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Abstract
We analyse demographic longitudinal survey data of South African (SA) and Mozambican

(MOZ) rural households from the Agincourt Health and Socio-Demographic Surveillance

System in South Africa. In particular, we determine whether absolute poverty status (APS)

is associated with selected household variables pertaining to socio-economic determina-

tion, namely household head age, household size, cumulative death, adults to minor ratio,

and influx. For comparative purposes, households are classified according to household

head nationality (SA or MOZ) and APS (rich or poor). The longitudinal data of each of the

four subpopulations (SA rich, SA poor, MOZ rich, and MOZ poor) is a five-dimensional

space defined by binary variables (questions), subjects, and time. We use the orbit method

to represent binary multivariate longitudinal data (BMLD) of each household as a two-di-

mensional orbit and to visualise dynamics and behaviour of the population. At each time

step, a point (x, y) from the orbit of a household corresponds to the observation of the house-

hold, where x is a binary sequence of responses and y is an ordering of variables. The or-

dering of variables is dynamically rearranged such that clusters and holes associated to

least and frequently changing variables in the state space respectively, are exposed. Analy-

sis of orbits reveals information of change at both individual- and population-level, change

patterns in the data, capacity of states in the state space, and density of state transitions in

the orbits. Analysis of household orbits of the four subpopulations show association be-

tween (i) households headed by older adults and rich households, (ii) large household size

and poor households, and (iii) households with more minors than adults and poor house-

holds. Our results are compared to other methods of BMLD analysis.
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Introduction
Binary multivariate longitudinal data (BMLD) is here exemplified by the binary responses in a
Yes/No form to a set of p� 1 questions (variables) asked to each subject of a (sample) popula-
tion over a period of time. As in the convenient convention of binary coding of 0 for a negative
response and 1 a for positive response [1], the outcome of each of the binary variables here is
coded as 0 if the outcome is unfavourable (by hypothesis) to a given purpose, and 1
if favourable.

Many BMLD studies use regression techniques [2] or Markov, transition and forecasting
models ([3–5]). These methods involve parameter estimation for the explanatory variables.
However, visual analysis of data is equally important as it presents initial insights about the
data. Descriptive tools such as tables and charts give a visual summary and simpler interpreta-
tion. For visual analysis of multivariate longitudinal data, some analysis is given in ([6, 7]) but
very few tools are available when the data is binary.

In [8], the focus is on visualizing the complex border between patterns of BMLD. The bor-
der in a multidimensional space is converted into visual 2-dimensional and 3-dimensional
forms. However, it does not illustrate patterns and dynamics of the population over time. A
technique that accounts for dynamics of BMLD and within subject information is the orbit
method discussed in [9]. Orbit method here is distinct from the Kirillov orbit method used in
representation theory [10]. By an orbit we mean a sequence of points related by the evolution
function of the underlying system. The method of orbit is a technique based on deterministic
outcomes with emphasis on geometric visualization of multivariate longitudinal data as 2-di-
mensional orbits. It considers the frequency of change of variables and uses the order of vari-
ables for constructing orbits that represent subjects from the population. Orbits give insight for
data analysis and provide exact data visualization.

Here we use the orbit method to analyse binary demographic data of households from the
Agincourt Health and Socio-Demographic Surveillance System (AHDSS) in South Africa. The
longitudinal AHDSS data have been studied e.g. in [11] and [12] where a spatial-temporal
model to analyse distribution of mortality and asset accumulation rate respectively were em-
ployed. Determinants of socio-economic status/poverty or the relationship between poverty
and increased mortality were viewed from more of a static perspective i.e. not from the more
dynamic approach offered by the orbit. The orbit approach presents a visualisation of the data
in a truly longitudinal-temporal manner. The orbit method is briefly illustrated in [9] using
variables regarding child educational progression in AHDSS. However, detailed interpretation
of subsets in the subspace, nor analysis of orbits in the space, were not discussed. Aside from
[9], we know of no other visual analysis employed for AHDSS, particularly involving house-
hold variables pertaining to socio-economic determination.

The AHDSS longitudinal data analysed here is of about 4,000 households from 2001–2007.
With purpose

Purpose : Todeterminetheassociationof absolutepoverty status

withselectedhouseholdvariables;
ð1Þ
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we consider the following questions:

Q0ðHHÞ : Household head age � 40 years old?

Q1ðHSÞ : Household size � 3 individuals?

Q2ðHDÞ : Cumulative household deaths low ðexcluding household head deathÞ?

Q3ðAMÞ : More adults ðage � 18Þ than minors?

Q4ðIFÞ : Internal influx negative

ði:e: more people migrating into the household than leavingÞ

Q5ðHNÞ : Household head nationality � South African or former Mozambican refugee?

Q6ðAPSÞ : Absolute poverty status� below poverty line or above poverty line?

ð2Þ

Each question in (Eq 2) is associated to a variable, e.g. Q0 to household head age (HH), Q1 to
household size (HS), and so on. We will sometimes refer to question Qi (i = 0, 1, . . ., 6) as
variable i.

The advantage in representing the data of each subject as a two-dimensional orbit is that or-
bits capture the dynamics of change in response of each subject so it reveals information of
change over time at both individual and population level while retaining the full information of
the original data. Using orbits for data analysis give a way to visualize data, i.e. identify clusters
associated to stable (less frequently changing) variables, and patterns in subpopulations associ-
ated to clusters. BMLD can involve hundreds of variables so visualising in d� 4 dimensions is
difficult. Survey data (e.g. in the social sciences) is usually large both in dimension and in size
but orbit representation is feasible for large numbers of variables and subjects. In this applica-
tion of orbits to the analysis of AHDSS survey data, we hope to contribute in giving new in-
sights in the analysis of binary multivariate longitudinal data.

