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ABSTRACT 

The Matimba and soon to be completed Medupi power stations located in close proximity to the town 

of Lephalale are a cause for environmental concern due to the known effects that coal combustion has 

on air, soil and water quality. The Medupi power station is currently being constructed, while the 

Matimba power station may have already negatively altered the water quality of the rivers especially 

those downwind of the power stations. The Lephalala (perennial river, upwind), the Mokolo 

(perennial river, upwind) and Matlabas (seasonal river, downwind) Rivers were selected due to the 

locations relative to the power stations. The concentrations and flux of cations and sulphate ions 

within the rivers in the Waterberg District Municipality were investigated for any seasonal or annual 

patterns using monthly data from a single sampling station along each river.  Data for the 

concentrations of sodium, potassium, magnesium, calcium, ammonium and sulphate were analysed in 

conjunction with river discharge, rainfall and ambient temperature data available for each 

hydrological year from 1999 to 2010. The data were converted to seasonal and annual values in order 

to determine the influence of the quality and quantity of coal combusted as well as climatic variables 

(rainfall, temperature and discharge) on ion fluxes measured. Sodium was the dominant cation in all 

rivers, reaching a maximum concentration of 0.0015 mol.ℓ-1
 (in 2007), 0.0007 mol.ℓ-1

 (in 2007) and 

0.0006 mol.ℓ-1
 (in 2001) in the Lephalala, Mokolo and Matlabas Rivers, respectively. Other cation 

concentrations were four times lower in the Lephalala and Mokolo Rivers, while they were eight 

times lower in the Matlabas Rivers. Sulphate concentrations were approximately nine, five and 15 

times lower than the cation concentrations measured within the Lephalala, Mokolo and Matlabas 

Rivers, respectively.  The mean summed cation flux was highest in the Lephalala River (0.0015 ± 

0.0010 Eq.ℓ-1
), which was approximately 1.7 and 2.1 times higher than summed cation fluxes 

measured in the Mokolo (0.0009 ± 0.0002 Eq.ℓ-1
) and Matlabas (0.0007 ± 0.0006 Eq.ℓ-1

) Rivers. 

Cation fluxes were highest during the rainfall season (summer and spring) in the river closest to the 

Matimba power station (Mokolo Rivers) while summed cation flux in the Lephalala and Mokolo 

Rivers (located further away from the power station) showed no specific seasonality. It was, however, 

noted that the cation fluxes during spring and winter were elevated for both rivers, possibly indicating 
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that the cations are deposited onto the catchment during winter causing an increase in flux after the 

rains return in spring. Sulphate flux was highest during the dry season (winter and autumn) in the 

Lephalala River, while sulphate fluxes in the Mokolo and Matlabas Rivers were highest during spring. 

The fluxes measured in all three rivers were more often significantly altered by river discharge, when 

compared to ambient temperature. No significant relationship between rainfall and ion fluxes were 

found, possibly indicating the presence of a longer lag time that spans over months and possibly even 

years. The effect of the rainfall in one season might only be seen in the flux measured in another 

season. The sulphate fluxes within the Lephalala River were found to be significantly related to the 

amount of coal burned at the Matimba power station, which is located beyond the existing modelled 

deposition footprint. This is possibly due to the north easterly wind direction becoming less 

predominant during the dry winter months of May and June, allowing the sulphate ions to travel 

further along the south westerly axis. The water quality, defined as the magnitude of the cation and 

sulphate fluxes measured, of the rivers upwind of the power stations is worse than the Matlabas River 

which is directly within the projected area of deposition, possibly indicating that other sources of ions 

could be responsible for the greater input of ions into the river system. The Lephalala and Mokolo 

River Catchments are highly developed catchments, with a continual influx of people seeking 

employment at the mines and power stations. The current population size already exceeds the capacity 

of the existing sewerage, housing and power supply infrastructure as many households do not have 

access to these basic services. Leaching of ions from sewerage, waste water and household and 

agricultural chemicals may be the principal driver of water quality degradation within these rivers. 

This highlights the need for improved basic sanitation and industrial effluent systems within the 

rapidly developing Lephalale and surrounding informal villages. 
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CHAPTER 1: GENERAL INTRODUCTION AND RATIONALE 

The Waterberg District Municipality within the Limpopo Province of South Africa (Figure 1.1) is 

very rich in coal deposits occurring along an intracratonic rift (Cairncross 2001). Widespread 

availability of coal and the continual increase in electricity demand in South Africa (having doubled 

since 1980; Eskom 2013) has led to the area being developed into one of South Africa’s energy-

producing hubs – with various active coal mines and electricity generating coal-fired power stations 

located within the basin.  

 

Figure 1.1. The distribution of local municipalities within the Waterberg region of the Limpopo 

Province, South Africa (Source: IDP 2014). Colours are used simply to distinguish between 

municipalities. 

The Matimba coal-fired power station, fully operational since 1990, has six 665MW units that 

produce a mean of 23 789 GWh of electricity per year. The station’s sole source of coal is the 

Grootegeluk Colliery, with Matimba burning approximately 14.8 million tons of coal per annum 

(Ryan 2014). The high amounts of coal burned at power stations across South Africa, and the 

subsequent high carbon, sulphur and nitrogen emissions, have led to widespread pollution in 

1 cm = 400 000 cm 
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Mpumalanga Province and the Vaal Triangle such as the exceedences of SO2, NO2 and fine 

particulate atmospheric concentration maximum limits set by the World Health Organisation (Thomas 

and Scorgie 2006; Josipovic et al. 2011). Future exceedences of the WHO limits set for the 

atmospheric concentrations of SO2, NO2 and fine particulate are now also feared in Limpopo 

Province. 

The 4800 MW Medupi coal-fired power station will be the 7
th
 largest coal-fired power station in the 

world once construction is completed, burning 14.6 million tons of coal on an annual basis. The first 

of six units officially came online on the 30
th
 of August 2015, contributing 800 MW of power to the 

national power grid. Once Medupi power station is fully operational, a total amount of 29.4 million 

tons of coal will burned in the Waterberg District Municipality on an annual basis if both power 

stations are functioning at full capacity. The doubling of the amount of coal burned within the 

Waterberg District Municipality is expected to negatively alter the ecosystem processes within the 

system, with knock-on effects on the requirements for healthcare systems, ecosystem supply in basic 

human needs and economic performance within the Municipality. 

The Waterberg is important for its biodiversity with the Waterberg Biosphere Reserve receiving 

international status under UNESCO’s Man and Biosphere program in 2001. The reserve stretches 

over 150 000 hectares, consisting of many conservation areas and conserves a high diversity of 

species (Henning 2006), including the endangered Waterberg cycad (Encephalartos eugene-maraisii; 

Donaldson 2010) and the near-threatened fish species, the endemic Waterberg shortfin barb (Barbus 

sp. nov. ‘Waterberg’; Engelbrecht and Bills 2007). A total of 21 threatened bird species (critical, 

endangered and vulnerable species according to the IUCN Redlist) are also believed to occur within 

the area (DEA 2010). The reserve is located in the southern part of the Waterberg District 

Municipality and downwind (southwest) of the major polluting parties within the region.  

Some studies have started to determine the impacts that the power station has on the reserve and the 

surrounding natural, communal and commercial areas. Power station fallout has been linked to a 

change in the distribution of predominantly pollution-resistant crustose lichen populations (Itzkin 
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2012), increased soil acidity (Itzkin 2012) and decreased populations of already threatened faunal and 

floral species (DEA 2010). As a whole these studies, although limited, suggest the effects are 

occurring at an ecosystem scale. This has certainly been the case in other areas affected by industrial 

pollution (e.g. Gordon and Gorham 1963, Ali 1993 and Tilt 2006). Acidified surface waters are 

commonly associated with industrial emissions but are only beginning to receive attention in the 

Waterberg. This highlights the need for deeper understanding and quantification of the effects of 

deposition within the area. 

The river network within the Limpopo Province is broadly referred to as the Limpopo River Basin 

(Figure 1.2), spanning 408 000km
2
 in four countries – South Africa (184 150km

2
; 45%), Botswana 

(81 400km
2
; 20%), Mozambique (79 800km

2
; 20%) and Zimbabwe (62 900km

2
; 15%). The Limpopo 

River is 1 770km long, flowing from its origin in the Limpopo Province, South Africa, along the 

borders between South Africa and its neighbouring countries into the Indian Ocean at Xai Xai in 

Mozambique. 

 

Figure 1.2. The Limpopo River Basin, located in Southern Africa, drains catchments from South 

Africa, Botswana, Zimbabwe and Mozambique (Source: www.limpoporak.com).  

http://www.limpoporak.com/
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The main South African tributaries of the Limpopo River are (from origin to mouth) the Crocodile 

(West), Matlabas, Mokolo, Lephalala, Mogalakwena, Sand, Nzhelele, Levhuvu, Letaba and Olifants 

Rivers. The Lephalala, Mokolo and Matlabas Rivers are located close to the origin of the Limpopo 

River and drain the catchments in which Lephalale town, the Grootegeluk coal mine and Eskom’s 

Matimba power station are located. Any pollution of these headwaters would thus affect not only the 

surrounding communities but also the rest of the Limpopo River and all industries and communities 

from neighbouring countries dependant on the use of its water. 

The expected deposition footprint of the Matimba power station does not include the Lephalala and 

Mokolo Rivers sampled (Figure 1.3). The available footprint of SO2 around the Matimba power 

station initially seems to not include the Matlabas River, yet an extension of the footprint image is 

expected to include the Matlabas River. The footprint is fully discussed in the literature review. 

 

Figure 1.3. A generalised map showing the location of the Matimba and Medupi power stations, the 

sampling stations along the Lephalala, Mokolo and Matlabas Rivers as well as the modelled 

distribution of SO2 concentrations eminating from the Matimba power station. 
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1.1 The use of individual cation, summed cation and sulphate fluxes in measuring water  

quality changes 

Base cations like calcium, magnesium, potassium and sodium have various natural and anthropogenic 

sources, including dust from soils, unpaved roads, agricultural tillage and industrial emissions 

(Scorgie and Kornelius 2009). Additionally, the combustion of coal in power stations emits these 

cations into the atmosphere, from where they are deposited onto the terrestrial and aquatic systems. 

Investigating the change in the flux of individual cations provides an understanding of the most 

probable cation sources and which cations could be a cause for ecosystem and human health concerns 

if thresholds set by the South African Water Quality Guidelines of 1996 are exceeded.  

The use of summed cation flux provides an understanding of the total change in the alkalinity of the 

river system in order to interpret elevated pH values or to identify if it masks the deposition of acidic 

anions that could negatively impact ecosystem functioning and human health. Summed cations are 

useful when used in conjunction with other anions, such as sulphate, as the measured pH is the nett 

result of the deposition of both alkaline and acidic species. 

Patterns in the change in pH of both soils and rivers can mimic SO2 emissions and consequently 

sulphur concentration changes, indicating the strong influence that sulphuric acid has on the pH of 

precipitation (Vet et al. 2014). Sulphate ions are commonly dominating acidified mine waters (Singh 

1988) and are commonly used to assess if water sources have been impacted by mining operations. 

Sulphate concentrations are suitable proxies to assess the effects that coal combustion has on water 

quality in the rivers surrounding the coal-fired power stations due to the widespread availability of 

data. Elevated sulphate concentrations can occur in waters with alkaline pH values even if base cation 

deposition exceeds the deposition of sulphate, emphasising the importance of investigating the 

summed cation and sulphate fluxes together as done in this study. 

For the purpose of this study, “water quality” is defined as the magnitude of the cations and sulphate 

fluxes measured within the Lephalala, Mokolo and Matlabas Rivers. These values are compared to 

threshold values set by the South African Water Quality Guidelines (SAWQG 1996) in order to 
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determine whether the river water is clean (good quality) or polluted (bad quality). Clean water is 

water in which the fluxes of the cations and sulphate are within the target water quality range 

(TWQR) limits stipulated by the SAWQG for each individual ion. Polluted water has ion fluxes that 

exceed these limits set, while fluxes lower than the TWQR are considered to be of no concern within 

this study. When two rivers are compared, “worse water quality” indicates that higher cation or 

sulphate fluxes were measured in the one river compared to another river. It is, however, possible that 

fluxes for both rivers are still within the TWQR and of no direct concern.  

1.2  Conceptual framework of the study 

All ecosystems, including the Waterberg system, are highly interlinked with various processes acting 

at the same time (Tansley 1935). Pools of nutrients (e.g. calcium, potassium, sodium, magnesium and 

ammonium) exist within the system, while fluxes between the pools drive the chemical processes that 

occur. Conclusions on the importance of the relative magnitude of the pools and fluxes can only be 

made once all the natural and anthropogenic factors of the system are understood.  

Three rivers within the Waterberg District Municipality were studied: the Lephalala River (perennial, 

upwind), the Mokolo River (perennial, upwind) and the Matlabas River (seasonal, downwind). These 

rivers were chosen due to the location relative to the Matimba power station, with the Matlabas River 

located within the predicted footprint of the power station plumes. Data available for the selected river 

sampling stations included cation (sodium, potassium, magnesium, calcium and ammonium) and 

sulphate concentrations as well as river discharge which were used to calculate seasonal and annual 

ion fluxes from 1999 to 2011. Concentrations of cations and sulphate continually fluctuate within the 

rivers, with the measured fluxes only indicating the resultant changes. The rainfall and ambient 

temperature data available for the town of Lephalale were used to investigate the influence of climatic 

variables on measured fluxes.  

For the purposes of this study, the factors driving the change in chemical ion flux across the soil-water 

and air-water interfaces within the Waterberg District Municipality are limited to the quality and use 

of coal at the Matimba power station, changes in land cover and land use, area-specific soil 
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characteristics and changes in wind direction, wind speed, rainfall, temperature, river discharge and 

human population size (Figure 1.4).  

 

Figure 1.4. A simplified representation of the various natural and anthropogenic factors driving 

changes in chemical ion pool and flux magnitude within the Waterberg rivers. 

An understanding of how these parameters are interlinked is necessary in order to determine the 

relative size and direction of the influence that one parameter has on another (Figure 1.5). Smaller 

boxes indicate primary factors while the secondary factors are shown in larger boxes. The size of the 

arrow gives an indication of the relative impact that each factor has on another, with the impacts of 

river discharge and river ion concentrations on river ion flux expected to be the largest. Rainfall, 

atmospheric chemistry, wind, ambient temperature, human population size, land characteristics and 

coal usage can be considered to be the primary factors driving the changes in ion fluxes measured 

within the river systems. These parameters also directly impact changes in other primary factors such 

as atmospheric chemistry which is altered by changes in rainfall, wind, ambient temperature, human 

population size and coal usage at the Matimba power station. Atmospheric chemistry thus needs to be 

well understood in order to determine how it is changed by the various natural and anthropogenic 

drivers.  
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Figure 1.5. The factors driving the changes in ion fluxes measured in a river within the Waterberg 

District Municipality can broadly be divided into primary and secondary factors that are highly 

interlinked. 

The secondary factors driving changes in ion fluxes measured are discharge of the river, the ability of 

the terrestrial system to buffer ion inputs and the concentrations of the ions in the rivers. These 

secondary factors are continually altered by changes in the primary factors. The characteristics of the 

terrestrial system, including porosity, resistance to erosion and vegetation cover, also drives changes 

in river discharge and ion concentrations. Ultimately, the resultant river discharge and ion 

concentrations are the only two factors used to determine the flux of ions within the river. 

A total of 31 different scenarios are possible with different combinations of the four natural factors 

considered (rainfall, ambient temperature, river discharge and ion concentration) when calculating the 

flux of cations and sulphate within the rivers. These factors were chosen as they are easily measured 

with extensive data sets already available for the rivers in the Waterberg District Municipality. 

Sixteen of these scenarios are listed in table 1.1 while the other 15 scenarios are the inverses of 

scenarios 2 to 16. Scenario 1 is the base to which all other scenarios are compared. These scenarios 

Primary 

Secondary 
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can act as guidelines to the possible biological, physical or chemical mechanisms driving changes in 

ion fluxes when interpreting the results. 

Table 1.1. The possible scenarios and outcomes when considering different combinations of the four 

primary natural factors that can drive changes in measured cation and sulphate fluxes within river 

water. 

Scenario Rainfall Ambient 

Temperature 

River 

Discharge 

Ion 

Concentration 

 Flux 

1 Initial State Initial State Initial State Initial State  Initial State 

2 Initial State Initial State Decrease Initial State  Increase 

3 Initial State Decrease Initial State Initial State  Initial State 

4 Initial State Decrease Decrease Initial State  Increase 

5 Decrease Initial State Initial State Initial State  Initial State 

6 Decrease Initial State Decrease Initial State  Increase 

7 Decrease Decrease Initial State Initial State  Initial State 

8 Decrease Decrease Decrease Initial State  Increase 

9 Initial State Initial State Initial State Decrease  Decrease 

10 Initial State Initial State Decrease Decrease  Initial State 

11 Initial State Decrease Initial State Decrease  Decrease 

12 Initial State Decrease Decrease Decrease  Initial State 

13 Decrease Initial State Initial State Decrease  Decrease 

14 Decrease Initial State Decrease Decrease  Initial State 

15 Decrease Decrease Initial State Decrease  Decrease 

16 Decrease Decrease Decrease Decrease  Decrease 

 

If only river discharge decreases while all other parameters remain at the initial state (scenario 2), it is 

expected that the measured flux would increase. If only ambient temperature decreases while all other 

parameters remain at the initial state (scenario 3), no change in measured fluxes is expected. These 

scenarios can also be interpreted for increased river discharge or ambient temperature values. 

Decreases in river discharge are expected to directly increase ion fluxes as these two factors are 

inversely related. Decreased river discharge can occur even though rainfall remains the same 

(scenario 2 and 4) due to various reasons including run-off into groundwater, uptake of water by 

extensive vegetation cover or by rapid evaporation of rainfall due to very high ambient and thus 

surface temperatures. Decreased river discharge in scenario 6 is most probably associated with 

decreased rainfall and thus decreased surface run-off from the catchment. Decreased rainfall does not, 

however, always directly translate into significantly decreased river discharge as the river can be 

recharged by groundwater. It is therefore possible that the river discharge remains the same even 
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when decreased rainfall is measured (scenarios 5 and 7). The ion flux will remain the same as flux is 

directly influenced by discharge and not rainfall.  

In scenario 8, the decrease in all factors but ion concentration will translate into a decrease in ion flux 

due to the inverse proportionality of flux and discharge. Ion concentrations can be maintained in the 

absence of rainfall (scenarios 5 to 8) if the contribution of dry deposition is large enough to 

compensate for the decrease in wet deposition. Although rainfall and temperature does not directly 

change the flux of ions measured in the river, decreased rainfall possibly decreases river discharge 

while decreased ambient temperature to some extent alters atmospheric chemistry, decreases river 

discharge and increases ion concentration due to increased surface evaporation.   

Decreases in ion concentration while river discharge remains the same (scenarios 9, 11, 13 and 15) 

translates into decreased ion fluxes measured as ion concentration and ion flux are directly 

proportional. If both ion concentration and discharge decreases (scenarios 10, 12, 14 and 16), the ion 

flux measured is assumed to stay the same if the magnitudes of change in these two parameters are 

similar. The system in which these factors are measured is highly interlinked and complex indicating 

that each scenario needs to be understood in its entirety in order to make useful conclusion with 

regards to the possible reasons why the measured changes in ion fluxes occurred. The biological, 

physical and chemical mechanisms most likely influencing each scenario is summarized in table 1.2. 
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Table 1.2. The physical, biological and chemical mechanisms most likely to explain how rainfall (R), ambient temperature (T), river discharge (RD) and ion 

concentration (IC) ultimately alters ion flux within a river in the Waterberg District Municipality. 

 R  AT RD IC Physical  

mechanisms 

Biological  

mechanisms 

Chemical  

mechanisms 

2 = = ↓ = Delay in change in river discharge after rainfall. 
Extensive vegetation takes up water, decreasing 

runoff. 
 

3 = ↓ = = 
Changes in temperatures alter evaporation rates and 

river discharge. 

Denser vegetation cover acts as buffer against 

effects of temperature. 
 

4 = ↓ ↓ = 
Delay in change in river discharge after rainfall. 

Changes in ambient temperatures alter river 

discharge. 

Extensive vegetation takes up water, decreasing 

runoff. 
 

5 ↓ = = = 
River discharge is maintained by groundwater flow 

during decreased rainfall. 
 

Decreased wet deposition during decreased rainfall. 

Unchanged ion concentrations possibly due to other 
sources. 

6 ↓ = ↓ = 
Decreased river discharge due to decreased rainfall, 

yet some delay can be expected. 

Closer relationship between rainfall and discharge in 

residential areas due to impenetrability of the land’s 
surface. 

No change in ion concentration due to less dilution 

and decreased wet deposition 

7 ↓ ↓ = = 
River discharge is maintained by groundwater flow 

during decreased rainfall. 
 

Decreased wet deposition during decreased rainfall. 

Unchanged ion concentrations possibly due to other 

sources. 

8 ↓ ↓ ↓ = 
Decreased river discharge due to decreased rainfall, 

yet some delay can be expected. 

Closer relationship between rainfall and discharge in 

residential areas due to impenetrability of the land’s 

surface. 

No change in ion concentration due to less dilution 
and decreased wet deposition. 

9 = = = ↓ 
Most likely due to decreased atmospheric ion 

concentration as rainfall remains the same. 

Decreased ion concentration possibly due to 

increased uptake of ions by vegetation. 

Decreased leaching of ions from soils due to 

adsorption of the ions by plants. 

10 = = ↓ ↓ 

Delay in change in river discharge after rainfall. 

Decreased ion concentrations due to decreased 
leaching due to decreased water flow. 

Extensive vegetation takes up water, decreasing 

runoff. 
 

11 = ↓ = ↓ 

Decreased temperatures decrease total evaporation, 

increasing river discharge and thus decreasing ion 
concentrations. 

 

Decreased ion concentrations likely due to 

decreased atmospheric concentrations or decreased 
reaction rates in cooler temperatures. 

12 = ↓ ↓ ↓ 

Delay in change in river discharge after rainfall. 

Increased ion concentrations likely due to decreased 

dilution or decreased leaching with decreased water 
flow. 

Extensive vegetation takes up water, decreasing 

runoff. 
 

13 ↓ = = ↓ 
Decreased wet deposition of atmospheric ions with 

decreased rainfall. 
 

Ions suspended in the atmosphere in the form of 

other chemical species in absence of rainfall. 

14 ↓ = ↓ ↓ Decreased river discharge due to decreased rainfall, 

yet some delay can be expected. Decreased ion 

concentrations due to decreased wet deposition. 

  

15 ↓ ↓ = ↓ 

River discharge is maintained by groundwater flow 
during decreased rainfall. Decreased ion 

concentrations due to decreased wet deposition. 

  

16 ↓ ↓ ↓ ↓ 
Decreased rainfall during cooler months. Decreased 

ion concentrations due to decreased wet deposition. 
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Changes measured within the rivers are the nett effects of the fluxes of ions, indicating that the input-

output balances are not equal to zero. The interaction between river acidification due to sulphate 

deposition and alkalinisation due to cation deposition often neutralizes the effects of the individual ion 

fluxes to a certain extent. It can be assumed that the concentrations of cations and sulphate continually 

fluctuate within the river water, with the measured changes in water chemistry only indicating the 

resultant changes. Understanding the chemistry of the cations and sulphate from its release to its 

deposition is important as it gives an indication of how the ions change throughout the deposition 

process. 

The dissertation is structured in order to present the study aim, objectives and key questions first. The 

second chapter is the literature review, which describes the context of the study as well as the 

important coal quality and ion chemistry processes that underline the study. The third chapter 

describes the methods and materials, including field sites descriptions, data collection and processing. 

The results are presented in the fourth chapter, presenting the analyses of the temporal and spatial 

trends in pH, ion concentrations, ion fluxes and its relation to rainfall, temperature, discharge and the 

amount of coal combusted at the Matimba Power Station. The fifth and final chapter is the discussion 

in which the objectives are answered individually. A final conclusive discussion is presented, 

summarizing the findings made throughout the dissertation. 
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1.3  Aim  

The study aimed to investigate the relationship between water quality changes measured in the 

Lephalala, Mokolo and Matlabas Rivers and the changes in local climatic variables, amount of coal 

burned and quality of coal burned at the Matimba power station.   

1.4  Objectives 

Objective 1 

To describe the changes in pH, individual and summed cation and sulphate concentrations measured 

for the Lephalala, Mokolo and Matlabas Rivers from 1999 to 2011. 

        Key questions: 

1. What are the temporal trends in pH values measured for the Lephalala, Mokolo and Matlabas 

Rivers? Why do the rivers show these specific trends? 

2. What cations are the major contributors to the summed cation trends found from 1999 to 

2011? What are the possible explanations of these changes? 

3. Are the trends in summed cation and sulphate concentrations in the Lephalala, Mokolo and 

Matlabas Rivers the same?  

4. Why do concentrations increase and decrease during specific seasons and years? 

Objective 2 

To determine the annual and seasonal flux of individual cations, summed cations (using equivalent 

charges) and sulphate ions at a single sampling station along each of the Lephalala, Mokolo and 

Matlabas Rivers using long term river discharge and water quality data. This is to be done for each 

hyr\drological year from 1999 to 2010. 
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Key questions: 

1. During which year, over the period of record, is the flux of individual cations, summed 

cations and sulphate ions across the soil-water interface the greatest for each of the selected 

rivers and what are the possible reasons for this? 

2. What is the seasonal flux of individual cations, summed cations and sulphate ions from 1999 

to 2010? 

3. Does the river southwest (downwind) of the power station show different flux patterns from 

the rivers located to the northeast (upwind)? 

Objective 3 

Investigate the relationship between the amount and quality of coal burned at the Matimba power 

station and the flux of summed cations and sulphate ions in the Lephalala, Mokolo and Matlabas 

rivers at an annual resolution.  

Key questions: 

1. What relationship exists between the amount of coal burned and the measured changes in 

summed cation and sulphate ion flux? 

2. How has the quality of coal burned at Matimba power station changed since its 

commissioning in 1991? 

3. How is this relationship expected to change after Medupi power station comes online? 
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CHAPTER 2: LITERATURE REVIEW 

Coal quality and use in South African coal-fired power stations 

Emissions from coal-fired power stations are made up of flue gases, aerosols, fly ash and particulate 

matter. The ionic composition of the emissions is dependent on the quality of coal combusted and the 

combustion efficiency of the specific coal-fired power station. Lignite is the lowest quality coal and is 

commonly used as the combustion fuel in steam-electric power generation stations (Gaffney and 

Marley 2009). Other coal types generally used in coal-fired power stations across the world include 

sub-bituminous and bituminous coal (Table 2.1). Bituminous coal, characterised by its deep black 

colour, is a relatively soft coal with a quality intermediate of lignite and anthracite. Sub-bituminous 

coal has a grey to brown colour, with a quality intermediate of lignite and bituminous coal. The 

chemical composition of coal in South Africa indicates that coal produced in the country is sub-

bituminous to bituminous and of high quality. 

Table 2.1. General description, use and chemical composition after combustion of three common coal 

types used in power generation in Texas, USA, compared to values found for South African coal 

samples (Compiled from Meyers et al. 1976; McKerall et al. 1982; Gaffney and Marley 2009, Van 

der Merwe et al. 2014
A
 and Mainganye et al. 2013

B
). 

 Bituminous Sub-bituminous Lignite  

 

 

 

 

South Africa 

Description Dense black or brown coal Variable properties 

ranging from those of 

lignite to those of 

bituminous coal 

Lowest rank of 

coal 

Uses Power generation, heat 

generation and power 

applications in manufacturing 

Used primarily as 

fuel for power 

generation 

Used primarily as 

fuel for power 

generation 

    Author

A 

Author 

B 
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 c
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m
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(%
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SiO2 20 – 60 40 – 60 15 – 45 49.30 55.66 

Al2O3 5 – 35 20 – 30 10 – 25 34.00 27.95 

Fe2O3 10 – 40 4 – 10 4 – 15 5.78 3.22 

CaO 1 – 12 5 – 30 15 – 40 5.06 4.38 

MgO 0 – 5 1 – 6 3 – 10 0.99 1.91 

SO3 0 – 4 0 – 2 0 – 10 0.24 0.03 

Na2O 0 – 4 0 – 2 0 – 6 <0.01 0.31 

K2O 0 – 3 0 – 4 0 – 4 0.87 0.45 

 

When comparing South African coal to coal used across the world, South African coal can be 

considered as low sulphur coal with a mean concentration of 0.87 x 10
4
 mg S.kg

-1
 (Kalenga et al. 
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2011) and a certified concentration range of 0.40 – 1.29 x 10
4
 mg S.kg

-1
 (Wagner and Hlatshwayo 

2005). Coal sample analyses from around the world have reported measured sulphur concentrations of  

0.59 – 9.45 x 10
4
 mg S.kg

-1
 (United States of America; Hsieh and Wert 1985, Calkins 1994) and 5.40 

– 15.10 x 10
4
 mg S.kg

-1
 (Spain; Olivella et al. 2002). The average individual metal concentrations 

within South African coal have also been found to show a decreasing trend as follows: Na > Ca > Fe 

> Mg > K > Ba > Mn > Cr > Pb > Zn > Cu > As > Co > Sb > Hg, with sodium and mercury 

concentrations measured at 25 294 mg Na.kg
-1

 and 0.21 mg Hg.kg
-1

 respectively (Kalenga et al. 

2011). 

South Africa is the 6
th
 largest coal producing country in the world, producing approximately 247 

million tons of coal per annum. Approximately 27% (67 million tons per annum) of the coal produced 

is exported (Table 2.2). The quality of the coal exported is measured to be much better than that of the 

domestically used coal (Table 2.3), leaving the lowest quality coal to be burned within the local coal-

fired power stations. Gross critical values of coal combusted at power stations indicated the energy 

content and quality of coal and are often given in conjunction with volatile matter and ash content 

values, both increasing with decreased coal quality. 

South Africa is the 4
th
 largest coal consuming country in the world (Table 2.2) and both the supply 

and demand of coal (for direct use, conversion to fuels and combustion for electricity generation) has 

exponentially increased from 1950 to 2006 (Figure 2.1). The total usage of coal per annum within the 

country is still small when compared to other mega coal consumers such as China, USA and India, yet 

the increasing trend is expected to continue due to a continual increase in the demand for electricity 

associated with rapid population growth and economic development without sufficient alternatives of 

renewable energy sources.  
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Table 2.2. The global amount of hard coal produced, exported and used in major coal producing 

countries in 2009. Countries are ranked according to domestic consumption. Compiled from 

information in Eberhard (2011). 

Country Produced (Mtce*/annum) Exported (Mtce/annum) Consumed (Mtce/annum) 

China 2 971 23 2 948 

USA 919 53 866 

India 526 Negligible (estimated at 1.5 

in 2005) – imported 77 

million tons** 

603 

South 

Africa 

247 67 180 

Russia 229 116 113 

Australia 335 262 73 

Indonesia 263 230 33 

* Million tons of coal equivalents 

** Sourced from the USA EIA, August 2010 

Table 2.3. The calorific value of coal reserves located across South Africa as provided by Anglo 

American Thermal Coal (Anglo 2013). 

 Calorific value* (kcal.kg
-1

) 

Coal Deposit Thermal Export Coal Thermal Domestic Coal 

Kleinkopje 6 190 4 580 

Landau 6 210 4 170 

Mafube 6 260 5 010 

Zibulo 6 100 4 900 

*The total potential energy that the coal has that can be converted into heating energy, measured in 

kilocalories per kilogram of coal. 

 

 

Figure 2.1. South African coal production, consumption and exports: 1950 to 2006 (Marquard 2007). 

 



33 
 

The emissions, from combusted coal, serve as reactants for many atmospheric chemical processes. 

The link between coal combustion emissions and changes in ion concentrations in surrounding rivers 

can only be understood once the atmospheric chemistry of the emissions is considered. 

2.1  Atmospheric chemistry of emissions 

The emissions of oxides of sulphur compounds (including SO2) lead to several chemical and 

physical changes resulting in the formation of secondary particulate matter and aerosols due to 

oxidation. Oxidation can occur as either gas-phase oxidation (in the absence of water) or aqueous 

phase oxidation (during which water is essential). 

The reaction of SO2 with OH to form SO3 is extremely slow (Cox and Penkett 1972). When SO3 

reacts with water vapour (H2O), sulphuric acid (H2SO4) is formed which then dissolves into H
+
 and 

SO4
2-

 ions. Sulphur dioxide dissolved in water droplets occurs as three different species depending on 

how far along the reaction chain the specific constituent is. These three species are hydrated SO2, 

bisulphite ion (HSO3
-
) and the sulphite ion (SO3

2-
). The sulphite ions can then be oxidized by ozone to 

form sulphate ions, which is a common chemical measure of water quality. 

Nitrogen is also deposited from the emissions of coal fired power stations, at a ratio of 1 nitrogen ion 

for every 2 sulphate ions. The most important contributors to N dry deposition are ammonia (NH3), 

nitrogen dioxide (NO2) and nitric acid (HNO3; Trebs et al. 2006). Muthige (2013) found that power 

stations were not the only source of nitrogen oxides within the areas surrounding the Matimba power 

station. Nitrogen oxide concentrations were found to be closer related to low-level sources and had no 

relationship with the sulphur oxides present. Sulphur oxides were selected to investigate the impact of 

power station plumes on water quality as it was found to be more closely related to coal combustion 

emissions than low-level sources. There were also no N data available for the rivers other than NH4. 

2.1.1 Abiotic factors influencing reaction rates 

 The nature and rate of change of primary to secondary particulates depends on several factors, 

including the availability of oxygen, the humidity of the air as well as temperature (Hewitt 2001). 
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Changes in the concentrations of measured secondary compounds can thus be expected to change 

with a change in the distance of the particulates from the plume, a change in the humidity, the 

availability of water in the air and a change in ambient temperatures. 

Within the plume of a coal-fired power station, the oxidation rates of SO2 are limited and likely to be 

lower than in background air due to oxidant limitation (Richards et al. 1981; Hewitt 2001). Ozone 

(O3) acts as the main source of oxygen within the reactions and is quickly depleted by the rapid 

reaction with the oxides of nitrogen (~10 times faster than with S; Hewitt 2001), limiting or halting 

the gas-phase oxidation of SO2 within the power station plume. Once the plume has moved further 

away from the source, sufficient mixing with background air replenishes the availability of oxygen 

allowing for the oxidation of SO2 to proceed. Clark et al. (1984) estimated the oxidation rate of SO2 at 

1%.hr
-1

 within the plume while the rate was estimated to increase to 4.3%.hr
-1

 when diluted with 

background air. 

