
An online adaptive learning algorithm
for optimal trade execution in

high-frequency markets

Author:

Dieter Hendricks

Supervisors:

Prof. Diane Wilcox

Dr. Tim Gebbie

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Faculty of Science

School of Computer Science and Applied Mathematics

University of the Witwatersrand

October 2016

The financial assistance of the National Research Foundation (NRF) towards this research is

hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author

and are not necessarily attributed to the NRF.

Declaration of Authorship

I, Dieter Hendricks, declare that this thesis titled, ’An online adaptive learning algo-

rithm for optimal trade execution in high-frequency markets’ and the work presented in

it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

Far better an approximate answer to the right question, which is often vague, than the

exact answer to the wrong question, which can always be made precise.

John Tukey, 1962.

UNIVERSITY OF THE WITWATERSRAND

Abstract

Faculty of Science

School of Computer Science and Applied Mathematics

Doctor of Philosophy

An online adaptive learning algorithm for optimal trade execution in

high-frequency markets

by Dieter Hendricks

Automated algorithmic trade execution is a central problem in modern financial mar-

kets, however finding and navigating optimal trajectories in this system is a non-trivial

task. Many authors have developed exact analytical solutions by making simplifying

assumptions regarding governing dynamics, however for practical feasibility and robust-

ness, a more dynamic approach is needed to capture the spatial and temporal system

complexity and adapt as intraday regimes change.

This thesis aims to consolidate four key ideas: 1) the financial market as a complex

adaptive system, where purposeful agents with varying system visibility collectively and

simultaneously create and perceive their environment as they interact with it; 2) spin

glass models as a tractable formalism to model phenomena in this complex system; 3) the

multivariate Hawkes process as a candidate governing process for limit order book events;

and 4) reinforcement learning as a framework for online, adaptive learning. Combined

with the data and computational challenges of developing an efficient, machine-scale

trading algorithm, we present a feasible scheme which systematically encodes these ideas.

We first determine the efficacy of the proposed learning framework, under the conjecture

of approximate Markovian dynamics in the equity market. We find that a simple lookup

table Q-learning algorithm, with discrete state attributes and discrete actions, is able

to improve post-trade implementation shortfall by adapting a typical static arrival-price

volume trajectory with respect to prevailing market microstructure features streaming

from the limit order book.

To enumerate a scale-specific state space whilst avoiding the curse of dimensionality, we

propose a novel approach to detect the intraday temporal financial market state at each

decision point in the Q-learning algorithm, inspired by the complex adaptive system

paradigm. A physical analogy to the ferromagnetic Potts model at thermal equilibrium

is used to develop a high-speed maximum likelihood clustering algorithm, appropriate

for measuring critical or near-critical temporal states in the financial system. State

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

features are studied to extract time-scale-specific state signature vectors, which serve as

low-dimensional state descriptors and enable online state detection.

To assess the impact of agent interactions on the system, a multivariate Hawkes process is

used to measure the resiliency of the limit order book with respect to liquidity-demand

events of varying size. By studying the branching ratios associated with key quote

replenishment intensities following trades, we ensure that the limit order book is expected

to be resilient with respect to the maximum permissible trade executed by the agent.

Finally we present a feasible scheme for unsupervised state discovery, state detection

and online learning for high-frequency quantitative trading agents faced with a multi-

featured, asynchronous market data feed. We provide a technique for enumerating the

state space at the scale at which the agent interacts with the system, incorporating the

effects of a live trading agent on limit order book dynamics into the market data feed,

and hence the perceived state evolution.

Acknowledgements

I would like to firstly thank Prof. Diane Wilcox and Dr. Tim Gebbie, whose breadth

of knowledge, keen insight, appreciation for rigour and unrelenting support provided an

indispensable platform for success during my PhD journey. I also thank Dr. Nicholas

Westray and Dr. Anja Richter, who entertained many discussions during the conceptual

foundations of this work and were more than generous and accommodating during my

visits to London and New York.

I thank the Fields Institute for Research in the Mathematical Sciences for hosting me

during my participation at the thematic program on Statistical Inference, Learning and

Models in Big Data. I learnt an immense amount from the workshops and had time

to focus on my core proposition in this thesis and contextualise the contribution. I am

grateful to Prof. Nancy Reid for inviting me as a funded visitor for these crucial 3

months.

I thank the Instituto Nacional de Matemática Pura e Aplicada (IMPA) for hosting me

during my participation at the thematic program on Stochastic Variational Analysis,

where I had the time and space to put the final touches on this thesis. Thank you to

Dr. Claudia Sagastizabal and Dr. Welington de Oliveira for funding my time at IMPA.

I thank Ms. Waheeda Bala and the National Research Foundation of South Africa for

generously awarding me a doctoral scholarship (Grant ID: 89250) for the duration of my

studies, and providing travel support for related conference visits.

I am extremely grateful to my Wits School of CSAM colleagues for their administrative

(and emotional) support. The school provided a fantastic environment for collaborative

discussion, work-related or otherwise. In no particular order, I thank: Prof. Ebrahim

Momoniat, Prof. Charis Harley, Prof. Turgay Celik, Dr. Byron Jacobs, Dr. Michael

Mitchley, Dr. Rhameez Herbst, Mr. Michael Harvey, Mr. Kedy Mazibuko, Mr. Roger

Martins, Ms. Precious Shabalala, Ms. Keba Mosiane and Ms. Dorina Bowes.

Of course, I thank my family, who continually provide a source of inspiration and sup-

port, despite my varied academic pursuits and random musings.

Lastly, I thank the music community of Gauteng, who embraced me when I moved

to Johannesburg and allowed me to participate in the vibrant classical music scene -

an essential balance-maintaining component whilst undertaking this research, but more

importantly affirming music’s place in my professional pursuits going forward. Thank

you to the Johannesburg Philharmonic Orchestra, Johannesburg Festival Orchestra,

Agathe String Sextet, DiSetinel String Quartet and numerous other fantastic chamber

groups.

v

Preface

This thesis combines the contributions of the following papers written over the duration

of my PhD registration, which will be extensively referenced and expanded upon, with

certain sections taken verbatim from the associated paper text. With respect to co-

authors, Prof. Diane Wilcox and Dr. Tim Gebbie were my PhD supervisors, and Mr.

Michael Harvey and Mr. Roger Martins were students which I supervised, providing

related topics for their major honours projects which we co-investigated. The project

topics were chosen based on specific investigations which formed part of my PhD work.

• D. Hendricks, D. Wilcox. A reinforcement learning extension to the Almgren-

Chriss framework for optimal trade execution. Proceedings from IEEE Conference

on Computational Intelligence for Financial Economics and Engineering, 2014.

[124]

Available online: http://dx.doi.org/10.1109/CIFEr.2014.6924109

• D. Hendricks, T. Gebbie, D. Wilcox. High-speed detection of emergent market

clustering via an unsupervised parallel genetic algorithm. South African Journal

of Science, vol. 112, no. 1/2, 2016. [125]

Available online: http://dx.doi.org/10.17159/sajs.2016/20140340

• D. Hendricks, T. Gebbie, D. Wilcox. Detecting intraday financial market states

using temporal clustering. Quantitative Finance, 2016. [126]

Available online: http://dx.doi.org/10.1080/14697688.2016.1171378

• D. Hendricks, M. Harvey. Reconciling order book resiliency and price impact.

Working paper, 2016. [123]

• R. Martins, D. Hendricks. The statistical significance of multivariate Hawkes pro-

cesses fitted to limit order book data. Working paper (submitted to Journal of

Applied Probability, under review), 2016. [174]

• D. Hendricks. An online learning algorithm with scale-specific state space enumer-

ation for optimal trade execution in high-frequency markets. Working paper, 2016.

[121]

• D. Hendricks. Using real-time cluster configurations of streaming asynchronous

features as online state descriptors in financial markets. Working paper (submitted

to Pattern Recognition Letters, under review), 2016. [122]

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements v

Preface vi

Contents vii

List of Figures xi

List of Tables xviii

Abbreviations xx

1 Introduction and overview 1

1.1 The financial market as a complex adaptive system 1

1.2 Spin glass models for modelling complex system behaviour 4

1.3 The Hawkes process as the governing process for microstructure events . . 6

1.4 Reinforcement learning as a framework for online, adaptive trajectories
through the complex system . 7

1.5 Automated algorithmic trading in modern financial markets 9

1.6 Overview . 10

2 Market microstructure and the trade execution problem 12

2.1 Overview . 12

2.2 Market microstructure . 12

2.3 The limit order book and trading mechanism 14

2.4 Price impact . 17

2.5 Order book resiliency . 18

2.6 Optimal trade execution . 20

2.7 Some remarks . 22

vii

Contents viii

3 Model-free reinforcement learning 23

3.1 Overview . 23

3.2 Markov Decision Processes . 24

3.3 Dynamic Programming . 26

3.3.1 Policy iteration . 26

3.3.2 Value iteration . 27

3.4 The Q-learning algorithm . 28

3.4.1 Proof of convergence for infinite-horizon Q-learning 29

3.4.2 On convergence for finite-horizon Q-learning 33

3.5 Batch learning vs online learning . 34

3.6 Exploration vs exploitation trade-off . 35

3.7 Curse of dimensionality . 35

3.8 The nature of learning in a complex system 36

3.9 Some remarks . 37

4 Data description and Exploratory Data Analysis 38

4.1 Overview . 38

4.2 Data . 38

4.2.1 Raw data . 38

4.2.2 MongoDB noSQL database . 40

4.2.2.1 Query indexes . 41

4.2.2.2 Aggregation and Map-Reduce 42

4.2.2.3 MATLAB API . 42

4.3 Exploratory Data Analysis . 43

4.3.1 Visualisation of limit order book features 44

4.4 Some remarks . 52

5 A simple model-free reinforcement learning model for trade execution 53

5.1 Overview . 53

5.2 Adapting a static liquidation trajectory using reinforcement learning . . . 54

5.2.1 The Almgren-Chriss model for optimal liquidation 55

5.2.2 State space . 58

5.2.3 Action set . 60

5.2.4 Reward function . 61

5.2.5 Algorithm . 62

5.3 Data and results . 64

5.3.1 Data used . 64

5.3.2 Stocks, parameters and assumptions 64

5.3.3 Results . 65

5.4 Some remarks . 68

6 Detecting intraday states from streaming market microstructure fea-
tures 70

6.1 Overview . 70

6.2 From unsupervised clustering to temporal states 70

6.3 Super-paramagnetic clustering for state discovery and detection 72

6.3.1 Potts spin models as analogue for financial system 72

Contents ix

6.4 A maximum likelihood approach . 73

6.5 Considering time periods as objects for market state determination 76

6.6 State Signature Vectors for online state detection 76

6.7 Scale-invariant characteristics of states . 78

6.8 A high-speed Parallel Genetic Algorithm implementation 79

6.8.1 GA principle and genetic operators 80

6.8.2 Master-slave parallelisation . 81

6.8.3 Computational Platform and Implementation 82

6.8.3.1 Specific computational environment 83

6.8.3.2 Implementation . 83

6.8.3.3 Representation . 84

6.8.3.4 Fitness function . 84

6.8.3.5 Master-slave PGA implementation 84

6.8.3.6 Key implementation challenges 87

6.9 Results . 88

6.9.1 Data description . 88

6.9.2 Workflow . 89

6.9.3 Visualisation . 90

6.9.4 Results discussion . 91

6.10 Identifying high-frequency persistent states using event-time clustering . . 105

6.11 Some remarks . 108

7 Using order book resiliency to control agent actions 110

7.1 Overview . 110

7.2 Modelling order book resiliency . 111

7.2.1 Multivariate Hawkes process for limit order book events 111

7.2.2 Enumerating empirical event point processes using tick data 113

7.2.2.1 Volume-conditional liquidity demand point processes . . 116

7.2.3 Candidate kernels for encoding temporal dependence 118

7.2.4 Deriving maximum likelihood estimator with sum-of-exponentials
kernel . 120

7.2.5 Calibration of model parameters 122

7.2.6 On the choice of M (number of exponentials) 124

7.2.7 Motivating use of time-dependent baseline intensity 125

7.2.8 An efficient non-parametric calibration scheme 127

7.3 Effect of volume-conditional trade events on quote replenishment intensity 128

7.4 Some remarks . 131

8 Using detected states and resilient actions to enhance the trade exe-
cution algorithm 132

8.1 Overview . 132

8.2 Recall the basic reinforcement learning model 133

8.3 Using temporal state as market attribute 134

8.4 Bounding actions using resiliency . 135

8.5 On the learning rate . 135

8.6 Algorithm . 136

8.7 Data and Results . 137

Contents x

8.7.1 Data . 137

8.7.2 Results . 137

8.8 Some remarks . 139

9 Towards unsupervised, online state discovery, detection and learning
in high-frequency financial markets 140

9.1 Overview . 140

9.2 Representation learning for tractable inference in high-dimensional state
spaces . 141

9.3 Cluster configurations as temporal state descriptors 142

9.4 Correlation estimation from streaming asynchronous data 145

9.5 High-speed feature clustering . 146

9.6 Cluster configuration similarity and state discrimination 147

9.7 Reinforcement learning with online state discovery 149

9.8 Problem description and Algorithm . 150

9.8.1 Wealth maximisation: Long-only 150

9.8.2 Algorithm . 151

9.9 Data and Results . 152

9.9.1 Data . 152

9.9.2 Results . 153

9.10 Some remarks . 159

10 Conclusion 160

A Derivation of the maximum likelihood function for explanatory power
of cluster configuration 165

A.1 The Noh-Giada-Marsili coupling parameters 165

A.2 The Noh-Giada-Marsili likelihood function 167

Bibliography 170

List of Figures

2.1 Illustrating the effect of liquidity demand and subsequent replenishment.
A buy market order arrives and removes commensurate quotes from the
ask side of the limit order book (2), creating a transient deficit (3). Bid
and ask limit orders are then submitted by other participants (4,5) and
liquidity is restored (6). This figure is reproduced from the text, Limit
Order Books by Abergel et al. [4]. 16

2.2 Some stylised aspects of a limit order book. Green lines indicate ask quotes
and blue lines indicate bid quotes, with the vertical position showing the
price level and line length showing quote quantity. This figure illustrates
market depth, quote imbalance and temporary price impact. 17

2.3 Trade execution with arrival price benchmark 21

4.1 Implemented MongoDB schema for TRTH data. A TickData database
was created to store the data in two collections: JSETransactions, which
stores trade and level-1 quotes, and JSEMarketDepth, which stores 10
levels of market depth quotes. 40

4.2 Some compound indexes created for efficient query execution. 41

4.3 Aggregation pipeline versus map-reduce for a simple computation, ex-
tracting level-1 quotes for a stock at 5-minute intervals. 43

4.4 This figure aims to demonstrate the asynchronous nature of the trade
price time series at the tick level. Here, we plot raw trades of all TOP40
stocks over a 5 minute period, from 09:00 02 October 2012 to 09:05 02
October 2012. Each dot represents a trade at the exact time it took place,
with trade price on the Y-axis and time on the X-axis, where the size of
the dot is proportional to the volume of the trade. Dots are coloured by
stock. It is clear stock trades occur asynchronously. 45

4.5 This figure aims to investigate common temporal patterns amongst stock
trades across the trading day. Here, we plot raw trades of all TOP40
stocks over a 7.5 hour period, from 09:00 02 October 2012 to 16:30 02
October 2012. Each dot represents a trade at the exact time it took place,
with trade price on the Y-axis and time on the X-axis, where the size of
the dot is proportional to the volume of the trade. Dots are coloured by
stock. 46

4.6 This figure aims to investigate the nature of spreads by plotting the evo-
lution of level-1 quotes. 47

4.7 This figure aims to investigate the nature of spreads by plotting the evo-
lution of level-1 quotes. 47

4.8 This figure aims to investigate the nature of level-1 quote updates for
two fundamentally similar stocks which are typical candidates for pairs
trading, Mondi Limited (MND) and Mondi Plc (MNP). 48

xi

List of Figures xii

4.9 This figure aims to investigate the nature of the raw events of interest in
the limit order book, including market depth. Ask quotes are indicated
in blue and bid quotes in red, with darker colours indicating closeness to
the top-of-the-book. Yellow dots indicate trade events. The size of each
dot is proportional to the volume of the trade or quote. 49

4.10 This figure aims to investigate the nature of the raw events of interest in
the limit order book, including market depth. Ask quotes are indicated
in blue and bid quotes in red, with darker colours indicating closeness to
the top-of-the-book. Yellow dots indicate trade events. The size of each
dot is proportional to the volume of the trade or quote. 50

4.11 This figure aims to investigate the nature of the raw events of interest in
the limit order book, including market depth. Ask quotes are indicated
in blue and bid quotes in red, with darker colours indicating closeness to
the top-of-the-book. Yellow dots indicate trade events. The size of each
dot is proportional to the volume of the trade or quote. 51

5.1 Difference between median implementation shortfall generated using RL
and AC models, with given parameters (I,B,W = 5). TrainingH-dependent. 67

5.2 % correct actions implied by Q-matrix after each training set tuple. Train-
ing H-dependent. 68

6.1 Illustration of online state assignment based on identified state signature
vectors. 77

6.2 Mapping of individuals onto the CUDA thread hierarchy 86

6.3 Flowchart illustrating workflow to determine the temporal cluster config-
uration from a time period correlation matrix, identify persistent states,
estimate temporal cluster configuration using feature vectors and deter-
mine state transition probabilities. Processes are coloured by platform:
MongoDB = Yellow, MATLAB = Green, CUDA-C = Orange, Gephi =
Purple. 90

6.4 JSE TOP40 60-minute temporal clusters for the period 01-Nov-2012 to
30-Nov-2012, representing 184 distinct periods. Each node represents a
60-minute period during a trading day, with the colour shading indicating
the time-of-day (Morning = green, Lunch = yellow, Afternoon = red) and
node connectedness indicating cluster membership. 95

6.5 JSE TOP40 60-minute cluster state signature vectors for the period 01-
Nov-2012 to 30-Nov-2012. Each plot illustrates the average change in
trade price, spread, trade volume and quote volume imbalance across
member periods and stocks for each of the clusters with a size ≥ xmin from
the truncated power-law fit. Cluster size and intra-cluster correlation are
shown in parentheses. 95

6.6 JSE TOP40 30-minute temporal clusters for the period 01-Nov-2012 to
30-Nov-2012, representing 368 distinct periods. Each node represents a
30-minute period during a trading day, with the colour shading indicating
the time-of-day (Morning = green, Lunch = yellow, Afternoon = red) and
node connectedness indicating cluster membership. 96

List of Figures xiii

6.7 JSE TOP40 30-minute cluster state signature vectors for the period 01-
Nov-2012 to 30-Nov-2012. Each plot illustrates the average change in
trade price, spread, trade volume and quote volume imbalance across
member periods and stocks for each of the clusters with a size ≥ xmin from
the truncated power-law fit. Cluster size and intra-cluster correlation are
shown in parentheses. 96

6.8 JSE TOP40 15-minute temporal clusters for the period 01-Nov-2012 to
30-Nov-2012, representing 736 distinct periods. Each node represents a
15-minute period during a trading day, with the colour shading indicating
the time-of-day (Morning = green, Lunch = yellow, Afternoon = red) and
node connectedness indicating cluster membership. 97

6.9 JSE TOP40 15-minute cluster state signature vectors for the period 01-
Nov-2012 to 30-Nov-2012. Each plot illustrates the average change in
trade price, spread, trade volume and quote volume imbalance across
member periods and stocks for each of the clusters with a size ≥ xmin from
the truncated power-law fit. Cluster size and intra-cluster correlation are
shown in parentheses. 97

6.10 JSE TOP40 5-minute temporal clusters for the period 01-Nov-2012 to
30-Nov-2012, representing 2208 distinct periods. Each node represents a
5-minute period during a trading day, with the colour shading indicating
the time-of-day (Morning = green, Lunch = yellow, Afternoon = red) and
node connectedness indicating cluster membership. 98

6.11 JSE TOP40 5-minute cluster state signature vectors for the period 01-
Nov-2012 to 30-Nov-2012. Each plot illustrates the average change in
trade price, spread, trade volume and quote volume imbalance across
member periods and stocks for each of the clusters with a size ≥ xmin from
the truncated power-law fit. Cluster size and intra-cluster correlation are
shown in parentheses. 98

6.12 Testing conjecture of power law fit for varying time scale cluster sizes,
applying the Clauset, Shalizi and Newman algorithm [58]. α indicates
the scaling parameter of the proposed fit, pvalue indicates the p-value
from a Kolmogorov-Smirnov test for the goodness-of-fit of the proposed
model to the data, xmin indicates the lower-bound for the power law fit
and L is the log-likelihood of the data (x ≥ xmin) under the power law fit. 99

6.13 Estimated 60-minute clusters using identified state signature vectors. The
Euclidean distance is calculated between each temporal period’s feature
vector and the state signature vectors. Cluster index assignment is based
on the state signature vector which yields the minimum distance. 100

6.14 Estimated 30-minute clusters using identified state signature vectors. The
Euclidean distance is calculated between each temporal period’s feature
vector and the state signature vectors. Cluster index assignment is based
on the state signature vector which yields the minimum distance. 101

6.15 Estimated 15-minute clusters using identified state signature vectors. The
Euclidean distance is calculated between each temporal period’s feature
vector and the state signature vectors. Cluster index assignment is based
on the state signature vector which yields the minimum distance. 102

List of Figures xiv

6.16 Estimated 5-minute clusters using identified state signature vectors. The
Euclidean distance is calculated between each temporal period’s feature
vector and the state signature vectors. Cluster index assignment is based
on the state signature vector which yields the minimum distance. 103

6.17 Measuring the stability of the online state assignment algorithm out-of-
sample. Given that the state assignment of an online FV is based on the
minimum Euclidean distance to predetermined SSVs, we compute the
best match distance for each of the FVs in a sample and use a boxplot
to visualise the empirical distribution. In this figure, we compare the ex-
ante (01-Nov-2012 to 30-Nov-2012, same period used for SSV estimation)
and ex-post (03-Dec-2012 to 07-Dec-2012, one week after SSV estimation
window) periods. 104

6.18 JSE TOP40 event-time clusters for the period 01-Nov-2012 to 30-Nov-
2012. Each node represents a traded volume of 100 000 SHF shares,
with the colour shading indicating the time-of-day (Morning = green,
Lunch = yellow, Afternoon = red) and node connectedness indicating
cluster membership. 106

6.19 JSE TOP40 100 000 SHF volume cluster state signature vectors for
the period 01-Nov-2012 to 30-Nov-2012. Each plot illustrates the average
change in trade price, spread, trade volume and quote volume imbalance
across member periods and stocks for each of the clusters with a size
≥ xmin from the truncated power-law fit. Cluster size and intra-cluster
correlation are shown in parentheses. 106

6.20 JSE TOP40 event-time clusters for the period 01-Nov-2012 to 30-Nov-
2012. Each node represents a traded volume of 100 000 AGL shares,
with the colour shading indicating the time-of-day (Morning = green,
Lunch = yellow, Afternoon = red) and node connectedness indicating
cluster membership. 107

6.21 JSE TOP40 100 000 AGL volume cluster state signature vectors for
the period 01-Nov-2012 to 30-Nov-2012. Each plot illustrates the average
change in trade price, spread, trade volume and quote volume imbalance
across member periods and stocks for each of the clusters with a size
≥ xmin from the truncated power-law fit. Cluster size and intra-cluster
correlation are shown in parentheses. 107

6.22 Testing conjecture of power law fit for varying time scale cluster sizes,
applying the Clauset, Shalizi and Newman algorithm [58]. α indicates
the scaling parameter of the proposed fit, pvalue indicates the p-value
from a Kolmogorov-Smirnov test for the goodness-of-fit of the proposed
model to the data, xmin indicates the lower-bound for the power law fit
and L is the log-likelihood of the data (x ≥ xmin) under the power law fit. 108

7.1 Empirical event intensities for SBK of each of the 4 key event types over a
morning period, demonstrating event clustering and mutual-excitation.
The dots show the arrival times of the events and the lines show the 5-
minute event intensities. 115

7.2 Empirical event intensities for SBK of each of the 4 key event types over a
midday period, demonstrating event clustering and mutual-excitation.
The dots show the arrival times of the events and the lines show the
5-minute event intensities. 116

List of Figures xv

7.3 Empirical event intensities for SBK of each of the 4 key event types
over an afternoon period, demonstrating event clustering and mutual-
excitation. The dots show the arrival times of the events and the lines
show the 5-minute event intensities. 116

7.4 Empirical volume-conditional Type-1 event intensities for SBK for 4
candidate volume bins over a typical trading day. The dots show the ar-
rival times of the events and the lines show the 5-minute event intensities.
. 118

7.5 Empirical volume-conditional Type-2 event intensities for SBK for 4
candidate volume bins over a typical trading day. The dots show the ar-
rival times of the events and the lines show the 5-minute event intensities.
. 118

7.6 Computation time (in minutes): vectorisation vs for-loop. Shows average
computation time as a function of the number of each event type. 123

7.7 Computation time (in minutes): vectorisation vs for-loop. Shows average
computation time as a function of the number of exponentials (M). 123

7.8 Average hourly baseline intensity for all events. Blue line indicates aver-
age for a given hour, with the error bars reflecting the variation over the
days in the sample. 126

7.9 Baseline intensity by kernel. The trading day is divided into 3 periods
(morning, noon, afternoon), with piecewise linear intensity. Coloured
lines correspond to mean exogenous intensities for the given periods, cal-
ibrated for each kernel, with the error bars reflecting daily variation. . . . 127

7.10 Boxplot of distribution of calibrated branching ratios of volume-conditional
Hawkes process, quantifying the effect of aggressive buy trade (Type
1) events of varying size on aggressive ask quote (Type 4) replenish-
ment intensity. X-axis labels indicate upper bounds of trade volume bins,
where volumes have been normalised by their mean. We thus see the
resulting branching ratios for aggressive ask quote intensity, given buy
trades with size as increasing multiples of the mean trade size. 130

7.11 Boxplot of distribution of calibrated branching ratios of volume-conditional
Hawkes process, quantifying the effect of aggressive sell trade (Type
2) events of varying size on aggressive bid quote (Type 3) replenish-
ment intensity. X-axis labels indicate upper bounds of trade volume bins,
where volumes have been normalised by their mean. We thus see the
resulting branching ratios for aggressive bid quote intensity, given sell
trades with size as increasing multiples of the mean trade size. 130

8.1 Difference (RL - AC) in median implementation shortfall for various learn-
ing rates. The best spread, volume model is highlighted by the thick green
line and the best SSV model is highlighted by the thick red line. 138

9.1 Illustrating how identified feature configurations may have an analogous
interpretation, in terms of human-specified pre-processed features. 144

List of Figures xvi

9.2 Status at 09:35. Demonstration of long-only wealth maximisation algo-
rithm, starting with R100 000 cash and 800 AGL shares. The top-left plot
shows the identified states since the start of the trading program (09:05),
where blocks in the same row indicate the same state. The top-right
plot illustrates the current empirical 1-step transition probability matrix,
based on identified states. The bottom-left plot shows the stock mid-price,
best ask and best bid in green (right Y-axis) and the running portfolio
PnL in blue (left Y-axis). The portfolio PnL is determined by the differ-
ence between the current portfolio value (inventory marked-to-market at
current mid-price + cash) and the initial portfolio value. Green dots in-
dicate buy actions and red dots indicate sell actions, where the size of the
dot is proportional to the quantity bought/sold. The bottom-right plot
shows the current Q-matrix values, illustrating the expected cumulative
discounted reward for each state-action pair. 154

9.3 Status at 09:45. Demonstration of long-only wealth maximisation algo-
rithm, starting with R100 000 cash and 800 AGL shares. The top-left plot
shows the identified states since the start of the trading program (09:05),
where blocks in the same row indicate the same state. The top-right
plot illustrates the current empirical 1-step transition probability matrix,
based on identified states. The bottom-left plot shows the stock mid-price,
best ask and best bid in green (right Y-axis) and the running portfolio
PnL in blue (left Y-axis). The portfolio PnL is determined by the differ-
ence between the current portfolio value (inventory marked-to-market at
current mid-price + cash) and the initial portfolio value. Green dots in-
dicate buy actions and red dots indicate sell actions, where the size of the
dot is proportional to the quantity bought/sold. The bottom-right plot
shows the current Q-matrix values, illustrating the expected cumulative
discounted reward for each state-action pair. 155

9.4 Status at 10:30. Demonstration of long-only wealth maximisation algo-
rithm, starting with R100 000 cash and 800 AGL shares. The top-left plot
shows the identified states since the start of the trading program (09:05),
where blocks in the same row indicate the same state. The top-right
plot illustrates the current empirical 1-step transition probability matrix,
based on identified states. The bottom-left plot shows the stock mid-price,
best ask and best bid in green (right Y-axis) and the running portfolio
PnL in blue (left Y-axis). The portfolio PnL is determined by the differ-
ence between the current portfolio value (inventory marked-to-market at
current mid-price + cash) and the initial portfolio value. Green dots in-
dicate buy actions and red dots indicate sell actions, where the size of the
dot is proportional to the quantity bought/sold. The bottom-right plot
shows the current Q-matrix values, illustrating the expected cumulative
discounted reward for each state-action pair. 156

List of Figures xvii

9.5 Status at 12:45. Demonstration of long-only wealth maximisation algo-
rithm, starting with R100 000 cash and 800 AGL shares. The top-left plot
shows the identified states since the start of the trading program (09:05),
where blocks in the same row indicate the same state. The top-right
plot illustrates the current empirical 1-step transition probability matrix,
based on identified states. The bottom-left plot shows the stock mid-price,
best ask and best bid in green (right Y-axis) and the running portfolio
PnL in blue (left Y-axis). The portfolio PnL is determined by the differ-
ence between the current portfolio value (inventory marked-to-market at
current mid-price + cash) and the initial portfolio value. Green dots in-
dicate buy actions and red dots indicate sell actions, where the size of the
dot is proportional to the quantity bought/sold. The bottom-right plot
shows the current Q-matrix values, illustrating the expected cumulative
discounted reward for each state-action pair. 157

9.6 Status at 13:30. Demonstration of long-only wealth maximisation algo-
rithm, starting with R100 000 cash and 800 AGL shares. The top-left plot
shows the identified states since the start of the trading program (09:05),
where blocks in the same row indicate the same state. The top-right
plot illustrates the current empirical 1-step transition probability matrix,
based on identified states. The bottom-left plot shows the stock mid-price,
best ask and best bid in green (right Y-axis) and the running portfolio
PnL in blue (left Y-axis). The portfolio PnL is determined by the differ-
ence between the current portfolio value (inventory marked-to-market at
current mid-price + cash) and the initial portfolio value. Green dots in-
dicate buy actions and red dots indicate sell actions, where the size of the
dot is proportional to the quantity bought/sold. The bottom-right plot
shows the current Q-matrix values, illustrating the expected cumulative
discounted reward for each state-action pair. 158

List of Tables

4.1 Thomson Reuters Tick History (TRTH) raw data fields. The associated
data was downloaded as flat text files from the TRTH web interface. . . . 39

4.2 Hardware specifications for MongoDB data server. 41

5.1 Average % improvement in median implementation shortfall for various
parameter values, using AC and RL models. Training H-dependent. . . . 66

5.2 Standard deviation(%) of implementation shortfall when using AC vs RL
models. 66

6.1 Development, testing and benchmarking environments 83

6.2 Restrictions on number of stocks and population size. For the Tesla card,
Max number of stocks = (14)∗(1024/32)∗8 = 3584 and Max population size =
(65535/(3584/32)) ∗ 32 = 18720. 86

6.3 Illustration of data returns matrix as an input for estimation of 15-minute
period correlations . 89

6.4 Parameter values and computation times for Parallel Genetic Algorithm
∗ Average from 20 independent runs; N refers to the GTX765m Notebook GPU and D refers to the GTX

Titan X Desktop GPU. 94

6.5 Empirical 1-step transition probability matrix for 60-minute states, based
on identified temporal cluster configuration. State transitions with a prob-
ability > 0 are highlighted in green. 100

6.6 Empirical 1-step transition probability matrix for 30-minute states, based
on identified temporal cluster configuration. State transitions with a prob-
ability > 0 are highlighted in green. 101

6.7 Empirical 1-step transition probability matrix for 15-minute states, based
on identified temporal cluster configuration. State transitions with a prob-
ability > 0 are highlighted in green. 102

6.8 Empirical 1-step transition probability matrix for 5-minute states, based
on identified temporal cluster configuration. State transitions with a prob-
ability > 0 are highlighted in green. 103

7.1 Daily goodness-of-fit test statistics by kernel, GRT 01 September 2013
to 27 September 2013 . 125

7.2 Daily goodness-of-fit test statistics by kernel, GRT 30 September 2013
to 31 October 2013 . 125

8.1 State attributes for simple RL trading agent. 133

8.2 Difference (RL - AC) in median implementation shortfall for various learn-
ing rates. The best spread, volume model is highlighted in green and the
best SSV model is highlighted in red. 138

xviii

List of Tables xix

9.1 Demonstration of best match metric for calculating distance between two
overlapping cluster configurations . 148

9.2 Parameters used for testing long-only wealth maximisation algorithm. . . 151

9.3 Summarised results from algorithm testing. The LO Wealth Maximiser
agent is compared to a Random agent, where actions are chosen randomly
at each trading opportunity. The algorithm begins at 09:05 and ends at
16:30 each trading day. These results summarise the distribution of end-
of-day (16:30) PnL recorded for each day in the investigation period (01
Oct 2012 to 30 Nov 2012). 153

Abbreviations

AC Almgren-Chriss

ALSI ALl Share Index

API Application Programming Interface

bps basis points

CC Compute Capability

CPU Central Processing Unit

CNN Convolutional Neural Network

CUDA Compute Unified Device Architecture

DB Data Base

DBMS Data Base Management System

ED Excess Dispersion

EWA Experience Weighted Attraction

FV Feature Vector

GA Genetic Algorithm

GB Giga Byte

GM Giada-Marsili

GPU Graphics Processing Unit

HDD HarD Drive

HY Hayashi-Yoshida

IRL Inverse Reinforcement Learning

IS Implementation Shortfall

JDBC Java Data Base Connectivity

JSE Johannesburg Stock Exchange

JSON JavaScript Object Notation

KPSS Kwiatkowski-Phillips-Schmidt-Shin

xx

Abbreviations xxi

KS Kolmogorov Smirnov

LBQ Ljung Box Q-test

LOB Limit Order Book

LQ Lower Quartile

MDP Markov Decision Process

MIT Millennium Information Technologies

MLE Maximum Likelihood Estimator

MM Malliavin-Mancino

MPI Message Parsing Interface

OS Operating System

PGA Parallel Genetic Algorithm

PnL Profit and Loss

RAID Redundant Array of Independent Disks

RAM Random Access Memory

RL Reinforcement Learning

SARSA State Action Reward State Action

SLI Scalable Link Interface

SM Streaming Multiprocessor

SQL Structured Query Language

SSV State Signature Vector

TB Tera Byte

TRTH Thomson Reuters Tick History

UQ Upper Quartile

VWAP Volume Weighted Average Price

Chapter 1

Introduction and overview

Algorithmic trade execution considers the problem of optimally splitting a large order

into multiple child orders to achieve some cost objective in financial markets, usually

minimising cost with respect to a static or dynamic price benchmark. Human traders

have traditionally performed this task, using a cultivated intuition and subtle under-

standing of market dynamics to optimally place child orders. As we turn to machines

to replace this complex task at higher frequency time scales, we need to consider the

validity of encoding the human trader’s intuition and instincts into a rule-based system

for machines, or whether a new perspective, the machine’s perspective, should be cul-

tivated to operate at this non-human scale. Indeed, a blend of perspectives is likely to

be effective, but it is unclear how this can be optimally achieved. This thesis aims to

address this issue by developing a coherent framework for automated, adaptive trade

execution. To appreciate the machine’s perspective, one must first establish a concrete

paradigm for the nature of the system, a modelling framework which suits this paradigm,

the governing dynamics of essential quantities, the visibility of measurable quantities for

calibration, and a feasible scheme for online learning and adaptation.

1.1 The financial market as a complex adaptive system

Neoclassical economics, based on work developed by Jevons [143], Menger [183] and

Walras [241], is one of the most influential theories to inform the mathematical mod-

elling of modern economies. The central premise discusses economic agents as rational

optimisers with perfect information, leading to general equilibria for optimal agent be-

haviour. While this offers mathematical convenience and tractability for analysing ag-

gregate behaviour, empirical observation of agent dynamics, interactions and aggregate

1

Chapter 1. Introduction and overview 2

consequences appear to differ from expectations under this paradigm [149], suggesting

an alternative approach may exist which is closer in spirit to empirical observations.

In a landmark paper in 1898, Thorstein Veblen questioned the validity of the premise

that economic systems tend to equilibria, and hence the validity of the use of equilib-

rium thermodynamics for studying the economy [238]. Veblen challenged the view of

his contemporary, Léon Walras [241], arguing that evolution is paramount to the system

dynamics and no effective theory could fully describe change and development in the

system [239]. Hans Föllmer provided the first formal analysis of interacting heteroge-

neous agents in economics, using particle systems from statistical mechanics to create

an economic interpretation of the Ising model [86]. This paper was clearly ahead of

its time, as the theory of complexity economics was not yet mature enough to appreci-

ate the validity of spin glass models for modelling observed phenomena. Alan Kirman

reinforced the notions of biology and evolution in complexity economics, using an obser-

vation of the asymmetric behaviour of ants when faced with a symmetric situation, as

an analogue for understanding the same observed phenomenology amongst interacting

agents in financial markets [151]. Carl Chiarella interrogated the well-known cobweb

model of price dynamics [148] when the equilibrium is unstable, showing that time lags

between production and expectations could lead to a chaotic regime [53]. Duncan Foley

developed a theory for characterising the statistical equilibrium distribution of compet-

itive agents over outcomes, rather than seeking to predict specific agent outcomes, as

the Walrasian paradigm suggests, introducing the entropy-minimisation criterion as the

organising principle for price determination [85, 217]. John Holland discussed the con-

cept of economies as complex adaptive systems, which exhibit evolving structure where

components adapt to changing surroundings [130]. His key premise is that economies

do not have a single governing equation, but rather consists of many interacting parts

with no central control, each participating in influencing an outcome and the actions of

others [130]. He further stresses that computer-based models of the economy need to

incorporate these aspects if we want to further enhance our understanding of governing

dynamics.

While the field of complexity economics has had many notable contributions over the

last few decades (see [217] for a comprehensive history of the field), a key contribution

was the establishment of the Santa Fe Institute for focused study of complex systems.

In particular, the view of the broader economy as an evolving, complex system (as

opposed to the Neoclassical paradigm [15]) was further developed in a pioneering dis-

cussion amongst economists, physicists, computer scientists and biologists at the Santa

Fe Institute in 1987 [14]. Here, teams lead by Philip W. Anderson and Kenneth J. Ar-

row considered the implications of new ideas emerging in the natural sciences and how

they may facilitate new ways of thinking about economic problems [17]. The meeting

Chapter 1. Introduction and overview 3

highlighted six key features of the economy that challenged the prevailing mathematical

models of Neoclassical economics [17]:

• Dispersed interaction: The dynamics of the economy is determined by the interac-

tion of many dispersed, heterogeneous agents acting in parallel. The action chosen

by any given agent depends directly upon the anticipated actions of other agents

in the system, and on the aggregate system state which all the agents co-create.

• No global controller: There are no global entities which control interaction, but

rather controls are provided via mechanisms of competition and coordination

among agents. Actions may be mediated by governing or regulatory authorities,

but not controlled at the individual level. There is also no universal competitor,

i.e. an agent which can exploit all available opportunities in the system.

• Cross-cutting hierarchical organisation: Agents within an economy may be cate-

gorised into different levels of organisation with typical interactions among levels.

Behaviours, strategies and actions at lower levels may inform those at higher levels,

however the true organisation is not necessarily hierarchical.

• Continual adaptation: The behaviours, strategies and chosen actions of the agents

are continually revised as the individual agents gain experience. The broader

system thus also adapts.

• Perpetual novelty: Niches are continually created by new markets, trends, tech-

nologies, behaviours and institutions. By exploiting a niche, a new niche may be

created in turn. The result is perpetual novelty and the continual possibility for

improvement.

• Out-of-equilibrium dynamics: Since new niches and opportunities are continually

created, the economy typically does not reach a globally-optimal state, or at least

a globally-optimal state does not persist for a significant time. Improvements to

chosen trajectories are thus always possible and can be expected.

These principles are thus key to any chosen modelling framework if one chooses to inter-

rogate the empirical quantities of an economic system under the complexity economics

paradigm. While the principles outlined above consider the broader economy, the ideas

translate to our system of interest, namely the equity market or stock market. The

equity market itself represents a prime example of an observable complex adaptive sys-

tem. Many heterogeneous adaptive agents, such as traders, portfolio managers, market

makers and regulatory authorities, interact non-linearly over time with each other and

the electronic exchange, allowing for the emergence of complex behaviours beyond that

Chapter 1. Introduction and overview 4

expected based on intrinsic agent characteristics. Many authors have viewed equity mar-

kets through this lens, considering analogues with physical systems to formulate models

which aid our understanding of observed phenomena (see [16, 18, 47, 132, 246] and the

references therein).

Wilcox and Gebbie offer a compelling paradigm for financial markets as a coupled, multi-

level complex system [246]. They propose a mechanism for bottom-up and top-down

causation, with level-specific effective models governing actors and inter-level interaction

via noise terms. Actors at each level perceive the system in a different way, which inval-

idates the use of hierarchies of the same effective model to capture system complexity.

A key insight is the specification of bottom-up agents generating market microstructure,

via candidate representative models which encode observed agent interactions, provid-

ing plausible aggregation into price levels observed by system actors. They use Ising

models [137] to govern stock-level dynamics and Potts models [251] to govern shared

information factors across the market. While these are the simplest representations

which capture the features of the system at the lower levels, the overall proposition by

Wilcox and Gebbie permits isolated study of alternative generative dynamics of equity

market microstructure. The work in this thesis can be contextualised as offering an al-

ternative view for understanding the dynamics of market microstructure, preserving the

use of spin glass models for capturing complex system behaviour, but with a nuanced

perspective on encoding stock-level and market information factors.

Recent technological advances, accelerated by a highly competitive industry, have al-

lowed for the efficient generation, storage and retrieval of financial data at micro time

scales, providing a rich record of the price formation process as a laboratory for intensive

study. The field of market microstructure developed to study the characteristics and

behaviours of financial system dynamics at this scale (see [26, 37, 102, 127, 168, 206]

for a comprehensive discussion). In particular, as intraday trading and investment pro-

cesses become increasingly automated, understanding the system dynamics at varying

intraday time and event scales is critical for an efficient trajectory through the system

to be mapped by participating agents.

1.2 Spin glass models for modelling complex system be-

haviour

In physics, spin glasses are systems with localised magnetic moments, whose interactions

are characterised by quenched disorder and frustration, which have analogous observed

behaviours in complex systems [77, 226, 227]. The modern theory of spin glasses was

Chapter 1. Introduction and overview 5

first introduced by Edwards and Anderson [77], who proposed that the essential physics

of spin glasses are fully captured by the competition between quenched ferromagnetic

and antiferromagnetic interactions amongst localised moments (or spins) associated with

objects or particles, rather than their microscopic properties [227]. They introduced the

following Hamiltonian:

H = −
∑
i,j

Jijδ(si, sj)− h
∑
i

si (1.1)

where i is a site on a d-dimensional cubic lattice, si is a spin associated with an object

at site i, h is an external magnetic field, Jij is the coupling between the ith and jth spins

and δ(.) is the Dirac delta function [227]. For illustrative purposes, we will consider a

simple Ising model [137], where spins si are restricted to either +1 or −1. The disorder

is represented by the Jij coupling term, and is quenched in the sense that it remains

fixed for all feasible laboratory time scales. The competition between ferromagnetic

and antiferromagnetic interactions in Equation 1.1 indicates the presence of frustration,

i.e. no spin glass configuration can simultaneously satisfy all couplings. This implies

that spin glasses do not contain a unique equilibrium state, but rather can occupy one

of many metastable states, each with approximately the same energy separated by free

energy barriers [228]. In the complexity economics view, the properties of quenched

disorder, frustration and metastable states are analogous with the principles of dispersed

interaction, continual adaptation, no global controller and out-of-equilibrium dynamics

discussed in Section 1.1. Although no laboratory spin glass has an energy function which

looks like Equation 1.1 [227], the Edwards and Anderson Hamiltonian is conjectured to

be the simplest Hamiltonian which can accurately model real spin glasses and hence is

an ideal departure point for modelling complex systems [227].

In particular, we will consider the Hamiltonian in Equation 1.1 in the context of a q-

state Potts model [251], where object spins si can take on one of q possible states. We

will build on the work of Blatt et al. [38, 39, 249] and Giada and Marsili [103, 172],

where they use an analogy to the ferromagnetic Potts model at thermal equilibrium

to derive an unsupervised clustering algorithm for objects in financial markets. By

assigning a Potts spin variable to each object and introducing a short-range distance-

dependent ferromagnetic interaction field Jij , regions of aligned spins emerge, which

are analogous to groups of objects in the same cluster, where spin alignment suggests

object homogeneity [242]. This provides an unsupervised scheme for determining the

object spin configuration which best matches the induced interaction field at thermal

equilibrium, and hence an optimal cluster configuration of objects. In Chapter 6, this

concept is translated to temporal objects in financial markets, where a feasible set of

intraday temporal market states is determined for the trading scale of the agent, thus

Chapter 1. Introduction and overview 6

encoding a market information factor which efficiently summarises multiple features

found in a dense market data feed and is measurable online.

1.3 The Hawkes process as the governing process for mi-

crostructure events

Alan Hawkes introduced a class of multivariate point processes with a stochastic inten-

sity vector, modelling event-occurrence clustering and dependence in a coupled system

[120]. Initial applications used calibrated Hawkes processes to measure the conditional

intensities of earthquakes and aftershocks, based on recorded data [204, 205, 240]. In

financial markets, empirical studies of market microstructure have highlighted apparent

clustering of limit order book events at tick scale, with some event intensities exhibiting

dependent behaviour [4, 36, 109]. Bacry et al. provide a comprehensive review article

highlighting the many applications of Hawkes processes in finance [24]. Bowsher con-

sidered one of the first applications, where a bivariate point process of the timing of a

stock’s trade price and mid-quote changes was used to model volatility clustering on the

New York Stock Exchange [46]. A key phenomenon investigated using Hawkes processes

is endogeneity in financial markets [83, 84, 112, 113]. Empirical observation reveals that,

in certain instances, market prices change too quickly to be strictly attributed to the

flow of pertinent information, and thus evade explanation in classic economic theory

[46]. By considering the ratio of exogenous parent events to endogenous events, it is

possible to obtain a measure of market reflexivity [83].

Large used a multivariate Hawkes process to quantify the resiliency of a limit order

book, viz. the propensity for quote replenishment following a liquidity demand event

[159]. By characterising and extracting key liquidity demand and replenishment events

from a limit order book, and using an appropriate choice of kernel to encode temporal

dependence of events, Large claims it is possible to use a calibrated Hawkes process

to calculate the probability and expected half-life of quote replenishment following a

liquidity demand event [159]. We consider a similar approach, but instead use volume-

conditional liquidity demand events. We identify key aggressive liquidity demand and

replenishment events, enumerating empirical event point processes for model calibration.

We investigate an appropriate kernel which provides a significant fit to the empirical

data, before calibrating the multivariate Hawkes process to identify the resiliency of the

order book with respect to market orders of varying size. Given that we need to measure

the effects of our trading agent’s interactions with the system, and the debate around

accurately measuring permanent or transient price impact [42], we rather choose to use

the resiliency study to inform the actions chosen by the trading agent. The actions, in

Chapter 1. Introduction and overview 7

this case market order size, are constrained such that the order book is expected to be

resilient with respect to the maximum permissible trade submitted by the agent. This

is done by investigating the branching ratios of quote replenishment intensities following

trade events of varying size. This ensures that an appropriate action set is determined

for the stock concerned, such that the assumption of exogenous evolution of order book

dynamics, for state representation purposes, is validated.

1.4 Reinforcement learning as a framework for online, adap-

tive trajectories through the complex system

Reinforcement learning is a technique used to numerically solve for a calibrated policy

mapping states to optimal or near-optimal actions, given an objective in a stochastic

system with unknown dynamics. Each state is a vector of observable attributes which

describe the current configuration of the system. The technique proposes a simple,

model-free mechanism for agents to learn how to act optimally in a controlled Markovian

domain, where the quality of action chosen is successively improved for a given state

using feedback from the system [67]. While the mathematical treatment of reinforcement

learning evolved from the solutions to optimal control problems using value functions and

dynamic programming [230], the conceptual foundations can be traced to the pioneering

psychological studies of Edward L. Thorndike from 1896 to 1901 on the nature of animal

intelligence [231]. Based on a series of behavioural conditioning experiments on different

animals, he proposed the following two laws which govern acquired behaviour or learning:

Law of Effect: “Of several responses made to the same situation, those which

are accompanied or closely followed by satisfaction to the animal will, other

things being equal, be more firmly connected with the situation, so that, when

it recurs, they will be more likely to recur; those which are accompanied or

closely followed by discomfort to the animal will, other things being equal,

have their connections with that situation weakened, so that, when it recurs,

they will be less likely to occur. The greater the satisfaction or discomfort, the

greater the strengthening or weakening of the bond.” Edward L. Thorndike,

p.244, 1911 [230, 231]

Law of Exercise: “Any response to a situation will, other things being equal,

be more strongly connected with the situation in proportion to the number of

times it has been connected with that situation and to the average vigor and

duration of the connections.” Edward L. Thorndike, p.244, 1911 [231]

Chapter 1. Introduction and overview 8

It is clear that these insightful conclusions inspired the notion of a learning algorithm

which can converge towards favourable actions in different situations, simply based on

feedback from the system of interest, permitting the possibility of developing intelligent

purposeful computational agents. Subsequent work on the mathematical and compu-

tational advances of reinforcement learning theory should not lose sight of these basic

behavioural foundations which govern learning. For our trading agent, we require a state

representation which permits Markovian dynamics, a set of actions which yield sufficient

and immediate feedback from the system for policy learning and some sense of the con-

sequences of our actions on immediate state evolution. These aspects are considered in

each of Chapters 5, 6, 7 and 8.

While reinforcement learning offers a compelling paradigm for deriving adaptive trajec-

tories under Markovian dynamics, it rests firmly on the foundations of dynamic pro-

gramming [29], assuming the system of interest is stationary and ergodic and hence

guarantees convergence to a single globally-optimal state-action policy. If the system of

interest is a complex adaptive system, the existence of a single, fixed-point solution for

our objective should be questioned. Rather, reinforcement learning may still be effective

if it converges to a useful policy fast enough, i.e. it learns at a rate faster than the

natural time-scale of the system, yet adapts as new niches form. Galla and Farmer in-

vestigate the nature of agent learning by simulating two-person complicated games with

varying payoff correlations, using experience weighted attraction (EWA) to evaluate the

propensity for asymptotic learning in the parameter space [95]. They show that even

under these simple conditions, chaotic regimes exist in the payoff correlation-learning

rate space, where any attempts to learn a useful policy are inherently random. Their

results suggest that, given a payoff correlation amongst competing agents, a learning

rate should be chosen which ensures the agent is in a fixed point or multiple fixed point

regime, such that feasible learning toward a useful policy is possible. Given the complex

system paradigm we are considering, we would at best expect a (possibly dynamic) mul-

tiple fixed point regime to exist, thus a learning rate should be chosen which ensures we

are within this region. It is unclear how the results presented by Galla and Farmer [95]

can be extrapolated for real-world games, but it is clear that the chosen learning rate is

critical for an effective trading agent and warrants careful evaluation for our study.