Materials and Methods

Description of Data
The Agincourt Health and Socio-Demographic Surveillance System (HDSS) is located in Bush-
buckridge in northeast South Africa and was established in 1992. Bushbuckridge is a poor rural
sub-district that is made up of South African and former Mozambican refugees (approximately
a third of the population) [13, 14]. There have been annual updates of births, deaths, in- and
out-migrations of individuals identified as members of households, as well as regular special
modules (e.g. household asset ownership) used to derive a socio-economic status index.

Recall our purpose and questions given in (Eq 1) and (Eq 2). Regarding absolute poverty
status (APS), it is independent of the household variables associated to questions in (Eq 2).
Here, households above the absolute poverty line was defined using the definition proposed in
[15] for a sub-Saharan African setting, namely ownership of a radio and bicycle, a cement floor
in the house, and access to public water and a pit latrine (toilet). Absolute poverty classification
is thus independent of the 6 explanatory variables used in our orbit analysis. APS of households
below the poverty line are coded 0, while APS above the poverty line is coded 1. Because APS is
gathered only in 4 out of the 7 observation years (i.e. at t = 2001, 2003, 2005, and 2007), we use

the mean APS of a household over 7 years, which we denote by APS. If APS 2[0, 0.5], then APS

is coded 0. Otherwise, APS is coded 1. Our sample population consists of 7715 household
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units, 4158 of which are either always above or below the absolute poverty line for all four
years that APS was gathered. For these households, APS information not gathered for the three

years 2002, 2004, and 2006 will not affect the coding of their APS. Households with APS = 0 are

referred to as Poor households, and households with APS = 1 as Rich households. Our analysis
will only consider these 4158 households. Ethical clearance for the primary study was given by
the University of the Witwatersrand Human Research Ethics Committee (Medical). The data
used in this study does not contain clinical records (nor does the core Agincourt HDSS data-
base). Individual and household identifiers are anonymized/de-identified by the data managers
prior to handing it over to researchers for analysis to ensure confidentiality.

Aside from APS, household head nationality is also constant throughout the survey period.
In addition, former Mozambican (MOZ) refugees experience significantly higher levels of pov-
erty compared to their South African (SA) counterparts and this gap has persisted over time
[12, 16, 17]. It is then useful to extract Q5 and Q6 and analyse by these subpopulations of house-
holds where both poverty status and household head nationality are unchanging. We divide
our population into four subpopulations, namely SA Rich, SA Poor, MOZ Rich, and MOZ
Poor. Each subpopulation is analysed using p = 5 variables associated to Q0 to Q4. Binary data
of the four subpopulations is given in S1 Dataset. From [12, 16], a ‘yes’ answer to questions Q0

to Q4 is assumed to be favourable to APS so we code all yes = 1, and all no = 0. Table 1 gives the
favourable and unfavourable code for each of the five questions. Table 2 gives the number of

households by constant variables (i.e. nationality and APS).

The Method of Orbits
Given the number of variables p� 1, denote by

Mp ¼ f0; 1gp

the space of binary strings (responses) of length p. For a subject ℓ observed at times t = 0, 1, . . .,
T, we define

D‘ ¼ fD‘
0;D

‘
1; . . . ;D

‘
Tg; D‘

t 2 Mp

Table 1. Favourable(= 1) and unfavourable(= 0) answer to questionsQ0 toQ4.

Q0 (HH: household head) Q1 (HS: household size) Q2 (HD: household death) Q3 (AM: adult(A) to minor(M) ratio Q4 (IF: internal influx)

HH<40 = 0 HS<3 = 0 HD high = 0 A<M = 0 IF+ = 0

HH�40 = 1 HS�3 = 1 HD low = 1 A�M = 1 IF− = 1

doi:10.1371/journal.pone.0123812.t001

Table 2. Distribution of households by nationality andmean APS.

Population SA Rich SA Poor MOZ Rich MOZ Poor

4158 2610 421 468 659

doi:10.1371/journal.pone.0123812.t002
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the binary multivariate longitudinal data in p� 1 variables of subject ℓ. The binary longitudinal
data in p variables from a population of n� 1 subjects observed over time T is the set

D½p;n;T� ¼ fD1;D2; . . . ;Dng:

We will only consider subjects with complete data.
Analysis of BMLD always involves a fixed variable order where one can use the summary

measure of the frequency of response pattern (elements ofMp) and perform factor analysis on
the longitudinal data [1] or construct Markov models using information of change of time en-
coded in the matrix of transition probabilities [3]. The method of orbits [9] uses the fundamen-
tal information of frequency of change of variables and order of variables for analysis. The
information of change is used to define a non-autonomous dynamical system from data of
each subject, dynamically rearranging order of variables so that most stable least changing vari-
able is eventually placed to the left, but keeping the full information in the original data. Mathe-
matical properties of the map are discussed in [9].

To explain the orbit method, we illustrate for p = 3 variables. Let Q = {Q0, Q1, Q2} be a ques-
tionnaire and assign index i to Qi, i = 0, 1, 2. Table 3 illustrates concatenated coded answers to
Q of three subjects from a sample population. To Q0, subject ℓ has constant answer 0 while ℓ0

has constant answer 1. On the other hand, ℓ@ has constant answer 1 to Q2. Observe that this
property of subjects having constant answers to certain questions is not trivially illustrated in
the time series of the three subjects given in Fig 1.