When coal-fired power station plumes interact with urban plumes close to the source an increased rate 

of oxidation of SO2 within the plume is observed, increasing from 2.2%.hr
-1

 to 4.1%.hr
-1

 (Luria et al. 

1983). Meagher and Luria (1982) found that this occurrence was due to the high background 

concentration of hydrocarbons, HO2 and RO2, in urban plumes. RO2 is the general term referring to 

oxidized free radicals. SO2 oxidation by the OH radical only occurred once the hydrocarbons were 

depleted.  

In areas that are considered to be warm and dry, such as the area surrounding the Matimba and 

Medupi power stations, the absence of humidity most of the time indicates that SO2 reaction rates are 

generally slower than in areas with increased humidity (Meagher and Luria 1982; Liebsch and De 

Pena 1982). The only driver of aqueous phase reactions in dry areas is the occurrence of sporadic 

rainfall events. When the plume comes into contact with either water droplets or clouds, the rate of 

oxidation has been found to increase significantly (5.5%.hr
-1

 to 10%.hr
-1

: Gillani et al. 1981; 1%.hr
-1

 

to 6%.hr
-1

: Dittenhoefer and De Pena 1980).  
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The combination of no rainfall and low temperatures during winter months slows the oxidation rates 

and thus deposition of SO2, as suggested by increased ambient sulphur dioxide concentrations during 

the colder months (Scorgie and Kornelius 2009). Ambient SO2 concentrations accumulate during the 

dry winter months, with highest SO4
2-

 deposition rates found with the first rainfall during 

spring/summer (Held and Mphepya 2000).    

2.2 Deposition of emissions 

Bulk deposition is the total deposition of emissions, when both dry and wet depositions for all 

chemical species present are considered. Chemical species present include the primary emission of 

SO2 and its secondary products, H2SO4 and SO4
2-

, as well as cations species such as sodium, 

magnesium, calcium, potassium and ammonium. These species are subject to continual production 

from a variety of sources and removal from the earth’s atmosphere through both dry and wet 

deposition (Hewitt 2001). 

Previous South African studies have found that the dry deposition of SO2 has the greatest contribution 

to total deposition of sulphur in the Highveld region (60 – 70%) while wet deposition is relatively 

limited (30 – 40%) due to limited rainfall (Rorich and Turner 1994, Skoroszewski 1999). Dry and wet 

depositions vary temporally and spatially, with wet deposition being more predominant at specific 

times. Although wet deposition is less predominant overall, its contribution could be considered more 

important as large amounts of ions are deposited in a very short period of time, increasing the 

instantaneous flux of ions across the air-water interface. Higher rainfall years have been found to 

correspond with years of increased total sulphur deposition, increasing the deposition by up to two 

times (Scorgie and Kornelius 2009). The mean flux (µg.m
-2

.hr
-1

) of sulphur was also found to be 

highest during summer in areas close to sources (Zunckel 1999), most probably due to the deposition 

of ions in close proximity during rainfall events. In areas further from the source, sulphur deposition 

was higher during the winter months when the particulates travelled further before being deposited.  
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2.2.1 Existing trajectories for the Waterberg District Municipality 

Winds within the Waterberg area are predominantly northeasterly and reach speeds of 0.1 - 8.0 m.s
-1

 

(Figure 2.2). The annual atmospheric SO2 concentrations originating from the Matimba power station 

have been projected to be highest downwind of the power stations at > 6 µg∙m
-3

 and concentrations of 

1 - 5 µg.m
-3

 further away (Figure 2.3; Zunckel and Raghunandan 2013). The areas directly 

surrounding the power stations have annual atmospheric SO2 concentrations of 2 to 3 µg.m
-3

, less than 

half of the concentration measured downwind.  The concentration of SO2 across the area is still 

significantly less than the limit of 50 µg.m
-3

 set by the national ambient air quality standards (DEA 

2009). Kuylenstierna et al. (2001) estimated the base cation deposition in the Waterberg to be in the 

range of 25 – 50 meq.m
-2

.yr
-1

. When the sulphate deposition values are converted from µg.m
-2

 to 

meq.m
-2

 (Table 2.4), it is clear that the deposition of base cations will not neutralise the deposition of 

sulphate species within the Waterberg area. 

 

Figure 2.2. The proportion of time that the wind blew from each of the marked directions for the 

period of 1992 to 2013. Figure was supplied by the South African Weather Service for the town of 

Lephalale. 
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Table 2.4. The expected resultant deposition in the area surrounding the Matimba power station using 

estimated sulphate and base cation deposition data. 

Sulphate 

deposition in 

µg.m
-3

 

Sulphate 

deposition in 

meq.m
-3

 

Mean base cation 

deposition in 

meq.m
-2

 * 

Resultant 

deposition in 

meq.m
-2 

pH more 

acidic or 

basic? 

1 21 37.5 -16.5  Basic 

2 42 37.5 4.5  Acidic 
3 62 37.5 24.5 Acidic 
4 84 37.5 46.5 Acidic 
5 104 37.5 66.5 Acidic 
6 125 37.5 87.5 Acidic 

*  Only a mean base cation deposition concentration is available in Zunckel and Raghunandan 

(2013). Used as the deposition concentration across the entire area surrounding the Matimba 

power station. 

 

 

 

Figure 2.3. The modelled annual average SO2 concentrations (µg.m
-3

) resulting from emissions at 

Matimba Power Station (Adapted from Zunckel and Raghunandan 2013). 

 

The annual average SO2 concentrations projected for the areas most affected (5 – 6 and >6 µg.m
-3

) are 

higher than the concentrations already measured in areas assumed to be highly impacted by the 

combustion of coal at coal-fired power stations. These areas include Middelburg, Carolina and Brits 

Matimba power station 

Lephalale 

6 

6 
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(3.6 – 4 µg.m
-3

); Witbank, Kriel and Komati (4 – 4.6 µg.m
-3

), Elandsfontein (4.44 µg.m
-3

) and 

Slangheuwel (4.77 µg.m
-3

). The city of Johannesburg has an atmospheric SO2 concentration of 5 

µg.m
-3

 (Scheifinger and Held 1997). The areas and rivers downwind of the Matimba power station are 

thus at great risk of acidifying as SO2 is deposited onto the terrestrial and aquatic systems. 

 2.2.2 Terrestrial deposition of ions and the resulting soil chemistry 

The Waterberg District Municipality is predominantly terrestrial, with less than 1% of the total 

surface area covered with rivers and wetlands (IDP 2014). The deposition of the emissions from the 

coal-fired power stations is thus mostly onto the terrestrial system, from which it may be leached into 

the rivers draining the various catchments. In order to understand how the deposition affects the 

terrestrial and eventually the aquatic systems, an understanding of the specific soil characteristics, 

land cover and soil chemistry in the Waterberg District Municipality is necessary. 

2.2.3 Soil characteristics of the Waterberg District Municipality 

The Waterberg District Municipality (WDM) is located within the Limpopo River Basin, south of the 

town of Lephalale. The lithology of the area shows that there are 26 dominant rock types (DEA 2010), 

mostly sandstone (De Klerk 2003). Sandstone is a highly porous rock type, allowing for sufficient 

drainage of the top soils and seepage of water into various water bodies.  

The WDM is covered by various soil types (Figure 2.4; Table 2.5). The type of soil indicates the 

drainage efficiency, buffering capacity as well as cation exchange capacity of a specific piece of land. 

Different soils thus differ in their capacity to buffer the effects of ions deposited on the surface of the 

soil. 
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Table 2.5. Soil types occurring within the Waterberg District Municipality, ranked from most 

common to least common. 

 

The sensitivity of the soil indicates the likelihood of the soil being acidified by acid deposition, which 

is inversely proportional to the critical threshold of the soil. The critical threshold is site specific and 

is determined using soil cation exchange capacity and base saturation. The soils within the Waterberg 

District Municipality are predominantly of class 5 (least sensitive) soil sensitivity (Table 2.6) with 

only a small area of Regosol soil just south of Vaalwater having a soil sensitivity rating of 1 (most 

Soil type Drainage Important characteristics 

Leptisol Free draining soils with low 

water holding capacity 

Associated with mountainous areas 

Acrisol Clay-rich, thus dense with 

low draining capacity 

Toxic concentrations of aluminium 

Plinthosol Non-porous Iron-rich soils 

Luvisol Good internal drainage High base saturation 

Arenosol Coarse, thus good drainage Rich in bases in dry areas 

Histosol Poor drainage Confined to poorly drained basins or areas with 

high precipitation / evaporation ratio. Often suffer 

nutrient deficiency 

Lixisol Free draining Low cation exchange capacity, base saturation > 

50%, high pH, low nutrient availability 

Regosol Fine soil, weak drainage Common in dry and mountainous areas 

Figure 2.4. The lithology of the Limpopo River Basin. The Waterberg District Municipality is 

highlighted. (Source: www.limpoporak.com). 

 

http://www.limpoporak.com/
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sensitive; Josipovic et al. 2011). The finer soils have higher organic matter contents due to less 

oxygen being available for decomposition processes, ultimately indicating an increased cation 

exchange capacity. These soils retain most of the ions deposited from the atmosphere, but also leach 

very few of the cations naturally occurring within the soil. 

Table 2.6. Allocated soil sensitivity classes against critical loads of acidity (Josipovic et al. 2011). 

Sensitivity class Critical load range (meq.m
-2

.yr
-1

) 

1
a 0 – 25 

2 25 – 50 

3 50 – 75 

4 75 – 100 

5
b > 100

c 

a: Most sensitive b: Least sensitive c: No critical load 

 

The non-sensitivity of the soils within the Waterberg District Municipality generally indicates high 

cation exchange capacity and high base saturation soil characteristics. Cations are thus readily 

available within the soils. Sulphate / sulphur deposition mobilizes the cations, which are either used 

by the vegetation or leached through the catchment into the water bodies. Understanding the land 

cover and use of the area is thus important in order to understand the most likely destination of any 

cations leached from the soils. 

2.2.4  Land use and cover within the Waterberg District Municipality 

The geographical size of the Waterberg District Municipality is 1.4 million hectares and the major 

land uses are linked to rural development and mining activities (IDP 2014). A very large portion of 

the area (~94%) is covered by ‘natural’ vegetation while farmlands are ~5% (Table 2.7). The relative 

proportion of irrigated land is small and limited to the areas along the Mokolo, Lephalala and 

Limpopo Rivers, indicating that the growth of crops is highly dependent on precipitation in the rest of 

the district. Mining activities within the Municipality borders are economically important, yet only 

cover a mere ~0.3% of the area. This does not, however, imply that the ecological effects of the 

mining activities are trivial. 
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Table 2.7. Land use and cover within the Waterberg District Municipality. Table was compiled from 

the information given in the Waterberg IDP 2014 - 2016. 

Land use / cover Area (ha) % cover 

Degraded forest, woodland, bush 

clumps and thicket 

1 297 184.7 94.1 

Cultivated commercial dryland 39 624.4 2.9 

Cultivated subsistence dryland 17 244.7 1.3 

Industrial area (including residence) 9 916.9 0.7 

Cultivated commercial irrigated 

land 

8 488.2 0.6 

Mines and quarries 3 609.3 0.3 

Rivers 1 532.2 0.1 

Wetlands 828.7 0.1 

Total 1 378 429.2 100.000 

 

With the rapid human population and economic growth expected to continue within the Waterberg 

District Municipality, one can expect that the percentage area covered by farmlands, industrial areas 

and mining areas will increase significantly while the area of ‘natural vegetation’ is expected to 

become smaller. This change in land cover and use will affect the input of both anions and cations 

into the natural systems, altering both soil and water chemistry. Although the rivers cover only a very 

small area, the effects of increased human habitation in each river catchment will be reflected in the 

water quality of the Waterberg Rivers draining into the Limpopo River. 

2.2.5 Soil chemistry and the effect of deposition 

The effect that anion and cation deposition has on soils depends on the difference in rate of deposition 

of the precipitation and the rate of acid neutralizing capacity (ANC) generation (Driscoll et al. 2001) 

and is thus dependant on the soil type. ANC is the ability of soils to neutralize acid inputs by 

increasing the alkalinity of the soil and is the result of terrestrial processes such as mineral 

weathering, cation exchange, immobilization of SO4
2-

 (Charles 1991) and atmospheric deposition of 

cations (Kuylenstierna et al. 2001). Anion deposition affects the ecosystem functioning when the soils 

are not basic enough to buffer the input of anions through precipitation (McGonigle et al. 2004). 

The ANC processes occur in solution phase and are closely linked to rate of water flow through the 

terrestrial system (Driscoll et al. 2001). With increased precipitation, the ANC of the soil decreases 



42 
 

due to rapid water flow and elevation of the water table into the upper soil horizon where acid 

neutralising processes are less effective. Water draining from the surface soils (during the rainy 

season) is thus more acidic, while water draining from the sub soils (predominant during the dry 

season) is less acidic due to the leaching of cations mobilised by the acid neutralising processes 

(Likens et al. 1996). 

Although anthropogenic acidification is considered to be the most important input of anions into the 

terrestrial system, natural acidification processes also contribute to the mobilisation and leaching of 

cations from the terrestrial system. Natural acidification processes include the production and 

transport of organic acids formed by decomposing plant matter as well as the organic acids formed by 

the oxidation of natural nitrogen and sulphur pools (Driscoll et al. 2001). With approximately 94% of 

the Waterberg District Municipality area covered with degraded forest, woodland, bush clumps and 

thicket, the input of organic acids from decomposing plant material is an important process within the 

system. 

Josipovic et al. (2011) compared current deposition rates of anions and cations to the critical load of 

the soils and found that the current mean acidic deposition rate of 20 - 40 meq.m
-2

.yr
-1

 in the 

Waterberg District Municipality is still well within the critical load range of 100 meq.m
-2

.yr
-1

 found 

for the soils within the area. Consequently, no exceedances of critical load values within the area have 

been measured thus far. 

The most common soil cations are sodium (Na
+
), potassium (K

+
), calcium (Ca

++
), magnesium (Mg

++
), 

hydrogen (H
+
) and ammonium (NH4

+
). The cations are leached from the terrestrial system when H

+
 

from deposited acids displaces the cations from the negatively charged soil particles and into the soil 

solution. The cations within the soil solution are either utilized by the vegetation or the microbial 

biomass (predominantly Na
+
, Ca

++ 
and Mg

++
) for growth (Kirchman 2012) or move laterally and then 

horizontally into the surrounding water bodies (Figure 2.5). In the figure, only H2SO3 and H2SO4 

inputs are represented as data for only sulphate ions were used while nitrogenous sources and 

concentrations were not included in this study. 
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Figure 2.5. A diagrammatic representation of the cations attracted by negatively charged soil particles 

and the displacement thereof by the hydrogen ions from deposited acids. 

 

2.2.6 Deposition into the aquatic system and the resulting water chemistry 

The emissions of the Matimba power station are continuously directly deposited onto the aquatic 

system within the Waterberg District Municipality. The emissions are deposited from the atmosphere 

as acids (anions) or oxides (cations), initiating chemical changes when dissolved in the river water. 

  2.2.6.1 Sulphate ions 

Anion precipitation, commonly known as “acid rain”, is a well-known consequence of increased SO2 

emissions. Secondary products formed in the atmosphere are HSO3
-
, SO3

2-
 and SO4

2-
 (Hewitt 2001). 

These products are then deposited in the form of H2SO4 (sulphuric acid) and H2SO3 (sulphurous acid) 

after reacting with free-floating or precipitation bound H
+
 ions. Once the acids are deposited they then 

dissociate back into the ionic form as they dissolve within the river water (Figure 2.6). The H3O
+
 ions 

formed during the dissociation of sulphurous acid are then dissociated into water and H
+
 ions. 



44 
 

 

Figure 2.6. Transfer of sulphur containing anions from the atmosphere into water during the river 

acidification process as a result of SO2 emissions. 

   

2.2.6.2 Cations 

The concentration of cations within river water is the result of total cation input from both direct 

deposition as well as cations leaching from soils due to soil acidification. Common cations deposited 

(as oxides) include Na
+
, Mg

++
, Ca

++
 and K

+
. In the river these cations react with HSO3

-
, SO3

2-
 and 

SO4
2-

 anions already present in the water to form salts (see Table 2.8) which are dissolved. The 

removal of anions increases the pH of the water. Any net deposition of cations as oxides will increase 

the pH due to decreased concentrations of H
+
 and increased concentrations of OH

-
 (O

2-
 + H

+
), 

increasing alkalinity. 
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Table 2.8. Reactions of commonly deposited oxides and anions originating from coal-fired power 

station emissions. 

Oxide Anion Reaction 

NaO HSO3
-
 NaO + 2HSO3

-
  2NaHSO3 + O

2- 

 SO3
2- 

NaO + SO3
2-

  NaSO3 + O
2-

 

 SO4
2- 

NaO + SO4
2-

  NaSO4 + O
2-

 

   

MgO HSO3
-
 MgO + HSO3

-
  Mg(HSO3)2 + O

2-
 

 SO3
2- 

MgO + SO3
2-

  MgSO3 + O
2- 

 SO4
2- 

MgO + SO4
2-

  MgSO4 + O
2- 

   

CaO HSO3
-
 CaO + HSO3

-
  Ca(HSO3)2 + O

2- 

 SO3
2- 

CaO + SO3
2-

  CaSO3 + O
2- 

 SO4
2- 

CaO + SO4
2-

  CaSO4 + O
2-

 

   

K2O HSO3
-
 K2O + HSO3

-
  KHSO3 + O

2- 

 SO3
2- 

K2O + SO3
2-

  K2SO3 + O
2- 

 SO4
2- 

K2O + SO4
2-

  K2SO4 + O
2- 

 

Ammonium (NH4
+
), regardless of whether it has come from decomposition or fertiliser inputs, is not 

often leached into the rivers (Hooda et al. 2000). Although it is a cation, the presence of NH4
+
 

eventually decreases the pH of water due to either oxidation to produce H
+
 ions (Equation 1) or the 

use of OH
-
 ions to produce water (Equation 2). 

 2NH4
+
 + 4O2  2NO3

-
 + 4H

+
 + 2H2O     … Equation 1 

 NH4
+
 + OH

-
  NH3 + H2O      … Equation 2 

The pH measured for a specific river is thus the nett result of all these reactions. The pH of the 

groundwater in the Waterberg has been found to be near-neutral (ranging between 6 and 8; Bester and 

Vermeulen 2010), and any pH values outside of this range would thus highlight any net changes. 

2.2.7 pH of South African Rivers 

Mountain catchment waters typically have a pH of 4.0 to 7.0 (Mackintosh et al. 2002) which is 

normal due to the chemical reactions with carbon dioxide (Galloway et al. 1982). The mean pH for 

the Limpopo subcatchment waters is elevated (8.2 ± 0.2; Chilundo et al. 2008) when compared to 

these catchments waters, yet is of no specific concern as values of up to 8.5 is considered acceptable 
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for drinking water (WHO 2003). The waters of the Olifants and Changane subcatchments have mean 

pH values of 7.8 ± 0.4 and 8.2 ± 0.2, respectively (Chilundo et al. 2008) while the pH in the Chunies 

River ranges from 8.1 to 8.6 units (Germs et al. 2004). 

The mean pH of rivers across South Africa is 8.4 ± 0.02 (Van Niekerk 2004), a value that is within the 

target range for aquacultural and irrigation purposes (Table 2.9). The pH is, however, elevated when 

compared to the target range for industrial processes and ecosystem functioning in surface waters as 

identified by the South African Water Quality Guidelines of 1996. 

Table 2.9. The pH target range values set for different water use types as determined by the South 

African Water Quality Guidelines of 1996. 

Water Use Target Range 

Aquaculture 6.5 – 9.0 

Ecosystem functioning (surface waters) 6.0 – 8.0 

Industrial processes 7.0 – 8.0 

Irrigation 6.5 – 8.4 

 

Slightly alkaline pH conditions have not yet been associated with serious consequences (SAWQG 

1996) and would be less of a concern than more acidic conditions in which acid resistant species 

replace the species naturally occurring within the system. The diel and seasonal variations in pH 

indicates that most systems are resilient to the change in water acidity, yet a variation of more than 0.5 

units from the background pH value can be a cause for concern (SAWQG 1996). 

The pH of water can be defined as the logarithm of the reciprocal of the concentration of hydrogen 

ions (H
+
) present.  Changes in pH are often misunderstood due to it being on a logarithmic scale, 

while a change of just 0.1 units means that the water is 1.3 times more acidic or alkaline (Table 2.10). 

If the threshold of 0.5 units variation is surpassed, it indicates that the water is more than 3.2 times 

more acidic or alkaline, a change that many species or processes cannot adapt to. 
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Table 2.10. The relative change in water acidity or alkalinity with every 0.1 unit change in pH 

(Murrell 2011). 

pH 

difference 

Times more 

acidic / alkaline 

pH 

difference 

Times more 

acidic / alkaline 

pH 

difference 

Times more 

acidic / alkaline 

0.1 1.3 1.1 13 2.1 126 

0.2 1.6 1.2 16 2.2 158 

0.3 2.0 1.3 20 2.3 200 

0.4 2.5 1.4 25 2.4 251 

0.5 3.2 1.5 32 2.5 316 

0.6 4.0 1.6 40 2.6 398 

0.7 5.0 1.7 50 2.7 501 

0.8 6.3 1.8 63 2.8 631 

0.9 7.9 1.9 79 2.9 794 

1.0 10.0 2.0 100 3.0 1000 

 

Measuring the pH of water is the initial step in determining the quality, yet many other parameters are 

also used. The parameters specifically identified for the purposes of this study (sodium, magnesium, 

potassium, ammonium, calcium and sulphate concentrations) also have target water quality ranges set 

by the South African Water Quality Guidelines of 1996 and are especially important when 

considering the feasibility of water for human and livestock consumption. 

2.2.8 Target water quality ranges of other standard water quality parameters in South  

 Africa 

The Department of Water Affairs and Forestry (DWAF), as it was known in 1996, developed the 

South African Water Quality Guidelines to serve as a primary source of decision-support when the 

feasibility of water for domestic and agricultural use needed to be determined. Different water uses 

have different target water quality ranges, yet the most important uses in the Waterberg District 

Municipality include domestic use, water for livestock, irrigation and industrial use (Table 2.11). 

Functioning of aquatic ecosystems is also integral to the area, while aquaculture is not of particular 

importance. 
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Table 2.11. The cation and sulphate target water quality ranges (mg∙ℓ
-1

) set for different water use 

types as determined by the South African Water Quality Guidelines of South Africa of 1996. 

 Domestic Livestock Irrigation Industrial Aquatic 

ecosystems 

Aquaculture 

Ammonium 0 – 1.0 - - - < 7 0 – 0.3 

Calcium 0 – 32  1 – 1000  - 0 – 50  -  20 – 100  

Magnesium 0 – 30  0 – 500  - - - - 

Potassium 0 – 50  - - - - - 

Sodium 0 – 100  0 – 2000  < 70 - - - 

Sulphate 0 – 200  0 – 1000  - 0 – 30  - - 

* - = no guideline values available 

Degradation of water quality due to widespread use in various sectors is often associated with large 

scale changes in water quality parameters, yet changes can also occur due to changes in climatic 

variables such as the amount of rainfall, minimum and maximum daily temperatures and river 

discharge. These changes are measured on an hourly, daily, monthly and sometimes yearly resolution 

while the measured effects do not often exceed this timeframe. These climatic variables are not 

mutually exclusive and their interaction can either reduce or exaggerate the effects measured.  

The exceedance of these target water quality ranges would be interpreted as pollution of the water 

source for the specific use. Polluted water in terms of domestic use would thus not directly translate in 

water being too polluted to be used in livestock farming. For the purposes of this study, polluted water 

is water with cation and sulphate concentrations exceeding the ranges set for domestic use (Table 

2.11). “Decreased water quality” is a relative term and would indicate the quality of a river’s water 

when compared to a river in which lower cation and sulphate concentrations were measured. 

2.3 Environmentally initiated changes in water quality 

 2.3.1 Rainfall 

The effect that increased rainfall has on water quality is site specific, depending on the size and 

seasonality of the stretch of river. Generally, the effects are divided between two outcomes – either 

increasing or decreasing water quality. The more commonly known effect of increased rainfall is the 

increase in water quality due to the dilution of excess nutrients, chemicals and other materials in the 

water (Sipaúba-Tavares et al. 2007). This effect is associated with heavy, sudden rainfall events 
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during which the volume of rain is more than the run-off of a particular pollutant, nutrient, chemical 

or eroded material (Cánovas et al. 2008). This view is more strongly held in areas with seasonal 

rivers, with flow of the river restored by heavy rainfall events early in the rainfall season. The 

deposition accumulated on the riverbed and catchment is expected to initially decrease the quality of 

the water, yet the large volume of rain dilutes the ions often masking these changes from 

measurements made at a monthly resolution. 

The second possible outcome explains that increased run-off washes any pollutants, nutrients, 

chemicals or eroded materials on surface soils into the rivers while increased discharge has been 

found to decrease the natural acid neutralizing capacity (Driscoll et al. 2001). Water quality is thus 

expected to decrease due to increased concentration of the various constituents, which is aggravated 

by the water’s decreased capability of naturally reducing the acidifying effects thereof. Merolla 

(2011) found that sulphate concentrations increased during flooding events on the Highveld of South 

Africa, supporting the general finding that acidity increases with increased rainfall. This finding is 

even more pronounced in areas closer to power stations. 

Semi-arid areas, such as the Lephalala, Matlabas and Mokolo River Catchments in the Waterberg, 

have low annual rainfall (450-500, 550-600 and 500-550 mm per annum, respectively) with rainfall 

patterns that are periodic, unpredictable and seasonal. Rainfall events after a long dry season have 

been found to accelerate water quality degradation due to pollutants being accumulated on surface 

areas during the dry season (Bae 2013). These accumulated particles are either washed off from the 

surrounding areas into the rivers, or particles on the dry river bottoms are re-suspended. A peak in 

concentrations of the various ions is thus expected to be measured soon after a rainfall event occurring 

after a dry period. 

The expected changes in discharge, ion concentration and ion flux is generalised in Figure 2.7. The 

changes measured are expected to have some lag time after the rainfall occurs, with ion concentration 

changing the quickest due to direct deposition into the river and rapid runoff from the river catchment. 

Discharge is expected to have a longer lag time as some water travels over the soil surface while large 
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amounts of water seep through the soil, filling the rivers as groundwater. The latter is a much longer 

process, with the flow of groundwater usually one order of magnitude smaller than the flow of stream 

water depending on soil specific characteristics such as porosity, permeability, specific yield and 

specific retention (Schoeneberger et al. 1998). Ion flux is a function of ion concentration and 

discharge and is thus expected to be the intermediate of these two parameters. 

Rainfall is not the only climatic variable that affects water quality. Increased rainfall together with 

increased temperature has been found to increase the concentrations of most water pollutants (Delpha 

et al. 2009). It is thus important to also understand the effect that ambient temperature has on water 

quality parameters. 

 2.3.2 Temperature  

The effect that ambient temperature has on water temperature and thus the various measured water 

quality parameters is determined by different factors such as the amount of solar radiation, heat 

intensity, wind speed, total surface area exposed and the depth of the river water. Shallow, wide 

streams are much more susceptible to changes in water temperature with change in air temperature 

than a deep, narrow river would be. Various changes within a water body occur when the air  

Figure 2.7. A generalised representation of the expected changes in discharge, ion concentration and ion 

flux due to rainfall. Time is expected to be in months, yet shorter periods of time can be expected in 

extreme weather scenarios. 



51 
 

Table 2.12. Changes occurring within rivers and other water bodies due to increased air, and thus 

water, temperature. 

Parameter Change Effects Description 

Evaporation rates Increased Negative 

(positive for N) 

With increased evaporation rates the dilution 

effect of the river water is decreased and 

increased concentrations of all major elements 

(except N; See van Vliet and Zwolsman 2008) 

are measured. Larger rivers are less sensitive 

to increased evaporation rates as a smaller 

percentage of the total volume of water is lost 

(Hamilton 2010). The larger surface areas of 

dams make it more susceptible to increased 

water loss due to evaporation. 

Decomposition 

rates 

Increased Negative Organic acids are produced from the 

decomposition of plant matter. Increased 

temperatures increase decomposition rates 

(Conant et al. 2011), thus increasing rates at 

which natural acidification processes occur. 

Chemical reaction 

rates 

Increased Negative / 

positive 

Various chemical reactions occur within the 

water body after both natural and 

anthropogenic inputs of the major elements 

considered in water quality measures. The 

increase in reaction rates can thus yield a 

negative (increased rate of acid dissociation) 

or positive (increased rate of salt formation) 

outcome. These effects are, however, 

expected to counteract one another with only 

the net result thereof being measured. 

Oxygen diffusion 

rates 

Decreased Negative The availability of oxygen in water is an 

important mechanism to counter act any 

increase in H
+
 concentration and thus acidity. 

The O
2-

 ions produced from the reaction of an 

oxide and an anion to form a salt usually 

reacts with the free H
+
 ions to produce OH

-
. If 

the rate of oxygen diffusion across the water 

surface is decreased, the O
2-

 will no longer 

neutralize the occurrence of the H
+
 ions but 

will instead react to form O2 to support 

aquatic life. During times of increased 

temperature, the pH of the water is thus 

expected to increase. 

Occurrence of 

macrophytes and 

epiphytes 

Decreased Negative Macrophytes and epiphytes occurring on top 

of the river, on the river bottom and along the 

river bank absorb chemical elements that 

occur within the water, acting as a sink 

(Carpenter and Lodge 1986). The decreased 

growth and increased death of these water 

plants increases the concentration of chemical 

elements in the water in two major ways: 

1. The uptake of chemical elements is 

decreased 

2. The release of already absorbed 

chemical elements from dying plants 

is increased. 
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temperature increases, often negatively affecting water quality. These effects are, however, reduced 

with increased wind speed which decreases air temperature and solar radiation effects. 

Changes in air temperatures and consequently surface water temperatures, initiate changes in 

evaporation, decomposition (Van Vliet and Zwolsman 2008), chemical reaction and oxygen diffusion 

(Ducharne 2008) rates as well as the occurrence of macrophytes and epiphytes (Whitehead et al. 

2000; see Table 2.12). The effect of increased temperatures can therefore be both negative and 

positive, depending on the result being measured. When interpreting the results obtained from this 

study, these parameters can only be used as possible explanations for any temperature related changes 

in cation and sulphate flux, with definite outcomes only possible when the individual rates are 

scientifically measured and compared.  

Temperatures within the Limpopo River basin are high, with high evapotranspiration rates estimated 

across the basin (Figure 2.8). High evapotranspiration rates of 2 001 to 2 500 mm per year are 

generally estimated for the Limpopo River basin, with only the tributaries within the Waterberg 

Mountains experiencing a decreased evaporation rate of 1 001 to 1 500 mm per year due to increased 

elevation. The water quality of the rivers is thus expected to be highly dependent on temperature, with 

dependence increasing with distance from the mountainous source areas.  
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Figure 2.8. Evaporation rates estimated for the Limpopo River basin. Rates are high across the basin, 

with an increase in evaporation from south to north. The Lephalala, Mokolo and Matlabas River 

catchments are highlighted (Source: www.limpoporak.com).  

 

2.4 Human population growth impacts on water quality 

Human activities widely affect the distribution, quantity and quality of water resources due to their 

daily needs for food, water, sanitation, shelter, energy, transport and recreation. Ironically, the 

development made possible by the availability of water also hinders further development once 

unmanaged water systems become too polluted to be exploited. Although vast parts of the catchments 

within the Waterberg District Municipality have very low population densities, the majority of the 

human population within the Municipality are living around the town of Lephalale and its surrounding 

industrial operations.  

The human footprint on the landscape within a catchment can be used to understand how humans are 

altering the quality of water resources. A high human footprint index of 41 to 60 units (out of a 

possible 100) is found for the town of Lephalale and the area directly surrounding it. This scored 

http://www.limpoporak.com/
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indicated that the grid cell in which the area occurs is within the 41 to 60% least influenced part of the 

biome and is thus an intermediate score. The rest of the Waterberg District Municipality has an 

intermediate human footprint index (11 to 30 units), with only conservation areas being the exception 

(2 to 10 units; www.limpoporak.com). Based on these scores, the Mokolo River (located in close 

proximity to Lephalale) is expected to be most affected by human impacts while the Matlabas River 

(located in an area associated with conservation) is expected to be least affected. 

The human population in the Lephalale Municipality increased from 96 102 people in 2001, to 

115 768 people during the 2011 census showing an increase of 20.5% in 10 years (IDP 2014). This is 

expected to indirectly alter the water quality of the Mokolo River which flows through the town. With 

27% of the youth being unemployed and 38% of the population living below the breadline (less than 

R14 600 per annum) it is estimated that approximately 12 234 households depend on free basic 

services. With an average household size of 3.9 people, it can thus be estimated that at least 47 713 

people would use the water they can directly access from the river. 

 2.4.1 Direct impacts 

Common direct uses of water from the river would include drinking water, bathing, washing and 

small scale irrigation of crops grown within informal communities. Uses that directly negatively 

affect water quality are limited to bathing and washing, during which soaps (rich in nitrate) and 

cleaning detergents (regularly containing ammonia, chlorine and sodium hydroxide) are washed into 

the stream. These uses can occur either in the stream itself or in an area located within the catchment 

from which the pollutants are then washed into the rivers. High nitrate values have previously been 

found to occur in waters downstream of Alexandra Township located along the banks of the Jukskei 

River in Gauteng, South Africa (Matowanyika 2010). The effect that the direct use of the water by a 

single person would have on the quality of the water in a river is negligible, yet with the rapidly 

increasing population size in the area the summed effect is escalated to one that could negatively 

affect water quality. These effects, however, still are minimal when compared to the negative effects 

of secondary human impacts on water quality such as sewage effluent from surrounding villages. 

http://www.limpoporak.com/
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 2.4.2 Indirect impacts 

The source of water contaminants can be either a point or non-point source, with various processes 

occurring once the contaminant is released into the environment. Point source contaminants of water 

resources include discharge from sewage-treatment plants and storm water drains, chemical spills, 

seepage from landfill sites and agriculturally applied fertilizers and chemicals. In the Lephalale 

Municipality alone, more than 6 300 households do not have access to basic sanitation (IDP 2014), 

with sewage most probably discharged directly into the rivers or onto the surrounding catchments. 

Increased nitrate concentrations are measured in water systems as a result of sewage effluent (Wade et 

al. 2008) often corresponding with areas with inefficient waste water treatment works and large 

human settlements (Verheul 2012). Urban sewage is also rich in trace metals and nutrients which 

usually are positively charged cations. 

