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1 Introduction

Since the beginnings of string phenomenology in the mid 1980’s [1], the search for phe-

nomenologically viable vacua from heterotic strings has been ongoing. Most studies of

string compactification have thus far focused on Calabi-Yau compactifications or slight

generalizations thereof. In the case of heterotic string theory it is comparatively easy to

obtain Standard Model-like physics owing to the plethora of gauge bundles available in such

a context, and a lot of progress has been made on this front in recent years, see e.g. [2–10].

On the other hand, the moduli problem of heterotic string theory poses a particular

challenge due to the absence of the RR-fluxes and branes that are present in type II theories.

There has been some recent progress towards understanding the heterotic moduli problem

for perturbative compactifications to Minkowski vacua [11–16], but a full understanding is

still lacking. Worse still, these compactifications always seem to be plagued with runaway

directions, and it seems hard, if not impossible, to perturbatively stabilize all moduli in

a maximally symmetric, large-volume scenario, and non-perturbative effects are usually

required [17]. This can often be attributed to the Maldacena-Nunez no-go theorem, which

does not allow for fluxes in maximally symmetric Minkowski compactifications [18]. In
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particular, it is a simple application of Stokes’ theorem to see that a closed flux cannot be

used to stabilize moduli in maximally symmetric perturbative compactifications [19].1

In recent years, a slightly different approach has become popular within the community.

The idea is that instead of looking for maximally symmetric perturbative vacua, one looks

for perturbative vacua with less symmetry, e.g. domain walls [21–26], thus sidestepping

the no-go theorem. Moreover, the compactifications thus considered also allow for torsion

on the internal space, which behaves in a similar manner to an additional flux component

and hence can play a role in stabilizing moduli. The compact space is then said to have

an SU(3) structure, rather than SU(3) holonomy, where the former is distinguished from

the latter by the fact that the spinor parametrizing supersymmetry transformations is no

longer covariantly constant with respect to the Levi-Civita connection. In the domain wall

case, the vacuum breaks maximal symmetry along one external coordinate direction, while

the internal geometry usually corresponds to a so-called half-flat manifold. The fibration of

this internal space along the external coordinate admits a seven-dimensional G2 structure.

Such vacua can subsequently be lifted to maximally symmetric ones by the inclusion of

higher order α′-effects and non-perturbative effects. This was demonstrated to work by a

“proof of principle” in [27]. See also [28–35] for related work in this direction.

In this paper we will go further and generalize the perturbative compactification ansatz

from the half-flat domain wall case to include a broader class of solutions; in particular, we

allow a dependence of the internal geometry on up to two external coordinates. We will

see that with this ansatz, the possible torsional configurations of the internal space can

be more generic. For the compact six-dimensional geometry we assume a generalization

of the half-flat algebra whose fibration over the two external coordinates admits an eight-

dimensional Spin(7) structure. The corresponding four-dimensional solutions are 1/4-BPS

and contain the 1/2-BPS domain walls as special cases.2

Interestingly, we will see that some of the geometries give rise to superpotentials of the

kind found in non-geometric type II compactifications, and thus may have interesting phe-

nomenological applications. However, our key goal in this paper is to derive and establish

the relationships between Spin(7) structures, generalized half-flat manifolds, and 1/4-BPS

vacua. Hence we defer the analysis of explicit solutions and their applications to a future

publication [36].

This paper is organized as follows. In section 2 we establish a top-down ansatz for

the ten-dimensional theory. First we review relevant aspects of ten-dimensional heterotic

supergravity. We then give a brief overview of Spin(7) and SU(3) structures, together with

their corresponding torsion classes, and we lay the groundwork for compactification on

generalized half-flat manifolds. We also derive the corresponding Killing spinor equations.

In section 3 we consider the four-dimensional theory. We derive the Killing spinor equations

for four-dimensional 1/4-BPS solutions, and then we proceed to match them with the ten-

dimensional ansatz. We conclude with a discussion and outlook in section 4.
1It should be noted that this result can be evaded by considering non-geometric compactifications in

which the dilaton field is not well-defined globally, and such compactifications have recently been considered

in the M-theory context [20].
2An alternative approach is to consider G2 structures where the internal manifold is fibred over an

interval that is not a Cartesian coordinate direction — for examples of this approach, see appendix B.
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2 Ten-dimensional heterotic supergravity

2.1 Killing spinor equations and metric ansatz

The bosonic part of the ten-dimensional effective action for heterotic supergravity at lowest

order in α′ is given by

SS
0,bosonic = − 1

2κ210

∫

M10

e−2φ̂

[

R̂ ∗ 1+ 4dφ̂ ∧ ∗dφ̂− 1

2
Ĥ ∧ ∗Ĥ

]

, (2.1)

where κ10 is the 10-dimensional Planck constant, φ̂ is the dilaton, and Ĥ = dB̂, the field

strength of the NS-NS rank-two anti-symmetric tensor field B̂. Gauge field terms only

arise at first order in α′ and, therefore, do not appear in the above action. In this paper we

will restrict our discussion to the lowest order in α′ and will not consider any gauge sector

fields explicitly.

The bosonic Einstein equations which follow from this action are

R̂MN − 1

4
ĤPQMĤPQ

N + 2∇M∂N φ̂ = 0 , (2.2)

∇M

(

e−2φ̂ĤM
PQ

)

= 0 , (2.3)

∇2φ̂− 2ĜMN∂M φ̂∂N φ̂+
1

12
ĤMNP Ĥ

MNP = 0 , (2.4)

where ∇ is the covariant derivative associated with the Levi-Civita connection.

The fermionic fields associated to the bosonic fields above are the gravitino ΨM , the

dilatino λ, and the gaugino χ. These are all 10-dimensional Majorana-Weyl spinors with

supersymmetry transformations given by

δψM =

(

∇M +
1

8
ĤM

)

ǫ , (2.5)

δλ =

(

��∇φ̂+
1

12
Ĥ
)

ǫ, (2.6)

δχ = FMNΓMN ǫ , (2.7)

where ǫ is a 10-dimensional Majorana-Weyl spinor parametrizing the transformations. We

also defined ĤM = ĤMNPΓ
NΓP and Ĥ = ĤMNPΓ

MΓNΓP , the contractions with gamma

matrices ΓM satisfying the Clifford algebra in 10 dimensions.

In a supersymmetric vacuum, the above transformations must vanish, meaning that

the vacuum geometry carries a covariantly constant spinor ǫ with respect to the Bismut

connection,

∇(H)
M ≡ ∇M +

1

8
ĤM . (2.8)

Provided that the dilaton φ̂ and flux Ĥ satisfy (2.6), it can be shown, neglecting the gauge

fields, that solving the above Killing spinor equations leads to a solution of the equations

of motion (up to first order corrections in α′) when the Bianchi identity for Ĥ is satisfied.