Chapter 1. Introduction and overview 9

1.5 Automated algorithmic trading in modern financial

markets

Barry Johnson defines algorithmic trading as a computerised rule-based system respon-

sible for executing orders to buy or sell a given asset, consistent with the overall inten-

tion of our work [144]. As suggested by Johnson, it is prudent to clarify some further

terminology at this point, as many terms referring to algorithmic trading are used inter-

changeably without an appreciation for the subtle nuances. Portfolio trading or program

trading refers to a cost-effective means for trading multiple assets, using the economies

of scale offered by a sell-side broker to significantly, yet optimally, alter the holdings of

an investor’s portfolio. Systematic trading refers to the case where the same approach

is consistently adopted whenever a pre-encoded situation arises. While there may be a

wide variety of rules for many possible situations, this paradigm does not permit adapta-

tion. Quantitative trading moves beyond the realm of pure execution, where proprietary

models may be used to initiate a trading decision (in algorithmic trading, the trading

decision is often exogenous to the algorithm and the focus is on optimal execution). High

frequency trading or low latency trading refers to a special case of quantitative trading,

where trading agents take advantage of intraday opportunities, operating on time scales

ranging from hours to fractions of seconds, or even event time [76]. Statistical arbitrage

refers to a systematic trading approach which incorporates real-time data and historical

analysis for trading or execution decisions.

In this thesis, we principally aim to develop an automated algorithmic trading agent

which can learn to trade optimally intraday, given a trading decision with an arrival-price

benchmark and finite trade horizon. In Chapter 9, we further introduce an approach

which is conducive to automated high frequency quantitative trading, where the trading

agent can learn to make decisions which maximise wealth and adapt as regimes change.

Although the techniques developed in this thesis are market agnostic, we are particularly

interested in studying the South African equity market, accessed via the Johannesburg

Stock Exchange (JSE). There have been a number of recent significant infrastructural

changes which facilitate the deployment of automated algorithmic trading strategies,

thus a rigorous study of changing market dynamics and development of bespoke trad-

ing agents will provide a meaningful and relevant contribution. In July 2012, the JSE’s

matching engine was physically moved from London, UK, to Johannesburg, South Africa

(where the exchange resides), which reduced the round-trip trading latency by 400 times

[184, 194], making lower-latency trading feasible. In September 2013, the cost model for

execution fees was altered, whereby the prior cost floor for execution fees was removed

in favour of a purely value-based system with increased cost ceiling [115, 195, 196, 199].

Chapter 1. Introduction and overview 10

Prior to this change, small value trades were discouraged and penalised, whereas the

fees now paid to the exchange are commensurate with trade size. This ensures that

algorithms which split large orders into multiple child orders are now potentially prof-

itable and effective. In May 2014, the exchange launched a colocation service, whereby

clients can host their algorithmic trading engines directly at the exchange in leased rack

space, further reducing round-trip trading latency to 100µs [197, 198]. These changes

have fundamentally altered the market microstructure in the South African equity mar-

ket, providing a rich landscape for studying the evolution of the financial system with

each change. It also reinforces the need for adaptive trading algorithms, as the market

dynamics are likely to be unstable in the near future as current participants and new

entrants adjust their strategies in the new regime.

1.6 Overview

The remainder of this thesis is structured as follows: Chapter 2 contextualises the trade

execution problem within the broader field of market microstructure, highlighting the

nuances of interacting with the system at this scale. Chapter 3 discusses model-free

reinforcement learning as a paradigm for finding adaptive trajectories in this system.

Chapter 4 discusses the data used for this work, the choices which enabled efficient

storage, retrieval and manipulation of large tick data volumes and a preliminary ex-

ploratory data analysis study revealing pertinent empirical details for modelling deci-

sions. Chapter 5 discusses a simple model-free reinforcement learning algorithm for

optimal trade execution, with a simplified discrete state representation and discrete ac-

tions. This algorithm demonstrates that reinforcement learning can be used to adapt a

static arrival-price benchmark trading trajectory with respect to prevailing limit order

book dynamics, significantly improving ex post implementation shortfall compared to

standard models. Chapter 6 focuses on the refinement of the state representation for

the reinforcement learning agent, using the complex system ideology to inform a unique

approach for extracting persistent temporal dynamics from a streaming market data

feed, to facilitate online learning. Chapter 7 focuses on the refinement of agent actions,

using a calibrated volume-conditional multivariate Hawkes process to ensure that the

limit order book is resilient with respect to the agent’s interactions with the system.

We examine the branching ratios of quote replenishment intensities related to specific

trade events to identify the trade size where there does not appear to be commensurate

quote replenishment. Chapter 8 incorporates the enhanced state representation and

constrained actions into the reinforcement learning algorithm and discusses its efficacy

compared to the simple model discussed in Chapter 5. Chapter 9 introduces a scheme

Chapter 1. Introduction and overview 11

for online, unsupervised state discovery, detection and learning in high frequency mar-

kets, removing the need for human specification and pre-processing of state attributes,

allowing the learning agent to find persistent structure in a streaming market data feed,

enumerate its state space and learn to act optimally, at the scale of interaction. Chapter

10 summarises the key findings and provides some avenues for further research.

Chapter 2

Market microstructure and the

trade execution problem

2.1 Overview

This chapter introduces the field of market microstructure, contextualising the trade

execution problem and highlighting key features of our system of interest: the limit order

book. For our trading agent to be effective, we need to understand the mechanisms and

rules which govern the system at the micro scale, the consequences of interactions with

the system, permissible trade-offs or compromises for the trade execution objective and

the nature of observable attributes for calibration.

2.2 Market microstructure

In one of the major contributions of Léon Walras in 1874, Éléments d’Économie Poli-

tique Pure ou Théorie de la Richesse Sociale, he provided the first concrete discussion of

the process of asset exchange between multiple parties, market frictions and price forma-

tion on the Paris Bourse, foreshadowing the field now known as market microstructure

[241]. Mark Garman is credited with coining the term market microstructure in his 1976

paper of the same name, where he discussed the temporal dynamics of the transaction-

to-transaction behaviour of prices, volumes, dealer inventories and market states [97].

Maureen O’Hara wrote one of the definitive texts on the subject, describing it as the

study of the process and outcomes of exchanging assets under explicit trading rules

[206]. Madhaven describes it as an area of finance that studies the process by which

investors’ latent demands are ultimately translated into prices and volumes [168]. A

12

Chapter 2. Market microstructure and the trade execution problem 13

comprehensive survey of the literature by Madhaven [168] and Biais et al. [37] reveals

several major themes within the field of market microstructure:

• Price formation and price discovery : This theme primarily considers the manner

in which information concerning an asset manifests in related price changes, as well

as the consequences of trading on price dynamics. Initial work considered the role

of market makers on the evolution of the bid-ask spread, initially as passive sup-

pliers of liquidity [70], before considering the role of dealer inventory [97, 224] and

asymmetric information [75, 107]. Hasbrouck proposed a novel approach which

maps latent continuous models of prices and trading costs to observed bid-ask

quotes which are discrete and clustered [118]. This work provided the precedent

for using diffusion processes for modelling price evolution at the tick scale, even

though observed prices appear to evolve as discrete jumps. French and Roll exam-

ined the intraday seasonality of stock return variance, where empirical observation

confirmed higher return variance during trading hours [92]. They conjectured that

this could be due to higher frequency of public information arrival during busi-

ness hours, informed agents acting on private information during business hours

and the process of trading itself creating volatility. Following this work, and as

transaction-level data became more freely available, many authors investigated

the causal effects of empirically observed price anomalies and patterns in observed

quantities in financial markets [74, 114, 141, 178, 250]. Since we are concerned

with the effects of agent interactions with the system, studies on price impact and

order book resiliency are of particular interest. These are discussed in more detail

in Sections 2.4 and 2.5.

• Market structure and design issues: This theme considers the impact of market

architecture, regulation and design on market quality metrics, such as spreads,

liquidity and volatility [168]. This may include the degree of continuity in trading

(auctions versus continuous trading), choice of quote-driven or order-driven mar-

ket, floor trading versus electronic trading, order types permitted on the exchange,

regulatory protocols governing trading, availability of dark pools or anonymous

crossing venues and the degree of transparency amongst different classes of mar-

ket participants. Each of these will have direct consequences for the behaviour of

trading agents, and hence influence price formation.

• Information and disclosure: This theme focuses on the effect of asymmetric infor-

mation availability amongst market participants on price formation. In particular,

it focuses on market transparency, i.e. the ability of market participants to ob-

serve information relating to the trading process [206]. Bloomfield and O’Hara

find that low-transparency dealers are able to exploit informational advantages

Chapter 2. Market microstructure and the trade execution problem 14

and outperform high-transparency dealers, in terms of revenue [40, 41]. Other

studies consider the role of anonymity in price formation [88] and disclosure of

information concerning pending orders [7, 167].

• Informational issues arising from the interface of market microstructure: This

theme considers the interface with asset pricing, such as the effect of liquidity on

expected returns, as compensation for expected transaction costs, as well as the

behavioural effects of traders who tend to be overly aggressive, due to overestima-

tion of the precision of their information [168]. Other studies consider the effect of

cross-border flows on price formation for stocks listed on multiple exchanges [111].

There is clearly a rich and multifaceted history of market microstructure analysis in

modern financial markets and this brief summary highlights the many nuances which

influence observed prices on electronic exchanges. As our laboratory of interest, the

limit order book is the system which encapsulates these features and we will consider its

mechanics in more detail, so as to better understand the drivers of its temporal state

evolution.

2.3 The limit order book and trading mechanism

Gould et al. [109], Abergel et al. [4] and Jaimungal et al. [140] provide excellent

references on the mechanics of limit order book markets, the trading mechanism, as well

as the typical formalism for the mathematical modelling thereof. For completeness, we

will provide a summary exposition here which highlights the nuances of the rules which

govern price formation via trade execution in order-driven markets.

A limit order book (LOB) is a device used by electronic exchanges to collate the in-

tentions of market participants via their submitted orders, where each order typically

contains the sign (buy or sell), desired transaction price, desired quantity, timestamp

and type. At a particular point in time, the LOB thus summarises the market’s quoted

intentions, whereas the time evolution of the LOB reflects the way the market reacts

under the influences of its participants [4]. A trade takes place when there is a com-

mensurate match of an existing limit order by a willing party on the other side of the

transaction, and the sequence of matching is usually governed by a price/time priority

algorithm. Typically, there are four types of orders which can be submitted to a LOB:

• Limit order : A quote which specifies the price and quantity at which a participant

is willing to transact (buy or sell). Ask quotes are limit orders to sell a stock

and bid quotes are limit orders to buy a stock. Ask quotes are prioritised from

Chapter 2. Market microstructure and the trade execution problem 15

lowest to highest price, whereas bid quotes are prioritised from highest to lowest

price. If two quotes on the same side of the book have the same price, they are

prioritised by arrival time to the LOB. The lowest ask quote price is referred to

as the best ask and the highest bid quote price is referred to as the best bid. The

difference between the best ask and best bid price is referred to as the spread and

the arithmetic average of the best ask and best bid price is referred to as the mid-

price. All the quotes on the bid and ask side of the order book are organised

into numbered levels, with lower levels indicating closeness to best bid and best

ask quotes, making up market depth. For limit orders, there is no guarantee of

execution - a full or partial match may take place if a willing counterparty to

the transaction arrives at the LOB. A limit order thus offers the possibility of

transacting at a favourable price, at the expense of execution uncertainty. The

complete schedule of active limit orders makes up the LOB at a given time.

• Market order : An order to immediately buy or sell a given quantity of shares at the

best available price. For a buy (sell) market order, this will match the commensu-

rate number of sell (buy) limit orders in market depth level sequence, resulting in an

elevated (depressed) execution price based on the number of ask (bid) quote levels

matched. The execution price is calculated based on the volume-weighted average

price of the matched quotes. The market order thus offers execution certainty, at

the expense of the transaction price level attained.

• Modification: This is an order which modifies the price level, quantity or type of

an existing active limit order quote. Modifying an existing quote preserves its time

priority.

• Cancellation: This is an order which cancels an existing active limit order quote.

Figure 2.1 illustrates the process of liquidity demand and replenishment in a LOB [4].

Bid quotes are shown in lighter grey and ask quotes in darker grey. In each subfigure,

the vertical axis shows signed quantity and horizontal axis shows the price level of each

prevailing limit order quote. Consider a trading agent faced with the initial schedule

of limit orders shown in (1), with the intention of buying a certain quantity of the

asset. The agent chooses to execute a market order, fully matching levels 1 and 2

of the ask quote depth and partially matching level 3, obtaining a transaction price

equivalent to the volume-weighted average of the price levels of the matched quotes.

We note that the transaction price is necessarily higher than the prevailing mid-price.

The difference between the transaction price and the mid-price can be thought of as the

cost of certain, immediate execution. The matched quotes are removed from the LOB,

creating a transient deficit, widening the spread and increasing the mid-price, as shown

Chapter 2. Market microstructure and the trade execution problem 16

in (3). This short-term change in the mid-price as a result of trading is also referred to

as temporary price impact, discussed in Section 2.4 below. Other market participants

then submit new limit orders to the LOB, restoring liquidity, as shown in (4), (5) and

(6). The speed and extent of limit order quote replenishment following a trade event,

shown in (4) and (5), is also referred to as LOB resiliency, discussed in Section 2.5 below.

Figure 2.1: Illustrating the effect of liquidity demand and subsequent replenishment.
A buy market order arrives and removes commensurate quotes from the ask side of
the limit order book (2), creating a transient deficit (3). Bid and ask limit orders are
then submitted by other participants (4,5) and liquidity is restored (6). This figure is

reproduced from the text, Limit Order Books by Abergel et al. [4].

Figure 2.2 further illustrates some stylised aspects of a snapshot of the LOB at a par-

ticular point in time. Here, green lines indicate ask quotes and blue lines indicate bid

quotes, with the vertical position showing the price level and line length showing quote

quantity. It is clear the larger market orders which exhaust more limit order quotes

push the price, i.e. there are adverse consequences for the resultant transaction price

and temporary consequences for the mid-quote price and spread. The instantaneous

distribution of market depth quotes also has a direct impact on trading. Here we see

sparsely spread bid quotes with lower associated quantities than ask quotes, suggesting

that sell market orders would push the price further (in absolute terms) than buy market

orders of the same quantity. The ratio of ask quotes to bid quotes is often referred to

Chapter 2. Market microstructure and the trade execution problem 17

as order imbalance, and has been considered as an indicator of short-term price moves

[50].

Figure 2.2: Some stylised aspects of a limit order book. Green lines indicate ask
quotes and blue lines indicate bid quotes, with the vertical position showing the price
level and line length showing quote quantity. This figure illustrates market depth, quote

imbalance and temporary price impact.

2.4 Price impact

Price impact broadly refers to the consequences of an executed order to buy or sell a

certain quantity of an asset on the subsequent price dynamics for that asset. In the

chapters which follow, we will be assuming that our trading agent will be executing

market orders based on the prevailing LOB, using the order quantity as the control

when navigating the system. It thus seems prudent to consider the effect of market

orders of varying size on LOB and price dynamics, since this has a direct impact on the

chosen control.

Several studies have investigated various aspects of price response to trade events [42,

43, 74, 82, 98, 115, 136, 164, 186, 210, 212, 248, 253]. Initial studies considered the mid-

price as the fundamental price of a stock, quantifying the average change in log mid-quote

price as a function of traded volume [164]. This permitted the calibration of price impact

Chapter 2. Market microstructure and the trade execution problem 18

curves, which provide an indication of the expected cost of trading various quantities of a

share, beyond any direct costs such as exchange fees or broker commissions. Since these

studies focus on the change in mid-quote price immediately before and after a trade,

these curves, which typically exhibit concave volume dependence [42], appear to capture

temporary price impact, i.e. that aspect of the elevated/depressed transaction price that

is expected to dissipate by the next trading opportunity. This may be caused by a

market order absorbing limit order quotes beyond level 1, resulting in a price deviation

which exceeds the half-spread, however the ensuing replenishment of quotes ensures

that the effect is corrected. Certain transactions may cause price effects which persist

to subsequent trading periods, either by revealing investment intentions causing other

market participants to respond, or depleting liquidity in the LOB without commensurate

quote replenishment. This effect is referred to as permanent price impact, since it affects

the evolution of the fundamental price.

Bouchaud et al. studied a large number of transactions in a variety of markets, and

found that the autocorrelation of the signs of trades decays very slowly with time,

suggesting order flow is strongly persistent and predictable [42, 44]. This suggests that

private information is incorporated into fundamental prices at a much slower rate than

suggested under the permanent impact paradigm, which assumes uncorrelated trade

signs. They thus introduce a transient price impact model, which uses a kernel function

with a decaying shape offsetting the autocorrelation of order flow, to model the slower

manifestation of private information in fundamental prices [42].

It is clear that the trading consequences of our agent’s actions will affect both the

feedback received from the system, in the form of the transaction price versus the arrival

price, as well as the evolution of the state space, via transient and permanent price

effects, consistent with the complex adaptive system paradigm. It also appears that

price impact and LOB quote replenishment are inextricably linked, and we will explore

this connection further in Chapter 7 as a means to control our agent’s actions.

2.5 Order book resiliency

Resiliency can be defined as the propensity for limit order quote replenishment following

a liquidity demand event, i.e. the speed and extent of reversion of the LOB shape to its

form prior to the trade event, as demonstrated in Figure 2.1. While Kyle is credited with

introducing the concept in his description of liquidity [156], Large formalises resiliency

using continuous-time impulse response functions based on conditional order book event

arrival intensities, modelled as a multivariate Hawkes point process [159]. This model

is calibrated using LOB data from the London Stock Exchange (LSE). He found that

Chapter 2. Market microstructure and the trade execution problem 19

the LOB failed to replenish resiliently with a probability of at least 60%. In particular,

when considering resiliency events that apply only to the bid or ask side of the order

book, he finds that resilient replenishment after a large market order fails more than

80% of the time. This result is also seen in other key studies by Danielsson and Payne

[64] and Degryse et al. [69]. Since Large used an exponential kernel to encode temporal

dependence of events, he further quantified the average half-life of resilient replenishment

to be under 20 seconds. This implies that if the order book does replenish, it has more

than 50% chance of doing so within 20 seconds after a liquidity demand shock [159].

Degryse et al. consider the resiliency of a limit order book using non-parametric tech-

niques, analysing order flow around aggressive orders [69]. They use the approach of

Biais et al. to classify the aggressiveness of a buy or sell order [36]. Resiliency is

analysed by investigating how bid and ask prices, spreads, depth, duration, order flow

and transaction prices behave over a specified time window subsequent to the event.

They confirm the so-called diagonal effect of serial correlation reported by Biais et al.,

demonstrating that it takes approximately 50 subsequent orders before the order flow

returns to its unconditional pattern following an aggressive order [36]. Degryse et al.

further find that the spread initially increases significantly above its average following

an aggressive order, but reverts to normal levels within 20 level-1 quote updates of the

LOB [69].

They further find that the initial price impact caused by a transaction is partially re-

versed in subsequent transactions, but that there are long-term effects from aggressive

orders. Thus, the average transaction prices of buys (sells) after an aggressive mar-

ket order are higher (lower) than pre-event transaction prices [69]. In a study on the

South African equity market, following an observed increase in average price impact for

low-volume trades as a result of exchange fee restructuring [115], Hendricks and Har-

vey propose a potential LOB resiliency explanation. They show that an increase in the

intensity of low-volume trades without commensurate quote replenishment resulted in

elevated price impact for trades below a certain size [123]. This demonstrates the link

between price impact and resiliency, and will be investigated further in Chapter 7 as a

means to control our trading agent’s actions.

Daniellson and Payne examine how liquidity is determined on a limit order book for

foreign exchange trade, the Reuters D2000-2 [64]. They introduce the concept of what

they call dynamic liquidity or illiquidity. This aims to capture what occurs after a market

order arrives at the LOB. A LOB is considered to be dynamically illiquid if a market buy

(sell) causes a further removal of liquidity from the sell (buy) side, i.e. the response to a

liquidity demand shock is to not supply new liquidity around the same price. They find

that the foreign exchange limit order book studied is dynamically illiquid (not resilient).

Chapter 2. Market microstructure and the trade execution problem 20

They further find that if repetitive intraday patterns are controlled for, the buy and sell

side depth are uncorrelated. This is similar to Large’s finding, where replenishment is

equally likely to occur on either side of the LOB [159].

2.6 Optimal trade execution

A critical problem faced by participants in financial markets is the so-called optimal

trade execution problem, viz. how best to trade a given block of shares to achieve min-

imal cost. Here, cost can be interpreted as in Andre Perold’s implementation shortfall

[209], i.e. adverse deviations of actual transaction prices from an arrival price frictionless

baseline when the investment decision is made. Alternatively, cost can be measured as

a deviation from the market volume-weighted trading price (VWAP) over the trading

period, effectively comparing the specific trader’s performance to that of the average

market trader. In each case, the primary problem faced by the trader/execution algo-

rithm is the compromise between price impact and opportunity cost when executing an

order.

As discussed in Section 2.4, price impact here refers to adverse price moves due to a

large market order absorbing limit order quotes at available levels in the LOB, pushing

the price and causing temporary price impact. As market participants begin to detect

the total volume being traded and the trader’s intentions, they may also adjust the price

level of their submitted quotes downward/upward to anticipate order matching, resulting

in permanent price impact [131]. To avoid price impact, traders may split a large order

into smaller child orders over a longer period. However, there may be exogenous market

forces which result in execution at adverse prices, i.e. an opportunity cost from delayed

trading. This behaviour of institutional investors was empirically demonstrated in [52],

where they observed that typical trades of large investment management firms are almost

always broken up into smaller trades and executed over the course of a day or several

days. A heuristic solution may involve choosing the maximum permissible child order

trade size such that the expected temporary impact is less than the measured price

volatility for the duration of the trading program, but the problem quickly becomes

more complex.

This concept is illustrated in Figure 2.3, which will serve as the primary problem de-

scription which we aim to solve in this thesis. Consider a trading agent which receives

an instruction to sell 60 000 shares of some stock at 09:55. The trading agent receives

further instructions to guarantee execution by 10:30 and aim to match the arrival price

(minimise implementation shortfall). Here, the arrival price is the prevailing price level

Chapter 2. Market microstructure and the trade execution problem 21

at the time the trading agent receives the instruction to trade, indicated by the red dot-

ted line. The grey bars indicate the market’s total traded volumes in successive 5-minute

periods. The blue bars indicate the trading agent’s chosen participation in traded vol-

umes, i.e. each represents a market order with the quantity shown by the blue bar and

the price attained is approximated by the coincident level of the black line. The orange

line then shows the running VWAP of the trading agent’s order, based on the executed

volumes and price levels. Once the entire quantity is sold (at time 10:25), the trading

agent’s achieved VWAP is compared to the arrival price of the trading programme. In

this case, the trading agent has created value (achieved a sale price higher than the

arrival price) directly as a function of the chosen quantities and timing of market orders

executed over the trading program. We note some terminology at this point: an acqui-

sition is a trading program to buy a specified quantity of shares and a liquidation is a

trading program to sell a quantity of shares. These are of course special cases of the

general optimal trade execution problem.

We aim to develop a trading agent which optimally chooses these market order vol-

umes, however we will consider a variety of calendar and event time scales governing the

frequency of execution, carefully considering an appropriate state representation which

permits learning.

Figure 2.3: Trade execution with arrival price benchmark

The fine resolution evolution of the LOB as our trading agent’s state space, the extraction

of persistent features at the trading scale which can be exploited for optimal execution

and the effect of the agent’s interactions with the system on its evolution are all key

Chapter 2. Market microstructure and the trade execution problem 22

considerations for the development of an unsupervised trading agent which can adapt

online.

2.7 Some remarks

The are some key computational challenges which should be noted when interacting with

this system at this scale. The LOB data is by nature asynchronous with varying levels

of throughput, i.e. each time a new limit order, modification, cancellation or market

order is submitted, the associated event is recorded with a time-stamp. We have access

to recorded market depth at micro-second resolution, thus the sheer volume of data

quickly moves beyond the typical memory capabilities of desktop computing solutions.

This places this work firmly in the big data in finance domain, requiring bespoke high-

performance computing solutions for practical efficacy. In addition, traditional time-

series analysis techniques for multiple objects assume synchronous arrival times of data.

This assumption requires revision if we aim to extract inferences at this micro scale

without imposing any biases. In particular, for an online trading agent, we need to

ensure that it can make sense of a streaming market data feed of asynchronous events.

The drivers of the temporal evolution of LOB dynamics are much more complex than

indicated in this chapter. Beyond pure intentions of buying or selling an asset based

on an investment decision, trading agents employ various tactics to manipulate LOB

dynamics to achieve favourable transaction costs or extract alpha [119, 181]. Quote

stuffing is a practice where a high-frequency trader operating in a market with mul-

tiple trading venues floods a particular venue with worthless quotes, creating a stale

representation of the market’s intentions, before using their technological advantage to

react on another trading venue faster than other participants. Quote spoofing involves

creating false demand by loading up one side of the LOB with quotes, falsely signalling a

buy/sell intention to participants, such that a particular limit order has a higher chance

of being matched. The deception of spoofing undermines the ability of value investors to

identify fundamental value of the assets being traded. These practices cause significant

quote volatility, making the extraction of useful, persistent signals more difficult. Any

paradigm used to model dynamics at this scale needs to be robust with respect to the

enumerable drivers of observed behaviour.

Chapter 3

Model-free reinforcement learning

3.1 Overview

Reinforcement learning (RL) is a technique used to numerically solve for a calibrated

policy mapping states to optimal or near-optimal actions, given an objective in a stochas-

tic system. Each state is a vector of observable attributes which describe the current

configuration of the system. The technique proposes a simple, model-free mechanism

for agents to learn how to act optimally in a controlled Markovian domain, where the

quality of action chosen is successively improved for a given state using feedback from

the system [67].

The problem of solving for an optimal policy mapping states to actions is well-known

in optimal control theory, with a significant contribution by Bellman [29]. Bellman

showed that the computational burden of a Markov Decision Process (MDP) can be

significantly reduced using what is now known as dynamic programming. It was how-

ever recognised that two significant drawbacks exist for classical dynamic programming:

Firstly, it assumes that a complete, known model of the environment exists, which is

often not realistically obtainable. Secondly, problems rapidly become computationally

intractable as the number of state variables increases, and hence, the size of the state

space for which the value function must be computed increases. This problem is referred

to as the curse of dimensionality [230].

RL offers two advantages over classical dynamic programming: Firstly, agents learn on-

line and continually adapt while performing the given task. Secondly, the methods can

employ function approximation algorithms to represent their knowledge. This allows

generalisability across the state space, improving learning time and exploration proper-

ties of the algorithm [72]. Reinforcement learning algorithms do not require knowledge

23

Chapter 3. Model-free reinforcement learning 24

about the exact model governing an MDP and thus can be applied to MDP’s where

exact methods become infeasible.

Although a number of implementations of RL exist, we will focus on Q-learning. This is

a model-free technique first introduced by Watkins [243], which can be used to find the

optimal, or near-optimal, action-selection policy for a given MDP. In the context of the

optimal liquidation problem, the algorithm can be used to examine the salient features

of the current order book and current state of execution in order to decide which action

(e.g. child order price or volume) to select to service the ultimate goal of achieving the

execution objective.

3.2 Markov Decision Processes

To understand the current theory for RL, one must first consider the formalism of

discrete-time controlled Markov Decision Processes (MDPs) as a model for temporal

system evolution. A number of notable resources on MDPs are available (see for example

[30, 213, 214, 216, 245]). In particular, White and White provide a comprehensive

review of MDPs [245], and a summary exposition will be presented here to facilitate

development and context for the RL approach to optimal control.

An MDP is a mathematically-based optimisation model of discrete-stage, sequential

decision making in a stochastic system [245]. It consists of four primary components:

states, actions, rewards and transition probabilities. A learning agent is able to perceive

the current state of the world, which encodes all observable features describing the sys-

tem configuration. The agent can then perform an action, which yields some immediate

feedback (reward) and causes the system to evolve to the next state. Since the system is

stochastic, the state evolution consequences of a particular action is not deterministic,

thus there is a probability distribution over the possible states at the next decision step

(transition probabilities). The characteristic feature of an MDP is that the transition

probability from the current state to the state at the next decision point is dependent

only on the current state, and not earlier states or actions of the process. Equivalently,

this means that all the information necessary for an agent to make an action decision

is encoded by the current state. In this scenario the MDP is considered controlled, in

the sense that the agent’s chosen action directly affects the temporal state evolution in

some way.

More formally, let {st : t = 1, 2, ..., T} be a controlled Markov chain with finite horizon

length, T . Assume an agent is able to perceive the current state st ∈ S and can choose a

candidate action to perform, at ∈ A. Here, S is a compact subspace of Rp representing

Chapter 3. Model-free reinforcement learning 25

the state space and A is a finite set of actions. The dynamics of {st : t = 1, 2, ..., T} can

be described by the following (time-independent) conditional probabilities:

Prob(st+1 = j|st = i, at = a) = Pi,j(a). (3.1)

Pi,j(a) is thus a probability kernel encoding the probability of moving from some state

i ∈ S to some state j ∈ U using control a ∈ A, where U is a subset of S (i.e. U ⊆ S).

The function r : S × A → R is defined as the reward function, such that r(i, a) is the

immediate numerical reward incurred when the agent performs action a in state i.

A key concept in the theory of MDPs is that of a policy, viz. a particular candidate

mapping from states to actions. Mathematically, this is represented as:

Π(S) = {π(i) = a : i ∈ S and a ∈ A}. (3.2)

Note, we are assuming that the policy is stationary, i.e. it will perform the same action

a whenever it encounters state i, regardless of when this occurs in time. Given that

some policy Π deterministically encodes an action for every state, and we know the

reward consequences for such actions (r), we can ascribe a value to each state, which

represents the expected cumulative reward incurred by following the action trajectories

from Π until the end of the problem horizon or the terminal state is reached. This value

function is defined as:

V π(i) = r(i, π(i)) + γ
∑
j

Pij(π(i))V π(j) for i, j ∈ S. (3.3)

Here, γ denotes the constant discount rate (0 < γ < 1), which ensures a preference for

immediate rewards versus future rewards. In general, a larger γ places more weight on

future rewards and can result in a more difficult optimisation problem [67].

The goal of the learning agent is to maximise the expected cumulative sum of discounted

rewards, viz. find the policy Π∗ such that

V π∗(i) = arg max
π
{r(i, π(i)) + γ

∑
j

Pij(π(i))V π(j)} for i, j ∈ S. (3.4)

Equation 3.4 is a version of the Bellman optimality equation for value functions [29, 31].

Finding the optimal policy Π∗ directly is a non-trivial task, even when system dynamics

are known exactly. Since each action taken affects the temporal system evolution at

subsequent time steps, every possible sequence of actions needs to be considered to

evaluate the value function, which grows exponentially in sequence length. Bellman

recognised this intractability and developed a set of methods for solving this optimisation

Chapter 3. Model-free reinforcement learning 26

problem, utilising the Markov property to reduce the scale of the problem [29, 31]. This

procedure is termed dynamic programming, which is the analytical precursor to RL

theory.

3.3 Dynamic Programming

The dynamic programming optimisation approach exploits the structure inherent in cer-

tain classes of complex problems, which can often be broken up into a system of simpler,

overlapping sub-problems which are easier to solve. The solution to the original problem

is then reconstructed from the sub-problem solutions. MDPs are ideal candidates, since

Equation 3.4 provides a recursive decomposition of the problem and the value function

V π(i) stores and reuses its solutions for a particular policy Π. In particular, finite-horizon

MDPs often have a trivial optimal terminal state mapping, (π(sT), sT ∈ U ⊂ S), which

can be computed and stored. The optimal mapping for (π(sT−1), sT−1 ∈ S) can then

be solved, given that we know the optimal mapping at time T . Solving the set of sub-

problems in this predefined order is referred to as backward induction and is appropriate

for finite-horizon MDPs with stationary, deterministic policies.

There are two primary algorithms in dynamic programming to solve each of the sub-

problems: policy iteration and value iteration.

3.3.1 Policy iteration

As described in Section 3.2, a policy is a particular mapping from states to actions. For

this exposition, we consider only deterministic policies, however more generally policies

can be stochastic, i.e. with some probability distribution over candidate actions for a

particular state (see for example [81]). In addition, we assume policies are stationary.

Policy iteration broadly involves two stages: policy evaluation and policy improvement.

Policy evaluation involves determining the discounted cumulative reward from following

the exact trajectory of actions from a candidate policy in the current and subsequent

states, i.e. evaluating Equation 3.3 for a given state i. Policy improvement uses the

values V π(i) to specify a new policy Π′ which is guaranteed to be at least as good as

Π. We will omit the details here, but a key insight is the specification of a Q-function,

which determines the value of a non-stationary policy whereby some action a is executed

in the current state, and the policy mappings from Π are used in subsequent states, i.e.

Qπ(i, a) = r(i, a) + γ
∑
j

Pij(a)V π(j) for i, j ∈ S. (3.5)

Chapter 3. Model-free reinforcement learning 27

The primary difference between Equation 3.3 and Equation 3.5 is that we allow the case

were a 6= π(i). A new policy is then chosen, such that

π′(i) = arg max
a∈A
{Qπ(i, a)} for i ∈ S (3.6)

where it is clear that Qπ(i, π′(i)) ≥ Qπ(i, π(i)) and the overall policy is thus improving

simultaneously in every state i ∈ S [67]. If π′(i) = π(i) ∀ i ∈ S, then Π is an optimal

policy, usually denoted by Π∗. The value function and Q-function associated with the

optimal policy are denoted by V π∗(i) and Qπ
∗
(i, a) respectively. Policy iteration is

guaranteed to converge to an optimal solution, since the problem is finite and improves

measurably at each time step [133].

3.3.2 Value iteration

Value iteration is an alternative proposition in dynamic programming theory to solve for

the optimal policy. Under value iteration, the Q-function is updated directly according

to the following equation

Q′(i, a) = r(i, a) + γ
∑
j

Pij(a) arg max
b∈A

Q(j, b) for i, j ∈ S (3.7)

following an appropriate initialisation of Q. Although the Q-function as specified in

Equation 3.7 is not associated with a particular policy, as in Equation 3.5, it can be

shown that if Equation 3.7 is iterated infinitely-often, it will converge to the Q-function

associated with the optimal policy [25, 29, 31]. The optimal policy is then defined as

Π∗(S) = {a : Q(i, a) = arg max
b∈A

Q(i, b) and i ∈ S}. (3.8)

We will omit the details of the proof here, but a key insight is that

||Q′(i, a)−Qπ∗(i, a)||∞ ≤ γ||Q(i, a)−Qπ∗(i, a)||∞ for 0 < γ < 1 (3.9)

viz., the L∞-norm of the distance between Q′(i, a) and Qπ
∗
(i, a) is less than that be-

tween Q(i, a) and Qπ
∗
(i, a) by a factor of at least 0 < γ < 1 at each iteration step

[29, 31, 67]. The Q-values thus converge exponentially to their optimal values, ensuring

the policy is at least near-optimal after a finite number of steps. The value iteration

algorithm is closely related to a simple reinforcement learning algorithm, Q-learning,

which considers the case where transition probabilities and rewards are at least par-

tially unknown apriori, making dynamic programming unsuitable. This is the primary

algorithm we will be considering and extending in this thesis.

Chapter 3. Model-free reinforcement learning 28

3.4 The Q-learning algorithm

Q-learning is a model-free reinforcement learning technique first introduced by Watkins

[243], which can be used to find the optimal, or near-optimal, action-selection policy for

a given MDP [244]. It uses the idea of the Bellman optimality equation and the value

iteration algorithm to derive a update rule which successively refines the state-action

policy mapping using simple observed feedback from the system, without full knowledge

of transition dynamics.

The task of the Q-learning agent is to determine Π∗ where Pij(a) is unknown, using a

combination of exploration and exploitation techniques over the given domain. In the

exposition which follows, we will use ∗ to indicate the optimal policy π∗ where this eases

notation.

It can be shown that V ∗(i) = maxaQ
∗(i, a) and that an optimal policy can be formed

such that π∗(i) = a∗. It thus follows that if the agent can find the optimal Q-values,

the optimal action can be inferred for a given state i. It is shown in [243, 244] that an

agent can learn Q-values via experiential learning, which takes place during sequential

episodes. At the tth iteration, the agent:

• observes its current state St,

• selects and performs an action At,

• observes the subsequent state St+1 as a result of performing action At,

• receives an immediate reward rt and

• uses a learning factor αt, which decreases gradually over time.

Q is updated as follows:

Qt+1(St, At) = Qt(St, At) + αt[rt + γmax
b
Qt(St+1, b)−Qt(St, At)]. (3.10)

In Equation 3.10, we have indexed the Q-matrix by time, to show the incremental update

of the Q-values given the prevailing values and new reward information. Provided each

state-action pair is visited infinitely often, [244] show that Q converges to Q∗ for any

exploration policy. Singh et al. provide guidance as to specific exploration policies

for asymptotic convergence to optimal actions and asymptotic exploitation under the

Q-learning algorithm, which we incorporate in our analysis [230].

Chapter 3. Model-free reinforcement learning 29

3.4.1 Proof of convergence for infinite-horizon Q-learning

While Watkins developed the Q-learning algorithm in his PhD thesis [243], the detailed

proof of convergence was published as a separate technical note with Dayan [244], mak-

ing use of an artificial controlled Markov process called an action replay process. Melo

published an independent, simpler proof of convergence for the finite state, finite ac-

tion, infinite horizon Q-learning algorithm which is well-suited to our formulation [182],

building on theorems derived in [139]. We will reproduce Melo’s proof here for complete-

ness, making appropriate notation changes to suit our exposition, before considering the

consequences of a finite horizon on convergence.

Consider an MDP as the tuple (S,A, P, r), where

• S is the finite state space

• A is the finite action space, or set of admissible controls

• P represents the state transition probabilities

• r represents the reward function.

We denote elements of S as i and j, and elements of A as a and b. We consider the

general situation where the reward is defined over triplets (i, a, j), viz. r is a function

r : S ×A× S → R

where a reward r(i, a, j) is incurred each time a transition occurs from state i to state

j, as a result of performing action a. Here, r is a bounded, deterministic function.

For a candidate sequence of controls Au ⊂ A = {Au,t = a : t ≥ 0, a ∈ A} and state

evolutions Su ⊂ S = {Su,t = i : t ≥ 0, i ∈ S}, the value of a state i is defined as

J(i,Au) = E

[∞∑
t=0

γtr(Su,t, Au,t, Su,t+1)

∣∣∣∣ Su,0 = i

]
(3.11)

where γ is some discount rate such that 0 ≤ γ ≤ 1. For each i ∈ S, the optimal value

function is defined as

V ∗(i) = max
Au

J(i,Au) (3.12)

which verifies the following equation,

V ∗(i) = max
a∈A

∑
j∈S

Pa(i, j)
[
r(i, a, j) + γV ∗(j)

]
. (3.13)

Chapter 3. Model-free reinforcement learning 30

In line with the description in Section 3.3, we define the optimal Q-function as

Q∗(i, a) =
∑
j∈S

Pa(i, j)
[
r(i, a, j) + γV ∗(j)

]
. (3.14)

The optimal Q-function in Equation 3.14 is a fixed point of a contraction operator H,

defined for some generic function q : S ×A → R as

(Hq)(i, a) =
∑
j∈S

Pa(i, j)
[
r(i, a, j) + γmax

b∈A
q(j, b)

]
. (3.15)

The operator H is a contraction in the sup-norm, i.e.

||Hq1 −Hq2||∞ ≤ γ||q1 − q2||∞. (3.16)

To see this, consider the following

||Hq1 −Hq2||∞

= max
i,a

∣∣∣∣∣∑
j∈S

Pa(i, j)
[
r(i, a, j) + γmax

b∈A
q1(j, b)− r(i, a, j)− γmax

b∈A
q2(j, b)

]∣∣∣∣∣
= max

i,a
γ

∣∣∣∣∣∑
j∈S

Pa(i, j)
[

max
b∈A

q1(j, b)−max
b∈A

q2(j, b)
]∣∣∣∣∣

≤ max
i,a

γ
∑
j∈S

Pa(i, j)
∣∣∣max
b∈A

q1(j, b)−max
b∈A

q2(j, b)
∣∣∣

≤ max
i,a

γ
∑
j∈S

Pa(i, j) max
k,b

∣∣∣q1(k, b)− q2(k, b)
∣∣∣

= max
i,a

γ
∑
j∈S

Pa(i, j)||q1 − q2||∞

= γ||q1 − q2||∞.

The Q-learning algorithm determines the optimal Q-function using point samples. Let

πu be some random state-action policy mapping, such that

Pπu
[
Au,t = a|Su,t = i

]
> 0 (3.17)

for all state-action pairs (i, a). Consider a sequence of actions Au, state evolutions Su
and rewards Ru = {rt(i, a, j) : t ≥ 0, i, j ∈ Su, a ∈ Au}. Then, for any initial state Q0,

Q-learning uses the following update rule

Qt+1(St, At) = Qt(St, At) + αt(St, At)
[
rt + γmax

b∈A
Qt(St+1, b)−Qt(St, At)

]
(3.18)

where the step-sizes αt(St, At) satisfy the condition 0 ≤ αt(St, At) ≤ 1 and rt :=

Chapter 3. Model-free reinforcement learning 31

rt(St, At, St+1). Qt then represents the expected discounted reward of performing action

At in state St, and then following the (current) optimal policy thereafter.

Before we can prove that the update rule in Equation 3.18 converges to the optimal

Q-function, we require an auxiliary result from stochastic approximation theory.

Theorem 3.1. The random iterative process {4t}, taking values in Rn and defined as

4t+1(x) = (1− αt(x))4t(x) + αt(x)Ft(x)

converges to zero w.p. 1 under the following assumptions:

• 0 ≤ αt(x) ≤ 1,
∑
t
αt(x) =∞ and

∑
t
α2
t (x) <∞

• ||E
[
Ft(x)|Ft

]
||W ≤ γ||4t||W , with 0 ≤ γ < 1

• V
[
Ft(x)|Ft

]
≤ C(1 + ||4t||2W), for C > 0.

where:

• x ∈ S is a finite set

• αt(x) is the time-dependent learning rate

• Ft(x) is a time-dependent function of the state variables

• Ft = {Ft(x), Ft−1(x), ..., αt(x), αt−1(x), ...,4t(x),4t−1(x), ...} is the history up to

time t

• C, γ are constants

• || · ||W = maxx | ·W (x) | is a weighted maximum norm

Proof. The detailed proofs of this result and supporting lemmas are provided by Jaakkola

et al. [139].

We can now state the following result:

Theorem 3.2. Given a finite MDP (S,A, P, r), the Q-learning algorithm given by the

update rule

Qt+1(St, At) = Qt(St, At) + αt(St, At)
[
rt + γmax

b∈A
Qt(St+1, b)−Qt(St, At)

]

Chapter 3. Model-free reinforcement learning 32

converges w.p. 1 to the optimal Q-function, provided

∑
t

αt(i, a) =∞

and ∑
t

α2
t (i, a) <∞

for all (x, a) ∈ S ×A, i.e. all permissible state-action pairs.

The conditions for αt(i, a) in Theorem 3.2, together with the Q-learning update rule

condition 0 ≤ αt(i, a) ≤ 1, imply that all state-action pairs need to be visited infinitely

often to ensure convergence to the optimal Q-function.

Proof. We begin by rewriting Equation 3.18 as

Qt+1(St, At) = (1− αt(St, At))Qt(St, At) + αt(St, At)
[
rt + γmax

b∈A
Qt(St+1, b)

]
.

Subtracting the quantity Q∗(St, At) from both sides and letting

4t(St, At) = Qt(St, At)−Q∗(St, At)

yields

4t+1(St, At) = (1−αt(St, At))4t(St, At)+αt(St, At)
[
rt+γmax

b∈A
Qt(St+1, b)−Q∗(St, At)

]
.

Now consider,

Ft(i, a) = rt(i, a,X(i, a)) + γmax
b∈A

Qt(j, b)−Q∗(i, a),

where X(i, a) is a random sample state taken from the Markov chain (S, Pa). Then we

have

E[Ft(i, a)|Ft] =
∑
j∈S

Pa(i, j)
[
rt(i, a, j) + γmax

b∈A
Qt(j, b)−Q∗(i, a)

]
= (HQt)(i, a)−Q∗(i, a).

Using the fact that Q∗ = HQ∗, we have

E[Ft(i, a)|Ft] = (HQt)(i, a)− (HQ∗)(i, a).

Chapter 3. Model-free reinforcement learning 33

It then follows from Equation 3.16 that

||E[Ft(i, a)|Ft]||∞ ≤ ||Qt −Q∗||∞

= γ||4t||∞.

Finally, we have

V[Ft(x, a)|Ft]

= E

[(
rt(i, a,X(i, a)) + γmax

b∈A
Qt(j, b)−Q∗(i, a)− (HQt)(i, a) +Q∗(i, a)

)2
]

= E

[(
rt(i, a,X(i, a)) + γmax

b∈A
Qt(j, b)− (HQt)(i, a)

)2
]

= V

[
rt(i, a,X(i, a)) + γmax

b∈A
Qt(j, b)|Ft

]

which, since r is bounded, verifies

V
[
Ft(i, a)|Ft

]
≤ C(1 + ||4t||2W)

for some constant C.

Then, by Theorem 3.1, 4t converges to zero w.p. 1, which implies Qt converges to Q∗

w.p. 1.

3.4.2 On convergence for finite-horizon Q-learning

The exposition in Section 3.4.1 presents an algorithm which guarantees optimal policy

convergence of a stationary infinite-horizon MDP. The stationarity assumption, and

hence validity of the above result, needs to be questioned when considering a finite-

horizon MDP, since states, actions and policies are time-dependent [213]. In particular,

we are considering a discrete period, finite trading horizon, which guarantees execution

of a given volume of shares. At each decision step in the trading horizon, it is possible

to have different state spaces, actions, transition probabilities and reward values. Hence

the above model needs revision. Garcia and Ndiaye consider this problem and provide

a model specification which suits this purpose [96]. They propose a slight modification

to the Bellman optimality equations shown above:

V ∗t (i) = max
at
{rt(i, at) + γ

∑
j

P tij(at+1)V π∗
t+1(j)}

Chapter 3. Model-free reinforcement learning 34

for all i ∈ St ⊆ S, j ∈ St+1 ⊆ S, at ∈ At ⊆ A, t ∈ {0, 1, ..., T} and V ∗T+1(i) = 0. This

optimality equation has a single solution V ∗ = {V ∗1 , V ∗2 , ..., V ∗T } that can be obtained

using dynamic programming techniques. The equivalent discounted expected reward

specification thus becomes:

Qπt (i, at) = rt(i, at) + γ
∑
j

P tij(π(i))V π
t+1(j).

They propose a novel transformation of an T -step non-stationary MDP into an infinite-

horizon process ([96]). This is achieved by adding an artifical final reward-free absorbing

state xabs, such that all actions aT ∈ A taken at time T lead to xabs with probability 1.

Hence the revised Q-learning update equation becomes:

Qt+1(i, at) = Qt(i, at) + αt(i, at)Ut,

where

Ut =


rt + γmaxbQt(j, b)−Qt(i, at) for i ∈ St, j ∈ St+1, t < T

rt −Qt(i, at) for i ∈ ST

0 otherwise.

The learning rule for ST is thus equivalent to setting V ∗T+1(xabs) = Q∗T+1(xabs, b) = 0 ∀
b ∈ AT+1 ⊆ A.

Garcia and Ndiaye further show that the above specification (in the case where γ = 1)

will converge to the optimal policy with probability one, provided that each state-action

pair is visited infinitely often,
∑

t αt(i, a) =∞ and
∑

t α
2
t (i, a) <∞ [96].

3.5 Batch learning vs online learning

The traditional RL paradigm permits online learning, viz. an agent is deployed in an

unknown domain, immediately begins taking actions according to some (initially ran-

dom) action-selection policy, receives feedback from the system, and eventually refines

its state-action selection policy through experience. Batch RL refers to the case where a

certain amount of pre-recorded experience (rewards and state transitions given executed

actions) is used to train a Q-matrix offline, before deploying the learning agent into the

online environment [80, 158]. Batch RL does not preclude online learning, but rather

seeks to minimise the potential adverse consequences of initial random action selection

by seeding the Q-matrix with reasonable experience. It is of course only effective if

the experience tuples for offline policy training closely mimic online experience [80]. In

Chapter 5, we introduce a batch RL Q-learning framework for optimal trade execution,

Chapter 3. Model-free reinforcement learning 35

where executed actions affect only the evolution of the agent’s private state attributes,

not the evolution of public attributes. This permits us to construct a set of experi-

ence tuples from historical data which can be used to seed the training of a Q-matrix,

before deploying it online for trade execution decisions. Given the goal of developing

adaptive trading agents, it is critical that the agent can extract and make sense of per-

sistent information from streaming data online, and is able to converge to a useful policy

fast enough before the regime changes. Chapter 6 introduces a market attribute which

describes the temporal evolution of the system, but is measurable online for effective

learning. Chapter 9 discusses a fully online algorithm, where the agent learns directly

from interactions from the system with no offline training.

3.6 Exploration vs exploitation trade-off

A key challenge in RL, which is not a concern in other forms of machine learning, is

the trade-off between exploration and exploitation [230]. Given the goal of maximising

cumulative reward, an agent should choose actions which it has found to be successful

in the past, i.e. exploit existing knowledge of the system to make decisions. At the same

time, given limited knowledge of the system, the agent should explore actions it has not

tried before to determine if it has perhaps learnt a locally-optimal policy. This trade-off

is usually encoded in the action selection rule for the learning agent. A common action

selection rule is ε-greedy, where most of the time the action chosen coincides with the

highest expected cumulative future reward, however there is a ε probability of choosing a

random action from the permissible set [230]. One disadvantage of ε-greedy is that, given

an exploration action choice, it is equally likely to choose amongst all permissible actions.

An alternative scheme is softmax, where action probabilities are weighted according to

their estimated value [230], such that the exploration action choice does not adversely

affect the agent’s trajectory. We have chosen to use the ε-greedy action-selection scheme

in Chapters 5, 8 and 9, however alternative schemes could be explored in further work

to assess its efficacy in this domain.

3.7 Curse of dimensionality

The term curse of dimensionality was introduced by Richard Bellman to describe a

problem of exponential increase the volume of a sampling space as one increases the

dimension of the space [31–33], however the concept has been translated to machine

learning, where it states that the efficacy of a learning algorithm decreases as the di-

mensionality of the feature space increases [135]. For RL, this is a particular problem

Chapter 3. Model-free reinforcement learning 36

for the discrete-state Q-learning algorithm we consider in this thesis, as the ability to

learn an effective policy quickly diminishes as the number of state attributes (and their

resolution) increases. It is thus critical that we choose a parsimonious state representa-

tion which captures enough exploitable information in the system evolution to learn an

effective policy. This is especially relevant for our domain, where agents acting in a high-

frequency market microstructure state space potentially face solving high-dimensional

problems. In Chapter 6, we introduce a scheme which models temporal evolution by ef-

ficiently extracting the exploitable information from multi-featured data streaming from

the system, reducing it to low-dimensional representation which is easily measurable

online. This permits us to add a single public attribute to our learning agent’s state

space, rather than adding all possible features at arbitrary resolutions.

3.8 The nature of learning in a complex system

While RL offers a compelling paradigm for deriving adaptive trajectories under Marko-

vian dynamics, it rests firmly on the foundations of dynamic programming [29], assuming

the system of interest is stationary and ergodic and hence guarantees convergence to a

single globally-optimal state-action policy. If the system of interest is a complex adap-

tive system, the existence of a single, fixed-point solution for our objective should be

questioned.

Rather, RL may still be effective if it converges to a useful policy fast enough, i.e. it

learns at a rate faster than the natural time-scale of the system, yet adapts as new niches

form. Galla and Farmer investigate the nature of agent learning by simulating two-

person complicated games with varying payoff correlations, using experience weighted

attraction (EWA) to evaluate the propensity for asymptotic learning in the parameter

space [95]. They show that even under these simple conditions, chaotic regimes exist in

the payoff correlation-learning rate space, where any attempts to learn a useful policy

are inherently random. Their results suggest that, given a payoff correlation amongst

competing agents, a learning rate should be chosen which ensures the agent is in a

fixed point or multiple fixed point regime, such that feasible learning toward a useful

policy is possible. Given the complex system paradigm we are considering, we would

at best expect a (possibly dynamic) multiple fixed point regime to exist, thus a learning

rate should be chosen which ensures we are within this region. It is unclear how the

results presented by Galla and Farmer [95] could be extrapolated for real-world games.