Suppose we order questions and give more weight to those that least frequently change. As
in numbers, we let the digit in the left-most position of the question order be most significant,
and digit in the right-most be least significant. Observe that for both ℓ and ℓ0, answer to Q0 is
the most stable (i.e. it is constant), followed by Q1 (changes once in ℓ and twice in ℓ

0), and final-
ly Q2 as most frequently changing. Then question order for both ℓ and ℓ0 is chosen as Q0, Q1,
Q2, which we will denote by 012. Now position lexicographically in increasing order as binary
integers the states (responses)

000; 001; 010; 011; 100; 101; 110; 111 ð3Þ

along an axis, and denote this by X3. For fixed question order 012, a one-dimensional dynamics

on the states in X3 arises, where answers of subjects ℓ and ℓ0 are visualised jumping from one
state to another, particularly staying in the distinct regions 0�� and 1��, the left and right half
of X3, respectively. However, different subjects may have different frequencies of change in an-
swer values. Because ℓ@ has constant answer to Q2, question order for ℓ@ is chosen such that Q2

is given more weight. In particular, question order for ℓ@ is set to 210.

Table 3. Concatenated coded answers of three subjects to questionnaireQ = {Q0,Q1,Q2}.

t ℓ ℓ0 ℓ@

0 010 100 111

1 001 100 001

2 000 101 001

3 001 110 101

4 000 101 001

doi:10.1371/journal.pone.0123812.t003
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We recall terms and notations as introduced in [9]. Let

p : number of variables

‘ : subject from the population

n : number of subjects

Q : questionnaire

Qi : question from Q; i ¼ 0; 1; . . . ; p� 1

f li : frequency of change of Qi in data of subject ‘

Definition 1 Given p� 1, the spaces of sequences

Xp ¼ fðxjÞp�1

j¼0 ¼ x0x1 � � � xp�1 : xj 2 f0; 1gg

and

Yp ¼ fðijÞp�1

j¼0 ¼ i0i1 � � � ip�1 : ij 2 f0; 1; . . . ; p� 1g; ij0sdistinctg;

both with the lexicographic ordering of sequences (i.e. as increasing integers) are the fitness axis
and significance axis for p variables, respectively. An element x 2 Xp is called a fitness state, and
y 2 Yp a significance state. The space

Sp ¼ fp ¼ ðx; yÞ : x 2 Xp; y 2 Ypg

¼ Xp � Yp

is the change space in p variables composed of P = 2p p! states.
For convenience, states in Sp are labeled from 1 to P = 2p p! starting from left to right, top to

bottom. The labeled space Sp for p = 3 is illustrated in Fig 2. The space X3 is the sequences in
(Eq 3), Y3 = {012, 021, 102, 120, 201, 210}, and the cardinality of jS3j = 233! = 48.

Fig 1. Time series of the three subjects in Table 3.

doi:10.1371/journal.pone.0123812.g001
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Definition 2 1. Consider subject ℓ. Given a set Q of p� 1 questions, ij 2 {0, 1, 2, . . ., p−1},
and Qij 2 Q let

f ‘ij ¼ numberof timesQij
changesanswer indataof ‘over theobservationperiod: ð4Þ

Suppose

f ‘i0 < f ‘i1 < � � � < f ‘ij < � � � < f ‘ip�1
:

Then the initial question order of ℓ is

y‘0 ¼ i0i1 � � � ij � � � ip�1: ð5Þ

If f ‘ij ¼ f ‘ijþ1
; use population frequencies f nij ; f

n
ijþ1

to determine order between ij and ij+1. If f nij ¼ f nijþ1

and ij < ij+1, choose question order ij ij+1. Otherwise, choose ij+1 ij.
2. Given initial question order y‘0 ¼ i0i1 � � � ij � � � ip�1, the initial fitness state of ℓ is

x‘0 ¼ x0x1 � � � xj � � � xp�1

where each xj is the answer to question ij in y‘0.
3. The initial state of ℓ is s‘0 ¼ ðx‘0; y‘0Þ 2 Sp:

The algorithm for determining the next states s‘t (t> 0) is as follows:

Step 1: [initial state s‘0] For t = 0 and subject ℓ, determine the initial significance state y‘0, fol-
lowed by the initial fitness state x‘0.

Fig 2. (a) Orbit of subject ℓ staying in subset of S3 where variable 1 is favourable. (b) Time series of the orbit of ℓ.

doi:10.1371/journal.pone.0123812.g002
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Step 2: [state s‘1] Given initial state s‘0 ¼ ðx‘0; y‘0Þ of ℓ, identify the questions that change an-
swer values at t = 1. If there are none, then the next state s‘1 ¼ s‘0. Let

x�j ¼
1 if xj ¼ 0

0 if xj ¼ 1:

8<
:

If both Qij and Qij0 change answers at t = 1 and j< j0, then sequentially swap to the right ij and
ij0 (resp. xj and xj0) of the question order (resp. answer order), starting with ij0 (resp. xj0).
Change xj to x�j and xj0 to x�j0, i.e.

t ¼ 0 t ¼ 1

x‘0 ¼ x0x1 � � � xj � �xj0 � �xn�1 �! x‘1 ¼ x0x1 � �xj�1xjþ1 � �xj0�1xj0þ1 � �xn�1x
�
j0x

�
j

y‘0 ¼ i0i1 � � � ij � � � ij0 � � � in�1 �! y‘1 ¼ i0i1 � � � ij�1ijþ1 � � � ij0�1ij0þ1 � � � in�1ij0 ij

This new answer order and question order is the next state s‘1 ¼ ðx‘1; y‘1Þ:
Step 3: [edge color] Draw an edge from s‘0 to s

‘
1. To show direction of transitions between

states, color the edge red if transition is from right to left, green if transition is from left to right,
and blue otherwise (i.e. same x-coordinate).

Step 4: [state s‘t ; t � 2� Update state s‘0 as s‘1 and time t as t = 2 in Step 2. Repeat Steps 2 and
3, and iterate until t = T−1.

