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Abstract  

Monitoring the status and abundance of mammals, as well as establishing threats to biodiversity in different 

areas, is an essential management requirement in protected areas. Monitoring mammal species can assist 

in determining species interactions, patterns of behaviour and is important for further research, policy and 

management strategies. Water provision has implications for the preservation of wildlife, and is thus a 

management concern. Numerous studies monitoring mammal water utilisation patterns have employed 

traditional data collection methods, which are restricted primarily to diurnal observation during specific time 

intervals. Given the projected future impacts of global climate change on regional water availability, it is 

essential to investigate current water usage by mammals in the Kruger National Park (KNP), so as to better 

ascertain likely future water requirements under climate change scenarios. The use of remote photography 

for scientific observation, investigation and monitoring has many potential benefits, and an innovative and 

relatively new method through which one can observe mammal water source visitation patterns, is through 

the use webcams. There has been comparatively little research on mammal water requirements and 

visitation patterns at water provisioning sites using remote photography as a data collection method. Further 

to this, there is a gap in our knowledge concerning how daily climate variables (viz. temperature and rainfall) 

and astronomical conditions control water source visitation patterns at the finer temporal scale.  

This research primarily contributes to understanding contemporary water source visitation patterns and how 

this will influence future management decisions. At a broader scale, determining recent visitation patterns 

is critical in the context of projected future climatic changes and the associated water requirements for 

mammals of KNP. Webcam images were obtained for the period March 2012 - March 2014, captured at 

two artificial water sources in the central KNP. A clear divide is exhibited between herbivore and carnivore 

visitation patterns, with herbivores exhibiting exclusively diurnal patterns and carnivores’ nocturnal patterns. 

Significant relationships with Tavg intervals demonstrate that the majority of herbivores are shifting their 

visitation periods earlier in the day per 5°C increase in mean daily temperature, while the majority of 

carnivores are shifting their visitation periods later in the night per 5°C increase in mean daily temperature, 

however there is variability of species responses across the two study sites. Under the highest Tavg interval 

(30°C - 35°C) impala, warthog, southern giraffe, African buffalo and plains zebra exhibit a shift to earlier 

visitation by 1 – 6 hours, forcing them to utilise the water sources outside of their preferred temporal range. 

The influence of the timing of rainfall events indicates that the mean number of individual species sightings 

is significantly larger on days before rainfall compared to days after rainfall. The study highlights that water-

dependent herbivores utilise the artificial water sources in relative proportion to their abundance in the 

central KNP, while water-independent herbivores are avoiding these artificial water sources. The findings 

of this research could be used to supplement current water provisioning guidelines and plan for water 

provisioning efforts in future.  
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Chapter 1 - Introduction  

1.1 Overview 

The utilisation and management of artificial water sources in arid, semi-arid and 

seasonally-dry ecosystems is employed globally (Vaughan & Weis, 1999), with artificial 

water points providing permanent water to non-domestic animals in North and South 

America, Europe, Australasia and Africa. The supplementation of water, specifically in 

water-stressed environments, where mammals are exposed to high temperatures and 

challenged with seasonal shifts in the availability of this crucial resource, is especially 

important (Simpson et al., 2011). In the arid and semi-arid regions of the western United 

States and Australia, water has been provisioned in areas where few natural sources of 

water occur thereby encouraging mammals to utilise these water-scarce areas, providing 

water-dependent mammals with water during the dry season, and offsetting the 

anthropogenic exploitation of natural water sources (James et al., 1999; Rosenstock et 

al., 1999; Marshal et al., 2006).  

 

This provision of water, in addition to fire regimes, culling programs and fencing, is a 

particularly important wildlife management tool in water-limited savanna ecosystems 

(Owen-Smith, 1996; Smit et al., 2007a). Throughout Africa, particularly in water-stressed 

countries, a large number of protected areas have constructed water sources. Water is 

supplied in pans which are filled with water pumped by diesel engines, such as in Hwange 

National Park (Kamanda et al., 2008). These artificial water sources provide the 

necessary water to sustain mammals, particularly in the dry season and in arid 

environments, and have become essential management tools in maintaining mammal 

populations in most African National Parks (Tefempa et al., 2008).  

 

In South Africa, many private game reserves and protected areas under South African 

National Parks (SANParks) management provide water to mammals: Addo Elephant 

National Park (Merte et al., 2010), Kalahari Gemsbok National Park (Child et al., 1971; 

Bothma, 2005), Klaserie Private Nature Reserve (Parker & Witkowski, 1999), Kruger 
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National Park (Smit et al., 2007a), Manyeleti Game Reserve (Cronje et al., 2005), Sabi 

Sand Reserve (Thomas et al., 2008) and Tembe Elephant Park (Shannon et al., 2009) 

amongst others. 

 

As is typical of water provision globally and in Africa, supplementing water in (KNP) is 

particularly important where water is historically scarce and its availability temporally and 

spatially variable (Pienaar, 1970). However, the addition of artificial water sources into 

savanna ecosystems is a controversial issue (Owen-Smith, 1996; Smit et al., 2007a; Smit 

& Grant, 2009); with the identification of multiple negative consequences due to the 

excessive supply of surface water being notably the impact on vegetation and rare 

antelope species from studies in KNP (Thrash et al., 1991a,b; Thrash et al., 1993a; 

Harrington et al., 1999; Thrash, 1997) the Kgalagadi Transfrontier Park (Knight, 1995a), 

Kutse Game Reserve (Hitchcock, 1996) and Ruaha National Park (Epaphras et al., 2008). 

Consequently, this evidence led to a recent review of water provision policies and the 

adjustment in the number of active artificial water sources in KNP (Cain et al., 2012; Smit, 

2013) and elsewhere, in Hwange National Park, the number of open artificial water points 

is alternated to control elephant population size (Chamaillé-Jammes et al., 2007a). In 

contrast, it has been suggested that the number of artificial water sources be increased 

in the Serengeti and Waza National Parks to increase the water supply to animals and so 

lessen the impact on the vegetation and soil surrounding the natural sources of water in 

these environments (Tefempa et al., 2008; Hagwet et al., 2014).   

 

Water is considered an essential resource (Pienaar, 1970), crucial to the survival of both 

terrestrial mammals and vegetation, and which forms the habitat for biota of aquatic 

ecosystems, including rivers, streams and pans (Pienaar et al., 1997). The scarcity of this 

vital resource therefore threatens the existence and persistence of biodiversity. Water 

availability and supplementation thus have important implications for the preservation of 

biodiversity, and is a management concern in conservation areas. Despite conflicting 

perceptions regarding management, artificial water sources remain a necessity in 
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conservation areas where natural permanent water is limited or absent (Smit & Ferreira, 

2010).  

 

The overarching management focus of KNP, as guided by the Objectives Hierarchy of 

SANParks, is to ensure the survival of animals and vegetation in a natural environment 

which accommodates fluctuations and variability in the system (SANParks, 2003). Water 

provision in KNP has a long history, dating back almost 80 years, but the management 

thereof has changed as knowledge has advanced. The most recent management strategy 

governing artificial water source provision in KNP follows an adaptive management and 

systems approach, defined as an evolving method of implementing interventions and 

gaining knowledge on how they influence ecosystems (Smit et al., 2008). This approach 

seeks to imitate, as far as possible, the natural occurrence of surface water availability in 

the park (Smit et al., 2008). Despite this, it is recognised in KNP and other conservation 

areas under SANParks custodianship that artificial water sources remain vital as 

protected areas are unnatural, closed systems that must protect biodiversity whilst 

sustaining tourism (Smit et al., 2008; Venter & Smit, 2011).  

 

Camera traps and other remote photography techniques have recently been used as 

novel survey tools, and have been recognised as a valuable and cost-effective technology 

for the study of animal abundance and density across spatial and temporal scales (Silver 

et al., 2004; Heilbrun et al., 2006; Chapman & Balme, 2010; Gerber et al., 2010). 

However, there is a pressing need for research to comparatively evaluate the benefits of 

different animal monitoring techniques in conservation areas (Silveira et al., 2003). The 

use of remote photography is an innovative method, with little published work, through 

which to monitor the drinking patterns of mammals, and to determine how water source 

use is influenced by weather, landscape and predation risk/conflict avoidance. Webcams 

or motion-sensor cameras overlooking artificial water sources provide an economical 

opportunity to undertake research with minimal disturbance to mammals. To date, there 

has been limited research investigating water requirements and usage habits of mammals 

using remote photography as a data collection method. Recent analyses of webcam 
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imagery by Hayward & Hayward (2012) documented the timing of waterhole visitation by 

mammals at five southern African wildlife reserves highlighting seasonal patterns of use. 

However, there remains a gap in our knowledge concerning how daily climate variables 

(viz. temperature, rainfall and wind) and variability therein impact water sources usage 

patterns at fine temporal scales.  

 

1.2 Background and Context 

Water provision in KNP has a long history which has moved through different phases as 

management and knowledge have evolved. The early recognition by Warden James 

Stevenson-Hamilton that natural water sources were drying up in KNP led to the 

conception of the Water-for-Game project, which was initiated in 1933 to supply water to 

mammals during drought years (Stevenson-Hamilton, 1933). Implementation was done 

so without any specific design and it was not envisaged that providing extensive additional 

sources of water to mammals might have negative impacts on the ecosystem (Pienaar, 

1970).  

 

In addition to the perception that the natural sources of water in KNP were insufficient to 

support the mammal populations (Pienaar, 1970), the deteriorating flow and pollution of 

the perennial rivers in KNP in the mid 1940’s provided further motivation for the provision 

of alternate sources of water (Pienaar et al., 1997). This pollution resulted in poor water 

quality, whilst siltation of rivers occurred due to industry, agriculture and expanding rural 

populations bordering KNP (Pienaar et al., 1997). In addition, artificial water sources were 

established due to increasing mammal density in KNP, which placed additional pressure 

on the remaining natural water sources. Overgrazing around permanent water sources 

became a feature of the landscape as mammals congregated around these sources 

during the dry seasons (Pienaar, 1970).  
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During the early 1960's, rigorous research undertaken in KNP provided information on 

mammal migration patterns and specific habitat needs of mammals, particularly for rare 

or threatened species. Counteracting the migration of mammal populations to water 

resources outside of the park became essential following the erection of fences, which 

started in the early 1960's (Pienaar, 1970). This increased knowledge and more focused 

objectives reshaped the principles of the Water-for-Game project, which aimed to i) 

encourage mammals to stay in the park during the dry season, ii) to expand the grazing 

extent of mammals, and iii) to increase the density of mammals in KNP (Pienaar, 1970). 

A revised approach detailed:  

• Preserving and securing natural water sources; 

• Supplementing water only in areas where natural sources of water occurred;  

• Building dams only if they had the potential to supply water to mammals throughout 

a drought period and if they accommodated the needs of a range of different 

animals; and 

• Constructing concrete basins to minimise water loss through evaporation (Pienaar, 

1970).  

 

In 1997, the water provision policy in KNP was further revised (Pienaar et al., 1997) due 

to the recognition that the extensive provision of water to mammals was having various 

negative impacts on the environment and on specific species (Smit, 2013):  viz. the impact 

on vegetation (Thrash, 1998a; Thrash et al., 1993a) and soil (Thrash, 1997), surrounding 

artificial water sources due to overgrazing and a decline in roan antelope population 

numbers (Harrington et al., 1999). The overall goal of the revised water distribution policy 

for KNP was to replicate a more natural pattern of water supply to mammals that would 

both support animals whilst still providing tourists with opportunities to view game 

congregating around water sources during the dry season (Pienaar et al., 1997).  
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The current systems approach to managing water provision in KNP promotes a more 

natural distribution of water supply in order to imitate the natural variability of water 

availability in different months, seasons and years in different areas of the park (Smit et 

al., 2008). In line with this, KNP management has redressed the widespread and uniform 

water provision efforts of the past since the late 1990's through active and selective water 

source and dam decommission and/or destruction (Smit, 2013).  

 

The principles guiding the current provision of artificial water in KNP can be summarised 

as follows:  

• Natural water sources are reliant on rainfall; 

• Wet and dry periods due to the cyclical rainfall patterns influence surface water 

availability; 

• KNP is no longer a completely natural system, with the movement of animals 

constrained within the park; and 

• External influences impact on the quantity and quality of water in perennial rivers 

of KNP (Pienaar, 1970; Pienaar et al., 1997).  

 

The current water provision policy for KNP supports the continued closure of a number of 

artificial water sources in accordance with knowledge gained and the ‘learn-by-doing’ 

adaptive management approach (Smit, 2013). Three main guidelines are used by park 

management when considering the supplementation of water in KNP: 

• Water should not be provided in areas where natural sources of water do not occur; 

• Water should not be provided uniformly across the landscape, which would 

influence natural distribution patterns of mammals; and 

• Water should be provided under extreme climatic conditions, where human-

induced constraints affect the natural availability of water in the park (Pienaar et 

al., 1997). 
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In line with these guidelines, water points and dams in KNP have been evaluated 

according to specific criteria to determine whether they should be closed to animals 

permanently, closed temporarily, to remain operational, or be used for other management 

purposes (Pienaar et al., 1997). The latter includes boreholes that are no longer 

operational as drinking points, but are reserved for use by technical services for road 

works or other maintenance purposes (Zambatis, pers comm, 2015). The decision to 

close a number of dams in KNP is due to the negative impacts that dams have on the 

river system, not providing a suitable, natural habitat for aquatic biota, their visually 

unappealing presence in a natural environment (Pienaar et al., 1997). Additionally, during 

drought, dams dry up and the concentration of water-dependent herbivores that have 

artificially built up around the dams move to natural water bodies with the consequent 

oversaturation of natural water sources such as rivers/pools.   

 

The systematic closure of water points and dams has been a simultaneous process, with 

the areas in which these structures were placed being rehabilitated (Pienaar et al., 1997). 

Approximately 230 of the 365 boreholes will eventually be permanently closed under the 

revised water provision policy and approximately 50 boreholes will be temporarily closed, 

used as standby water sources with possible re-opening under adaptive conditions. Water 

will not necessarily be supplemented uniformly across the landscape during water 

shortage situations; the current thinking being to provide water, as far as possible, in 

areas where it occurs naturally (Zambatis, pers comm, 2015). The process of curtailing 

the extensive artificial water supply in KNP and determining which water sources be 

permanently or only temporarily decommissioned is complicated as many different factors 

need to be considered (Smit, 2013). Popular tourist water points, which occur near roads 

and where there are no significant environmental impacts, will remain operational 

(Pienaar et al., 1997). If a natural river pool exists in a location near to a water point, the 

natural river pool will be used as an alternative for both animal drinking purposes and 

tourist benefit, and the artificial water point will be closed (Zambatis, pers comm, 2015). 

A timeline summary of water provision in KNP is presented in Table 1.1. 
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Table 1.1 History of water provision in Kruger National Park, 1930 - 2015. 

Year Activity of the Water-for-Game project 

1933 • Public effort to raise money in order to drill boreholes in waterless areas 
(Stevenson-Hamilton, 1933).  

• The drilling of boreholes commenced in September 1933, with the first 
borehole sunk at Pretoriuskop rest camp (Pienaar, 1985).  

• Four boreholes completed by the end of that year (Stevenson-Hamilton, 
1933).  

1935 - 1939 • Construction of the Kumane earth dam was completed in 1935 (Pienaar, 
1985).  

• Boreholes at Gudzane, Bangu, Shivulani, Ngwenyene, Malopene North and 
the Malopene Gate were drilled (Pienaar, 1985).  

• In 1937 two earth dams were constructed on the Mooiplaas Vlei and Dzombo 
Spruit and construction of the Folly dam was completed (Pienaar, 1985). 

• In 1939 windmills were constructed at Stangene, Babalala, Nwarihlangari 
South, Nkulumbene North, Nwashitsumbe North, Dzombyane, Mashikiri, 
Masandje, Nkovakulu and Klopperfontein (Pienaar, 1985). 

1940 - 1945 • By the end of 1940, six dams had been built, and thirteen boreholes and eight 
wells had been drilled (Pienaar, 1970). 

• Eileen Orpen dam and Mlambane dam were built in 1944 (Pienaar, 1970; 
Pienaar, 1985).  

• In 1945 two concrete dams were constructed in the Isweni River and Tsange 
(Pienaar, 1985). 

1949 - 1951 • Funds were raised which enabled the Water-for-Game project to continue 
and for more boreholes to be drilled (Pienaar, 1970; Pienaar, 1985).  

• Fifty-one new boreholes were drilled in 1950; however, only 46 provided 
water. 

• An additional 8 boreholes were drilled in 1951 (Pienaar, 1970; Pienaar, 
1985). 

• Construction of the Mlondozi dam was completed in 1951 (Pienaar, 1985). 

1952 • Concrete weirs were erected on several seasonal rivers, forming the 
Gudzane, Mlondozi and N'Wanetsi dams (Pienaar, 1970), along with the 
construction of the Lindanda, Ngotsa, Nguweni, Bangu No.1, and Bangu 
No.2 concrete dams (Pienaar, 1985).  

• Two boreholes were sunk (Pienaar, 1985).  

• A total of 56 boreholes completed the borehole project at this stage (Pienaar, 
1985).  

1954 • In 1954 two earth dams were constructed at Naphe Spring and Matukwala 
(Pienaar, 1985).  

1955 • Board of Trustees agreed that additional dams and boreholes were needed, 
particularly along the western boundary to encourage animals to stay in the 
park (Pienaar, 1970; Pienaar, 1985).  

• Biyamiti and Phugwane concrete dams constructed (Pienaar, 1985).  

1956 - 1960 • Construction of Klopperfontein dam and Ngwenyeni dam completed in 1956 
(Pienaar, 1985).  

• Earth dams constructed at Lipape, Mhlanganzwane, Bubube, Vutomi, 
Pswaeni and Mpanamana (Pienaar, 1985).  

• Construction of the Shisakashangodzo dam completed in 1958 (Pienaar, 
1985). 

• In 1960, two concrete dams constructed on the Tswiriri and Nwanitsana 
spruits and two gauging-weirs were erected on the Biyamiti and N'Wanetsi 
rivers (Pienaar, 1985). 
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1961 - 1970 • Research supports the drafting of a more formal water provision plan 
(Pienaar, 1970). 

• Boreholes at Shiyanamane, Vlakgesicht, Nwatindlofu, Ngwanutsatsa and 
Kolwane were drilled to support animals during the severe drought period 
(Pienaar, 1985).  

• Construction completed on 14 earth and concrete dams (Pienaar, 1985).  

• Engelhard dam was built in 1970; the Olifants-Satara pipeline and 3 earth 
dams were built on the Mtshawu, Nyamundwa and Mareya spruits (Pienaar, 
1985). 

1971 - 1977 
 

• The Water-for-Game project continued through the wet period of 1971 - 
1977, with earth dams built on the Newu, Stolsnek, Mpondo, Mashengane, 
Nkulumbeni north, Kokodzi, Mashokwe, Manzemba, Dzombo, and 
Maswitakali spruits (Pienaar, 1985). 

• Large concrete dam constructed at Sirheni in 1971 (Pienaar, 1985).  

• In 1972 the Wik-en-Weeg dam was built (Pienaar, 1985).  

• In 1973 construction of the Pionier dam and Mingerhout weir was completed 
and the construction of the Black Heron weir commenced (Pienaar, 1985). 

1981 - 1990 
 

• Early 1980's the drilling of boreholes was completed (Pienaar, 1985). 

• The Mulalane Spruit was dammed in 1981 and the Silwervis dam was 
completed in 1982 (Pienaar, 1985).  

• Initiation of KNP Rivers Research Program in 1987 (Pienaar et al., 1997). 

• In 1988 the first solar-energy pumps were fitted at boreholes (Pienaar et 
al.,1997) 

• During the 1980s and beginning of the 1990s it was recognised that the 
extensive provision of water throughout KNP had a range of negative impacts 
on the environment (Smit, 2013). 

1994 • Twelve artificial waterholes were closed and the Stangene earth dam was 
emptied (Pienaar et al., 1997; Grant et al., 2002).  

1995 • In total, 365 boreholes had been drilled and 50 earth dams had been 
constructed between 1933 and 1995 (Gaylard et al., 2003).  

1997 • Revision of KNP water provision policy (Pienaar et al., 1997; Smit, 2013). 

• Recommendation that 132 boreholes be closed and 151 boreholes remain 
operational; during phase one of the revised water-distribution policy 
(Pienaar et al., 1997). 

2011 • Approximately 200 of the 365 boreholes constructed decommissioned since 
the revision of the water provision policy in 1997 (Venter & Smit, 2011). 

2012 • Immediate closure approved for 6 concrete weirs, 7 concrete dams and 11 
earthen dams (Zambatis, 2012). 

• Closures of water points, dams and weirs carried out simultaneously, and the 
process of closing down structures determined by availability of funds and a 
workforce to complete rehabilitation (Zambatis, pers comm, 2015).  

2014 • Process of decommissioning waterholes continues 

2015 • 34 re-commissioned water points and an additional number of water points 
to remain open, are currently operational or kept in reserve to supplement 
water during a drought, or to provide water for alternate management 
activities (Zambatis, pers comms, 2015). 

• By the end of 2015, 5 earthen dams to be closed and 8 earthen dams, 1 rock 
dam and 1 fountain to be closed with alternative access to natural water 
sources provided (Zambatis, 2012). 
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1.3 Problem Statement  

Managers of conservation areas worldwide are confronted with many challenges. These 

have become increasingly multifaceted over recent decades and must consider the 

diverse nature of the abiotic and biotic environment under custodianship, the increasing 

requirements of tourists, population growth and the need for more land for development, 

and the threat of global climate change (Venter et al., 2008). The adaptive management 

approach, as employed by SANParks, takes into account possible but unaccounted for 

changes in the social, political, economic, environmental and political landscape, and the 

transformation of knowledge and principles (van Wilgen & Biggs, 2011). Whilst socio-

political changes are less easily forecast, understanding current water use requirements 

by mammals in KNP under contemporary climatic conditions is essential in projecting 

future impacts of global climate change on water availability.  

 

Global climate change will impact different regions in different ways and certain regions, 

such as southern Africa, are especially susceptible to the impacts of a changing climate 

(Magadza, 1994). Research on climate change and its impacts in southern Africa indicate 

that "... South Africa is likely to experience substantial climate change in the next decades 

and that the effects of this change, especially on biodiversity, will be dramatic" (van 

Jaarsveld & Chown, 2001). Of the multiple consequences that are projected to occur due 

to extreme changes in climate in coming decades, availability and the quality of water are 

major concerns (Davis, 2010). Future climate change will have a direct impact on water 

supply as the climate system and the earth’s hydrological cycle are closely linked (Davis, 

2010), and the hydrological cycle is significantly influenced by even slight shifts in the 

climate system (Scholes & Biggs, 2004).  

 

The lowveld region of north-eastern South Africa, where KNP is located, is an area that 

is already compromised due to limited water resources (Moon et al., 1997). Climate 

change and extreme changes in temperature and precipitation are likely to cause 

additional water stress in this already water sensitive area. The lowveld is associated with 
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variation from extreme drought periods to periods of heavy rainfall (Mason, 1996). Even 

minor changes in rainfall in this area due to climate change are expected to significantly 

affect the occurrence and severity of drought periods (Mason, 1996). The likely future 

temperature and rainfall projections for north-eastern South Africa include increases in 

maximum, mean and minimum temperatures, increases in the number of annual rain 

days, and an increase in the mean annual rainfall (Davis, 2010). The quantity of water 

available is determined by the amount of rainfall received and by evaporation rates 

(Scholes & Biggs, 2004). Although it is envisaged that rainfall is likely to increase, it is 

also expected that evaporation rates are likely to increase disproportionally due to 

increasing temperatures (Davis, 2010); reducing both surface water quantity and the 

duration of availability. In African savanna ecosystems, with their distinct wet and dry 

seasons, rainfall is an important driving force in the system (Mills et al., 1995), influencing 

species population numbers amongst other things (Ogutu & Owen-Smith, 2003). 

Increasing global temperatures are expected to enhance dry season drought conditions 

in savannas through increased evaporation, intensifying water-stress for animals and 

vegetation (Ogutu & Owen-Smith, 2003). Management in conservation areas need to 

consider that shutting down artificial water sources may influence not only the adjusted 

behaviour of mammals in their movement patterns and habitat ranges, but also the impact 

of changing regional rainfall patterns which will further significantly affect water quantity 

and availability, thus impacting on mammals and their water-use behaviours. (Ryan & 

Getz, 2005). 

 

1.4 Research Rationale 

It is becoming increasingly more important for conservation areas to incorporate 

information on climate change/variability into management strategies, and to understand 

the likely effects such change/variability may have on mammal behaviour and distribution 

patterns, health and population biology. It is also crucial that relatively cheap, reliable 

methods of monitoring mammals be identified (Silveira et al., 2003) and tested. This study 

therefore aims to demonstrate that webcam imagery can be used as a reliable data 

source from which to answer valid scientific questions related to drinking ecology and 
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climate change. Any management decisions taken at present need to have considered 

future challenges and need to have been informed by knowledge gained from question-

driven research (Venter et al., 2008). To this end, management and decision-makers 

could utilise information on water source reliance and mammal behaviours to supplement 

their current water provisioning guidelines and plan for water provisioning efforts in future, 

in view of the projected climate change impacts in conservation areas. 

 

It has been projected that by 2050, 69% of South African mammals could be under threat 

of extinction due to mid-range climate change (Thomas et al., 2004), whilst 66% of 

mammal species in KNP may be at risk of extinction (Erasmus et al., 2002). Climate 

change will have multiple impacts on biodiversity, initiating shifting rainfall patterns, 

increasing extreme climatic events such as droughts and flooding and altering El Niño 

cycles (Hannah et al., 2002), which will consequently influence the distribution of water. 

In light of the predicted pressures on water availability due to global climate change, there 

are certainly going to be implications for mammal water-use behavior. Mammals will need 

to contend with both increasing temperature and changing rainfall patterns, and 

consequently increased evaporation, therefore resulting in changes in drinking water 

distribution and availability. The number of days which fall either side of species thermal 

tolerance ranges, are likely to increase (Parmesan et al., 2000).  

 

Consequently, these predicted changes are likely to drive responses in mammal 

behaviour, over daily, monthly, seasonal and annual time scales, and thus their potential 

to tolerate changes in climatic conditions will be based on adjusting activity patterns in 

relation to extreme and variable temperature and rainfall conditions (Shrestha et al., 

2014). Knowledge on mammal reliance on artificial water sources, and thus their water 

requirements, as well as other behaviours, is crucial to understanding how mammals are 

impacted by climate change (Fuller et al., 2014).  Recent findings by van Wilgen et al. 

(2015) reported that the temperature increases within various SANParks already exceed 

the projected temperature increases for specific regions in southern Africa. Thus 

suggesting that mammals within these protected areas are currently being influenced by 
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climate change (van Wilgen et al., 2015). An increase in mean minimum and maximum 

temperatures has also been reported for KNP. Additionally, across the majority of national 

parks there has been an increase in days with temperatures > 35°C, which will likely 

impact existing water sources (van Wilgen et al., 2015).  

 

It has also been noted that rainfall is moving towards a more erratic seasonal pattern, 

particularly in KNP and Mapungubwe National Park, and consequently extended dry 

periods (van Wilgen et al., 2015). The intensification of shifting rainfall patterns due to 

climate change is likely to influence mammal populations particularly in semi-arid and arid 

national parks and game reserves (Hulme, 2005; Owen-Smith & Ogutu, 2012), as this is 

likely to affect both water availability and distribution. Variable annual rainfall patterns can 

greatly restrict the number of mammals that an environment can support, thus having an 

impact on mammal populations (Hulme, 2005). It is likely that mammals which depend on 

water for drinking as well as for thermoregulation purposes, may be more influenced by 

shifting rainfall patterns, as the availability of pools of water may be restricted during 

periods of low rainfall. Extended dry periods due to a reduced rainfall season, as well as 

increasing mean minimum and maximum temperatures (van Wilgen et al., 2015) has 

consequences for water-dependent species and their physiological water requirements. 

Therefore, the supplementation of water through artificial water sources is important to 

maintain mammal population numbers (Chamaillé-Jammes et al., 2007b). 

 

1.5 Study Aims and Objectives 

The primary aim of this research is to determine recent (March 2012 – March 2014) 

patterns of water source utilisation for mammal, and species-associations, under 

contemporary climatic conditions, using complete, high temporal resolution webcam 

imagery in the central KNP (Figure 1.1). Embedded within this is the aim to expand our 

knowledge of climate-related mammal drinking and water-use trends by utilising a unique 

wildlife monitoring methodology.  
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1.5.1 The Specific Aims are: 

• To determine the extent to which different climatic and environmental conditions - 

in particular extreme climatic events – influence the temporal usage of artificial 

water sources by mammals in the central KNP.  

• To compare three scales of mammal census data for the Satara area of KNP, using 

site (webcam imagery), area (local counts conducted by co-workers) and regional 

(aerial census data provided by SANParks) mammal abundance data.  

 

1.6 Objectives 

1.6.1 Water Source Visitation Patterns 

• To track mammal visitation patterns at two artificial water sources, over a 24- and 

25-month period using remote imagery, in the central KNP. 

• To establish mammal water source visitation patterns (daily and monthly) and 

reliance under ‘normal’ rainfall and temperature conditions and more particularly 

under ‘extreme’ (any conditions that fall outside of the standard deviation for the 

data analysed) climate conditions. 

• To establish mammal water source utilisation behaviour patterns (daily and 

monthly) under ‘normal’ rainfall and temperature conditions and more particularly 

under ‘extreme’ climate conditions. 

• To establish whether various mammals utilise the artificial water sources in 

proportion to their abundance in the area or if specific mammals favour or avoid 

these artificial water sources.  

• To determine the impact of various other environmental conditions (sunrise, sunset 

and moon phases) on water source visitation patterns and behaviours.  

• To forecast water source visitation patterns based on specific climate projections 

for eastern South Africa.  
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Figure 1.1: Map of the Kruger National Park, indicating the main rest camps, main tarred tourist roads and 

main perennial rivers. An inset map indicates the study region (the central part of the park), the two study 

sites (Orpen and Satara), the main tarred tourist roads and seasonal rivers. 
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Chapter 2 - Environmental Setting 

2.1 Introduction 

This research dissertation is a desk-top study focused on KNP, South Africa – specifically 

using imagery captured by webcams at the centrally-located Satara and Orpen artificial 

water sources to improve understanding of mammal water-use requirements under, in 

particular, extreme climatic conditions. KNP is known globally due to the large area under 

conservation and is considered heterogeneous due to various geological constituents, 

the alternating wet and dry periods, the abundant mega-fauna and the important 

regulatory function of fire in the system (Pickett et al., 2003). This chapter provides an 

overview of the landscapes within central KNP, with a particular focus on water in the 

landscape and water provisioning, climate, and mammal distribution and abundance. 

There is an interaction between components in the different landscapes, with climate, 

geomorphology/topography, geology and soils and water in the landscape influencing 

vegetation composition, thus impacting on mammal distribution and abundance within 

these areas in central KNP (Figure 2.1).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CLIMATE 
- Rainfall 

- Temperature 

 

GEOLOGY 

SOILS GEOMORPHOLOGY  
TOPOGRAPHY 

LANDSCAPES 
Gertenbach (1983) 

VEGETATION 
- Composition 
 

WATER-IN-THE-
LANDSCAPE 

- Natural vs. 

Artificial sources 

MAMMALS 
- Distribution 
- Abundance 

Figure 2.1: Schematic representation of the abiotic and biotic components within the different landscapes, 

which impact mammal distribution and abundance in central Kruger National Park. The dashed arrows 

link the components in the Gertenbach (1983) landscape classification system.  
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2.2 Regional Description of the Lowveld 

The lowveld region of South Africa is bounded by the Drakensberg Escarpment to the 

west, the vast Mozambique coastal plain to the east (Venter et al., 2003), the 

Soutpansberg Mountain range in the north and the Kingdom of Swaziland in the South 

(Pollard et al., 2003). KNP occupies a large proportion of the semi-arid lowveld and 

straddles the Limpopo and Mpumalanga provinces. International borders with 

Mozambique and Zimbabwe provide the eastern and northern park boundaries, 

respectively. The north-western, south-western and southern boundaries of KNP abut 

densely populated settlements (Venter, 1990). The Gonarezhou National Park in 

Zimbabwe and the Limpopo National Park in Mozambique have been unified with KNP to 

form the Great Limpopo Transfrontier Park (GLTP) (Freitag-Ronaldson & Venter, 2008). 

Adjacent to the southern border of KNP there is large-scale intensive crop production 

including sugarcane, citrus and other sub-tropical fruits and vegetables, as well as cattle 

ranching (Grossman & Gandar, 1989).  

 

2.3 SANParks / Kruger National Park Conservation and Management Mandate 

In KNP, research and management are closely linked (Mabunda et al., 2003), with 

research playing an integral part in changing management objectives and instituting 

management policies and practices over the years. Throughout the history of KNP, the 

main aim of management has been to conserve the rich diversity of animals and 

vegetation and maintain the ecosystems, as far as possible, in their natural and unspoilt 

condition (Joubert, 1986). During the 1920’s and 1930’s, the management of wildlife was 

driven largely by two conflicting perspectives; those of the national park and those of 

scientists, which included veterinarians (Carruthers, 2008). The initial challenges that 

park warden Colonel Stevenson-Hamilton faced in managing the mammals of KNP were 

extensive drought periods, low numbers of mammals and damaging wildfires. These 

three particular management issues (viz. water provision, controlling mammal 

populations and burning) consequently shaped much of the management history in KNP 

prior to the 1990's (Joubert, 1986). Social and political transformation of the 1980’s, as 
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well as adjustments in opinions on how ecosystems should be managed, led to a more 

hands-off, less 'excessive' approach in managing KNP (Mills et al., 2003). The main 

management interventions have been culling of both carnivores and herbivores, which is 

no longer carried out; artificial water provision, which is currently being reduced; fencing 

the park, which has been removed between the park and private reserves; burning of 

vegetation every three years, which is now done in a more adaptive manner; and the 

construction of roads and firebreaks (Eckhardt et al., 2000).  

 

Past animal population regulation practices in KNP involved the reduction in numbers of 

predators from the early 1900's through to the 1960's, due to declining ungulate 

population numbers; herbivore population reductions during the 1960's and 1980's, due 

to the overutilization of habitat by high density species (Freitag-Ronaldson & Foxcroft, 

2003), and the culling of approximately 16,000 elephants during the period between 1966 

and 1994 to maintain the numbers at ~7,000 (Venter et al., 2008). Water provision, 

through the establishment of ~365 artificial waterholes and ~70 dams, aimed to augment 

water during drought periods throughout the park (Pienaar, 1970). The management of 

both mammal populations and water provision in the park has subsequently changed 

under the new KNP management strategy.  

 

During the period 1995 to 2000, KNP adopted a new adaptive management strategy, 

specifically Strategic Adaptive Management (SAM), which incorporates the notion of 

spatial and temporal heterogeneity in the landscape (Venter et al., 2008). SAM involves 

the process of establishing a program in which to monitor the state of the environment 

using specified limits called Thresholds of Potential Concern (TPC's) (Mills et al., 2003), 

which facilitate management decisions in achieving a 'desired ecosystem state' (Venter 

et al., 2008). SAM is a progressive and adaptive management strategy, in which the 

contribution of scientific knowledge is fundamental (Biggs & Rogers, 2003). The 

underlying principal of the strategy is to 'learn-by-doing', using relevant scientific 

information and adapting management decisions accordingly (Roux & Foxcroft, 2011). 
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Under SAM, a hierarchy of objectives prioritise the management goals of KNP, and these 

objectives fall under the over-arching aim of the park (Biggs & Rogers, 2003).  

 

Current management thinking on elephant population regulation practices, using SAM 

principals, is that by returning the temporal and spatial availability of resources (i.e. water 

distribution) to a more natural distribution across the landscape will promote a more 

natural population response to environmental factors (SANParks, 2012). Similarly, 

current management thinking on water provision in the park involves a systems approach 

under the broader SAM, in which the main management aim is to, as far as possible, 

simulate a natural pattern of water distribution throughout the park (Smit et al., 2008), 

leading to the wide-scale closure of both artificial water sources and artificial dams 

(Venter et al., 2008). There is a large contrast in water provision between KNP and the 

western private protected areas directly west of Orpen, with water point density 

significantly higher in the private protected areas compared to KNP (Child et al., 2013).  

 

Management of KNP is facing enhanced challenges during the 21st century; 

predominantly social factors and global environmental concerns, including climate 

change and nitrogen-deposition originating from outside the park (Venter et al., 2008), as 

well as the concern of bush encroachment as a result of CO2 fertilization (Bond & Midgley, 

2012; Smit & Prins, 2015). A forward-looking management strategy such as SAM is 

therefore necessary when considering the potential future impacts that are likely to affect 

the conservation efforts of KNP. 

 

2.4 Water in the Landscape and Water Provisioning  

Due to topographic differences and the underlying geology in KNP, the density of streams 

is higher on the western granite than in the eastern basaltic plains (Venter & Bristow, 

1986). The natural surface water sources of KNP are classified as either riparian (viz. 

rivers, streams, pools and wetlands) or savanna (viz. springs, pans and vleis), with 
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specific riparian and savanna sources providing the only permanent sources of water 

(Gaylard et al., 2003). Ten main river systems cross the lowveld (Partridge et al., 2010), 

with seven major rivers entering and, together with their tributaries, draining KNP from 

west to east (Venter & Bristow, 1986). From north to south, these include the Limpopo, 

Luvuvhu, Shingwedzi, Letaba, Olifants, Sabie and Crocodile Rivers. With the exception 

of the Shingwedzi, the aforementioned rivers are classified as perennial (Eckhardt et al., 

2000). Increasing pressure has been placed on these rivers due to water extraction 

external to the park, primarily for large- and small-scale crop farming, industry and 

forestry, which consequently diminish flow in the river systems (Moon et al., 1997). The 

riparian vegetation surrounding major rivers in KNP has been impacted by recent flood 

events, especially along the Sabie, Shingwedzi and Olifants Rivers (Viljoen, 2015).   

 

There are also a number of ephemeral rivers throughout KNP - such as the Shingwedzi, 

which only flow during the wet season (Venter & Bristow, 1986); however, pools and pans 

which have developed in the riverbed caused by flooding may provide a permanent 

source of water throughout the dry season (Viljoen 2015). Natural ephemeral water 

sources in KNP are spatially and temporally variable and are largely dependent on 

preceding catchment-level rainfall. During years when rainfall exceeds the average, a 

number of pools hold water and even seasonal rivers continue to flow during the dry 

season, conversely, in years of below average rainfall, water availability may be restricted 

to only a small number of deep pools during the dry season (Gaylard et al., 2003).  

 

Four main seasonally flowing rivers in the central region include the Nwaswitsonto, Sweni, 

Nwanedzi and Timbavati. Numerous dams and artificial water sources were constructed 

throughout the park, of which ~110 were established in central KNP (Gaylard et al., 2003). 

Many of these dams and artificial water sources are in various stages of closure under 

the revised water provision policy (Pienaar et al., 1997) (Table 2.1; Table 2.2); specific 

artificial water sources will be closed in the short- (by the end of 2015) to long-term (by 

the end of 2020).  
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Table 2.1: The closure schedule for five artificial dams in the Kingfisherspruit and Satara ranger sections in 

central Kruger National Park (Zambatis, 2012). 

Section Name Type Closure Schedule 

Kingfisherspruit Hartbees Fontein Earthen dam Closed, no alternative 

KFI Rabelais Earthen dam Closed, with alternative  

KFI Shimangwaneni  Earthen dam Closure by 2020, with alternative 

KFI Shisakarangondzo  Concrete dam  Closed, no alternative 

Satara Marheya  Earthen dam Closure by end of 2015, no alternative 

 
 

Table 2.2: The closure schedule for twenty artificial water-points, six water-points earmarked as technical 

services boreholes and four drought water-points in the Kingfisherspruit and Satara ranger sections of 

central Kruger National Park (Zambatis, 2012).  

Section Name Status Closure Schedule 

Kingfisherspruit Eileen Closed To remain closed 

KFI Fairfield Open  Closure by end of 2015, with alternative (TSB)  

KFI Kolwana Closed To remain closed 

KFI Leeubron Open Closure by end of 2015, with alternative (TSB) 

KFI Mahlabyanini Closed To remain closed 

KFI Mondzweni Closed To remain closed 

KFI N'wamatsatsa Closed To remain closed 

KFI N'watinhlarhu Closed To remain closed 

KFI Rabelais Open Closure by end of 2015, with alternative (TSB) 

KFI Red Gorton Closed To remain closed 

KFI Talamati Closed DWP 

KFI Timbavati Closed To remain closed 

KFI Tswaene Closed To remain closed 

Satara Girivana No2 Closed DWP 

SAT Mapetane Closed No alternative 

SAT Marheya North Closed To remain closed 

SAT Mavumbye Closed No alternative (TSB) 

SAT MhisanaMond Closed DWP 

SAT Milaleni Closed To remain closed 

SAT Muzandzeni  Open Closure by end of 2015, with alternative (TSB) 

SAT Nkambana Closed To remain closed 

SAT Nsemani Closed To remain closed 

SAT Ntomeni Closed To remain closed 

SAT N'wanetsi East Closed To remain closed 

SAT Rizandzeni Closed To remain closed 

SAT Rockvale Open Closure by end of 2015, with alternative (TSB) 

SAT Shibotwana Open DWP 

SAT Shishangani Open Closure by end of 2015, with alternative 

SAT Sweni Open Closure by end of 2015, with alternative 
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It is proposed that alternative water-points be provided in different areas with the 

construction of loop roads, or in some cases such existing roads being closed. Certain 

artificial water sources will remain open (Table 2.3), whilst others will be closed as water-

points but may continue to be used as Technical Services Boreholes (TSB) or Drought 

Water-Points (DWP), and thus be maintained and used in the event of serious drought 

(Table 2.3) (Zambatis, 2012). The two study sites (Orpen and Satara) are located within 

the Kingfisherspruit and Satara ranger sections (Figure 2.2) which have both benefitted 

from a fair amount of artificial water provision in the past and have likely supported higher 

mammal densities than would occur naturally due to increased surface water availability.  

 

Table 2.3: Ten artificial water-points and ten artificial dams to remain open or to become drought water-

points in different ranger sections of central Kruger National Park (Zambatis, 2012).  

Section Name Type Status 

Houtboschrand 
HOU 

Bangu 
Piet Grobler 

Borehole 
Concrete dam 

Open (DWP) 
Open 

Kingfisherspruit Ngwenyeni Concrete weir Open 
KFI Ngwenyeni No1 Borehole Open 
N'wanetsi Gudzani Concrete dam Open 
NWA Kumana Borehole Open (DWP) 
NWA 
NWA 
NWA 
Satara 
SAT 
SAT 
SAT 
SAT 
SAT 
Tshokwane 
TSH 
TSH 
TSH  
TSH 

Kumana 
N'wanetsi 
Wenela 
Girivana No3 
Ngotso South 
Nsemani 
Shidzidzi 
Welverdiend 
Witpens 
Manzimhlophe No1 
Mazithi 
Orpen 
Shiteveteve West 
Silolweni 

Earthen dam 
Concrete dam 
Concrete weir 
Borehole 
Pipeline trough 
Earthen dam 
Pipeline trough 
Borehole 
Pipeline trough 
Borehole 
Earthen dam 
Concrete dam 
Borehole 
Earthen dam 

Open 
Open 
Open 
Open 
Open 
Open 
Open 
Open (DWP) 
Open 
Open (DWP) 
Open 
Open 
Open 
Open 

 

2.5 Climate of South Africa and Kruger National Park  

2.5.1 Temperature  

KNP has a temperature gradient from relatively cooler conditions in the south (temperate 

climate) to warmer conditions in the north (tropical and subtropical climate) (Mabunda et 
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al., 2003; Venter et al., 2003). High temperatures are experienced in the summer months, 

which average over 30°C, with maximum temperatures frequently exceeding 40°C. 

Temperatures in KNP are usually warm due to its subtropical location and low altitude 

(Venter et al., 2003). The primary cause of high temperatures experienced in KNP is the 

high level of solar radiation, with consequent high evapotranspiration rates (Venter et al., 

2003). On the 26 February 1992, a record maximum temperature of 48°C was recorded 

at Shingwedzi in northern KNP, whilst the maximum temperature recorded on this day in 

central KNP (for Satara) was 45.2°C (Zambatis & Biggs, 1995).  

 

Autumn is warm and winters are mild and usually free of frost, due to the anticyclone 

which persists over the centre of South Africa during this time (Venter & Gertenbach, 

1986). During the winter months (June - August), a high pressure system develops over 

South Africa which is conducive to warm days, clear skies and cold nights, with little 

rainfall over the interior and eastern part of the country (Davis, 2011). Cold conditions 

manifest from cold frontal systems which pass over South Africa in the winter months 

(Venter & Gertenbach, 1986). The average minimum winter temperature for central KNP 

is ~10°C, however, temperatures can reach near freezing.  

 

2.5.2 Precipitation 

As is typical to savannas, the climate alternates between annual wet and dry periods 

(Grossman & Gandar, 1989), consequently, rainfall has important influences on surface 

water availability, vegetation growth and associated food supply to herbivores in these 

environments (Ogutu & Owen-Smith, 2003). During the summer months, due to instability 

in the atmosphere, KNP receives most of its rainfall in the form of convective 

thunderstorms (Venter et al., 2003). However, the mean annual rainfall decreases from 

south to north and from east to west (Gertenbach, 1980), excluding the far northwest and 

southwest, where rainfall is controlled by topography (Venter et al., 2003). Rainfall 

distribution over the country is uneven, with the western side of the country broadly 

receiving less rainfall than the east (Davis, 2010). 
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The long-term (approximately 54 years) mean annual rainfall for Satara is 543.7mm 

(Zambatis, 2003). The majority (~80%) of rain falls between October to March (Owen-

Smith & Ogutu, 2012). Conversely, the dry season extends from April to September 

(Owen-Smith & Ogutu, 2012), during which time seasonal water sources dry up and 

water-dependent mammals shift their drinking to artificial water sources and semi-

permanent water sources (Thrash, 1998b). The summer months of December - February 

are the wettest on average, with the largest volumes of accumulated rainfall, whilst the 

winter months of June - August receive little, if any rain. The rainfall pattern in KNP is 

cyclical, moving between periods of above and below the long-term average, 

approximately every 8 to 14 years (Zambatis, 2003). This has implications for plant and 

mammal species, especially during severe drought periods (Venter, 1990). Drought, 

defined here as a prolonged period in which there is an absence of precipitation (Rouault 

& Richard, 2003), is a common occurrence in South Africa and KNP, and is characterised 

by a loss of vegetation and overgrazing (Moon et al., 1997; Rouault & Richard, 2003). 

During late summer, tropical cyclones developing over the warm Indian Ocean, and 

moving in an easterly direction, occasionally make landfall on the Mozambique and South 

African coasts. The associated intense rainfall usually results in severe flooding in coastal 

and adjacent interior regions, including on occasions the KNP (Tyson & Preston-Whyte, 

2000; Venter et al., 2008; Davis, 2011; Malherbe et al., 2012). 

 

2.6 Mammal Distribution and Abundance  

Different land management classification systems have been developed for KNP, based 

on vegetation and geology. Gertenbach (1983) divided KNP into 35 landscapes, which 

were classified by differences in geomorphology, climate, soil, and mammals and 

vegetation in specific areas; this classification is applicable to this study due to the 

particular focus on factors which influence mammal distribution and abundance in 

different landscapes in central KNP (Figure 2.2).  
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Figure 2.2: Map of the landscapes of central Kruger National Park, showing the location of study sites 

Satara and Orpen in landscapes 17 and 19, respectively (after Gertenbach, 1983). 
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KNP is situated within the lowveld geomorphic province, as classified by Partridge et al. 

(2010), and can be divided lengthwise into two distinct geological zones: granite rock to 

the west and basaltic rock to the east (Venter, 1990). Satara rest camp is situated on the 

basaltic geological zone, whilst Orpen rest camp is situated on fertile gabbro intrusions. 

The soils in KNP correspond with the geological zones, with sandy and light coloured 

soils found in the western zone (Orpen) and clayey dark coloured soils in the eastern 

zone (Satara) (Joubert, 1986). In KNP, particular soil types and climate gradients support 

specific vegetation communities (Venter & Gertenbach, 1986), therefore the large variety 

of soils and rocks in KNP, in part, supports the diverse plant component, which in turn are 

associated with particular mammal assemblages (Venter et al., 2003; Viljoen, 2015) 

(Table 2.4).  