The area is commonly used for livestock (cattle, sheep, piggery and poultry) farming, but also 

produces crops such as sorghum, wheat, maize and sunflowers (IDP 2014). The addition of nitrogen 

rich fertilizers to improve the yield of crops is expected. Agricultural runoff is especially rich in 

nutrients and pesticides / herbicides (Bartram and Balance 1996). An increase in availability of 

cations would increase the pH to very alkaline conditions which could kill or harm fish by damaging 

their outer surfaces, preventing them from excreting metabolic wastes and increasing the uptake of 

salts due to osmoregulation (Evans et al. 2005). Inorganic pesticides and herbicides contain copper, 

copper sulphate, ferrous sulphate and sulphur (Zacharia 2011) that would either acidify or increase the 

pH of the water resources depending on the ratio of anions to cations present in the chemical. Point 

source pollution of water resources is a much more intensive and common process, yet is often short-

lived and easier to control and rehabilitate. 

Non-point sources are predominantly deposition from the atmosphere in the form of either 

precipitation (wet deposition) or fallout (dry deposition). Non-point sources are more diffuse and less 

intensive. These sources are, however, impossible to control once the contaminants are airborne and 

often lead to unforeseen water pollution problems over a longer period of time. 
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Large scale power generating stations emit high concentrations of gases and particulate matter into the 

air, yet domestic plumes originating from the suburban areas are important contributors. These plumes 

are predominantly due to the widespread use of automotive vehicles as well as the burning of various 

fuel types for cooking, heating and lighting especially in areas that lack the infrastructure to support 

all the people living within the settlements. With 15% of all households in the Waterberg District 

Municipality not having access to electrical connections, gas, paraffin, wood, coal and even animal 

dung are important fuel sources in their day to day living (IDP 2014). Pollutants released by the 

burning of these fuels include CO, NO2, SO2, inhalable particulates and polycyclic aromatic 

hydrocarbons (Walton and Ngcukana 2009). The use of gas, paraffin and wood has increased while 

the use of use of coal and animal dung has decreased since 2001 (Table 2.13). The SO2 emission 

factors of paraffin (0.1g∙kg
-1

) and wood (0.2g∙kg
-1

) are ~116 and ~58 times smaller than the SO2 

emission factor of coal (11.6g∙kg
-1

; Liebenberg-Enslin et al. 2007), yet still have a greater contribution 

to total domestic SO2 emissions due to the widespread use of these more affordable and easily 

accessible fuel sources. When domestic SO2 emissions are compared to emissions from other sources 

within the district, it only contributes 0.01% of the total amount of SO2 emitted (Walton and 

Ngcukana 2009; Figure 2.9). 

Table 2.13. The number of households within the Waterberg District Municipality using the various 

sources of energy and fuel for cooking, heating and lighting (IDP 2014). 

 2001 

(20 277 households) 

2011 

(29 880 households) 

 Cooking Heating Lighting Cooking Heating Lighting 

Electricity 9 174 10 515 16 904 18 046 18 059 25 398 

Gas 369 195 67 927 262 34 

Paraffin 1 598 1 139 525 2 202 1 401 164 

Candles - - 6 683 - - 4 143 

Wood 12 929 11 837 - 8 600 6 258 - 

Coal 114 137 - 18 20 - 

Animal 

dung 

49 40 - 11 15 - 

Solar 71 43 46 17 142 77 

Other 79 477 159 25 1 - 

4482 households (15%) have no electrical connections 

* - = no data available 
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Figure 2.9. Total SO2 emissions from each of the quantifiable sources identified within the Waterberg 

District (Walton and Ngcukana 2009). 

The plumes generated from household use of fuel are expected to be deposited over shorter distances 

than emissions from power generating stations, yet still negatively affecting water quality parameters 

such as the concentrations of anions and cations measured. Hourly ambient SO2 concentrations 

measured at the Marapong monitoring station (Lephalale), located upwind of the Matimba power 

station, mostly ranged between 180 to 210 ppb which is similar to the concentrations measured 

downwind of the Matimba power station (210 to 240 ppb; Muthige 2013). 

The interaction of coal combustion, atmospheric chemistry, ion deposition, soil chemistry and water 

chemistry with external drivers such as wind, rainfall, temperature and human population size results 

in the changes in pH, cation and sulphate concentrations and thus fluxes measured within a river 

system. By investigating each of the components individually, a better understanding of the temporal 

and spatial trends of these changes is gained. The extent to which the identified external drivers 

influence the chemical changes measured is explored allowing an informed decision on whether the 

combustion of coal at the Matimba power station is of human and ecosystem health concern.  
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CHAPTER 3: METHODS AND MATERIALS 

3.1 Study Site 

3.1.1 Geographic location of the power stations and selected river basins 

The Matimba (23°40'6"S 27°36'38"E) and Medupi (23°43'21.72"S 27°40'45.19"E) power stations are 

located approximately 20 kilometres west of Lephalale within the Waterberg Water Management 

Area (WMA) in the Limpopo River basin, Limpopo Province, South Africa. Matimba power station, 

which was commissioned between 1988 and 1993, has a chimney height of 250 meters expelling 

plumes high into the atmosphere. Medupi power station is still being constructed, with its chimneys 

reaching 220 meters. The Matimba power station is located only 12 kilometres northwest of the 

Medupi power station and the depositional areas are expected to overlap.   

The major sub-catchments within the Limpopo River basin include the Nzhelele, Sand, Mogalakwena, 

Lephalala, Mokolo and Matlabas River basins (Figure 3.1). The Waterberg Water Management Area 

(WMA) comprises of the Lephalala, Mokolo and Matlabas River basins located towards the western 

half of the Limpopo River basin. 

For the purposes of this study, the water quality data for the Lephalala, Mokolo and Matlabas Rivers, 

from a single sampling station along each river, were used. These rivers and specific sampling stations 

were chosen based on their location relative to the Matimba power station (Table 3.1), with the 

Lephalala and Mokolo Rivers located upwind (northeast) of the power station and the Matlabas River 

located downwind (southwest). The Matlabas River was expected to be most impacted by the effects 

of coal combustion at Matimba power station. 
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Figure 3.1. The major sub-catchments within the Limpopo Water Management Area in the Limpopo 

Province, South Africa. The location of the power stations is indicated in red (Source: 

www.dwa.gov.za) 

 

Table 3.1. Location and description of the sampling station selected for each of the Lephalala, 

Mokolo and Matlabas Rivers in relation to the Matimba power station. 

River Location of sampling station 

along each river 

Description of 

location of 

sampling station 

Direction of 

sampling 

station from 

power station 

Distance of 

sampling 

station from 

power station 
Latitude Longitude 

Lephalala 23°13'1.00"S 27°53'30.00"E
 

Ga-Seleka Village 

Bossche Diesch, 

R572 Bridge on 

Lephalala River. 

Northeast 57.9 km 

Mokolo 23°35'57.00"S 27°44'31.00"E Mokolo River at 

Moorddrift / 

Vught 

Northeast 16.3 km 

Matlabas 24° 9'34.00"S 27°28'47.00"E Matlabas River at 

Haarlem East 

Southwest 55.7 km 

 

3.1.2 The Lephalala River Catchment 

The Lephalala River has a catchment area of 4 868km
2
 (Boroto 2001; Figure 3.2) and the land is used 

predominantly for agriculture and game farming (Oberholster et al. 2010) with no industries or mines 

1 cm = 27 km 

http://www.dwa.gov.za/
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occurring within its boundaries. The river is perennial, originating in the Waterberg mountains where 

rainfall is high. It then flows north into the Limpopo River. The main tributaries of the Lephalala 

River are the Klip, Goud, Melk and Boklandspruit Rivers (Busari 2008).  

 

Figure 3.2. The Lephalala River Catchment, Limpopo, South Africa (Source: www.limpoporak.com). 

The position of the Lephalala River sampling station is indicated in red and Lephalale town in orange. 

 

The Lephalala River sampling station selected is located along the lower reaches of the river, close to 

its confluence with the Limpopo River. This site was selected as it is located upwind (northeast) of the 

Matimba power station. It is located in close proximity to a large informal settlement and is used as a 

water source for livestock and domestic use. During a site visit in late August of 2015 the river was 

non-continuous with minimal surface flow observed, most probably due to low rainfall occurring 

during the dry winter season. The impact of human settlement on the river is evident by the 

http://www.limpoporak.com/
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widespread occurrence of refuse and unwanted objects scattered in and around this section of river 

(Figure 3.3). 

 

Figure 3.3. The stretch of the Lephalala River along which the selected river sampling station is 

located. (Photos taken by Lenke Bruyns on 22 August 2015). 

The upper parts of the catchment are predominantly used for irrigation purposes through surface water 

extraction and there are many small farm dams located along the river tributaries for this purpose. The 

middle reaches of the river are surrounded by ‘pristine’ wilderness and play a vital role in the tourism 

industry within the area. The concern, however, is that there is a rapid increase in the number of hotels 

and lodges along the middle and upper reaches of the river, which could pose water quality threats if 

the effluent from these holdings is not properly managed.  

The lower, drier reaches of the river support rural subsistence as well as commercially irrigated 

cultivation with many farms located along the river banks (DWA 2013). A large number of people 
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reside in rural villages within the Lephalala River Catchment (HDA 2013) along the lower reaches of 

the river and are dependent on the river for drinking and washing purposes. 

The Lephalala River Basin has a naturalized mean annual runoff (MAR) of 150 million m
3
 (GOSA-

DWAF 2003), a denaturalized MAR of 99 million m
3
 (Gӧrgens and Boroto 1999) and an ecological 

reserve of 17 million m
3
 (GOSA-DWAF 2003). Naturalized run-off is defined as the run-off resulting 

from natural processes, such as precipitation. Denaturalized run-off is the run-off resulting from 

anthropogenic activities.  

The ratio of denaturalized to naturalized runoff is 0.66 and is considered to be an intermediate value 

indicating that the basin is in the transition of undeveloped to developed. During the months of May 

to August, precipitation is often absent. During these months the ecological reserve is maintained by 

the denaturalized MAR assumed to be supplied by the agricultural activities and discharge from the 

high density of towns (villages) located along the river (Figure 3.4). 

 

Figure 3.4. The location of towns and informal settlements around the Lephalala (red), Mokolo (blue) 

and Matlabas (green) Rivers within the Lephalale District Municipality (Source: 

mfma.treasury.gov.za). 
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             3.1.3 The Mokolo River Catchment 

The Mokolo River Catchment drains an area of 8 387km
2
 with the perennial river originating in the 

flattish hills (koppies) just north of the town of Alma and flowing north to its confluence with the 

Limpopo River at the South Africa / Botswana border (Figure 3.5). The main tributaries are 

Grootspruit, Klein Sandspruit, Heuningspruit, Malmanies, Poer-se-Loop and Rietspruit Rivers (Busari 

2008). The Mokolo Dam was built along the lower reaches of the river to supply water to Lephalale 

Municipality, Matimba power station and the Grootegeluk coal mine (DWA 2013). The dam also 

supplies water for the ongoing construction of the Medupi power station (Dhemba 2013).  

 

Figure 3.5. The Mokolo River Catchment, Limpopo, South Africa (Source: www.limpoporak.com). 

The position of the Mokolo River sampling station is indicated in red and Lephalale town in orange. 

 

Lephalale 

Vaalwater 

Alma 

Mokolo Dam 

http://www.limpoporak.com/
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Figure 3.6. The stretch of the Mokolo River along which the river sampling station is located. Arrows 

indicate the location of the pipelines and suspected water pump (Photos taken by Lenke Bruyns on 22 

August 2015). 

 

The Mokolo River sampling station is located in close proximity to the town of Lephalale and the 

surrounding mines and power stations along the lower reaches of the river. This station was selected 

as it is located directly upwind (northeast) and in close proximity to the Matimba power station and 

Lephalale town. The Mokolo River is located in closer proximity to the Matimba power station than 
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the Lephalala River. The section of river where the sampling station is located is wide and shallow. 

Signboards around the area indicate that it is marked as a mining area, with no indication of the type 

and size of mining operations. Pipelines and a pump on the river bank could indicate direct use of 

water from the river while the destination of this water is unknown (Figure 3.6). 

The catchment is well developed with industries, mines and extensive agricultural activities located 

within its borders. Three large towns (Lephalale, Vaalwater and Alma) occur within the catchment 

with the centres of each town located along the banks of the river. Mining activities within the 

catchment are expected to expand as the Mokolo River Catchment, together with the Lephalale River 

Catchment, have approximately 40% of South Africa’s remaining coal reserves (DWA 2013). The 

development of more mines and power stations within these catchments is inevitable, and already 

planned, as the coal reserves in the Highveld are nearing depletion. The ground water within the 

catchment is already not suitable for human consumption and use due to high salt content (Bester and 

Vermeulen 2010), and is believed to be due to the leaching of salts from the salt rich geology found in 

the study area (Bester 2009). Surface soils (5 – 15m) are expected to have decreased salt content and 

thus leaching due to leachable salts in this zone being washed away from the system over many years 

(Bester 2009). The deeper soils (>15m) are expected to still be rich in salts and could explain the high 

salt content of the ground water flowing through these soils. Further concerns of ground as well as 

surface water pollution are emphasized by the extensive coal mining activities and rapid, uncontrolled 

growth of informal villages within the catchment (Figure 3.4).  

Extensive irrigation of crops from the Mokolo Dam occurs within the catchment (full supply capacity 

of 146 million m
3
.yr

-1
; DWA 2013) with 87% of all water use within the catchment allocated to 

agricultural activities. Denaturalized MAR is 117 million m
3
 (Gӧrgens and Boroto 1999), while only 

the combined naturalised MAR and ecological reserve for the Mokolo / Matlabas River basins are 

available as 382 and 76 million m
3
, respectively (GOSA-DWAF 2003). The increased flow of water, 

especially as denaturalised surface run-off but also seepage, through the terrestrial system decreases 

the natural acid neutralising capacity of the soils as it has been found to be inversely proportional to 

the rate of water flow through the system. 
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             3.1.4 The Matlabas River Catchment 

The Matlabas River Catchment (Figure 3.7), draining an area of 6 014km
2
, is largely undeveloped due 

to limited water resources and thus limited economic growth potential. The river runs through 

predominantly flat area, originating in the Waterberg mountain range, with no particularly significant 

tributary (Busari 2008), flowing west towards its confluence with the Limpopo River.   

 

Figure 3.7. The Matlabas River Catchment, Limpopo, South Africa (Source: www.limpoporak.com). 

The position of the Matlabas River sampling station is indicated in red and Lephalale in orange. 

 

The Matlabas River sampling station is located along the middle to upper reaches of the river and was 

selected as it is located directly downwind (southwest) of the Matimba power station. Direct access to 

the location of the sampling station was not possible as it is located on private farmland. During a visit 

in August 2015 it was evident that construction was occurring on the property, with no indication of 

http://www.limpoporak.com/
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the nature or timespan of the operations. The Matlabas River can be assumed to be more pristine than 

the Lephalala and Mokolo Rivers, yet water quality degradation due to development may occur in the 

future. 

Although the mean annual run-off of the catchment is estimated at 49 million m
3
 per year, the 

Matlabas River is seasonal, filling during the summer rainfall season and flowing up to April/May 

each year (DWA 2013). The Matlabas River is the main water source of the Marakele National Park 

located within the catchment, providing water to the park in order to fill its three separately positioned 

man-made dams during the rainy season (Pienaar 2006). Other activities, such as irrigation of farms in 

the catchment, rely on groundwater usage due to low surface water yields (Maré 2013) and no dams 

are constructed along the flow path of the river (DWA 2013). 

No water quality problems have been reported for the Matlabas River which can be expected due to 

little development within the catchment, with land use largely limited to conservation and game 

farming. The low water availability in the catchment also does not allow for any large developments 

in the near future, yielding no direct concern regarding water quality problems within the catchment 

until this challenge is overcome through intensive planning and intervention. The Steenbokpan area, a 

quaternary catchment within the Matlabas River Catchment, is, however, part of the Lephalale 

coalfield and has already been earmarked to be mined once the water supply problems are addressed. 

According to a census in 2011, 5 723 people live within the catchment. This number is expected to 

increase exponentially once mining is initialised further limiting both water supply and water quality 

within the catchment. 

 

3.2 Data collection methodology 

3.2.1 Inorganic Chemistry data for the Lephalala, Mokolo and Matlabas Rivers 

The dataset for the inorganic chemical water quality parameters for all surface waters (rivers, lakes 

and dams) in South Africa is available online from the Water Sciences and Management Department 

at the North West University, Potchefstroom Campus 
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(http://www.waterscience.co.za/waterchemistry/data.html). This national dataset was compiled by 

Professor Jan Marten Huizenga and consists of more than 500 000 samples collected across the 

country from 1972 to 2011.  

This dataset has been used for previous preliminary analyses and investigations of change over time 

within the Waterberg Rivers (e.g. Burne 2015) and was thus the most suitable dataset to use in this 

study. The measurements of pH and the concentrations (mmol.ℓ
-1

) of sodium (Na
+
), magnesium 

(Mg
++

), calcium (Ca
++

), potassium (K
+
), ammonium (NH4

+
) and sulphate (SO4

2-
) for the Lephalala, 

Mokolo and Matlabas Rivers were extracted for 1999 to 2011.  The concentrations were converted to 

mol.ℓ
-1

 by dividing the concentrations by 1000. 

The data were available at a monthly resolution but inconsistency in both collection of samples and 

quality of lab techniques were expected to have caused the difference in the number of observations 

available for each station (Table 3.2). Although all monthly pH values were available, no cation and 

sulphate concentration values were available for specific months during the period of 1999 to 2011 in 

each of the rivers. This is thought to be due to inconsistent sampling by the designated technicians. 

The averaging of monthly values to determine annual means often masked the absence of values for 

certain months. For specific years, no values were recorded for any of the months of that year. Values 

are thus missing for specific years for each of the rivers. Years with no values were excluded from the 

analysis of water quality change patterns in the Lephalala (2003, 2006, 2008, 2009 and 2010), Mokolo 

(2007, 2008 and 2011) and Matlabas (2007 and 2008) Rivers. 

 

 

 

 

http://www.waterscience.co.za/waterchemistry/data.html
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Table 3.2. The number of sampling events recorded for each month for the Lephalala, Mokolo and 

Matlabas Rivers from 1999 to 2011. 
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Lephalala 1999 1 1 3 1 - - - - - - - - 6 

2000 1 - 3 2 2 - - 2 1 3 2 1 17 

2001 1 1 1 2 2 1 1 - - - 2 2 13 

2002 2 1 1 2 1 2 2 - 2 - - - 13 

2003 - - - - - - - - - - - - 0 

2004 1 - - 1 2 2 2 1 - - - - 9 

2005 - - 2 - - - - - - - - - 2 

2006 - - - - - - - - - - - - 0 

2007 1 1 - - - - - - - - - - 2 

2008 - - - - - - - - - - - - 0 

2009 - - - - - - - - - - - - 0 

2010 - - - - - - - - - - - - 0 

2011 - 1 - - - - - - - - - - 1 

TOTAL 63 

Mokolo 1999 2 3 5 3 3 5 4 1 - - - 1 27 

2000 1 2 2 1 2 2 - 2 2 1 3 1 19 

2001 2 2 2 2 2 2 1 3 2 2 1 2 23 

2002 2 1 1 2 1 1 1 1 1 1 1 - 13 

2003 1 1 - - - 1 1 - - - - - 4 

2004 - - - 2 1 1 2 1 1 - - - 8 

2005 - - 1 - - - 1 - - - 1 - 3 

2006 2 1 - 1 1 - 1 1 - - 1 - 8 

2007 - - - - - - - - - - 1 - 1 

2008 - - - - - - - 1 - - - - 1 

2009 - 1 - - 1 - - 1 - - 1 - 4 

2010 1 - 1 1 - 1 1 - - - - - 5 

2011 - - - - - - - - - - - - 0 

TOTAL 116 

Matlabas 1999 1 1 1 1 1 1 - - - - - - 6 

2000 - - 1 1 1 1 - 2 - - - - 6 

2001 - 1 1 1 1 1 1 2 - - 1 1 10 

2002 1 1 1 - - - 1 - - - - - 4 

2003 - 1 1 - - - - - - - - - 2 

2004 - - - - - 1 - - - - - - 1 

2005 - - 1 - - - - - - - - - 1 

2006 - 1 - 1 1 - 1 1 - - - - 5 

2007 - - - - - - - - - - - - 0 

2008 - - - - - - - - - - - - 0 

2009 - - - - - - - - 1 - - - 1 

2010 1 1 1 1 - - 1 - - 1 - - 6 

2011 1 1 - - - - - - - - - - 2 

TOTAL 44 

* - = no samples / data available 
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Data are most regularly available for the months during 1999 to 2002, while data become more 

sporadic from 2003. There are multiple possible reasons for this, including insufficient funding to 

maintain the planned sampling frequency or problems with the analysis of the samples in the 

laboratory. 

No outliers in the organic chemistry data were identified and excluded. Some values were very high 

or low, but needed to be investigated with other data used in order to determine whether it was in fact 

an outlier or if significant changes in water quality occurred during that specific month or year. 

3.2.2 Discharge data 

The discharge data for the Lephalala, Mokolo and Matlabas Rivers from 1999 to 2011 were accessed 

online from the Department of Water Affairs database 

(http://www.dwa.gov.za/hydrology/hymain.aspx). Discharge data (m
3
 s

-1
) were available at a monthly 

resolution, which were then converted to mean daily discharge (m
3
 s

-1
)

 
by dividing the discharge value 

by the number of days in each of the corresponding months. This was necessary in order to calculate 

flux data at various resolutions. 

All monthly discharge values from January 1999 to December 2011 were cross-checked and outliers 

were validated or rejected based on the rainfall data available for the same period. Very few high 

values were not substantiated by the rainfall recorded for the same period and were excluded from the 

discharge data available for the Lephalala (3 values) and Matlabas (7 values) Rivers. Monitoring of 

discharge in the Mokolo River was found to be very inconsistent with data missing for long periods of 

time including January 2000 to June 2000, and September 2008 to October 2009. This is thought to be 

due to faulty or unmaintained meters as these values are believed to be received from stationary 

automated meters at the gauging stations. A total of 28 measurements were excluded, including 

measurements labelled as “faulty” in the original dataset for 1999 to 2011 (Table 3.3).  

 

 

http://www.dwa.gov.za/hydrology/hymain.aspx
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Table 3.3. The description of the discharge data provided and used for the Lephalala, Mokolo and 

Matlabas Rivers. 

River Period of data collection Number of 

observations 

provided 

Number of 

observations 

used 

Original 

data 

resolution 

Lephalala January 1999 – December 2011 153 150 Monthly 

Mokolo January 1999 – December 2011 135 107 Monthly 

Matlabas January 1999 – December 2011 155 148 Monthly 

 

The exclusions of faulty and invalidated values given at a monthly resolution for the Lephalala, 

Mokolo and Matlabas Rivers were often masked by averaging the monthly values for each year. No 

discharge values were available for the Mokolo River during 2009: data were unavailable from 

January to October and “faulty” measurements were recorded in November and December of the 

same year. The absence of discharge data meant that no flux data would be available for the Mokolo 

River for 2009. 

3.2.3 Climatic data 

Daily rainfall (mm.d
-1

), maximum daily temperature (˚C), wind direction and wind speed (m.s
-1

) data 

for the town of Lephalale from 1992 to 2013 were obtained from the South African Weather Service 

(SAWS) Data Bank.  

The total monthly rainfall during the period of 1999 to 2011 was calculated by adding all daily rainfall 

measurements across each month (mm.month
-1

). These values were used to cross-validate any outliers 

in the discharge data for the same period as well as to investigate the relationship between rainfall and 

the flux of cations and sulphate ions at a monthly resolution. Annual total rainfall was calculated by 

adding all rainfall records for each month (mm.yr
-1

). These values were compared to the flux of 

cations and sulphate ions at a monthly and annual resolution.   

The dataset has only been updated to include data collected until the end of 2012, with no values 

available for 2013 onwards. Analysis of data available to the present would provide an understanding 

of how the first phase of power generation at the Medupi power station could already be contributing 

to changes in cation and sulphate fluxes within the Waterberg Rivers. The completed unit 6 of the 
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power station has a full potential of 794MW and has been utilised since May of 2015 due to 

electricity supply shortages across South Africa. The analysis of the effect of Medupi power station 

could be compromised if data collection stopped in 2011, as no data have been made available yet. 

The maximum daily temperatures (˚C) for the period of 1999 to 2011 were calculated for both an 

average monthly and average annual resolution. Monthly mean values were calculated by averaging 

the daily temperatures recorded during the month. Annual mean temperature was calculated by 

averaging the daily temperatures recorded and not the monthly averages already calculated. These 

values were respectively used to investigate the relationship between temperature and cation and 

sulphate ion flux at a monthly and an annual resolution. 

The average wind direction and speeds across the period of 1992 to 2013 were provided as rose 

diagrams for each month – all values for the same month from different years were pooled into one 

figure (e.g. January 1992 – 2013, February 1992 – 2013, etc.). Values recorded before 1999 and after 

2011 were originally included into the figures by the SAWS Data Bank. No raw data were available 

and thus the figures could not be altered to include only the period of interest. Wind data could not be 

used to investigate the relationships between ion flux and wind direction or speed, respectively, yet 

did provide an understanding of how the depositional areas around the Matimba power station are 

expected to change between seasons. 

3.2.4 Data on the quality and quantity of coal burned at the Matimba power station 

The data for the quantity and quality of coal burned at the Matimba power station from 1991 to 2013 

were requested from the Air Quality, Climate Change and Ecosystem Management Centre of 

Excellence at ESKOM’s Megawatt Park, Johannesburg. The amount of coal burned (in tonnes) was 

available at an annual resolution from 1991 to 2004 and at a monthly resolution from January 2005 to 

December 2013. The monthly data were used to compile annual amounts of coal burned at the 

Matimba power station from 1999 to 2011. This period corresponds with the period of the inorganic 

chemistry data that are available for the Lephalala, Mokolo and Matlabas Rivers. Data indicating coal 

quality (gross critical value in MJ.kg
-1

, volatile matter content in % and ash content in %, as fired) 
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were supplied at a monthly resolution from January 2005 to December 2011, but were converted to 

annual mean values for analysis purposes. No coal quality data were available from January 1999 to 

December 2004. 

3.3 Data processing methodology 

The methods of data processing are presented according to the different sets of data analysed. Data 

analysed included pH, cation and sulphate concentrations, cation and sulphate fluxes, temperature, 

rainfall, river discharge and coal quantity and quality data. 

3.3.1 Calculating summed cation concentrations using equivalent charges 

An equivalent (symbol: Eq) is the amount of a substance multiplied by its valence charge. The 

monthly equivalent concentration of each individual cation (Na, Mg, Ca, K and NH4) was calculated 

by multiplying the concentration of the cation (mol.ℓ
-1

) for each month with its valence charge. 

Monthly summed cation concentrations were calculated by adding the equivalent charges of all 

cations across each year. The annual concentrations of summed cations (using equivalent charges) 

could then be calculated by adding all monthly equivalent concentrations for each specific year (Table 

3.4). This was done for each year from 1999 to 2011 in the Lephalala, Mokolo and Matlabas Rivers, 

respectively.



74 
 

Table 3.4. A simplified representation of the use of monthly concentrations of individual cations to calculate monthly and annual summed cation 

concentrations using equivalent charges. 
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Summed cation 

concentration using 

equivalent charges 

January Na 1 1 x [Na
+
] Mg 2 2 x [Mg

++
] Ca 2 2 x [Ca

++
] K 1 1 x [K

+
] NH4 1 1 x [NH4

+] [Na+ (eq)] + [Mg++ (eq)] + [Ca++ 

(eq)] + [K+ (eq)] + [NH4
+ (eq)] 

February Na 1 1 x [Na
+
] Mg 2 2 x [Mg

++
] Ca 2 2 x [Ca

++
] K 1 1 x [K

+
] NH4 1 1 x [NH4

+] [Na+ (eq)] + [Mg++ (eq)] + [Ca++ 

(eq)] + [K+ (eq)] + [NH4
+ (eq)] 

March Na 1 1 x [Na
+
] Mg 2 2 x [Mg

++
] Ca 2 2 x [Ca

++
] K 1 1 x [K

+
] NH4 1 1 x [NH4

+] [Na+ (eq)] + [Mg++ (eq)] + [Ca++ 

(eq)] + [K+ (eq)] + [NH4
+ (eq)] 

April Na 1 1 x [Na
+
] Mg 2 2 x [Mg

++
] Ca 2 2 x [Ca

++
] K 1 1 x [K

+
] NH4 1 1 x [NH4

+] [Na+ (eq)] + [Mg++ (eq)] + [Ca++ 

(eq)] + [K+ (eq)] + [NH4
+ (eq)] 

May Na 1 1 x [Na
+
] Mg 2 2 x [Mg

++
] Ca 2 2 x [Ca

++
] K 1 1 x [K

+
] NH4 1 1 x [NH4

+] [Na+ (eq)] + [Mg++ (eq)] + [Ca++ 

(eq)] + [K+ (eq)] + [NH4
+ (eq)] 

June Na 1 1 x [Na
+
] Mg 2 2 x [Mg

++
] Ca 2 2 x [Ca

++
] K 1 1 x [K

+
] NH4 1 1 x [NH4

+] [Na+ (eq)] + [Mg++ (eq)] + [Ca++ 

(eq)] + [K+ (eq)] + [NH4
+ (eq)] 

July Na 1 1 x [Na
+
] Mg 2 2 x [Mg

++
] Ca 2 2 x [Ca

++
] K 1 1 x [K

+
] NH4 1 1 x [NH4

+] [Na+ (eq)] + [Mg++ (eq)] + [Ca++ 

(eq)] + [K+ (eq)] + [NH4
+ (eq)] 

August Na 1 1 x [Na
+
] Mg 2 2 x [Mg

++
] Ca 2 2 x [Ca

++
] K 1 1 x [K

+
] NH4 1 1 x [NH4

+] [Na+ (eq)] + [Mg++ (eq)] + [Ca++ 

(eq)] + [K+ (eq)] + [NH4
+ (eq)] 

September Na 1 1 x [Na
+
] Mg 2 2 x [Mg

++
] Ca 2 2 x [Ca

++
] K 1 1 x [K

+
] NH4 1 1 x [NH4

+] [Na+ (eq)] + [Mg++ (eq)] + [Ca++ 

(eq)] + [K+ (eq)] + [NH4
+ (eq)] 

October Na 1 1 x [Na
+
] Mg 2 2 x [Mg

++
] Ca 2 2 x [Ca

++
] K 1 1 x [K

+
] NH4 1 1 x [NH4

+] [Na+ (eq)] + [Mg++ (eq)] + [Ca++ 

(eq)] + [K+ (eq)] + [NH4
+ (eq)] 

November Na 1 1 x [Na
+
] Mg 2 2 x [Mg

++
] Ca 2 2 x [Ca

++
] K 1 1 x [K

+
] NH4 1 1 x [NH4

+] [Na+ (eq)] + [Mg++ (eq)] + [Ca++ 

(eq)] + [K+ (eq)] + [NH4
+ (eq)] 

December Na 1 1 x [Na
+
] Mg 2 2 x [Mg

++
] Ca 2 2 x [Ca

++
] K 1 1 x [K

+
] NH4 1 1 x [NH4

+] [Na+ (eq)] + [Mg++ (eq)] + [Ca++ 

(eq)] + [K+ (eq)] + [NH4
+ (eq)] 

Year ∑(Na) 1 1 x [Na
+
] ∑(Mg) 2 2 x [Mg

++
] ∑(Ca) 2 2 x [Ca

++
] ∑(K) 1 1 x [K

+
] ∑( NH4) 1 1 x [NH4

+] [Na+ (eq)] + [Mg++ (eq)] + 

[Ca++ (eq)] + [K+ (eq)] + [NH4
+ 

(eq)] 
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3.3.2 Calculating the flux of individual cations, summed cations and sulphate ions 

A flux is defined as the instantaneous rate at which pollutants are passing a point of reference on a 

river (Richards 1998), like a sampling station, and is usually expressed in units of micro-moles per 

area per time, yet mass rather that molar units can also be used (e.g. mg/m
2
/d; Jenkins 2005).  The 

estimation of riverine fluxes is used in the determination of erosion rates, the sedimentation rates in 

reservoirs, water and soil conservation planning and water quality modelling (Raymond et al. 2013). 

The calculations of the summed cation and sulphate fluxes across the soil-water interface were done 

using the formula 

                  

where Ci is the instantaneous concentration measured in sample i (mol.ℓ
-1

), Qi is the mean daily 

discharge (m
3
.s

-1
) associated with Ci, Qr is the mean discharge for each sampling period, and n is the 

number of (C,Q) data pairs per sampling period (OSPAR 1998) The final flux values were thus given 

in equivalents per litre (Eq.ℓ
-1

) per season and per year.  

Flux values were calculated at annual and seasonal resolutions for each hydrological year from 1999 

to 2010. A hydrological year is defined as the period from the 1
st
 of June of the current year until the 

31
st
 of May of the following year. The hydrological year of 1999 is thus the period of June 1999 to 

May 2000, etc. Seasonal data were divided into summer (December – February), autumn (March – 

May), winter (June – August) and spring (September – November). Seasonal data were important to 

determine the relationships between ion fluxes and climatic variables such as temperature and rainfall. 
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3.3.3 Statistical investigation of the changes in summed cation and sulphate ion fluxes  

calculated for each river 

The fluxes of summed cations and sulphate ions in the Lephalala, Mokolo and Matlabas Rivers were 

statistically compared in the following ways:  

1. A direct comparison of the absolute values of the summed cation and sulphate fluxes 

calculated only for 1999 and 2010 using ANOVAs; 

2. A comparison of the trend in ion fluxes annually measured in the three rivers from 1999 to 

2010 using non-linear regressions;  

3. A comparison of the annual mean summed cation and annual mean sulphate fluxes between 

the three rivers from 1999 to 2010 using blocked ANOVAs. Blocked ANOVAs were blocked 

by river; and 

4. A comparison of the seasonal mean summed cation and sulphate fluxes across the period of 

1999 to 2010 in each of the rivers using ANOVA. If a significant difference was found, a 

Tukey Honestly Significant Differences (HSD) test was used to determine where the 

significant difference(s) occurred. 

All data were tested for a normal distribution before using the ANOVA analyses as it is a parametric 

test. The Shapiro-Wilk normality test was used in R. Data were assumed to be normally distributed if t 

a p-value of less than 0.05 was presented. 