At the order we are working with, this Bianchi identity is given in its simple form as

Ĥ = dB̂ . (2.9)

We will thus focus in solving δψM = δλ = 0 for the remainder of this paper.
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In order to recover a four-dimensional effective field theory, the background geome-

try must further be assumed to have six compact dimensions. Killing spinors lead to the

existence of stable differential forms and, in general, such forms will reduce the structure

group of the manifold they are living on. For instance, the metric of a Riemannian man-

ifold reduces the structure group from O(d) down to SO(d), where d is the dimension

of the manifold. Considering theories preserving N = 1 supersymmetry in the effective

four-dimensional theory, the Killing spinors reduce the structure group of the internal six

compact dimensional manifold down to SU(3). For a trivial NS-NS field and a constant

dilaton, this leads to the well known Calabi-Yau compactification, with the levi-Civita con-

nection having SU(3) holonomy. We can also have a non-trivial NS-NS field strength and

non-constant dilaton, leading to the Bismut connection having SU(3) holonomy. When the

external space is Minkowski this corresponds to the Strominger solution [37, 38]. In the

physics literature, the terminology SU(3) holonomy implicitly means that we are talking

about the Levi-Civita connection, while SU(3) structure refers to a more general connection

having SU(3) holonomy.

The aim of this work is to generalize background solutions with geometries breaking

part of the four-dimensional supersymmetry, thus leading to BPS states of the effective

supergravity. For this, we assume a metric ansatz with six compact internal dimensions

that can depend on two of the non-compact directions, with an additional two-dimensional

external Minkowski geometry:3

ds210 = ηαβdx
αdxβ + δabdx

adxb + guv(x
m)dxudxv

︸ ︷︷ ︸

X, 6d
︸ ︷︷ ︸

Y, 8d

, (2.10)

where we let {m} ∈ {2, 3, . . . , 9} denote coordinates on the non-compact eight-dimensional

geometry, {u, v} ∈ {4, 5, . . . , 9} denote coordinates on the compact SU(3) structure man-

ifold X with metric guv(x
m), {a, b} ∈ {2, 3} denote the non-compact coordinates on Y ,

which we will also denote by x2 = x and x3 = y, while ηαβ is the two-dimensional Minkowski

metric with indices {α, β} ∈ {0, 1}.
This metric ansatz is a direct generalization of the usual direct (or warped) product

considered for N = 1 solutions. However, the non-trivial dependence of the internal space

on two special directions breaks some of the supercharges. In the next section, we will

consider how to solve the Killing spinor equations (2.5)–(2.7) in this context.

2.2 Spin(7) and SU(3) structures

Let us first translate the Killing spinor equations into Spin(7) geometry and further into

SU(3)-structure forms. Under the product structure of the metric ansatz (2.10), the

eight-dimensional subspace decomposes the covariantly constant Majorana-Weyl spinor

3In principle, one could allow for warp factors on the external part of the metric. However, when

considering the reduction of the BPS equations on these geometries it turns out that the warp factors must

be constant.
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ǫ parametrizing the supersymmetry transformation according to

SO(1, 9) ⊃ SO(8)

16 8c + 8s
, (2.11)

where 8c is the conjugate representation and 8s is the spinor representation [39]. Choosing

a background geometry that breaks all but one supercharge, we will have one covariantly

constant spinor preserved. This spinor will have a stability subgroup Spin(7) in the 8s
representation, as can be seen from the branching rules

SO(8) ⊃ SO(7)

8s 1+ 7

8c 8

, (2.12)

the singlet 1 corresponding to the unbroken supersymmetry parameter. This type of

background corresponds to 1/4-BPS states from the point of view of the effective four-

dimensional N = 1 supergravity.

The presence of this spinor on the eight-dimensional geometry will reduce its structure

group down to Spin(7), the stability subgroup [40]. Let us recall that a Spin(7) structure

is given in terms of the invariant Cayley four-form Ψ, which may be written as

Ψmnpq = η†γmnpqη , (2.13)

where the spinor η denotes the supersymmetry parameter living in the 1 of SO(7). The

corresponding Spin(7) torsion classes are parametrized by two components, θ and τ , where

d8Ψ = θ ∧Ψ+ τ . (2.14)

Here θ and τ are in the 8 and 48 representations of Spin(7), respectively, while d8 is the

eight-dimensional exterior derivative. See e.g. [26] for an introduction to torsion classes

and [41] for the specifics of Spin(7) torsion classes.

Now, as mentioned earlier, the eight-dimensional part of the metric ansatz is further

assumed to have a product structure, with two non-compact coordinates and an internal

six-dimensional compact manifold. This implies the existence of two globally defined one-

forms dx and dy corresponding to the non-compact directions. This defines an SU(3)

structure on the compact six-dimensional internal manifold, characterized by the two-form

J corresponding to the hermitian structure, and a complex three-form Ω corresponding

to an (almost) complex structure. The Spin(7) structure (2.13) decomposes under this

SU(3)-structure embedding according to

Ψ = Re(dz ∧ Ω) +
1

2
J ∧ J + dvol2 ∧ J , (2.15)

where dvol2 is the volume form on the non-compact directions, which by (2.10) is given by

dvol2 = dx ∧ dy . (2.16)

We also have dz, a complex one-form on the non-compact directions, which upon a choice

of complex structure can be chosen as dz = dx+ idy.
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2.3 Flow equations and torsion classes

Since the structure forms are defined by the ten-dimensional covariantly constant spinor ǫ,

it is possible to translate the equations of motion onto properties of the structure forms.

Indeed, the supersymmetry equations (2.5)–(2.6) can be reduced to

∗8Ĥ = −e2φ̂d8(e
−2φ̂Ψ) = −dφ̂8Ψ , (2.17)

θ = 12d8φ̂ = Ψyd8Ψ = − ∗8 (Ψ ∧ ∗8d8Ψ) , (2.18)

where ∗8 is the eight-dimensional Hodge operator and, for ease of notation, we have defined

the derivative

dφ̂8 = e2φ̂d8e
−2φ̂ . (2.19)

These equations can be decomposed under the SU(3) structure and, plugging the above

equations into (2.17), we obtain

∗Ĥ = ∂φ̂
yΩ+ + ∂φ̂

xΩ− − dφ̂J , (2.20)

dφ̂Ω+ = ∂φ̂
xρ , (2.21)

dφ̂Ω− = −∂φ̂
y ρ , (2.22)

dφ̂ρ = 0 . (2.23)

where ∗ is the six-dimensional Hodge operator, and dφ̂ = e2φ̂de−2φ̂, with d being the usual

exterior derivative in six dimensions. To simplify the notation we have also defined the

forms

ρ = ∗J =
1

2
J ∧ J and Ω = Ω+ + iΩ− . (2.24)

Finally, from (2.18), we have the conditions

Ω+ ∧ Ĥ = 2 ∗ ∂yφ̂ , (2.25)

Ω− ∧ Ĥ = 2 ∗ ∂xφ̂ , (2.26)

J ∧ Ĥ = −2 ∗ dφ̂ . (2.27)

Solving equations (2.20)–(2.23) and (2.25)–(2.27) is therefore equivalent to finding solutions

to the equations of motion and will be the principal focus of this work.

