranges, location dependent, between 2–6.5 cm [26,36]. There are records of
stems>1 cm being taken, with preference for those>4 cm and almost no stems harvested>20
cm [71]. Extrapolating 1 cm and 5 cm diameter size into available coppice diameter-height al-
lometry relationships [72] suggests pre-harvested heights of 0.74 m and 2.92 m inDichrostachys
cinerea, 0.63 m and 2.07 m in Acacia harveyi, and 0.77 m and 2.44 m for Combretum collinum,
respectively. Although the relationship between harvested stem diameters and regrowth shoot
length is variable, we can infer that stems harvested for fuelwood are generally<3 m. Therefore,
preferred ‘harvesting heights’ coincide with height class with the most subcanopy gains (Fig 4).

Subcanopy biomass increases at low heights in a rangeland context are likely a combination
of woody regrowth-response (harvesting effects) [71–74] and bush encroachment (overgrazing
effects) [15,75–76], here collectively referred to as ‘bush thickening’. However, these are not
mutually exclusive events and can occur together. Low height-class increases occur in Bush-
buckridge both as standalone shrubs as well as occurring underneath the canopies of tall trees
[45]. Resprouting rates and the subsequent influence on communal rangeland dynamics have
been underestimated in the earlier research in this region [77]. Although the Wessels et al. [32]
supply-demand model did include resprouting estimates of 89 kg ha-1 yr-1 which is significant-
ly higher than the 20 kg ha-1 yr-1 that the Banks et al. [24] model used; these rates are only
from one species, T. sericea, and thus, may underestimate the growth rates for the other pre-
dominant coppicing species, e.g. D. cinerea. Previous data suggest that even during a poor rain-
fall period, in just five months there was coppice of 989 kg ha-1 (6.6% of the total post-harvest
biomass) and harvested trees recovered two thirds of their preharvest biomass, with no har-
vest-induced mortality [71]. T. sericea coppice shoots from established stumps gained between
1–2 m in height over 3 years [78], whilst coppice stands in Malawi and Kenya gained 3m [79]
and 2m [80], respectively, over 4 years. This is evident in the annual productivity suggested by
the LiDAR-derived estimates of well over 10% p.a. (especially when we consider that this is
over and above the biomass removed for wood energy) which exceeds the previous woodland
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productivity value of 4% [24,32,81]. The disparity in the growth rates is likely a result of higher
productivity in the low height classes [69] and a significant contributor to the Wessels et al.
[32] underestimation of biomass production rate. Growth rates could also have been affected
by the drier than normal conditions in 2007 and, likewise, the high rainfall in 2010 and early
2012. As data collection was subsequent to these events, it is likely that biomass estimates
were affected.