Definition 3 Let x‘t , y
‘
t , and s

‘
t ¼ ðx‘t ; y‘t Þ be the fitness, significance, and state of subject ℓ at

time t, respectively. The orbit of ℓ is the sequence of points

Oð‘Þ ¼ fs‘tgt�0:

Example 1 Table 4 gives coded data of a subject ℓ to p = 3 questions. Recall that coding of an-
swer is 0 = unfavourable and 1 = favourable according to purpose. The coded answer of ℓ to Qi at
time t is denoted by a‘i;t . From (Eq 4), we have f ‘0 ¼ 3, f ‘1 ¼ 0; and f ‘2 ¼ 2, so initial significance

of ℓ is y‘0 ¼ 120, with corresponding initial fitness x‘0 ¼ 111. This corresponds to state index 24
in Fig 2(a). No answer changes at t = 1 so y‘1 ¼ y‘0 and x

‘
1 ¼ x‘0 and state transition from t = 0 to

t = 1 is denoted by 24! 24. Now at t = 2, Q0 changes answer so we swap 0 and 1 to the right of
y‘1 and x

‘
1 respectively (note that both are already on the right), and then change answer 1 to 0.

Hence, y‘2 ¼ 120 and x‘2 ¼ 110, which corresponds to state 23. Columns 3 and 4 give the rest of

Table 4. Coded data and orbit of a subject ℓ. The number ai, t is answer toQi at time t.

t a‘
0;t a‘

1;t a‘
2;t x‘t ¼ x0x1x2 y‘

t ¼ i0i1i2 State index

0 1 1 1 111 120 24

1 1 1 1 111 120 24

2 0 1 1 110 120 23

3 0 1 0 100 102 29

4 0 1 1 101 102 30

5 0 1 1 101 102 30

6 1 1 1 111 120 24

7 0 1 1 110 120 23

doi:10.1371/journal.pone.0123812.t004
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the fitness and significance states respectively of the orbit. Observe that ℓ has favourable answer
to Q1 for all times so its orbitO(ℓ) stays in the subset

Lð� S3Þ ¼ fðx; yÞ : x0 ¼ 1 and i0 ¼ 1g

¼ f21; 22; 23; 24; 29; 30; 31; 32g
ð6Þ

where question i0 = 1 is favourable. The longitudinal data of ℓ in S3 is visualised as the orbit in
Fig 2(a) with its time series illustrated in Fig 2(b).

Example 2 The orbits of the three subjects in Table 3 in S3 and over time are illustrated in Fig
3(a) and 3(b) respectively. Observe that orbit of ℓ stays strictly on the left half of S3, and the other
two on the right half. Subject ℓ is unfavourable in stable variable 0, while ℓ0 and ℓ@ are favourable
in stable variable 0 and variable 2, respectively.

Remark 1 By the 0/1 coding of data, it is reasonable to suppose that the (concatenated) an-
swers composed of unfavourable values 00� � �0 is ‘less fit’ than the answer composed of favourable
values 11� � �1. By the weighting of variables, ‘relative fitness’ is made precise so that ordering of
elements from the space M3 = {0, 1}3 of multivariate binary responses has meaning. Because
more weight (significance) is given to the left-most position, we can then, for a fixed question
order, write x = 010< x0 = 100, where most significant variable is unfavourable in x, and favour-
able in x0. For a fixed question order, we say that 100 is fitter than 010 (or 000, 001). The same
argument holds in stating that 110 is less fit that 111.

Using orbits, the complete p-dimensional information of each subject at any moment is
coded to a point in the 2-dimensional discrete space Sp. No information in data is lost nor ap-
proximated as each subject’s orbit has a one-to-one correspondence with the subject’s original
data. Clearly, question order of each subject at each time step is monitored. The ordering is se-
lected as frequently changing variables are swapped to the far right (less significant digit of y),
thus pushing slow changing variables to the left (significant digit of y). This ‘swapping-chang-
ing-variable-to-the-right’ process exposes clusters associated to stable variables.

Remark 2 The time complexity of computation of orbits for n subjects and time T scales like
pnT and is feasible for large data. We also note that there are admissible and non-admissible
state transitions in Sp[9], e.g. in Fig 2, a transition that starts at 23 can only end at 23, 24, 29,
and 31.

Fig 3. Orbit of the three subjects given in Table 3 (a) in S3 and (b) over time.

doi:10.1371/journal.pone.0123812.g003
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Remark 3 The tendency of a subject to favour a particular state, or subset of states, is cluster-
ing in Sp. The strategy for choosing the initial question order in (Eq 5) places an orbit in its most
likely position. This facilitates clustering and is useful for short data sets.

Note that many households may share an edge (or orbit) in Sp. The following definitions are
of interest regarding transitions in Sp.

Definition 4 a. The accumulated number of transitions from state s = (x, y) to s0 = (x0 y0) is
called the density from s to s0, denoted by d(s, s0).

b. The number of orbits at state s at time t is called the capacity of state s at time t and is de-
noted by cs, t.

Remark 4We can deduce correlation among variables from orbits in Sp. We explain for
p = 3. Using Fig 4, if state transition of orbits most of the time stay in states 1 = (000, 210) and 48
= (111, 012) then we can test for positive correlation among the three variables 0, 1, and 2. If or-
bits spend most (if not all) of the time in a subset L of Sp such that Lffi Sm for some m< p, then
there is strong correlation between the first p−m variables constant in Sm. In Fig 4 for example, if
orbits stay strictly in the subset

L ¼ fðx; yÞ : x ¼ 11 � ��; y ¼ 01 � ��g ffi S3;

then we can check for (positive) correlation between the first two variables 0 and 1. The asterisk
� in x (resp. in y) can take any binary value (resp. any question index except for i).