One question immediately arises: what kind of constraints on the geometry of the

internal six-dimensional manifold follow from these flow equations? Manifolds carrying

SU(3) structure can be classified according to their torsion classes in the following way.

The intrinsic torsion of a connection with SU(3) holonomy can be classified according to

five classes Wi, i = 1, . . . , 5, with the SU(3)-structure forms decomposing as

dJ = −3

2
Im
(
W1Ω̄

)
+W4 ∧ J +W3 dΩ = W1J ∧ J +W2 ∧ J + W̄5 ∧ Ω , (2.28)

such that the relations

W3 ∧ Ω = W3 ∧ J = W2 ∧ J ∧ J = 0 (2.29)

are satisfied.
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Torsion classes Properties (name)

W1 = W2 = 0 Complex

W1 = W3 = W4 = 0 Symplectic

W1 = W2 = W3 = W4 = 0 Kähler

W2 = W3 = W4 = W5 = 0 Nearly-Kähler

W1− = W2− = W4 = W5 = 0 Half-flat

W1 = W2 = W3 = W4 = W5 = 0 Calabi-Yau

Table 1. Sample of six-dimensional SU(3)-structure properties determined in terms of their van-

ishing torsion classes. For the half-flat case, the subscript − means the imaginary part.

Some geometrical properties can readily be obtained from these torsion classes, depend-

ing on whether they vanish or not — some well-known cases are summarized in table 1.

Therefore, we wish to derive the internal torsion classes Wi in terms of the field content

of the theory to see what kinds of restrictions the flow equations impose, in particular in

terms of vanishing classes.

First we define the complexified coordinate

z = x+ iy . (2.30)

Thus we can combine and rewrite equations (2.21) and (2.22) as

dΩ− 2dφ̂ ∧ Ω = 2∂zρ− 4∂zφ̂ρ = 2∂zJ ∧ J − 2∂zφ̂ J ∧ J . (2.31)

We see that ∂zφ̂ contributes to W1 and ∂zJ will contribute to W2 and W5. Since J together

with Ω define an (almost) complex structure, with respect to which Ω is a (3, 0)-form, we

can decompose ∂zJ according the holomorphicity of its indices. We define

∂zJ = λzJ + h(1,1)z + h(2,0)+(0,2)
z , (2.32)

where λz is a zero-form and h
(1,1)
z represents the primitive (1, 1)-part, that is, it must satisfy

the condition J yh
(1,1)
z = 0. Equation (2.31) can then be written as

dΩ = (λz − 2∂zφ̂)J
2 +

(

h(1,1)z + h(2,0)z

)

∧ J + 2dφ̂ ∧ Ω , (2.33)

where we used the fact that, since dΩ cannot be (1, 3), we must have h
(0,2)
z = 0. We can

therefore deduce the first two torsion classes,

W1 = λz − 2∂zφ̂ , W2 = h(1,1)z . (2.34)

In order to find W5, we must understand the contribution that comes from the h
(2,0)
z

term. Let us write

h(2,0)z ∧ J = X ∧ Ω , (2.35)

where X is a (0, 1)-form and is to be determined. Using formulae of the appendix of [21],

and ||Ω||2 = 8 as is conventional, we find that

W5 = 2(dφ̂)(1,0) +
i

8

(

h(2,0)z yΩ
)

. (2.36)
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The final two torsion classes can readily be determined from the remaining conditions.

We see from (2.23) that

W4 = dφ̂ (2.37)

and, using (2.20) and subtracting the contributions from W3 and W4, we find that the last

torsion class is

W3 = ∂yΩ+ − 2∂yφ̂Ω+ + ∂xΩ− − 2∂xφ̂Ω− +
3

2
Im
(
W1Ω̄

)
+ dφ̂ ∧ J − ∗Ĥ . (2.38)

To conclude, we have seen that the flow equations impose constraints on the torsion

classes; however, they do not impose any vanishing classes. Therefore, they constitute a

generalization of the half-flat compactifications obtained from half-BPS flows [21].

2.4 Internal geometry ansatz

We have seen that the existence of an SU(3) structure implies that the compact internal

six-dimensional manifold carries a two-form J and a three-form Ω. In order to consider

the effective four-dimensional theory resulting from compactification, one must have an

understanding of the moduli space of metrics.

In general, explicit examples of SU(3) structure manifolds are scarce, so we would like to

take a more general approach to deal with the Kaluza-Klein truncation to four dimensions.

For this, we draw on the results from mirror symmetry and the subsequent development

concerning the so-called half-flat mirror manifolds [42]. We expand the SU(3)-invariant

forms on a set of two-forms {ωi} and three-forms {αA, β
A},

J = viωi , Ω = ZAαA − GAβ
A , (2.39)

and assume, in complete analogy with the Calabi-Yau case, that the basis forms satisfy

the normalization integrals,
∫

ωi ∧ ω̃j = δji ,

∫

αA ∧αB = 0 ,

∫

βA ∧ βB = 0 ,

∫

αA ∧ βB = δBA . (2.40)

where {ω̃j} is a set of four-forms dual to {ωi}.
When the SU(3) structure reduces to a Calabi-Yau manifold, that is, the structure is

invariant with respect to the Levi-Civita connection, the form J corresponds to the Kähler

form and Ω to the holomorphic (3, 0) form. In this instance, {ωi} forms a basis of harmonic

(1, 1) forms of the second cohomology group while {αA, β
A} is a real symplectic basis of

the third cohomology group. The moduli space is characterized by the deformations of J

and Ω, where vi are the Kähler moduli and ZA are projective coordinates on the complex

structure moduli. G = G(ZA) is a holomorphic function of the projective coordinates,

which is homogeneous of degree two, while GA = ∂AG.
For more general SU(3)-structure manifolds, we will assume that the basis forms {ωi}

and {αA, β
A} satisfy the same properties as for Calabi-Yau manifolds, with the only excep-

tion that they no longer need to be closed. This postulate arose originally in the context of

mirror symmetry, where the matching of the space of metrics implies that the expansion of

forms should have similar properties. Half-flat mirror manifolds have been proposed in [43]
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and generalized in [44, 45]. This class of spaces has been argued to be the correct ansatz

for a consistent Kaluza-Klein truncation to four dimensions [46, 47].