One possibility may be to use an inverse reinforcement learning (IRL) algorithm to

learn rewards or payoffs of different classes of agents in financial systems, calculating

payoff correlations to isolate feasible learning rates, but we suspect the solution is more

Chapter 3. Model-free reinforcement learning 37

complicated. It is clear, however, that the chosen learning rate is critical for an effective

trading agent and warrants careful evaluation for our study.

3.9 Some remarks

This chapter introduces the general learning framework used in this thesis: discrete-

state, discrete-action Q-learning for finite-horizon MDPs. In Chapter 5, we demonstrate

a simple implementation for our particular problem of optimal trade execution. Chapter

6 uses the complex system proposition for financial system dynamics outlined in Chap-

ter 1 to inform a mechanism for detecting temporal states online, providing an efficient

attribute to enhance the learning agent’s state space which avoids the curse of dimen-

sionality. Chapter 7 focuses on the agent’s permitted actions, using the ideas outlined in

Chapter 2 to inform a pragmatic mechanism for controlling the size of submitted trades.

Chapter 4

Data description and Exploratory

Data Analysis

4.1 Overview

In this chapter, we discuss the raw data used for this work, courtesy of Thomson Reuters

Tick History. To facilitate efficient storage, retrieval and manipulation of the large vol-

ume of tick data, we uploaded the data into a MongoDB noSQL database with bespoke

query indexes and a MATLAB application programming interface (API) for integration

into our scientific computing environment. We use the techniques of exploratory data

analysis to interrogate the empirical data, revealing pertinent details for the modelling

decisions which follow.

4.2 Data

4.2.1 Raw data

Thomson Reuters Tick History (TRTH) provides a historical market data service for

intraday transactions, quotes and market depth dating back to January 1996 [2]. We

used this service to collect raw tick data for 170 stocks which make up the South African

benchmark All-Share index (ALSI), from January 2006 to December 2015. The TRTH

web interface was used to select fields including transactions and 10 levels of market

depth quotes, and data was downloaded as a series of flat text files. The fields retrieved

are listed in Table 4.1.

38

Chapter 4. Data description and Exploratory Data Analysis 39

Reuters field Description

#RIC The Reuters Sharecode identifier

Date[L] The date, in “DD-MMM-YY” format

Time[L] The local exchange time, in “hh:mm:ss.000” format,

associated with the event

Type The type of data shown (“quote”, “trade” or “auction”)

Price The price of a trade

Size The volume of a trade

L1-BidPrice The prevailing best bid quote price

L1-BidSize The prevailing best bid quote volume

L1-AskPrice The prevailing best ask quote price

L1-AskSize The prevailing best ask quote volume

L2-BidPrice The prevailing level 2 bid quote price

L2-BidSize The prevailing level 2 bid quote volume

L2-AskPrice The prevailing level 2 ask quote price

L2-AskSize The prevailing level 2 ask quote volume

L3-BidPrice The prevailing level 3 bid quote price

L3-BidSize The prevailing level 3 bid quote volume

L3-AskPrice The prevailing level 3 ask quote price

L3-AskSize The prevailing level 3 ask quote volume

L4-BidPrice The prevailing level 4 bid quote price

L4-BidSize The prevailing level 4 bid quote volume

L4-AskPrice The prevailing level 4 ask quote price

L4-AskSize The prevailing level 4 ask quote volume

L5-BidPrice The prevailing level 5 bid quote price

L5-BidSize The prevailing level 5 bid quote volume

L5-AskPrice The prevailing level 5 ask quote price

L5-AskSize The prevailing level 5 ask quote volume

L6-BidPrice The prevailing level 6 bid quote price

L6-BidSize The prevailing level 6 bid quote volume

L6-AskPrice The prevailing level 6 ask quote price

L6-AskSize The prevailing level 6 ask quote volume

L7-BidPrice The prevailing level 7 bid quote price

L7-BidSize The prevailing level 7 bid quote volume

L7-AskPrice The prevailing level 7 ask quote price

L7-AskSize The prevailing level 7 ask quote volume

L8-BidPrice The prevailing level 8 bid quote price

L8-BidSize The prevailing level 8 bid quote volume

L8-AskPrice The prevailing level 8 ask quote price

L8-AskSize The prevailing level 8 ask quote volume

L9-BidPrice The prevailing level 9 bid quote price

L9-BidSize The prevailing level 9 bid quote volume

L9-AskPrice The prevailing level 9 ask quote price

L9-AskSize The prevailing level 9 ask quote volume

L10-BidPrice The prevailing level 10 bid quote price

L10-BidSize The prevailing level 10 bid quote volume

L10-AskPrice The prevailing level 10 ask quote price

L10-AskSize The prevailing level 10 ask quote volume

Table 4.1: Thomson Reuters Tick History (TRTH) raw data fields. The associated
data was downloaded as flat text files from the TRTH web interface.

Chapter 4. Data description and Exploratory Data Analysis 40

4.2.2 MongoDB noSQL database

To facilitate efficient data retrieval for empirical analysis on microstructure data, we

used MongoDB to implement a trade and quote database. MongoDB is a highly scal-

able, high performance, open-source NoSQL database management system (DBMS) [54].

Considering the nature of the raw tick data, i.e. large volumes of trades and quotes with

associated metadata, the JSON-like documents and dynamic schemas provided by Mon-

goDB ensure efficient storage, without the relational overhead of SQL-style databases.

MongoDB offers simple and compound index support on any set of attributes, MapRe-

duce functionality for efficient aggregation queries and full integration with JAVA and

C++ via appropriate API’s and drivers [54].

The implemented MongoDB schema is shown in Figure 4.1. A TickData database was

created to store the data in two collections: JSETransactions, which stores trade and

level-1 quotes as documents, and JSEMarketDepth, which stores 10 levels of market depth

quotes as documents. The hardware specifications of the database server are shown in

Table 4.2. Security measures were implemented to ensure the correct access permissions

were granted for our research group team members, using role-based access control.

TickData DATABASE

JSETransactions COLLECTION JSEMarketDepth COLLECTION

{

 "_id" : ObjectId("530e0e255439702888d2ce91"),

 "RIC" : "AGLJ.J",

 "DateL" : "03-JAN-2006",

 "TimeL" : "09:03:32.628624",

 "DateTimeL" : ISODate("2006-01-

03T09:03:32.628Z"),

 "Type" : "Quote",

 "Price" : 0.0,

 "Volume" : 0,

 "MarketVWAP" : 0.0,

 "L1BidPrice" : 21008,

 "L1BidSize" : 0,

 "L1AskPrice" : 21700,

 "L1AskSize" : 7789

}

Document 1

{

 "_id" : ObjectId("530e0e255439702888d2ce91"),

 "RIC" : "AGLJ.J",

 "DateL" : "03-JAN-2006",

 "TimeL" : "09:03:32.628624",

 "DateTimeL" : ISODate("2006-01-

03T09:03:32.628Z"),

 "Type" : "Quote",

 "Price" : 0.0,

 "Volume" : 0,

 "MarketVWAP" : 0.0,

 "L1BidPrice" : 21008,

 "L1BidSize" : 0,

 "L1AskPrice" : 21700,

 "L1AskSize" : 7789

}

{

 "_id" : ObjectId("530e0e255439702888d2ce91"),

 "RIC" : "AGLJ.J",

 "DateL" : "03-JAN-2006",

 "TimeL" : "09:03:32.628624",

 "DateTimeL" : ISODate("2006-01-

03T09:03:32.628Z"),

 "Type" : "Trade",

 "Price" : 21010.0,

 "Volume" : 402,

 "MarketVWAP" : 0.0,

 "L1BidPrice" : 0,

 "L1BidSize" : 0,

 "L1AskPrice" : 0,

 "L1AskSize" : 0

}

Document 2

Document 3

{

 "_id" : ObjectId("52fb3918543970073c9665e7"),

 "RIC" : "AGLJ.J",

 "DateL" : "04-JAN-2010",

 "TimeL" : "07:02:18.659018",

 "DateTimeL" : ISODate("2010-01-

04T07:02:18.659Z"),

 "Type" : "Market Depth",

 "L1BidPrice" : 31860,

 "L1BidSize" : 100,

 "L1AskPrice" : 32025,

 "L1AskSize" : 5000,

 "L2BidPrice" : 31850,

 "L2BidSize" : 509,

 "L2AskPrice" : 32200,

 "L2AskSize" : 1204,

 "L3BidPrice" : 31620,

 "L3BidSize" : 102,

 "L3AskPrice" : 32285,

 "L3AskSize" : 100,

 "L4BidPrice" : 31600,

 "L4BidSize" : 3000,

 "L4AskPrice" : 32400,

 "L4AskSize" : 1000,

 "L5BidPrice" : 31500,

 "L5BidSize" : 3118,

 "L5AskPrice" : 32530,

 "L5AskSize" : 747,

 "L6BidPrice" : 31400,

 "L6BidSize" : 602,

 "L6AskPrice" : 32650,

 "L6AskSize" : 32650,

 "L7BidPrice" : 26,

Document 1

{

 "_id" : ObjectId("52fb3918543970073c9665e7"),

 "RIC" : "AGLJ.J",

 "DateL" : "04-JAN-2010",

 "TimeL" : "07:02:18.659018",

 "DateTimeL" : ISODate("2010-01-

04T07:02:18.659Z"),

 "Type" : "Market Depth",

 "L1BidPrice" : 31860,

 "L1BidSize" : 100,

 "L1AskPrice" : 32025,

 "L1AskSize" : 5000,

 "L2BidPrice" : 31850,

 "L2BidSize" : 509,

 "L2AskPrice" : 32200,

 "L2AskSize" : 1204,

 "L3BidPrice" : 31620,

 "L3BidSize" : 102,

 "L3AskPrice" : 32285,

 "L3AskSize" : 100,

 "L4BidPrice" : 31600,

 "L4BidSize" : 3000,

 "L4AskPrice" : 32400,

 "L4AskSize" : 1000,

 "L5BidPrice" : 31500,

 "L5BidSize" : 3118,

 "L5AskPrice" : 32530,

 "L5AskSize" : 747,

 "L6BidPrice" : 31400,

 "L6BidSize" : 602,

{

 "_id" : ObjectId("52fb3918543970073c9665e7"),

 "RIC" : "AGLJ.J",

 "DateL" : "04-JAN-2010",

 "TimeL" : "07:02:18.659018",

 "DateTimeL" : ISODate("2010-01-

04T07:02:18.659Z"),

 "Type" : "Market Depth",

 "L1BidPrice" : 31860,

 "L1BidSize" : 100,

 "L1AskPrice" : 32025,

 "L1AskSize" : 5000,

 "L2BidPrice" : 31850,

 "L2BidSize" : 509,

 "L2AskPrice" : 32200,

 "L2AskSize" : 1204,

 "L3BidPrice" : 31620,

 "L3BidSize" : 102,

 "L3AskPrice" : 32285,

 "L3AskSize" : 100,

 "L4BidPrice" : 31600,

 "L4BidSize" : 3000,

 "L4AskPrice" : 32400,

 "L4AskSize" : 1000,

 "L5BidPrice" : 31500,

 "L5BidSize" : 3118,

 "L5AskPrice" : 32530,

 "L5AskSize" : 747,

Document 2

Document 3

Figure 4.1: Implemented MongoDB schema for TRTH data. A TickData database
was created to store the data in two collections: JSETransactions, which stores trade
and level-1 quotes, and JSEMarketDepth, which stores 10 levels of market depth quotes.

Chapter 4. Data description and Exploratory Data Analysis 41

Item Specification

Operating System Windows 7 Professional Service Pack 1 (64-bit)
DBMS MongoDB 3.0.7, run as Windows service
CPU Intel Core i7-X980 CPU@3.33 GHz
Memory 24GB RAM
HDD capacity (DB location) 3 x 4TB RAID 0 striped, creating spanned volume of 12TB
HDD capacity (raw data) 1 x 1.5TB
HDD capacity (OS) 1 x 1TB
GPU Nvidia TESLA C2050 with 2.5GB RAM, CC: 2.0, SM: 2.0

Table 4.2: Hardware specifications for MongoDB data server.

4.2.2.1 Query indexes

MongoDB provides support for both simple (single field) and compound (multiple fields)

indexes to improve the execution speed of queries. MongoDB make use of a B-tree data

structure [60] which restricts the number of scans through a collection to those which

are relevant for a given query. We constructed a number of compound indexes which

facilitated efficient retrieval of documents from the JSETransactions and JSEMarket-

Depth collections. Some of these are indicated in Figure 4.2. We typically required the

retrieval of contiguous blocks of tick data, for a specified stock and date/time range,

thus the specification of required indexes was relatively straight forward.

db.JSETransactions.createIndex({

 RIC: 1,

 Type: 1,

 DateTimeL: 1

})

JSETransactions COLLECTION

Retrieve all documents for a given RIC (stock),

type (‘trade’, ’quote’ or ‘auction’) and date

range using the ISODate format.

db.JSETransactions.createIndex({

 RIC: 1,

 DateTimeL: 1

})

Retrieve all documents for a given RIC (stock),

and date range using the ISODate format

(retrieves all types).

JSEMarketDepth COLLECTION

db.JSEMarketDepth.createIndex({

 RIC: 1,

 DateTimeL: 1

})

Retrieve all documents for a given RIC (stock),

and date range using the ISODate format

(Collection only contains ‘quote’ types).

Figure 4.2: Some compound indexes created for efficient query execution.

Chapter 4. Data description and Exploratory Data Analysis 42

4.2.2.2 Aggregation and Map-Reduce

MongoDB provides two schemes for native document processing and aggregation: The

aggregation pipeline and map-reduce. The data aggregation pipeline allows the user to

group and sort documents based on specified fields, as well as apply common operators

on intermediate and final results for efficient computation using native MongoDB com-

mands. The basic process uses queries to filter documents and then apply document

transformations to modify the form of the output document. Map-reduce is an older

paradigm implemented on a variety of large-scale computing clusters and database man-

agement systems [68]. Map-reduce operations typically have two phases: a map stage

which processes each document and emits one or more objects for each input document,

and reduce phase which combines and processes the output of the map operation. While

the MongoDB aggregation pipeline is more efficient than map-reduce for performing the

same operation, map-reduce offers more flexibility in the type of aggregation procedures

which can be performed. Figure 4.3 illustrates the differences between the aggregation

pipeline and map-reduce for performing a simple extraction of level-1 quotes at 5-minute

intervals from the JSEMarketDepth collection.

4.2.2.3 MATLAB API

We developed a MATLAB application programming interface (API) which provides

seamless access to data stored in the MongoDB database, efficiently retrieving docu-

ments over a secure connection and populating the MATLAB workspace for further

computation. We incorporated the native mongoexport command, which efficiently ex-

tracts documents based on a specified query and stores results temporarily on disk, be-

fore populating the MATLAB workspace using the MATLAB dos command. Although

this is a somewhat crude implementation, it was found to be significantly faster than

alternative schemes which used Java Database Connectivity (JDBC) drivers to connect

to the database from MATLAB.

Chapter 4. Data description and Exploratory Data Analysis 43

db.JSEMarketDepth.aggregate(

[{ $match:

{ RIC: "GRTJ.J", DateTimeL: { $gte: ISODate("2012-10-

25T09:00:00.000Z"), $lte: ISODate("2012-10-

25T09:15:00.000Z") } } },

{ $sort: { DateTimeL: 1 } },

{ $group: { _id: { RIC: "$RIC", Year: { $year:

"$DateTimeL" }, Month: { $month: "$DateTimeL" }, Day:

{ $dayOfMonth: "$DateTimeL" }, Hour: { $hour:

"$DateTimeL" }, Minute: { $minute: "$DateTimeL" } },

L1AskPrice: { $first: "$L1AskPrice" }, L1AskSize: {

$first: "$L1AskPrice" }, L1BidPrice: { $first:

"$L1BidPrice" }, L1BidSize: { $first: "$L1BidSize" }

} },

{ $sort: { "_id.Year": 1, "_id.Month": 1, "_id.Day":

1, "_id.Hour": 1, "_id.Minute": 1 } },

{ $match: { "_id.Minute": { $mod: [5, 0] } } }])

AGGREGATION

Extract level 1 quotes at 5-minute intervals for GRT, from 25-Oct-2012 09:00 to 09:15

db.JSEMarketDepth.mapreduce(

map() { var resolution = 5;

 var coeff = 1000 * 60 * resolution;

var roundTime = new

Date(Math.round(this.DateTimeL.getTime() /

coeff) * coeff + 7200000);

 emit({ RIC: this.RIC, Date: new Date(roundTime),

 Year: roundTime.getFullYear(),

 Month: roundTime.getMonth(),

 Day: roundTime.getUTCDate(),

 Hour: roundTime.getUTCHours(),

 Minute: roundTime.getMinutes()},

 { count: 1,

 L1BidPrice: this.L1BidPrice,

 L1BidSize: this.L1BidSize,

 L1AskPrice: this.L1AskPrice,

 L1AskSize: this.L1AskSize

 });

}

reduce(key, values) {

var reduced = { count: 0, L1BidPrice: 0, L1BidSize:

0, L1AskPrice: 0, L1AskSize: 0 };

 for (var i = 0; i<values.length; i++)

 {

 reduced.L1BidPrice = values[i].L1BidPrice;

 reduced.L1BidSize = values[i].L1BidSize;

 reduced.L1AskPrice = values[i].L1AskPrice;

 reduced.L1AskSize = values[i].L1AskSize;

 }

 return reduced;

})

MAP-REDUCE

Extract level 1 quotes at 5-minute intervals for GRT

Figure 4.3: Aggregation pipeline versus map-reduce for a simple computation, ex-
tracting level-1 quotes for a stock at 5-minute intervals.

4.3 Exploratory Data Analysis

Initially promoted by John Tukey, exploratory data analysis (EDA) is a paradigm which

seeks to construct visualisations which expose patterns and features of the data and

reveal these forcefully to the analyst [129]. The term forcefully distinguishes mere visual

summaries of data from those which promote insight and investigation. Tukey claimed

that statisticians were too focused on sometimes arbitrary statistical hypothesis testing

or confirmatory data analysis, rather than efficiently utilising the data to inform which

hypotheses indeed needed testing [234, 235]. In a key publication, The Future of Data

Analysis, Tukey provides some key propositions in the interest of gleaning new and

meaningful insights from datasets, advocating the use of more realistic frameworks for

investigating old problems, seeking unfamiliar summaries of observational material and

the consideration of the perspectives of different experts on the same data [233].

Given the proliferation of data being generated by a wide variety of domains, these

principles of EDA should be reconceptualised to inform hypotheses in the so-called era

Chapter 4. Data description and Exploratory Data Analysis 44

of big data [90]. Advances in techniques which were conceptualised for small data will

require a careful blend of domain-specific knowledge and statistics to ensure inferences

are both meaningful and significant. We will thus consider EDA specifically for financial

markets, using a blend of our understanding of system dynamics and mechanics with

observed behaviours to inform hypotheses about system evolution.

4.3.1 Visualisation of limit order book features

Figure 4.4 demonstrates the asynchronous nature of trade prices as they are recorded

in the data feed. Each dot indicates a trade which occurred over the 5-minute time

interval shown here, where dots are coloured by stock and sized by the quantity of the

trade. This reveals the varying event throughput across stocks and apparent clustering

of activity.

Figure 4.5 plots all trade events for all TOP40 stocks for a typical trading day. While

certain details are masked at the micro level in this figure, a macro lens reveals that

there are certain temporal behavioural patterns worth investigating, such as clustering

of high-volume trades, their coincidence with exogenous events and news, as well as

cross-sectional activity levels for multiple stocks at various stages in the trading day.

Figures 4.6 and 4.7 plot the best bid (red) and best ask (blue) quotes for two candi-

date stocks (SBK and AGL) over a typical trading day. Here, we note the variability

of the spread over the trading day, and the effects of opening and closing auctions on

top-of-book quote dynamics. This begins to suggest isolating continuous trading times

(excluding auctions) for effective model calibrations, as inclusion of auction time dynam-

ics may adversely affect calibrations. Figure 4.7 also suggests that certain exogenous

events, such as the UK and US market open (around 10:00 and 15:00 respectively) may

affect the dynamics of stocks on the local exchange.

Figure 4.8 plots the best bid and best ask quotes for two fundamentally similar stocks,

Mondi Limited (MND) and Mondi Plc (MNP). These plots may reveal pairs trading

behaviour amongst the submitted quotes and resultant trades, revealing details about

how the observed price levels remain coupled.

Figures 4.9, 4.10 and 4.11 plot the market depth quotes and trades over a two hour

period on a typical trading day. Here, blue dots indicate ask quotes, red dots indicate

bid quotes and yellow dots indicate trades, with the size of the dot proportional to the

associated quantity. Quote levels further from the top of the book are indicated in

a lighter colour. These plots summarise a number of interesting features: clustering

of trades, variability of spread, persistency of quotes before matching, cancellation or

Chapter 4. Data description and Exploratory Data Analysis 45

updating and the tightness of market depth. Figure 4.11 in particular reveals a definite

regime change in LOB activity for AGL following the UK market open at 10:00.

09:00:00 09:00:30 09:01:00 09:01:30 09:02:00 09:02:30 09:03:00 09:03:30 09:04:00 09:04:30 09:05:00
0

1

2

3

4

5

6
x 10

4

Asynchronous transactions of TOP40 stocks from 2012−10−02 09:00:00 to 2012−10−02 09:05:00
(Actual asynchronous data)

P
ric

e

Time

 AGLJ.J
AMSJ.J
ANGJ.J
APNJ.J
ARIJ.J
ASAJ.J
ASRJ.J
BILJ.J
BTIJ.J
BVTJ.J
CFRJ.J
DSYJ.J
EXXJ.J
FSRJ.J
NEDJ.J
WHLJ.J
GFIJ.J
NPNJn.J
GRTJ.J
OMLJ.J
IMPJ.J
REMJ.J
INLJ.J
RMHJ.J
INPJ.J
SABJ.J
IPLJ.J
SBKJ.J
SHFJ.J
KIOJ.J
SHPJ.J
MDCJ.J
SLMJ.J
MNDJ.J
SOLJ.J
MNPJ.J
TBSJ.J
MSMJ.J
TRUJ.J
MTNJ.J
VODJ.J

Figure 4.4: This figure aims to demonstrate the asynchronous nature of the trade
price time series at the tick level. Here, we plot raw trades of all TOP40 stocks over
a 5 minute period, from 09:00 02 October 2012 to 09:05 02 October 2012. Each dot
represents a trade at the exact time it took place, with trade price on the Y-axis and
time on the X-axis, where the size of the dot is proportional to the volume of the trade.

Dots are coloured by stock. It is clear stock trades occur asynchronously.

Chapter 4. Data description and Exploratory Data Analysis 46

09:00:00 09:45:00 10:30:00 11:15:00 12:00:00 12:45:00 13:30:00 14:15:00 15:00:00 15:45:00 16:30:00
0

1

2

3

4

5

6
x 10

4

Asynchronous transactions of TOP40 stocks from 2012−10−02 09:00:00 to 2012−10−02 16:30:00
(Actual asynchronous data)

P
ric

e

Time

 AGLJ.J
AMSJ.J
ANGJ.J
APNJ.J
ARIJ.J
ASAJ.J
ASRJ.J
BILJ.J
BTIJ.J
BVTJ.J
CFRJ.J
DSYJ.J
EXXJ.J
FSRJ.J
NEDJ.J
WHLJ.J
GFIJ.J
NPNJn.J
GRTJ.J
OMLJ.J
IMPJ.J
REMJ.J
INLJ.J
RMHJ.J
INPJ.J
SABJ.J
IPLJ.J
SBKJ.J
SHFJ.J
KIOJ.J
SHPJ.J
MDCJ.J
SLMJ.J
MNDJ.J
SOLJ.J
MNPJ.J
TBSJ.J
MSMJ.J
TRUJ.J
MTNJ.J
VODJ.J

Figure 4.5: This figure aims to investigate common temporal patterns amongst stock
trades across the trading day. Here, we plot raw trades of all TOP40 stocks over a 7.5
hour period, from 09:00 02 October 2012 to 16:30 02 October 2012. Each dot represents
a trade at the exact time it took place, with trade price on the Y-axis and time on the
X-axis, where the size of the dot is proportional to the volume of the trade. Dots are

coloured by stock.

Chapter 4. Data description and Exploratory Data Analysis 47

09:05:00 09:49:30 10:34:00 11:18:30 12:03:00 12:47:30 13:32:00 14:16:30 15:01:00 15:45:30 16:30:00
1.254

1.256

1.258

1.26

1.262

1.264

1.266

1.268

1.27

1.272

1.274
x 10

4

Level1 Bid and Ask quotes of SBK from 2013−11−01 09:05:00 to 2013−11−01 16:30:00
(Actual asynchronous data)

P
ric

e

Time

SBK Level1 Bid
SBK Level1 Ask

Figure 4.6: This figure aims to investigate the nature of spreads by plotting the
evolution of level-1 quotes.

09:05:00 09:49:30 10:34:00 11:18:30 12:03:00 12:47:30 13:32:00 14:16:30 15:01:00 15:45:30 16:30:00
2.375

2.38

2.385

2.39

2.395

2.4

2.405

2.41

2.415
x 10

4

Level1 Bid and Ask quotes of AGL from 2013−11−01 09:05:00 to 2013−11−01 16:30:00
(Actual asynchronous data)

P
ric

e

Time

AGL Level1 Bid
AGL Level1 Ask

Figure 4.7: This figure aims to investigate the nature of spreads by plotting the
evolution of level-1 quotes.

Chapter 4. Data description and Exploratory Data Analysis 48

09:00:00 09:01:30 09:03:00 09:04:30 09:06:00 09:07:30 09:09:00 09:10:30 09:12:00 09:13:30 09:15:00
8150

8200

8250

8300

8350

8400

8450

8500

Level1 Bid and Ask quotes of MND and MNP from 2012−09−28 09:00:00 to 2012−09−28 09:15:00
(Actual asynchronous data)

P
ric

e

Time

MND Level1 Bid
MND Level1 Ask
MNP Level1 Bid
MNP Level1 Ask

Figure 4.8: This figure aims to investigate the nature of level-1 quote updates for
two fundamentally similar stocks which are typical candidates for pairs trading, Mondi

Limited (MND) and Mondi Plc (MNP).

Chapter 4. Data description and Exploratory Data Analysis 49

09:05:00 09:16:30 09:28:00 09:39:30 09:51:00 10:02:30 10:14:00 10:25:30 10:37:00 10:48:30 11:00:00
2480

2500

2520

2540

2560

2580

2600

Trades and Level 1 to 6 Bid and Ask quotes of GRT from 2013−11−01 09:05:00 to 2013−11−01 11:00:00
(Actual asynchronous data)

P
ric

e

Time

GRT Level1 Bid
GRT Level1 Ask
GRT Level2 Bid
GRT Level2 Ask
GRT Level3 Bid
GRT Level3 Ask
GRT Level4 Bid
GRT Level4 Ask
GRT Level5 Bid
GRT Level5 Ask
GRT Level6 Bid
GRT Level6 Ask
GRT Trade

Figure 4.9: This figure aims to investigate the nature of the raw events of interest in
the limit order book, including market depth. Ask quotes are indicated in blue and bid
quotes in red, with darker colours indicating closeness to the top-of-the-book. Yellow
dots indicate trade events. The size of each dot is proportional to the volume of the

trade or quote.

Chapter 4. Data description and Exploratory Data Analysis 50

09:05:00 09:16:30 09:28:00 09:39:30 09:51:00 10:02:30 10:14:00 10:25:30 10:37:00 10:48:30 11:00:00
1.25

1.255

1.26

1.265

1.27

1.275

1.28
x 10

4

Trades and Level 1 to 6 Bid and Ask quotes of SBK from 2013−11−01 09:05:00 to 2013−11−01 11:00:00
(Actual asynchronous data)

P
ric

e

Time

SBK Level1 Bid
SBK Level1 Ask
SBK Level2 Bid
SBK Level2 Ask
SBK Level3 Bid
SBK Level3 Ask
SBK Level4 Bid
SBK Level4 Ask
SBK Level5 Bid
SBK Level5 Ask
SBK Level6 Bid
SBK Level6 Ask
SBK Trade

Figure 4.10: This figure aims to investigate the nature of the raw events of interest in
the limit order book, including market depth. Ask quotes are indicated in blue and bid
quotes in red, with darker colours indicating closeness to the top-of-the-book. Yellow
dots indicate trade events. The size of each dot is proportional to the volume of the

trade or quote.

Chapter 4. Data description and Exploratory Data Analysis 51

09:05:00 09:16:30 09:28:00 09:39:30 09:51:00 10:02:30 10:14:00 10:25:30 10:37:00 10:48:30 11:00:00
2.37

2.375

2.38

2.385

2.39

2.395

2.4

2.405

2.41

2.415
x 10

4

Trades and Level 1 to 6 Bid and Ask quotes of AGL from 2013−11−01 09:05:00 to 2013−11−01 11:00:00
(Actual asynchronous data)

P
ric

e

Time

AGL Level1 Bid
AGL Level1 Ask
AGL Level2 Bid
AGL Level2 Ask
AGL Level3 Bid
AGL Level3 Ask
AGL Level4 Bid
AGL Level4 Ask
AGL Level5 Bid
AGL Level5 Ask
AGL Level6 Bid
AGL Level6 Ask
AGL Trade

Figure 4.11: This figure aims to investigate the nature of the raw events of interest in
the limit order book, including market depth. Ask quotes are indicated in blue and bid
quotes in red, with darker colours indicating closeness to the top-of-the-book. Yellow
dots indicate trade events. The size of each dot is proportional to the volume of the

trade or quote.

Chapter 4. Data description and Exploratory Data Analysis 52

4.4 Some remarks

This chapter highlights the importance of an effective database management system

when dealing with large volumes of financial tick data, and uses the EDA paradigm of

John Tukey to construct visualisations of the data which promote preliminary insights.

While there are many more effective visualisations one could develop for this data, the

investigation here reveals apparent asynchronicity, clustering and temporal behaviour of

LOB events, which prove to be critical insights to inform the model choices which follow

in this thesis.

Chapter 5

A simple model-free

reinforcement learning model for

trade execution

5.1 Overview

This chapter serves as a proof-of-concept for the proposed learning paradigm, distilling

the problem to its most basic form before considering refinement. We introduce a model-

free reinforcement learning algorithm for optimal trade execution, using pre-processed

features to enumerate a discrete state space, with market order volume as the chosen

control. The learning algorithm is used to adapt a static liquidation trajectory with

respect to prevailing order book features, in order to improve the post-trade implemen-

tation shortfall with respect to the program’s arrival price. The contribution is captured

in the following paper:

D. Hendricks, D. Wilcox. A reinforcement learning extension to the Almgren-Chriss

framework for optimal trade execution. Proceedings from IEEE Conference on Compu-

tational Intelligence for Financial Economics and Engineering, 2014. [124]

Available online: http://dx.doi.org/10.1109/CIFEr.2014.6924109

53

Chapter 5. A simple model-free reinforcement learning model for trade execution 54

5.2 Adapting a static liquidation trajectory using rein-

forcement learning

A critical problem faced by participants in investment markets is the so-called optimal

trade execution problem, viz. how best to trade a given block of shares to achieve minimal

cost. Here, cost can be interpreted as in Andre Perold’s implementation shortfall [209],

i.e. adverse deviations of actual transaction prices from an arrival price baseline when

the investment decision is made. Alternatively, cost can be measured as a deviation from

the market volume-weighted trading price (VWAP) over the trading period, effectively

comparing the specific trader’s performance to that of the average market trader. In each

case, the primary problem faced by the trader/execution algorithm is the compromise

between price impact and opportunity cost when executing an order.

Price impact here refers to adverse price moves due to a large trade size absorbing liq-

uidity supply at available levels in the order book (temporary price impact). As market

participants begin to detect the total volume being traded, they may also adjust their

bids/offers downward/upward to anticipate order matching (permanent price impact)

[131]. To avoid price impact, traders may split a large order into smaller child orders

over a longer period. However, there may be exogenous market forces which result in

execution at adverse prices (opportunity cost). This behaviour of institutional investors

was empirically demonstrated by Chan and Lakonishok [52], where they observed that

typical trades of large investment management firms are almost always broken up into

smaller trades and executed over the course of a day or several days.

Several authors have studied the problem of optimal liquidation, with a strong bias

towards stochastic dynamic programming solutions (see [8–13, 35, 99, 100, 134, 160,

166, 190, 218–222, 236, 237] as examples). In this chapter, we consider the application

of a machine learning technique to the problem of optimal liquidation. Specifically, we

consider a case where the popular Almgren-Chriss closed-form solution for a trading

trajectory, with linear price impact [13], can be enhanced by exploiting microstructure

attributes over the trading horizon using a reinforcement learning technique.

Reinforcement learning in this context is essentially a calibrated policy mapping states

to optimal actions. Each state is a vector of observable attributes which describe the

current configuration of the system. It proposes a simple, model-free mechanism for

agents to learn how to act optimally in a controlled Markovian domain, where the

quality of action chosen is successively improved for a given state [243]. For the optimal

liquidation problem, the algorithm examines the salient features of the current order

book and current state of execution in order to decide which action (e.g. child order

price or volume) to select to service the ultimate goal of minimising cost.

Chapter 5. A simple model-free reinforcement learning model for trade execution 55

The first documented large-scale empirical application of reinforcement learning algo-

rithms to the problem of optimised trade execution in modern financial markets was

conducted by Nevmyvaka et al. [191, 192]. They set up their problem as a minimisa-

tion of implementation shortfall for a buying/selling program over a fixed time horizon

with discrete time periods. For actions, the agent could choose a price to repost a limit

order for the remaining shares in each discrete period. State attributes included elapsed

time, remaining inventory, current spread, immediate cost and signed volume. In their

results, they found that their reinforcement learning algorithm improved the execution

efficiency by 50% or more over traditional submit-and-leave or market order policies.

This is conceptually similar to work of Laruelle et al. [161], where they propose a

stochastic optimisation procedure to determine the optimal posting of limit order prices

given market feedback.

Given the above description, we are able to discuss our specific choices for state at-

tributes, actions and rewards in the context of the optimal liquidation problem. We

need to consider a specification which adequately accounts for our state of execution

and the current state of the limit order book, representing the opportunity set for our

ultimate goal of executing a volume of shares over a fixed trading horizon. We consider

the particular problem of adapting a given, static volume trajectory for a liquidation

program with respect to market micostructure features. Our candidate static trajectory

model is the Almgren-Chriss model for an arrival price benchmark, assuming linear price

impact.

5.2.1 The Almgren-Chriss model for optimal liquidation

Bertsimas and Lo are pioneers in the area of optimal liquidation, treating the problem as

a stochastic dynamic programming problem [35]. They employed a dynamic optimisation

procedure which finds an explicit closed-form best execution strategy, minimising trading

costs over a fixed period of time for large transactions. Almgren and Chriss extended

the work of Bertsimas and Lo to allow for risk aversion in their framework [13]. They

argue that incorporating the uncertainty of execution of an optimal solution is consistent

with a trader’s utility function. In particular, they employ a price process which permits

linear permanent and temporary price impact functions to construct an efficient frontier

of optimal execution. They define a trading strategy as being efficient if there is no

strategy which has lower execution cost variance for the same or lower level of expected

execution cost.

Chapter 5. A simple model-free reinforcement learning model for trade execution 56

The exposition of their solution is as follows: They assume that the security price evolves

according to a discrete arithmetic random walk:

Sk = Sk−1 + στ1/2ξk − τg(
nk
τ

), (5.1)

where:

Sk = price at time k,

σ = volatility of the security,

τ = length of discete time interval,

ξk = draws from independent random variables,

nk = volume traded at time k and

g(.) = permanent price impact.

Here, permanent price impact refers to changes in the equilibrium price as a direct

function of our trading, which persists for at least the remainder of the liquidation

horizon. Temporary price impact refers to adverse deviations as a result of absorbing

available liquidity supply, but where the impact dissipates by the next trading period

due to the resilience of the order book. Almgren and Chriss introduce a temporary price

impact function h(v) to their model, where h(v) causes a temporary adverse move in

the share price as a function of our trading rate v [13]. Given this addition, the actual

security transaction price at time k is given by:

S̃k = Sk−1 − h(
nk
τ

).

Assuming a sell program for a quantity of X shares, we can then define the total trading

revenue as:

N∑
k=1

nkS̃k = XS0 +
N∑
k=1

(στ1/2ξk − τg(
nk
τ

))xk −
N∑
k=1

nkh(
nk
τ

), (5.2)

where xk = X −
k∑
j=1

nj =
N∑

j=k+1

nj for k = 0, 1, ..., N .

The total cost of trading is thus given by x = XS0 −
∑
nkS̃k, i.e. the difference

between the target revenue value and the total actual revenue from the execution. This

definition refers to Perold’s implementation shortfall measure [209], and serves as the

primary transaction cost metric which is minimised in order to maximise trading revenue.

Since implementation shortfall is a random variable, Almgren and Chriss compute the

Chapter 5. A simple model-free reinforcement learning model for trade execution 57

following:

E(x) :=
N∑
k=1

τxkg(
nk
τ

) +
N∑
k=1

nkh(
nk
τ

)

and

V(x) := σ2
N∑
k=1

τxk
2.

The distribution of implementation shortfall is Gaussian if the ξk are Gaussian.

Given the overall goal of minimising execution costs and the variance of execution costs,

they specify their objective function as:

min
x
{E(x) + λV(x)}, (5.3)

where:

x = implementation shortfall,

λ = level of risk aversion.

The intuition of this objective function can be thought of as follows: Consider a stock

which exhibits high price volatility and thus a high risk of price movement away from

the reference price. A risk averse trader would prefer to trade a large portion of the

volume immediately, causing a (known) price impact, rather than risk trading in small

increments at successively adverse prices. Alternatively, if the price is expected to be

stable over the liquidation horizon, the trader would rather split the trade into smaller

sizes to avoid price impact. This trade-off between speed of execution and risk of price

movement is what governs the shape of the resulting trade trajectory in the AC frame-

work.

A detailed derivation of the general solution can be found in [13]. Here, we state the

general solution:

xj =
sinh(κ(T − tj))

sinh(κT)
X for j = 0, ..., N. (5.4)

The associated trade list is:

nj =
2 sinh(1

2κτ)

sinh(κT)
cosh(κ(T − tj− 1

2
))X for j = 0, ..., N, (5.5)

Chapter 5. A simple model-free reinforcement learning model for trade execution 58

where:

κ =
1

τ
cosh−1

(
τ2

2
κ̃2 + 1

)
,

κ̃2 =
λσ2

η(1− ρτ
2η)

,

η = temporary price impact parameter,

ρ = permanent price impact parameter,

τ = length of discrete time period.

This implies that for a program of selling an initially long position, the solution decreases

monotonically from its initial value to zero at a rate determined by the parameter κ. If

trading intervals are short, κ2 is essentially the ratio of the product of volatility and risk-

intolerance to the temporary transaction cost parameter. We note here that a larger

value of κ implies a more rapid trading program, again conceptually confirming the

propositions of [134] that an intolerance for execution risk leads to a larger concentration

of quantity traded early in the trading program. Another consequence of this analysis is

that different sized baskets of the same securities will be liquidated in the same manner,

barring scale differences and provided the risk aversion parameter λ is held constant.

This may be counter-intuitive, since one would expect larger baskets to be effectively

less liquid, and thus follow a less rapid trading program to minimise price impact costs.

It should be noted that the AC solution yields a suggested volume trajectory over the

liquidation horizon, however Almgren and Chriss do not discuss a prescribed order type

to execute the trade list [13]. We have assumed that the trade list can be executed as a

series of market orders. Given that this implies we are always crossing the spread, one

needs to consider that traversing an order book with thin volumes and widely-spaced

prices could have a significant transaction cost impact. We thus consider a reinforcement

learning technique which learns when and how much to cross the spread, based on the

current order book dynamics.

The general solution outlined above assumes linear price impact functions, however the

model was later extended by Almgren to account for non-linear price impact [12]. This

extended model can be considered as an alternative base model in future research.

5.2.2 State space

We acknowledge that the true complexity of the financial system cannot be distilled into

a finite set of states and is not likely to evolve according to a Markov process. However,

we conjecture that the essential features of the system can be sufficiently captured with

Chapter 5. A simple model-free reinforcement learning model for trade execution 59

some simplifying assumptions such that meaningful insights can still be inferred. Here

we consider typical pre-processed features which capture aspects of the system visible to

human traders. For simplicity, we have chosen a look-up table representation of Q, where

Q is a 2-dimensional matrix where each state-action pair reflects the expected discounted

future reward of performing the associated action in the given state, then following the

(current) optimal policy thereafter. Function approximation variants may be explored in

future research for more complex system configurations. As described above, each state

zn ∈ S represents a vector of observable attributes which describe the configuration of

the system at time n. As in Nevmyvaka et al. [191, 192], we use Elapsed Time t and

Remaining Inventory i as private attributes which capture our state of execution over a

finite liquidation horizon T . Since our goal is to modify a given volume trajectory based

on favourable market conditions, we include spread and volume as candidate market

attributes. The intuition here is that the agent will learn to increase (decrease) trading

activity when spreads are narrow (wide) and volumes are high (low). This would ensure

that a more significant proportion of the total volume-to-trade would be secured at a

favourable price and, similarly, less at an unfavourable price, ultimately reducing the

post-trade implementation shortfall. Given the look-up table implementation, we have

simplified each of the state attributes as follows:

• T = Trading Horizon,

• V = Total Volume-to-Trade,

• H = Hour of day when trading will begin,

• I = Number of remaining inventory states,

• B = Number of spread states,

• W = Number of volume states,

• spn = %ile Spread of the nth tuple,

• vpn = %ile Bid/Ask Volume of the nth tuple,

• Elapsed Time: tn = 1, 2, 3, ..., T ,

• Remaining Inventory: in = 1, 2, 3, ..., I ,

• Spread State: sn =



1, if 0 < spn ≤ 1
B

2, if 1
B < spn ≤ 2

B

...

B, if (B−1)
B < spn ≤ 1,

Chapter 5. A simple model-free reinforcement learning model for trade execution 60

• Volume State: vn =



1, if 0 < vpn ≤ 1
W

2, if 1
W < vpn ≤ 2

W

...

W, if (W−1)
W < vpn ≤ 1.

Thus, for the nth episode, the state attributes can be summarised as the following tuple:

zn =< tn, in, sn, vn > .

For spn and vpn, we first construct a historical distribution of spreads and volumes

based on the training set. It has been empirically observed that major equity markets

exhibit U -shaped or J -shaped trading intensity curves throughout the day, i.e. varying

signatures of typical trading activity around mornings, noon and afternoons. A further

discussion of these insights can be found in Admati and Pfleiderer [6] and Brock and Klei-

don [48]. In fact, Du Preez empirically demonstrates that South African stocks exhibit

U -shaped volume and J -shaped spread characteristics over the trading day [74]. We

thus consider simulations where training volume/spread tuples are H -hour dependent,

such that the optimal policy is further refined with respect to trading time (H).

5.2.3 Action set

Based on the Almgren-Chriss (AC) model specified above, we calculate the AC volume

trajectory (AC1, AC2, ..., ACT) for a given volume-to-trade (V), fixed time horizon (T)

and discrete trading periods (t = 1, 2, ..., T). ACt represents the proportion of V to

trade in period t, such that
T∑
t=1

ACt = V . For the purposes of this study, we assume that

each child order is executed as a market order based on the prevailing limit order book

structure. We would like our learning agent to modify the AC volume trajectory based

on prevailing volume and spread characteristics in the market. As such, the possible

actions for our agent include:

• βj = Proportion of ACt to trade,

• βLB = Lower bound of volume proportion to trade,

• βUB = Upper bound of volume proportion to trade,

• Action: ajt = βjACt, where βLB ≤ βj ≤ βUB
and βj = βj−1 + βincr.

Chapter 5. A simple model-free reinforcement learning model for trade execution 61

The aim here is to train the learning agent to trade a higher (lower) proportion of

the overall volume when conditions are favourable (unfavourable), whilst still broadly

preserving the volume trajectory suggested by the AC model. To ensure that the total

volume-to-trade is executed over the given time horizon, we execute any residual volume

at the end of the trading period with a market order.

5.2.4 Reward function

Each of the actions described above results in a volume to execute with a market order,

based on the prevailing structure of the limit order book. The size of the child order

volume will determine how deep we will need to traverse the order book. For example,

suppose we have a BUY order with a volume-to-trade of 20 000, split into child orders

of 10 000 in period t and 10 000 in period t+ 1. If the structure of the limit order book

at time t is as follows:

Market Depth Level Ask Price Ask Volume

Level-1 100.00 3000
Level-2 100.50 4000
Level-3 102.30 5000
Level-4 103.00 6000
Level-5 105.50 2000

the volume-weighted execution price will be:

(3000× 100) + (4000× 100.5) + (3000× 102.3)

10000
= 100.9.

Trading more (less) given this limit order book structure will result in a higher (lower)

volume-weighted execution price. If the following trading period t+ 1 has the following

structure:

Market Depth Level Ask Price Ask Volume

Level-1 99.80 6000
Level-2 99.90 2000
Level-3 101.30 7000
Level-4 107.00 3000
Level-5 108.50 1000

the volume-weighted execution price for the second child order will be:

(6000× 99.8) + (2000× 99.9) + (2000× 101.3)

10000
= 100.12.

Chapter 5. A simple model-free reinforcement learning model for trade execution 62

If the reference price of the stock at t = 0 is 99.5, then the implementation shortfall

from this trade is:

((20000× 99.5)− (10000× 100.9 + 10000× 100.12)

20000× 99.5

= −0.0101 = −101bps.

Since the conditions of the limit order book were more favourable for BUY orders in

period t + 1, if we had modified the child orders to, say 8000 in period t and 12000 in

period t+ 1, the resulting implementation shortfall would be:

((20000× 99.5)− (8000× 100.54 + 12000× 100.32)

20000× 99.5

= −0.0091 = −91bps.

In this example, increasing the child order volume when Ask Prices are lower and Level-

1 Volumes are higher decreases the overal cost of the trade. It is for this reason that

implementation shortfall is a natural candidate for the rewards matrix in our reinforce-

ment learning system. Each action implies a child order volume, which has an associated

volume-weighted execution price. The agent will learn the consequences of each action

over the trading horizon, with the ultimate goal of minimising the total trade’s imple-

mentation shortfall.

5.2.5 Algorithm

Given the above specification, we followed the following steps to generate our results:

• Specify a stock (S), volume-to-trade (V), time horizon (T), and trading datetime

(from which the trading hour H is inferred),

• Partition the dataset into independent training sets and testing sets to generate

results (the training set always pre-dates the testing set),

• Calibrate the parameters for the Almgren-Chriss (AC) volume trajectory (σ, η)

using the historical training set ; set ρ = 0, since we assume order book is resilient

to trading activity (see below),

• Generate the AC volume trajectory (AC1, ..., ACT),

• Train the Q-matrix based on the state-action tuples generated by the training set,

• Execute the AC volume trajectory at the specified trading datetime (H) on each

day in the testing set, recording the implementation shortfall,

Chapter 5. A simple model-free reinforcement learning model for trade execution 63

• Use the trained Q-matrix to modify the AC trajectory as we execute V at the

specified trading datetime, recording the implementation shortfall and

• Determine whether the reinforcement learning (RL) model improved/worsened

realised implementation shortfall.

In order to train the Q-matrix to learn the optimal policy mapping, we need to traverse

the training data set (T × I ×A) times, where A is the total number of possible actions.

The following pseudo-code illustrates the algorithm used to train the Q-matrix :

Algorithm 1 Simple RL Q-learner

1: procedure Optimal strategy(V, T, I, A)
2: for Episode 1 to N do
3: Record reference price at t = 0
4: for t = T to 1 do
5: Calculate episode’s STATE attributes (s, v)
6: for a = 1 to A do
7: Determine the action volume a and resulting remaining inventory i
8: Set x = (t, i, s, v)
9: Calculate IS from trade, R(x, a)

10: Simulate transition x to y
11: Lookup maxpQ(y, p)
12: Update Q(x, a) = Q(x, a) + αU
13: end for
14: end for
15: end for
16: Select the lowest-IS action maxbQ(y, b) for optimal policy
17: end procedure

An important assumption in this model specification is that our trading activity does

not affect the market attributes. Although temporary price impact is incorporated into

execution prices via depth participation of the market order in the prevailing limit order

book, we assume the limit order book is resilient with respect to our trading activity.

Market resiliency can be thought of as the number of quote updates before the market’s

spread reverts to its competitive level. Degryse et al. showed that a pure limit order

book market (Euronext Paris) is fairly resilient with respect to most order sizes, taking

on average 50 quote updates for the spread to normalise following the most aggressive

orders [69]. Since we are using 5-minute trading intervals and small trade sizes, we will

assume that any permanent price impact effects dissipate by the next trading period.

A preliminary analysis of South African stocks revealed that there were on average over

1000 quote updates during the 5-minute trading intervals and the pre-trade order book

equilibrium is restored within 2 minutes for large trades. The validity of this assumption

however will be tested in future research, as well as other model specifications explored

which incorporate permanent effects in the system configuration.

Chapter 5. A simple model-free reinforcement learning model for trade execution 64

5.3 Data and results

5.3.1 Data used

For this study, we collected 12 months of market depth tick data (Jan-2012 to Dec-2012)

from the Thomson Reuters Tick History (TRTH) database, representing a universe of

166 stocks that make up the South African local benchmark index (ALSI) as at 31-

Dec-2012. This includes 5 levels of order book depth (bid/ask prices and volumes) at

each tick. The raw data was imported into a MongoDB database and aggregated into

5-minute intervals showing average level prices and volumes, which was used as the basis

for the analysis.

5.3.2 Stocks, parameters and assumptions

To test the robustness of the proposed model in the South African (SA) equity market

we tested a variety of stock types, trade sizes and model parameters. Due to space

constraints, we will only show a representative set of results here that illustrate the

insights gained from the analysis. The following summarises the stocks, parameters and

assumptions used for the results that follow:

• Stocks

– SBK (Large Cap, Financials)

– AGL (Large Cap, Resources)

– SAB (Large Cap, Industrials)

• Model Parameters

– βLB: 0, βUB: 2, βincr: 0.25

– λ: 0.01, τ : 5-min, α0: 1, γ: 1

– V : 100 000, 1000 000

– T : 4 (20-min), 8 (40-min), 12 (60-min)

– H: 9, 10, 11, 12, 13, 14, 15, 16

– I,B,W : 5, 10

– Buy/Sell: BUY

• Assumptions

– Max volume participation rate in order book: 20%

Chapter 5. A simple model-free reinforcement learning model for trade execution 65

– Market is resilient to our trading activity

Note, we set γ = 1 since Garcia and Ndiaye state that this is a necessary condition to

ensure convergence to the optimal policy with probability one for a finite-horizon MDP

[96] (see Chapter 3). We also choose an arbitrary value for λ, although sensitivities to

these parameters will be explored in future work. AC parameters are calibrated and

Q-matrix trained over a 6-month training set from 1-Jan-2012 to 30-Jun-2012. The

resultant AC and RL trading trajectories are then executed on each day at the specified

trading time H in the testing set from 1-Jul-2012 to 20-Dec-2012. The implementation

shortfall for both models is calculated and the difference recorded. This allows us to

construct a distribution of implementation shortfall for each of the AC and RL models,

and for all trading hours H = 9, 10, ..., 16.