 

Apart from contributing the bulk of biodiversity within KNP, vegetation serves as an 

important food source and provides habitat for various mammals (Venter & Gertenbach, 

1986). KNP is defined as part of the savanna biome within the southern African region 

(Scholes, 1997); savannas are characterised by tropical grassland landscapes (van 

Wilgen et al., 2000), having the unifying feature of woody trees and shrubs forming a 

variously continuous canopy over continuous grass coverage (Scholes & Archer, 1997; 

Schmidt et al., 2002). The central KNP is able to support large herds of herbivores due to 

the availability of nutrient-rich low grass forage and an exposed low level shrub layer 

(Venter, 1990). The Satara landscape is characterised as open parkland, with tall trees, 

a distinct shrub layer of woody plants and C4 grasses (Gertenbach, 1983). The different 

landscape vegetation zones of KNP make it diverse and compatible for many different 

species and these particular zones can be used functionally in conservation management 

and decision making (Gertenbach, 1983). The vegetation of the Satara landscape is 

classified as S Birrea/Acacia nigrescens Tree Savanna (Landscape 17) and the 

vegetation of Orpen as Thornveld on Gabbro (Landscape 19) (Gertenbach, 1983) (Table 

2.4; Figure 2.2).  
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Table 2.4: Landscape classification of topography/geomorphology, geology, soils and vegetation for central Kruger National Park. Landscapes in 

which the Satara (17) and Orpen (19) study sites are situated are highlighted in grey (after Gertenbach, 1983). 

No. Topography / Geomorphology Geology Soils Vegetation 

4 Gently undulating landscape, with 
granite koppies. Intersected by 
numerous spruits. 

Archaean granite and 
gneiss, intersected by 
dolerite intrusions 

Relatively shallow, high clay and 
mineral content 

Dense woody vegetation 

5 Gently undulating landscape.  
Occurs close to watersheds, upper 
courses of spruits. 

Granite and gneiss, 
numerous dolerite 
intrusions 

Upland soils are sandy, lower-
lying soils have high clay and 
sodium content 

Dense bush savanna in the 
uplands, open tree savanna in 
the bottomlands 

6 Gently undulating landscape. 
Drained by tributaries of the 
Timbavati. 

Granite and gneiss, 
intersected by numerous 
dolerite intrusions 

Upland soils are sandy, lower-
lying soils have a high clay 
content 

Open bush savanna in the 
uplands, well-defined field layer 

7 Strongly undulating landscape, 
steep slopes. 

Granite, parent material 
comprises metamorphic 
rock 

Generally shallow and stony soils 
(Lithosols) 

Xerophytic, field layer is sparse 
with dense woody vegetation 

13 Gently undulating landscape, with 
slight slopes. Small pans and 
spruits. 

Karoo sediments (Ecca-
Shales) 

Lithosols on sandstone outcrops, 
shallow and deep sandy soils, 
clayey soils and sodium rich 
brackish soils 

Moderate tree savanna, with an 
open low shrub layer 

14 Gently undulating landscape. 
Drained by tributaries of the Sweni. 

Karoo sediments (Cave 
Sandstone, Red Beds and 
Ecca-Shales) 

Lithosols on sandstone outcrops, 
shallow and deep sandy soils, 
clayey soils and sodium rich 
brackish soils 

Moderate tree savanna, with an 
open low shrub layer 

16 Prominent koppies and steep 
slopes. Drained by the Nkovakula 
spruit. 

Cave Sandstone of the 
Clarens formation 

Lithosols and deep, grey to yellow 
sandy soils in the lower-lying 
areas 

Open tree and shrub savanna. 
Poorly developed field layer 

17 Flat plains, well-defined drainage 
channels. 

Sabie River Basalt, few 
dolerite intrusions 

Black, brown or red clayey soils Open tree savanna, dense 
shrub layer 
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No.  Topography / Geomorphology Geology Soils Vegetation 

18  Generally flat, high-lying plains. 
Pans and spruits. 

Basalt, with numerous 
amygdales and Olivine 

Dark, clayey soils Open shrub savanna  

19  Flat, to gently undulating landscape 
with prominent koppies. 

Gabbro  Dark, clayey soils Open savanna with a dense 
field layer 

20  Undulating landscape. Drained by 
the Bangu and Ngotsa spruits. 

Basalt, with limestone 
concretions 

Shallow, dark brown to grey, 
stony soils 

Open savanna, with poorly 
developed field layer 

21  Undulating landscape. Drained by 
a number of small spruits. 

Basalt, with limestone 
concretions 

Shallow, dark brown to grey, 
stony soils 

Open savanna, with poorly 
developed field layer 

22  Flat plains with rocky outcrops. Basalt, outcrops of tuff, 
breccia, limburgite and 
rhyolite 

Generally shallow and dark soils Open shrub savanna  

23  Flat, to gently undulating 
landscape. Intersected by Olifants 
and Letaba rivers. Marshes/Vleis. 

Letaba Basalt, numerous 
dolerite intrusions 

Dark brown, reddish soils high 
clay content 

Open tree and shrub 
savanna, well-developed field 
layer 

24  Flat, to gently undulating landscape 
with prominent koppies. 

Gabbro Dark soils, high clay content Open tree savanna, well-
developed field layer 

29  Mountainous, steep slopes with flat 
plateaus. 

Rhyolite and granophyre of 
the Lebombo Group 

Lithosols  Open tree savanna, well-
developed field layer 

30  Strongly undulating landscape, with 
extensive plateaus. 

Rhyolite and granophyre of 
the Lebombo Group 

Deep sandy soils and shallow 
Lithosols 

Shrub savanna, well-
developed field layer 

31  Mountainous, steep slopes with flat 
plateaus. 

Rhyolite and granophyre of 
the Lebombo Group 

Shallow, rocky soils Open tree savanna, naturally 
sparse field layer 
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The central region of KNP is known for the large herds of game that occupy the area 

(Burkepile et al., 2013), with the greatest density of mammals in landscape 13 (see Table 

2.4) due to the abundance of palatable grasses and an open shrub layer. Conversely, 

landscape 6 has a low density of grazers due to thick woody vegetation (Gertenbach, 

1983). Landscape 17 (Table 2.5), in which the Satara rest camp is situated, supports 

open grassy plains favoured by large populations of wildebeest and zebra; these species 

move annually between the southern and northern extent of this landscape (Gertenbach, 

1983), as do large numbers of impala, kudu, giraffe and buffalo (Gertenbach, 1983; 

Schütze, 2002). Landscape 19 (Table 2.5), in which the Orpen rest camp is situated, is 

favoured by browsers such as kudu and giraffe; grazers such as buffalo, warthog, 

waterbuck and wildebeest; and mixed feeders such as elephant and impala (Gertenbach, 

1983; Burkepile et al., 2013). Large numbers of wildebeest occur near Orpen, favouring 

the Chloris virgata/Acacia nigrescens shrubveld (Gertenbach, 1983). Similarly, large 

concentrations of wildebeest occur in the area to the north-east of Satara between the 

Sweni River and the Mlondozi dam (Schütze, 2002; Burkepile et al., 2013).  

 

A relatively large population of black rhinoceros occurs along the N'waswitsonto and 

Sweni rivers, whilst white rhinoceros occur within the Tshokwane, Satara and N'wanetsi 

sections (Schütze, 2002). The Gertenbach (1983) landscapes and the associated large 

mammals in central KNP region are presented in (Table 2.5). Typical carnivores that 

commonly occur within central KNP include spotted hyaena and cheetah, particularly in 

the Kingfisherspruit, N'wanetsi, Satara and Tshokwane sections (Schütze, 2002). Lion 

are common in the Satara and Tshokwane sections (Schütze, 2002) due to their prey 

preference of wildebeest, zebra and buffalo occurring in large numbers in this region (Mills 

& Funston, 2003). Although wild dog are rare, they are most commonly sighted between 

the Sabie River and Tshokwane/Kingfisherspruit sections and black-backed jackal occur 

in most parts of KNP, but are particularly common in the central region (Schütze, 2002).  
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Table 2.5: Landscape classification and associated mammals for central Kruger National Park. Landscapes 

in which the Satara (17) and Orpen (19) study sites are situated, are highlighted in grey (after Gertenbach, 

1983). 

No. Associated Mammals  

4 Largest impala population. Elephant, kudu, duiker, steenbok, bushbuck and giraffe are common. 

Lion, leopard, wild dog and spotted hyaena are important carnivores. Hippopotamus are abundant 

in rivers. 

5 Ideal habitat for sable antelope. Kudu, giraffe, buffalo, and elephant are common. Zebra occur in 

small groups. Impala and warthogs occur near available water. Lion and leopard are present.   

6 Ideal habitat for sable antelope, elephant, buffalo, kudu and impala close to spruits. Zebra occur in 

small groups. 

7 Elephant, zebra in small groups and impala can be found along the river. Giraffe, kudu and 

waterbuck are abundant. Lion, leopard and hyaena are important carnivores. 

13 Large number of impala, wildebeest and zebra. Giraffe, kudu, steenbok and duiker are present. 

Elephant breeding herds and buffalo move through this area. Waterbuck are found at the pans. 

Lion and hyaena are abundant. 

14 Ideal habitat for elephant breeding herds. Kudu, giraffe, impala and white rhino are common. 

Warthog are abundant. Waterbuck occur near permanent water. Lion and leopard are present. 

16 Elephant and buffalo are important species in this landscape. Kudu, impala, steenbok, grysbok, 

nyala and pairs of klipspringers are commonly found. Baboons are found along the rivers. 

17 Wildebeest, zebra and lion are abundant. Buffalo, kudu, giraffe, waterbuck, steenbok and ostrich 

occur in large numbers. Solitary elephant bulls. Tsessebe and reedbuck are found in specific areas. 

18 Largest population of kudu. Small numbers of sable antelope, zebra, impala, wildebeest, giraffe, 

waterbuck, warthog, lion, hyaena and cheetah. Herds of buffalo pass through this area. 

19 Kudu, impala, giraffe, waterbuck, warthog, buffalo and elephant bulls. Zebra and wildebeest occur 

after fire. 

20 Ideal habitat for wildebeest and zebra. Kudu and giraffe and lion and hyaena are abundant. 

21 Impala, kudu, waterbuck and giraffe. Elephant bulls next to the river and buffalo bulls in the reeds. 

Baboons near the river. Lion, leopard and hyaena are present. 

22 Buffalo and zebra are important species. Impala, waterbuck, kudu, giraffe and elephant bulls. 

Hippopotamus are abundant. Roan antelope, eland and tsessebe in northern parts of this 

landscape. 

23 Roan and sable antelope, tsessebe and eland in average numbers. Buffalo and zebra are 

abundant. Elephant bulls, steenbok and Sharpe's grysbok are common. Waterbuck are found near 

permanent water. Ostrich and leopard can be seen. 

24 Roan antelope, buffalo, zebra, eland, ostrich, white rhinoceros and solitary elephant bulls. 

29 Common species are kudu, impala, giraffe and buffalo bulls. Klipspringers are abundant. 

30 Buffalo, zebra, impala, giraffe and warthog occur in this area. 

31 Kudu found in the Lebombo mountains. Small numbers of buffalo, impala, zebra, waterbuck and 

warthog. Sharpe's grysbok, duikers, bushbuck and giraffe are found in dense ravines. Breeding 

herds of elephants are found north and south of the Olifants river. 
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Initially herbivore aerial surveys were conducted annually in KNP, however, from 2010 

the surveys have been conducted biennially, with the herbivore survey (excluding 

elephant and buffalo) being a sample count, using distance methodology to convert the 

counts to estimates. Most recently, aerial surveys of herbivores were undertaken in 2012 

and 2014; with species estimates for central KNP being calculated by applying a formula 

to up-scale the actual observations from the census. Impala have the highest density of 

the species estimates for both the 2012 and 2014 aerial surveys in the central KNP (Table 

2.6). African savanna elephant (hereafter referred to as African elephant) and African 

buffalo counts are undertaken in a separate survey where drainage lines are flown, and 

are direct total counts of the entire area, and are assumed to have captured all individuals, 

therefore no up-scaling is applied. The most recent surveys for the two former species 

were conducted in 2011 and 2012 (Botha, pers comm, 2015) (Table 2.7). 

 

Table 2.6: Select species estimates for central Kruger National Park from the 2012 and 2014 SANParks 

aerial surveys (Botha, pers comm, 2014). 

 
 
 
 
 
 
 
 
 
 

 

Table 2.7: African buffalo and African elephant counts for central Kruger National Park from the 2011 and 

2012 aerial surveys (Botha, pers comm, 2014). 

  2011 2012 

Species Calves Total Calves Total  

Buffalo bulls  169  215 

Buffalo herd  7331  6591 

Elephant bulls  322  300 

Elephant herd 139 3434 272 3843 

Buffalo total    7500   6806 

Elephant total    3895   4415 

 2012 2014 

Species Species Estimate  

Impala 78992 42324 

Plains zebra 10049 10473 

Blue wildebeest 9165 7087 

Waterbuck 3329 790 

Southern giraffe 2410 2691 

Warthog 624 1415 

Greater kudu N/A 2958 
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Chapter 3 - Literature Review 

3.1 Introduction 

It is indisputable that water is an essential resource for animals (Rosenstock et al., 1999), 

especially in arid and semi-arid regions (Landsberg et al., 1997; James et al., 1999; 

Tefempa et al., 2008; Simpson et al., 2011). In such regions, the availability of water is 

variable throughout the year and is especially scarce during the dry season (Valeix et al., 

2009a). Consequently, large areas across Africa and Asia are not suitable perennial 

habitats for mammals that are dependent on water (Estes, 1991). The majority of large 

herbivores in arid and semi-arid areas need to drink water in order to fulfill their daily 

requirements, which are only supplemented by the vegetation that they feed on 

(Chamaillé-Jammes et al., 2007b). Artificial water sources therefore provide an important 

alternate source of water during the harsh dry season, when both water and food become 

limiting (Ayeni, 1975). In particular, water needs to be provisioned to mammals in closed-

in systems where natural perennial sources of water are scarce (Smit & Ferreira, 2010). 

Certain environmental factors (increased temperature, decreased precipitation, drought 

events and increased evaporation rates) decrease natural surface water available to 

mammals and thus increases the need for/reliance on supplemental water, which is 

particularly relevant in the context of projected climate change scenarios.  

 

3.2 Global, Continental, Regional and National Perspectives on Water Source Use 

Artificial water sources in arid and semi-arid environments are a widespread global 

management intervention on which mammals rely for survival (James et al., 1999). 

Outside of Africa various conservation areas are situated in water-limited environments 

and as a consequence water is provided to sustain a range of species, such as coatis 

(Burger & Gochfeld, 1992); white-faced monkeys (Vaughan & Weis, 1999); white-tailed 

deer (Gallina et al., 1997) wild boar and red deer (Vicente et al., 2007); and hanuman 

langur populations (Waite et al., 2007) through the use of artificial water sources (Table 

3.1). Particularly, artificial water sources have become a feature in the natural landscape 

and are one of the main management interventions in most national parks and game 
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reserves on the African continent (Table 3.1) (Ritter & Bednekoff, 1995; Tefempa et al., 

2008). In 1950, artificial water sources were established in Tsavo National Park (East) to 

enhance the game viewing opportunities for tourists, to satisfy the drinking requirements 

of mammals inside the park and to encourage mammals to expand their ranges into 

different areas of the park, so avoiding overgrazing around the river beds (Ayeni, 1975). 

Artificial water sources are especially important in Ruaha (Epaphras et al., 2008) and 

Serengeti National Parks, Tanzania (Hagwet et al., 2014) where the exploitation of 

upstream natural water sources for human requirements has reduced river flow and so 

diminished natural water availability (Epaphras et al., 2008).  

 

Table 3.1: Conservation areas globally, excluding South Africa, providing artificial water sources.  

Country Conservation Area Publication 

Costa Rica Guanacaste Conservation Area Vaughan and Weis, 1999 

Palo Verde National Wildlife Refuge Burger and Gochfeld, 1992 

Mexico Rancho San Francisco  Gallina et al., 1997 

Southwestern United States Cabeza Prieta National Wildlife 
Refuge 

Broyles and Cutler, 1999 

Brazil Serra da Capivara National Park Silveira et al., 2009 

Spain South Central Spain Vicente et al., 2007 

India Gir National Park and Sanctuary Mukherjee and Borad, 2004 

Kumbhalgarh Wildlife Sanctuary Waite et al., 2007 

Sariska Tiger Reserve Ross and Srivastava, 1994 

Australia  Arid and semi-arid rangelands James et al., 1999 

Cameroon Waza National Park Tefempa et al., 2008 

Kenya  Nairobi National Park Hillman and Hillman, 1977 

Tsavo National Park Ayeni, 1975 

Tanzania Ruaha National Park Epaphras et al., 2008 

Serengeti National Park  Hagwet et al., 2014 

Malawi Lengwe National Park Kazembe, 2009 

Liwonde National Park Dudley, 1997 

Majete Wildlife Reserve Staub et., 2013 

Zambia Lusaka National Park Nyirenda et al., 2014 

Zimbabwe Hwange National Park  Chamaillé-Jammes et al., 2007a 

Namibia Etosha National Park  du Preez and Grobler, 1977 

Khaudum National Park Wanke and Wanke, 2007 

Botswana Central Kalahari Game Reserve Kalikawa, 1990 

Chobe National Park  Kalwij et al., 2010 

Kutse Game Reserve Hitchcock, 1996 

Nxai Pan National Park  Ritter and Bednekoff, 1995 
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In southern Africa, numerous conservation areas are located in semi-arid regions where 

the perennial availability of natural water is limited (Table 3.1) (Wanke & Wanke, 2007). 

In Lusaka National Park, Zambia, wetlands in the southern region of the park provide 

adequate seasonal water, although, these wetlands are vulnerable to sand extraction 

outside of the park (Nyirenda et al., 2014). Between 1930 and 1980 artificial water sources 

were constructed in Hwange National Park, Zimbabwe to distribute water-dependent 

mammals into different grazing areas in the dry season and to increase herbivore 

numbers (Chamaillé-Jammes et al., 2007a; Kamanda et al., 2008). In Chobe National 

Park, artificial water points were established to limit the overutilisation of riparian 

vegetation by elephants along the Chobe and Linyanti rivers (Owen-Smith, 1996). The 

Kgalagadi Transfrontier Park, which incorporates the Gemsbok National Park (Botswana) 

and the Kalahari Gemsbok National Park (South Africa), is devoid of natural water, except 

when rain is experienced, and artificial water sources sustain water-dependent herbivores 

here (Shroyer et al., 2001). The loss of wildebeest and hartebeest populations from both 

the Central Kalahari Game Reserve and Kgalagadi Transfrontier Park was a 

consequence of fences blocking their seasonal migration outside of the protected area to 

fulfill their water requirements; this was resolved by the supplementation of water through 

artificial water sources in both conservation areas (Kalikawa, 1990; Shroyer et al., 2001).  

 

In South Africa, various national parks and private nature and game reserves provide 

supplementary water sources through artificial waterholes and troughs (Table 3.2), such 

as in Addo Elephant National Park where artificial water points are required as wildlife 

congregates in areas that are not in close proximity to natural water sources. However, a 

current management objective in Addo Elephant National Park, as with all national parks, 

is to try and maintain a more natural seasonal and spatial distribution of water. In the 

Tankwa Karoo National Park, in addition to the present eight water points, four new water 

points are planned by 2024 (Tankwa Karoo National Park Management Plan 2014-2024, 

2014). In KNP the revised water provision policy involves closing numerous artificial water 

points and dams (Pienaar et al., 1997). Similarly, in Mapungubwe National Park the water 

provision policy has been revised stating that select artificial water sources are to be 
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removed (Mapungubwe National Park Management Plan 2013-2023, 2013) and in 

Marakele National Park only artificial water sources that are considered to be necessary 

ecologically in the environment are to be maintained (Marakele National Park 

Management Plan 2014-2024, 2014). In Mountain Zebra National Park, there are no 

perennial natural water sources and water is supplemented, although the number of 

artificial water points is negligible (Mountain Zebra National Park Management Plan, 

2008). In the Kalahari Gemsbok National Park, artificial water sources were established 

in the 1930's due to the construction of fences around the park, which has led to an 

increase in wildebeest numbers (Kalahari National Park Management Plan, 2008). 

Artificial water sources have been added to South African game and nature reserves as 

a technique to increase the opportunities of mammal sightings for tourists such as in the 

Klaserie Private Nature Reserve (Parker & Witkowski, 1999), similarly in Karoo and 

Mokala National Parks, artificial water points are typically for tourist benefit and the 

current management objective is to alternate open and closed water points to facilitate a 

more natural distribution and utilisation pattern by mammals (Karoo National Park 

Management Plan, 2008; Mokala National Park Management Plan, 2008).  

 

Table 3.2: National parks and game and nature reserves in South Africa providing artificial water sources. 

Conservation Area Location Publication  

Addo Elephant National Park Eastern Cape SANParks, 2008 

Camdeboo National Park Eastern Cape SANParks, 2013 

Kalahari Gemsbok National Park  Northern Cape SANParks, 2008 

Karoo National Park Western Cape Gaylard & Johnson, 2008 

Klaserie Private Nature Reserve Limpopo  Walker et al., 1987 

Kruger National Park Limpopo, 
Mpumalanga 

Freitag-Ronaldson & Venter, 2008 

Manyeleti Game Reserve Limpopo Cronje et al., 2005 

Mapungubwe National Park  Limpopo SANParks, 2013 

Marakele National Park Limpopo Novellie & Spies, 2014 

Mkuze Game Reserve KwaZulu-Natal  Goodman, 1982 

Mokala National Park Northern Cape Daemane & Spies, 2008 

Pilanesberg National Park North West Hayward & Hayward, 2012 

Sabi Sand Game Reserve Mpumalanga Thomas et al., 2008 

Tankwa Karoo National Park Northern Cape, 
Western Cape 

Strauss & Cowell, 2014 

Tembe Elephant Park KwaZulu-Natal  Shannon et al., 2009 
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3.3 Water Dependency in Mammals 

Mammals have different broad water requirements and can be divided into two 

categories, water-dependent or water-independent, based on how regularly they need to 

drink (Redfern et al., 2005). Water-dependent species (waterbuck and zebra) generally 

need to drink every one to two days in the dry season (Young, 1970) with buffalo showing 

strong water-dependence by needing to drink or wallow every day (Estes, 1991) and 

conversely water-independent species such as giraffe, are able to go without water for up 

to three to four days (Tefempa et al., 2008). Water-dependency is influenced by 

physiological adaptations and ability to prevent water loss, as well as diet. Despite this, 

there is limited information on how frequently, and how far, mammals travel to water (Cain 

et al., 2012). It has been recognised that grazing herbivores are typically water-

dependent, whilst browsers are typically water-independent (Table 3.3) (Western, 1975; 

Estes, 1991; Redfern et al., 2003). The leaves of trees and shrubs hold water in the dry 

months and therefore browsers are less dependent on surface water as their water 

requirements are fulfilled by the vegetation that they consume (Owen-Smith, 1999). 

Impala are classified as a water-dependent species and are found in close proximity to 

water throughout the dry season; but as mixed feeders they are able to fulfill their water 

requirements by foraging on green vegetation (Estes, 1991) and consequently have 

periods of two to three days between drinking (Young, 1970). Wildebeest are recognised 

as being strongly water-dependent in most environments, in contrast, in the arid Kalahari 

they are able to survive without regular access to water and can acquire water by digging 

up the bulbs and roots of water-storing plants (Child et al., 1971; Estes, 1991; Knight, 

1995b).  

 

Carnivores can generally acquire an adequate amount of moisture from consuming the 

body fluids and blood of their prey (Eloff, 1973; Ayeni, 1975). Spotted hyaenas are water-

dependent (Cooper, 1989), however, in the recent study by Hayward & Hayward (2012), 

hyaenas were observed to have low water requirements, along with lion and kudu whilst 

hippopotamus, warthog and blue wildebeest have high water requirements.  



40 

 

Table 3.3: Select water-dependent and water-independent mammals from Africa, based on species sighted during the study period in central Kruger 

National Park. 

Mammal Scientific Name  Water requirement Feeding Guild Location Author Year  

Lesser kudu Tragelaphus imberbis 

water-independent Browser 

Amboseli Ecosystem Western 1975 

Greater kudu 
Tragelaphus 
strepsiceros 

Kruger National Park Owen-Smith  1990 

Five Study Locations* Hayward & Hayward 2012 

Masai giraffe Giraffa camelopardalis water-independent Browser Amboseli Ecosystem Western 1975 

African buffalo Syncerus caffer water-dependent Grazer Amboseli Ecosystem Western 1975 

Blue wildebeest  Connochaetes taurinus 

water-independent  

Grazer 

Kgalagadi Transfrontier Park  Child et al. 1971 

water-dependent 

Amboseli Ecosystem Western 1975 

Kruger National Park Smit et al. 2007a 

Five Study Locations* Hayward & Hayward 2012 

Common 
waterbuck 

Kobus ellipsiprymnus water-dependent Grazer Amboseli Ecosystem Western 1975 

Hippopotamus 
Hippopotamus 
amphibious 

water-dependent Grazer 
Amboseli Ecosystem Western 1975 

Five Study Locations* Hayward & Hayward 2012 

Plains zebra 
Equus quagga/Equus 
burchelli 

water-dependent Grazer 

Amboseli Ecosystem Western 1975 

Kruger National Park Harrington et al. 1999 

Kruger National Park Smit et al. 2007a 

Warthog 
Phacochoerus 
africanus 

water-dependent Grazer 
Amboseli Ecosystem Western 1975 

Five Study Locations* Hayward & Hayward 2012 

African savanna 
elephant 

Loxodonta africana water-dependent Mixed Feeder 

Amboseli Ecosystem Western 1975 

Kruger National Park Young 1970 

Waza National Park Tefempa et al. 2008 

Impala Aepyceros melampus water-dependent Mixed Feeder Kruger National Park Young 1970 

Leopard Panthera pardus water-independent Carnivore 
Kalahari Gemsbok National 
Park 

Bothma & Le Riche 1984 

Lion Panthera leo water-independent Carnivore Five Study Locations* Hayward & Hayward 2012 

Spotted hyaena Crocuta crocuta 
water-dependent  

Carnivore 
Chobe National Park Cooper 1989 

water-independent Five Study Locations* Hayward & Hayward 2012 
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3.4 Mammal Visitation Patterns  

Mammal utilisation of artificial water sources has been documented by various studies in 

relation to which species utilise them, when species utilise them and how water source 

usage by various species changes in relation to the time of the day, the season and the 

contemporary climatic conditions. Different mammals have been observed to display 

different types of behaviour when approaching or utilising artificial water sources 

(Kamanda et al., 2008; Tefempa et al., 2008).  

 

3.4.1 Effects of Environmental Conditions (Temperature, Rainfall and the Moon 

Cycle) 

3.4.1.1 Daily 

Several studies have documented temporal drinking patterns of mammals in different 

regions, with species being classified roughly as either dawn, morning, midday, afternoon, 

dusk or nighttime drinkers (Table 3.4). Early studies by Weir & Davison (1965) in Hwange 

National Park, Ayeni (1975) in Tsavo National Park and du Preez & Grobler (1977) in 

Etosha National Park, were comprehensive in their investigations, using either 24-hour 

census methods (Weir & Davison, 1965; du Preez & Grobler, 1977) or recording mammal 

drinking patterns during particular hours (Ayeni, 1975). These studies significantly 

contributed to understanding mammal drinking patterns at artificial water sources, and 

specific mammal drinking behaviours.  

 

The study by Ayeni (1975) focused on the effect of artificial water sources on the seasonal 

distribution of mammals, although specific temporal use at the hourly-scale was also 

noted. Species of smaller body size, such as warthog and zebra, were observed to utilise 

artificial water sources primarily during the day (Ayeni, 1975; du Preez & Grobler, 1977). 

However, larger species (rhinoceros, elephant and buffalo) were observed drinking during 

the night (Ayeni, 1975). Small mammals are able to endure hot periods during the day as 

they have mechanisms to control body heat, and in contrast, large mammals such as 
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elephant, buffalo and rhinoceros, are not able to manage their body temperatures as 

efficiently, and therefore avoid expending energy and drinking from water sources at 

times when the temperature is high (Ayeni, 1975). During the hottest times of the day 

(midday) between 12:00 and 13:00, mammal water source use decreases (Ayeni, 1975; 

Tefempa et al., 2008; Hayward & Hayward, 2012), with decreased drinking activity 

observed when the ambient temperature was ≥ 35°C or ≤ 19°C in KNP (Young, 1970). 

During cooler periods of the day (early morning and at night) predators utilise water 

sources and consequently prey species drink during the day when other mammals are 

drinking in order to benefit from group vigilance (Ayeni, 1975).  

 

More recent studies by Tefempa et al. (2008) and Hayward & Hayward (2012) have added 

to the body of literature on the temporal drinking patterns of mammals. The study by 

Hayward & Hayward (2012), uniquely using webcams, documented opposing peak 

drinking periods for large prey and predators, 11:00 for the former and 19:00 for the latter. 

Previous work by Weir & Davison (1965) and Valeix et al. (2007a) in Hwange National 

Park documented that elephant water source use peaked during dusk, in contrast, 

elephant water source use in KNP peaked during midday (Hayward & Hayward, 2012). 

Giraffe are predominantly daytime drinkers (Hayward & Hayward, 2012), conversely, Weir 

& Davison (1965) documented them drinking in the evening, whilst du Preez & Grobler 

(1977) report that giraffes do not have a specific drinking period but favour drinking in the 

evening. Jackal in Etosha National Park are predominantly nighttime drinkers (du Preez 

& Grobler, 1977) whilst those in Waza National Park prefer drinking during the day 

(Tefempa et al., 2008). Lions are known to sleep during the day and become more active 

in the late afternoon at which time they will seek drinking water (du Preez & Grobler, 

1977), conversely in Hwange National Park lions were reported to drink throughout the 

day (Weir & Davison, 1965). For certain species it is not possible to generalise 

predominant drinking periods, such as giraffe, however, other species such as impala 

show a predominant drinking period after dusk and before the afternoon.  
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Table 3.4: Predominant drinking periods and drinking times of selected mammals in conservation areas in 

Africa, based on species sighted during the study period in central Kruger National Park. 

Mammal Drinking 
time 

Drinking period  Location (NP, 
GR) 

Author Year 

African 
buffalo 

18:00 - 20:00 Dusk, Night Hwange NP  Weir & Davison 1965 

 Dusk, Night Tsavo NP Ayeni 1975 

10:30 - 12:30  Morning, Midday Rwenzori NP Grimsdell & Field 1976 

6:00 - 8:00/ 
10:00 - 12:00 

Dawn, Morning Kruger NP Ryan & Jordaan 2005 

6:00 / 18:00 Dawn, Dusk Hwange NP  Valeix et al.  2009b 

African 
savanna 
elephant 

18:30 - 21:00 Dusk, Night Hwange NP  Weir & Davison 1965 

19:00 Dusk Hwange NP  Valeix et al.  2007a 

13:00 Midday Five locations* Hayward & Hayward 2012 

Blue 
wildebeest 

5:00 - 9:00 Dawn, Morning Hwange NP  Weir & Davison 1965 

10:00 - 11:00/ 
12:00 - 13:00 

Morning, Midday  Etosha NP du Preez & Grobler 1977 

6:00 Dawn Hwange NP  Valeix et al.  2007a 

16:00 Afternoon Five locations* Hayward & Hayward 2012 

Chacma 
baboon 

15:00 Afternoon Five locations* Hayward & Hayward 2012 

Common 
waterbuck 

6:00 Dawn Hwange NP  Valeix et al.  2007a 

10:00 Morning Five locations* Hayward & Hayward 2012 

Greater 
kudu 

14:00 - 17:00 Afternoon, Dusk Hwange NP  Weir & Davison 1965 

9:00 - 10:00 Morning Etosha NP du Preez & Grobler 1977 

9:00 Morning Hwange NP  Valeix et al.  2007a 

16:00 Afternoon Five locations* Hayward & Hayward 2012 

Impala 

10:00 - 14:00 Morning, Midday Serengeti NP Jarman & Jarman 1973 

8:00 Morning Hwange NP  Valeix et al.  2007a 

11:00 Midday Five locations* Hayward & Hayward 2012 

Jackal 
black-
backed 

  Night Etosha NP du Preez & Grobler 1977 

Lion 
6:00 - 18:00 Dawn, Dusk Hwange NP  Weir & Davison 1965 

17:00 - 23:00 Dusk, Night Etosha NP du Preez & Grobler 1977 

Nyala 11:00 Midday Five locations* Hayward & Hayward 2012 

Plains 
zebra 

16:00 - 20:00 Afternoon, Night Hwange NP  Weir & Davison 1965 

12:00 - 13:00 Midday Etosha NP du Preez & Grobler 1977 

12:00 Midday Hwange NP  Valeix et al.  2007a 

9:00 - 15:00 Morning, Midday, 
Afternoon 

Kruger NP Cain et al. 2012 

16:00 Afternoon Five locations* Hayward & Hayward 2012 
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Mammal Drinking time Drinking period  Location (NP, GR) Author Year 

Southern 
giraffe 

18:00 - 22:00 Dusk, Night Hwange NP  Weir & Davison 1965 

 Morning, Dusk Tsavo NP Ayeni 1975 

18:00 - 19:00 Dusk Etosha NP du Preez & Grobler 1977 

16:00 Afternoon Hwange NP  Valeix et al.  2007a 

8:00 - 12:00/ 
14:00 - 18:00 

Morning, Midday 
Afternoon, Dusk 

Waza NP Tefempa et al. 2008 

16:00 Afternoon Five locations* Hayward & Hayward 2012 

Spotted 
hyaena 

00:00 - 1:00 Night Etosha NP du Preez & Grobler 1977 

17:00 - 21:00 Dusk, Night Ongava GR Stratford & Stratford 2011 

Vervet 
monkey 

13:00 - 15:00 Midday, 
Afternoon 

Masai-Amboseli 
GR 

Struhsaker  1967 

Warthog 

5:00 - 10:00/ 
14:00 - 17:00 

Dawn, Morning 
Afternoon, Dusk 

Hwange NP  Weir & Davison 1965 

14:00 - 15:00 Afternoon Etosha NP du Preez & Grobler 1977 

9:00 Morning Hwange NP  Valeix et al.  2007a 

6:00 - 11:00/ 
14:00 - 18:00 

Dawn, Morning 
Afternoon, Dusk 

Waza NP Tefempa et al. 2008 

12:00 Midday Five locations* Hayward & Hayward 2012 

* Kruger and Pilanesberg National Parks, Madikwe and Mashatsu Game Reserves and Tembe Elephant 
Park 

 

Few studies have documented the influence of the moon cycle on mammal drinking 

patterns at water sources, and there is a gap in the literature of the effects of moonlight 

for different species (Prugh & Golden, 2014). However, Ayeni (1975) found that 

herbivores drink later than usual during moonlit, relative to cloudy or moonless, nights. 

Changes in moon phases dictate the amount of light available at night, likely affecting the 

behaviour of both prey and predatory species (Prugh & Golden, 2014). During full moon, 

the opportunity for herbivores to detect predators when drinking is improved; cloudy or 

moonless nights decrease the opportunity for prey species to detect predators (van 

Orsdol, 1984; Crosmary et al., 2012). Predatory species are less active on moonlit nights 

as hunting success decreases (Prugh & Golden, 2014).  
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3.4.1.2 Seasonal 

Herbivore proximity to water in areas where surface-water availability is variable over 

space and time is key to identifying both foraging and drinking patterns over spatial scales 

(Ogutu et al., 2014). Daily weather conditions such as wind, temperature and rainfall 

affect which areas mammals congregate in, and additionally how much influence 

mammals will have on a particular area in terms of overgrazing, trampling and 

accumulation of dung (Owen-Smith, 1999) whilst the seasonal distribution of mammals is 

influenced by their requirements for food, rest and water, and they will move into different 

areas to fulfill these requirements (Afolayan & Ajayi, 1980; Thrash et al., 1993b). Certain 

species are confined to specific areas due to their forage requirements; sable and roan 

antelope, tsessebe and eland inhabit the northern section of KNP, waterbuck are found 

along river courses, whereas kudu, zebra, buffalo and impala are widespread throughout 

KNP (Chirima et al., 2012). The distribution of herbivore species is determined by wet 

and dry seasons which affect the availability of forage and water and how far a species 

will need to travel in order to access these resources (Smit & Grant, 2009). A relationship 

between forage quality and quantity and the availability of water has been noted to 

influence where certain species are located; when forage quantity decreases, the 

distribution of larger grazer species expands away from water and when forage quality 

decreases, the distribution of smaller grazer species expands away from water. The 

distribution of water-independent browser species is typically spread out away from water 

sources (Redfern et al., 2003). The availability of forage also has an influence on the type 

of water source that water-dependent species drink from and consequently on the 

dispersal patterns of these species. When forage availability increases, water-dependent 

species aggregate around permanent water sources, however, when forage availability 

decreases, water-dependent species spread out and utilise ephemeral water sources 

(Redfern et al., 2005).  

 

The number of mammals frequenting artificial water sources increases during the dry 

season, conversely when water is widely available during the wet season, mammals 

spread out and utilise natural water sources as well as the artificial water sources (Thrash 
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et al., 1995; Valeix et al., 2008). The distribution of impala in KNP is significantly 

associated with the availability of water, along with their forage requirements and 

contemporary weather conditions and consequently, impala remain in close proximity to 

sources of water (Young, 1972). The availability of water across the landscape thus has 

a strong influence on the daily concentration and seasonal distribution of mammals 

(Redfern et al., 2005). Extensive provision of artificial water sources has changed the 

seasonal distribution of mammals, as water is no longer a constraining resource and 

therefore the movement patterns of mammals in search of water have changed (Smit & 

Grant, 2009). An important driver of changes in herbivore distribution during the dry 

season is the seasonal transformation of the quantity of available water sources (Redfern 

et al., 2005; Chamaillé-Jammes et al., 2008) therefore, artificial water sources are one of 

the few management tools in which to influence the distribution of mammals over an area 

(Cronje et al., 2005). In the Manyeleti Game Reserve, natural and artificial water sources 

were monitored seasonally and it was documented that even with the construction of 

artificial water sources in the reserve, there was still a natural cycle of water availability, 

distributing mammals to different areas when various water sources dried-up or filled-up 

(Cronje et al., 2005).  

 

The movement of elephants in national parks and game reserves is constrained by 

fences, particularly during the wet season, and by the provision of water, dispersing 

elephants into other foraging areas during the dry season, and both of these management 

tools can influence elephant abundance and distribution patterns (Harris et al., 2008; 

Loarie et al., 2009; Shrader et al., 2010). A pattern between studies in three contrasting 

environments, revealed that elephants prefer habitats in close proximity to water sources 

and will remain close to permanent water during the dry season (Harris et al., 2008; 

Shrader et al., 2010). The joint influence of fences and the widespread provision of water 

on elephant behaviour and their consequent impacts on vegetation and other mammals 

is more evident in dry periods (Shrader et al., 2010). A study by Smit et al. (2007a) on 

mammals frequenting artificial and natural water sources in KNP, identified important 

characteristics and patterns of behaviour which proved useful for management (policies) 
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and an important finding of the study was that the addition of artificial water sources in 

the park resulted in changes in the landscape and are therefore one of the factors that 

can facilitate the spread of large herbivores in semi-arid savanna nature reserves (Smit 

et al., 2007).  

 

3.4.2 Effects of Species Interactions 

3.4.2.1 Competition  

The aggregation of mammals at artificial water sources in the dry season facilitates 

competition and temporal partitioning for water at these sites (Valeix et al., 2007a). 

Competition within and between species, and predation, are therefore influenced by the 

availability and distribution of water. The presence of elephants at water sources in 

Hwange National Park during the dry season did not inhibit other herbivores from drinking, 

rather, herbivores utilised the water sources for longer periods in the presence of 

elephants (Valeix et al., 2009a). In Nxai Pan National Park, during the dry season, female 

springbok converged on the only permanent source of water available, which was an 

artificial water source, in which male springbok with larger horns and broader necks were 

observed to control territories in which they would be exposed to more female springbok. 

The provision of water has thus had an influence on the intra-specific competition for 

territories by male springbok and consequently affects yearly mating patterns. It is 

therefore likely that the provision of water at artificial waterholes would have the same 

consequences for other territorial and water-dependent species such as impala and white 

rhinoceros (Ritter & Bednekoff, 1995).  

 

Many factors influence the decision as to whether mammals decide to drink and for how 

long. A detailed study in Hwange National Park revealed four factors that specifically 

influence the decision and need to drink (Valeix et al., 2007b): 1) The availability of water 

increases the likelihood of drinking, particularly in dry periods, but decreases the time 

spent drinking due to competition; 2) Thermoregulation controls the time that mammals 

spend drinking, in relation to climatic conditions. At hotter times of the day mammals 
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spend less time drinking in order to minimise exposure to direct sunlight, whilst during 

windy conditions mammals spend more time drinking as they are more easily able to 

regulate their body temperature; 3) The perceived risk of predation decreases the time 

spent at a water source; and 4) Interference competition also negatively influences the 

likelihood that mammals will drink. However, when more herbivores are present at a water 

source they spend a longer time drinking (Valeix et al., 2007b).  

 

Various studies have shown that mammals display different types of vigilance behaviours 

both when approaching artificial water sources and when drinking. Wildebeest and 

springbok drink as a herd and are particularly vigilant when approaching water sources 

(du Preez & Grobler, 1977). Warthog have been observed at times drinking together with 

large mammals in Etosha National Park (du Preez & Grobler, 1977) and were observed 

drinking with both elephants and buffalo in KNP (Trent, 2012), although Ayeni (1975) 

reported that small mammals usually move aside when large mammals come to drink at 

a water source. This could be because zebra, elephant and rhinoceros show aggression 

towards other species when drinking (du Preez & Grobler, 1977). Where water is 

particularly scarce, elephant herds may organise themselves to successively drink from 

an artificial water source, as observed in the Hwange National Park (Grab pers obs). 

Zebra, kudu (du Preez & Grobler, 1977) and buffalo herds (Ayeni, 1975) leave the water 

source as soon as they have fulfilled their need for water.  

 

Further, the presence of tourists in close proximity to artificial water sources also has the 

potential to disrupt mammal drinking behaviour (Kamanda et al., 2008). In both Hwange 

National Park and Waza National Park it was documented that mammals drinking at 

artificial water sources were disrupted by the presence of vehicles and tourists, and the 

associated noise levels, consequently leading to increased vigilance behaviour 

(Kamanda et al., 2008; Tefempa et al., 2008). Vigilance behaviour is defined as the time 

taken by mammals to examine the area around a water source before drinking. The 

results from the study by Kamanda et al. (2008) suggested that vigilance increased with 

an increased presence of tourists, conversely, vigilance behaviour decreased when fewer 
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tourists were present. When mammals spend time being vigilant, their opportunity to feed 

and drink, and the time available for these necessary behaviours is minimized (van der 

Meer et al., 2012). In the Ibex Reserve in Saudi Arabia, the drinking patterns of mountain 

gazelles and nubian ibex were significantly affected by the presence of tourists, with both 

species avoiding the water source for a short period even after the tourists had left. As 

both the mountain gazelle and nubian ibex are priority conservation species it was 

suggested that tourist visits to the water sources be limited (Wakefield & Attum, 2006).  

 

3.4.2.2 Predation 

Seasonal changes in the availability of surface water in semi-arid environments dictate 

the activity patterns of predators and so affects the spatial and temporal dynamics of prey 

species across the landscape. This has implications for predator-prey interactions and 

the utilisation of artificial water sources, especially those in areas without natural water, 

which ultimately influence the ecology of these interactions (Davidson et al., 2013). 

Artificial water sources can facilitate predatory behaviour where predators conceal 

themselves in the vegetation surrounding these areas and ambush prey species (Burger 

& Gochfeld, 1992). In the dry season, mammals converge on permanent water sources 

which heightens vegetation and land degradation around these areas and increases the 

competition between species for constraining resources (Cain et al., 2012). However, the 

increased concentration of prey species also draws predators to these sites (Davidson et 

al., 2013). The presence of water sources influence the location of lion territories; lions 

located in close proximity to a water source have the advantage of preying on mammals 

approaching to drink (Valeix et al., 2010).  

 

In Ruaha National Park lions have been observed to use the areas around, and at, 

artificial and natural water sources to hunt (Epaphras et al., 2008). Lion kills of elephant 

and giraffe in Hwange National Park, and of waterbuck in Klaserie Private Nature Reserve 

were observed to be in close proximity to a waterhole or water point (De Boer et al., 2010; 

Davidson et al., 2013). In contrast, small antelopes were typically killed at greater 
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distances from water sources (Davidson et al., 2013) likely because these are less regular 

water source visitors. The spatial dynamics of lion kills in Klaserie Private Nature Reserve 

are related to the water-dependency of the prey species, with water-dependent buffalo 

and wildebeest typically killed nearer to a water source than water-independent species 

(De Boer et al., 2010). These relationships are expected given that the water-dependency 

of grazers restricts them to areas usually in close proximity to water sources (Valeix et 

al., 2009b; Smit, 2011). Contrary to this, the location of water-independent browsers is 

not limited to areas close to water sources (Valeix et al., 2009b).  

 

The vigilance behaviour of herbivores differs between prey species at risk of predation, 

however, for most herbivores, when moving towards a water source, their level of 

vigilance is affected by the herd size of that species, and when drinking, vigilance 

depends largely on the collective group size of different species. Kudu, giraffe and zebra 

are particularly vigilant when moving towards a water source, and all three species retreat 

quickly after drinking. Giraffe are documented to spend a longer period drinking when in 

large mixed groups, whilst individuals in large herds of kudu spent less time drinking. 

Zebra favour water sources situated in open areas (Périquet et al., 2010). Further 

research by Périquet et al. (2012) investigated the drinking behaviour of plains zebra and 

impala when predators (lions) were near, with zebra exhibiting intense vigilance whereas 

impala were unaffected. There are two levels of vigilance: routine vigilance where the 

head is lifted and there is an inspection of the surroundings while moving, and intense 

vigilance where there is an inspection of the surroundings and the individual has stopped 

movement (Périquet et al., 2012). A larger group of mammals around an artificial water 

source will reduce the need for individual vigilance behaviour and decrease vulnerability 

to predation, as was observed when coati were drinking in the Palo Verde National 

Wildlife Refuge, Costa Rica (Burger & Gochfeld, 1992). 

 

3.5 Benefits of Artificial Water Sources 

There are few studies which have investigated the particular benefits that artificial water 

sources may have on mammal populations, however, it has been recognised that the 
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advantages of artificial water sources have mainly been for humans (Burkett & 

Thompson, 1994). The addition of artificial water sources into national parks and game 

reserves can be beneficial to management in meeting touristic and conservation 

objectives and are often hubs of activity, especially in the dry season when many different 

species congregate around these sources. Artificial water sources are therefore popular 

sites in which mammals can be viewed and photographed by tourists (Ayeni, 1975), 

particularly attracting the larger and well recognised species (Shannon et al., 2009). Due 

to the high numbers and the variety of species needing to drink, these features can be an 

economical way in which researchers can document water source visitation patterns and 

monitor the number of mammals that come and drink (Ayeni, 1975).  

 

Management of conservation areas expect certain benefits for mammals by constructing 

artificial water sources, these benefits include increasing the habitat use areas for 

mammals and increasing the chance of survival of water-dependent mammals 

(Rosenstock et al., 1999). By increasing the number of available water sources in a 

national park or game reserve, the distance between water sources is reduced, which will 

benefit water-dependent species that would usually need to travel long distances to find 

water. Additionally, there would be a decrease in competition for water and space 

between the same species and different species at natural water sources (Epaphras et 

al., 2008). In general, there is improved water quality in artificial water sources due to the 

constant replacement of borehole water compared to long-standing water in natural pools. 

 

3.6 Disadvantages of Artificial Water Sources 

Artificial water sources have the potential to alter the natural balance of an area, therefore 

having an impact on biodiversity (James et al., 1999). Such water sources result in the 

concentration of many different mammals into an area, with consequent overgrazing and 

trampling. In addition, the numbers and distribution of water-dependent species may 

increase and stimulate hunting and predation (James et al., 1999). Several studies have 

highlighted that mammals drinking from artificial water sources face the challenges of 
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increased predation and the transference of disease (Rosenstock et al., 1999; Epaphras 

et al., 2008). The supplementation of water can influence both mammals and vegetation 

in different ways in particular areas. The provision of water through artificial water sources 

can be damaging to mammals as it can lead to changes in their natural behaviour and 

consequently result in decreasing their chances of survival (Knight, 1995a). It is important 

that the availability of water is replicated naturally, as excessive water provision creates 

an unnatural pattern of landscape utilisation, especially for elephants, and this may lead 

to negative impacts on other mammals and vegetation (Loarie et al., 2009).  

 

In the Kgalagadi Transfrontier Park, water provision resulted in the unintended loss of 

wildebeest and eland, as these species changed their distribution due to the permanent 

availability of water, consequently encouraging the species to overutilise areas which they 

would usually only move to during specific periods of water availability (Knight, 1995a). 