Following the conventions of [42, 45, 47], we consider the so-called generalized half-flat

manifolds, whose SU(3)-structure forms ωi and (αA, β
B) are postulated to obey the algebra

dωi = pAiβ
A − qAi αA , dαA = pAiω̃

i , dβA = qAi ω̃
i , dω̃i = 0 , (2.41)

with (real) constant torsion parameters pAi and qAi . These are the most general expressions,

assuming that the exterior derivatives dJ and dΩ can be expanded on the basis of three-

forms {αA, β
A} and four-forms {ω̃j}, respectively. Explicitly, this gives

dJ = vipAiβ
A − vjqAj αA , dΩ = ZApAi ω̃

i − GAq
A
j ω̃j . (2.42)

For consistency, we still need to impose additional constraints on the parameters pAi and

qAi in order to satisfy the condition d2ωi = 0. The flux parameters must obey the relations

pAiq
A
j − qAi pAj = 0 (2.43)

for a consistent definition of the exterior derivative. In terms of torsion classes, the defini-

tions (2.42) imply that the intrinsic torsion τ0 must take value in the modules

τ0 ∈ W1 ⊕W2 ⊕W3 . (2.44)

It should be noted that this particular ansatz imposes W4 = W5 = 0. This will have some

consequences on the solutions of the flow equations, as explained in the next section.

Special cases can readily be found in this general context. First, half-flat mirror man-

ifolds correspond to the particular choice p0i = ei, pai = 0, and qAi = 0, with the basis

forms obeying

dωi = eiβ
0 , dα0 = eiω̃

i , (2.45)

and being closed otherwise. This leads to

dJ = vieiβ
0 , dΩ = Z0eiω̃

i , (2.46)

which satisfy the definition of half-flat manifolds. For the intrinsic torsion, we have

τ0 ∈ W+
1 ⊕W+

2 ⊕W3 . (2.47)

Second, when all the torsion parameters vanish, that is pAi = qAj = qAi = pAj = 0, we fully

recover the Calabi-Yau geometry with the relations dJ = dΩ = 0. Hence in this case

τ0 = 0 . (2.48)

This ansatz for the basis forms also has an impact on the NS-NS flux that can be

considered for the compactification. Owing to the generalized relations for the exterior

derivatives (2.41), expanding the NS-NS three-form field strength onto the truncation basis

gives

B̂ = B + biωi , Ĥ = d10B̂ = H + d4b
i ∧ ωi + bidωi +Hflux , (2.49)

– 9 –
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where the bi are axionic scalars which we take to be internally constant, and B is a four-

dimensional two-form with field strength H = d4B, which can be dualized to a universal

axion a. In addition, we have introduced the NS-NS flux,

Hflux = µAαA − ǫAβ
A , (2.50)

with electric and magnetic flux parameters ǫA and µA, respectively. Constraints on the elec-

tric and magnetic flux parameters occur according to the choice of gauge bundle. Choosing

the order α′ term to vanish in the Bianchi identity implies dĤ = 0 and leads to the relations

µApAi − ǫAq
A
i = 0 (2.51)

between flux and torsion parameters. As a simplifying assumption, we will only consider

solutions where the flux has legs only on the internal space, that is,

HMNa = HMNα = 0 . (2.52)

Note from (2.49) that this assumption implies that we need to take the axions {bi, a}
constant when performing the matching with the four-dimensional theory.

Finally, we should consider how this ansatz constrains the flow equations. In particular,

for our specific choice of internal metric, we have W4 = 0. Comparing with (2.37), we see

that the six-dimensional exterior derivative of the dilaton must vanish, dφ̂ = 0. This brings

the following simplification of the flow equations (2.20)–(2.22):

dJ = 2Im
(

∂z̄Ω− 2∂z̄φ̂Ω
)

− ∗Ĥ ; (2.53)

dΩ = 2∂zρ− 4∂zφ̂ρ . (2.54)

From the basis form properties we have dρ = 0, so it follows that equation (2.23) is satisfied

automatically. Furthermore, the conditions (2.25)–(2.26) become

Ω ∧ Ĥ = 4i ∗ ∂zφ̂ , (2.55)

Since we have dφ̂ = 0, it follows from (2.27) that J ∧ Ĥ = 0, and hence this third condition

corresponds to

dbi = 0 , (2.56)

which is true since the axions are taken to be constant internally.

The equations (2.53)–(2.55) will be our starting point in section 3.3 when we match

to the four-dimensional flow equations, to which we now turn.

3 Dimensional reduction

3.1 Four-dimensional effective theory

Having established our conventions for the internal compact dimensions, we can work out

the resulting effective four-dimensional theory that follows from Kaluza-Klein reduction.

For this, we must assume that the flux parameters are small enough compared to the
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volume of the internal manifold to allow a separation between the string scale and the

flux scale. The relations defined in the previous section are then sufficient to derive the

low-energy superpotential of the effective supergravity theory.

Considering the ten-dimensional action and integrating out the compact dimensions,

we assume a field truncation that preserves the expansion of the modes on the basis forms

{ωi, αA, β
A}. In terms of the internal volume, V =

∫
d6x

√
g, the four-dimensional dilaton

is given by

φ = φ̂− 1

2
lnV , (3.1)

where V is the zero-mode of the ten-dimensional dilaton.

Combined with the Kähler and complex structure moduli (2.39), the various flux scalar

fields form the lowest components of the four-dimensional chiral supermultiplets in the

usual way,

S = a+ ie−2φ , T i = bi + ivi , Za = za ≡ ca + iωa . (3.2)

The corresponding Kähler potentials are given by the same expressions as for Calabi-Yau

compactifications, coming from the logarithm of the internal volume,4

K(S) = − ln(i(S̄ − S)) , K(T ) = − ln

(
4

3

∫

J ∧ J ∧ J

)

, K(Z) = − ln

(

i

∫

Ω ∧ Ω̄

)

.