Mean summed cation and sulphate flux values were also compared to threshold values given in the 

South African Water Quality Guidelines (SAWQG 1996). These values were provided in milligrams 

per litre (mg.ℓ
-1

), but were converted to equivalents per litre (Equation 3; Eq.ℓ
-1

) to allow for 

comparisons. 

                                          ... Equation 3     
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3.3.4 Investigating the changes in coal quantity and quality from 1999 to 2011 

The quantity of coal burned at the Matimba power station from 1999 to 2011 was provided in tonnes. 

Data for the years prior to 2005 were only available at an annual resolution while data from 2005 to 

2011 were available at a monthly resolution. The absence of coal quality data prior to 2005 limited 

analyses investigating the significance of the change in gross critical value (MJ.kg
-1

), volatile matter 

content (%) and ash content (%) to the period of 2005 to 2011.  
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CHAPTER 4: RESULTS 

The changes in summed cation and sulphate concentrations from 1999 to 2011 and fluxes using daily 

river discharge between 1999 and 2010 were investigated for the Lephalala, Mokolo and Matlabas 

Rivers located in close proximity to the Matimba power station in the Limpopo Province in South 

Africa. All data relating to cations are presented first, which is then followed by all data relating to 

sulphate. This was done to improve the understanding of the relationships between the changes in 

fluxes and the climatic and anthropogenic variables known for the Lephalala area. 

Climatic variables considered were average maximum daily temperature and total rainfall for each 

hydrological year and month from 1999 to 2010. The anthropogenic variables were restricted to the 

quantity and quality of coal burned at the Matimba power station over the same time period. The 

changes were compared as absolute values at specific points in time as well as over the entire period. 

The changes in ion fluxes are presented first followed by the relationships with climatic and coal 

variables. 

 

4.1 Changes in pH values measured for the rivers from 1999 to 2011 

 

Analyses performed by Craig Burne (Burne 2015) revealed that the pH values of the rivers in the 

Waterberg Water Management Area generally increased by an average of one unit after the 

commissioning of the Matimba Power Station (1988 – 1991; Table 4.1).  

Table 4.1. Changes in pH values of the Lephalala, Mokolo and Matlabas Rivers after the 

commissioning of the Matimba power station (1988 - 1991) as found by Burne (2015). 

 Before 1988 After 1991 Difference 

Lephalala River 6.3 7.1 + 0.8 

Mokolo River 6.6 7.6 + 1.0 

Matlabas River 6.2 7.6 + 1.4 

 

The mean pH values from 1999 to 2011 for the Lephalala, Matlabas and Mokolo Rivers were 7.86 ± 

0.18, 7.28 ± 0.24 and 7.51 ± 0.19, respectively (Figure 4.1). A comparison of the mean pH values 
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measured from 1999 to 2011 to the mean pH values calculated for “after 1991” by Burne (2015) 

revealed that the pH of the Lephalala River further increased by 0.76 units. The pH of the Mokolo and 

Matlabas Rivers decreased by 0.09 and 0.32 units, respectively. Using pH change equivalents 

(Murrell 2011) it was found that the Lephalala River was 5.0 to 6.3 times less acidic during the period 

of 1999 to 2011, while the Mokolo and Matlabas Rivers were ~1.3 and ~2.0 times more acidic when 

compared to the values found by Burne (2015).  

 

Figure 4.1. The annual and overall mean pH values of the Lephalala, Mokolo and Matlabas Rivers 

measured from 1999 to 2011. Standard errors are indicated, with the absence of bars indicating that a 

single value was recorded during the specific year. 

 

The mean pH values across the three rivers are highly significantly different (ANOVA, d.f. = 8.644 x 

10
-6

). A Tukey Honest Significant Differences (HSD) test revealed that the mean pH values measured 

significantly differed for all rivers: Lephalala / Matlabas (p ≈ 0.000), Matlabas / Mokolo (p = 0.039) 

and Lephalala / Mokolo (p = 0.002). 

 

The pH of the Lephalala River did not significantly decrease from 2001 to 2004 (0.43 units; ANOVA, 

d.f. = 20, p = 0.0850) or from 2007 to 2011 (0.40 units; ANOVA, d.f. = 2, p = 0.5648). The latter is 

possibly due to very few data points being available for the years of 2007 and 2011 and no data being 

available for 2008 to 2010. The decreases in pH of the Mokolo River was found to be statistically not 

significant for 2003 to 2006 (0.51 units; ANOVA, d.f. = 10, p = 0.0886) and 2007 to 2009 (0.43 units; 
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ANOVA, d.f. = 4, p = 0.4874). The largest decrease in the pH of the Matlabas River was from 2003 to 

2004 and was found to be significantly different (0.72 units; ANOVA, d.f. = 2, p = 0.0162) most 

likely due to very few yet similar data points being available for 2004. 

The distributions of the pH values measured for the Lephalala and Mokolo Rivers were negatively 

skewed (Figure 4.2) – most of the values are greater than the mean values, with the mean value 

decreased by shorter periods of lower pH values. This indicates that the pH values are predominantly 

greater than ~7.95 and 7.6 in the Lephalala and Mokolo Rivers, respectively. The distribution of the 

pH values measured in the Matlabas River indicates that the data points are more evenly distributed 

over a larger range of values (6.9 to 7.7). The average pH of the Matlabas River is the result of 

continual deviations above and below the calculated average, while the pH never stabilizes at a certain 

value for longer than a year. 

  

 

Figure 4.2. The statistical distribution of the pH values measured for the Lephalala, Mokolo and 

Matlabas Rivers from 1999 to 2011. 
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A decrease in average pH and increase in variability was found from northeast to southwest. The 

Lephalala River had the highest and least variable pH, while the Matlabas River had the lowest and 

most variable pH of the rivers measured. 

 

4.2 Investigating the change in individual and summed cation concentrations measured 

in each of the rivers from 1999 to 2011 

 

Cation concentrations measured from 1999 to 2011 were sodium, magnesium, calcium, potassium and 

ammonium. Understanding which cation drives the overall fluctuations in summed cation 

concentrations is important as cations are deposited or leached from anthropogenic sources such as 

coal burning and town effluent but also by natural processes such as soil weathering and vegetation 

decomposition. The measured concentrations of individual cations were compared to the 

concentration of summed cations (using equivalent charges) for the Lephalala, Mokolo and Matlabas 

Rivers over the period of 1999 to 2011 (Figure 4.3). Summed cation concentrations measured for each 

river showed sodium to be the dominant ion, while ammonium ion concentrations are negligible.  
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Figure 4.3. Concentrations of summed cations and each individual cation measured in the Lephalala, 

Mokolo and Matlabas Rivers from 1999 to 2011. 
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Matlabas 

Mokolo 
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Table 4.2. The statistical results indicating the strength and significance of the relationship (using 

non-linear regression) between summed cation and sodium concentrations measured in the Lephalala, 

Mokolo and Matlabas Rivers from 1999 to 2011. 

River Relationship strength 

(R
2
) 

Relationship 

significance (p) 

Degrees of 

freedom 

Lephalala 0.9484 4.387 x 10
-5

 6 

Mokolo 0.9867 1.042 x 10
-10 

10 

Matlabas 0.9761 1.318 x 10
-8

 9 

 

The relationship between the change in summed cations and sodium concentrations is very strong and 

significant in all three of the rivers (Table 4.2), indicating that sodium is the major contributor to the 

summed cation concentrations measured. The sodium concentrations within the Lephalala, Mokolo 

and Matlabas Rivers ranged from 0.0003 to 0.0016, 0.0002 to 0.0007, and 0.0001 to 0.0008 moles per 

litre, respectively. The highest sodium concentrations in both the Lephalala and Mokolo Rivers 

occurred in 2007, respectively increasing by 300% and 250% from 2006. Summed cation 

concentrations in the Matlabas River were highest in 2001 and 2009, respectively increasing by 300% 

and 150% from the previous year.  

Sodium values measured in 2007 were ~2.3 and ~6.4 times higher in the Lephalala River when 

compared to the Mokolo and Matlabas Rivers, respectively. Decreased concentrations were measured 

from northeast to southwest, with the Mokolo River located in closest proximity to the town of 

Lephalale. By 2009, the measured cation concentrations in the Lephalala and Mokolo Rivers had 

decreased by ~ 38% and 75%, to 0.0018 and 0.0004 moles per litre, respectively when compared to 

values measured in 2007. The cation concentrations in the Matlabas River had increased by 100% 

reaching concentrations of 0.0008 moles per litre in 2009, still ~2.3 times lower than the 

concentration values measured for the Lephalala River in the same year. 

Concentrations of all other cations ranged from zero to 0.0003, zero to 0.0002, and zero to 0.0001 

moles per litre, for the Lephalala, Mokolo and Matlabas Rivers, respectively. This range is below the 

range of the sodium concentrations, with no overlap in range values. The increases in concentrations 

of the other cations from the year preceding the year with the highest concentration measured (Table 
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4.3) were not as high as the increases in sodium concentrations. The concentration of all cations 

(excluding sodium) increased the most in the Mokolo River, with the highest concentrations measured 

in 2007.  

Table 4.3. Percentage increase from year preceding maximum cation concentrations measured in the 

Lephalala, Mokolo and Matlabas Rivers from 1999 to 2011. 

 Lephalala River Mokolo River Matlabas River 

Sodium 300% 250% 300% 

Magnesium 50% 100% 0% 

Calcium 50% 100% 0% 

Potassium 100% 100% 0% 

Ammonium ~ 0% ~ 0% 0% 

 

The concentrations of cations in the Lephalala and Matlabas Rivers are more variable than for the 

Mokolo River. The concentrations of summed cations in the Lephalala and Matlabas Rivers 

continuously varied between 0.0008 and 0.0029, and 0.0003 and 0.0012 moles per litre, respectively. 

Cation concentrations in the Lephalala River significantly increased from 2004 to 2007 (ANOVA, d.f. 

= 9, p = 0.0234) but the increase from 1999 to 2000 was found to be not significant (ANOVA, d.f. = 

21, p = 0.0559). The increases in cation concentrations in the Matlabas River from 2000 to 2001 

(ANOVA, d.f. = 14, p = 0.2576) and from 2006 to 2009 (ANOVA, d.f. = 5, p = 0.5441) were 

respectively found to be not significant. Further analysis also indicated that the highest cation 

concentration measured for the Lephalala River (in 2007; 0.0029 ± 0.0022 mol∙ℓ
-1

) did not 

significantly differ from the lowest cation concentration (in 2004; 0.0008 ± 0.0006 mol∙ℓ
-1

) measured 

in the same river (ANOVA, d.f. = 14, p = 0.1505). 

Concentrations in the Mokolo River remained at approximately 0.0006 moles per litre, with a single 

sharp significant increase (ANOVA, d.f. = 8, p = 0.0005) to 0.0016 moles per litre in 2007. 

Statistically, the mean concentrations of cations after 2007 (0.0005 ± 0.0005 mol∙ℓ
-1

) are not 

significantly lower than the mean cation concentration before 2007 (0.0006 ± 0.0007 mol∙ℓ
-1

; Wilcox 

Test, p = 0.25). A Wilcox Test was used as data for before 2007 (Shapiro-Wilk Normality Test, p = 

0.2584) and after 2007 (Shapiro-Wilk Normality Test, p = 0.4087) were not normally distributed. The 
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input and output of cations in the Mokolo catchment can thus be assumed to be more consistent, while 

the Lephalala and Matlabas catchments are more vulnerable to the change in natural and 

anthropogenic cation inputs. 

4.3 Rainfall intensity and seasonality within the Waterberg District Municipality 

The rainfall recorded for the Lephalale town is highly variable due to the sporadic nature of the 

rainfall events occurring within this relatively dry area. During the period of 1999 to 2010, the wettest 

hydrological year recorded was 2007 (June 2007 – May 2008) with a mean monthly precipitation of 

43.78 ±50.96 mm and the driest hydrological year recorded was 2002 (June 2002 – May 2003) with a 

mean monthly rainfall of 19.90 ± 28.29 mm (Figure 4.4). The average monthly amount of rain for the 

wettest year was found to be not significantly higher than the average monthly amount of rain 

measured for the driest year (Paired T-test, p = 0.0584). A paired T-test was used as both the 2002 

(Shapiro-Wilk Normality Test, p = 0.0027) and 2007 (Shapiro-Wilk Normality Test, p = 0.0245) data 

were found to be normally distributed. The significance value for the comparison between the wettest 

and driest years is very close to 0.05 indicating that the difference is large even though it is not 

statistically significant.  

 

Figure 4.4. Mean monthly rainfall recorded for each hydrological year for Lephalale town from 1999 

to 2010. Variation is indicated with standard error bars. 
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The rainfall values in 2004 and 2005 are positively skewed (Figure 4.5) and this is expected to be true 

for the other years from 1999 to 2010 too.  

 

Figure 4.5. Mean monthly rainfall recorded for Lephalala in the driest (2002) and wettest (2007)  

hydrological years. 

 

The distribution of the data indicates that the mean and the variability of the rainfall values calculated 

are increased by the sporadic occurrences of heavy rainfall events. In 2007 hydrological year, heavy 

rainfall events occurred in November 2007 (113.4mm) and January 2008 (142.4mm), while no 

rainfall occurred during June to August 2007 and February 2008. The heaviest rainfall event during 

the 2002 hydrological year occurred in January 2003 (83.6mm). Very low rainfall was recorded from 

June to September 2002 and from April to May 2003. Generally, heavier rainfall events occur during 

the warmer months of October to March (Figure 4.6) indicating a summer rainfall region and the high 

seasonality of the rainfall events. 
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Figure 4.6. The monthly rainfall recorded for the Lephalale area for each hydrological year from 1999 to 2010. 
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4.4 Investigating the change in flux of the individual cations in the Lephalala, Mokolo and 

Matlabas Rivers from 1999 to 2010 

Ion fluxes for the Lephalala, Mokolo and Matlabas Rivers were calculated for the hydrological years 

of 1999 to 2010 from the ion concentrations and river discharge data available for these rivers. Flux 

values were calculated for individual cations and summed cations at a seasonal and annual resolution. 

4.4.1 Sodium flux within the Lephalala, Mokolo and Matlabas Rivers 

Sodium fluxes within the Lephalala, Mokolo and Matlabas Rivers ranged from 0.0002 to 0.0012   

Eq∙ℓ
-1

, 0.0002 to 0.0007 Eq∙ℓ
-1

,
 
and 0.0001 to 0.0006 Eq∙ℓ

-1
, respectively (Figure 4.7). Sodium flux 

within the Lephalala River increased by 300% from 1999 to 2000 and by 140% from 2004 to 2006, 

reaching its highest value is 2006 (0.0012 Eq∙ℓ
-1

). Sodium flux within the Mokolo River was 

relatively constant, with a single sharp increase of 133% from 2006 to 2007, reaching a value of 

0.0007 Eq∙ℓ
-1

. Sodium flux within the Matlabas River also showed sharp increases with the flux 

values increasing by 200% over a two year period from 2000 to 2002. The highest sodium flux value 

for the Matlabas River during the period of 1999 to 2010 was measured in 2002, with a value of 

0.0006 Eq∙ℓ
-1

.  
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Figure 4.7. Annual mean flux in sodium cations measured in the Lephalala, Mokolo and Matlabas 

Rivers during each hydrological year from 1999 to 2010. Standard errors are indicated, with the 

absence of bars indicating that a single value was recorded during the specific year. 

The mean sodium flux values for the Lephalala (0.0007 ± 0.0005 Eq∙ℓ
-1

), Mokolo (0.0003 ± 0.0001 

Eq∙ℓ
-1

) and Matlabas (0.0003 ± 0.0004 Eq∙ℓ
-1

) Rivers were found to be significantly different 

(ANOVA, d.f. = 64, p = 0.003). A Tukey HSD test revealed that the Mokolo and Matlabas Rivers did 

not significantly differ (p=0.874) due to mean sodium flux values being the same while large standard 

deviations were found. Significant differences did, however, exist when the Lephalala River was 

compared to the Mokolo (p = 0.003) and Matlabas (p = 0.014) Rivers, respectively. The sodium 

fluxes within the Lephalala River are thus significantly elevated when compared to the fluxes within 

the Mokolo and Matlabas Rivers. 

The mean sodium flux in the Lephalala River for each season (Figure 4.8) showed that high values 

occurred during spring of 2000 and 2002 as well as the winter of 2001. Summer and autumn sodium 

fluxes were lower, with the exception of a high sodium flux value recorded for the summer of 2007. 

The mean sodium flux value across the period of 1999 to 2010 was highest for spring (0.0011 ± 

0.0008 Eq∙ℓ
-1

), followed by winter (0.0009 ± 0.0006 Eq∙ℓ
-1

), summer (0.0005 ± 0.0004 Eq∙ℓ
-1

) and 

autumn (0.0004 ± 0.0002 Eq∙ℓ
-1

). These values were found to be not significantly different (ANOVA,  
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Figure 4.8. Mean flux in sodium cations measured in the Lephalala, Mokolo and Matlabas Rivers 

during summer, autumn, winter and spring from 1999 to 2010. 
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d.f. = 14, p = 0.227), most probably due to the high variance calculated. No significant seasonal 

differences were found within the Lephalala River, possibly indicating that the sodium fluxes within 

the river are not dependent on seasonal parameters such as rainfall and temperature. Increased flux 

values that are measured in the Lephalala River are most probably due to decreased river discharge or 

increased sodium concentrations. 

The mean sodium flux in the Mokolo River for each season (Figure 4.8) showed that the values 

remained relatively consistent across the period of 1999 to 2010, with a single increased flux 

measured during the spring of 2007. The mean flux value for each season showed the same pattern as 

the Lephalala River, with the flux being highest during spring (0.00034 ± 0.00017 Eq∙ℓ
-1

) followed by 

winter (0.00026 ± 0.00005 Eq∙ℓ
-1

), summer (0.00025 ± 0.00005 Eq∙ℓ
-1

) and autumn (0.00022 ± 

0.00002 Eq∙ℓ
-1

). These values were found to be not significantly different (ANOVA, d.f. = 22, p = 

0.145), indicating that no significant seasonal changes in sodium fluxes occur. This could possibly 

indicate that the flux of sodium within the Mokolo River is not dependent on rainfall, river discharge 

and temperature changes between seasons. Differences in sodium concentrations are thus the most 

likely reason for significant changes in sodium fluxes within the Mokolo River. 

The mean sodium flux in the Matlabas River for each season (Figure 4.8) indicated that sodium flux 

was elevated during the winter months. Summer and autumn flux values remained low, while two 

increased flux values were measured during the spring of 2009 and 2010.  

The mean flux values for each season did not show the same pattern as the other two rivers, with the 

highest values recorded during winter (0.00066 ± 0.00064 Eq∙ℓ
-1

). Spring, autumn and summer had 

mean flux values of 0.00045 ± 0.00024 Eq∙ℓ
-1

, 0.00013 ± 0.00004 Eq∙ℓ
-1

 and 0.00010 ± 0.00001  

Eq∙ℓ
-1

, respectively. The sodium values across seasons were found to be significantly different 

(ANOVA, d.f. = 19, p = 0.038). A Tukey HSD test revealed that the significant differences occurred 

between winter and autumn (p = 0.006) and between winter and summer (p = 0.007). All other pairs 

were not significantly different, indicating that sodium fluxes within the Matlabas River are consistent 

throughout most of the year with significant increases recorded during the winter months.  
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Winter months within the Waterberg District Municipality are dry and cool and the Matlabas River 

has a significantly lower discharge during this season. The increased fluxes during the winter are 

likely due to the decrease in these parameters while sodium concentrations remain relatively constant. 

Consistency of sodium concentrations in the absence of rain could also indicate that the sodium ions 

are not predominantly deposited from the atmosphere, but is likely due to input of sodium from the 

sodium rich soils surrounding and underlying the river. 

The sodium flux threshold implemented to ensure that the health of the humans dependant on the 

water is not compromised is set at ~ 4350 Eq.ℓ
-1

 (SAWQG 1996). This threshold is never surpassed at 

an annual or seasonal resolution in the Lephalala, Mokolo and Matlabas Rivers during any of the 

hydrological years from 1999 to 2010. The highest flux recorded over this period (~0.0017 Eq.ℓ
-1

; 

winter 2001 in the Lephalala River) is ~2.5 x 10
6
 times lower than the threshold value, indicating that 

sodium fluxes were of no concern for the considered period. 

Sodium fluxes in both the rivers upwind of the Matimba power station (Lephalala and Mokolo Rivers) 

show no dependence on seasonal difference in rainfall and temperature, while the river located 

downwind of the station (Matlabas River) showed elevated sodium concentrations during the dry, 

cooler winter months. The most likely explanation for this increase is the seasonal nature of the river, 

with the decreased discharge expected during winter increasing the concentration of sodium ions and 

thus flux. 

4.4.2 Magnesium flux within the Lephalala, Mokolo and Matlabas Rivers 

Magnesium fluxes ranged from 0.00006 to 0.00032 Eq∙ℓ
-1

, 0.00010 to 0.00018 Eq∙ℓ
-1

, and 0.00005 to 

0.00013 Eq∙ℓ
-1

 in the Lephalala, Mokolo and Matlabas Rivers, respectively (Figure 4.9). Magnesium 

fluxes reached a maximum value that is ~7 times smaller than the maximum sodium flux recorded 

over the same period. Magnesium fluxes within the Lephalala Rivers increased by 150% and 233% 

from 1999 to 2000 and from 2003 to 2004, respectively. The highest flux value recorded in the 

Lephalala River from 1999 to 2010 was 0.000032 Eq∙ℓ
-1

 in 2001. Mean magnesium fluxes within the 

Mokolo River showed a gradual increase of 60% from 2003 to 2005, with a decrease of 20 % from 



  

93 
 

2005 to 2006. The magnesium flux recovered to the previous value by 2007, reaching a value of 

0.00018 Eq∙ℓ
-1

. No sharp changes in magnesium flux occurred within the Matlabas River, yet the 

highest flux value (0.00013 Eq∙ℓ
-1

) was measured in 2002 after increasing by 63% from 1999. 

 
Figure 4.9. Annual mean flux in magnesium cations measured in the Lephalala, Mokolo and 

Matlabas Rivers during each hydrological year from 1999 to 2010. Standard errors are indicated, with 

the absence of bars indicating that a single value was recorded during the specific year. 

The mean magnesium fluxes recorded from 1999 to 2010 in the Lephalala (0.00020 ± 0.00015 Eq∙ℓ
-1

), 

Mokolo (0.00013 ± 0.00004 Eq∙ℓ
-1

) and Matlabas (0.00009 ± 0.00006 Eq∙ℓ
-1

) were found to be 

significantly different (ANOVA, d.f. = 64, p = 0.001). A Tukey HSD test revealed that the significant 

differences occurred between the Lephalala and Matlabas Rivers (p = 0.0006) and the Lephalala and 

Mokolo Rivers (p = 0.0204) while the Mokolo and Matlabas Rivers were not significantly different (p 

= 0.3644). The mean magnesium flux in the Lephalala River for each season (Figure 4.10) showed 

that magnesium fluxes were very high during spring of 2000 and 2002 and the winter of 2001. The 

timing corresponds with the increased flux of sodium cations measured in the same river, indicating 

that the increased flux of sodium and magnesium was probably caused by the same factor. 

Magnesium flux within the Lephalala River is highest during spring (0.000338 ± 0.000228 Eq∙ℓ
-1

), 

followed by winter (0.000295 ± 0.000182 Eq∙ℓ
-1

), autumn (0.000162 ± 0.000055 Eq∙ℓ
-1

) and summer 

(0.000100 ± 0.000041 Eq∙ℓ
-1

). These values significantly differ (ANOVA, d.f. = 14, p = 0.0493), with 
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the significant difference occurring between the flux in summer and spring (Tukey HSD, p = 0.0076). 

A significant decrease in magnesium flux within the Lephalala River occurs with the change from 

magnesium cations within the Mokolo River is not significantly influenced by the change in seasonal 

parameters such as temperature, rainfall and river discharge. 

The mean magnesium flux within the Matlabas River for each season (Figure 4.10) indicates that the 

flux during summer and autumn is less variable from year to year, while large increases were found 

during the winter of 2001 (0.000228 Eq∙ℓ
-1

) and 2002 (0.000233 Eq∙ℓ
-1

), and the spring of 2010 

(0.000187 Eq∙ℓ
-1

). The overall mean magnesium flux was ~2 times greater during spring (0.000128 ± 

0.000053 Eq∙ℓ
-1

) and winter (0.000125 ± 0.000079 Eq∙ℓ
-1

) than during autumn (0.000066 ±0.000023 

Eq∙ℓ
-1

) and summer (0.000068 ± 0.000019 Eq∙ℓ
-1

). Statistically, these values were found to be not 

significantly different (ANOVA, d.f. = 19, p = 0.0808) due to large variances, indicating that 

seasonality does not significantly influence the flux of magnesium cations within the Mokolo River.   

The threshold value used to determine whether the amount of magnesium flux in a river is dangerous 

to human health is set to ~ 2470 Eq.ℓ
-1

 (SAWQG 1996). The magnesium fluxes measured in the 

Lephalala, Mokolo and Matlabas Rivers at both an annual and seasonal resolution from 1999 to 2010 

remained well below this threshold value, with the highest magnesium flux value recorded over this 

period (0.000563 Eq.ℓ
-1

; winter 2001 in the Lephalala River) being ~4.5 x 10
6
 times smaller than the 

set threshold. This indicates that the fluxes of magnesium in these rivers were of no particular concern 

to human health over the period investigated. 

The fluxes of magnesium cations within the Mokolo and Matlabas Rivers are not significantly 

different from one season to the next, possibly indicating that the input of magnesium into the 

catchment is consistent throughout the year. Magnesium flux within the Lephalala River is consistent 

throughout most of the year, yet significantly lower flux values are found during the summer months.    
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Figure 4.10. Mean flux in magnesium cations measured in the Lephalala, Mokolo and Matlabas 

Rivers during summer, autumn, winter and spring from 1999 to 2010. 
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4.4.3 Calcium flux within the Lephalala, Mokolo and Matlabas Rivers 

Calcium fluxes within the Lephalala, Mokolo and Matlabas Rivers ranged from 131 to 305 Eq∙ℓ
-1

, 121 

to 221 Eq∙ℓ
-1

, and 52 to 172 Eq∙ℓ
-1

, respectively (Figure 4.11). Calcium fluxes within the Lephalala 

River increased by 72.71% from 1999 to 2000, decreased by 46.32% from 2002 to 2004, and again 

increased by 54.21% from 2004 to 2005. The change in calcium flux in the Mokolo River from 1999 

to 2010 mirrors the change in magnesium flux over the same period, which could possibly indicate 

that the change in both the ions is driven by the same factor. Calcium flux within the Matlabas River 

increased by 124.90% from 1999 to 2003. It decreased by the same margin from 2003 to 2004 after 

which it consistently fluctuated between 56 and 76 Eq∙ℓ
-1

. 

 

Figure 4.11. Annual flux in calcium cations measured in the Lephalala, Mokolo and Matlabas Rivers 

from during each hydrological year from 1999 to 2010. Standard errors are indicated, with the absence 

of bars indicating that a single value was recorded during the specific year. 

The mean calcium flux recorded from 1999 to 2010 in the Lephalala (0.000210 ± 0.000123 Eq∙ℓ
-1

), 

Mokolo (0.000151 ± 0.000032 Eq∙ℓ
-1

) and Matlabas (0.000096 ± 0.000041 Eq∙ℓ
-1

) Rivers were found 

to be highly significantly different (ANOVA, d.f. = 64, p = 1.608 x 10
-5

). A Tukey HSD test revealed 

that the significant differences were between all the rivers: the Lephalala and Mokolo (p = 0.0214), 

Lephalala and Matlabas (p = 0.00001) and the Mokolo and Matlabas (p = 0.0236) Rivers. The 
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calcium fluxes in the rivers located upwind of the power station are thus not significantly elevated 

when compared to the Matlabas River. 

The mean calcium flux in the Lephalala River for each season (Figure 4.12) showed elevated flux 

values during spring of 2000 and 2002. These increased calcium fluxes occurred at the same time as 

the increased sodium and magnesium fluxes were recorded. This could indicate that the elevated 

fluxes are probably due to change in the same parameters driving the changes in individual cation 

concentrations. The most likely explanatory parameter is river discharge as it is the only common 

parameter while the amount of cations deposited would differ between the different cations depending 

on the source. 

Calcium flux was highest during spring (0.000378 ± 0.000223 Eq∙ℓ
-1

), followed by winter (0.000216 

± 0.000044 Eq∙ℓ
-1

), autumn (0.000188 ± 0.000062 Eq∙ℓ
-1

) and summer (0.000140 ± 0.000061 Eq∙ℓ
-1

). 

Calcium flux significantly differed between seasons (ANOVA, d.f. = 14, 0.0321), with the significant 

difference occurring between summer and spring (Tukey HSD, p = 0.0209). All other pairs were 

found to be not significantly different indicating that the flux of calcium in the Lephalala River 

remained consistent throughout the year, yet significantly decreased with the change from spring to 

summer. The same pattern was found for the flux of magnesium within the Lephalala River, possibly 

indicating a common factor influencing the flux of these cations in the rivers.   

The mean calcium flux in the Mokolo River for each season (Figure 4.12) indicates that the flux 

remained relatively consistent across the entire period of 1999 to 2010. Although no predominant 

increases in calcium flux are seen, elevated fluxes are recorded for the winter of 2005 and the spring 

of 2006 and 2007. Calcium flux was higher during spring (0.000174 ± 0.000033 Eq∙ℓ
-1

) and summer 

(0.000155 ± 0.000010 Eq∙ℓ
-1

) when compared to winter (0.000140 ± 0.000042 Eq∙ℓ
-1

) and autumn 

(0.000134 ± 0.000009 Eq∙ℓ
-1

). These values are not significantly different (ANOVA, d.f. = 22, p = 

0.0972), indicating that change in rainfall and temperature with a change in season does not 

significantly affect the flux of calcium within the Mokolo River. When the rainy season (summer and 

spring) is broadly compared to the dry season (winter and autumn), the flux of calcium in the Mokolo  
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Figure 4.12. Mean flux in calcium cations measured in the Lephalala, Mokolo and Matlabas Rivers 

during summer, autumn, winter and spring from 1999 to 2010. 
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River is lower during the latter, indicating some (although not significant) effect of rainfall on the flux 

of calcium. An increase in flux with an increase of rainfall only occurs when discharge does not 

directly increase as well. Higher calcium fluxes are most probably due to increased ion deposition 

while river discharge remains relatively unchanged. 

The mean calcium flux in the Matlabas River for each season (Figure 4.12) indicates that flux 

remained low during all seasons for the entire period of 1999 to 2010, with one noticeable increase 

measured during the winter of 2006. The consistency of the flux of calcium was confirmed when no 

significant differences were found to exist between the overall season means (ANOVA, d.f. = 19, p 

=0.7519): winter (0.000110 ± 0.000045 Eq∙ℓ
-1

), spring (0.000097 ± 0.000036 Eq∙ℓ
-1

), autumn 

(0.000089 ± 0.000038 Eq∙ℓ
-1

) and summer (0.000087 ± 0.000047 Eq∙ℓ
-1

). 

The South African Water Quality Guidelines (1996) indicates that human health is only of concern 

once calcium fluxes surpass ~ 1600 Eq.ℓ
-1

.  No annual or seasonal fluxes measured in the Lephalala, 

Mokolo and Matlabas Rivers exceeded this threshold value. The highest value recorded from 1999 to 

2010 (0.000524 Eq.ℓ
-1

; spring 2000 in the Lephalala River) is approximately 3 x 10
6
  times smaller 

than the threshold value, indicating that calcium fluxes in these rivers are of no concern to human 

health yet. 

No common patterns in calcium flux within the Lephalala, Mokolo and Matlabas Rivers were found. 

Calcium flux significantly decreased during summer in the Lephalala River while flux in the Mokolo 

River was elevated during summer (0.000155 ± 0.000010 Eq∙ℓ
-1

) when compared to the mean 

calculated for all calcium fluxes within the river (0.000151 ± 0.000032 Eq∙ℓ
-1

). Fluxes within the 

Matlabas River did not change between seasons. The changes in the flux of calcium in the river 

upwind of the Matimba power station (Lephalala and Mokolo Rivers) could indicate that flux is 

influenced by the change in deposition intensity and distance from the source with change in rainfall. 
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4.4.4 Potassium flux within the Lephalala, Mokolo and Matlabas Rivers 

Potassium fluxes ranged from 0.000029 to 0.000080 Eq∙ℓ
-1

, 0.000024 to 0.000074 Eq∙ℓ
-1

 and 

0.000011 to 0.000047 Eq∙ℓ
-1

 in the Lephalala, Mokolo and Matlabas Rivers, respectively (Figure 

4.13). These flux values are ~ 3 to 4 times smaller than the corresponding values for sodium, 

magnesium and calcium fluxes. Potassium flux within the Lephalala River gradually increased from 

1999 to 2003, with a single decrease of 24% from 2003 to 2004. A sharp increase in flux occurred 

from 2004 to 2006 (135%) after which it decreased again by 46% to a flux value of 0.000043 Eq∙ℓ
-1

 in 

2010. The potassium flux within the Mokolo River increased by 58% from 2001 to 2002, and by 

130% from 2006 to 2007, reaching its maximum value in 2007 (0.000074 Eq∙ℓ
-1

). Changes in fluxes 

within the Matlabas River showed a similar pattern to the changes within the Lephalala and Mokolo 

Rivers, yet only indicated a single sharp increase of 290% from 2006 to 2009 reaching its maximum 

value (0.000047 Eq∙ℓ
-1

). Both the Lephalala and Mokolo Rivers reached maximum potassium flux 

values in 2007, while the maximum flux value in the Matlabas River was recorded in 2009. Potassium 

flux in the Matlabas River was possibly also highest in 2007, yet cannot be determined due to missing 

data.  

 

Figure 4.13. Annual mean flux in potassium cations measured in the Lephalala, Mokolo and Matlabas 

Rivers during each hydrological year from 1999 to 2010. Standard errors are indicated, with the 

absence of bars indicating that a single value was recorded during the specific year. 
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The mean potassium flux recorded from 1999 to 2010 in the Lephalala (0.000037 ± 0.000016 Eq∙ℓ
-1

), 

Mokolo (0.000032 ± 0.000014 Eq∙ℓ
-1

) and Matlabas (0.000022 ± 0.000014 Eq∙ℓ
-1

) Rivers was found 

to be significantly different between rivers (ANOVA, d.f. = 64, p = 0.0066). A Tukey HSD test 

showed that the Lephalala and Matlabas Rivers significantly differed (p = 0.0064), while the Mokolo 

River did not significantly differ from the Lephalala (p = 0.5106) or Matlabas (p = 0.0627) Rivers. 

