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Abstract

Through the Renewable Energy Independent Power Producer Procurement Program

(REIPPPP) the South African government has awarded opportunities for growth

of renewable energy through bidding rounds. Round 1 saw a total capacity of

397 MW being awarded to independent power producers (IPP). Subsequently

Rounds 2, 3 and 4 each had a total capacity of 333 MW auctioned. The advent

of renewables on the market has brought upon its own associated problems with

regards to power quality issues and failure of HV equipment. This thesis will

address transformer failures that occurred at an onshore wind farm. The nature

of the transformer failures suggest transient overvoltages are mainly to blame.

A comparison between transformer failures in South African and Brazil suggest

a common failure mechanism. The failure starts with an inter-turn insulation

failure which propagates to an inter-layer insulation. In worst cases the failure

mode results in a puncture through the LV-HV barrier and punctures through the

LV winding. An extensive literature review was performed to find appropriate

methods to predict and explain the failure mode in wind turbine LV-MV step-up

transformers. Of the different models which were reviewed the most notable

was the Multi-conductor Transmission Line (MTL) model which was chosen as

the preferred model due to its ability to predict the inter-turn/inter-layer voltage

stresses. Verification of the developed MTL model by the author was then compared

to published results of an MTL model of a disc winding transformer. The results

of the comparison revealed a relatively good agreement between the developed

model and the published model. The application of the MTL model to represent

the voltage stresses in transformer windings was then extended to two specially

constructed wind turbine step-up transformer prototypes. The prototypes differed

in the winding arrangement of the MV coil. The other used two separate MV coils

separated by an oil gap whereas the other had a single MV coil. To validate the

model accuracy, a comparison of measured results versus those obtained analytically

was done for the two prototypes. The analytical and measured results also had a

relatively good agreement for the two prototypes considered. Measurement of



switching surges was done on-site at the wind farm to understand the nature of the

transients. Using analysis tools such as FFT and frequency domain severity factor

it was possible to understand the impact the nature of these transients would pose

on the transformer insulation. Different mitigation techniques which can be used

to alleviate the transient overvoltages to within safe levels were investigated. The

most notable protection device considered was the RL choke device which offered

a significant reduction of the pre-strikes and is virtually transparent under power

frequency operation.
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Chapter 1

Introduction

The global energy crisis and pressure from environmentalists with regards to global warming

has put pressure on governments to find green sources of energy. Renewable energy provides

an alternative to alleviate this energy demand. In South Africa the coastal regions along the

Eastern and Western Cape are blessed with high wind speeds allowing construction of wind

farms a feasible option. This has resulted in wind farms being constructed such as Coega,

Cookhouse, Jeffreys Bay and Sere wind farm [9]. The wind turbine models being used is either

the Vestas or the Siemens type. Due to different operators who have been tasked with running

of these wind farms, at the present moment there is no strict guideline which governs how the

wind farms are operated. A persistent problem with wind generation is when the wind speed

decreases below a threshold value for electricity generation, the wind turbine tend to consume

power from the grid. A common technique to alleviate this problem is to disconnect the wind

turbine transformer from the grid. This is accomplished by switching either the MV or LV

circuit breaker. When the wind speed is sufficient to allow generation of electricity, the wind

turbine transformer is switched back into the grid. The constant switching of wind turbine

transformers presents voltage transients problems which have been found to cause transformer

insulation failure. Vacuum circuit breakers are a commonly used switching device used in

Medium Voltage (MV) networks [10]. However the constant switching of vacuum circuit

breakers [11], [12] can result in voltage transients which may lead to re-ignitions or re-strikes

(which occur during contact opening) and pre-strikes (which occur during contact closing). In

wind farms, due to the high capacitance collector cable network there is a high probability

that system-initiated transients will contain oscillatory voltage waveforms at the transformer

terminals [13], [14]. These voltage transients to which the transformer is exposed to contains

a spectrum of superimposed oscillations with different frequency components and may exhibit

high du/dt values and be repetitive in nature. As such any manufactured transformer has a
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natural resonant frequency where if excited will result in [4]:

• The voltage distribution across the winding being non-uniform.

• The currents or voltages inside the winding reach values greater than the steady state

proportion of a harmonic excitation signal.

In transformers resonance can be classified as either being internal or external (terminal) resonance.

Internal winding resonance occurs when a frequency component of the incoming transient

matches one of the several natural resonant frequencies of the transformer winding. This

can then lead to the development of very high internal voltages inside the transformer. These

internal voltages can exceed the insulation withstand capability of the transformer by resonant

voltage build-up. The effect of resonant voltage build-up can be shown in [15] where it signifies

the constant increase in voltage as resonance occurs. Also a flashover can occur from the

windings to the core or in between the turns [16]. If the transient is repetitive accelerated ageing

of the insulation could occur reducing the insulation withstand capability. However it should be

noted that internal winding resonances will not necessarily result in immediate breakdown, but

may result in partial discharges, which will further aid in insulation degradation and ultimately

failure [11]. Terminal resonance occurs due to cable and transformer interaction such that the

natural frequency of the supplying cable matches the natural frequency of the transformer [17].

Hence the adjacent network becomes of importance to the transient interaction i.e. the length

of transformer feeder lines will directly influence the dominating frequency of the oscillatory

transients. In offshore wind farms this is common with wind turbine transformers where

energization may result in cable transformer resonant transients with the supplying cable [18].

1.1 Case Study: Brazil experience

A number of transformer failures occurred in the Brazilian transmission system which was

reported by [19], [20]. The failures occurred over a period of ten years. Different cases

were investigated and documented. Only the cases where the transformers failed due to either

transient overvoltages or frequent switching will be reviewed. The importance of this review is

the experience gained by Brazilian utilities apply to the South African experience which will

be presented in Section 1.2. The following cases are presented [19]:

Case 1 :Insulation failures occurred on two 400 MVA 500/345/13.8 kV auto-transformers in

1995. The cause of the failure was unknown and the transformers failed a few days from each

other. An intensive investigation was carried out by the utility to explain the cause of failure.

2



Chapter 1: Introduction

The common thinking after the exhaustive investigation yielded that the transformers failed

due to the occurrence of internal overvoltages. The development of the internal overvoltages

was attributed to the frequent switching operations at the substation.

Case 2: A flashover occurred on the LV side bushing of a 55 MVA 230/138/13.8 kV transformer

during a no-load switching event. The flashover lead to the formation of a short-circuit to earth.

The switching was done on the HV side of the transformer using a bus tie breaker. The LV

side of the transformer which was operating in an open condition had no protection installed

i.e. lightning arresters or RC snubbers. An investigation was carried out to determine the

root cause of the failure. The investigation attributed the failure to a dominant frequency of

the transient voltage occurring on the HV side being close to one of the calculated winding

resonant frequencies. Hence internal winding resonance occurred.

Case 3: Insulation failures in single phase transformers have been documented since 555 MVA

step-up transformer banks started their operation in 1988. The failure mechanism involved

short-circuits between turns in the HV winding, between HV and LV windings, and LV winding

to ground. Sweep frequency response measurements showed that the winding natural resonant

frequencies coincided with one or more of the dominant frequency of the incoming transient

voltage. This resulted in local amplification of the voltage between turns leading to the short

circuit conditions that caused dielectric failure on the 16 kV terminals.

Case 4: In 1994 a 378 MVA 13.8/550 kV step-up transformer failed. An analysis was carried

out by different engineers from the utility and research centres to try and explain the phenomena

surrounding the failure. After simulations and extensive field measurements the failure was

attributed to very fast transients generated to due switching operation in the 550 kV GIS.

Figures. 1.1, 1.2 and 1.3 show the failure mechanism for some of the documented case studies.

A common criteria from the Brazilian experience that will relate to the South African is:

• Transformers were exposed to frequent switching by circuit breakers.

• The constant switching of transformers by circuit breakers generated transient voltages

on transformer terminals.

• The transient voltages were composed of a spectrum of superimposed oscillations with

different frequency components.

• Internal winding resonance most probable cause of transformer failures exposed to frequent
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Figure 1.1: Failed SE Ipatinga 1 Autotransformer 230/161/13.8 kV (courtesy of Angelica da Costa Oliveira Rocha)

switching.

• Failure mechanism occurred between turn-turn, between disks or layers, between HV

and LV winding and LV winding to ground.

4
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Figure 1.2: TresMarias Substation: Failed 25 MVA, 13.8/289 kV step-up transformer (courtesy of
Angelica da Costa Oliveira Rocha)

Figure 1.3: TresMarias Substation: Failed 25 MVA, 13.8/289 kV step-up transformer (courtesy of
Angelica da Costa Oliveira Rocha)
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1.2 Case study: South African experience

The investigated transformer was a 2.7 MVA 0.690/33 kV step up wind turbine transformer.

The transformer had a history of being constantly switched on the MV side. During low wind

speeds, the transformer was de-energized by switching the vacuum circuit breaker (VCB)

on the MV side. When the wind speeds picked up to allow generation of electricity, the

transformer was energized by switching the VCB on the MV side.

Figure 1.4: Failed winding with inter-turn insulation severely damaged (courtesy of Transformer Manufacturer)

Figure 1.4 shows the failed transformer unit when it was unwound at the transformer factory.

The failed transformer showed a burn in the first layer with the inter-turn insulation severely

damaged. There was substantial distortion of the first and second layer of the MV winding as

seen in Figure 1.4 . Further examination of the winding revealed a burn through the MV to LV

winding barrier had occurred as can be seen in Figure 1.5.

The fault was also sufficient to cause a puncture through the first layer of the LV foil winding

as shown in Figure 1.6. It interesting to note that from Figure 1.4, it is difficult to predict if the

failure started as an inter-turn or inter-layer fault due to the burning of the oil paper insulation.

However the failure mechanism had sufficient magnitude to cause substantial distortion of the

first two layers and create a puncture through the LV foil winding.

Part winding resonance tests were conducted on one of the undamaged windings of the wind

turbine transformer. The goal was to determine the winding’s natural resonant frequencies

by measurements. As previously mentioned, dangerous overvoltages can be imposed on the

transformer terminals. For the impinged voltage to be of concern, it must in addition to
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Figure 1.5: Burn through the HV to LV barrier (courtesy of Transformer Manufacturer)

Figure 1.6: Burning of first layer of LV foil winding (courtesy of Transformer Manufacturer)

having a dominant frequency component, be of sufficient magnitude that will match a peak

in the transformer voltage transfer from the given terminal to some internal point along the

winding [4]. The method used is a common technique known as sweep frequency response.

Measurements were done by exciting the winding with a variable frequency sinusoidal voltage

and recording the maximum amplitude between two layers for a frequency range of 50 Hz

to 2 MHz. A ratio known as the Resonance Amplification Factor (R.A.F) was used which is
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defined as the voltage between points of resonance at a certain frequency divided by the 50

Hz voltage at the same point. The results are shown in Table 1.1. It should be noted that for

the determination of resonant frequencies using the RAF method, the input voltage should be

kept fairly constant. From Table 1.1 at 660 kHz the amplification factor of 2.5 was recorded

Table 1.1: Part winding resonance of the winding

Point in Winding Frequency R.A.F
Start of winding (between 2 layers) 536 kHz 1.15
Middle of winding (between 2 layers) 1.17 MHz 0.67
End of winding (between 2 layers) 181 kHz 0.95
End of winding (between 2 layers) 660 kHz 2.5∗

End of winding (between 2 layers) 1.32 MHz 0.67

between the last and second last layer of the HV winding. This could result in internal winding

resonance if closing transients that matched this frequency component occurred

Further fault analysis was also carried out to investigate other failure modes that could have

contributed to the damaged transformer. The following were considered as other possible

factors:

1. Lightning discharges into the 33 kV cable grid: Although possible for a lightning stroke

hitting the overhead lines and generating a lightning impulse on the line, which would

propagate through the extensive cable network to the point of transformer failure. No

cable or cable terminal faults close to the wind turbine were reported. Furthermore, no

lightning activity was reported during period of transformer failures.

2. Part-winding resonance of the winding with the supply cable (Terminal resonance):

part winding resonance with the supply cable is also unlikely as the shortest cable first

resonant frequency is more than an order below the first resonant frequency of the

winding.

3. Inadequate system insulation of the Transformer (poor insulation coordination): the

insulation system of the transformer withstood the routine induced over voltage test

IEC60076 and complied with the impulse test to IEC 60076.

4. Switching of magnetizing current at no load.

For this research switching surges and resonance phenomena will be investigated. It should

be noted that frequently switched transformers are more prone to failure than rarely switched

transformers.
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1.3 Research Motivation and research questions

The motivation for this research is to be able to determine the root cause of transformer

failures especially in instances where they are exposed to frequent switching. The aim being

to suggest proper insulation coordination studies such that the transformers are well insulated

for any particular switching event. This should be done by devising suitable measurement and

analytical techniques to address the engineering problem at hand. Hence the following will

constitute research questions to be addressed in this thesis:

Research question 1. What are the methods available in literature that can be used to properly

characterize a high frequency model of a transformer?

Research question 2. In literature the Multi-conductor Transmission Line (MTL) model is

used for the computation of the inter-turn voltages. Can the model be extended for the computation

of inter-layer or layer voltages using appropriate matrix reduction techniques? i.e. grouping

the total number of turns in a layer winding to represent the voltage distribution in that layer.

Research question 3. The MTL model is a commonly used model for the calculation of voltage

distribution within transformer windings. Can the MTL model be applied for any transformer

winding geometry? i.e. either split MV winding or non-split MV winding.

Research question 4. In literature different methods are proposed for the mitigation of fast

transients brought about by transformer circuit breaker interaction. The protection methods

range from the use of RC snubbers, surge capacitors and surge arrestors, to RL choke devices.

Hence, what are the limitations of using these protection methods to curb the development

of resonant overvoltages inside transformer windings? What appropriate protection methods

can be used to co-ordinate with the insulation level of the transformer for protection against

switching surges?.

1.4 Contributions

The scientific content covered in this dissertation will focus on addressing the mentioned

industry problems by proposing both an experimental and theoretical approach. Hence the

research findings should be able to make sound engineering investments and economic contributions

to the industry. Particularly where it concerns the integration of renewable energy to the

existing grid. This is an important topic at the moment with different utilities particularly

investing in renewable energy projects. The key findings and contributions of this work are

summarised as follows:
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1. Application of the improved MTL model with the matrix reduction method to model the

sweep frequency response of a layer type of winding.

2. A high frequency model of transformer using MTL model valid from 1 kHz to 10 MHz.

3. The advantages and disadvantages of having a non-split MV winding as opposed to a

split MV winding with respect to resonant points of the winding.

4. It is intended that this research will aid in coordinating the protection measures with the

insulation level of the transformer.

5. It is intended that the MTL model particularly referred to as the white box model be

implemented by transformer manufacturers during the design stage.

1.5 Dissertation Outline

This dissertation outline is as follows: Chapter 2 reviews the existing literature such that the

problem is contextualised within the framework of existing works. Different transformer

models are explored in Chapter 3, with the aim of finding the best model to describe the

reviewed transformer failures. Chapter 5 provides a platform for verification of the chosen

high frequency model of a transformer by comparing the developed work with results obtained

in a research journal. Chapter 6 extends the application of the chosen high frequency model in

Chapter 5 to resonant voltage modelling in two transformer prototypes. Chapter 7, addresses

the measurement and analysis of switching surges to assess if a transformer is protected against

a particular switching event. Chapter 8 summarizes the main findings of this research and

proposes several mitigation techniques against switching transients. Chapter 9 reviews if the

research questions set out in Chapter 1 were addressed and possibilities for further extension

of this work is also discussed.

1.6 Conclusion

This chapter has introduced the motive for conducting the research, which is based on a number

of transformer failures at the investigated wind farm. Initial literature review, reveals certain

similarities between the transformers that failed in South Africa and Brazil. The shortfalls and

the need to validate previous work on transformer related failures due to fast transients, leads

to the construction of the research questions, which form the foundation of this thesis.
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Literature Review

2.1 Chapter Overview

In this chapter, existing work which has been published in research journals and conference

papers will be reviewed. The goal being to find the appropriate research methods and models

that will aide in addressing the research questions mentioned in Chapter 1.

2.2 Transformers and Circuit Breaker Induced Transients

In [21], the circuit breaker pre-strike effect that occurs during energization of an unloaded

transformer was investigated. It is a well known phenomenon that the switching of highly

inductive loads such as transformers can result in the generation of re-strikes or pre-strikes.

The fast transients generated by switching of the circuit breaker propagate through the cable

towards the transformer terminals. Due to differences in impedances a mismatch occurs and

reflection and absorption occurs at the transformer terminals [21]. The voltage oscillations that

propagate along the winding are continuously superimposed by new voltage surges emanating

from the circuit breaker. In this short instance the voltage waveforms along the windings can

have different amplitude and rate of rise [21]. As the distribution of these switching surges are

non-linear, generation of high inter-turn overvoltages may result which stress the thin insulation

and accelerate its failure. The effect of pre-strike was also investigated in depth by the authors

in [22], [23] and [24] leading to the development of first transient switching surge protection

device. Although it was initially conceived for purposes of protecting motors, its application

has been further extended to transformers. Different protection methods will be investigated

in this research including application of surge arresters, surge capacitors, RC snubbers and RL

choke devices.
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The problem presented by voltage transients measured on the transformer terminals is the

difficulty in trying to predict their distribution along the windings. The work of Popov et. al in

[21] addressed that. This was done by analysing the effects of pre-strikes on a prototype three

phase distribution transformer with installed measuring points along the transformer winding

and also for the different phases. The test transformer with the installed measuring points had

the tank and the oil removed for ease of access to the windings. Modelling of the transformer

was done by using lumped parameters extracted from telegrapher’s equations in discrete form.

It should be noted that successful modelling of transformers using transmission line equations

has been applied in [5], [16], [25], [26] to describe the wave propagation in large shell type

transformers. However several challenges still exist with transformer modelling which include

[21]: (i) Information about the transformer geometry and dimensions of the windings may not

be known. (ii) Proper modelling of transformers based on transformer geometry and type of

windings is difficult to obtain. (iii) Consideration of the frequency dependent losses is still a

major problem.

In [27], a method of trying to apply the black-box transformer models to white box transformer

models was investigated. This was done by firstly determining the three different models used

in transformer modelling. These are:

1. Transmission line models: This is one of the white box models used for the computation

of very fast transients and voltage propagation studies within the winding [16], [26],

[28], [29], [30], [31]. However they have several shortcomings which include: (i) They

require detailed information about the transformer geometry. (ii) Not easily integrated

into EMTP type of software which may be crucial for insulation coordination studies.

2. Lumped parameter models: This is another type of white box model and as such can

be utilized for the computation of the internal voltage distribution within the transformer

windings. It can also be extended to studying transformer interaction with the surrounding

power system. The lumped parameter models find application in the simulation of

lightning impulses as shown in [32], [33], [34], [35], [36],[37] and [38] and may also

find application in the simulation of switching surges as shown in [39], [40], [41], [42].

The advantage of lumped parameter models is they can easily be integrated into EMTP

type of software. However the major drawback is they still rely on the intricate details of

the transformer geometry for proper modelling.

3. Black box models: Are mainly used to study the interaction of the transformer with the

surrounding power system and for the computation of transferred overvoltages between

HV and LV winding. Black models can easily be integrated into EMTP type of software.
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However since this model portrays the terminal behaviour of the transformer with the

power system, it can not be used for the propagation of transient voltages along the

winding.

From the reviewed models above, it is clear that presently there is no unified model that links

the white box models with the black box models without requiring the intricate design details

of the transformer. Hence the drawback that still exist is the need to use the terminal voltages

computed from the black box model and apply them as inputs for any of the white box models.

In [27], complete unification of the black-box models with the white box model is still under

investigation.

2.3 Difficulties in High Frequency modelling

EMTP like software packages offer black box models for simulating the transformer response

with the surrounding power system. However a major drawback is the inability to correctly

represent the transformer behaviour during a transient state [43]. As the transformer frequency

response is characterised by several resonant points. It is necessary to be able to depict

this behaviour. Hence more appropriate methods are employed which constitute fitting the

measured admittance matrix of the transformer versus frequency to obtain a high frequency

model of the transformer as done in [1]. The challenges with establishing a model by measurement

are

1. Repeatability of the measured waveforms:. Few authors who have investigated black

box models have not shown that the results can be reliably reproduced for a larger

frequency ranges i.e. up to 10 MHz.

2. Fitting methods: The use of numerical fitting methods to rationally approximate the

calculated transformer admittance matrix to the measured admittance matrix does not

usually result in a good agreement [43]. Hence it is not easy to solve a constrained

mathematical problem that will yield an optimum solution necessary to fit the curves.

A comparison of the different fitting methods which can be categorized as Unconstrained

Fitting Methods (UFM) and Constrained Fitting Methods (CFM) were investigated in [43].

Depending on the number of poles, the Semi-Definite Programming (SDP) method a type of

CFM can be used if the poles are less than 50. If the fitting obtained by SPD does not yield the

required results and there is a loss of accuracy. Then the Fast Residue Perturbation (FRP) which

is a type UFM method may be used with poles up to 120. However it should be noted that not all

measured data can be accurately fitted using either SDP or the FRP method [43]. This usually
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occurs if the measurement procedure was not performed accurately. The error introduced by

the measurements changes the measurement data of the passive component (transformer) to act

as non-passive one [43]. Hence performing the measurements accurately is essential to get the

right output from the fitting methods.

2.4 Unified terminal and internal transformer model

As previously discussed black box models are usually used to study the terminal behaviour of

transformer with surrounding power system. However the distribution of the terminal voltages

along the winding is usually done using white box models as shown in [5], [25], [29], [44].

To address the short coming, Gustavsen in [45], [46], proposed a modified black box model

which allows investigating voltage transfers from the transformer terminals to chosen nodes

along the winding. In this respect, a black box model can still find application to study the

terminal interaction of the transformer and the power system using EMTP like software. The

overvoltages generated can then be used to address along which nodes dielectric stresses are

likely to occur.

In [47], an investigation into overvoltages generated during cable-transformer interactions was

performed. The modified black box model described in [45] was used to study the internal

and external overvoltages generated during energization of a 100 MVA, 69 / 218.5 kV step

up transformer. Time domain simulations were performed using EMTP-RV software ( an

electromagnetic transient program) to study the response of the internal nodes when both the

HV and LV terminals were excited by a lightning impulse. Severity factors were then used

in the assessment of the dielectric severity supported by the internal nodes when subjected to

a transient wave at the terminals. Only the Time Domain Severity Factor (TDSF) was only

considered by the author in [47]. The Frequency Domain Severity Factor (FDSF) was not

taken into account. The results obtained revealed that whilst connecting a cable to the LV

terminal does reduce the magnitude of the overvoltages due to cable transformer resonance. It

impacts negatively on the internal nodes as the overvoltages generated do exceed the winding’s

specified Basic Insulation Level (BIL).