(3.3)

The full Kähler potential of the resulting four-dimensional effective supergravity thus cor-

responds to the sum of the three terms above,

K = K(S) +K(T ) +K(Z) . (3.4)

The superpotential can be obtained from the Gukov-Vafa formula, as derived in [42],

W =
√
8

∫

Ω ∧ (Ĥ + idJ) . (3.5)

For convenience, let us introduce the modified flux parameters,

ǫ̃A = ǫA − T ipAi ,

µ̃A = µA − T iqAi .
(3.6)

These allow us to express the exterior derivative of the hermitian form dJ and the NS-NS

field strength Ĥ in the compact form

dJ = vidωi = Im(µ̃A)αA − Im(ǫ̃A)β
A , Ĥ = Re(µ̃A)αA − Re(ǫ̃A)β

A , (3.7)

where we have imposed (2.52) and (2.56). This in turn leads to the superpotential ex-

pression

W =
√
8 (µ̃AGA − ǫ̃AZA) . (3.8)

It should be remembered that, owing to the dependence on the complexified Kähler

moduli T i, the new parameters ǫ̃A and µ̃A can no longer be taken to be constant. It is

4For useful background and formulae, see appendix A.
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interesting to note that superpotentials of type (3.8) are very similar to those that appear

in type II non-geometric compactifications [48–51]. These types of superpotentials have

recently been employed in order to obtain phenomenologically viable models of Starobinsky-

like inflation [52, 53]. It would be interesting to see if such inflationary models can be

obtained within the heterotic context, and also if other phenomenological applications

apply. We leave this for future work.

3.2 Killing spinor equations and 1/4-BPS states

The four-dimensional effective theory resulting from heterotic string theory is an N = 1

supergravity. In general, such a theory is characterized by the chiral superfields (AI , χI),

a gravitino ψµ, the Kähler potential K, and the superpotential W . The corresponding

Killing spinor equations are given by

δχI = i
√
2σµζ̄∂µA

I −
√
2eK/2KIJ∗

DJ∗W ∗ζ = 0 , (3.9)

δψµ = 2Dµζ + ieK/2Wσµζ̄ = 0 , (3.10)

where the covariant derivative is defined by

Dµ = ∂µ + ωµ +
1

4
(Kj∂µA

j −Kj∗∂µA
j∗) . (3.11)

In the above ζ is a Weyl spinor that parametrizes supersymmetry, DIW = WI +KIW , the

σµ correspond to the usual Pauli matrices, and ωµ is the spin connection.

In order to match with the eight-dimensional Spin(7) structure, we should focus in the

four-dimensional theory on topological defects of co-dimension two. With this in mind, we

consider the metric ansatz

ds24 = e−2B(xa)
(

ηαβdx
αdxβ + δabdx

adxb
)

, (3.12)

where {α, β} = {0, 1}, while the {a, b} = {2, 3} directions parametrize the xy-plane. From

this metric ansatz one obtains the spin connection

ω0 =
1

2
Baσ

a , ω1 = −i
1

2

(
B2σ

3 −B3σ
2
)
, ω2 = −i

1

2
B3σ

1 , ω3 = i
1

2
B2σ

1 ,

(3.13)

where Ba ≡ ∂B/∂xa. Applying this result to (3.9) and (3.10) gives

AI
aσ

aζ = −ie−BeK/2KIJ∗

DJ∗W
∗ζ , (3.14)

Bbσ
bζ = ie−BeK/2Wζ , (3.15)

0 = 2ζa +
(
Ba + iIm(KIA

I
a)
)
ζ . (3.16)

Since the warp factor B is real, we can separate (3.16) into real and imaginary parts,

Im(KIA
I
a) = 0 , (3.17)

2ζa = −Baζ . (3.18)

– 12 –



J
H
E
P
0
3
(
2
0
1
6
)
1
7
7

We are interested in solutions preserving only one of the four supercharges from ζ,

which corresponds to the singlet of (2.12). To this end, we impose on the Killing spinor

the constraints

σ2 ζ = ζ , iσ3 ζ = ζ , (3.19)

effectively breaking three out of the four supercharges.5 Solutions will thus correspond to

1/4-BPS supergravity states. Plugging this into the equations (3.14), (3.15), and (3.17) we

obtain

(∂x + i∂y)A
I = −ie−BeK/2KIJ∗

DJ∗W
∗ ,

(∂x − i∂y)B = ie−BeK/2W ,

0 = Im(KI∂xA
I) ,

0 = Im(KI∂yA
I) . (3.20)

The last equation (3.18) simply gives the dependence of the spinor ζ on the special di-

rections {x, y} as a function of the warp factor dependence B. We will thus ignore this

condition as it can always be solved appropriately.

We can now insert the heterotic supergravity ingredients (3.2), (3.3), and (3.5) into

these Killing spinor equations (3.20), and using the complex coordinate z̄ we obtain

2∂z̄ A
I = −ie−BeK/2KIJ∗

DJ∗W
∗ , (3.21)

2∂z̄ B = −ie−BeK/2W ∗ , (3.22)

0 = 3
Ki

K ∂z b
i + 3

K̃a

K̃
∂z c

a + e2φ∂z a . (3.23)

To round off this discussion, note that (3.14)–(3.18) are invariant under general co-

ordinate transformations in the xy-plane. This suggests that there may exist 1/2-BPS

solutions other than domain wall solutions. We explore this and related ideas further in

appendix B.

3.3 Matching the 10d and 4d flow equations

Dilaton. We will now try to match these flow equations with those obtained from the

ten-dimensional perspective. First, let us look at the equation for the axion-dilaton field.

From (3.21) we have

2∂z̄ (a+ ie−2φ) = −ie−BeK/2(−2ie−2φ)W ∗ . (3.24)

Remembering that we made the ansatz (2.52) for the NS-NS flux Ĥ, the corresponding

four-dimensional axion a is constant. Hence inserting (3.22) into the above equation gives

i∂z̄e
−2φ = −2ie−2φ∂z̄B , (3.25)

5Note that we could instead have chosen a constraint of the form σ2 ζ = −iσ3 ζ = ζ (or any equivalent

permutation of σ-matrices) while retaining consistency of the equations. However, this choice does not give

the correct matching to our parametrization of the Spin(7) geometry in section 2. It is also possible to

include an arbitrary relative phase between σ2 ζ and ζ̄, but this can always be absorbed into a redefinition

of the superpotential.
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which implies

∂z̄φ = ∂z̄B , (3.26)

and therefore φ− φ0 = B for constant φ0. From now on, we will fix the warp factor to be

equal to the four-dimensional dilaton, φ = B. The flow equation for the dilaton is therefore

given by

2 ∂z̄φ = −ie−φeK/2W ∗ . (3.27)

We would now like to derive this from the 10d flow equations. First take the wedge

product of (2.53) with Ω̄, giving
(

dJ + ∗Ĥ
)