The severe decline in numbers of the rare roan antelope in KNP, during the period 

between 1986 - 1993 was attributed to a number of possible reasons: supplementation 

of water in the northern basalt plains in the northeastern corner of KNP, which is known 

to be where roan antelope occur, resulted in an increase in both zebra and wildebeest 

seeking water during the drought period of 1982 - 1983 (Harrington et al., 1999). These 

species distinctly favour a tall grass environment where there is little competition with 

various other grazer species (Smit & Grant, 2009) consequently the increase in numbers 

of zebra and wildebeest caused an increase in the grazing intensity in the roan antelope 

habitat and a decline in tall grass cover. This affected the resources available to the roan 

antelope as well as increased the vulnerability of roan antelope calves that need to be 

concealed in the long grass for protection from predation. In addition, the increase in 

numbers of zebra and wildebeest led to an increase in lion numbers in the area, and 

therefore an increase in predation of the roan antelope. All of these factors contributed to 

the decline of the roan antelope population, however, the underlying cause of the decline 

can be attributed to the provision of artificial water sources in their habitat (Harrington et 

al., 1999). The closure of artificial water sources during 1995 in the eastern Vlakteplaas 

has led to a decline in zebra population numbers in the area (Dunham et al., 2004), 
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however, it will take a number of years for the low population numbers of roan antelope 

to recover, which could be additionally threatened by climate change impacts on habitat 

(Grant et al., 2002).  

 

The term 'piosphere' was described by Lange (1969) as the area where there is a 

relationship between a water point and mammals foraging around a water point, and the 

consequent impacts on the vegetation in close proximity to the water point. The 

'piosphere' is therefore an important system to consider in rangeland management 

(Lange, 1969). The addition of artificial water sources into an environment can change 

grazing patterns, which is influenced by the quantity of mammals, the time spent grazing 

and the area in which grazing occurs (Graz et al., 2012).  

 

The impact of large herbivores on the herbaceous vegetation around artificial water 

sources in KNP was examined by Thrash (1998a), with two patterns of impact identified 

around the drinking troughs; 1) the sacrifice area, which is an area that did not have 

permanent herbaceous vegetation due to the concentration of large herbivores in this 

area in the dry season; and 2) the dry season zone, which is an area that extends to 10km 

from water and is relatively well utilised by mammals in the dry season. This zone 

emerges due to the provision of water in areas where water is not naturally available in 

the dry season (Thrash, 1998a). In contrast to previous work, in Chobe National Park, 

during a 12-year period of supplementing water, there was an increase in tree-

composition around artificial water sources, despite a significant increase in the elephant 

population. This finding differs to what is usually expected when hypothesizing about the 

influence of artificial water sources on the surrounding vegetation. It was, however, added 

that the increase in tree-composition was due to a number of different causal factors, 

including fires and a succession of wet years (Kalwij et al., 2010).  

 

In KNP the seedlings of woody vegetation around artificial water source sites struggle to 

survive due to the pressure of trampling by concentrations of large herbivores around 
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these sites. Large herbivores have an obvious impact on the woody plants and shrubs 

around artificial water sources, with an increase in quantity of shrubs extending outwards 

from water sources. The provision of water in KNP results in a multiple 'piosphere' effect, 

as the impact on vegetation is not limited to the area in close proximity to the artificial 

water sources but can extend up to a few thousand meters away from the artificial water 

sources (Brits et al., 2002). The distance between water sources, the preceding rainfall 

season and mammal abundance has an impact on the vegetation and land surrounding 

water sources. It has been recommended that artificial water sources be grouped in 

specific areas and that these groups of water sources are dispersed throughout habitats 

to reduce the impacts of trampling by large herbivores on isolated water sources (Thrash, 

2000). Over a period of time, the widespread provision of artificial water sources results 

in a decrease in herbaceous vegetation and suitable forage for grazers in the vicinity of 

these sources (Parker & Witkowski, 1999).  

 

In KNP, around the Wik-en-Weeg dam, the impact on herbaceous vegetation was more 

significant than on the woody vegetation around the dam due to herbaceous vegetation 

being more sensitive to trampling by mammals (Thrash et al., 1991a). Therefore, 

vegetation that is able to withstand the impacts of trampling around an artificial water 

source will have a greater chance of survival (Tolsma et al., 1987). In support of previous 

work in KNP, it was also found that the occurrence of specific species was stable whilst 

other herbaceous and woody plant species increased or decreased as influenced by 

either rainfall or grazing or both in the Kalahari Gemsbok National Park (van Rooyen et 

al., 1990).  

 

3.7 Management of Artificial Water Sources  

The provision of artificial water supplies has implications for the management of important 

conservation areas. Managers of national parks are able to manipulate where (location) 

and when (season) water is supplemented in artificial water sources, whereas natural 

sources of water are variable over space and time due to climatic factors (Cronje et al., 
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2005). The requirement of management to not only meet the needs of mammals but also 

satisfy the needs of tourists is an additional motivation for providing artificial water sources 

(Smit & Ferreira, 2010). It is important that mammal drinking patterns across different 

temporal scales (daily, monthly, seasonally and yearly) be monitored, in order to establish 

the reliance of mammals on these sources during different climatic conditions and to 

provide this information to management (Hitchcock, 1996).  

 

Management needs to consider the consequences of opening more artificial water 

sources or closing down artificial water sources, in order to restore a more natural pattern 

of surface-water availability. Closing down artificial water sources could have negative 

impacts on the land and vegetation around the open artificial water sources, and this 

degradation may be enhanced during dry periods (Franz et al., 2010). It has been 

suggested that rotating and alternating surface-water availability by opening and 

temporarily closing down specific artificial water sources will prevent degradation and 

overutilisation of vegetation in specific areas (Smit & Grant, 2009; Franz et al., 2010; 

Gaugris & van Rooyen, 2010). This system of alternating water sources in different areas, 

as well as keeping specific permanent water sources, is likely to be beneficial for 

numerous mammals, as well as promoting vegetation growth (Smit & Grant, 2009). It is 

recommended by Smit & Ferreira (2010) that if more supplementary water sources are 

added into KNP, that these sources should not be positioned in close proximity to drier 

rivers, as this would encourage elephants to move into these areas throughout different 

seasons. Certain species will be affected differently by the changes in the water 

distribution in KNP; species such as waterbuck that favour the riparian vegetation habitat, 

are likely to be impacted by an increase in other species utilising this habitat, due to the 

removal of artificial water sources (Redfern et al., 2005). In response to changes in river 

systems due to climate change and human interference, rivers may become less 

desirable to species such as waterbuck, elephant and buffalo, and thus artificial water 

sources may possibly become essential for the survival of these species (Smit et al., 

2007a). The removal of artificial water sources in KNP will be determined by species 

utilisation of ephemeral water sources in the park. Removing artificial water sources will 
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have an effect on herbivore distribution and population numbers as these sources have 

permitted these species to move into areas in which they would not usually utilise, 

therefore sustaining a larger population over a wider area (Redfern et al., 2005). The 

definite consequences for mammals and their water requirements from removing artificial 

water sources will only be known when a drought is experienced, as under contemporary 

climatic conditions these consequences may not be evident (Smit & Grant, 2009). 

Surface-water availability fluctuates throughout different periods, which is an important 

management consideration, thus it is important that management undertake scientific 

studies in order to understand the necessity for artificial water sources during and 

between different seasons and that the impacts of water provision on mammals and 

vegetation are recognised (Chamaillé-Jammes et al., 2007b).  

 

3.8 Approaches to Studying Mammal Behaviour 

Monitoring and observing species over long periods of time provides valuable information 

on the habitat preferences of specific mammals, the number of different species that 

occur in specific environments and data on population statistics (Ancrenaz et al., 2012). 

A fundamental requirement of managing biodiversity in national parks is that of monitoring 

and observing mammals and examining how different management policies and 

environmental changes may affect behaviour and population numbers (Carbone et al., 

2002; McGeoch et al., 2011). Two different approaches to observing and monitoring 

mammals have been recognised: 1) the lagrangrian approach, which requires that a 

specific animal or group of animals be followed and their movement across different areas 

are tracked (GPS tagging, tracking an animal on foot or from a car), and 2) the eulerian 

approach, in which a particular area is monitored and any animals moving into the area 

are recorded (Kays et al., 2010). Remote photography techniques fall under the eulerian 

approach as cameras are set up in a specific area and images are captured of mammals 

within that area (Kays et al., 2010). 
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3.8.1 Traditional Methods of Monitoring 

A pattern between studies where similar traditional methods were used by Weir & Davison 

(1965) in Hwange National Park, Young (1970) in KNP, Ayeni (1975) in Tsavo National 

Park and du Preez & Grobler (1977) in Etosha National Park where observers counted 

mammals at water sources from a vehicle or from a hide and the time at which different 

species came to drink was noted in each study. Weir & Davison (1965) and du Preez & 

Grobler (1977) carried out their observation studies over a 24-hour period, specifically 

during the full moon so as to identify species drinking at night. Mammals were counted 

during the day by two observers from a hide (Ayeni, 1975) and additionally night time 

observations took place from a vehicle at a floodlit water source. The study by Young 

(1970) was carried out during the day and at night, and during moonless nights a search 

light was used to identify mammals at the water sources (Young, 1970). 

 

In studies in which the main objective has been to observe the behaviour of mammals, 

water sources have proved to be unique and convenient sites in which to conduct this 

research. Monitoring the behaviour of mammals from a vehicle parked at a distance of 

approximately 100 meters from a water source or from a hide or tourist platform have 

been the standard methods used in many ecological studies observing a selection of 

different species (Child et al., 1971; Hitchcock, 1996; Chamaillé-Jammes et al., 2007a; 

Tefempa et al., 2008; Valeix et al., 2009a; Crosmary et al., 2012) or observing a specific 

species, such as sable antelope (Kamanda et al., 2008) and elephants (Merte et al., 

2010). A different method of identifying which particular mammals utilise water sources is 

to mark out quadrants around a water source and identify species based on the spoor 

and droppings left within the boundaries set out around the water source; this method 

was used in a study by Epaphras et al. (2008).  

 

Additional methods of observing the behaviour of specific species is to follow them either 

on foot and track their movements in the sand, or from a vehicle using binoculars. The 

behaviour and various daily activities of warthog (Clough & Hassam, 1970), impala 



58 

 

(Young, 1972; Jarman & Jarman, 1973), lion (Eloff, 1973) and bushbuck (Okiria, 1980) 

were monitored by researchers in vehicles, and elephants were followed on foot to 

observe their daily activity patterns (Guy, 1976).  

 

These traditional methods of monitoring mammal behaviour and recording mammal 

numbers have a temporal limitation as observation is mostly restricted to daytime hours 

and therefore studies are generally limited to a 12-hour observation period. However, 

during full moon there is an opportunity to observe mammals throughout the night 

(Crosmary et al., 2012). The continuous observation of mammals at a water source or 

following them in a vehicle or on foot requires the effort of at least two observers (Eloff, 

1973) with sufficient experience and knowledge on specific species behaviour (Cilliers, 

1989). Daily weather conditions can impact on data collection, as high temperatures can 

limit the ability of trackers on foot (Eloff, 1973) and during the wet season roads may be 

inaccessible in a vehicle (du Preez & Grobler, 1977). Additionally, the vegetation in 

particular areas can affect the ability to detect mammals and observe their behaviour, and 

in woodland areas visibility may be limited (Jarman & Jarman, 1973) whereas in areas 

where vegetation is less dense and there is short grass, mammals may be more easily 

identified (Clough & Hassam, 1970).  

 

3.9 Mammal Census Methods 

Important factors such as the study site, the time available, budget, the species being 

researched and the data that need to be acquired, should be considered when choosing 

the appropriate method to monitor mammal behaviour and population numbers (Gaidet-

Drapier et al., 2006; Ancrenaz et al., 2012). Generally, ground-based census methods 

(foot counts, bicycle counts and water source counts) are less expensive methods when 

compared to an aerial census (Gaidet-Drapier et al., 2006). Comparisons between four 

different census methods (foot counts, bicycle counts, water source counts and aerial 

census) in Zimbabwe (Gaidet-Drapier et al., 2006), highlighted that bicycle and foot 

counts are inexpensive methods in small conservation areas whilst car counts were found 

to be the least useful census method, conversely water source counts were the most 
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useful census method, being the least demanding in terms of physical requirements and 

effort and cost-effective (Gaidet-Drapier et al., 2006).  

 

Recent research by Valeix et al. (2008) in Hwange National Park used a similar 

methodological approach to the 4 studies undertaken in the late 1960's and early 1970's, 

carrying out a mammal census at water sources, over a 24-hour period during the late 

dry season. Despite work by Valeix et al. (2008), conducting a census at water sources 

has not been a widely used method for establishing population numbers of multiple 

species, and therefore this study is unique. There are many advantages to monitoring 

mammals at a water source, given that it provides the researcher with a large amount of 

data over a long period of time at a fine temporal scale. There is also the advantage of 

being able to identify small herbivores and birds at water sources and therefore data can 

be collected on the drinking patterns of these species (Valeix et al., 2008). Due to changes 

in surface-water availability in different seasons, mammals will change their drinking 

patterns according to the distribution of water and therefore differences can be noted in 

drinking patterns between seasons and between years (Valeix et al., 2008). Water source 

census is not a conventional method in which to record mammal numbers whilst aerial 

census is a traditional method of observing mammals and obtaining population numbers 

(Valeix et al., 2008).  

 

Aerial counts of mammals are a valuable method in which to obtain population numbers 

and are particularly useful in large national parks and game reserves which cover 

extensive areas of land, however, it has been recognised that there are numerous biases 

in aerial counts and therefore inaccurate data can be obtained (Jachmann, 2002). Aerial 

census biases are mainly linked to the ability of an observer to identify species as the 

environment that certain mammals inhabit and their behaviour influences the ability to 

record mammal numbers and consequently, aerial censuses may produce more reliable 

counts if done in a more open environment. Further to this, factors such as vegetation, 

specific mammal characteristics, the amount of mammals in a group, the effect of the 

aircraft on mammals, wet and dry seasons and weather conditions affect the process of 
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an aerial census and the data that are obtained (Jachmann, 2002; Redfern et al., 2002). 

It has been highlighted by Jachmann (2002) that the major disadvantage of aerial census 

is undercounting, compared to line transect foot counts which provide more accurate 

counts. It is therefore advised that the reliability of aerial census counts be considered 

when using the information to inform and assist in management decisions (Redfern et al., 

2002). It is suggested by Jachmann (2002) that aerial counts are suitable for larger grazer 

species, however, for smaller browsers and carnivores, other census techniques such as 

strip-line transects or water source counts would be more reliable (Jachmann, 2002).  

 

3.10 Remote Photography 

Traditional methods of observing mammal behaviour, such as direct observation, have 

largely been substituted by remote photography technologies (Cutler & Swann, 1999; 

Meek & Pittet, 2012) which are generally applicable in most environments (Silveira et al., 

2003) and can be used for many different ecological research disciplines (Cutler & 

Swann, 1999; Ancrenaz et al., 2012). Remote photography is described as the process 

of taking pictures of mammals without the requirement of the physical presence of a 

researcher (Cutler & Swann, 1999). Remote photography techniques (camera-trapping 

and webcams) are non-invasive (do not involve the physical trapping, marking or collaring 

of mammals) strategies in which to monitor and observe mammals, along with other 

methods such as transect surveys (Silveira et al., 2003; Ancrenaz et al., 2012).  

 

3.10.1 Camera-traps 

Modern camera-trap and webcam technologies have numerous advantages when 

compared with traditional monitoring and surveying methods (Table 3.5) (Ancrenaz et al., 

2012). Images captured by remote photography technologies provide an objective source 

of data and therefore subjective and inter-observer biases associated with traditional 

methods of observation are counteracted using this modern technology (Cutler & Swann, 

1999; Yasuda, 2004; Kays et al., 2010; Rovero et al., 2010).  
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Table 3.5: The advantages and disadvantages of remote photography techniques for mammal monitoring 

purposes. 

Advantages Disadvantages 

• Photographs of rare, secretive and nocturnal 
species (Cutler & Swann, 1999; Rovero et 
al., 2010; Ancrenaz et al., 2012). 

• Mammals may run away before the camera is 
able to capture an image (Lyra-Jorge et al., 
2008). 

• Useful for monitoring medium to large sized 
mammals (Lyra-Jorge et al., 2008; Ancrenaz 
et al., 2012). 

• The size of birds and small mammals are often 
not picked up by cameras (Ancrenaz et al., 
2012). 

• Collect ecological data on species survival 
rates (Karanth & Nichols, 1998), species 
interactions (Kierulff et al., 2004), presence, 
abundance, distribution and behaviour 
(Silveira et al., 2003; Ancrenaz et al., 2012). 

• The presence of cameras may disturb certain 
species and affect their typical behaviour 
patterns (Cutler & Swann, 1999; Lyra-Jorge et 
al., 2008; Ancrenaz et al., 2012; Rovero et al., 
2013). 

• Data on the daily activity patterns of 
mammals, as images are time stamped 
(Lyra-Jorge et al., 2008; Rovero et al., 2010). 

• Inquisitive species may interfere with cameras 
by pushing them over, resulting in damage to 
the camera (Ancrenaz et al., 2012). 

• Useful for capture-recapture purposes to 
identify individual mammals (Heilbrun et al., 
2006) using pelage characteristics (Rovero 
et al., 2010). 

• Recognising individual mammals is not often 
feasible (Bowkett et al., 2007). This can result in 
over counting and overestimation of abundance 
(Silveira et al., 2003; Lyra-Jorge et al., 2008). 

• Cameras can be used in areas with different 
environmental and climatic conditions 
(Silveira et al., 2003). 

• Cameras in unprotected areas may be 
interfered with or stolen by people Silver et al., 
2004; Pettorelli et al., 2010). 

• Less time consuming and labour intensive 
than traditional methods (Kays et al., 2010; 
Meek and Pittet, 2012). 

• Methods of inferring information from images is 
problematic (Bowkett et al., 2007). 

• Research can be undertaken over different 
temporal (seasons and across years) and 
spatial scales (Karanth & Nichols, 1998; 
Ancrenaz et al., 2012; Sollmann et al., 2013). 

• Cameras may be triggered by obstructing 
vegetation or by changes in the ambient 
temperature (Lyra-Jorge et al., 2008; Brown & 
Gehrt, 2009). 

• Images can be archived and used for future 
retrospective studies (Kelly & Holub, 2008; 
Rowcliffe & Carbone, 2008). 

 

• Analysing a large amount of images is time 
consuming (Ancrenaz et al., 2012). 

• Minimal disturbance to the surrounding 
environment, mammals and vegetation 
(Silveira et al., 2003; Rovero et al., 2010). 

 

• Cameras are a research investment and can 
be used again in different studies (Silveira et 
al., 2003; Lyra-Jorge et al., 2008; Rovero & 
Marshall, 2009). 
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A pattern between studies comparing camera trap methods to line transect counting 

techniques highlighted that line transect techniques are particularly restricting as they are 

time-consuming, expensive, require the expertise of experienced researchers and are 

limited by environmental conditions (Silveira et al., 2003; Kielrulff et al., 2004; Rovero & 

Marshall, 2009). Furthermore, line transect counts facilitate the identification of large 

species during the day over small or nocturnal species (Silveira et al., 2003). 

Comparisons between camera traps and track plot counts have revealed that track plot 

counts are especially useful in determining species richness and abundance indices 

(Silveira et al., 2003), however, they require the expertise of at least two researchers and 

a vehicle, tracking over large spatial scales and long temporal periods (Silveira et al., 

2003; Lyra-Jorge et al., 2008; Kays et al., 2010). Track plot counts are limited by 

contemporary weather conditions as rain and wind can remove records (Silveira et al., 

2003; Lyra-Jorge et al., 2008). It is noted that both the camera trap method and track plot 

counts can overestimate abundance due to over counting (Silveira et al., 2003; Lyra-

Jorge et al., 2008). 

 

The use of remote photography in ecological studies has shaped a new methodology in 

which to observe and monitor mammals, and has made it possible for researchers to 

acquire valuable information on species that would usually be difficult to study using 

traditional methods (Brown & Gehrt, 2009). It has been noted that there are certain 

procedural limitations related to the data collected by remote photography technologies 

and how such data have been interpreted and applied in different studies (Table 3.5) 

(Kelly, 2008). There has, however, been a substantial increase in the number of published 

ecological studies using camera-traps to assist in the research process over the last 10 

years (Rowcliffe & Carbone, 2008; Rovero et al., 2010).  

 

3.10.1.2 Camera Traps Used for Ecological Studies 

Camera traps have been used in numerous scientific research studies on various 

mammals in different locations around the world; over variable time scales and with 
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different research aims and objectives (Cutler & Swann, 1999). Camera-trap 

'photographic' capture-recapture methodology is an effective method in which to 

determine population size of tigers, including other individually recognisable species 

(Karanth, 1995), such as jaguars in Belize and Bolivia (Silver et al., 2004); leopards 

(Chauhan et al., 2005) and tigers in India (Karanth & Nichols, 1998); leopards in the 

N'wanetsi Concession in KNP (Maputla et al., 2013), Phinda Private Game Reserve 

(Balme et al., 2010) and Zululand Rhino Reserve (Chapman & Balme, 2010), South 

Africa; and Cheetahs in the Atherstone Collaborative Nature Reserve, South Africa 

(Marnewick et al., 2008). If individuals are not individually recognisable, camera-traps can 

be used to determine the occurrence of a species in a specific environment (Jennelle et 

al., 2002). Camera-traps were also used in Bandipur National Park, India, to analyse the 

population structure of Asian elephants (Varma et al., 2006), in central Japan to study 

medium and large sized terrestrial mammals (Yasuda, 2004) and in the Khao Yai National 

Park, Thailand, camera-traps have been used in long-term studies throughout different 

seasons (Jenks et al., 2011). Camera-traps have been valuable for studies in the 

Udzungwa Mountain National Park, Tanzania, to assess the influence of environmental 

and anthropogenic factors on the habitat use of two specific forest antelopes (Bowkett et 

al., 2007).  

 

In Pilanesberg National Park camera-traps have been a useful tool to estimate brown 

hyaena (Thorn et al., 2009). It has been noted that the majority of published studies using 

camera traps in different regions of the world are particularly centered on one or two 

specific species (Kelly & Holub, 2008; Tobler et al., 2008). Images not containing 

information on a focus species are often not used and are archived or discarded however, 

images captured by camera-traps can provide information on numerous species 

inhabiting a particular area and therefore these images should be archived for 

opportunities to use in future studies (Kelly & Holub, 2008).  
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3.11 Webcams and Mammal Observation 

Webcams have been set up in various natural environments around the world as a tourist 

initiative, streaming live images or videos across different websites, where people all over 

the world can access these sites and remotely observe animals in different locations over 

a 24-hour basis (Kamphof, 2011). The World Land Trust have webcams that stream live 

images from tropical forests in Ecuador and Argentina (www.worldlandtrust.org/webcam). 

Africam.com is a popular website where people can access live video streaming of 

specific locations in different game reserves in South Africa (Kamphof, 2011). Similarly, 

webcams have also been set up at various water sources located in national parks and 

game reserves in South Africa, such as Madikwe Game Reserve, Pilanesberg National 

Park and Tembe Elephant Park (Hayward & Hayward, 2012). On the SANParks website, 

images and live video can be accessed, providing tourists with the opportunity to view 

mammals drinking at water sources in Addo Elephant National Park, Kgalagadi National 

Park (Nossob) and in KNP, where webcams have been set up at two artificial water 

sources near to the Satara and Orpen tourist camps (www.sanparks.co.za/webcams/). 

Webcams set up in remote environments that provide people with images of mammals 

that inhabit these areas are becoming progressively popular tools in which to provide 

opportunities for people to remotely observe mammals (Hayward & Hayward, 2012). 

However, there is concern that the use of webcams to live stream images and videos on 

various online platforms puts specific species at risk, as the location and activity patterns 

of these species can be observed by poachers (Northcut, 2012). The use of webcams to 

collect information for scientific research purposes has not been widely used to date, with 

few studies undertaken using webcams for wildlife monitoring.  

 

Webcams have been used in avian studies, to observe eggs in nests and monitor the 

changes in nestling activity (Hudson & Bird, 2006) as well as to examine bird migration 

patterns (Verstraten et al., 2010). A recent study by Hayward & Hayward (2012) is the 

first study to have assessed the value of webcams for scientific research purposes and 

to observe the drinking patterns of wildlife in different South African locations. The study 

successfully collected useful data on specific species drinking patterns at water sources, 

verifying the use of this technology for scientific studies (Hayward & Hayward, 2012). 
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Webcams provide a cost-effective method in which to observe wildlife behaviour 

(Hayward & Hayward, 2012), providing a permanent data record (Hudson & Bird, 2006). 

Webcams share many of the advantages of camera-traps, with the added advantages of 

capturing numerous images without the concern about the storage capacity of memory 

cards (Porter et al., 2010). Remote photography technologies provide a unique and 

valuable method in which to observe and monitor mammal populations and establish the 

current and future threats to these populations, particularly taking into consideration 

projected future climate change scenarios, which is important for the survival and 

management of these species in conservation areas (Pettorelli et al., 2010).  

 

3.12 Climate Change in Southern Africa 

Over the central interior of southern Africa there has been a trend towards intense 

warming (Hulme et al., 2001), with an increase in the number of hot days and nights and 

a decrease in the number of extremely cold days and nights (New et al., 2006). Rainfall 

over southern Africa is seasonally and annually variable, and is influenced by the amount 

of solar radiation, changing position of the Hadley cell and the dominant winds in summer 

and winter (Jury, 2013). The start of the rainfall season in southern Africa has shifted to 

a later period and it has been noted that the rainfall season in southern Africa continues 

over a shorter temporal scale (Shongwe et al., 2009).  

 

3.12.1 Temperature Trends and Projections 

There has been an increase in days with warmer temperatures and a decrease in days 

with cooler temperatures, whilst there has also been a widespread increase in nights with 

warmer temperatures and a decrease in nights with cooler temperatures (Kruger & 

Shongwe, 2004). Particularly, there has been a significant increase in nights with warmer 

temperatures on the east coast, the eastern interior region and in the northern Cape 

interior (Kruger & Shongwe, 2004). The most intense warming has been noted within the 

month of April and in autumn (Kruger & Shongwe, 2004).  
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A pattern between studies analysing the trends of daily maximum and minimum 

temperature extremes for South Africa, revealed that over most of the Country there has 

been an increase in the daily minimum temperatures in the Limpopo Province and areas 

of northern Mpumalanga, excluding the central interior region (Kruger & Sekele, 2013; 

MacKellar et al., 2014), whilst across South Africa there has also been an increase in 

daily maximum temperatures (Kruger & Sekele, 2013), which have increased particularly 

in the months of June, July and August. Minimum and maximum temperature increases 

were noted to be significantly higher in the western region and northeastern interior region 

of South Africa (Kruger & Sekele, 2013) consequently, it has also been highlighted that a 

significant increase in heat waves has been experienced in the most northern areas of 

the western and northeastern interior regions (Kruger & Sekele, 2013). Temperature 

trends for the Limpopo Province, in which the majority of KNP is situated, for the period 

1950 - 1999, revealed that there has been a general increase in the mean annual 

temperature of 0.12°C/decade (Tshiala et al., 2011). The substantial increase in 

temperature over this Province could have considerable impacts on the water resources 

and biodiversity in this region (Tshiala et al., 2011). Temperature trend analysis for 

Skukuza for the period 1960 - 2001 indicated that there has been a distinct increase in 

the minimum temperature from the beginning of the study period (Kruger et al., 2002).  

 

In South Africa, a possible increase of 1°C to 3°C in temperature is projected over the 

next 5 decades as well as a possible decrease of 5 to 10% of contemporary rainfall 

(Madzwamuse, 2010). In support of the general warming trend over most of South Africa, 

with certain regions experiencing stronger increases and a higher rate of recurrence of 

warm extremes from the 1960's onwards (Kruger & Shongwe, 2004; Kruger & Sekele, 

2013; MacKellar et al., 2014), future temperature projections for northeastern South 

Africa, including the Mpumalanga, Limpopo and Gauteng Provinces suggest an increase 

in the annual maximum daily temperature of 0.5°C, with a decrease of between 0.27°C 

and 1.26°C in April, May, June and July, an increase in the annual mean daily temperature 

of between 0°C and 0.89°C and an increase in the minimum daily temperature of between 

0.6°C and 1.16°C for all months of the year (Davis, 2010).  
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3.12.2 Precipitation Trends and Projections  

Climate change in South Africa is likely to increase the intensity and frequency of extreme 

events such as flooding and drought periods due to an increase in rainfall events over a 

shorter period, and there will be longer periods without rainfall (Petersen & Holness, 

2012). It is projected that there will be a decrease in the mean summer precipitation rates, 

particularly in the arid and semi-arid regions of southern Africa (Shongwe et al., 2009). 

Analyses of daily precipitation trends from 138 rainfall stations in South Africa, for the 

period 1910 - 2004, highlighted that in general there have been no major changes in the 

rainfall over South Africa (Kruger, 2006), despite this, it has been noted that there have 

been significant increases in annual rainfall in the southern Free State and in an area 

north of the Eastern Cape, whilst there has been a decrease in annual rainfall in Limpopo, 

Mpumalanga, eastern Free State and part of the Eastern Cape (Kruger, 2006). There has 

been a considerable decrease in rainfall and the number of rain days particularly in the 

central and northeastern region of South Africa (Kruger, 2006; Mackellar et al., 2014). 

Across most of South Africa there has been an increase in the number of heavy rainfall 

events (Mason et al., 1999). Monthly rainfall data from Skukuza for the period 1912 - 

2001, Kruger et al. (2002) shows that the long-term average rainfall has been fairly 

consistent throughout this period in this area.  

 

In the lowveld region there has been a decrease in the number of rain days in the months 

of January, February, March, April, May, September, October, November and December 

(Mackellar et al., 2014), this is validated for most of South Africa where similarly there has 

been a significant decrease in rainfall in the months of December, January and February 

observed over the period from 1900 - 2000 (Hulme et al., 2001). Similarly future climate 

projections for southern and tropical Africa using the period 1975 - 2005 (present) 

compared to the period 2070 - 2100 (future), revealed that for South Africa in the South 

Western Cape, there is projected to be a significant decrease in rainfall in the future 

climate scenario. The eastern half of South Africa is projected to become drier due to a 

decrease in annual rainfall, particularly in the northeast, although rainfall is projected to 

increase during summer (Engelbrecht et al., 2009). This is in contradiction to the future 
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rainfall projections for northeastern South Africa, using ten global circulations models, 

which suggest an increase in the total annual rainfall, fluctuating between 301mm to 

758mm per annum (Davis, 2010). It is, however, projected that with increasing 

temperatures, evaporation rates are likely to increase and this will have an impact on 

available water sources (Davis, 2010). The region in South Africa that is projected to 

become wetter in the future climate scenario is the central interior (Engelbrecht et al., 

2009), this projection corresponds with the findings of Kruger (2006), which highlighted 

that annual precipitation has increased in parts of the central interior of South Africa, with 

a decrease in annual precipitation over parts of the eastern half of South Africa.  

 

3.13 Impacts of Climate Change on the Conservation Sector 

The majority of wildlife conservation areas in southern Africa and South Africa are situated 

in areas where water is a scarce resource; and with the projected climate change impacts, 

these areas are expected to become more arid (Magadza, 1994) due to changing rainfall 

patterns (Owen-Smith & Ogutu, 2012). The conservation sector and particularly the 

biodiversity within conservation areas in South Africa are likely to be affected significantly 

by climate change (van Jaarsveld & Chown, 2001; Davis, 2010). Species may respond 

to climate change by altering their habitat use (spatial), shifting their daily and seasonal 

utilisation of resources (temporal) or adapting to changes by adjusting their behaviour or 

physiological mechanisms (Bellard et al., 2012). The movement of mammals is confined 

within conservation areas, which will limit their ability to modify their distribution patterns 

in response to changing climatic patterns (Thomas et al., 2004; Owen-Smith & Ogutu, 

2012). Species are likely to shift their distribution and range towards an easterly direction, 

however, range contractions are expected to occur along the eastern regions of South 

Africa (van Jaarsveld & Chown, 2001; Davis, 2010). The increasing rates of carbon 

dioxide released into the atmosphere is expected to have an impact on both the savanna 

and grassland biomes, due to the invasion of bush and woody species, which has 

implications for wildlife grazing (Petersen & Holness, 2012). The incidence of wildfires is 

likely to increase, along with an increase in alien invasive species and further 

fragmentation of natural habitats which all have implications for the survival of mammals 
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in conservation areas in South Africa (Davis, 2010). An increase in rainfall and therefore 

an increase in flooding events, will lead to the build-up of sediment in rivers, which is likely 

to have an impact on the water quality of downstream sources (Petersen & Holness, 

2012). 

 

KNP forms part of the savanna biome, and it is predicted that, globally, vegetation in 

savanna biomes will be negatively impacted due to the variability of rainfall amongst other 

factors (Fischlin et al., 2007). Increasing global temperatures are expected to enhance 

dry season drought conditions in savanna biomes due to an increase in evaporation which 

will therefore intensify the water loss of both mammals and vegetation (Ogutu & Owen-

Smith, 2003). The survival of wildlife is affected by both climatic conditions, which 

influences physiology; and the quantity and quality of vegetation available (Thuiller et al., 

2006). The likely impacts of climate change on mammals inhabiting the savanna biomes 

are not well known (Fischlin et al., 2007), however, the increase in occurrence and 

intensity of droughts and floods will have a major impact on species in savanna habitats 

(Owen-Smith & Ogutu, 2012). Drought threatens the survival of mammal populations in 

arid and semi-arid environments in the 21st century, and it is predicted that sedentary 

species such as grazers and mixed feeders will be most affected by the increasing 

occurrence of drought as they favour vegetation that is drought-intolerant (Duncan et al., 

2012). Hartebeest and waterbuck are species that will be significantly affected by 

increasing drought conditions under climate change scenarios, whereas the survival of 

buffalo and impala will not be significantly impacted (Duncan et al., 2012). Changing 

regional rainfall patterns will significantly affect water quality, quantity and availability, thus 

impacting on mammals and their water-use behaviours in savanna regions. Many factors 

influence the vulnerability of mammals in conservation areas and a major limiting 

resource is surface water availability. With changing rainfall patterns and increasing 

temperatures due to climate change, management of conservation areas need to provide 

a sufficient number of water sources and ensure that there is suitable tree cover for 

mammals to rest under during extreme temperature conditions (Mawdsley & Surridge, 

2012). It is suggested that the management objectives for artificial water provision in 
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conservation areas should be directed towards distributing water points in specific areas 

in the landscape, so that they benefit both mobile and sedentary species (Duncan et al., 

2012). Future studies need to concentrate on the impacts of climate variability and climate 

extremes on specific habitats of wild mammals, to establish wildlife vulnerability and 

therefore identify conservation areas that are likely to be most affected by climate change 

(Dockerty et al., 2003; Williams et al., 2008) or strategic management policies can be put 

in place considering climate change projections (Duncan et al., 2012).  

 

3.14 Conclusion 

Artificial water sources are needed globally to supplement water in different conservation 

environments around the world and in this literature review the purpose of artificial water 

sources in different areas has been highlighted. Different mammals have different water 

requirements and utilise artificial water sources over different temporal and spatial scales. 

The supplementation of water through the use of artificial water sources is a contentious 

subject, with many negative impacts on both mammals and vegetation and the wider 

environments in which they have been implemented. However, they are beneficial for 

certain species and for tourist initiatives and therefore assist in achieving management 

objectives. There are numerous methods in which to study and observe mammal drinking 

patterns, with various advantages and disadvantages connected to these various 

methods. The traditional and modern approaches of mammal observation methods have 

been reviewed with a particular focus on remote photography methods. It is necessary to 

establish reliable methods with which to monitor mammal populations and their 

behaviour, particularly in the context of future projected climate change scenarios for 

South Africa. Few studies have used webcam imagery to study and observe mammal 

drinking patterns and behaviour under contemporary climatic conditions and therefore the 

aim of this study is to add to this particular gap in the literature. Expanding knowledge on 

climate-related mammal behavioural trends is critical in shaping decisions about water 

provision, and what factors should be considered important when making future water 

provision decisions within the framework of projected future climate trends. 
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Chapter 4 - Data and Methodology 

4.1 Introduction 

The primary aim of this desktop study is to improve knowledge pertaining to mammal 

waterhole visitation patterns, and their relationships with contemporary climate and 

astronomical conditions and time of day. Mammal visitation behaviour was explored 

between species, and according to temperature, rainfall, sunrise and sunset and moon 

phases. This was undertaken using high temporal resolution webcam imagery from two 

artificial water sources located in the central KNP, and corresponding climate and 

astronomical data, to determine the extent to which different climatic and astronomical 

factors control the temporal visitation patterns by species and species associations. It is 

also of interest to determine the extent to which proportional visitation of mammals at the 

water sources is representative of broader populations in the park, to assess whether any 

relationships have broader application. This facilitated predictions regarding the impact 

of regional climate change and associated extreme temperature and rainfall events on 

water consumption behaviour. This chapter provides an overview of the data collection 

process and outlines the details of the data that were acquired, followed by a discussion 

on the methodology that was used to determine the relationships between mammal 

visitation trends and climatic and astronomical variables. The description of the data 

analysis process follows the structure of the sections in the results chapter to facilitate 

ease of reading.  

 

4.2 Data  

4.2.1 Data Collection 

Webcams have been established in several national parks in South Africa as a tourist 

initiative by SANParks, allowing images to be viewed in real-time by wildlife enthusiasts 

worldwide. These webcam images have the potential to further contribute valuable 

scientific data. Webcam imagery from KNP has provided valuable scientific data on water 

source visitation patterns and behaviour for a pilot project run during the 2012 dry-season 
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which highlighted that specific species have clear daily visitation patterns (Trent, 2012). 

KNP has a network of artificial water sources which provide researchers with a valuable 

study site to explore alternate water sources. The acquisition of webcam imagery across 

seasons at artificial water sources presents a source of environmental change data. The 

formulation of testable research questions further validates this remote imagery as a 

source of valuable long-term ecological data. In this instance the research questions 

focus on waterhole visitation patterns under normal and extreme climatic conditions, and 

so require 'natural' assemblages of mammals in a relatively natural environment, where 

their water source visitation behaviour is under natural controls of weather, landscape 

and predation risk/conflict avoidance. As the researcher has to inspect each webcam 

image from the two sites at a 15-second resolution, the data collection process formed a 

large component of this study. As very few studies using webcam imagery to study 

mammal populations and behaviour exist, the data collection and analysis methods were 

developed from a range of studies with comparable aims within the ecology, animal 

behavioural, digital repeat photography, climate science and environmental science 

domains (Richardson et al., 2007; Verstraeten et al., 2010; Hayward & Hayward, 2012; 

Sonnentag et al., 2012).  

 

4.2.2 Webcam Imagery 

Two webcams were selected for this study, which operate at Orpen and Satara artificial 

water sources respectively, and which capture images at 15-second intervals over the full 

24-hour period daily (Table 4.1). The Orpen webcam, overlooking an artificial water 

source adjacent to the Orpen rest camp (Figure 4.1a), became operational in 2004. The 

Orpen artificial water source is supplied from borehole water, and is controlled by a ball-

valve so that the water source remains full (Sowry, pers comm, 2015). The Satara 

webcam, located at a water source adjacent to Satara rest camp (Figure 4.1b), was 

established in 2005. Both the Satara and Orpen artificial water sources are illuminated at 

night by a spotlight to allow the webcams to continue capturing photographs of the 

mammals when dark. The webcams capturing images at these two webcams are featured 

on the SANParks website (www.sanparks.org/webcams/).  
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Table 4.1: Location and landscape details of the Orpen and Satara artificial water sources.  

Study Site Details  

Site Description Location 
Closest 
Main 
Road 

GPS Coordinate 
Gertenbach 
Landscape 
No. 

Gertenbach 
Landscape 
Area (km2) 

Orpen Concrete 
waterhole  

Orpen 
rest 
camp 

H7 24°28'32.94"S 
31°23'24.91"E 

19 685 

Satara Concrete 
water trough 

Satara 
rest 
camp 

H1-4 24°23'33.30"S 
31°46'44.53"E 

17 1411 

 

The webcam images captured from 2004 to February 2012 were unavailable for this study 

as images are deleted after 30 days. Each webcam image is ~30 Kilobytes (KB) and 

therefore a large amount of storage space is required for the images to be archived on 

both a monthly and annual basis (Table 4.2). The webcam imagery used in this project 

were acquired from SANParks under an agreement with the SANParks E-Commerce 

Department to automatically forward ~10,000 daily images to the WITS FTP server for 

retrieval and analysis. The images were retrieved from the WITS FTP server using 

WINSCP (Windows Secure Copy), and subsequently saved to an external hard drive for 

long-term storage. The webcam images are all embedded with a date/time stamp 

facilitating accurate temporal analysis (Figure 4.1 a, b). 

 

Table 4.2: Webcam image details for Orpen and Satara.  

Webcam Imagery Details          

Site 
Monitoring 
Period  

No. of 
Days 
Active  

No. of 
Webcam 
Images  

Storage 
Required 
(GB) 

Avg No. 
of 
Monthly 
Images  
(15 sec) 

Storage 
Required 
(GB) 

Avg No. 
of 
Monthly 
Images  
(30 sec) 

Storage 
Required 
(GB) 

Orpen 14 Mar 2012 - 
31 Mar 2014 639 2,061,727 58.99 101653 2.91 58053 1.66 

Satara 1 Apr 2012 - 
31 Mar 2014 

623 1,827,096 52.27 103114 2.95 38350 1.10 
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The data analysis process was conducted using webcam imagery captured at the Orpen 

and Satara artificial water sources over a 25- and 24-month period respectively, and 

involved the identification of mammal species captured in the webcam images. The 

mammal species present were identified, the number of individuals counted and the date 

and time that they visited the water source recorded. Mammals were only counted if they 

were observed utilising the water sources, i.e. drinking or wallowing. The majority of 

mammal species were easily identifiable using the 'Field Guide to the Mammals of the 

Kruger National Park (Schütze, 2002). Double counting of an individual might have 

occurred as most of the mammals visiting the water sources do not have easily 

recognisable characteristics. In some cases, unusual features, such as an elephant with 

a broken tusk, could be used to identify individuals at different times of appearance.  

 

Avian and reptile species were also observed visiting the Orpen and Satara water 

sources. However, their visitation patterns were not recorded during this study so as to 

maintain focus on mammal species only (Table 4.3). Small birds and reptiles were not 

easily identifiable due to the low resolution of the webcam images.  

 

a b 

Figure 4.1: a) Webcam image of Orpen artificial waterhole and b) webcam image of Satara artificial water 

trough 
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Table 4.3: Avian and reptile species that were observed at Orpen and Satara water sources, but which 

were excluded from the study. 

Species Excluded from the Study 

Scientific Name  Common Name  

Ardea melanocephala Black-headed Heron 

Alopochen aegyptiaca Egyptian Goose 

Ardea cinerea Grey Heron 

Numida meleagris Helmeted Guineafowl 

Leptoptilos crumeniferus Marabou Stork  

Ephippiorhynchus senegalensis Saddle-billed Stork  

Bucorvus leadbeateri Southern Ground Hornbill 

Bubo africanus Spotted Eagle-Owl 

Aquila rapax Tawny Eagle  

  

Pelusios subniger Pan Hinged Terrapin 

 

Mammal waterhole visitation was recorded at 15-second intervals in monthly Microsoft 

Excel spreadsheets, with each species listed and daily sightings recorded. Each day of 

the month and each mammal species were listed vertically in Microsoft Excel with the 

time in 15-second intervals listed horizontally. When a mammal was observed visiting the 

water source, the number of individuals were recorded at first appearance. A zero was 

used to indicate that the same number of individual/s were present at the water source to 

record time spent at the water source. However, if further mammals appeared, their 

presence was recorded and the zero would be replaced with the number of additional 

individuals. Each horizontal row, represented one day, for each species, with the sum of 

each row representing the total number of individuals of that species visiting the water 

source per day. The sum function does not count zeros and therefore only the total 

numbers of individuals were counted. The raw mammal visitation data (15-second 

intervals) for each mammal species, and for each month, were grouped into hourly and 

quarter hourly intervals. Seasonal, monthly and daily totals were calculated to facilitate 

correlation analyses with corresponding climate and astronomical variables (Figure 4.2). 
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Figure 4.2: Schematic representation of the data collection and data analysis process.  
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4.2.3 Climate Data 

Climate data are important to establish relationships between temporal variations in 

mammal visitation times and concurrent climatic fluctuations. Where possible, climate 

data were sourced from locations as close to the water sources as possible, so as to 

facilitate high resolution comparison (Table 4.4).  

 

4.2.3.1 Temperature Data 

Hourly temperature data for Orpen, for the period March 2012 to June 2012, were 

obtained from the South African Wildlife College (SAWC), situated 10km west of Orpen 

gate and from the SAEON weather station, situated in Welverdiend village, directly across 

the road from the SAWC. Hourly temperature data for Satara for the period April 2012 to 

March 2014 were obtained from SANParks. Weather parameters were recorded at Satara 

Automatic Weather Station (AWS), situated in the Satara rest camp (Table 4.4). 

 

 Table 4.4: Details of the weather stations used to obtain temperature and rainfall data. 

 

Weather Station Details      

Weather Station 
Rainfall / 
Temperature 

Resolution  Location  
Distance (Kms) 
to Weather 
Stations 

Orpen     

Welverdiend  Temperature Hourly  24°34'16.10"S, 31°20'41.15"E ~ 15 

SAWC Temperature 30 minute  24°32'26.63"S, 31°20'10.39"E ~25 

Tiny-tag Temperature logger Temperature 15 minute 24°27'39.04"S, 31°26'49.37"E   ~ 7 

Kingfisherspruit 0638748_2 Rainfall  Daily  24°28'1.2"S, 31°25'1.2"E ~3 

Satara     

Satara AWS  Temperature 30 minute  24°23'51.7"S, 31°46'40.0"E ~2 

Tiny-tag Temperature logger Temperature 15 minute 24°21'40.12"S, 31°41'36.55"E ~ 19 

Nwanedzi 0639868_1 Rainfall Daily  24°28'1.2"S, 31°58'58.8"E ~ 25 

Hoedspruit 0638081_1 Temperature Hourly  24°21'S, 31°3'E ~ 100 
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Quarter-hourly temperature data for the period September 2012 to March 2014 were 

obtained from on-site, temporary tiny-tag loggers set up at the Kingfisherspruit section 

ranger's house, near to the Orpen artificial water source, and at an existing research site 

near to the Satara artificial water source (Table 4.4). These tiny-tag temperature loggers 

were set up to obtain temperature data as close to the study sites as possible. 

Temperature data were recorded with one reading taken in direct sunlight and another in 

natural shade; this allowed the actual air temperatures experienced by mammals to be 

measured. Direct sunlight temperature data were sorted into hourly intervals to 

correspond to hourly mammal waterhole visitation data. 

 

Additional hourly temperature data for the period March 2012 to March 2014 were 

sourced from one South African Weather Service (SAWS) station (Hoedspruit), which is 

the weather station closest to the central KNP. The SAWS use robust climate recording 

gauges and the data undergo thorough management and checking procedures before 

disseminating data.  

 

The Hoedspruit temperature data were used to substitute for gaps (46 days) in the 

temperature logger data and data received from other sources. Pearson's correlation 

coefficients (Equation 1) between the temperature logger data, hourly temperature data 

from the SAWC, Welverdiend and Satara AWS and the additional Hoedspruit data show 

statistically significant, strong correlations between all readings, permitting the use of the 

Hoedspruit data for substitution where necessary (Table 4.5). To enable the most 

accurate correspondence of visitation and temperature data, the closest records were 

used wherever possible.  
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Table 4.5: Pearson's correlation analysis of temperature data received from Hoedspruit and the Orpen and 

Satara temperature data loggers and between Hoedspruit and the Welverdiend and SAWC. Pearson’s 

correlation analysis of the Satara temperature logger data and the Satara AWS temperature data. 

Temperature Data Analysis    

  Orpen Satara Welverdiend  SAWC Satara AWS 

Time r-value r-value r-value r-value  r-value 

1:00 0.89 0.91 0.77 0.70 0.98 

2:00 0.89 0.91 0.77 0.69 0.98 

3:00 0.88 0.92 0.79 0.65 0.98 

4:00 0.88 0.91 0.84 0.70 0.98 

5:00 0.88 0.91 0.83 0.72 0.98 

6:00 0.90 0.92 0.80 0.69 0.97 

7:00 0.92 0.93 0.84 0.66 0.96 

8:00 0.94 0.89 0.88 0.86 0.92 

9:00 0.87 0.86 0.91 0.83 0.91 

10:00 0.86 0.84 0.90 0.89 0.93 

11:00 0.84 0.85 0.94 0.88 0.93 

12:00 0.85 0.86 0.95 0.90 0.93 

13:00 0.86 0.89 0.97 0.92 0.94 

14:00 0.87 0.90 0.97 0.93 0.95 

15:00 0.88 0.90 0.97 0.94 0.96 

16:00 0.90 0.92 0.97 0.93 0.96 

17:00 0.93 0.93 0.94 0.96 0.95 

18:00 0.93 0.92 0.86 0.66 0.97 

19:00 0.89 0.90 0.79 0.51 0.97 

20:00 0.87 0.90 0.72 0.52 0.97 

21:00 0.86 0.91 0.63 0.50 0.97 

22:00 0.87 0.91 0.57 0.50 0.97 

23:00 0.87 0.91 0.66 0.53 0.97 

0:00 0.88 0.90 0.64 0.62 0.98 

 

4.2.3.2 Rainfall Data 

Daily rainfall data for the period March 2012 to March 2014 were obtained from two SAWS 

stations, Kingfisherspruit (closest station to Orpen) and Nwanedzi (closest station to 

Satara) (Table 4.4). The SAWS performed interval data checking.  
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4.2.4 Astronomical Data  

Mammal species partition their activity periods to specific times over the 24-hour cycle, 

with some species exhibiting strictly diurnal, nocturnal, crepuscular or cathemeral 

behaviour (Bennie et al., 2014). Temporal partitioning of activity patterns may be 

controlled by various astronomical variables relating to the amount of light available, as 

influenced by sunrise and sunset times and moon phases (Bennie et al., 2014). There is 

a gap of knowledge on the influence that astronomical variables might have on African 

mammal species behaviour, thus making it important to investigate the influence of moon 

phases and shifting sunrise and sunset times on the visitation patterns of mammal 

species in KNP.  