2.5 Discussion and Conclusion

The literature review has yielded some positive results which can find application to the research

questions mentioned in Chapter 1. To address the cause of transformer failures the following
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important findings which were reviewed in the literature survey will find application in the later

chapters.

• High frequency modelling of transformers can be done both internally and externally in

the assessment of overvoltages. Hence what remains is finding the appropriate model to

describe the transformer behaviour when subjected to steep transients. This is covered

in Chapter 3, Transformer Modelling.

• Circuit breaker induced transients can cause development of resonance be it internally

or externally. Hence measurement and analysis of the nature of switching transients is

crucial. This is covered in Chapter 7 using FFT and FDSF as analysis tools. FDSF is

an analysis technique to assess the severity supported by the transformer at its terminals

when excited by a transient waveform. A protected transformer will have FDSF values

less than unity whilst a transformer which is at risk will have FDSF values which are

greater than unity.

• Different mitigation techniques for protection against circuit breaker induced transients

are investigated in Chapter 8.4 with the aim of finding the best protection method.
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Transformer Modelling

3.1 Chapter Overview

A high frequency model of a transformer is crucial for analysis of the internal transformer

response to externally applied fast transients. Proper modelling will ensure computation of

either the internal stresses within the winding or the terminal stresses impinged on the transformer

terminals. The aim of this chapter is to present the different types of models used in modelling

transformers. The overall goal being to find an appropriate model that can be used during the

design stage to prevent failures discussed in the Introduction Section.

3.2 Existing Transformer Models

To allow proper modelling of the transient behaviour of the transformer winding, the mathematical

modelling can generally be divided into the following three categories [48], [49], [50]:

1. Black Box model: The model’s structure and parameters are based on information

gathered by external input and output measurements performed on the test transformer.

The obtained parameters yield a mathematical equation that describes the model output

with the observed data. However, it should be noted that the mathematical expression

bares no physical meaning or relationship with the transformer’s physical construction

[4]. The advantages of this model is that no prior knowledge of the intricate design

details of the transformer is needed. Use of this model is constrained to the computation

of external stresses impinging on the transformer terminals. Hence this model finds

application in studying the high-frequency interaction between a transformer and the

external supply network, analysis of transferred over-voltages between the HV or LV

winding and incorporating it into insulation coordination studies of a power system. The
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disadvantages of course is that it cannot be applied to computation of internal stresses

within the windings.

2. White Box model: In simple terms, the White Box models the transformer as consisting

of components such as resistances, capacitances, conductance’s, self and mutual inductances

to build the model structure [4]. A particular frequency range is usually of particular

interest when this model is used. The advantages of the model is that it can be used

for analysing transient events that occur within the transformer. In addition, it can

be constructed to represent either all parts of the transformer in greater detail. The

disadvantages of the model is that it does not depend on measurement data but actual

parameters that have a direct relationship to the transformers physical structure. Such

information is usually considered proprietary information that the manufacturer may not

be willing to disclose.

3. Gray Box: This model is a result of a combination of both the White Box model and

the Black Box model. Extraction of the model is based on prior system knowledge of

the transformer and additional model parameters are estimated from measurement data

[4]. The application of this model is commonly used in computation of the distribution

and propagation of an incident electromagnetic transient along the transformer windings

[51].

The above constitute the most commonly used models for transformer modelling. High frequency

modelling of power transformers presents several challenges that have to be addressed. Transformers

are characterized by several resonance points due to inductive and capacitive effects from

the windings, tank, and core [1]. This behaviour should be accurately modelled to enable

overvoltage studies where the high-frequency transient interaction of the transformer needs to

be known i.e. transferred overvoltages between windings and resonant overvoltages within the

windings. As previously mentioned, the goal is to be able to address the failure mechanisms of

the reviewed Brazilian and South African cases. In addition, an appropriate model that can be

integrated within the EMTP type of software and that can be used by transformer manufacturers

is preferred.

3.3 Black Box Model

As previously mentioned, the Black Box model is used to reproduce the terminal behaviour of

the transformer as seen from the transformer terminals [52], [53], [54], [55], [56]. The model

formulated in the frequency domain is described by Equation 3.1 in terms of its admittance
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matrix.

IT (s) = YT (s)VT (s) (3.1)

Equation 3.1 defines the relationship between the terminal voltages and terminal currents [1],

[51]. Considering a case where a transformer has n terminals, YT is the admittance matrix of

size n x n which relates the terminal voltages and the terminal currents expressed by vectors

VT and IT respectively. Note that the vectors describing the terminal voltages and currents are

all of length n. Extraction of the admittance matrix Y in Equation 3.1 can be obtained either

by direct measurements on a transformer or from analytical calculations of the transformer’s

detailed geometrical data [4].

3.3.1 Admittance Matrix by Measurements

If a 1 p.u. voltage is used to excite the transformer terminal node j while zero voltage (short

circuit condition) is applied to the remaining terminals, it follows from Equation 3.1 that the jth

column of YT will be equivalent to the currents Yi j flowing from ground to each terminal i [1].

This allows the measurement setup in Figure 3.1 for direct measurement of Y due to different

terminal conditions (i.e. open or short circuited winding).

Figure 3.1: Black Box model of a transformer (measurement procedure for the jth column of
the admittance matrix from [1])

As such the developed model has to be valid for different terminal conditions. Hence again a

case is considered where the transformer terminals are divided into two groups, denoted by A

and B, to represent the different terminal conditions. Equation 3.2 can be partitioned as follows

[1], [51]: [
IA

IB

]
=

[
YAA YAB

YBA YBB

][
VA

VB

]
(3.2)
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If again another case is considered where the terminals of set A are open-circuited, such that IA

= 0, the following voltage ratio results [1], [51]:

VAB =−Y−1
AA YAB (3.3)

From Equation 3.3, considering a three phase, two winding transformer where all terminals of

one winding are open-circuited, the transferred overvoltages (voltage ratios) between windings

can be computed as shown in Equation 3.4 and Equation 3.5:

VHL =−Y−1
HHYHL (3.4)

VLH =−Y−1
LL YLH (3.5)

where where H and L are the HV and LV windings respectively. VHL and VLH are matrices of

size 3 x 3.

3.3.2 Black Box model admittance matrix derived from White Box model

According to the CIGRE WG (B2/C4.39) the transformer manufacturer may provide a computed

Black Box admittance matrix Y (w) derived from the White Box model [4]. This can then be

integrated within the Equation 3.2. The merit is that any proprietary information about the

transformer design is not revealed.

3.4 White Box models

The most commonly used White Box models are the RLC ladder model and the Multi-Transmission

line (MTL)model. Both have their own advantages and disadvantages depending on particular

frequency range of interest and application.

3.4.1 RLC ladder Network model

The RLC ladder network model uses a lumped network of cascaded connections (ladder network)

of n equal segments, as shown in Figure 3.2. Figure 3.2 shows a basic element for representation

of a disc type of transformer winding. Each double disk in the Ladder Network model, is

modelled by three parallel branches consisting of a capacitor, resistors and inductors with

additional capacitors (C1) · · · (C1) to ground. The resistance and the inductance of each double

disk are represented by ri and Lii respectively.
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Figure 3.2: RLC ladder network model of transformer winding from [2]

The series capacitance of the ith double disk is modelled by Ki and its dielectric losses represented

by Ri. The mutual inductance between adjacent double disks is modelled by Li j. The model

can be described by the following equation:

Ĉ
d2v̂(t)

dt2 + Ĝ
dv̂(t)

dt
+ Γ̂v̂(t) = 0 (3.6)

where Ĉ is the nodal capacitance matrix, Ĝ is the nodal conductance matrix and Γ̂ is the inverse

nodal inductances matrix. ˆv(t) is the output vector of node voltages. Equation 3.6 can be

reduced by extracting the input node k of known voltage u(t). This results in Equation 3.7 [51].

C
d2v(t)

dt2 +G
dv(t)

dt
+Γv(t) =−Ck

d2u(t)
dt2 −Gk

du(t)
dt
−Γku(t) (3.7)

where C is the nodal capacitance matrix, G is the nodal conductance matrix and Γ is the inverse

nodal inductances matrix. v(t) is the output vector of the (k-1) node voltages that are unknown

[51]. Ck, Gk and Γk are the kth columns of Ĉk, Ĝk and Γ̂ respectively without the kth row.

Expressed in the Laplace domain, Equation 3.7 yields Equation 3.8:

sCV (s)+GV (s)+
Γ
s

V (s) =−sCkU(s)−GkU(s)− Γk

s
U(s) (3.8)

Re-arranging Equation 3.8 can yield Equation 3.9 [2]:

[I(s)] = [Y (s)] · [U(s)] (3.9)
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where

[Y (s)]nxn =
1
s
{[Γ]+ s · [G]+ s2 [C]} (3.10)

I(s) and U(s) are the node current and the node voltage vectors respectively. In this case, the

surge input is only applied at node n hence the only non-zero element of I(s) would be the

element in the last row. From Equation 3.9, solving for the voltages results in Equation 3.11:

U j(s)
Un(s)

=
1

Zin(s)
· [Y (s)]−1 j,n f or j = 1,2, ...,n (3.11)

where Zin(s) is the input impedance of the winding [57].

3.4.2 Multi-transmission Line (MTL) model

Analysis of the voltage distribution within the transformer windings can be represented by a

group of interconnected and coupled transmission lines as shown Figure 3.3 [44], [58], [59].

Figure 3.3: Multi-conductor Transmission Line model

Figure 3.3 shows application of the model to a two winding transformer. With reference to IEC

60076-3, transferred voltages have both a capacitive and inductive character which have been

presented by CHL and LHL respectively in Figure 3.3. The coupled transmission lines can be

described by: Equation 3.12 and Equation 3.13:
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d2V
dx2 =− [Z] [Y ] (3.12)

d2I
dx2 =− [Z] [Y ] (3.13)

where V and I are the incident voltage and current vectors respectively. Z and Y are the

impedance and admittance matrices of the line respectively. The transmission line equations

can be solved by applying a two port network as follows: find the voltages and currents at a

distance x as shown in Equation 3.14 and Equation 3.15 [60].

Vx =V1e−[P]x +V2e[P]x (3.14)

Ix = Yo

(
V1e−[P]x−V2e[P]x

)
(3.15)

Applying boundary conditions to the solution of Equation 3.14 and Equation 3.15 it is possible

to express the sending end (S) voltage and receiving end (R) voltage as shown in Equation 3.16

[5], [25]:

[
IS

IR

]
=

[
A −B

−B A

][
VS

VR

]
(3.16)

Where:

A = Y Sγ
−1 coth(γl)S−1 (3.17)

B = Y Sγ
−1cosech(γl)S−1 (3.18)

And in Equation 3.17 and 3.18:

VR, VS voltage vectors at the receiving and sending end of the winding (transmission line)

IR, IS current vectors at the receiving and sending end of the winding (transmission line)

S matrix of eigenvectors of the matrix ZY

γ2 eigenvalues of matrix ZY

l total length of the winding

As mentioned in Chapter 1, the model must compute the voltages in each layer such that the

transformer manufacturer can easily identify which disc or layer poses a risk of failure when

subjected to steep transients. This being the case, application of the MTL model to describe
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each winding turn as a separate transmission line will result in large matrices such that the

simulations take too long to process. A more practical solution that will benefit the transformer

manufacturer is to present the voltage distribution in each layer or disc. This can be achieved by

using the matrix reduction techniques employed in [61], [62]. Hence by grouping the number

of turns in each layer to represent a single transmission line as in Figure 3.3, the information

at the end of the line remains unchanged as would be the case if separate transmission lines

representing separate turns had been used [28]. Applying Equation 3.16 to either the HV or LV

winding of Figure 3.3 results in Equation 3.19




IS1

IS2

·
·
·

ISn

IR1

IR2

·
·
·

IRn




=

[
A′ −B′

−B′ A′

]




VS1

VS2

·
·
·

VSn

VR1

VR2

·
·
·

VRn




(3.19)

By examining Figure 3.3, the following identities hold true [28], [63].
IR1 = -IS2 IR2 = -IS3 · · · −IRn =

VRn
Z

VR1 = VS2 VR2 = VS3 · · · VRn−1 =VSn
By making use of above mentioned identities and matrix operations described in [63] results in

Equation 3.20. 


IS1

0

·
·
0

0




=




Y







VS1

VS2

·
·

VSn

VRn




(3.20)

Further manipulation of Equation 3.20 results in Equation 3.21. As the transformer winding is
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grounded VRn = 0 hence the last row can be removed as it is a redundant equation.




VS1

VS2

·
·

VSn



=




YY







IS1

0

·
·
0




(3.21)

Where YY is the inverse matrix of the matrix Y . From Equation 3.21, the voltages at the sending

end of the winding between layer 2 and 1 are defined by: VS1 = YY(1,1)IS1 and VS2 = YY(2,1)IS1,

hence the resonance voltage ratio is defined as:

H1 =
VS2

VS1
=

YY(2,1)
YY(1,1)

(3.22)

Equation 3.22 can be generalized to calculate the resonance voltage ratio at any arbitrary turn,

layer, disc (k) as shown by Equation 3.23

Hk =
VS(k+1)

VS1
=

YY(k+1,1)

YY(1,1)
k = 1,2, · · · ,n−1 (3.23)

It should be noted that YY(1,1) in Equation 3.23 is the terminal admittance of the transformer.

Computation of the voltage at the end of each layer can be calculated when the input voltage

is known and by making use of the transfer function in Equation 3.23. The time domain is

calculated as shown in Equation 3.24

VSi(t) =
1

2π

∫ Ω

−Ω

sin(πω/Ω)

πω/Ω
VSi(b+ jw)e(b+ jw)tdω f or i = 2,3, · · · ,n (3.24)

where

VSi(b+ jω) = Hi−1(b+ jω)VS1(b+ jω) f or 1 = 2,3, · · · ,n. (3.25)

From Equation 3.25, the choice of the integral limits must be chosen appropriately such that

the computations result in an accurate time-domain response [44], [64].

3.5 Grey Box models

The Grey Box model is a mathematical representation of the complex electromagnetic relationships

that exist within the transformer [4]. Modelling of the transformer using the Grey Box approach

does not require any knowledge of the transformer’s internal geometry nor its material properties.
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Rather extraction of the model parameters is obtained directly from the transformer’s frequency

response measurements. Other parameters may also be obtained from the data on the transformer

nameplate, and tank dimensions. Model construction can also be implemented by using typical

assumed manufacturing values [3].

3.5.1 Generic Phase Model of the Transformer

A common approach of implementing the Grey Box model of the transformer is to incorporate

a ladder network model shown in Figure 3.4 [4].

Figure 3.4: Generic phase model of a transformer adapted from [3]

The ladder network is made up of frequency dependent resistors (R), inductors (L) and capacitors

(C). The generic phase references X, Y and Z are used to reference the three phase model

of a transformer. To estimate the model parameters, Frequency Response Analysis (FRA)

can be used. We note that in using the FRA method you need both the amplitude and phase

information. This is well documented in [65] with particular application in power transformers.

Hence FRA is normally used as a diagnostic tool for detecting changes in the transformer

frequency response. Any change in the frequency response from the spectral fingerprint can

yield information on winding deformation as well as other electrical and structural problems

[3]. However FRA can also be used in model parameter extraction [4], [3]. This can be

done by applying the transformer model transfer function to the corresponding FRA terminal

spectral fingerprint. The results are well documented in [3], where several FRA signatures

were incorporated during the transformer model parameter extraction. To deduce the transfer

function of the Grey Box model, the test setup of a transformer being subjected to a series of

FRA tests can be considered as represented by a layered model as shown in Figure 3.5. The
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aim being to develop a flexible model which will take into account the different transformer

vector groups and the different types of FRA tests that can be conducted [3].

Figure 3.5: Grey box test set-up layered modelling approach adapted from [4]

In Figure 3.5, the first layer is the generic phase model of the transformer shown in Figure 3.4.

Layer 2 is the vector group topology of the transformer. Layer 3 is the FRA test connection.

The proposed layered model can be presented in the normal tree form [66]. System analysis

can be done by using state space equations for a network tree which are defined by:

ẋ(t) = A(u(t))x(t)+B(u(t))u(t) (3.26)

y(t) =C(u(t))x(t) (3.27)

where x is the state variable vector, u is the input variable vector, t is the time and y is the output

variable vector. A, B and C are time-dependent matrices defined in [3]. The resulting transfer

function is

Ĥ(s) =
Y (s)
X(s)

= WC−1 [PT
q −FcsCsFT

vs
]

(3.28)

The derivation of the transfer function is well explained in [3] as well as the model parameter
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estimation from FRA.

3.6 Discussion on appropriate model to address the research questions
and Conclusion

This chapter has reviewed some of the common models used in transformer modelling. As

previously highlighted in the Chapter 1, the model has to allow the investigation into the failure

mode occurring within the transformer and address the research questions set out in Chapter 1.

Table 3.1 shows the selection criteria used to choose the appropriate model.

Table 3.1: Selection criteria used to pick the proper model

Models considered
Selection Criteria RLC MTL Black Box Grey Box
Research question 1 X X X X
Computation of inter-turn or inter-layer voltages x X X x
Voltage propagation along the winding X X x x
Frequency range of up to 10 MHz ? X ? x
Transferred overvoltages HV to LV winding X X X X
Terminal stresses impinged on the transformer terminals X X X X
Construction of model to represent winding geometry ? X x ?

As previously discussed the different models have their own advantages and disadvantages

which were explained. The chosen model is the MTL model discussed in Chapter 3.4.2 cause

it meets the selection criteria in Table 3.1. The model also provides the insight that is needed to

understand the resonance behaviour and overvoltages occurring within each winding. Hence

in this research, the MTL model will be used for the computation of the voltage distributions

within the winding.
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Parameter Determination

4.1 Chapter Overview

This chapter deals with the determination of the transformer parameters needed for the MTL

model. Firstly the per-unit length parameters of the transformer winding are calculated. Then

the required capacitance, inductance, resistance and conductance matrices are then computed.

Two transformer prototypes were investigated: the transformer with the split MV winding

and the transformer with the non-split MV winding. The determination of the transformer

parameters for the two prototypes will be explained in this chapter.

4.2 MTL Model flowchart

The impedance Z and admittance Y matrix of the MTL Equations are expressed as shown in

Equation (4.1) and Equation (4.2) from [5] and [25].

Z = [ jωL +RS] (4.1)

Y = ( jω ∗C+ ωtanδ ∗C) = ( jω + G)∗C (4.2)

The derivation of the resistance (Rs), capacitance (C), conductance (G) and inductance (L)

matrices shown in the above equations is explained in Chapter 4.3. As can be seen from Figure

4.1 of the MTL algorithm flow chart, successful computation of the transfer function depends

on proper definition of the L , C, G and Rs matrices at different frequencies.
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Figure 4.1: MTL model flow chart adapted from [5]

4.3 Parameter extraction

The capacitance, conductance, resistance and inductance matrices were calculated as follows:
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4.3.1 Calculation of the C (capacitance) matrix

Figure 4.2 show the capacitances inside a transformer that are needed for computation of

fast transients within the winding. For calculating the inter-turn voltages, capacitance CS

is important and must be calculated [28]. For the computation of transferred overvoltages

between the HV and LV windings, surge capacitor CHL must be calculated. The capacitive

overvoltage transfer brought about by the surge capacitance capacitor CHL will depend on the

steepness of the transient. The effect of the surge capacitor will become more marked with a

transient that has a high du/dt [44].

Figure 4.2: Parameters needed for computation of fast transients

The capacitance matrix C was formed as follows from [28]:

Ci,i capacitance of layer i to ground and the sum of all other capacitances

connected to layer i i.e. the diagonal elements of the capacitance matrix

Ci, j capacitances between layers i and j taken with negative sign (i 6= j) i.e.

These form the off-diagonal elements of the capacitance matrix.
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The procedure for the construction of the capacitance matrix is explained in [67], [26]. The

formulas for calculating the capacitance were calculated from the basic formulas of cylindrical

and plate capacitors shown by Equations 4.3, 4.4 and 4.5 [51].

CS =
εoεrh

ds
(4.3)

Cg =
εoεrω

dg
(4.4)

Ci j =
2πεoL
In
(b

a

) (4.5)

where Cs is the turn to turn capacitance, Cg is the turn to earth capacitance and Ci j is the

capacitance between layer i and j. εr is the relative permittivity of the dielectric material

between the turns, εo is the permittivity of free space. h is the rectangular conductor’s height.

ds and dg are the distance between the turns and distance between turn and ground plane

respectively. L is the length of the winding and ω is the rectangular conductor’s width. a

and b are the inner and outer radius of the winding respectively.

As previously mentioned, in the research question, the application of matrix reduction methods

will have to be employed. The goal is to reduce the size of the matrices by grouping the number

of turns in each layer to represent a single transmission line. According to the MTL model, the

voltages at the end of the line remains unchanged as would be the case if separate transmission

lines representing separate turns had been used. The matrix reduction technique explained in

[61] and [62], can be applied such that the order of matrices corresponds not to a single turn

but to a group of turns. The modified matrix reduction expression is shown in Equation 4.6 and

4.7.