∧ Ω̄ = −i
((

∂z̄Ω− 2 ∂z̄φ̂Ω
)

−
(

∂zΩ̄− 2 ∂zφ̂ Ω̄
))

∧ Ω̄

= −i
(

∂z̄Ω− 2 ∂z̄φ̂Ω
)

∧ Ω̄ , (3.28)

where the second line follows from the fact that Ω is a (3,0)-form. Now, integrate (2.55)

over the compactification volume. Remembering that the volume V of the internal manifold

can be written as 8V = i
∫
Ω ∧ Ω̄, we obtain

∫

Ω ∧ Ω̄ ∂zφ̂ = −2

∫

Ω ∧ Ĥ = −2i

∫

∗Ω ∧ Ĥ = −2i

∫

∗Ĥ ∧ Ω , (3.29)

where in the second step we have used the property ∗Ω = −iΩ. Taking the complex

conjugate gives

2

∫

∗Ĥ ∧ Ω̄ = i

∫

Ω ∧ Ω̄ ∂z̄φ̂ . (3.30)

Integrating over (3.28) and inserting (3.30) on the right-hand side, we find
∫ (

dJ ∧ Ω̄ + ∗Ĥ ∧ Ω̄
)

= −i

∫

∂z̄Ω ∧ Ω̄ + i ∂z̄φ̂

∫

Ω ∧ Ω̄ + 2

∫

∗Ĥ ∧ Ω̄ . (3.31)

Rearranging and simplifying leads to

− i

∫

Ω̄ ∧
(

Ĥ − i dJ
)

= −i

∫

∂z̄Ω ∧ Ω̄ + i ∂z̄φ̂

∫

Ω ∧ Ω̄ . (3.32)

In order to complete the matching we will need to make use of an additional constraint,
∫

∂zΩ ∧ Ω̄ =

∫

Ω ∧ ∂zΩ̄ . (3.33)

This might seem like an extra condition imposed on the ten-dimensional geometry. We

now show that we are free to impose this condition, at least as far as physics is concerned.

Indeed, recall by Kodaira [54] that

∂zΩ = KzΩ+ χz , (3.34)

where Kz is some complex function and χz ∈ Ω(2,1)(X). The absolute value of Kz is related

to the change in volume. We are however free to rotate Kz by a complex phase without

changing the volume or the complex structure of X. In particular, we take Kz to be real,

Kz = K̄z . (3.35)
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However,

∂zΩ̄ = K̄zΩ̄ + χ̄z . (3.36)

Hence with the choice (3.35), the result (3.33) follows.

Applying this condition, we see that (3.32) can be expressed as

− i

∫

Ω̄ ∧
(

Ĥ − i dJ
)

= i ∂z̄φ̂

∫

Ω ∧ Ω̄− i

2

∫
(
∂z̄Ω ∧ Ω̄ + Ω ∧ ∂z̄Ω̄

)
. (3.37)

Inserting the definitions of the superpotential (3.5) and the volume V , we find

− iW ∗

√
8

= 8V ∂z̄

(

φ̂− 1

2
lnV
)

. (3.38)

Finally, using e−φeK/2 = 1/(4
√
8V) (derived in appendix A)6 and the relation (3.1) between

the 10d and 4d dilaton, we arrive at the flow equation

2 ∂z̄φ = −ie−φeK/2W ∗ . (3.39)

Complex structure moduli. We now turn to the complex structure moduli. The flow

equation we wish to derive is

2 ∂z̄Z
a = −ie−BeK/2Kab∗Db∗W

∗ . (3.40)

Here we will make use of Kodaira’s formula (3.34), which we assume can be written as7

∂Ω

∂Za
= −∂K(Z)

∂Za
Ω+ χa , (3.41)

from which it follows that the Kähler metric for the complex structure moduli can be

expressed as

K
(Z)
ab∗ = −

∫
χa ∧ χ̄b
∫
Ω ∧ Ω̄

. (3.42)

To proceed, we start from the 10d equation (2.53), then wedge with χ̄a and integrate

to obtain
∫

χ̄a ∧ (dJ + ∗Ĥ) =

∫

χ̄a ∧
(

2 Im
(

∂z̄Ω− 2∂z̄φ̂Ω
))

= −i

∫

χ̄a ∧ ∂z̄Ω , (3.43)

where in the second step we have used the fact that χ̄a is a (1,2)-form. We can use Kodaira’s

formula to rewrite this as

− i

∫

χ̄a ∧ ∂z̄Ω = −i

∫

χ̄a ∧ χb ∂z̄ Z
b + i

∫

χ̄a ∧ Ω
︸ ︷︷ ︸

=0

Kb ∂z̄Z
b = −i

∫

χ̄a ∧ χb ∂z̄Z
b . (3.44)

6This condition is the same as equation (A.14) under the convention ||Ω||2 = 8.
7(3.41) is true in the Calabi-Yau case, but has not been shown to be true for the most generic geometries

that we consider. However, since the generalized half-flat manifolds are expected to be mirror to Calabi-

Yau’s with flux, we regard (3.41) as a valid assumption.
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where the second term again vanishes by the antisymmetry of the wedge product, using

that χ̄a is type (1, 2) while Ω is type (3, 0). Inserting this expression into (3.43) and using

∗χ = iχ gives
∫

χ̄a ∧ χb ∂z̄Z
b = i

∫

χ̄a ∧ (dJ + ∗Ĥ) = −
∫

χ̄a ∧
(

Ĥ − i dJ
)

. (3.45)

We are now in a position to obtain the four-dimensional flow equation. Dividing by

the volume V and using i
∫
Ω ∧ Ω̄ = 8V , we get

∫
χ̄a ∧ χb
∫
Ω ∧ Ω̄

∂z̄Z
b = − i

8V

∫

χ̄a ∧ (Ĥ − idJ) , (3.46)

and by substituting (3.42) we find

2Ka∗b ∂z̄Z
b = −ie−φeK/2

√
8

∫

Da∗Ω̄ ∧ (Ĥ − idJ) , (3.47)

where we have again used e−φeK/2 = 1/(4
√
8V). Note that χ̄a = Da∗Ω̄ follows directly

from Kodaira’s formula. Finally, contracting with the inverse Kähler metric leads to the

result,

2 ∂z̄Z
a = −ie−φeK/2Kab∗Db∗W

∗ . (3.48)

Kähler moduli. Finally, let us consider the Kähler moduli. Our goal is the 4d flow

equation

2 ∂z̄T
i = −ie−φeK/2Kij∗Dj∗W

∗ . (3.49)

From the 10d perspective we start from (2.54), which can be written as

dΩ = ∂z (J ∧ J)− 2 ∂zφ̂ J ∧ J . (3.50)