5.3.3 Results

Table 5.1 shows the average % improvement in median implementation shortfall for the

complete set of stocks and parameter values. These results suggest that the model is

more effective for shorter trading horizons (T = 4), with an average improvement of up

to 10.3% over the base AC model. This result may be biased due to the assumption of

order book resilience. Indeed, the efficacy of the trained Q-matrix may be less reliable

for stocks which exhibit slow order book resilience, since permanent price effects would

affect the state space transitions. In future work, we plan to relax this order book

resilience assumption and incoporate permanent effects into state transitions.

Figure 5.1 illustrates the improvement in median post-trade implementation shortfall

when executing the volume trajectories generated by each of the models, for each of the

candidate stocks at the given trading times. In general, the RL model is able to improve

(lower) ex-post implementation shortfall, however the improvement seems more signifi-

cant for early morning/late afternoon trading hours. This could be due to the increased

trading activity at these times, resulting in more state-action visits in the training set

to refine the associated Q-matrix values. We also notice more dispersed performance

between 10:00 and 11:00. This time period coincides with the UK market open, where

global events may drive local trading activity and skew results, particularly since cer-

tain SA stocks are dual-listed on the London Stock Exchange (LSE). The improvement

in implementation shortfall ranges from 15 bps (85.3%) for trading 1000 000 of SBK

between 16:00 and 17:00, to -7 bps (-83.4%) for trading 100 000 SAB between 16:00 and

17:00. Overall, the RL model is able to improve implementation shortfall by 4.8%.

Figure 5.2 shows the % of correct actions implied by the Q-matrix, as it evolves through

the training process after each tuple visit. Here, a correct action is defined as a reduction

Chapter 5. A simple model-free reinforcement learning model for trade execution 66

Parameters Trading Time(hour) Average

V T I,B,W 9 10 11 12 13 14 15 16

100000 4 5 23.9 -1.4 4.7 13.4 1.8 3.3 1.8 35.1 10.3
100000 8 5 25.3 4.3 8.3 2.3 1.4 9.9 -0.6 -1.9 6.1
100000 12 5 32.7 -25.2 7.2 -2.7 -1.5 4.6 4.5 -3.3 2.1
1000000 4 5 23.3 -1.3 4.8 9.3 1.9 3.5 1.8 35.0 9.8
1000000 8 5 28.8 5.6 8.2 1.9 1.4 9.9 -0.3 -2.6 6.6
1000000 12 5 33.1 -25.0 7.2 -4.0 -0.8 4.8 4.8 1.2 2.7
100000 4 10 22.9 1.3 3.0 9.7 2.7 5.8 3.5 -26.1 2.8
100000 8 10 26.0 4.3 6.7 -0.2 3.5 8.6 1.6 -3.1 5.9
100000 12 10 27.8 -21.9 7.5 -4.1 0.6 1.8 6.2 -9.5 1.1
1000000 4 10 22.6 1.4 3.1 9.3 2.5 6.0 3.6 -26.1 2.8
1000000 8 10 26.3 5.0 7.2 -0.5 3.3 7.0 2.3 -1.8 6.1
1000000 12 10 27.9 -24.3 8.3 -6.9 0.5 1.8 7.5 -3.3 1.4

Table 5.1: Average % improvement in median implementation shortfall for various
parameter values, using AC and RL models. Training H-dependent.

Parameters Standard Deviation(%) % improvement

V T I,B,W AC RL in IS

100000 4 5 0.13 0.17 10.3
100000 8 5 0.14 0.23 6.1
100000 12 5 0.14 0.26 2.1
1000000 4 5 0.13 0.17 9.8
1000000 8 5 0.14 0.23 6.6
1000000 12 5 0.14 0.26 2.7
100000 4 10 0.13 0.17 2.8
100000 8 10 0.14 0.22 5.9
100000 12 10 0.14 0.26 1.1
1000000 4 10 0.13 0.17 2.8
1000000 8 10 0.14 0.22 6.1
1000000 12 10 0.14 0.26 1.4

Average 0.14 0.22 4.8

Table 5.2: Standard deviation(%) of implementation shortfall when using AC vs RL
models.

(addition) in the volume-to-trade based on the max Q-value action, in the case where

spreads are above (below) the 50%ile and volumes are below (above) the 50%ile level.

This coincides with the intuitive behaviour we would like the RL agent to learn. These

results suggest that finer state granularity (I,B,W = 10) improves the overall accuracy

of the learning agent, as demonstrated by the higher % correct actions achieved. All

model configurations seem to converge to some stationary accuracy level after approx-

imately 1000 tuple visits, suggesting that a shorter training period may yield similar

results. We do however note that improving the % of correct actions by increasing the

Chapter 5. A simple model-free reinforcement learning model for trade execution 67

Figure 5.1: Difference between median implementation shortfall generated using RL
and AC models, with given parameters (I,B,W = 5). Training H-dependent.

granularity of the state space does not necessarily translate into better model perfor-

mance. This can be seen by Table 5.1, where the results where I,B,W = 10 do not

show any significant improvement over those with I,B,W = 5. This suggests that the

market dynamics may not be fully represented by volume and spread state attributes,

and alternative state attributes, such as volume imbalance and quote depth, should be

explored in future work to improve ex-post model efficacy.

Table 5.2 shows the average standard deviation of the resultant implementation shortfall

when using each of the AC and RL models. Since we have not explicitly accounted

for variance of execution in the RL reward function, we see that the resultant trading

trajectories generate a higher standard deviation compared to the base AC model. Thus,

although the RL model provides a performance improvement over the AC model, this

is achieved with a higher degree of execution risk, which may not be acceptable for

the trader. We do note that the RL model exhibits comparable risk for T = 4, thus

validating the use of the RL model to reliably improve IS over short trade horizons.

A future refinement on the RL model should incorporate variance of execution, such

Chapter 5. A simple model-free reinforcement learning model for trade execution 68

Figure 5.2: % correct actions implied by Q-matrix after each training set tuple.
Training H-dependent.

that it is consistent with the AC objective function. In this way, a true comparison of

the techniques can be done, and one can conclude as to whether the RL model indeed

outperforms the AC model at a statistically significant level.

5.4 Some remarks

In this chapter, we introduced reinforcement learning as a candidate machine learning

technique to enhance a given optimal liquidation volume trajectory. Nevmyvaka, Feng

and Kearns showed that reinforcement learning delivers promising results where the

learning agent is trained to choose the optimal limit order price at which to place the

remaining inventory, at discrete periods over a fixed liquidation horizon [191, 192]. Here,

we show that reinforcement learning can also be used successfully to modify a given

volume trajectory based on market attributes, executed via a sequence of market orders

based on the prevailing limit order book.

Specifically, we showed that a simple look-up table Q-learning technique can be used

to train a learning agent to modify a static Almgren-Chriss volume trajectory based on

Chapter 5. A simple model-free reinforcement learning model for trade execution 69

prevailing spread and volume dynamics, assuming order book resiliency. Using a sample

of stocks and trade sizes in the South African equity market, we were able to reliably

improve post-trade implementation shortfall by up to 10.3% on average for short trade

horizons, demonstrating promising potential applications of this technique. Further

investigations include incorporating variance of execution in the RL reward function,

relaxing the order book resiliency assumption and alternative state attributes to govern

market dynamics.

We note that the model presented here requires pre-specification of system features

(spread, volume) to serve as public attributes in the chosen state space of the learning

agent. In addition, each feature requires discretisation at a specified resolution to make

learning feasible in finite time. While these features may capture salient properties of

the temporal evolution of the LOB, we conjecture that there is a richer representation

which better captures the nuances of the complex behaviour of the system, utilising the

lens of the machine trading agent to capture scale-specific dynamics. In the chapters

which follow, we aim to make these ideas more concrete. In Chapter 6, we develop a

technique for unsupervised, offline estimation of a public state attribute which captures

the (exogenous) scale-specific evolution of the complex system, and we provide a scheme

to detect the state online. The efficacy of this state representation is tested in Chapter 8.

In Chapter 9, we develop a scheme for unsupervised, online enumeration of the agent’s

state space at the scale of interaction. This not only allows an agent to make sense

of an asynchronous market data feed and learn optimal trading policies over time, but

also provides a scheme to encode the effect of agent interactions on the state space it

perceives - a key property of complex adaptive systems.

Chapter 6

Detecting intraday states from

streaming market microstructure

features

6.1 Overview

This chapter considers the refinement of the state representation for the reinforcement

learning agent, using the complex system ideology discussed in Chapter 1 to inform a

unique approach for extracting persistent intraday temporal dynamics from a streaming

market data feed, as well as a scheme for online state detection to enable online learning.

The contribution is captured in the following two papers:

D. Hendricks, T. Gebbie, D. Wilcox. High-speed detection of emergent market clustering

via an unsupervised parallel genetic algorithm. South African Journal of Science, vol.

112, no. 1/2, 2016. [125]

Available online: http://dx.doi.org/10.17159/sajs.2016/20140340

D. Hendricks, T. Gebbie, D. Wilcox. Detecting intraday financial market states using

temporal clustering. Quantitative Finance, 2016.

Available online: http://dx.doi.org/10.1080/14697688.2016.1171378 [126]

6.2 From unsupervised clustering to temporal states

We consider the use of a physical analogy to the ferromagnetic Potts model at thermal

equilibrium to describe object interactions, before deriving an unsupervised clustering

70

Chapter 6. Detecting intraday states from market microstructure features 71

algorithm, where both the number of clusters and configuration emerges from the data

[38, 39, 103, 249]. Treating intraday time periods as objects, the algorithm will be

used to identify intraday market states from observed market microstructure features.

Although Marsili used a similar approach to classify days as states [172], the authors are

unaware of another study which applies this technique to intraday period clustering using

multiple features. In addition, a high-speed Parallel Genetic Algorithm (PGA) will be

used for efficient computation of the cluster configurations, with absolute computation

speeds conducive to overnight or even intraday recalibration of identified states [125].

The results reveal an interesting hierarchy of system behaviour at different time scales.

Statistically significant power-law fits to configuration characteristics suggest scale-invar-

iant behaviour which may translate to persistent features in market states. In addition,

the power-law fits yield different scaling exponents at the different time scales, suggest-

ing the existence of different universality classes characterising behaviour at each scale

[62, 78, 94]. This motivates the importance of time-scale specific information when plan-

ning in this domain. Here we are considering a particular case of calendar time when

investigating scale-related phenomena. There is a rich history in the literature which

has aimed to directly model the event time foundations of market microstructure pro-

cesses. The seminal work of Garman [97], which used point processes to model order

book events, forms the basis of many subsequent event time approaches to modelling

transaction and quote data. An important extension of this view is the vector autore-

gressive model for trades and quotes developed by Hasbrouck [116, 117] and Engle and

Russell [79]. A complementary approach introduces the concept of intrinsic time, which

aims to measure trading opportunities in reference to specific features of traded stocks,

for example, using the rate of trading to modify calendar or chronological time. These

are discussed by Müller et al. [187] and Derman [71]. The more recent use of Hawkes

processes to model mutually-exciting order book events [3, 24, 159, 232] is an impor-

tant return to the idea of viewing events as a foundational concept when modelling

transactions and order book dynamics.

Easley et al. introduce the volume time paradigm for high-frequency trading, with

the clock ticking according to the number of events (proxied by trade volume) flowing

through the system [76]. This is a pragmatic attempt to reconcile the foundational event-

based paradigm introduced by Garman [97] with the wide use of chronological or calendar

time. They argue that machines operate on a clock which is not chronological, but rather

related to the number of cycles per instruction initiated by an event [76, 208]. This allows

one to measure time in terms of frequency of changes in information, as measured by

trading volumes. When one considers the complex event processing paradigm which

underpins many automated trading systems in financial markets [5], one can appreciate

the suitability of the event-based clock and the view that the calendar time clock is

Chapter 6. Detecting intraday states from market microstructure features 72

a legacy convenience from the low-frequency, human-trader-driven world. As the shift

from human-driven to machine-driven trading dominates financial markets, the study

of event-time-scale phenomena has become increasingly important and warrants further

exploration.

While the identified market states reveal many interesting insights, trading agents would

benefit from being able to detect online (or in real-time) which state they are currently

in. We develop a novel technique which extracts the characteristic signature of market

activity from each of the identified states, and uses this as the basis for an online state

detection algorithm. In one application, this is used to construct 1-step transition prob-

ability matrices, which can be refined online and used in optimal planning algorithms.

6.3 Super-paramagnetic clustering for state discovery and

detection

Blatt et al. proposed a novel non-parametric clustering approach, based on an analogy

to the ferromagnetic Potts model at thermal equilibrium [38, 39, 249]. By assigning

a Potts spin variable to each object and introducing a short-range distance-dependent

ferromagnetic interaction field, regions of aligned spins emerge, which are analogous to

groups of objects in the same cluster, where spin alignment suggests object homogeneity

[242].

6.3.1 Potts spin models as analogue for financial system

One can apply super-paramagnetic ordering of a q-state Potts model directly for cluster

identification [38]. In a market Potts model, each stock can take on q-states and each

state can be represented by a cluster of similar stocks [38, 103, 154]. Cluster member-

ship is indicative of some commonality among the cluster members. Each stock has a

component of its dynamics as a function of the state it is in and a component of its

dynamics influenced by stock specific noise. In addition, there may be global couplings

that influence all the stocks, i.e. the external field that represents a market mode.

More formally, consider a q-state Potts model with spins si = 1, ..., q for i = 1, ..., N ,

where N is the total number of objects in the system. The cost function is given by the

following Hamiltonian:

H = −
∑

si,sj∈S
Jijδ(si, sj) (6.1)

Chapter 6. Detecting intraday states from market microstructure features 73

where the spins si can take on q-states and the coupling of the ith and jth object

are governed by Jij . In the case of object clustering for a data sample, a candidate

configuration is given by the set S = {si}Ni=1, where si represents the cluster group

index to which the ith object belongs. One can consider the coupling parameters Jij

as being a function of the correlation coefficient Cij [103, 154]. This is used to specify

a distance function that is decreasing with distance between objects. If all the spins

are related in this way, then each pair of spins is connected by some non-vanishing

coupling Jij = Jij(Cij). This allows one to interpret si as a Potts spin in the Potts

model Hamiltonian with Jij decreasing with the distance between objects [38, 154]. The

case where there is only one cluster can be thought of as a ground state. As the system

becomes more excited, it could break up into additional clusters. Each cluster would

have specific Potts magnetisations, even though the nett magnetisation can be zero for

the complete system. Generically, the correlation would then be both a function of

time and temperature in order to encode both the evolution of clusters, as well as the

hierarchy of clusters as a function of temperature. In the basic approach, one is looking

for the lowest energy state that fits the data.

6.4 A maximum likelihood approach

In order to parameterise the model efficiently, one can choose to make an ansatz for the

data generative function [193] and use this to develop a maximum-likelihood approach

[103], rather than explicitly solving the Potts Hamiltonian numerically [38, 154]. A

number of authors have considered this approach for object clustering [103, 179, 188],

however we follow the proposition by Giada and Marsili [103]. A summary exposition

will be presented here (as shown in [125, 126]), with a full derivation available in the

Appendices.

According to the Noh ansatz [193], the generative model of the time series associated

with the ith object can then be written as

xi(t) = gsiηsi +
√

1− g2
siεi (6.2)

where the cluster-related influences are driven by ηsi and the object-specific effects by

εi, both treated as Gaussian random variables with unit variance and zero mean1. The

1This form of the price model ensures that the self correlation of a stock is one and independent of
the cluster coupling. This can be seen by computing the self correlation E[x2i] and using that clusters
and stock unique process are unit variance zero mean processes

E[(gsiηsi +
√

1− g2siεi)
2] = g2si + (1− g2si) = 1. (6.3)

Chapter 6. Detecting intraday states from market microstructure features 74

relative contribution is controlled by the intra-cluster coupling parameter gsi . The Noh-

Giada-Marsili model encodes the idea that objects which have something in common

belong in the same cluster, object membership in a particular cluster is mutually exclu-

sive and intra-cluster correlations are positive.

If one takes Equation 6.2 as a statistical hypothesis, it is possible to compute the prob-

ability density P ({x̄i}|G,S) for any given set of parameters (G,S) = ({gs}, {si}) by

observing the data set {x̄i}, i = 1, ..., N as a realisation of the common component of

Equation 6.2 as follows [103]:

P ({x̄i}|G,S) =
D∏
d=1

〈
N∏
i=1

δ
(
xi(d)− (gsiηsi +

√
1− g2

siεi)
)〉

. (6.5)

In Equation 6.5, N is the number of objects andD is the number of feature measurements

for each object. The variable δ is the Dirac delta function and 〈...〉 denotes the average

over all permissible values for ηsi and εi. Note that the presence of a bar, i.e. {x̄i},
indicates a sample of observed time series values for object i. For a given cluster structure

S, the likelihood is maximal when the parameter gs takes the values

g∗s =


√

cs−ns
n2
s−ns

for ns > 1,

0 for ns ≤ 1.
(6.6)

ns in Equation 6.6 denotes the number of objects in cluster s, i.e.

ns =
N∑
i=1

δsi,s. (6.7)

The variable cs is the internal correlation of the sth cluster, denoted by the following

equation:

cs =
N∑
i=1

N∑
j=1

Cijδsi,sδsj ,s. (6.8)

The variable Cij is the Pearson correlation coefficient of the data, denoted by the fol-

lowing equation:

Cij =
x̄ix̄j√
‖x̄i2‖‖x̄j2‖

. (6.9)

This is not a unique choice, another possible choice often used is

E[(

√
gsi√

1 + gsi
ηsi +

1√
1 + gsi

εi)
2] =

1 + gsi
1 + gsi

= 1. (6.4)

Chapter 6. Detecting intraday states from market microstructure features 75

The maximum likelihood of structure S can be written as P (G∗,S|x̄i) ∝ expDLc(S),

where the resulting likelihood function per feature Lc is denoted by

Lc(S) =
1

2

∑
s:ns>1

(
log

ns
cs

+ (ns − 1) log
n2
s − ns
n2
s − cs

)
. (6.10)

From Equation 6.10, it follows that Lc = 0 for clusters of objects that are uncorrelated,

i.e. where g∗s = 0 or cs = ns or when the objects are grouped in singleton clusters for

all the cluster indexes (ns = 1). Equations 6.8 and 6.10 illustrate that the resulting

maximum likelihood function for S depends on the Pearson correlation coefficient Cij

and hence exhibits the following advantages in comparison to conventional clustering

methods:

• It is unsupervised: The optimal number of clusters is unknown a priori and not

fixed at the outset

• The interpretation of results is transparent in terms of the model, namely Equa-

tion 6.2.

Giada and Marsili state that maxs Lc(S) provides a measure of structure inherent in the

cluster configuration represented by the set S = {s1, ..., sN} [103]. The higher the value,

the more pronounced the structure. A full derivation confirming the likelihood function

proposed by Giada and Marsili in Equation 6.10 can be found in a paper by Hendricks

et al. [126], and is reproduced here in Appendix A.

We note that the particular choice of Gaussian innovations in Equation 6.2 is conve-

nient, since the Pearson correlation coefficient then completely characterises pairwise

interactions amongst objects in the system [103]. This is a necessary condition, given

the physical analogy and link to the motivating Hamiltonian given in Equation 6.1.

The application of this technique to high-frequency financial time series may motivate a

more prudent assumption for the underlying object and cluster dynamics, incorporating

jumps to better model the price formation process at this scale. However, the use of,

say, jump diffusion innovations would require an alternative dependency metric, such

as Lévy copulas, to completely capture object interactions [61, 180], requiring a careful

re-derivation of the appropriate likelihood function. This will be explored in further

research.

Chapter 6. Detecting intraday states from market microstructure features 76

6.5 Considering time periods as objects for market state

determination

The data generative model specified by Equation 6.2 is sufficiently generic that it can

be applied to a diverse set of problem domains, where object and cluster innovations

can be assumed to be Gaussian. In the financial domain, initial applications focused on

clustering stocks based on price changes [103, 125, 126], however Marsili proposed that

this technique could be used to cluster time periods in order to identify temporal market

states [172]. Days were grouped into clusters based on the closing price performance

of the chosen universe of stocks, demonstrating a meaningful classification of market-

wide activity which persists through time [172]. We propose that a similar approach

can be applied to discover intraday temporal states, clustering time periods based on

the performance of multiple observable market microstructure features. A practical

trading system often has access to a real-time market data feed, from which multiple

features can be extracted to describe various aspects of the evolving limit order book. In

addition, examining temporal cluster configurations at varying time scales can suggest a

hierarchy of system behaviour, providing insights into exogenous and endogenous market

activity. This can also assist trading agents in developing optimal trajectories for varying

objectives, such as stock acquisition or liquidation at minimal cost. In particular, for an

agent tasked to learn an optimal policy (state-action mapping), the grouping of temporal

periods into market states based on market microstructure feature performance provides

a novel scheme to reduce the dimensionality of the state space and promote efficient

learning.

In this chapter, we will focus on the emergent hierarchy of system behaviour at different

time scales and explore a scheme for online state detection. In one application, this leads

to a system of 1-step state transition probability matrices at varying scales, which can

be refined online in real-time. These can be used in optimal planning schemes where

Markovian dynamics are assumed and state persistence can be exploited.

6.6 State Signature Vectors for online state detection

Recall that the model presented in Chapter 5 required pre-specification of system fea-

tures (spread, volume) to serve as public attributes in the chosen state space of the

learning agent, as well as discretisation at a specified resolution to make learning fea-

sible in finite time. The scheme presented in this chapter allows us to enumerate a

scale-specific state space by grouping temporal periods based on feature performance.

We can develop these ideas further to ensure the identified states can be detected online,

Chapter 6. Detecting intraday states from market microstructure features 77

and reduce the state space to those which are most likely to persist. This can then be

incorporated as a rich public state attribute for the state space of the trading agent to

promote efficient, but effective learning.

The clustering procedure described thus far can be used as an unsupervised algorithm

to group temporal periods into states according to feature similarity, however this can

only reveal the ex-ante temporal states and is not suitable for online detection. Upon

examination of the resulting cluster configurations, we noted that each node refers to a

particular time period, with an associated signature of market activity. Furthermore, if

two time periods appear in the same cluster, given the data generative model assumed

in Equation 6.2, we conjecture that it is the relative similarity of their characteristic

signatures of market activity which resulted in their assignment to the same cluster.

Using this idea, given a cluster configuration of temporal periods into market states, it

is possible to extract a state signature vector (SSV) which summarises the signature of

market activity across stocks and time periods for each state. Then, if one is faced with

a new candidate feature vector (FV), the market state assignment can be determined by

using the closest match within the set of pre-determined SSVs computed offline. FVs are

easy to compute online from a streaming datafeed and state assignment can be achieved

using a simple Euclidean distance computation. To make these ideas concrete, consider

the example illustrated in Figure 6.1.

STATE 1

STATE 2

New Feature

Vector

->

STATE 1

Detect temporal

clusters / states

Compute state signature vectors for each

state

A new feature vector arrives Calculate distance between new feature

vector and existing state signature vectors

Assign to state

based on closest

match

Figure 6.1: Illustration of online state assignment based on identified state signature
vectors.

Here, we compute two SSVs from the identified states, and use these as a basis for

assigning a new FV to a market state. This is based on a simple Euclidean distance

metric,

argminp||FV − SSVp||,

Chapter 6. Detecting intraday states from market microstructure features 78

where p is the index of the identified states.

We have used four features to characterise market activity at intraday scale. These

include: trade price, trade volume, spread and quote volume imbalance. In particular,

we consider the relative change in each of these features. For example, based on a set

of feature measurements F5min at 5-minute scale, we would compute

4f5min
t =

f5min
t − f5min

t−1

f5min
t−1

for all f5min
t ∈ F5min. For the initial temporal cluster detection stage, these “feature

returns” are calculated for each stock and concatenated before computing the time

period correlation matrix.

For the extraction of SSVs from significant states, we compute average feature returns

across member periods and stocks. Although this results in a loss of information, we con-

jecture that the average signature of feature returns broadly captures the state of market

activity. The SSVs for each time-scale configuration are illustrated in Figures 6.5, 6.7, 6.9

and 6.11. Following this approach, the FVs calculated in the online environment would

constitute the same averages of feature returns, before matching to the appropriate SSV.

Alternative schemes for extraction of SSVs which preserve state-specific information will

be explored in future work. The chosen features do not represent an exhaustive set of

possible explanatory factors for intraday market activity, but rather were chosen based

on the relative ease of their online construction from streaming Level-1 market data

feeds [146]. Additional features can be considered in future work.

6.7 Scale-invariant characteristics of states

The detected temporal cluster configurations can be further analysed to determine

whether any characteristics exhibit scale-invariant behaviour. In particular, a visual

inspection of the cluster configurations shown in Section 6.9.4 led us to conjecture a

possible power-law fit for cluster sizes. Many physical and man-made systems exhibit

characteristics which follow a power-law functional form, and its unique mathematical

properties sometimes lead to surprising physical insights [58, 94]. Many authors have

investigated the nature of information and forecasting at different time scales in financial

markets (see [62, 78, 255] as examples). For our application, the existence of different

critical exponents for the best power-law fits at different time scales may suggest dif-

ferent universality classes which characterise the system activity at each scale. In fact,

Mastromatteo and Marsili [175] discuss the notion that, for a complex adaptive system,

distinguishable models can only be gleaned when the system is near criticality. Thus, if

Chapter 6. Detecting intraday states from market microstructure features 79

financial markets truly are a complex adaptive system, measurable quantities from the

dynamics at each scale should yield a statistically significant power-law fit. Although it

is difficult to quantify the exact nature of these scale-specific behaviours or universality

classes, their apparent existence suggests that investment and trading decisions would

benefit from time-scale-specific state space information. This would enhance the efficacy

of intraday policies which aim to find optimal trajectories through the system.

Given the difficulties of identifying statistically significant power-law fits to empirical

quantities [28], we incorporated the maximum likelihood fitting procedure provided by

Clauset, Shalizi and Newman [58]. Outputs from their functions include the scaling

parameter of the proposed power-law fit, a Kolmogorov-Smirnov test for the goodness-

of-fit of the proposed model to the data, the lower-bound for the fit if the tail distribution

follows a power-law and the log-likelihood of the data under the power-law fit.

We note that a detected temporal cluster configuration results in a set of homogeneous

market states, although it is not clear which states are significant, i.e. likely to persist,

or merely transient. Using all identified states may result in spurious state assignments

if one uses the online algorithm described in Section 6.6. This leads to the need for some

selection criteria for significant states, before extracting SSVs. Candidate criteria include

using intra-cluster connectedness (cs) or cluster size with some form of thresholding

procedure, however these heuristics are inherently subjective. The power-law fit to

cluster size provides one candidate objective approach for state selection. By selecting

the clusters which satisfy the power-law functional form, we conjecture that the scale

invariant properties of this fit imply persistent properties for temporal market states,

resulting in an objective mechanism for selecting significant states. This reduces the set

of SSVs which form the basis for the online state detection algorithm.

6.8 A high-speed Parallel Genetic Algorithm implementa-

tion

In this section, we introduce a maintainable and scalable master-slave parallel genetic

algorithm (PGA) framework for unsupervised cluster analysis on the CUDA platform,

which is able to detect clusters using the Giada and Marsili likelihood function. By ap-

plying the proposed cluster analysis approach and examining the clustering behaviour of

financial instruments, this offers a unique perspective to monitoring the intraday char-

acteristics of the stock market and the detection of structural changes in near-real-time.

The novel implementation presented here builds on the contribution of Cieslakiewicz

[55]. While this chapter provides an overview and specific use-case for the algorithm,

Chapter 6. Detecting intraday states from market microstructure features 80

the authors are investigating aspects of adjoint parameter tuning, performance scala-

bility and the impact on solution quality for varying stock universe sizes and cluster

types.

In order to localise clusters of normalised stock returns in financial data, Giada and

Marsili made use of a simulated annealing algorithm [103, 104], with −Lc as the cost

function for their application of the log-likelihood function on real-world data sets to

substantiate their approach. This was then compared to other clustering algorithms,

such as K-means, single linkage, centroid linkage, average linkage, merging and deter-

ministic maximisation [104]. The technique was successfully applied to South African

financial data by Mbambiso et al., using a serial implementation of a simulated annealing

algorithm (see [177] and [101]).

Simulated annealing and deterministic maximisation provided acceptable approxima-

tions to the maximum likelihood structure, but were inherently computationally expen-

sive. We promote the use of PGAs as a viable approach to approximate the maximum

likelihood structure. The likelihood function, Lc, will be used as the fitness function and

a PGA algorithm will be used to find the maximum for Lc, in order to efficiently isolate

clusters in correlated financial data.

6.8.1 GA principle and genetic operators

One of the key advantages of GAs is that they are conceptually simple. The core algo-

rithm can be summarised into the following steps: initialise population, evolve individu-

als, evaluate fitness, select individuals to survive to the next generation. GAs exhibit the

trait of broad applicability [223], as they can be applied to any problem whose solution

domain can be quantified by a function which needs to be optimised.

Specific genetic operators are applied to the parents, in the process of reproduction,

which then give rise to offspring. The genetic operators can be classified as follows:

Selection: The purpose of selection is to isolate fitter individuals in the population and

allow them to propogate in order to give rise to new offspring with higher fitness values.

We implemented the stochastic universal sampling selection operator, where individuals

are mapped to contiguous segments on a line in proportion to their fitness values [25].

Individuals are then selected by sampling the line at uniformly spaced intervals. While

fitter individuals have a higher probability of being selected, this technique improves

the chances that weaker individuals will be selected, allowing diversity to enter the

population and reducing the probability of convergence to a local optimum.

Chapter 6. Detecting intraday states from market microstructure features 81

Crossover: Crossover is the process of mating two individuals, with the expectation that

they can produce a fitter offspring [223]. The crossover genetic operation involves the

selection of random loci to mark a cross site within the two parent chromosomes, copying

the genes to the offspring. A bespoke knowledge-based crossover operator was developed

for our implementation [55], in order to incorporate domain knowledge and improve the

rate of convergence.

Mutation: Mutation is the key driver of diversity in the candidate solution set or search

space [223]. It is usually applied after crossover and aims to ensure that genetic infor-

mation is randomly distributed, preventing the algorithm from being trapped in local

minima. It introduces new genetic structures in the population by randomly modify-

ing some of its building blocks and enables the algorithm to traverse the search space

globally.

Elitism: Coley states that fitness-proportional selection does not necessarily favour the

selection of any particular individual, even if it is the fittest [59]. Thus the fittest

individuals may not survive an evolutionary cycle. Elitism is the process of preserving

the fittest individuals by inherent promotion to the next generation, without undergoing

any of the genetic transformations of crossover or mutation [223].

Replacement: Replacement is the last stage of any evolution cycle, where the algorithm

needs to replace old members of the current population with new members [223]. This

mechanism ensures that the population size remains constant, while the weakest indi-

viduals in each generation are dropped.

Although GAs are very effective for solving complex problems, this positive trait can

unfortunately be offset by long execution times, due to the traversal of the search space.

GAs lend themselves to parallelisation, provided the fitness values can be determined

independently for each of the candidate solutions. While a number of schemes have been

proposed in the literature to achieve this parallelisation (see [138], [223] and [211]), we

have chosen to implement the master-slave model.

6.8.2 Master-slave parallelisation

Master-slave GAs, or global PGAs, involve a single population, but distributed amongst

multiple processing units for determination of fitness values and the consequent appli-

cation of genetic operators. They allow for computation on shared-memory processing

entities or any type of distributed system topology, for example grid computing [211].

Chapter 6. Detecting intraday states from market microstructure features 82

Ismail provides a summary of the key features of the master-slave PGA [138]: The

algorithm uses a single population (stored by the master) and the fitness evaluation of

all of the individuals is performed in parallel (by the slaves). Communication occurs

only as each slave receives the individual (or subset of individuals) to evaluate and when

the slaves return the fitness values, sometimes after mutation has been applied with the

given probability. The particular algorithm we implemented is synchronous, i.e. the

master waits until it has received the fitness values for all individuals in the population

before proceeding with selection and mutation. The synchronous master-slave PGA thus

has the same properties as a conventional GA, except evaluation of the fitness of the

population is achieved at a faster rate. The algorithm is relatively easy to implement

and a significant speedup can be expected if the communications cost does not dominate

the computation cost. The whole process has to wait for the slowest processor to finish

its fitness evaluations until the selection operator can be applied.

A number of authors have used the Message Parsing Interface (MPI) paradigm to im-

plement a master-slave PGA. Digalakis and Margaritis implement a synchronous MPI

PGA and shared-memory PGA, whereby fitness computations are parallelised and other

genetic operators are applied by the master node only [73]. They demonstrate a compu-

tation speed-up which scales linearly with the number of processors for large population

sizes. Zhang et al. use a centralised control island model to concurrently apply genetic

operators to sub-groups, with a bespoke migration strategy using elite individuals from

sub-groups [254]. Nan et al. used the MATLAB parallel computing and distributed

computing toolboxes to develop a master-slave PGA [189], demonstrating its efficacy on

the image registration problem when using a cluster computing configuration.

For our implementation, we made use of the Nvidia CUDA platform to achieve massive

parallelism by utilising the Graphical Processing Unit (GPU) Streaming Multiprocessors

(SM) as slaves, and the CPU as master.

6.8.3 Computational Platform and Implementation

Compute Unified Device Architecture (CUDA) is Nvidia’s platform for massively parallel

high performance computing on the Nvidia GPUs. Compute Unified Device Architec-

ture (CUDA) is Nvidia’s platform for massively parallel high-performance computing on

the Nvidia GPUs. At its core are three key abstractions: a hierarchy of thread groups,

shared memories, and barrier synchronisation. Full details on the execution environ-

ment, thread hierarchy, memory hierarchy and thread synchronisation schemes have

been omitted here, but we refer the reader to Nvidia technical documentation [200, 202]

for a comprehensive discussion.

Chapter 6. Detecting intraday states from market microstructure features 83

6.8.3.1 Specific computational environment

The CUDA algorithm and the respective testing tools were developed using Microsoft

Visual Studio 2012 Professional, with the Nvidia Nsight extension for CUDA-C projects.

The configurations listed in Table 6.1 were tested to determine the versatility of the

CUDA clustering algorithms on different architectures.

Environment Configuration Framework
Windows 7 Professional Service Pack 1 (64-bit), CUDA 5.5

GTX CUDA Intel Core i7-4770K CPU@3.5 GHz, 32GB RAM, (parallel)
Nvidia GTX Titan Black with 6GB RAM,
CC: 3.0, SM: 3.5
Windows 7 Professional Service Pack 1 (64-bit), MATLAB

GTX MATLAB Intel Core i7-4770K CPU@3.5 GHz, 32GB RAM, 2013a
Nvidia GTX Titan Black with 6GB RAM, (serial)
CC: 3.0, SM: 3.5
Windows 7 Professional Service Pack 1 (64-bit), CUDA 5.5

TESLA CUDA Intel Core i7-X980 CPU@3.33 GHz, 24GB RAM, (parallel)
Nvidia TESLA C2050 with 2.5GB RAM,
CC: 2.0, SM: 2.0
Windows 7 Professional Service Pack 1 (64-bit), MATLAB

TESLA MATLAB Intel Core i7-X980 CPU@3.33 GHz, 24GB RAM, 2013a
Nvidia TESLA C2050 with 2.5GB RAM, (serial)
CC: 2.0, SM: 2.0

Table 6.1: Development, testing and benchmarking environments

We had the opportunity to test two candidate graphics cards for the algorithm im-

plementation: the Nvidia GTX Titan Black and the Nvidia TESLA C2050. Both

cards offer double-precision calculations and a comparable number of CUDA cores and

TFLOPS (tera floating point operations per second), however the GTX card is signif-

icantly cheaper than the TESLA card. The primary reason for this is the use of ECC

(error check and correction) memory on the TESLA cards, where extra memory bits

are present to detect and fix memory errors [1]. The presence of ECC memory ensures

consistency in results generated from the TESLA card, which is critical for rigorous

scientific computing. In further investigations, the authors will explore the consistency

of the solution quality generated from the GTX card, and whether the resultant error is

small enough to justify the cost saving compared to the TESLA card.

6.8.3.2 Implementation

The following objectives were considered in this research: 1) investigate and tune the

behaviour of the PGA implementation using a pre-defined set of 40 simulated stocks

featuring 4 distinct disjoint clusters; 2) identify clusters in a real-world dataset, viz. high-

frequency price evolutions of stocks; and 3) test the efficiency of the GPU environment.

Chapter 6. Detecting intraday states from market microstructure features 84

6.8.3.3 Representation

We used integer-based encoding for the representation of individuals in the genetic al-

gorithm, i.e.

Individual = S = {s1, s2, ..., si−1, si, ..., sN} (6.11)

where si = 1, ..., q and i = 1, ..., N . Here, si is the cluster that object i belongs to.

In terms of the terminology pertaining to GAs, it means that the ith gene denotes the

cluster that the ith object or asset belongs to. The numbers of objects or assets is N ,

thus to permit the possibility of an all-singleton configuration, we let q = N . This

representation was implemented by Gebbie et al. in their serial GA and was adopted in

this research [101].

6.8.3.4 Fitness function

The Giada and Marsili maximum log-likelihood function Lc, as shown in Equation 6.10,

was used as the fitness function. This is used to determine whether the cluster configu-

ration represents the inherent structure of the data set, i.e. it will be used to detect if

the GA converges to the fittest individual, which will represent a cluster configuration

of correlated assets or objects in the data set.

6.8.3.5 Master-slave PGA implementation

The unparalellised MATLAB GA implementation of the likelihood function by Gebbie,

Wilcox and Mbambiso [101] served as a starting point. In order to maximise the per-

formance of the GA, the application of genetic operators and evaluation of the fitness

function were parallelised for the CUDA framework [55]. A summarised exposition is

presented here.

Emphasis was placed on outsourcing as much of the GA execution to the GPU and

made use of GPU memory as extensively as possible [256]. The master-slave PGA uses

a single population, where evaluation of the individuals and successive application of

genetic operators are conducted in parallel. The global parallelisation model does not

predicate anything about the underlying computer architecture, so it can be imple-

mented efficiently on a shared-memory and distributed-memory model platform [223].

By delegating these tasks to the GPU and making extensive use of GPU memory, this

minimises the data transfers between the host and device. These transfers have a sig-

nificantly lower bandwidth than data transfers between shared or global memory and

the kernel executing on the GPU. The algorithm in [101] was modified to maximise the

Chapter 6. Detecting intraday states from market microstructure features 85

performance of the master-slave PGA and have a clear distinction between the master

node (CPU), which controls the evolutionary process by issuing the commands for the

GA operations to be performed by the slave nodes (GPU streaming multiprocessors).

The pseudo-code for the algorithm implemented is shown in Algorithm 2.

Algorithm 2 Master-slave PGA for cluster identification

Initialise ecosystem for evolution
Size the thread blocks and grid to achieve greatest parallelisation
ON GPU: Create initial population
while TRUE do

ON GPU: Evaluate fitness of all individuals
ON GPU: Evaluate state and statistics
ON GPU: Determine if termination criteria are met
if YES then

Terminate ALGO; Exit While loop;
else

Continue
end if
ON GPU: Isolate fittest individuals
ON GPU: Apply elitism
ON GPU: Apply scaling
ON GPU: Apply genetic operator: selection
ON GPU: Apply genetic operator: crossover
ON GPU: Apply genetic operator: mutation
ON GPU: Apply replacement (new generation created)

end while
Report on results
Clean-up (Deallocate memory on GPU/CPU; Release device)

To achieve data parallelism and make use of the CUDA thread hierarchy, we mapped

individual genes onto a 2-dimensional grid. Using the representation shown in Equation

6.11, assuming a population of 400 individuals and 18 stocks:

Individual1 = {1, 2, 4, 5, 7, ..., 6}

Individual2 = {9, 2, 1, 1, 1, ..., 2}

Individual3 = {3, 1, 3, 4, 6, ..., 2}

...

Individual400 = {8, 1, 9, 8, 7, ..., 3}

would be mapped to grid cells, as illustrated in Figure 6.2. The data grid cells are

mapped to threads, where each thread executes a kernel processing the data cell at the

respective xy-coordinate.

Chapter 6. Detecting intraday states from market microstructure features 86

Figure 6.2: Mapping of individuals onto the CUDA thread hierarchy

Graphics card Nvidia GTX Nvidia
Titan Black Tesla C2050

Compute capability 3.5 2.0
SMs 15 14
Max threads / thread block 1024 1024
Thread block dimension 32 32
Max thread blocks / multiprocessor 16 8
Max number of stocks 3840 3584
Max population size 17 472 18 720

Table 6.2: Restrictions on number of stocks and population size. For the Tesla
card, Max number of stocks = (14) ∗ (1024/32) ∗ 8 = 3584 and Max population size =

(65535/(3584/32)) ∗ 32 = 18720.

Given the hardware used in this investigation (see Table 6.1), Table 6.2 outlines the

restrictions on the permissible stock universe and population sizes imposed by the chosen

mapping of individual genes to threads. A thread block dimension of 32 is chosen for

larger problems, since this ensures that the permissible population size is larger than

the number of stocks to cluster.

We note that the efficiency of the algorithm may be compromised near the physical

limits outlined in Table 6.2, since the CUDA memory hierarchy would force threads

to access high-latency global memory banks more often. However, for the particular

domain problem we are considering here, the Johannesburg Stock Exchange consists of

around 400 listed companies on its main board, which represents an upper limit on the

number of stocks of interest for local cluster analysis. This is well within the physical

limits of the algorithm, while still providing scope to extend the application to multiple

markets. For applications with a large number of objects, one could make use of Nvidia’s

Scalable Link Interface (SLI) technology to link a number of physical graphics cards and

Chapter 6. Detecting intraday states from market microstructure features 87

pool their memory and processing resources [201]. The CUDA implementation would

recognise the linked cards as a single card with increased memory and thread capacity,

and the computation would scale accordingly.

The details on the full implementation, as well as specific choices regarding initialisation,

block sizes and threads per block, are given in [55].

6.8.3.6 Key implementation challenges

A key challenge in CUDA programming is adapting to the Single Program Multiple

Data (SPMD) paradigm, where multiple instances of a single program use unique offsets

to manipulate portions of a block of data [65]. This architecture suits data parallelism,

whereas task parallelism requires a special effort. In addition, since each warp (group

of 32 threads) is executed on a single SPMD processor, divergent threads in a warp can

severely impact performance. In order to exploit all processing elements in the multi-

processor, a single instruction is used to process data from each thread. However, if

one thread needs to execute different instructions due to a conditional divergence, all

other threads must effectively wait until the divergent thread re-joins them. Thus, di-

vergence forces sequential thread execution, negating a large benefit provided by SPMD

processing.

The CUDA memory hierarchy contains numerous shared memory banks which act as a

common data cache for threads in a thread block. In order to achieve full throughput,

each thread must access a distinct bank and avoid bank conflicts, which would result in

additional memory requests and reduce efficiency. In our implementation, bank conflicts

were avoided by using padding, where shared memory is padded with an extra element

such that neighbouring elements are stored in different banks [49].

CUDA provides a simple and efficient mechanism for thread synchronisation within a

thread block via the syncthreads() barrier function, however inter-block communica-

tion is not directly supported during the execution of a kernel. Given that the genetic

operators can only be applied once the entire population fitness is calculated, it is nec-

essary to synchronise thread blocks assigned to the fitness computation operation. We

implemented the CPU implicit synchronisation scheme [203, 252]. Since kernel launches

are asynchronous, successive kernel launches are pipelined and thus the executions are

implicitly synchronised with the previous launch, with the exception of the first kernel

launch. Given the latency incurred on calls between the CPU and GPU, and the conse-

quent drag on performance, GPU synchronisation schemes were explored which achieve

the required inter-block communication. In particular, GPU simple synchronisation,

Chapter 6. Detecting intraday states from market microstructure features 88

GPU tree-based synchronisation and GPU lock-free synchronisation were considered

[252].

Ultimately, the GPU synchronisation schemes were too restrictive for our particular

problem, since the number of thread blocks would have an upper bound equal to the

number of SMs on the GPU card. If the number of thread blocks is larger than the

number of SMs on the card, execution may deadlock. This could be caused by the

warp scheduling behaviour of the GPU, whereby active thread blocks resident on a SM

may remain in a busy waiting state, waiting for unscheduled thread blocks to reach the

synchronisation point. While this scheme may be more efficient for smaller problems,

we chose the CPU synchronisation scheme in the interest of relative scalability.

6.9 Results

6.9.1 Data description

The data for this study constituted tick-level trades and top-of-book quotes for 42 stocks

on the Johannesburg Stock Exchange (JSE) from 1 November 2012 to 30 November 2012.

This data was sourced from the Thomson Reuters Tick History (TRTH) database. The

raw data was aggregated according to the time-scale considered (5-minute, 15-minute,

30-minute and 60-minute), before calculating the required features (change in trade

price, trade volume, spread and volume imbalance). The 42 stocks considered represent

the prevailing constituents of the FTSE/JSE Top40 headline index, which contains the

42 largest stocks by market capitalisation in the main board’s FTSE/JSE All-Share

index.

The objects of interest for the cluster analysis are the time periods. Table 6.3 provides

an example of the required data returns matrix, from which a correlation matrix is

computed for time period similarity. This is the only required input for the clustering

algorithm.

Chapter 6. Detecting intraday states from market microstructure features 89

Feature Times

01-Nov-2012 09:00 01-Nov-2012 09:15 01-Nov-2012 09:30 ... 30-Nov-2012 16:30 30-Nov-2012 16:45

T
r
a
d

e

P
r
ic

e

AGL trade price return 0.35 0.60 0.85 ... 0.39 0.22

AMS trade price return 0.94 0.71 0.73 ... 0.63 0.78

SBK trade price return 0.70 0.38 0.58 ... 0.38 0.81
..
.

..

.
..
.

..

.
..
.

..

.
..
.

WHL trade price return 0.90 0.49 0.05 ... 0.65 0.53

S
p

r
e
a
d

AGL spread return 0.64 0.49 0.68 ... 0.05 0.95

AMS spread return 0.33 0.09 0.76 ... 0.44 0.97

SBK spread return 0.09 0.73 0.54 ... 0.80 0.48
.
..

.

..
.
..

.

..
.
..

.

..
.
..

WHL spread return 0.41 0.61 0.11 ... 0.40 0.69

T
r
a
d

e

V
o
lu

m
e

AGL trade volume return 0.61 0.59 0.96 ... 0.65 0.50

AMS trade volume return 0.16 0.09 0.47 ... 0.86 0.57

SBK trade volume return 0.98 0.05 0.67 ... 0.72 0.12
..
.

..

.
..
.

..

.
..
.

..

.
..
.

WHL trade volume return 0.38 0.49 0.36 ... 0.27 0.81

V
o
lu

m
e

Im
b

a
la

n
c
e

AGL volume imb return 0.01 0.45 0.78 ... 0.69 0.77

AMS volume imb return 0.54 0.17 0.87 ... 0.47 0.44

SBK volume imb return 0.20 0.42 0.91 ... 0.88 0.58
...

...
...

...
...

...
...

WHL volume imb return 0.20 0.09 0.38 ... 0.90 0.12

Table 6.3: Illustration of data returns matrix as an input for estimation of 15-minute
period correlations

6.9.2 Workflow

Figure 6.3 illustrates the process workflow and tools used for performing the temporal

cluster analysis. The TRTH tick data is stored in a MongoDB noSQL database, with

optimised query indexes for efficient data retrieval. A bespoke Application Programming

Interface (API) was written to transport data from MongoDB to our primary scientific

computing platform, MATLAB. The data is used to instantiate a High Frequency Time

Series (HFTS) object in MATLAB, which allows for efficient merging, resampling and

aggregation of large-scale irregularly-spaced tick data. Based on a chosen time-scale, the

data is aggregated, features are extracted and returns calculated, before computing the

time period correlation matrix. The PGA was implemented in CUDA-C using Nvidia

Nsight and the Microsoft Visual Studio development environment. The compiled PGA

was called from the MATLAB environment to run the temporal cluster analysis. The

resulting cluster configuration is transported to the MATLAB workspace, from which

we can determine the power-law fits, extract SSVs, estimate online clusters and compute

transition probability matrices. Using the stock, time period, cluster configuration and

correlation data, a MATLAB script was written to generate an XML file containing the

required node and edge metadata for an undirected graph to import into Gephi. Gephi

was used for cluster configuration visualisation, as described in Section 6.9.3.

Chapter 6. Detecting intraday states from market microstructure features 90

START

Trade/Quote

database

(MongoDB)

High-Frequency

Time Series object

(MATLAB)

Data aggregation for

chosen time scale

(MATLAB)

Calculate feature

returns

(MATLAB)

Compute time period

correlation matrix

(MATLAB)

Calculate temporal

cluster configuration

(CUDA-C)

Visualise

clusters?

Power law fit to

cluster size

(MATLAB)

Select significant

states using 𝒙𝒎𝒊𝒏

criteria (MATLAB)

Compute

characteristic feature

vectors (CFVs) for

states (MATLAB)

Compute Euclidean

distance of FVs to

CFV’s for state

assignment (MATLAB)

Estimate temporal

cluster configuration

(MATLAB)

Calculate 1-step

transition

probabilities

(MATLAB)

Generate XML

node/edge metadata

(MATLAB)

Import XML and

generate cluster

visualisation (Gephi)

END

Transition

prob?

Online

clusters?

Visualise

clusters?

Generate XML

node/edge metadata

(MATLAB)

Import XML and

generate cluster

visualisation (Gephi)

Yes

No

Yes

No

Yes

No

Yes

No

Figure 6.3: Flowchart illustrating workflow to determine the temporal cluster con-
figuration from a time period correlation matrix, identify persistent states, estimate
temporal cluster configuration using feature vectors and determine state transition
probabilities. Processes are coloured by platform: MongoDB = Yellow, MATLAB

= Green, CUDA-C = Orange, Gephi = Purple.

6.9.3 Visualisation

For the cluster configuration visualisation, we made use of the Gephi graph visualisa-

tion and manipulation software package [27], with a customised enumeration of nodes

and edges and the Fruchterman-Reingold [93] node spacing algorithm. The presence

of an edge between nodes indicates membership to the same cluster, while edge thick-

ness provides a visual impression of object-object correlation, and hence intra-cluster

connectedness. For the visualisations which follow, we chose to colour the nodes by

intraday time period, in order to illuminate any calendar time effects in the detected

states. According to this scheme, the same time on different days will receive the same

colour. These visualisations are shown in Figures 6.4, 6.6, 6.8, 6.10, 6.13, 6.14, 6.15 and

6.16.

Chapter 6. Detecting intraday states from market microstructure features 91

6.9.4 Results discussion

For each set of results, we consider 8 hours of continuous trading activity each day, from

09:00 to 17:00, for the duration of one month. Figure 6.4 shows the temporal cluster

configuration of 60-minute periods. We first note that the detection of non-trivial clus-

ters from microstructure-based time correlations indicates that intraday dynamics may

be reducible to a finite set of temporal states. Considering the time-of-day colour shad-

ing, we notice two clusters which exhibit market activity characteristics which coincide

with morning and afternoon times. The dark green cluster refers to the first hour of

the trading day (09:00 to 10:00), which incorporates opening auction and subsequent

activity. We note that the South African equity market is strongly influenced by global

market activity, in part due to local stocks being listed on multiple exchanges in the

UK, USA, Europe and Australia [145]. During the period considered in this analysis,

the UK market open occurred at 10:00 SAST and US market open at 15:30 SAST. The

UK market open has a significant impact on local trading dynamics, with the 10:00 to

11:00 periods dispersing across clusters with no discernible time-of-day correlation. We

note a contiguous dark orange cluster emerge from 15:00 to 16:00, as the US market

starts to participate in local trading activity. This pattern of market activity broadly

corroborates these exogenous market effects from global markets. Figure 6.5 shows the

SSVs extracted from the significant states selected from Figure 6.4. As discussed in

Section 6.7, we used the xmin statistic from the power-law fit to the tail distribution of

cluster sizes to determine the significant states. For the 60-minute periods, the most

significant power-law fit was for cluster sizes ≥ 13, resulting in 6 significant states. The

resulting SSVs are all relatively different, when considering the magnitude and direction

of each of the average change in feature values. This ensures greater certainty in the

state assignment of an online FV.