C layer
ii node =

li

∑
i=ii

li

∑
j=ii

C turn
i j +

1
2

li

∑
i=ii

C turn
i,m +

1
2

li

∑
j=ii

C turn
m, j +

1
2

C turn
m,m (4.6)

C layer
i j node =

li

∑
i=ii

li

∑
j=ii

C turn
i j +

1
2

li

∑
i=ii

C turn
i,m +

1
2

li

∑
j=ii

C turn
m, j (4.7)

where li = li+(wk−1)/2−1, wk is the number of lumped turns in layer k, li is the first turn in

layer i and m is the turn in the centre of the layer. The same reduction method can be applied

to a group of turns such that they represent the total number of turns in half a layer of the MV

winding.
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4.3.2 Calculation of the G (conductance) matrix

The conductance (G) is due to the insulation between turns and windings and will result in

capacitive losses in the insulation [60], [67]. It is expressed as:

Gi j = ω tanδ Ci j (4.8)

The G matrix is calculated as for the C matrix. The diagonal elements of the G matrix are

formed by the sum of the conductance connected to each layer. Whilst the off diagonal elements

are all negative and equal to the conductance between the layer and adjacent layers. It should

be noted that tan δ is frequency, moisture and temperature dependent and will influence the

admittance matrix greatly at higher frequencies [67]. As such an appropriate equation that best

describes the capacitive losses within the insulation should be applied in-order to get accurate

results. Equations 4.9, 4.10, 4.11, 4.13 and 4.12 are some of the equations that describe the

variation of tan δ with frequency. Note that the variable c is part of a heaviside function used

to model a step function. Hence for frequency values less than a specific value of c the function

assumes a value of zero. For frequency values above c the function takes a value of 1.

uc( f ) =

{
0 if f [MHz] < c

1 if f [MHz] > c
(4.9)

tan(δ ) = 0.005 [u( f −0.01)−u( f −0.04)]+0.015 [u( f −0.04)−u( f −1)] (4.10)

tan(δ ) = 0.005 [u( f −0.01)−u( f −0.04)]+(5.3 ·10−9x+0.0047) [u( f −0.04)−u( f −1)]

(4.11)

The step and ramp type variation of tan δ for oil impregnated cellulose paper is described by

Equation 4.10 and Equation 4.11 [2]. In [67], an approximated equation described by Equation

4.12 was used to describe the tan δ behaviour of the insulation between the LV foil winding,

the insulation between the LV and the HV winding, the insulation between LV to ground and

HV to ground and also the inter-turn insulation between the turns of the HV winding. For

Nomex paper insulation the variation is satisfied by Equation 4.13 [60].

tan(δ ) = (1.082×10−8) ·2π f +5.0×10−3 (4.12)

tan(δ ) = 0.07
(

1− 6
7
× e−(0.308∗ f x10−6)

)
; (4.13)

The variation of tan δ for the above equations is shown in Figure 4.3. Analysis of Figure 4.3,

shows that for Equation 4.12 in the frequency range of 10 kHz < f < 1 MHz, tan δ does not
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change with frequency. However Equations 4.10, 4.11 and 4.13 approximate the frequency

dependent behaviour of tan δ .

Figure 4.3: tan δ versus frequency (10 kHz < f < 1 MHz)

Most commonly used insulation paper in transformers is Krempel DPP [68], [69] and PUCARO

DPP [70]. The transformer press paper is commonly made of unbleached sulphate cellulose

with diamond dotted reactive resin coating [69], [70]. Hence as the transformer press paper

is mainly made up of cellulose material, Equation 4.10 and 4.11 would best describe the

frequency dependent behaviour of the oil impregnated cellulose paper.

4.3.3 Calculation of the R (resistance) matrix

The resistance matrix is calculated by taking into account the skin effect at high frequencies as

shown by Equation 4.14 [71], [72].

Rs =

(
1

2(d1 +d2))

)
·
√

πfµ
σ

(4.14)
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where d1 and d2 are the length and width dimensions of the conductor. µ and σ are the

permeability and conductivity of the conductor respectively. f is the frequency. The above

resistance calculation takes into account skin effect considerations. To take into account the

proximity effects Equation 4.15 may be applied [44].

Rs =

√
2ω

µσod2 (4.15)

where d is the distance between the layers [28]. It should be noted that proximity effects will

affect the resistance matrix above a certain frequency. Ignoring the proximity effect in the

model and only accounting for the skin effect as shown by the analytical formula in Equation

4.14 may result in overestimation at some resonance frequencies as shown in [67].

4.3.4 Calculation of the L (inductance) matrix

The inductance matrix can be expressed as a sum of two component matrices. The first

component is obtained directly from the capacitance matrix C if the following assumptions

are made [63]:

1. High frequency magnetic flux penetration into the iron laminations and transformer core

is negligible.

2. The magnetic flux will be constrained within the paths of the insulation.

The above assumptions are meant to simplify calculations with regards to a fundamental problem

in evaluating the winding parameters. As opposed to determining the parameters of capacitive

elements which are pretty much straightforward as calculations are based on geometry and

relative permittivity. Inductance calculations are a bit more difficult as they involve magnetic

flux penetration in laminated iron structures at high frequencies. To simplify calculations the

following assumptions are made [63]:

• Magnetic flux does not penetrate the iron laminations at all

• The iron acts as a boundary within which the flux is constrained.

The first component inductance matrix can then be obtained using Equation 4.16:

Ln =
εr

v2 ·C
−1 (4.16)

where v is the velocity of light in vacuum and εr is the relative permittivity of the insulation

(in this case equivalent relative permittivity of the air and paper combination). The second
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component of the inductance matrix takes into account the flux internal to the conductor [5],

[25]. It is given by:

Li =
Rs

f
(4.17)

where Rs is from the resistance matrix expressed in Equations 4.14 and 4.15. The total inductance

matrix can then be expressed as:

L = Ln + Li ·En (4.18)

where En is a unit matrix of size n x n. n represents the total number of turns in a given winding.

It should be noted that the inductance matrix can also be calculated by using the basic formulas

for self and mutual inductances of the turns from Maxwell’s equations as shown in [28].

4.4 Conclusion

This chapter has elaborated on the determination of the parameters in the MTL model. An

in-depth step by step derivation of each individual parameter is explained in the appendix

section. The short-comings brought about by approximating the tan δ will become more

apparent in Chapters 5 and 6 when the results are analysed. However as highlighted in this

chapter, there is no single equation that properly models the tan δ behaviour of the insulation

under investigation. Hence any of the approximated equations that will yield the results closest

to the measured results will be used.
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Model Verification

5.1 Chapter Overview

This chapter is concerned with verification of the proposed high frequency model of the transformer.

As previously mentioned in Chapter 3, the MTL model will be used as the high frequency

model of the transformer. The model verification is done by comparing results of a disc type

of winding that had been modelled using transmission lines in [5], [25] against the developed

MTL model by the author. The results of the comparison indicate that the developed high

frequency model of the transformer can be used for estimation of resonant overvoltages within

transformer windings.

5.2 Parameters of the transformer winding

In [5] and [25], Sun et al showed how to model transformer windings for the analysis of

resonant overvoltages. The author made use of the MTL model as a high frequency model

of a transformer. A core-type transformer with a disc type of winding was used. The main

parameters of the transformer winding are shown in Table 5.1 [5], [25]. The winding parameters

in Table 5.1 were used as input parameters of the MTL model. As can be seen from Table 5.1,

the total number of turns would be 180. Specific measuring points were installed along certain

points of the winding. The results of measurements obtained from the installed measuring

points were compared with the computed results of the MTL model. The procedures for

the determination of the capacitance, inductance, resistance and conductance matrices was as

explained in Chapter 4. The layout of the transformer under test is shown in Figure 5.1. The

measurements are done at the ends of each specific disc as outlined in Section 5.3. It should be

noted that the winding makes use of rectangular copper conductors.
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Table 5.1: Main Parameters of the winding

Number of discs 18
Turns per disc 10
Conductor width [mm] 6.95
Conductor height [mm] 11.2
Average turn length [m] 1.4828
Thickness of inter-turn insulation [mm] 3.00
Relative permittivity of inter-turn insulation 3.5
Conductor conductance [s ·m−1] 3x107

Inter-turn capacitance (Ck) [pF ·m−1] 120
Inter-section capacitance (Cs) [pF ·m−1] 10
Turn to core capacitance (Cg) [pF ·m−1] 15

Figure 5.1: Measurement setup of a core-type transformer winding adapted from [5].

Hence conductor width and height refer to the dimensions of the coil used in winding the MV

winding. The total length of the winding is found by taking the product of the average turn

length and the total number of turns (i.e. number of discs × turns per disc).
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5.3 Model comparison and verification

Resonance calculation was done by computing the transfer function from Equation 3.23. A

plot of the amplitude frequency response of the transfer function was calculated using the

developed MTL model. The results of the computation were compared with graphs obtained

in [5], [25]. The comparison was done by comparing the computed results corresponding to

the same measurement points as used in the experimental setup of Sun et. al in [5], [25]. Note

that in [5], a comparison of calculated versus measured results in the paper was done. Hence in

this Chapter we compare the results of the developed MTL model against the model developed

by Liang which had been verified through experimental work as outlined in [5] and [25]. The

turns at which measurements were made are turn 20, turn 40 and turn 60 as shown in Figure

5.1. It should be noted that these specific turns were chosen since failure at the end-turns is

quite common for transformers exposed to transient overvoltages.

5.3.1 Sweep Frequency response of turn 20, turn 40 and turn 60

The sweep frequency response for turn 20, turn 40 and turn 60 are shown in Figures 5.2, 5.3,

5.4 respectively. A comparison of the results obtained by Sun et. al in [5], [25] is done with the

results obtained using the developed MTL model of the author. The comparison is achieved by

overlaying the frequency plots together as can be seen in Figures 5.2, 5.3, 5.4. The idea being

to observe how closely the results obtained from the developed MTL model match with the

results of the Sun et. al MTL model. Equation 5.1 describes the amplitude transfer function at

an arbitrary turn k, relative to the input [5], [25]. In Equation 5.1, US is the input signal, UR(k)

is the output voltage measured at an arbitrary turn k. Derivation of Equation 5.1 is explained

in [5], [25] and bares the same meaning as Equation 3.23 explained in Chapter 3.4.2.

A(k) =
UR (k)
US (1)

=
T (k+1,1)T (N +1,N +1)−T (k+1,N +1)T (N +1,1)

T (1,1)T (N +1,N +1)−T (N +1,1)T (1,N +1)
(5.1)

Reference of Equation 5.1 which describes the amplitude transfer function will be made in

Figures 5.2, 5.3 and 5.4 to give a comparison between the developed MTL model by the author

and Sun et al. MTL model.
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Figure 5.2: Comparison between developed MTL model and Sun et. al MTL model (adapted
from [5]) : Amplitude of transfer function between turn 20 of Figure 5.1 and input.
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Figure 5.3: Comparison between developed MTL model and Sun et. al MTL model (adapted
from [5]) : Amplitude of transfer function between turn 40 of Figure 5.1 and input.
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Figure 5.4: Comparison between developed MTL model and Sun et. al MTL model (adapted
from [5]) : Amplitude of transfer function between turn 60 of Figure 5.1 and input.
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Analysis of Figures 5.2, 5.3, 5.4 reveals that some of the frequency components are not well

represented with the developed MTL model. This can be seen by the deviation between 1 to 3

MHz for the frequency plot of turn 40 and turn 60.

5.4 Discussion

The discrepancy off the results obtained by the developed MTL model versus the MTL model

by Sun et al. can be explained as:

1. The mismatch between some frequency components could be as a result of the approximated

equation for tan δ which was used. Equation 4.11 was used to approximate the frequency

dependency of the loss factor of the transformer insulation. Improper approximation of

the loss factor will affect the damping magnitude of the frequency components. No tanδ

approximation was stated in the work of Sun et. al [5], [25]. The approximated equation

used may not yield a clear representation of the tan δ used by Sun et. al. In addition as

previously highlighted in Chapter 4, tan δ can be expressed by many equations as shown

in Figure 4.3. As such no single equation can be applied for universal modelling of the

dissipation factors of the transformer insulation.

2. The importance of the termination impedance shown in Figure 3.3 also plays a role.

According to [44], to eliminate the divergence of the computations, a small impedance

of Zt = 10−9 Ω must be used. The value used by Sun et. al in [5], [25] is unknown as it

was not specified in the paper and may have been different from the one used during the

computations.

However the main frequency component around 5 to 6 MHz termed as the dangerous frequency

in [5], [25] is relatively well estimated. Analysis of the sweep frequency response of the

turns reveals an important characteristic. The magnitude of the high frequency components

can be seen decreasing as the number of turns increase down the transformer winding. The

same behaviour can be annotated for the magnitude of the low frequency components which

increase with an increase in turn number. This behaviour can explain why failure in transformer

windings usually occur in the first two and the last two discs or layers. When extended to the

time domain, high du/dt surges can cause development of large inter-turn transient voltages at

the end turns/ discs/ layers. Hence the failures shown in Figures 1.1, 1.2, 1.3 and 1.4.

The next issue which warrants a discussion is the resistance calculation. In [5] and [25], Sun

et al. calculated the resistance by taking into account the skin effect at high frequencies as
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shown by Equation 4.14. However, another way of calculating the resistance as previously

discussed is by using Equation 4.15 which takes into account proximity effects. Analysing

the work done by Soloot et. al in [67], the total resistance is predominantly affected by the

proximity effect for frequencies above 4 MHz. Neglecting the proximity effects as done by

Sun et. al in [5],[25] and only taking into account the skin effect in the resistance calculation

could result in resonant frequencies below 4 MHz with quite high amplitudes [67] as shown

in Figures 5.2, 5.3 and 5.4. To illustrate this, the magnitude of the transfer function at turn 20

is re-calculated by taking into account proximity effect. The results of the MTL model with

the impedance Equation 4.15 is shown in Figure 5.5. Analysis of Figure 5.5 shows that the

magnitude of the resonance frequencies below 4 MHz which had quite high amplitudes have

diminished considerably compared to the original waveform in Figure 5.2. Not taking into

account the proximity effects can lead to calculated results which have a poor agreement with

measurements as demonstrated by Soloot in [67].

Figure 5.5: Magnitude of transfer function of turn 20 relative to the input (taking into account
proximity effects)
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5.5 Conclusion

In this chapter verification of the MTL model was done by using published work of Sun et. al

[5], [25]. The developed MTL model by the author was compared with the results obtained

by Sun et. al [5], [25]. The comparison reveals a relatively good agreement between the two

models. However as highlighted in this chapter, several concerns were raised which could

explain the discrepancies between the two models. Further work on an actual transformer

prototype will be needed to validate the model and expose the short-comings.
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Chapter 6

Resonance Analysis: Verification of
High Frequency Model of Transformer

6.1 Chapter Overview

In the previous chapter the high frequency model of the transformer was applied to a disc type

winding. Further application of the MTL model will now be applied to a layer type of winding.

As previously mentioned in Chapter 1, the aim is to address the causes of the failed 2.7 MVA,

0.690 / 33 kV step-up transformer. This was done by investigating the resonant performance

of two prototype transformers. The two prototype transformers had the same rating as the

failed unit and both used a stacked core as opposed to the failed unit which had a wound

core. However they differed in the winding arrangement as one had split round windings

and the other had single round windings. Analytical calculations were done using the MTL

model and results were compared with measurements. The calculated results using the MTL

model showed a relatively good agreement and followed the trend of the measured results for

a frequency range of 1 kHz to 10 MHz.

6.2 Test Equipment and Measurement of Resonance

The test equipment consisted of a Krohn-Hite Power Amplifier 7602 M series, a 20 MHz

Agilent 3320A waveform generator and a Tektronix (DPO 3032) 300 MHz Oscilloscope as

shown in Figure 6.1. A block diagram of the test setup is shown in Figure 6.2 whilst a snapshot

at the Transformer Manufacturer test bay is shown in Figure 6.3. The signal generator was

connected to the power amplifier to keep the voltage across transformer winding constant as

the frequency was varied. The oscilloscope channels displayed the measured voltages at the

45



Chapter 6: Resonance Analysis: Verification of High Frequency Model of Transformer

measuring taps as follows (i) measure and display the voltage across the whole winding (Start

and Finish as in Figure 6.2 ) (ii) measure and display the output voltage (Voltage at turn k to

ground as shown in Figure 6.2 ).

Figure 6.1: Test equipment used

Figure 6.2: Test Setup
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Figure 6.3: Test equipment setup
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In the literature two methods are outlined for the determination of the frequency response

of a transformer: the impedance versus frequency plot using Frequency Response Analysis

(FRA) equipment and the amplification factor versus frequency using a signal generator and

an oscilloscope. The amplification factor or gain function is defined generally for all cases as

[73]:

N1m, j =
Voltage between point 1 and m at f requency wi

Voltage applied at f requency wi to node j
(6.1)

Using FRA equipment Equation 6.1 can be further expanded to Equation 6.2 [32]:

N1m, j =
Zi j ( jω)−Zm j ( jω)

Z j j ( jω)
(6.2)

The Resonance Voltage Ratio (RVR) can be derived from the generalized amplification factor

in Equation 6.1 to give Equation 6.3.

RV R =
Voltage between point 1 and m at f requency wi

Voltage between point 1 and m at 50Hz
(6.3)

In Equation 6.3 the RVR is now defined as the voltage between points at the resonant frequency

divided by the voltage between the same points when a 50 Hz voltage with the same amplitude

is applied to the winding.

6.3 Stacked core transformer prototypes

The design of the stacked core transformer is such that the inner winding is the LV winding

whilst the outer winding is the HV (MV) winding. This differs from the wound core transformer

as it had the HV winding sitting inside the LV winding with a static screen between the two

windings.

6.3.1 Split round winding prototype transformer

The stacked core transformer prototype with split round winding was installed with measuring

taps at the ends of each layer as shown in Figure 6.4. Note that the stacked core transformer

prototypes only differ in the core structure with the wound core transformer. Both upper and

lower coils consisted of a total of 16 layers separated by an oil gap through the use of wooden

spacers shown in Figure 6.4. The constructed prototype is shown in Figure 6.5.
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Figure 6.4: Axisymmetric view of the first prototype transformer.

Figure 6.5: Split round winding prototype transformer.
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6.3.2 Single round winding prototype transformer

A second prototype transformer was constructed with the same stacked core as in Figure 6.5

but with a single round winding.

Figure 6.6: Axisymmetric view of the second prototype transformer

Figure 6.7: Non-split round winding prototype transformer
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Measuring taps were installed at the start and ends of each layer and also in between the layers

as shown in Figure 6.6. The second constructed prototype is shown in Figure 6.7. Both stacked

and wound core transformers had the same number of layers.

6.4 Comparison of Measured and Calculated Results

6.4.1 Split round winding prototype transformer

As previously mentioned, resonance can be classified as either internal or external resonance.

It is worth noting that internal resonance can be further defined as “internal voltage maximum”

and internal anti-resonance can be defined as “internal voltage minimum” [32]. This relationship

will be crucial in the analysis of measured and calculated results. Comparison will not be done

for all 16 layers, however only critical results will be revealed in this paper.

Figure 6.8: Resonance voltage ratio across Layer 1 [measured between tap 1 and tap 2 of Figure
6.4] versus calculated.

In Figures 6.8, 6.9 and 6.10 it can be seen that there is a relatively good agreement between

the calculated and measured results. The calculated results follow the profile of the measured

results although there is a frequency shift between 1 kHz and 10 kHz for layer 15 and layer

16 (measured between the taps as indicated in Figures 6.9 and 6.10. Analysis of the measured

results in Figures. 6.8, 6.9 and 6.10 show that above 500 kHz the resonance voltage ratio

decreases almost approaching zero above 1 MHz.
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Figure 6.9: Resonance voltage ratio across Layer 15 [measured between tap 32 and tap 33 of
Figure. 6.4] versus calculated.

Figure 6.10: Resonance voltage ratio across Layer 1 [measured between tap 33 and tap 34 of
Figure. 6.4] versus calculated.
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The general trend of the resonance voltage ratio is shown in Figures. 6.11, 6.12, 6.13 and

6.14. It is interesting to note that the magnitude of the resonant voltage ratio increases as you

approach the break i.e. layer 1 to layer 5. Then the magnitude starts to decrease for layers 9 to

layer 16.

Figure 6.11: Resonance Voltage Ratio (RVR) distribution in layers 1 - 4

Figure 6.12: Resonance Voltage Ratio (RVR) distribution in layers 5 - 8
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Figure 6.13: Resonance Voltage Ratio (RVR) distribution in layers 9 -12

Figure 6.14: Resonance Voltage Ratio (RVR) distribution in layers 13 - 16
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6.4.2 Non-split round winding prototype transformer

6.4.2.1 Full layer measurements

For the second prototype, comparison of the measured vs calculated results shown in Figures.

6.15, 6.16, 6.17, 6.18, and 6.19. Analysis of the comparison results for the non-split MV

windings reveals that between 1 kHz and 10 kHz the results do not agree. There is also a

mismatch of the calculated results with the measured for frequencies between 1 MHz and 2

MHz. However the calculated results using the MTL model do approximate the measured

results for frequencies above 30 kHz. The differences in the magnitude will be explained in the

discussion section.

Figure 6.15: Resonance voltage ratio (RVR) across layer 4 [measured between tap 6 and tap 7
of Figure. 6.6] versus calculated.
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Figure 6.16: Resonance voltage ratio (RVR) across layer 5 [measured between tap 7 and tap 8
of Figure. 6.6] versus calculated.

Figure 6.17: Resonance voltage ratio (RVR) across layer 6 [measured between tap 8 and tap 9
of Figure. 6.6] versus calculated.
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Figure 6.18: Resonance voltage ratio (RVR) across layer 7 [measured between tap 9 and tap
10 of Figure. 6.6] versus calculated.

Figure 6.19: Resonance voltage ratio (RVR) across layer 8 [measured between tap 10 and tap
11 of Figure. 6.6] versus calculated.
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6.4.2.2 Start to middle of winding measurements

The investigation of the voltage distribution in the middle of the layer has been investigated in

[67], [74]. This was done by measuring the voltage drops using FRA equipment. However can

the same be investigated using the MTL model and what are the constraints? As previously

highlighted by Equations 4.6 and 4.7, matrix reduction is a technique used to reduce the size

of matrices by grouping a number of turns in each layer to represent a single transmission line.

To test the limitations of this reduction technique when applied to the MTL model, the same

Equations 4.6 and 4.7 were applied to represent the total number of turns in half a layer. Hence

each group of turns from the start of a layer to the middle of the layer was presented by a single

transmission line. The results of the comparison are shown Figures. 6.20 and 6.21. Analysis of

these figures reveal that there are limitations of the model within the frequency ranges: 1 kHz

to 30 kHz and 1 MHz to 2 MHz.

Figure 6.20: Resonance voltage ratio (RVR) across the start to middle of layer 2 [measured
between tap 2 and tap 3 of Figure. 6.6] versus calculated.
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Figure 6.21: Resonance voltage ratio (RVR) across the start to middle of layer 3 [measured
between tap 4 and tap 5 of Figure. 6.6] versus calculated.

6.5 Comparison of the Resonance Performance of Split and Non-Split
MV Windings

As previously mentioned wind turbine transformers are frequently subjected to repetitive fast

transients. These fast transients usually consist of a spectrum of different frequency components

that could excite one of the natural resonant frequencies of the winding, resulting in the development

of high internal voltages. The measured results for certain layers with high potential risk of

failure as discussed in Chapter 1 are going to be discussed by analysing the results of the

sweep frequency response measurements of the two designs. Hence a comparison will be

made between the transformer with a split MV winding of Figure 6.5 and a non-split MV

winding shown in Figure 6.7. As previously highlighted in Chapter 1, the first two layers and

the last two layers are usually more prone to failure due to fast transients. Hence a comparison

will be done for these specific layers which are layer 1, layer 15 and layer 16. The results are

shown in Figures 6.22, 6.23 and 6.24. Comparison of the sweep frequency response for the

two transformer winding designs reveals an important result.
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Figure 6.22: Comparison of the sweep frequency response of layer 1 for the transformers in
Figures 6.5 and 6.7.