Although lower height classes within the subcanopy showed increases across all wood ex-
traction sites (Fig 4), this was not true for subcanopy returns in the 5–10 m class in the high
wood extraction site (Fig 4A). Large, fruiting trees are normally conserved by villagers as they
are used for a variety of non-timber uses [82–83]. Despite cultural practices against live-wood
harvesting of large fruiting trees, villagers acknowledge that they do cut trees, like marula
(Sclerocarya birrea), as they feel they have no alternatives in the face of high electricity prices
and localised shortages of fuelwood [83]. We observed several felled and pollarded marula
trees in the highest wood extraction site and can assume, together with the lack of data for grid
cells of average height>5m (Fig 2C and Fig 3C), that the loss of vegetation returns in the 5–10
m height class reflects a localised lack of fuelwood of sufficient quality and quantity in this
rangeland. The reduced number of tall trees and abundance of short subcanopy vegetation in
the high use rangeland results in a more homogeneous stand structure (Fig 4A), a possible ex-
planation for the stronger relationship between field and LiDAR data in this site (Table 1).
Most fuelwood supply-demand models that predicted loss of biomass are not spatially explicit
and did not capture the fine scale variation at village level [84–85] or the mismatch between
the spatial variability in fuelwood supply relative to centres of demand [35], especially consid-
ering vehicles are increasingly being used to transport larger amounts of wood from more dis-
tant locations [39,86]. Yet, the Wessels et al. [32] fuelwood model focused on one “best-case
scenario” communal rangeland, exclusively utilised by one village and still predicted losses.
However, fuelwood demand is not a linear system and people’s responses to changes in their
socio-economic and natural resource environment are complex and difficult to quantify [37];
consequently, the community’s adaptive responses are not incorporated in these models. Glob-
al and national studies highlight the lack of adaptive capacity of people in the developing world
[37,87–88]; however, the strategies people adopt on local and regional scales often reveal sur-
prising resourcefulness in response to change [89–91]. Within the fuelwood context in Bush-
buckridge and elsewhere in Africa, responses to localised fuelwood shortages have included:
changes in the preferred size class of fuelwood [29,35,86]; switching preferred fuelwood species
[25,33,91]; more frequent trips or more time spent per trip to collect fuelwood [31,92]; travel-
ling further from home [37]; use of wheelbarrows and vehicles to collect more wood per trip
[33,38,86,93]; development of fuelwood markets [33,36]; and collecting from neighbouring pri-
vate land [35]. Socio-economic factors also play a role in fuelwood demand dynamics. High de-
pendence on government social grants and migrant worker remittances is characteristic of
rural areas [33,94–95]; changes in these economic flows will affect household cash flow and,
thus, alter household-level demand for natural resources. These adaptive strategies and socio-
economic factors are difficult to capture in a supply-demand models and are a contributing
cause to the disparity between predicted and measured biomass in communal rangelands.

Biomass values range between 9 Mg ha-1 (on gabbro) to 27 Mg ha-1 (on granite) which is
comparable to the range for field-based allometry studies in the greater Bushbuckridge area
(18.9–23.1 Mg ha-1) [7], and the LiDAR-estimates for the conserved Lowveld region (11.9–92.3
Mg ha-1) [2]. The intermediate wood extraction site has had previous estimates of LiDAR-de-
rived biomass for 2008 of 12 Mg ha-1 [32], but this used allometry from Nickless et al. [96] and
field–LiDAR biomass regression relationships derived from the regional landscape. Most stud-
ies on allometry have focused on temperate zone and deciduous forests (e.g. [58,97–98]) or
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tropical forest monitoring (e.g. [8,99–101]). Very few have focused on savanna systems (e.g.
[2,4,96]). Both Chave et al. [8] and Colgan et al. [9] stress the importance of allometric equa-
tion choice on error as even field-allometry had 16% RSE (Residual Standard Error); these er-
rors often compound with averaging. Although Colgan et al.’s [9] plot-averaged LiDAR-
derived biomass estimates had 9% more relative error (difference between predicted and mea-
sured biomass) than field-harvested biomass, the bias (mean error) was only -3% (compare to
Nickless et al. [96] allometry with 15% more relative error and 50% bias) [9]. Our study also ex-
cluded all cells that were below 1.5 m in average height in both 2008 and 2012, cutting out a
large proportion of the area relative to the portion used in Wessels et al.’s [32] study. Although
our biomass model has fewer field-calibration sites than the Wessels et al. [32] study, our cali-
bration sites were specific only to the area the biomass models were applied to.