The Mokolo River is located in the middle between the Lephalala and Matlabas Rivers along the NE 

to SW axis from the Matimba power station, and shares commonality with both the other rivers.  

The mean potassium flux in the Lephalala River for each season (Figure 4.14) indicated that 

potassium flux predominates within the summer season, with especially high values recorded in 2003, 

2006 and 2010. Potassium flux with the Lephalala River was higher during summer (0.000046 ± 

0.000022 Eq∙ℓ
-1

) and spring (0.000041 ± 0.000004 Eq∙ℓ
-1

) than in winter (0.000029 ± 0.000013 Eq∙ℓ
-

1
) and autumn (0.000030 ± 0.000007 Eq∙ℓ

-1
). Although these values are statistically not significantly 

different (ANOVA, d.f. = 14, p = 0.2572), it is clear that flux values are elevated during the rainy 

season (summer and spring). This could indicate that rainfall has some influence on the flux measured 

within the river even if it is statistically considered to be not significant. 

The mean potassium flux in the Mokolo River for each season (Figure 4.14) revealed that the flux was 

once again elevated during the summer and spring seasons. Elevated potassium flux values are 

recorded during summer 2005, spring 2006 and 2007 and autumn of 2010. Potassium flux within the 

Mokolo River was highest during spring (0.000038 ± 0.000019 Eq∙ℓ
-1

), followed by summer 

(0.000038 ± 0.000017 Eq∙ℓ
-1

), autumn (0.000030 ± 0.000012 Eq∙ℓ
-1

) and winter (0.000025 ± 

0.000005 Eq∙ℓ
-1

). These values were found to be not significantly different (ANOVA, d.f. = 22, p = 

0.2461) most probably due to large variance. It is, however, seen that the potassium fluxes are 

elevated in the rainy season (spring and summer) when compared to the dry season (autumn and 

winter) possibly showing some relationship between rainfall and the flux of potassium within the 

Mokolo River. 

 



  

102 
 

 

 

 

Figure 4.14. Mean flux in potassium cations measured in the Lephalala, Mokolo and Matlabas Rivers 

during summer, autumn, winter and spring from 1999 to 2010. 
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The mean potassium flux in the Matlabas River for each season (Figure 4.14) showed elevated flux 

values during spring of 2001 and winter of 2002. No preliminary reasons for these values could be 

presented. Elevated values across all seasons were recorded for 2009 to 2010, indicating that a longer 

term change in potassium input into the Matlabas River occurred. The highest potassium flux values 

in the Matlabas River were recorded in spring (0.000032 ± 0.000018 Eq∙ℓ
-1

), followed by summer 

(0.000027 ± 0.000017 Eq∙ℓ
-1

), winter (0.000020 ± 0.000013 Eq∙ℓ
-1

) and autumn (0.000016 ± 

0.000011 Eq∙ℓ
-1

). These values were found to be not significantly different (ANOVA, d.f. = 19, p = 

0.3521) but also showed elevated flux values during the rainy season as also found for the Lephalala 

and Mokolo Rivers. 

The human health threshold set for potassium flux is ~1280 Eq.ℓ
-1

 (SAWQG 1996), a value 

approximately 3 x 10
7
 times greater than the highest potassium flux recorded for the Lephalala, 

Mokolo and Matlabas Rivers at both an annual and seasonal resolution from 1999 to 2010 (~0.000037 

Eq.ℓ
-1

; Lephalala 2007) . Potassium flux in these rivers is of no concern and is expected to remain 

below the threshold in the near future as the fluxes will have to increase significantly in order to 

exceed the threshold set. 

The elevated potassium fluxes during the rainy season (spring and summer) in the Lephalala, Mokolo 

and Matlabas Rivers could indicate that the flux of the cation is not significantly influenced by the 

direct wet deposition of the cation from the atmosphere. If this were to be true, potassium flux in the 

Mokolo River would predominate during the rainy season due to its close proximity to the assumed 

source, while flux in the Lephalala and Matlabas Rivers would predominate during the dry season as 

these rivers are located further away from the point of source. The increase of potassium flux during 

the rainy season in all three rivers is most likely to be due to the increase leaching of the cation from 

the surrounding surfaces and soils, indicating that the potassium is most probably from natural 

sources. 
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4.4.5 Ammonium flux within the Lephalala, Mokolo and Matlabas Rivers 

Ammonium flux values measured within the Lephalala, Mokolo and Matlabas Rivers are lower than 

the fluxes measured for sodium, magnesium, calcium and potassium. Ammonium fluxes ranged from 

0.000001 to 0.000003 Eq∙ℓ
-1

, 0.000001 to 0.000005 Eq∙ℓ
-1

, and 0.000001 to 0.000002 Eq∙ℓ
-1

 in the 

Lephalala, Mokolo and Matlabas Rivers, respectively (Figure 4.15). Ammonium flux values in the 

Lephalala River continuously fluctuated across the entire period of 1999 to 2010, with the maximum 

value recorded in 2003. A sharp decline of 67% occurred from 2003 to 2004, followed by a sharp 

increase of 200% from 2004 to 2006. Ammonium flux values recorded for the Mokolo River 

remained relatively consistent from 1999 to 2007, followed by an increase of 400% from 2007 to its 

maximum value in 2009. The largest change in ammonium flux within the Matlabas River occurred 

from 2004 to 2005 (decrease; 50%). From 2005 to 2010, the flux of ammonium ions remained 

relatively consistent. 

 

Figure 4.15. Annual mean flux in ammonium cations measured in the Lephalala, Mokolo and 

Matlabas Rivers during each hydrological year from 1999 to 2010. Standard errors are indicated, with 

the absence of bars indicating that a single value was recorded during the specific year. 

The mean ammonium flux values recorded from 1999 to 2010 for the Lephalala (0.000002 ± 

0.000001 Eq∙ℓ
-1

), Mokolo (0.000001 ± 0.000001 Eq∙ℓ
-1

) and Matlabas (0.000001 ± 0.000001 Eq∙ℓ
-1

) 
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Rivers were found to be not significantly different (ANOVA, d.f. = 64, p = 0.2436). This is probably 

due to the relatively large variances, indicating that ammonium flux can be considered to be the same 

in all three rivers. The flux of ammonium is thus not dependent on the direction and distance of the 

geographical location of the river monitoring site in relation to the possible source (Matimba power 

station). 

The mean ammonium flux in the Lephalala River for each season (Figure 4.16) showed that increased 

flux values occurred predominantly during the summer months, with an especially increased value 

recorded for the summer of 2003. Flux values recorded during spring were low, unlike the results 

found for the other cations discussed. Ammonium flux values in the Lephalala River were highest 

during summer (0.000003 ± 0.000001 Eq∙ℓ
-1

) with lower fluxes recorded for winter (0.000002 ± 

0.000001 Eq∙ℓ
-1

), autumn (0.000002 ± 0.0000005 Eq∙ℓ
-1

) and spring (0.000001 ± 0 Eq∙ℓ
-1

). The flux 

values were found to be not significantly different between seasons (ANOVA, d.f. = 14, p = 0.2005), 

possibly due to large variances calculated for the flux during summer and winter.   
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Figure 4.16. Mean flux in ammonium cations measured in the Lephalala, Mokolo and Matlabas 

Rivers during summer, autumn, winter and spring from 1999 to 2010. 
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Mokolo 

Matlabas 
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This could possibly be due to a delayed increase in river discharge after rainfall commenced in spring. 

Delays can be expected as the Lephalala River Catchment is a developed catchment with various 

water uses that could intercept the water before reaching the river. 

The mean ammonium flux in the Mokolo River for each season (Figure 4.16) clearly showed that the 

flux remained at 0.000001 Eq∙ℓ
-1

 for most of the period of 1999 to 2010. Isolated increases in flux 

were measured in especially the autumn of 2000 and 2009 as well as the winter of 2003. Ammonium 

flux within the Mokolo River was higher during autumn (0.000002 ± 0.000002 Eq∙ℓ
-1

) and winter 

(0.000001 ± 0.0000005 Eq∙ℓ
-1

) than in summer (0.000001 ± 0 Eq∙ℓ
-1

) and spring (0.000001 ± 

0.0.0000003 Eq∙ℓ
-1

). Statistically, the flux values were not significantly different between seasons 

(ANOVA, d.f. = 22, p = 0.2751) yet fluxes were elevated during the dry season (autumn and winter) 

when compared to the rainy season (summer and spring).  

The mean ammonium flux in the Matlabas River for each season (Figure 4.16) again showed a 

relatively consistent flux value throughout the period of 1999 to 2010. Elevated ammonium flux 

values were recorded during the summer of 2001, the spring of 2001 and the winters of 2002 and 

2004. Ammonium flux was more predominant in spring (0.000002 ± 0.0.0000005 Eq∙ℓ
-1

) and winter 

(0.0.000002 ± 0.0.0000009 Eq∙ℓ
-1

) and less predominant in summer (0.000001 ± 0.0000004 Eq∙ℓ
-1

) 

and autumn (0.000001 ± 0.0000002 Eq∙ℓ
-1

). No significant differences in flux values between seasons 

were found (ANOVA, d.f. = 19, p = 0.5879), indicating no seasonal differences in the flux of 

ammonium within the Matlabas River. 

 

The highest ammonium flux recorded both annually and seasonally (0.000005 Eq.ℓ
-1

; summer of 2003 

in the Lephalala River) was approximately 1.2 x 10
7
 times smaller than the human health threshold 

flux value set by the South African Water Quality Guidelines of 1996 (~60 Eq.ℓ
-1

). Ammonium fluxes 

are relatively low in the Lephalala, Mokolo and Matlabas Rivers from 1999 to 2010, with no concern 

of the threshold being surpassed in the near future. 

No significant differences in ammonium flux values were found between seasons in the Lephalala, 

Mokolo or Matlabas Rivers. The flux of ammonium within these rivers is thus not significantly 
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changed by any expected seasonal changes in rainfall, temperature and river discharge. Increased flux 

values were recorded in months of sporadic high rainfall or temperature events, and is most likely due 

to the sharp increase of ion concentrations in the river in a relatively short time. Understanding the 

flux of summed cations within the Lephalala, Mokolo and Matlabas Rivers could provide further 

understanding of the seasonality of cations changes and how this would affect overall water quality. 

4.5 Investigating the change in summed cation fluxes measured in each of the rivers from 

1999 to 2010 

Summed cation flux data were compared in two ways: by only considering two points in time (1999 

and 2010), and by comparing the response surface of the graphs indicating change in cation flux in the 

Lephalala, Mokolo and Matlabas Rivers. No threshold values for summed cations are available in 

guidelines such as the South African Water Quality Guidelines (SAWQG), yet the thresholds for the 

individual cations have already been discussed. 

No significant difference in the absolute flux of summed cations in 1999 and 2010 was found within 

the Lephalala (ANOVA, d.f. = 2, p = 0.1851), Mokolo (ANOVA, d.f. = 2, p = 0.7811) and Matlabas 

(ANOVA, d.f. = 3, p = 0.8750) Rivers. The Mokolo River had no flux values available for the 2010 

hydrological year, and values from 2009 were used instead. Changes in flux occur between these two 

static points in all rivers, with fluxes increasing and decreasing over the 12 year period (Figure 4.17). 

No significant relationships were found to exist between the rivers in terms of the cation 

concentrations measured (Non-linear regression, d.f. = 3, p = 0.7666). Neither the increase in cation 

flux in the Lephalala River from 2001 to 2002 (ANOVA, d.f. = 4, p = 0.5102) nor the increase from 

2003 to 2006 (ANOVA, d.f. = 2, p = 0.1183) were found to be significant. The increase in cation flux 

measured in the Mokolo River from 2006 to 2007 was found to be significant (ANOVA, d.f. = 2, p = 

0.0295). The increases in cation flux in the Matlabas River were found to be not significant for 2000 

to 2002 (ANOVA, d.f. = 4, p = 0.3295) yet the flux significantly increases from 2005 to 2006 

(ANOVA, d.f. = 2, p = 0.0017).  
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Figure 4.17. Flux of summed cations in the Lephalala, Mokolo and Matlabas Rivers during each 

hydrological year from 1999 to 2010. The average flux of cations over the 12 year period is indicated 

by the dotted line for each river. Standard errors are indicated, with the absence of bars indicating that 

a single value was recorded during the specific year. 

The changes in fluxes are the net results of the various anthropogenic, natural and climatic factors 

influencing the concentrations of ions measured at any given point, temporally and spatially. Possible 

reasons for the pattern of cation flux measured in each of the rivers are explored in later sections by 

studying the relationship between the fluxes measured and the anthropogenic and climatic variables 

known for the Lephalale area. 

The mean cation flux value measured across the period of 1999 to 2010 for each river is also indicated 

in Figure 4.17. The Lephalala River had the highest mean cation flux value of 0.001508 ± 0.000986 

Eq.ℓ
-1

. The Mokolo and Matlabas Rivers had mean cation flux values of 0.000861 ± 0.000213 and 

0.000726 ± 0.000578 Eq.ℓ
-1

, respectively. No significant differences (Blocked ANOVA, d.f. = 10, p = 

0.0802) exists between the yearly concentrations measured within each river, also indicated by the 

very large standard deviation values calculated. Very significant differences (Blocked ANOVA, d.f. = 

2, p = 0.0009 with Lephalala having the highest cation flux values, This finding is contradicted by the 

largely overlapping standard deviations calculated for the rivers (Figure 4.18). 
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Figure 4.18. Mean cation flux values calculated for the Lephalala, Matlabas and Mokolo Rivers from 

1999 to 2010. 

 

The mean summed cation fluxes in the Lephalala River for each season (Figure 4.19) showed that 

especially high flux values were recorded in spring of 2000 and 2002 as well as the winter of 2001. 

The same peaks were found for sodium, magnesium and calcium fluxes indicating that these cations 

are the main contributors to the flux of summed cations. Summed cation flux within the Lephalala 

River was highest during spring (0.002562 ± 0.001669 Eq∙ℓ
-1

), followed by winter (0.001913 ± 

0.000965 Eq∙ℓ
-1

), autumn (0.001129 ± 0.000397 Eq∙ℓ
-1

) and summer (0.001029 ± 0.000535 Eq∙ℓ
-1

). 

The flux values were found to be not significantly different between seasons (ANOVA, d.f. = 14, p = 

0.0838).  
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Figure 4.19. Mean fluxes in summed cations measured in the Lephalala, Mokolo and Matlabas Rivers 

during summer, autumn, winter and spring from 1999 to 2010. 
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Mokolo 

Matlabas 
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The mean summed cation fluxes in the Mokolo River for each season (Figure 4.19) was ~ 2 times less 

than the flux of cations in the Lephalala River over the same period. The flux of cations remained 

relatively constant from 1999 to 2010, with elevated fluxes found for the winter of 2005 and the 

spring of 2007. Summed cation flux in the Mokolo River was higher during spring (0.001010 ± 

0.000265 Eq∙ℓ
-1

) and summer (0.000853 ± 0.000114 Eq∙ℓ
-1

) than during winter (0.000826 ± 0.000240 

Eq∙ℓ
-1

) and autumn (0.000740 ± 0.000039 Eq∙ℓ
-1

). The flux values were found to be not significantly 

different between seasons (ANOVA, d.f. = 22, p = 0.1302) most probably due to the high variance in 

flux values. Flux values were, however, elevated in the rainy season (spring and summer) when 

compared to the dry season (winter and autumn). 

The mean summed cation flux in the Matlabas River for each season (Figure 4.19) was ~ 4 and 2 

times lower than cation flux within the Lephalala and Mokolo Rivers, respectively. The cation flux 

remained relatively constant from 1999 to 2010, with increased flux values measured during the 

winter of 2001, 2002 and 2006 as well as the spring of 2009 and 2010. The flux of summed cations in 

the Matlabas River was highest during winter (0.001149 ± 0.000876 Eq∙ℓ
-1

), followed by spring 

(0.000931 ± 0.000325 Eq∙ℓ
-1

), autumn (0.000459 ± 0.000139 Eq∙ℓ
-1

) and summer (0.000442 ± 

0.000102 Eq∙ℓ
-1

). Summed cation flux values were not significantly different between seasons 

(ANOVA, d.f. = 19, p = 0.0562), yet a p-value of close to 0.05 indicates that the differences are large 

regardless of the lack of statiscal difference.  

The flux of summed cations within the Lephalala River is much greater than in the Mokolo and 

Matlabas Rivers, indicating that the input of cations into the Lephalala River Catchment most likely 

has the largest contribution of non-atmospheric cation inputs into the system. Cation flux values were 

highest during spring in the Lephalala and Mokolo Rivers, both located upwind of the Matimba power 

station. Cation flux in the Matlabas River is highest during winter, the dry season during which 

cations are able to disperse over longer distances before being deposited. Cations do have various 

natural and anthropogenic sources and cannot alone explain the influence that coal combustion has on 

atmospheric and aquatic ion concentrations. Sulphate is predominantly released by the combustion of 
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coal and can provide a better proxy for the impacts of coal burning at coal-fired power stations on 

water quality. 

4.6 Investigating the change in sulphate concentrations measured in each of the rivers from 

1999 to 2011  

Sulphate concentrations for the Lephalala, Mokolo and Matlabas Rivers were measured from 1999 to 

2011. The trends of sulphate concentrations (Figure 4.20) were found to be not significantly different 

(Non-linear regression, d.f. = 3, p = 0.0677) between rivers across the period of measurement. No 

significant differences were found between the absolute sulphate concentrations measured in 1999 

and 2011 in the Lephalala (ANOVA, d.f. = 6, p = 0.3738), Mokolo (ANOVA, d.f. = 30, p = 0.1702) 

and Matlabas (ANOVA, d.f. = 6, p = 0.2696) Rivers. 

Figure 4.20. Concentrations of sulphate measured in the Lephalala, Mokolo and Matlabas Rivers 

during each calendar year from 1999 to 2011. Standard errors are indicated, with the absence of bars 

indicating that a single value was recorded during the specific year. 

 

The increase in sulphate concentration measured in the Lephalala River from 1999 to 2000 was 

significant (ANOVA, d.f. = 21, p = 0.0301) yet the increase from 2005 to 2007 was not significant 

(ANOVA, d.f. = 2, p = 0.3021). The sulphate concentrations measured for the Mokolo River 

significantly changed from 1999 to 2000 (increased; ANOVA, d.f. = 44, p = 0.0370), 2003 to 2005 
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(decreased; ANOVA, d.f. = 5, p = 0.0089), 2005 to 2007 (increased; ANOVA, d.f. = 3, p < 2.2 x     

10
-16

), 2007 to 2008 (decreased; ANOVA, d.f. = 2, p < 2.2 x 10
-16

). The process driving the changes in 

sulphate concentrations significantly alters the concentrations. 

The sulphate concentration in the Matlabas River did not significantly increase from 1999 to 2001 

(ANOVA, d.f. = 14, p = 0.1395) and from 2005 to 2006 (ANOVA, d.f. = 5, p = 0.0836). Thus, 

sulphate concentrations in the Matlabas River did not significantly change at any time over the period 

of 1999 to 2011. 

The Lephalala, Mokolo and Matlabas Rivers had mean sulphate concentrations of 0.000084 ± 

0.000044 mol∙ℓ
-1

, 0.000057 ± 0.000037 mol∙ℓ
-1

 and 0.000032 ± 0.000014 mol∙ℓ
-1

, respectively (Figure 

4.32). Mean sulphate concentrations significantly differed from year to year (Blocked ANOVA, d.f. = 

12, p = 5.475 x 10
-6

) and between rivers (Blocked ANOVA, d.f. = 2, p = 0.003). Mean sulphate 

concentrations decrease from geographical northeast to southwest, the same direction in which winds 

predominantly blow. 

 

4.7 Investigating the change in sulphate flux measured in each of the rivers during each 

hydrological year from 1999 to 2010 

Changes in sulphate fluxes in the Lephalala, Mokolo and Matlabas Rivers between 1999 and 2010 

were also analysed in three ways: a direct comparison between 1999 and 2010, comparing the 

response surfaces indicating the changes in flux in each river over the entire period and by comparing 

the mean sulphate flux values calculated for each river to the other rivers and to the guideline values 

given in the South African Water Quality Guidelines (SAWQG 1996).  

A significant change in the absolute value of the sulphate flux in 1999 and 2010 was found for the 

Lephalala (increase; ANOVA, d.f. = 2, p = 0.0002) and Mokolo (decrease; ANOVA, d.f. = 2, p = 

0.000009) Rivers. No significant difference between the sulphate flux values in 1999 and 2010 was 

found for the Matlabas River (ANOVA, d.f. = 3, p = 0.6093). Sulphate flux values were ~10 times 

smaller than the corresponding summed cation values measured, fluctuating from zero to 0.000007, 
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zero to 0.000119, and zero to 0.000005 Eq.ℓ
-1

 in the Lephalala, Matlabas and Mokolo Rivers, 

respectively (Figure 4.21). Sulphate fluxes in the Lephalala River increased by 185% from 1999 to 

2002, after which it remains relatively consistent. Sulphate flux in the Mokolo River increased by 

275% from 2001 to 2004, reaching the highest sulphate flux value measured across all three rivers 

(0.000119 Eq.ℓ
-1

). 

 

Figure 4.21. Flux of sulphate ions in the Lephalala, Mokolo and Matlabas Rivers during each 

hydrological year from 1999 to 2010. The average flux of sulphate over the 12 year period is 

indicated by the dotted line for each river. Standard errors are indicated, with the absence of bars 

indicating that a single value was recorded during the specific year. 

 

No significant relationship exists between the response surfaces of the sulphate fluxes measured in the 

rivers from 1999 to 2010 (Non-linear regression, d.f. = 2, p = 0.0830). The Lephalala, Matlabas and 

Mokolo Rivers had mean sulphate flux values of 0.000045 ± 0.000028, 0.000040 ± 0.000048 and 

0.000024 ± 0.000031 Eq.ℓ
-1

, respectively (Figure 4.21). Sulphate concentrations did not significantly 

differ from year to year in each of the specific rivers (Blocked ANOVA, d.f. = 10, p = 0.1245). No 

significant differences in mean sulphate concentrations were found between rivers (Blocked ANOVA, 

d.f. = 2, p = 0.4150), supported by the completely overlapping standard deviation values (Figure 

4.22). 
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Figure 4.22. Mean sulphate flux values calculated for the Lephalala, Matlabas and Mokolo Rivers 

from 1999 to 2010. 

When the mean sulphate flux values calculated for the Lephalala, Mokolo and Matlabas Rivers were 

compared to threshold values given in the South African Water Quality Guidelines (SAWQG 1996) it 

is clear that no human health effects are expected as the threshold for these effects is set at ~4200 

Eq.ℓ
-1

, which is approximately 3.5 x 10
7
 times higher than the highest mean sulphate flux value 

calculated. Surface waters in South Africa usually have flux values of around 105 Eq.ℓ
-1

 with elevated 

values of up to 2100 Eq.ℓ
-1

 in areas highly impacted by mining activities (SAWQG 1996).  Although 

the catchments of the Lephalala and Mokolo Rivers are highly developed mining areas, the mean 

sulphate flux values of  0.000045 ± 0.000028 and 0.000040 ± 0.000048  Eq.ℓ
-1

 are well below the 

expected range.   

The mean sulphate flux in the Lephalala River for each season (Figure 4.23) showed no usually high 

cation flux values during any of the seasons. Sulphate flux values were lower in autumn (0.000004 ± 

0.000003  Eq∙ℓ
-1

) and winter (0.000003 ± 0.000002 Eq∙ℓ
-1

) than in spring (0.000006 ± 0.000004   

Eq∙ℓ
-1

) and summer (0.000005 ± 0.000003 Eq∙ℓ
-1

). Sulphate flux values did not significantly differ 

between seasons (ANOVA, d.f. = 14, p = 0.7166), indicating that seasonal changes in rainfall, 

temperature and river discharge did not significantly change the measured sulphate flux within the 

Lephalala River. 
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Figure 4.23. Mean flux in sulphate measured in the Lephalala, Mokolo and Matlabas Rivers during 

summer, autumn, winter and spring from 1999 to 2010. 
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The mean sulphate flux in the Mokolo River for each season was similar to the sulphate flux values 

measured for the Lephalala River (Figure 4.23). Elevated flux values were recorded during the spring 

of 2004 (0.000220 Eq∙ℓ
-1

). Mean sulphate flux was highest during spring (0.000006 ± 0.000008 Eq∙ℓ
-

1
), followed by winter (0.000005 ± 0.000004 Eq∙ℓ

-1
) and autumn (0.000003 ± 0.000003 Eq∙ℓ

-1
) and 

summer (0.000002 ± 0.000002 Eq∙ℓ
-1

). Although the values are statistically not significantly different 

between seasons (ANOVA, d.f. = 22, p = 0.4336), flux values are elevated during the cooler months 

of spring, winter and autumn.  

The mean sulphate flux in the Matlabas River for each season (Figure 4.23) was ~2 times smaller than 

the flux values recorded for the Lephalala and Mokolo Rivers. Increased sulphate flux values were 

recorded during the spring of 2001. Sulphate flux within the Matlabas River was highest during spring 

(0.000005 ± 0.000008 Eq∙ℓ
-1

), followed by summer (0.000002 ± 0.000001 Eq∙ℓ
-1

), autumn (0.000002 

± 0.000002 Eq∙ℓ
-1

) and winter (0.000002 ± 0.000002 Eq∙ℓ
-1

). The sulphate flux values did not 

significantly differ between seasons (ANOVA, d.f. = 19, p = 0.3645) and was not specifically 

elevated during the rainy or dry season indicating that seasonal changes in rainfall, temperature and 

river discharge did not change the flux of sulphate within the Matlabas River.  

The increased cation flux during rainy season (spring and summer) in the Lephalala River and during 

the cooler seasons in the Mokolo River could indicate the influence that seasonal patterns in rainfall 

has on the deposition of the atmospheric cations. The most likely explanation for this pattern is that 

cations are able to disperse over longer distances in the absence of rain, but are deposited close to the 

source in the event of rainfall. To further explore the possible explanation for differences in cation and 

sulphate flux with change in seasons, it is important to understand how changes in climatic variables 

such as rainfall, temperature and river discharge affect the ion fluxes measured in each of the rivers. 

4.8 Investigating the impact of climatic variables on measured cation and sulphate flux 

Various climatic variables influence the water quality parameters measured by altering the 

concentration of ions within the water body. Changes in cation and sulphate flux are due to changes in 

ion concentrations, rainfall, temperature and river discharge. These data were available for each 
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season (summer, autumn, winter and spring) and years from 1999 to 2011 for the Lephalala, Mokolo 

and Matlabas Rivers. These data are summarised for quick reference purposes (Table 4.4, 4.5 and 

4.6).  

4.8.1 Investigating the impact of ambient temperature on measured cation and sulphate 

flux 

During the period of 1999 to 2010, the hottest hydrological year recorded for the Lephalale area was 

2002 with an average maximum temperature of 31.3˚C while 1999 was the coolest year recorded, 

with an average maximum temperature of 27.8˚C (Figure 4.24). The temperatures recorded for these 

two years were found to be significantly different (ANOVA, d.f. = 21, p = 0.0477).  

 

Figure 4.24. Mean daily maximum ambient temperatures recorded for Lephalale town during each 

hydrological year from 1999 to 2010. Variation is indicated with standard error bars.
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Table 4.4. The ambient temperature, total rainfall, daily discharge, mean ion concentrations, ion flux and resultant flux values for the Lephalala River. 
Y

ea
r 

Season Temperature 

(˚C) 

Rainfall (mm) Mean daily 

discharge 

(cumecs) 

Summed cation 

Concentration 

(mol.ℓ
-1

) 

Sulphate 

Concentration 

(x 10
-5

 mol.ℓ
-1

) 

Summed cation  

Flux 

(Eq.ℓ
-1

) 

Sulphate ion 

Flux 

(x 10
-5

 Eq.ℓ
-1

) 

Resultant  

Flux * 

(Eq.ℓ
-1

) 

Season 

mean 

Annual 

mean 

Season 

total 

Annual 

total 

Season 

mean 

Annual 

mean 

Season 

mean 

Annual 

mean 

Season 

mean 

Annual 

mean 

Season 

 

Year 

 

Season 

 

Year 

 

Season 

 
Year 

 

1
9
9
9
 

Winter 25.15 

± 2.84 

 

 

 

27.84 

± 3.01 

0.6  

 

 

543.6 

0.0100 

± 0.0000 

 
1.1200 

± 1.2900 

 

 
0.0011 

± 0.0001 

 

7.59 

± 4.84 

 

0.0009 

± 0.0002 

 

2.14 

± 0.09 

 

0.0005 

Spring 30.07 

± 4.41 

113.4 0.0100 

± 0.0200 
     

Summer 31.70 

± 3.74 

213.0 2.3300 

± 3.3400 

0.0011 

± 0.0004 

8.07 

± 1.43 
0.0008 2.08 0.0004 

Autumn 25.76 

± 2.88 

216.6 2.1300 
± 0.8800 

0.0010 
± 0.0005 

7.46 
± 5.55 

0.0011 2.21 0.0006 

2
0
0
0
 

Winter 24.08 

± 2.95 

 

 

 

29.03 

± 3.82 

9.2  

 

 

270.8 

0.1200 

± 0.0800 

 

0.5500 

± 0.9500 

0.0019 

± 0.0004 

0.0022 

± 0.0007 

11.36 

± 7.94 

13.55 

± 6.78 

0.0019 

0.0019 

± 0.0012 

2.08 

2.36 

± 0.62 

0.0010 

0.0010 

Spring 30.88 

± 4.12 

26.0 0.0400 

± 0.0100 

0.0035 

± 0.0008 

18.59 

± 6.34 
0.0036 1.86 0.0018 

Summer 32.38 

± 3.80 

200.4 1.9800 

± 3.2200 

0.0018 

± 0.0015 

13.22 

± 5.65 
0.0006 3.26 0.0003 

Autumn 28.11 

± 3.28 

35.2 0.0800 

± 0.0800 

0.0017 

± 0.0002 

8.58 

± 4.34 
0.0017 2.25 0.0009 

2
0
0
1
 

Winter 25.33 

± 3.65 

 

 

 

29.72 

± 3.63 

21.6  

 

 

442.6 

0.0100 
± 0.0000 

 

0.2300 
± 0.2300 

0.0033 
± 0.0003 

0.0014 

± 0.0011 

13.39 
± 1.84 

7.95 

± 2.99 

0.0033 

0.0014 

± 0.0012 

6.42 

5.07 

± 4.50 

0.0017 

0.0007 

Spring 29.37 

± 4.96 

170.0 0.5500 

± 0.9500 

0.0006 

± 0.0001 

7.32 

± 1.02 
0.0006 9.23 0.0003 

Summer 34.61 

± 3.39 

92.2 0.1700 

± 0.1100 

0.0008 

± 0.0001 

6.28 

± 0.99 
0.0008 8.65 0.0004 

Autumn 30.85 

± 3.66 

158.8 0.1800 

± 0.1500 

0.0010 

± 0.0004 

6.95 

± 2.44 
0.0011 1.75 0.0006 

2
0
0
2
 

Winter 25.50 

± 3.51 

 

 

 

31.28 

± 4.59 

7.0  

 

 

229.6 

0.0500 

± 0.0500 

 

0.0400 

± 0.0200 

0.0012 

± 0.0002 

0.0024 

± 0.0012 

6.82 

± 3.72 

8.88 

± 4.79 

0.0011 

0.0023 

± 0.0017 

5.87 

6.11 

± 0.35 

0.0006 

0.0012 

Spring 32.16 

± 4.71 

50.4 0.0600 
± 0.0300 

0.0035 
± 0.0013 

13.02 
± 4.66 

0.0035 6.36 0.0018 

Summer 36.08 

± 3.17 

162.6 0.0300 

± 0.0200 
     

Autumn 31.61 

± 4.10 

9.6 0.0100 

± 0.0100 
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2
0
0
3
 

Winter 24.64 

± 3.39 

29.25 

± 3.90 

22.8 

537.6 

 

0.7500 

± 0.9900 

 

0.0011 

± 0.0004 

 

10.00 

± 9.25 

 

0.0010 

± 0.0005 

 

4.42 

± 4.31 

 

0.0005 

Spring 32.36 

± 4.77 
42.8 

0.0000 
± 0.0000 

     

Summer 31.49 

± 3.66 
300.6 

0.3800 

± 0.4400 

0.0014 

± 0.0000 

23.66 

± 0.00 
0.0014 1.38 0.0007 

Autumn 27.25 

± 2.80 
171.4 

1.8700 

± 1.8400 

0.0007 

± 0.0001 

5.45 

± 2.03 
0.0006 7.47 0.0003 

2
0
0
4
 

Winter 25.04 

± 3.76 

30.00 

± 3.91 

0.0 

131.4 

0.0400 

± 0.0100 

0.0500 

± 0.0300 

0.0013 

± 0.0003 

0.0013 

± 0.0002 

5.60 

± 2.31 

6.23 

± 3.96 

0.0014 

0.0013 

± 0.0002 

4.31 

6.12 

± 2.58 

0.0007 

0.0007 

Spring 32.23 

± 3.84 
23.4 

0.0100 

± 0.0200 
     

Summer 32.85 

± 3.65 
69.6 

0.0700 
± 0.0600 

     

Autumn 29.59 

± 3.60 
38.4 

0.0700 

± 0.0400 

0.0013 

± 0.0002 

7.80 

± 8.09 
0.0011 7.95 0.0006 

2
0
0
5
 

Winter 26.50 

± 3.28 

29.17 

± 3.09 

0.0 

442.8 

0.0100 

± 0.0000 

0.4900 
± 0.6700 

 

 

 

 

 

 

 

 

 

 

Spring 32.88 

± 3.93 
73.4 

0.0000 

± 0.0000 
     

Summer 32.08 

± 3.24 
293.8 

1.4200 

± 2.1900 
     

Autumn 26.43 

± 3.29 
75.6 

0.5200 
± 0.6600 

     

2
0
0
6
 

Winter 24.88 

± 2.69 

29.87 

± 3.99 

2.0 

243.4 

0.0300 

± 0.0100 

0.1600 

± 0.2700 

 

0.0029 

± 0.0022 

 

15.88 

± 1.79 

 

0.0020 

± 0.0000 

 

6.41 

± 0.00 

 