Figure 6.6 shows the temporal cluster configuration of 30-minute periods. We see a

larger number of states emerge as the granularity increases, with 60-minute states be-

ing dissected based on finer-grained market activity. The dark green and dark orange

contiguous morning and afternoon states still persist at this scale, although endogenous

system characteristics begin to mask previously identified exogenous characteristics. We

note that there is no defined hierarchy emerging, in that a set of 30-minute clusters can-

not be combined to form the 60-minute clusters identified previously, further highlighting

time-scale-specific behaviour. Figure 6.7 shows the SSVs of significant states, based on

the 10 clusters with a size ≥ 14.

Figure 6.8 shows the temporal cluster configuration of 15-minute periods. We notice

increasing time-of-day diversity in each of the identified clusters, further highlighting

endogenous system activity. The red contiguous cluster is associated with the period

Chapter 6. Detecting intraday states from market microstructure features 92

from 16:30 to 16:45, suggesting a particular signature of market activity leading into the

closing auction, which starts at 16:50. The UK and US related effects seem to have a

weaker impact at this scale, with exchange-specific rules having a more dominant effect.

As a result, we see a larger variety of SSVs in Figure 6.9, some with similar profiles

seen at the 30-minute scale, but with a larger focus on magnitude, rather than merely

direction.

Figure 6.10 shows the temporal cluster configuration of 5-minute periods. Here we see

quite a different profile of system behaviour. There are a large number of singletons,

which could be attributed to the amount of noise in the data at this scale, making

it more difficult to discern significant structure. We notice an interesting time-of-day

correlation with detected clusters, however broad periods (morning, lunch, afternoon)

appear to have been dissected into contiguous blocks based on state-specific market

activity. The 5-minute time scale is starting to capture the effects of automated, rule-

based trading agents which shows quite a different characteristic signature. This further

highlights the importance of studying market activity profiles at the scale at which you

intend to participate. Even when one considers the associated SSVs in Figures 6.11 and

6.9, the 5-minute and 15-minute studies exhibit the same number of significant states

using the power-law criterion, however the combinations of direction and magnitude for

the feature values are quite different.

Figure 6.12 illustrates the results of the power-law fits to the cluster size empirical

distribution at each time scale. Each fit to the tail distribution exhibits a Kolmogorov-

Smirnov p-value> 0.1 (assuming a null hypothesis of a power-law fit), suggesting a strong

fit of the power-law functional form for the given scaling factor (α) and minimum size

(xmin) [58]. In addition, we note the α exponents are different for each of the time scales

considered, suggesting different universality classes of system behaviour at different time

scales. This behaviour is interesting and needs to be verified in a more comprehensive

study with larger datasets and a stability analysis, however these preliminary results do

indicate the presence of some hierarchy of system behaviour, motivating the need for

scale-specific temporal analysis.

Figure 6.13 shows the estimated 60-minute cluster configuration for the same period

(1 November 2012 to 30 November 2012), but where the distance of each period’s FV

to the identified SSVs is used as the criterion for state assignment. This is a simple

in-sample test to determine whether the proposed scheme for online state assignment

can discern the structure suggested by direct application of the clustering algorithm.

By comparing Figure 6.13 and Figure 6.4, we notice that the online state assignment

algorithm does recover the contiguous morning and afternoon states, but more broadly

intuitively separates periods into: opening auction and early morning trading state, UK

Chapter 6. Detecting intraday states from market microstructure features 93

market open state, two lunch states, US market open state and a end-of-day/closing

auction state. This completely captures the exogenous market effects, which is a strong

validation for the approach. Table 6.5 shows an empirical 1-step transition probability

matrix calculated from the states shown in Figure 6.13, illustrating one potential appli-

cation of this technique. The 1-step transitions show a particular preference, suggesting

some predictability which can be exploited by trading agents. To be clear, the online

assignment of a FV to a state means that we have developed a mechanism to detect

which state we are currently in, using the prevailing set of SSVs. The transition matrix

can be used and updated online, and for optimal planning in the domain.

Figures 6.14 to 6.16 and Tables 6.6 to 6.8 show the estimated cluster configurations

and transition probability matrices using the SSVs at the specified time scale. It is

interesting to observe the dilution of the exogenous time-of-day effects as one approaches

the 5-minute scale.

Figure 6.17 illustrates the stability of the online state assignment algorithm out-of-

sample. Given that the state assignment of an online FV is based on the minimum

Euclidean distance to predetermined SSVs, we compute the best match distance for

each of the FVs in a sample and use a boxplot to visualise the empirical distribution.

Here we propose offline estimation of SSVs used for online state detection. The online

cluster configurations shown in Figures 6.13, 6.14, 6.15 and 6.16 use FVs from the ex-

ante period, i.e. the same period used to estimate the SSVs. It is prudent to determine

whether state assignment using out-of-sample (ex-post) FVs deviate significantly from in-

sample assignment, and gauge the out-of-sample efficacy of the SSVs before re-estimation

is necessary. Given the computation times shown in Table 6.4, in practice one could

estimate the SSVs overnight for each trading day. We have considered SSVs estimated

from the period 1 November 2012 to 30 November 2012, and compared the resulting

online states from the ex-ante period (1 November 2012 to 30 November 2012) with

states from an ex-post period (3 December 2012 to 7 December 2012, one week after

SSV estimation). From these results, it appears that 60-minute states cannot be reliably

determined ex-post using the online detection algorithm, given the observed higher range

of best match Euclidean distances. The 30-minute, 15-minute and 5-minute time scales

all exhibit acceptable ex-post best match distances, with the exception of a few outliers.

From these preliminary results, it appears that the algorithm can be used to reliably

determine 30-minute, 15-minute and 5-minute states for a relatively short ex-post period

following SSV estimation. A more robust study should consider the precise half-life of

the SSVs, but given the relatively fast computation time, this is unlikely to be a practical

concern.

Chapter 6. Detecting intraday states from market microstructure features 94

The average computation times indicated in Table 6.4 are not overly onerous, suggesting

that for practical application, overnight or even intraday estimation of cluster configura-

tions to capture recent dynamics is feasible. The proposed PGA thus offers an efficient,

scalable alternative for finding the best approximation of the optimal cluster configura-

tion, suitable for clustering objects on multiple observable features. We note that the

number of generations and stall generations indicated in Table 6.4 are higher than one

would typically specify for a genetic algorithm, since these promote potential over-fitting

to the prescribed dataset. Recall that our application is to find the candidate cluster

configuration which best explains the structure inherent in a given correlation matrix.

Thus we are not concerned with out-of-sample validity, but would rather prefer to find

a configuration with the highest likelihood value. The higher number of generations

and stall generations, together with the mutation operator, promotes convergence to a

higher likelihood structure.

Time Number of Population Generations Stall Mutation Crossover Computation
scale periods (objects) size generations probability probability Time (sec)∗

5-minute 2208 4000 4000 1000 0.09 0.9 603 (D)
15-minute 736 1000 4000 500 0.09 0.9 382 (N)
30-minute 368 800 4000 500 0.09 0.9 215 (N)
60-minute 184 600 4000 500 0.09 0.9 132 (N)

Table 6.4: Parameter values and computation times for Parallel Genetic Algorithm
∗ Average from 20 independent runs; N refers to the GTX765m Notebook GPU and D refers to the GTX Titan X

Desktop GPU.

Chapter 6. Detecting intraday states from market microstructure features 95

Figure 6.4: JSE TOP40 60-minute temporal clusters for the period 01-Nov-2012 to 30-
Nov-2012, representing 184 distinct periods. Each node represents a 60-minute period
during a trading day, with the colour shading indicating the time-of-day (Morning =
green, Lunch = yellow, Afternoon = red) and node connectedness indicating cluster

membership.

Price Spread Volume VolImb
−1

0

1

2

3

4

5

Cluster 5 (21 members, c
5
 = 35483.445)

Price Spread Volume VolImb
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Cluster 6 (15 members, c
6
 = 7323.8035)

Price Spread Volume VolImb
−0.15

−0.1

−0.05

0

0.05

0.1

Cluster 7 (16 members, c
7
 = 542.8251)

Price Spread Volume VolImb
−2

−1.5

−1

−0.5

0

0.5

Cluster 12 (14 members, c
12

 = 982.9791)

Price Spread Volume VolImb
0

0.05

0.1

0.15

0.2

0.25

Cluster 13 (13 members, c
13

 = 331.5971)

Price Spread Volume VolImb
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Cluster 15 (13 members, c
15

 = 579.9487)

Figure 6.5: JSE TOP40 60-minute cluster state signature vectors for the period
01-Nov-2012 to 30-Nov-2012. Each plot illustrates the average change in trade price,
spread, trade volume and quote volume imbalance across member periods and stocks
for each of the clusters with a size ≥ xmin from the truncated power-law fit. Cluster

size and intra-cluster correlation are shown in parentheses.

Chapter 6. Detecting intraday states from market microstructure features 96

Figure 6.6: JSE TOP40 30-minute temporal clusters for the period 01-Nov-2012 to 30-
Nov-2012, representing 368 distinct periods. Each node represents a 30-minute period
during a trading day, with the colour shading indicating the time-of-day (Morning =
green, Lunch = yellow, Afternoon = red) and node connectedness indicating cluster

membership.

Price Spread Volume VolImb
−0.1

−0.05

0

0.05

0.1

0.15

Cluster 4 (15 members, c
4
 = 260.3446)

Price Spread Volume VolImb
0

0.02

0.04

0.06

0.08

0.1

Cluster 7 (15 members, c
7
 = 593.0322)

Price Spread Volume VolImb
−0.2

−0.1

0

0.1

0.2

0.3

Cluster 9 (15 members, c
9
 = 668.719)

Price Spread Volume VolImb
−0.4

−0.3

−0.2

−0.1

0

0.1

Cluster 10 (14 members, c
10

 = 378.3076)

Price Spread Volume VolImb
−1

0

1

2

3

4

5

Cluster 11 (21 members, c
11

 = 34233.7002)

Price Spread Volume VolImb
−0.4

−0.3

−0.2

−0.1

0

0.1

Cluster 13 (14 members, c
13

 = 363.4887)

Price Spread Volume VolImb
−0.4

−0.3

−0.2

−0.1

0

0.1

Cluster 18 (14 members, c
18

 = 307.6546)

Price Spread Volume VolImb
−0.3

−0.2

−0.1

0

0.1

0.2

Cluster 19 (14 members, c
19

 = 555.1054)

Price Spread Volume VolImb
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Cluster 25 (14 members, c
25

 = 388.596)

Price Spread Volume VolImb
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Cluster 28 (17 members, c
28

 = 767.8294)

Figure 6.7: JSE TOP40 30-minute cluster state signature vectors for the period
01-Nov-2012 to 30-Nov-2012. Each plot illustrates the average change in trade price,
spread, trade volume and quote volume imbalance across member periods and stocks
for each of the clusters with a size ≥ xmin from the truncated power-law fit. Cluster

size and intra-cluster correlation are shown in parentheses.

Chapter 6. Detecting intraday states from market microstructure features 97

Figure 6.8: JSE TOP40 15-minute temporal clusters for the period 01-Nov-2012 to 30-
Nov-2012, representing 736 distinct periods. Each node represents a 15-minute period
during a trading day, with the colour shading indicating the time-of-day (Morning =
green, Lunch = yellow, Afternoon = red) and node connectedness indicating cluster

membership.

Price Spread Volume VolImb
−0.1

−0.05

0

0.05

0.1

Cluster 5 (13 members, c
5
 = 448.5481)

Price Spread Volume VolImb
−0.05

0

0.05

0.1

0.15

Cluster 6 (13 members, c
6
 = 200.2466)

Price Spread Volume VolImb
−0.4

−0.2

0

0.2

0.4

Cluster 9 (14 members, c
9
 = 226.7008)

Price Spread Volume VolImb
0

0.05

0.1

0.15

0.2

Cluster 11 (14 members, c
11

 = 289.9909)

Price Spread Volume VolImb
−0.1

0

0.1

0.2

0.3

Cluster 12 (15 members, c
12

 = 687.4849)

Price Spread Volume VolImb
−0.4

−0.2

0

0.2

0.4

Cluster 16 (13 members, c
16

 = 307.32)

Price Spread Volume VolImb
−0.3

−0.2

−0.1

0

0.1

Cluster 18 (17 members, c
18

 = 745.7794)

Price Spread Volume VolImb
−0.2

−0.1

0

0.1

0.2

Cluster 20 (18 members, c
20

 = 742.6677)

Price Spread Volume VolImb
−2

0

2

4

6

Cluster 21 (19 members, c
21

 = 23345.8829)

Price Spread Volume VolImb
−0.1

0

0.1

0.2

0.3

Cluster 24 (16 members, c
24

 = 415.0094)

Price Spread Volume VolImb
−0.4

−0.2

0

0.2

0.4

Cluster 27 (14 members, c
27

 = 453.4046)

Price Spread Volume VolImb
−0.05

0

0.05

0.1

0.15

Cluster 32 (16 members, c
32

 = 240.2854)

Price Spread Volume VolImb
−0.05

0

0.05

0.1

0.15

Cluster 34 (15 members, c
34

 = 458.8757)

Price Spread Volume VolImb
0

0.05

0.1

0.15

0.2

Cluster 36 (17 members, c
36

 = 532.2487)

Price Spread Volume VolImb
−0.2

−0.1

0

0.1

0.2

Cluster 38 (15 members, c
38

 = 433.9637)

Price Spread Volume VolImb
−0.1

−0.05

0

0.05

0.1

Cluster 39 (22 members, c
39

 = 1920.0899)

Price Spread Volume VolImb
−0.05

0

0.05

0.1

0.15

Cluster 41 (19 members, c
41

 = 713.4318)

Price Spread Volume VolImb
−0.05

0

0.05

0.1

0.15

Cluster 42 (20 members, c
42

 = 878.9556)

Price Spread Volume VolImb
−0.1

0

0.1

0.2

0.3

Cluster 43 (13 members, c
43

 = 361.1447)

Price Spread Volume VolImb
0

0.1

0.2

0.3

0.4

Cluster 45 (13 members, c
45

 = 266.4661)

Price Spread Volume VolImb
−0.2

−0.1

0

0.1

0.2

Cluster 46 (14 members, c
46

 = 335.355)

Price Spread Volume VolImb
−0.6

−0.4

−0.2

0

0.2

Cluster 48 (17 members, c
48

 = 809.0566)

Price Spread Volume VolImb
−0.4

−0.2

0

0.2

0.4

Cluster 49 (13 members, c
49

 = 382.9813)

Price Spread Volume VolImb
−0.5

0

0.5

1

Cluster 51 (16 members, c
51

 = 795.2545)

Price Spread Volume VolImb
−0.05

0

0.05

0.1

0.15

Cluster 56 (13 members, c
56

 = 362.3504)

Figure 6.9: JSE TOP40 15-minute cluster state signature vectors for the period
01-Nov-2012 to 30-Nov-2012. Each plot illustrates the average change in trade price,
spread, trade volume and quote volume imbalance across member periods and stocks
for each of the clusters with a size ≥ xmin from the truncated power-law fit. Cluster

size and intra-cluster correlation are shown in parentheses.

Chapter 6. Detecting intraday states from market microstructure features 98

Figure 6.10: JSE TOP40 5-minute temporal clusters for the period 01-Nov-2012 to 30-
Nov-2012, representing 2208 distinct periods. Each node represents a 5-minute period
during a trading day, with the colour shading indicating the time-of-day (Morning =
green, Lunch = yellow, Afternoon = red) and node connectedness indicating cluster

membership.

Price Spread Volume VolImb
−0.4

−0.3

−0.2

−0.1

0

Cluster 1 (16 members, c
1
 = 94.5562)

Price Spread Volume VolImb
−0.04

−0.02

0

0.02

Cluster 17 (16 members, c
17

 = 61.7931)

Price Spread Volume VolImb
−0.04

−0.02

0

0.02

0.04

Cluster 20 (18 members, c
20

 = 52.3359)

Price Spread Volume VolImb
−0.1

−0.05

0

0.05

0.1

Cluster 32 (28 members, c
32

 = 711.0889)

Price Spread Volume VolImb
−0.05

0

0.05

Cluster 35 (30 members, c
35

 = 785.5855)

Price Spread Volume VolImb
−0.2

−0.1

0

0.1

0.2

Cluster 44 (15 members, c
44

 = 34.1483)

Price Spread Volume VolImb
−0.1

−0.05

0

0.05

0.1

Cluster 48 (17 members, c
48

 = 138.4629)

Price Spread Volume VolImb
−0.1

−0.05

0

0.05

0.1

Cluster 62 (18 members, c
62

 = 208.2952)

Price Spread Volume VolImb
−0.02

−0.01

0

0.01

0.02

Cluster 79 (20 members, c
79

 = 198.6535)

Price Spread Volume VolImb
−0.06

−0.04

−0.02

0

0.02

Cluster 83 (18 members, c
83

 = 59.6672)

Price Spread Volume VolImb
−0.1

−0.05

0

0.05

0.1

Cluster 87 (20 members, c
87

 = 273.4823)

Price Spread Volume VolImb
−0.1

0

0.1

0.2

0.3

Cluster 115 (20 members, c
115

 = 426.1898)

Price Spread Volume VolImb
−0.3

−0.2

−0.1

0

0.1

Cluster 116 (16 members, c
116

 = 60.6935)

Price Spread Volume VolImb
−0.04

−0.03

−0.02

−0.01

0

Cluster 120 (18 members, c
120

 = 50.5184)

Price Spread Volume VolImb
−0.1

0

0.1

0.2

0.3

Cluster 124 (28 members, c
124

 = 792.9094)

Price Spread Volume VolImb
−0.04

−0.02

0

0.02

0.04

Cluster 129 (32 members, c
129

 = 601.9514)

Price Spread Volume VolImb
−0.04

−0.02

0

0.02

0.04

Cluster 133 (28 members, c
133

 = 541.7218)

Price Spread Volume VolImb
−0.06

−0.04

−0.02

0

0.02

Cluster 147 (20 members, c
147

 = 265.0519)

Price Spread Volume VolImb
−0.02

0

0.02

0.04

Cluster 152 (16 members, c
152

 = 76.1991)

Price Spread Volume VolImb
−0.15

−0.1

−0.05

0

0.05

Cluster 169 (30 members, c
169

 = 1235.1541)

Price Spread Volume VolImb
−0.1

0

0.1

0.2

0.3

Cluster 172 (28 members, c
172

 = 790.4025)

Price Spread Volume VolImb
−0.05

0

0.05

Cluster 176 (16 members, c
176

 = 68.7316)

Price Spread Volume VolImb
−0.05

0

0.05

Cluster 178 (18 members, c
178

 = 143.4385)

Price Spread Volume VolImb
−0.1

−0.05

0

0.05

0.1

Cluster 203 (18 members, c
203

 = 132.6172)

Price Spread Volume VolImb
−0.1

0

0.1

0.2

0.3

Cluster 216 (20 members, c
216

 = 300.9349)

Figure 6.11: JSE TOP40 5-minute cluster state signature vectors for the period
01-Nov-2012 to 30-Nov-2012. Each plot illustrates the average change in trade price,
spread, trade volume and quote volume imbalance across member periods and stocks
for each of the clusters with a size ≥ xmin from the truncated power-law fit. Cluster

size and intra-cluster correlation are shown in parentheses.

Chapter 6. Detecting intraday states from market microstructure features 99

10
0

10
1

10
210

−2

10
−1

10
0

P
r
(X

≥
x
)

x

Test for cluster size power law fit: 60-min periods

Power law distributional form (p(x) ∼ x−α) vs empirical data
α = 6.35, pvalue = 0.97637, xmin = 13, L = -12.2752

(a) 60-minute cluster sizes

10
0

10
1

10
210

−2

10
−1

10
0

P
r
(X

≥
x
)

x

Test for cluster size power law fit: 30-min periods

Power law distributional form (p(x) ∼ x−α) vs empirical data
α = 9.91, pvalue = 0.86167, xmin = 14, L = -15.5522

(b) 30-minute cluster sizes

10
0

10
1

10
210

−2

10
−1

10
0

P
r
(X

≥
x
)

x

Test for cluster size power law fit: 15-min periods

Power law distributional form (p(x) ∼ x−α) vs empirical data
α = 5.99, pvalue = 0.78145, xmin = 13, L = -55.3482

(c) 15-minute cluster sizes

10
0

10
1

10
210

−3

10
−2

10
−1

10
0

P
r
(X

≥
x
)

x

Test for cluster size power law fit: 5-min periods

Power law distributional form (p(x) ∼ x−α) vs empirical data
α = 4.09, pvalue = 0.207, xmin = 15, L = -77.5964

(d) 5-minute cluster sizes

Figure 6.12: Testing conjecture of power law fit for varying time scale cluster sizes,
applying the Clauset, Shalizi and Newman algorithm [58]. α indicates the scaling
parameter of the proposed fit, pvalue indicates the p-value from a Kolmogorov-Smirnov
test for the goodness-of-fit of the proposed model to the data, xmin indicates the lower-
bound for the power law fit and L is the log-likelihood of the data (x ≥ xmin) under

the power law fit.

Chapter 6. Detecting intraday states from market microstructure features 100

Figure 6.13: Estimated 60-minute clusters using identified state signature vectors.
The Euclidean distance is calculated between each temporal period’s feature vector and
the state signature vectors. Cluster index assignment is based on the state signature

vector which yields the minimum distance.

statet+1

1 2 3 4 5 6

1 0.13 0.49 0.32 0.00 0.06 0.00

2 0.41 0.41 0.09 0.00 0.09 0.00

statet 3 0.00 0.00 0.00 0.52 0.05 0.43

4 0.25 0.07 0.00 0.25 0.43 0.00

5 0.32 0.59 0.05 0.05 0.00 0.00

6 0.00 0.00 0.00 1.00 0.00 0.00

Table 6.5: Empirical 1-step transition probability matrix for 60-minute states, based
on identified temporal cluster configuration. State transitions with a probability > 0

are highlighted in green.

Chapter 6. Detecting intraday states from market microstructure features 101

Figure 6.14: Estimated 30-minute clusters using identified state signature vectors.
The Euclidean distance is calculated between each temporal period’s feature vector and
the state signature vectors. Cluster index assignment is based on the state signature

vector which yields the minimum distance.

statet+1

1 2 3 4 5 6 7 8 9 10

1 0.11 0.37 0.03 0.16 0.18 0.05 0.03 0.03 0.03 0.03

2 0.07 0.04 0.35 0.06 0.04 0.10 0.17 0.10 0.04 0.01

3 0.06 0.33 0.10 0.07 0.17 0.09 0.06 0.04 0.03 0.04

4 0.05 0.08 0.26 0.03 0.21 0.18 0.00 0.13 0.03 0.03

statet 5 0.07 0.13 0.24 0.11 0.04 0.09 0.07 0.13 0.04 0.07

6 0.10 0.21 0.10 0.03 0.14 0.03 0.00 0.17 0.10 0.10

7 0.57 0.00 0.00 0.38 0.00 0.05 0.00 0.00 0.00 0.00

8 0.13 0.23 0.16 0.16 0.13 0.03 0.06 0.06 0.03 0.00

9 0.00 0.15 0.38 0.15 0.08 0.00 0.00 0.08 0.00 0.15

10 0.00 0.36 0.21 0.07 0.29 0.00 0.00 0.07 0.00 0.00

Table 6.6: Empirical 1-step transition probability matrix for 30-minute states, based
on identified temporal cluster configuration. State transitions with a probability > 0

are highlighted in green.

Chapter 6. Detecting intraday states from market microstructure features 102

Figure 6.15: Estimated 15-minute clusters using identified state signature vectors.
The Euclidean distance is calculated between each temporal period’s feature vector and
the state signature vectors. Cluster index assignment is based on the state signature

vector which yields the minimum distance.

statet+1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 0.00 0.20 0.13 0.00 0.07 0.00 0.03 0.17 0.10 0.07 0.03 0.03 0.03 0.03 0.00 0.00 0.00 0.03 0.07 0.00 0.00 0.00 0.00 0.00 0.00

2 0.07 0.03 0.07 0.08 0.09 0.01 0.01 0.08 0.03 0.07 0.02 0.04 0.02 0.03 0.18 0.08 0.02 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00

3 0.02 0.12 0.02 0.20 0.13 0.00 0.00 0.03 0.03 0.17 0.03 0.05 0.00 0.00 0.17 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.00

4 0.07 0.16 0.02 0.07 0.09 0.00 0.02 0.13 0.00 0.04 0.00 0.09 0.05 0.00 0.02 0.07 0.00 0.00 0.07 0.05 0.00 0.02 0.02 0.00 0.00

5 0.03 0.28 0.15 0.08 0.00 0.03 0.00 0.08 0.03 0.03 0.00 0.08 0.00 0.03 0.10 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00

6 0.50 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 0.17 0.17 0.00 0.00 0.00 0.17 0.33 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 0.05 0.25 0.05 0.08 0.07 0.00 0.00 0.07 0.07 0.05 0.00 0.02 0.03 0.00 0.15 0.00 0.00 0.02 0.05 0.00 0.02 0.02 0.00 0.02 0.02

9 0.00 0.12 0.06 0.03 0.00 0.00 0.00 0.12 0.00 0.09 0.03 0.24 0.00 0.00 0.06 0.03 0.18 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00

10 0.04 0.10 0.19 0.00 0.02 0.00 0.00 0.19 0.02 0.04 0.00 0.02 0.04 0.02 0.12 0.06 0.06 0.00 0.02 0.02 0.02 0.02 0.00 0.00 0.00

11 0.17 0.08 0.08 0.08 0.00 0.00 0.00 0.00 0.08 0.17 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.08 0.00 0.00 0.00 0.00

statet12 0.04 0.09 0.09 0.11 0.09 0.00 0.00 0.09 0.04 0.06 0.00 0.00 0.04 0.02 0.17 0.04 0.04 0.02 0.00 0.02 0.02 0.02 0.00 0.00 0.00

13 0.00 0.06 0.11 0.28 0.00 0.00 0.00 0.06 0.06 0.22 0.00 0.00 0.00 0.06 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00

14 0.00 0.42 0.08 0.00 0.00 0.00 0.08 0.08 0.00 0.08 0.00 0.17 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 0.01 0.18 0.15 0.01 0.01 0.01 0.01 0.07 0.03 0.04 0.01 0.21 0.07 0.00 0.03 0.03 0.00 0.00 0.07 0.03 0.00 0.00 0.00 0.00 0.00

16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00

17 0.03 0.12 0.12 0.06 0.03 0.00 0.00 0.00 0.09 0.03 0.06 0.06 0.00 0.06 0.09 0.00 0.15 0.09 0.03 0.00 0.00 0.00 0.00 0.00 0.00

18 0.00 0.06 0.06 0.06 0.06 0.00 0.00 0.00 0.00 0.06 0.06 0.00 0.06 0.00 0.00 0.00 0.50 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00

19 0.12 0.04 0.00 0.15 0.04 0.04 0.00 0.12 0.04 0.04 0.00 0.00 0.00 0.08 0.19 0.00 0.04 0.04 0.00 0.00 0.04 0.00 0.00 0.04 0.00

20 0.00 0.25 0.13 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.13 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00

21 0.00 0.13 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.38 0.00 0.13 0.00 0.00 0.13 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00

22 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.20 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25 0.00 1.00 0.00

Table 6.7: Empirical 1-step transition probability matrix for 15-minute states, based
on identified temporal cluster configuration. State transitions with a probability > 0

are highlighted in green.

Chapter 6. Detecting intraday states from market microstructure features 103

Figure 6.16: Estimated 5-minute clusters using identified state signature vectors. The
Euclidean distance is calculated between each temporal period’s feature vector and the
state signature vectors. Cluster index assignment is based on the state signature vector

which yields the minimum distance.

statet+1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 0.04 0.08 0.17 0.06 0.12 0.14 0.07 0.00 0.19 0.00 0.10 0.01 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.08 0.01 0.16 0.14 0.08 0.23 0.03 0.01 0.13 0.01 0.04 0.02 0.01 0.03 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.01

3 0.04 0.06 0.12 0.12 0.11 0.33 0.05 0.02 0.07 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.04 0.07 0.24 0.03 0.17 0.21 0.02 0.02 0.08 0.01 0.05 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00

5 0.04 0.03 0.16 0.13 0.06 0.16 0.08 0.03 0.23 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.07 0.07 0.32 0.12 0.08 0.09 0.02 0.01 0.13 0.02 0.03 0.01 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.14 0.07 0.24 0.04 0.23 0.10 0.04 0.01 0.05 0.00 0.02 0.00 0.00 0.01 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 0.02 0.05 0.33 0.10 0.10 0.18 0.03 0.03 0.10 0.03 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9 0.11 0.04 0.15 0.04 0.20 0.30 0.04 0.02 0.03 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 0.06 0.12 0.24 0.00 0.00 0.18 0.06 0.06 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 0.19 0.01 0.26 0.21 0.07 0.13 0.00 0.00 0.04 0.01 0.03 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

statet12 0.11 0.11 0.00 0.00 0.22 0.22 0.00 0.22 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

13 0.00 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14 0.03 0.03 0.17 0.00 0.10 0.37 0.00 0.03 0.10 0.00 0.07 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00

15 0.00 0.00 0.33 0.00 0.33 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16 0.00 0.00 0.20 0.40 0.20 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

17 0.20 0.00 0.20 0.20 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18 0.00 0.12 0.24 0.24 0.04 0.12 0.04 0.08 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.04 0.00 0.00 0.00

19 1.00 0.00

20 0.14 0.14 0.14 0.14 0.00 0.14 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

21 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

22 0.00 0.00 0.25 0.00 0.00 0.50 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

23 0.00 0.00 0.50 0.50 0.00

24 0.00 0.00 0.00 1.00 0.00

25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.8: Empirical 1-step transition probability matrix for 5-minute states, based
on identified temporal cluster configuration. State transitions with a probability > 0

are highlighted in green.

Chapter 6. Detecting intraday states from market microstructure features 104

ex−ante ex−post

−1

0

1

2

3

4

5

6

Boxplot of Euclidean distance of best−match 60−min state assignments
ex−ante vs ex−post

E
uc

lid
ea

n
D

is
ta

nc
e

(a) 60-minute states

ex−ante ex−post

0

1

2

3

4

5

6

7

Boxplot of Euclidean distance of best−match 30−min state assignments
ex−ante vs ex−post

E
uc

lid
ea

n
D

is
ta

nc
e

(b) 30-minute states

ex−ante ex−post

0

1

2

3

4

5

6

7

Boxplot of Euclidean distance of best−match 15−min state assignments
ex−ante vs ex−post

E
uc

lid
ea

n
D

is
ta

nc
e

(c) 15-minute states

ex−ante ex−post

0

1

2

3

4

5

6

7

8

Boxplot of Euclidean distance of best−match 5−min state assignments
ex−ante vs ex−post

E
uc

lid
ea

n
D

is
ta

nc
e

(d) 5-minute states

Figure 6.17: Measuring the stability of the online state assignment algorithm out-
of-sample. Given that the state assignment of an online FV is based on the minimum
Euclidean distance to predetermined SSVs, we compute the best match distance for each
of the FVs in a sample and use a boxplot to visualise the empirical distribution. In this
figure, we compare the ex-ante (01-Nov-2012 to 30-Nov-2012, same period used for SSV
estimation) and ex-post (03-Dec-2012 to 07-Dec-2012, one week after SSV estimation

window) periods.

Chapter 6. Detecting intraday states from market microstructure features 105

6.10 Identifying high-frequency persistent states using event-

time clustering

While we only consider calendar time states above and in the use-case in Chapter 8,

we demonstrate here how the concept can be extended to event time. By choosing a

particular feature of a stock to represent the system clock, we can extract a temporal

state representation through the lens of the stock considered. In particular, we consider

traded volume of a particular stock as the event governing the system clock, e.g. if we

seek a state representation appropriate for trading small volumes of stock AGL (Anglo

American), we specify a traded volume bin of, say, 1000 shares. Each time 1000 shares

of AGL has traded, the clock for the entire system ticks. We thus move from fixed

calendar time bins to fixed AGL traded volume bins. We conjecture that event-time

states will capture the appropriate information in LOB dynamics which is suitable for

the operating scale of a machine trading algorithm. To demonstrate this concept, using

traded volume to govern our system clock, we construct 100 000 SHF event-time clusters

in Figure 6.18 and 100 000 AGL event-time clusters in Figure 6.20. We notice that there

are more dark green and dark red nodes here, compared to the calendar time results in

Section 6.9.4. This is consistent with the notion of higher liquidity during morning and

afternoon trading sessions, with higher traded volumes causing the clock to tick faster.

We also note that AGL is a more liquid stock than SHF, thus for a given traded volume

bin size (100 000), there are more periods for AGL than SHF, as indicated by the higher

number of nodes in Figure 6.20. Figures 6.21 and 6.19 show the associated SSVs from

significant states. Importantly, when constructing event-time states, we notice that the

resultant cluster sizes still yield significant power-law fits, as shown in Figure 6.22. Here,

the p-value for the 100 000 SHF cluster size fit is 0.16885 and for the 100 000 AGL fit

is 0.96315. This is consistent with our argument in Section 6.7, where sampling the

system at event-time scale yields statistically significant power-law fits, indicating that

the system is at or near criticality. Since we have observed significant power-law fits at

all calendar and event times scales that we have sampled the system, this provides more

evidence towards the notion of financial markets as complex adaptive systems.

Chapter 6. Detecting intraday states from market microstructure features 106

Figure 6.18: JSE TOP40 event-time clusters for the period 01-Nov-2012 to 30-Nov-
2012. Each node represents a traded volume of 100 000 SHF shares, with the
colour shading indicating the time-of-day (Morning = green, Lunch = yellow, Afternoon

= red) and node connectedness indicating cluster membership.

Price Spread Volume VolImb
−0.8

−0.6

−0.4

−0.2

0

Cluster 1 (13 members, c
1
 = 64.1483)

Price Spread Volume VolImb
−0.1

−0.05

0

0.05

0.1

Cluster 2 (17 members, c
2
 = 94.8377)

Price Spread Volume VolImb
−0.2

−0.15

−0.1

−0.05

0

Cluster 4 (9 members, c
4
 = 33.5881)

Price Spread Volume VolImb
0

0.05

0.1

0.15

0.2

Cluster 5 (8 members, c
5
 = 15.4472)

Price Spread Volume VolImb
−0.15

−0.1

−0.05

0

0.05

Cluster 6 (8 members, c
6
 = −2.6314)

Price Spread Volume VolImb
−0.05

0

0.05

Cluster 7 (12 members, c
7
 = 4.8698)

Price Spread Volume VolImb
−0.02

0

0.02

0.04

0.06

Cluster 8 (16 members, c
8
 = 119.2756)

Price Spread Volume VolImb
−0.05

0

0.05

0.1

0.15

Cluster 9 (8 members, c
9
 = 24.9915)

Price Spread Volume VolImb
−0.3

−0.2

−0.1

0

0.1

Cluster 10 (8 members, c
10

 = 38.1987)

Price Spread Volume VolImb
−0.2

−0.1

0

0.1

0.2

Cluster 13 (12 members, c
13

 = 17.6065)

Price Spread Volume VolImb
−0.05

0

0.05

0.1

0.15

Cluster 14 (8 members, c
14

 = −0.73538)

Price Spread Volume VolImb
−0.02

0

0.02

0.04

0.06

Cluster 17 (8 members, c
17

 = −12.7162)

Price Spread Volume VolImb
−0.15

−0.1

−0.05

0

0.05

Cluster 18 (8 members, c
18

 = 0.71984)

Price Spread Volume VolImb
−0.02

0

0.02

0.04

0.06

Cluster 21 (8 members, c
21

 = 0.93517)

Price Spread Volume VolImb
−0.2

−0.15

−0.1

−0.05

0

Cluster 22 (8 members, c
22

 = 4.2915)

Price Spread Volume VolImb
−0.02

0

0.02

0.04

Cluster 23 (9 members, c
23

 = −2.3035)

Price Spread Volume VolImb
−0.3

−0.2

−0.1

0

0.1

Cluster 25 (8 members, c
25

 = −4.7011)

Price Spread Volume VolImb
−0.1

0

0.1

0.2

0.3

Cluster 28 (10 members, c
28

 = 106.7325)

Price Spread Volume VolImb
−0.2

−0.15

−0.1

−0.05

0

Cluster 30 (8 members, c
30

 = −5.2212)

Price Spread Volume VolImb
−0.1

0

0.1

0.2

0.3

Cluster 31 (8 members, c
31

 = 6.7099)

Price Spread Volume VolImb
0

0.02

0.04

0.06

0.08

Cluster 35 (8 members, c
35

 = 2.0707)

Price Spread Volume VolImb
−0.1

0

0.1

0.2

0.3

Cluster 36 (8 members, c
36

 = 11.2497)

Price Spread Volume VolImb
−0.05

0

0.05

0.1

0.15

Cluster 38 (9 members, c
38

 = 32.9487)

Price Spread Volume VolImb
0

0.05

0.1

0.15

0.2

Cluster 41 (13 members, c
41

 = 82.1105)

Figure 6.19: JSE TOP40 100 000 SHF volume cluster state signature vectors for
the period 01-Nov-2012 to 30-Nov-2012. Each plot illustrates the average change in
trade price, spread, trade volume and quote volume imbalance across member periods
and stocks for each of the clusters with a size ≥ xmin from the truncated power-law fit.

Cluster size and intra-cluster correlation are shown in parentheses.

Chapter 6. Detecting intraday states from market microstructure features 107

Figure 6.20: JSE TOP40 event-time clusters for the period 01-Nov-2012 to 30-Nov-
2012. Each node represents a traded volume of 100 000 AGL shares, with the
colour shading indicating the time-of-day (Morning = green, Lunch = yellow, Afternoon

= red) and node connectedness indicating cluster membership.

Price Spread Volume VolImb
−0.4

−0.2

0

0.2

0.4

0.6

Cluster 10 (16 members, c
10

 = 471.7317)

Price Spread Volume VolImb
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Cluster 12 (13 members, c
12

 = 232.903)

Price Spread Volume VolImb
−0.3

−0.2

−0.1

0

0.1

0.2

Cluster 13 (14 members, c
13

 = 188.958)

Price Spread Volume VolImb
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

Cluster 16 (13 members, c
16

 = 265.11)

Price Spread Volume VolImb
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Cluster 20 (15 members, c
20

 = 267.2643)

Price Spread Volume VolImb
−0.1

−0.05

0

0.05

0.1

Cluster 29 (17 members, c
29

 = 505.9697)

Price Spread Volume VolImb
−0.5

0

0.5

1

Cluster 34 (13 members, c
34

 = 335.228)

Price Spread Volume VolImb
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Cluster 41 (13 members, c
41

 = 432.4361)

Price Spread Volume VolImb
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Cluster 49 (14 members, c
49

 = 227.0802)

Price Spread Volume VolImb
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Cluster 52 (13 members, c
52

 = 305.2581)

Figure 6.21: JSE TOP40 100 000 AGL volume cluster state signature vectors for
the period 01-Nov-2012 to 30-Nov-2012. Each plot illustrates the average change in
trade price, spread, trade volume and quote volume imbalance across member periods
and stocks for each of the clusters with a size ≥ xmin from the truncated power-law fit.

Cluster size and intra-cluster correlation are shown in parentheses.

Chapter 6. Detecting intraday states from market microstructure features 108

10
0

10
1

10
210

−2

10
−1

10
0

P
r
(X

≥
x
)

x

Test for cluster size power law fit: 100000-SHF volume periods

Power law distributional form (p(x) ∼ x−α) vs empirical data
α = 5.64, pvalue = 0.16885, xmin = 8, L = -41.2649

(a) 100 000 SHF volume cluster sizes

10
0

10
1

10
210

−2

10
−1

10
0

P
r
(X

≥
x
)

x

Test for cluster size power law fit: 100000-AGL volume periods

Power law distributional form (p(x) ∼ x−α) vs empirical data
α = 10, pvalue = 0.96315, xmin = 13, L = -14.6421

(b) 100 000 AGL volume cluster sizes

Figure 6.22: Testing conjecture of power law fit for varying time scale cluster sizes,
applying the Clauset, Shalizi and Newman algorithm [58]. α indicates the scaling
parameter of the proposed fit, pvalue indicates the p-value from a Kolmogorov-Smirnov
test for the goodness-of-fit of the proposed model to the data, xmin indicates the lower-
bound for the power law fit and L is the log-likelihood of the data (x ≥ xmin) under

the power law fit.

6.11 Some remarks

In this chapter, we have outlined a novel approach for the unsupervised detection of

intraday temporal market states at varying time scales, as well as a proposed mech-

anism for significant state selection and online state estimation. Using the maximum

likelihood approach of [103], we show that the technique can be used to cluster temporal

periods as objects based on market microstructure feature performance. A high-speed

PGA was used for cluster detection, with a computation time conducive to overnight or

even intraday calibration of market states. A study of temporal cluster configurations

and power-law fits to 60-minute, 30-minute, 15-minute and 5-minute time scales re-

vealed scale-specific system behaviour, motivating the need for scale-specific state space

reduction for optimal planning of participating trading agents. The proposed scheme

for online state detection suggested the use of SSVs to capture the market activity sig-

nature of each identified state, with a simple distance metric of the prevailing FV to

Chapter 6. Detecting intraday states from market microstructure features 109

determine the state index. We showed that the online state detection scheme can be used

to enumerate and update 1-step transition probability matrices, which can be used for

optimal planning in the high-frequency trading domain. We considered the stability of

the algorithm ex-post and found that we could reliably determine 30-minute, 15-minute

and 5-minute states using the proposed algorithm, whereas 60-minute states were less

stable.

A preliminary study of event-time clusters reveals its feasibility as an extension of this

work, to construct state representations through the lens of the stock considered, provid-

ing a temporal state evolution appropriate for the trading scale of the agent.

We also note the recent work of Föllmer [87] where, in the context of risk measures, he

uses an analogy to Gibbs measures in statistical mechanics to show that only entropic

local risk measures permit a global risk measure which is uniquely determined by the

local specification. We have shown that a spin glass model clustering approach, inspired

by statistical physics and using correlation as a ferromagnetic interaction term, can be

used to determine scale-specific temporal states, and that there is no apparent trivial

hierarchical aggregation of state behaviour. This may be linked to the problem of local

consistency of risk measures considered by Föllmer, where he conjectures that the non-

uniqueness of a global measure contributes in some way to perceived systemic risk or

non-trivial aggregation. One application of Föllmer’s findings may combine the entropic

regime restriction with the temporal state detection mechanism, to determine whether

there is some hierarchical state behaviour across scales present in the system. This

should be explored in future work.

Chapter 7

Using order book resiliency to

control agent actions

7.1 Overview

This chapter introduces the multivariate Hawkes process as a candidate governing pro-

cess for the arrival times of limit order book events. We provide a scheme which enu-

merates empirical point processes for key liquidity demand and replenishment events,

permitting the calibration of an appropriate Hawkes process and quantifying order book

resiliency. By considering volume-conditional liquidity-demand events, together with

a sum-of-exponentials kernel, we are able to quantify the branching ratios of liquid-

ity replenishment intensities following trades of varying size. The scale-specific state

representation proposed in Chapter 6 assumes it is reasonable to treat the temporal

evolution of the system as exogenous to the trading agent. The resiliency study allows

us to constrain the action set of the trading agent such that the order book is assumed

to be resilient with respect to the maximum permissible order size. This ensures that an

appropriate action set is determined for the stock concerned, such that the assumption

of exogenous evolution of order book dynamics, for state representation purposes, is

validated. The contribution is captured in the following two papers:

D. Hendricks, M. Harvey. Reconciling order book resiliency and price impact. Working

paper, 2016. [123]

R. Martins, D. Hendricks. The statistical significance of multivariate Hawkes processes

fitted to limit order book data. Working paper (submitted to Journal of Applied Proba-

bility, under review), 2016. [174]

110

Chapter 7. Using order book resiliency to control agent actions 111

7.2 Modelling order book resiliency

7.2.1 Multivariate Hawkes process for limit order book events

Alan Hawkes introduced a class of multivariate point processes with a stochastic in-

tensity vector, incorporating event-occurrence clustering behaviour in a coupled system

[120]. Initial applications used calibrated Hawkes processes to measure the conditional

intensities of earthquakes and aftershocks, based on recorded data [204, 205, 240]. In

financial markets, empirical studies of market microstructure have highlighted apparent

clustering of limit order book events at tick scale, with some event intensities exhibiting

dependent behaviour [4, 36, 109].

The simplest Hawkes processes are univariate, considering a single event type and its

temporal dependence on prior events. These models contain an exogenous or baseline

intensity component, which corresponds to the intensity of events that is not influenced

by the occurrence of prior events, and an endogenous intensity component, which corre-

sponds to the increased intensity of child events that occurs after an exogenous parent

event, thus capturing the clustering of events that one often expects in financial data. A

multivariate Hawkes process, then, extends this to include multiple event types, where

we further define self-excitation of one event type influencing more of its own type of

event, and mutual- or cross-excitation of one event precipitating the occurrence of other

types of events.

Definition 7.1. Multivariate Hawkes process

Consider a point process N(t) such that

P[4N(t) = 1|N(s)s≤t] = λ(t)4t + o(4t) and

P[4N(t) > 1|N(s)s≤t] = o(4t).

For a multivariate point process N(t) = {Nr(t) : r = 1, ..., R}, the rth intensity function

of the R-variate mutually-exciting Hawkes process is given by

λr(t) = µr(t) +

t∫
−∞

R∑
i=1

φr,i(t− u)dNi(u)

Chapter 7. Using order book resiliency to control agent actions 112

where

µr(t) is the time-dependent baseline intensity for the rth event type

φr,i(t) is the kernel function, which encodes the dependency on

prior events of type i and satisfies the following conditions [24]:

1) Component-wise positive, i.e. φr,i(t) ≥ 0 for each 1 ≤ r, i ≤ R

2) Component-wise causal, i.e. if t < 0, then φr,i(t) = 0 for each 1 ≤ r, i ≤ R

3) Each component belongs to the space of L1-integrable functions.

The point process N(t) and intensity vector λ(t) together characterise the Hawkes pro-

cess.

Bacry et al. provide a comprehensive review article highlighting the many applications of

Hawkes processes in finance [24]. Bowsher considered one of the first applications, where

a bivariate point process of the timing of a stock’s trade price and mid-quote changes

was used to model volatility clustering on the New York Stock Exchange [46]. A key

phenomenon investigated using Hawkes processes is endogeneity in financial markets

[83, 84, 112, 113]. Empirical observation reveals that, in certain instances, market prices

change too quickly to be strictly attributed to the flow of pertinent information, and

thus evade explanation in classic economic theory [46]. By considering the ratio of

exogenous parent events to endogenous events, it is possible to obtain a measure of

market reflexivity [83].

A number of studies by Degryse et al., Large and Bacry et al. have used a multivariate

Hawkes process to quantify the resiliency of a limit order book, viz. the propensity for

quote replenishment following a liquidity demand event [20, 69, 159]. By characterising

and extracting key liquidity demand and replenishment events from a limit order book,

and using an appropriate choice of kernel to encode temporal dependence of events, Large

claims it is possible to use a calibrated Hawkes process to calculate the probability and

expected half-life of quote replenishment following a liquidity demand event [159].

We identify key aggressive liquidity demand and replenishment events, enumerating em-

pirical event point processes for model calibration and quantification of LOB resiliency.

We first investigate an appropriate kernel shape for the multivariate Hawkes process

which provides a significant fit to the empirical data extracted from the Johannesburg

Stock Exchange (JSE). We note that this work is very much in the same spirit as [157],

however we are determining the statistical significance of multivariate Hawkes processes

fitted to LOB event data. We then use this model to quantify LOB resiliency, but

use volume-conditional liquidity demand events. The calibrated branching ratios of the

Chapter 7. Using order book resiliency to control agent actions 113

multivariate Hawkes process can be used to assess the resiliency of the order book with

respect to market orders of varying volumes. Given that we need to measure the effects of

our trading agent’s interactions with the system, and the debate around accurately mea-

suring permanent or transient price impact [42], we rather choose to use the resiliency

study to inform the actions chosen by the trading agent. By assessing the intensity of

quote replenishment events and determining the trade size of liquidity demand events

which do not have a commensurate resilient response in quote replenishment, we con-

jecture it is possible to assign a maximum permissible trade size for our trading agent

which is not expected to materially alter LOB dynamics.

7.2.2 Enumerating empirical event point processes using tick data

Typical limit order book (LOB) events include trades, new quotes, quote modifications

and quote cancellations [4]. Following the suggestions by Large [159] and Biais et al.

[36] and taking into account the nature of our data, we define 4 key aggressive liquidity

demand and replenishment event types which will be used to characterise order book

resiliency:

• Type 1: A buy trade that moves the ask

The first of the two liquidity demand events, we define an aggressive buy trade

as one where the trade price is greater than the best ask price, or it is equal to

the best ask, but the volume is greater than that available at the current best

ask. Such trades are considered aggressive since they materially alter the shape of

the limit order book, pushing the best ask price higher, widening the spread and

removing liquidity. Formally, with P representing the trade price, A the prevailing

best ask, and VP , VA the respective volumes, we express this event type as the

following subset of limit order book events:

(P > A) ∪
[
(P = A) ∩ (VP ≥ VA)

]
• Type 2: A sell trade that moves the bid

The second of the two liquidity demand events is the aggressive sell trade, where

the trade price is lower than the current best bid price, or it is equal to the best

bid price, but the volume of the trade is greater than that available at the best

bid. Similarly, this trade is considered aggressive since it alters the structure of the

limit order book by pushing the best bid down, widening the spread and removing

liquidity. Referring to the aforementioned notation, only adding that B refers to

the best available bid price, we formally characterise aggressive sell trades as the

Chapter 7. Using order book resiliency to control agent actions 114

following subset:

(P < B) ∪
[
(P = B) ∩ (VP ≥ VB)

]
• Type 3: A bid between the quotes

The first of the two resiliency events, the aggressive bid is a bid between the current

best bid and ask. It is considered aggressive since it alters the structure of the limit

order book, pushing up the best bid, reducing the spread and providing liquidity

through more competitive prices and added volume. With B∗ being the incoming

bid quote, and Bp the prevailing best bid, we formally characterise the aggressive

bid using similar notation to before, as the following subset:

(B∗ > Bp)

• Type 4: An ask between the quotes

The second of the two resiliency events, an aggressive ask is defined as an ask quote

between the current best bid and ask, considered aggressive since it narrows the

gap between the prevailing best bid and ask, providing liquidity. With A∗ being

the incoming ask quote, and Ap the prevailing best ask, we formally characterise

the aggressive ask quotes as the following subset:

(A∗ < Ap)

While not critical for our study of LOB resiliency, we also identify and classify the

following passive event types for completeness:

• Type 5: Passive buy trade

These are buy trades which do not negatively affect LOB liquidity, as they do not

affect the prevailing spread. If P is the trade price, A the prevailing ask quote,

and VP and VA their respective volumes, passive buy trades will be classified as:

[
(P = A) ∩ (VP < VA)

]
• Type 6: Passive sell trade

These are sell trades which do not negatively affect LOB liquidity, as they do not

affect the prevailing spread. If P is the trade price, B the prevailing bid quote,

and VP and VB their respective volumes, passive sell trades will be classified as:

[
(P = B) ∩ (VP < VB)

]

Chapter 7. Using order book resiliency to control agent actions 115

• Type 7: Passive bid quote

These are bid quotes which enter the LOB at a level higher than level-1, and hence

do not affect the prevailing spread. If B∗ is the incoming bid quote and Bp is the

prevailing bid quote, passive bid quotes will be classified as:

(B∗ < Bp)

• Type 8: Passive sell quote

These are ask quotes which enter the LOB at a level higher than level-1, and hence

do not affect the prevailing spread. If A∗ is the incoming ask quote and Ap is the

prevailing ask quote, passive ask quotes will be classified as:

(A∗ > Ap)

Figures 7.1, 7.2 and 7.3 illustrate the measured empirical intensities for the 4 key event

types, demonstrating event clustering and mutual-excitation over typical morning, mid-

day and afternoon periods.