While we are confident that our biomass estimates are reflecting a true increase, the short-
comings of using this method have the potential to exaggerate increases, particularly error in
canopy cover measurements over time. This is of concern when considering leaf area index
(LAI) in LiDAR change detection metrics, as both the voxel and the CHM data may be influ-
enced, affecting the biomass estimates as well as the subcanopy LiDAR returns. Although this
was controlled for as much as possible by collecting the LiDAR data in the same month each
campaign, LAI varies with phenology and with local climatic changes, such as differential rain-
fall between years, or heavy winds [102]. The relatively high predictive uncertainty (RMSE
range: 4.8–19.1 Mg ha-1) in the biomass models occur in the high and low wood extraction
rangelands, both of which are situated on granitic geology (Fig 1) which are more heteroge-
neous in both topographic relief and stand structure, as well as in the resultant biomass
(Table 1). In landscape-scale approximations of biomass, errors are introduced and often prop-
agated. The assumption is that individual plant measurement errors will average out over the
plot level, provided the plots are large enough and the measurement process is unbiased. There
is also an effect of plot size on error; increasing plot size increases the predictive power of the
model [10]. However, there is a trade-off between the cost and logistic realities of sampling
large plots and the need to sample a large number of plots, as plot number also affects land-
scape-scale error [9]. Although relative uncertainty in the biomass models was high and may
have been reduced by object based image analysis (OBIA) methods applied to single tree
crowns to counter vertical structural heterogeneity errors, plot-level averaging methods have a
positive trade-off in their simplicity and their ability to average out within-plot variation, par-
ticularly the horizontal canopy cover heterogeneity characteristic of savannas.

Conclusions
Savanna-based biomass studies have considerable scope to rectifying the underestimation of
carbon sinks and sources, elucidating the woody encroachment problem in savannas and un-
tangling the interactions between bush encroachment/thickening and wood extraction by rural
communities. Without high resolution, 3-D vegetation data covering a large area, the land-
scape-scale increases in biomass over the Bushbuckridge rangelands could erroneously be in-
terpreted as woodlands recovering to an “unaltered” state. Users of two-dimensional,
remotely-sensed biomass estimates should remain aware of structural implications in the land-
scape to make informed conclusions on vegetation dynamics, particularly in the context of in-
creasing savanna bush encroachment in a CO2 rich environment [103–104]. Indeed, it is the
low height class vegetation within the subcanopy which determines future woodland structure.
Moreover, most carbon cycle studies in Africa neglect domestic emissions from wood harvest-
ing [105] despite knowing the contribution of deforestation and land degradation to carbon dy-
namics [106]; a recent carbon model has demonstrated the importance of vegetation increases
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in the southern hemisphere’s semi-arid regions to terrestrial carbon sinks [107]. The repercus-
sions of bush thickening in communal rangelands will have implications for the direct-use val-
ues of ecosystem goods and will affect household vulnerability to shocks [39]. Our research
suggests that wood harvesting can, paradoxically, exacerbate bush thickening as many of the
harvested savanna species have strong regenerative responses [71–72,79–80,108–109]. Not
only is coppice an important survival strategy for regenerating woodlands, the resprouted
stems may provide a valuable source of future harvestable biomass [74,78,110–112]. There is,
however, little information on regrowth rates and response to continued harvesting as well as
whether the coppice is of appropriate quality for fuelwood.

Supporting Information
S1 Dataset. Biomass model data. Data include 2012 LiDAR-derived average height and cano-
py cover extraction metrics, as well as field-work based allometry. Each line item is per 25 m x
25 m grid cell. Metadata are included in the dataset.
(XLSX)

S2 Dataset. Biomass and subcanopy data. Data include 2008 and 2012 biomass estimates de-
rived from biomass models as well as % subcanopy returns for voxel data for the height class
categories: 1-3m, 3-5m, 5-10m and>10m. Each line item is per 25 m x 25 m grid cell. Data are
organized per land extraction category into separate worksheets. Metadata are included in
the dataset.
(XLSX)

S3 Dataset. Biomass changes (Mg ha-1) in relation to relative height and canopy cover
change. Data include biomass change estimates (2008–2012), percentage height and canopy
cover changes for each 25 m x 25 m grid cell. Each height class (relative to height in 2008) are
shown on separate worksheets. Metadata are included in the dataset.
(XLSX)

S1 Fig. Site-specific biomass model residuals. The residual spread demonstrates heteroske-
dasticity with increasing biomass fitted values for rangelands with a) high, b) intermediate and
c) low extraction pressure.
(TIFF)

S2 Fig. Biomass changes (%) relative to height-specific change in subcanopy returns (%).
Height categories are: 1–3 m, 3–5 m, 5–10 m and>10 m.
(TIF)
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