Figure 6.23: Comparison of the sweep frequency response of layer 15 for the transformers in
Figures 6.5 and 6.7.
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Figure 6.24: Comparison of the sweep frequency response of layer 16 for the transformers in
Figures 6.5 and 6.7.

The transformer with the split MV winding has a high resonant amplification factor below 200

kHz. In contrast the transformer with a non-split MV winding has a high resonant amplification

factor above 200 kHz. Having gained insight about the resonant performance of the two

prototype designs, an appropriate design will have to be chosen. However since the magnitude

of the frequency components is unknown at this point, Chapter 7 investigates the measurement

of switching surges. Knowledge of the frequency spectrum of the switching surges can help in

choosing an appropriate design that is less prone to the effects of internal resonance.

6.6 Discussion and Conclusion

In this chapter modelling of two prototype transformers using the MTL model was investigated.

The calculated results using the MTL model were compared with results obtained by measurements.

Comparison of the two revealed a relatively good agreement within certain frequency ranges.

The major benefit is the insight that the MTL model provided into the resonance performance

of the different winding designs considered. Such purpose can find applicability during the
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transformer design process. It is important to note that application of a design safety factor will

have to be applied to counteract the discrepancies observed during the comparison of calculated

and measured results. The resonant performance of the two winding designs revealed that it

is possible to shift the resonant frequencies to occur either earlier or later in the frequency

spectrum.
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Switching Surges and Severity Factors

7.1 Chapter Overview

In this chapter an investigation into the measurement of switching surges on an actual wind

turbine transformer is presented. Since the measurements are made in a wind farm with

associated collector cable system, there is a high probability that the generated waveforms

due to system interaction may contain oscillatory voltage transients which will be impinged on

the transformer terminals. The frequency spectrum of these transients may be such that one

of the frequency components may coincide with the transformer’s winding natural resonant

frequency. Such a case can lead to the development of resonant overvoltages within the

windings. Therefore studying the transients generated during switching will be important to

assess if they pose a risk to the transformer insulation. If the switching waveforms consist of

repetitive transient overvoltages, accelerated ageing of the insulation could occur. This will

most likely lead to a reduction of the insulation withstand capability and if not recognized

during the design stage, could result in early insulation failure. An analysis technique for

assessment of transformer voltage stresses will be done using the CIGRE proposed severity

factors [4]. Since the distribution of electric stresses within the transformer are different with

each switching event, the severity factors takes into account the voltage stress distribution

within the transformer insulation structure for all the different types of standardized tests. The

aim being to provide an assessment tool that can be used to evaluate the stresses impinged on

the transformer terminals and also locally within the windings.
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7.2 Measurement of Switching Transients

Measurements of switching transients at the transformer terminals were conducted at a wind

turbine step-up transformer. The tests involved the following:

1. Energizing the transformer on no-load.

2. Disconnecting the transformer on no-load.

Measurement of the three MV phase-to-earth voltages were made by use of a capacitive voltage

divider on each phase. The MV bushing screen had a measured capacitance of 32 pF and a

10 nF capacitor was externally mounted in series with the bushing screen terminal and the

transformer tank to form a capacitive voltage divider. The resulting voltage division ratio was

313. Measurements were made on the MV side because the MV VCB was constantly switched.

The aim of the tests was to investigate the switching transients i.e. pre-strikes (on energizing)

and re-strikes and re-ignitions on disconnection. Figure 7.1 shows the measurement setup with

the FLUKE 1750 recorder connected to the bushing voltage dividers. A simple block diagram

of the test setup is shown in Figure 7.2.

Figure 7.1: Measurement setup on a wind turbine transformer (Pad-mounted Transformer).

7.2.1 Energizing the transformer on no-load

Energization of the transformer always results in at least one pre-strike per phase [75]. During

contact closing, generation of high du/dt transients can occur at the transformer terminals [14].

This behaviour can be observed from the measured transients in Figures. 7.3, 7.4, 7.5, 7.6, 7.7

and 7.8. The measurement setup explained in Figure 7.1 was used and the tests were conducted

on one step-up wind turbine transformer at a particular wind farm. Analysis of the measured

waveforms showed that the pre-strikes are different for each switching event. However they
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Figure 7.2: Block diagram of test setup.

all exhibit the basic characteristics i.e. they are repetitive in nature and have high du/dt values.

Energizing a transformer onto the highly capacitance collector cable network presents voltage

transient problems. As the cable connections are short, the speed of the transformer input

capacitance charging from the network capacitance is limited in practise only by the cable

resistance and the value of the phase to ground capacitance of the transformer. This type of

low surge impedance connection has a low du/dt limiting effectiveness [14]. Hence the high

du/dt values and the high frequency transients observed in Figures. 7.3, 7.4, 7.5, 7.6, 7.7 and

7.8. It should be noted that the sampling frequency for FLUKE 1750 is 5 MHz with analogue

to digital resolution of 14 bits under transient conditions.
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Figure 7.3: Measured pre-strike behaviour at 12:45

Figure 7.4: Measured pre-strike behaviour at 13:13
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Figure 7.5: Time expansion of measured pre-strike behaviour at 13:13

Figure 7.6: Measured pre-strike behaviour at 13:15
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Figure 7.7: Time expansion of measured pre-strike behaviour at 13:15

Figure 7.8: Measured pre-strike behaviour at 13:26
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7.2.2 Disconnection of the transformer on no-load

On disconnection by the VCB, higher over-voltages can occur if the arc re-ignites after the

first current interruption [76]. If the VCB is not able to quench the arc, multiple re-ignitions

can occur and with each re-ignition, the voltage escalates resulting in higher over-voltages. No

significant over-voltages were measured on disconnection of the transformer. A sample of the

waveforms measured during disconnection is shown in Figure 7.9.

Figure 7.9: Measured waveform during transformer disconnection

7.2.3 Frequency domain analysis

Analysing the measured transients in the frequency domain can give a better perspective than

time domain analysis. Hence Fast Fourier Transform (FFT) analysis was performed on the

measured transients. In [77] the frequency content of the recorded transient was analysed using

the FFT. Analysis of the results yielded the amplitude of the different frequency components.

The amplitude spectra for the measured transients are shown in Figures 7.10, 7.11, 7.12 and

7.13. It should be noted that in the frequency domain, a steep front transient is identified by its

higher frequency components [4]. The frequency domain results in Figures 7.10, 7.11, 7.12 and

7.13 show higher frequency components which would represent the steep, repetitive transients

in the time domain. However there are no frequency components of amplitude significantly

larger than the others.
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Figure 7.10: FFT analysis for the measured transient at 12:45

Figure 7.11: FFT analysis for the measured transient at 13:13
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Figure 7.12: FFT analysis for the measured transient at 13:15

Figure 7.13: FFT analysis for the measured transient at 13:26
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7.3 Severity Factor

As previously highlighted voltage stress assessment is important to ensure proper design of the

transformer insulation structure. In service, the transformer insulation structure is constantly

exposed to normal 50 Hz operating voltages and transient overvoltages such as those due

to lightning. Because of these future voltage stresses, the insulation system is subjected to

voltage impulse tests in the factory in accordance with specific standards. The BIL rating of a

transformer is a measure of a transformer’s insulation withstand capability when exposed to a

voltage surge of a certain magnitude and duration [4]. However even when proper insulation

coordination studies have been conducted, transformers still fail when exposed to transient

conditions as discussed in Chapter 1. For this reason, the transformer manufacturer can implement

severity factors which may be analysed in either the frequency domain or time domain [4].

These help in establishing an acceptable insulation design that caters for the voltage stress

(kV) and the electric field strength of the supporting dielectric in (kV/mm).

7.3.1 Implementation and analysis of the Frequency Domain Severity Factor
(FDSF)

A severity factor is defined as a coefficient that can be used in the assessment of the stress

applied to a transformer winding insulation by the incoming transient overvoltage [18]. It

determines a safety margin that can be used during the design stage with regards to the standard

acceptance tests either in the frequency or time domain. The acceptance tests include the

lightning impulse test which checks the BIL, switching impulse test to check the Switching

Impulse Level (SIL), the short duration power frequency test at 50 Hz and the long duration

power frequency test with partial discharge measurement [4]. The wind turbine transformers

are tested with a 170 kV lightning impulse according to SANS 60076-3 [8]. Additional

waveforms such as the 200 kV lightning impulse test, the chopped 187 kV impulse at 2 µs,

3 µs, 4 µs, 5 µs and 6 µs will also be considered in this report. However according SANS

60076 no switching wave tests should be done for MV distribution transformers hence it will

not be considered in the analysis [8]. The chopped wave test is considered the more important

than the lightning impulse test since it has a higher peak value and contains higher frequency

components [4]. To compute the Frequency Domain Severity Factor (FDSF) knowledge of the

frequency components of the incoming surge and the standard waveforms is needed. This was

done by computing the FFT and the Energy Spectral Density (ESD) of the waveforms as shown

in Equation 7.1 [18].

FDSF(ω) =
ESDsw(ω)

ESDenv(ω)
=
|Fsw(ω)|2
|Fenv(ω)|2 (7.1)
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where ω is the angular frequency, ESDsw(ω) is the maximum energy spectral density of the

measured transient at the transformer terminals, and ESDenv(ω) is the energy spectral density

envelope for all standards’ dielectric tests at the terminals. F(ω) is the FFT of the signal. To

ensure that the measured switching transients are covered by the standard impulse waves, the

FDSF should be less than unity [18]. It is important to note that the inter-disk or inter-layer

spacing is decided by impulse stresses (i.e. LI, SI, CI ) hence to avoid the inter-layer failures

due to fast transients shown in Figure 1.4 suitable safety factors should be applied during the

insulation design stage [7]. Figure 7.14 shows the magnitude spectrum for the standardized

Figure 7.14: Magnitude spectrum for transient signal in Figure 7.8 and standard lightning and
chopped lightning waveforms.

waveforms and an FFT of the measured transient in Figure 7.8. By analysing the results in

Figure 7.14 it is possible to have a severity factor that takes the maximum value of the standard

waveforms to form an envelope of acceptance. This is shown in Figure 7.15. This can then

be compared to the ESD of the transient at the transformer terminals as explained by Equation

7.1. Hence any frequency component above the red line will pose a risk to the transformer

insulation by winding resonance. The results of the FDSF plots calculated using Equation 7.1

for the transients in Figures 7.4, 7.6 and 7.8 are shown in Figures 7.16, 7.17 and 7.18.

The results of the FDSF for the three different switching events show that the majority of

the frequency components are above unity for most of the spectrum symbolising a potential
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Figure 7.15: Comparison of ESD for transient signal in Figure 7.8 and ESD for standard test
waveforms in Figure 7.14

Figure 7.16: FDSF for the measured transient in Figure 7.4.
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Figure 7.17: FDSF for the measured transient in Figure 7.6.

Figure 7.18: FDSF for the measured transient in Figure 7.8.
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risk. Hence internal winding resonance could occur when either of the frequency components

match a resonant frequency of the transformer winding. The FDSF results also reveal that

the transients generated during switching of wind turbine step-up transformers are not well

represented by any of the standard wave tests. Also it is worth mentioning that FDSF analysis

has several limitations including that it does not take into account damping effects and hence

might over-estimate the over-voltages produced at resonance especially for transients with

frequency components above 1 MHz shown in Figures 7.16, 7.17 and 7.18. However in light

of the FDSF results that were obtained and how severe they are, the transformer manufacturer

gains knowledge of the spectral fingerprint during switching transients events and proper protection

or safety factors can be implemented to wind turbine transformer designs such that proper

protection is taken into account regardless of what the transformer is exposed to. Hence a look

at two wind turbine transformer designs will now be investigated.

7.4 Discussion and Conclusion

This can be analysed by looking at the current analysis tool, FDSF. Although FDSF is a

powerful analysis tool, it has a limitation in that it does not take into account the severity

along the windings to localize dielectrically the weak points as it only describes the terminal

response of the transformer [6].

1. In implementing FDSF a comparison of the energy involved during a transient event

with the energy involved in the standard test waveforms is made but effects of damping

are not taken into account. For transformers the damping ratio (R/X) increases at higher

frequencies because of skin effect as well as increased stray losses [13]. Hence some

damping should be expected at higher frequencies which may reduce the amplitude of

the internal overvoltages.

2. Although FDSF does provide insight in the different frequency components the transient

signal has, it does not take into account the phase angle which may over-estimate resonant

overvoltages. The FDSF results have indicated that the existing tests waveforms contained

in the standards do not completely address all the types of transient events that could

occur in the field. The frequency response of the two windings has revealed that the

transformer with non-split MV winding could be a better option.
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Insulation Co-ordination

8.1 Chapter Overview

This chapter gives a general discussion of the results obtained. A review of fundamental

insulation coordination concepts is also presented. Comparison of insulation design is performed

by looking at different values of Design Insulation Level (DIL) of the transformer. Different

mitigation techniques for protecting wind turbine transformers against very fast transients are

investigated. Finally recommendations and possibilities for future work are also outlined.

8.2 Insulation coordination

As previously mentioned in previous chapters, transformers in service are constantly exposed

to operating voltages and in some instances overvoltages. The overvoltages can be caused by

a number of phenomena but in this research focus is on overvoltages due to the operation of

circuit breakers. To ensure proper operation of the transformer under different conditions it

is essential to perform proper insulation coordination studies during the design process. The

insulation coordination will be looked at from two different aspects. The first being during the

design stage. What sort of insulation coordination practices need to be in place to ensure that

a transformer exposed to frequent switching does not result in dielectric failure? The second

aspect focuses on the mitigation techniques that can be applied to alleviate the overvoltages

caused by circuit breaker switching. Hence the insulation coordination studies will be to

coordinate the different protection measures with the insulation level of the transformer.
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8.3 Design Insulation Level (DIL)

It is a well-known technique that transformer insulation is tested according to the standard test

waveforms specified in SANS 60076-3 [8] which are the lightning impulse, chopped impulse

and switching impulse. A common consensus within the transformer manufacturing industry is

the representation of the transformer performance using breakdown strength curves which are

functions of both amplitude and duration [4]. Hence to take into account these characteristic

during the design process, manufacturers apply what is termed as the DIL. The DIL specifies

the maximum equivalent one-minute power frequency voltage level based on the three different

tests which are BIL, SIL and the long duration (one hour) power frequency voltage. Hence

at any given time inside the transformer there is one DIL value that specifies the maximum

equivalent AC one-minute r.m.s. value (under various tests) that the transformer insulation can

withstand [4], [7]. Typical values of DIL values are shown in Table 8.1 [7].

Table 8.1: Factors for conversion to one-minute (r.m.s.) power frequency level adapted from
[7].

Standard voltage test waveforms Multiplication factor (D.I.L)
Lightning Impulse Level (BIL) 1.2/50 Full Wave Impulse (1/2.30) = 0.44
Switching Impulse Level (SIL) 250/2500 (1/1.80) = 0.55
Short duration power frequency voltage (1 minute) 1.00
Long duration power frequency voltage (60 minutes) (1/0.80)=1.25

Table 8.2: Test voltage levels and the impulse ratios adapted from [7], [8].

Voltage class [kV] Full Wave Lightning Impulse [kV] (LTAC) [kV] Impulse ratio
36 170 70 2.43

132 550 230 2.39
220 950 395 2.40
400 1300 570 2.28

The DIL specifies a threshold withstand value for the insulation and the resultant voltage is

expressed as VDIL−Test in kVrms [7]. This approach is widely used by transformer manufacturers

to simplify the insulation design process. To obtain the DIL value, the multiplication factor is

defined as the inverse of the impulse ratio. The impulse ratio is found by taking the ratio of full

wave lightning impulse to the line terminal AC (LTAC) withstand voltage shown in Table 8.2.

The impulse ratio defines an average correction factor that can be applied for voltage impulses

within a duration of 10 µs to 100 µs [7]. From the information in Table 8.2 it is clear that the
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impulse ratios for different voltage classes ranges between 2.3 to 2.5 which form commonly

used values within the industry [78], [79].

However the limitations of applying the DIL becomes apparent when dealing with transients

whose duration may be less than 10 µs. As previously shown by the transients in Figures

7.3, 7.4, to Figure 7.8 these overvoltages which will be imposed on the inter-layer or turn to

turn insulation may be shorter than 10 µs. In this case the application of the above mentioned

correction factors in Table 8.1 and Table 8.2 becomes a bit more conservative. In [80], an

impulse ratio of 2.68 was calculated for a 1.5/40 µs impulse resulting in a DIL value of 0.37

for the design of the inter-winding and inter-turn insulation. In contrast if it had been assumed

as a normal lightning impulse the DIL value of 0.44 in Table 8.1 would have been used rather

than the corrected DIL value of 0.37 which is much lower. A lower DIL value means a lower

withstand value for the insulation and opens up avenues for insulation optimization since new

designs will have to be considered [7]. With this in mind, special consideration will have to

be applied when dealing with transients. It becomes risky to use impulse ratios in the range of

2.3 to 2.5 as suitable correction factors for transformers exposed to transient impulses. Hence

the calculated impulse ratios should have a lower value [7]. The only difficult in assessing

transients by calculating using the DIL method is the wave shape of transients is random and

does not follow the profile of a lightning impulse. Hence in [4], a new assessment tool known

as the Time Domain Severity Factor (TDSF) was proposed that can be used when dealing with

transients imposed on transformer terminals. The TDSF is discussed in later sections.

8.4 Mitigation techniques against fast transients

As previously mentioned, high frequency components present an undesirable risk in the power

system networks. They pose a risk to the electrical equipment as internal resonant phenomena

can occur resulting in the local amplification of voltage which degrades the thin insulation

between layers or turns [6]. This section investigates suitable protection measures that are

commonly used within the industry to suppress the overvoltages and HF oscillations brought

about by the switching of vacuum circuit breakers.

8.4.1 Traditional methods of suppressing fast transients

In medium voltage network, there exists several mitigation methods of suppressing the overvoltages

imposed on the transformer terminals. The following are amongst the commonly used:
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8.4.1.1 RC Snubbers

Figure 8.1 shows the implementation of resistor capacitor (RC) snubber. The resistor acts in

the following [73]: (i) By reducing the amplitude factor of the Transient Recovery Voltage

(TRV) (ii) By limiting capacitive inrush currents. (iii) By terminating wave reflections at the

cable end.

Figure 8.1: RC Snubber network

The capacitor (C) in Figure 8.1 functions by decreasing the frequency of the load side TRV.

This is achieved by modifying the frequency components of the incoming transient such that

it becomes lower than one of the resonant frequencies of the transformer [73]. Effectively this

minimizes the problem of high internal voltage amplification due to internal winding resonance.

Typical capacitance values in the range of 0.1 µF to 0.5 µF are suggested in [73]. However

proper determination of the exact capacitance values can still be deduced if knowledge of the

resonant performance of the transformer and its system parameters are known. The fuse in

Figure 8.1 acts by providing secondary protection in the event of RC snubber failure. However

it must be ensured that the fuse is rated to withstand both inrush and outrush currents, withstand

steady state current and any harmonics which may be generated during system operation [73].

The drawbacks of such an arrangement are:

• The snubber arrangement will most likely contribute to some level of harmonics although

this can be counteracted by increasing the current rating by a factor of 1.3 [73].

• Typical resistance values in the range of 5 Ω to 50 Ω have been suggested in [73]. It

should be noted a low value of resistance may impact the switching device capabilities
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as the TRV amplitude factor can exceed beyond the interrupting threshold level of the

switching device. Furthermore, a very large value of resistance may result in high

resistive losses and an over-damped TRV [73].

• A too high value of the snubber capacitance can potentially result in capacitive currents

imposing high power requirements on the snubber resistor [6].

8.4.1.2 Surge Capacitors

Surge capacitors are normally employed with surge arresters as protective devices. The realization

of suppressing the VFT is achieved since the cable surge impedance and the capacitor combine

to form a low pass filter [6]. A large capacitance value is normally recommended since the

impedance of the cable will be very small. However the introduction of a large value of

capacitance presents several problems which are [6]: (i) A large value of a surge capacitor

can contribute to the formation of inrush currents during energization of a transformer. (ii)

Surge capacitors may form a resonant circuit with the impedance of the connected cable which

can potential result in the generation of overvoltages.

8.4.1.3 Surge Arresters

In MV distribution networks, surge arresters are common protection devices installed at the

transformer terminals. They are mainly used to mitigate the effects of lightning strikes. However

with regards to transients overvoltages, surge arresters only work by providing protection

against overvoltages but fail to suppress the rate of change of voltage (du/dt). Hence in most

cases the high du/dt values imposed by transients are not affected by the surge arresters as

their amplitudes are usually lower than the protection level [14]. Furthermore surge arresters

are incapable of filtering the HF oscillations or to eliminate wave reflections occurring at the

transformer terminals [14].

8.4.2 RL Choke device

The approach is to employ a series impedance upstream of the protected equipment which

would be a transformer in this study [6]. Figure 8.2 shows the implementation of a choke

device on a transformer. The choke device consists of a resistor and an inductor connected in

parallel as shown in Figure 8.2. The aim of implementing the choke device is to reduce the

repetitive nature of transients shown in Figures 7.3, 7.4, 7.6, 7.8 and the amplitude built up

that results due to a lack of appropriate termination at the end of the cable [14]. In order to

allow suppression of overvoltages and HF oscillations brought about by the switching operation
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Figure 8.2: Physical realization of VFT suppressing devices installed on a transformer

whilst being able to maintain normal operation of the transformer, the RL choke device should

meet the following criteria [6]:

• The RL choke device should not be saturated by the load current.

• The RL choke device should exhibit a small voltage drop under 50 Hz operation.

• The RL choke device should exhibit a significant impedance below 1 MHz to allow

reduction of high dU/dt values (the resistive character of the choke and the phase to

ground capacitor form a low pass filter).

• The RL choke device should be able to restrict the overvoltages to within safe levels that

coordinate with the insulation co-ordination of the transformer.

• At high frequencies the RL choke device should limit the wave reflections by terminating

any reflections at its terminals due to its high impedance.

An RL choke device meeting the above mentioned criteria was designed and manufactured by

the authors in [6]. The frequency response of the RL choke device is shown in Figure 8.3.