0.0010 

Spring 31.45 

± 3.64 
46.8 

0.0300 

± 0.0300 
     

Summer 32.18 

± 3.79 
110.6 

0.5600 

± 0.8200 

0.0029 

± 0.0022 

15.88 

± 1.79 

0.0020 

± 0.0000 
6.41 0.0010 

Autumn 29.26 

± 4.55 
84.0 

0.0100 

± 0.0100 
     

2
0
0
7
 

Winter 24.80 

± 3.49 

28.72 

± 2.95 

1.6 

531.6 

0.0000 
± 0.0000 

0.6500 

± 0.7100 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spring 30.29 

± 4.93 
233.8 

1.0000 

± 1.7300 
     

Summer 31.78 

± 3.56 
223.2 

1.4800 

± 1.1300 
     

Autumn 29.06 73.0 0.1000      
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± 3.40 ± 0.0500 
2
0
0
8
 

Winter 25.88 

± 3.38 

29.53 

± 3.00 

1.0 

521.8 

0.0200 

± 0.0100 

0.9300 
± 0.7600 

 

 

 

 

 

 

 

 

 

 

Spring 32.28 

± 4.39 
181.4 

0.9100 

± 1.5800 
     

Summer 32.81 

± 2.82 
264.2 

1.8800 

± 0.8100 
     

Autumn 28.26 

± 2.99 
75.2 

0.8900 

± 1.3100 
     

2
0
0
9
 

Winter 24.39 

± 3.48 

30.96 

± 4.84 

8.6 

429.6 

0.0500 

± 0.0200 

0.1000 

± 0.0500 

 

 

 

 

 

 

 

 

 

 

Spring 32.15 

± 4.49 
117.2 

0.0600 

± 0.0700 
     

Summer 35.09 

± 3.29 
158.8 

0.1600 

± 0.0400 
     

Autumn 31.38 

± 4.89 
145.0 

0.1300 

± 0.0400 
     

2
0
1
0
 

Winter 25.14 

± 3.35 

30.22 

± 3.83 

0.0 

331.0 

0.0900 

± 0.0200 

0.5300 

± 0.8100 

 

0.0007 

± 0.0000 

 

1.56 

± 0.00 

 

0.0007 

± 0.0000 

 

6.68 

± 0.00 

 

0.0004 

Spring 33.47 

± 4.05 
88.4 

0.0700 

± 0.0200 
     

Summer 31.59 

± 3.05 
236.6 

1.7400 

± 2.3300 

0.0007 

± 0.0000 

1.56 

± 0.00 
0.0007 6.68 0.0004 

Autumn 30.11 

± 4.09 
6.0 

0.2200 

± 0.0500 
     

* Resultant flux = (cation flux + sulphate flux) / 2 

 No data available 
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Table 4.5. The ambient temperature, total rainfall, daily discharge, mean ion concentrations, ion flux and resultant flux values for the Mokolo River. 
Y

ea
r 

Season Temperature 

(˚C) 

Rainfall (mm) Mean daily 

discharge 

(cumecs) 

Summed cation 

Concentration 

(mol∙ℓ
-1

) 

Sulphate 

Concentration 

(x 10
-5

 mol∙ℓ
-1

) 

Summed cation 

Flux (Eq.ℓ
-1

) 

Sulphate ion 

Flux 

(x 10
-5

 Eq.ℓ
-1

) 

Resultant 

Flux * 

(Eq.ℓ
-1

) 

Season 

mean 

Annual 

mean 

Season 

total 

Annual 

total 

Season 

mean 

Annual 

mean 

Season 

mean 

Annual 

mean 

Season 

mean 

Annual 

mean 

Season Year Season  Year Season  Year 

1
9
9
9
 

Winter 25.15 

± 2.84 

 

 

 

27.84 

± 3.01 

0.6  

 

 

543.6 

0.0236 

± 0.0050 

0.0259 

± 0.0254 

0.0007 

± 0.0001 

0.0007 

± 0.0001 

3.65 

± 2.56 

5.04 

± 3.45 

0.0007 

0.0008 

± 0.0002 

4.60 

4.60 

± 0.00 

0.0004 

0.0004 

Spring 30.07 

± 4.41 

113.4 0.0018 

± 0.0031 
     

Summer 31.70 

± 3.74 

213.0 0.0523 

± 0.0907 

0.0009 

± 0.0002 

10.02 

± 2.48 
0.0010 4.61 0.0005 

Autumn 25.76 

± 2.88 

216.6 
 

0.0007 
± 0.0000 

3.85 
± 1.71 

   

2
0
0
0
 

Winter 24.08 

± 2.95 

 

 

 

29.03 

± 3.82 

9.2  

 

 

270.8 

0.0790 

± 0.0726 

0.018 

± 0.0430 

0.0008 

± 0.0000 

0.0008 

± 0.0001 

4.90 

± 2.12 

7.03 

± 2.28 

0.0008 

0.0009 

± 0.0001 

5.91 

2.30 

± 2.57 

0.0004 

0.0005 

Spring 30.88 

± 4.12 

26.0 0.0718 

± 0.0191 

0.0009 

± 0.0001 

8.54 

± 2.54 
0.0009 1.10 0.0005 

Summer 32.38 

± 3.80 

200.4 0.0159 

± 0.0275 

0.0009 

± 0.0001 

8.05 

± 1.22 
0.0010 0.00 0.0005 

Autumn 28.11 

± 3.28 

35.2 0.1204 

± 0.1043 

0.0008 

± 0.0000 

5.67 

± 0.76 
0.0008 2.20 0.0004 

2
0
0
1
 

Winter 25.33 

± 3.65 

 

 

 

29.72 

± 3.63 

21.6  

 

 

442.6 

0.0495 
± 0.0123 

0.0608 

± 0.0425 

0.0007 
± 0.0001 

0.0008 

± 0.0001 

4.62 
± 3.37 

5.60 

± 2.76 

0.0007 

0.0008 

± 0.0001 

0.62 

0.42 

0.0004 

0.0004 

Spring 29.37 

± 4.96 

170.0 0.0128 

± 0.011 

0.0008 

± 0.0001 

6.04 

± 2.96 
0.0008 0.36 0.0004 

Summer 34.61 

± 3.39 

92.2 0.1151 

± 0.0356 

0.0007 

± 0.0001 

5.01 

± 0.70 
0.0007 0.53 0.0004 

Autumn 30.85 

± 3.66 

158.8 0.0657 

± 0.0337 

0.0007 

± 0.0001 

6.97 

± 2.64 
0.0007 0.17 0.0004 

2
0
0
2
 

Winter 25.50 

± 3.51 

 

 

 

31.28 

± 4.59 

7.0  

 

 

229.6 

0.0621 

± 0.0578 

0.0345 

± 0.0251 

0.0007 

± 0.0000 

0.0008 

± 0.0001 

7.32 

± 3.12 

7.75 

± 1.97 

0.0007 

0.0008 

± 0.0000 

1.08 

1.86 

± 1.44 

0.0004 

0.0004 

Spring 32.16 

± 4.71 

50.4 0.0375 
± 0.0132 

0.0008 
± 0.0001 

7.91 
± 1.42 

0.0008 3.52 0.0004 

Summer 36.08 

± 3.17 

162.6 0.0375 

± 0.0519 

0.0008 

± 0.0000 

8.15 

± 1.69 
0.0008 0.98 0.0004 

Autumn 31.61 

± 4.10 

9.6 0.0011 

± 0.0018 
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2
0
0
3
 

Winter 24.64 

± 3.39 

29.25 

± 3.90 

22.8 

537.6 

0.0143 

± 0.0118 

0.0249 

± 0.0250 

0.0007 

± 0.0002 

0.0007 

± 0.0001 

6.76 

± 3.09 

6.99 

± 1.63 

0.0007 

0.0007 

± 0.0000 

1.18 

4.32 

± 4.44 

0.0004 

0.0004 

Spring 32.36 

± 4.77 
42.8       

Summer 31.49 

± 3.66 
300.6 

0.0068 

± 0.0118 
     

Autumn 27.25 

± 2.80 
171.4 

0.0534 

± 0.0925 

0.0007 

± 0.0001 

7.15 

± 0.67 
0.0007 7.46 00004 

2
0
0
4
 

Winter 25.04 

± 3.76 

30.00 

± 3.91 

0.0 

131.4 

0.0613 

± 0.0203 

0.0340 

± 0.0228 

0.0007 

± 0.0001 

0.0007 

± 0.0001 

3.12 

± 0.00 

2.95 

± 0.42 

0.0007 

0.0008 

± 0.0001 

10.70 

11.90 

± 9.98 

0.0004 

0.0004 

Spring 32.23 

± 3.84 
23.4 

0.0056 

± 0.0088 

0.0008 

± 0.0000 

3.12 

± 0.00 
0.0008 22.40 0.0004 

Summer 32.85 

± 3.65 
69.6 

0.0351 
± 0.0274 

     

Autumn 29.59 

± 3.60 
38.4 

0.0341 

± 0.0115 

0.0007 

± 0.0000 

2.08 

± 0.00 
0.0007 2.59 0.0004 

2
0
0
5
 

Winter 26.50 

± 3.28 

29.17 

± 3.09 

0.0 

442.8 

0.0063 

± 0.0020 

0.0401 
± 0.0502 

0.0014 

± 0.0000 

0.0009 
± 0.0003 

2.08 

± 0.00 

7.74 
± 7.18 

0.0014 

0.0010 
± 0.0003 

7.07 

2.88 
± 3.08 

0.0007 

0.0005 

Spring 32.88 

± 3.93 
73.4 

0.0017 

± 0.0025 

0.0010 

± 0.0000 

2.08 

± 0.00 
0.0010 0.00 0.0005 

Summer 32.08 

± 3.24 
293.8 

0.0421 

± 0.0499 

0.0010 

± 0.0000 

14.16 

± 6.50 
0.0008 3.14 0.0004 

Autumn 26.43 

± 3.29 
75.6 

0.1104 
± 0.1244 

0.0007 
± 0.0000 

3.77 
± 2.39 

0.0007 1.30 0.0004 

2
0
0
6
 

Winter 24.88 

± 2.69 

29.87 

± 3.99 

2.0 

243.4 

0.0516 

± 0.0068 

0.0421 

± 0.0428 

0.0008 

± 0.0002 

0.0009 

± 0.0002 

2.08 

± 0.00 

3.64 

± 2.70 

0.0008 

0.0009 

± 0.0002 

6.71 

6.61 

± 0.14 

0.0004 

0.0005 

Spring 31.45 

± 3.64 
46.8 

0.0174 

± 0.0120 

0.0011 

± 0.0000 

6.76 

± 0.00 
0.0011 6.50 0.0006 

Summer 32.18 

± 3.79 
110.6 

0.0981 

± 0.1627 
     

Autumn 29.26 

± 4.55 
84.0 

0.0014 

± 0.0024 
     

2
0
0
7
 

Winter 24.80 

± 3.49 

28.72 
± 2.95 

1.6 

531.6 

 

 

 

0.0016 

± 0.0000 

 

15.16 

± 0.00 

 

0.0016 

± 0.0000 

 

7.85 

± 0.00 

 

0.0008 

Spring 30.29 

± 4.93 
233.8 

0.0008 

± 0.0013 

0.00016 

± 0.0000 

15.16 

± 0.00 
0.0016 7.85 0.0008 

Summer 31.78 

± 3.56 
223.2 

0.0863 

± 0.1495 
     

Autumn 29.06 73.0 0.0664      



  

125 
 

± 3.40 ± 0.0540 
2
0
0
8
 

Winter 25.88 

± 3.38 

29.53 

± 3.00 

1.0 

521.8 

0.0238 

± 0.0075 

0.0238 

± 0.0075 

0.0006 

± 0.0000 

0.0006 

± 0.0001 

1.56 

± 0.00 

1.69 

± 1.37 

 

 

 

 

 

 

Spring 32.28 

± 4.39 
181.4       

Summer 32.81 

± 2.82 
264.2  

0.0006 

± 0.0000 

3.12 

± 0.00 
   

Autumn 28.26 

± 2.99 
75.2  

0.0007 

± 0.0000 

3.90 

± 0.00 
   

2
0
0
9
 

Winter 24.39 

± 3.48 

30.96 

± 4.84 

8.6 

429.6 

 

0.0239 

± 0.0299 

0.0008 
± 0.0000 

0.0008 

± 0.0001 

3.12 
± 0.00 

2.58 

± 1.22 

 

0.0008 

± 0.0000 

 

2.03 

± 0.00 

 

0.0004 

Spring 32.15 

± 4.49 
117.2  

0.0009 

± 0.0000 

0.39 

± 0.00 
   

Summer 35.09 

± 3.29 
158.8 

0.0027 

± 0.0047 

0.0007 

± 0.0000 

3.12 

± 0.00 
   

Autumn 31.38 

± 4.89 
145.0 

0.0451 

± 0.0781 

0.0007 

± 0.0002 

3.12 

± 0.00 
0.0008 2.03 0.0004 

2
0
1
0
 

Winter 25.14 

± 3.35 

30.22 

± 3.83 

0.0 

331.0 

0.1591 

± 0.1390 

0.1147 

± 0.0925 

0.0006 

± 0.0001 

0.0006 

± 0.0001 

3.12 

± 0.00 

3.12 

± 0.00 

 

 

 

 

 

 

Spring 33.47 

± 4.05 
88.4 

0.0084 
± 0.0101 

     

Summer 31.59 

± 3.05 
236.6       

Autumn 30.11 

± 4.09 
6.0 

0.1766 

± 0.1539 
     

* Resultant flux = (cation flux + sulphate flux) / 2 

 No data available 
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Table 4.6. The ambient temperature, total rainfall, daily discharge, mean ion concentrations, ion flux and resultant flux values for the Matlabas River. 
Y

ea
r 

Season Temperature 

(˚C) 

Rainfall (mm) Mean daily 

discharge 

(cumecs) 

Summed cation 

Concentration 

(mol∙ℓ
-1

) 

Sulphate 

Concentration 

(x 10
-5

 mol∙ℓ
-1

) 

Summed cation 

Flux 

(Eq.ℓ
-1

) 

Sulphate ion 

Flux 

(x 10
-5

 Eq.ℓ
-1

) 

Resultant 

Flux * 

(Eq.ℓ
-1

) 

Season 

mean 

Annual 

mean 

Season 

total 

Annual 

total 

Season 

mean 

Annual 

mean 

Season 

mean 

Annual 

mean 

Season 

mean 

Annual 

mean 

Season 

mean 

Annual 

mean 

Season 

mean 

Annual 

mean 

Season 

mean 

Annual 

mean 

1
9
9
9
 

Winter 25.15 

± 2.84 

 

 

 

27.84 

± 3.01 

0.6  

 

 

543.6 

0.0003 

± 0.0004 

0.3987 

± 0.6478 

0.0007 

± 0.0000 

0.0005 

± 0.0001 

2.08 

± 0.00 

3.47 

± 1.70 

0.0007 

0.0006 

± 0.0002 

2.20 

1.30 

± 1.22 

0.0004 

0.0003 

Spring 30.07 

± 4.41 

113.4 0.0000 

± 0.0000 
     

Summer 31.70 

± 3.74 

213.0 1.1735 

± 0.9677 
     

Autumn 25.76 

± 2.88 

216.6 0.3232 
± 0.2052 

0.0004 
± 0.0001 

3.94 
± 1.74 

0.0004 0.46 0.0002 

2
0
0
0
 

Winter 24.08 

± 2.95 

 

 

 

29.03 

± 3.82 

9.2  

 

 

270.8 

0.0246 

± 0.0154 

0.0228 

± 0.0252 

0.0009 

± 0.0003 

0.0007 

± 0.0001 

4.59 

± 2.74 

4.35 

± 2.36 

0.0008 

0.0006 

± 0.0002 

2.00 

2.00 

± 0.06 

0.0004 

0.0003 

Spring 30.88 

± 4.12 

26.0 0.0041 

± 0.0014 
     

Summer 32.38 

± 3.80 

200.4 0.0696 

± 0.0970 

0.0006 

± 0.0003 

2.08 

± 0.00 
0.0004 2.10 0.0002 

Autumn 28.11 

± 3.28 

35.2 0.0329 

± 0.0407 

0.0006 

± 0.0001 

4.87 

± 2.47 
0.0005 2.00 0.0003 

2
0
0
1
 

Winter 25.33 

± 3.65 

 

 

 

29.72 

± 3.63 

21.6  

 

 

442.6 

0.0016 
± 0.0011 

0.0329 

± 0.0623 

0.0030 
± 0.0022 

0.0018 

± 0.0020 

6.85 
± 4.85 

5.76 

± 3.91 

0.0023 

0.0010 

± 0.0009 

1.10 

4.90 

± 6.20 

0.0012 

0.0005 

Spring 29.37 

± 4.96 

170.0 0.1082 

± 0.0955 

0.0007 

± 0.0000 

7.33 

± 0.00 
0.0007 14.00 0.0004 

Summer 34.61 

± 3.39 

92.2 0.0181 

± 0.0232 

0.0004 

± 0.0000 

4.61 

± 7.14 
0.0004 2.30 0.0002 

Autumn 30.85 

± 3.66 

158.8 0.0033 

± 0.0026 

0.0005 

± 0.0000 

2.08 

± 0.00 
0.0005 2.10 0.0003 

2
0
0
2
 

Winter 25.50 

± 3.51 

 

 

 

31.28 

± 4.59 

7.0  

 

 

229.6 

0.0006 

± 0.0007 

0.0049 

± 0.0133 

0.0025 

± 0.0000 

0.0013 

± 0.0020 

2.08 

± 0.00 

3.36 

± 2.21 

0.0025 

0.0013 

± 0.0011 

6.80 

2.77 

± 3.54 

0.0013 

0.0007 

Spring 32.16 

± 4.71 

50.4 0.0000 
± 0.0000 

     

Summer 36.08 

± 3.17 

162.6 0.0184 

± 0.0245 

0.0006 

± 0.0000 

5.91 

± 0.00 
0.0006 0.00 0.0003 

Autumn 31.61 

± 4.10 

9.6 0.0006 

± 0.0001 

0.0007 

± 0.0000 

2.08 

± 0.00 
0.0007 1.60 0.0004 
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2
0
0
3
 

Winter 24.64 

± 3.39 

29.25 

± 3.90 

22.8 

537.6 

0.0000 

± 0.0000 

0.0656 

± 0.1319 

 

 

 

 

 

 

 

 

 

 

Spring 32.36 

± 4.77 
42.8 

0.0000 
± 0.0000 

     

Summer 31.49 

± 3.66 
300.6 

0.1067 

± 0.0225 
     

Autumn 27.25 

± 2.80 
171.4 

0.1866 

± 0.2367 
     

2
0
0
4
 

Winter 25.04 

± 3.76 

30.00 

± 3.91 

0.0 

131.4 

0.0134 

± 0.0042 

0.0340 

± 0.0440 

0.0005 

± 0.0000 

0.0005 

± 0.0001 

3.12 

± 0.00 

2.60 

± 0.74 

0.0005 

0.0005 

± 0.0001 

0.00 

0/00 

0.0003 

0.0003 

Spring 32.23 

± 3.84 
23.4 

0.0042 

± 0.0005 
     

Summer 32.85 

± 3.65 
69.6 

0.0744 
± 0.0652 

     

Autumn 29.59 

± 3.60 
38.4 

0.0130 

± 0.0091 

0.0004 

± 0.0000 

2.08 

± 0.00 
0.0004 0.00 0.0002 

2
0
0
5
 

Winter 26.50 

± 3.28 

29.17 

± 3.09 

0.0 

442.8 

0.0018 

± 0.0002 

0.2385 
± 0.5205 

 

0.0004 
± 0.0001 

 

4.06 
± 1.85 

 

0.0003 
± 0.0000 

 

1.76 
± 1.93 

 

0.0002 

Spring 32.88 

± 3.93 
73.4 

0.0008 

± 0.0007 
     

Summer 32.08 

± 3.24 
293.8 

0.4030 

± 0.6171 

0.0003 

± 0.0000 

5.75 

± 0.00 
0.0003 3.12 0.0002 

Autumn 26.43 

± 3.29 
75.6 

0.6270 
± 0.8839 

0.0004 
± 0.0000 

3.21 
± 1.60 

0.0004 0.39 0.0002 

2
0
0
6
 

Winter 24.88 

± 2.69 

29.87 

± 3.99 

2.0 

243.4 

0.0053 

± 0.0028 

0.0026 

± 0.0019 

0.0010 

± 0.0004 

0.0010 

± 0.0004 

5.48 

± 8.20 

5.48 

± 8.20 

0.0010 

0.0010 

± 0.0000 

3.12 

3.12 

± 0.00 

0.0005 

0.0005 

Spring 31.45 

± 3.64 
46.8 

0.0028 

± 0.0003 
     

Summer 32.18 

± 3.79 
110.6 

0.3614 

± 0.6191 
     

Autumn 29.26 

± 4.55 
84.0 

0.0000 

± 0.0000 
     

2
0
0
7
 

Winter 24.80 

± 3.49 

28.72 
± 2.95 

1.6 

531.6 

0.0000 
± 0.0000 

0.2787 

± 0.5277 

 

 

 

 

 

 

 

 

 

 

Spring 30.29 

± 4.93 
233.8 

0.0012 

± 0.0021 
     

Summer 31.78 

± 3.56 
223.2 

0.7340 

± 0.7878 
     

Autumn 29.06 73.0 0.0981      
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± 3.40 ± 0.0451 
2
0
0
8
 

Winter 25.88 

± 3.38 

29.53 

± 3.00 

1.0 

521.8 

0.0110 

± 0.0111 

0.3484 

± 0.6534 

 

 

 

 

 

 

 

 

 

 

Spring 32.28 

± 4.39 
181.4 

0.0073 

± 0.0086 
     

Summer 32.81 

± 2.82 
264.2 

1.1707 

± 0.9724 
     

Autumn 28.26 

± 2.99 
75.2 

0.1450 

± 0.1314 
     

2
0
0
9
 

Winter 24.39 

± 3.48 

30.96 

± 4.84 

8.6 

429.6 

0.0233 
± 0.0178 

0.2388 

± 0.4984 

 

0.0005 

± 0.0003 

 

1.56 

± 0.00 

 

0.0005 

± 0.0003 

 

3.05 

± 3.02 

 

0.0003 

Spring 32.15 

± 4.49 
117.2 

0.0128 

± 0.0075 

0.0008 

± 0.0000 

1.56 

± 0.00 
0.0008 0.00 0.0004 

Summer 35.09 

± 3.29 
158.8 

0.0843 

± 0.0635 

0.0005 

± 0.0003 

1.56 

± 0.00 
0.0005 3.12 0.0003 

Autumn 31.38 

± 4.89 
145.0 

0.8209 

± 0.8246 

0.0003 

± 0.0000 

1.56 

± 0.00 
0.0003 6.04 0.0002 

2
0
1
0
 

Winter 25.14 

± 3.35 

30.22 

± 3.83 

0.0 

331.0 

0.0414 

± 0.0330 

0.1108 

± 0.1971 

0.0003 

± 0.0000 

0.0006 

± 0.0005 

1.56 

± 0.00 

1.56 

± 0.00 

0.0003 

0.0006 

± 0.0006 

0.00 

0.70 

± 1.20 

0.0002 

0.0003 

Spring 33.47 

± 4.05 
88.4 

0.0113 
± 0.0045 

0.0013 
± 0.0000 

1.56 
± 0.00 

0.0013 2.08 0.0007 

Summer 31.59 

± 3.05 
236.6 

0.3836 

± 0.2758 

0.0004 

± 0.0001 

1.56 

± 0.00 
0.0004 0.00 0.0002 

Autumn 30.11 

± 4.09 
6.0 

0.0735 

± 0.0273 
     

* Resultant flux = (cation flux + sulphate flux) / 2 

 No data available 
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The mean daily maximum temperatures calculated for each month from January 1999 to December 

2011 indicated that temperatures are highest at the start and end of each year, with colder 

temperatures recorded during the months of May to August (Figure 4.25).  Statistically, the mean 

temperature for December across all years is significantly higher than the mean temperature recorded 

for June across all years (ANOVA, d.f. = 755, p = 2.2 x 10
-16

) indicating a significant change in 

temperature from winter to summer. Cation and sulphate flux values are expected to be higher during 

summer months due to increased rainfall increasing the concentration of ions deposited from the 

atmosphere. 

 

Figure 4.25. Mean maximum temperatures measured for Lephalale for each hydrological year from 

1999 to 2010. Variation is indicated with standard error bars. 

 

Analyses of the changes in parameters across the entire period of 1999 to 2010, indicated that no 

statistical relationship exists between temperature and the change in summed cation flux in the 

Lephalala (Non-linear regression, d.f. = 5, p = 0.2914), Mokolo (Non-linear regression, d.f. = 7, p = 

0.3803) or Matlabas (Non-linear regression, d.f. = 6, p = 0.9516) Rivers at an annual resolution. 

Graphical representation of the changes in temperature and cation flux over time (Figure 4.26) 

confirms that there is no relationship, as temperature remains relatively constant (between 28 and 

31˚C) while large changes in cation fluxes were measured. 
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Figure 4.26. The graphical representation of the relationship between mean daily maximum 

temperature and the flux of summed cations as calculated for every year from 1999 to 2010. 

 

Investigation also revealed no significant relationship between temperature and sulphate 

concentrations in the Mokolo (Non-linear regression, d.f. = 7, p = 0.5807) and Matlabas (Non-linear 

regression, d.f. = 5, p = 0.2795). A significant relationship was found in the Lephalala River (Non-

linear regression, d.f. = 5, p = 0.0195), A graphical representation of the changes in temperature and 

sulphate flux over time does not indicate the presence of a significant relationship (Figure 4.27). The 

relatively lower p-value calculated for the Matlabas River compared to the Mokolo Rivers indicates 

that the relationship between temperature and sulphate flux is, however, stronger. The higher p-value 

calculated for the cation and temperature relationship indicates that the relationship is weaker than the 

relationship between temperature and sulphate flux in the Lephalala and Matlabas Rivers. The 

opposite is true in the Mokolo Rivers which could indicate that the leaching of cations from the 

catchment is increased with increased rainfall occurring during the summer months. It could also be 

due to the relatively smaller sulphate flux values calculated for the rivers, often masking the 

relationship between the two parameters. 
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Figure 4.27. The graphical representation of the relationship between mean daily maximum 

temperature and the flux of sulphate ions as calculated for every year from 1999 to 2010. 

 

The statistical significance between ambient temperature and summed cation and sulphate flux at a 

monthly resolution was determined for the Lephalala, Mokolo and Matlabas Rivers and indicated that 

no significant relationship exists between these two parameters for most of the time (Table 4.7). A 

significant relationship between ambient temperature and summed cation flux was found for the 

Matlabas River in 2000, yet this period does not correspond with any large changes in fluxes or 

ambient temperatures measured. A significant relationship between ambient temperature and sulphate 

flux was found in the Mokolo River during 2000, yet again occurring in a year during which no 

maximum or minimum values for the 1999 to 2010 period were measured.  
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Table 4.7. The significance of the relationship between ambient temperature and summed cation and 

sulphate  flux (using non-linear regression) in the Lephalala, Mokolo and Matlabas Rivers for each  

hydrological year from 1999 to 2010. 

 

Year 

Lephalala River Mokolo River Matlabas River 

Cation Flux Sulphate 

Flux 

Cation 

Flux 

Sulphate 

Flux 

Cation 

Flux 

Sulphate 

Flux 

Sig p Sig p Sig p Sig p Sig p Sig p 

1999 * * * * * * * * * * * * 

2000 NSR 0.68 NSR 0.53 NSR 0.22 SR 0.03 SR 0.01 NSR 0.47 

2001 NSR 0.21 NSR 0.26 NSR  0.86 NSR  0.74 NSR 0.06 NSR 0.78 

2002 * * * * NSR 0.70 NSR 0.92 NSR 0.26 * * 

2003 * * * * * * * * * * * * 

2004 * * * * NSR 0.25 NSR 0.90 * * * * 

2005 * * * * NSR 0.81 NSR 0.98 * * * * 

2006 * * * * * * * * * * * * 

2007 * * * * * * * * * * * * 

2008 * * * * * * * * * * * * 

2009 * * * * * * * * * * * * 

2010 * * * * * * * * * * * * 

Sig = significant relationship 

p = p-value calculated using non-linear regression analysis 

SR = significant relationship 

NSR = no significant relationship 

* = no or too few data points available 

 

Increased ambient temperatures are expected to increase the flux of ions within the rivers due to 

increased evaporation, decreased river volume and discharge, and thus increased ion concentrations. 

This effect was not seen within the Lephalala, Mokolo and Matlabas Rivers most probably due to the 

warmer months being the rainfall season within the area. The effects that temperature would have on 

changes in ion fluxes is likely masked by the increased rainfall, cooling the air and water temperatures 

and replenishing river volume lost due to evaporation.  

 

4.8.2 Investigating the impact of rainfall on measured cation and sulphate flux 

Heavy rainfall events after dry periods often coincide with initially increased cation and sulphate 

concentrations measured in rivers within the same month due to the accumulation of ions on the land 

surface when no precipitation occurs. This often corresponds with periods of increased fluxes too as 

increased concentrations increase flux values. The correspondence between rainfall events and 
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increased cation and sulphate fluxes in the Lephalala, Mokolo and Matlabas Rivers is investigated at 

an annual and then a monthly resolution. 

Graphical analysis of the changes in rainfall and the flux of summed cations over the entire period of 

1999 to 2010 showed that there was no relationship between rainfall and cation flux in any of the 

rivers (Figure 4.28). Statistical analysis showed that the relationship between rainfall and cation flux 

is not significant in the Lephalala (Non-linear regression, d.f. = 6, p = 0.2063), Mokolo River (Non-

linear regression, d.f. = 8, p = 0.4519) and Matlabas (Non-linear regression, d.f. = 7, p = 0.6861) 

Rivers. The cation flux values were highest when the rainfall was lowest, indicating that the cation 

flux is more directly influenced by the ion concentration deposited than discharge.  

 

Figure 4.28. The graphical representation of the relationship between mean monthly rainfall per year 

and the flux of cations as calculated for every year from 1999 to 2010. 
 

Graphical analysis of the relationship between rainfall and sulphate concentration indicated there is no 

relationship between these two parameters (Figure 4.29). Additional statistical investigation revealed 

that there is no significant relationship between rainfall and flux of sulphate in the Lephalala (Non-

linear regression, d.f. = 6, p = 0.4456), Mokolo (Non-linear regression, d.f. = 8, p = 0.4433) or 

Matlabas (Non-linear regression, d.f. = 6, p = 0.8298) Rivers. The relationship between rainfall and 
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change in sulphate flux is however strongest for the Mokolo River which is located just upwind of the 

power station, being the river located closest to the Matimba power station. This could possibly 

indicate that the amount of sulphate deposition in close proximity of the power station is determined 

by the occurrence of rainfall events. 

 

Figure 4.29. The graphical representation of the relationship between mean annual rainfall using total 

monthly rainfall and the flux of sulphate as calculated for every year from 1999 to 2010. 

 

At a monthly resolution, the statistical analysis of the relationship between ion flux and rainfall 

indicated that changes in total monthly rainfall did not significantly alter the flux of cations and 

sulphate in any of the hydrological years from 1999 to 2010 (Table 4.8). It is also clear that rainfall 

has a greater effect on ion flux when compared to temperature, as very few years showed a significant 

relationship between ion flux and ambient temperature.  
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Table 4.8. The significance of the relationship between rainfall and summed cation and sulphate flux 

(using non-linear regression) in the Lephalala, Mokolo and Matlabas Rivers for each hydrological 

year from 1999 to 2010. 

 

Year 

Lephalala River Mokolo River Matlabas River 

Cation Flux Sulphate 

Flux 

Cation 

Flux 

Sulphate 

Flux 

Cation 

Flux 

Sulphate 

Flux 

Sig p Sig p Sig p Sig p Sig p Sig p 

1999 * * * * * * * * * * * * 

2000 NSR 0.12 NSR 0.23 NSR 0.41 NSR 0.41 NSR 0.40 NSR 0.40 

2001 NSR 0.29 NSR 0.10 NSR 0.28 NSR 0.28 NSR 0.29 NSR 0.29 

2002 * * * * NSR 0.95 NSR 0.95 * * * * 

2003 * * * * * * * * * * * * 

2004 * * * * NSR 0.84 NSR 0.84 * * * * 

2005 * * * * NSR 0.45 NSR 0.45 * * * * 

2006 * * * * * * * * * * * * 

2007 * * * * * * * * * * * * 

2008 * * * * * * * * * * * * 

2009 * * * * * * * * * * * * 

2010 * * * * * * * * * * * * 

Sig = significant relationship (p<0.05) 

p = p-value calculated using non-linear regression analysis 

SR = significant relationship 

NSR = no significant relationship 

* = no or too few data points available 

 

Temperature and rainfall are not the only factors that affect the flux of ions within rivers. The changes 

seen are often delayed as a result of the accumulated effects of different climatic variables and the 

variation in river discharge. 

4.8.3 Investigating the impact of discharge on measured cation and sulphate flux 

The mean daily discharge of the Lephalala, Mokolo and Matlabas Rivers for each season (Figure 

4.30) indicates that the discharge of the Mokolo River has no specific seasonality, most probably due 

to the large size of the river. The river is not seasonal and is recharged by the water received from 

groundwater. The Lephalala and Matlabas Rivers have higher daily discharge during summer and 

autumn, following rainfall events predominantly occurring during spring and summer.  
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Figure 4.30. The seasonal mean discharge values measured for the Lephalala, Mokolo and Matlabas 

Rivers during each hydrological year from 1999 to 2010. 

Lephalal

a 

Mokolo 

Matlabas 
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When the significance of the relationships between discharge and ion flux is statistically investigated 

(Table 4.9), it is clear that ion flux changes are marginally more significantly related to changes in 

river discharge than to temperature and rainfall, respectively. Discharge can thus be assumed to be the 

main driver of ion flux changes within the Lephalala, Mokolo and Matlabas Rivers.  

Table 4.9. The significance of the relationship between daily river discharge and summed cation and 

sulphate  flux (using non-linear regression) in the Lephalala, Mokolo and Matlabas Rivers for each 

hydrological year from 1999 to 2010. 