Remark 5 The orbit method is not limited to binary data in p variables. For m-ary valued
data, the space Sp is composed of same number p! of significance states but now with mp fitness
states. For the continuous case, data of each observation are binned, where bins are labelled from
0 to m−1 [18, 19]. For instance, binary coding can be done by assigning 0/1 if variable is above or
below a given value, tertiary coding if the variable is in a good/neutral/bad range of values, and
so on.

Results

Orbit Results
Household orbits in S5 for each of the four subpopulations are illustrated in Fig 4. The x-axis is
composed of 25 = 32 states but not all the 5! = 120 states in the y-axis are shown. There are no
transitions between the four subpopulations as they are associated to constant variables. Recall
that a red edge is used to denote a transition that goes from right to left on the next time step, a
green edge for a transition that goes from left to right, and a blue edge a transition that goes to
the same fitness state. The percentage of unfavourable answers for each question in each of the
four subpopulations is given in Table 5 while the frequencies of answer change are given in
Table 6. The frequencies of change for Q0 (HH) and Q1 (HS) are low, while Q4 (IF) is the high-
est. This means that there is stability in the variables HH and HS in that most subjects will stay
in the region where significance is either y = 01i2 i3 i4 or y = 10i2 i3 i4, ij 2 {2, 3, 4}. In addition,
there is high activity of the IF variable, which means few transitions where y = 4i1 i2 i3 i4, ij 2
{0, 1, 2, 3}. All of this is recognized in Fig 4.

There are immediately regions of interest in Fig 4. As an aide in interpreting regions in S5,
we present in Fig 5 the subsets of S5 determined by the first significant variable i0. A subject ℓ
that spends most of its time in the region where x = j����, y = i����means that answer of ℓ to
Qi is least frequently changing, with answer = j. The initial state of ℓ is chosen to lie in this

Analysis of Binary Multivariate Longitudinal Data via 2-D Orbits
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Fig 4. Orbits of (a) SA Rich, (b) SA Poor, (c) MOZ Rich, and (d) MOZ Poor households.Observe clusters
formed in regions of each subpopulation. variable 4 (influx) is most frequently changing in all four
subpopulations so orbits do not stay in the region where y = 4****. Not all 5! significance states are shown.

doi:10.1371/journal.pone.0123812.g004
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region (Definition 5). For example, a subject that stays in the region

RHH<40 ¼ fp ¼ ðx; yÞ 2 S5 : x ¼ 0 � � � �; y ¼ 0 � � � �g

of Fig 5 frequently experiences younger (<40) household head age.
Regions in Fig 5 may be further analysed. A more detailed description of the regions

HH�40, HH<40, HS�3, and HS<3 is illustrated in Fig 6. In each sub region, the two variables
i0 and i1 are significant (i.e. less frequently changing answers), with i0 being more significant.
Of course these sub regions may be further subdivided.

In general, we say that a variable i is stable if orbits cluster in a subset of Sp determined by
first significant variable i. Regions that are never visited (e.g. those associated to variables IF+,
IF−, and A<M in Fig 4) are termed holes. Clusters are contained in regions where the leading
significant variable is stable while holes are contained in regions with high activity of the lead-
ing variable. By visual inspection of orbits in Sp, we can immediately detect stable variables (via
clusters) and unstable variables (via holes).

Clusters in the right half regions of Sp are fitter than clusters located on the left half of Sp as
they are associated to stable leading variable with favourable condition. From the orbits of sub-
populations in Fig 4, observe that there are no transitions between the left and right half of S5
in both SA Poor and MOZ Poor subpopulations. This is verified by Fig 7, the orbits of the four
subpopulations, in time. In addition, columnar structures over clusters correspond to variables
that are stable over the survey period. Although there are few transitions between clusters,
there is considerable activity within each. Household orbits in one cluster may then reasonably
be analysed independently of households in other clusters. The time series representation of or-
bits reveals idle behaviour (sequence of vertical blue edges) that are not always visible in orbits
in S5.

As observed in Fig 4, some regions in a subpopulation appear denser than those of the other
subpopulations (e.g. the region HH<40 appears to be more dense in MOZ poor than in MOZ
rich, with the opposite phenomenon for the SA population). We use histograms to denote the

Table 5. Percentage of unfavourable = 0 responses inQi for each of the four subpopulations.

SA Rich Q0 : 17.4% Q1 : 11.4% Q2 : 20.5% Q3 : 21.1% Q4 : 22.2%

SA Poor Q0 : 33.4% Q1 : 10.8% Q2 : 13.3% Q3 : 44.5% Q4 : 23.6%

MOZ Rich Q0 : 27.6% Q1 : 7.8% Q2 : 19.4% Q3 : 38.0% Q4 : 19.0%

MOZ Poor Q0 : 33.5% Q1 : 10.3% Q2 : 15.0% Q3 : 51.4% Q4 : 23.5%

doi:10.1371/journal.pone.0123812.t005

Table 6. Questions with corresponding frequency of answer change in each of the four
subpopulations.

SA Rich SA Poor MOZ Rich MOZ Poor

Q0 (HH) 374 78 110 102

Q1 (HS) 466 53 50 85

Q2 (HD) 1280 164 216 309

Q3 (AM) 1334 308 299 405

Q4 (IF) 3373 580 599 971

doi:10.1371/journal.pone.0123812.t006
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Fig 5. Regions in S5 determined by the first significant variable.Observed units that often stay in a region
determined by one significant variable often experience the property of that region.

doi:10.1371/journal.pone.0123812.g005

Fig 6. Regions in S5 determined by the first and second significant variables.

doi:10.1371/journal.pone.0123812.g006
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Fig 7. Column structures over clusters of (a) SA Rich, (b) SA Poor, (c) MOZ Rich, and (d) MOZ Poor
household orbits in S5.

doi:10.1371/journal.pone.0123812.g007
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accumulated number of visits (i.e. capacity, Defn. 4) to each state in S5. Fig 8 gives the accumu-
lated capacity in states of S5, represented by the height of bars. It is immediately noted that
there are regions of high and low numbers. Density at each state at each time step can also be
computed, and can be represented by bubbles. Fig 9 illustrates this case for the SA
Rich subpopulation.