Simulations were performed in the frequency domain to assess the suppression effects of the

RL choke device . A surge capacitor with a capacitance value of 0.1 µF was used. The circuit in

Figure 8.7 was analysed in the frequency domain together with the measured time waveforms

in Figures 7.3, 7.4 and 7.6 acting as the input. A comparison of the FDSF results obtained
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Figure 8.3: Impedance vs Frequency plot of RL choke device adapted from [6]

before and after installing an RL choke device on all phases of the transformer are shown in

Figures 8.4, 8.5 and 8.6. It should be noted that the methods to obtain the FDSF were explained

in Section 7.31: Implementation and analysis of FDSF. The introduction of an RL choke device

has drastically reduced the magnitude of the frequency components to within safe levels. As

previously mentioned in Chapter 7 , the FDSF should be less than unity to ensure that the

transformer is properly protected. This is shown by the results in Figures 8.4, 8.5 and 8.6 after

RL choke device installation. It is important to note that analysis of the RL choke device was

only performed in the frequency domain due to the published impedance vs frequency plot

characteristics in [6].
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Figure 8.4: FDSF for the measured transient in Figure 7.4 before and after RL choke device
installation.

Figure 8.5: FDSF for the measured transient in Figure 7.6 before and after RL choke device
installation.
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Figure 8.6: FDSF for the measured transient in Figure 7.8 before and after RL choke device
installation.

Figure 8.7 shows the simulated circuit in ATP DRAW. The design of the RL choke was done

from the impedance plot shown in Figure 8.3. The resistance in parallel with the choke device

was chosen to be 50 Ω and the inductance of the choke was chosen to be 13.9 mH. This resulted

in a low impedance choke device with an impedance of 0.25 Ω at 50 Hz.

Figure 8.7: RL choke device implementation in ATP DRAW

As previously mentioned on the design criteria of the choke device, it should be able to exhibit
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a small voltage drop under power frequency whilst being able to suppress overvoltages brought

about by the switching operation. To investigate the transparency of the choke device under

power frequency operation, a signal with an amplitude of 2 Vpp and frequency of 50 Hz was

generated by the transient source and the output waveform measured across the capacitor.

Figure 8.8: 50 Hz transparency of RL choke device

As seen in Figure 8.8, there is a close correlation between the transient source and Vout from

the choke device. This shows the transparency of the choke device under power frequency

operation. Furthermore to investigate the suppression effects of the designed choke device

when there are transients as previously shown in Figures 7.3, 7.4 and 7.6 the empirical source

in Figure 8.7 was used to generate these transient waveforms. Hence the empirical source in

Figure 8.7 acts to replicate the transient waveforms that were measured on the transformer

terminals for the investigated wind farm. The results of the waveforms at the transformer

terminals for an unprotected transformer are shown in Figures 8.9, 8.11 and 8.13. Subsequently

the resulting waveforms after choke device implementation are shown in Figures in 8.10, 8.12

and 8.14.
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Figure 8.9: Unprotected terminal phase voltages measured using the setup in Figure 7.1

Figure 8.10: Protected terminal phase voltages using choke device to suppress the measured
transients in Figure 8.9
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Figure 8.11: Unprotected terminal phase voltages measured using the setup in Figure 7.1

Figure 8.12: Protected terminal phase voltages using choke device to suppress the measured
transients in Figure 8.11
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Figure 8.13: Unprotected terminal phase voltages measured using the setup in Figure 7.1

Figure 8.14: Protected terminal phase voltages using choke device to suppress the measured
transients in Figure 8.13
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Analysis of the measured waveforms in Figures in 8.10, 8.12 and 8.14 show that the output

wave has been attenuated by the choke device. The high du/dt values have been reduced to

within safe levels which the transformer insulation should be able to withstand. It should be

noted that it has been assumed that the pre-strike waveforms in Figures 8.9, 8.11 and 8.13

will remain the same even after RL choke device installation. However in practice, the nature

of these repetitive transients will differ due to the termination provided by the choke device.

Hence the waveforms may not exhibit the pre-strike nature shown in Figures 8.9, 8.11 and 8.13.

8.5 Special winding designs

In Chapter 6, the resonance performance of two different wind turbine step-up transformers

were investigated. A comparison of transformers with a split MV winding versus a transformer

with a non-split MV winding was also investigated. The two designs revealed that the resonant

frequencies of the winding can be shifted to occur either early within 1 kHz to 20 kHz or

later after 200 kHz. This is an important characteristic and can be used to coordinate with the

protection of the RL choke device. As shown in Figures 6.22, 6.23 and 6.24, the transformer

with the non-split MV winding would be the best option to integrate with the RL choke device.

This is because it has high resonant overvoltages above 200 kHz and any incoming transient

with frequency range above 200 kHz can damped out by the RL choke device.

Another well-known technique within the transformer industry is to apply a specialized design

with an increased insulation level so as to equalize the initial voltage distribution [81]. Hence

for the investigated wind turbine step up transformer it would have its insulation level rated

for 66 kV instead of the 33 kV. However several challenges arise with regards to pursuing

complicated designs. Reinforcing the insulation can help in minimizing inter-turn and inter-layer

faults. However this presents further uncertainties as it changes the impedance of the transformer

and subsequently its frequency response. This can be a major problem for customers who

usually require a low impedance unit.

8.6 Discussion and Conclusion

This chapter has reviewed the fundamental principles of insulation co-ordination from the

design of the insulation within the windings to external mitigation techniques that can be used

to suppress the effect of very fast transients.
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Chapter 9

Conclusions, Future Work and
Recommendations

9.1 Chapter Overview

This chapter concludes the thesis by reviewing how the research questions mentioned in Chapter

1 have been addressed in this research. Possibilities of extending this research are also proposed

under the section of Future Work. Recommendations on improving the current work are also

proposed in this chapter.

9.2 Assessment of the outcome of the research questions

The research questions mentioned in Chapter 1.3 set the research objectives and defined goals

that the author had to meet. A review of these research questions and their main findings will

be crucial in concluding this research. The research questions and their main findings were:

9.2.1 Research Question 1

What are the methods available in the literature that can be used to formulate a high frequency

model of a transformer?

Several methods can be used to characterise the high frequency behaviour of a transformer.

Different methods exist and an in-depth investigation was presented in Chapter 3. In this

research the MTL model was chosen as the appropriate model for the prediction of resonant

overvoltages in transformer windings. The MTL model represents the transformer windings as
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coupled transmission lines. The procedure for the determination of the MTL model is discussed

in Chapter 3.4.2.

9.2.2 Research Question 2

In the literature the Multi-conductor Transmission Line (MTL) model is used for the computation

of the inter-turn voltages. Can the model be extended for the computation of inter-layer or

layer voltages using appropriate matrix reduction techniques? i.e. grouping the total number

of turns in a layer winding to represent the voltage distribution in that layer?

The extension of the MTL model was successfully applied to include the computation of

inter-layer voltage stresses as shown in Chapter 6. Using matrix reduction techniques discussed

in Chapter 4.3.1 the MTL model was extended to include voltage stresses from the start of the

layer to the middle of the layer as shown in Chapter 6.4.2.2.

9.2.3 Research Question 3

The MTL model is a commonly used model for the calculation of voltage distribution within

transformer windings. Can the MTL model be applied for any transformer winding geometry?

i.e. either split MV winding or non-split MV winding?

Modelling of any transformer geometry, topology and its electrical behaviour during normal

and transient conditions is an important characteristic that the chosen model should be able to

successfully replicate. The MTL model was successful applied to two transformer prototypes

which had the same power rating but differed in the design of the MV winding. One of

the prototypes used a split MV winding whilst the other used a non-split MV winding. The

application of the MTL model was successfully applied to the two prototypes and the results

of the analytical solutions were verified against measurements. The main findings are reported

in Chapter 6.

9.2.4 Research Question 4

In the literature different methods are proposed for the mitigation of fast transients brought

about by transformer circuit breaker interaction. The protection methods range from the use of

RC snubbers, surge capacitors and surge arrestors, to RL choke devices. Hence, what are the

limitations of using these protection methods to curb the development of resonant overvoltages
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inside transformer windings? What appropriate protection methods can be used to co-ordinate

with the insulation level of the transformer for protection against switching surges?.

The different protection methods that can be used in the suppressing of fast transients brought

about by transformer circuit breaker interaction were covered in Chapter 8.4. The limitations

of the RC Snubber, Surge Capacitors and Surge Arresters indicated that although these devices

can still function in suppressing transients they still have major drawbacks. The RL choke

device would be the most ideal protection device to use in suppressing very fast transients. The

performance of the RL choke device in suppressing fast transients were validated by comparing

its du/dt limiting effectiveness with actual recorded on-site transients waveforms as shown in

Chapter 8.4.2. The results indicated that RL choke device can reduce the transient overvoltages

to safe levels that would match with the insulation co-ordination of the transformer.

9.3 Future work and recommendations

The research has presented important findings which addressed resonance in transformer windings

and several techniques which can be used in the mitigation of very fast transients. However

certain concerns arise if too much emphasis is placed on the results of the frequency domain

and time domain analysis is neglected. As previously mentioned in Chapter 7, FDSF is a

powerful tool for assessing the severity supported by the transformer when subjected to steep

transients. However the biggest limitation is the failure to identify the dielectrically weak points

that could pose a risk of failure when steep transients are imposed at the transformer terminals.

The following is the current work being done by the author to try and address the shortfalls.

9.3.1 Time Domain Severity Factor (TDSF)

The TDSF complements the shortfalls of the FDSF by providing more insight into the severity

supported by the transformer along the windings. It is defined by Equation 9.1.

T DSF =
∆Vmaxswitching (t)
∆Vmaxenvelope (t)

(9.1)

The TDSF assesses the stress imposed on the transformer insulation when subjected to a

transient event (Vmaxswitching) emanating from the power system in comparison to an internal

response due to standardised dielectric tests (Vmaxenvelope) which form the envelope of acceptance

in the time domain [18]. If the calculated values of TDSF along the windings are less than

unity, then the transformer insulation structure will be well coordinated to withstand such a
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particular switching event [4]. A prototype transformer has been constructed for the purpose

of measuring the voltage distribution within the windings shown in Figure 9.1.

Figure 9.1: Prototype transformer to be tested

The final constructed prototype transformer will resemble that shown in Figure 9.2.

Figure 9.2: Final prototype transformer

The transformer is a step-up wind turbine transformer rated at 1.8 MVA, 690 V to 33 kV.

To predict the transformer response to the measured switching surges in Figures 7.3, 7.4

and 7.6, the current high frequency model would have to be extended to the time domain.
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The procedures have been depicted in Chapter 3 where the extension of the current model in

the frequency domain is Equation 3.23 to the time domain equation which is Equation 3.24.

However to prove the accuracy of the model certain measurements will need to be done. Hence

from Figure 9.2, lightning impulse and chopped impulse waves will be applied across the whole

winding. The goal being to obtain the response of the winding for the first three layers and last

three layers which have been the dielectrically weak areas that suffered insulation failures as

reviewed during the Brazilian and South African case studies. If the measured waveforms

agree with the calculated model of Equation 3.24, when the winding is excited by the impulse

waveforms then the effect of switching surges on those specific layers can then be investigated.

The above constitute what the author is currently investigating with an abstract for the paper

already having been accepted for the CIGRE ”International Colloquium on EMC, Lightning

and Power Quality Considerations for Renewable Energy Systems” in Curitiba, Brazil 2016.

9.3.2 Condition monitoring

A new area that could be used in extending the lifetime of transformers is to employ condition

monitoring of the insulation structure. Several techniques exist in the literature which are used

in the assessment of the transformer health index. Amongst the several techniques, Dissolved

Gas Analysis (DGA) and Furan Analysis (FA) are the most common. DGA is used to diagnose

faults within transformers such as thermal faults, arcing and partial discharges [82]. Furan

analysis addresses the shortfalls of DGA since DGA cannot estimate the remaining life of

transformer insulation. FA is a method of determining the amount of “furans” which are the

organic compounds produced by the degradation of transformer insulation paper [82]. The

concentration levels of furan compounds in the oil can give a clear estimation of the remaining

life of the transformer insulation structure. The integration of traditional condition monitoring

techniques with Artificial Neural Networks (ANNs) has been investigated in [82], [83]. The

use of ANNs is possible due to their unique ability to learn directly from different measurement

data and can be programmed to give diagnosis of the transformer insulation based on several

case studies. Hence ANN can be used with DGA or FA to achieve a more enhanced and

efficient real time monitoring system of the transformer insulation structure as outlined in [82].

The main challenges of such a complicated system are the high set-up costs.
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Appendix A - (Supplement of Chapter

4)

This Appendix supplements more information that was not provided in Chapter 4.

.1 Calculation of Capacitance Matrix

The capacitance needed for computation in the MTL model where shown in Figure 4.2. Figure

3 shows the cross-sectional view of the capacitance represented in Figure 4.
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Figure 3: Capacitance top view
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Figure 4: Prototype transformer
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Table 1: Calculated Capacitors for Transformer with split MV winding shown in Figure 6.5 in
Chapter 6.3.1

Capacitor Capacitance value
CHH1 2.59E-09
CHH2 2.67E-09
CHH3 2.76E-09
CHH4 2.84E-09
CHH5 2.92E-09
CHH6 3.00E-09
CHH7 3.09E-09
CHH8 3.17E-09
CHH9 3.25E-09
CHH10 3.34E-09
CHH11 3.42E-09
CHH12 3.50E-09
CHH13 3.58E-09
CHH14 3.67E-09
CHH15 3.75E-09

Clayer layer 1.00E-10
Css 4.43E-08
Cgg 1.44E-12
CHL 6.95E-10
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Table 2: Calculated Capacitors for Transformer with non-split MV winding shown in Figure
6.7 in Chapter 6.3.2

Capacitor Capacitance value
CHH1 2.16E-08
CHH2 2.18E-08
CHH3 2.20E-08
CHH4 4.22E-08
CHH5 4.24E-08
CHH6 4.25E-08
CHH7 4.27E-08
CHH8 4.29E-08
CHH9 4.30E-08
CHH10 4.32E-08
CHH11 4.34E-08
CHH12 2.28E-08
CHH13 2.30E-08
CHH14 2.32E-08
CHH15 2.33E-08
CHH 16g 3.69E-08

Css 4.43E-08
CHL 1.40E-09
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.2 Parameters of Split MV winding Transformer

Due to a non-disclosure agreement between the Author and Actom Distribution transformers

the transformer geometry and any associated drawings will not be included in this section.

However the following should suffice for any derivations that may be needed.

Table 3: 2700kVA three phase 33000/690V Dyn11 three limb mitre core transfomer with split
MV winding shown in Figure 6.5 in Chapter 6.3.1

Parameter Description Parameter Information
Winding material Copper / Copper
Type of winding Layer
Inner Coil LV
Outer Coil MV
Power rating 2700 kVA
Voltage Ratio 33000/690 Volts
Tappings 2.5 & 5
Tapping side MV
Short cct voltage 2310 Volts
Load loss @ Ref temp 17372 Watts
No load Loss 2980 Watts
No Load current 6 Amps
No of layers (N1) 16
Number of Turns/layer 5 x 40t & 11 x 49t
Inner radius of MV winding 227.5 mm
External raduis of MV winding 301 mm
Inner radius of LV winding 166 mm
External raduis of LV winding 227.5 mm
LV conductor 720 x 1.5 Cu Foil
MV conductor 6 x 2.36 Cu Strip
Tripple wire insulation 0.6 mm
Distance between layers 0.52 mm
Coil height MV1 and MV2 at 375 mm
Top / Bottom distance to core 32.5 mm
Dielectric permitivity of oil 2.3
Dielectric permitivity of wire insulation 4
Number of Foils (N2) 1
Dielectric permitivity of foil insulation 3
Foil insulation 0.25 mm
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Appendix A - Supplement of Chapter 4

.3 Parameters of Non-split MV winding Transformer

Table 4: 2700kVA three phase 33000/690V Dyn11 three limb mitre core transfomer with
non-split MV winding shown in Figure 6.7 in Chapter 6.3.2

Parameter Description Parameter Information
Winding material Copper / Copper
Type of winding Layer
Inner Coil LV
Outer Coil MV
Power rating 2700 kVA
Voltage Ratio 33000/690 Volts
Tappings 2.5 & 5
Tapping side MV
Short cct voltage 2310 Volts
Load loss @ Ref temp 17372 Watts
No load Loss 2980 Watts
No Load current 6 Amps
No of layers (N1) 16
Total number of Turns 1478
Inner radius of MV winding 227.5 mm
External raduis of MV winding 301 mm
Inner radius of LV winding 166 mm
External raduis of LV winding 227.5 mm
LV conductor 720 x 1.5 Cu Foil
MV conductor 6 x 2.36 Cu Strip
Tripple wire insulation 0.6 mm
Distance between layers 0.52 mm
Coil height 750 mm
Top / Bottom distance to core 32.5 mm
Dielectric permitivity of oil 2.3
Dielectric permitivity of wire insulation 4
Number of Foils (N2) 1
Dielectric permitivity of foil insulation 3
Foil insulation 0.25 mm
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.4 List of attached publications

The following are the attached list of publications

1. Banda C. A. and Van Coller J. M. Measurement of switching surges and resonance

behaviour in transformer windings. In Proceedings of the 23rd Southern African
Universities Power Engineering Conference (SAUPEC 2015), pp. 496 - 501. Jan.

2015

2. Banda C. A and Van Coller, J.M, ”Investigation into Resonant Overvoltages in Wind

Turbine Transformers due to Switching Surges” paper presented at International Conference
on Power Systems Transients (IPST2015) in Cavtat, Croatia June 15-18, 2015.

3. Banda C. A and Van Coller, J.M, ”Resonant Overvoltages in Wind Turbine Transformers”

paper presented at Powertech Conference in Eindhoven, Netherlands 29 June - 2 July
2015.

4. Banda C. A and Van Coller, J, M, ”Measurement of switching surges in onshore windfarms

and resonance overvoltages in transfomer windings” paper presented at the 19th International
Symposium on High Voltage Engineering (ISH2015),Pilsen on August, 23-28, 2015.

5. Banda C. A and Van Coller, J, M ”Resonance overvoltages in single and split winding

wind turbine step-up transformers” paper presented at CIGRE/IEC SYMPOSIUM on
Development of Electricity Infrastructures in Sub-saharan Africa, CapeTown, South
Africa, October 26-30, 2015.
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MEASUREMENT OF SWITCHING SURGES AND RESONANCE
BEHAVIOUR IN TRANSFORMER WINDINGS

Cedric. A Bandaa∗ and Dr John M. Van Coller∗

∗ School of Electrical and Information, Private Bag 3, Wits 2050, South Africa E-mail:
cedric.banda@students.wits.ac.za & john.vancoller@wits.ac.za

Abstract: Internal winding resonance is a phenomenon which can lead to overvoltages within
transformer windings. This paper will address resonance behaviour in transformer windings using the
Multi-conductor Transmission Line (MTL) model. The aim in using the MTL model is to determine
the turns between which insulation breakdown can occur due to internal winding resonances. Since an
internal winding resonance can be excited when a frequency component of an incoming surge equals a
resonance frequency of the transformer, measurement of the switching surges generated when switching
a transformer with a vacuum circuit breaker were conducted. Results of the pre-strike behaviour also
indicated high du/dt which could lead to stressing of the end-turn insulation of the transformer.

Key words: MTL model, pre-strike, resonance over-voltage.

1. INTRODUCTION

Switching transients due to vacuum circuit breakers can
lead to resonant over-voltages in wind turbine step-up
transformers. In medium voltage networks the switching
of vacuum circuit breakers [1], [2] can result in re-ignitions
and pre-strikes. These can lead to high-frequency
oscillations with also high du/dt resulting in stressing of the
end-turn insulation of the transformer. A more prominent
problem is resonance phenomena in transformer windings
which can be classified as either internal resonance or
external resonance. External resonance occurs due to
cable and transformer interaction such that the natural
frequency of the supplying cable matches the natural
frequency of the transformer. This is more common in
wind turbine transformers where energization may result
in cable-transformer resonant transients [3]. Onshore wind
farms can have a vast cable network with lengths of up
to 600m. If the quarter wave frequency of such cables
is in the vicinity of the resonant frequencies of wind
turbine transformers, resonant overvoltages may occur on
the LV terminal of step-up transformers and inside HV
windings [3]. Internal resonance occurs when a frequency
component of the incoming surge equals a resonance
frequency of the transformer winding. These resonant
over-voltages can result in a flashover from the windings
to the core or between the turns [4]. However it should be
noted that internal winding resonances will not necessarily
result in immediate breakdown, but may result in partial
discharges, which will further aid in insulation degradation
and ultimately failure [1]. Measurement of resonance
overvoltages cannot be done at the transformer terminals
since they occur inside the windings. Special prototype
transformers are usually constructed for the measurement
of these overvoltages or through an analytical high
frequency model of a transformer. In the literature, two
high frequency modelling techniques are usually employed
which are the Multi-conductor Transmission Line (MTL)
model and the RLC ladder equivalent circuit [5], [6],
[7], [8]. The MTL model is usually used for analysis

of fast transients with frequency components above 1
MHz whereas the RLC ladder equivalent circuit for
transients up to 1 MHz [8]. In [9], a special prototype
wind turbine step-down transformer was designed for
the purpose of analysis of resonant overvoltages in wind
turbine transformers. The special prototype transformer
was a 11/0.24 kV 500 kVA transformer with three different
winding designs which are pancake, layer and disc winding
[3]. Results show that a layer winding is more likely to
have a higher transferred overvoltage to the LV terminal
than disc and pancake windings. However the layer
and pancake windings have lower values with regards to
resonance over-voltages inside the windings compared to
the disc winding. This paper deals with the calculation
of the inter-turn overvoltage using transformer parameters
from [6] and the measurement of switching transients
obtained at wind farm.

2. BACKGROUND THEORY

Analysis of the voltage distribution within the transformer
windings can be represented by a group of interconnected
and coupled transmission lines as shown in Figure 1.

Figure 1: Multi-conductor Transmission Line model

Figure 1 shows a model representation of the HV and LV
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windings. With reference to SANS 60076-3, transferred
voltages have both a capacitive and inductive character
which are presented by CHL and LHL respectively in Figure
1. The coupled transmission lines can be described by the
Telegraphers equations: Equation 1 and Equation 2:

d2V
dx2 =− [Z] [Y ] (1)

d2I
dx2 =− [Z] [Y ] (2)

where V and I are the incident voltage and current vectors
respectively. Z and Y are the impedance and admittance
matrices of the line respectively. The Telegraphers
equations can be solved to find the voltages and currents at
a distance x as shown in Equation 3 and Equation 4 [10].