 

Year 

Lephalala River Mokolo River Matlabas River 

Cation Flux Sulphate 

Flux 

Cation 

Flux 

Sulphate 

Flux 

Cation 

Flux 

Sulphate 

Flux 

Sig p Sig p Sig p Sig p Sig p Sig p 

1999 * * * * * * * * * * * * 

2000 SR 0.02 SR 0.03 NSR 0.20 NSR 0.95 NSR 0.19 NSR 0.30 

2001 SR 0.03 NSR 0.15 NSR 0.22 NSR 0.93 NSR 0.47 NSR 0.07 

2002 * * * * NSR 0.49 NSR 0.71 NSR 0.60 * * 

2003 * * * * * * * * * * * * 

2004 * * * * SR 0.05 SR 0.60 * * * * 

2005 * * * * NSR 0.29 NSR 0.13 * * * * 

2006 * * * * * * * * * * * * 

2007 * * * * * * * * * * * * 

2008 * * * * * * * * * * * * 

2009 * * * * * * * * * * * * 

2010 * * * * * * * * * * * * 

Sig = significant relationship (p<0.05) 

p = p-value calculated using non-linear regression analysis 

SR = significant relationship 

NSR = no significant relationship 

* = no or too few data points available 

 

Years in which the relationship between discharge and ion flux is not significant, other external 

drivers (natural or anthropogenic) can be assumed to be of greater significance. These years do not 

correspond with unusually high or low flux values. The use of the data is also limited due to many 

years having missing or insufficient data points. 
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4.8.4 A summary of the relationship between ion flux and change in climatic parameters 

within the Lephalala, Mokolo and Matlabas Rivers 

When the seasonal changes in ion concentrations, rainfall, temperature, discharge and the ion flux 

were compared to the outcomes expected (Table 1.1) some seasons had followed the expected 

outcomes, while other seasons did not. The expected outcome was met more frequently for cation flux 

than for sulphate flux in all three rivers (Table 4.10). Ion fluxes within the Matlabas River followed 

the expected outcomes for a much greater proportion of the time when compared to the Lephalala and 

Mokolo Rivers.  

Table 4.10. The proportion (%) of seasons that followed the expected flux changes as described for 

each combination of ion concentration, rainfall, ambient temperature and river discharge. 

River Cation flux Sulphate flux Position relative to 

power station 

Lephalala River 61% 44% Upwind 

Mokolo River 88% 58% Downwind (close) 

Matlabas River 100% 78% Downwind (far) 

 

The Mokolo River is located closest to the Matimba power station and Lephalale town and showed 

deviation from the expected cation flux outcomes for the intermdiate proportion of the time. The low 

proportion of expected outcomes found for the Lephalala River could indicate that a significant 

amount of the measure cations within the water is due to anthropogenic activities on the ground, and 

not the addition of cations through atmospheric deposition. The high proportion of expected outcomes 

found for the Matlabas River could infdicate that the flux of ions within this river is determined by the 

climatic variables considered. 

The statistical significant relationships are summarized in Table 4.11 in which the three variables of 

temperature, rainfall and discharge are summarized to show their influence in each river in each year. 

Statistically, the relationship between the flux of cations and sulphate ions within the Lephalala, 

Mokolo and Matlabas Rivers and the change in at least one climatic variable is not significant in most 

years for which data are available. The years in which no significant relationships between ion flux 

and a climatic variable was found (indicated by an “!”), possibly indicate other external drivers that 
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are not accounted for in this study. These drivers could include changes in the amount of fossil fuels 

burned, fires and other anthropogenic changes. 

Table 4.11. A summary of the significance of the relationships between changes in climatic variables 

and ion flux within the Lephalala, Mokolo and Matlabas Rivers. 

 

Year 

Lephalala River Mokolo River Matlabas River 

Cation 

Flux 

Sulphate 

Flux 

Cation 

Flux 

Sulphate 

Flux 

Cation 

Flux 

Sulphate 

Flux 

1999 * * * * * * 

2000 D ! ! T T ! 

2001 D ! ! ! ! ! 

2002 * * ! ! ! * 

2003 * * * * * * 

2004 * * D D * * 

2005 * * ! ! * * 

2006 * * * * * * 

2010 * * * * * * 

T = temperature 

R = rainfall 

D = discharge 

! = other possible drivers of ion flux changes 

* = no data available 

Increased cation fluxes were measured in the Lephalala River in 2002 and 2006 while no unusually 

high sulphate flux values were found. The increase in 2002 is most probably due to a significant 

change in rainfall and river discharge. The increase in 2006 is most probably due to the 

incompleteness of the data set as only a single value was recorded for this specific year. If more 

values were available, a different pattern might have been observed.  

Increased cation fluxes in the Mokolo River were measured for 2007, while sulphate fluxes were 

elevated during 2004 and 2007. A significant relationship between ion flux and discharge was found 

for the year of 2004, indicating that the change is possibly due to change in river discharge. As the 

Mokolo River Catchment is highy developed, other possible drivers include direct dumping into the 

river or the run-off of sewage and washing water from the surrounding catchment.  

The Matlabas River had maximum cation flux values in 2002 and 2006, while sulphate flux values 

were high in 2001.No significant relationship between ion fluxes and the climatic variables were 

found during 2002, yet insufficient data for 2006 made it impossible to determine the probable drivers 

in change of flux. It is, however, most probably due to only single values being available for each 
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year. These values could be sporadic, high values changing the pattern in ion flux observed. The 

increased cation flux is most likely due to changes in rainfall and daily river discharge, while the 

increase in sulphate flux cannot be explained by the considered climatic variables. 

4.9 Change in coal quality over time 

Three parameters indicating coal quality were investigated – gross critical value (MJ.kg
-1

), volatile 

matter content (%) and ash content (%). These values are only available from 2005; therefore 

comparisons between the mean measurements for 2005 and 2011 were made (Table 4.12).  

Table 4.12. A direct comparison of the mean gross critical value, volatile matter and ash content of 

coal burned at the Matimba power station in 2005 and 2011. 

 2005 2011 

Gross Critical Value (MJ.kg
-1

) 19.11 ± 0.1977 18.78 ± 0.1899 

Volatile Matter (%) 37.00 ± 0.7476 24.48 ± 0.4301 

Ash content (%) 30.32 ± 0.6143 31.78 ± 0.7161 

 

The gross critical value data were found to be normally distributed for 2005 (Shapiro-Wilk Normality 

Test, p = 0.2748) and 2011 (Shapiro-Wilk Normality Test, p = 0.7608) and can be compared using a 

parametric test. The gross critical value significantly decreased (Paired T-test, d.f. = 11, p = 0.0055) 

from 2005 to 2011, indicating that the quality of coal burned within the Matimba power station 

decreased. A weak negative linear trend was found for the gross critical value of coal burned from 

2005 to 2011 (Figure 4.31), thus a further increase in quantity of coal burned is expected in the future 

in order to compensate for the decreased energy value per unit coal burned. 
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Figure 4.31. Annual mean gross critical values (as fired) of the coal burned at Matimba Power Station 

from 2005 to 2011. Variation is indicated with standard error bars. 

The volatile matter content data were found to be not normally distributed for both 2005 (Shapiro-

Wilk Normality Test, p = 0.0252) and 2011 (Shapiro-Wilk Normality Test, p = 0.0175) and has to 

compared using a non-parametric test. The volatile matter content of the coal significantly decreased 

(Mann-Whitney-U-Test, p = 7.395 x 10
-7

) between 2005 and 2011, translating into a significant 

decrease in the amount of matter released into the atmosphere per unit coal burned. This does not, 

however, directly translate into a decreased total amount of volatile matter released into the 

atmosphere if the total amount of coal burned has significantly increased.  

A strong negative linear trend was found for the changes in volatile matter content from 2005 to 2011 

(Figure 4.32), the volatile matter remained relatively consistent from 2005 to 2008 and from 2009 to 

2011. A very sharp decrease in volatile matter content from 2008 (37.04 ± 0.55%) to 2009 (24.56 ± 

0.43%) was found. 
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Figure 4.32. Annual mean volatile matter content of the coal burned at Matimba Power Station from 

2005 to 2011. Variation is indicated with standard error bars. 

The mean monthly amount of volatile matter (in tonnes) released into the atmosphere during each 

year from 2005 to 2011 showed a strong negative linear trend (Figure 4.33). The total amounts of 

volatile matter released in 2005 and 2011 were statistically compared to test the significance of the 

change. A Shapiro-Wilk Normality test showed that the data were normally distributed for 2005 (p = 

0.2127) and 2011 (p = 0.2963). The amount of volatile matter released in 2011 was significantly 

lower than the amount of volatile matter released in 2005 (ANOVA, d.f. = 22, p = 6.801 x 10
-10

), 

indicating that the decrease in volatile matter (%) was not masked by any increase in the total amount 

of coal burned at the Matimba power station. 
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Figure 4.33. Mean monthly amount of volatile matter (in tonnes) released into the atmosphere from 

Matimba power station during each year from 2005 to 2011. Variation is indicated with standard error 

bars. 

The ash content data for 2005 (Shapiro-Wilk Normality Test, p = 0.3612) and 2011 (Shapiro-Wilk 

Normality Test, p = 0.6708) were found to have a normal distribution, and were compared using a 

parametric test.  The mean ash content of the coal as fired significantly increased from 30.32% in 

2005 to 31.78% in 2011 (Paired T-test, d.f. = 11, p = 0.0004). The general linear trend in the change 

of ash content was found to be a weak positive trend (Figure 4.34), with no abrupt change in ash 

content between 2008 and 2009, as was found for the volatile matter content of the coal (Figure 4.32).   
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Figure 4.34. Annual mean ash content of the coal burned at Matimba Power Station from 2005 to 

2011. Variation is indicated with standard error bars. 

 

The total impact of the changes in coal quality on the deposition of ions and changes in water quality 

is dependent on the change in the amount of coal burned. Understanding how the amount of coal 

burned at the Matimba power station has changed from 1999 to 2011 is thus vital in understanding the 

overall impact of burning coal within the Waterberg District Municipality. 

 

4.10 The relationship between coal usage and flux of ions measured 

4.10.1 Changes in the annual amount of coal combusted at the Matimba power station 

The annual amount of coal burned at Matimba power station increased from 10 263 700 tonnes in 

1991 to 14 549 860 and 14 593 397 tonnes in 2005 and 2011, respectively (Figure 4.35). A line of 

best fit indicated a strong positive linear relationship (R
2
 = 0.8668), with the amount of coal 

increasing by an average of 219 570 tonnes per year. This trend is expected to continue at an 

increased rate once Medupi power station is commissioned, with the amount of coal burned increasing 

until the maximum capacities of both the power stations are reached. 
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Figure 4.35. Annual quantity of coal burnt at the Matimba power station from 1991 to 2011, as 

recorded by ESKOM. 

The amount of coal burned from 1999 to 2004 was available only at an annual resolution, limiting its 

usefulness in statistically comparing individual years. All annual coal usage values were divided into 

two groups: “Before 2005” and “2005 onwards”. A comparison of the average annual amount of coal 

burned before 2005 (12 157 854.0 ± 1 072 003.3 tonnes) and 2005 onwards (14 576 426.0 ± 

313 188.8 tonnes) indicated that there has been a very significant increase in the amount of coal 

burned at the station (ANOVA, d.f. = 19, p = 1.439 x 10
-5

). Increased usage is expected due to 

increased demand for electricity while the decreased calorific value of the coal burned decreases the 

amount of energy produced per unit coal burned. 

4.10.2 Investigating the relationship between the quantity of coal burned and the changes in 

cation and sulphate fluxes within the Lephalala River. 

The flux of cations (Figure 4.36; Non-linear regression, d.f.= 6, p = 0.6020) and sulphate ions (Figure 

4.37; Non-linear regression, d.f.= 6, p = 0.0199) in the Lephalala River from 1999 to 2010 showed a 

significant relationship with the use of coal at the Matimba power station and sulphate flux from 1999 
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to 2010. Large variations in cation fluxes indicated no specific trend in flux values while the usage of 

coal showed a positive trend over this specific period. The significance of the relationship between 

sulphate flux and coal usage is graphically confirmed in Figure 4.37. 

 

Figure 4.36. Summed cation flux within the Lephalala River and the coal usage at the Matimba 

power station from 1999 to 2010. 

 

Figure 4.37. Sulphate flux within the Lephalala River and the coal usage at the Matimba power 

station from 1999 to 2010. 

 

No significant relationship was expected as the river is located upwind of the Matimba power station, 

outside of the projected area of ion deposition. Wind roses for Lephalale supplied by the South 

African Weather Services do indicate that the northeasterly wind direction becomes less predominant 

during the months of May to August, with the month of June being the windiest (wind blowing 48% 
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of the time) with wind speeds of up to 5m.s
-1

 blowing from a north-easterly direction for 

approximately 4% of the time (Figure 4.38). This is higher than the proportion of time the wind blows 

in the same direction during the month of January (<1%). During the winter months, the deposition 

zone around the Matimba power station can thus be expected to be further along the north-easterly 

axis towards the Lephalala River when compared to the general projections presented, possibly 

increasing the amount of ions deposited in and around the river during this period. This is also 

supported by the earlier evidence presented as flux increases in the Lephalala and Matlabas Rivers 

during the drier, winter months (Figures 4.19 and 4.23). This effect can either be immediate after 

direct deposition into the river or delayed as rainfall is often limited during winter months, limiting 

the leaching of ions deposited onto the terrestrial system. 
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Figure 4.38. Wind direction and speed measured for Lephalale during every month of the year averaged over the period of 1991 

to 2013. 
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4.10.3 Investigating the relationship between the quantity of coal burned and the changes in 

cation and sulphate fluxes within the Mokolo and Matlabas Rivers. 

A comparison of coal usage with cation and sulphate fluxes in the Mokolo and Matlabas Rivers 

indicated no similarity in the trends. Statistically, all relationships were found to be not significant: 

coal usage vs cation (Non-linear regression, d.f. = 8, p = 0.1812) and sulphate (Non-linear regression, 

d.f. = 8, p = 0.2077) in the Mokolo River and coal usage vs cation (Non-linear regression, d.f. = 7, p = 

0.5121) and sulphate (Non-linear regression, d.f. = 6, p = 0.7023) in the Matlabas River. 

The significance of the relationship between cation flux and the river located in close proximity to the 

Matimba power station (Mokolo) was found to be stronger. The relationship between sulphate flux 

and the rivers located upwind from the power station (Lephalala and Mokolo) was strongest.  

Cation deposition is thus predominant in the area surrounding the power station, while sulphate 

deposition predominates in areas outside of the predicted area of deposition. It is possible that the 

deposition of cations and sulphate from the Matimba power station is more significantly determined 

by the distance of the site from the source rather than its direction from the source. The distance at 

which ions are deposited is also influenced by the occurrence of rainfall events, as wet deposition 

decreases the distance at which the ions are deposited by rapidly removing the ions from the 

atmosphere. 
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CHAPTER 5: DISCUSSION 

 

The following discussion is based on the changes in cation and sulphate concentrations (1999 to 2011 

by calendar year) and fluxes (1999 to 2010 by hydrological year) measured within the Lephalala, 

Mokolo and Matlabas Rivers. The relationships with climatic variables are also investigated. These 

changes are also discussed in relation to the change in coal quality and quantity burned at the 

Matimba Power Station in Lephalale. Each objective previously stated is discussed individually 

before all aspects are discussed in an integrated format. 

All interpretation of results and discussion points is done knowing the limitations of the data 

presented. Data from a single sampling station along each of the three predominant rivers within the 

Waterberg District Municipality (WDM) were used. The selection was based on its location relative to 

the Matimba Power Station. It is possible that certain trends specific to a single river continuum were 

missed as the data of only a single sampling station along wach river were used. The extrapolation of 

the data was done knowing that many data are missing from the available data set. The results 

presented and discussed are, however, correct for the data that are currently available for the river 

water quality within the WDM. 

5.1 Trends in pH, cation and sulphate concentrations measured in the Lephalala, Mokolo 

and Matlabas Rivers 

When compared to the pH values found by Burne (2015), it was evident that the pH of the Lephalala 

River has increased (5.0 to 6.3 times less acidic) while the pH of the Mokolo and Matlabas Rivers has 

decreased (~1.3 and 2.0 times more acidic, respectively). The differences in the changes can be due to 

a difference in the ratio of cations and sulphate ions deposited or due to different natural acid 

neutralising capacities (ANC) of the river catchments (Driscoll et al. 2001). The Matlabas River 

Catchment is expected to have the highest natural ANC due to slower movement of water through the 

catchment, the seasonality of the river and the decreased discharge measured for this river. Slower 

movement of water is expected due to the lower degree of development within this catchment, while 

large residential and industrial areas within the Lephalala and Mokolo catchments are expected to 
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have higher surface to ground water ratio. The Lephalala and Mokolo Rivers are larger rivers with 

increased denaturalised run-off decreasing the natural ANC and thus increasing the likelihood of 

acidifying effects. This does not support the changes found in the pH of the rivers, indicating that the 

input of ions into the system far exceeds the effects of the natural remediating processes. 

Sodium is a major contributor to summed cation concentrations within the Lephalala, Mokolo and 

Matlabas Rivers. In the majority of the Waterberg Rivers, including thermal springs, the dominant 

cation is sodium with calcium also occurring in high concentrations. These cations are followed by 

potassium and magnesium (Olivier et al. 2008). Similar trends were found in this study, with the 

exception of magnesium occurring at higher concentrations than potassium, possibly indicating 

increased magnesium into the river system.   

There are at least three possible major sources of sodium, other cations and sulphate ions within the 

Waterberg District Municipality: ions within soils, emissions of coal-fired power stations and other 

industrial, agricultural and household anthropogenic sources.  

The Waterberg is part of the Karoo Super Group (north of Lephalale) and the Waterberg Group (south 

of Lephalale; Figure 5.1). Ground water within the Karoo Super Group is expected to be rich in 

sodium, calcium and potassium (Bothma 1998) which are the three predominant cations measured 

within the Lephalala, Mokolo and Matlabas Rivers. 
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Figure 5.1. A simplified representation of the geological systems within the Waterberg District 

Municipality (DEA 2010). 

Water discharged from mining operations in the Waterberg area has always been found to be rich in 

NaHCO3 (Annandale 2009), indicating that the water sources across the Waterberg District 

Municipality can be expected to have high concentrations of sodium naturally occurring due to 

weathering and ground water movement. Most water samples collected throughout the Waterberg 

District Municipality are sodium chloride dominant which is associated with slow moving to stagnant 

ground water with little to no recharge (DWA 2010). Increased sodium concentrations in the 

Lephalala, Mokolo and Matlabas Rivers can be assumed to be due to naturally weathering and 

leaching processes, yet anthropogenic processes are expected to be responsible for large differences in 

sodium (and other cation) concentrations between the three rivers. 

Sulphate ions are naturally abundant in the environment generally occurring within many soils. 

Sulphate ions are, however, not highly mobile (EPA 2003) indicating that the leaching of sulphate 

ions from the soils is minimal. Leaching is expected to increase with increased ion mobility in the 

presence of other anions. Sulphates are commonly used in the mining and metal industries, water and 
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sewage treatment and the manufacturing of numerous chemicals, fungicides and insecticides 

(Greenwood et al. 1984). Ammonium sulphate is used in the fertilizer industry (EPA 2003). 

Anthropogenic inputs of cations and sulphates due to effluent from septic systems, leachate from 

landfills and household as well as agricultural chemicals are very likely within the Lephalala and 

Mokolo River Catchments. Sanitation within the Waterberg District Municipality is poor to absent as 

only 45.4% of all households have access to hygienic toilets: flush toilets that are connected to the 

sewer system or septic tanks (Table 5.1; IDP 2014). The hygienic toilets are expected to 

predominantly occur within the larger towns and not within the rural villages occurring along the 

rivers. The majority (94%) of these waterborne sanitation systems are older than 20 years, while 15% 

of the sanitation network is in very poor condition and may be experiencing impairment in 

functionality (IDP 2014). A total of 1 589 households (5.3%) do not have access to any form of toilet, 

discharging human wastes directly onto the terrestrial system from where it is leached into the 

groundwater and rivers during rainfall events. 

Table 5.1. The number of households within the Waterberg District Municipality that have access to 

each of the sanitation types (IDP 2014). 

Sanitation type Number of households 
Proportion of population 

(%) 
Number of 

households with 

hygienic toilets 

13 434 

(45.4%) 

No toilet 1 589 5.4 

Flush toilet 

connected to sewer 

system  

11 803 39.9 

Ventilation 

Improved Pit (VIP) 
7 198 24.3 

Pit toilet without 

ventilation 
6 785 22.9 

Number of 

households without 

hygienic toilets 

16 142 

(54.6%) 

Chemical toilet 385 1.4 

Flush toilet with 

septic tank 
1 631 5.5 

Bucket toilet 185 0.6 

Total 29 576 100.0 

The trends in cation and sulphate concentration changes are not the same in any of the rivers, yet both 

the Lephalala and Matlabas Rivers show a sharp increase in concentrations during 2000 – 2001. These 

rivers are located in two different river catchments, making an environmental parameter the most 
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probable driver of change. Elevated amounts of rainfall were recorded during 1999 (544 mm) and 

2001 (443 mm) when compared to the average rainfall of 350 – 400 mm per annum (IDP 2014). 

Following a year of low rainfall in 2000 (271 mm), the increased rains in 2001 probably led to the 

depositing and leaching of high amounts of cations and sulphate into these rivers. The high 

concentrations measured in 2000 most probably is due to the relatively dry winter and spring 

preceding the 200mm of rain measured during the summer of 2000. The concentrations of cations and 

sulphate within the Mokolo River remained relatively consistent and this is probably due to the more 

consistent run-off of water in this highly developed catchment as decreased natural run-off is 

supplemented by denaturalized run-off. This is a result of the on-going use of water supplied by the 

municipalities within the developed areas while sewerage and other effluents are better managed. 

The Matlabas River, the only river located downwind from the Matimba Power Station, did not show 

the expected increased cation and sulphate concentrations relative to the Lephalala and Mokolo Rivers 

which are both located upwind. The upwind rivers clearly had increased concentrations of especially 

sulphate, with the Lephalala River having the highest mean cation and sulphate concentrations 

between 1999 and 2011. Concentrations decreased from northeast to southwest with the Lephalala 

River having the highest and the Matlabas River having the lowest mean values. This pattern is seen 

with all ions throughout the entire period of 1999 to 2011 (Table 5.2).  

South African coal composition indicates only 0.00 to 0.31% Na2O and 0.03 to 0.24% SO3 (Van der 

Merwe et al. 2014 and Mainganye et al. 2013). With a mean of 12 964 044 ± 1 463 312 tonnes of coal 

burned each year from 1999 to 2011, this translates to 0 – 40 200 tonnes of Na2O and 3 900 – 31 100 

tonnes of SO3 released into the atmosphere per annum. A small proportion of these atmospheric ions 

are rapidly deposited when it rains (wet deposition) yet some are also deposited as dry deposition.  

The Matlabas River is seasonal, only flowing during the rainfall season. Any ions deposited by dry 

deposition will accumulate on the dry river basin, contributing to increased concentrations measured 

when the river flow recuperates. The input of cations and sulphate ions into the system due to the 

combustion of coal at the Matimba Power Station is still less concerning when compared to the other 

immediate anthropogenic sources mentioned.  
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Table 5.2. A summary of the location, description, concentration trends and possible drivers in the 

Lephalala, Mokolo and Matlabas Rivers. 

 Lephalala River Mokolo River Matlabas River 

Location from 

Matimba Power 

Station 

Upwind Upwind Downwind 

General description 

of river catchment 

Large number of 

informal settlements, 

rural livelihoods. Poor 

or no sanitation 

systems. 

Well developed, 

industrial area. 

Existing sewerage 

systems are in poor 

condition. 

Undeveloped, 

agricultural area. Low 

population density. 

Seasonality and 

discharge of the river 

Perennial river. Mean 

discharge of 13.46 ± 

31.24 cumecs and a 

range of 0.01 to 176.34 

cumecs during 1999 to 

2010. 

Perennial river. Mean 

discharge of 2.10 ± 

2.23 cumecs and a 

range of 0.02 to 8.86 

cumecs during 1999 to 

2010.  

Seasonal river. Mean 

discharge of 4.38 ± 

11.32 cumecs and a 

range of 0.00 to 50.90 

cumecs during 1999 to 

2010. 

Ion concentration 

trends 

Consistently high ion 

concentrations. Outside 

of the projected area of 

deposition. 

Ion concentrations 

remain relatively 

constant at values 

intermediate of 

concentrations 

recorded in Lephalala 

and Matlabas Rivers. A 

single elevated suplate 

concentration 

measured during 2004.  

Ion concentrations 

fluctuate a lot, but 

remains at lower values 

than the concentrations 

recorded for the 

Lephalala and Mokolo 

Rivers. 

Most likely driver of 

changes in ion 

concentrations 

Periodic leaching of 

sewerage and / or other 

anthropogenic wastes 

or incomplete 

understanding of 

deposition footprint of 

power station. 

Consistent input of 

ions into system, most 

likely due to effluent 

and chemical run-off. 

Ion input is most likely 

related to the burning 

of coal at the Matimba 

Power Station. 

 

The interaction of cation and sulphate concentrations with the discharge of each of the rivers resulted 

in annual and seasonal flux patterns that differ between the cations and sulphate ions measured. No 

single pattern or trend was found to be common throughout all ion species, indicating the dynamic 

nature of the system. 
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5.2 Annual and seasonal fluxes of cations and sulphate ions within the Lephalala, Mokolo 

and Matlabas Rivers 

The flux of an ion is directly determined by the concentration of the ion as well as the discharge of the 

specific river. Flux is proportional to ion concentration and inversely proportional to discharge. The 

ion concentration patterns and trends within the Lephalala, Mokolo and Matlabas Rivers have already 

been discussed. Discharge is not directly discussed, but is related to the changes in ion fluxes 

measured within the rivers.  

Seasonal changes in individual cation, summed cation and sulphate fluxes within the three rivers were 

predominantly not significant (Table 5.3).The significant changes did however indicate a weak 

relationship between flux and rainfall or discharge, with fluxes increasing during winter and 

decreasing during summer in the rivers located further away from the Matimba Power Station. 

Table 5.3. The seasonality and direction of changes in individual cation, summed cation and sulphate 

fluxes in the Lephalala, Mokolo and Matlabas Rivers from 1999 to 2010. 

Ion Lephalala River Mokolo River Matlabas River 

Sodium X X ↑ (winter) 

Magnesium ↓ (summer) X X 

Calcium ↓ (summer) X X 

Potassium X X X 

Ammonium X X X 

Summed cations X X X 

Sulphate X X X 

X = no seasonality shown 

The increase in sodium flux in the Matlabas River during winter is most probably due to an increase 

in the concentration of ions for two reasons: an increase in the deposition footprint of ions from the 

Matimba Power Station plumes when rain is absent or due to a decrease in discharge of the seasonal 

river during the dry season. The latter is expected to be the most probable explanation as no 

significant relationships between ion fluxes and rainfall were found. The greater significance of the 

relationship between ion fluxes and river discharge possibly indicates that there is a lag period 

between rainfall events and changes in ion fluxes measured. A lag period is defined as the time delay 
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between maximum rainfall amount and the peak discharge measured, usually presented in a 

hydrograph (Yu et al. 2000). 

The data were all analysed by hydrological year, which commences with the start of the winter 

season. A hydrological year thus runs from one dry season to the next, with rainfall being highest in 

the middle of the hydrological year. The hydrological year within the Lephalale area runs from June 

to May with rainfall being highest from November to February. The fluxes of especially sodium, 

magnesium, summed cations and sulphate ions were increased in winter and early spring. These 

increased fluxes are expected to be due to the increased rainfall measured during the rainfall season, 

four to seven months before.  

The discharge of the Mokolo River follows a similar pattern, with discharge being highest during late 

autumn and during winter. Discharge within the Lephalala and Matlabas also indicated increased 

values during autumn. In both rivers the discharge then decreases during winter and spring and 

increases again during summer. This could indicate a shorter lag period between rainfall and 

discharge as the rainfall measured during spring and summer is seen in the increased discharge in 

summer and autumn (one to three months later). 

Lag time is not a constant value, yet varies inversely with the flow rate of water through the river 

catchment (Pilgrim 1987). Greater amplitude on a hydrograph is thus expected to be accompanied by 

a decreased time lag as it indicates the increased rate of water movement from the catchment into the 

river. The flow rate and thus magnitude of this lag period is determined by various factors, including 

catchment characteristics such as catchment size, land cover and climate (Verstraeten and Poesen 

2001 and Zhou et al. 2002) as well as deposition rates of ions into the waterbodies (Verstraeten et al. 

2003; Table 5.4). 
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Table 5.4. The climatic and topographic factors that influence the flow rate of water and thus the lag 

time between maximum rainfall and peak discharge within a river catchment. 

Factor Flow rate of water through 

catchment 

Lag time 

Increased rainfall intensity ↑ ↓ 

Wider rainfall distribution ↓ ↑ 

Catchment size ↓ ↑ 

Elongated catchment shape ↓ ↑ 

Increased slope of catchment ↑ ↓ 

Increased natural or artificial 

water storage capacity 

↓ ↑ 

Increased soil permeability* ↓ ↓ 

Increased urbanization ↑ ↓ 

* Increased soil permeability indicates the absence of an inverse relationship between flow rate and 

lag time. Increased permeability increases the amount of water that seeps into the groundwater 

reservoirs, increasing the time it takes for the water to reach the river. 

The magnitude of the lag effect within each of the river catchments within the Waterberg District 

Municipality is unknown, yet it is expected that the Matlabas River Catchment will have the shortest 

lag time between the peak rainfall event and the peak flux event due to its intermediate size 

(6 014km
2
) and more rounded shape (Figure 5.2) when compared to the Lephalala (very elongated; 

4 868km
2
) and Mokolo (less elongated; 8 387km

2
). The latter two river catchments also have 

increased artificial water storage capacities, further increasing the expected time lag. Using small 

“natural” plots of 108km
2
, Yu et al. (2000) found that the average lag time ranged from 2.04 to 5.96 

minutes. The plots used in their study are ~ 4.5 x 10
5
, 7.8 x 10

5
 and 5.6 x 10

5
 times smaller than the 

Lephalala, Mokolo and Matlabas River Catchments, respectively. Lag times in the order of months 

can be expected to be found within these river catchments, as increased catchment size and increased 

lag time are proportional. 
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Figure 5.2. The influence that a rounded and elongated river catchment shape has on the curve of a 

hydrograph. 

The Lephalala and Mokolo River Catchments are more developed catchments, with most of the 

Waterberg District Municipality’s population living within the boundaries of these two catchments 

(HDA 2013). When considering the extent of urbanisation within the different catchments in isolation 

from all other factors influencing time lag, one would expect the Lephalala and especially Mokolo 

River Catchments to have a very short lag time as water rapidly runs off across the concrete covered 

catchment surfaces (Figure 5.3). Although the urbanised area within the catchment is minimal when 

compared to the area not developed, the area directly surrounding the Mokolo River sampling station 

is best represented by the scenario in the bottom left box. Other factors, such as catchment size and 

shape and the presence of artificial water storage systems and agricultural land use practices regularly 

outweigh the effects of urbanization as urban areas only represent a smaller portion of the complete 

catchment. 

Rounded 

Elongated 
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Figure 5.3. A diagrammatic representation of the changes in surface permeability and runoff with 

different degrees of urbanization. 

As of 2014, a total of 13 526.2 ha (1%) of the Waterberg District Municipality was classified as 

urbanized, yet this area is expected to keep on expanding due to the various potential development 

highlighted for the area. The Spatial Development Framework compiled for the Waterberg District 

Municipality identified seven functional precincts for the area, namely mineral potential areas, coal 

fields, potential agriculture fields, nature conservation areas, hunting lodges, biospheres and 

development clusters (PlanPractice 2004). The Mokerong area and the Lephalale/Onverwacht area are 

the two development clusters already identified within the proximity of Lephalale town (PlanPractice 

2004). 

The estimated expansion rate of developments within the Lephalale area (Table 5.5; IDP 2008) is 

relatively low when considering that the Waterberg District Municipality spans across 1.4 million 

hectares. This does, however, only include three of the many developments expected to occur within 
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the area. With the developed and industrialised areas estimated to only cover ~13 500 ha at present, a 

single development is expected to increase this area by ~0.1% per annum. The intensive nature of the 

pollutant sources within the Waterberg District Municipality has led to the degradation of water 

quality regardless of the limited geographic extent and is expected to continue altering water quality 

within the area if the rapid development is not properly managed. 

Table 5.5. The expected rate of the expansion of business, industrial, mixed and educational land use 

within the Lephalala area for three major developments planned. The table is compiled from 

information given in the Lephalale Intergrated Development Plan for 2008/2009 (IDP 2008). 

 Medupi power station and 

associated expansion of 

Grootegeluk coal mine 

A future power station and its 

associated coal mining activities 

Expected timeframe 2007 – 2016 2017 – 2023 

Business areas 5 ha/annum 5 ha/annum 

Commercial and 

industrial areas 

5 ha/annum 5 ha/annum 

Mixed land use areas 2 ha/annum 2 ha/annum 

Educational areas 6 ha/annum 6 ha/annum 

Total 18 ha/annum 18 ha/annum 

Additional notes Expansion of area used for all developments expected to continue 

increasing at 2.5% per annum after completing of initial estimated 

timeframe. 

 

More recent Integrated Development Plans available for the Lephalale Local Municipality do not 

address the rate at which different land uses are expected to grow. It is also important to note that the 

Sasol establishment was listed within the Lephalale Integrated Development Plan of 2008/2009 (IDP 

2008), yet never occurred.  

 

5.3 Quality and quantity of coal burned at the Matimba coal-fired power station, and its 

relation to the changes in cation and sulphate concentrations measured 

Various parameters are used to determine the quality of coal used for different purposes. Gross critical 

value (CV), volatile matter and ash content are the most common measurements used and are 

discussed in terms of the coal combustion at the Matimba Power Station from 2005 to 2011. 
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Gross critical or calorific value is defined as “the heat produced by combustion of a unit quantity of a 

solid or liquid fuel when burned at constant volume… under specific conditions…” (ASTM 

International). The gross CV of the coal burned at Matimba Power Station was highly variable, yet the 

general decrease in value indicates that the energy value per unit coal is decreasing, increasing the 

amount of coal needed to supply South Africa with electricity.  With the amount of coal burned at the 

station already increasing at a rate of 249 563 tonnes per annum, it can be expected to continue with 

this trend due to the interaction between lower energy value of coal and the increasing demand for 

electricity in especially the development hubs in the northern parts of the country. 

A decrease in volatile matter, defined as “substances, other than moisture, that are given off as gas 

and vapour during combustion”, in the coal combusted at the Matimba Power Station was so 

pronounced that the amount of volatile matter released (in tonnes) also decreased regardless of the 

sharp increase in the amount of coal burned over the same period.  Volatile matter is usually a mixture 

of short- and long-chain hydrocarbons and some sulphur, indicating that a significant decrease in the 

amount of sulphur within the power station plume can be expected from after 2008.  