09:30 09:45 10:00 10:15 10:30
−1

0

1

2

3

4

5
Normalised intensity for SBKJ.J on 25-Sep-2013 (bin width = 5min)

N
o
rm

a
li
se
d

in
te
n
si
ty

Time

Type 1 event
Type 2 event
Type 3 event
Type 4 event

Figure 7.1: Empirical event intensities for SBK of each of the 4 key event types over
a morning period, demonstrating event clustering and mutual-excitation. The dots
show the arrival times of the events and the lines show the 5-minute event intensities.

Chapter 7. Using order book resiliency to control agent actions 116

13:00 13:15 13:30 13:45 14:00
−1

0

1

2

3

4

5

6

7
Normalised intensity for SBKJ.J on 25-Sep-2013 (bin width = 5min)

N
o
rm

a
li
se

d
in
te
n
si
ty

Time

Type 1 event
Type 2 event
Type 3 event
Type 4 event

Figure 7.2: Empirical event intensities for SBK of each of the 4 key event types over
a midday period, demonstrating event clustering and mutual-excitation. The dots
show the arrival times of the events and the lines show the 5-minute event intensities.

15:00 15:15 15:30 15:45 16:00

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
Normalised intensity for SBKJ.J on 25-Sep-2013 (bin width = 5min)

N
o
rm

a
li
se
d

in
te
n
si
ty

Time

Type 1 event
Type 2 event
Type 3 event
Type 4 event

Figure 7.3: Empirical event intensities for SBK of each of the 4 key event types over
an afternoon period, demonstrating event clustering and mutual-excitation. The dots
show the arrival times of the events and the lines show the 5-minute event intensities.

7.2.2.1 Volume-conditional liquidity demand point processes

In order to reconcile the LOB resiliency with our goal of controlling the trading agent’s

submitted market order quantity, we extend the classification of aggressive liquidity

Chapter 7. Using order book resiliency to control agent actions 117

demand events above to account for trade size. The goal is to quantify resilient quote

replenishment following a trade of a particular size by examining the effect on calibrated

intensities of the multivariate Hawkes process. This will allow us to measure the maxi-

mum permissible order size the trading agent can submit, with a reasonable expectation

of resilient quote replenishment by the next trading opportunity.

• Type 1: A buy trade of particular size that moves the ask

As above, we define an aggressive buy trade as one where the trade price is greater

than the best ask price, or it is equal to the best ask, but the volume is greater

than that available at the prevailing best ask. Such trades are considered aggressive

since they materially alter the shape of the limit order book, pushing the best ask

higher, widening the spread and removing liquidity. Formally, with P representing

the trade price, A the prevailing best ask, and VP , VA the respective volumes, vi

and vi+1 the volume bounds for the trade, X as the volume bin increment and V
as the maximum trade volume, we express this event type as the following subset

of limit order book events:[
(P > A)∪

[
(P = A)∩(VP ≥ VA)

]]
∩(vi ≤ VP < vi+1) for vi = {0, X, 2X, ...,V−X}

• Type 2: A sell trade of particular size that moves the bid

An aggressive sell trade is one where the trade price is lower than the current best

bid price, or it is equal to the best bid price, but the volume of the trade is greater

than that available at the best bid. Similarly, this trade is considered aggressive

since it alters the structure of the limit order book by pushing the best bid down,

widening the spread and removing liquidity again. Referring to the aforementioned

notation, only adding that B refers to the best available bid price, we formally

characterise aggressive sell trades of a particular size as the following subset:[
(P < B)∪

[
(P = B)∩(VP ≥ VB)

]]
∩(vi ≤ VP < vi+1) for vi = {0, X, 2X, ...,V−X}

Figures 7.4 and 7.5 show the measured empirical intensities for volume-conditional ag-

gressive liquidity demand events. We have chosen 4 candidate volume bins of equal

width to group trade events of similar size.

Chapter 7. Using order book resiliency to control agent actions 118

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
−1

0

1

2

3

4

5

6

7
Normalised intensity for SBKJ.J on 25-Sep-2013 (bin width = 5min)

N
o
rm

a
li
se
d

in
te
n
si
ty

Time

Type 1 event : Volume ∈ [0.1, 0.6)
Type 1 event : Volume ∈ [0.6, 1.1)
Type 1 event : Volume ∈ [1.1, 1.6)
Type 1 event : Volume ∈ [1.6, 2.1)

Figure 7.4: Empirical volume-conditional Type-1 event intensities for SBK for
4 candidate volume bins over a typical trading day. The dots show the arrival times of

the events and the lines show the 5-minute event intensities.

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
−1

0

1

2

3

4

5

6

7

8
Normalised intensity for SBKJ.J on 25-Sep-2013 (bin width = 5min)

N
o
rm

a
li
se
d

in
te
n
si
ty

Time

Type 2 event : Volume ∈ [0.1, 0.6)
Type 2 event : Volume ∈ [0.6, 1.1)
Type 2 event : Volume ∈ [1.1, 1.6)
Type 2 event : Volume ∈ [1.6, 2.1)

Figure 7.5: Empirical volume-conditional Type-2 event intensities for SBK for
4 candidate volume bins over a typical trading day. The dots show the arrival times of

the events and the lines show the 5-minute event intensities.

7.2.3 Candidate kernels for encoding temporal dependence

A number of kernels have been proposed to model temporal dependence of events, in-

formed by the application or the dynamics of the data being modelled [112]. While,

Chapter 7. Using order book resiliency to control agent actions 119

in principle, any kernel satisfying the conditions in Definition 7.1 can be used, four

candidate kernels have typically been considered for financial applications [24, 157, 159]:

• Sum-of-exponentials:

φM (t) =
M∑
i=1

αie
−t/τi

where M is the number of exponentials, αi is the amplitude of the ith kernel and τi

is the timescale of the ith kernel. The branching ratio is calculated as n =
M∑
i=1

αiτi.

• Approximate power law :

φM (t) =
n

Z

M−1∑
i=1

a
−(1+ε)
i e

− t
ai

where ai = τ0m
i, M is the range of approximation and m its precision. Z is defined

such that
∞∫
0

φM (t)dt = Z, n is the branching ratio, ε is the tail exponent and τ0 is

the smallest timescale.

• Approximate power law with short lag cut-off [113]:

φM (t) =
n

Z

(M−1∑
i=1

a
−(1+ε)
i e

− t
ai − Se−

t
ai−1

)
where the definition is the same as the approximate power law, with the addition

of a smooth exponential drop for lags shorted than τ0. S is defined such that

φM (0) = 0.

• Lallouache-Challet power law and exponential [157]:

φM (t) =
n

Z

(M−1∑
i=1

a
−(1+ε)
i e

− t
ai + be−

t
τ

)
which is the approximate power law with an additional exponential term with free

parameters b and τ . This permits greater freedom in the structure of time scales

[157].

We will consider the sum-of-exponentials kernel, as this will allow us to quantify limit

order book (LOB) resiliency by measuring the branching ratio for particular liquidity

demand/replenishment event pairs, as well as the expected half-life of replenishment.

Large made use of a 2-exponential kernel to quantify LOB resiliency [159], however

it is unclear whether two exponentials is appropriate for our events dataset. We will

thus consider a preliminary goodness-of-fit study for M = 1, 2 and 3 to determine the

Chapter 7. Using order book resiliency to control agent actions 120

appropriate form of the kernel, before we proceed with the volume-conditional resiliency

study.

7.2.4 Deriving maximum likelihood estimator with sum-of-exponentials

kernel

We will consider the exposition shown in [157] and extend it to the multivariate case.

The sum-of-exponentials kernel is defined as

φM (t) =
M∑
i=1

αie
−t/τi .

The M term refers to the number of exponentials to be summed for each event type,

α is the individual exponential’s unscaled intensity, τ refers to the particular timescale

associated to the intensity of one exponential, in contrast to the commonly presented β

that refers to the multiplicative inverse of τ , being the decay. Importantly, we note that

the branching ratio, n, of a particular event type is expressed as

n =

M∑
i=1

αiτi. (7.1)

The branching ratio corresponds to the number of child events a parent event is expected

to have. A branching ratio greater than one (super-critical) will quickly explode with

events, a branching ratio equal to one (critical) is a special case where a family will live

indefinitely without exploding, as long as µ = 0, and a branching ratio less than one

(sub-critical) refers to a process where each family of clustered events will eventually die

out.

To calculate the half-life of a given intensity effect αi, we solve

1/2 = e
−
ti1/2
τi =⇒ ti1/2 = τi ln(2), (7.2)

with the total half-life given by

t1/2 =
M∑
i=1

τi ln(2). (7.3)

The sum-of-exponentials kernel thus yields the following intensity function:

λM (t) = µ+

∫ t

0

M∑
i=1

αie
− t−u

τi dN(u).

Chapter 7. Using order book resiliency to control agent actions 121

In particular, we are considering the four-variate case, since we are interested in key

aggressive liquidity demand and replenishment events to quantify resiliency (see Section

7.2.2 below). With r = 1, 2, 3, 4 referring to the event type of interest ṙ, and assuming

a time-dependent baseline intensity, µ, we have

λṙ,M (t) = µṙ(t) +

∫ t

0

4∑
r=1

M∑
i=1

αr,ie
− t−u
τr,i dNṙ(u). (7.4)

We refer to the known log-likelihood function for Hawkes processes with exponential or

power-law kernels [207]:

lnL
(
t1, ..., tn

∣∣θ) = −
∫ T

0
λ(t|θ)dt+

∫ T

0
lnλ(t|θ)dN(t)

noting that ∫ t

0
h(s)dN(s) =

∑
ti<t

h(ti).

Thus we derive the log-likelihood as

lnLṙ(θ) =−
∫ T

0
µṙ(t)dt−

4∑
r=1

M∑
i=1

αr,iτr,i
∑
tj<T

(
1− e−

T−tj
τr,i

)

+
∑
tj<T

ln

µṙ(tj) +

4∑
r=1

M∑
i=1

αr,i
∑
tj′<tj

e
−
tj−tj′
τr,i

 .
Using the following recursive relationships [207], assuming that ṙ = 1:

R1,i(j) = e
−
tj−tj−1
τ1,i

(
1 +R1,i(j − 1)

)
and, for mutual event types r = 2, 3, 4, letting k̃ = sup[k′|tk′ < tj]:

Rr,i(j) = e
−
tj−tj−1
τr,i Rr,i(j − 1) +

∑
[k′|tj−1≤tk′<tj]

e
−
tj−tk′
τr,i

Thus, substituting back into the log-likelihood function, we obtain

lnLṙ(θ) =−
∫ T

0
µṙ(t)dt−

4∑
r=1

M∑
i=1

αr,iτr,i
∑
tj<T

(
1− e−

T−tj
τr,i

)

+
∑
tj<T

ln

[
µṙ(tj) +

4∑
r=1

M∑
i=1

αr,iRr,i(j)

] (7.5)

Chapter 7. Using order book resiliency to control agent actions 122

The log-likelihood function in Equation 7.5 will be implemented for parameter calibra-

tion.

7.2.5 Calibration of model parameters

To quantify LOB resiliency, we require the calibration of the µ, α and τ parameters in

Equation 7.5. We used MATLAB to develop a non-linear constrained optimisation rou-

tine to find the parameters which maximise the likelihood function specified in Equation

7.5. In particular, we used a sequential quadratic programming algorithm to iteratively

adjust candidate parameter values until a best approximation to the maximum likeli-

hood estimator is found, within a given tolerance. To promote finding a global solution

and stability in algorithm results, we use a genetic algorithm with Equation 7.5 as the

objective function to find feasible parameter values to initialise the optimisation routine.

This allows us to narrow the search space, before using the optimisation to refine the

calibration.

While the univariate Hawkes process can exploit the recursive relationship for the log-

likelihood calculation, reducing the computational complexity from O(N2) to O(N)

[157, 207], this advantage does not translate to the multivariate case. We made use of

a number of vectorisation enhancements to improve the computational efficiency of the

implemented algorithm, as shown in Figures 7.6 and 7.7. These indicate that our imple-

mentation scales well as a function of both number of events and number of exponentials

in the chosen kernel, compared to a näıve for-loop implementation. The details of the

full implementation can be found in a study by Martins and Hendricks [173, 174].

Once the parameters have been calibrated to the events data, we can obtain values

for the branching ratio (Equation 7.1) and half-life (Equation 7.3), and the particular

expression of Equation 7.4 that defines the intensity of the Hawkes process, which can

in turn be used to calculate the residuals for testing.

Before any inferences were made from calibrated parameter values, we verified the ac-

curacy of our implemented calibration scheme. To do this, we performed extensive

simulations of multivariate Hawkes processes with known, induced parameters using the

intensity-based approach promoted by Dassios and Zhao [66, 163], generating a set of

events data. The calibration scheme was then used to recover the induced parameters.

The successful recovery of induced parameters from simulated data verified the cali-

bration scheme. Details of this can be found in a study by Mazibuko and Hendricks

[176].

Chapter 7. Using order book resiliency to control agent actions 123

Figure 7.6: Computation time (in minutes): vectorisation vs for-loop. Shows average
computation time as a function of the number of each event type.

Figure 7.7: Computation time (in minutes): vectorisation vs for-loop. Shows average
computation time as a function of the number of exponentials (M).

Chapter 7. Using order book resiliency to control agent actions 124

7.2.6 On the choice of M (number of exponentials)

In order to determine the appropriate number of exponentials in our kernel, we per-

formed a number of goodness-of-fit tests for M = 1, 2 and 3 following calibrations to our

dataset of events. We utilise the result in Theorem 7.2 to convert our calibrated Hawkes

processes into time-deformed compensator functions, viz. sequences of residuals which

are exponentially distributed with mean 1.

Theorem 7.2 (Multivariate random time change). Consider the R sequences of gener-

alised residuals {eri (θ)}, r = 1, ..., R, where

eri (θ) :=

∫ t
(r)
i+1

t
(r)
i

λr(s, θ)ds, (7.6)

the integrand is the intensity for type r events, and (t
(r)
i , t

(r)
i+1] is interval between adjacent

type r events.

When θ is the set of true parameters, each sequence eri (θ) is an independently distributed

exponential random variable with mean 1.

Proof. See Bowsher [46] for a detailed discussion and proof.

We can then use statistical tests to determine whether the residuals are in fact inde-

pendent and exponentially distributed with mean 1, where the kernel offering the best

fit will be used in the analyses that follow. We used four candidate tests to assess the

distribution and stationarity of the residuals [113, 157, 159]:

1. Kolmogorov-Smirnov (KS) test [152, 225]: This test compares the empirical dis-

tribution of residuals to cumulative distribution of an exponential with mean 1. A

non-rejection of the null hypothesis H0 indicates empirical residuals are exponen-

tially distributed at the specified significance level.

2. Excess Dispersion (ED) test [79]: This test confirms whether the residuals have

unit variance, as would be expected if they followed an exponential with mean

1. A non-rejection of the null hypothesis H0 indicates the variance of empirical

residuals is 1 at the specified significance level.

3. Ljung-Box Q (LBQ) test [165]: This test for stationarity confirms independence

of increments, where again, non-rejection of the null hypothesis H0 indicates the

residuals are stationary.

Chapter 7. Using order book resiliency to control agent actions 125

4. Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test [155]: This is a secondary test for

trend stationarity for confirmation of the LBQ results, where non-rejection of the

null hypothesis H0 indicates the residuals are trend stationary.

The KS, ED and LBQ statistical tests were performed at a 1% significance level, while the

KPSS test for trend stationarity was performed at the 5% significance level, consistent

with suggestions by Kwiatowski et al. [155].

Tables 7.1 and 7.2 show the goodness-of-fit results for empirical event processes of a

candidate stock (GRT) over 2 different periods, for M = 1, 2 and 3. We have used to

definitions in Section 7.2.2 to extract key aggressive liquidity demand and replenishment

processes from the LOB data. Each day is considered as an independent realisation of

the multivariate point process, thus a separate calibration is performed for the set of

events associated with each day in the dataset. This allows us to construct a distribu-

tion of null hypothesis non-rejections and p-values for each test, and for each M . For

example, column “KS H0” indicates the proportion of KS tests which confirmed residu-

als were exponentially distributed with unit mean, whereas column “KS p-value” shows

the average p-value for these tests. We see from these results that the 3-exponential

kernel offers a better fit to empirical data than the 1- and 2-exponential kernel. This

is confirmed by the highest number of null hypothesis acceptances and highest p-values

across all statistical tests. We will thus use the 3-exponential kernel in our study of LOB

resiliency.

M KS H0 KS p ED H0 ED p LBQ H0 LBQ p KPSS H0 KPSS p

1 0.3421 0.0332 0.2500 0.0628 0.7000 0.2484 0.5658 0.0619

2 0.5658 0.0978 0.4342 0.1311 0.7184 0.2902 0.5395 0.0589

3 0.6184 0.1384 0.5789 0.1720 0.7326 0.2945 0.5526 0.0604

Table 7.1: Daily goodness-of-fit test statistics by kernel, GRT 01 September 2013
to 27 September 2013

M KS H0 KS p ED H0 ED p LBQ H0 LBQ p KPSS H0 KPSS p

1 0.5000 0.0884 0.3958 0.0928 0.7475 0.2733 0.5729 0.0627

2 0.6771 0.1712 0.5938 0.1784 0.7783 0.2790 0.6146 0.0643

3 0.7917 0.2599 0.7292 0.2658 0.8133 0.2996 0.6250 0.0669

Table 7.2: Daily goodness-of-fit test statistics by kernel, GRT 30 September 2013
to 31 October 2013

7.2.7 Motivating use of time-dependent baseline intensity

To motivate the use of a time-dependent baseline intensity in our specification in Equa-

tion 7.4, we examined the average hourly intensity of our measured empirical event pro-

cesses. Figure 7.8 shows the average intensity of all events for a candidate stock (GRT)

Chapter 7. Using order book resiliency to control agent actions 126

for each hour of the trading day, averaged over all days in the respective datasets. Both

datasets indicate a distinct U -shape for average intensities, which a constant baseline

intensity will fail to capture.

Figure 7.9 illustrates the effect of different kernels when assuming a 3-period piecewise

linear baseline intensity. We see that a simple morning, noon and afternoon distinction

yields calibrated intensities which match the expected U -shape exhibited in the empirical

data in Figure 7.8. The shapes of these curves are similar across all three kernels,

although we note that as the number of exponentials is increased, we see a decline in the

both the mean and variation of the exogeneity. This suggests that the higher number of

exponentials permits more explanatory power for cross-exciting effects of events, rather

than absorbing these effects into the baseline intensity. Combined with the goodness-

of-fit tests in Section 7.2.6, this confirms that the drivers of observed event intensities

in our data appear to have a higher attribution to self- and cross-exciting effects, as

captured by the 3-exponential kernel, than that suggested by fewer exponentials.

9am 10am 11am Noon 1pm 2pm 3pm 4pm
0

0.01

0.02

0.03

0.04

Period Starting Time

B
as

el
in

e
In

te
ns

ity

GRT 01−Sep−2013 to 27−Sep−2013

9am 10am 11am Noon 1pm 2pm 3pm 4pm
0

0.01

0.02

0.03

0.04

Period Starting Time

B
as

el
in

e
In

te
ns

ity

GRT 30−Sep−2013 to 31−Oct−2013

Figure 7.8: Average hourly baseline intensity for all events. Blue line indicates average
for a given hour, with the error bars reflecting the variation over the days in the sample.

Chapter 7. Using order book resiliency to control agent actions 127

9am Noon 2pm 9am Noon 2pm 9am Noon 2pm
0

0.01

0.02

0.03

0.04

Period Starting Time

B
as

el
in

e
In

te
ns

ity

GRT 01−Sep−2013 to 27−Sep−2013

M = 1
M = 2
M = 3

9am Noon 2pm 9am Noon 2pm 9am Noon 2pm
0

0.005

0.01

0.015

0.02

0.025

Period Starting Time

B
as

el
in

e
In

te
ns

ity

GRT 30−Sep−2013 to 31−Oct−2013

Figure 7.9: Baseline intensity by kernel. The trading day is divided into 3 periods
(morning, noon, afternoon), with piecewise linear intensity. Coloured lines correspond
to mean exogenous intensities for the given periods, calibrated for each kernel, with the

error bars reflecting daily variation.

7.2.8 An efficient non-parametric calibration scheme

Our aim in Sections 7.2.6 and 7.2.7 was to find a candidate kernel which offers the best

fit to the extracted point processes, using the usual maximum likelihood procedure for

calibration and assessing residuals. While it is clear that the sum-of-three-exponential

kernel with time-dependent baseline intensity offers the best fit to the empirical data,

this requires a 27-parameter MLE calibration. Since each day is treated as an inde-

pendent realisation of the multivariate point process, the computation time taken for

the calibrations required for long-term studies is thus prohibitive and would prevent us

from making meaningful inferences for our intended application: finding a trade volume

ceiling for our trading agent which the LOB is expected to be able to absorb.

Recent work by Bacry et al. and Kirchner considers efficient non-parametric calibration

schemes for the branching ratios of multivariate Hawkes processes [19, 21–23, 150, 215].

Using the fact that a stationary multivariate Hawkes process is completely specified

by its first and second order properties, Bacry and Muzy prove that the kernel matrix

Chapter 7. Using order book resiliency to control agent actions 128

is the only causal solution for a Wiener-Hopf system, which is simple to solve with a

quadrature scheme [21]. We implemented the scheme described by Bacry and Muzy [21],

which uses empirical point processes to recover baseline intensities and kernel shapes,

from which the branching ratio can be computed. We used a linear-log binning scheme

to estimate the conditional law, with parameters hmin = 1 and hmax = 2000, with 30

linear bins and 500 logarithmic bins. Full details regarding the implementation can be

found in a study by Hendricks and Harvey [123].

Further work should investigate the stability of calibrated kernels [142], and the efficacy

of the non-parametric calibration procedure in its ability to capture the results of the

full MLE procedure. For the purposes of this thesis, and for computational tractability,

we have assumed that the calibrated branching ratios from the non-parametric scheme

provide a good approximation to those obtained from the MLE procedure.

7.3 Effect of volume-conditional trade events on quote re-

plenishment intensity

Our intention here is to quantify the impact of trade events of varying size on LOB

dynamics, to motivate a scheme for controlling our trading agent’s actions and their

impact on the system. We show a proof-of-concept here as to how a calibrated resiliency

model can be reconciled with permissible trading actions. Using the volume-conditional

liquidity demand processes extracted from the LOB data, as described in Section 7.2.2.1,

we can quantify the effect of a particular size trade on an associated quote replenishment

intensity by assessing calibrated branching ratios of the Hawkes process. Recall that our

trading agent, as described in Chapter 5, is executing market orders, viz. a buy (sell)

trade will absorb available ask (bid) quotes from the LOB, with large trades materially

affecting the prevailing spread. If the LOB is not replenished with sufficient ask quotes

which improve the spread, this could have adverse cost consequences for the remainder

of the trading program. We thus want to ensure that the LOB is expected to be resilient

with respect to the maximum permissible trade size that can be executed by the trading

agent over the liquidation horizon.

Figures 7.10 and 7.11 show a box-and-whisker plot of distribution of calibrated branching

ratios for particular event pairs of volume-conditional Hawkes process. Figure 7.10

quantifies the effect of aggressive buy trade (Type 1) events of varying size on aggressive

ask quote (Type 4) replenishment intensity, and Figure 7.11 quantifies the effect of

aggressive sell trade (Type 2) events of varying size on aggressive bid quote (Type 3)

replenishment intensity. The trade event point processes have been split into six bins on

Chapter 7. Using order book resiliency to control agent actions 129

the basis of normalised trade size, where trade sizes are normalised by the mean trade

size. The x-axis labels in the figures indicate the upper bounds of trade volume bins.

Thus bin 1 considers the effect of all trades with a size up to the mean trade size for

the entire period considered, bin 2 considers the effect of trades with a size between the

mean trade size and twice the mean trade size, and so on.

We would expect a resilient LOB to exhibit increasing branching ratios for quote re-

plenishment intensities following liquidity demand events, i.e. a larger absorption of

prevailing quotes should be followed by a commensurate increase in quote replenishment

events as a resilient response. We note here that, based on our study of a particular

stock (AGL) over the period 01 November 2012 to 30 November 2012, the branching

ratios appear to decrease as a function of trade size, remaining steady at around 0.1 for

trades larger than twice the mean trade size. This suggests that for very large trades

(larger than twice the mean), the quote replenishment response remains the same, thus

they would have an increasingly adverse effect on LOB dynamics.

It thus seems prudent to restrict the maximum permissible trade size of our trading agent

to twice the mean trade size, where the mean is measured over a suitable period prior

to trading. This would ensure that we can expect a resilient response from the LOB

when absorbing quotes via executed market orders. Recall that the scale-specific state

representation proposed in Chapter 6 assumes it is reasonable to treat the temporal

evolution of the system as exogenous to the trading agent. By restricting the maximum

permissible trade size in this way, we can validate this assumption and provides permis-

sion for this choice of state representation. This motivates using the SSVs as a public

attribute in the agent’s state space, maintaining the framework of Chapter 5, with an

upper bound on action size of twice the mean trade volume. This will be explored in

Chapter 8.

Chapter 7. Using order book resiliency to control agent actions 130

1 2 3 4 5 >5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Trade volume bin (increasing volume)

AGLJ.J , 01 November 2012 09:00 to 30 November 2012 17:00
Branching ratio (

∫
φ41

dN (t)1) versus Trade Volume

B
ra

nc
hi

ng
 r

at
io

Figure 7.10: Boxplot of distribution of calibrated branching ratios of volume-
conditional Hawkes process, quantifying the effect of aggressive buy trade (Type
1) events of varying size on aggressive ask quote (Type 4) replenishment intensity.
X-axis labels indicate upper bounds of trade volume bins, where volumes have been
normalised by their mean. We thus see the resulting branching ratios for aggressive ask
quote intensity, given buy trades with size as increasing multiples of the mean trade

size.

1 2 3 4 5 >5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Trade volume bin (increasing volume)

AGLJ.J , 01 November 2012 09:00 to 30 November 2012 17:00
Branching ratio (

∫
φ32

dN (t)2) versus Trade Volume

B
ra

nc
hi

ng
 r

at
io

Figure 7.11: Boxplot of distribution of calibrated branching ratios of volume-
conditional Hawkes process, quantifying the effect of aggressive sell trade (Type
2) events of varying size on aggressive bid quote (Type 3) replenishment intensity.
X-axis labels indicate upper bounds of trade volume bins, where volumes have been
normalised by their mean. We thus see the resulting branching ratios for aggressive
bid quote intensity, given sell trades with size as increasing multiples of the mean trade

size.

Chapter 7. Using order book resiliency to control agent actions 131

7.4 Some remarks

This chapter investigated an appropriate form of the multivariate Hawkes process for

modelling LOB resiliency, calibrated to event point processes extracted from the LOB

using bespoke classification rules. While results shown here are not extensive, they

motivate the use of a 4-variate Hawkes process with time-dependent baseline intensity

and sum-of-three-exponential kernel. To investigate the potential effect of our trading

agent’s actions on system evolution, we used volume-conditional liquidity demand point

processes to quantify the effect of aggressive trade events of varying size on the intensity

of aggressive quote events. The branching ratios of calibrated Hawkes models allow us

to isolate these effects. We found that, for a particular stock (AGL) and a month’s

worth of calibrations, the branching ratios appear to decrease as a function of trade size,

remaining steady at around 0.1 for trades larger than twice the mean trade size. This

suggests that for very large trades (larger than twice the mean), the quote replenishment

response remains the same, thus they would have an increasingly adverse effect on LOB

dynamics.

It thus seems prudent to restrict the maximum permissible trade size of our trading

agent to twice the mean trade size, where the mean is measured over a suitable period

prior to trading. This would ensure that we can expect a resilient response from the

LOB when absorbing quotes via executed market orders.

As a side note, in a recent price impact study by Harvey et al. [115], they found that for

many stocks listed on the Johannesburg Stock Exchange, there was an increase in small-

volume price impact following a significant fee restructuring at the exchange, which took

place in 2013. The fee restructuring removed a price floor for exchange-related trade

costs, making fees purely value-based. One could argue that the new scheme enables the

profitability of strategies which splitting large orders into many small orders, which could

increase the observed intensity of small trade events. We conjecture that the observed

increase in small-volume price impact could be explained by a lack of commensurate

increase in quote replenishment intensity. This could be assessed using the framework

outlined in this chapter, by considering trade intensities and branching ratios of quote-

trade pair intensities before and after the fee model change, using a Hawkes model

calibrated to point processes consistent with the price impact binning scheme. This will

be explored in future work [123]. In addition, it would be prudent to investigate the

stability of the calibrated kernels, to determine whether calibrated Hawkes processes

in the South African market validate the findings of Jaisson and Rosenbaum [142],

where they conclude that only nearly unstable Hawkes processes are able to fit the data

properly.

Chapter 8

Using detected states and

resilient actions to enhance the

trade execution algorithm

8.1 Overview

This chapter follows on from Chapter 5, where reinforcement learning is used to deter-

mine the optimal sequence of market orders to meet an arrival price trade execution

objective. The previous implementation made two key assumptions: 1) spread and vol-

ume sufficiently capture the exogenous temporal evolution of the LOB at calendar scales;

2) agent actions do not affect the exogenous evolution of the LOB. In this chapter, we

use the novel state-space reduction technique introduced in Chapter 6 to identify ex-ante

intraday financial market states, from which low-dimensional state signature vectors are

extracted to enable online state detection in the learning algorithm. This provides a

public state attribute for the learning agent which captures the temporal evolution of

the system appropriate for the scale at which the agent interacts with the system. The

resiliency study in Chapter 7 provides some validation for assumption (2) above, up to

a certain executed trade size. We incorporate this restriction in the permissible action

space of the trading agent, and preserve the assumption that LOB dynamics are unaf-

fected by agent actions. In Chapter 9 which follows, we consider a scheme which relaxes

this assumption.

The contribution is captured in the following paper:

D. Hendricks. An online learning algorithm with scale-specific state space enumeration

for optimal trade execution in high-frequency markets. Working paper, 2016. [121]

132

Chapter 8. Using detected states and resilient actions to enhance the trade execution
algorithm 133

8.2 Recall the basic reinforcement learning model

In Chapter 5, we introduced a simple discrete-state, discrete-action Q-learning algorithm

for optimal trade execution with an arrival price benchmark, where the agent learns

how to adapt a static liquidation trajectory with respect to prevailing LOB features to

improve the program’s implementation shortfall.

The state space was defined as:

Private Attributes Public Attributes

Elapsed time (tn = 1, 2, ..., T) Spread (sn = 1, 2, ..., B)
Remaining inventory (in = 1, 2, ..., I) Quote volume (vn = 1, 2, ...,W)

Table 8.1: State attributes for simple RL trading agent.

The private attributes are specific to the trading agent’s program, and the public at-

tributes are treated as exogenous, unaffected by the trading agent’s executed actions.

The resolution of the remaining inventory, spread and quote volume attributes is speci-

fied a priori by parameters I,B and W .

For the action set, we first compute a static liquidation trajectory (AC1, AC2, ..., ACT)

using the Almgren-Chriss (AC) [13] approach for a given volume-to-trade (V), fixed time

horizon (T) and discrete trading periods (t = 1, 2, ..., T). ACt represents the proportion

of V to trade in period t, such that
T∑
t=1

ACt = V . We assume that each child order

is executed as a market order based on the prevailing LOB structure. We would like

our learning agent to modify the AC volume trajectory based on prevailing volume and

spread characteristics in the market. As such, the possible actions for our agent include:

• βj = Proportion of ACt to trade,

• βLB = Lower bound of volume proportion to trade,

• βUB = Upper bound of volume proportion to trade,

• Action: ajt = βjACt, where βLB ≤ βj ≤ βUB
and βj = βj−1 + βincr.

To ensure that the total volume-to-trade is executed over the given time horizon, we

execute any residual volume at the end of the trading period with a market order.

For the reward, we use the difference between the trade price (associated with the market

order executing the action volume) and the program’s arrival price, i.e. implementation

shortfall. The size of the market order determines how deep to traverse the LOB, with

Chapter 8. Using detected states and resilient actions to enhance the trade execution
algorithm 134

larger trades typically incurring higher temporary price impact, affecting the trade price.

The agent will learn the consequences of each action over the trading horizon, with the

ultimate goal of minimising the total trade’s implementation shortfall by trading more

(less) when conditions are favourable (unfavourable).

Given the specification of states, actions and rewards, we can then design a Q-learning

[243] algorithm for finding an optimal state-action policy in a Markovian domain with

unknown dynamics through iterative interactions. We recall that in the tth episode, the

agent:

• observes its current state St ∈ S,

• selects and performs an action At ∈ A,

• observes the subsequent state St+1 as a result of performing action At,

• receives an immediate reward rt and

• uses a learning factor αt, which decreases gradually over time.

Q is updated as follows:

Qt+1(St, At) = Qt(St, At) + αt[rt + γmax
b
Qt(St+1, b)−Qt(St, At)], (8.1)

where γ is the discount rate controlling the importance of future rewards. More details

can be found in Chapters 3 and 5. In particular, we considered a batch RL agent,

where SARSA tuples from a historical dataset were used to seed the Q-matrix with

reasonable values before deploying it online. This was permissible under the assumption

of exogenous evolution of public state attributes. We preserve this assumption in this

chapter.

8.3 Using temporal state as market attribute

We now consider replacing the public attributes in Table 8.1 with the SSVs computed

using the methodology in Chapter 6. This allows us to capture the trade price, spread,

trade volume and quote volume imbalance features, without the need to specify the res-

olution for discretisation. The resolution is implied by the number of critical temporal

states identified by the power-law fit to cluster size, as discussed in Section 6.7. The

SSVs offer a low-dimensional representation which captures the temporal evolution of

the public attributes at the scale at which the agent interacts with the system. Here,

we consider calendar-time interactions (5 minute periods), however, as demonstrated in

Chapter 8. Using detected states and resilient actions to enhance the trade execution
algorithm 135

Section 6.10, we can use the framework to extract a set of SSVs for event-time inter-

actions through the lens of the stock being traded. This will be considered in future

work.

8.4 Bounding actions using resiliency

In Chapter 7, we investigated the resiliency of the LOB by quantifying aggressive quote

replenishment following trade events of varying size. We conjecture that we can ensure

a resilient response of the LOB to trade actions by restricting the maximum permissible

market order size of our trading agent to twice the mean trade size, where the mean is

measured over a suitable period prior to trading, such as the week preceding the start

of the trading program. It is thus straightforward to modify our agent’s action space as

follows:

• βj = Proportion of ACt to trade,

• βLB = Lower bound of volume proportion to trade,

• βUB = Upper bound of volume proportion to trade,

• Action: ajt = min{βjACt, 2µ̄st0}, where βLB ≤ βj ≤ βUB, βj = βj−1 + βincr

and µ̄st0 is the mean buy/sell trade size measured over time s < t0 to the start of

the trading program, t0.

The mean trade size, µ̄st0 , will be measured using only buy trades or only sell trades,

based on the intended direction of the trading program. We also assume that this trade

size ceiling remains fixed for the trading program.

8.5 On the learning rate

In Section 3.8, we discuss the importance of the learning rate for converging on useful

policies fast enough when interacting with a complex adaptive system. The simulated

results of Galla and Farmer [95] suggest that, given a payoff correlation amongst compet-

ing agents, different learning rates directly affect the nature of the attractor (Q-matrix).

While it is difficult to estimate the payoff correlation amongst competing trading agents

in financial markets, the results of Galla and Farmer highlight the importance of choos-

ing the correct learning rate to ensure learning takes place in a multiple-fixed point

regime, or else attempts at learning may be random. We address this issue in a brute-

force manner, trying a range of candidate learning rates to verify which one results in

Chapter 8. Using detected states and resilient actions to enhance the trade execution
algorithm 136

the best ex-post performance. A more elegant approach would extend the results of

Galla and Farmer to multiplayer games and attempt to identify the qualitative nature

of asymptotic learning for trading agents in financial markets. This could be explored

in future work.

8.6 Algorithm

Algorithm 3 illustrates the modified procedure from Chapter 5, using computed SSVs as

the public state attribute in the learning algorithm. We first specify the trading time-

scale (either regular calendar-time periods or event-time periods), as well as features to

extract for each stock. We then compute time-period correlations, identify the temporal

cluster configuration, use the power-law criteria to isolate significant states and extract

time-scale-specific SSVs for use in the learning algorithm. Given the batch RL setting

we consider, we append the training set tuples with the associated SSVs as the public

state attribute, and proceed with training the Q-matrix as before.

Algorithm 3 Q-learner with SSV public state attribute

1: procedure Determine scale-specific SSVs(time-scale, features)
2: Extract feature returns at the chosen time-scale for all stocks in market
3: Calculate time-period correlations
4: Calculate temporal cluster configuration
5: Fit power-law to cluster size
6: Extract time-scale specific SSVs from clusters with size ≥ xmin
7: end procedure
8: procedure Optimal strategy(V, T, I, A)
9: for Episode 1 to N do

10: Record reference price at t = 0
11: for t = T to 1 do
12: Determine episode’s STATE attribute (SSV)
13: for a = 1 to A do
14: Determine the action volume a and resulting remaining inventory i
15: Set x = (t, i, SSV)
16: Calculate IS from trade, R(x, a)
17: Simulate transition x to y
18: Lookup maxpQ(y, p)
19: Update Q(x, a) = Q(x, a) + αU
20: end for
21: end for
22: end for
23: Select the lowest-IS action maxpQ(y, p) for optimal policy
24: end procedure

Chapter 8. Using detected states and resilient actions to enhance the trade execution
algorithm 137

8.7 Data and Results

8.7.1 Data

We used one month of market depth tick data (November 2012) collected from the

Thomson Reuters Tick History (TRTH) database, for a universe of 42 stocks that make

up the South African headline index (TOP40) as at 30 November 2012. This includes 5

levels of order book depth (bid/ask prices and volumes) at each tick. The raw data was

imported into a MongoDB database and sampled at regular 5-minute intervals showing

prevailing level prices and volumes. The investigation period coincides with the study

in Chapter 6, and we will use the appropriate time-scale SSVs in our study below.

8.7.2 Results

We compare two variants of the Q-learning implementation: one with spread and quote

volume as public state attributes at resolution 10 (as in Chapter 5), and one which

just uses the SSV as the public state attribute, evaluated using different learning rates.

Elapsed time and remaining inventory were used as private state attributes in both

models. For both models, the Q-matrix was trained using the batch Q-learning algo-

rithm shown in Algorithm 3 based on tuples extracted from the period 01 November

2012 to 15 November 2012. The trained Q-matrix was then used to select actions in the

test set (16 November 2012 to 30 November 2012), where 60-minute trading programs

were executed (using 5-minute intervals) each hour from 09:00 to 16:00 and resulting

IS recorded. In Table 8.2 and Figure 8.1, we show the resulting difference in ex-post

median IS (RL - AC) for each trading time, thus a positive value indicates the candidate

model outperformed the static-trajectory AC model.

We see that the best performing model overall is the spread, volume model with a

learning rate of 0.5. This model is able to achieve an average improvement in median

IS of 149 bps across each of the trading start times. The best performing SSV model

is one with a learning rate of 0.7, achieving an average improvement in IS of 36 bps.

It is interesting that the spread, volume model offers superior performance to the SSV

model, however we note that for this interaction scale (5-minute calendar intervals), the

general SSVs shown in Figure 6.11 were used as the public state attribute. This does

not take into account the specific velocity of activity for the stock considered (AGL).

We conjecture that event-time temporal states, as discussed in Section 6.10 would yield

superior results and should be considered in future research. This preliminary study still,

however, demonstrates that the SSV can be used as a suitable public state attribute to

learn an effective policy for optimal trade execution.

Chapter 8. Using detected states and resilient actions to enhance the trade execution
algorithm 138

Model Trading Time (H) Avg
Public attribute Learning rate 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
Spread,Volume 0.1 0.0012 -0.0008 0.0004 0.0006 0.0123 0.0001 0.0231 -0.0001 0.0055
Spread,Volume 0.2 0.0012 -0.0007 0.0004 0.0006 -0.0008 0.0280 0.0529 0.0228 0.0131
Spread,Volume 0.3 0.0012 -0.0007 0.0004 0.0006 -0.0008 0.0189 0.0536 0.0169 0.0113
Spread,Volume 0.4 0.0012 -0.0006 0.0004 0.0006 0.0241 0.0268 0.0536 0.0120 0.0147
Spread,Volume 0.5 0.0012 -0.0007 0.0004 0.0006 0.0230 0.0268 0.0508 0.0175 0.0149
Spread,Volume 0.6 0.0011 -0.0007 0.0280 0.0005 0.0104 0.0000 0.0415 0.0176 0.0123
Spread,Volume 0.7 0.0011 -0.0006 0.0281 0.0006 -0.0008 0.0000 0.0172 0.0176 0.0079
Spread,Volume 0.8 0.0012 -0.0007 0.0004 0.0005 -0.0008 0.0294 0.0544 0.0081 0.0116
Spread,Volume 0.9 0.0275 -0.0006 0.0004 0.0005 -0.0008 0.0284 0.0206 0.0186 0.0118
Spread,Volume 1.0 0.0120 0.0084 0.0161 0.0005 0.0252 0.0269 0.0286 -0.0002 0.0147
Spread,Volume var 0.0012 -0.0008 0.0004 0.0006 0.0272 0.0001 0.0076 0.0174 0.0067
SSV 0.1 -0.1267 -0.0270 -0.1339 -0.1338 -0.0144 -0.0130 -0.0044 -0.2286 -0.0827
SSV 0.2 -0.0164 -0.0270 0.0006 0.0009 -0.0074 0.0000 -0.0006 -0.0001 -0.0063
SSV 0.3 0.0011 -0.0008 0.0007 -0.0029 -0.0010 -0.0001 0.0284 -0.0001 0.0032
SSV 0.4 0.0011 -0.0007 0.0007 -0.0029 -0.0009 -0.0001 0.0284 -0.0001 0.0032
SSV 0.5 -0.0013 -0.0008 0.0007 -0.0029 -0.0009 0.0000 0.0284 -0.0001 0.0029
SSV 0.6 0.0013 -0.0008 0.0008 0.0004 -0.0009 0.0000 0.0281 -0.0001 0.0036
SSV 0.7 0.0013 -0.0009 0.0008 0.0004 -0.0008 0.0001 0.0282 -0.0002 0.0036
SSV 0.8 0.0012 -0.0009 0.0007 0.0004 -0.0008 0.0001 0.0282 -0.0002 0.0036
SSV 0.9 0.0013 -0.0008 0.0008 0.0004 -0.0008 0.0001 -0.0008 -0.0002 0.0000
SSV 1.0 0.0012 -0.0007 0.0008 0.0006 -0.0007 0.0001 -0.0008 -0.0002 0.0000
SSV var 0.0227 -0.0358 0.0004 -0.0069 -0.0136 0.0000 0.0295 -0.0002 -0.0005

Table 8.2: Difference (RL - AC) in median implementation shortfall for various learn-
ing rates. The best spread, volume model is highlighted in green and the best SSV

model is highlighted in red.

Figure 8.1: Difference (RL - AC) in median implementation shortfall for various
learning rates. The best spread, volume model is highlighted by the thick green line

and the best SSV model is highlighted by the thick red line.

Chapter 8. Using detected states and resilient actions to enhance the trade execution
algorithm 139

8.8 Some remarks

In this chapter, we demonstrated how the Q-learning algorithm for optimal trade exe-

cution discussed in Chapter 5 can be modified to incorporate the scale-specific public

state attribute for temporal system evolution discussed in Chapter 6. Although more

extensive studies are required to verify this technique, the preliminary results suggest

that using SSVs as the public attribute in the state space can yield effective optimal

execution policies, although for the 5-minute calendar time scale considered, the model

with stock-specific spread and quote volume state attributes still offer superior perfor-

mance. We conjecture that event-time temporal states which take into account the

velocity of activity for the stock considered, as discussed in Section 6.10, would yield su-

perior results and should be considered in future research. We also note the evolution of

the public state attribute is treated as exogenous to the trader’s activity, which appears

to be a reasonable assumption based on the resiliency study in Chapter 7. In the next

chapter, we introduce a technique which relaxes this assumption, where the enumeration

of the agent’s state space is directly related to what it sees after it’s interactions.

Chapter 9

Towards unsupervised, online

state discovery, detection and

learning in high-frequency

financial markets

9.1 Overview

This chapter introduces a scheme for online, unsupervised state discovery, detection

and learning in high frequency markets, removing the need for human specification

and pre-processing of state attributes, allowing the learning agent to find persistent

structure in a streaming market data feed, enumerate its state space and learn to act

optimally. It further builds on the premise of the financial market as a complex adaptive

system, using this to inform state space discovery and allow adaptation as new niches

arise. Chapter 6 provided a scheme for unsupervised, offline estimation of scale-specific

temporal states, using the associated SSVs as a public state attribute for state detection.

This, however, assumes exogenous evolution of the LOB state space, unaffected by agent

interactions. While this may be reasonable at the calendar time scales considered, as the

agent interacts at higher frequency time scales, this assumption may be invalidated. The

scheme presented in this chapter allows the enumeration of the perceived state space to

incorporate the effects of the agent’s interactions, via the market data feed it receives,

which is more conducive to the event-time trading paradigm.

140

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 141

The contribution is captured in the following paper:

D. Hendricks. Using real-time cluster configurations of streaming asynchronous features

as online state descriptors in financial markets. Working paper (submitted to Pattern

Recognition Letters, under review), 2016. [122]

9.2 Representation learning for tractable inference in high-

dimensional state spaces

Machine learning has become ubiquitous in high-frequency financial markets, as tech-

nological advances enable low-latency automated algorithms to replace functions tradi-

tionally performed by human traders, portfolio managers, risk managers and regulators.

This is particularly true for trading algorithms, where reinforcement learning algorithms

have recently been considered as dynamic alternatives to traditional stochastic control

techniques (such as those found in [13, 35, 51, 89, 91]) for mapping optimal trajecto-

ries through the system. Nevmyvaka et al. were among the first authors to consider

a reinforcement learning agent for optimal limit order placement for a liquidation pro-

gram [191, 192]. They used a discrete-state, discrete-action Q-learning agent which

converged to a policy for the optimal price at which to place the remaining inventory,

based on the time remaining in the liquidation program, remaining inventory to trade

and domain-informed public state attributes, such as prevailing spreads, price levels and

volumes. In Chapter 5 considered a similar problem, demonstrating that a reinforce-

ment learning agent can be used to adapt a static liquidation trajectory with respect

to prevailing spread and volume dynamics, executing a sequence of optimised market

orders [124]. Both studies demonstrate a significant positive improvement on cost of

trading compared to state-of-the-art techniques, motivating reinforcement learning as a

suitable framework for online learning agents in financial markets. We do, however, use

a subjective set of attributes for state representation in the learning algorithm. While

the choice is informed by domain knowledge and may be suitable at the operating scale

of a human trader, we conjecture that a more objective representation may yield better

trading policies for agents operating at machine scale.

It is well known that the performance of certain classes of machine learning algorithms

is strongly dependent on the choice of data representation, or features, upon which they

are applied ([34, 127, 162]). This is likely due to certain forms of representation masking

exploitable characteristics explaining variations in the data, or at least burying them in

layers which cannot be detected by the learning algorithm. As such, significant effort

can be spent on data pre-processing, using domain knowledge to inform appropriate rep-

resentations for effective machine learning. While such human intervention can be useful

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 142

to guide learning agents in new domains, it does restrict the agent’s discoverable policies

to those which mimic policies acceptable to an intuitive human agent in the domain.

Bengio et al. state that an artificial intelligence should fundamentally understand the

world around us, and thus be able to identify and disentangle explanatory features from

low-level sensory data without human intervention [34]. In this way, a machine learning

agent can provide more general, and sometimes complementary optimal policies to those

expected by human agents, thereby cultivating its own distinct machine intelligence.

This goal has been recognised by the machine learning community, with a recent surge

in scientific activity concerning unsupervised feature learning (or deep learning), seeking

the discovery of useful representations which result in more meaningful classifiers and

predictors in various domains (see [45, 57, 63, 106, 128, 153] for some state-of-the-art

examples). At a recent NIPS workshop, Mnih et al. presented the first deep learning

model to successfully learn control policies from high dimensional sensory data using re-

inforcement learning [185]. The agent was able to learn to play several Atari2600 games,

using a convolutional neural network (CNN) trained using a Q-learning algorithm, with

only raw pixels as the input. While this is a somewhat different domain to the opti-

mal trade execution problem, it does present certain analogues consistent with our goal:

using low-level sensory data (pixels here, vs streaming tick data for our problem), the

CNN is able to abstract useful representations from the raw data and train a Q-learning

agent to achieve some goal. While it would seem appropriate to apply this technique to

our problem, the computational burden of the CNN may be too onerous for our goal of

an online near-real-time algorithm. Even recent work on state-of-the-art, computation-

ally efficient, GPU-optimised CNNs yield computation times of the order of minutes for

relatively modest problems [56].

We are thus tasked with developing a form of state representation which can be con-

structed directly from raw asynchronous tick data, is able to capture salient features of

the limit order book, is computationally efficient for near-real-time use (of the order of

seconds) and can be successfully combined with Q-learning for optimal trading policies.

In the following sections, we describe our approach which is able to construct a rich state

representation in < 2 seconds, using relatively modest hardware, enabling near-real-time

state detection for online learning.

9.3 Cluster configurations as temporal state descriptors

In the previous studies considering state representations for high-frequency financial

markets (and in Chapter 5 here), the following pre-processed attributes were used as

candidate descriptors: bid/ask spread, quote volumes, quote volume imbalance, trade

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 143

price levels and traded volumes [124, 191, 192]. These were informed by common notions

and intuition from human traders. Given the objective of minimising trading cost with

respect to an arrival price benchmark, and the constraint of only executing market

orders, a rational trader will attempt to plan his execution trajectory such that he

crosses the spread infrequently and with minimal magnitude. Thus, spread and quote

volume were natural candidates for public state attributes if we wish our RL agent to

learn this behaviour. In particular, when spreads are tight (wide) and volumes are high

(low), we expect the RL agent to trade more (less) aggressively to minimise the trading

program’s overall implementation shortfall.

While informed by domain knowledge and consistent with the data-preprocessing para-

digm described by Bengio et al. [34], these choices are somewhat subjective and are only

capable of a partial representation of the true state space. Indeed, even the enumeration

of all possible spread and volume configurations at the finest resolution is unlikely to be

able to capture evolution and persistency characteristics of the financial system at this

scale. While we can increase the complexity of the state space representation by increas-

ing the number of attributes, the curse of dimensionality soon prevents computational

tractability for an online algorithm, at least in the Q-learning setting we consider. In

Chapter 6, we introduced a scheme which efficiently summarised persistent information

in a multi-featured market data feed into a scale-specific market state attribute describ-

ing temporal dynamics. This was added as a public attribute to the agent’s state space,

and its efficacy investigated in Chapter 8.

We now propose an alternative notion to characterise the state at each decision point,

effectively reducing the set of public attributes to a single metric, while preserving

information from all measurable aspects of the system.

One can think of a particular realisation of state attributes as a cluster configuration of

observable features for a stock. Consider the case of the model used in Chapter 5 [124],

where spread and quote volume were used as public attributes. These are derived from

the following low-level features of the limit order book: Level-1 Bid Price, Level-1 Bid

Volume, Level-1 Ask Price, Level-1 Ask Volume. Figure 9.1 illustrates how a cluster

configuration of these low-level features has an analogous interpretation to the low/high

spread, low/high volume regimes described in Chapter 5.

In time period t1, we see Level-1 Ask Volume, Level-1 Bid Volume and Level-1 Bid Price

are all correlated and increasing, thus being ascribed to the same cluster. Level-1 Ask

Price is decreasing and is ascribed to another cluster. In particular, we notice that

Level-1 Bid Price is increasing and Level-1 Ask Price is decreasing, which is consistent

with a narrowing spread regime. Since we are considering market orders for a BUY

trading program, we note that the narrow spread is accompanied by a larger Level-1

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 144

Figure 9.1: Illustrating how identified feature configurations may have an analogous
interpretation, in terms of human-specified pre-processed features.