Fig 10 gives the percentages of visits in regions determined by one and two significant vari-
ables. The regions with no percentages are holes. The largest percentage in SA Rich is in the
subregion

RHH�40;HS�3 ¼ fp ¼ ðx; yÞ : x ¼ 11 � ��; y ¼ 01 � ��g

associated to older household head and larger household size (62%), with household head
more stable. For the other three subpopulations, the largest percentage is in the subregion

RHS�3;HH�40 ¼ fp ¼ ðx; yÞ : x ¼ 11 � ��; y ¼ 10 � ��g;

associated again to older household head and larger household size, but with household size
more stable.

Remark 6 Population-level information is visible, but detailed individual information may be
lost in the cluster. We may zoom into regions of interest (e.g. regions of high percentage of visit)
to unclutter the display, as in the SA Rich region RHH � 40, HS � 3 illustrated in Fig 11. As for indi-
vidual orbits, of interest in Fig 4 are those that seem to be ‘outliers’. They can further be analysed
e.g. by using interactive techniques such as focusing and brushing, as in dynamic parallel compo-
nent plots [20].

Regarding Remark 6, we can further analyse orbits from the SA Rich subpopulation. Fig 12
shows dominant accumulated number of transitions� 100 from state s = (x, y) to s0 = (x0, y0) in
SA Rich (i.e. density d(s, s0)� 100). Most transitions ‘idle’ at state (11111, 01234) and corre-
spond to household orbits that are constantly favourably in the five variables. As for non-idling
transitions, it is dominant between states s = (11110, 01234) and s0 = (11111, 01234) and in-
volve change in variable 4 (IF) where s! s0 indicate negative influx, and s0 ! s is non-
negative influx.

Fig 13 shows the corresponding state indices for the subset RHH � 40, HS � 3 of S5 given in Fig
11. The capacity in SA Rich households at each time step for states with cs, t � 50 is illustrated
in Fig 14. We have the following observations:

1. The capacity at state 48 = (11111, 01234) is dominant. This is expected as most orbits idle in
this state, as given by the numbers in Fig 12.

2. The capacity graphs for state pairs 48 and 47 = (11110, 01234), and 39 = (11110, 01243) and
40 = (11111, 01243), behave inversely and are almost symmetrical. Note that transition be-
tween state pair 47 and 48, and 39 and 40, are associated to change in variable 4 (IF) and 3
(AM) respectively. It is expected that capacity increase in 48 (more individuals migrating
into households) result in decrease of capacity in 47. The same argument goes for exchange
in capacity of states 39 and 40.

3. Transition between 23 = (11110, 01342) and 24 = (11111, 01342) are associated to change in
variable 2 (HD). The capacity graph of 23 (HD = 0) is always above 24, except at t = 2007.
The sharp increase in 24 (low household death) at this time corresponds to a drop in 23.

Results Regarding Purpose
We particularly use Fig 8 to draw conclusions with regard to our Purpose as stated in (Eq 1).
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Fig 8. Accumulated number of visits (height of bars) in S5 of (a) SA Rich, (b) SA Poor, (c) MOZ Rich,
and (d) MOZ Poor household orbits.

doi:10.1371/journal.pone.0123812.g008
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1. There is one dominant peak in SA Rich. This occurs at the fully fit state (11111, 01234),
where it is most stable in Q0 = 1 (HH� 40), followed by Q1 = 1 (HS� 3), and so on. For SA
Poor and MOZ Rich/Poor we find fully fit states at (11111, 10234) characterized by stability
of HS� 3, followed by HH� 40. We then associate (i) households headed by older adults

to larger APS, and (ii) larger households with lower APS.
2. The peaks for SA Poor, MOZ Rich, and MOZ Poor are at states

i:ð11111; 10234Þ iii:ð11111; 10243Þ v:ð10111; 10234Þ

ii:ð11101; 10234Þ iv:ð11110; 10243Þ vi:ð10101; 10234Þ

vii:ð01110; 10234Þ

ð7Þ

For spikes at states ii., iv., and vi., unfavourable answer is either in Q0 or Q3 (i.e. HH<40 or
A<M). We then associate young household heads and less adults to minors to poorer (i.e.
not Rich SA) households. Now spike at state vii. which is unfavourable in Q1 and Q4 (HS<3
and IF+) is also associated to poorer households. The condition of small households should
be examined.

3. Spikes at states ii., iv., v., vi., and vii. are identified with relatively stable unfavourable states
HH<40, A<M, and HS<3 with IF+. We then associate absence of visits to these states with
SA Rich, and their presence with the other three subpopulations.

4. For the two dominant peaks at states i. and ii. in MOZ Rich in Fig 8(c), A�M has a higher
peak than A<M. This is reversed in MOZ Poor in Fig 8(d). We associate MOZ Poor with a
stable, dominant population of households with small adult component.

Fig 9. Capacity at each state and each time step in the SA Rich, represented by bubbles.

doi:10.1371/journal.pone.0123812.g009
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Other Methods of Binary Multivariate Longitudinal Data Analysis
We discuss the use of other conventional methods in analysis of BMLD and mention the ad-
vantage of using orbits.