Taking the wedge product with the basis form ωi, and integrating over the manifold, gives
∫

dΩ ∧ ωi =

∫ (

∂z (J ∧ J)− 2 ∂zφ̂ J ∧ J
)

∧ ωi . (3.51)

Since our final result contains only ∂z̄ terms, we should take the complex conjugate of this

equation. After integrating by parts, we find
∫

Ω̄ ∧ dωi = ∂z̄

∫

J ∧ J ∧ ωi − 2 ∂z̄φ̂

∫

J ∧ J ∧ ωi . (3.52)

In what follows we will make use of the formulae given in appendix A. To proceed,

note that the superpotential (3.5) can be expressed in the form

W =
√
8

∫

Ω ∧
(
Hflux + d

(
T iωi

))
. (3.53)

From (3.53) and the definitions (A.6), we see that (3.52) can be rewritten as

∂z̄Ki − 2 ∂z̄φ̂Ki =
1√
8

∂W ∗

∂T̄ i
. (3.54)
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Inserting the relation (3.1) between the 10d and 4d dilaton, with K = 6V , we get

∂z̄Ki −Ki∂z̄lnK =
1√
8

∂W ∗

∂T̄ i
+ 2 ∂z̄φKi . (3.55)

To complete the matching, we should write this in terms of the moduli vi. From (A.6)

we can derive

∂z̄K = 3Ki∂z̄v
i , ∂z̄Ki = 2Kij∂z̄v

j . (3.56)

Dividing (3.55) by K, rescaling, and simplifying the result using (3.39), (3.56), (A.8), and

the relation e−φeK/2 = 1/(4
√
8V), we obtain

2

(
9

4

KiKj

K2
− 3

2

Kij

K

)

∂z̄v
j = −e−φeK/2

(
∂W ∗

∂T̄ i
+Ki∗W

∗

)

. (3.57)

The term in brackets on the left-hand side is simply the Kähler metric (A.7), while the

right-hand side contains the covariant derivative Dj∗W
∗. Hence we have

2Ki∗j ∂z̄v
j = −e−φeK/2Di∗W

∗ . (3.58)

Finally, contracting with the inverse metric Kki∗ and relabelling indices gives the result,

2i ∂z̄v
i = −ie−φeK/2Kij∗Dj∗W

∗ , (3.59)

which coincides with (3.49) when ∂z̄b
i = 0.

Axion constraint. To conclude the matching, let us derive the axion constraint (3.23).

Here we will show that it is nothing other than the additional constraint (3.33) we imposed

to complete the dilaton matching, namely,
∫

∂zΩ ∧ Ω̄ =

∫

Ω ∧ ∂zΩ̄ . (3.60)

To prove that this matches (3.23), we should expand it in terms of basis forms. We

will make use of the prepotential in the large complex strucutre limit,

G = −1

6
K̃abc

ZaZbZc

Z0
, (3.61)

where ZA = Z0(1, Za) and GA = ∂G/∂ZA. Explicitly, we find that

Ga = −Z0

2
K̃abcZ

bZc , G0 =
Z0

6
K̃abcZ

aZbZc . (3.62)

Now use (2.39) to rewrite (3.60) as

Z̄A (∂zGA)−
(
∂zZA

)
ḠA =

(
∂zZ̄A

)
GA −ZA

(
∂zḠA

)
. (3.63)

In the large complex structure limit, we can use (3.62) to expand the left-hand side of this

expression as

Z̄A (∂zGA)−
(
∂zZA

)
ḠA =

(
Z0
)2

2
K̃abc∂zZ

a
[

ZbZc − 2ZbZ̄c + Z̄bZ̄c
]

= −2
(
Z0
)2 K̃a∂zZ

a . (3.64)
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To obtain the second equality we have used the (A.9) and the symmetry of K̃abc under

permutations of the indices. Similarly, the right-hand side can be expanded to give

(
∂zZ̄A

)
GA −ZA

(
∂zḠA

)
= 2

(
Z0
)2 K̃a∂zZ̄

a . (3.65)

Finally, equating (3.64) and (3.65), we find

− 2
(
Z0
)2 K̃a∂zZ

a = 2
(
Z0
)2 K̃a∂zZ̄

a , (3.66)

which can be rearranged to give

K̃a∂zc
a = 0 . (3.67)

This expression matches (3.23) when ∂za=∂zb
i=0. Thus we have completed the matching.

4 Discussion and outlook

In this paper we have investigated compactifications of heterotic string theory on eight-

dimensional geometries with two non-compact directions. We have performed the match-

ing between the ten-dimensional geometries and the four-dimensional BPS equations that

generically correspond to 1/4-BPS solutions. In doing so, we have established a connection

between eight-dimensional Spin(7) structures and 1/4-BPS vacua.

In addition, we have introduced new types of 1/2-BPS solutions corresponding to

topological cosmic strings and black holes (see appendix B). We have not attempted to

construct explicit solutions to the more general 1/4-BPS equations. It is expected that

such solutions will generically break more spacetime symmetry than the usual 1/2-BPS

solutions of e.g. spherical or cylindrical symmetry as given in appendix B. One could for

example look for cosmic string solutions where the radial symmetry is preserved but with

broken axial symmetry, or vice versa. Solutions of the form of intersecting branes also

come to mind [55, 56]. We will explore these directions in a future publication [36].

As we have seen, these types of compactifications allow for a more generic superpo-

tential than what is obtainable in the previous domain wall compactifications. In partic-

ular, the flow equations allow the internal manifold to be a generalized half-flat manifold.

The resulting superpotential takes a form very similar to those of type II non-geometric

compactifications [48–51], and it would be interesting to study this relation further. In

particular, it would be interesting to look for compactifications which might be suitable

for inflationary models, as has been done on the type II side [52, 53].

This paper has mostly been concerned with establishing the matching between the

ten-dimensional and four-dimensional solutions of the BPS equations. However, one im-

portant task remains, namely, to study explicit examples of solutions, as has been done

for the domain wall case in e.g. [22, 24, 25, 27]. Furthermore, in order to study the phe-

nomenology of these solutions, they have to be lifted to maximally symmetric vacua by

means of non-perturbative effects such as gaugino condensates [27, 33], or one can look for

non-supersymmetric perturbative vacua as was done in [57]. Work in this direction is in

progress.
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A Kähler and complex structure moduli

In this appendix we will review some useful formulae that can be derived from the properties

of Calabi-Yau moduli spaces. All of the following relations are assumed to hold also in the

context of our ansatz for SU(3)-structure manifolds, the only difference being that the basis

forms are no longer harmonic.