Ask Volume, which presents favourable conditions for an increase in trading activity.

Thus the low spread, high quote volume regime considered in the SSRQ model has an

analogous feature cluster configuration interpretation.

As a further example, consider the cluster configuration in time period t2. Here, Level-1

Ask Price is increasing, while Level-1 Bid Price and Level-1 Ask Volume are both de-

creasing, resulting in a high spread, low quote volume regime, consistent with a decrease

in trading activity.

This simple illustration demonstrates that the cluster configurations of low-level sensory

features in high-frequency financial markets may have an analogous interpretation to the

trader-intuition-derived regimes usually specified. Furthermore, by allowing the cluster-

ing algorithm to be exposed to streaming data from all measurable features, unique and

persistent cluster configurations may yield meaningful state representations for machine

learning classifiers and predictors, beyond those which may have been expected and

proposed by human traders. In addition, an appropriate cluster configuration similarity

metric can be used to identify temporal states which are characterised by the same fea-

ture cluster configurations. If certain configurations persist throughout the trading day,

we then have a reduced number of states for which to solve our optimal trading policy.

Thus, we will investigate using cluster configurations to describe temporal regimes in

a reinforcement learning framework, utilising a high-speed cluster detection algorithm

appropriate for online learning.

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 145

9.4 Correlation estimation from streaming asynchronous

data

A key input in the clustering algorithm used in this analysis is an object correlation

matrix.

Classical estimators for co-volatility, and hence correlation, typically rely on evenly-

spaced, synchronous observations for computation. In the case of high-frequency data

in financial markets, the asynchronous arrival of the price time series would require the

use of pre-processing or interpolation techniques before classical techniques can be ap-

plied, potentially introducing bias into the results (see [110] for a survey of candidate

estimators). Malliavin and Mancino introduced a non-parametric co-volatility estima-

tor based on Fourier series analysis, principally relying on the integration of a time

series, rather than its differentiation [170, 171]. Their method removes the need for any

artificially-imposed synchronicity, providing a measure of co-volatility which exploits

more information in the data, unaffected by data arrival time and sampling frequency.

Using the assumption that asset prices are continuous semi-martingales, Malliavin and

Mancino prove a general identity which relates the Fourier transform of the co-volatility

function with the Fourier transform of the log price returns [170, 171]. We refer the

reader to their papers for the full exposition and proofs. For our purposes, we have

made use of their integrated co-volatility estimator, defined in Equation 9.1.

Σ̂12
n,N :=

1

2N + 1

∑
|s|<N

n1−1∑
i=0

n2−1∑
j=0

e(is(t1i−t2j))δI1i
(p1)δJ2

j
(p2). (9.1)

where N is the number of Fourier coefficients, nk is the number of price changes for

asset k in the integrated window, tki is the time of each price change for asset k, δIki
(pk)

is the consecutive change in log-price of asset k between time tki and tki+1. To compute

the required pairwise correlation, we compute the volatility for each asset, as well as the

co-volatility for both, then use the simple relation in Equation 9.2.

ρ12 =
(Σ̂12

n,N)2

Σ̂11
n,N × Σ̂22

n,N

. (9.2)

We note that the use of this estimator for stock co-volatility estimation in the context

of the Johannesburg Stock Exchange was first investigated by Malherbe [169]. We will

apply this technique for finding feature correlations, i.e. considering features as assets

in the exposition above. For the implementation, we used a combination of vectorisa-

tion and graphics processing unit (GPU) programming techniques to achieve efficient

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 146

computation via parallelisation in MATLAB. Computation of complex exponential co-

efficients and multiplication with log price differences were performed on the GPU, after

which the results in the gpuArrays were passed back to the CPU for final computation

of co-volatility and correlation. Details of the implementation can be found in Wilcox

et al. [247].

9.5 High-speed feature clustering

In Chapter 6, a master-slave parallel genetic algorithm (PGA) with a bespoke log-

likelihood fitness function was used to identify emergent stock clusters, based on corre-

lated price evolutions [125]. We provide an efficient computational solution for a tech-

nique initially proposed by Blatt et al. [38, 39] and Giada and Marsili [103, 104], where

the super-paramagnetic ordering of a q-state Potts model is used for cluster identifica-

tion. In a market Potts model, each stock can take on one of q possible states, and each

state can be represented by a cluster of similar stocks. Cluster membership is indicative

of some commonality among the cluster members. Each stock has a component of its

dynamics as a function of the state it is in and a component of its dynamics influenced

by stock specific noise. In addition, there may be global couplings that influence all the

stocks, i.e. the external field that represents a market mode.

We refer the reader to Chapter 6 for a comprehensive discussion of the technique and

derivation of the pertinent log-likelihood fitness function [103, 125, 126]. In particular,

from Section 6.4, we note that for a candidate cluster configuration of N objects, S =

{s1, ..., sN}, the log-likelihood of S explaining the structure inherent in the data is given

by

Lc(S) =
1

2

∑
s:ns>1

(
log

ns
cs

+ (ns − 1) log
n2
s − ns
n2
s − cs

)
, (9.3)

where

ns =

N∑
i=1

δsi,s (9.4)

is the number of objects in the sth cluster and

cs =
N∑
i=1

N∑
j=1

Ci,jδsi,sδsj ,s (9.5)

is the intra-cluster correlation. In Equation 9.5,

Ci,j =
x̄ix̄j√
‖x̄i2‖‖x̄j2‖

(9.6)

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 147

is the Pearson correlation between the ith and jth objects, representing the short-range

distance-dependent ferromagnetic interaction term in the Potts analogy.

In Chapter 6 show that the likelihood function specified in Equation 9.3 can be used

as an objective function in a high-speed, scalable parallel genetic algorithm (PGA),

where candidate cluster configurations are evaluated and successively improved until

a configuration best explains the inherent structure suggested by a correlation matrix

[125]. We will utilise this computational solution, since it provides the near-realtime

efficiency required for our proposed online algorithm.

It is important to note that this approach, applied to stock features as objects, is con-

sistent with our view of financial markets as complex adaptive systems. Essentially, if

we return to the spin glass model analogy described in Chapter 1, we are finding a spin

glass configuration (feature clustering) which permits a metastable system state given

the spin-interaction term (feature correlations).

9.6 Cluster configuration similarity and state discrimina-

tion

In Sections 9.4 and 9.5, we demonstrated a scheme to determine the feature cluster

configuration from raw asynchronous data streaming from a market data feed, over

an integrated window. Given this choice of state representation, what remains is to

provide a feasible scheme to discriminate between states, such that the state space can

be enumerated online.

This is a special case of a more general problem: measuring the distance between over-

lapping cluster configurations of a fixed set of objects. Consider two candidate cluster

configurations of a fixed set of n objects, C1 = {s1, s2, ..., sn} and C2 = {s′1, s′2, ..., s′n},
where sk and s′k are the cluster indices to which the kth object belongs in each con-

figuration. We would like to define a distance metric d(C1, C2) which quantifies the

configuration differences, while preserving the properties of symmetry, identity of indis-

cernables, non-negativity and sub-additivity.

Goldberg et al. considered this problem and proposed three candidate measures to

quantify cluster configuration differences [108]. We chose to implement a variant on their

best match metric, which effectively counts the number of moves required to convert one

configuration to the other. The measure is defined as,

d(C1, C2) =
n

n2 − 1

n∑
i=1

min
j
d(si, s

′
j), (9.7)

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 148

where d(s, s′) = 1− |s∩s
′|

|s∪s′| and n
n2−1

is a normalisation constant, such that the maximum

distance between two configurations is 1 (single cluster vs all singletons). For example,

consider the following two candidate cluster configurations:

C1 = {1, 2, 3, 3, 4, 4, 4, 5}

C2 = {1, 2, 2, 2, 3, 3, 4, 5}.

Then, when considering cluster index 2, d(s2, s
′
2) = 1− |s2∩s

′
2|

|s2∪s′2|
= 1− 1

3 = 0.67. Table 9.1

illustrates the full calculation of the distance between configurations C1 and C2.

Cluster index k |sk ∩ s′k| |sk ∪ s′k| d(sk, s
′
k)

1 1 1 0.00
2 1 3 0.67
3 0 4 1.00
4 1 3 0.67
5 1 1 0.00

d(C1, C2) 2.34
4.8 = 0.49

Table 9.1: Demonstration of best match metric for calculating distance between two
overlapping cluster configurations

Given a quantified distance between cluster configurations, we need to specify some

distance threshold which encodes the idea that the configurations are sufficiently similar

to be categorised as the same state. The specification of this distance threshold is

somewhat ad-hoc and a source for subjective input, however coupled with a learning

objective, we can iterate through multiple candidate thresholds to determine one which

optimises the objective. In the use-case demonstrated in Section 9.9, we consider a

simple Q-learning algorithm which aims to maximise wealth by deciding when to buy/sell

shares. Starting with a given cash amount and stock inventory, we provide the learning

agent with a fixed set of actions (buy/sell volumes) which it can perform in each period,

based on the prevailing state. Each candidate distance threshold will provide the agent

with a different lens to discriminate states, hence the state-action policy and terminal

wealth of the agent will be impacted. We will choose a threshold which maximises

terminal wealth.

The best match metric is easy to compute, intuitive and efficient, however the alternative

metrics proposed by Goldberg et al. [108] should be explored in further research, to

assess the impact on state discrimination.

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 149

9.7 Reinforcement learning with online state discovery

In Chapter 3, we discussed the RL technique for finding a calibrated policy in a controlled

Markovian system with unknown dynamics, mapping system states to optimal or near-

optimal decisions, given some objective. Learning can be model-free ([243]) or model-

based ([229]), however the key principle is that feedbacks from interactions with the

system can be used to provide insight for optimal planning decisions. In Chapters 5

and 8, we focused on model-free Q-learning, and we refer the reader to [147] for a

comprehensive review of RL techniques.

We will consider using the state space enumeration technique described in Sections 9.3

to 9.6 for an RL agent, enabling online planning decisions to be made with an adaptive

state space.

The learning algorithm we propose here can be seen as a particular implementation of

the Dyna-Q architecture proposed by [229, 230], whereby feedbacks from the system are

simultaneously used to improve the model of the system dynamics (state transitions), as

well as the state-action policy for the learning objective. Both the feedbacks (or rewards)

and expected state transitions are used to enumerate a so-called Q-matrix online, which

contains the (current) discounted expected reward for each state-action pair, assuming

the optimal policy is followed after the current time-step [243]. At the tth step in the

learning algorithm, the agent:

We recall that in the tth episode, the agent:

• observes its current state St ∈ S,

• selects and performs an action At ∈ A,

• observes the subsequent state St+1 as a result of performing action At,

• receives an immediate reward rt and

• uses a learning factor αt, which decreases gradually over time.

Q is updated as follows:

Qt+1(St, At) = Qt(St, At) + αt[rt + γmax
b
Qt(St+1, b)−Qt(St, At)], (9.8)

where γ is the discount rate controlling the importance of future rewards. In our prior

specification, the state space S and permissible actions A were fixed a priori. We now

consider the case where the action set A remains fixed, but the state space S is dynamic,

viz. discovered online as the agent interacts with the system. Each time a new state

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 150

is discovered using the proposition in Section 9.6, the state space is increased. For the

update rule in Equation 9.8, the next state is determined using the prevailing empirical

transition probability matrix, as

St+1 = arg max
Sj

Pr(St, Sj) for Sj ∈ S.

For the purposes of the investigation in Section 9.9, we assume that the agent’s actions do

not affect the system state evolution. This is an artefact of interacting with a historical

data feed, where the consequences of an agent’s actions cannot easily be incorporated.

The overall proposition is, however, designed for a live trading agent submitting actual

market orders, thus a live trading agent will affect the data feed it receives (absorbing

limit orders through trades, affecting the LOB features), and thus the state space it

perceives. We expect the efficacy demonstrated in Section 9.9 to translate to live trading.

9.8 Problem description and Algorithm

9.8.1 Wealth maximisation: Long-only

To test the efficacy of the framework proposed in this chapter, we construct a wealth

maximising trading agent operating in high-frequency financial markets, able to buy

and sell quantities of one given stock. The agent begins with a specified level of cash

and stock inventory. At each trading opportunity (we assume regular 5-minute periods,

however this can be generalised), the agent is able to buy certain quantities of the stock

using available cash, or sell certain quantities of stock based on the level of inventory.

We assume the agent is subject to a long-only constraint, i.e. the agent is not able

to short-sell inventory, and is not allowed to use leverage. The reward is calculated as

the portfolio PnL following the chosen action, i.e. the difference between the current

portfolio value (inventory marked-to-market at current mid-price + cash) and the initial

portfolio value. The price associated with all buy actions is the prevailing best ask price,

and for all sell actions the prevailing best bid price. This ensures that spread is included

as a transaction cost when trading. The agent uses the asynchronous tick-level data

observed over the preceeding 5-minute window to compute feature correlations and the

associated cluster configuration, as described in Sections 9.4 and 9.5, before determining

the state, using the proposition in Section 9.6, and updating the Q-matrix.

Table 9.2 shows the parameters which were used in the results which follow.

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 151

Stock AGL

Features Trade Price/Volume, L1 Ask/Bid Price/Volume

Initial Cash R100 000

Initial Inventory 800 shares

Buy Actions (proportion of Cash) {0, 0.1, 0.2, ..., 0.9, 1.0}
Sell Actions (proportion of Inventory) {0.1, 0.2, 0.3, ..., 0.9, 1.0}
State discrimination threshold 0.05

Probability of random action 0.05

Start time 09:05

End time 16:30

Estimation period / Trading frequency 5 minutes

Initialisation period 5 periods

Table 9.2: Parameters used for testing long-only wealth maximisation algorithm.

9.8.2 Algorithm

Algorithm 4 describes the general implementation of the learning algorithm with online

state discovery. We begin by initialising an empty Q-matrix, as no states have been

discovered. After the first estimation period has passed (in this case 5 minutes), the

raw feature data in the estimation period window is used to compute feature correla-

tions, and then the feature cluster configuration. We then compute the distance between

the current feature configuration and the previously-identified configurations associated

with prevailing states in the state space. If the distance between the current configu-

ration and a previously-identified configuration is less than the specified threshold, we

ascribe the associated state index to the current configuration. If the distance to all

previously-identified configurations is larger than the threshold, a new state is created.

The prevailing transition probability matrix is updated with the new state. We then use

the ε-greedy algorithm to choose an action based on the prevailing Q-matrix, recording

the reward as the difference between the marked-to-market portfolio value and initial

portfolio value. The transition probability matrix is then used to identify the next ex-

pected state, and the Q-value associated with the current state-action pair is updated

using Equation 9.8.

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 152

Algorithm 4 Unsupervised state detection and learning

Initialise Q-matrix
while Trading program not complete do

Extract feature time-series (raw, asynchronous events) for integrated window
Compute feature correlations using Fourier estimator
Compute feature cluster configuration C using PGA
Compare C with previously identified configurations Ci ∈ state space
Update state space
if state space = ∅ then

Generate new state
else if distance(C,Ci) ≤ threshold for any Ci ∈ state space then

Assign state index of Ci to C
else

Generate new state
end if
Update state transition probability matrix
Update empirical prob of 1-step transition given all identified states
if initialisation period complete then

Choose current optimal buy/sell action using Q-matrix
Record reward R as difference between current MTM portfolio value
and initial portfolio value

end if
Update Q-matrix
Determine next state using current transition prob matrix
Update Q-value associated with state-action pair, given recorded reward, next state
and prevailing Q-value

end while

9.9 Data and Results

9.9.1 Data

The data for this study constituted tick-level trades and top-of-book quotes for one

candidate stock on the Johannesburg Stock Exchange (JSE) from 1 October 2012 to 30

November 2012. This data was sourced from the Thomson Reuters Tick History (TRTH)

database. The raw data was stored in a MongoDB noSQL database, with appropriate

indexes created for efficient retrieval and manipulation. The particular fields of interest

for our study are: Trade Price, Trade Volume, Level-1 Bid Price, Level-1 Bid Volume,

Level-1 Ask Price, Level-1 Ask Volume. Each of these features are represented by an

unevenly-spaced time series in the dataset based on event occurrence. The stored,

asynchronous event data is a close approximation to a stream of asynchronous events

arriving from a live market data feed. We will apply our learning algorithm to this data

in its most raw form, to avoid any subjective bias which may be introduced by data

pre-processing techniques.

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 153

9.9.2 Results

Table 9.3 shows the summarised results from our analysis. We ran the algorithm for each

day in our data set (01 October 2012 to 30 November 2012), constructing a distribution

of end-of-day (16:30) PnL, expressed as a percentage of initial portfolio value. A positive

percentage thus indicates that the algorithm decisions created value over the trading day.

To test the efficacy of our algorithm, we compared its performance to a random agent.

The random agent chooses actions randomly at each decision point, i.e. makes no use of

the learnt Q-matrix. This will allow us to test whether our algorithm is at least better

than choosing actions at random. The table shows the minimum, lower quartile (LQ),

mean, median, upper quartile (UQ), maximum and standard deviation of the end-of-day

PnL distributions for both agents.

AGL PnL (as % of initial portfolio value)

Model Min LQ Mean Median UQ Max Std Dev

LO Wealth Maximiser -2.16 -0.38 0.12 0.18 0.53 2.77 0.98
Random -2.62 -1.10 -0.61 -0.48 -0.24 1.30 0.87

Difference 0.45 0.72 0.73 0.66 0.77 1.47 0.12

Table 9.3: Summarised results from algorithm testing. The LO Wealth Maximiser
agent is compared to a Random agent, where actions are chosen randomly at each
trading opportunity. The algorithm begins at 09:05 and ends at 16:30 each trading
day. These results summarise the distribution of end-of-day (16:30) PnL recorded for

each day in the investigation period (01 Oct 2012 to 30 Nov 2012).

Based on the results in Table 9.3, we see that the LO wealth maximiser agent gener-

ates a significantly better mean and median end-of-day PnL compared to the random

agent, over this investigation period. In fact, the entire distribution for the LO wealth

maximiser is more positively skewed, indicating that, in general, the agent generated

a modest, but positive daily PnL. This is significant, as after only 5 periods of initial-

isation to refine the transition probability matrix, with no prior training, the agent is

able to learn a useful policy fast enough to generate a positive PnL by the end of the

trading day. While many more tests need to be run, varying the parameters in Table

9.2 and considering longer (and varied) investigation periods, these results indicate that

the approach suggested in this chapter may be an effective framework for deploying

purposeful trading agents which are able to identify exploitable structure in streaming

market data feeds, and learn policies fast enough.

Figures 9.2 to 9.6 illustrate a typical run of the online algorithm, at various stages in

the trading day, showing the identified states (top-left), prevailing transition probability

matrix (top-right), portfolio PnL, stock mid-price, best bid and best ask levels (bottom-

left) and current Q-matrix values (bottom-right). For the transition probability matrix

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 154

and Q-matrix values, green indicates higher positive values (darker is higher), red/o-

range indicates lower values (darker is lower) and grey indicates an uninitialised state

transition/state-action pair. In the current PnL plot, green dots indicate buy decisions

and red dots indicate sell decisions, with the size of the dot being proportional to the

quantity.

10−Oct 09:05
1

2

3

Identified temporal states of AGLJ.J from 2012−10−10 09:05 to 2012−10−10 16:59
Estimation period = 5min, Resampling period = min, Threshold = 0.05

S
ta

te

Time

Current transition probability matrix

S
ta

te
s

(t
)

States (t+1)
1 2 3

1

2

3

Current Qmatrix

S
ta

te
s

Actions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2

3

1 2 3 4 5 6 7
0

1000

2000
Current PnL (Action: BUY 0 shares) (Inventory: 839 Cash: 90084.25 Portfolio Return: 0.53%)

P
nL

Time
1 2 3 4 5 6 7

252

254

256

S
to

ck
 M

id
P

ric
e

Figure 9.2: Status at 09:35. Demonstration of long-only wealth maximisation al-
gorithm, starting with R100 000 cash and 800 AGL shares. The top-left plot shows
the identified states since the start of the trading program (09:05), where blocks in
the same row indicate the same state. The top-right plot illustrates the current em-
pirical 1-step transition probability matrix, based on identified states. The bottom-left
plot shows the stock mid-price, best ask and best bid in green (right Y-axis) and the
running portfolio PnL in blue (left Y-axis). The portfolio PnL is determined by the
difference between the current portfolio value (inventory marked-to-market at current
mid-price + cash) and the initial portfolio value. Green dots indicate buy actions and
red dots indicate sell actions, where the size of the dot is proportional to the quantity
bought/sold. The bottom-right plot shows the current Q-matrix values, illustrating the

expected cumulative discounted reward for each state-action pair.

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 155

10−Oct 09:05
1

2

3

Identified temporal states of AGLJ.J from 2012−10−10 09:05 to 2012−10−10 16:59
Estimation period = 5min, Resampling period = min, Threshold = 0.05

S
ta

te

Time

Current transition probability matrix

S
ta

te
s

(t
)

States (t+1)
1 2 3

1

2

3

Current Qmatrix

S
ta

te
s

Actions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2

3

1 2 3 4 5 6 7 8 9
0

1000

2000
Current PnL (Action: BUY 35 shares) (Inventory: 874 Cash: 81180.6 Portfolio Return: 0.42%)

P
nL

Time
1 2 3 4 5 6 7 8 9

252

254

256

S
to

ck
 M

id
P

ric
e

Figure 9.3: Status at 09:45. Demonstration of long-only wealth maximisation al-
gorithm, starting with R100 000 cash and 800 AGL shares. The top-left plot shows
the identified states since the start of the trading program (09:05), where blocks in
the same row indicate the same state. The top-right plot illustrates the current em-
pirical 1-step transition probability matrix, based on identified states. The bottom-left
plot shows the stock mid-price, best ask and best bid in green (right Y-axis) and the
running portfolio PnL in blue (left Y-axis). The portfolio PnL is determined by the
difference between the current portfolio value (inventory marked-to-market at current
mid-price + cash) and the initial portfolio value. Green dots indicate buy actions and
red dots indicate sell actions, where the size of the dot is proportional to the quantity
bought/sold. The bottom-right plot shows the current Q-matrix values, illustrating the

expected cumulative discounted reward for each state-action pair.

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 156

10−Oct 09:05 10−Oct 09:49
1

2

3

Identified temporal states of AGLJ.J from 2012−10−10 09:05 to 2012−10−10 16:59
Estimation period = 5min, Resampling period = min, Threshold = 0.05

S
ta

te

Time

Current transition probability matrix

S
ta

te
s

(t
)

States (t+1)
1 2 3

1

2

3

Current Qmatrix

S
ta

te
s

Actions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2

3

0 2 4 6 8 10 12 14 16 18
0

2000

4000
Current PnL (Action: BUY 15 shares) (Inventory: 1052 Cash: 35666.11 Portfolio Return: 0.96%)

P
nL

Time
0 2 4 6 8 10 12 14 16 18

250

255

260

S
to

ck
 M

id
P

ric
e

Figure 9.4: Status at 10:30. Demonstration of long-only wealth maximisation al-
gorithm, starting with R100 000 cash and 800 AGL shares. The top-left plot shows
the identified states since the start of the trading program (09:05), where blocks in
the same row indicate the same state. The top-right plot illustrates the current em-
pirical 1-step transition probability matrix, based on identified states. The bottom-left
plot shows the stock mid-price, best ask and best bid in green (right Y-axis) and the
running portfolio PnL in blue (left Y-axis). The portfolio PnL is determined by the
difference between the current portfolio value (inventory marked-to-market at current
mid-price + cash) and the initial portfolio value. Green dots indicate buy actions and
red dots indicate sell actions, where the size of the dot is proportional to the quantity
bought/sold. The bottom-right plot shows the current Q-matrix values, illustrating the

expected cumulative discounted reward for each state-action pair.

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 157

10−Oct 09:0510−Oct 09:4910−Oct 10:3410−Oct 11:1910−Oct 12:0410−Oct 12:49
1

2

3

4

5

6

7

Identified temporal states of AGLJ.J from 2012−10−10 09:05 to 2012−10−10 16:59
Estimation period = 5min, Resampling period = min, Threshold = 0.05

S
ta

te

Time

Current transition probability matrix

S
ta

te
s

(t
)

States (t+1)
1 2 3 4 5 6 7

1

2

3

4

5

6

7

Current Qmatrix

S
ta

te
s

Actions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2

3

4

5

6

7

0 10 20 30 40 50
0

2000

4000
Current PnL (Action: BUY 0 shares) (Inventory: 1072 Cash: 30662.85 Portfolio Return: 1.3%)

P
nL

Time
0 10 20 30 40 50

250

255

260

S
to

ck
 M

id
P

ric
e

Figure 9.5: Status at 12:45. Demonstration of long-only wealth maximisation al-
gorithm, starting with R100 000 cash and 800 AGL shares. The top-left plot shows
the identified states since the start of the trading program (09:05), where blocks in
the same row indicate the same state. The top-right plot illustrates the current em-
pirical 1-step transition probability matrix, based on identified states. The bottom-left
plot shows the stock mid-price, best ask and best bid in green (right Y-axis) and the
running portfolio PnL in blue (left Y-axis). The portfolio PnL is determined by the
difference between the current portfolio value (inventory marked-to-market at current
mid-price + cash) and the initial portfolio value. Green dots indicate buy actions and
red dots indicate sell actions, where the size of the dot is proportional to the quantity
bought/sold. The bottom-right plot shows the current Q-matrix values, illustrating the

expected cumulative discounted reward for each state-action pair.

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 158

10−Oct 09:0510−Oct 09:4910−Oct 10:3410−Oct 11:1910−Oct 12:0410−Oct 12:4910−Oct 13:34
1

2

3

4

5

6

7

Identified temporal states of AGLJ.J from 2012−10−10 09:05 to 2012−10−10 16:59
Estimation period = 5min, Resampling period = min, Threshold = 0.05

S
ta

te

Time

Current transition probability matrix

S
ta

te
s

(t
)

States (t+1)
1 2 3 4 5 6 7

1

2

3

4

5

6

7

Current Qmatrix

S
ta

te
s

Actions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2

3

4

5

6

7

0 10 20 30 40 50 60
0

2000

4000
Current PnL (Action: SELL 46 shares) (Inventory: 418 Cash: 198123.87 Portfolio Return: 1%)

P
nL

Time
0 10 20 30 40 50 60

250

255

260

S
to

ck
 M

id
P

ric
e

Figure 9.6: Status at 13:30. Demonstration of long-only wealth maximisation al-
gorithm, starting with R100 000 cash and 800 AGL shares. The top-left plot shows
the identified states since the start of the trading program (09:05), where blocks in
the same row indicate the same state. The top-right plot illustrates the current em-
pirical 1-step transition probability matrix, based on identified states. The bottom-left
plot shows the stock mid-price, best ask and best bid in green (right Y-axis) and the
running portfolio PnL in blue (left Y-axis). The portfolio PnL is determined by the
difference between the current portfolio value (inventory marked-to-market at current
mid-price + cash) and the initial portfolio value. Green dots indicate buy actions and
red dots indicate sell actions, where the size of the dot is proportional to the quantity
bought/sold. The bottom-right plot shows the current Q-matrix values, illustrating the

expected cumulative discounted reward for each state-action pair.

Chapter 9. Towards unsupervised, online state discovery, detection and learning in
high-frequency financial markets 159

9.10 Some remarks

In this chapter, we demonstrated a scheme for online, unsupervised state discovery,

detection and learning in high frequency markets, which is consistent with the complex

adaptive system paradigm. By treating stock features as objects and applying the

Potts model clustering approach introduced in Chapter 6, we are essentially finding a

spin glass configuration (feature clustering) which permits a metastable system state

given the spin-interaction term (feature correlations). Combined with a candidate state

discrimination technique, this allows us to enumerate the state space online, permitting

a purposeful agent to learn useful policies in an unknown domain without knowledge of

human-preprocessed features and states.

The framework in this chapter is conceptual and there are many areas for refinement,

however we demonstrated that even with a simple choice of cluster distance metric and

only top-of-book LOB features, a wealth-maximising agent can systematically outper-

form a random agent over the investigation period considered. In particular, after only

5 periods of initialisation to refine the transition probability matrix, with no prior train-

ing, the agent is able to learn a useful policy fast enough to generate a positive PnL by

the end of the trading day. This is a promising result for the technique and bodes well

for further research.

We note that we have assumed that the agent’s actions do not affect the system state

evolution. This is an artefact of interacting with a historical data feed, where the

consequences of an agent’s actions cannot easily be incorporated. The overall proposition

is, however, designed for a live trading agent submitting actual market orders, thus a

live trading agent will affect the data feed it receives (absorbing limit orders through

trades, affecting the LOB features), and thus the state space it perceives. We expect

the efficacy of the algorithm to translate to live trading.

Prudent further investigations would include using alternative streaming features from

the LOB (such as market depth), testing the stability of the algorithm over longer

and more varied investigation periods, using event-time estimation windows / decision

frequencies and alternative actions and reward functions.

Chapter 10

Conclusion

In this thesis, we aimed to provide a feasible scheme for automated trading agents to

navigate high-frequency financial markets, when viewed as a complex adaptive system.

As more functions traditionally performed by human agents in financial markets become

replaced by machines, it is critical to appreciate the lens of machine agents for observing

system dynamics, combining this with a robust paradigm for scale-specific governing

dynamics to ensure persistent structure can be identified and exploited.

In Chapter 1, we introduced the key ideas which contextualise the contribution of this

thesis. We first motivated the view of the financial market as a complex adaptive system,

where agents with varying system visibility collectively and simultaneously create and

perceive their environment, acting in service of some goal. The existence of multiple

levels of competing, purposeful agents in financial markets, each operating at a different

scale with different effective models governing their behaviour allows for the emergence

of complex behaviour when viewed in aggregate. In Section 1.2, we motivate the use of

spin glass models as a tractable formalism to capture the complex nature of objects in

the financial system. Recent technological advances, accelerated by a highly competitive

industry, have allowed for the efficient generation, storage and retrieval of financial data

at high-resolution time scales, providing a rich record of the price formation process as a

laboratory for intensive study. This dense, multi-featured, asynchronous data set allows

us to study the microstructure of price formation and interrogate system properties,

however it introduces computational challenges for efficient calibration.

Chapter 2 discusses the field of market microstructure and highlights key features of

our system of interest: the limit order book. In particular, we were interested in under-

standing the rules governing the submission of different order types to the system, the

effect of trade events on observed features and any permissible trade-offs relevant for

the optimal trade execution problem. This chapter outlines the optimal trade execution

160

Chapter 10. Conclusion 161

problem with arrival price objective, which serves as the primary problem considered in

this thesis. The concepts of price impact and resiliency are discussed as primary con-

siderations for controlling the agent’s interactions with the system, to minimise material

impact on LOB dynamics.

Chapter 3 introduces a candidate paradigm for learning optimal state-action policy

mappings in this system under Markovian dynamics, viz. reinforcement learning. RL

promotes a mechanism for online learning of optimal trajectories through a system with

unknown dynamics, using feedbacks from interactions with the system for learning. In

particular, we consider discrete-action, discrete-state Q-learning, which offers guaranteed

convergence to the globally optimal policy under certain conditions. We aimed to use the

principle of reinforcement learning, i.e. learning from experience, to assess whether it can

be used to learn a useful policy fast enough when interacting with a complex adaptive

system at varying scales. As discussed in Section 3.8, the learning rate becomes a crucial

parameter and was given special consideration in Chapter 8.

Chapter 4 describes the nature of the raw data used for our investigations, viz. high-

frequency trade and quote tick data with 10 levels of market depth, at microsecond

resolution. Each event in the dataset has its exact arrival time and date, creating a

dense set of asynchronously-arriving events. We uploaded the raw data into a Mon-

goDB noSQL database, which provided efficient storage, retrieval, query indexing and

aggregation features for handling large data sets. A bespoke API was written to ensure

seamless integration into MATLAB, which was our primary scientific computing envi-

ronment. This chapter also uses the exploratory data analysis paradigm of John Tukey

to provide a preliminary visualisation of different aspects of the raw data, highlighting

key features which inform the modelling decisions which followed.

Chapter 5 introduces a Q-learning algorithm for optimal trade execution, using pre-

processed features to enumerate a discrete state space at a specified resolution, with

market order volume as the chosen control. The learning algorithm is used to adapt a

static liquidation trajectory with respect to prevailing order book features, in order to

improve the post-trade implementation shortfall with respect to the program’s arrival

price. We show that reinforcement learning can be used successfully to modify a given

volume trajectory based on market attributes, executed via a sequence of market orders

based on the prevailing limit order book. Using a sample of stocks and trade sizes in the

South African equity market, we were able to reliably improve post-trade implementation

shortfall by up to 10.3% on average for short trade horizons, demonstrating promising

potential applications of this technique.

Chapter 6 considers developing a public state attribute for the state space of the learn-

ing agent which is appropriate for the scale of interaction, consistent with the complex

Chapter 10. Conclusion 162

system paradigm, not reliant on arbitrary resolution specification for discretisation, and

unaffected by the curse of dimensionality. We propose a novel approach for the unsu-

pervised detection of intraday temporal market states at varying time scales, as well

as a mechanism for significant state selection and online state detection. By assigning

spins to periods as objects and treating period correlations as a short-range interaction

term, a q-state Potts model is used to find the configuration of temporal periods which

coincides with the system ground state, where spin alignment suggests object homogene-

ity. Regions of aligned spins are thus treated as clusters or states. We also introduce a

high-speed parallel genetic algorithm for finding the best approximation of this structure

in a highly efficient and scalable manner, suiting overnight or intraday calibration, or

even the online application discussed in Chapter 9. A study of temporal cluster con-

figurations and power-law fits to 60-minute, 30-minute, 15-minute and 5-minute time

scales revealed scale-specific system behaviour, motivating the need for scale-specific

state space reduction for optimal planning of participating trading agents. The pro-

posed scheme for online state detection suggested the use of SSVs to capture the market

activity signature of each identified state, with a simple distance metric of the prevailing

FV to determine the state index. We showed that the online state detection scheme

can be used to enumerate and update 1-step transition probability matrices, which can

be used for optimal planning in the high-frequency trading domain. We considered the

stability of the algorithm ex-post and found that we could reliably determine 30-minute,

15-minute and 5-minute states using the proposed algorithm, whereas 60-minute states

were less stable. A preliminary study of event-time clusters reveals its feasibility as an

extension of this work, to construct state representations through the lens of the stock

considered, providing a temporal state evolution appropriate for the trading scale of the

agent.

Chapter 7 introduces a scheme to assess the impact of agent interactions on the system.

A multivariate Hawkes process is used to measure the resiliency of the limit order book

with respect to liquidity-demand events of varying size. By studying the branching ratios

associated with key quote replenishment intensities following trades, we can ensure that

the limit order book is expected to be resilient with respect to the maximum permissible

trade executed by the agent. We find that, for the particular stock and time period

considered, a heuristic choice of twice the mean trade volume as an upper bound on

trade size should provide a reasonable guarantee of resiliency.

Chapter 8 demonstrates how the Q-learning algorithm for optimal trade execution dis-

cussed in Chapter 5 can be modified to incorporate the scale-specific public state at-

tribute for temporal system evolution discussed in Chapter 6. We also incorporate the

trade size ceiling discussed in Chapter 7. The preliminary results suggest that using SSVs

as the public attribute in the state space can yield effective optimal execution policies,

Chapter 10. Conclusion 163

although for the 5-minute calendar time scale considered, the model with stock-specific

spread and quote volume state attributes still offer superior performance. We conjecture

that event-time temporal states which take into account the velocity of activity for the

stock considered, as discussed in Section 6.10, would yield superior results and should

be considered in future research.

Chapter 9 introduces a scheme for online, unsupervised state discovery, detection and

learning in high frequency markets, removing the need for human specification and pre-

processing of state attributes, allowing the learning agent to find persistent structure in a

streaming market data feed, enumerate its state space and learn to act optimally. While

it differs somewhat from the approach considered in the rest of this thesis, it further

builds on the premise of the financial market as a complex adaptive system, using this

to inform state space discovery and allow adaptation as new niches arise. By treating

stock features as objects and applying the Potts model clustering approach introduced

in Chapter 6, we are essentially finding a spin glass configuration (feature clustering)

which permits a metastable system state given the spin-interaction term (feature corre-

lations). Combined with a candidate state discrimination technique, this allows us to

enumerate the state space online, permitting a purposeful agent to learn useful policies

in an unknown domain without knowledge of human-preprocessed features and states.

We demonstrated that even with a simple choice of cluster distance metric and only

top-of-book LOB features, a wealth-maximising agent can systematically outperform a

random agent over the investigation period considered. In particular, after only 5 peri-

ods of initialisation to refine the transition probability matrix, with no prior training,

the agent is able to learn a useful policy fast enough to generate a positive PnL by the

end of the trading day. This is a promising result for the technique and bodes well for

further research. We note that we have assumed that the agent’s actions do not affect

the system state evolution. This is an artefact of interacting with a historical data feed,

where the consequences of an agent’s actions cannot easily be incorporated. The overall

proposition is, however, designed for a live trading agent submitting actual market or-

ders, thus a live trading agent will affect the data feed it receives (absorbing limit orders

through trades, affecting the LOB features), and thus the state space it perceives. We

expect the efficacy of the algorithm to translate to live trading.

This thesis thus contributes two approaches for enumerating the state space of a learn-

ing agent in financial markets. The first is an offline, scale-specific study of temporal

periods to reveal system states, from which SSVs are extracted which enable online

state detection. This assumes the temporal evolution of the system is exogenous to the

trader, which is reasonable for trade actions up to a certain size, as demonstrated by

the LOB resiliency study. The second approach is to enumerate the state space on-

line, at the scale at which the agent interacts with the system. By construction, the

Chapter 10. Conclusion 164

effects of the live trading agent on LOB dynamics are thus incorporated into the market

data feed, and hence the perceived state evolution. We conjecture that this approach is

general enough for any purposeful agent to learn a useful policy from a multi-featured,

asynchronously-arriving data feed fast enough at the scale of interaction, however this

needs to be verified. Further studies should focus on the event-time extension of these

approaches, where stock features (such as traded volume) govern the velocity of ticks in

the observed system. This is where the true confluence of the contributions of this thesis

lies for developing practical trading algorithms in high-frequency markets: a rigorous

understanding of emergent phenomenology at the event scale in market microstructure

(Chapters 4 and 7), constructing a state space at the scale (calendar or event) of par-

ticipation (Chapters 6 and 9), providing a visibility for the trading agent which permits

learning a useful adaptive execution policy fast enough (Chapters 5, 8 and 9).

More broadly, this provides a framework for a dynamic learning algorithm, capable of

determining exploitable structure in a system with high throughput of streaming events,

learning an optimal policy online for any objective (defined through the reward function)

and adapting as market regimes shift. The preliminary positive efficacy of the algorithm

proposed in Chapter 9 demonstrates the advantage of using a nuanced perspective on

a domain’s governing dynamics to develop a bespoke learning algorithm, rather than

applying domain-agnostic tools in financial markets.

One may ask how “quantitative considerations of decision-making under uncertainty”

[105] relate to trading in high-frequency financial markets? In particular, one may en-

quire as to how uncertainty and behavioural factors of participating agents may affect

decision making? The paradigm promoted here is that of hierarchical causality [246].

While non-standard behaviour of agents in the financial system certainly contributes to

the observed complexity, the focus of this thesis is derived from a complexity economics

view, where agents with varying and adaptive objectives interact with the system and

affect the states they perceive. This constitutes a broader perspective than an under-

lying assumption of rational agent behaviour, or any violations thereof, since purpose

is the only requirement of agents under this paradigm [246]. A potential consequence

of purposeful adaptive agents with different objectives may be the emergence of causal

hierarchies that link various scales and structures of real markets via complex feedbacks.

High-frequency trading is then one rather small component of such a hierarchy of causal-

ity, but one that has the benefit of large amounts of data that can be interrogated in

order to probe the behaviour of a purposeful agent in such an adaptive system.

Appendix A

Derivation of the maximum

likelihood function for

explanatory power of cluster

configuration

A.1 The Noh-Giada-Marsili coupling parameters

According to Noh [193], the generative model of the price associated with the ith stock

can be written as

Xi(t) = gsiηsi +
√

1− g2
siεi, (A.1)

where the cluster-related influences are driven by ηsi and the stock-specific influences

by εi. Both innovations are treated as Gaussian random variables with unit variance

and zero mean1. The relative contribution is controlled by the intra-cluster coupling

parameter gsi . The Noh-Giada-Marsili model encodes the idea that stocks, say i and j,

which have something in common belong in the same cluster, i.e. si = sj . This comes

1This form of the price model ensures that the self correlation of a stock is one and independent of
the cluster coupling. This can be seen by computing the self correlation E[x2i] and using that clusters
and stock unique process are unit variance zero mean processes

E[(gsiηsi +
√

1− g2siεi)
2] = g2si + (1− g2si) = 1. (A.2)

This is not a unique choice, another possible choice often used is

E[(

√
gsi√

1 + gsi
ηsi +

1√
1 + gsi

εi)
2] =

1 + gsi
1 + gsi

= 1. (A.3)

165

Appendix A. Derivation of the maximum likelihood function for explanatory power of
cluster configuration 166

with the caveat that stock membership in clusters is mutually exclusive and intra-cluster

correlations are positive.

From Equation A.1 we compute the covariance for the ith and jth stocks

E[Xi(t)Xj(t)] = g2
siE[ηsiηsj] + (1− g2

si)E[εiεj]. (A.4)

Using the assumption of unit variance and zero mean for both the shared component

(ηsi) and stock component (εi) processes, the correlation between stock i and j is given

by

Cij = g2
siδsisj + (1− g2

si)δij . (A.5)

The following cluster relations can be derived, where ns is the number of stocks in the

sth cluster and cs is the internal correlation of the sth cluster, given that clusters are

mutually exclusive

ns =

N∑
i=1

δsis, cs =

N∑
i,j=1

Cijδsisδsjs. (A.6)

From Equation A.5, for si = sj = s, we have Cij ≈ g2
s ([103]). We can multiply both

sides of Equation A.5 by δsisδsjs and sum over all i and j to find

∑
i,j

Cijδsisδsjs =
∑
i,j

g2
siδsisjδsisδsjs +

∑
i,j

(1− g2
si)δijδsisδsjs. (A.7)

To sum out the delta functions over the clusters and stocks from

∑
i,j

Cijδsisδsjs =
∑
i

(
g2
siδsis

∑
j

δsisjδsjs
)

+
∑
i

(
(1− g2

si)δsis
∑
j

δijδsjs
)
,

we use that
∑

j δijδsis = δsis,
∑

j δsisjδsjs = nsδsis and
∑

i δ
2
sis =

∑
i δsis to find

∑
i,j

Cijδsisδsjs = g2
sns

∑
i

δsis + (1− g2
s)
∑
i

δsis. (A.8)

By combining Equations A.6 and A.8, we get

cs = g2
sn

2
s + (1− g2

s)ns = g2
s(n

2
s − ns) + ns. (A.9)

This is can be rearranged to finally obtain an expression for the intra-cluster coupling

parameter for cluster s,

gs =

√
cs − ns
n2
s − ns

. (A.10)

Appendix A. Derivation of the maximum likelihood function for explanatory power of
cluster configuration 167

A.2 The Noh-Giada-Marsili likelihood function

We evaluate the probability P of the data satisfying the model by using the multiplicative

property of probabilities,

P (X1(1), . . . , XN (D)) =
D∏
d=1

N∏
i=1

P (Xi(d)). (A.11)

The probability of being in a given state that satisfies the model is given as a delta

function, such that we sum over all N stocks and all D features (date-times), taking

expectations 〈. . .〉η,ε over the random processes associated with the stock-specific noise

and the cluster-specific noise

P =

D∏
d=1

〈
N∏
i=1

δ
(
Xi(d)− (gsiηsi +

√
1− g2

siεi)
)〉

η,ε

. (A.12)

This takes on the form

P =

D∏
d=1

N∏
i=1

∫
dεidηsi exp

[
−1

2

N∑
k

εkδkiεi−
1

2

N∑
p,q

ηspηsqδspsiδsqsi

]
(A.13)

×δ
(
Xi(d)− gsiηsi −

√
1− g2

siεi

)
. (A.14)

This is simplified to the following form, where the product over i stocks is converted to

products of the clusters s and the ns stocks in each cluster

P =
S∏
s=1

D∏
d=1

∫
dηse

− 1
2
η2s (A.15)

×
ns∏
i∈s

∫
dεi exp

[
−1

2
ε2i

]
δ
(
Xi(d)− gsηs −

√
1− g2

sεi

)
. (A.16)

The Gaussian integral over the delta function is evaluated relative to the εi’s, using that∏∫
f(x)δ(ax− x0) =

∏ 1
|a|f(x0/a) over the ns delta functions,

P =
S∏
s=1

D∏
d=1

∫
dηs

(1− g2
s)

ns
2

e−
1
2
η2s

ns∏
i∈s

exp

[
−1

2

(gsηs −Xi)
2

1− g2
s

]
. (A.17)

Expanding out the integrand and using
∏
i e
A
i = e

∑
i Ai ,

P =

S∏
s=1

D∏
d=1

∫
dηs

(1− g2
s)

ns
2

exp

[
−1

2
η2
s−

1

2

ns∑
i∈s

(g2
sη

2
s − 2gsηsXi +X2

i)

1− g2
s

]
. (A.18)

Appendix A. Derivation of the maximum likelihood function for explanatory power of
cluster configuration 168

Expanding out the sum terms and evaluating where possible

P =

S∏
s=1

D∏
d=1

∫
dηs

(1− g2
s)

ns
2

exp

[
−1

2
η2
s−

1

2

nsg
2
sη

2
s

1− g2
s

gsηs
1− g2

s

ns∑
i∈s

Xi −
1

2

1

1− g2
s

ns∑
i∈s

X2
i

]
.

This can be further simplified to

P =
S∏
s=1

D∏
d=1

∫
dηs

(1− g2
s)

ns
2

exp

[
−1

2

1− g2
s + nsg

2
s

1− g2
s

η2
s

gsηs
1− g2

s

ns∑
i∈s

Xi −
1

2

1

1− g2
s

ns∑
i∈s

X2
i

]
.

We now evaluate the Gaussian integral using that
∫
e−x

2
dx =

√
π/2 and hence that∫

e−ax
2+bxdx = π

2ae
b2

4a

P =
S∏
s=1

D∏
d=1

√
π

(1− g2
s)

ns
2

(1− g2
s)

1
2

(nsg2
s + (1− g2

s))
1
2

× exp

[
g2
s

2(nsg2
s + (1− g2

s))(1− g2
s)

(

ns∑
i∈s

Xi)
2

]

× exp

[
−1

2

1

1− g2
s

ns∑
i∈s

X2
i

]
.

Evaluating the product of all D times, where D >> 1,

P =
S∏
s=1

[√
π

(1− g2
s)

ns
2

(1− g2
s)

1
2

(nsg2
s + (1− g2

s))
1
2

]D
(A.19)

× exp

[
g2
s

2(nsg2
s + (1− g2

s))(1− g2
s)

(
D∑
d

ns∑
i∈s

Xi)
2

]
(A.20)

× exp

[
−1

2

1

1− g2
s

D∑
d

ns∑
i∈s

X2
i

]
. (A.21)

Using that Cij = 1
D

∑
dXiXj ,

D∑
d

(
∑
i∈s

Xi)
2 =

N∑
i,j=1

(

D∑
d

XiXj)δsisδsj ,s = Dcs, (A.22)

and that the variance of the process in the sth cluster can be computed from the trace2

∑
i∈s

D∑
d

X2
i = DCii =

ns∑
i∈s

DCii = Dns. (A.24)

2The trace of the correlation matrix for each cluster s can be verified from the eigenvalues

N∑
i

Cii =
∑
s

λs = (ns − 1)(1− g2s) + nsg
2
s + (1− g2s) = ns. (A.23)

Appendix A. Derivation of the maximum likelihood function for explanatory power of
cluster configuration 169

Substituting Equation A.22 and A.24 into Equation A.21,

P =
S∏
s=1

[√
π

(1− g2
s)

ns
2

(1− g2
s)

1
2

(nsg2
s + (1− g2

s))
1
2

]D
exp

[
−D

2

ns
1− g2

s

+
D

2

cs
1− g2

s

g2
s

nsg2
s + (1− g2

s)

]

We can rewrite this as

P =
S∏
s=1

π
D
2 (nsg

2
s + (1− g2

s))
−D
2

(1− g2
s)

D
2

(ns−1)
(A.25)

× exp

[
−D

2

1

1− g2
s

(
ns −

csg
2
s

nsg2
s + (1− g2

s)

)]
(A.26)

Then using that P ∝ e−DHc , we can find Hc ∝ ln(P) from Equation A.26, and using

that ln
∏
iAi =

∑
i ln(Ai) to find the log-likelihood function [Need to use D >> 1 and

look at expansion (gs − g∗s)]

ln(P) = −D
2

S∑
s=1

[
ln(nsg

2
s + (1− g2

s)) (A.27)

+ (ns − 1) ln(1− g2
s)
]

(A.28)

+
D

2

S∑
s=1

[ln(π)] (A.29)

− D

2

S∑
s=1

1

1− g2
s

[
ns −

csg
2
s

nsg2
s + (1− g2

s)

]
. (A.30)

Using Equation A.10, we can substitute for gs in A.10 to find the log-likelihood entirely

in terms of ns and cs, using that (1− g2
s) = n2

s−cs
n2
s−ns

and cs
ns

= nsg
2
s + (1− g2

s):

Hc =
1

2

∑
s:ns>0

[
log

cs
ns

+ (ns − 1) log
n2
s − cs

n2
s − ns

]
+

1

2

∑
s:ns>0

[ln(π) + ns] . (A.31)

The last term is a constant, given that
∑

s:ns>0 ns = N where N is the number of

objects. This is fixed for a given system. Hence the likelihood function required is

Hc =
1

2

∑
s:ns>0

[
log

cs
ns

+ (ns − 1) log
n2
s − cs

n2
s − ns

]
(A.32)

up to a constant 1
2(S ln(π) +N).

Bibliography

[1] Advanced Clustering Technologies: HPC cluster blog - GTX vs TESLA. http://

www.headachefreehpc.com/company-blog/hpc-cluster-blog-gtx-vs-tesla.

html. Accessed: 2014-09-25.

[2] Thomson Reuters Tick History API. https://customers.reuters.com/

developer/Kits/TRTH/trth.aspx. Accessed: 2016-03-01.

[3] F. Abergel and A. Jedidi. Long time behaviour of a Hawkes process-based limit

order book. Working paper, 2015. URL http://ssrn.com/abstract=2575498.

[4] F. Abergel, M. Anane, A. Chakraborti, A. Jedidi, and I.M. Toke. Limit order

books. Working paper, 2015. URL http://fiquant.mas.ecp.fr/wp-content/

uploads/2015/10/Limit-Order-Book-modelling.pdf.

[5] A. Adi, D. Botzer, G. Nechushtai, and G. Sharon. Complex event processing

for financial services. Proceedings from the IEEE Services Computing Workshops,

pages 7–12, 2006.

[6] A. Admati and P. Pfleiderer. A theory of intraday patterns: volume and price

variability. Review of Financial Studies, 1(1):3–40, 1988.

[7] A.R. Admati and P. Pfleiderer. Sunshine trading and financial market equilibrium.

Review of Financial Studies, 4(3):443–481, 1991.

[8] A. Alfonsi and A. Schied. Optimal trade execution and absence of price manip-

ulations in limit order book models. SIAM J. Financial Math., 1(1):490–522,

2010.

[9] A. Alfonsi, A. Fruth, and A. Schied. Constrained portfolio liquidation in a limit

order book model. Banach Center Publ, 83:9–25, 2008.

[10] A. Alfonsi, A. Fruth, and A. Schied. Optimal execution strategies in limit order

books with general shape functions. Quantitative Finance, 10(2):143–157, 2010.