Vx =V1e−[P]x +V2e[P]x (3)

Ix = Yo

(
V1e−[P]x−V2e[P]x

)
(4)

Applying boundary conditions to the solution of Equation
3 and Equation 4 it is possible to express the sending end
(S) and receiving end (R) voltages as shown in Equation
5 [6]:

[
IS
IR

]
=

[
A −B
−B A

][
VS
VR

]
(5)

where:
A = Y Sγ−1 coth(γl)S−1 (6)

B = Y Sγ−1cosech(γl)S−1 (7)

and IR and IS are the current vectors at the receiving and
sending end respectively. VR and VS are the voltage vectors
at the receiving and sending end respectively. In Equation
6 and Equation 7: S is the matrix of eigenvectors and γ2 is
the matrix of eigenvalues of the matrix ZY. l is the length
of the line. Further simplification of Equation 5 results in
the following:




IS1
IS2
·
·

ISn
IR1
IR2
·
·

IRN




=

[
A −B
−B A

]




VS1
VS2
·
·

VSn
VR1
VR2
·
·

VRN




(8)

From Figure 1 it is possible to apply the following
identities to Equation 8 [11]:

Ir1 = −Is2 Ir2 = −Is3 −Irn = Vrn/Zt Vrl = Vs2
Vr2 =Vs3 ...

This will enable matrix reduction techniques to be applied
without altering the system equations. The result is
Equation 9.




IS1
0
·
·
0
0



=


 Y







VS1
VS2
·
·

VSn
VRn




(9)

where Y is an n x n matrix. The termination impedance
for the transformer winding Zt in Figure 1 is assumed to be
10−9 Ω [12]. If the current IS1 is eliminated from Equation
9 then Equation 9 can be re-written as shown in Equation
10 to solve for the voltages at any arbitrary turn k.




VS2
VS3
·
·

VSn


=




H1
H2
.
.

Hn−1







VS1
0
·
·
0


 (10)

where the magnitude of the transfer function at turn k
relative to the input can be calculated as [5]:

Hk =
YY(k+1,1)

YY(1,1)
k = 1,2, · · · ,n−1 (11)

YY is the inverse matrix of the matrix Y in Equation 9 and
H is a square matrix of order (n-1) x (n-1). It should be
noted that surge transference from HV to LV winding as
depicted in Figure 1 will not be the focus in this paper.

3. PARAMETER CALCULATION OF A
TRANSFORMER WINDING

In [6] and [13] Liang showed how to model transformer
windings for the analysis of resonant overvoltages.
A core-type transformer was used and the winding
parameters shown in Table 1 will be used in this paper [13].

The impedance Z = R + j ωL and admittance Y = G + jωC
matrix of Equation 1 and Equation 2 are calculated as:

Z =

[
jωL +

(
1

2(d1 +d2))

)
·
√

πfµ
σ

]
(12)

Y = ( jω + ω tanδ) C (13)

where µ and σ are the permeability and conductivity of the
conductor. d1 and d2 are the diameter of the conductor.
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Table 1: Main Parameters of the winding
Number Of discs 18
Turns per disc 10
Conductor width [mm] 6.95
Conductor height [mm] 11.2
Average turn length [m] 1.4828
Thickness of inter-turn insulation [mm] 3.00
Relative permittivity of inter-turn insulation 3.5
Conductor conductance [s ·m−1] 3x107

Inter-turn capacitance (Ck) [pF ·m−1] 120
Inter-section capacitance (Cs) [pF ·m−1] 10
Turn to core capacitance (Cg) [pF ·m−1] 15

In (12) the real part takes into account the skin effect
at high frequencies [13]. The real part of Equation 13
represents the dissipation factor (tan δ) or dielectric losses
[5], [12]. It should be noted that tan δ is frequency,
moisture and temperature dependent and will influence
the admittance matrix greatly at higher frequencies. An
approximate equation for tan δ (Equation 14) was used
to model the frequency dependency of the transformer
insulation [3].

tan(δ) = (1.082x10−8) ·2π f +5.0x10−3 (14)

The capacitance and inductance matrix were calculated as
follows:

3.1 Capacitance

The capacitance matrix C was formed as follows in [12]:

Ci,i capacitance of layer i to ground and the sum
of all other capacitances connected to layer i

Ci, j capacitances between layers i and j taken with
negative sign (i 6= j)

It should be noted that the capacitance matrix is crucial
especially for the determination of the transient voltages
between the turns.

3.2 Inductance

The inductance matrix is calculated from two parts. The
first is directly from the capacitance matrix C if the
following assumptions are made [11]:

1. High frequency magnetic flux penetration into the
iron laminations and transformer core is negligible.

2. The magnetic flux will be constrained within the paths
of the insulation.

The first inductance matrix can then be obtained using
Equation 15:

Ln =
εr

v2 ·C
−1 (15)

where v is the velocity of light in vacuum and εr is
the relative permittivity of the insulation (in this case
equivalent permittivity of the air and paper combination).
The second part of the inductance takes into account the
flux internal to the conductor [13]. It is given by:

Li =
R
f

(16)

where R is from the real part of Equation 12. The total
inductance matrix can be expressed as:

L = Ln + Li ·En (17)

where En is a unit matrix of size nxn.

4. COMPARISON WITH PREVIOUS WORK

As previously mentioned, this work was done by Liang
in [6] and [13]. The aim of redoing Liang work was
to validate the work that was done earlier and test the
validity of the developed algorithm. From then on the
algorithm will be applied to transformers at a wind farm
to try to explain if failure could be caused by resonance
behaviour. Resonance phenomena in transformer windings
is usually brought about if the frequency components
of the switching surges matches one of the resonant
frequencies of the transformer winding. The high
frequency components lead to destruction of the insulation
and breakdown tends to occur in the turns close to the
led-in end [13].

Figure 2: Magnitude of the transfer function of turn 20 relative
to the input

Figure 2, Figure 3 and Figure 4 show the magnitude profile
at different turns. An important characteristic to note
from the waveforms is that the magnitude of the high
frequency components decreases as the number of turns
increase down the transformer winding. The waveforms
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Figure 3: Magnitude of the transfer function of turn 40 relative
to the input

Figure 4: Magnitude of the transfer function of turn 60 relative
to the input

produced show a resonant frequency around 5 to 6 MHz.
Comparison with the results obtained by Liang in [13]
reveal that the waveforms follow the same profile although
the magnitude of some frequency components do not
correlate. This could be as a result of the approximation for
the calculation of tan(δ) and also the assumed termination
impedance of Zt = 10−9Ω. However the results of Figure
2, Figure 3 and Figure 4 are a good enough approximation
to visualize the resonance phenomena in transformer
windings and the possible determination of inter-turns
breakdown.

4.1 Measurement of switching transients

As discussed earlier, internal resonance occurs when
one of the frequency components of the incoming surge
equals a resonance frequency of the transformer winding.
Switching transients tests were conducted on a Wind

turbine transformer. The tests involved the following:

1. Energizing the transformer during no-load.

2. Disconnecting the transformer during no-load.

Measurement of the three MV phase-to-earth voltages
were made by use of a capacitive voltage divider on
each phase. The MV bushing screen had a measured
capacitance of 32 pF and an additional capacitance of
10 nF was externally mounted in series with the bushing
screen terminal and the transformer tank which provided
local earth. The resulting voltage division ratio was 313.
Figure 5 shows the measurement setup with the FLUKE
1750 connected to the phase conductors.

Figure 5: Measurement setup for recording transients

4.2 Energizing the transformer during no-load

Energization of the transformer from always results in
at least one pre-strike per phase [14]. During the
contact making process of the vacuum circuit breaker,
generation of high du/dt transients can occur at the
transformer terminals leading to over-voltages within a
few milliseconds [15]. This behaviour can be observed
from the measured transients in Figure 6. Analysis of
the waveform in Figure 6 reveals a pre-strike behaviour
with high du/dt which could result in the development of
resonance overvoltages within the transformer winding.

4.3 Disconnecting the transformer during no-load

On disconnection of the VCB higher over-voltages can
occur if the arc re-ignites after the first current interruption
[16]. If the VCB is not able to quench the arc, multiple
re-ignitions can occur and with each re-ignition, the
voltage escalates resulting in higher over-voltages. No
significant over-voltages were measured on de-energizing
of the transformer.

5. DISCUSSION

In this paper a study into resonant overvoltages has been
presented. White box models such as the MTL model
and RLC model require the precise geometry of the
transformer windings. In this paper since the actual
parameters of the wind turbine transformers were not
known, external transformer parameters where chosen to
illustrate resonance phenomena in transformer windings.
However the model has several limitations. Firstly an
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Figure 6: Measured pre-strike behaviour on closing of the vacuum circuit breaker

assumed value of the termination impedance was used.
According to [12], to eliminate the divergence of the
computations, a small impedance: Zt = 10−9Ω must be
used. This value may be different from the termination
impedance used by Liang in [6], [13].

As previously mentioned tan(δ) is frequency, moisture and
temperature dependent and Equation 14 is an approximate
equation. Thus at frequencies above 1 MHz, Equation
14 will not take into account the detailed frequency
dependency of the dissipation factors of the transformer
insulation, which is crucial for accurate modelling using
the MTL model [3].

The next issue which warrants a discussion is the resistance
calculation. In [13], Liang calculated the resistance by
taking into account the skin effect at high frequencies
as shown in Equation 12. However, another way of
calculating the impedance is shown in Equation 18.

Z =

(
jω +

√
2ω

σµod2

)
L (18)

where the real part takes into account the skin effect and
proximity effects of the conductor and its dependency on
frequency [12]. In Equation (18), d is the distance between
the layers and σ is the conductivity of the conductor.
According to [3], the total resistance is dominantly affected
by the proximity effect for frequencies above 4 MHz.
Neglecting the proximity effects as done by Liang in
[13] and only taking into account the skin effect in the
resistance calculation can result in resonant frequencies
below 1 MHz with quite high amplitudes [3] as shown in
Figures 2, 3 and 4. To illustrate Hans Kristian Hidalen
point [3], the magnitude of the transfer function at turn 20
is re-calculated taking into account proximity effect. The
results of the MTL model with the impedance Equation
(18) is shown in Figure 7. Analysis of Figure 7 shows
that the magnitude of the resonance frequencies below 1
MHz which had quite high amplitudes have diminished
considerably compared to the original waveform in Figure

2. Not taking into account the proximity effects can lead
to calculated results which have a poor agreement with
measurements as shown in [3].

Figure 7: Magnitude of transfer function of turn 20 relative to
the input (taking into account proximity effects)

6. CONCLUSION

In this paper, resonance phenomena in transformer
windings and the measurement of switching transients
have been presented. The MTL model has been used
to calculate the magnitude of the resonant over-voltages
within the turns and the possibility of breakdown between
turns. Although the model has several shortcomings, the
qualitatively good agreement of the calculated waveforms
with the measured results can help understand the
phenomena of internal winding resonance in transformers
windings.
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Investigation into Resonant Overvoltages in Wind 
Turbine Transformers due to Switching Surges 

 

Cedric Amittai Banda and John Michael Van Coller 

 

 

Abstract--This paper presents an investigation into resonant 

overvoltages in wind turbine transformers. The transformers are 

frequently switched by vacuum circuit breakers depending on the 

wind speed. Switching surges measured on-site which show 

repetitive, high du/dt transients where believed to contribute to 

the development of resonant overvoltages in the transformer 

windings. Two transformers with different core and winding 

arrangements but the same MV/LV voltage ratio and power 

rating where investigated. The transformers where rated 2.7 

MVA, 0.690 / 33 kV with the MV side consisting of delta 

connected layer windings and the LV side consisting of star 

connected foil windings. A failed transformer had a wound core 

and used an egg-shaped winding whilst the special prototype 

transformer had a stacked core with split round windings. Part 

winding resonance tests carried out on one of the healthy 

windings of the failed transformer indicated a resonance 

amplification factor of 2.5 at 660 kHz. Measurements where also 

performed on the split winding prototype and results indicated 

that only the top half of the transformer coil had marked 

resonance effects. Calculations where then done using the Multi-

Transmission Line model and results where verified against the 

measurements. The calculated and measured results had good 

agreement with the same profile from 1 kHz to 10 MHz. 

 

Keywords: MTL model, resonant overvoltages, split winding 

design, switching surges and wind turbine transformer.  

I.  INTRODUCTION 

witching transients due to vacuum circuit breaker 

operation can lead to the development of resonant over-

voltages in wind turbine transformers. In medium voltage 

networks the switching of vacuum circuit breakers [1], [2] can 

result in re-ignitions and pre-strikes. These high-frequency 

transients with high du/dt can lead to stressing of the end-turn 

insulation of the transformer. Resonance phenomena in 

transformer windings can be categorized as either internal 

resonance or external resonance. External resonance occurs 

due to cable and transformer interaction such that the natural 

frequency of the supplying cable matches the natural frequency 

of the transformer. This is more common in wind turbine 
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transformers where energization may result in cable 

transformer resonant transients [3].  Internal resonance occurs 

when the frequency of the incoming surge equals a resonant 

frequency of the transformer winding. These resonant 

overvoltages can result in a flashover from the windings to the 

core or between the turns [4]. However it should be noted that 

internal winding resonances will not necessarily result in 

immediate breakdown, but may result in partial discharges, 

which will further aid in insulation degradation and ultimately 

failure [1]. Transformer failure due to internal resonant 

overvoltages has been widely reported in [5], [6], and [7]. The 

increase in transformer dielectric failures led to the initiation 

of the CIGRE working group (A2/C4.39) and their findings 

where published in [8]. Although it was concluded that failures 

are mainly caused by the interaction of the transformer with 

the network for different cable lengths and loading conditions 

[9], [10], and [11] some of the expertise in transformer 

modelling will be applied in this paper. In [12], [13], and [14], 

the author investigated the frequency response of layer, 

pancake and disc winding types with the main focus being on 

resonant overvoltages in wind turbine transformers. A special 

prototype transformer with the three different winding designs 

was designed and manufactured. The results indicated that 

layer windings have a higher transferred overvoltage from LV 

to MV winding than disc and pancake windings. However the 

layer and pancake windings have a low voltage distribution 

further down in the middle of the winding and nearer to 

ground than the disc winding which keeps the high values of 

the voltage drops at resonant frequencies. This paper will 

focus on the layer type of winding with an interest on the 

resonant performance of split round windings. It should be 

noted that the analysis of very fast transients in layer- windings 

has been extensively researched in [4], [15], [16] and the use 

of the Multi-Transmission Line model for calculation of layer 

to layer voltage distribution will be used. 

II.  WOUND CORE TRANSFORMER 

Failure of a wound core transformer on-site initiated the 

investigation into resonant overvoltages in wind turbine 

transformers and if switching surges could be a contributing 

factor. The damaged transformer when unwound at the 

transformer factory showed the inter-turn insulation was 

severely damaged as shown in Fig. 1. Substantial distortion of 

the first and second layer of the MV winding was also 

observed. A burn through the MV to LV barrier was also 

observed with a puncture through the first layer of the LV foil 

winding as shown in Fig. 2. 
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Fig. 1.  Failed winding with inter-turn insulation severely damaged. 

 

 
Fig. 2. Burning of the first layer of the LV foil winding  

 

Part winding resonance tests were conducted on one of the 

undamaged windings of the wound core transformer to 

ascertain if resonance could be a contributing factor to the 

damage observed in the transformer. A ratio known as the 

Resonance Voltage Ratio (RVR) was used which is defined as 

the voltage between points of resonance divided by the 50 Hz 

voltage at the same point. The method used was to excite the 

winding with a variable frequency sinusoidal voltage and 

record the maximum amplitude between two layers for a 

frequency range of 1 kHz to 2 MHz. The results are shown in 

Table I. 
TABLE I 

PART WINDING RESONANCE OF THE TRANSFORMER 

 
From Table I at 660 kHz the amplification factor of 2.5 was 

recorded between the last and second last layer of the MV 

winding. This could result in a resonant overvoltage with a 

sufficient magnitude to stress the inter-turn insulation when 

closing transients occur. From Fig. 1, it is difficult to predict if 

the failure started as an inter-turn or inter-layer fault due to the 

burning of the oil paper insulation. However the failure 

mechanism had sufficient magnitude to cause substantial 

distortion of the first two layers and create a puncture through 

to the LV foil winding. This paper will seek to address the 

above mentioned problem by investigating resonant 

performance of a split MV winding in comparison with the 

failed transformer that had a non-split MV winding through 

measurements and an analytical solution. 

III.  STACKED CORE PROTOTYPE TRANSFORMER 

  The design of the stacked core transformer is such that the 

inner winding is the LV winding whilst the outer winding is 

the MV winding. This differs from the wound core transformer 

as it had the MV winding sitting inside the LV winding with a 

static screen between the two windings. The wound core 

transformer used an egg-shaped winding against the stacked 

core’s split round winding. The stacked core transformer 

prototype was installed with measuring taps at the end of each 

layer as shown in Fig. 3. 

 
Fig. 3.  Axisymmetric view of the prototype transformer 

 

The upper coil consisted of 5 layers whilst the bottom coil 

consisted of 11 layers separated by an oil gap. It should be 

noted that both transformers had the same number of layers. 

The constructed prototype is shown in Fig. 4. 

IV.  ANALYTICAL MODEL OF THE TRANSFORMER 

Analysis of the voltage distribution within the transformer 

windings can be represented by a group of interconnected and 

coupled transmission lines. The analytical modelling of the 

stacked core transformer was done using the Multi-

Transmission Line (MTL) model. The MTL equations are 

described by  (1) and (2): 

  
2

2

d V
Z Y

dx
                                           (1) 

 

  YZ
dx

Id


2

2

                                           (2) 

Point in Winding Frequency RAF 

 Start of winding (between 2 layers) 536 kHz 1.15 

 Middle of winding (between 2 layers) 1.17 MHz 0.67 

 End of winding (between 2 layers) 181 kHz 0.95 

 End of winding (between 2 layers) 660 kHz 2.5 

 End of winding (between 2 layers) 1.32 MHz 0.67 
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Fig. 4.  Prototype transformer with measuring taps installed. 

 

where V and I are the incident voltage and current vectors 

respectively. Z and Y are the impedance and admittance 

matrices of the winding respectively. The solution of the above 

equation is well documented in [15] and [16] to yield Equation 

(3). 
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The matrix reduction techniques that are applied to get to 

equation (3) are best explained in [17].  Further manipulation 

of (3) results in (4). As the transformer winding is grounded 

VRn = 0 hence the last row can be removed as it is a redundant 

equation. 
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From (4), the voltages at the sending end of the winding 

between turn 2 and 1 are defined by: VS1= YY(1, 1) IS1 and VS2= 

YY(2, 1) IS1, hence the resonance voltage ratio is defined as: 

 

 1,1

1,2

1

2
1

YY

YY

V

V
H

S

S                                            (5) 

 

Equation (5) can be generalized to calculate the resonance 

voltage ratio at any arbitrary turn k as shown by (6) 

 
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S
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k


     k = 1, 2,…, n-1                 (6)       

                             

where YY is the inverse matrix of the matrix Y in (3). 

Equation (6) is the analytical expression of the RVR defined in 

section II and a comparison of the analytical calculation vs 

measured RVR is done in section VI. 

V.  DETERMINATION OF THE TRANSFORMER 

PARAMETERS 

The impedance Z = R + j ωL and admittance Y = G + jωC 

matrix of the MTL equations were calculated as shown in (7) 

and (8) from [5] and [6]. 
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1
                (7)         

  CjY   tan                                   (8) 

where μ and σ are the permeability and conductivity of the 

conductor. d1 and d2 are the diameters of the conductors. In (7) 

the real part takes into account the skin effect at high 

frequencies [6]. The real part of (8) represents the dissipation 

factor (tan δ) or dielectric losses [15], [16]. It should be noted 

that tan δ is frequency, moisture and temperature dependent 

and will influence the admittance matrix greatly at higher 

frequencies. An approximate equation for tan δ shown in (9) 

was used to model the frequency dependency of the 

transformer insulation [3]. 

    38 100.5210082.1tan   f          (9) 

The capacitance and inductance matrix were calculated as 

follows: 

A.  Capacitance 

The capacitance matrix C was formed as follows from [16]: 

Cii Capacitance of layer i to ground and the sum of 

all capacitances connected to layer i. 

Cij Capacitance between layers i and j taken with the 

negative sign (i≠j) 

 

The formulas for calculating the capacitance were calculated 

from the basic formulas of cylindrical and plate capacitors in 

[18] and are shown in (10), (11) and (12).  
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where Cs is the turn to turn capacitance, Cg is the turn to earth 

capacitance and Cij is the capacitance between layer i and j. εr  

is the relative permittivity of the dielectric material between 

the turns, εo is the permittivity of free space. h is the 

rectangular conductor’s height. ds and dg are the distance 

between the turns and distance between turn and ground plane 

respectively. L is the length of the winding and w is the 

rectangular conductor’s width. a and b are the inner and outer 

radius of the winding respectively.  

The procedure for the construction of the capacitance matrix is 

explained in [19]. A matrix reduction technique explained in 

[20], [21] can be applied such that the order of matrices 

corresponds not to a single turn but to a group of turns. In this 

paper the group of turns will represent each layer of the MV 

winding.  

 

B.  Inductance 

The inductance matrix is calculated from two parts. The first is 

directly from the capacitance matrix C if the following 

assumptions are made [17]:  

1. High frequency magnetic flux penetration into the 

iron laminations and transformer core is negligible.  

2. The magnetic flux will be constrained within the 

paths of the insulation.  

The first inductance matrix can then be obtained using (13): 

1

2

 C
v

L r
n


                                      (13) 

where v is the velocity of light in vacuum and εr is the relative 

permittivity of the insulation (in this case equivalent 

permittivity of the air and paper combination). The second part 

of the inductance takes into account the flux internal to the 

conductor [6]. It is given by:  

f

R
Li                                          (14) 

where R is from the real part of (7) and f is the frequency. The 

total inductance matrix can be expressed as: 

nin ELLL                                    (15) 

where En is a unit matrix of size n x n. It should be noted that 

the MTL model has also been applied for a disc winding in 

[22]. 

VI.  MEASUREMENTS AND SIMULATIONS 

A.  Test Equipment 

The equipment used included a Krohn-Hite Power Amplifier 

7602 M series, 20 MHz Agilent 3320A waveform generator 

and Tektronix DPO 3032 Oscilloscope 300 MHz, 2.5 GS/s. 

The power amplifier is connected after the signal generator to 

keep the input voltage fairly constant. The amplifier energizes 

the whole winding whilst the oscilloscope measures the layer 

voltages from the measuring taps shown in Fig. 3 as the output. 

The RVR ratio was used to ascertain if resonance had occurred 

or not. 

B.  Comparison of measured and calculated results 

As previously mentioned, resonance can be classified as either 

internal or external resonance. It is worth noting that internal 

resonance can be further defined as internal voltage maximum 

and internal anti-resonance as internal voltage minimum [23]. 