Markov Chain Model. For p binary variables, Markov chain models considers the analysis
of change over time measures inMp = {0, 1}p. Question order is arbitrarily fixed and a 2p×2p

matrix of transition probabilities is constructed [3]. If a fixed question order alone is used for
all times and for all subjects (say 012� � �(p−1)) in analysing binary multivariate longitudinal
data, then some information (e.g. clusters and holes) may not be revealed as orbits overlap in a
single row (question order) of Sp. For example, the six clusters visible in Fig 4(a) are not re-
solved in Markov analysis. This phenomenon of ‘unfolding’ states from a general case of a
fixed question order is an advantage in analysing orbits in Sp. Given the fundamental weighting

Fig 10. Percentage of visits of (a) SA Rich, (b) SA Poor, (c) MOZ Rich, and (d) MOZ Poor household orbits to regions in S5 determined by the first
and second significant variables.

doi:10.1371/journal.pone.0123812.g010
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Fig 11. Orbits in SA rich population that cluster in the regionRHH � 40, HS � 3 where both household head and household size are favourably
constant. This is the zoomed region in Fig 4(a) with high percentage of household visit.

doi:10.1371/journal.pone.0123812.g011

Fig 12. Densities d(s, s0)� 100 from state s = (x, y) to s0 = (x0, y0) in SA Rich households. Highlighted lines are self-transition, i.e. s = s0.

doi:10.1371/journal.pone.0123812.g012
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Fig 13. State indices associated to states si in the subsetRHH � 40, HS � 3 of S5 where both household head and household size are favourably
constant.

doi:10.1371/journal.pone.0123812.g013

Fig 14. Number of SA Rich household orbits (capacity) at each time step in states (a) 23, 24, 30, 39, 40, 46, 47, and 48, (b) 47 and 48 associated to
variable 4 (IF), (c) 39 and 40 associated to variable 3 (AM); 30, and 46, and (d) 23 and 24 associated to variable 2 (HD).

doi:10.1371/journal.pone.0123812.g014
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by frequency of change of variables, it is of great interest that Sp is the space of all possible states
to which subjects can change, and also captures change of significant variables. By prioritising
slowly changing variables, orbits give a natural spatial ordering of states in Sp by fitness.

Generalized Estimating Equation Model. To compare the performance of the conven-
tional statistical model to the deterministic orbit approach we have adopted a generalized esti-
mating equation (GEE) population modelling approach. In [21], the estimation-equation
approach is proposed for population average models. It is argued that in general, mixed models
involve unverifiable assumptions on the data-generating distribution resulting to potentially
misleading estimates and biased inference. We use the quasi-information criterion (QIC) to
identify the best working correlation structure to be used for our data [22]. Maximum likeli-
hood based model selection methods, such as the widely used Akaike Information Criterion
(AIC), are not directly applicable to the GEE approach [23]. The exchangeable correlation
structure proved to be the best when fitted to our data.

Before presenting the GEE model, we note that with regards to the correlated indicators,
there is potential co-linearity between the household size and certain other covariates. This is
suggested by the marginally high variance inflation factor (VIF) for this variable (Q1) of* 10
in Table 7. Further, the spearman rank correlation coefficient of 0.68 between Q1 (household
size) and Q4 (influx) in Table 8 would be cause for further concern. Removing the co-linear ef-
fect of Q1, the GEE model for a binary outcome (APS = 0/1) using a binomial family, logit link
function and an exchangeable correlation structure is given in Table 9. The VIF without Q1 is
given in Table 10.

Remark 7 The GEE model shows that HH� 40, HS� 3, HD low, A�M, IF−, and HN = SA
are more likely in the rich households. This is consistent with our favourable/unfavourable orbit
coding to APS. In addition, the model also informs us that variables associated to holes (not just
clusters) in Sp should also be analysed. In particular, the Q4 (IF) variable (associated to holes)

Table 8. Spearman’s Rank Correlation Coefficient.

Q0 Q1 Q2 Q3 Q4

Q0 1.0000

Q1 0.0251 1.0000

Q2 -0.0226 -0.0231 1.0000

Q3 0.1068 -0.2919 -0.0302 1.0000

Q4 0.0381 0.6787 -0.0114 -0.1908 1.0000

doi:10.1371/journal.pone.0123812.t008

Table 7. Variance Inflation Factor.

Variable VIF 1/VIF

Q1 10.18 0.0982

Q4 7.14 0.1340

Q2 4.73 0.2115

Q0 3.24 0.3087

Q3 2.69 0.3714

Mean VIF 5.60

doi:10.1371/journal.pone.0123812.t007
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and Q3 (AM) variable (associated to very few transitions) appear to be statistically significant
and associated to households above the absolute poverty line.

Motion Charts and Heat Maps. Amotion chart is a dynamic bubble chart that enables
the display of large multivariate data with large number of data points [6]. The central object in
motion charts is a blob, or in general a 2-dimensional shape, which represents one entity from
the dataset. This allows for visualization of the data by using additional dimensions (e.g. time,
size and color of the blobs) to show different facets of the data. The dynamic appearance of the
data in a motion chart facilitates visual inspection of associations, patterns and trends in multi-
variate datasets. The problem with motion charts is that for many variables, there is not enough
dimensions (e.g. size, shape, color, etc.) to represent different entities. The advantage of using
orbits is that adding more variables is easily accommodated by the increase in the number of
fitness and significance states in the change space Sp. Fig 15 show the proportion of households
(by nationality and fitness sequence) above poverty line over the survey period while Fig 16
shows the proportion of households above poverty line by nationality and time, i.e. (HN, t),
where HN = 0 = SA, HN = 1 = MOZ, and t = 2001, 2003, 2005, 2007. The labeling of the fitness
states along the x-axis is given in Table 11. While this gives a sense of where more households
fall with regards to relative poverty probability (stratified by household nationality and then by

Table 9. GEEModel removing the co-linear effect ofQ1.