Let us start with the two-form J and its corresponding moduli field. The volume of

the Calabi-Yau (or SU(3) structure manifold) X is given by

V =
1

6

∫

X
J ∧ J ∧ J . (A.1)

The metric appearing in the deformation space of the metric of X is given by

K
(T )
ij =

1

4V

∫

X
ωi ∧ ∗ωj , (A.2)

where

∗ ωi = −J ∧ ωi +
3

2

∫

X J ∧ J ∧ ωi
∫

X J ∧ J ∧ J
J ∧ J . (A.3)

The Kähler potential thus corresponds to

K
(T )
ij =

∂2K(T )

∂T i∂T̄ j
, K(T ) = − ln

(
4

3

∫

X
J ∧ J ∧ J

)

, (A.4)

which is the logarithm of the volume of X.

These expressions can be simplified by introducing more convenient notation. Let us

write the triple intersection numbers,

Kijk =

∫

X
ωi ∧ ωj ∧ ωk , (A.5)

and define contractions with the moduli fields vi,

K = Kijkv
ivjvk , Ki = Kijkv

jvk , Kij = Kijkv
k . (A.6)

The Kähler metric (A.2) can thus be re-written as

K
(T )
ij =

9

4

KiKj

K2
− 3

2

Kij

K , K(T )ij = −2

3
K
(

Kij − 3
vivj

K

)

, (A.7)
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where we also gave the inverse metric K(T )ij . Here the coefficients Kij are defined from

the property KijKjk = δik. Another useful formula is the contraction with the first-order

derivative K
(T )
i ,

K(T )ijK
(T )
j = −2ivi , where K

(T )
i ≡ ∂K(T )

∂T i
=

3i

2

Ki

K . (A.8)

The properties of Kähler and complex structure moduli have striking similarities, a

fact that led to the conjecture of mirror symmetry. For each Calabi-Yau X, there exists

a mirror Calabi-Yau X̃ whose Kähler and complex structure moduli are exchanged. This

conjecture allows us to introduce (triple) intersections numbers of the mirror Calabi-Yau X̃,

K̃ = K̃abcw
awbwc , K̃a = K̃abcw

bwc , K̃ab = K̃abcw
c , (A.9)

where we also wrote the relevant contractions. Mirror symmetry leads to the same expres-

sions for the Kähler metric for the deformations of the complex structure as in the case of

the Kähler moduli space,

K
(Z)

ab̄
=

9

4

K̃aK̃b

K̃2
− 3

2

K̃ab

K̃
, K(Z)ab = −2

3
K̃
(

K̃ab − 3
wawb

K̃

)

, (A.10)

where by definition K̃abK̃bc = δac. The following relation for the first order derivative,

K(2)abKb = −2iwa where K(2)
a =

∂K(2)

∂Za
=

3i

2

K̃a

K̃
(A.11)

can also easily be verified.

Finally, let us derive a useful result. The volume of X can be expressed in terms of

the complex structure moduli as

V =
i

||Ω||2
∫

X
Ω ∧ Ω̄ . (A.12)

Using (A.1) and (A.12), the full Kähler potential defined in (3.3) and (3.4) can be written

in the form

K = − ln
(

16V2||Ω||2e−2φ
)

, (A.13)

from which it follows that

e−φeK/2 =
1

4||Ω||V . (A.14)

B 1/2-BPS states

In this paper we have focused on 1/4-BPS solutions. However, another possibility suggested

by the general structure of (3.14) and (3.15) is that there should also exist 1/2-BPS states

other than the domain wall solution detailed in [21]. Such solutions will admit a G2

structure in which the six-dimensional SU(3) structure is fibred over an interval that is not

a Euclidean coordinate direction. In this appendix we explore a couple of possibilities.
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B.1 Cosmic strings

First let us consider an alternative solution to (3.14) and (3.15) whose holonomy corre-

sponds to a fibration of SU(3) over the radial direction in polar coordinates. To this end

we impose that the warp factor, as well as scalar and spinor fields, should depend only on

the perpendicular distance ρ =
√

x2 + y2 from the origin, such that the solution is rota-

tionally invariant around the z-axis. This ansatz will lead to solutions that are topological

cosmic strings.

To obtain such solutions, note that we can satisfy (3.14) and (3.15) by choosing

B = B(ρ), AI = AI(ρ), and ζ = ζ(ρ). This simplifies the Killing spinor equations to

AI
ρ = −ie−BeK/2KIJ∗

DJ∗W
∗ ,

Bρ = ie−BeK/2W ,

0 = Im(KIA
I
ρ) ,

2ζρ = −Bρζ , (B.1)

where the ρ subscript denotes a derivative with respect to ρ. Furthermore, this requires

that the spinor ζ satisfies the constraint

ζ = σρζ , (B.2)

where we have defined

σρ =
x

ρ
σ1 +

y

ρ
σ2 =

(

0 e−iϕ

eiϕ 0

)

, (B.3)

for azimuthal angle ϕ. Note that equations (B.1) are parametrically identical to the Killing

spinor equations for the domain wall case described in [21], so we expect the solutions to

take the same form but with the y-direction substituted for the ρ-coordinate.

B.2 Black holes

We can generalize the above construction to three spatial dimensions. The metric is now

ds24 = e−2B
(
−dt2 + δijdx

idxj
)
, (B.4)

where we allow B to depend on all three spatial directions xi, with {i, j} = {1, 2, 3}.
For a naked singularity at the origin (a “black hole” solution) we would expect spherical

symmetry, with the SU(3) structure fibred over an interval corresponding to the radial

distance r from the singularity. The spin connection is

ω0 =
1

2
Biσ

i , ωi = i
1

2
ǫ k
ij Bkσ

j . (B.5)

Maintaining a dependence on all three spatial coordinates for now, the Killing spinor

equations (3.9) and (3.10) become

AI
i σ

iζ̄ = −ie−BeK/2KIJ∗

DJ∗W ∗ζ ,

Biζ = ie−BeK/2Wζ̄ ,

Im(KIA
I
i ) = 0 ,

2ζi = −Bi . (B.6)
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Specializing to the scenario where the fields and warp factor are independent of the zenith

and azimuthal angles θ and φ, respectively, gives

AI
r = −ie−BeK/2KIJ∗

DJ∗W
∗ ,

Br = ie−BeK/2W ,

0 = Im(KIA
I
r) ,

2ζr = −Brζ , (B.7)

where r =
√

xixi and the spinor satisfies ζ = σrζ, where

σr =
xi
r
σi =

(

cos θ sin θ e−iφ

sin θ eiφ cos θ

)

. (B.8)
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