The amount of coal burned at the Matimba Power Station did not significantly alter the ion fluxes 

measured in the Mokolo and Matlabas Rivers as well as the cation fluxes measured within the 

Lephalala River. These fluxes are expected to be determined by the rapidly increasing human 

population within the catchments, with the indirect effects often being detrimental to river health and 

functioning. Sulphate fluxes within the Lephalala River were, however, significantly related to the 

amount of coal burned, a finding that does not match the deposition footprint modelled for the area 

surrounding the Matimba Power Station (Zunckel and Raghunandan 2013).  

It is possible that the importance of the dry deposition of sulphate ions during the dry winter months is 

underestimated. This can be especially important during the months of May and June when the north-

easterly wind direction is less predominant and deposition further along the south-westerly axis is 

possible. This is supported by the increased sulphate concentrations measured in the Lephalala River 

during spring and even summer, possibly due to the commencement of the rainfall season washing the 
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deposited ions from the catchment. The slow reaction rates of SO2 within saturated power station 

plumes due to oxidant limitations allow the ions to travel further before being deposited (Hewitt 

2001). Increased coal combustion is expected to decrease the availability of oxidants even more, 

allowing SO2 ions to travel even further from the source. When interacting with urban plumes 

expected over the Mokolo and Lephalala River Catchments, increased rates of SO4
2-

 ion formation is 

expected. These sulphate ions are then deposited across these river catchments (Luria et al. 1983). 

Once Medupi Power Station is fully operational, the amount of coal burned within the Waterberg 

District Municipality will increase from 14.8 million tonnes per annum to a total of 29.4 million 

tonnes per annum (Ryan 2014). The increase of 99% in the amount of coal burned is expected to have 

various negative consequences, including increased cation and sulphate depositions especially in all of 

the studied river catchments. Deposition of ions can, however, be expected to occur at further 

distances with increased release of ions from coal combustion, increasing the deposition footprint 

around the Matimba Power Station. Currently, the amount of cations and sulphate ions released due to 

the combustion of coal at the Matimba Power Station is still within a range that allows for the 

ecosystem to continue functioning. It is, however, likely that the doubling of the amount of coal 

burned within the area will cause exceedances of ion concentrations acceptable to ecosystem 

functioning, regardless of the significant decrease in volatile matter already discussed. 

5.4 An overview of the water quality of the Lephalala, Mokolo and Matlabas Rivers and the 

potential threats within the Waterberg District Municipality 

The Waterberg District Municipality is a rapidly developing metropolis within the Limpopo Province 

of South Africa. With an increase of 20.5% in the population size (IDP 2014) from 2001 (96 102) to 

2011 (115 768) the area is expected to be home to 156 785 people by 2020 and 213 682 people by 

2030 (LDPR 2013). This translates into the number of households within the Waterberg District 

Municipality increasing to approximately 5 times the current number of households. Only 40% of the 

current population resides within the urban areas while 45% lives within the 34 tribal communities 

mostly scattered along the Lephalala River (HDA 2013). The remaining 15% is not specified, but it 
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expected to be residing in small informal settlements close to the major employment entities: 

Exxaro’s Grootegeluk mine and ESKOM’s Matimba and Medupi power stations. 

The water quality within the Waterberg District Municipality is still relatively good when compared 

to other coal-burning hubs such as the Highveld areas surrounding Witbank and Middelburg in the 

Mpumalanga Province of South Africa (see McCarthy and Pretorius 2009). The results showing that 

the rivers upwind of the Matimba Power Station (Lephalala and Mokolo Rivers) showed higher cation 

and sulphate concentrations and fluxes than the Matlabas River, located downwind of the power 

station, challenge the knowledge of the micro and meso scale circulation patterns in the area together 

with the predicted footprint. To date the predicted footprint is generated from modelling studies with 

little ground based validation. 

The difference in cation deposition footprints is possibly due to the rapid ion transformation chemistry 

in turbulent boundary layers within the plume. A boundary layer is the first one to two kilometres of 

the atmosphere and its turbulence is determined by the wind speed, temperature and humidity within 

the layer (Van Ulden and Holtslag 1985). The surface layer (100 to 500 meters) experiences the 

sharpest gradients in these parameters and is usually the most turbulent. The Matimba power station is 

approximately 130 meters high with stacks reaching heights of approximately 220 meters (Bohlweki 

2006). These are well within the turbulent layer, indicating that turbulence could be responsible for 

the deposition of cations in close proximity of the power station. The effects thereof can be expected 

to be measured in the Mokolo River, located only 16.3 kilometers northeast of the power station 

(Figure 5.4). The small variance in cation flux values measured within the Mokolo River could 

indicate the consistent input of cations due to deposition from power station plumes. The combustion 

of coal at the Matimba power station is thus expected to be a contributor to the cation fluxes measured 

within the Mokolo and Matlabas Rivers, yet is not the significant driver of cation fluxes seen within 

these rivers. Anthropogenic input are also expected to contribute to the cation fluxes measured within 

the Mokolo River. Although turbulence is expected to also contribute to the fluxes measured within 

the Lephalala River, the contribution is expected to less significant due to the river’s location and 

distance from the power station.  
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Figure 5.4. A diagrammatic representation of the effect of turbulence on the deposition of cations in 

close proximity of the Matimba power station. Diagram is not to scale. 

 

Within the Lephalala River Catchment, the indirect effects (increased population size, failing 

infrastructure) of electricity production are believed to currently far outweigh the direct effects which 

include the deposition of cations from the station plumes. Although the effects of coal combustion is 

expected to increase enormously when Medupi Power Station is fully operational, the continual 

growth of the human population and the increasing backlog in infrastructure is expected to remain the 

main water quality concern within the larger part of the Waterberg District Municipality.  

The drivers of the sulphate deposition footprints for the Mokolo and Matlabas Rivers are expected to 

be the same as the turbulent processes explained for the cation deposition footprints. The same 

generalised concept is expected to apply to the Lephalala River for most of the year (July – April), yet 

a deviation from the model is expected during the months of May and June (Figure 5.5).  The north-

easterly wind direction is less predominant during these months, with sulphate ions expected to be 

deposited at further distances “upwind” of the Matimba Power Station during this period. 
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Figure 5.5. A diagrammatic representation of the relationship between coal usage at the Matimba 

Power Station and the sulphate fluxes measured in the Lephalala River. This is expected to occur 

during May and June when the north-easterly wind direction is less predominant. Diagram is not to 

scale. 

Sulphate ions from anthropogenic sources are expected to still contribute to the sulphate 

concentrations and fluxes measured within the Lephalala River. Other sources of sulphate ions within 

the Lephalala, Mokolo and Matlabas River Catchments include mining processes, industrial 

processes, vehicular emissions and residential burning of fossil fuels (Walton and Ngcukana 2009). 

With the increase in power generation capacity through the construction of the Medupi Power Station, 

these sources are also expected to increase as development and human population density increases. 

The Lephalale Integrated Development Plan for 2015 to 2016 (IDP 2015) indicates that the 

Municipality has clear goals of how they want to achieve the balance between economic development 

and sustainable development. While direct attention has been given to the expected consequences of 

large scale combustion of coal within the area it is even more important to improve the basic 

livelihoods of those moving into the area in search of employment. Delivering basic sanitation 

services as well as the improvement of the existing sewerage and waste water networks, transport 

networks and electricity supply to rural communities has to be prioritised to ensure that development 

can continue moving forward. 

 



  

167 
 

CHAPTER 6: REFERENCES 

 

Ali, E. A. 1993. Damage to plants due to industrial pollution and their use as bioindicators in Egypt.  

 Environmental Pollution 81(3): 251 – 255. 

Anglo. 2013. Anglo American Fact Book 2012 / 2013. Accessed from  

www.angloamerican.com/~/media/Files/A/Anglo-American-PLC-V2/investors,a-

reports/2013rep/AA-Factbook-2012-2013.pdf.  

Annandale, J. G., Beletse, Y. G., Stirzaker, R. J., Bristow, K. L. and Aken, M. E. 2009. Is irrigation  

 with coal-mine water sustainable? Abstracts of the International Mine Closure Conference,  

 19
th
 – 23

rd
 October 2009, Pretoria, South Africa. 

Bae, H. 2013. Changes of River’s Water Quality Responded to Rainfall Events. Environment and  

 Ecology Research 1(1): 21 – 25. 

Bartram, J. and Balance, R. 1996. (eds.). Water Quality Monitoring: A practical Guide to the Design  

 of Freshwater Quality Studies and Monitoring Programme. Published on behalf of UNDP  

 and WHO, Chapman and Hall, London. 383 pp. 

Bester, M. 2009. Groundwater resource assessment of the Waterberg coal reserves. Master of  

 Science Dissertation, University of the Free State, Bloemfontein, South Africa. 

Bester, M. and Vermeulen, P. D. 2010. Investigation of potential water quality and quantity impacts  

 associated with mining of the shallow Waterberg coal reserves, west of the Daarby Fault,  

 Limpopo Province, South Africa. Water SA 36(5): 531 – 542. 

Bohlweki. 2006. Environmental Impact Assessment Report for the Proposed Establishment of a New  

 Coal-Fired Power Station in the Lephalale Area, Limpopo Province. Bohlweki  

 Environmental (Pty) Ltd, Final Report, Ref no: 12/12/20/695. 

Boroto, R. A. J. 2001. Limpopo River: Steps towards sustainable and integrated water resource  

 management. Regional Management of Water Resources, Proceedings of a Symposium held  

 during the 6
th
 IAHS Scientific Assembly at Maastricht, The Netherlands, July 2001.  

Bothma, A. 1998. A generic environmental management plan for coal-fired power stations. Masters  

 of Science, Rand Afrikaans University, Johannesburg. 

Burne, C. 2015. Macro-nutrient and hydrological trends in some streams of the Waterberg, Limpopo:  

 investigating the effects of land use change in catchment water quality. Master of Science  

 Dissertation, University of the Witwatersrand, Johannesburg, South Africa. 

http://www.angloamerican.com/~/media/Files/A/Anglo-American-PLC-V2/investors,a-reports/2013rep/AA-Factbook-2012-2013.pdf
http://www.angloamerican.com/~/media/Files/A/Anglo-American-PLC-V2/investors,a-reports/2013rep/AA-Factbook-2012-2013.pdf


  

168 
 

Busari, O. 2008. Groundwater in the Limpopo Basin: occurrence, use and impact. Environment,  

 Development and Sustainability 10(6): 943 – 957. 

Cairncross, B. 2001. An overview of the Permian (Karoo) coal deposits of southern Africa. African  

 Earth Sciences 33(3-4): 529 – 562. 

Calkins, W. H. 1994. The chemical forms of sulphur in coal: a review. Fuel 73(4): 475 – 484. 

Cánovas, C. R., Hubbard, C. G., Olias, M., Nieto, J. M., Black, S. and Coleman, M. L. 2008.  

 Hydrochemical variations and contaminant load in the Rio Tinto (Spain) during flood events.  

 Journal of Hydrology 350(1-2): 24 – 40. 

Carpenter, S. R. and Lodge, D. M. 1986. Effects of submerge macrophytes on ecosystem processes.  

 Aquatic Botany 26(3-4): 341 – 370. 

Charles, D. F. (ed.). 1991. Acidic Deposition and Aquatic Ecosystems. Regional Case Studies. New  

 York: Springer-Verlag. 

Chilundo, M., Kelderman, P. and O’Keeffe, J. H. O. 2008. Design of a water quality monitoring  

network for the Limpopo River Basin in Mozambique. Physics and Chemistry of the Earth  

33(8-13): 655 – 665. 

Clark, P. A., Fletcher. I. S., Kallend, A. S., McElroy, W. J., Marsh, A. R. W. and Webb, A. H. 1984.  

 Observations of cloud chemistry during long-range transport of power plant plumes.  

 Atmospheric Environment 18(9): 1849 – 1858. 

Conant, R. T., Ryan, M. G., Agren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., Evans, S. E.,  

 Frey, S. D., Giardina, C. P., Hopkins, F. M., Hyvonen, R., Miko, U., Kirschbaum, F.,  

 Lavallee, J. M., Leifeld, J., Parton, W. J., Steinweg, J. M., Wallenstein, M. D., Wetterstedt, J.  

 A. M. and Bradford, M. A. 2011. Temperature and soil organic matter decomposition rates –  

synthesis of current knowledge and a way forward. Global Change Biology 17(11): 3392 –  

3404. 

Cox, R. A. and Penkett, S. A. 1972. Aerosol formation from sulphur dioxide in the presence of ozone  

 and olefinic hydrocarbons. Journal of the Chemical Society, Faraday Transactions 1 68: 1735  

 – 1753. 

DEA. 2009. National Environmental Management: Air Quality Act, 2004 (Act No. 39 of 2004):  

 National Ambient Air Quality Standards. Department of Environmental Affairs. Government  

 Gazette, 24 December 2009. 

DEA. 2010. Department of Environmental Affairs: Environmental Management Framework for the  



  

169 
 

 Waterberg District, Status Quo Report. 281 pp. 

De Klerk, A. 2003. The Waterberg Biosphere Reserve: A land use model for ecotourism development.  

 Master of Science Dissertation, University of Pretoria.  

Delpha, I., Jung, A-V., Baures, E., Clement, M. and Thomas, O. 2009. Impacts of climate change on  

 surface water quality in relation to drinking water production. Environment International  

 35(8): 1225 – 1233. 

Dhemba, N. 2013. Compilation of an application for exemption from minimum emission standards  

 and extension of the minimum emission standard timeframes for ESKOM’s power stations: 

Water Resources Assessment. ILISO Consulting (Pty)Ltd, October 2013, ESKOM Project  

number PO 4501425553. 

Dittenhoefer, A. C. and De Pena, R. G. 1980. Sulphate aerosol production and growth in coal- 

 operated power plant plumes. Journal of Geophysical Research 85(C8): 4499 – 4506. 

Donaldson, J.S. 2010. Encephalartos eugene-maraisii. The IUCN Red List of Threatened Species  

 2010: e.T41904A10587250.  

http://dx.doi.org/10.2305/IUCN.UK.20103.RLTS.T41904A10587250.en.  

Downloaded on 18 February 2016. 

Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C. S., Eager, C., Lambert, K. F.,  

 Likens, G. E., Stoddard, J. L. and Weathers, K. C. 2001. Acidic Deposition in the  

 Northeastern United States: Sources and Inputs, Ecosystem Effects, and Management  

 Strategies. BioScience 51(3): 180 – 198. 

Ducharne, A. 2008. Importance of stream temperature to climate change impact on water quality.  

 Hydrology and Earth System Sciences 12(3): 797 – 810. 

DWA. 2010. Hydrogeological Assessment and Aquifer Recharge Potential within the Lephalale  

 (Ellisras) Local Municipality Area. Department of Water Affairs, Republic of South Africa.  

DWA. 2013. Joint Water Quality Baseline Report: Limpopo Basin between the Republic of Botswana  

 and South Africa. Departments of Water Affairs of Botswana and South Africa, August  

 2013. 

Eberhard, A. 2011. The Future of South African Coal: Market, Investment, and Policy Challenges.  

 Program on Energy and Sustainable Development, Working Paper #100, January 2011. 

Engelbrecht, J. and Bills, R. 2007. Barbus sp. nov. 'Waterberg'. In: IUCN 2013. IUCN Red List of  

 Threatened Species. Version 2013.2. www.iucnredlist.org. Downloaded on 5 May 2014. 

http://dx.doi.org/10.2305/IUCN.UK.20103.RLTS.T41904A10587250.en
http://www.iucnredlist.org/


  

170 
 

EPA. 2003. Drinking Water Advisory: Consumer Acceptability Advice and Health Effects Analysis on  

 Sulfate. United States Environmental Protection Agency, EPA 822-R-03-007, February 2003. 

EPA. 2013. National Ambient Air Quality Standards for Particulate Matter. Federal Register 78: 3086  

 – 3287. 

Eskom. 2013. Interim Integrated Report for the six months ended 30 September 2013. Eskom  

 Holdings SOC Limited. 

Evans, D. H., Piermarini, P. M. and Choe, K. P. 2005. The multifunctional fish gill: dominant site of  

 gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste.  

 Physiological Review 85(1): 97 – 177. 

Gaffney, J. and Marley, N. 2009. The Impacts of Combustion Emissions on Air Quality and Climate –  

 From Coal to Biofuels and Beyond. Atmospheric Environment 43(1): 23 – 36. 

Galloway, J. N., Likens, G. E., Keene, W. C. and Miller, J. M. 1982. The composition of precipitation  

 in remote areas of the world. Journal of Geophysical Research 87(C11): 8771 – 8786. 

Germs, W., Coetzee, M. S., Van Resnburg, L. and Maboeta, M. S. 2004. A preliminary assessment of  

 the chemical and microbial water quality of the Chunies River – Limpopo. Water SA 30(2):  

 267 – 272. 

Gillani, N. V., Kohli, S. and Wilson, W. E. 1981. Gas-to-particle conversion of sulphur in power plant  

 plumes – 1. Parameterization of the conversion rate for dry, moderately polluted ambient  

 conditions. Atmospheric Environment 15(10-11): 2293 – 2313. 

Gordon, A. G. and Gorham, E. 1963. Ecological Aspects of Air Pollution from an Iron-Sintering Plant 

at Wawa, Ontario. Canadian Journal of Botany 41(7): 1063 – 1078. 

Gӧrgens, A. H. M. and Boroto, R. A. J. 1999. Limpopo River: hydrological investigations to prepare  

 for integrated water resources planning. Proceedings of the 9
th
 SA National Hydrological  

 Symposium, SANCIAHS, Cape Town, South Africa. 

GOSA-DWAF. 2003. Limpopo Water Management Area Overview of water resources availability  

 and utilization. Government of South Africa – Department of Water Affairs and Forestry. 

Greenwood, N. N. and Earnshaw, A. 1984. Chemistry of the Elements. Pergamon Press, Oxford,  

 England. 

Hamilton, S. K. 2010. Biogeochemical implications of climate change for tropical rivers and  

 floodplains. Hydrobiologia 657(1): 19 – 35. 

HDA. 2013. Lephalale Local Municipality Municipal Profile. Housing Development Agency, South  



  

171 
 

 Africa. 

Held, G. and Mphepya, J. 2000. Wet and dry deposition in South Africa. XI Congresso Brasiliero de  

 Meteorologia, Rio de Janeiro, 16 – 20 October 2002, Paper QA00002, 2824 – 2833. 

Henning, B. J. 2006. The relevance of ecosystems to ecotourism in the Waterberg Biosphere Reserve.  

 PhD Thesis, University of Pretoria, Pretoria. 

Hewitt, C. N. 2001. The Atmospheric Chemistry of Sulphur and Nitrogen in Power Station Plumes.  

 Atmospheric Environment 35(7): 1155 – 1170. 

Hooda, P. S., Rendell, A. R., Edwards, A.C., Withers, P. J. A., Aitken, M.N. and Truesdale, V.W.  

 2000. Relating Soil Phosphorus Indices to Potential Phosphorus Release to Water. Journal of  

 Environmental Quality 29: 1166 – 1171. 

Hsieh, K. C. and Wert, C. A. 1985. Direct measurement of organic sulphur in coal. Fuel 64(2): 256 –  

 262. 

IDP. 2008. Lephalale Municipality: Integrated Development Plan Review 2008 – 2009. Lephalale  

 Municipality, South Africa. 

IDP. 2014. Lephalale Municipality: Integrated Development Plan 2014 – 2016. Lephalale  

Municipality, South Africa. 

IDP. 2015. Waterberg District Municipality Integrated Development Plan 2015 – 2016. Waterberg  

 District Municipality, South Africa. 

Itzkin, A. 2012. Baseline data (soils, lichens and EIAs) needed to measure impacts of Eskom’s  

 Medupi Power Station in the Waterberg Priority Area. BSc Honours Research Report, School  

 of Animal, Plant and Environmental Sciences, University of the Witwatersrand,  

 Johannesburg. 

Jenkins, C. 2005. Nutrient flux assessment in Port Waterways. Environmental Protection Authority. 

Adelaide, South Australia. 

Josipovic, M., Anegarn, H. J., Kneen, M. A., Pienaar, J. J. and Piketh, S. J. 2011. Atmospheric dry  

 and wet deposition of sulphur and nitrogen species and assessment of critical loads of acidic  

 deposition exceedance in South Africa. South African Journal of Science 107: 1 – 10. 

Kalenga, P. M., Cukrowska, E., Tutu, H. and Chimuka, L. 2011. Characterization of South African  

 coal for metals, inorganic and organic sulphur compounds. South African Journal of  

 Chemistry 64: 254 – 262. 

Kirchman, D. L. 2012. Processes in Microbial Ecology. New York: Oxford University Press. 



  

172 
 

Kuylenstierna, J. C. I., Rodhe, H., Cinderby, S., Hicks, K. 2001. Acidification in developing  

 countries: Ecosystem sensitivity and the critical load approach on a global scale. Ambio 30(1):  

 20 – 28. 

LDPR. 2013. Lephalale CBD Development Plan. Lephalala Municipality, South Africa. 

Liebenberg-Enslin, H., Thomas, R., Walton, N. and van Nierop, M. 2007. Vall Triangle Priority Area  

 Air Quality Management Plan – Baseline Characterisation. Project completed in May 2007  

 by Airshed Planning Professionals (Pty) Ltd, Gondwana Environmental Solutions (Pty) Ltd  

 and Zitholele Consulting on behalf of the Department of Environmental Affairs and Tourism,  

 Pretoria. 

Liebsch, E. J. and De Pena, R. G. 1982. Sulphate aerosol production in coal-fired power plant plumes.  

 Atmospheric Environment 16(6): 1323 – 1331. 

Likens, G. E., Driscoll, C. T. and Buso, D. C. 1996. Long-Term Effects of Acid Rain: Response and  

 Recovery of a Forest Ecosystem. Science 272(5259): 244 – 246. 

Luria, M., Olszyna, K. J. and Meagher, J. F. 1983. The atmospheric oxidation of flue gases from a  

 coal-fired power plant: a comparison between smog chamber and airborne plume sampling.  

 Journal of the Air Pollution Control Association 483 – 487. 

Mackintosh, G. S., De Souza, P. F. and De Villiers, H. A. 2002. Design and operation guideline for  

 municipal sized surface water limestone contactors. Paper presented at the Biennial  

 Conference of the Water Institute of Southern Africa (WISA), 19 – 23 May 2002, Durban,  

 South Africa. 

Mainganye, D., Ojumu, T. V. and Petrik, L. 2013. Synthesis of Zeolites Na-P1 from South African  

 Coal Fly Ash: Effect of Impeller Design and Agitation. Materials 6(5): 2074 – 2089. 

Maré, J. 2013. Environmental Impact Assessment Report for the Proposed Thabametsi Coal-Fired  

 Power Station in a Site near Lephalale, Limpopo Province. Savannah Environmental (Pty)  

 Ltd, 12 June 2013, Report no. 2013/06/IPP/SW/01/R1. 

Marquard, A. 2007. The development of energy policy in South Africa, PhD Thesis, University of  

 Cape Town, South Africa. 

Matowanyika, W. Impact of Alexandra Township on the Water Quality of the Jukskei River. Master of  

 Science Dissertation, University of the Witwatersrand, Johannesburg, South Africa. 

McCarthy, T. S. and Pretorius, K. 2009. Coal mining on the Highveld and its implications for future  

 water quality in the Vaal River System. Abstracts of the International Mine Water Conference,  



  

173 
 

 19
th
 – 23

rd
 October 2009, Pretoria, South Africa. 

McGonigle, A. J. S., Delmelle, P., Oppenheimer, C., Tsanev, V. I., Delfosse, T., Williams-Jones, G.,  

 Horton, K. and Mather, T. A. 2004. SO2 depletion in tropospheric volcanic plumes.  

 Geophysical Research Letters 31: L13201, 4 pgs. 

McKerall, W. C., Ledbetter, W. B. and Teague, D. J. 1982. Analysis of Fly Ashes Produced in Texas.  

 Texas Transportation Institute, Report No. 240-1, Texas A&M University, College Station,  

 Texas. 

Meagher, J. F. and Luria, M. 1982. Model calculations of the chemical processes occurring in the  

 plume of a coal-fired power plant. Atmospheric Environment 16(2): 183 – 195. 

Merolla, S. 2011. The effects of floods and high rainfall in the water quality in the selected sub-areas  

 of the Upper Vaal Catchment. Master of Science Dissertation, University of Johannesburg,  

 South Africa. 

Meyers, J. F., Pichumani, R. and Kapples, B. S. 1976. Fly ash. A Highway Construction Material.  

 Federal Highway Administration, Report No. FHWA-IP-76-16, Washington, DC. 

Murrell, S. 2011. How does one pH compare to another? Better Crops 95: 27. 

Muthige, M. S. 2013. Ambient air quality impacts of a coal-fired power station in Lephalale area.  

 Master of Science Dissertation, University of the Witwatersrand, Johannesburg, South Africa. 

Oberholster, P. J., Ashton, P. J., Fritz, G. B. and Botha, A-M. 2010. First report on the colony-forming  

 freshwater ciliate Ophrydiumversatile in an African river. Water SA 36: 315 – 322. 

Olivella, M. A., Palacios, J. M., Vairavamurthy, A., del Rio, J. C. and De las Heras, F. X. C. 2002.  

 The study of sulphur functionalities in fossil fuels using destructive- (ASTM and Py – GC –  

 MS) and non-destructive- (SEM – EDX, XANES and XPS) techniques. Fuel 81(4): 405 –  

 411. 

Olivier, J., Van Nieker, H. J. and Van der Walt, I. J. 2008. Physical and chemical characteristics of  

 thermal springs in the Waterberg area in Limpopo Province, South Africa. Water SA 34(2):  

 163 – 174. 

OSPAR. 1998. Principles of the Comprehensive Study in Riverine Inputs and Direct Discharges  

 (RID). OSPAR Report 1998-5. 17pp. 

Pienaar, F. C. 2006. A plant ecological evaluation of mechanical bush thinning in Marakele Park,  

 Limpopo Province. Master of Science Dissertation, University of the Free State,  

 Bloemfontein, South Africa. 



  

174 
 

Pilgrim, D. H. 1987. (ed.) Australian Rainfall and Runoff: A Guide to Flood Estimation. Institution of  

 Engineers, Canberra, Australia. 

PlanPractice 2004. Environmental Impact Assessment for the Proposed Matimba-Witkop No. 2400 kV  

 Transmission Line, Limpopo Province: Specialist Study – Land Use Implications.  

 PlanPractice Town Planners, Menlo Park, Pretoria, South Africa. 

Raymond, S., Moatar, F., Meybeck, M. and Bustillo, V. 2013. Choosing methods for estimating  

 dissolved and particulate riverine fluxes from monthly sampling. Hydrological Sciences  

 Journal 58(6): 1326 – 1339. 

Richards, L. W., Anderson, J. A., Bulmenthal, D. L., Brandt, A. A., McDonald, J. A., Watus, N.,  

 Macias, E. S. and Bhardwaja, P.S. 1981. The chemistry, aerosol physics, and optical  

 properties of a western coal-fired power plant plume. Atmospheric Environment 15(10-11):  

 2111 – 2134. 

Richards, R. P. 1998. Estimation of Pollutant Loads in Rivers and Streams: A Guidance Document for  

 NPS Programs. US Environmental Protection Agency, Region VIII. 

Rorich, R. P. and Turner, C. R. 1994. Ambient monitoring network annual data report for 1993 and  

 regional long-term trend analysis. Eskom report no. TRR/S94/059. 

Ryan, B. 2014. New coal report raises strategic questions. Available online:  

 http://www.bdlive.co.za/business/mining/2014/04/23/new-coal-report-raises-strategic- 

 questions. 

SAWQG. 1996. South African Water Quality Guidelines (1
st
 Edition). Edited by S Holmes, CSIR  

 Environmental Services, Pretoria, South Africa. 

Scheifinger, H. and Held, G. 1997. Aerosol behaviour on the South African Highveld. Atmopsheric  

 Environment 31(21): 3497 – 3509. 

Schoeneberger, P. J., Wysocki, D. A., Benham, E. C. and Broderson, W. D. 1998. Field Book for  

 Describing and Sampling Soils: Version 1.1. National Soil Survey Center, Natural Resources  

 Conservation Service, US Department of Agriculture, Lincoln, Nebraska. 

Scorgie, Y. and Kornelius, G. 2009. Modelling of acid deposition over the South African Highveld.  

 Paper presented at the annual South African National Association for Clean Air Conference,  

 14 – 16 October 2009, Vanderbijlpark, South Africa. 

Singh, G. 1988. Impact of Coal Mining on Mine Water Quality. International Journal of Mine Water  

 7(3): 49 – 59. 

http://www.bdlive.co.za/business/mining/2014/04/23/new-coal-report-raises-strategic-


  

175 
 

Sipauba-Tavares, L. H., Guariglia, C. S. T. and Braga, F. M. S. 2007. Effects of rainfall on water  

 quality in six sequentially disposed fishponds with continuous water flow. Brazilian Journal  

 of Biology 67(4): 643 – 649. 

Skoroszewski, R. 1999. Specialist Report: Water quality. Lesotho Highlands Development Authority  

 Report no LHDA 648-F-15. Metsi Consultants / Southern Waters Ecological Research and  

 Consulting, Freshwater Research Unit, University of Cape Town. 

Tansley, A. G. 1935. The Use and Abuse of Vegetational Concepts and Terms. Ecology 16(3): 284 –  

 307. 

Thomas, R. and Scorgie, Y. 2006. Air Quality Impact Assessment for the Proposed New Coal-Fired  

 Power Station (Kendal North) in the Witbank Area. Ninham Shand Consulting Services,  

 Report No.: APP/06/NMS-01 Rev 0.3. 

Tilt, B. 2006. Perceptions of Risk from Industrial Pollution in China: A Comparison of Occupational  

 Groups. Human Organization 65(2): 115 – 127. 

Trebs, I., Lara, L. L., Zeri, L. M. M., Gati, L. V., Artaxo, P., Dlugi, R., Slanina, J., Andreae, M. O.  

 and Meixner, F. X. 2006. Dry and wet deposition of inorganic nitrogen compounds to a  

 tropical pasture site (Rondonia, Brazil). Atmospheric Chemistry and Physics 6(2): 447 – 469. 

Van Der Merwe, E. M., Prinsloo, L. C., Mathebula, C. L., Swart, H. C., Coetsee, E. and Doucet, F. J.  

 2014. Surface and bulk characterization of an ultrafine South African coal fly ash with  

 reference to polymer applications. University of Pretoria, South Africa. 

Van Niekerk, H. 2004. South African-UNEP GEMS/Water: Monitoring Programme Design. DWAF- 

 RQS Report Number: N/0000/00/REQ0604. Pretoria, South Africa. 

Van Ulden, A. P. and Holtslag, A. A. M. 1985. Estimation of Atmospheric Boundary Layer  

 Parameters for Diffusion Applications. Journal of Climate and Applied Meteorology 24: 1196  

 – 1207. 

Van Vliet, M. T. H. and Zwolsman, J. J. G. 2008. Impact of summer droughts on the water quality of  

 the Meuse River. Journal of Hydrology 353(1-2): 1 – 17. 

Verheul. J. K. 2012. Assessing the effects of different land uses on water quality in the Upper Wilge  

 River Catchment. Master of Science Dissertation, University of Johannesburg, South Africa. 

Verstraeten, G. and Poesen, J. 2001. Factors controlling sediment yield from small intensively  

 cultivated catchments in a temperate humid climate. Geomorphology 40(1-2): 123 – 144. 

Verstraeten, G., Poesen, J., de Vente, J. and Koninck, X. 2003. Sediment yield variability in Spain: a  



  

176 
 

 quantitative and semiqualitative analysis using reservoir sedimentation rates. Geomorphology  

 50(4): 327 – 348. 

Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C., Aas, W., Baker, A., Bowersox, V., Dentener, F.,  

 Galy-Lacaux, C., Hou, A., Pienaar, J. J., Gillett, R., Forti, M. C., Gromov, S., Hara, H.,  

 Khodzher, T., Mahowald, M. N., Nickovic, S., Rao, P. S. P. and Reid, N. W. 2014. A Global  

 Assessment of Precipitation Chemistry and Deposition of Sulfur, Nitrogen, Sea Salt, Base  

 Cations, Organic Acids, Acidity and pH, and Phosphorous. Atmospheric Environment 93: 3 –  

 100.  

Wade, T. J., Calderon, R. L., Brenner, K. P., Sams, E., Beach, M., Haugland, R., Wymer, L., Dufour,  

 A. P. 2008. High sensitivity of children to swimming-associated gastrointestinal illness:  

 results using a rapid assay of recreational water quality. Epidemiology 19(3): 375 – 383. 

Wagner, N. J. and Hlatshwayo, B. 2005. The occurrence of potentially hazardous trace elements in the  

 five Highveld coals, South Africa. Coal Geology 63(3-4): 228 – 246. 

Walton, N. and Ngcukana, N. 2009. Waterberg District Municipality Air Quality Management Plan.  

 Gondwana Environmental Solutions, June 2009. 

Whitehead, P. G., Wilby, R. I., Battarbee, R. W., Kernan, M., Wade, A. J. 2009. A review of the  

 potential impacts of climate change on surface water quality. Hydrological Sciences Journal   

 54(1): 101 – 123.  

WHO. 2003. pH in Drinking-wate: Background document for development of the WHO Guidelines  

 for Drinking-water Quality. World Health Organisation, Report No.  

 WHO/SDE/WHO/03.04/12. 

Yu, B., Rose, C. W., Ciesiolka, C. C. A. and Cakurs, U. 2000. The relationship between runoff rate  

 and lag time and the effects of surface treatments at the plot scale.  Hydrological Sciences  

 Journal 45(5): 709 – 726. 

Zacharia, J. T. 2011. Identity, Physical and Chemical Properties of Pesticides, in Stoytcheva, M. (ed.)  

 Pesticides in the Modern World – Trends in Pesticides Analysis. InTech, 388 pp. 

Zhou, G., Goel, N. K. and Bhatt, V. K. 2002. Stochastic modelling of the sediment flux of the Upper  

 Yangtze River (China). Hydrological Sciences Journal 47: S93 – S105. 

Zunckel, M. 1999. Dry deposition of sulphur over eastern South Africa. Atmospheric Environment  

 33(21): 3515 – 3529. 

Zunckel, M. and Raghunandan, A. 2013. Atmospheric Impact Report: In support of Eskom’s  



  

177 
 

 application for postponement of the Minimum Emission Standards compliance timeframes for  

 the Duvha Power Station. Report No. uMN043-2013, December 2013, U-Moya-NILU  

 Consulting (Pty) Ltd. 