 

4.2.4.1 Moon Phase Data 

The nocturnal visitation patterns of mammals were monitored according to the moon 

phases to establish whether the variation in illumination associated with full and new 

moon might have a particular influence on waterhole visitation trends. Moon phase data 

for the period March 2012 to March 2014 (Table 4.6) were acquired from the 

Johannesburg planetarium website (www.planetarium.co.za).  

 

This data included the date and time of the four main lunar phases, new moon, first 

quarter, full moon and last quarter. New moon was defined as the time when the moon is 

< 5% illuminated, relative to full moon which was defined as the time when the moon is > 

95% illuminated, whilst the first and last quarter were defined as the period when the 

moon is 50% illuminated (Cozzi et al., 2012), thus indicating the various scales of 

illumination.  
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Table 4.6: Moon phase dates for South Africa for the period March 2012 - March 2014. 

Moon Phase Dates for South Africa 

New Moon First Quarter Full Moon  Last Quarter 

- - - 15-Mar-12 

22-Mar-12 30-Mar-12 6-Apr-12 13-Apr-12 

21-Apr-12 29-Apr-12 6-May-12 12-May-12 

21-May-12 28-May-12 4-Jun-12 11-Jun-12 

19-Jun-12 27-Jun-12 3-Jul-12 11-Jul-12 

19-Jul-12 26-Jul-12 2-Aug-12 9-Aug-12 

17-Aug-12 24-Aug-12 31-Aug-12 8-Sep-12 

16-Sep-12 22-Sep-12 30-Sep-12 8-Oct-12 

15-Oct-12 22-Oct-12 29-Oct-12 7-Nov-12 

14-Nov-12 20-Nov-12 28-Nov-12 6-Dec-12 

13-Dec-12 20-Dec-12 28-Dec-12 5-Jan-13 

11-Jan-13 19-Jan-13 27-Jan-13 3-Feb-13 

10-Feb-13 17-Feb-13 25-Feb-13 4-Mar-13 

11-Mar-13 19-Mar-13 27-Mar-13 3-Apr-13 

10-Apr-13 18-Apr-13 25-Apr-13 2-May-13 

10-May-13 18-May-13 25-May-13 31-May-13 

8-Jun-13 16-Jun-13 23-Jun-13 30-Jun-13 

8-Jul-13 16-Jul-13 22-Jul-13 29-Jul-13 

6-Aug-13 14-Aug-13 21-Aug-13 28-Aug-13 

5-Sep-13 12-Sep-13 19-Sep-13 27-Sep-13 

5-Oct-13 12-Oct-13 19-Oct-13 27-Oct-13 

3-Nov-13 10-Nov-13 17-Nov-13 25-Nov-13 

3-Dec-13 9-Dec-13 17-Dec-13 25-Dec-13 

1-Jan-14 8-Jan-14 16-Jan-14 24-Jan-14 

30-Jan-14 6-Feb-14 15-Feb-14 22-Feb-14 

1-Mar-14 8-Mar-14 16-Mar-14 24-Mar-14 

30-Mar-14       

 

4.2.4.2 Sunrise and Sunset Data 

Daily sunrise and sunset times for Skukuza, southern KNP region, for the period March 

2012 to March 2014, for both study sites, were retrieved from 

www.timebie.com/sun/skukuzaza.php (Table 4.7). Skukuza is ~137km south-east of 

Orpen rest camp and ~93km south-west of Satara rest camp, and was the closest location 

from which daily sunrise and sunset times could be obtained. Day length varied from the 
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maximum of ~14 hours in December and minimum day length was ~11 hours in June 

(Table 4.7). 

 

Table 4.7: Average monthly sunrise and sunset times for Skukuza, for the period March 2012 - March 2014.  

Average Monthly Sunrise and Sunset Times for Skukuza 

Month Sunrise Sunset Day Length (Hrs) 

March-12 5:55 18:08 12:13 

April-12 6:08 17:38 11:30 

May-12 6:22 17:17 10:54 

June-12 6:35 17:12 10:36 

July-12 6:36 17:21 10:44 

August-12 6:20 17:35 11:15 

September-12 5:50 17:47 11:56 

October-12 5:19 18:00 12:40 

November-12 4:59 18:18 13:19 

December-12 4:59 18:39 13:39 

January-13 5:17 18:47 13:30 

February-13 5:38 18:36 12:57 

March-13 5:54 18:10 12:15 

April-13 6:08 17:39 11:31 

May-13 6:22 17:17 10:55 

June-13 6:35 17:12 10:36 

July-13 6:37 17:21 10:44 

August-13 6:20 17:35 11:14 

September-13 5:51 17:46 11:55 

October-13 5:20 17:59 12:38 

November-13 4:59 18:17 13:18 

December-13 4:59 18:38 13:39 

January-14 5:17 18:47 13:30 

February-14 5:38 18:36 12:57 

March-14 5:54 18:10 12:15 

 

4.2.5 Survey Data 

Census data are valuable for comparison as they provide a regional comparison to the 

very local, site-specific nature of the webcam counts. Aerial surveys are undertaken on 

an annual basis in KNP to obtain mammal estimates. As of 2010, the surveys have been 
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conducted biennially, with the herbivore survey (excluding elephant and buffalo), being a 

sample count, using distance methodology to convert the counts to estimates (Botha, 

pers comm, 2014). Large herbivores in the aerial surveys include giraffe, impala, kudu, 

warthog, waterbuck, white rhinoceros, wildebeest and zebra. Elephant and buffalo are 

counted in an independent helicopter survey, flown along drainage lines deriving direct 

total counts of the entire area, which are assumed to capture all individuals and therefore 

no up-scaling is applied (Botha, pers comm, 2014). Mammal estimate data from the 2012 

and 2014 aerial surveys were provided by SANParks for a selection of the general 

herbivore species, and reflects the abundance of species in the central KNP at a regional 

scale. Elephant and buffalo aerial survey data were provided for 2011 and 2012.  

 

Additionally, the central region was divided (Judith Botha, SANParks) into two subsets for 

Orpen and Satara, using the dominant geological/biological boundary of the granite-

basalt division. These dominant geological units play a major role in the distribution of 

vegetation (Venter et al., 2003). The central region was subdivided according to the two 

dominant geologies, and the transect lines from the 2012 aerial survey were clipped to 

the relevant geological subsets. Distance analyses were then run for both of the subsets 

to determine mammal estimates east and west of the geological boundary.  

 

Finer resolution herbivore abundance data for the Satara region were made available by 

Prof. Deron Burkepile, following timed counts carried out on the Satara experimental burn 

plots (within 2km of the Satara webcam) during recent years. These represent herbivore 

abundance data at the local scale, and an intermediate spatial resolution between the 

regional census data and the site-specific webcam data.  
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4.3 Methodology 

4.3.1 Data Analysis  

The raw mammal visitation data were used to determine specific visitation patterns and 

trends and whether these patterns and trends are controlled by climate (temperature and 

rainfall) and astronomical (moon phases, sunrise and sunset) variables. Mammal 

behaviour, notes on the surrounding environment and weather observations (wind, rainfall 

and mist) were recorded in a log-book. The majority of the statistical analyses were 

performed in Microsoft Excel, with the more specialised tests run using the statistical 

coding platform R, running scripts developed by Dr Jennifer Fitchett.  

 

4.3.1.1 Optimal Resolution  

Mammal visitation counts were recorded from photographs captured every 15-seconds 

and totaled for each hourly and quarter-hourly interval, thus maintaining high resolution 

of these data across the different temporal intervals for the study period. An analysis of 

the literature, however, would suggest that many webcams do not capture the data at 

such high temporal resolution. The optimal resolution for webcam analyses is therefore 

explored to understand comparability of webcam studies and to consequently test the 

validity of lower temporal resolution studies. Optimal resolution was visually explored 

using a rarefaction curve, determining thresholds for improved and constant species 

representation (Raup, 1975; Crist & Veech, 2006). This analysis was performed for four 

individual months, spanning each season. At the 15-second interval, the complete dataset 

was used, however, for the lower resolution intervals the total 15-second interval dataset 

was dropped, with data deleted to contain only 30-second, 1-minute, 5-minute, 15-minute, 

30-minute, 1-hour, 6-hour, 12-hr and 24-hour readings. Each temporal resolution was 

plotted against the number of mammals counted, and the optimal resolution was obtained 

when the graph showed a plateau.  
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4.3.1.2 Classification of Peak Mammal Visitation Periods  

During the pilot study in 2012, and during the process of analysing mammal visitation 

times from the webcam imagery, it was recognised that specific mammals exhibit clear 

temporal visitation patterns. The hourly interval data were used to explore these specific 

patterns and the 24-hour day was divided into eight specific periods, which relate to the 

major visitation periods of the mammal species observed, in order to categorise 

predominant mammal visitation periods (Cozzi et al., 2012). Mammal species were 

categorised according to their feeding guilds, which are associated with their water-

dependence (Ayeni, 1975; Western, 1975). For each mammal species, the total number 

of sightings for each hour was calculated for the period March 2012/April 2012 - March 

2014 and these numbers were then grouped into their associated time category, with the 

percentage distribution subsequently calculated to establish their peak visitation times.  

 

Cluster analysis facilitates the statistical identification of grouping together similar objects 

or separating disparate objects (Legendre & Legendre, 1998). Cluster analysis and 

Principal Component Analysis (PCA) have been used in other mammal behavioural 

studies to segregate groups of common behaviour (Chamaillé-Jammes et al., 2007a; 

Gandiwa, 2013). Thus, to objectively test mammal visitation patterns and trends, 

unconstrained cluster analysis was performed using the Euclidean method, with the 

distance between species calculated using Ward's D method by calculating the hourly 

percentages for each mammal species (Legendre & Legendre, 1998; Manly, 2009). The 

number of significant groups was determined using a silhouette plot. Unconstrained 

cluster analysis was performed on a range of species to allow true associations across 

the guilds and other known implicit groupings to be made. The cluster analysis output 

was presented as a dendrogram, measured by the Ward's D distance (Legendre & 

Legendre, 1998).  

 

It is suggested that cluster analysis and PCA should be used as a combined statistical 

method (Townend, 2002). Thus, to further statistically explore the dominant mammal 
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visitation patterns and trends and determine which species visit the waterholes 

concurrently, PCA was used (Manly, 2009), with time as the vector and mammal species 

as the points. Species scores were obtained from the PCA output and used to statistically 

determine overlapping visitation times. Clusters in points on the PCA biplot were 

compared to the author's observed patterns and to the cluster analysis output.  

 

4.3.1.3 Seasonal Visitation Patterns 

To determine the seasonal visitation patterns for each mammal species, mammal 

sightings were averaged for the wet and dry seasons. To compare mammal visitation 

inter-seasonally, correlation tests were performed on the average number of sightings per 

season and the Tavg per season, and it was thus established whether mammal visitation 

patterns can be analysed across annual and inter-annual time periods. The total sightings 

per month per waterhole were grouped according to season, and the percentage of 

mammal sightings per season was used to identify seasonal visitation trends across the 

study period.  

 

4.3.1.4 Temporal Visitation Shift between Wet and Dry Seasons 

A two sample test, assuming unequal variances (t-test) was used to determine whether 

species timing of water source visitation patterns shifted according to the four wet and dry 

periods. Pooled species hourly visitation totals per month were separated according to 

the wet and dry periods. A two-tailed t-test was used to determine whether the timing of 

visitation shifted between and within the wet and dry periods, thus exploring whether there 

was no significant difference between the two dry seasons/wet seasons and whether 

there was a difference between the 2012 wet and dry periods and 2013 wet and dry 

periods. If the t-statistic > t critical value, then the null hypothesis was rejected.  
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4.3.1.5 Mean Duration of Visitation  

The time spent visiting the water sources is calculated per species visiting the water 

source collectively, from the time the first individual arrived to the time that the last 

individual left the water source. Mean monthly time spent visiting the water sources was 

calculated per month per species. Additionally, to determine seasonal differences in time 

spent visiting the water sources, time spent visiting the water sources was calculated per 

month for all mammals, with standard deviation indicating that certain species mean 

visitation times have large variations (Valeix et al., 2007b). To calculate the time spent 

visiting the water sources per mammal species per day, the count function in Microsoft 

Excel was used. The count function counts the number of cells that contain numbers, 

assigning a value of 1 to every cell that contains numbers, therefore zeros were used to 

indicate presence of mammals at the water sources or the number of images containing 

mammal species.  

 

4.3.1.6 Similarities and Differences (Orpen and Satara)  

Pearson's correlation was used to test the statistical significance of the relationships 

between mammal visitation times at Orpen and Satara. The p-values were extracted from 

the Pearson correlation table, and were tested at the 95% and 99% significance level 

(Underhill & Bradfield, 2009). A correlation coefficient (�) that is close to 1 or -1 indicates 

a strong correlation, while a correlation coefficient close to 0 indicates a poor correlation. 

Additionally, a positive correlation coefficient indicates a direct relationship, with an 

increase in Tavg (independent variable), mammal visitation times (dependent variable) 

shift later, and vice versa. A negative correlation indicates an opposite relationship, with 

sunrise and sunset times shifting earlier (independent variable), mammal visitation times 

(dependent variable) shift later, and vice versa (Towend, 2002; Manly, 2009; Underhill & 

Bradfield, 2009).  

 

 



89 

 

Pearson correlation coefficient was calculated using Microsoft Excel, using the equation: 

  

|�| =  � ∑�	
 � 	̅��� � ��)
�∑�	�  �	̅)� ∑ �� ���)��            (Equation 1) 

                                 (Underhill & Bradfield, 2009) 
 

4.3.2 Relationship between Mammal Visitation, Climate and Astronomical 

Variables 

Climatic and astronomical variables are known to influence mammal behaviour and 

activity patterns due to variations in both thermal conditions and light availability (Tefempa 

et al., 2008; Bennie et al., 2014). The climate patterns for the study period were explored 

to determine inter-seasonal variation by calculating mean monthly temperature and 

rainfall. Statistical outliers were calculated and rejected from the sample set. The lower 

and upper quartiles are values which fall at quarter points (25% and 75%) in the dataset 

(Dytham, 2011).  

 

The lower quartile was calculated using the equation (� represents the mode): 

 

� =  � � �
�               (Equation 2) 

 

And the upper quartile was calculated using the equation (� represents the highest 

number): 

 

� =  � −  � + 1             (Equation 3)  

                   (Underhill & Bradfield, 2009) 
 

Using the lower and upper quartile equations, outliers in the dataset were calculated. 

Outliers are values which are different to the majority of other values in a dataset, which 

either reflect errors in data collection or represent anomalies that likely occurred (Underhill 

& Bradfield, 2009). Outliers are therefore represented as values that fall above the upper 

bracket:  
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�� +  6��!  − ��)              (Equation 4) 

                   (Underhill & Bradfield, 2009) 

Or values that fall below the lower bracket:  
 

�� −  6��!  −  �")              (Equation 5) 

                   (Underhill & Bradfield, 2009) 
 

The mean hourly water source visitation trends for the period March 2012/ April 2012 - 

March 2014 were calculated for both water source sites using the total mammal sightings. 

This was plotted against the hourly Tavg for the study period to visually explore the 

relationship between peak visitation times and coinciding temperature. The lag time was 

calculated as the difference between the time that the peak sightings occurred and the 

time of peak temperature. 

 

The relationship between hourly mammal visitation patterns and Tavg were explored as 

low temperatures during the night may influence nocturnal visitation patterns whilst high 

temperatures during the day may influence diurnal visitation patterns (Bennie et al., 

2014). Five temperature intervals were chosen according to daily Tavg: >10°C Tavg <15°C, 

>15°C Tavg <20°C, >20°C Tavg <25°C, >25°C Tavg <30°C and > 30°C Tavg < 35°C, which 

were used to determine whether mammal visitation shifts earlier or later during different 

temperature conditions, which is important in the context of future projected climate 

change scenarios.  

 

The hourly visitation times were averaged for all mammal species and plotted against the 

respective Tavg intervals. For Satara, the peak visitation times were split between 

herbivores and carnivores, as double peaks in visitation were observed. Once the shifts 

in visitation patterns in relation to Tavg intervals were determined, it was then important to 

establish the rate of change of visitation patterns, as influenced by Tavg intervals. 

Regression analysis is used when there are dependent and independent values in a 
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dataset for which a relationship needs to be determined (Towend, 2002). Linear 

regression analysis was calculated to explore the rate of change over time between peak 

visitation times and the different temperature intervals, using the equation for the line of 

best fit through the data points (Towend, 2002):  

 

# = $� + %              (Equation 6) 

                         (Lomax & Hahs-Vaughn, 2012; Manly, 2009) 
 

Once the best-fit line has been determined, the values of a (slope) and b (y intercept) 
can be calculated, using the equation:  
 

b= ∑ xy- ∑ x ∑ y
n

∑ x2- � ∑ x)2
n

  

                (Equation 7) 

           (Manly, 2009; Underhill & Bradfield, 2009) 
 

The coefficient of x then needs to be calculated which indicates the rate of change of the 

dependent variable (mammal visitation patterns) as influenced by the independent 

variable (Tavg), using the equation:  

 

$ =  ∑ ��, ∑ 	
-               (Equation 8) 

        (Manly, 2009; Underhill & Bradfield, 2009) 
 

Linear regression analysis results for the change over time between peak visitation times 

and different temperature intervals are given as the shifting of visitation times in minutes 

per 5°C Tavg interval (min/°C). At a finer temporal scale it is important to determine the 

relationship between time of day, peak appearance and Tavg, Tmax and Tmin so as to 

establish whether specific mammals shift their peak visitation times in relation to daily 

temperatures (time of peak appearance and the number of mammals at their peak 

appearance). This was calculated over 15 minute intervals for each day for the period 

March 2012/ April 2012 - March 2014, with peak time and peak appearance correlated 

(Equation 1) with daily Tavg, Tmax Tmin for that day. 
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The relationship between monthly visitation patterns per mammal species and Tavg were 

calculated using the hourly visitation patterns for each mammal species for each month 

across the study period, correlated (Equation 1) with hourly Tavg to determine species 

behavioral responses to Tavg. Tavg varies across seasons, and thus monthly and seasonal 

patterns can be established.  

 

Mammal visitation patterns to water sources are influenced by rainfall, as rainfall affects 

both water availability and distribution in semi-arid regions, therefore the number of 

mammals recorded visiting artificial water sources during rainfall events are likely to 

reflect daily and seasonal patterns of reliance on these water sources (Valeix et al., 2008). 

To establish whether the average number of total mammal species changes on days of 

rainfall, before rainfall and after rainfall, and whether there is a relationship between the 

amount of rainfall received and total mammal sightings, the total mammal sightings were 

organised to correspond with 1 and 2 days before rainfall, days of rainfall, and 1 and 2 

days after rainfall. Pearson's correlation (Equation 1) was used to test the relationship 

between the total rainfall for each of these categories and total mammal sightings on a 

given day.  

 

Pearson’s correlation (Equation 1) was used to calculate species specific relationships 

with the timing of rainfall events, using the daily number of individuals per mammal 

sightings per artificial water source. This was used to determine whether individual 

species mean sightings were positively or negatively correlated with the timing of rainfall 

events. A single factor, one-tailed z-test was used to determine whether the mean number 

of sightings on the day of rainfall are significantly larger than the mean sightings 1 day 

after rainfall and 2 days after rainfall.  

 

Mammals partition their behaviour and patterns of activity in response to the amount of 

light available, as influenced by shifts in sunrise and sunset times and moon phases 

(Bennie et al., 2014). Water source visitation patterns are likely influenced by these 
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astronomical variables such as sunlight and moonlight, as well as physiological 

adaptations, predator-prey relations and climatic variables (Bennie et al., 2014). There is 

a gap in the literature concerning the temporal partitioning of water source visitation 

patterns as influenced by astronomical variables, particularly in KNP.  Sunrise and sunset 

times are likely to have influence on the visitation patterns of species which show peaks 

in visitation during the periods of dawn and dusk. Thus, the daily peak visitation times of 

mammals that specifically visit water sources during these time periods were correlated 

(Equation 1) with daily sunrise and sunset times to establish whether their peak visitation 

times shift according to seasonal changes in sunrise and sunset times.  

 

Moon phases influence the activity patterns of nocturnal and diurnal species, with the 

amount of illumination influencing dominant and sub-dominant predator interactions and 

predator-prey relations, and the distribution of species and their utilisation of different 

habitats (Cozzi et al., 2012; Prugh et al., 2014). The majority of carnivores exhibited 

nocturnal visitation patterns and conversely the majority of herbivores exhibited diurnal 

visitation patterns, thus the influence of moon phases was investigated for mammals that 

showed peaks in nocturnal visitation patterns. For the nocturnal species, the dates of 

peak visitation at the water sources in each month of the study period were explored for 

overlaps with the dates of each of the four dominant moon phases, with illumination 

ranging from < 5%, 50% and > 95%. A one-way ANOVA test was run, using the mean 

visitation patterns on each of the days of specific moon phase for all nocturnal species.  

 

4.3.3 Three Scales of Survey Data 

Regional, local and geological survey data were compared to the webcam survey data to 

establish whether relationships between mammal visitation patterns and contemporary 

climatic and astronomical variables can be considered representative for the broader KNP 

region, or whether they are specific to artificial water sources. This also facilitated the 

exploration of seasonal patterns of greater or lesser species representation at the water 

source.  
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4.3.3.1 Proportional Comparison of Three Scales of Mammal Survey Data 

Orpen webcam survey data for the subset of mammals observed in the census, were 

compared to the regional (central KNP) percentage distribution of mammals. Similarly, 

Satara webcam survey data for the subset of mammals observed in the census, were 

compared to the regional (central KNP) and local (Satara area) percentage distribution of 

mammals. Exploring the percentage distributions of overlapping species determined 

whether these mammal species visit the water sources in relative proportion to their 

regional and local abundance. Where they are not consistent, active selection or 

avoidance of the water source by species is indicated. 

 

4.3.3.2 Correlation between Three Scales of Survey Data 

To determine the extent to which inferences made at the webcam scale can be extended 

to the broader regional mammal populations, survey data (aerial, local and 

geological/biological) were correlated to the webcam survey dataset (Equation 1). This 

was performed with the annually totaled webcam data and monthly totaled webcam data 

for the species common to all of the datasets. Monthly correlations facilitate the 

exploration of seasonal patterns showing greater representation of the census data, and 

in turn, patterns of seasonal preferential use or avoidance by mammals at water sources.  

 

4.3.3.3 Comparison of Observed Proportional Visitation with Expected 

Proportional Visitation 

To determine whether the overall observed proportional visitation (webcam data) and 

the expected proportional visitation (local, landscape and regional estimate data) for the 

pooled mammal species were significantly similar, a chi-squared test of independence 

was run. The null hypothesis was that there is no relationship. 
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4.3.3.4 Quantification of Preferential or Avoidance Behaviour  

To quantify whether specific species are selecting for / exhibiting preferential use or 

avoidance behaviours at the two artificial water sources, the index of electivity was 

calculated with the proportions between individual species water source visitation 

estimates and their regional and landscape estimates, using Ivlev’s index of electivity. 

Ivlev’s index of electivity has been used to measure the level of selection or avoidance of 

a particular prey species by a specific predator (Strauss, 1979). The index of electivity 

can therefore be used to quantify whether specific species are visiting the artificial water 

sources in proportion to their abundance within the landscape (granite / basalt) or region 

(central KNP), and thus determine avoidance or preferential behaviour. The index of 

electivity was calculated using the equation:  

 

. =  /�� 0�
/� � 0�

                          (Equation 9) 

                           (Strauss, 1979)  
 

Ivlev’s electivity index (E), a measure of electivity, ranges from -1 and +1, with E values 

close to -1 indicating avoidance or inaccessibility, E values close to +1 indicating 

preference or active selection, and an E value close to 0 indicating random selection or 

neutrality (Strauss, 1979; Manly, 1993; Laliberte & Ripple, 2004). Positive values ≥ 0.50 

represent preferential use while negative values < -0.50 represent avoidance behaviour. 

 

The �
 value corresponds with the proportional abundance of mammals visiting the Orpen 

and Satara artificial water sources (site specific) and the proportional abundance of 

mammals within the Orpen and Satara landscapes (local estimate). The 1
 value 

corresponds with the proportional abundance of mammals within central KNP (regional 

estimate).  
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Chapter 5 - Results  

5.1 Introduction  

With the increasing need to monitor mammal populations and specifically assess their 

behavioral patterns and physiological responses to changing environmental conditions, 

webcam imagery is used to investigate temporal and climate-related water source 

visitation trends. Embedded within this is the need to test the optimal temporal resolution 

of webcam imagery in order to establish the accuracy and utility of the data captured at 

different temporal intervals, and therefore obtain useable scientific data on mammal 

behaviour. Within a broader context, the relationship between webcam imagery and aerial 

survey data is tested, to determine whether valid inferences can be made about 

populations using the former technique.  

 

5.2 Optimal Resolution 

Very few studies have used webcam imagery to monitor mammal behaviour, with 

Hayward & Hayward (2012) presenting the only comparable research to date. However, 

only a single image per hour was used in that study. It is important to verify at what 

temporal scale the utility of remote-sensed imagery for detecting different species may 

be jeopardised, thus making it necessary to determine that the temporal resolution of 

images yields representative data. Additionally, it is important to establish whether high 

temporal resolution data captured every 15-seconds (almost continuous monitoring) is 

the most representative resolution and has an advantage over previous studies which 

used a coarser temporal resolution. Furthermore, establishing whether high resolution 

data are necessary will provide information about the storage facilities required if these 

images are to be archived for retrospective studies.  

 

Webcam imagery obtained for this study was captured at 15-second intervals, with ~5760 

daily images received from SANParks. All data analyses were performed at this 

resolution. Four months were selected for the optimal temporal resolution analysis (March 
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2014, July 2013, September 2013 and December 2013), which reflect each season as 

well as being those months with the highest number of images (> 50%). Rarefaction 

curves were produced by sub-sampling data at lower resolutions from within the complete 

data set, exploring variations in total numbers of species covered (Raup, 1975). Overall 

an equal number of images depicting mammals were captured at 15- and 30-second 

intervals, suggesting that a 30-second interval is an acceptable resolution and no further 

information would be gained from increasing the resolution to 15-seconds.  

 

The optimal temporal resolution differs between species. For example, the presence of 

African wild cat, honey badger, mongoose, serval, greater kudu, southern giraffe and 

warthog was recorded where the image capture rate was < 1 minute, likely because most 

of these species spend on average < 1 minute at the water sources, while African civet, 

chacma baboon and lion would not be included if the resolution is > 5 minutes, and 

likewise for African elephant, black-backed jackal and common duiker if the resolution is 

> 15 minutes. Therefore, finer-scale resolutions of < 1, < 5 and < 15 minutes are required 

to sufficiently capture such species' visitation patterns. In contrast, impala, blue 

wildebeest, African buffalo, plains zebra, small-spotted genet and spotted hyaena 

(hereafter referred to as hyaena) remained up to 1 hour, and thus require a lower 

monitoring resolution. Thus, water source visitation patterns monitored at various 

resolutions would yield different results for different species, depending on the frequency 

of their visits to the water sources, the time spent at the water sources, and additionally 

their seasonal patterns of visitation. In order to obtain a representative pattern of visitation 

across all species, a low resolution is recommended for future studies.  

 

There is a clear seasonal divide, with spring and summer (September and December 

2013) indicating a higher resolution compared to autumn and winter (March 2014 and 

July 2013) for all species (Figure 5.1). This suggests that a 30-second resolution would 

be sufficient in autumn and winter when a higher number of mammals visit water sources. 

However, during spring and summer when a lower number of mammals visit the artificial 

water sources, a finer temporal resolution would be required.  
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For March 2014 and July 2013, at the 30-minute to 6-hour time intervals the graph flattens 

out showing that this resolution is insufficient to study mammal visitation patterns at the 

water sources. To obtain representative data, imagery for these specific months would 

need to be captured and analysed at < 5 minute intervals. This is important due to storage 

constraints, and many organisations might prefer to store only one or two images per day, 

which would compromise future research efforts. To test relationships between water 

source visitation patterns and environmental variables, different resolutions are required 

to facilitate comparisons. For instance, sunrise and sunset data (15-minute intervals) and 

temperature data (1-hour intervals) requiring high resolution webcam imagery, while 

rainfall data (daily) require lower resolution webcam imagery.  

 

 
 

Figure 5.1: Rarefaction curves demonstrating optimal temporal resolution of webcam imagery for capturing 

mammal sightings at water sources  
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5.2 Distribution of Mammal Sightings 

Webcam imagery of mammal visits to the water sources at Orpen and Satara were 

analysed per 24-hour period. These data were used to determine the predominant daily 

and seasonal visitation patterns, as well as the duration of time spent at water sources. 

Visitation patterns were established over 25- and 24-months at Orpen and Satara, 

respectively. Hourly temperature and daily rainfall data were used to establish possible 

climatic influences on visitation patterns. Further, the possible influence of day length 

variations (sunrise and sunset times) and moon phases were tested. Aerial census data 

for the central KNP region, obtained from SANParks, and local survey data for the Satara 

and N'wanetsi areas, obtained from Prof. Deron Burkepile, were used to establish 

whether mammal visitation at the artificial water sources reflected the relative abundance 

of species in central KNP, or whether there is possible avoidance behaviour.  

 

A total of 46,866 mammal visitations, from 28 species, were recorded at the Orpen and 

Satara artificial water sources over the study period. Mammals were categorised 

according to their feeding guild; carnivores are predominantly nocturnal drinkers and are 

water-independent (an exception being the spotted hyaena), whilst herbivores and 

primates are predominantly water-dependent diurnal drinkers (Ayeni, 1975; Western, 

1975) (Table 5.1). Three species of mongoose, Mungos mungo (banded mongoose), 

Helogale parvula (dwarf mongoose) and Ichneumia albicauda (white-tailed mongoose) 

visited the water sources. However, their visits were too infrequent to establish specific 

patterns, and are hereafter grouped together as mongoose. Some species, such as 

African wild dog (Lycaon pictus), caracal (Caracal caracal), common waterbuck (Kobus 

ellipsiprymnus) and nyala (Tragelaphus angasii) were only sighted on rare occasions (< 

1 image capture per 6 months). These species were excluded from the analyses.  
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Table 5.1: Mammal sightings (> 1 image capture per 6 months) at Orpen and Satara water sources (O = 

Orpen, S = Satara and B = both), categorised according to their feeding guild. 

Feeding Guild Scientific Name Common Name  
Water-
Dependent 

Water 
Source 

CARNIVORE 

Civettictis civetta African civet x B 

Felis silvestris African wild cat x B 

Canis mesomelas Black-backed 
jackal 

x B 

Mellivora capensis Honey badger x B 

Panthera pardus Leopard x O 

Panthera leo Lion x B 

Leptailurus serval Serval x B 

Genetta genetta Small-spotted 
genet 

x B 

Crocuta crocuta Spotted hyaena � B 

HERBIVORE  

Browser 

Sylvicapra grimmia Common duiker x B 

Tragelaphus strepsiceros Greater kudu x B 

Giraffa camelopardalis Southern giraffe x B 

Grazer 

Syncerus caffer African buffalo � B 

Connochaetes taurinus Blue wildebeest � B 

Hippopotamus amphibious Hippopotamus � O 

Equus quagga Plains zebra � B 

Phacochoerus africanus Warthog � B 

Mixed 
Feeder 

Loxodonta africana African savanna 
elephant � B 

Aepyceros melampus Impala � B 

PRIMATE 
Papio hamadryas Chacma baboon � B 

Cercopithecus pygerythrus Vervet monkey x O 

 

5.2.1 Mammal Sightings at the Orpen Artificial Water Source 

A total of 30,176 mammal sightings (average of 40 sightings per day), comprising 28 

species, were recorded at Orpen artificial waterhole from March 2012 to March 2014 

(Table 5.1). Impala (48.71% of total sightings; 587.84 average sightings per month), 

warthog (11.79%; 142.24) and blue wildebeest (11.22%; 135.36) were the most 

commonly and frequently sighted mammals, whilst hippopotamus (0.09%; 1.04), serval 

(0.02%; 0.24) and African wild cat (0.01%; 0.12) were the three least commonly and 

frequently sighted species relative to the occurrence of other mammals in this study 

(Figure 5.2).  
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Figure 5.2: Percentage composition of the commonly sighted mammals at Orpen waterhole. 
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the study period per species is presented in Appendix A.1 & A.3 (Orpen) and A.2 & A.3 

(Satara). 

 

Table 5.2: Total sightings per mammal species and the percentage of species per feeding guild at Orpen 

waterhole for the period March 2012 to March 2014. 

Feeding Guild Mammal 
Total 
Sightings 

% of 
Feeding 
Guild 

Water-
dependent   

HERBIVORES 

Mixed 
Feeders  

Impala 14696 89.77% � 

African savanna elephant 1674 10.23% � 

Grazers  

Warthog 3556 36.07% � 

Blue wildebeest  3384 34.33% � 

Plains zebra 1976 20.04% � 

African buffalo 916 9.29% � 

Hippopotamus 26 0.26% � 

Browsers  

Greater kudu 857 66.74% x 

Common duiker 221 17.21% x 

Southern giraffe 206 16.04% x 

  Total Mixed Feeders 16370 59.50% 

    Total Grazers 9858 35.83% 

    Total Browsers 1284 4.67% 

PRIMATES 
Chacma baboon 1261 78.13% � 

Vervet monkey 353 21.87% x 

CARNIVORES 

Black-backed jackal 424 40.61% x 

Spotted hyaena 219 20.98% � 

Mongoose 108 10.34% x 

Lion 73 6.99% x 

African civet 72 6.90% x 

Honey badger 59 5.65% x 

Leopard 51 4.89% x 

Small-spotted genet 29 2.78% x 

Serval 6 0.57% x 

African wild cat 3 0.29% x 

   Total Herbivores 27512 91.19% 

    Total Primates 1614 5.35% 

   Total Carnivores 1044 3.46% 

Total Mammal Sightings at Orpen 30170    
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Warthog were the most commonly sighted grazer, comprising 36.07%, whilst 

hippopotamus were both the least commonly sighted grazer and herbivore (0.26%). 

Southern giraffe were the least sighted browser (16.04%). Primates comprise 5.35% of 

the total sightings, with carnivores accounting for only 3.46% of total mammal sightings 

(Table 5.2). Black-backed jackals were the most commonly sighted carnivore at Orpen 

(1.41% of total mammal sightings respectively). Spotted hyaena, recognised as the only 

water-dependent carnivore in this study, were the second most commonly sighted 

carnivore at Orpen (0.73% of total mammal sightings) (Figure 5.2; Table 5.2). 

 

5.2.2 Mammal Sightings at the Satara Artificial Water Source 

A total of 16,690 mammal sightings (average of 23 sightings per day), comprising 20 

species, were recorded at Satara artificial water trough for the period April 2012 to March 

2014. Impala (34.87% of total sightings; 242.46 average sightings per month), blue 

wildebeest (27.23%; 189.33) and plains zebra (18.17%; 126.33) were the most commonly 

and frequently sighted mammals at Satara water trough, whilst mongoose (0.18%; 1.25), 

honey badger (0.05%; 0.33) and serval (0.01%; 0.08) were the three least commonly 

sighted species (Figure 5.3).  

 

As is the case for Orpen, black-backed jackal (4.10%) were the most commonly sighted 

carnivore and spotted hyaena (3.04%) the second most frequently sighted carnivore at 

Satara. Herbivores were also the most frequently sighted species guild at Satara and 

comprise 88.46% of the total mammal sightings. Amongst herbivores, grazers (55.93%) 

and mixed feeders (41.82%) accounted for the majority of total sightings, with browsers 

(2.25%) the least commonly sighted herbivores. Carnivores comprise 9.15% of the total 

sightings, whilst primates (chacma baboons) were the least commonly sighted species 

and account for 2.39% of total sightings (Figure 5.3; Table 5.3). Serval were recorded 

within the least commonly sighted species group at both Orpen and Satara (0.02% and 

0.01%, respectively).  
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Figure 5.3: Percentage composition of the commonly sighted mammals at Satara water trough. 
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Table 5.3: Total sightings per mammal species and percentage of species per feeding guild at Satara water 

trough for the period April 2012 to March 2014. 

Feeding Guild Mammal 
Total 
Sightings  

% of 
Feeding 
Guild 

Water-
dependent  

HERBIVORES 

Grazers 

Blue wildebeest 4544 55.03% � 

Plains zebra 3032 36.72% � 

African buffalo 615 7.45% � 

Warthog 67 0.81% � 

Mixed 
Feeders 

Impala 5819 94.25% � 

African savanna elephant 355 5.75% � 

Browsers 

Greater kudu 156 46.99% x 

Southern Giraffe 139 41.87% x 

Common duiker 37 11.14% x 

   Total Grazers 8258 55.93% 

     Total Mixed Feeders 6174 41.82% 

   Total Browsers 332 2.25% 

CARNIVORES 

Black-backed jackal  684 44.79% x 

Spotted hyaena 507 33.20% � 

Lion 110 7.20% x 

African wild cat 95 6.22% x 

African civet 59 3.86% x 

Small-spotted genet 32 2.10% x 

Mongoose 30 1.96% x 

Honey badger 8 0.52% x 

Serval 2 0.13% x 

PRIMATES Chacma baboon 399 100.00% � 

   Total Herbivores 14764 88.46% 

     Total Carnivores 1527 9.15% 

   Total Primates 399 2.39% 

Total Mammal Sightings at Satara  16690     

 

5.3 Temporal Water Source Visitation Patterns  

5.3.1 Daily Visitation Patterns  

To explore daily water source visitation patterns, each 24-hour period was grouped into 

eight equal time intervals: dawn from 5:00am to 7:59am; morning from 8:00am to 

10:59am; midday from 11:00am to 13:59pm; afternoon from 14:00pm to 16:59pm; dusk 
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from 17:00pm to 19:59pm; early night from 20:00pm to 22:59pm; midnight from 23:00pm 

to 1:59am; and early morning from 2:00am to 4:59am. Dawn and dusk are the broad 

periods spanning sunrise and sunset respectively, and take seasonality into account, with 

the timing of sunrise ranging from 4:56 - 6:39, and sunset falling between 17:11 - 18:49, 

with a period of twilight on either side. At Orpen, the majority of species were sighted 

during midday (36.92%) and morning (32.47%) (Figure 5.4), whilst at Satara sightings 

were more evenly distributed from dawn to dusk, but again were predominant during the 

morning (28.98%) and midday (20.20%). This is consistent with other research, which 

showed this as the period during which the most numerically abundant herbivores drink 

(Valeix et al., 2007a) (Figure 5.4). At Satara, an overall higher percentage of carnivores 

(9.15%) were recorded drinking from this water trough, which accounts for a higher 

percentage of nocturnal (dusk, early night, midnight and early morning) waterhole 

visitation (24.22%) compared to Orpen (12.38%) (Table 5.3; Figure 5.4).  

 

 
 

Figure 5.4: Hourly visitation for all species at the Orpen and Satara water sources for the period March 

2012 to March 2014. 
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5.3.2 Daily Mammal Visitation Patterns at Orpen 

Daily mammal visitation patterns to the waterhole were averaged over the 25-month 

period to determine the peak visitation intervals (based on the eight time blocks defined 

previously) for each species. Peak visitation or appearance was classified as that period 

during which the most visitations by a particular species occurred. Herbivores and 

primates account for the majority of species drinking from the waterhole diurnally, with 

peak appearance occurring in the morning for medium-sized water-dependent species, 

(viz. blue wildebeest (41.25% of visitations) and plains zebra (44.08%) and during midday 

for smaller water-dependent species, such as impala (44.17%) and warthog (34.59%) 

(Table 5.4). The majority of carnivores visited the waterhole nocturnally, although peak 

appearance for leopard (25.49% of visitations) and serval (33.33%) occurred at dusk 

(Table 5.4). The mega-herbivores, African elephant (25.33% of visitations) and African 

buffalo (22.93%), also visited the waterhole predominantly at dusk. Common duiker was 

the only small-sized herbivore to predominantly drink (27.60%) nocturnally (Table 5.4).  

 

Chacma baboon, greater kudu, southern giraffe, vervet monkey and warthog all exhibit 

strictly diurnal waterhole visitation patterns, with no sightings of these species after 20:00. 

In contrast, African civet, hippopotamus, honey badger, serval and small-spotted genet 

exhibit strictly nocturnal waterhole visitation patterns, with no sightings of these species 

between 8:00 and 17:00. Hippopotamus are the only herbivores to show this distinct 

nocturnal visitation pattern. Waterhole visitation intervals for most species clustered 

together within specific diurnal or nocturnal periods, with the periods of 2nd and 3rd highest 

percentage visitation usually flanking the period of peak visitation. African wild cat, 

leopard and hippopotamus, which exhibit more widely dispersed visitation across the 24-

hour period, were exceptions. 
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Table 5.4: Percentage of sightings of each mammal species in each time category for the period March 2012 to March 2014 at Orpen waterhole. 

Peak visitation times are highlighted dark green (peak interval), olive green (2nd peak interval) and light green (3rd peak interval). 

Predominant 
Visitation Period 

Mammal 
Dawn        
(5:00 - 
7:59)  

Morning  
(8:00 - 
10:59) 

Midday     
(11:00 - 
13:59)  

Afternoon 
(14:00 - 
16:59)  

Dusk             
(17:00 - 
19:59) 

Early Night 
(20:00 - 22:59) 

Midnight 
(23:00 - 
1:59) 

Early 
Morning 
(2:00 - 4:59) 

D
iu

rn
a

l 

Morning 

Blue wildebeest (n= 
3384) 

7.98% 41.25% 34.13% 11.64% 3.13% 0.80% 0.56% 0.50% 

Plains zebra (n= 1976) 2.18% 44.08% 37.25% 12.75% 2.58% 0.66% 0.15% 0.35% 

Midday 

Chacma baboon (n= 
1261) 

0.16% 30.29% 43.22% 19.59% 6.74% 0.00% 0.00% 0.00% 

Impala (n= 14696) 2.25% 36.73% 44.17% 13.31% 3.40% 0.01% 0.09% 0.04% 

Greater kudu (n= 857) 0.12% 23.10% 40.02% 32.56% 4.20% 0.00% 0.00% 0.00% 

Mongoose (n= 108) 11.11% 13.89% 30.56% 12.04% 16.67% 3.70% 8.33% 3.70% 

Vervet monkey (n= 353) 0.57% 26.91% 43.06% 25.78% 3.68% 0.00% 0.00% 0.00% 

Warthog (n= 3556) 3.99% 29.98% 34.59% 21.77% 9.67% 0.00% 0.00% 0.00% 

Afternoon 
African wild cat (n= 3) 0.00% 0.00% 0.00% 66.67% 0.00% 33.33% 0.00% 0.00% 

Southern giraffe (n= 
206) 

3.40% 10.68% 37.38% 37.86% 10.68% 0.00% 0.00% 0.00% 

N
o

c
tu

rn
a

l 

Dusk  

African buffalo (n= 916) 5.57% 20.96% 15.83% 10.59% 22.93% 10.81% 8.84% 4.48% 

Common duiker (n= 221) 7.24% 13.12% 3.17% 3.17% 27.60% 20.81% 13.12% 11.76% 

African savanna 
elephant (n= 1674) 

2.63% 6.87% 12.49% 14.22% 25.33% 19.53% 13.14% 5.79% 

Leopard (n= 51) 19.61% 0.00% 0.00% 0.00% 25.49% 11.76% 19.61% 23.53% 

Serval (n= 6) 0.00% 0.00% 0.00% 0.00% 33.33% 16.67% 16.67% 33.33% 

Early Night 

African civet (n= 72) 5.56% 0.00% 0.00% 0.00% 5.56% 40.28% 25.00% 23.61% 

Honey badger (n= 59) 18.64% 0.00% 0.00% 0.00% 3.39% 28.81% 22.03% 27.12% 

Lion (n= 73) 12.33% 2.74% 0.00% 0.00% 6.85% 45.21% 17.81% 15.07% 

Midnight 

Black-backed jackal (n= 
424) 

13.92% 3.54% 4.25% 3.07% 12.03% 17.92% 24.29% 20.99% 

Hippopotamus (n= 26) 15.38% 0.00% 0.00% 0.00% 0.00% 34.62% 42.31% 7.69% 

Spotted hyaena (n= 219) 16.89% 0.46% 0.00% 0.00% 5.48% 17.81% 32.42% 26.94% 

Early 
Morning 

Small-spotted genet (n= 
29) 

13.79% 0.00% 0.00% 0.00% 3.45% 17.24% 24.14% 41.38% 
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Cluster analysis was performed per predefined period of percentage visitation patterns 

for each species to segregate patterns in the predominant temporal visitation periods for 

each species (Figure 5.5) and to provide an objective means of comparison to the 

patterns seen in Table 5.4. When comparing observations of peak visitation times in Table 

5.4 to the cluster analysis output, the observational accuracy can be determined. The left 

cluster (group 1) comprising wildebeest, impala, zebra, giraffe, warthog, kudu, baboon 

and vervet monkey grouped together species which drink diurnally and segregated 

predominantly morning drinkers (sub-group 1a) from midday and afternoon drinkers 

(collectively sub-group 1b) (Figure 5.5). 

 

 
 

Figure 5.5: Cluster dendrogram showing the dominant temporal visitation times of mammals at Orpen 

waterhole. 
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The right cluster (group 2) comprising serval, hippopotamus, leopard, lion, genet, civet, 

honey badger, hyaena, African wild cat, mongoose, buffalo, elephant, black-backed jackal 

and duiker broadly grouped as species that utilise the waterhole nocturnally. Sub-group 

2a comprises the bulk of those species listed in Table 5.2 as carnivores, which 

predominantly visit the waterhole nocturnally, during the early night and midnight. Species 

in sub-group 2b visit the waterhole diurnally and nocturnally, with buffalo, elephant and 

duiker exhibiting peak visitation times during dusk, black-backed jackal during midnight, 

and mongoose and African wild cat during the day. However, all of these species show 

dispersed patterns of visitation throughout the day and night. These patterns largely agree 

with the periods of peak visitation shown in Table 5.4. The height differential in the cluster 

dendrogram simply indicates that there is more variation in the right cluster than in the 

left cluster.  

 

The same percentage peak appearance dataset for each species was used to perform 

Principal Component Analysis (PCA) to further explore groups of species having similar 

patterns in their periods of peak visitation. Principal component one (PC1) separated 

species according to the broad time of visitation, dividing nocturnal (left) and diurnal (right) 

drinkers (Figure 5.6), and demonstrating a high level of congruency with the cluster 

analysis output (Figure 5.5). No clear pattern was detected for the arrangement of species 

on Principal component two (PC2, Figure 5.6), suggesting that the species are 

responding to non-time related drivers, such as local climate conditions (temperature and 

rainfall), astronomical factors (e.g. moon phases) or behavioural controls 

(competition/avoidance), which likely influence the temporal visitation patterns of specific 

species. These possible drivers are explored later in Section 5.4. African wild cat and 

hippopotamus appear as outliers on the PCA biplot. This is likely due to the infrequent 

use of the waterhole by African wild cat, whilst hippopotamus only visit the waterhole 

when grazing; not so much to drink, but rather to wallow.  
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Figure 5.6: Principal component analysis biplot showing the dominant visitation times of mammals and 

species associations at Orpen waterhole. 