This relationship will be crucial in the analysis of measured 

and calculated results. Comparison will not be done for all 16 

layers, however only crucial results will be revealed in this 

paper. In Figs. 5, 6 and 7 it can be seen that there is a 

relatively good agreement between the calculated and 

measured results. 

 
Fig. 5.  Resonance voltage ratio across layer 1 – measured (across lead 1 and 

2 in Fig. 3) vs calculated. 

 

 
Fig. 6.  Resonance voltage ratio across layer 15 – measured (across lead 15 

and 16 in Fig. 3) vs calculated. 

 

 The calculated results follow the profile of the measured 

results although there is a frequency shift between 1 kHz and 

10 kHz for layers 15 and layer 16. The general trend of the 
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resonance voltage ratio is shown in Fig. 8, 9, 10 and 11. 

 
Fig. 7.  Resonance voltage ratio across layer 16 – measured (across lead 16 

and 17 in Fig. 3) vs calculated. 

 

 
Fig. 8.  Measured: resonance voltage distribution in layers 1-4. 

 

 
Fig. 9.  Measured: resonance voltage distribution in layers 5-8. 

It is interesting to note that the magnitude of the resonant 

overvoltages increase as you approach the break i.e. layer 1 to 

layer 5. Then the magnitude starts to decrease for layers 9 to 

layer 16. 
 

 
Fig. 10.  Measured: resonance voltage distribution in layers 9-12. 

 

 
Fig. 11.  Measured: resonance voltage distribution in layers 13-16. 

VII.  SWITCHING SURGE MEASUREMENT AND ANALYSIS 

As previously mentioned, internal resonance occurs when a 

frequency component of the incoming surge equals a resonant 

frequency of the transformer leading to resonant overvoltages. 

In order to investigate the impact of switching surges in the 

development of resonant overvoltages the following tests were 

performed:  

1. Energizing the transformer during no-load.  

2. Disconnecting the transformer during no-load.  

Measurement of the three MV phase-to-earth voltages was 

done using a capacitive voltage divider on each phase. The 

MV bushing screen had a measured capacitance of 32 pF and 

an additional capacitance of 10 nF was externally mounted in 

series with the bushing screen terminal and the transformer 

tank which provided local earth. The resulting voltage division 

ratio was 313.   
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Fig. 13.  Measured pre-strikes which show a high du/dt 
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Fig. 14.  Measured pre-strikes which show a high du/dt 

 

 
Fig. 12.  Measurement setup for recording transient events during switching. 

 

The setup for recording the transient events is shown in Fig. 

12. It should be noted that the above setup measures phase to 

earth voltages on the MV side. Measurement of the voltage 

waveforms was done using a Fluke 1750 Power Recorder 

which samples transients at 5 Mega samples per second. 

A.  Energizing the transformer during no-load 

Energization of the transformer always results in at least one 

pre-strike per phase [24]. During the contact making process 

of the vacuum circuit breaker, generation of high dU/dt 

transients can occur at the transformer terminals leading to 

over-voltages [7]. This behaviour can be observed from the 

measured transients in Figs. 13 and 14. Analysis of the 

measured waveforms show that there is substantial overshoot 

and ringing when the contacts are closed. Also from Figure 14, 

the peak value of the second peak is almost 2.5 times above 

the system voltage. Since relatively short cables of small surge 

impedance exist between the VCB and the transformer, this 

type of low surge impedance connection has a low du/dt 

limiting effectiveness [7]. Hence the high value of 

overvoltages and high frequency transients which were 

measured. 

B.  De-energizing the transformer during no-load 

On disconnection by the VCB higher over-voltages can occur 

if the arc re-ignites after the first current interruption [25]. If 

the VCB is not able to quench the arc, multiple re-ignitions 

can occur and with each re-ignition, the voltage escalates 
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resulting in higher overvoltages. No significant over-voltages 

were measured on de-energizing of the transformer. 

VIII.  DISCUSSION 

In [26], research was conducted on the performance of oil 

impregnated cellulose paper when subjected to transients with 

different repetition frequency, rise time and magnitude. It 

was found that the faster the rise time, the more damage to the 

insulation that occurs and the quicker the transient reaches its 

peak value the more profound the damage to the insulation. 

Most commonly used insulation paper in transformers is 

Krempel DPP 0.25mm which has a breakdown voltage in oil 

of 13.5 kV [27]. From the peak values in Figs. 13 and 14, it is 

possible to design the insulation system such that it is able to 

withstand the high overvoltages between the layers. However 

the repetition rate would require damping by series connected 

choke elements [7]. It should be noted that the insulation 

system of the wound core transformer withstood the routine 

induced overvoltage test specified in IEC 60076 and complied 

with the impulse test in IEC 60076. 

Use of the MTL model was possible since precise design 

information was made available by the transformer 

manufacturer. However no tan (δ) testing is done for an MV 

distribution transformers hence an approximated equation was 

used. As previously mentioned equation (9) will not take into 

account the detailed frequency dependency of the dissipation 

factors of the transformer insulation, which are crucial for 

accurate modelling using the MTL model. This could explain 

why the model was not able to accurately predict certain 

resonance frequencies for the transformer winding. 

Two transformer designs have been presented. The major 

difference is the transformer with the split winding has higher 

resonant overvoltages below 100 kHz whereas the investigated 

transformer that had a non-split winding had high resonant 

overvoltages above 500 kHz. The split winding could be the 

reason why only the top half of the coil participates in 

resonances as can be seen by the decreasing trend of the 

resonant voltage ratio in Figs. 8, 9, 10 and 11.  

Although the two transformers also differed in the type of core 

used, where the failed transformer used a wound core as 

opposed to the constructed prototype which used a stacked 

core, the focus was on resonance performance between a split 

MV winding versus a non-split MV winding. Customers 

usually prefer a transformer with a stacked core over the 

wound core. This is largely due to difficulties associated with a 

wound core when compared to a stacked core which are [28] 

(i) air gaps may diverge due to the tolerances of the machine 

during the cutting and winding of the sheets and also 

difficulties in processing of the magnetic material (ii) 

obtaining accurate dimensions in stacked cores is much easier 

than in wound cores during cutting (iii) core formation may 

deteriorate the magnetic material insulation and (iv) 

homogeneous temperature distribution in a wound core is hard 

to obtain during the annealing procedure as compared to 

stacked cores.  

The measurement of resonance voltage ratio in this paper was 

done using the oscilloscope and signal generator. These 

measured RVR were needed for comparison with the 

calculated RVR in equation (6) for resonance analysis.  

However a different technique could have been done using 

frequency response analysis equipment where the impedance 

characteristics of the winding are determined. Both analysis 

techniques have been shown to produce the same results as 

shown in [29]. 

IX.  CONCLUSION 

In this paper, resonance phenomena in transformer windings 

and the measurement of switching transients have been 

presented.  The MTL model has been used to calculate the 

magnitude of the resonant overvoltages within the layers and 

to determine between which layers breakdown could occur. 

Different winding designs were also investigated and their 

effect on part winding resonance was explored. The developed 

model still has several shortcomings; however it can be used in 

the prediction of resonances, especially in layer type 

transformers. 
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Resonant Overvoltages in Wind Turbine
Transformers
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Abstract—In this paper, modelling and measurement of resonant
overvoltages in wind turbine step-up transformers is presented.
A failed 2.7 MVA, 0.690 / 33 kV step-up transformer with the
MV side consisting of delta connected layer windings and the LV
side consisting of star connected foil windings is presented as a
case study. The failed transformer showed substantial damage
in the first and second layer of the 33 kV winding with a
burn through the HV to LV winding barrier. Two different
prototype transformers with the same rating as the failed
unit were constructed for the purpose of investigating resonant
overvoltages. Both transformers used a stacked core but differed
in the winding arrangement where one had split round windings
and the other had single round windings. Analytical calculations
were done using the Multi-conductor Transmission Line (MTL)
model and results were compared with measurements. The
calculated results using the MTL model showed a relatively good
agreement and followed the trend of the measured results for a
frequency range of 1 kHz to 10 MHz. The significance of this
work is that it was shown that the MTL model can be used for
the determination of the inter-layer stresses and hence can assist
during the transformer design stage.

Index Terms—MTL model, resonance, wind turbine transformer.

I. INTRODUCTION

RESONANT overvoltages may occur in wind turbine
transformers that are exposed to frequent switching.

The switching of vacuum circuit breakers in medium voltage
networks [1], [2] may result in pre-strikes and re-ignitions.
These can lead to high-frequency oscillations with high
du/dt resulting in stressing of the end-turn insulation of
the transformer. These transients present a more prominent
problem in respect to resonance phenomena in transformer
windings which may be further classified as either internal
resonance or external resonance. External resonance occurs
due to cable and transformer interaction such that the natural
frequency of the supplying cable matches the natural frequency
of the transformer [3]. Internal resonance occurs when a
frequency component of the incoming surge equal a resonant
frequency of the transformer. These resonant over-voltages
can result in a flashover from the windings to the core or
in-between the turns [4]. Internal winding resonances will not
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Engineering Institute (EPPEI) program. C. A. Banda is currently with the
University of the Witwatersrand, Johannesburg, South Africa studying towards
an MSc in Electrical Engineering (e-mail: cedric.banda@students.wits.ac.za).
J. M. Van Coller is a Senior Lecturer at the University of Witwatersrand
(e-mail: john.vancoller@wits.ac.za).

necessarily result in immediate breakdown, but may result
in partial discharges, which will further aid in insulation
degradation and ultimately failure [1]. Transformer failure due
to internal resonant overvoltages has been widely reported in
[5], [6], [7]. The increase in transformer insulation failures
led to the initiation of the CIGRE working group (A2/C4.39)
and their findings where published in [8]. Although it was
concluded that failures are mainly caused by the interaction
of the transformer with the network for different cable lengths
and loading conditions [9], [10] and [11], some of the methods
in transformer modelling will be applied in this paper. In [12],
[13] and [14], the author investigated the frequency response
of layer, pancake and disc winding types with the main
focus being on resonant overvoltages in wind turbine step-up
transformers. A special prototype transformer with the three
different winding types was designed and manufactured. The
results indicated that layer windings have a higher overvoltage
from LV to HV winding than the disc and pancake windings.
However the layer and pancake windings have a low voltage
distribution further down in the middle of the winding and
nearer to ground than the disc winding which keeps the
high values of the voltage drops at resonant frequencies.
This paper will focus on the layer type of winding with an
emphasis on the resonant performance of two special prototype
transformers. It should be noted that the analysis of very fast
transients in layer windings has been extensively researched in
[4], [15], [16] and the Multi-Transmission Line (MTL) model
for calculation of inter-layer voltages will be used in this paper.

II. CASE STUDY: WOUND CORE TRANSFORMER

Failure of a wound core step-up transformer initiated the
investigation into resonant over-voltages in wind turbine
step-up transformers and into whether switching surges could
be a contributing factor. The damaged transformer when
unwound at the transformer factory showed that the inter-turn
insulation had been severely damaged as shown in Fig. 1.
Upon further examination of the winding it was observed that
substantial distortion of the first and second layer of the MV
winding had occurred. A burn through the HV-LV winding
barrier was also observed as shown in Fig. 2 with a puncture
through the first layer of the LV foil winding as shown in
Fig. 3. Part winding resonance tests were conducted on one
of the undamaged windings of the wound core transformer
to ascertain if resonance could be a contributing factor to the
damage observed in the failed transformer.
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Fig. 1. Failed winding with inter-turn insulation severely damaged

Fig. 2. Burn through the HV-LV barrier

Fig. 3. Burning of first layer of LV foil winding

A ratio known as the Resonance Voltage Ratio (R.V.R) was
used which is defined as the voltage between points at the
resonant frequency divided by the voltage between the same
points when a 50 Hz voltage with the same amplitude is
applied to the winding. The method used was to excite the
winding with a variable frequency sinusoidal voltage and
record the maximum amplitude between between two layers
for a frequency range of 1 kHz to 2 MHz. The results are
shown in Table I. From Table I at 660 kHz the amplification
factor of 2.5 was recorded between the last and second last
layer of the HV winding. This could result in a resonant
overvoltage with sufficient magnitude to stress the inter-turn
insulation when circuit breaker closing transients occur. From

TABLE I
PART WINDING RESONANCE OF THE WINDING

Point in Winding Frequency R.A.F
Start of winding (between 2 layers) 536 kHz 1.15
Middle of winding (between 2 layers) 1.17 MHz 0.67
End of winding (between 2 layers) 181 kHz 0.95
End of winding (between 2 layers) 660 kHz 2.5∗

End of winding (between 2 layers) 1.32 MHz 0.67

Fig. 1, it is difficult to determine if the failure started as
an inter-turn or inter-layer fault due to the extensive damage
to the oil-paper insulation. However the failure mechanism
had sufficient magnitude to cause substantial distortion of the
first two layers and create a puncture through to the LV foil
winding.

III. STACKED CORE TRANSFORMER PROTOTYPES

A. Split round winding prototype transformer

The stacked core transformer prototype with split round
winding was installed with measuring taps at the ends of each
layer as shown in Fig. 4.

Fig. 4. Axisymetric view of first prototype transformer

The upper coil consisted of 5 layers whilst the bottom coil
consisted of 11 layers separated by an oil gap. The constructed
prototype is shown in Fig. 5.

B. Single round winding prototype transformer

A second prototype transformer was constructed with the same
stacked core as in Fig. 5 but with a single round winding.
Measuring taps were installed at the start and ends of each
layer and also in between the layers as shown in Fig. 6. The
second constructed prototype is shown in Fig. 7. Both stacked
and wound core transformers had the same number of layers.
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Fig. 5. Split round winding prototype transformer

Fig. 6. Axisymetric view of second prototype transformer

Fig. 7. Non-split round winding prototype transformer

IV. ANALYTICAL MODEL OF THE TRANSFORMER

The transformer windings can be represented by a group
of interconnected and coupled transmission lines [16]. These
coupled transmission lines can be described by (1) and (2).

d2V
dx2

= − [Z] [Y ] (1)

d2I
dx2

= − [Z] [Y ] (2)

where V and I are the voltage and current vectors respectively.
Z and Y are the impedance and admittance matrices of the
winding respectively. The solution of the above equation is
well documented in [15] and [16]. The magnitude of the
transfer function at turn k relative to the input can be calculated
as [15]:

Hk =
Y Y(k+1,1)

Y Y(1,1)
k = 1, 2, · · · , n− 1 (3)

where Y Y is the inverse of the matrix Y in [15] and H is a
square matrix of order (n-1) x (n-1). Surge transference from
HV to the LV winding will not be discussed in this paper.

V. DETERMINATION OF THE TRANSFORMER PARAMETERS

The impedance (Z = R + j ωL) and admittance (Y = G +
jωC) matrix of the MTL equations were calculated as shown
in (4) and (5) from [5] and [6].

Z =

[
jωL +

(
1

2 (d1 + d2))

)
·
√
πfµ
σ

]
(4)

Y = (jω + ω tan δ) C (5)

where µ and σ are the permeability and conductivity of the
conductor. d1 and d2 are the diameters of the conductors. In
(4) the real part takes into account the skin effect at high
frequencies [6]. The real part of (5), represents the dissipation
factor (tan δ) or dielectric losses [15], [16]. tanδ is frequency,
moisture and temperature dependent and as such will influence
the admittance matrix greatly at higher frequencies. The tanδ
equation was obtained from the figures in [17] which describe
the frequency dependent behaviour of the loss factor for oil
impregnated cellulose paper.

A. Capacitance

Construction of the capacitance matrix C was as was done
in [16] for Ci,i and Ci,j . The formulas for calculating
the capacitance were calculated from the basic formulas of
cylindrical and plate capacitors in [18]. The procedure for the
construction of the capacitance matrix is explained in [19].
A modified matrix reduction technique explained in [20] and
[21], can be applied such that the group of turns will represent
the total number of turns in each layer of the MV winding as
shown in (6) and (7).

C
layer
ii node

=

li∑

i=ii

li∑

j=ii

C
turn
ij +

1

2

li∑

i=ii

C
turn
i,m +

1

2

li∑

j=ii

C
turn
m,j +

1

2
C

turn
m,m

(6)
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C
layer
ij node

=

li∑

i=ii

li∑

j=ii

C
turn
ij +

1

2

li∑

i=ii

C
turn
i,m +

1

2

li∑

j=ii

C
turn
m,j (7)

where li = li+ (wk − 1)/2− 1, wk is the number of lumped
turns in layer k, li is the first turn in layer i and m is the turn
in the center of the layer. The same reduction method can be
applied to a group of turns such that they represent the total
number of turns in half a layer of the MV winding.

B. Inductance

The inductance matrix can be expressed as a sum of
two component inductance matrices. The first component
inductance matrix is obtained directly from the capacitance
matrix C if the assumptions from [22] are made which
are: (a) High frequency magnetic flux penetration into the
iron laminations and transformer core is negligible (b) The
magnetic flux will be constrained within the paths of the
insulation. The first component inductance matrix can then
be obtained using (8):

Ln =
εr
v2

· C−1 (8)

where v is the velocity of light in vacuum and εr is the
relative permittivity of the insulation (in this case equivalent
permittivity of the air and paper combination). Adding the
second component inductance matrix that takes into account
the flux internal to the conductor [6] the total inductance is
given by (9):

L = Ln +
R
f
· En (9)

where R is the real part of (4), En is a unit matrix of size nxn.
The inductance matrix can also be calculated using the basic
formulas for self and mutual inductances of the turns from
Maxwell equations as shown in [15]. However as shown by the
impedance characteristics in [15], both inductance calculation
methods yield the same results.

VI. MEASUREMENTS AND SIMULATIONS

A. Test Equipment

The test equipment consisted of a Krohn-Hite Power Amplifier
7602 M series, 20 MHz Agilent 3320A waveform generator
and Tektronix (DPO 3032) 300 MHz Oscilloscope. The signal
generator connected to the amplifier energized the whole
winding while the oscilloscope measured the voltages at the
measuring taps as shown in Figs. 4 and 6. The RVR ratio was
used to ascertain if resonance had occurred.

B. Comparison of Measured and Calculated Results: First
prototype transformer

In Figs. 8, 9 and 10 it can be seen that there is a relatively good
agreement between the calculated and measured results. The
calculated results follow the profile of the measured results
although there is a frequency shift between 1 kHz and 10 kHz
for layer 15 and layer 16. After 500 kHz the resonance voltage
ratio decreases almost approaching zero after 1 MHz.

Fig. 8. Resonance voltage ratio across Layer 1 [measured (across tap 1 and
tap 2 of Fig. 4) vs calculated]

Fig. 9. Resonance voltage ratio across Layer 15 [measured (across tap 15
and tap 16 of Fig. 4) vs calculated]

C. Comparison of Measured and Calculated Results: Second
prototype transformer

For the second prototype, comparison of the measured vs
calculated results shown in Figs. 11, 12 and 13 reveal that
between 1 kHz and 10 kHz the results do not agree. Although
the calculated results relatively approximates the measured
results for frequencies above 30 kHz the differences in the
magnitude will be explained in the discussion section.
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Fig. 10. Resonance voltage ratio across Layer 16 [measured (across tap 16
and tap 17 of Fig. 4) vs calculated]

Fig. 11. Resonance voltage ratio across Layer 4 [measured (across tap 6 and
tap 7 of Fig. 6) vs calculated]

Fig. 12. Resonance voltage ratio across Layer 6 [measured (across tap 8 and
tap 9 of Fig. 6) vs calculated]

Fig. 13. Resonance voltage ratio across Layer 8 [measured (across tap 10
and tap 11 of Fig. 6) vs calculated]

Fig. 14. Resonance voltage ratio across the start to middle of Layer 2
[measured (between tap 2 and tap 3 of Fig. 6) vs calculated]

Fig. 15. Resonance voltage ratio across the start to middle of Layer 3
[measured (between tap 4 and tap 5 of Fig. 6) vs calculated]

Using the matrix reduction techniques discussed in section
IV the calculated results can be scaled to represent resonance
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voltage ratio from the start to the middle of the layer as shown
by Figs. 14 and 15. Analysis of these figures reveal there is
good agreement between measured and calculated results.

VII. DISCUSSION

The effect of different tan(δ) values on the MTL model can
be shown in [23]. The approximated equation of ramp and
step discussed in [17] will not necessarily take into account
the detailed frequency dependency of transformer insulation
needed for accurate modelling. It should be noted that the split
winding has a higher magnitude of resonance from 1 kHz to
200 kHz whilst the single winding has higher magnitudes
above 200 kHz. Hence depending on the magnitude of the
frequencies of the incoming surge, an appropriate design can
be chosen that has low resonance for a specific frequency
range.

VIII. CONCLUSION

In this paper the frequency response of two layer type stacked
transformers prototypes has been investigated. It has been
shown that the MTL model can be used to quantify internal
resonance phenomena in layer type windings using appropriate
matrix reduction techniques. This analysis method may be
crucial to transformer designers during the design stage of
transformers which are exposed to frequent switching.
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Abstract: In this paper, measurement of switching surges during energization of a step-up
transformer at an onshore wind farm is presented. Wind turbine transformers may be frequently
switched into and out of the collector grid depending on the wind profile. Fast transients
are generated during the opening or closing of the circuit breakers. The measured transients
during energizing of the transformer showed a pre-strike behaviour with fast, repetitive, high
du/dt values. FFT analysis was performed on the measured waveforms to understand the
magnitude of the frequency components. As with internal resonance, if a frequency component
of the incoming surge equals a resonant frequency of the transformer winding, internal winding
resonance can occur. A prototype transformer was then manufactured with taps at the winding
ends for part-winding resonance testing. A discussion of part winding resonance tests and possible
implications of these fast transients on internal winding resonance is presented.