GEE population-averaged model Number of obs = 22270

Group variable: hh_id Number of groups = 5567

Link: logit Obs per group: min = 4

Family: binomial avg = 4.0

Correlation: exchangeable max = 5

Wald chi2(5) = 483.36

Scale parameter: 1 Prob > chi2 = 0.0000

Q6 (APS = Rich) Odds Ratio Std. Err. z P > jzj [95% Conf. Interval]

Q0 (HH � 40) 1.2576 0.0315 9.14 0.000 1.1973 1.3209

Q2 (HD low) 1.0118 0.0338 0.35 0.724 0.9477 1.0803

Q3 (A � M) 1.3439 0.0346 11.48 0.000 1.2777 1.4134

Q4 (IF
−) 1.2846 0.0375 8.58 0.000 1.2132 1.3603

Q5 (HN = MOZ) 0.7615 0.0180 -11.51 0.000 0.7270 0.7977

_cons 0.7559 0.0345 -6.13 0.000 0.6912 0.8266

doi:10.1371/journal.pone.0123812.t009

Table 10. Variance Inflation Factor (removingQ1).

Variable VIF 1/VIF

Q2 4.43 0.2257

Q0 3.27 0.3059

Q4 3.24 0.3089

Q3 2.66 0.3762

Q5 1.37 0.7301

Mean VIF 2.99

doi:10.1371/journal.pone.0123812.t010
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nationality and poverty line status classification), it does not convey the changing trajectory of
households with time.

The heat map approach illustrated in Fig 17 reflects the observed proportion above the pov-
erty line (by nationality) represented by the amplitude to graph at the point (x, y), where the fit-
ness sequences are on the y axis and the 4 year time points (1 = 2001, 2 = 2003, 3 = 2005,
4 = 2007)are on the x-axis. While some differences can be observed by nationality, the clearer
visualisation offered by the orbit approach is evident in our opinion. The heat map approach is
not without merits (one being easy to implement) and would require more extensive and de-
tailed application to longitudinal data such as ours to fully surmise its utility relative to the de-
terministic orbit approach.

Discussion
Using variables pertaining to socio-economic determination, we have illustrated via 2-dimen-
sional orbits the dynamics and patterns of 4 subpopulations in the AHDSS. Stable and unstable
variables (in terms of frequency of change) have been identified. The high frequency of change
of IF variable (Q4) in each of the four subpopulations intuitively, is an unfavorable phenome-
non because it directly measures instability of household numbers i.e. the rapid flow of individ-
uals into and out of households, within the community. Policies that might stabilize this
phenomenon are of interest.

The value of using the method of orbits for analysis of binary multivariate longitudinal data
is that it gives a picture of how subjects and the population behave. There are no known meth-
ods that show exact visualisation of such data. Orbits can be used as an additional tool for say
demographers and social scientist in analysis of data. An additional value of the method is to

Fig 15. Proportion of households (by nationality and fitness sequence) above poverty line over the survey period 2001–2007.

doi:10.1371/journal.pone.0123812.g015
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give insight into possible cause and effect. Presentation of longitudinal data as a time-evolving
geometric orbit naturally enables visual identification of possible cause and effect along the
orbit (e.g. if only state i precedes j, then state i causes j). Using orbits for longitudinal data anal-
ysis is fundamentally different from conventional longitudinal statistical models in that it de-
velops visible orbits for fitness states and therefore extracts more information from the data.
For instance, the standard statistical model does not give a visual sense of the density of house-
holds in a given state, rather just the magnitude of association (odds ratio).

Fig 16. Proportion of households above poverty line by nationality at time (HN, t), where HN = 0 = SA, HN = 1 = MOZ, and t = 2001, 2003, 2005, 2007.

doi:10.1371/journal.pone.0123812.g016

Table 11. Label for answer combination associated to Fig 15 and 16.

s Answer s Answer s Answer s Answer

1 00000 9 01000 17 10000 25 11000

2 00001 10 01001 18 10001 26 11001

3 00010 11 01010 19 10010 27 11010

4 00011 12 01011 20 10011 28 11011

5 00100 13 01100 21 10100 29 11100

6 00101 14 01101 22 10101 30 11101

7 00110 15 01110 23 10110 31 11110

8 00111 16 01111 24 10111 32 11111

doi:10.1371/journal.pone.0123812.t011
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One obvious limitation in using orbits is that it considers only complete data. Extending the
method to accommodate missing data is necessary. Tools for (demographic) estimation from
limited, deficient and defective data [24] may be used, where longitudinal data does not satisfy
the assumption that there is no missing data, or that each variable and each subject is measured
at the same times.

The primary confounder we included and stratified on in this analysis was household head
nationality. Previous papers [12, 14, 16] on socio-economic status in Agincourt have identified
the proximal importance of household nationality as a determinant/confounder for socio-eco-
nomic status/poverty. Our GEE regression results confirm the importance of this confounder
as a determinant of poverty status. As for potential confounders of socio data-economic deter-
mination such as occupation and income, they are rarely tracked in the Agincourt HDSS. In
addition, given the large amount of missing data for these variables, we would not have be able
to apply the orbit theory to the key indicators in the manner presented currently. Within our
study period from 2001–2007, the education modules was run only in 2002 and 2006 i.e. not
directly captured in the same time points. Mozambicans generally have a significantly lower
number of education years compared to South Africans (e.g. [14]) so we believe the nationality
would also capture any confounding effects of education status. However we cannot discount
any residual confounding influence of occupation, income, and education on our results.

Supporting Information
S1 Dataset. Binary data of the four subpopulations SA Rich, SA Poor, MOZ Rich, and
MOZ Poor.
(RAR)

Fig 17. Heat map representing the observed proportion (density) above the poverty line (by nationality) and times 1 = 2001, 2 = 2003, 3 = 2005,
4 = 2007.

doi:10.1371/journal.pone.0123812.g017
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