 

The ordination output scores for PC1 for mammals that visit the waterhole diurnally, show 

two groups of species associations between plains zebra (1.37) and southern giraffe 

(1.38); and impala, warthog, vervet monkey, greater kudu and chacma baboon, which 

show the closest species associations (> 1.5 respectively). African wild cat (0.05), African 

buffalo (0.25) and mongoose (0.49) exhibit the least similar species association scores 

(> 0.20 difference), which highlights the behaviour of these species, having little inter-

species associations. Similarly, hippopotamus (-1.18), serval (-1.10), black-backed jackal 

(-0.80) and common duiker (-0.49) have largely different species scores when compared 

to other mammals utilising the waterhole.  
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Early night waterhole visitors, such as honey badger and African civet, show the closest 

nocturnal species overlap, both with scores of -1.56. Small-spotted genet and spotted 

hyaena (-1.49 and -1.46 respectively), and lion and leopard (-1.32 and -1.30 respectively) 

have similar PC1 scores. However, these species were never observed at the waterhole 

together, indicating temporal partitioning between smaller (small-spotted genet and 

spotted hyaena) and larger (lion and leopard) carnivores. African elephant had a PC1 

score (-0.05) which is dissimilar to any other herbivore species, such as common duiker 

(-0.49) and African buffalo (0.25), but was closest to African wild cat (0.05). However, 

African elephant were sometimes observed at the waterhole with other herbivores, which 

supports earlier research finding that elephants do not prevent other herbivores from 

utilising the same waterhole (Valeix et al., 2009a). As expected, there are large 

differences between the PC1 scores of carnivores (<-1) and herbivores (>1), with the 

exception of the African buffalo, African elephant and African wild cat, which do not 

conform to this statement.  

 

5.3.3 Daily Mammal Visitation Patterns at Satara 

At Satara water trough, herbivores and primates similarly account for the majority of 

diurnal drinkers, with smaller- and larger-sized mammals often utilising the water trough 

during the same period. African elephant are the only herbivore to predominantly drink 

during the afternoon and at dusk (22.82% and 22.54% of visitations, respectively), whilst 

common duiker was the only herbivore to drink predominantly during the early morning 

(48.65%) (Table 5.5). Cluster analysis for Satara grouped baboon, kudu, giraffe, warthog, 

elephant, wildebeest, impala and zebra, segregating the diurnal drinkers (left cluster, 

group 1) from serval, honey badger, mongoose, civet, genet, lion, buffalo, duiker, African 

wild cat, black-backed jackal and hyaena as nocturnal (right cluster - group 2) drinkers 

(Figure 5.7). Diurnal drinkers were grouped into their predominant visitation periods: 

chacma baboon at dawn; greater kudu, southern giraffe and warthog at midday. These 

mammals exhibit strictly diurnal visitation patterns (sub-group 1a) whilst African elephant 

visit the water trough during the afternoon/dusk and blue wildebeest, impala and plains 

zebra during the morning, yet were also recorded at the water trough during nocturnal 

hours (sub-group 1b). 
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Table 5.5: Percentage of sightings of each mammal species in each time category for the period March 2012 to March 2014 at Satara water trough. 

Peak visitation times are highlighted dark green (peak interval), olive green (2nd peak interval) and light green (3rd peak interval). 

Predominant 
Visitation Period 

Mammal  
Dawn        
(5:00 - 
7:59)  

Morning 
(8:00 - 
10:59) 

Midday     
(11:00 - 
13:59)  

Afternoon 
(14:00 - 
16:59)  

Dusk          
(17:00 - 
19:59) 

Early Night 
(20:00 - 22:59) 

Midnight 
(23:00 - 
1:59) 

Early 
Morning 
(2:00 - 4:59) 

D
iu

rn
a

l 

Dawn African buffalo (n= 615) 30.41% 10.57% 0.81% 0.65% 21.14% 19.51% 5.69% 11.22% 

Morning 

Chacma baboon (n= 
399) 

8.02% 79.20% 7.27% 5.51% 0.00% 0.00% 0.00% 0.00% 

Impala (n= 5819) 9.11% 32.53% 29.94% 14.59% 12.60% 0.65% 0.29% 0.29% 

Blue wildebeest (n= 
4544) 

25.31% 27.40% 15.40% 10.28% 15.85% 2.66% 1.67% 1.43% 

Plains zebra (n= 3032) 12.04% 40.17% 22.59% 14.64% 8.08% 1.12% 0.53% 0.82% 

Midday 

Southern giraffe (n= 139) 2.16% 6.47% 41.73% 37.41% 12.23% 0.00% 0.00% 0.00% 

Greater kudu (n= 156) 1.92% 21.15% 42.95% 26.28% 7.69% 0.00% 0.00% 0.00% 

Warthog (n= 67) 10.45% 20.90% 25.37% 23.88% 19.40% 0.00% 0.00% 0.00% 

N
o

c
tu

rn
a

l 

Afternoon / 
Dusk 

African savanna 
elephant (n= 355) 

3.94% 8.45% 18.31% 22.82% 22.54% 12.96% 7.61% 3.38% 

Early night 

African wildcat (n= 95) 17.89% 0.00% 0.00% 0.00% 10.53% 25.26% 23.16% 23.16% 

Black-backed jackal (n= 
684) 

11.26% 0.44% 0.15% 0.15% 22.51% 29.39% 20.32% 15.79% 

Mongoose (n= 30) 6.67% 20.00% 0.00% 10.00% 0.00% 30.00% 16.67% 16.67% 

Spotted hyaena (n= 507) 11.05% 0.59% 0.59% 0.20% 14.20% 33.14% 19.92% 20.32% 

Midnight 

Honey badger (n= 8) 12.50% 12.50% 0.00% 0.00% 12.50% 25.00% 37.50% 0.00% 

Lion (n= 110) 5.45% 0.00% 0.00% 0.00% 0.00% 20.91% 43.64% 30.00% 

Serval (n= 2) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 50.00% 50.00% 

Small-spotted genet (n= 
32) 

3.13% 0.00% 0.00% 0.00% 0.00% 21.88% 37.50% 37.50% 

Early morning  
African civet (n= 59) 5.08% 0.00% 0.00% 0.00% 5.08% 27.12% 25.42% 37.29% 

Common duiker (n= 37) 10.81% 0.00% 0.00% 0.00% 2.70% 24.32% 13.51% 48.65% 
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Grouping for the nocturnal drinkers appears to largely reflect their peak visitation periods, 

with honey badger and mongoose predominantly drinking from the water trough during 

the early night period (sub-group 2a); African civet, small-spotted genet and lion exhibiting 

strict nocturnal visitation periods (sub-group 2b), and African buffalo, common duiker, 

African wild cat, black-backed jackal and spotted hyaena utilising the water trough 

nocturnally and at dawn (sub-group 2c). Similarly, the right cluster shows greater 

variability compared to the left cluster, segregating the species with a range of different 

peak visitation times. Mongoose, honey badger and serval, which are clustered in sub-

group 2a, represent the least commonly sighted species at the Satara water trough. The 

mammals which have distinct nocturnal visitation patterns are carnivores, with the 

exception of common duiker. Peak visitation intervals for the majority of mammals are 

clustered within specific diurnal and nocturnal periods, with the exception of African 

buffalo, African wild cat and mongoose, which have widely dispersed visitation patterns.  

 

 
 

Figure 5.7: Cluster dendrogram showing the dominant visitation times of mammals at Satara water trough. 
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The PCA for Satara displayed similar patterns to that for Orpen, with PC1 segregating 

nocturnal (left) from diurnal (right) drinkers. Likewise, PC2 shows no clear pattern for 

mammals grouped together, and therefore could suggest that mammals are responding 

to other drivers. Serval are an outlier on PC2, indicating that PC2 is likely influencing the 

time that serval visit the water trough differently compared to other carnivores (Figure 

5.8). 

 

The PC1 species scores at Satara show that southern giraffe, warthog and greater kudu 

(1.68, 1.68 and 1.71 respectively) have the closest species associations, agreeing with 

patterns observed at the water trough, where these species predominantly visit during 

midday. Impala (1.58), plains zebra (1.48) and chacma baboon (1.44) show relatively 

close species scores (< 0.15 difference), indicating that water trough visitation for these 

species may overlap. African elephant indicate the least similar scores compared to other 

species (0.68), showing strong species avoidance behaviour at this water trough, which 

could likely be explained by elephant bulls predominantly utilising this water trough. 

African buffalo and African elephant generally visit water sources in large herds, and 

although these species would not need to temporally partition their water source visits 

(Valeix et al., 2007a), there are large differences between their species scores (-0.11 and 

0.68 respectively), likely explained by the small size of Satara water trough, which is not 

able to accommodate numerous large species drinking from the water trough at the same 

time, whilst Orpen waterhole is a much larger waterhole, where inter-specific competition 

could be avoided by shifting their drinking positions at the waterhole and thus PC1 scores 

between these two species show a smaller difference (0.25 and -0.05 respectively).  

 

Small-spotted genet (-1.52), lion (-1.51) and African civet (-1.48) show similar species 

scores (< 0.15 difference), indicating that there could be temporal overlap of these 

species at the water trough and similarly, common duiker and African wild cat (-1.35 for 

both) could encounter each other at the water trough, however, these species were never 

observed at the water trough at the same time. Medium- and small-sized carnivores, 

spotted hyaena (-1.08) and black-backed jackal (-1.04), show similar species scores (0.02 
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difference), with predominant visits to the water trough during the early night and 

midnight, whilst, serval (-0.80), mongoose (-0.69) and honey badger (-0.48) have the least 

similar PC1 scores compared to other nocturnal species.  

 

 
 

Figure 5.8: Principal component analysis biplot showing the dominant visitation times of mammals and 

species associations at Satara water trough.  

 

5.3.4 Comparisons of Water Source Visitation between and within Seasons 

For all mammals at Orpen and Satara, there are significant, strong, correlations between 

water source visits and season (Table 5.6), showing that visitation patterns are similar 

within the same seasons, thus, justifying the pooling of data into these seasons. 

Therefore, water source visitation patterns were analysed at monthly and seasonal 
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intervals, across annual and inter-annual periods for autumn, winter, spring and summer, 

to explore how visitation is spread across these four seasons.  

 

Table 5.6: Seasonal comparisons for each season in 2012 and 2013, of average mammal sightings. Strong 

(≥ 0.50) significant correlations are indicated by an asterisk and very strong (≥ 0.90) significant correlations 

are indicated by a double asterisk.  

Seasonal Comparisons for Pooled 
Mammal Sightings 

  Season Avg Sightings  

Orpen  Autumn  **0.94 

  Winter **0.96 

  Spring *0.73 

  Summer **0.93 

  Wet  **0.94 

  Dry  **0.99 

 Satara Autumn *0.82 

  Winter *0.82 

  Spring *0.70 

  Summer *0.81 

  Wet *0.87 

  Dry  *0.83 

 

5.3.5 Seasonal Visitation Patterns for All Species Combined (Orpen) 

Mammal visitation showed the strongest seasonal preferences during winter 2012 

(60.62%), whilst the weakest seasonal preferences are shown for spring 2012 (5.18%) 

(Table 5.7). In contrast, mammal visitation showed the strongest seasonal preferences 

during spring (35.99%) and winter 2013 (31.23%), with the weakest seasonal preferences 

during autumn 2013. Visitation patterns were relatively similar during the dry (54.16%) 

and wet (45.84%) seasons of 2013 (Table 5.7).  

 

 

 

 

 

 



119 

 

Table 5.7: Percentage of total monthly and seasonal sightings at Orpen waterhole for the period March 

2012 to March 2014. Highest and lowest percentages highlighted in dark grey and light grey. 

Orpen          

  
Month/s 

Total 
Sightings 

% Per 
Month  

% Per 
Season 

Rainfall 
(mm) 

Autumn 

Mar-12 569 1.93     

Apr-12 471 1.60 17.53 60.4 

May-12 1466 4.98    

Winter 

Jun-12 2053 6.97    

Jul-12 3253 11.05 60.62 0.0 

Aug-12 3362 11.42    

Spring 

Sep-12 232 0.79    

Oct-12 237 0.80 5.18 238.2 

Nov-12 272 0.92    

Summer 

Dec-12 804 2.73    

Jan-13 1016 3.45 16.67 497.7 

Feb-13 564 1.92     

Autumn 

Mar-13 598 2.03    

Apr-13 473 1.61 9.60 106.3 

May-13 383 1.30    

Winter 

Jun-13 1383 4.70    

Jul-13 1475 5.01 31.23 21.7 

Aug-13 1871 6.35    

Spring 

Sep-13 2690 9.14    

Oct-13 1730 5.88 35.99 126.1 

Nov-13 1030 3.50    

Summer 

Dec-13 1973 6.70    

Jan-14 599 2.03 23.18 256.4 

Feb-14 938 3.19    

  Mar-14 734 2.43    

Wet Season Oct - Mar 2012 3491 24.36   697.5 

Dry Season  Apr - Sep 2012 10837 75.64  67.6 

Wet Season Oct - Mar 2013 7004 45.84  545.2 

Dry Season  Apr - Sep 2013 8275 54.16   124.0 

 

5.3.5.1 Species-Specific Seasonal Visitation Patterns (Orpen) 

Mammal sightings were averaged for the two dry seasons and two wet seasons of the 

study period. The majority of carnivores and herbivores visited the waterhole 



120 

 

predominantly (>70%) during the dry season (Table 5.8). However, some species (lion, 

blue wildebeest, African elephant and chacma baboon) showed no seasonal preference 

(seasonal values differ by < 20%). African civet, black-backed jackal, leopard, small-

spotted genet, common duiker, greater kudu, African buffalo, hippopotamus, warthog and 

vervet monkey show strong seasonal preference (seasonal values differ by > 50%), with 

the highest percentage use of visitation recorded during the dry season.  

 

Table 5.8: Percentage seasonal waterhole utilisation at Orpen for specific species (April 2012 to March 

2014). Highest percentages highlighted in grey. Species showing no seasonal preference are marked with 

an asterisk (*) (seasonal values differ by < 20%), species showing strong seasonal preference are marked 

with a double asterisk (**) (seasonal values differ by > 50%).  

Mammal  
Total 
Sightings 

Dry Season %                              
(Apr 2012 - Sep 2012)  
(Apr 2013 - Sep 2013) 

Wet Season %                       
(Oct 2012 - Mar 2013)  
(Oct 2013 - Mar 2014) 

African civet** (n = 72) 93.06 6.94 

Black-backed jackal**  (n = 415) 86.51 13.49 

Honey badger (n = 59) 71.19 28.81 

Leopard** (n = 50) 84.00 16.00 

Lion* (n = 72) 41.67 58.33 

Small-spotted genet** (n = 28) 78.57 21.43 

Spotted hyaena (n = 215) 74.42 25.58 

Common duiker** (n = 221) 97.74 2.26 

Greater kudu** (n = 839) 79.38 20.62 

Southern giraffe (n = 195) 74.87 25.13 

African buffalo** (n = 903) 79.18 20.82 

Blue wildebeest* (n = 3241) 40.70 59.30 

Hippopotamus** (n = 26) 84.62 15.38 

Plains zebra (n = 1970) 64.52 35.48 

Warthog** (n= 3476) 82.25 17.75 

African savanna elephant* (n = 1633) 56.52 43.48 

Impala (n = 14536) 63.99 36.01 

Chacma baboon* (n = 1183) 47.80 52.20 

Vervet monkey** (n = 353) 93.20 6.80 
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5.3.5.2 Temporal Visitation Shift between Wet and Dry Seasons (Orpen) 

To explore whether mammal species are shifting their daily timing of water source 

utilisation periods according to season (wet and dry), individual mammal species hourly 

visitation totals per month were separated according to the wet and dry seasons. 

Hypotheses for a comparison of means test is that there is no difference between the two 

dry seasons and no difference between the two wet seasons, whilst there is a difference 

between the 2012 dry season and 2012 wet season and a difference between the 2013 

dry season and 2013 wet season.  

 

Pooled species hourly visitation patterns per wet and dry season show a peak in visitation 

at 10:00 during both the 2012 dry and wet seasons (Figure 5.9), however, a comparison 

of means test indicates that there is a significant difference (t = 2.50, p < 0.05) between 

the pooled species hourly visitation patterns between the 2012 dry and wet seasons. 

Peaks in visitation are shown at 11:00 during the 2013 dry season and at 8:00 during the 

2012 wet season (Figure 5.9), indicating an earlier shift in the daily timing of waterhole 

visitations during the 2013 wet season, however, a comparison of means test reveals no 

difference (t = 0.48, p > 0.05) between the hourly visitation patterns for the 2013 dry and 

wet seasons 

 

Pooled species seasonal visitation patterns across the 24-hour day show no difference 

between the hourly visitation patterns of the 2012 and 2013 dry seasons (t = 0.71, p > 

0.05) and no significant difference between the 2012 and 2013 wet seasons (t = -2.18, p 

< 0.05). Thus, mammals exhibit temporal shifts in the timing of their visitation to the 

waterhole according to season, with season reflecting changes in climatic variables 

(temperature and rainfall), as well as light availability (sunrise and sunset times).   
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Figure 5.9: Pooled species temporal shifts in visitation, at Orpen waterhole, within and between the wet and 

dry seasons. 

 

5.3.6 Seasonal Visitation Patterns for All Species Combined (Satara) 

Mammal visitation showed the strongest seasonal preferences during winter 2012 

(39.13%) and the weakest seasonal preferences during spring 2012 (8.62%) (Table 5.9), 

reflecting the broader dry (63.15%) and wet (36.85%) season distribution of visitation. In 

contrast, mammal visitation showed the strongest seasonal preferences during summer 

2013 (42.58%) with a relatively even distribution of water trough visits during autumn, 

winter and spring 2013 (20.01%, 19.16% and 18.25% respectively). Similar rainfall 

conditions for Satara, where 30.7mm of rainfall was received during the dry season of 

2012, resulted in a high percentage of visits to the water trough during winter, whilst the 

low percentage of visits in spring and summer are a consequence of a high volume of 

rainfall (478.6mm) in the 2012 wet season.  
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Table 5.9: Percentage of total monthly and seasonal sightings at Satara water trough for the period April 

2012 to March 2014. Highest and lowest percentages highlighted in dark grey. 

Satara         

  
Month/s 

Total 
Sightings 

% Per 
Month  

% Per 
Season 

Rainfall 
(mm) 

Autumn 

Mar-12 - -    

Apr-12 1197 7.34 26.75 47.5 

May-12 1180 7.24    

Winter 

Jun-12 921 5.65    

Jul-12 1287 7.89 39.13 0.0 

Aug-12 1269 7.78    

Spring 

Sep-12 246 1.51    

Oct-12 103 0.63 8.62 145.8 

Nov-12 417 2.56    

Summer 

Dec-12 533 3.27    

Jan-13 748 4.59 25.49 353.8 

Feb-13 984 6.03    

Autumn 

Mar-13 775 4.75     

Apr-13 373 2.29 20.01 87.8 

May-13 337 2.07    

Winter 

Jun-13 702 4.30    

Jul-13 463 2.84 19.16 10.8 

Aug-13 257 1.58    

Spring 

Sep-13 425 2.61    

Oct-13 345 2.12 18.25 111.9 

Nov-13 585 3.59    

Summer 

Dec-13 1681 10.31    

Jan-14 850 5.21 42.58 338.4 

Feb-14 630 3.86    

  Mar-14 382 2.29     

Wet Season Oct - Mar 2012 3560 36.85  478.6 

Dry Season  Apr - Sep 2012 6100 63.15  30.7 

Wet Season Oct - Mar 2013 4473 63.63  553.3 

Dry Season  Apr - Sep 2013 2557 36.37   104.7 

 

5.3.6.1 Species-Specific Seasonal Visitation Patterns (Satara) 

At Satara water trough, African civet (88.14%), common duiker (83.78%), greater kudu 

(87.82%), southern giraffe (79.14%) and warthog (88.06%) predominantly (> 50% 
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difference between seasons) drink during the dry season, whilst lion (75.45%) and African 

elephant (75.77%) predominantly (> 50% difference between seasons) drink during the 

wet season at the given water trough (Table 5.10). The former species therefore exhibit 

strong seasonal preference. Highly water-dependent species such as blue wildebeest 

and impala, exhibit relatively similar dry and wet season water trough visitation patterns, 

or no seasonal preference (< 20% difference between seasons) (Table 5.10), highlighting 

that these species rely on the Satara water trough throughout the wet and dry seasons. 

African wild cat show strong seasonal patterns only at Satara water trough, as their 

seasonal preferences could not be established at Orpen due to their infrequent visitation 

patterns at this waterhole. African elephant, lion and plains zebra show strong seasonal 

preferences only at Orpen waterhole, whilst baboon, impala and blue wildebeest show no 

seasonal preference at both water sources.  

 

Table 5.10: Percentage seasonal water trough utilisation at Satara for specific species (April 2012 - March 

2014). Highest percentages highlighted in grey. Species showing no seasonal preference are marked with 

an asterisk (*) (seasonal values differ by < 20%), species showing strong seasonal preference are marked 

with a double asterisk (**) (seasonal values differ by > 50%).  

 Mammal 
Total 
Sightings 

Dry Season %                              
(Apr 2012 - Sep 2012)  
(Apr 2013 - Sep 2013) 

Wet Season %                      
(Oct 2012 - Mar 2013)  
(Oct 2013 - Mar 2014) 

African civet** (n = 59) 88.14 11.86 

African wildcat* (n = 95) 49.47 50.53 

Black-backed jackal  (n = 684) 62.43 37.57 

Lion** (n = 110) 24.55 75.45 

Small-spotted genet (n = 32) 31.25 68.75 

Spotted hyaena (n = 507) 71.01 28.99 

Common duiker** (n = 37) 83.78 16.22 

Greater kudu** (n = 156) 87.82 12.18 

Southern giraffe** (n = 139) 79.14 20.86 

African buffalo (n = 615) 70.08 29.92 

Blue wildebeest*  (n = 4544) 42.25 57.75 

Plains zebra (n = 3032) 68.54 31.46 

Warthog** (n = 67) 88.06 11.94 

African savanna elephant**  (n = 355) 24.23 75.77 

Impala* (n = 5819) 46.11 53.89 

Chacma baboon* (n = 399) 46.37 53.63 
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5.3.6.2 Temporal Visitation Shift between Wet and Dry Seasons (Satara) 

Pooled species hourly visitation patterns for the 2012 and 2013 wet season show peaks 

in visitation at 7:00 (Figure 5.10), and a comparison of means test indicates no difference 

(t = -0.94, p > 0.05) between the mean visitation patterns between these two seasons. 

Peak visitation during the 2012 dry season is shown at 9:00, while during the 2013 dry 

season peak visitation is at 8:00 (Figure 5.10). A comparison of means test revealed that 

there is a significant difference (t = 2.58, p < 0.05) between the mean visitation patterns 

during the two dry seasons.  

 

There is no difference (t = 1.77, p > 0.05) between the mean visitation patterns of the 

2012 dry and wet seasons, and there is no significant difference (t = -2.19, p < 0.05) 

between the 2013 dry and wet seasons. This suggests that mammals at the Satara water 

trough are not shifting their daily timing of visitations between seasons, however, they are 

showing similar patterns within seasons.  

 

 

Figure 5.10: Pooled species temporal shifts in visitation, at Satara water trough, within and between the 

wet and dry seasons. 
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5.3.7 Duration of Water Source Visitation  

As the identification of individuals was not possible in this study, the time spent at the 

waterhole was calculated per species group/herd/family unit, from the time the first 

individual in a group started drinking to the time that the last individual left the water 

source. 

  

5.3.7.1 Duration of Mean Water Source Visitation per Species (Orpen) 

Mean monthly time spent at Orpen waterhole ranged from 7 minutes, 6 seconds in 

September 2013 to 43.6 seconds in October 2012. Seasonal patterns and fluctuations 

are shown for pooled species duration of waterhole visits, with pronounced peaks in the 

mean time spent at Orpen waterhole occurring in the winter months of June, July and 

August 2012 and in September and October 2013, likely a consequence of rainfall 

received during and prior to these periods. It is also important to explore whether a 

particular species or feeding guild is responsible for driving these seasonal patterns of 

time spent at the waterhole.  

 

The average time spent at the waterhole was calculated per month. The monthly 

distribution of the time spent at the waterhole shows a seasonal pattern exhibited by 

herbivores (in particular mixed feeders) and black-backed jackals (Table 5.11), 

suggesting that these species may change their time spent at the waterhole depending 

on season/climate, thus highlighting the importance of exploring the seasonal patterns in 

time spent at the waterhole, and how these patterns differ between and within feeding 

guild species classifications.  

 

The mean time spent at the waterhole was < 1 minute for all carnivores for the period 

March 2012 - March 2014 (Figure 5.9), ranging from ~53 seconds for black-backed jackal 

to < 15 seconds for honey badger (Table 5.11). In contrast, the mean time spent at the 

waterhole by herbivores collectively was > 1 min (Figure 5.12; Table 5.11). 
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Table 5.11: Monthly mean time spent at Orpen waterhole per mammal species, for the period March 2012 to March 2014.  

Orpen                       < 1 min < 5 min < 10 min < 15 min > 15 min 
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Mar-12 - - 18s - 2m6s 15s 15s - 30s 15s - 1m19s 2m36s 2m48s 3m12s 15s 4m6s 11m36s 11m36s 6m - 

Apr-12 15s - 15s - 24s - - 15s - 15s - 33s 48s 4m24s 1m30s 42s 2m48s 2m18s 4m12s 1m54s 15s 

May-12 15s - 24s 15s 1m18s 15s 15s 18s - 19s 15s 1m39s 24s 6m6s 2m54s 1m54s 5m54s 13m6s 13m6s 1m24s 1m18s 

Jun-12 34s - 18s 15s 1m42s 15s 15s - - 21s 1m43s 48s 1m36s 14m 1m54s 2m18s 9m36s 3m30s 39m54s 1m12s 1m48s 

Jul-12 30s - 15s 15s 1m30s 15s - - - 41s 2m25s 2m5s 30s 9m 3m6s 4m54s 12m54s 11m12s 27m42s 4m 4m18s 

Aug-12 15s - - 15s 2m54s 54s - - - 1m24s 2m43s 2m21s 2m48s 11m18s 2m30s 7m48s 15m30s 9m36 31m54s 2m54s 1m12s 

Sep-12 - - - - 15s - - - - 15s 24s 46s 54s 15s 18s 42s 1m36s 4m24s 3m24s 30s - 

Oct-12 - - - 15s 18s - - - - 44s - 15s - 42s 1m - 1m12s 48s 3m18s 48s 24s 

Nov-12 - - - 15s 15s 15s - - - 15s - 15s - 1m24s 36s 1m36s 1m 3m54s 5m 1m6s - 

Dec-12 - - - - - - - - 15s 15s - 28s - 9m24s 3m42s 5m30s 48s 5m36s 18m 2m18s 15s 

Jan-13 - - - - 15s 15s 49s - - 15s - 15s - 1m6s 5m54s 3m36s 2m 2m18s 14m30s 6m12s 15s 

Feb-13 - - - - - - - - - 24s - 15s - 15s 3m12s 2m48s 1m30s 15s 5m6s 1m - 

Mar-13 - - - 15s 30s - 15s 26s - 15s - 15s 15s 42s 5m30s 4m42s 2m42s 7m48s 1m18s 3m54s - 

Apr-13 - - - - 18s 15s - 15s 44s 51s - 15s 24s 3m6s 1m42s 1m54s 1m24s 6m12s 3m6s 2m24s 15s 

May-13 15s - 15s - 15s 25s - 15s - 15s - 15s 1m12s 2m54s 1m 1m12s 3m6s 11m12s 1m24s 2m18s 18s 

Jun-13 42s - - 15s 54s 20s - 17s 15s 15s 15s 1m10s 54s 5m24s 2m48s 17m30s 11m18s 1m12s 11m24s 3m36s 24s 

Jul-13 15s - - - 15s 17s 15s - - 24s 17s 1m20s 1m30s 8m12s 1m48s 5m30s 16m18s 13m12s 14m54s 2m54s 18s 

Aug-13 - 15s 15s 18s 1m30s 15s 38s - - 1m8s 15s 5m10s 4m30s 1m6s 3m6s 24s 19m42s 14m6s 21m36s 3m6s 15s 

Sep-13 15s - - 24s 130s 55s 1m6s 15s - 2m22s 37s 4m13s 5m12s 10m48s 4m 3m18s 31m 17m36s 44m42s 15s 15s 

Oct-13 15s - - 15s 2m12s - - 21s 30s 26s 15s 2m41s 5m36s 9m12s 4m42s 1m54s 25m 32m48s 21m12s 1m18s 15s 

Nov-13 - - 24s - 18s - 15s 27s - 15s - 53s 54s 15s 1m6s 30s 3m12s 14m24s 14m6s 42s - 

Dec-13 - - 15s 15s 42s 15s 46s 15s - 15s - 22s - 48s 9m12s 3m 2m48s 10m54s 25m6s 2m6s - 

Jan-14 15s - - 15s - - 15s - - 22s - 15s - - 1m6s 2m 1m24s 2m42s 8m48s 1m6s - 

Feb-14 - - 15s 15s - 15s 37s - - - - - - 24s 1m54s 4m30s 1m 2m18s 11m54s 2m30s - 

Mar-14 - - - - - - 18.6s 15s - - - 15s - - 36s 2m 36s 7m 9m12s 1m30s 15s 
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Figure 5.11: Mean time carnivores spent at Orpen waterhole for the period March 2012 to March 2014. The 

number of sightings (n) is indicated for each species. 

Mixed feeders (elephant and impala) spend the longest mean time at the waterhole (8 

minutes, 18 seconds and 14 minutes, 42 seconds, respectively), while browsers (common 

duiker, greater kudu and southern giraffe) and primates (chacma baboon and vervet 

monkey) spend, on average, < 3 minutes at the waterhole (Figure 5.12).  

 

 
 

Figure 5.12: Mean time herbivores spent at Orpen waterhole for the period March 2012 to March 2014. The 

number of sightings (n) is indicated for each species.  
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5.3.7.2 Duration of Water Source Visitation per Feeding Guild (Seasonal Patterns) 

Herbivores show the longest mean time spent at the waterhole during winter 2012 (7 

minutes, 36 seconds) and the shortest mean time spent at the waterhole during spring 

2012 (1 minute, 18 seconds) and during 2013 the mean time spent at the waterhole was 

longest during spring (8 minutes, 6 seconds) and winter (5 minutes, 54 seconds). The 

mean monthly time spent at Orpen waterhole by herbivores ranged from 11 minutes, 6 

seconds in September 2013 and 53.9 seconds in October 2012 (Figure 5.13).  

 

Herbivores are showing broad seasonal fluctuations in time spent at the waterhole (Figure 

5.13). Specifically, grazers and mixed feeders seem to be driving the pooled species 

seasonal fluctuations at Orpen, showing similar seasonal patterns in longest and shortest 

mean time spent at the waterhole, with the least time spent during spring 2012 and 

autumn 2013 (Figure 5.14b,c). Browsers spent least time at the waterhole during both 

summer seasons (12.0 seconds and 18.0 seconds, respectively) of the study period 

(Figure 5.14a).   

 

 
 

Figure 5.13: Mean monthly time that herbivores spent at Orpen for the period March 2012 to March 2014. 
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Figure 5.14: Mean monthly time a) browsers, b) grazers and c) mixed feeders spent at Orpen waterhole for 

the period March 2012 to March 2014. 

 

Carnivores exhibit erratic seasonal patterns in time spent at the waterhole, however, 

showing pronounced peaks during winter 2012 and spring 2013 (Figure 5.15). Mean time 

spent at the waterhole ranged from 38.0 seconds during winter 2012 to 10.8 seconds 

during spring 2012, while the mean time spent at the waterhole during spring and summer 

2013 was 36.5 and 11.1 seconds respectively.   
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Figure 5.15: Monthly mean time carnivores spent at Orpen waterhole for the period March 2012 to March 

2014. 
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months). The pooled species mean time spent at Satara water trough does not show a 

distinct seasonal pattern, however inter-annually, time spent at the water trough is higher 

in 2012 than 2013. The mean duration spent at Satara water trough for most carnivores 

was < 1 minute, with the exception of spotted hyaena and black-backed jackal, which 

respectively spent 70.1 and 66.6 seconds at the water trough, while honey badger spent 

the least time (< 15 seconds) (Table 5.12; Figure 5.16). Spotted hyaena drank from 

Satara water trough and were frequently observed sitting in the trough. Additionally, they 

used the water trough for caching purposes, to store meat so that other predators could 

not detect the meat, which helps explain the > 1-minute duration spent at this water 

trough. The duration of water trough visits at Satara does not have a distinct feeding guild 
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Table 5.12: Monthly mean time spent at Satara water trough per mammal species for the period April 2012 to March 2014.   

 

Satara 
                  

< 1 
min   

< 5 
min   < 10 min < 15 min > 15 min 
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Apr-12 - - - - 54s - - - 1m12s - 1m12s 4m36s 5m30s 7m54s 7m18s 15s 1m12s 15m24s 36s 

May-12 - - 15s - 2m6s 15s - 15s 3m30s - 1m 1m18s 5m54s 5m36s 6m6s 15s 1m24s 13m54s 15s 

Jun-12 - - - - 1m24s 18s - - 54s 15s 15s 15s 1m24s 2m36s 9m24s - 4m36s 4m6s 18s 
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Aug-12 15s 1m18s - - 2m18s - - - 3m6s 15s 30s 18s 1m24s 2m18s 10m18s - 1m42s 6m18s 18s 

Sep-12 - 15s - - - - - - 1m6s - - - 1m24s 1m30s 4m24s - 9m36s 1m18s - 

Oct-12 15s 30s - - 18s - - - 1m6s - - 36s 1m36s 18s 15s - 9m30s 24s 15s 

Nov-12 - - - - 18s 24s - - 1m42s - - - 4m4s 4m18s 5m42s - 17m18s 2m6s 1m12s 

Dec-12  - - - 15s  - - 1m42s - - - 2m 2m48s 1m42s - 1m54s 7m36s 30s 

Jan-13 - - - - 18s 15s - - 1m18s - - 54s 1m 5m48s 3m36s - 7m54s 12m36s 24s 

Feb-13 - 36s - - 36s - 18s - 42s - - - 54s 9m18s 15m30s - 1m30s 12m36s 36s 

Mar-13 - 15s 15s - 48s - 36s - 42s - - 24s - 8m24s 2m42s - 1m30s 11m54s - 

Apr-13 - 15s - - 15s 15s 15s - 24s - - 36s 18s 2m48s 42s - 1m30s 2m18s 1m24s 

May-13 15s - - - 15s - 15s 18s 24s - - 24s 54s 2m30s 1m42s - 36s 1m12s 24s 

Jun-13 30s 18s 15s - 1m12s - - - 48s - 15s 24s 18s 7m30s 4m 15s 30s 2m24s 42s 

Jul-13 36s 48s 15s - 1m24s - - - 1m12s - 15s - 30s 2m 6m6s 42s 42s 1m42s 18s 

Aug-13 24s 54s  - 42s - - - 24s 30s 24s 15s 42s 18s 1m30s 30s 18s 1m42s - 

Sep-13 24s 2m36s - 15s 1m42s 15s - - 1m54s 42s 24s 15s 1m30s 15s 1m42s 48s 24s 2m6s 36s 

Oct-13 - 3m24s 15s - 1m12s 24s - - 42s 48s - 18s 24s 1m18s 42s 15s 4m42s 1m30s 1m 

Nov-13 - 2m24s 15s - 2m12s 1m36s - - 54s 18s 42s - 24s 2m24s 36s - 4m54s 5m54s 18s 

Dec-13 - 36s 36s - 3m18s 54s - - 30s - - 15s 2m12s 12m48s 10m18s 15s 2m42s 14m48s 18s 

Jan-14 15s 30s 15s - 1m18s 2m30s - - 18s - - - - 5m30s 5m18s 15s 1m18s 3m42 54s 

Feb-14 - 24s - - 24s 15s - - 18s - - 18s 15s 3m24s 3m24s 15s 5m6s 4m24s 24s 

Mar-14 - - - - 1m6s 54s - - 15s - - 18s - 1m18s 48s - 1m 2m42s - 
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Figure 5.16: Mean time carnivores spent at Satara water trough for the period April 2012 to March 2014. 

The number of sightings (n) is indicated for each species.  

  

Impala spent the longest time at the Satara water trough, with a mean visitation of 5 

minutes, 54 seconds, whilst warthog spent the least time at the water trough (< 15 

seconds) (Table 5.12; Figure 5.17). Compared to the mixed feeders and grazers, 

browsers and chacma baboon spent the least time at the water trough (< 40 seconds). 

 

 
 

Figure 5.17: Mean time herbivores spent at Satara water trough for the period April 2012 to March 2014. 

The number of sightings (n) is indicated for each species. 
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5.3.7.4 Duration of Water Source Visitation per Feeding Guild (Seasonal Patterns) 

Herbivores at Satara show a different seasonal pattern of time spent at the water trough, 

compared to Orpen, with pronounced peaks during spring and summer (Figure 5.18) and 

not during the winter months as shown for Orpen. The longest time spent at the water 

trough for herbivores was during summer 2012 (4 minutes, 42 seconds) whilst the least 

time spent at the water trough was during winter and spring 2013 (1 minute, 18 seconds 

at both waterholes). Browsers, grazers and mixed feeders (Figure 5.19a,b,c) all spent the 

longest time at the water trough during autumn 2012 (2.0 minutes, 8.0 minutes and 4 

minutes, 48 seconds, respectively), however the pooled herbivore seasonal duration at 

water troughs show that the longest time spent is during summer 2012 (54.0 seconds) 

(Figure 5.18). There is an erratic pattern between the different feeding guilds of the least 

time spent at the water trough, fluctuating from winter 2012 (12.0 seconds) and summer 

2013 (12.0 seconds) for browsers, spring 2013 (1.0 minute) for grazers and winter 2013 

(1minute, 12 seconds) for mixed feeders (Figure 5.19a,b,c). These fluctuations highlight 

that mixed feeders are the driving force of the seasonal patterns for the longest mean 

time spent at the Satara water trough, whilst grazers and mixed feeders are the driving 

force of the seasonal patterns for the shortest time at the trough. 

 

 
 

Figure 5.18: Mean monthly time that herbivores spent at Satara for the period April 2012 to March 2014.  
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Figure 5.19: Mean monthly time a) browsers, b) grazers and c) mixed feeders spent at Satara water trough 

for the period April 2012 to March 2014. 

 

Carnivores at Satara also show an erratic seasonal pattern of time spent at the water 

trough, however, the longest mean time spent at the water trough was during winter 2012 

(1 minute, 12 seconds), with the longest mean time spent during August 2012 (1 minute, 

42 seconds). The shortest average time spent at the water trough is in during autumn 

2013 (8.0 seconds) (Figure 5.20). Carnivores are thus showing a different seasonal 

pattern of time spent at the water trough when compared to the pooled species distribution 

and herbivores.  
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Figure 5.20: Mean monthly time that herbivores spent at Satara for the period April 2012 to March 2014.  

 

5.3.9 Similarities and Differences of Visitation Patterns at Orpen and Satara 

Seasonally, mammal visitation patterns at Orpen and Satara are similar, with the majority 

of mammal (> 70%) visitations occurring during the dry season when there is little or no 

rainfall and thus fewer natural water sources available to drink from. Blue wildebeest 

predominantly drink during the wet season at both Orpen (59.30%) and Satara (57.75%), 

but only marginally more so than during the dry season; a pattern which is likely due to 

the species being highly water-dependent and therefore having to drink throughout the 

year. Mammals that displayed the greatest difference in seasonal visitation patterns at 

Satara and Orpen were small-spotted genet (78.57% difference between dry and wet 

season visitation), African elephant (56.52%) and impala (63.99%), which all record an 

increase in visitation during the dry season at Orpen, and conversely small-spotted genet 

(68.75% difference between dry and wet season visitation), African elephant (75.77%) 

and impala (53.89%) indicate an increase in visitation during the wet season at Satara.  

 

The timing of peak visitation shows strong relationships between Orpen and Satara for 

many species, with highly significant strong relationships, as well as the same or similar 
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(1 hour difference) peak visitation times for African civet (r = 0.84, p < 0.0001) (20:00 and 

20:00, respectively), greater kudu (r = 0.74, p > 0.0005) (11:00 and 12:00, respectively), 

impala (r = 0.89, p <0.0001) (10:00 and 9:00, respectively), plains zebra (r = 0.88, p < 

0.0001) (10:00 and 9:00, respectively) and small-spotted genet (r = 0.78, p > 0.0005) 

(2:00 and 2:00, respectively) (Table 5.13). Weak, insignificant correlations as well as 

different (> 5 hours’ difference) peak visitation times between the two sites are observed 

for African wild cat (r = -0.08, p > 0.20) (14:00 and 0:00, respectively), common duiker (r 

= 0.12, p > 0.20) (18:00 and 3:00, respectively), mongoose (r = -0.02, p >0.20) (13:00 

and 22:00, respectively) and serval (r = 0.15, p > 0.20) (19:00 and 2:00, respectively) 

(Table 5.13).  

 

Table 5.13: Pearson's correlation table and significance of the relationship between mammal visitation 

times at Orpen and Satara water sources. Strong relationships (≥ 0.50) are indicated by an asterisk and 

very strong relationships (≥ 0.90) indicated by a double asterisk. Highly significant relationships are 

highlighted in grey. Significant relationships are tested at the 95% and 99% level.   

Mammal  r-value p-value Significance  
Peak Visitation 
Time (Orpen) 

Peak Visitation 
Time (Satara) 

African buffalo    0.15 p > 0.20 Not significant  9:00  7:00  

African civet *0.84 p < 0.0001 Highly significant  20:00 2:00 / 20:00 

African elephant  *0.59 p > 0.0005 Highly significant  18:00 12:00 / 16:00 

African wild cat -0.08 p > 0.20 Not significant  14:00 0:00 

Black-backed jackal  *0.70 p > 0.0005 Highly significant  2:00 / 0:00 19:00 

Blue wildebeest  *0.59 p > 0.0005 Highly significant  10:00 7:00 

Chacma baboon *0.34 p > 0.01 Significant 10:00 / 13:00 8:00 

Common duiker 0.12 p > 0.20 Not significant  18:00 3:00 

Greater kudu *0.74 p > 0.0005 Highly significant  11:00 12:00 

Honey badger *0.44 p > 0.01 Significant 5:00 1:00 / 22:00 

Impala *0.89 p < 0.0001 Highly significant  10:00 9:00 

Lion  *0.44 p > 0.01 Significant 21:00 1:00 

Mongoose -0.02 p > 0.20 Not significant  13:00 22:00 

Plains zebra *0.88 p < 0.0001 Highly significant  10:00 9:00 

Serval  0.15 p > 0.20 Not significant  19:00 2:00 / 23:00 

Small-spotted genet *0.78 p > 0.0005 Highly significant  2:00 2:00 

Southern giraffe **0.93 p < 0.0001 Highly significant  13:00 15:00 

Spotted hyaena *0.68 p > 0.0005 Highly significant  0:00 20:00 

Warthog *0.75 p > 0.0005 Highly significant  10:00 13:00 
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5.3.10 Summary 

Herbivores were the most frequently sighted species at both Orpen and Satara water 

sources, highlighting their well-known water needs. Different species have distinct peak 

visitation patterns, with herbivores typically diurnal and conversely carnivores being 

typically nocturnal in their visitation of the water sources. This can largely be attributed to 

their differences in diet and physiological adaptations and thus their water requirements. 

Additionally, the influence of predator-prey interactions, herbivores restrict their water 

source visits to hours of daylight to avoid carnivores. Seasonal visitation patterns vary 

between species, with highly water-dependent species, with the exception of African 

buffalo and African elephant at Satara, not showing distinct seasonal visitation patterns, 

therefore relying on the artificial water sources throughout the wet and dry seasons.   

 

5.4 Relationship between Mammal Visitation, Climate and Astronomical 

Variables 

5.4.1 Introduction 

Temperature and rainfall are two important climatic factors that have an influence on 

mammal behaviour (Skinner & Chimimba, 2005), particularly in semi-arid environments 

where the availability and distribution of water influences mammal habitat and abundance 

during the dry season (Chamaillé-Jammes et al., 2007b). Temperature and rainfall 

conditions, in particular, have an influence on mammal water requirements and their 

selection and use of water sources during different temporal context (Tefempa et al., 

2008). However, this has not been tested in KNP for these specific mammal species. The 

analysis of relationships between mammal water source visitation patterns and climatic 

and astronomical factors would serve to fill a knowledge gap on climate-related mammal 

water source requirements/behaviour.   
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5.4.1.1 Seasonal Climate and Astronomical Variables for the Study Period  

At both study sites sunrise ranged from 4:56 - 6:01 during the wet season and 5:53 - 6:39 

during the dry season, with sunset ranging from 17:55 - 18:23 during the wet season and 

17:20 - 17:53 during the dry season. Outliers were calculated for temperature, indicating 

that any value which is higher than the maximum outlier value is considered a maximum 

extreme, whilst any value which is lower than the minimum outlier value is considered a 

minimum extreme. Annual rainfall over the study period for Orpen was 356.9mm in 2012 

and 811.7mm in 2013. The highest and lowest wet season rainfall for a particular day, 

ranged from 184.0mm - 0.2mm, respectively, whilst the highest and lowest dry season 

rainfall for a particular day, ranged from 44.2mm - 0.2mm, respectively. A maximum 

hourly temperature of 42.9°C was recorded during the 2012 wet season, whilst the lowest 

hourly minimum temperature (0.7°C) was recorded during the 2013 dry season (Figure 

5.21; Table 5.14).   

 

Annual rainfall over the study period for Satara was 272.5mm in 2012 and 689.1mm in 

2013. The highest and lowest wet season rainfall for a particular day ranged from 

153.0mm - 0.1mm, respectively, whilst the highest and lowest dry season rainfall for a 

particular day ranged from 44.0mm -  2.0mm, respectively) (Figure 5.22; Table 5.14). The 

highest hourly maximum temperature (42.6°C) was recorded during the 2012 wet season, 

whilst the lowest hourly minimum temperature (3.4°C) was recorded during the 2012 dry 

season.  
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Figure 5.21: Seasonal variation of monthly climate variables at Orpen for the period March 2012 to March 

2014. 

 

 
 

Figure 5.22: Seasonal variation of monthly climate variables at Satara, for the period March 2012 to March 

2014. 
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Table 5.14: Seasonal temperature and rainfall summary statistics for the period March 2012 to March 2014 

(Orpen) and April 2012 to March 2014 (Satara).  

Seasonal Climate Summary Statistics        

  Dry Season Wet Season 

  April - September October - March  

  Temperature (°C) Rainfall (mm)   Temperature (°C)   Rainfall (mm)   

Orpen       

2012      

Seasonal Average  19.0 8.5 24.3 16.2 

Seasonal Maximum  37.4 16.8 42.9 184.0 

Seasonal Minimum 1.2 0.5 8.2 0.9 

Seasonal Range 36.2 16.3 34.7 183.1 

Variance  5.8 6.2 5.9 30.4 

Maximum Outlier > 34.6  > 41.0   

Minimum Outlier  < 3.4  < 7.5   

2013      

Seasonal Average  18.6 12.4 25.0 9.1 

Seasonal Maximum  41.6 44.2 42.4 47.6 

Seasonal Minimum 0.7 0.2 7.1 0.2 

Seasonal Range 40.9 44.0 35.3 47.4 

Variance  7.6 16.5 5.8 11.4 

Maximum Outlier > 40.9  > 41.3   

Minimum Outlier  < -4.0  < 8.5   

Satara     

2012      

Seasonal Average  19.1 7.7 24.9 17.7 

Seasonal Maximum  37.4 11.5 42.6 53.2 

Seasonal Minimum 3.4 4.0 10.3 0.4 

Seasonal Range 34.0 7.5 32.3 52.8 

Variance  6.1 3.5 5.7 16.7 

Maximum Outlier > 36.5  > 40.9   

Minimum Outlier  < 1.6  < 8.8   

2013      

Seasonal Average  19.9 15.0 25.0 19.1 

Seasonal Maximum  41.1 44.0 42.3 153.0 

Seasonal Minimum 5.1 2.0 9.4 0.1 

Seasonal Range 36.0 42.0 32.9 152.9 

Variance  6.8 16.1 5.7 28.3 

Maximum Outlier > 40.4  > 41.3   

Minimum Outlier  < -0.8   < 8.5   
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5.4.2 Patterns in Mean Hourly Mammal Water Source Visitation and Tmax, Tmin and 

Tavg 

Average hourly water source visitation for pooled species for March 2012 to March 2014, 

exhibit similar patterns, at both water sources. Pronounced peaks of activity occur 

diurnally, at 10:00 and 11:00 at Orpen (Figure 5.23) and at 9:00 at Satara (Figure 5.24). 

Visitation declines prior to the hottest Tavg period of the day (from 10:00 onwards) at both 

water sources, with a continual decrease in visits at Orpen. In contrast, at Satara there is 

a slight increase in late afternoon visitations (14:00 to 19:00 hours).  

 

Peak sightings occur at 10:00 when the mean temperature is 25°C at Orpen, whilst the 

mean daily peak temperature (29°C) occurs at 14:00; therefore there is a four-hour lead 

time between peak sightings and peak temperature. At Satara, peak sightings occur at 

9:00 when the mean temperature is 24°C. Mean daily peak temperature (30°C) occurs at 

14:00, reflecting a five-hour lead time. Satara shows higher nocturnal visitation compared 

to Orpen, reflecting the higher percentage (9.15% vs. 3.46%, respectively) of nocturnal 

species utilising the Satara water trough. 