1 INTRODUCTION

Transformers operating in onshore wind farms are
exposed to frequent switching through the action of
circuit breakers. Most of these MV circuit breakers are
Vacuum Circuit Breakers (VCB) [1]. In MV networks
the switching of VCB [2],[3] can result in pre-strikes.
These switching transients have high du/dt values
which can pose a significant risk to the transformers
due to the following [4]: i) Highly non-uniform initial
voltage distribution ii) Internal resonant phenomena
resulting in local amplification of the voltage. Over the
years different study committees and working groups
have been set up to explain transformer insulation
failures. The statistics of transformer failures provided
by IEEE in [5] indicate that of the 23% of the
failures, the root cause could not be clearly identified
[6]. The CIGRE A2-A3-B3.21 joint working group
[7] refer to the numbers in [5] and suggest that
failures can be categorized as 10% being design
related and 17 % being to the contribution of very
fast transients. Recently the CIGRE working group
(A2/C4.39) of 2014 were tasked with investigating
a number of transformer dielectric failures attributed
to transient overvoltages, even when good practices
for insulation design and insulation coordination had
been applied. The findings were published in [8].
Of the several conclusions the following apply to this
paper: (i) For certain network configuration e.g. (wind
farms), there is a high probability that system-initiated
transients may contain oscillatory voltage waveforms
at the transformer’s terminals which may coincide with
the transformer winding’s natural frequencies. These
internal voltages can exceed the insulation withstand
capability of the transformer by resonant voltage
build-up. (ii) Repetitive transient overvoltages and
ageing reduces the insulation withstand capability and

must be recognized in the design of the transformer
insulation system. This paper will investigate internal
resonant voltage build-up in transformer windings.
As such a definition of internal resonance with
respect to transformers is necessary. It is defined as
occurring when a frequency component of the incoming
surge equal a resonant frequency of the transformer
winding. The build-up of resonant over-voltages can
result in flashovers from the windings to the core
or in-between the turns [9]. However it should
be noted that internal winding resonances will not
necessarily result in immediate breakdown, but may
result in partial discharges, which will further aid
in insulation degradation and ultimately failure [2].
The measurement of switching transients will also be
discussed and their contribution to internal resonance
phenomena on a constructed prototype wind turbine
step-up transformer.

2 EXPERIMENTAL METHODOLOGY

2.1 Measurement of switching transients

As mentioned earlier, internal resonance occurs when
a frequency component of the incoming surge equals
a resonant frequency of the transformer winding.
Switching transient measurements were conducted at
a wind turbine step up transformer. The tests involved
the following:

1. Energizing the transformer during no-load.

2. Disconnecting the transformer during no-load.

Measurement of the three MV phase-to-earth voltages
were made by use of a capacitive voltage divider on
each phase. The MV bushing screen had a measured
capacitance of 32 pF and an additional capacitance
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of 10 nF was externally mounted in series with the
bushing screen terminal and the transformer tank which
provided local earth. The resulting voltage division
ratio was 313. Figure 1 shows the measurement setup
with the FLUKE 1750 connected to the bushing voltage
dividers.

Figure 1: Measurement setup for recording transients

2.2 Measurement of resonance

In literature two methods are outlined for the
determination of the frequency response of a
transformer. The impedance versus frequency plot
using frequency response analysis (FRA) equipment and
the amplification factor versus frequency using the usual
signal generator and oscilloscope. The amplification
factor or gain function is defined generally for all cases
as [10]:

N1m,j =
V oltage between point 1 and m at frequency w1

V oltage applied at frequency wi to nodej
(1)

Using FRA equipment Equation 1 can be further
expanded to Equation 2 [11]:

N1m,j =
Zij (jω)− Zmj (jω)

Zjj (jω)
(2)

The resonance voltage ratio (RVR) can be derived from
the generalized amplification factor in equation 1 to
give equation 3.

RV R =
V oltage betweenpoint1andmatfrequencywi

V oltage betweenpoint1andmat50Hz
(3)

In Equation 3 the RVR is now defined as the voltage
between points at the resonant frequency divided by the
voltage between the same points when a 50 Hz voltage
with the same amplitude is applied to the winding.

2.2.1 Single round winding prototype transformer
A prototype wind turbine step-up transformer was
constructed for the purpose of RVR measurements.
The transformer was rated 2700 kVA, 690 V/ 33
kV. The MV side consisted of a delta-connected layer
winding whilst the LV side consisted of star connected
foil winding. Measuring taps were installed at the start
and ends of each layer and also in between the layers as
shown in Figure 2. The constructed prototype is shown
in Figure 3.

Figure 2: Axisymetric view of prototype transformer

Figure 3: Prototype step-up wind turbine transformer

3 SWITCHING TRANSIENTS

3.1 Energizing the transformer during no-load

Energization of the transformer always results in at
least one pre-strike per phase [12]. During contact
closing, generation of high du/dt transients can occur
at the transformer terminals [13]. This behaviour
can be observed from the measured transients in
Figures. 4, 5, 6, 7, 8 and 9. The measurement
setup explained in Figure 1 was used and the tests
were conducted on one wind turbine transformer at
a particular wind farm. Analysis of the measured
waveforms show that the pre-strikes are different for
each switching event. However they all exhibit the
basic characteristics i.e. they are repetitive in nature
and have high dU/dt values. Energizing a transformer
onto a high capacitance collector cable network in this
case a wind farm presents voltage transient problems.
As the cable connections are short, the speed of
the transformer input capacitance charging from the
network capacitance is limited in practise only by the
cable resistance and the value of the phase to ground
capacitance of the transformer. This type of low
surge impedance connection has a low du/dt limiting
effectiveness [13]. Hence the high dU/dt values and
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the high frequency transients observed in Figures. 4, 5,
6, 7, 8 and 9.

Figure 4: Measured pre-strike behaviour at 12:45

Figure 5: Measured pre-strike behaviour at 13:13

Figure 6: Time expansion of measured pre-strike
behaviour at 13:13

Figure 7: Measured pre-strike behaviour at 13:15

Figure 8: Time expansion of measured pre-strike
behaviour at 13:15

Figure 9: Measured pre-strike behaviour at 13:26

3.2 De-energizing the transformer during no-load

On disconnection by the VCB higher over-voltages
can occur if the arc re-ignites after the first current
interruption [14]. If the VCB is not able to quench
the arc, multiple re-ignitions can occur and with
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each re-ignition, the voltage escalates resulting in
higher over-voltages. No significant over-voltages were
measured on de-energizing of the transformer.

3.3 Frequency domain analysis

Analyzing the measured transients in the frequency
domain can give a better perspective than time domain
analysis. Hence FFT analysis was performed on the
measured transients. In [15] the frequency content
of the recorded transient was analyzed using the
FFT. Analysis of the results yielded the amplitude of
the different frequency components. The amplitude
spectra for the measured transients are shown in Figures
10, 11, 12 and 13. It should be noted that in the
frequency domain, a steep front transient is identified
by its higher frequency components [8]. The frequency
domain results in Figures 10, 11, 12 and 13 show higher
frequency components which would represent the steep,
repetitive transients in the time domain.

Figure 10: FFT analysis for the measured transient at
12:45

Figure 11: FFT analysis for the measured transient at
13:13

Figure 12: FFT analysis for the measured transient at
13:15

Figure 13: FFT analysis for the measured transient at
13:26

4 RESONANCE ANALYSIS AND
MEASUREMENTS

4.1 Test Equipment

The test equipment consisted of a Krohn-Hite Power
Amplifier 7602 M series, 20 MHz Agilent 3320A
waveform generator and Tektronix (DPO 3032) 300
MHz Oscilloscope. The signal generator connected to
the amplifier energized the whole winding while the
oscilloscope measured the voltages at the measuring
taps as shown in Figure 2.

4.2 Measured results

For obtaining the frequency response of each layer,
Equation 3 was used. As previously mentioned internal
winding resonance occurs when a frequency component
of the incoming surge equal a resonant frequency
causing resonant voltage build up which can exceed the
insulation withstand capability. The frequency response
of each layer was measured and the results are shown
in Figures 14, 15, 16 and 17.
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Figure 14: Resonance amplification factor across Layer
1 [measured (across tap 1 and tap 2 of Figure 2)

Figure 15: Resonance amplification factor across Layer
4 [measured (across tap 6 and tap 7 of Figure 2)

Figure 16: Resonance amplification factor across Layer
7 [measured (across tap 9 and tap 10 of Figure 2)

Analysis of the measured frequency response of each
layer revealed that the RVR increases as measurements

Figure 17: Resonance amplification factor across Layer
15 [measured (across tap 17 and tap 19 of Figure 2)

are made towards the end of the MV winding. Above 1
MHz the higher frequency components have high RVR
with amplification gain of above 2. At low frequencies
i.e. 1kHz to 100 kHz the amplification is not as severe
as at higher frequencies. Comparison of the magnitude
of the switching transients in Figures 10, 11, 12 and
13 and the frequency responses of the layer winding
reveal that only frequencies from 10 kHz to 100 kHz
should be of concern. The magnitude of the frequency
components components in this range could excite one
of the resonant frequencies of the winding causing local
amplification of the voltage which may be above the
insulation withstand capability.

5 DISCUSSION

In [16] and [17] research was conducted on the
performance of oil impregnated cellulose paper when
subjected to transients with different repetition
frequency, rise time and magnitude. It was found
that the faster the rise time, the more damage to the
insulation. In [17] it was found that if the incoming
transient has higher frequency components, accelerated
ageing of the cellulose paper could result. Also the
life time of the insulation paper decreased with the an
increase of repetition frequency of the applied transient
for a frequency range of 1 kHz to 10 kHz. These
findings apply to the insulation system of wind turbine
step-up transformers which are frequently exposed to
transients with high frequency components as shown in
Figures 10, 11, 12 and 13. However more research still
needs to be done for repetitive transient overvoltages
with frequency components above 10 kHz.

6 CONCLUSION

It is concluded that repetitive pre-strike voltage
waveforms with high du/dt values can lead to stressing
of the end-turn insulation of the transformer as well
as causing damaging resonant over-voltages within the
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winding. Hence as discussed in the paper the effect
of repetitive transient overvoltages which reduce the
insulation withstand capability must be recognized in
the design of the transformer insulation system.
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SUMMARY 

Over the years a number of transformer insulation failures have been attributed to transient 
overvoltages even when good practices of insulation design and insulation coordination had 
been followed. This report adds to recent research done by CIGRE JWG A2/C4.39 (2014) by 
presenting an investigation into resonant overvoltages within wind turbine step-up 
transformers which are frequently exposed to transient overvoltages. The switching transients 
which were measured at the transformer terminals showed high du/dt values, were repetitive 
and oscillatory in nature and differed with each switching event. As has been the norm, the 
manufacturing industry and transformer purchasers have assumed that the problems 
associated with transient phenomena are covered by existing voltage impulse test standards. 
However this is not always the case and to help with assessment, the Frequency Domain 
Severity Factor (FDSF) will be used in this paper as a design review analysis technique of 
expected transients. The FDSF was implemented by taking the ratio of the energy spectral 
density of the transient event with respect to the energy spectral density of standard voltage 
impulse test waveforms. The obtained results were greater than unity for most of the 
frequency range signifying that additional measures would have to be considered for 
protection against the transient overvoltages. Two prototype wind turbine step-up 
transformers were constructed for the purpose of resonant voltage ratio measurements. The 
transformers were rated 2.7 MVA, 0.690 kV / 33 kV with the MV side consisting of a delta 
connected layer winding and the LV side consisting of a star connected foil winding. Both 
transformers used a stacked core but differed in the winding arrangement.  One transformer 
used a split-winding on the MV side and the other used a non-split winding on the MV side. 
The results of the sweep frequency response showed that the transformer with the split MV 
winding has a high resonant amplification factor for frequencies below 100 kHz whereas the 
transformer with the non-split MV winding has a high resonant amplification factor for 
frequencies above 200 kHz. 
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1.  INTRODUCTION 
Transformers operating in onshore wind farms are exposed to frequent switching through the 
action of circuit breakers. Most of these MV circuit breakers are Vacuum Circuit Breakers 
(VCBs) [1]. The VCB pre-strikes during closing result in transient voltages being applied to 
the transformer winding [2], [3]. These switching transients have high du/dt values which can 
pose a significant risk to the transformers due to the following [4]: (i) Highly non-uniform 
initial transient voltage distribution within winding (ii) Internal resonant phenomena within 
winding resulting in local amplification of the transient voltage.  
Different CIGRE working groups have been setup over the years to understand transformer 
interaction with the power system [5]. These include the CIGRE WG 12-07 “Resonance 
Behaviour in HV Transformers” – 1979, CIGRE JWG 33/13,9 “Very fast transient 
phenomena associated with gas insulated substations” – 1988, CIGRE JWG A2-A3-B3.21 
“Electrical environment of transformers – Impact of fast transients” – 2005, CIGRE-Brazil 
JWG A2/C4.03 “Interaction between transformers and the electrical system with focus on 
high frequency electromagnetic transients” – 2011, and recently CIGRE WG A2/C4.39 
“Electrical Transient Interaction between Transformers and the Power System” – 2014. Of the 
findings of the different study groups, the findings of CIGRE WG A2/C4.39 apply to this 
paper.  
The working group of 2014 was tasked with investigating a number of transformer dielectric 
failures attributed to transient overvoltages, even when good practices for insulation design 
and insulation coordination had been applied. The findings were published in [6]. Of the 
several conclusions the following apply to this paper:  

• For certain network configuration e.g. (wind farms), there is a high probability that 
system-initiated transients may contain oscillatory voltage waveforms at the 
transformer’s terminals which may coincide with the transformer winding’s natural 
frequencies. These internal voltages can exceed the insulation withstand capability of 
the transformer by resonant voltage build-up.  

• Repetitive transient overvoltage ageing reduces the insulation withstand capability and 
must be recognized in the design of the transformer insulation. 

In this report, measurements of repetitive transient overvoltages will be presented. An 
analysis of whether the switching surges generated during energizing of the transformer are 
covered by the standard voltage impulse test waveforms will be done using the Frequency 
Domain Severity Factor (FDSF). In the literature, the energization of wind turbine 
transformers in offshore wind farms has been known to cause oscillatory waveforms on the 
transformer terminals due to reflections from the end of the line and/or from any point of 
discontinuity [7]. These reflections will result in a disturbed and mostly oscillating waveform 
with different frequency components. If some frequency components in the transient match 
the resonant frequencies of a wind turbine transformer winding, it might result in high 
overvoltages within the winding, presenting a potential risk [7]. This report will also look at 
the transients generated during switching at an onshore wind farm and what impact these 
oscillatory waveforms have on the transformer. It should be noted that internal winding 
resonance occurs when a frequency component of the incoming surge equals a resonant 
frequency of the transformer winding. The build-up of resonant over-voltages can result in 
breakdown from the windings to the core or between the turns [8]. However internal winding 
resonances will not necessarily result in immediate breakdown, but may result in partial 
discharges, which will further aid in insulation degradation and ultimately failure [2]. 
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2. MEASUREMENT OF SWITCHING TRANSIENTS 
Measurement of switching transients at the transformer MV terminals was conducted at a 
wind turbine step-up transformer. The tests involved the following: 

1. Energizing the transformer during no-load (a common condition). 
2. Disconnecting the transformer during no-load (another common condition). 

Measurement of the three MV phase-to-earth voltages was done using a capacitive voltage 
divider on each phase.  The MV bushing screen had a measured capacitance of 32 pF and an 
additional capacitance of 10 nF was externally mounted between the bushing screen terminal 
and the transformer tank which provided local earth. The resulting voltage division ratio was 
313. Measurements were made on the MV side because the MV VCB was constantly 
switched. The aim of the tests was to investigate the phenomena associated with switching 
transients i.e. pre-strikes (on energizing) and re-strikes and re-ignitions on de-energizing. 
Figure 1 shows the measurement setup with a FLUKE 1750 connected to the MV bushing 
voltage dividers. 

 
Figure 1: Measurement setup on a wind turbine step-up transformer. 

2.1 Energizing the Transformer 
The process of closing the contacts of a circuit breaker causes pre-strikes as each pole closes 
[9]. The pre-strike behaviour can be observed from the measured transients in Figures. 2, 3, 
and 4. 
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Figure 2: Measured waveform on energizing the step-up transformer from the MV side. 
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Figure 3: Measured waveform on energizing the step-up transformer from the MV side. 
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Figure 4: Measured waveform on energizing the step-up transformer from the MV side. 
 

Energizing a transformer onto a high capacitance collector cable network in this case a wind 
farm presents voltage transient problems. As the cable connections are short, the speed of the 
transformer input capacitance charging from the network capacitance is limited in practise 
only by the cable resistance and the value of the phase to ground capacitance of the 
transformer. This type of low surge impedance connection has a low du/dt limiting 
effectiveness [1]. Hence the high du/dt values and high frequency transients in Figures 2, 3 
and 4. No significant over-voltages were measured on de-energizing of the transformer. 

2.2 Implementation and analysis of Frequency Domain Severity Factor 
Reference [10] defined a severity factor as a parameter that can be used in the assessment of 
the severity of an incoming transient overvoltage. It has the form of a safety margin that can 
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be used during the transformer design stage with regards to the standard acceptance tests 
either in the frequency domain or in the time domain. The wind turbine step-up transformers 
are tested with a 170 kV standard lightning impulse voltage according to SANS 60076-3 [11]. 
Additional test waveforms can be made such as the 200 kV lightning impulse voltage, the 187 
kV lightning impulse voltage waveform chopped at 2µs, 3µs, 4µs, 5µs and 6µs according to 
SANS 60076-16 [12]. These test waves will also be considered in this report. However 
according SANS 60076-3 no switching wave tests should be done for MV distribution 
transformers rated at 36 kV hence it will not be considered in the analysis [11]. The chopped 
wave test is considered the most important since it has a higher peak value and contains 
higher frequency components [6]. To compute the FDSF, knowledge of the amplitude of the 
frequency components of the incoming surge and the standard test waveforms is needed. This 
was done by computing the FFT and the Energy Spectral Density (ESD) of the waveforms as 
shown in Equation 1 [10]. 
 

( ) ( )
( )ω
ω

ω
ENV

SW

ESD
ESD

FDSF =                                                         (1)  

  
where ω is the angular frequency, ESDSW(ω) is the maximum energy spectral density of the 
actual transient as measured at the transformer terminals, and  ESDENV(ω) is the energy 
spectral density for the dielectric tests in the standards as measured at the transformer 
terminals. To ensure that the actual measured switching transients are covered by the standard 
impulse waveforms, the FDSF(ω) should be less than unity [10]. 
 

 
Figure 5: Magnitude spectrum for transient waveform in Figure 4 and standard waveforms. 

 
Figure 5 shows the FFT of the standard waveforms and the FFT of the actual measured 
transient in Figure 4. By analysing the results in Figure 5 it is possible to have a severity 
factor that takes the envelope of all standard waveforms to compare with the FFT of the 
transient measured at the transformer terminals as explained by Equation 1. The results of the 
FDSF plots calculated using Equation 1 for the transients in Figures 2, 3, 4 are shown in 
Figures 6, 7 and 8. 
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Figure 6: FDSF for the measured transient in Figure 2 

 

 
Figure 7: FDSF for the measured transient in Figure 3 

 
Figure 8: FDSF for the measured transient in Figure 4 

 
The results of the FDSF for the three different switching events show that the majority of the 
values are above unity for most of the spectrum symbolising a potential risk. Hence internal 
winding resonance could occur when any of the frequency components match a resonant 
frequency of the transformer winding. The FDSF results also reveal that the transients 
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generated during switching of wind turbine transformers are not well represented by any of 
the standard transient voltage waveform tests. Also it is worth mentioning that the FDSF 
analysis has several limitations including that it does not take into account damping effects 
and hence might over-estimate the over-voltages produced at resonance especially for 
transients with frequency components above 1 MHz as shown in Figures 6, 7 and 8. However 
in light of the FDSF results that were obtained and how severe they are, the transformer 
manufacturer gains knowledge of the spectral fingerprint during switching transients  and 
proper protection or safety factors  can be selected. Two wind turbine step-up transformer 
designs will now be investigated. 

3. RESONANCE PERFORMANCE OF SPLIT AND NON-SPLIT MV WINDING  
Two prototype wind turbine step-up transformers were constructed for the purpose of 
checking part-winding resonance. As previously mentioned, both transformers had the same 
rating but differed in the winding arrangement. One prototype transformer had a split round 
winding shown in Figure 9a with two MV coils made up of 16 layers each and separated by 
an oil gap. The other had a non-split round windings as shown in Figure 9b. Both 
transformers were installed with measuring taps at the ends of each layer or in between the 
layers. 

  
 

Figure 9a: Split MV winding transformer             Figure 9b: Non-split MV winding transformer  
 
The constructed prototypes are shown in Figures 10a and Figure 10b. The test equipment 
consisted of a Krohn-Hite Power Amplifier 7602 M series, 20 MHz Agilent 3320A waveform 
generator and Tektronix (DPO 3032) 300 MHz Oscilloscope. The signal generator was 
connected to the input of the amplifier and the output of the amplifier energized the whole 
winding. The oscilloscope measured the tap voltages. 
  

3.1 Measured results 
The measured results for certain layers with high potential risk for breakdown are discussed 
by analysing the results of the sweep frequency response measurements. The measured results 
for Layer 1 (measuring between taps 1 and 2) for both designs, Layer 15: (measuring between  
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Figure 10a: Split MV winding transformer          Figure 10b: Non-split MV winding transformer 
 
taps 32 and 33 of Figure 9a) for the split MV winding transformer and (measuring between 
taps 17 and 19 of Figure 9b) for the transformer with the non-split MV winding.  For Layer 
16 (measuring between taps 33 and 34 of Figure 9a) and (measuring taps 19 and 21 of Figure 
9b). The results of the measurements are shown in Figures 11, 12 and 13. 

 
Figure 11: Frequency response for Layer 1 

 

 
Figure 12: Frequency response for Layer 15 
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Figure 13: Frequency response of layer 16 

 
Comparison of the sweep frequency response for the two transformer designs reveals an important 
result. The transformer with the split MV winding has a high resonant amplification factor below 200 
kHz. In contrast, the transformer with a non-split MV winding has a high resonant amplification factor 
above 200 kHz. When compared to the results of FDSF, there is a high probability that internal 
winding resonance could occur and potentially the transformer is at risk. However as analysis of the 
waveforms was done in the frequency domain, several limitations of FDSF should be noted: 

• FDSF does not take into account the severity along the windings to localize dielectrically the 
weak points as it only describes the terminal response of the transformer [6].  

• In implementing FDSF a comparison of the energy involved during a transient event with the 
energy involved in the standard test waveforms is made but effects of damping are not taken 
into account. For transformers the damping ratio (R/X) increases at higher frequencies 
because of skin effect as well as increased stray losses [13]. Hence some damping should be 
expected at higher frequencies which may reduce the amplitude of the internal overvoltages.  

• Although FDSF does provide insight in the different frequency components the transient 
signal has, it does not take into account the phase angle which may over-estimate resonant 
overvoltages. 

The FDSF results have indicated that the existing tests waveforms contained in the standards do not 
completely address all the types of transient events that could occur in the field. The frequency 
response of the two windings has revealed that the transformer with non-split MV winding could be a 
better option.  
 

4. CONCLUSION  
Repetitive prestrikes with high du/dt values brought about by switching of vacuum circuit 
breakers threaten the insulation system of the transformer. By analysing the frequency 
components of the measured waveforms using FDSF, appropriate protection measures or 
insulation design changes can be implemented to protect the transformer. 
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