[11] A. Alfonsi, A. Schied, and A. Slynko. Order book resilience, price manipulation,

and the positive portfolio problem. SIAM J. Financial Math., 3(1):511–533, 2012.

170

http://www.headachefreehpc.com/company-blog/hpc-cluster-blog-gtx-vs-tesla.html
http://www.headachefreehpc.com/company-blog/hpc-cluster-blog-gtx-vs-tesla.html
http://www.headachefreehpc.com/company-blog/hpc-cluster-blog-gtx-vs-tesla.html
https://customers.reuters.com/developer/Kits/TRTH/trth.aspx
https://customers.reuters.com/developer/Kits/TRTH/trth.aspx
http://ssrn.com/abstract=2575498
http://fiquant.mas.ecp.fr/wp-content/uploads/2015/10/Limit-Order-Book-modelling.pdf
http://fiquant.mas.ecp.fr/wp-content/uploads/2015/10/Limit-Order-Book-modelling.pdf

Bibliography 171

[12] R. Almgren. Optimal execution with non-linear impact functions and trading-

enhanced risk. Applied Mathematical Finance, 10:1–18, 2003.

[13] R. Almgren and N. Chriss. Optimal execution of portfolio transactions. Journal

of Risk, 3:5–39, 2000.

[14] P.W. Anderson, K. Arrow, and D. Pines. The economy as an evolving complex

system (Santa-Fe Institute Series. Westview Press, Boulder, Colorado, 1988.

[15] C. Arnsperger and Y. Varoufakis. What is neoclassical economics? the three

axioms responsible for its theoretical oeuvre, practical irrelevance and, thus, dis-

cursive power. Panoeconomicus, 53(1):5–18, 2006.

[16] W.B. Arthur. Complexity in economic and financial markets. Complexity, 1(1):

20–25, 1995.

[17] W.B. Arthur. Complexity and the economy. Oxford University Press, Oxford, UK,

2014.

[18] W.B. Arthur, J.H. Holland, B. LeBaron, R. Palmer, and P. Taylor. Asset pricing

under endogenous expectations in an artificial stock market. The Economy as an

Evolving Complex System, 2:15–44, 1997.

[19] E. Bacry and J.F. Muzy. Hawkes model for price and trades high-frequency dy-

namics. Quantitative Finance, 14(7):1147–1166, 2014.

[20] E. Bacry and J.F. Muzy. Hawkes model for price and trades high-frequency dy-

namics. Quantitative Finance, 14(7):1147–1166, 2014.

[21] E. Bacry and J.F. Muzy. Second order statistics characterization of Hawkes

processes and non-parametric estimation. Working paper, 2015. URL http:

//arxiv.org/pdf/1401.0903v2.pdf.

[22] E. Bacry, K. Dayri, and J.F. Muzy. Non-parametric kernel estimation for symmet-

ric Hawkes processes: Application to high frequency financial data. The European

Physical Journal B, 85(157), 2012.

[23] E. Bacry, T. Jaisson, and J.F. Muzy. Estimation of slowly decreasing Hawkes

kernels: Application to high frequency order book modelling. Working paper,

2014. URL http://arxiv.org/pdf/1412.7096.pdf.

[24] E. Bacry, I. Mastromatteo, and J. Muzy. Hawkes processes in finance. Market

Microstructure and Liquidity, 2015.

http://arxiv.org/pdf/1401.0903v2.pdf
http://arxiv.org/pdf/1401.0903v2.pdf
http://arxiv.org/pdf/1412.7096.pdf

Bibliography 172

[25] J. Baker. Reducing bias and inefficiency in the selection algorithm. Proceedings of

the Second International Conference on Genetic Algorithms and their Application,

pages 14–21, 1987.

[26] F. Baldovin, F. Camana, M. Caporin, M. Caraglio, and A.L. Stella. Ensemble

properties of high-frequency data and intraday trading rules. Quantitative Finance,

15(2):231–245, 2015.

[27] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source software for

exploring and manipulating networks. Proceedings from the International AAAI

Conference on Weblogs and Social Media, 2009.

[28] H. Bauke. Parameter estimation for power-law distributions by maximum likeli-

hood methods. The European Physical Journal B, 58(2):167–173, 2007.

[29] R. Bellman. The theory of dynamic programming. Bulletin of the American

Mathematical Society, 1954.

[30] R. Bellman. A Markovian Decision Process. Indiana University Mathematics

Journal, 6(4):679–684, 1957.

[31] R. Bellman. Dynamic programming. Princeton University Press, Princeton, New

Jersey, 1957.

[32] R. Bellman. Adaptive control processes: A guided tour. Princeton University Press,

Princeton, New Jersey, 1961.

[33] R. Bellman and S. Dreyfus. Applied dynamic programming. Princeton University

Press, Princeton, New Jersey, 1962.

[34] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and

new perspectives. Working paper, 2014. URL http://arxiv.org/pdf/1206.

5538v3.pdf.

[35] D. Bertsimas and A. Lo. Optimal control of execution costs. Journal of Financial

Markets, 1(1):1–50, 1998.

[36] B. Biais, P. Hillion, and C. Spatt. An empirical analysis of the limit order book

and the order flow in the Paris Bourse. Journal of Finance, 50:1655–1689, 1995.

[37] B. Biais, C. Glosten, and C. Spatt. Market microstructure: A survey of microfoun-

dations, empirical results, and policy implications. Journal of Financial Markets,

8(2):217–264, 2005.

[38] M. Blatt, S. Wiseman, and E. Domany. Superparamagnetic clustering of data.

Phys. Rev. Lett., 76(18):3251–3254, 1996.

http://arxiv.org/pdf/1206.5538v3.pdf
http://arxiv.org/pdf/1206.5538v3.pdf

Bibliography 173

[39] M. Blatt, S. Wiseman, and E. Domany. Data clustering using a model granular

magnet. Neural Computation, 9:1805–1842, 1997.

[40] R. Bloomfield and M. O’Hara. Market transparency: Who wins and who loses?

Review of Financial Studies, 12(1):5–35, 1999.

[41] R. Bloomfield and M. O’Hara. Can transparent markets survive? Journal of

Financial Economics, 55(3):425–459, 2000.

[42] J.P. Bouchaud. Price impact. Working paper, 2009. URL http://arxiv.org/

pdf/0903.2428.pdf.

[43] J.P. Bouchaud, Y. Gefen, M. Potters, and M. Wyart. Fluctuations and response

in financial markets: The subtle nature of ‘random’ price changes. Quantitative

Finance, 4(2):176–190, 2004.

[44] J.P. Bouchaud, J.D. Farmer, and F. Lillo. How markets slowly digest changes in

supply and demand, in Handbook of Financial Markets: Dynamics and Evolution.

Elsevier, North-Holland, 2009.

[45] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal depen-

dencies in high-dimensional sequences: Application to polyphonic music genera-

tion and transcription. Proceedings from the International Conference on Machine

Learning (ICML), 2012.

[46] C. Bowsher. Modelling security market events in continuous time: Intensity-

based, multivariate point process models. Journal of Econometrics, 141(2):876–

912, 2005.

[47] W.A. Brock. Pathways to randomness in the economy: Emergent nonlinearity and

chaos in economics and finance. Estudios Economicos, 8:3–55, 1993.

[48] W.A. Brock and A. Kleidon. Periodic market closure and trading volume: A

model of intraday bids and asks. Journal of Economic Dynamics and Control, 16

(3):451–489, 1992.

[49] A. Brodtkorb, T. Hagen, and M. Saetra. Graphics processing unit (GPU) program-

ming strategies and trends in GPU computing. Journal of Parallel and Distributed

Computing, 73:4–13, 2012.

[50] A. Cartea, R.F. Donnelly, and S. Jaimungal. Enhancing trading strategies with

order book signals. Working paper, 2015. URL http://papers.ssrn.com/sol3/

papers.cfm?abstract_id=2668277.

http://arxiv.org/pdf/0903.2428.pdf
http://arxiv.org/pdf/0903.2428.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2668277
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2668277

Bibliography 174

[51] A. Cartea, S. Jaimungal, and J. Penalva. Algorithmic and high-frequency trading.

Cambridge University Press, Cambridge, UK, 2015.

[52] L. Chan and J. Lakonishok. The behavior of stock prices around institutional

trades. Journal of Finance, 50(4):1147–1174, 1995.

[53] C. Chiarella. The cobweb model: Its instability and the onset of chaos. Economic

Modelling, 5(4):377–384, 1988.

[54] K. Chodorow. MongoDB: The definitive guide. O’Reilly, Sebastopol, California,

2013.

[55] D. Cieslakiewicz. Unsupervised asset cluster analysis implemented with parallel

genetic algorithms on the Nvidia CUDA platform. Master’s thesis, University of

the Witwatersrand, 2014.

[56] D. Ciresan, U. Meier, J. Masci, L. Gambardella, and J. Schmidhuber. Flexible,

high performance convolutional neural networks for image classification. Proceed-

ings of the Twenty-Second International Joint Conference on Artificial Intelligence

(IJCAI), 2011.

[57] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for

image classification. Working paper, 2012. URL http://arxiv.org/abs/1202.

2745.

[58] A. Clauset, C.R. Shalizi, and M.E.J. Newman. Power-law distributions in empirical

data. SIAM Review, 51(4):661–703, 2009.

[59] D. Coley. An introduction to genetic algorithms for scientists and engineers. World

Scientific, 1999.

[60] D. Comer. The ubiquitous B-tree. Computing Surveys, 11(2):121–137, 1979.

[61] R. Cont and P. Tankov. Financial modelling with jump processes. Chapman &

Hall, CRC Financial Mathematics Series, 2004.

[62] M.M. Dacorogna, C.L. Gauvreau, U.A. Muller, R.B. Olsen, and O.V. Pictet.

Changing time scale for short-term forecasting in financial markets. Journal of

Forecasting, 15:203–227, 1996.

[63] G. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-trained deep

neural networks for large vocabulary speech recognition. IEEE Transactions on

Audio, Speech, and Language Processing, 20(1):33–42, 2012.

http://arxiv.org/abs/1202.2745
http://arxiv.org/abs/1202.2745

Bibliography 175

[64] J. Danielsson and R. Payne. Measuring and explaining liquidity on an electronic

limit order book - evidence from Reuters D2000-2. Risk Measurement and Sys-

tematic Risk: Proceedings of the Third Joint Central Bank Research Conference,

Bank for International Settlements, Basel, 2002.

[65] F. Darema. SPMD model: Past, present and future. Recent Advances in Parallel

Virtual Machine and Message Passing Interface: 8th European PVM/MPI Users’

Group Meeting, 2001.

[66] A. Dassios and H. Zhao. Exact simulation of Hawkes process with exponentially

decaying intensity. Electronic Communications in Probability, 18(62):1–13, 2013.

[67] P. Dayan and C. Watkins. Reinforcement learning. Encyclopedia of Cognitive

Science, 2001.

[68] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clus-

ters. Communications of the ACM, 51(1):107–113, 2008.

[69] H. Degryse, F. deJong, M. Ravenswaaij, and G. Wuyts. Aggressive orders and the

resiliency of a limit order market. Review of Finance, 9(2):201–242, 2005.

[70] H. Demsetz. The cost of transacting. Quarterly Journal of Economics, 82:33–53,

1968.

[71] E. Derman. The perception of time, risk and return during periods of speculation.

Quantitative Finance, 2:282–296, 2002.

[72] T. Dietterich. Hierarchical reinforcement learning with the MAXQ value function

decomposition. Abstraction, Reformulation and Approximation, pages 26–44, 2000.

[73] J. Digalakis and K. Margaritis. Parallel evolutionary algorithms on Message-

Parsing clusters. Proceedings from the Parallel Computing Conference, 2003.

[74] B. Du Preez. JSE market microstructure. Master’s thesis, University of the Wit-

watersrand, 2013.

[75] D. Easley and M. O’Hara. Price, trade size and information in securities markets.

Journal of Financial Economics, 19:69–90, 1987.

[76] D. Easley, M.M. López de Prado, and M. O’Hara. The volume clock: Insights into

the high-frequency paradigm (Digest summary). Journal of Portfolio Management,

39(1):19–29, 2012.

[77] S.F. Edwards and P.W. Anderson. Theory of spin glasses. J. Phys. F: Met. Phys,

5:965–974, 1975.

Bibliography 176

[78] F. Emmert-Streib and M. Dehmer. Influence of the time scale on the construction

of financial networks. PLoS ONE, 5(9), 2010.

[79] R.F. Engle and J.R. Russell. Autoregressive conditional duration: A new model

for irregularly spaced transaction data. Econometrica, 66:1127–1162, 1998.

[80] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement

learning. Journal of Machine Learning Research, 6:503–556, 2005.

[81] M. Fard and J. Pineau. MDPs with non-deterministic policies. Advances in Neural

Information Processing Systems, 21:1065–1073, 2009.

[82] J.D. Farmer and F. Lillo. On the origin of power-law tails in price fluctuations.

Quantitative Finance, 4(1):7–11, 2004.

[83] V. Filimonov and D. Sornette. Quantifying reflexivity in financial markets: Toward

a prediction of flash crashes. Physical Review E, 85(5):1065–1073, 2012.

[84] V. Filimonov and D. Sornette. Apparent criticality and calibration issues in the

Hawkes self-excited point process model: Application to high-frequency financial

data. Working paper, 2013. URL http://arxiv.org/abs/1308.6756.

[85] D.K. Foley. A statistical equilibrium theory of markets. Journal of Economic

Theory, 62(2):321–345, 1994.

[86] H. Föllmer. Random economies with many interacting agents. Journal of Mathe-

matical Economics, 1(1):51–62, 1974.

[87] H. Föllmer. Spatial risk measures and their local specification: The locally law-

invariant case. Statistics & Risk Modelling, 31(1):79–101, 2014.

[88] M. Forster and T. George. Anonymity in securities markets. Journal of Financial

Intermediation, 1.

[89] P.A. Forsyth. A Hamilton-Jacobi-Bellman approach to optimal trade execution.

Applied Numerical Mathematics, 61(2):241–265, 2011.

[90] B. Franke, J.F. Plante, R. Roscher, A. Lee, C. Smyth, A. Hatefi, F. Chen, E. Gil,

A. Schwing, A. Selvitella, M.M. Hoffman, R. Grosse, D. Hendricks, and N. Reid.

Statistical inference, learning and models in big data. International Statistical

Review (accepted, to appear), 2015. URL http://arxiv.org/abs/1509.02900.

[91] C. Frei and N. Westray. Optimal execution of a VWAP order: A stochastic control

approach. Mathematical Finance, 25(3):612–639, 2015.

http://arxiv.org/abs/1308.6756
http://arxiv.org/abs/1509.02900

Bibliography 177

[92] K. French and R. Roll. Stock return variances: The arrival of information and the

reaction of traders. Journal of Financial Economics, 17(1):5–26, 1986.

[93] T. Fruchterman and E. Reingold. Graph drawing by force-directed placement.

Software - practice and experience, 21(11):1129–1164, 1991.

[94] X. Gabaix, P. Gopikrishnan, V. Plerou, and H.E. Stanley. A theory of power-law

distributions in financial market fluctuations. Nature, 423(6937):267–270, 2003.

[95] T. Galla and J.D. Farmer. Complex dynamics in learning complicated games.

Proceedings of the National Academy of Sciences of the United States of America

(PNAS), 110(4):1232–1236, 2013.

[96] F. Garcia and S. Ndiaye. A learning rate analysis of reinforcement learning algo-

rithms in finite-horizon. In Proceedings of the 15th International Conference on

Machine Learning, 1998.

[97] M.B. Garman. Market microstructure. Journal of Financial Economics, 3:257–

275, 1976.

[98] J. Gatheral. No-dynamic-arbitrage and market impact. Quantitative Finance, 10

(7):749–759, 2010.

[99] J. Gatheral and A. Schied. Optimal trade execution under geometric Brownian

motion in the Almgren and Chriss framework. International Journal of Theoretical

and Applied Finance, 14(3):353–368, 2011.

[100] J. Gatheral and A. Schied. Dynamical models of market impact and algorithms

for order execution. Handbook on Systemic Risk, pages 579–599, 2013. URL

http://dx.doi.org/10.2139/ssrn.2034178.

[101] T. Gebbie, D. Wilcox, and B. Mbambiso. Spin, stochastic factor models, and a

GA. Southern African Finance Association Conference, 2010.

[102] R. Gençay, N. Gradojevic, F. Selçuk, and B. Whitcher. Asymmetry of information

flow between volatilities across time scales. Quantitative Finance, 10(8):895–915,

2010.

[103] L. Giada and M. Marsili. Data clustering and noise undressing of correlation

matrices. Phys. Rev. E, 63(1), 2001.

[104] L. Giada and M. Marsili. Algorithms of maximum likelihood data clustering with

applications. Physica A, 315(34):650–664, 2002.

[105] I. Gilboa. Theory of decision under uncertainty (Econometric Society Mono-

graphs). Cambridge University Press, Cambridge, UK, 2009.

http://dx.doi.org/10.2139/ssrn.2034178

Bibliography 178

[106] X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-scale senti-

ment classification: A deep learning approach. Proceedings from the International

Conference on Machine Learning (ICML), 2011.

[107] L.R. Glosten and P. Milgrom. Bid, ask and transaction prices in a specialist

market with heterogeneously informed agents. Journal of Financial Economics,

14:71–100, 1985.

[108] M.K. Goldberg, M. Hayvanovych, and M. Magdon-Ismail. Measuring similarity

between sets of overlapping clusters. Proceedings from the International Conference

on Social Computing (SocialCom), pages 303–308, 2010.

[109] M.D. Gould, M.A. Porter, S. Williams, M. McDonald, D.J. Fenn, and S.D. How-

ison. Limit order books. Working paper, 2013. URL http://arxiv.org/abs/

1012.0349.

[110] J.E. Griffin and R.C.A. Oomen. Covariance measurement in the presence of non-

synchronous trading and market microstructure noise. Journal of Econometrics,

160:58–68, 2011.

[111] J.E. Griffin, F. Nardari, and R. Stulz. Are daily cross-border equity flows pushed

or pulled? The Review of Economics and Statistics, 86(3):641–657, 2004.

[112] S. Hardiman and J.P. Bouchaud. Branching ratio approximation for the self-

exciting Hawkes process. Working paper, 2014. URL http://arxiv.org/abs/

1403.5227.

[113] S. Hardiman, N. Bercot, and J.P. Bouchaud. Critical reflexivity in financial mar-

kets: A Hawkes process analysis. The European Physica Journal B, 86(10):1–9,

2013.

[114] L. Harris. An transaction data study of weekly and intradaily patterns in stock

returns. Journal of Financial Economics, 16(1):99–117, 1986.

[115] M. Harvey, D. Hendricks, T. Gebbie, and D. Wilcox. Deviations in expected price

impact for small transaction volumes under fee restructuring. Working paper,

2016. URL http://arxiv.org/abs/1602.04950.

[116] J. Hasbrouck. Trades, quotes, inventories and information. Journal of Financial

Economics, 22:229–252, 1988.

[117] J. Hasbrouck. Measuring the information content of stock trades. Journal of

Finance, 46:179–207, 1991.

http://arxiv.org/abs/1012.0349
http://arxiv.org/abs/1012.0349
http://arxiv.org/abs/1403.5227
http://arxiv.org/abs/1403.5227
http://arxiv.org/abs/1602.04950

Bibliography 179

[118] J. Hasbrouck. Security bid-ask dynamics with discreteness and clustering: Simple

strategies for modeling and estimation. Journal of Financial Markets, 2:1–28,

1999.

[119] J. Hasbrouck. High-frequency quoting: Short-term volatility in bids and of-

fers. Working paper, 2015. URL http://papers.ssrn.com/sol3/papers.cfm?

abstract_id=2237499.

[120] A.G. Hawkes. Spectra of some self-exciting and mutually-exciting point processes.

Biometrika, 58(1):83–90, 1971.

[121] D. Hendricks. An online learning algorithm with scale-specific state space enu-

meration for optimal trade execution in high-frequency markets. Working paper,

2016.

[122] D. Hendricks. Using real-time cluster configurations of streaming asynchronous

features as online state descriptors in financial markets. Working paper, 2016.

URL http://arxiv.org/abs/1603.06805.

[123] D. Hendricks and M. Harvey. Reconciling order book resiliency and price impact.

Working paper, 2016.

[124] D. Hendricks and D. Wilcox. A reinforcement learning extension to the Almgren-

Chriss framework for optimal trade execution. Proceedings from IEEE Conference

on Computational Intelligence for Financial Economics and Engineering, 2014.

URL http://dx.doi.org/10.1109/CIFEr.2014.6924109.

[125] D. Hendricks, T. Gebbie, and D. Wilcox. High-speed detection of emergent mar-

ket clustering via an unsupervised parallel genetic algorithm. South African Jour-

nal of Science, 112(1/2), 2016. URL http://dx.doi.org/10.17159/sajs.2016/

20140340.

[126] D. Hendricks, T. Gebbie, and D. Wilcox. Detecting intraday financial market

states using temporal clustering. Quantitative Finance, 2016. URL http://dx.

doi.org/10.1080/14697688.2016.1171378.

[127] G. Hinton. Learning multiple layers of representation. Trends in Cognitive Sci-

ences, 11(10):428–434, 2007.

[128] G. Hinton, L. Deng, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,

P. Nguyen, T. Sainath, and B. Kingsbury. Deep neural networks for acoustic

modeling in speech recognition. IEEE Signal Processing Magazine, 29(6):82–97,

2012.

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2237499
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2237499
http://arxiv.org/abs/1603.06805
http://dx.doi.org/10.1109/CIFEr.2014.6924109
http://dx.doi.org/10.17159/sajs.2016/20140340
http://dx.doi.org/10.17159/sajs.2016/20140340
http://dx.doi.org/10.1080/14697688.2016.1171378
http://dx.doi.org/10.1080/14697688.2016.1171378

Bibliography 180

[129] D.C. Hoaglin, F. Mosteller, and J.W. Tukey. Understanding robust and exploratory

data analysis. Wiley series in probability and mathematical statistics: Applied

probability and statistics, 1983.

[130] J.H. Holland. Complex adaptive systems. Daedalus, 121(1):17–30, 1992.

[131] R. Holthausen, R. Leftwich, and D. Mayers. Large-block transactions, the speed of

response and temporary and permanent stock-price effects. Journal of Financial

Economics, 26(1):71–95, 1990.

[132] C.H. Hommes. Financial markets as nonlinear adaptive evolutionary systems.

Quantitative Finance, 1(1):149–167, 2001.

[133] R. Howard. Dynamic programming and Markov processes. MIT Press, Cambridge,

Massachusetts, 1960.

[134] G. Huberman and W. Stanzl. Optimal liquidity trading. Yale School of Manage-

ment Working Paper, 2001.

[135] G. Hughes. On the mean accuracy of statistical pattern recognizers. IEEE Trans-

actions on Information Theory, 14(1):55–63, 1968.

[136] G. Iori, M.G. Daniels, J.D. Farmer, L. Gillemot, S. Krishnamurthy, and E. Smith.

An analysis of price impact function in order-driven markets. Physica A: Statistical

Mechanics and its Applications, 324:146–151, 2003.

[137] E. Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik A

Hadrons and Nuclei, 31(1):253–258, 1925.

[138] M. Ismail. Parallel Genetic Algorithms (PGAs): Master-Slave paradigm approach

using MPI. IEEE e-Tech, 31:83–87, 2004.

[139] T. Jaakkola, M.I. Jordan, and S.P. Singh. On the convergence of stochastic it-

erative dynamic programming algorithms. Neural Computation, 6(6):1185–1201,

1994.

[140] S. Jaimungal, A. Cartea, and J. Penalva. Algorithmic and high-frequency trading.

Cambridge University Press, Cambridge, UK, 2015.

[141] P.C. Jain and G.H. Joh. The dependence between hourly prices and trading

volume. The Journal of Financial and Quantitative Analysis, 23(3):269–283, 1988.

[142] T. Jaisson and M. Rosenbaum. Limit theorems for nearly unstable Hawkes pro-

cesses. The Annals of Applied Probability, 25(2):600–631, 2015.

Bibliography 181

[143] W.S. Jevons. The theory of political economy. Macmillan and Co., London and

New York, 1871.

[144] B. Johnson. Algorithmic trading and DMA: An introduction to direct access trading

strategies. 4Myeloma Press, London, 2010.

[145] JSE. Dual-listed companies (retrieved: 08/03/2014). 2014. URL http://www.

jse.co.za/how-tolist/main-board/dual-listed-companies.aspx.

[146] JSE. Market data - Equities, derivatives and interest rate products price

list (retrieved: 13/07/2015). 2015. URL http://www.jse.co.za/services/

market-data.

[147] L. Kaelbling, M. Littman, and A. Moore. Reinforcement learning: A survey.

Journal of Artificial Intelligence Research, 4:237–285, 1996.

[148] N. Kaldor. A classificatory note on the determinateness of equilibrium. Review of

Economic Studies, 1(2):122–136, 1934.

[149] M. Karacuka and A. Zaman. The empirical evidence against neoclassical utility

theory: A review of the literature. Int. J. of Pluralism and Economics Education,

3(4):366–414, 2012.

[150] M. Kirchner. An estimation procedure for the Hawkes process. Working paper,

2015. URL http://arxiv.org/pdf/1509.02017v1.pdf.

[151] A. Kirman. Ants, rationality and recruitment. The Quarterly Journal of Eco-

nomics, 108(1):137–156, 1993.

[152] A. Kolmogorov. Sulla determinazione empirica di una legge di distribuzione. G.

Ist. Ital. Attuari, 4:83–91, 1933.

[153] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep

convolutional neural networks. Proceedings from Neural Information Processing

Systems (NIPS) conference, 2012.

[154] L. Kullmann, J. Kertész, and R. Mantegnae. Identification of clusters of companies

in stock indices via Potts super-paramagnetic transitions. Working paper, 2000.

URL http://arxiv.org/abs/cond-mat/0002238.

[155] D. Kwiatowski, P.C.B. Phillips, P. Schmidt, and Y. Shin. Testing the null hypoth-

esis of stationarity against the alternative of a unit root. Journal of Econometrics,

54(1-3):159–178, 1992.

[156] A.S. Kyle. Continuous auctions and insider trading. Econometrica, 53(6):1315–

1336, 1985.

http://www.jse.co.za/how-tolist/main-board/dual-listed-companies.aspx
http://www.jse.co.za/how-tolist/main-board/dual-listed-companies.aspx
http://www.jse.co.za/services/market-data
http://www.jse.co.za/services/market-data
http://arxiv.org/pdf/1509.02017v1.pdf
http://arxiv.org/abs/cond-mat/0002238

Bibliography 182

[157] M. Lallouache and D. Challet. The limits of statistical significance of Hawkes

processes fitted to financial data. Quantitative Finance, 16(1):1–11, 2016.

[158] S. Lange, T. Gabel, and M. Riedmiller. “Batch reinforcement learning” in rein-

forcement learning. Springer, Berlin Heidelberg, 2012.

[159] J. Large. Measuring the resiliency of an electronic limit order book. Journal of

Financial Markets, 10:1–25, 2007.

[160] S. Laruelle, C.A. Lehalle, and G. Pagés. Optimal split of orders across liquidity

pools: A stochastic algorithm approach. SIAM Journal of Financial Mathematics,

2:1042–1076, 2011.

[161] S. Laruelle, C.A. Lehalle, and G. Pagés. Optimal posting price of limit orders:

Learning by trading. Mathematics and Financial Economics, 7(3):359–403, 2013.

[162] H. Lee, R. Grosse, R. Ranganath, and A. Ng. Convolutional deep belief networks

for scalable unsupervised learning of hierarchical representations. Proceedings from

the International Conference on Machine Learning (ICML), 2009.

[163] P.A. Lewis and G.S. Shedler. Simulation of nonhomogeneous Poisson processes by

thinning. Naval Research Logistics Quarterly, 26(3):403–413, 1979.

[164] F. Lillo, J.D. Farmer, and R.N. Mantegna. Econophysics: Master curve for price-

impact function. Nature, 421:129–130, 2003.

[165] G.M. Ljung and G.E.P. Box. On a measure of a lack of fit in time series models.

Biometrika, 65(2):297–303, 1978.

[166] C. Lorenz and A. Schied. Drift dependence of optimal trade execution strategies

under transient price impact. Finance and Stochastics, 17(4):743–770, 2013.

[167] A. Madhavan. Security prices and market transparency. Journal of Financial

Intermediation, 5(3):255–283, 1996.

[168] A. Madhavan. Market microstructure: A survey. Journal of Financial Markets, 3

(3):205–258, 2000.

[169] C. Malherbe. Fourier method for the measurement of univariate and multivari-

ate volatility in the presence of high frequency data. Master’s thesis, University

of Cape Town, 2007. URL http://www.mth.uct.ac.za/academics/postgrad/

graduatethesis/MSc_Chanel_Malherbe.pdf.

[170] P. Malliavin and M.E. Mancino. Fourier series method for measurement of multi-

variate volatilities. Finance and Stochastics, 6:49–61, 2002.

http://www.mth.uct.ac.za/academics/postgrad/graduatethesis/MSc_Chanel_Malherbe.pdf
http://www.mth.uct.ac.za/academics/postgrad/graduatethesis/MSc_Chanel_Malherbe.pdf

Bibliography 183

[171] P. Malliavin and M.E. Mancino. A Fourier transform method for nonparametric

estimation of multivariate volatility. Annals of Statistics, 37(4):1983–2010, 2009.

[172] M. Marsili. Dissecting financial markets: Sectors and states. Quantitative Finance,

2(4):297–302, 2002.

[173] R. Martins. The statistical significance of mutually-exciting Hawkes processes

fitted to JSE data. AMF Honours Project, University of the Witwatersrand, 2015.

Supervised by D. Hendricks.

[174] R. Martins and D. Hendricks. The statistical significance of mutltivariate hawkes

processes fitted to limit order book data. Working paper, 2016. URL http:

//arxiv.org/abs/1604.01824.

[175] I. Mastromatteo and M. Marsili. On the criticality of inferred models. Journal of

Statistical Mechanics: Theory and Experiment, 2011(10), 2011.

[176] K. Mazibuko. Quantifying resiliency of the JSE limit order book following large

trades. AMF Honours Project, University of the Witwatersrand, 2014. Supervised

by D. Hendricks.

[177] B. Mbambiso. Dissecting the South African equity markets into sectors and states.

Master’s thesis, University of Cape Town, 2009.

[178] T.H. McInish and R.A. Wood. An analysis of intraday patterns in bid/ask spreads

for NYSE stocks. The Journal of Finance, 47(2):753–764, 1992.

[179] G.J. McLachlan, D. Peel, and W.J. Whiten. Maximum likelihood clustering via

normal mixture models. Signal Processing: Image Communication, 8(2):105–111,

1996.

[180] A. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts,

techniques and tools. Princeton University Press, Princeton Series in Finance,

2015.

[181] J. McPartland. Recommendations for equitable allocation of trades in high fre-

quency trading environments. Federal Reserve Bank of Chicago Policy Discus-

sion Paper, 2013. URL https://www.chicagofed.org/~/media/publications/

policy-discussion-papers/2013/pdp2013-01-original-pdf.pdf.

[182] F. Melo. Convergence of Q-learning: A simple proof. Institute of Systems and

Robotics, Technical Report, 2001.

[183] C. Menger. Grundsätze der Volkswirtschaftslehre. Braumüller, 1871.

http://arxiv.org/abs/1604.01824
http://arxiv.org/abs/1604.01824
https://www.chicagofed.org/~/media/publications/policy-discussion-papers/2013/pdp2013-01-original-pdf.pdf
https://www.chicagofed.org/~/media/publications/policy-discussion-papers/2013/pdp2013-01-original-pdf.pdf

Bibliography 184

[184] T. Minney. African Capital Market News: London and Johannes-

burg stock exchanges migrate to Millennium Exchange system (retrieved:

01/02/2016). 2011. URL http://www.africancapitalmarketsnews.com/906/

london-and-johannesburg-stock-exchanges-migrate-to-millennium-exchange-system/.

[185] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller. Playing Atari with deep reinforcement learning. Neural Information

Processing (NIPS) deep learning workshop, 2013.

[186] E. Moro, J. Vicente, L.G. Moyano, A. Gerig, J.D. Farmer, G. Vaglica, F. Lillo,

and R.N. Mantegna. Market impact and trading profile of hidden orders in stock

markets. Phys. Rev. E, 80:066102, 2009.

[187] U.A. Müller, M.M. Dacorogna, R.D. Davé, R.B. Pictet, O.V. Olsen, and J.R.

Ward. Fractals and intrinsic time — a challenge to econometricians. Olsen and

Associates, Zurich, 1995.

[188] M. Mungan and J.J. Ramasco. Stability of maximum-likelihood-based clustering

methods: Exploring the backbone of classifications. Journal of Statistical Mechan-

ics: Theory and Experiment, 4, 2010.

[189] L. Nan, G. Pengdong, L. Yongquan, and Y. Wenhua. The implementation and

comparison of two kinds of parallel genetic algorithm using Matlab. Ninth In-

ternational Symposium on Distributed Computing and Applications to Business,

Engineering and Science, 2010.

[190] E. Neuman and A. Schied. Optimal portfolio liquidation in target zone models

and catalytic superprocesses. Finance and Stochastics, 20(2):495–509, 2016.

[191] Y. Nevmyvaka. Normative approach to market microstructure analysis. PhD the-

sis, Carnegie Mellon University, 2004.

[192] Y. Nevmyvaka, Y. Feng, and M. Kearns. Reinforcement learning for optimal trade

execution. Proceedings of the 23rd international conference on machine learning,

2006.

[193] J. Noh. A model for correlations in stock markets. Physical Review E, 61, 2000.

[194] JSE Market Notices and Circulars. New equity market trading and information

solution and new SENS system - Go live readiness confirmed for Monday 2 July

2012 (retrieved: 01/02/2016). 2012. URL https://www.jse.co.za/content/

JSENoticesandCircularsItems/Equity%20Markets/2012/20120629-062.pdf.

http://www.africancapitalmarketsnews.com/906/london-and-johannesburg-stock-exchanges-migrate-to-millennium-exchange-system/
http://www.africancapitalmarketsnews.com/906/london-and-johannesburg-stock-exchanges-migrate-to-millennium-exchange-system/
https://www.jse.co.za/content/JSENoticesandCircularsItems/Equity%20Markets/2012/20120629-062.pdf
https://www.jse.co.za/content/JSENoticesandCircularsItems/Equity%20Markets/2012/20120629-062.pdf

Bibliography 185

[195] JSE Market Notices and Circulars. JSE equity market transaction billing model

methodology change notice, JSE market notice no. 136 (retrieved: 01/02/2016).

2013. URL https://www.jse.co.za/content/JSENoticesandCircularsItems/

Equity%20Markets/2013/2013_136.pdf.

[196] JSE Market Notices and Circulars. Equity market price list (re-

trieved: 01/02/2016). 2013. URL https://www.jse.co.za/content/

JSENoticesandCircularsItems/Equity%20Markets/2012/20121130-098B-.

pdf.

[197] JSE Market Notices and Circulars. JSE colocation services go live 12 May

2014 (retrieved: 01/02/2016). 2014. URL https://www.jse.co.za/content/

JSEHotlinesItems/JSE%20Service%20Hotline%209014%20JSE%20Colocation%

20Service%20Go%20live%2012%20May%202014.pdf.

[198] JSE Market Notices and Circulars. The lowest-latency connection

to JSE markets: Colocation (retrieved: 01/02/2016). 2014. URL

https://www.jse.co.za/content/JSETechnologyDocumentItems/3.%20JSE%

20Colocation%20Brochure%202015.pdf.

[199] JSE Market Notices and Circulars. Equity market price list 2014 v1.1

(retrieved: 01/02/2016). 2014. URL https://www.jse.co.za/content/

JSENoticesandCircularsItems/Equity%20Markets/2014/218B.pdf.

[200] Nvidia. Nvidia CUDA C Programming Guide. Nvidia Corporation, 2011.

[201] Nvidia. SLI Best Practices. Nvidia Corporation, 2011. URL

http://developer.download.nvidia.com/whitepapers/2011/SLI_Best_

Practices_2011_Feb.pdf.

[202] Nvidia. CUDA Dynamic Parallelism Programming Guide. Nvidia Corporation,

2012.

[203] Nvidia. CUDA C Best Practices Guide. Nvidia Corporation, 2012.

[204] Y. Ogata. Statistical models for earthquake occurences and residual analysis for

point processes. Journal of the American Statistical Association, 83(401):9–27,

1988.

[205] Y. Ogata. Seismicity analysis through point process modelling: A review. Pure

and Applied Geophysics, 155(2):471–507, 1999.

[206] M. O’Hara. Market Microstructure Theory. Blackwell publishing, 1998.

https://www.jse.co.za/content/JSENoticesandCircularsItems/Equity%20Markets/2013/2013_136.pdf
https://www.jse.co.za/content/JSENoticesandCircularsItems/Equity%20Markets/2013/2013_136.pdf
https://www.jse.co.za/content/JSENoticesandCircularsItems/Equity%20Markets/2012/20121130-098B-.pdf
https://www.jse.co.za/content/JSENoticesandCircularsItems/Equity%20Markets/2012/20121130-098B-.pdf
https://www.jse.co.za/content/JSENoticesandCircularsItems/Equity%20Markets/2012/20121130-098B-.pdf
https://www.jse.co.za/content/JSEHotlinesItems/JSE%20Service%20Hotline%209014%20JSE%20Colocation%20Service%20Go%20live%2012%20May%202014.pdf
https://www.jse.co.za/content/JSEHotlinesItems/JSE%20Service%20Hotline%209014%20JSE%20Colocation%20Service%20Go%20live%2012%20May%202014.pdf
https://www.jse.co.za/content/JSEHotlinesItems/JSE%20Service%20Hotline%209014%20JSE%20Colocation%20Service%20Go%20live%2012%20May%202014.pdf
https://www.jse.co.za/content/JSETechnologyDocumentItems/3.%20JSE%20Colocation%20Brochure%202015.pdf
https://www.jse.co.za/content/JSETechnologyDocumentItems/3.%20JSE%20Colocation%20Brochure%202015.pdf
https://www.jse.co.za/content/JSENoticesandCircularsItems/Equity%20Markets/2014/218B.pdf
https://www.jse.co.za/content/JSENoticesandCircularsItems/Equity%20Markets/2014/218B.pdf
http://developer.download.nvidia.com/whitepapers/2011/SLI_Best_Practices_2011_Feb.pdf
http://developer.download.nvidia.com/whitepapers/2011/SLI_Best_Practices_2011_Feb.pdf

Bibliography 186

[207] T. Ozaki. Maximum likelihood estimation of Hawkes self-exciting point process.

Annals of the Institute of Statistical Mathematics, 31(1):145–155, 1979.

[208] D.A. Patterson and J.L. Hennessy. Computer Organization and Design: The Hard-

ware/Software Interface, Fifth edition. Morgan Kaufmann, 2013.

[209] A. Perold. The implementation shortfall: Paper vs reality. Journal of Portfolio

Management, 14(3):4–9, 1988.

[210] V. Plerou, H.E. Stanley, X. Gabaix, and P. Gopikrishnan. On the origin of power-

law fluctuations in stock prices. Quantitative Finance, 4(1):11–15, 2004.

[211] P. Pospichal, J. Jaros, and J. Schwarz. Parallel genetic algorithm on the CUDA

architecture. Proceedings of the 2010 International Conference on Applications of

Evolutionary Computation, pages 442–451, 2010.

[212] M. Potters and J.P. Bouchaud. More statistical properties of order books and price

impact. Physica A: Statistical Mechanics and its Applications, 324(1-2):133–140,

2003.

[213] M. Puterman. Markov Decision Processes. John Wiley and Sons, 1994.

[214] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming. John Wiley and Sons, 2005.

[215] M. Rambaldi, E. Bacry, and F. Lillo. The role of volume in order book dynamics:

A multivariate Hawkes process analysis. Working paper, 2016. URL http://

arxiv.org/pdf/1602.07663.pdf.

[216] S. Ross. Introduction to stochastic dynamic programming. Academic Press, New

York, 1983.

[217] J.B. Rosser Jr. Complexity in economics. Edward Elgar Publishing, Cheltenham,

England, 2004.

[218] A. Schied. Robust strategies for optimal order execution in the Almgren–Chriss

framework. Applied Mathematical Finance, 20(3):264–286, 2013.

[219] A. Schied and T. Schöneborn. Risk aversion and the dynamics of optimal liq-

uidation strategies in illiquid markets. Finance and Stochastics, 13(2):181–204,

2009.

[220] A. Schied and T. Zhang. A state-constrained differential game arising in optimal

portfolio liquidation. Mathematical Finance, 2015. URL http://dx.doi.org/10.

1111/mafi.12108.

http://arxiv.org/pdf/1602.07663.pdf
http://arxiv.org/pdf/1602.07663.pdf
http://dx.doi.org/10.1111/mafi.12108
http://dx.doi.org/10.1111/mafi.12108

Bibliography 187

[221] A. Schied, T. Schöneborn, and M. Tehranchi. Optimal basket liquidation for

CARA investors is deterministic. Applied Mathematical Finance, 17(6):471–489,

2010.

[222] T. Schöneborn and A. Schied. Liquidation in the face of adversity: Stealth vs.

sunshine trading. EFA 2008 Athens Meetings Paper, 2009.

[223] S. Sivanandam and S. Deepa. Introduction to Genetic Algorithms. Springer, 2010.

[224] S. Smidt. Which road to an efficient stock market: Free competition or regulated

monopoly? Financial Analysts Journal, 27(5):64–69, 1971.

[225] N. Smirnov. Table for estimating the goodness of fit of empirical distributions.

Annals of Mathematical Statistics, 19:279–281, 1948.

[226] D.L. Stein. Spin glasses: Still complex after all these years? Santa Fe Institute

Working Paper, 2003.

[227] D.L. Stein and C.M. Newman. Spin glasses: Old and new complexity. Complex

Systems, 20(2):115–126, 2011.

[228] D. Sussman. The replica approach: Spin and structural glasses. Working paper,

2008. URL http://guava.physics.uiuc.edu/~nigel/courses/569/Essays_

Fall2008/files/sussman.pdf.

[229] R. Sutton. Integrated architectures for learning, planning, and reacting based on

approximating dynamic programming. Proceedings of the Seventh International

Conference on Machine Learning, pages 216–224, 1990.

[230] R. Sutton and A. Barto. Reinforcement learning. MIT Press, Cambridge, MA,

1998.

[231] E.L. Thorndike. Animal intelligence: Experimental studies. The Macmillan Com-

pany, New York, USA, 1911.

[232] I.M. Toke and F. Pomponio. Modelling trades-through in a limit order book using

Hawkes processes. Economics: The Open-Access, Open-Assessment E-Journal, 6

(22):1–23, 2012.

[233] J.W. Tukey. The future of data analysis. Annals of Mathematical Statistics, 33

(1):1–67, 1961.

[234] J.W. Tukey. Exploratory Data Analysis. Behavioural Science, Pearson, 1st edition,

1977.

http://guava.physics.uiuc.edu/~nigel/courses/569/Essays_Fall2008/files/sussman.pdf
http://guava.physics.uiuc.edu/~nigel/courses/569/Essays_Fall2008/files/sussman.pdf

Bibliography 188

[235] J.W. Tukey. Exploratory Data Analysis: Past, present and future. Technical Re-

port No. 302 (Series 2), 1993. URL http://www.dtic.mil/dtic/tr/fulltext/

u2/a266775.pdf.

[236] D. Vayanos. Strategic trading and welfare in a dynamic market. Review of eco-

nomic studies, 66:219–254, 1999.

[237] D. Vayanos. Strategic trading in a dynamic noisy market. Journal of Finance, 56

(1):131–171, 2001.

[238] T. Veblen. Why is economics not an evolutionary science? Quarterly Journal of

Economics, 12(4):373–397, 1898.

[239] T. Veblen and J. Boulton. Why is economics not an evolutionary science? Emer-

gence: Complexity and Organization, 12(2):41–69, 2010.

[240] D. Vere-Jones. Stochastic models for earthquake occurence. Journal of the Royal

Statistical Society, Series B (Methodological), 32(1):1–62, 1970.

[241] L. Walras. Éléments d’économie politique pure; ou, Théorie de la richesse sociale.

F. Rouge, 1896.

[242] S. Wang and R.H. Swendsen. Cluster Monte Carlo algorithms. Physica A, 167

(565), 1990.

[243] C. Watkins. Learning from delayed rewards. PhD thesis, Cambridge University,

1989.

[244] C. Watkins and P. Dayan. Technical note: Q-learning. Machine Learning, 8:

279–292, 1992.

[245] C. White and D. White. Markov Decision Processes. European Journal of Opera-

tional Research, 39:1–16, 1989.

[246] D. Wilcox and T. Gebbie. Hierarchical causality in financial economics. Working

paper, 2014. URL http://ssrn.com/abstract=2544327.

[247] D. Wilcox, D. Hendricks, and T. Gebbie. Fourier methods for correlation estima-

tion. Working paper, 2016.

[248] M. Wilinski, W. Cui, and A. Brabazon. An analysis of price impact functions of

individual trades on the London Stock Exchange. Proceedings from IEEE Con-

ference on Computational Intelligence for Financial Economics and Engineering,

2014. URL http://dx.doi.org/10.1109/CIFEr.2014.6924047.

http://www.dtic.mil/dtic/tr/fulltext/u2/a266775.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a266775.pdf
http://ssrn.com/abstract=2544327
http://dx.doi.org/10.1109/CIFEr.2014.6924047

Bibliography 189

[249] S. Wiseman, M. Blatt, and E. Domany. Superparamagnetic clustering of data.

Phys. Rev. E, 57:37–67, 1998.

[250] R.A. Wood, T.H. McInish, and J.K. Ord. An investigation of transactions data

for NYSE stocks. The Journal of Finance, 40(3):723–739, 1985.

[251] F.Y. Wu. The Potts model. Reviews of Modern Physics, 54(1):235–268, 1982.

[252] S. Xiao and W. Feng. Inter-Block GPU communication via Fast Barrier Synchro-

nization. 2010 IEEE International Symposium on Parallel & Distributed Process-

ing, pages 1–12, 2010.

[253] A.G. Zawadowski, J. Kertèsz, and G. Andor. Large price changes on small scales.

Physica A: Statistical Mechanics and its Applications, 344(1-2):221–226, 2004.

[254] G. Zhang, W. Liu, and G. Liu. Parallel genetic algorithm based on the MPI

environment. Telkomnika, 10:1708–1715, 2012.

[255] L. Zhang, P.A. Mykland, and Y. Aı̈t-Sahalia. A tale of two time scales: Determin-

ing integrated volatility with noisy high-frequency data. Journal of the American

Statistical Association, 100(472):1394–1411, 2005.

[256] S. Zhang and Z. He. Implementation of parallel genetic algorithm based on CUDA.

Proceedings of the 4th International Symposium on Advances in Computation and

Intelligence, pages 24–30, 2009.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Preface
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction and overview
	1.1 The financial market as a complex adaptive system
	1.2 Spin glass models for modelling complex system behaviour
	1.3 The Hawkes process as the governing process for microstructure events
	1.4 Reinforcement learning as a framework for online, adaptive trajectories through the complex system
	1.5 Automated algorithmic trading in modern financial markets
	1.6 Overview

	2 Market microstructure and the trade execution problem
	2.1 Overview
	2.2 Market microstructure
	2.3 The limit order book and trading mechanism
	2.4 Price impact
	2.5 Order book resiliency
	2.6 Optimal trade execution
	2.7 Some remarks

	3 Model-free reinforcement learning
	3.1 Overview
	3.2 Markov Decision Processes
	3.3 Dynamic Programming
	3.3.1 Policy iteration
	3.3.2 Value iteration

	3.4 The Q-learning algorithm
	3.4.1 Proof of convergence for infinite-horizon Q-learning
	3.4.2 On convergence for finite-horizon Q-learning

	3.5 Batch learning vs online learning
	3.6 Exploration vs exploitation trade-off
	3.7 Curse of dimensionality
	3.8 The nature of learning in a complex system
	3.9 Some remarks

	4 Data description and Exploratory Data Analysis
	4.1 Overview
	4.2 Data
	4.2.1 Raw data
	4.2.2 MongoDB noSQL database
	4.2.2.1 Query indexes
	4.2.2.2 Aggregation and Map-Reduce
	4.2.2.3 MATLAB API

	4.3 Exploratory Data Analysis
	4.3.1 Visualisation of limit order book features

	4.4 Some remarks

	5 A simple model-free reinforcement learning model for trade execution
	5.1 Overview
	5.2 Adapting a static liquidation trajectory using reinforcement learning
	5.2.1 The Almgren-Chriss model for optimal liquidation
	5.2.2 State space
	5.2.3 Action set
	5.2.4 Reward function
	5.2.5 Algorithm

	5.3 Data and results
	5.3.1 Data used
	5.3.2 Stocks, parameters and assumptions
	5.3.3 Results

	5.4 Some remarks

	6 Detecting intraday states from streaming market microstructure features
	6.1 Overview
	6.2 From unsupervised clustering to temporal states
	6.3 Super-paramagnetic clustering for state discovery and detection
	6.3.1 Potts spin models as analogue for financial system

	6.4 A maximum likelihood approach
	6.5 Considering time periods as objects for market state determination
	6.6 State Signature Vectors for online state detection
	6.7 Scale-invariant characteristics of states
	6.8 A high-speed Parallel Genetic Algorithm implementation
	6.8.1 GA principle and genetic operators
	6.8.2 Master-slave parallelisation
	6.8.3 Computational Platform and Implementation
	6.8.3.1 Specific computational environment
	6.8.3.2 Implementation
	6.8.3.3 Representation
	6.8.3.4 Fitness function
	6.8.3.5 Master-slave PGA implementation
	6.8.3.6 Key implementation challenges

	6.9 Results
	6.9.1 Data description
	6.9.2 Workflow
	6.9.3 Visualisation
	6.9.4 Results discussion

	6.10 Identifying high-frequency persistent states using event-time clustering
	6.11 Some remarks

	7 Using order book resiliency to control agent actions
	7.1 Overview
	7.2 Modelling order book resiliency
	7.2.1 Multivariate Hawkes process for limit order book events
	7.2.2 Enumerating empirical event point processes using tick data
	7.2.2.1 Volume-conditional liquidity demand point processes

	7.2.3 Candidate kernels for encoding temporal dependence
	7.2.4 Deriving maximum likelihood estimator with sum-of-exponentials kernel
	7.2.5 Calibration of model parameters
	7.2.6 On the choice of M (number of exponentials)
	7.2.7 Motivating use of time-dependent baseline intensity
	7.2.8 An efficient non-parametric calibration scheme

	7.3 Effect of volume-conditional trade events on quote replenishment intensity
	7.4 Some remarks

	8 Using detected states and resilient actions to enhance the trade execution algorithm
	8.1 Overview
	8.2 Recall the basic reinforcement learning model
	8.3 Using temporal state as market attribute
	8.4 Bounding actions using resiliency
	8.5 On the learning rate
	8.6 Algorithm
	8.7 Data and Results
	8.7.1 Data
	8.7.2 Results

	8.8 Some remarks

	9 Towards unsupervised, online state discovery, detection and learning in high-frequency financial markets
	9.1 Overview
	9.2 Representation learning for tractable inference in high-dimensional state spaces
	9.3 Cluster configurations as temporal state descriptors
	9.4 Correlation estimation from streaming asynchronous data
	9.5 High-speed feature clustering
	9.6 Cluster configuration similarity and state discrimination
	9.7 Reinforcement learning with online state discovery
	9.8 Problem description and Algorithm
	9.8.1 Wealth maximisation: Long-only
	9.8.2 Algorithm

	9.9 Data and Results
	9.9.1 Data
	9.9.2 Results

	9.10 Some remarks

	10 Conclusion
	A Derivation of the maximum likelihood function for explanatory power of cluster configuration
	A.1 The Noh-Giada-Marsili coupling parameters
	A.2 The Noh-Giada-Marsili likelihood function

	Bibliography