 

 
 

Figure 5.23: Hourly visitation patterns for all species and hourly Tavg for the period March 2012 to March 

2014 at the Orpen waterhole.  
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Figure 5.24: Hourly visitation patterns for all species and hourly Tavg for the period April 2012 to March 2014 

at Satara water trough. 

 

5.4.3 Relationship between Hourly Mammal Visitation Patterns and Temperature 

Intervals  

Mammal visitation behaviour at the water sources seems to be influenced by ambient 

temperature conditions, and therefore it is important to determine optimal water source 

visitation periods controlled by specific temperature intervals. Five temperature intervals 

were chosen according to daily Tavg: ≥10°C Tavg <15°C, ≥15°C Tavg <20°C, ≥20°C Tavg 

<25°C, ≥25°C Tavg <30°C, and ≥30°C Tavg <35°C. Mammal visitation behaviour in response 

to Tavg intervals was analysed according to feeding guild classifications, herbivores 

(including primates) and carnivores. The visitation behaviour of carnivores was 

specifically analysed for the period 17:00 - 0:00. 

 

5.4.3.1 Hourly Mammal Visitation Patterns and Temperature Intervals (Orpen) 

Average herbivore visitation trends for the whole period of study at Orpen shift according 

to daily average temperature intervals (Figure 5.25). The peak time/s at which herbivore 

sightings occur during days with temperatures between 10°C - 15°C are the latest at 
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11:00 (25% of mammal sightings) and 13:00 (16% of mammal sightings in this interval), 

indicating a bimodal distribution. There is a shift to earlier peak visitation for days with 

temperatures between 15°C - 20°C, 20°C - 25°C and between 25°C - 30°C, all at 10:00 

(18%, 16% and 14% mammal sightings, respectively) with each of these representing a 

unimodal distribution. The earliest peak arrivals occur on days with average temperatures 

between 30°C - 35°C, with two peak visitation times at 8:00 (18% of mammal sightings) 

and 12:00 (15% of mammal sightings), representing a multimodal distribution. The shift 

from unimodal to multimodal distributions suggests more variability in visitations between 

adjacent time units. Therefore, a broad trend towards earlier visitation under warmer 

temperatures is apparent; except for midday drinking, which may be necessary under 

extremely hot conditions. Regression analysis quantified these shifts as earlier visitation 

during the day at a rate of 36 minutes per 5°C increase in mean daily temperature (r = 

0.87, p < 0.0001). However, as the peak visitation time remains at 10:00 for three of the 

intervals, it would appear that this is the optimal waterhole visitation time period and that 

only when Tavg is <15°C ('cold') or Tavg is >30°C ('hot'), do visitation times shift earlier or 

later.  

 

 
 

Figure 5.25: Herbivore visitation patterns and temperature intervals based on daily Tavg at Orpen, partitioned 

as a percentage of total daily sightings.  
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The earliest peak arrivals for carnivores is at 20:00, which occurs on days with average 

temperatures between 10°C - 15°C (9% of mammal sightings), also with a peak at 0:00 

(9% of mammal sightings) and 30°C - 35°C (25% of mammal sightings) (Figure 5.26). 

There is a shift to later peak visitation for days with temperatures between 15°C - 20°C at 

21:00 and 23:00 (10% and 8% of mammal sightings), also representing a bimodal 

distribution and for days with temperatures between 25°C - 30°C (13% of mammal 

sightings) at 21:00. The latest peak arrival occurs on days with average temperatures 

between 20°C - 25°C (9% of mammal sightings). Carnivore visitation patterns on all of 

the days with temperatures between 10°C - 30°C represent multimodal distributions, 

suggesting greater variability between adjacent time units. Visitation patterns on days 

with temperatures > 30°C represents a unimodal distribution (Figure 5.26). These 

patterns demonstrate that either side of the optimal bracket (10°C - 20°C), carnivores are 

shifting their drinking times later into the night by 120 minutes (r = 0.96, p < 0.0001) per 

5°C increase for mean daily temperatures between 10°C - 20°C, and are shifting their 

drinking times earlier in the night by a 120 minutes (r = 0.96, p < 0.0001) per 5°C increase 

in mean daily temperature between 20°C - 30°C.  

 

 
 

Figure 5.26: Carnivore visitation patterns and temperature intervals based on daily Tavg at Orpen, partitioned 

as a percentage of total daily sightings. 
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5.4.3.2 Hourly Mammal Visitation Patterns and Temperature Intervals (Satara) 

The peak time at which herbivore sightings occur during days with temperatures between 

10°C - 15°C is at 17:00 (18% of mammal sightings) (Figure 5.27). There is a large shift to 

earlier peak visitation on days with temperatures between 15°C - 20°C and 20°C - 25°C, 

both at 09:00 (17% and 16% of mammal sightings, respectively). The earliest shift occurs 

on days with temperatures between 25°C - 30°C, at 07:00 (14% of mammal sightings). 

On days with temperatures between 30°C - 35°C, the peak time when herbivores are 

sighted is at 8:00 (18% of mammal sightings). On days with temperatures between 10°C 

- 15°C and 30°C - 35°C, herbivore visitation patterns represent multimodal distributions, 

indicating greater variability between the adjacent time units (Figure 5.27). These patterns 

demonstrate a rate of change of 120 minutes earlier in the day for each 5°C increase in 

mean daily temperature (r = 0.79, p < 0.05). However, as the peak visitation time remains 

at 09:00 for two of the intervals, it would appear that this is the optimal water trough 

visitation time and that only when Tavg is < 15°C or Tavg is > 25°C, do visitation times shift 

earlier and/or later.  

 

 
 

Figure 5.27: Herbivore visitation patterns and temperature intervals based on daily Tavg at Satara, 

partitioned as a percentage of total daily sightings.  
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The peak time/s of carnivore visitations on days with mean temperatures between 10°C 

- 15°C and 15°C - 20°C are the earliest at 19:00 (23% and 14% of mammal sightings) 

(Figure 5.28). On days when the temperature is between 20°C - 25°C, 25°C - 30°C and 

30°C - 35°C, there is a shift to later visitation, at 20:00 (12%, 12% and 25% of mammal 

sightings respectively), with these visitation patterns representing bimodal distributions. 

Regression analysis quantified that carnivore visitation patterns are shifting later into the 

night by 18 minutes per 5°C increase in mean daily temperature (r = 0.87, p < 0.01) and 

under the highest Tavg interval the highest percentage (25%) of mammal sightings occur 

at 20:00. Notably, all peak visitations occur during the early night, and no peak visitations 

occur during late night.  

 

 
 

Figure 5.28: Carnivore visitation patterns and temperature intervals based on Tavg at Satara, partitioned as 

a percentage of total daily sightings.  

 

5.4.3.3 Species-Specific Hourly Visitation Patterns and Temperature Intervals 

(Orpen) 

Species-specific responses to changes in temperature may differ according to feeding 
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visitation times is demonstrated for blue wildebeest, warthog and southern giraffe when 

Tavg ≥ 20°C. Impala exhibit the most extreme response to changing Tavg as they shift their 

visitation times when Tavg ≥ 15°C, whilst plains zebra only shift their visitation times when 

Tavg ≥ 30°C. African buffalo visit the waterhole during the morning when Tavg ≥ 30°C, whilst 

African elephant show a clear pattern of avoidance of drinking from the waterhole during 

midday and the afternoon when Tavg is likely the highest, and thus visit the waterhole at 

dusk when Tavg ≥ 30°C. African buffalo and African elephant, are species which display 

diurnal, crepuscular and nocturnal waterhole visitation patterns (Table 5.15; Figure 

5.29f,g), and both of these species were observed using the waterhole for 

thermoregulation purposes, wallowing and spraying themselves to cool down.  

 

The nocturnal species all have small sample sizes, and thus there are likely to be 

anomalies. Therefore no conclusions can be stated about any particular shifts in visitation 

patterns with Tavg intervals (Table 5.15; Figure 5.29h,i,j). However, these species 

predominantly display nocturnal visitation patterns and are not influenced by sunlight and 

consequent high temperatures, they are therefore less influenced by diurnal heat.  

 

Table 5.15: Peak visitation times for each species during the five Tavg intervals for Orpen.  

Orpen - Peak visitation times at Tavg intervals  

  
≥ 10°C Tavg < 15°C ≥ 15°C Tavg < 20°C ≥ 20°C Tavg < 25°C ≥ 25°C Tavg < 30°C ≥ 30°C Tavg < 35°C 

Wildebeest  11:00 (147) 11:00 (823) 10:00 (1036) 9:00 (1264) 7:00 (114) 

Zebra 10:00 (154) 10:00 (826) 10:00 (471) 10:00 (476) 8:00 (49) 

Impala 11:00 (968) 10:00 (5403) 10:00 (3419) 10:00 (4311) 8:00 (595) 

Warthog 11:00 (377) 11:00 (1838) 10:00 (893) 10:00 (411) 10:00 (37) 

Giraffe 13:00 (9) 13:00 (109) 11:00 (62) 12:00 (23) 7:00 (3) 

Buffalo 9:00 (122) 18:00 (449) 20:00 (212) 1:00 (109) 8:00 (24) 

Elephant 15:00 (87) 11:00 (581) 19:00 (611) 18:00 (346) 19:00 (49) 

Civet 20:00 (11)  20:00 (48) 4:00 (10) 1:00 (3)  (0) 

Lion (0) 5:00 (21) 22:00 (22) 21:00 (28) 21:00 (2) 

Hyaena 1:00 (26) 5:00 (99) 2:00 (63) 3:00 (29) 21:00 (2) 

 

Regression analysis quantified the shifts for each species' visitation patterns in relation to 

Tavg categories, indicating that all herbivore visitation patterns are shifting significantly 
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earlier during the day, with the exception of African elephant which are shifting their 

visitation patterns later into the night by 90 minutes per 5°C increase in mean daily 

temperature (r = 0.69, p < 0.0001) (Table 5.16). For herbivores, African buffalo and 

African elephant show the greatest temporal shifts in their visitation patterns per 5°C 

increase in mean daily temperature (Table 5.16; Figure 5.29f,g).  

 

Table 5.16: Regression analysis of specific species peak visitation shifts per minute and per 5°C intervals. 

Orpen - Regression Analysis 

  Earlier/Later  Per minute Per 5°C Interval  r- value  p-value  

Wildebeest  Earlier in the day 12.0 60 0.94 p < 0.0001 

Zebra Earlier in the day 4.8 24 0.71 p < 0.0001 

Impala Earlier in the day 7.2 36 0.87 p < 0.0001 

Warthog Earlier in the day 3.6 18 0.87 p < 0.0001 

Giraffe Earlier in the day 15.6 78 0.83 p < 0.0001 

Buffalo Earlier in the day 22.8 114 0.38 p < 0.05 

Elephant Later in the night 18.0 90 0.69 p < 0.0001 

Civet Earlier  87.6 440 0.93 p < 0.0001 

Lion Later in the night 56.4 282 0.74 p < 0.0001 

Hyaena Later in the night 45.6 228 0.72 p < 0.0001 

 

 

 

Under the hottest temperature conditions Tavg ≥ 30°C, certain species are utilising the 

waterhole outside of their previously defined peak visitation range whilst other species 

are staying within their peak predefined range. Blue wildebeest are shifting their visitation 

time an hour earlier, from morning to dawn under the hottest Tavg conditions. Impala and 

warthog are shifting their peak visitation period from midday to morning and southern 

giraffe are shifting their peak visitation period from afternoon to dawn under the hottest 

Tavg conditions. Additionally, African buffalo are shifting their visitation patterns from dusk 

to morning under the hottest Tavg conditions. The majority of herbivores showing this 

response to the hottest Tavg interval are grazers, with the exception of giraffe which are 

browsers. Spotted hyaena are the only carnivores exhibiting a shift in their visitation 

patterns under the hottest Tavg conditions, shifting their peak time from midnight to early 

night (21:00).  
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Figure 5.29: Hourly waterhole visitation patterns for each species for each Tavg interval for Orpen. Species 

with clear time preferences selected and categorised according to peak appearance. Herbivores indicated 

in green, carnivores in red and large herbivores in blue.  
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5.4.3.4 Species-Specific Hourly Visitation Patterns and Temperature Intervals 

(Satara) 

At Satara, an earlier shift in visitation times is demonstrated for plains zebra and greater 

kudu when Tavg ≥ 20°C. Impala show the most extreme shift in their visitation patterns 

when Tavg is ≥ 15°C showing that with increased Tavg these species are drinking from the 

water trough earlier in the day (Table 5.17). Blue wildebeest exhibit two large temporal 

shifts in response to changing Tavg intervals, shifting their visitation times from late at night 

(22:00) during Tavg ≥ 10°C to midday during Tavg ≥ 15°C, and additionally shifting their 

visitation earlier during the day when Tavg ≥ 20°C (Figure 5.30d; Table 5.17). Chacma 

baboon and African buffalo only shift their visitation patterns in response to Tavg ≥ 25°C 

and ≥ 30°C, respectively (Table 5.17).  

 

African elephant, spotted hyaena and lion, which have predominantly dusk and nocturnal 

visitation habits, do not exhibit a clear pattern with Tavg intervals. African elephant show 

avoidance behaviour during times of the day when Tavg was likely the highest (Figure 

5.30g). Thus suggesting that they avoid open areas during hot conditions as they are not 

able to withstand high temperatures, but are able to protect themselves against predation 

(Ayeni, 1975). Consequently demonstrating their peak nocturnal visitation patterns.  

 

Variable species' responses are thus noted to Tavg intervals, with water dependent 

herbivores (particularly grazers, with the exception of southern giraffe at Orpen and 

greater kudu at Satara) displaying shifts in their behaviour to avoid heat. Carnivores are 

not displaying a clear response to Tavg intervals, however, their visitation patterns are 

multimodal in distribution, indicating variability between the adjacent time units.  
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Table 5.17: Peak visitation times for each species during the five Tavg intervals for Satara. 

Satara - Peak visitation time at Tavg intervals  

  
≥ 10°C Tavg < 15°C ≥ 15°C Tavg < 20°C ≥ 20°C Tavg < 25°C ≥ 25°C Tavg < 30°C ≥ 30°C Tavg < 35°C 

Buffalo 20:00 (4) 7:00 (263) 19:00 (180) 20:00 (140) 7:00 (28) 

Impala 17:00 (114) 9:00 (1430) 9:00 (1464) 8:00 (2349) 8:00 (462) 

Baboon (0) 9:00 (112) 9:00 (99) 8:00 (166) 8:00 (22) 

Wildebeest 22:00 (15) 11:00 (1156) 7:00 (1452) 7:00 (1763) 7:00 (158) 

Zebra 12:00 (84) 9:00 (1321) 10:00 (826) 7:00 (773) 6:00 (28) 

Kudu (0) 14:00 (64) 12:00 (62) 12:00 (19) 12:00 (10) 

Elephant 22:00 (4) 17:00 (61) 18:00 (97) 12:00 (175) 19:00 (18) 

Hyaena 4:00 (8) 19:00 (238) 20:00 (171) 20:00 (79) 5:00 (11) 

Lion (0) 1:00 (7) 1:00 (43) 2:00 (53) 22:00 (7) 

Civet (0) 20:00 (30) 1:00 (22) 2:00 (7) (0) 

 

Regression analysis quantified that blue wildebeest and impala exhibit the greatest 

temporal shifts. These species drink earlier during the day by 204 minutes (r = 0.83, p < 

0.0001) and 114 minutes (r = 0.78, p < 0.0001) per 5°C increase in mean daily 

temperature (Table 5.18).  

 

Table 5.18: Regression analysis of specific species peak visitation shifts per minute and per 5°C intervals.  

Satara - Regression analysis of specific species peak visitation shifts at Tavg  intervals  

  Earlier/Later  Per minute Per 5°C Interval  r- value  p-value  

Buffalo Earlier  15.6 78 0.29 p > 0.05 

Impala Earlier 22.8 114 0.78 p < 0.0001 

Baboon Earlier 4.8 24 0.89 p < 0.0001 

Wildebeest Earlier 40.8 204 0.83 p < 0.0001 

Zebra Earlier 16.8 84 0.93 p < 0.0001 

Kudu Earlier 7.2 36 0.77 p < 0.0001 

Elephant Earlier 13.2 66 0.48 p < 0.05 

Hyaena Later 3.6 18 0.05 p > 0.05 

Lion Later 76.8 384 0.80 p < 0.0001 

African civet Earlier 108.0 540 0.84 p < 0.0001 
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Figure 5.30: Hourly waterhole visitation patterns for each species for each Tavg interval for Satara. Species 

with clear time preferences selected and categorised according to peak appearance. Herbivores indicated 

in green, carnivores in red and large herbivores in blue.  
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Most of the species at Satara are drinking from the water trough within their range under 

the hottest Tavg interval, however, blue wildebeest and plains zebra show a shift from their 

peak predefined visitation period, from morning to dawn. Southern giraffe show a shift to 

later in the day, from midday to dusk.  

 

5.4.4 Relationship between Peak Visitation and Temperature 

5.4.4.1 Peak Visitation and Temperature 

Various factors influence mammal visitation at water sources, and consequently the 

probability of visitation will be determined by the proximity to other available water 

sources, surrounding vegetation, water-dependence, ambient temperature, rainfall, 

species avoidance, competition and associations as well as the hour of day (Young, 

1970). It is therefore important, at a finer scale, to examine relationships between the 

peak visitation by various mammals and all temperatures, rather than for broad 

temperature classes/intervals, to determine how mammals are responding to temperature 

as a driver of behaviour. 

 

This section examines the relationship between the number of individuals per mammal 

species at their peak visitation time with daily Tmax, Tmin and Tavg, to determine whether: 

1) fewer mammals visit the water sources on hotter days or 2) more mammals visit the 

water sources on hot days due to their water requirements. Negative r-values indicate 

that fewer individuals per species are drinking from the water sources on hot days whilst 

positive r-values indicate that more individuals per species are drinking from the water 

sources on hot days. The majority of mammals demonstrate weak, negative relationships 

between the number of individuals at peak visitation and Tmax, Tmin and Tavg (Table 5.19).  

 

The most significant correlations are shown for Tmin whilst the least significant correlations 

are shown for Tmax (Table 5.19). There is, however, no clear pattern indicating whether a 

specific feeding guild is responding to a particular temperature variable. There is one 

significant, negative relationship between the number of individuals at peak visitation and 
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Tmin at Satara, for African civet (r = -0.20). However, at Orpen significant, negative 

relationships between the number of individuals at peak visitation and Tmax, Tmin and Tavg 

are found for African civet, common duiker, and warthog (Table 5.19). Black-backed 

jackal and vervet monkey both exhibit significant negative relationships with Tmin and Tavg. 

 

 

Table 5.19: Pearson's correlation between number of individuals at peak visitation and daily Tmax, Tmin and 

Tavg. Significant positive relationships tested at the 95% level, highlighted in light green and significant 

negative relationships tested at the 95% level, highlighted in light red. 

  Orpen     Satara     

  
No. of Individuals at Peak 
Visitation  

No. of Individuals at Peak 
Visitation  

Mammal Tmax Tmin Tavg Tmax Tmin Tavg 

African wild cat - - - 0.10 0.00 0.08 

African civet -0.22 -0.25 -0.28 -0.06 -0.20 -0.14 

Black-backed jackal -0.14 -0.29 -0.23 -0.01 -0.06 -0.03 

Honey badger -0.05 -0.12 -0.11 - - - 

Leopard -0.05 -0.12 -0.10 - - - 

Lion 0.05 0.04 0.05 0.15 0.11 0.17 

Mongoose 0.02 -0.01 -0.01 -0.01 0.01 -0.01 

Small-spotted genet -0.04 -0.04 -0.05 0.09 0.06 0.09 

Spotted hyaena -0.08 -0.22 -0.16 -0.07 -0.14 -0.11 

Common duiker -0.27 -0.32 -0.33 0.01 -0.13 -0.04 

Greater kudu 0.00 -0.24 -0.11 0.02 -0.10 -0.04 

Southern giraffe -0.07 -0.15 -0.12 0.01 -0.06 -0.03 

African buffalo -0.13 -0.17 -0.17 -0.03 -0.07 -0.05 

Blue wildebeest 0.13 0.03 0.11 0.14 0.05 0.10 

Plains zebra 0.01 -0.20 -0.11 -0.06 -0.14 -0.11 

Warthog -0.24 -0.39 -0.36 0.06 -0.08 0.00 

African savanna elephant -0.02 -0.06 -0.04 0.13 0.17 0.17 

Impala 0.09 -0.21 -0.04 0.16 0.00 0.12 

Chacma baboon 0.04 0.00 0.03 0.10 0.04 0.09 

Vervet monkey -0.13 -0.20 -0.21 - - - 

 

The weak significant relationships between the number of individuals of each species 

visitation during peak visitation and temperature are likely driven by various mechanisms, 

such as herd size, predator/prey relationships, species associations and habitat. There is 

only one significant relationship between the number of individuals at peak visitation 
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across all species and temperature at Satara, compared to Orpen, where there are more 

significant relationships between the number of individuals at peak visitation and 

temperature, particularly with Tmin.  

 

5.4.5 Relationship between Monthly Visitation Patterns per Mammal Species and 

Monthly Tavg 

Temperature and rainfall vary seasonally, typically influencing mammal visitation patterns 

to water sources. It is therefore important to statistically test whether visitation patterns 

are climate-related for specific mammal species and whether these patterns differ 

between and within seasons, linking together changes in temperature, rainfall and the 

length of day.  

 

Similar monthly water source visitation patterns are identified for Orpen and Satara in 

relation to monthly Tavg (Table 5.20; Table 5.21). The direction of the relationship between 

hourly visitation patterns and hourly Tavg has a distinct split between herbivores and 

carnivores. Broadly, positive relationships exist between hourly visitation numbers and 

hourly Tavg per month for the majority of herbivores, whilst negative relationships exist for 

all carnivores. This split between the two feeding guilds suggests that these visitation 

patterns are largely influenced by these species' physiological water-dependency. 

Furthermore, the correlations between hourly average temperature and hourly visitation 

patterns, vary by month, with higher visitation rates during winter likely related to reduced 

water availability during the season (Valeix et al., 2009a) and with low temperatures not 

being a major controlling variable.  

 

The results presented in Table 5.20 indicate that carnivores have a negative association 

between their hourly visitation patterns and hourly Tavg per month, indicating that their 

hourly visitations per month decrease with higher hourly Tavg. Conversely, herbivores 

typically exhibit a positive association between their hourly visitation patterns and hourly 
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Tavg per month, indicating that that their hourly visitations per month increase with higher 

Tavg.  

 

The strongest relationships with Tavg and hourly visitation are recorded for all species for 

the months of March to August, which are in the dry season, when mammals are largely 

reliant on artificial water sources as well as during spring, (particularly exhibited by 

carnivores). Orpen has stronger relationships than Satara, likely explained by the 

proximity of the latter water trough to two seasonal rivers, which mammals may 

preferentially visit if water is available. At Satara carnivores show a higher number of 

significant relationships compared to carnivores at Orpen (Table 5.20; Table 5.21), and 

at Satara, herbivores have fewer significant relationships than at Orpen.  

 

At Orpen, impala and warthog have the strongest, significant relationships between 

visitation patterns and Tavg, for most of the months, thus indicating a consistent diurnal 

visitation pattern, largely independent of rainfall and species-associations (Table 5.20). 

At both Orpen and Satara, greater kudu and southern giraffe have more significant 

relationships with monthly Tavg during the dry season, indicating that their visitation 

patterns increase with higher Tavg, and low rainfall may additionally drive these patterns 

during such months. Vervet monkey and baboon show erratic relationships with Tavg 

across all months.  Mega-herbivores, African buffalo and African elephant show the least 

number of very strong relationships with Tavg. At both Orpen and Satara, spotted hyaena 

have strong relationships between visitation patterns and Tavg across the majority of 

months analysed, as they visit the waterhole for a variety of different reasons (cooling off 

and caching meat), other than to access drinking water. Black-backed jackal and African 

civet exhibit erratic significant relationships with seasonal Tavg. These relationships 

between hourly Tavg and hourly visitation patterns per month, exhibit patterns which are 

likely influenced by underlying physiology and behaviour, as well as conditions that typify 

each season, thus reflecting responses which are driven by different climate variables, 

and consequently the availability and distribution of water.   
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Table 5.20: Pearson's correlation between hourly Tavg and average hourly number of individuals per species per month. Weak correlations indicated 

in light pink/green colour, strong correlations indicated in the medium pink/green colour, very strong correlations indicated by the darkest pink/green 

colour. Significant correlations indicated by an asterisk (*).  
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Mar-12 - -0.43 - -0.20 -0.01 -0.21 -0.12 - 0.49 0.31 0.04 0.30 0.22 0.71* 0.40 0.49 0.35 - 

Apr-12 -0.35 -0.25 - -0.31 - -0.34 -0.34 - 0.51* 0.10 -0.22 0.58* 0.41 0.80* 0.15 0.54* 0.25 0.13 

May-12 -0.55* -0.13 0.00 -0.16 -0.12 -0.29 -0.42 -0.12 0.76* 0.34 -0.02 0.42 0.59* 0.81* 0.17 0.68* 0.15 0.67* 

Jun-12 -0.41 -0.50* -0.24 -0.30 -0.22 -0.48 -0.52* -0.05 0.55* 0.64* 0.45 0.26 0.47 0.77* 0.25 0.59* 0.48 0.50* 

Jul-12 -0.28 -0.49 -0.39 -0.16 - -0.37 -0.40 -0.42* 0.61* 0.31 0.28 0.35 0.37 0.65* -0.01 0.52* 0.50* 0.66* 

Aug-12 -0.30 -0.65* -0.34 -0.37 - - -0.75* -0.16 0.66* 0.59* 0.40 0.39 0.45 0.65* 0.24 0.54* 0.30 0.46 

Sep-12 - -0.07 - - - - -0.21 0.09 0.56* 0.54* 0.20 0.55* 0.25 0.36 0.19 0.55* 0.45 0.33 

Oct-12 - -0.26 -0.35 -0.20 - - -0.38 -0.24 0.34 - 0.06 0.30 - 0.57* -0.35 0.39 0.29 0.34 

Nov-12 - -0.26 -0.25 -0.12 - - -0.06 - 0.32 - 0.19 0.39 0.51* 0.49 0.31 0.59* 0.26 - 

Dec-12 - - -0.17 - - - -0.37 - 0.29 - -0.27 0.30 0.41 0.35 0.02 0.62* 0.41 0.52* 

Jan-13 - -0.03 - -0.17 -0.19 - -0.38 - 0.46 0.15 -0.13 0.44 0.15 0.71* 0.19 0.62* 0.52* 0.21 

Feb-13 - - - - - -0.22 -0.34 - 0.32 - -0.30 0.54* 0.49 0.69* -0.17 0.79* 0.41 - 

Mar-13 - -0.26 -0.42 - -0.21 - -0.27 - 0.31 0.31 -0.25 0.39 0.54* 0.64* -0.23 0.46 0.45 0.31 

Apr-13 - -0.40 -0.19 -0.18 - - -0.47 - 0.41 0.12 -0.30 0.55* 0.57* 0.78* 0.10 0.56* 0.51* 0.18 

May-13 -0.28 -0.29 - -0.19 - -0.15 -0.25 - 0.40 0.59* -0.07 0.41 0.50* 0.79* -0.26 0.60* 0.62* 0.53* 

Jun-13 -0.22 -0.35 -0.29 -0.36 - -0.19 -0.41 -0.21 0.67* 0.56* 0.29 0.47 0.59* 0.69* -0.29 0.69* 0.51* 0.51* 

Jul-13 -0.22 -0.40 -0.15 -0.36 -0.16 -0.08 -0.33 0.10 0.53 0.59* 0.55* 0.56* 0.52* 0.59* 0.37 0.67* 0.58* 0.48 

Aug-13 - -0.68* -0.27 -0.03 -0.26 -0.19 -0.44 -0.27 0.56* 0.54* -0.03 0.40 0.27 0.36 0.38 0.56* 0.43 0.21 

Sep-13 -0.40 -0.31 -0.56* -0.30 -0.19 - -0.53* -0.28 0.78* 0.57* 0.36 0.26 0.49 0.25 -0.40 0.38 0.04 0.34 

Oct-13 -0.32 -0.47 -0.29 - - - -0.30 -0.30 0.61* 0.64* 0.03 0.03 0.39 0.12 0.35 0.24 0.38 0.14 

Nov-13 - -0.41 - - -0.20 -0.14 -0.26 - 0.59* 0.25 -0.16 0.17 0.09 0.77* 0.09 0.53* 0.42 0.14 

Dec-13 - -0.38 -0.26 -0.31 -0.34 -0.19 -0.46 - 0.50* - 0.00 0.28 0.44 0.73* 0.08 0.54* 0.74* - 

Jan-14 -0.20 - -0.32 - 0.12 - -0.40 - 0.32 - - 0.32 0.29 0.47* -0.31 0.71* 0.52* 0.38 

Feb-14 - -0.24 -0.10 -0.10 -0.29 -0.21 - - - - 0.07 0.61* 0.44 0.81* -0.25 0.79* 0.61* 0.29 

Mar-14 - - - - -0.13 -0.22 - - 0.23 - - 0.21 0.52* 0.64* 0.03 0.66* 0.62* 0.35 
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Table 5.21: Pearson's correlation between hourly Tavg and average hourly number of individuals per species per month. Weak correlations indicated 

in light pink/green colour, strong correlations indicated in the medium pink/green colour, very strong correlations indicated by the darkest pink/green 

colour. Significant correlations indicated by an asterisk (*). 
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Apr-12 - - -0.24 - - -0.33 - 0.60* 0.68* -0.27 0.15 0.39 0.25 0.48 0.48 0.28 

May-12 - - -0.36 -0.30 -0.15 -0.48 - 0.37 0.64* -0.26 0.18 0.38 0.40 0.16 0.48 0.21 

Jun-12 - -0.20 -0.07 -0.22 - -0.19 -0.24 0.29 0.33 -0.31 0.23 0.51* 0.33 -0.07 0.67* -0.18 

Jul-12 - -0.23 -0.34 -0.23 - -0.56* -0.37 0.39 0.29 -0.32 0.38 0.37 - 0.48 0.63* -0.07 

Aug-12 0.00 -0.37 -0.51* - - -0.60* -0.30 0.32 0.32 -0.26 0.15 0.41 - 0.52* 0.36 -0.15 

Sep-12 - -0.20 -0.19 - - -0.30 - - - -0.01 0.17 0.31 - 0.19 0.50* -0.07 

Oct-12 -0.24 -0.30 -0.23 - - -0.30 - - 0.20 -0.25 -0.01 0.17 - 0.35 0.21 -0.15 

Nov-12 - - -0.36 -0.19 - -0.51* - - - -0.23 -0.11 0.07 - 0.41 0.42 0.03 

Dec-12 - -0.26 -0.40 - - -0.49 - - - -0.28 -0.08 0.06 - 0.20 0.49 -0.06 

Jan-13 - - -0.52* -0.21 - -0.22 - - 0.22 -0.08 -0.18 0.26 - 0.50* 0.32 -0.01 

Feb-13 - -0.25 -0.34 - - -0.49 - - - 0.04 0.46 0.17 - -0.04 0.68* 0.19 

Mar-13 - -0.03 -0.68* - -0.23 -0.52* - - 0.35 - 0.17 0.18 - 0.39 0.58* 0.11 

Apr-13 - -0.30 -0.23 -0.20 -0.23 -0.51* - - 0.40 -0.21 0.47 0.58* - 0.13 0.60* 0.32 

May-13 -0.32 - -0.42 - - -0.33 - 0.34 0.24 -0.09 0.13 0.58* - 0.32 0.50* 0.17 

Jun-13 -0.54* -0.27 -0.61* - -0.32 -0.42 - 0.13 0.52* -0.26 0.16 0.47 0.26 -0.01 0.63* 0.23 

Jul-13 -0.50* -0.53* -0.47 - -0.26 -0.57* - 0.31 - -0.17 0.31 0.25 0.68* -0.15 0.40 0.10 

Aug-13 -0.41 -0.40 -0.22 - - -0.16 -0.42 0.43 0.01 -0.17 0.02 0.24 0.70* -0.20 0.38 -0.01 

Sep-13 -0.30 -0.59* -0.37 -0.26 -0.16 -0.27 -0.41 0.42 0.31 -0.09 -0.27 0.15 0.06 -0.04 0.34 -0.05 

Oct-13 -0.28 -0.23 -0.04 -0.26 -0.46 -0.33 -0.20 - 0.24 -0.16 -0.22 0.37 -0.05 0.04 0.57* 0.02 

Nov-13 -0.26 -0.15 -0.70* -0.36 -0.31 -0.34 -0.24 0.36 - -0.34 0.50* 0.23 - 0.48 0.75* -0.01 

Dec-13 -0.24 -0.43 -0.67* -0.33 -0.51* -0.47 - - 0.30 -0.16 0.18 0.35 -0.21 0.41 0.13 -0.11 

Jan-14 -0.22 -0.31 -0.63* -0.43 -0.30 -0.48 - - - - 0.02 0.09 0.37 0.02 0.03 0.20 

Feb-14 - -0.35 -0.10 -0.26 - -0.32 - - 0.14 -0.23 0.30 0.42 0.23 0.06 0.42 0.25 

Mar-14 - - -0.54* -0.25 - -0.30 - - 0.43 -0.23 0.29 0.25 - -0.09 0.10 0.19 
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5.4.6 Relationship between the Timing of Rainfall Events and Total Daily (Pooled) 

Mammal Sightings  

During the wet season, herbivore populations disperse into different habitats as water 

availability increases due to an increase in rainfall (Valeix et al., 2010). It is therefore 

important to establish what the response of mammals is to the timing of rainfall events: 1) 

during rainfall, 2) after rainfall, and 3) during periods not linked to a rainfall event (days 

before rainfall). From the webcam images it was observed that large pools of water 

formed after a rainfall event, providing temporary sources of water to mammals. In 

addition, it is important to establish species-specific responses to the presence and 

absence of rainfall, and thus the volume of rainfall which determines the formation of 

temporary pools of water. These responses would determine whether specific species 

exhibit preferential or avoidance behaviour. The results of the regression and correlation 

analyses between the number of individuals for all mammal species (pooled species) and 

daily rainfall indicate that mammal sightings are highest before and on days of rainfall, 

whilst average mammal sightings are lowest 1 and 2 days after rainfall (Table 5.22). For 

both Orpen and Satara, a comparison of means test between days before and on rainfall 

and days after rainfall indicates that the mean of pooled species visitation on days before 

and on the day of rainfall is significantly larger than the mean of pooled species visitation 

on days after rainfall (z = 5.74; p < 0.0001) and (z = 5.36; p < 0.0001, respectively).  

 

Pearson's correlation of daily rainfall and daily total number of individual mammal species 

2 days before a rainfall event at Orpen and 1 day before a rainfall event at Satara, show 

weak, negative relationships, as mammals are more reliant on the water sources during 

these dry periods. Pearson's correlation of daily rainfall and daily total mammal sightings 

show stronger relationships for 1 day after (r = -0.10 at Orpen; r = -0.18 at Satara) and 2 

days after (r = -0.20 at Orpen; r = -0.14 at Satara) rainfall events, with negative 

relationships indicating that fewer mammals visit the water sources on days with higher 

rainfall amounts. These relationships can be attributed to pools of water, which occur 

when daily rainfall is > 15mm, (observed from the webcam images), and thus mammals 

are able to drink from these temporary sources of water which occur naturally. Mammals 
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are thus less reliant on the artificial water sources during these periods. The pools of 

water which formed were largely dependent on the volume of rainfall received during 

previous events and temporary pools were generally observed to dry within two days of 

a rainfall event. The relationships between rainfall and mammal numbers are weak for 

days before rainfall and on the day of rainfall (Table 5.22), however, days after rainfall 

show higher correlation values, with stronger negative relationships shown between the 

total number of individual mammal species sightings and 2 days after rainfall at Orpen, 

and similarly, this relationship is also noted for 1 day after rainfall at Satara.  

The highest average mammal sightings are recorded 2 days before rainfall, with a 

decrease in average sightings during and after rainfall events, thus, explaining a possible 

preference for drinking from natural water sources or temporary pools of water, which 

become available after rainfall events. The weak correlations between the total number 

of individual mammal species and rainfall events could be explained by the high number 

of permanent water sources in this environment, therefore mammal water requirements 

and their relative water source visitation patterns are less constrained by this climatic 

variable, compared to temperature. The significant negative correlation between pooled 

daily number of individual mammal sightings and days after rainfall, suggests that it is 

important to investigate species-specific responses to the timing of rainfall events and the 

presence and absence of rainfall.  

 

Table 5.22: Average total number of individual mammal species sightings and relationships between days 

before and after rainfall and on rainfall days for all mammal species at Orpen and Satara. Pearson's 

correlation between sightings and rainfall for each timing category, negative relationships are highlighted 

in light orange and positive relationships are highlighted in light green. Significant negative relationships 

are highlighted in dark orange. Significance tested at the 95% level. 

Orpen         

  2 days before 1 day before Day of rainfall 1 day after 2 days after  

Avg Sightings 38 34 22 11 17 

 Sightings and rainfall (r)  -0.04 0.03 -0.01 -0.10 -0.20 

Satara         

  2 days before 1 day before Day of rainfall 1 day after 2 days after  

Avg Sightings 32 27 26 10 8 

 Sightings and rainfall (r)  0.02 -0.08 -0.11 -0.18 -0.14 
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5.4.6.1 Species-specific Relationships with the Timing of Rainfall Events (Orpen) 

To capture whether specific species/feeding guilds exhibit specific rainfall-related 

behaviours and whether one particular species is driving the pooled species relationships 

with the timing of rainfall events, Pearson's correlation was calculated for individual 

species per artificial water source. The daily number of individuals per mammal sightings 

that were recorded at the water sources on the days of specific timing categories of rainfall 

events were calculated Table 5.23. A comparison of means test (z-test: single factor) was 

also run to establish whether the mean on the day of rainfall is significantly larger than 

the means 1 day after rainfall and 2 days after rainfall, so as to determine whether 

specific-species responses to rainfall is significantly different (Table 5.24). The presence 

of rainfall on a given day is unlikely to affect species visitation patterns, whilst 1 day after 

and 2 days after rainfall is likely to affect species visitation patterns due to water 

availability in temporary pools which species can drink from (presence of rainfall).  

 

A significant, negative relationship is found for 2 days after a rainfall event with the daily 

total number of individual sightings of blue wildebeest (r = -0.17). However, the mean on 

the day of rainfall is significantly larger than the mean 1 day after rainfall (z = 2.73, p < 

0.05) and the mean 2 days after is not smaller than the mean on the day of rainfall (z = 

0.62, p > 0.05). The same relationship is shown for 1 day and 2 days after rainfall with 

the daily total number of individual sightings of warthog (r = -0.17 and r = -0.18, 

respectively) (z = 2.34, p < 0.05 and z = 0.83, p > 0.05, respectively) (Table 5.23; Table 

5.24). All daily total number of individual species sightings with the timing of rainfall events 

show weak relationships, however, the number of sightings for specific species recorded 

on the day of rainfall are noted to decrease 1 day after and 2 days after the rainfall event.  
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Table 5.23: Pearson’s correlation of daily total species sightings and the timing of rainfall events at Orpen. 

Significant, negative relationships are highlighted in light orange and tested at the 95% significance interval. 

Species which show a large difference in the number of sightings on the day of rainfall, compared to 1 day 

after and 2 days after rainfall, are marked with an asterisk. 

Orpen 

Daily total individual species sightings and the timing of rainfall events (March 2012 - March 2014) 

  

2 days 
before (n) 

1 day 
before (n) 

Day of 
rainfall (n) 

1 day 
after (n) 

2 days 
after  (n) 

African civet -0.06 (5) 0.03 (4) -0.07 (3) -0.07 (2) -0.05 (2) 

Black-backed 
jackal* 

-0.03 (35) -0.10 (26) 0.10 (20) -0.08 (8) -0.11 (8) 

Honey badger -0.08 (4) 0.07 (8) 0.07 (7) -0.12 (6) 0.00 (7) 

Leopard 0.01 (2) -0.06 (5) -0.02 (5) -0.05 (1) -0.07 (2) 

Lion 0.00 (7) -0.02 (10) -0.06 (12) -0.02 (13) -0.04 (9) 

Mongoose -0.03 (16) 0.04 (7) -0.06 (2) -0.06 (10) 0.02 (12) 

Small-spotted 
genet 

0.03 (2) 0.00 (5) - - 0.03 (2) - - 

Spotted hyaena 0.10 (30) -0.13 (19) -0.11 (15) -0.13 (14) -0.04 (20) 

Common duiker -0.04 (3) -0.02 (3) -0.05 (3) - - - - 

Greater kudu -0.04 (56) 0.01 (74) -0.04 (53) -0.07 (37) -0.04 (57) 

Southern giraffe -0.03 (10) -0.08 (13) -0.02 (10) -0.08 (12) -0.06 (17) 

African buffalo* -0.01 (76) -0.05 (40) -0.06 (37) -0.06 (28) -0.07 (28) 

Blue wildebeest* -0.06 (814) 0.02 (710) -0.02 (486) -0.11 (176) -0.17 (405) 

Plains zebra* -0.05 (203) -0.04 (238) 0.00 (231) -0.12 (80) -0.13 (127) 

Warthog* -0.07 (288) -0.02 (254) -0.05 (204) -0.17 (116) -0.18 (168) 

African 
elephant* 

-0.08 (78) -0.08 (127) -0.07 (232) -0.09 (94) -0.09 (93) 

Impala* -0.02 (2601) 0.04 (2329) 0.03 (1241) -0.03 (551) -0.11 (633) 

Chacma 
baboon* 

-0.05 (278) -0.01 (199) -0.07 (171) -0.12 (68) -0.05 (108) 

Vervet monkey 0.07 (7) -0.05 (11) 0.08 (11) -0.04 (7) -0.03 (14) 

 

 

Black-backed jackal, plains zebra, African elephant, impala, chacma baboon and leopard 

all exhibit a decrease in the number of individual sightings 1 day after and 2 days after a 

rainfall event; the former species, with the exception of leopard and chacma baboon, all 

show that their mean sightings on the day of rainfall are significantly larger than the mean 

sightings 1 and 2 days after rainfall. These species are therefore driving the pooled 

species responses to the timing of rainfall events, specifically decreasing their visitations 

after rainfall events.  
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Table 5.24: Comparison of means test between the day of rainfall and 1 and 2 days after a rainfall event 

for each species at Orpen. Significant relationships are highlighted in grey and tested at the 95% 

significance interval.  

Orpen - Comparison of means test  

  1 Day After 2 Days After  

  z-value p-value z-value  p-value  

African civet 0.45 p > 0.05 0.45 p > 0.05 

Black-backed jackal* 1.82 p < 0.05 1.82 p < 0.05 

Honey badger 0.24 p > 0.05 0.00 - 

Leopard 1.61 p > 0.05 1.10 p > 0.05 

Lion -0.10 p > 0.05 0.36 p > 0.05 

Mongoose -1.08 p > 0.05 -0.90 p > 0.05 

Small-spotted genet - - - - 

Spotted hyaena 0.17 p > 0.05 -0.72 p > 0.05 

Common duiker - - - - 

Greater kudu 0.80 p > 0.05 -0.19 p > 0.05 

Southern giraffe -0.29 p > 0.05 -0.56 p > 0.05 

African buffalo* 0.54 p > 0.05 0.53 p > 0.05 

Blue wildebeest* 2.73 p < 0.05 0.62 p > 0.05 

Plains zebra* 2.60 p < 0.05 1.74 p < 0.05 

Warthog* 2.34 p < 0.05 0.83 p > 0.05 

African elephant* 2.25 p < 0.05 2.32 p < 0.05 

Impala* 1.77 p < 0.05 1.84 p < 0.05 

Chacma baboon* 1.97 p < 0.05 1.09 p > 0.05 

Vervet monkey 0.63 p > 0.05 -0.26 p > 0.05 

 

African buffalo show a decrease in sightings 1 day after a rainfall event, however, the 

mean sightings 1 day after a rainfall event are not smaller than the mean sightings on the 

day of rainfall (z = 0.54, p > 0.05) (Table 5.24). Greater kudu and vervet monkey all show 

a decrease in the number of individual sightings 1 day after a rainfall event, however, 2 

days after the rainfall event their numbers show an increase. Lion show an increase in 

the number of individual sightings 1 day after a rainfall event, whilst mongoose and 

southern giraffe sightings increase 1 day and 2 days after a rainfall event. 
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5.4.6.2 Species-specific Relationships with the Timing of Rainfall Events (Satara) 

Plains zebra and chacma baboon exhibit a positive significant relationship with the day of 

rainfall. Black-backed jackal exhibit positive relationships with days of rainfall and 1 day 

after rainfall events (Table 5.25), indicating that the number of individual sightings of these 

species increase with an increase in the presence of rainfall.  

 

Table 5.25: Pearson’s correlation of daily total species sightings and the timing of rainfall events at Satara. 

Significant, negative relationships are highlighted in light orange and significant positive relationships 

highlighted in light green and tested at the 95% significance interval. Species which show a large difference 

in the number of sightings on the day of rainfall compared to 1 day after and 2 days after rainfall are marked 

with an asterisk. 

Satara 

Daily total individual species sightings and the timing of rainfall events (April 2012 - March 2014) 

  

2 days 
before (n) 

1 day 
before (n) 

Day of 
rainfall (n) 

1 day 
after (n) 

2 days 
after  (n) 

African wild cat -0.13 (8) -0.07 (8) -0.08 (3) -0.01 (2) -0.07 (1) 

Black-backed 
jackal* 

0.15 (55) 0.17 (56) 0.20 (51) 0.38 (44) 0.17 (44) 

Lion -0.15 (36) -0.01 (32) -0.04 (9) -0.10 (11) -0.07 (4) 

Small-spotted genet -0.06 (4) -0.12 (5) - - -0.06 (1) -0.07 (2) 

Spotted hyaena* -0.06 (40) 0.12 (35) -0.04 (36) -0.20 (26) -0.12 (18) 

Southern giraffe -0.16 (6) 0.06 (4) 0.05 (4) -0.09 (3) -0.05 (5) 

African buffalo -0.03 (72) -0.05 (60) -0.12 (25) -0.07 (43) -0.07 (20) 

Blue wildebeest* 0.09 (642) -0.12 (454) -0.05 (510) -0.19 (161) -0.11 (200) 

Plains zebra* 0.03 (237) 0.00 (158) 0.26 (207) -0.18 (133) -0.13 (103) 

Warthog -0.13 (6) -0.08 (3) -0.09 (2) - - - - 

African elephant* -0.16 (81) -0.10 (74) -0.16 (56) -0.23 (37) -0.17 (29) 

Impala* 0.02 (883) -0.07 (865) -0.17 (808) -0.14 (201) -0.09 (81) 

Chacma baboon -0.12 (60) 0.08 (32) 0.35 (16) -0.07 (5) -0.08 (39) 

 

 

The mean sightings for plains zebra on the day of rainfall compared with the mean 

sightings 2 days after rainfall reflect a different pattern of significantly larger means on the 

day of rainfall, which is consistent with the daily sightings that were recorded. Spotted 

hyaena and African elephant exhibit a negative significant relationship with 1 day after a 

rainfall event, indicating that these species sightings decrease with an increase in rainfall 
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(Table 5.25; Table 5.26). The majority of species at Satara water trough exhibit this 

pattern of a decrease in sightings after a rainfall event. Lion and African buffalo show an 

increase 1 day after a rainfall event but these sightings decrease 2 days after the rainfall 

event. Warthog were not sighted 1 day to 2 days after a rainfall event. Blue wildebeest, 

impala, African elephant, black-backed jackal and spotted hyaena all show a decrease in 

the number of individual sightings 1 to 2 days after a rainfall event, with a comparison of 

means test supporting these findings for blue wildebeest and impala, with the mean 

sightings on the day of rainfall being significantly larger than the mean sightings 1 (z = 

2.88 and z = 2.26, p < 0.05, respectively) and 2 days (z = 2.42 and z = 2.81, p < 0.05, 

respectively) after rainfall (Table 5.26).   

 

Table 5.26: Comparison of means test between the day of rainfall and 1 to 2 days after a rainfall event for 

each species at Satara. Significant relationships are highlighted in grey and tested at the 95% significance 

interval. 

Satara - Comparison of means test  

  1 Day After 2 Days After  

  z-value p-value z-value  p-value  

African wild cat 0.46 p > 0.05 1.09 p < 0.05 

Black-backed jackal* 0.54 p > 0.05 0.52 p > 0.05 

Lion -0.26 p > 0.05 0.77 p > 0.05 

Small-spotted genet - - - - 

Spotted hyaena* 1.25 p > 0.05 2.31 p < 0.05 

Southern giraffe 0.23 p > 0.05 -0.17 p > 0.05 

African buffalo -0.77 p > 0.05 0.30 p > 0.05 

Blue wildebeest* 2.88 p < 0.05 2.42 p < 0.05 

Plains zebra* 1.48 p > 0.05 2.20 p < 0.05 

Warthog - - - - 

African elephant* 1.07 p > 0.05 1.38 p > 0.05 

Impala* 2.26 p < 0.05 2.81 p < 0.05 

Chacma baboon 1.40 p > 0.05 -1.14 p > 0.05 
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5.4.7 Relationship between Daily Sunrise and Sunset  

Seasonal shifts in the timing of sunrise and sunset influence both the hours of light and 

temperature. Daily sunrise and sunset times were correlated with daily peak visitation 

times per mammal species, and separated into groups reflecting a predominant dawn or 

dusk visitation peak, to examine whether: 1) mammal visitation times shift earlier with 

earlier sunrise/sunset times; 2) mammal visitation times shift earlier with later 

sunrise/sunset times; 3) mammal visitation times shift later with later sunrise/sunset 

times; and 4) mammal visitation times shift later with later sunrise/sunset times. These 

were correlated over 15-minute intervals to capture the fine-scale seasonal temporal 

shifts in sunrise and sunset.  

 

5.4.7.1 Species-specific Relationships with Daily Sunrise and Sunset (Orpen) 

Mammals that predominantly visit Orpen waterhole during dawn show weak relationships 

between their daily peak visitation times and daily sunrise. Peak visitation time by 

Southern giraffe (r = 0.26) has a significant positive relationship with the timing of sunrise, 

reflecting the earlier waterhole visitation with earlier sunrise, and later visitation with later 

sunrise (Table 5.27). Conversely, leopard (r = -0.21) and small-spotted genet (r = -0.21) 

show significant, negative relationships (Table 5.27), indicating that these species visit 

the waterhole later with advancing sunrise and earlier with delayed sunrise. This has 

implications for predator/prey interactions as both large and small-sized carnivores and 

herbivores show this similar pattern.  

 

Insignificant, weak negative relationships with sunrise are shown for African buffalo (r = -

0.06), blue wildebeest (r = -0.04), impala (r = -0.05), lion (r = -0.10) and spotted hyaena 

(r = -0.12). Conversely, plains zebra (r = 0.04), warthog (r = 0.01), honey badger (r = 0.12) 

and mongoose (r= 0.13) have insignificant weak positive relationships with sunrise.  

 



168 

 

Mammals that predominantly visit the Orpen waterhole during dusk have weak (< 0.50) 

negative, or positive relationships between the peak visitation and daily sunset. Weak 

positive relationships are found for African buffalo (r = 0.07), African elephant (r = 0.05), 

blue wildebeest (r = 0.06), chacma baboon (r = 0.13), greater kudu (r = 0.04), impala (r = 

0.12), warthog (r = 0.06) and lion (r = 0.12) (Table 5.27), indicating that these species visit 

the waterhole earlier with earlier sunset and later with later sunset.  

 

The weak negative relationships seen for common duiker (r = -0.12) and black-backed 

jackal (-0.03) indicate that these species visit the waterhole earlier with later sunset and 

later with earlier sunrise. Interestingly, African buffalo, blue wildebeest, impala, leopard 

and lion show contrasting relationships between peak visitation and sunrise (negative 

relationships) and sunset (positive relationships). Southern giraffe and mongoose show 

positive relationships with sunrise and negative relationships with sunset.  

 

African civet (r = -0.25) and mongoose (r = -0.17), which visit the waterhole during dusk, 

show significant negative relationships with sunset (r = -0.25), whilst small-spotted genet, 

which visit the waterhole during dawn, show a significant negative relationship with 

sunrise (r = -0.21) (Table 5.27), suggesting that these small carnivores shift their visitation 

times towards a period of more light, and to possibly avoid overlap with larger carnivores.  

 

No species at Orpen have negative relationships with both sunrise and sunset, which 

might have been expected for the nocturnal species. Most of the relationships are weak 

(< 0.50), indicating that seasonal shifts in sunrise and sunset times have little influence 

on waterhole visitation patterns. Artificial lights at both water sources may influence 

species-interactions.  
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Table 5.27: Pearson's correlation of peak visitation times and sunrise and sunset per mammal species at 

Orpen waterhole. Significant relationships are indicated by an asterisk, tested at the 95% significance level. 

Positive relationships are highlighted in light green and negative relationships are highlighted in light red. 

Orpen  

Peak Time and Sunrise (Dawn)  

Feeding Guild  Mammal r-value  

Herbivores African buffalo  -0.06 
  Blue wildebeest  -0.04 
  Impala -0.05 
  Plains zebra 0.04 
  Southern giraffe *0.26 
  Warthog 0.01 
Carnivores Honey badger 0.12 
  Leopard *-0.21 
  Lion -0.10 
  Mongoose 0.13 
  Small-spotted genet  *-0.21 
  Spotted hyaena -0.12 

Peak Time and Sunset (Dusk)  

Herbivores African buffalo 0.07 
  African savanna elephant  0.05 
  Blue wildebeest  0.06 
  Chacma baboon 0.13 
  Common duiker -0.12 
  Greater kudu 0.04 
  Impala 0.12 
  Southern giraffe *-0.35 
  Warthog  0.06 
Carnivores African civet  *-0.25 
  Black-backed jackal  -0.03 
  Leopard *0.18 
  Lion  0.12 
  Mongoose *-0.17 

 

5.4.7.2 Species-Specific Relationships with Daily Sunrise and Sunset (Satara) 

Lion are the only large carnivore species to have significant relationships between their 

daily peak visitation times and daily sunrise (r = -0.45) and sunset (r = 0.39) (Table 5.28), 

indicating that they visit the Satara water trough earlier as the sun rises later, and later as 
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the sun rises earlier, and in contrast visit the water trough earlier as the sun sets earlier 

and later as the sun sets later.  

 

African buffalo show an inverse pattern between their daily peak visitation times and 

sunrise and sunset, when compared with Orpen, demonstrating a positive relationship 

with sunrise (r = 0.16) and a significant, negative relationship with sunset (r = -0.20) (Table 

5.28). African elephant predominantly visit the water trough during dusk, and show a shift 

in visitation times with sunset, utilising the water trough earlier with later sunset and later 

with earlier sunset (r = -0.20). Warthog, a small-sized herbivore which are vulnerable to 

predation, show a significant, positive relationship with sunrise (r = 0.26), shifting their 

peak visitation times earlier with earlier sunrise and later with later sunrise. Plains zebra 

were the only species to exhibit negative relationships for both sunrise and sunset (r = -

0.03 and r = -0.02, respectively), however, these relationships are weak. Common duiker 

exhibit a significant negative relationship with sunrise and a significant positive 

relationship with sunset (r = -0.31 and r = 0.32, respectively).  

 

At Satara, mammals that predominantly visit the water trough during dawn and dusk show 

weak, negative or positive relationships between their peak period of visitation and daily 

sunrise and sunset, as was also shown for Orpen waterhole. The majority of carnivores 

at Satara show a negative relationship with sunset, with the exception of African civet (r 

= 0.02), and conversely show a positive relationship with sunset, with the exception of 

African civet (r = -0.09) and black-backed jackal (r = -0.06) (Table 5.28). In contrast, 

herbivores, such as African buffalo, blue wildebeest, warthog and greater kudu show an 

opposite pattern, with positive relationships found for sunrise and negative relationships 

found for sunset, indicating that they are shifting their dawn visitation periods earlier with 

earlier sunrise and later with later sunrise, and conversely, adjusting their dusk visitation 

times earlier with later sunset and later with earlier sunset.   
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Table 5.28: Pearson's correlation of peak visitation times and sunrise and sunset per mammal species at 

Satara. Significant relationships are indicated by an asterisk, tested at the 95% significance level. Positive 

relationships are highlighted in light green and negative relationships are highlighted in light red. 

Satara 

Peak Time and Sunrise (Dawn)  

Feeding Guild  Mammal r-value  

Herbivores African buffalo  0.16 
  Blue wildebeest  0.07 
  Chacma baboon *0.18 
  Common duiker *-0.31 
  Greater kudu *0.19 
  Impala -0.12 
  Plains zebra -0.03 
  Southern giraffe 0.01 
  Warthog *0.26 
Carnivores African civet  0.02 
  African wild cat  *-0.21 
  Lion *-0.45 

  Mongoose -0.01 
  Small-spotted genet  -0.06 
  Spotted hyaena -0.03 

Peak Time and Sunset (Dusk)    

Herbivores African buffalo *-0.20 
  African savanna elephant  *-0.20 
  Blue wildebeest  -0.07 
  Chacma baboon -0.04 
  Common duiker *0.32 
  Greater kudu -0.10 
  Impala 0.07 
  Plains zebra -0.02 
  Warthog  -0.11 
Carnivores African civet  -0.09 
  African wild cat  0.14 

  Black-backed jackal  -0.06 

  Lion  *0.39 

  Mongoose *0.18 

  Spotted hyaena  0.03 
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5.4.8 Relationship between Moon Phase Dates and Peak Visitation Times  

Moon phases affect the amount of light available, with the least amount of light available 

2 days before, 2 days after and on new moon dates. The most amount of light is available 

during the 2 days before, 2 days after and on full moon dates. Few studies have 

highlighted the influence of moon phase on mammal behaviour, particularly water source 

visitation patterns, therefore it is important to determine whether: 1) peak mammal 

visitation times are influenced by new moon, first quarter, last quarter and full moon 

periods. This is tested with species that visit the water sources nocturnally, which includes 

the majority of carnivores, which are likely to be more active on nights with increased light 

availability. The date of peak appearance for each species for each month of the study 

period was recorded, which were cross-checked with the dates on which the four moon 

phases occurred. Each mammal species daily visitation patterns, which fell on either the 

day of new moon, first quarter, full moon or last quarter, within the time period from 17:00 

- 0:00, (the period when moonlight is only source of light available), were analysed using 

an Analysis of Variance (ANOVA) test. ANOVA was used to determine whether there is 

any difference between the mean sightings during the four different moon phases.  

 

Moon phases overlap more with mammal visitation patterns at Orpen (Table 5.29) than 

at Satara (Table 5.30), however, there is no consistent pattern between dates of peak 

visitation and the moon phase, and therefore no single moon phase is driving an increase 

in nocturnal visitation. African buffalo and African elephant show the most overlap with 

moon phase dates at both Orpen and Satara (Table 5.29; Table 5.30), with peak 

visitations of African buffalo occurring on full moon dates, likely because there is more 

light available and their ability to detect predators would improve (van Orsdol, 1984; 

Crosmary et al., 2012). African civet and Serval at Orpen, and African wild cat, common 

duiker, honey badger, serval and small-spotted genet at Satara, show no overlap between 

peak appearance dates and moon phase dates, likely due to their infrequent visitation 

patterns at these water sources (Table 5.30).  
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Table 5.29: Date of peak waterhole visitation per species and the correspondence with moon phase dates 

at Orpen waterhole for the period March 2012 to March 2014. 
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Mar-12 - - 30 - 15 23 20 26 * 23 30 - 

Apr-12 * - 5 - * - - * 20 18 10 - 

May-12 * - 28 21 * 19 - 14 29 6 18 24 

Jun-12 23 - 9 29 * 22 - 23 16 22 11 24 

Jul-12 6 - 29 1 * - - 2 7 24 13 * 

Aug-12 * - 11 3 27 - - - 30 7 5 29 

Sep-12 - - 3 - - - - - 5 6 20 4 

Oct-12 - - 19 19 28 - - - 10 29 * 10 

Nov-12 - - * 20 16 - - - * 3 28 - 

Dec-12 - - - 18 - - 29 - * 14 * - 

Jan-13 - - 10 - 8 27 - - 6 2 6 - 

Feb-13 - - - - - - - 19 12 * 17 - 

Mar-13 - - 14 29 - 31 - - * 21 * - 

Apr-13 - - 14 5 * * * - 14 14 19 - 

May-13 * - 1 - 8 - - 2 9 2 15 - 

Jun-13 14 - * * * - 12 22 5 30 4 * 

Jul-13 * - * 1 * 3 - 30 13 16 10 * 

Aug-13 - 23 27 23 * 23 - 29 21 12 31 * 

Sep-13 * - * * * 1 - - * 20 * 27 

Oct-13 * - * 30 - - 8 - * 12 21 12 

Nov-13 - 3 * - - 30 - - * 25 19 - 

Dec-13 - - 26 * * 6 - 16 * 2 1 - 

Jan-14 25 - - * - 17 - - 21 - 15 - 

Feb-14 - - 23 22 18 20 - 24 - * 23 - 

Mar-14 - - - - - 1 - 3 - - 1 - 

- no appearance                    

* 
appeared once on more than one 
day         

  New moon            

  First quarter            

  Full Moon            

  Last quarter                     
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Table 5.30: Date of peak waterhole visitation per species and the correspondence with moon phase dates 

at Satara water trough for the period April 2012 to March 2014.  
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Apr-12 - - 18 - - - 23 - 16 6 - 

May-12 - - 26 - 24 29 7 27 14 * - 

Jun-12 - 15 27 - 18 - 15 - 16 * 30 

Jul-12 - 15 21 - 7 - 14 - 7 25 - 

Aug-12 * 11 1 - - - 4 - 2 11 * 

Sep-12 - 18 3 - - - 9 - 1 6 - 

Oct-12 10 * 9 - - - 10 - 12 * - 

Nov-12 - - 5 - 5 - 18 - 20 * - 

Dec-12 - 21 15 - - - 28 - 28 26 - 

Jan-13 - - 10 - 11 - 10 - 28 8 - 

Feb-13 - 5 * - - - 5 - 12 11 - 

Mar-13 - 31 5 - - 22 21 - - 5 - 

Apr-13 - * 2 - 2 16 * - 2 29 - 

May-13 * - * - - - * 29 25 * - 

Jun-13 * * 26 - - * 29 - 7 * - 

Jul-13 * 25 * - - * 10 - 6 * - 

Aug-13 * * * - - - * - 14 31 * 

Sep-13 * 24 20 20 8 * 25 - 20 * * 

Oct-13 * * * - 12 * 7 - 13 11 * 

Nov-13 3 * 14 - 8 * 27 - 7 27 * 

Dec-13 19 20 29 21 4 * * - 26 8 - 

Jan-14 10 12 27 - 21 - * - - 21 - 

Feb-14 - * * - 10 - 25 - 20 12 - 

Mar-14 - - 8 * 2 - 2 - 21 5 - 

- no appearance  

* appeared once on more than one day 

  New moon 

  First quarter 

  Full Moon 

  Last quarter 
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ANOVA of the visitation patterns on each of the days of specific moon phase, revealed 

no significant relationships between the mean sightings for all nocturnal species. The 

erratic overlap between the date of the four moon phases and the date of peak visitation 

of nocturnal species, as well as no significant results between the mean sightings 

between the four moon phases, suggests that environmental variables and surrounding 

habitat are likely to influence the amount of light available, such as cloudy nights, as 

opposed to clear nights or substantial tree canopy cover.  

 

5.4.9 Summary  

Average monthly water source visitation patterns show strong positive relationships with 

monthly Tavg for water-dependent species and positive relationships for herbivore 

visitation patterns and Tavg, indicating that temperature is a likely mechanism controlling 

herbivore visitation patterns. In contrast, negative relationships are recorded for carnivore 

visitation patterns and Tavg, indicating that their water source visitation patterns are not 

controlled by temperature but rather by their need to drink water. Daily temperature and 

peak appearance all showed weak relationships, however, stronger relationships are 

shown with temperature intervals, indicating that a large shift in temperature is required 

to influence mammal water source visitation patterns. Daily mammal visitation patterns 

had weak, negative relationships with daily rainfall, however, stronger, negative 

relationships were exhibited for 1 and 2 days after rainfall, thus tentatively indicating that 

mammals prefer to drink from temporary ponds following rainfall events, and are less 

reliant on artificial water sources during such periods. Poor relationships are recorded 

with sunrise, sunset and moon phases.  

 

All of the relationships with climate and astronomical factors are relatively weak, and the 

patterns of relationships, especially between carnivores and herbivores suggest predator-

prey relationships are a far more dominant influence. Different mammal species respond 

to different climatic, astronomical and environmental variables, with certain variables 

having a greater control over specific species than others. Temperature seems to have 



176 

 

the greatest influence on mammal visitation times, and thus changes in this climatic 

variable due to projected climate change scenarios are likely to have the greatest 

influence on mammal water source visitation patterns in future (Table 5.31).  

 

Table 5.31: Summary of the strongest relationship or significant relationships between the various response 

and driver metrics, for each of these species at Orpen and Satara. 

Summary Table of Significant Relationships between 1 Response Variable and 1 Driver Variable 

  Orpen Satara     

  

Response 
variable  

Driver 
Variable 

r-
value 

Response 
variable  

Driver 
Variable 

r-
value 

African civet ↓No. of indiv/peak ↑Daily Tavg -0.28 ↓No. of indiv/peak ↑Daily Tmin -0.20 

African wild cat No significant relationship   ←/→ visitation time →/← Sunrise -0.21 

Black-backed jackal ↓No. of indiv/peak ↑Daily Tmin -0.29 ↑No. of indiv 
↑1 Day After 
Rain 

0.38 

Honey badger No significant relationship   No significant relationship   

Leopard ←/→ visitation time →/← Sunrise -0.21 - - - 

Lion No significant relationship   ←/→ visitation time →/← Sunrise -0.45 

Mongoose ←/→ visitation time →/← Sunset  -0.17 ←/→ visitation time ←/→ Sunset  0.18 

Small-spotted genet ←/→ visitation time →/← Sunrise -0.21 No significant relationship   

Spotted hyaena ↓No. of indiv/peak ↑Daily Tmin -0.22 ↓No. of indiv ↑1Day After Rain -0.20 

Common duiker ↓No. of indiv/peak ↑Daily Tavg -0.33 ←/→ visitation time ←/→ Sunset  0.32 

Greater kudu ↓No. of indiv/peak ↑Daily Tmin -0.24 No significant relationship   

Southern giraffe ←/→ visitation time →/← Sunset  -0.35 No significant relationship   

African buffalo No significant relationship   ←/→ visitation time →/← Sunset  -0.20 

Blue wildebeest  ↓No. of indiv 
↑2 Days After 
Rain 

-0.17 No significant relationship   

Plains zebra ↓No. of indiv/peak ↑Daily Tmin -0.20 ↑No. of indiv ↑On Day of Rain 0.26 

Warthog ↓No. of indiv/peak ↑Daily Tmin -0.39 ←/→ visitation time ←/→ Sunrise 0.26 

African elephant  No significant relationship  
 

↓No. of indiv 
↑1 Day After 
Rain -0.23 

Impala ↓No. of indiv/peak ↑Daily Tmin -0.21 ←/→ visitation time →/← Sunset  -0.20 

Chacma baboon No significant relationship   ↑No. of indiv ↑On Day of Rain 0.35 

Vervet monkey ↓No. of indiv/peak ↑Daily Tavg -0.21 - - - 

  ↑ - Increasing number of individuals/temperature          

  ↓ - Decreasing number of individuals/temperature      
  → - Later visitation time        

  ← - Earlier visitation time            
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5.5 Relationship between Water Source Visitation and Mammal Densities 

5.5.1 Correlation between Observed and Estimated Proportional Representation 

Pearson's correlation between the proportional representation in the herbivore community 

that was observed at the water sources (webcam) with the three estimates of proportional 

representation (aerial estimates, local estimates and landscape estimates), is used to 

determine whether monthly patterns are representative across the different scales of 

survey data. Waterhole observations (i.e. site specific) were correlated with regional 

(aerial census) and local estimates (experimental burn plot surveys), as well as regional 

estimates partitioned according to the dominant geology (landscape) underlying the 

camps at which the water sources are situated. Orpen, situated on the western boundary 

of KNP, is underlain by gabbro and Satara, situated in the eastern side of KNP, is 

underlain with basalt. Webcam data were collected across the wet and dry seasons, the 

experimental burn plot survey data were collected during the wet season, whilst the aerial 

survey was undertaken during the dry season, thus correlations between the webcam 

data and three estimates of proportional representation are only analysed for the periods 

where there is overlap between the different scales of data.  

 

Relationships between the proportional representation of herbivores observed at the 

Orpen waterhole and the proportional representation of herbivores in the regional and 

landscape estimates were very strong in the winter months of June, July and August 2012 

and 2013 and in September 2012 and 2013 (Table 5.32). The Orpen proportional 

representation of regional and landscape estimates exhibit a greater number of very 

strong relationships during 2013 than in 2012. Relationships between the proportional 

representation of herbivores observed at the Satara water trough and the proportional 

representation of herbivores in the regional and landscape estimates show stronger 

significant relationships during the dry season in 2012, compared to the dry season in 

2013, whilst very strong relationships are shown for September 2013 and in contrast, 

weak relationships are shown for September 2012. Observed visitation by herbivores to 
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the Satara water trough show stronger significant relationships with local estimates during 

the 2013 wet season compared to the 2012 wet season.  

 

Table 5.32: Pearson's correlation table of the monthly proportional representation in the herbivore 

community that was observed at the water sources with the three estimates of proportional representation 

(aerial, local and landscape). Strong, significant relationships are indicated by an asterisk and very strong 

(≥ 0.90), significant relationships are indicated by a double asterisk. Periods of overlap (when the surveys 

were undertaken) between the webcam data and aerial survey/local survey or landscape, are highlighted 

in grey. 

  Orpen Satara 

  
Aerial 
Survey 

Local 
Survey 

Landscape 
(Granite) 

Aerial 
Survey 

Local 
Survey 

Landscape 
(Basalt) 

Mar-12 *0.66 - 0.63 - - - 

Apr-12 0.54 - *0.85 *0.80 **0.90 *0.86 

May-12 *0.78 - *0.88 *0.88 **0.94 **0.92 

Jun-12 **0.92 - **0.99 0.36 *0.76 0.35 

Jul-12 **0.93 - **0.99 *0.86 **0.97 *0.87 

Aug-12 **0.91 - **0.99 *0.72 **0.95 *0.72 

Sep-12 **0.92 - **0.97 0.44 *0.75 0.46 

Oct-12 *0.88 - *0.87 0.32 0.16 0.51 

Nov-12 **0.95 - **0.95 0.31 0.44 0.30 

Dec-12 **0.98 - **0.95 **0.95 *0.84 **0.97 

Jan-13 *0.89 - *0.83 **0.90 *0.82 **0.93 

Feb-13 *0.69 - 0.59 *0.62 *0.84 0.67 

Mar-13 0.10 - 0.06 *0.61 *0.64 0.66 

Apr-13 *0.87 - *0.88 0.45 0.52 0.48 

May-13 0.30 - 0.51 0.31 0.48 0.35 

Jun-13 **0.94 - **0.96 0.45 0.57 0.49 

Jul-13 **0.96 - **0.99 0.41 *0.77 0.45 

Aug-13 **0.96 - **0.98 **0.93 **0.94 **0.94 

Sep-13 **0.98 - **0.99 **0.91 *0.89 **0.95 

Oct-13 **0.95 - **0.95 *0.88 *0.88 **0.92 

Nov-13 **0.97 - **0.98 **0.95 *0.82 **0.96 

Dec-13 **0.91 - *0.87 *0.77 *0.80 *0.82 

Jan-14 **0.99 - **0.98 0.43 *0.65 0.48 

Feb-14 **0.97 - **0.95 *0.80 *0.87 *0.85 

Mar-14 **0.98 - **0.99 **0.92 *0.87 **0.96 
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5.2 Comparison of Observed Proportional Visitation with Expected Proportional 

Visitation  

To determine whether the overall observed proportional visitation (webcam data) and the 

expected proportional visitation (local, landscape and regional estimate data) for pooled 

mammal species are significantly similar, (i.e. indicating that mammals are utilising the 

water sources in proportion to their abundance within the local, landscape and central 

regions), a chi-squared test of independence was run. At both Orpen and Satara the 

waterhole visitation patterns are showing significantly similar relationships with the 

proportional distribution of mammal species in the granite/basalts-only landscapes and 

the central region (Table 5.33).  

 

Table 5.33: Chi-squared test for independence between the different proportions of mammal communities 

surveyed in the three scales of estimate data. Significant relationships indicated with an asterisk.  

Chi-Squared Test for Independence 

 χ2  p-value 

Orpen   

Webcam vs. Granite  *14.27 p < 0.05 

Regional vs. Webcam *15.30 p < 0.05 

Regional vs. Granite  7.34 p > 0.05 

Satara    

Webcam vs. Basalt  *15.67 p < 0.05 

Local vs. Webcam  *16.09 p < 0.05 

Local vs. Basalt 9.89 p > 0.05 

Regional vs. Webcam  *25.18 p < 0.05 

Regional vs. Local  *23.74 p < 0.05 

Regional vs. Basalt  4.59 p > 0.05 

 

5.2.1 Proportional Comparison of Two Scales of Mammal Estimate Data (Orpen) 

Mammal estimate data for central KNP, provided by SANParks from the 2012 and 2014 

aerial surveys, represent the regional estimates of proportional population densities, 

whilst webcam imagery reflects site-specific observations within this region. The regional 

estimates and landscape estimates were compared to the site-specific observations to: 
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1) establish whether mammal species are utilising Orpen waterhole in proportion to their 

abundance in the central region, or 2) investigate whether certain species are 

preferentially utilising or avoiding this waterhole. The species included in this comparison 

are determined by the available aerial census data and the available landscape 

estimates. The proportional visitation by certain species at the Orpen waterhole differs 

from their regional and landscape (granite) presence (Figure 5.31).  

 

Impala were estimated at 78.86% of the estimated mammal community within the 

landscape and at 63.64% of the surveyed mammal community for the central region; 

however, this species comprised 53.90% of waterhole visitations (Figure 5.31a,b,c). 

Therefore impala are showing a lower proportion waterhole visitation patterns comparable 

to their population numbers within the granite landscape and in the central KNP. Blue 

wildebeest preferentially visit artificial waterholes relative to natural water sources to 

satisfy their water requirements (Smit et al., 2007a), and are showing higher proportions 

between the waterhole visitation at Orpen (12.41%) and their regional (8.53%) and 

landscape (1.50%) estimates (Figure 5.31a,b,c).  

 

Warthog show the largest range between their waterhole visitation at Orpen (13.04%) 

and their distribution in the central region (1.07%), however, their low regional estimate 

may be attributed to the fact that they hide in burrows and may not have been seen during 

the aerial survey. African buffalo were estimated at 7.14% of the estimated mammal 

community within the central region, however, this species comprised 3.36% of waterhole 

visitations (Figure 5.24). African elephant represent 6.14% of the waterhole visitations, 

with their proportional distribution ranging from 4.63% the central region and 2.47% in the 

landscape (Figure 5.31a,b,c). Southern giraffe show lower proportions between their 

waterhole visitation at Orpen (0.76%) and their landscape (2.76%) and regional estimates 

(2.68%), whilst greater kudu show relative proportional representation between their 

landscape distribution (3.48%%) and their waterhole visitation (3.14%), however, they 

only comprise 1.55% of the surveyed mammal community for the central region (Figure 

5.31a,b,c).  
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Figure 5.31: Percentage contribution of select herbivore species to a) 2012 - 2014 cumulative Orpen 

waterhole visitation, b) 2012 - 2014 granite-only landscape estimates and c) 2012 - 2014 regional estimates.   
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Impala, plains zebra and southern giraffe all exhibit the same proportional distribution 

across the three scales of mammal estimate data, with their highest proportions in the 

landscape, while blue wildebeest and African elephant exhibit the same proportional 

representation, with their waterhole visitations comprising the highest percentage.  

 

5.2.2 Quantification of Preferential or Avoidance Behaviour (Orpen)  

To quantify whether specific species are selecting for / exhibiting preferential use or 

avoidance behaviours at artificial water sources, the index of electivity was calculated 

with the proportions between individual species waterhole visitation and their regional and 

landscape estimates, using Ivlev's index of electivity (1961). Ivlev's electivity index (E) 

ranges from -1 and 1, with negative values closer to -1 suggesting avoidance or 

inaccessibility; in contrast, positive values closer to 1 suggest preference or active 

selection while a value of zero suggests random selection or neutrality (Strauss, 1979; 

Manly, 1993; Laliberte & Ripple, 2004). Positive values ≥ 0.50 represent preferential use 

while negative values <-0.50 represent avoidance behaviour.  

 

Warthog were the only species to exhibit strong preferential visitation behaviour (E = 0.85) 

at Orpen waterhole (Table 5.34), when the proportion of their regional estimates is 

compared to the proportion of total number of visitations observed at the waterhole, which 

is evident in their range of proportional distribution in the central region and their observed 

visitation at the waterhole. Impala display a weak, negative electivity value with their 

regional estimate (E = -0.08), however, they show a strong, positive electivity value (E = 

0.50) with their landscape estimate, indicating that may show a preference to utilising the 

Orpen waterhole (Table 5.34).  

 

African elephant show weak, positive electivity values for both their regional and 

landscape estimates (E = 0.15 and E = 0.04, respectively) when compared to their 

waterhole visitation, while plains zebra show a weak, negative electivity value for their 

regional estimate (E = -0.19) and a strong, negative electivity value with their landscape 
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estimate (E = -0.51) (Table 5.34), suggesting avoidance of the Orpen waterhole. Southern 

giraffe exhibit an inverse relationship between their regional and landscape estimates, 

when compared to their proportional distribution of waterhole visitations, thus indicating 

avoidance (E = -0.56) behaviour of the waterhole within their larger regional proportional 

distribution. However, their proportional distribution within the granite landscape shows 

strong preferential (E = 0.82) use of the Orpen waterhole (Table 5.34).  

 

Table 5.34: Ivlev's index of electivity scores for each surveyed mammal species at Orpen. Positive values 

highlighted in light green and negative values highlighted in light red. Positive values ≥0.50 represent 

preferential use whilst negative values <-0.50 represent avoidance behaviour, indicated with an asterisk. 

Orpen 

Ivlev's (1961) index of electivity  

  Electivity (E) 

Mammal Regional 
Landscape 

(Granite) 

Warthog *0.85 - 

Greater kudu 0.34 -0.10 

Blue wildebeest 0.19 -0.11 

African elephant 0.14 0.04 

Impala -0.08 *0.50 

Plains zebra -0.20 *-0.51 

African buffalo -0.36 - 

Southern giraffe *-0.56 *0.82 

 

5.2.3 Proportional Comparison of Three Scales of Mammal Estimate Data (Satara) 

For Satara, herbivore abundance data for the Satara Experimental Burn Plots was made 

available by Prof. Deron Burkepile; representing a 3rd (regional, basalts-only landscape 

and local) estimate of proportional species representation for comparison with the site 

observations. Impala were estimated at 63.64% and 63.33% within their surveyed 

mammal community for basalt-only landscape and central region, whilst their local and 

water trough visitations represent smaller proportions (43.36% and 39.51%, respectively) 

(Figure 5.32a,b,c,d), thus likely indicating that this species may be utilising other water 

sources in the area to satisfy their water requirements.  



184 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.32: Percentage contribution of select herbivore species to a) 2012 - 2013 cumulative Satara water 

trough visitation, b) 2006 - 2011 local estimates, c) 2012 - 2014 basalt-only landscape estimates and d) 

2012 - 2014 regional estimates.  
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Blue wildebeest at Satara were estimated at 8.53% within their surveyed mammal 

community for the central region, however, they comprised 30.85% of the water trough 

visitations. Plains zebra comprise 28.63% of their local mammal community, with their 

waterhole visitations comprising 20.59%, however, their proportional distributions within 

the basalt-only landscape and central region represent 13.23% and 10.77% of the 

surveyed mammal community (Figure 5.32a,b,c,d).  

 

African buffalo and African elephant comprise 7.14% and 4.63% of the surveyed mammal 

community in the central region respectively, however, they comprise the lowest 

proportions within the local surveyed mammal community, with African elephant also 

comprising the lowest proportion (1.38%) of the surveyed mammal community within the 

basalt-only landscape (Figure 5.32a,b,c,d). Southern giraffe and greater kudu, both 

water-independent species, comprise 2.68% and 1.55% of the surveyed mammal 

community in the central region and thus comprise 0.94% and 1.06% respectively, of 

water trough visitations.  

 

5.2.4 Quantification of Preferential or Avoidance Behaviour (Satara)  

Blue wildebeest exhibit preferential (E = 0.57) use of the Satara water trough, when 

comparing their proportional distribution within the central region to their water trough 

visitation patterns, whilst African buffalo and African elephant both exhibit preferential (E 

= 0.60 and E = 0.55, respectively) use of the Satara water trough when comparing their 

local proportional distribution to their water trough visitation patterns (Table 5.35).A 

converse pattern is observed with southern giraffe at Satara, compared to Orpen, as their 

proportional distribution within the basalt-only landscape shows that they avoid (E = -

0.65) using the Satara water trough (Table 5.35).  
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Table 5.35: Ivlev's index of electivity scores for each surveyed mammal species at Satara. Positive values 

highlighted in light green and negative values highlighted in light red. Positive values ≥ 0.50 represent 

preferential use whilst negative values <-0.50 represent avoidance behaviour, indicated with an asterisk. 

Satara 

Ivlev's (1961) index of electivity  

  Electivity (E)  

Mammal 
Regional  

Landscape 
(Basalt) 

Local 

Blue wildebeest  *0.57 0.35 0.34 

Plains zebra 0.31 0.22 -0.16 

Greater kudu -0.19 -0.44 -0.46 

Impala -0.23 -0.23 -0.05 

African buffalo -0.26 - *0.60 

African savanna elephant -0.32 0.27 *0.55 

Warthog -0.40 - *-0.83 

Southern giraffe -0.48 *-0.65 -0.54 
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Chapter 6 - Discussion  

6.1 Introduction  

The broad aim of this study is to assess mammal visitation patterns at artificial water 

sources in central KNP using webcam imagery as an ecological data source. The study 

further explores the influence of various climatic and astronomical variables on visitation 

patterns. There has been little previous work on assessing mammal drinking behaviour 

using remote photography; however, it is an emerging ecological data collection tool 

(Hayward & Hayward, 2012). At a fine temporal scale, it is important to determine the 

various environmental drivers influencing mammal visitation patterns and species-

specific reliance on artificial water sources, so as to inform management guidelines on 

current and future water provisioning strategies. The analysis of this webcam imagery will 

contribute to understanding recent climate-related mammal visitation and water-use 

trends at two artificial water sources in a semi-arid savanna, and provide an indication of 

likely shifts in visitation patterns in response to future projected climate change scenarios 

in southern Africa. This discussion interprets the most significant findings of this study, 

and provides a critical comparison with previous studies dealing with mammalian water-

use behaviour. Following this, the broader implications of the study are discussed, with a 

focus on mammal reliance on artificial water sources, likely behavioural adjustments to 

future projected climates, and the importance of future/continued/ongoing water-

provisioning efforts in conservation areas. Finally, the various methodological limitations 

associated with remote imagery technology and the data limitations encountered during 

this study are discussed.   

 

6.2 Analysis of Webcam Imagery 

Webcam imagery has not been a widely used method to study mammal behavior in 

ecological studies. It was therefore important to establish whether the temporal resolution 

at which the images are captured (4 frames per minute) would adequately reflect water 

source visitation patterns for all species at hourly, daily and seasonal scales. This was 

done both to ensure that this study returned a composite of water-use behaviour, but 
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more importantly to inform future studies utilising this progressive method as to the 

optimal resolution requirements. Regarding the latter, there was a clear distinction 

between species that required either lower or higher resolution monitoring. Impala, blue 

wildebeest and plains zebra, identified as some of the most water-dependent species in 

this study require low temporal resolution monitoring (up to 1 hour), likely because of 

these species abundance and frequent visitation patterns. Conversely, the least 

frequently sighted species (serval) require high temporal resolution monitoring (< 1 

minute).  

 

Additionally, there was also a notable seasonal effect. During spring and summer (wet 

season) when surface water is widely available to mammals, their use of and dependence 

on artificial water sources decreases. Thus a higher temporal resolution is required to 

monitor visitation patterns during these periods. However, when the quantity of surface 

water and moisture content in vegetation decreases due to less rainfall, the need for 

mammals to drink and rely on few available water sources increases, and consequently 

visitation patterns multiply. Thus, a lower resolution is required to sufficiently monitor 

mammal behaviour during the dry season.  

 

6.3 Mammal Distribution at Orpen and Satara Artificial Water Sources 

The distribution of mammal visitation varied between water sources, with these frequency 

distributions likely reflecting underlying factors attributable to species associations and 

predator-prey interactions. Additionally, factors directly linked to the physical structures 

of the water sources, the surrounding environment and the natural abundance of species, 

could account for the differences observed at the water sources. Despite waterbuck being 

classified as a water-dependent species, they were rarely sighted at the artificial water 

sources. This is likely due to their preference for natural water sources, such as rivers 

and large dams, and associated concentration in riverine habitat (Smit et al., 2007a). 

Similarly, water-independent nyala concentrate along rivers (Grant et al., 2002). Such 

factors likely account for these species infrequently (one sighting each during the 25-
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month study period) visiting the studied artificial water sources. African wild dog were 

sighted only on two occasions, and only at Orpen. These infrequent visitations likely 

reflect their overall low numbers in the park, despite being known to drink regularly and 

favour water during hot periods (Estes, 1991). Additionally, wild dogs are territorial (Mills 

& Gorman, 1997) and avoid areas where there are high densities of spotted hyaena and 

lion due to kleptoparasitism and predation (Mills & Gorman, 1997; Ndaimani et al., 2016). 

Thus maintaining a strict territory in the Orpen area where a lower percentage of the two 

latter carnivore species were observed. Although censused in the central region of KNP 

white and black rhinoceros were never observed utilising either the Orpen or Satara water 

sources, which is consistent with the findings of Hayward & Hayward (2012).   

 

Hippopotamus, leopard and vervet monkey were only sighted at the Orpen waterhole, 

with hippopotamus likely utilising this, and not the Satara trough, as the depth of the 

former allows them to fully submerge themselves. Hippopotamus only exhibited nocturnal 

visitation patterns, and were never seen during the morning, midday and afternoon. This 

behavior is likely linked to their nocturnal foraging bouts, in which they can travel a 

distance of 10km, returning before dawn (Estes, 1991). Thus, species composition was 

more diverse at the Orpen waterhole than the Satara water trough, possibly owing to the 

structure of the water sources and those species needs they are able to accommodate 

(i.e. only drinking or also wallowing). Although Orpen waterhole supports a more diverse 

range of species, the landscape in which the waterhole is situated does not necessarily 

maintain a higher density of mammals compared to Satara. The lower number of 

herbivores recorded visiting the Satara water trough could be explained by the higher 

predator numbers, as shown in this study around Satara, which may be contributing to 

higher herbivore numbers at Orpen as opposed to Satara. Carnivores were more 

commonly sighted at Satara (9.15%) than at Orpen (3.46%). 

 

Throughout the study period, impala and blue wildebeest were the most commonly 

sighted species at Orpen and Satara. A distinct difference between Orpen and Satara 

was exhibited by warthog, which were one of the most commonly sighted mammals at 
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Orpen (11.79% of total visitations; ẋ = 142 sightings per month), yet were not commonly 

sighted at Satara (0.40%; ẋ = 3). Additionally, warthog were the most commonly sighted 

grazer at Orpen (36.07% of grazer sightings), but the least commonly sighted grazer at 

Satara (0.81%). The higher number of sightings of warthog at Orpen could be as a result 

of the same resident warthogs that keep returning to the same waterhole. Collectively, 

the most commonly sighted feeding guilds at both Orpen and Satara were mixed feeders 

(59.50% and 41.82%, respectively) and grazers (35.83% and 55.93%, respectively), 

broadly depicting relative abundance of species (Redfern et al., 2005; Hayward & 

Hayward, 2012). There are fewer browsers than grazers in the KNP system and therefore 

you would expect to see more grazers than browsers at the water sources. At both water 

sources, strict browsers comprised the least commonly sighted herbivore (4.67% and 

2.25%, respectively). Browsers are typically less water-dependent than grazers, as they 

are able to access leaves which have a high moisture content (Western, 1975), while 

grazers need to access water regularly (Western, 1975; Smit, 2011).  

 

Southern giraffe were the least sighted browsers at Orpen (16.04% of browser sightings), 

indicating their low water requirements and/or their low abundance in the granite 

landscape (n = 1319). Additionally, giraffe have a splay-legged drinking position, bending 

and angling their front legs to obtain an appropriate distance and height to the water 

source, consequently they are particularly vulnerable in this position, and therefore drink 

for only a few seconds before standing up (Dagg, 2014). Southern giraffe comprised 

41.87% of browser sightings at Satara, likely due to their higher abundance within the 

basalt landscape (n = 3147). Primates comprised a higher percentage at Orpen (5.35%) 

than Satara (2.39%). This is likely because chacma baboon were the only primate to 

utilise the Satara water trough. Vervet monkeys were additionally recorded for Orpen. 

 

The unequal distribution of utilisation validates the difference in water requirements 

between the different feeding guilds. Additionally, this difference is also because there is 

a much higher abundance of herbivores than carnivores within the KNP system; a general 
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pattern within most conservation areas, where the abundance of top carnivores is low 

(Sinclair et al., 2013).  

 

Black-backed jackal were the most commonly sighted carnivore at both Orpen and Satara 

(40.61% and 44.79% of carnivore visitations, respectively), likely reflecting that they are 

common within the Orpen and Satara areas. Additionally, the black-backed jackal may 

have been attracted to the water sources due these sites being illuminated at night, where 

they might catch insects which are drawn towards the light. Spotted hyaena were the 

second most commonly sighted carnivore (20.98% and 33.20%, respectively). The 

frequent visitation patterns exhibited by spotted hyaena at Satara water trough (ẋ = 0.69 

sightings per day) than at Orpen (ẋ = 0.29 per day) reflect their water-dependence and 

thus their reliance on this water source for drinking and other activities such as caching, 

compared to the infrequent visitation patterns exhibited by lion at Orpen and Satara (ẋ = 

0.10 and ẋ = 0.15 sightings per day, respectively). Spotted hyaena require regular access 

to water, and will journey out of their territories to find water when it is only sparsely 

available during the dry season (Cooper, 1989; Skinner & Chimimba, 2005). Spotted 

hyaena were observed sitting or standing in the Satara water trough during spring, 

summer and autumn. This behaviour was erratic in relation to the time of day, however, 

it was associated with hotter periods when hourly Tavg > 24.26°C. In addition, spotted 

hyaena also utilised the water trough for caching meat, which was observed on four 

different days during autumn and winter. Similar behaviour has been observed in the 

Serengeti National Park, where spotted hyaena cache chunks of meat under water (either 

a small water source or lake) as a way to store food and hide it from other predators 

(Kruuk, 1972). This behaviour was only observed at Satara, possibly because the small 

size and shallow depth of the water trough made it possible for the meat to be retrieved 

easily. Few lions (< 200 of likely the same individuals returning to the waterhole in their 

range) were sighted utilising the water sources throughout the study period, despite their 

large numbers in the central region of KNP where prey species are abundant. This is 

likely because lion are water-independent; however, if water is available they are known 

to drink frequently (Skinner & Chimimba, 2005). Serval were the least frequently sighted 
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carnivore species at both Orpen (0.02%; ẋ = 0.24 sightings per month) and Satara 

(0.01%; ẋ = 0.08). 

 

During this study it became evident that some species viz. Chacma baboon, African 

buffalo, African elephant, spotted hyaena and warthog utilise the artificial water sources 

for activities other than drinking. Chacma baboons were observed swimming in the Satara 

water trough, typically during the early morning from 7:00 to 9:00am. This activity took 

place between mean hourly temperatures of 20 - 28°C, with no seasonal preference. 

Activities in baboons are constrained by higher ambient temperatures, which may result 

in thermal stress (Hill, 2006). The temperature range and time of day that they were 

observed swimming may be in response to higher morning temperatures, therefore 

supporting their need to cool down and avoid thermal stress. At both Orpen and Satara, 

bull African elephants were observed spraying themselves with water (Figure 6.1b), from 

September to January, after midday and more particularly during the afternoon, when the 

mean hourly temperature was between 28 - 37°C. This behaviour by bull African 

elephants during hot periods suggests a thermoregulatory function. Warthog and African 

buffalo were observed wallowing in Orpen waterhole as well as in the large puddles that 

formed after rain and in mud once the puddles dried up (Figure 6.1c,d,e,f). Warthog were 

seen wallowing in spring, summer and autumn (51 of 748 days in the study period), 

generally after midday, when the mean hourly temperature was between 23 - 41°C and 

when Tavg was 33.28°C. Warthog are known to be sensitive to temperature extremes, and 

are unable to regulate their body temperature effectively, thus relying on their burrows for 

shelter on cold or rainy days and wallowing on hot days, which assists them with cooling 

(Estes, 1991; Bracke, 2011). Further to this, warthogs are particularly vulnerable during 

periods of low rainfall, as they maintain territories and thus rely on specific water sources 

(Owen-Smith & Mills, 2006). Consequently, they are usually one of the first species to 

experience major population declines with shifting climatic conditions and subsequent 

changes to the availability of food and water (Walker et al., 1987; Mason, 1990).  
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Figure 6.1: Spotted hyaena sitting in the Satara water trough, b) African elephant spraying itself with water 

from the Satara water trough, c) African buffalo wallowing in the Orpen waterhole, d) African buffalo 

wallowing in the puddle next to the Orpen waterhole, e) Warthogs wallowing in the Orpen waterhole and f) 

Warthogs wallowing in the puddle next to the Orpen waterhole.  

a b 

d 

e f 
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African buffalo were also seen wallowing during spring, summer and autumn, in the 

morning and after midday, when the mean hourly temperature was between 28 - ≤ 41°C, 

inclusive and when Tavg was 31.04°C. This behaviour supports the suggestion that 

wallowing can be linked to higher ambient temperatures and is a behavioural trait used 

for thermoregulation (Skinner & Chimimba, 2005; Megaze et al., 2013), assisting with 

heat loss while immersed in water as well as further heat loss when out of the water 

(Dunkin et al., 2013).  

 

6.4 Temporal Visitation Patterns  

Herbivores exhibited predominant diurnal water source visitation patterns (8:00 - 17:00) 

while carnivores exhibited nocturnal visitation patterns (20:00 - 4:00), thus showing 

distinct temporal partitioning with regards to their water-use behavior. It has been noted 

in previous mammal behavioural studies that herbivores and carnivores drink at different 

times (e.g. Ayeni, 1975; Hayward & Hayward, 2012), with the cluster analyses validating 

the classification of dominant diurnal and nocturnal visitation patterns. However, there are 

a few exceptions to this pattern, with herbivores such as African buffalo, African elephant, 

common duiker and hippopotamus, and carnivores such as black-backed jackal and 

spotted hyaena exhibiting both diurnal and nocturnal visitations. Although African buffalo 

and African elephant are less vulnerable to predation, they may choose to drink during 

the day, under hotter temperature conditions. This is possibly to avoid the perceived 

threat of predation, particularly when there are calves present (Davidson et al., 2013; 

Tambling et al., 2015). Hippopotamus possibly exhibit nocturnal utilization as they graze 

during the night (Estes, 1991). Black-backed jackal are likely exhibiting diurnal visitation 

patterns to avoid overlap with large predators such as lion, as is also seen with wild dog 

and cheetah (Hayward & Slotow, 2005).  

 

Whilst predator-prey interactions are more likely to explain whether prey species decide 

to visit the artificial water sources (Valeix et al., 2007b), additional drivers such as climatic, 

astronomical and environmental factors influence the physiological and behavioural 
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responses of species and their requirements for water. These factors consequently 

influence their visitation patterns at water sources.  

 

6.4.1 Species Avoidance  

Many species at Orpen and Satara exhibited similar temporal visitation patterns, 

suggesting that these patterns are common throughout the landscape, which was 

similarly found in Hwange National Park (Valeix, 2011). Mammals utilise a behavioural 

mechanism of adjusting the timing and duration of daily activities to control the extent of 

their heat exposure and water loss (Cain et al., 2006). Herbivore species have different 

water requirements and have varying levels of water-dependency due to various 

physiological, morphological and behavioural adaptations that enable some species to 

survive in high-temperature, low-water environments (Cain et al., 2006).  

 

The concentration of mammal species within a particular landscape influences their use 

of specific water sources (Young, 1970). Thus, species' visitation patterns to water 

sources are likely determined by various factors (forage availability, presence of predators 

and water-dependency) within a landscape and not exclusively by the availability of a 

permanent water source. Mammals display different predominant activity periods 

throughout the diel cycle (Kronfeld-Schor & Dayan, 2003).  

 

It is noted in this study that the daily temporal visitation patterns exhibited by mammal 

species differed according to feeding guild and body size, which broadly reflects their 

water-dependence as well as their risk of predation. Herbivores and small carnivores can 

temporally partition their visitation patterns to avoid overlap with predators by visiting the 

water sources during specific time periods (Valeix et al., 2009c; Crosmary, 2012). Prey 

species abundance within specific habitats are both controlled by the presence of 

predators and by resource availability, and consequently, the permanent availability of 

water in artificial water sources has a further influence on predator-prey interactions as 
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herbivores are likely to congregate in areas with perennial water sources (Valeix et al., 

2009b). Daily visitation patterns for all species demonstrate that the Orpen waterhole has 

more daytime sightings (dawn, morning, midday and afternoon) (87.62%) than Satara 

(75.78%). Conversely, Satara has proportionally more nocturnal sightings (dusk, early 

night, midnight and early morning) (24.22% vs. 12.38%), likely explained by Satara having 

more carnivore visitations.  

 

Certain small- (impala) and medium-sized (blue wildebeest, greater kudu and plains 

zebra) herbivores are able to endure hotter temperatures than large herbivores such as 

African elephant and African buffalo (Ayeni, 1975), validating pronounced peaks in 

visitation during midday. Additionally, these species are restricting their visitation times to 

during the day, likely to reduce the risk of predation after dark (Weir & Davidson, 1965; 

du Preez & Grobler, 1977).  

 

At both water sources, greater kudu, southern giraffe, vervet monkey, warthog and 

chacma baboons exhibited strict diurnal water source visitation patterns, with none of 

these species visitation patterns occurring before 5:45 or after 18:30. Strictly diurnal 

species may need to shift their water utilisation patterns to cooler nocturnal periods due 

to increasing daily temperatures (Huey et al., 2012). However, this behavioural shift could 

lead to an overlap with predators (Hetem et al., 2014). It would be expected that warthog, 

which are susceptible to thermal stress (Bracke, 2011), would be active during cooler 

periods (at night) and avoid the hottest periods of the day (midday and afternoon). 

However, warthog visitation peaked during midday and therefore their strict diurnal 

pattern is determined by the threat of predation and less because their heat/water 

balance/thermal limitations demand it. Chacma baboons generally utilised the water 

sources after sunrise and before sunset (6:00 - 17:30), with a strict cessation of visitation 

shown at Satara at 15:30, as they find a roost before sunset (Estes, 1991). Conversely, 

vervet monkeys favour riverine vegetation (Estes, 1991; Skinner & Chimimba, 2005) and 

maintain small territories (McDougall et al., 2010), thus accounting for their infrequent 
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daily visitation patterns at Orpen artificial waterhole (ẋ = 0.47 sightings) compared to 

chacma baboons (ẋ = 2 sightings).  

 

Despite southern giraffe being water-independent, and thus able to endure drought 

periods, they can drink on a daily basis (Dagg, 2014). However, during this study their 

average sightings were < 1 per day (ẋ = 0.28 sightings per day at Orpen; ẋ = 0.19 at 

Satara), despite available water. It was recorded during this study that southern giraffe 

only drink during the day (5:45 - 18:30), however, Dagg (2014) recorded giraffe drinking 

during both day and night. Their peak visitation was during midday and the afternoon at 

both water sources, with other studies showing that they rest in the shade during the 

hottest periods of the day (Skinner & Chimimba, 2005).  

 

Mega-herbivores (e.g. African elephant and African buffalo) are less vulnerable than 

small- and medium-sized herbivores to predation. These species visit water sources in 

large herds (≥ 20 individuals) and, given their large size, they are better able to protect 

themselves against predators than plains zebra and blue wildebeest (De Boer, 1990). 

Thus temporal partitioning of water source visitation is expected for the latter two species. 

During this study both plains zebra and blue wildebeest were rarely observed at the water 

sources after sunset (< 3% of total sightings), with drinking taking place primarily during 

the morning (8:00 – 10:59).  

 

Peak visitation by African elephants at Orpen was during dusk (25.33%) and early night 

(19.53%), supporting studies in Hwange (Weir & Davidson, 1965; Valeix et al., 2007a) 

and Tsavo National Parks (Ayeni, 1975). It would be expected that their large body size 

allows them to visit the water sources during periods of overlap with large predators (de 

Boer, 1990). In contrast, at Satara, African elephant visitation peaked during the hottest 

part of the day (afternoon, dusk and midday; 22.82%, 22.54% and 18.31%, respectively); 

a midday peak in KNP, Pilanesberg National Park, Madikwe Game Reserve, Tembe 

Elephant Park and Mashatu Game Reserve, was also reported by Hayward & Hayward 
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(2012). African buffalo exhibited peak visitation times during dusk at Orpen (22.93%), 

however, at Satara their peak visitation period was during dawn (30.41%). This is in 

agreement with a study in Addo Elephant National Park, which observed that the 

presence of predators constrained the nocturnal activity patterns of African buffalo and 

greater kudu (Tambling et al., 2015). Larger mammals such as African elephant and 

African buffalo temporally partition their visits to the water sources to cooler periods during 

the day (Ayeni, 1975), explaining the peak visitation time during dusk and morning.  

 

During the study period, only one kill was observed at the water sources. An African 

buffalo was killed at the Satara water trough during dawn in the early dry season (2012), 

likely due to a trade-off, drinking during a risky period due to a decrease in the distribution 

and availability of water (Figure 6.2a,b). In a study in Hwange National Park, it was noted 

that the seasonal availability of water influences lion kills (Davidson et al., 2013). 

Consequently, during dry years, species may be compelled to shift their temporal drinking 

patterns and thus risk the threat of predation due to their drinking water requirements 

(Valeix et al., 2009b).  

 

 

Figure 6.2: a, b) One male lion and two female lions taking down an African buffalo at the Satara water 

trough. 

a b 
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There is a gap of knowledge on the water needs of carnivores (Edwards et al., 2015), as 

well as the influence of climate and astronomical conditions on their water reliance 

behaviour and visitation patterns. In KNP, where there is a diverse carnivore population, 

competition for resources such as water is likely to occur between dominant and sub-

dominant species (Edwards et al., 2015). However, at both water sources this clear divide 

between visitation patterns of large and small-sized carnivores is not evident. The majority 

of carnivore species visited the water sources nocturnally, from 20:00 (early night) to 4:59 

(early morning) before dawn; this pattern was similarly observed in southwest Namibia 

(Edwards et al., 2015). Specific carnivore visitation patterns which feel outside of the 

dominant visitation pattern were similar to the patterns observed in the study by Edwards 

et al. (2015) for 1) leopard, exhibiting predominant visitation patterns during dusk 

(25.49%), 2) black-backed jackal, exhibiting visitation patterns throughout the day and 

night, as they are considered nocturnal but are also diurnally active (Estes, 1991), and 3) 

honey badger, visiting the Satara water trough during dawn and in the morning. The study 

by Edwards et al. (2015) reported that small and large carnivores exhibited distinct 

temporal partitioning to avoid overlap at water sources. Overlap between species is likely 

caused by ecological drivers, such as temperature, and by interactions between predators 

which play a role in the predominant visitation patterns displayed by these species.  

 

Honey badger (at Orpen) were never sighted from 8:00 - 16:59 and lion (at Satara) were 

never sighted from 8:00 - 19:59, therefore indicating that these mammals are strictly 

nocturnal drinkers at these water sources; at the alternative water source both species 

were sighted during the morning (8:00 – 10:59). African civet (at both water sources) and 

leopard (at Orpen) were only sighted from 17:00 - 7:59. At Orpen, serval were sighted at 

dusk, while at Satara, they were strictly nocturnal, only seen during midnight and the early 

morning. Small predators have been observed to shift their activity patterns to midnight 

to avoid large predators (Hayward & Slotow, 2009). Black-backed jackal (at Orpen) and 

serval and small-spotted genet (at Satara) all exhibit peak visitation times during midnight, 

although, lion also exhibit the same peak visitation period. However, none of these 

species were seen at the water sources at the same time. This could indicate that large 
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predators such as leopard and lion temporally partition their visits to limit overlap at the 

waterhole, additionally the activity patterns of these large predators have been observed 

to decrease during midnight, which is usually the time when least light is available, shifting 

activity to dawn and dusk (Hayward & Slotow, 2009). However, this pattern was not 

observed with visitation patterns at both water sources, as both leopard and lion exhibited 

peak visitation times during midnight. Consequently, the diel phase which is most risky 

for prey species to drink at water sources is between early night and early morning (20:00 

- 4:59), due to lion and spotted hyaena likely being present at the water sources during 

this period at both Orpen and Satara.  This trend was also observed by Tambling et al. 

(2015), who indicate that during nocturnal periods, medium-sized herbivores are under 

greater threat of predation. A risk period for herbivores which includes daylight was 

reported by Valeix et al. (2009c) between 17:00 and 8:00. Furthermore, leopard exhibit 

peak visitation times during dusk (17:00 - 19:59) and early morning (2:00 - 4:59), thus 

extending the predation risk period for prey species at Orpen waterhole.  

 

6.4.2 Species Overlaps  

Herbivores, specifically grazers, were generally observed to have inter-species overlaps, 

likely using group vigilance to their advantage to avoid predation (Ayeni, 1975). Plains 

zebra and blue wildebeest had the most noticeable species overlap based on 

observation, which is consistent with Hayward & Hayward (2012). Their observed overlap 

may reflect the advantage that plains zebra offer to other species given their sharp sense 

of sight and smell (Skinner & Chimimba, 2005). It is notable that blue wildebeest were 

generally observed to arrive at the water sources before a herd of plains zebra, similarly 

observed by Young (1970). Plains zebra and blue wildebeest were generally observed 

visiting the water sources during the same time periods (Table 6.1) (i.e. during midday at 

Orpen and during the morning at Satara) (see also Valeix et al., 2009c). Additionally, 

these two species are particularly vulnerable prey species and thus form inter-specific 

interactions by synchronizing their visitation times at water sources to increase their ability 

to detect predators (de Boer, 1990), specifically choosing to utilise water sources in areas 

that are more open (Smit, 2011).  
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Table 6.1: List of species social organisation, species overlaps, species not overlapping and other 

behaviour observed at Orpen and Satara water sources. 

Mammal Behaviour 

  Social Organisation  Species Overlap 
Species Not 
Overlapping 

Other  

African civet Solitary/pairs None Black-backed 
jackal 

- 

African wildcat  Solitary  None None - 

Black-backed 
jackal  

Solitary/pairs/packs (4 - 5 
individuals) 

None Hyaena, 
civet  

Kleptoparasitism 

Honey badger  Solitary/pairs None None - 

Leopard Solitary  None None - 

Lion Males (solitary), lionesses 
and cubs drank together 

None None - 

Small-spotted 
genet 

Solitary None None - 

Spotted hyaena  Solitary / pairs / clan (4 -5 
individuals) 

None Buffalo, 
jackal 

Cache meat 

Common duiker Solitary / pairs None None - 

Greater kudu Family herd of about 5 
individuals  

Impala None Cautious 
approach 

Southern giraffe Bulls (solitary), tower of < 5 
individuals 

Zebra, buffalo Warthog Cautious 
approach 

African buffalo Small herds (< 10 
individuals) or large herds (> 
20 individuals) 

Giraffe, impala, 
warthog 

Elephant, 
spotted 
hyaena 

Wallowing  

Blue wildebeest  Large herds (> 20 
individuals) 

Zebra, impala, 
warthog 

Buffalo, 
elephant 

Synchronize 
times with zebra 

Plains zebra Small (< 5 individuals) to 
large herds (≥ 15 individuals) 

Wildebeest, 
impala, warthog, 
giraffe, baboon 

Buffalo, 
elephant 

Cautious 
approach 

Warthog Sounder of 3 - 7 individuals Impala, 
wildebeest, 
zebra, buffalo, 
elephant 

Giraffe Wallowing 

African elephant  Bulls (solitary or group of < 4 
individuals), females and 
calves in large family groups 

Warthog Buffalo Bulls spray 
themselves with 
water  

Impala Large herds (> 25 
individuals) 

Wildebeest, 
zebra, baboons, 
buffalo, warthog, 
kudu, vervet 
monkey 

Elephant - 

Chacma baboon  Troops of 5 - 20 individuals Impala, zebra Warthog Grooming.  
Swimming 

Vervet monkey  Solitary or in small troops (< 
10 individuals) 

Impala None - 
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Chacma baboons were observed at the water sources with both impala and plains zebra, 

showing similar (> 1.5) PCA scores, and are similarly sighted foraging with most browsing 

and grazing ungulate species (Skinner & Chimimba, 2005). Chacma baboons also show 

a similar (> 1.5) PCA score to warthogs. However, it was observed on one occasion that 

a troop of chacma baboons moved away from the water source when warthogs 

approached to drink (Table 6.1).  

 

Most carnivores, excluding spotted hyaena and black-backed jackal, were not observed 

to have any species overlaps (Table 6.1). Spotted hyaena and black-backed jackal were 

seen at the Satara water trough together, with two black-backed jackal displaying 

kleptoparasitism (Figure 6.3a,b), a behaviour in which one species steals food from 

another. This has been noted previously in lion, spotted and brown hyaena and black-

backed jackal (Cloudsley-Thompson, 1996). Black-backed jackals are known as 

scavengers and have been observed snatching pieces of meat from lion and hyaena 

(Estes, 1991; Schuette et al., 2013).  

 

 

 

Figure 6.3: a) Black-backed jackal waiting for a spotted hyaena to retrieve a piece of meat/bone out of the 

water trough, b) Black-backed jackal eating the piece of meat stolen from the spotted hyaena.  

 

a b 
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6.4.3 Seasonal Patterns of Visitation  

The increase in rainfall in summer 2012/2013 likely ensured that there was more water in 

the landscape for the following dry season, therefore reflecting the relatively even 

distribution of mammals visiting the water source in autumn and winter 2013. However, 

the 2013 dry season rainfall received at both Orpen and Satara was below the average 

rainfall for the period 2007 – 2014. High levels of water source utilization in summer could 

be explained by the drying up of temporary pools of water which persisted throughout the 

dry season, but dried up as temperatures increase in spring and summer, therefore 

compelling mammals to drink from artificial water sources. A strong seasonal preference 

is expected in winter, particularly for herbivores, which congregate around water sources 

during the dry season, as the moisture content of vegetation decreases, and water 

availability is reduced. However, they maintain an extensive distribution in the wet season 

(Valeix et al., 2010), therefore reflecting the broader dry (75.64%) and wet (24.36%) 

season visitation patterns in 2012. 

 

Seasonal visitation patterns by species was linked to the seasonal variation of water 

availability. African civet, common duiker, greater kudu and warthog exhibited strong dry 

season visitation preferences (> 50% difference in visitations across the wet and dry 

periods). Conversely, there was not a large difference (< 20%) in visitation during the wet 

and dry periods for blue wildebeest and chacma baboon at both water sources. This is 

likely explained by blue wildebeest and chacma baboon (largely water-dependent 

species), relying on water sources during both the wet and dry seasons. Blue wildebeest 

are highly water-dependent, thus drinking daily and foraging in close proximity to water 

(Berry, 1980), validating the indistinct seasonal drinking pattern observed here. At Orpen 

and Satara, warthog exhibited a strong seasonal preference for the dry season (82.25% 

and 88.06%, respectively) while plains zebra exhibited a higher percentage of use during 

the dry season, however, not showing as strong a preference (64.52% and 68.54%, 

respectively). The seasonal preferences exhibited by warthog and plains zebra in this 

study are in contrast to findings of Hayward & Hayward (2012) which show that these two 

species exhibit no seasonal preference.  
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The pattern of distinct increases in visitation during the dry season for African buffalo and 

warthog was similarly observed in Tsavo National Park (Ayeni, 1975). For warthogs, 

increased visitation during the dry season is also in support of previous work by Somers 

(1997), which showed that this species drinking frequency per hour increased during the 

dry season. The strong seasonal preference exhibited by warthog might be explained by 

their sedentary nature (Mason, 1990) which forces this species to rely on this artificial 

water source when the distribution/availability of water in the landscape decreases. 

 

Impala showed an increase in visitation during the dry season at Orpen, however, they 

exhibited no seasonal preference at Satara. These findings are not consistent with recent 

research which reported that impala visitation peaked during summer (Hayward & 

Hayward, 2012). At Orpen, impala drank frequently, averaging 25.67 and 25.16 

individuals per day during the 2012 and 2013 dry seasons validating that impala are 

particularly during the dry season (Jarman & Jarman, 1973), however, they can go 

several days without needing to drink if they can obtain sufficient moisture from green 

vegetation (Estes, 1991). The frequent sightings of impala reflects their abundance within 

the landscape. 

 

Blue wildebeest showed no distinct seasonal preference at either water source, 

highlighting strong dependency on water throughout the wet and dry periods. This would 

support previous work, which showed daily drinking and foraging in close proximity to 

water (Berry, 1980). At both Orpen and Satara, blue wildebeest exhibited daily visitation 

patterns which are relatively consistent throughout the 2012 and 2013 wet periods (4.99 

and 5.57 sightings at Orpen; 6.53 and 7.88 at Satara, respectively). Additionally, their 

daily visitation patterns were consistent during the 2012 and 2013 dry periods (4.10 and 

3.10 sightings at Orpen; 5.84 and 4.66 sightings at Satara, respectively), and therefore 

further validates their dependence on water irrespective of season.  

 



206 

 

Vervet monkey (only sighted at Orpen) visitation peaked during the dry season (93.20%); 

indicating that this species is reliant on artificial water sources during the dry season and 

are less reliant on these sources during the wet season (Struhsaker, 1967). Dry season 

peaks in visitation were also recorded for greater kudu at both Orpen and Satara (79.38% 

and 87.82%, respectively), although in arid regions kudu have adapted to survive with 

little or no drinking (Skinner & Chimimba, 2005).  

 

African elephant showed no seasonal preference at Orpen waterhole (56.52% in the dry 

season and 43.48% in the wet season), and can go without drinking for two to three days 

in the dry season (Skinner and Chimimba, 2005). However, they do require fresh water 

and shade to rest in during the heat of the day, particularly during periods of high 

temperatures (Skinner & Chimimba, 2005; Kinahan et al., 2007). Conversely, African 

elephant at the Satara water trough, show a strong wet seasonal preference (75.77%). 

Both of these patterns are in contrast to seasonal drinking behaviours observed in Tsavo 

National Park (Ayeni, 1975) and in a recent study by Hayward & Hayward (2012) which 

was carried out at five different study sites throughout South Africa, where the numbers 

of African elephants at a water source increased during the dry season. Hippopotamus 

exhibited a strong dry season preference during both the 2012 and 2013 dry periods 

(76.92% and 92.31%, respectively) in their use of artificial water sources at the Orpen 

waterhole, as natural water levels are lowered due to less rainfall.  

 

6.4.4 Time Spent at Artificial Water Sources  

The duration that mammals spend visiting water sources is influenced by season, 

thermoregulation, species associations and herd size (Valeix et al., 2007b). Additionally, 

the role of size, feeding guild and abundance of each species also influence the time 

spent drinking as these factors are known to shape species responses to the threat of 

predation (Valeix et al., 2009b). Time spent drinking from water sources is, however, 

largely influenced by thermoregulation, as with an increase in temperature, the time spent 

at the water source decreases. This is particularly evident for larger sized herbivores such 

as African buffalo, African elephant, southern giraffe and plains zebra (Ayeni, 1975; Valeix 
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et al., 2007b). However, during warm conditions when certain mammals (i.e. African 

buffalo) wallow in the water sources, the time spent at the water sources increases. 

 

Mixed-feeding impala (at both Orpen and Satara) and African elephant (at Orpen) spent 

more time (mean of 14 minutes, 42 seconds and 5 minutes, 54 seconds, time from when 

the first individual in a group starts to drink until the time the last individual in the group 

stops drinking, respectively) and (8 minutes, 18 seconds) drinking than other herbivores. 

This may in part be explained by the fact that mixed feeders and grazers are known to be 

water-dependent (Western, 1975; Estes, 1991) and therefore require a higher volume of 

water and consequently spend more time visiting water sources. However, the longer 

time spent at the water sources by impala and African elephant could additionally be 

explained by both the abundance of impala in central KNP, and their large herd sizes, 

which facilitate visitation at water sources and the large body size of African elephant. 

Furthermore, the duration of time that herbivores spend at water sources is influenced by 

the number of different herbivore species at the water source at the same time, likely 

explained by an increased level of vigilance with a higher number of species (Valeix et 

al., 2007b). This behaviour was displayed by impala, which were noted having a high 

number of species-associations. On an individual basis, African elephant bulls were 

observed to spend a long time at the water sources, on one occasion a bull spent ~120 

minutes at Satara water trough. It has been noted that an individual can consume ~200 

liters during a single drinking episode (Skinner & Chimimba, 2005).  

 

The least amount of time (< 3 minutes) spent at both water sources for herbivores was 

exhibited by browsers (common duiker, greater kudu and southern giraffe). Southern 

giraffe and greater kudu were particularly cautious when approaching both of the water 

sources. Greater kudu would consistently be on the lookout, with one or two individuals 

standing and observing the surroundings; if alarmed while drinking, they would retreat 

into the bush (Estes, 1991), thus explaining the short time (< 2 minutes) spent at the water 

sources. At both Orpen and Satara, carnivores spent < 1 minute utilising these water 
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sources, with the exception of black-backed jackal and spotted hyaena which spent on 

average 1 minute 6 seconds and 1 minute, 12 seconds, respectively at Satara.  

 

6.5 Differences between Species Visitation at Orpen and Satara  

Variation in timing trends and overall levels of water source utilisation for individual 

species at Orpen and Satara may, in part, be explained by differences of the two sites 

including vegetation, proximity to roads, proximity to rest camps, proximity to other water 

sources, predator-prey interactions, topography and abundance. Therefore it is not 

possible to generalise results for the broader landscape due to the divergent patterns 

observed between the two study sites, suggesting that local conditions/context are 

important. Additionally, these differences could be explained by the design of the water 

source: the size, structure, depth, perimeter and ability to get into the water, which could 

facilitate species avoidance or associations. Orpen artificial waterhole is a large, round 

cement shape, whilst Satara is a narrow, long, rectangular cement 'trough'. Species such 

as blue wildebeest, plains zebra, greater kudu and warthog, which exhibit similar temporal 

visitation periods at both water sources, showing strict diurnal patterns, are more specific 

in their drinking requirements, possibly attributed to predation risk.  

 

Orpen waterhole had 44.69% more total visitations than Satara, suggesting that there is 

a lot of variability between the two sites. This difference is most likely linked to the 

availability of alternative water sources, however, it could also be linked to the size of the 

water sources, and thus the 'accommodation' space available. Distance estimates of 

herbivores per landscape, indicate that the basalts support a greater number of greater 

kudu, southern giraffe, blue wildebeest, plains zebra and impala. However, there are a 

greater number of African elephant in the Orpen landscape. Therefore, the higher 

percentage of visitations at Orpen is not due to greater mammal abundance, but this 

difference could be explained by the available water sources in the two different 

management regions. The closest river to the Orpen waterhole is the Timbavati (< 2km), 

followed by the Sweni river (~18.34km); the Satara water trough is in close proximity to 
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both the Nwanedzi (~2.06km) and Sweni (~8.98km) rivers (Table 6.2), as well as 

benefitting from additional supplementary boreholes. The relative lack of natural surface 

water in the immediate vicinity of the Orpen waterhole likely explains heavy utilisation 

here. These rivers which are in close proximity to the study sites are seasonal, with the 

closest perennial river (Olifants) located ~45.51km from Orpen and ~46.31km from Satara 

(Table 6.2). Browsers such as greater kudu and southern giraffe, and mixed feeders such 

as African elephant and impala, favour rivers over artificial water sources. Conversely, 

grazers, such as African buffalo, blue wildebeest and plains zebra, favour artificial water 

sources over rivers (Smit et al., 2007a). The preferences of blue wildebeest and plains 

zebra for artificial water sources is supported by their high levels of utilization at both 

Orpen and Satara, with impala also exhibiting a preference for the artificial water sources, 

which is in the contrast to the findings by Smit et al. (2007a).  

 

Larger African elephant herds (ẋ = 13 individuals, maximum = 30 individuals) were 

observed visiting Orpen waterhole, where many individuals are able to congregate at one 

time, drinking from the waterhole simultaneously, whilst lone bulls or smaller herds (ẋ = 3 

individuals, maximum = 15 individuals) were observed at Satara water trough. This 

difference is likely due to both the shape and size of the two water sources (i.e. 

‘accommodation space’), the proximity of these water sources to rivers and further to this 

the greater African elephant density in the Orpen landscape. Additionally, solitary 

elephant bulls are known to be found in the Satara landscape (Gertenbach, 1983). Mixed 

herds of African elephants, which generally consist of adults and juveniles, need to travel 

over shorter distances to find water and drink more regularly than bull African elephants 

(Smit et al., 2007b). Furthermore, mixed herds have been found near rivers, where they 

are able to forage the vegetation in close proximity to the rivers and drink water (Smit et 

al., 2007b).  
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Table 6.2: The approximate distances of Orpen and Satara to the main seasonal and perennial rivers in the 

central region. Closest distance to a river is highlighted in grey.  

Distance to Rivers 

Orpen  Satara  

River Seasonality 
Distance 

(~km) 
River Seasonality  

Distance 
(~km) 

Nwanedzi  Seasonal 33.21 Nwanedzi  Seasonal 2.06 

Nwaswitsonto Seasonal  19.01 Nwaswitsonto Seasonal  24.42 

Olifants Perennial  45.51 Olifants Perennial  46.31 

Sabie Perennial  63.71 Sabie Perennial  63.46 

Sweni Seasonal  18.34 Sweni Seasonal  8.98 

Timbavati  Seasonal  2.00 Timbavati  Seasonal  19.22 

 

6.6 Unmeasured variables 

Various additional drivers of mammal behaviour at artificial water sources may have 

influenced their use by species, and the temporal patterns of visitation (Table 6.3). Due 

to time constraints, not all variables could be assessed for their impact on drinking 

behaviour and water source use. For example, the presence of adults and juveniles was 

not determined for each species, which has been shown to be an influential driver of both 

the decision to drink as well as the time spent drinking (Valeix et al., 2007b).  

 

The presence of tourists affects species behaviour at water sources and ultimately 

whether a species decides to utilise a water source (Kamanda et al., 2008). The influence 

of this variable on visitation patterns could not be determined during this study, however, 

this impact is minimal given the heavy use of the Orpen waterhole, despite being very 

close to a very busy road / camp. The risk of hunting has also been found to affect 

herbivore visitation patterns at water sources (Crosmary et al., 2012), although this factor 

is not applicable in KNP.  
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Table 6.3: Multiple drivers influencing water source visitation patterns. Variables which were considered for 

this study, but for which no analyses were conducted, are indicated with an asterisk. 

Additional drivers of mammal behaviour at artificial water sources 

Environmental    

Surrounding vegetation – forage* Valeix et al. (2008) 

Tree cover - shade Young (1970) 

Availability of water after rainfall Young (1970) 

Water quality  Smit et al., 2007b 

Cloud cover  Valeix et al., 2008 

Wind patterns* Valeix et al., 2008 
 
Behavioural    

Physiology Young, 1970 

Predator-prey interactions* Fuller et al., 2014 

Interference competition  Valeix et al., 2007b 

Juveniles Valeix et al., 2007b 

Herd size Valeix et al., 2007b 

Thermoregulation Valeix et al., 2007b 
 
Water source specific   

Size and shape Adams & Thibault, 2006 
 
Location specific   

Proximity to rest camps   

Proximity to roads   

Proximity to other water sources - artificial water 
sources, dams and rivers*  

Young, 1970 

Tourist presence Kamanda et al., 2008 
Hunting Crosmary et al., 2012 

 

6.7 Environmental and Astronomical Influences on Mammal Visitation Patterns 

(Measured Variables) 

Environmental and astronomical conditions which control temperature, light and water 

availability, influence the predominant activity periods and visitation patterns of mammals 

at water sources (Young, 1970; Maloney, 2005; Tefempa et al., 2008). Rainfall constrains 

mammal behaviour in savanna environments (Owen-Smith, 2000), however, the temporal 

partitioning of various daily mammal activities is largely influenced by light availability and 

temperature, as controlled by sunrise and sunset and the angle of the sun (Nouvellet et 
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al., 2012; Owen-Smith & Goodall, 2014). Additionally, mammal behaviour is influenced 

on a seasonal basis according to variation in both climatic variables and forage availability 

(Owen-Smith & Goodall, 2014).  

 

6.7.1 Temperature 

Temperature is a likely key driver of the diel and seasonal patterns seen in herbivore 

visitation, whilst rainfall, and thus the availability and distribution of natural surface water, 

is likely a driver of the type of water source which mammals drink from; broadly depicting 

a temporal control of temperature and a spatial control of rainfall. Mammal visitation 

declined during the hottest hourly Tavg at both Orpen and Satara. This pattern is in 

agreement with research in Hwange National Park, where there was a decline in 

herbivore presence in open areas during the hottest periods of the day (Valeix et al., 

2007b), and in Waza National Park, where there was a decrease in water source visitation 

between 12:00 and 13:00 when temperatures were highest (Tefempa et al., 2008). 

Furthermore, in KNP, it has been observed that ungulates are less likely to travel to water 

sources when the temperature is > 35°C (Young, 1970). Similarly, they are less likely to 

drink when the temperature is < 19°C (Young, 1970).  

 

The trend for all species investigated to have earlier visitation on days with the highest 

Tavg, may reflect contemporary behavioural adjustments to the extreme temperatures 

which are likely exacerbated under future projected climate change scenarios. The shift 

in timing of daily visitations, reflects changes in temperature, rainfall, sunrise and sunset, 

with extreme temperature conditions likely to further influence the timing of daily activities, 

with an increased risk of thermal stress (Shrestha et al., 2014). At Orpen and Satara, 

pooled herbivore peak visitation periods shift earlier during the day with increasing Tavg; 

the earliest peaks occur on days with temperatures between 30°C - 35°C at Orpen and 

between 25°C - 30°C at Satara. Such results indicate a broad trend towards earlier diurnal 

visitation patterns during higher Tavg intervals. The optimal periods of water source 

visitation are 10:00 at Orpen and 9:00 at Satara. Species utilise water sources during 
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these time intervals to reduce thermal stress and avoid heat loads during the hottest 

period of the day.  

 

Orpen demonstrates clear diurnal visitation peaks in relation to Tavg, whilst at Satara Tavg 

appears to also affect nocturnal visitation patterns. There are a higher percentage of 

carnivores visiting Satara water trough (9.15%) compared to Orpen (3.46%), likely 

contributing to the weaker relationship between Tavg and mammal visitation here. This 

suggests that predator/prey relationships have a greater influence on herbivore visitation 

patterns at Satara relative to the Orpen water source. Peak visitation periods for pooled 

carnivores are shifting later into the night at both water sources as Tavg increases.  

 

Behavioural responses to temperature differ between species (body size and feeding 

guild). It is therefore expected that smaller species (impala and warthog) would show 

more pronounced changes in drinking behaviour between seasons and between average 

and extreme days. Herbivores, in particular, may be reacting to the fine scale change in 

temperature occurring at an hourly interval, which allows them to adjust their activity 

patterns throughout the day, according to the ambient temperature (Shrestha et al., 2014; 

Tambling et al, 2015). Thus, to determine the influence of temperature on mammal 

visitation patterns at water sources, data need to be analysed at a fine resolution.  

 

Blue wildebeest, warthog and southern giraffe at Orpen, and plains zebra, greater kudu 

and blue wildebeest at Satara, exhibit a shift to earlier visitation when Tavg is >20°C, likely 

because temperatures will also be higher at earlier hours on such days, which possibly 

triggers instinctual behavioural responses toward feeding, resting and drinking. It is 

interesting to note that both water-dependent and water-independent herbivores are 

exhibiting the same response to Tavg. This supports the fact that during summer, 

mammals are adjusting their diurnal activity patterns to avoid heat stress (Shrestha et al., 

2014).  
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African elephant require shade during the heat of the day, particularly during periods of 

high temperatures (Skinner & Chimimba, 2005; Kinahan et al., 2007). This behaviour 

explains why they shift their peak visitation times later into the evening on the highest Tavg 

days. However, a recent study by Tambling et al. (2015) noted that African elephant 

foraging activity in Addo Elephant National Park increased during the day when maximum 

ambient temperatures were highest. African buffalo utilise both Orpen and Satara water 

provisioning sites earlier during the morning on the highest Tavg days, a trend similarly 

found with the foraging behaviour of African buffalo in KNP (Owen-Smith & Goodall, 

2014). These patterns support larger mammals (such as African elephant and African 

buffalo) not being able to withstand high temperatures and therefore avoid utilising water 

sources during such periods. African buffalo and African elephant show weak 

relationships with Tavg and no clear seasonal patterns of visitation, indicating that their 

large body size is likely facilitating their dispersed monthly drinking patterns and their 

ability to shift drinking times in favour of changing environmental conditions with little 

regard of large predators. Conversely, smaller mammals shift their water source visitation 

periods in response to the threat of predation (Ayeni, 1975). Medium-sized herbivores 

lose water by sweating and panting, which they use as a mechanism for evaporative 

cooling (Maloiy & Hopcraft, 1971). Impala function optimally and are most active at 

temperatures between 21°C - 31°C (Klein & Fairall, 1986). Impala experience thermal 

stress at temperatures between 35°C - 50°C (Maloiy & Hopcraft, 1971) and are 

consequently vulnerable to temperature extremes (Klein & Fairall, 1986). This 

vulnerability supports the extreme shifting of their peak visitation periods one hour earlier 

when Tavg > 15°C. Under the highest Tavg interval, impala, along with warthog, southern 

giraffe and African buffalo at Orpen, and plains zebra at Satara, show a shift to earlier 

visitation by between 1 - 6 hours, thus forcing them to utilise the water sources outside of 

their preferred temporal range.  

 

Blue wildebeest demonstrate weak correlations between their peak appearance and 

temperature variables (Tmax, Tmin and Tavg), and therefore a lack of relationships with their 

peak appearance and temperature variables (Tmax, Tmin and Tavg), confirming their strong 
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water-dependency irrespective of the time of day or temperature. The strictly diurnal 

visitation patterns of blue wildebeest may suggest that their behaviour is largely driven by 

predator avoidance, as they are a preferred prey species for lions due to their body size 

(Hayward & Kerley, 2005). However, at both Orpen and Satara, blue wildebeest are 

observed drinking 1 hour earlier outside of their preferred range, from morning (8:00 – 

10:59) to dawn (5:00 – 7:59) under the highest Tavg interval, which has the consequence 

of overlapping with predators such as leopard (at Orpen), lion and spotted hyaena (at 

Orpen and Satara). Blue wildebeest have been noted to adjust both their daily and 

seasonal patterns of behaviour, particularly the amount of time spent feeding, under 

higher temperature conditions (Maloney et al., 2005).  

 

The increase in temperature due to the hotter and more arid environments predicted for 

some areas under climate change will add further stress to mammal species living in 

these environments as they will need to cope with higher temperatures, and changing 

rainfall patterns, likely increasing their need for water (Fuller et al., 2014). Thus, the 

temporal partitioning of daily activities by mammal species will be influenced by increasing 

temperatures and environmental changes, likely forcing mammals to trade-off drinking 

from water sources during the day when temperatures are high, so as to avoid predation 

at night (Fuller et al., 2014). However, specific trade-offs as evident in the behaviour 

patterns revealed by the webcam analysis, suggest that nocturnal visits to water sources 

may increase following very hot days. The adjustments that mammals will need to make 

to their behaviour patterns and physiology due to environmental change, will have 

consequences for their survival (Kronfeld-Schor, 2015).  

 

6.7.2 Rainfall  

The presence and absence of rainfall has an influence on temporal visitation patterns at 

water sources, over monthly, seasonal and inter-annual scales. The absence of rainfall, 

due to drought, which may occur over an extended period, is likely to have a significant 
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impact on mammal visitation patterns, with some species possibly deviating from 

predominantly nocturnal visitation to also utilising the artificial water sources diurnally.  

 

At both water sources, pooled mammal species sightings increase on days before and 

on the day of rainfall, likely because of increased time since the previous rainfall event, 

with significantly higher means on days before rainfall compared to days after rainfall. 

Herbivores, specifically water-dependent species, rely on drinking water during the dry 

season when the vegetation that they consume is unable to fulfill their water requirements 

(Valeix, 2011). During the wet season, or during periods of rainfall, the formation of pools 

of water increases both the distribution and availability of water to mammals, thus 

explaining the decrease in visitation after rainfall events. Herbivores are therefore 

particularly influenced by the timing of rainfall events, as the presence and absence of 

this climatic variable affects their ability to access this resource on a seasonal basis. This 

feeding guild would be then expected to drive such a response to the presence and 

absence of rainfall. However, of the herbivores, grazers and mixed feeders show that the 

mean number of sightings on the day of rainfall, are significantly higher compared to 1 or 

2 days after rainfall.  

 

The majority of carnivores show no clear relationship with the timing of rainfall events, 

indicating that these species utilise water sources only if it is available, therefore their 

visitation patterns are not influenced by the presence or absence of rainfall. An exception 

is black-backed jackal, which exhibit a decrease in the number of sightings 1 or 2 days 

after rainfall, which is possibly linked to their diet, which includes insects (Hall-Martin & 

Botha, 1980), which would be most abundant immediately after rain or during the wet 

season.  

 

Certain species such as hippopotamus, which were observed to predominantly utilise 

Orpen waterhole during the dry season, may need to utilise this waterhole when rainfall 

is below average in the wet season months, as this species is particularly vulnerable to 
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shifting rainfall patterns (Lewison, 2007). Hippopotamus are reliant on pools of water in 

which they can submerge themselves during the day, and during drought conditions the 

availability of suitable pools decreases, which promotes overcrowding and intra-species 

competition (Smuts & Whyte, 1981). Thus further increasing this species dependence on 

artificial water sources.  

 

6.7.3 Sunrise and Sunset  

A recent study in KNP found that pronounced peaks in the activity patterns of sable 

antelope, African buffalo and plains zebra occurred during or after sunrise and close to 

sunset, likely coinciding with the cooler diurnal periods (Owen-Smith & Goodall, 2014). 

Exclusively diurnal mammals (most of the herbivores in this study) are likely to partition 

their visitation patterns in relation to changing sunrise and sunset times and the 

availability of light, whilst exclusively nocturnal mammals are likely to adjust their visitation 

patterns before sunrise and after sunset (Hill et al., 2003). Herbivores are more influenced 

by the seasonal variation in day length than carnivores as their activity patterns are 

restricted by light availability (Hill et al., 2003).  

 

Black-backed jackal utilised both Orpen and Satara predominantly during the night, and 

displayed a weak, negative correlation with sunset (r = -0.03 and r = -0.06, respectively), 

thus visiting the water sources earlier as sunset shifted later and vice versa, essentially 

avoiding visitation during dusk. However, elsewhere the predominant activity periods of 

this species overlapped with sunrise and sunset (Walton & Joly, 2003).  

 

At Orpen, southern giraffe and leopard show significant relationships with both sunrise (r 

= 0.26 and r = -0.21, respectively) and sunset (r = -0.35 and r = 0.18, respectively). For 

southern giraffe, as sunrise shifts earlier, visitation shifts earlier, and when sunrise shifts 

later, their peak visitation times shift later. Conversely, as sunset shifts earlier, their 

visitation times shift later, and as sunset shifts later, visitation times shift earlier. Leopard 
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displayed inverse relationships. These patterns indicate that during seasons with longer 

periods of daylight (spring and summer), southern giraffe shift an entire period of activity 

earlier. Leopard shift their activity period (delimited by later dawn visitation patterns and 

later dusk visitation patterns) later.  

 

At Satara, African buffalo have a positive relationship with sunrise (r = 0.16) and a 

negative relationship with sunset (r = -0.20). These relationships demonstrate that this 

species are avoiding the water sources when temperature and light availability are likely 

to increase with sunrise. This is likely explained by African buffalo being physiologically 

unable to tolerate high temperatures, but because they are less vulnerable to predation 

with visitation to water sources in large herds, shifting their dusk visitation times (earlier 

with later sunset and later with earlier sunset) is less important. African elephant show a 

similar pattern with sunset (r = -0.20), likely also due to their large body size allowing them 

to defend against predators.  

 

At Orpen, warthog were the only species that exhibited positive relationships with sunrise 

(r = 0.01) and sunset (r = 0.06). This species is capitalizing on the longer period of 

daylight, utilising the waterhole earlier in the morning and later in the evening, therefore 

their period of activity is wider when there is more light available. Warthogs are strictly 

diurnal, and female warthogs and their young typically move into their burrows before 

dark, where they are sheltered from both the risk of predation and climatic conditions 

(Estes, 1991). At Satara, warthog exhibit a positive relationship with sunrise (r = 0.26), 

therefore making use of longer daylight hours, when more light is available, and are likely 

avoiding overlap with predators. This behaviour confirms that warthog are responding to 

changes in light availability and temperature as a consequence of changes in time, which 

is thus a variable which prey species can manipulate to avoid encountering predators at 

water sources and the threat of predation (Valeix et al., 2009c).  
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Lion exhibit a negative relationship with sunrise at both Orpen and Satara (r = -0.10 and 

r = -0.45, respectively). However, more interestingly, they exhibit a positive relationship 

with sunset at both water sources (r = 0.12 and r = 0.39, respectively) (significant at 

Satara), utilising the water sources earlier with earlier sunset and later with later sunset. 

This pattern of shifting peak visitation times could be explained by their activity periods; 

lion being active during dawn and dusk, and may shift their water source visitation 

patterns with sunset in an attempt to encounter crepuscular prey species at the water 

source. No species at Orpen had negative relationships with both sunrise and sunset. 

However, at Satara, plains zebra exhibit a weak negative relationship with both of these 

variables (r = -0.03 and r = -0.02, respectively). This pattern might have been expected 

for a nocturnal species, as this would have reflected shorter periods of activity with 

increasing hours of daylight, and therefore less hours of darkness.  

 

6.8 Broader Implications of Results 

The Orpen and Satara artificial water sources are positioned in different regions within 

central KNP, underlain by different geologies which are characterised by specific 

vegetation (Gertenbach, 1983). The results from these two water sources are site 

specific, representing only two landscape units in KNP, and it is therefore not possible to 

determine whether the species composition and abundances observed in this study, are 

representative of broader mammal behaviour patterns in KNP. A comparison of local with 

regional mammal abundance is necessary to establish representivity within the larger 

landscape units of the study sites. Further to this, the broad aim of this study was to 

contribute to the understanding of mammal temporal visitation patterns at artificial water 

sources, and more specifically towards exploring these patterns as affected by various 

climatic and astronomical components. In the context of future climate change scenarios 

and the resultant decreasing natural water supplies, the water provisioning policy for KNP 

may need to be further revised, as artificial water sources are likely to become essential 

to meet mammalian water requirements.  
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6.8.1 Preference and Avoidance of Artificial Water Sources 

Aerial census for KNP is an important ecological monitoring methodology, which provides 

management with mammal population estimates (Buckland et al., 2015). However, there 

are biases associated with this methodology, notably a visibility bias, resulting in 

undercounting (Redfern et al., 2002). A methodological limitation of the webcam survey, 

as an example of a local fixed point method, is over counting (however, webcams in this 

study were used to determine the relative proportions of different species), amongst 

others. These biases have implications for using either estimate for research and 

management purposes. It is therefore important to compare the data obtained from the 

webcams with other techniques. For the winter months of June, July and August the 

relative abundances calculated from the webcam data were statistically similar to those 

from the regional census. 

  

The dominant underlying geologies of the regions in which Orpen and Satara are situated 

were used to explore whether there are differences in preferential or avoidance behaviour 

of the artificial water sources at the two study sites. Blue wildebeest at both Orpen and 

Satara show a higher proportional distribution locally than at larger scales (Figure 5.31a,b; 

Figure 5.32a,c), indicating preferential use of the water sources. This supports their 

abundance in close proximity to artificial water sources, as reported previously by Smit et 

al. (2007a).  

 

Warthog and African elephant at Orpen exhibited notable preferential use of this 

waterhole, yet warthog at Satara exhibit strong avoidance of this water trough (Table 5.34; 

Table 5.35). African elephant have a weak association with rivers on granite, validating 

their preferential use of the Orpen artificial waterhole, yet have a strong association with 

rivers on basalts (Smit et al., 2007a), possibly accounting for their relative avoidance of 

the Satara water trough. African buffalo, despite being known as water-dependent, 

exhibited avoidance behaviour for both Orpen and Satara water sources, likely because 
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these mammals prefer larger bodies of water and positively associate with rivers on both 

basalt and granite (Smit et al., 2007a).  

 

Impala exhibited a higher percentage abundance in their landscape estimates at Orpen 

and Satara (Figure 5.31a,b; Figure 5.32a,c) compared to their use of the water sources; 

this being due to their strong association with rivers and the fact that they do not 

apparently occur in close proximity to artificial water sources (Smit et al., 2007a). Despite 

their avoidance of these artificial water sources, they do rely on these structures for 

drinking, particularly during the dry season. Furthermore, the higher number of impala 

observed at the Orpen waterhole compared to Satara may be due to the species utilising 

other water sources at Satara, which is in agreement with the study by Smit et al. (2007a). 

The study found that impala have a strong association with rivers on basalts (Satara) and 

that large impala herds are not found in close proximity to artificial water sources on the 

basalts (Smit et al., 2007a). A clear pattern is shown between water-dependent and 

water-independent species, with the exception of African buffalo at Orpen and warthog at 

Satara; the water-dependent species (impala, blue wildebeest, plains zebra and African 

elephant) are visiting these water sources in relative proportion to their abundance in the 

central region, whilst the water-independent (browsers) are exhibiting avoidance 

behaviour. Browsers, southern giraffe and greater kudu, both show indistinct proportional 

use of Orpen and Satara, compared with their landscape estimates, which corresponds 

with the Smit et al. (2007a) study, which documented that browsers show weak 

associations with artificial water sources and are consequently more commonly 

associated with rivers, as well as demonstrating that these species are not as reliant on 

these water sources as the water-dependent species.  

 

6.8.2 Climate Change and Mammal Visitation Patterns  

South Africa is likely to experience warming of between 1 and 3°C over the next 5 

decades (Madzwamuse, 2010; Davis, 2010). Such a projected increase in temperature 

has implications for mammal water source visitation patterns, intra- and inter-species 
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competition and predator-prey interactions, as herbivores are drinking from the water 

sources earlier on 'hot' days whilst carnivores are shifting their visitation patterns during 

the night in response to increasing temperature, thus indicating a narrowing/widening gap 

between the visitation periods between certain predators and prey and larger and smaller 

mammals. These changes in temporal visitation patterns are likely to influence the 

vigilance behaviour of individuals and groups of mammals. Considering the projected 

increases in mean maximum and minimum temperatures (van Wilgen et al., 2015), 

mammals in KNP will likely be subjected to an increase in days which the temperature 

will be > 30°C. Specifically, water-dependent grazers and mixed feeders are responding 

to temperature cues and therefore their water/heat balance will force them to shift their 

visitation periods. Under extreme temperature conditions there might be pressure to drink 

very early during the day or late at night to avoid high diurnal temperatures. At Orpen blue 

wildebeest and plains zebra currently exhibit strong species-associations, visiting the 

waterhole at the same time during the morning. However, this species association will 

likely break down under extreme temperature conditions, as blue wildebeest are projected 

to shift their morning drinking period earlier, to dusk. This breakdown in association will 

likely have consequences as there will be less collective vigilance for predators. However, 

a new species association is likely to form as southern giraffe are expected to shift their 

visitation period to dawn, thus facilitating the association between this species and blue 

wildebeest. At Satara the species association between blue wildebeest and plains zebra 

will not be affected under extreme temperature conditions, as both of these species will 

shift their predominant visitation period from morning to dawn. These shifts to earlier 

visitation patterns for these herbivores may facilitate the overlap of activity periods 

between these preferred prey species and their predators.  

 

Most of the predators show an erratic response to temperature intervals, therefore 

predicting their behaviour under extreme temperature conditions is less accurate, 

however, carnivores may shift their visitation patterns later into the night in response to 

warmer evening temperatures. Spotted hyaena exhibited both diurnal and nocturnal 

visitation patterns, and were also observed to sit in the water sources. Under extreme 
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temperature conditions this carnivore may move towards a more diurnal visitation pattern, 

as their heat balance may demand it.  

 

A new species association under extreme temperature conditions will also form between 

impala and plains zebra, as well as African buffalo, which will all drink within the same 

time period. There may be reduced competition between the mega-herbivores African 

buffalo and African elephant under extreme temperature conditions, as African buffalo 

are likely to shift their predominant visitation period to dawn whilst African elephant are 

likely to shift their predominant visitation periods to dusk. Impala and blue wildebeest are 

the most sensitive species to increasing temperature, as they respond at the lowest 

temperature interval. African buffalo and African elephant exhibit the most extreme 

response to increasing temperature, as their shifts to earlier and later visitation patterns 

are the largest per 5°C increase in temperature. These species temporal visitation 

patterns will therefore be particularly influenced under climate change conditions, with a 

notable change in their behaviour. 

 

The increase in variation in rainfall patterns in KNP (van Wilgen et al., 2015) will mean 

that mammals will experience longer dry periods, thus particularly influencing mixed 

feeders and grazers such as impala, African elephant, blue wildebeest and plains zebra, 

species which have been noted to respond to rainfall cues. Certain herbivores are 

choosing to drink during the day to avoid predators, however, other herbivores are 

drinking during the day because their heat/water balance demands it. Warthog and 

chacma baboon are likely responding to predator avoidance, as these species maintain 

a strict diurnal visitation pattern, which is less influenced by temperature and rainfall 

conditions. Whilst mixed cues (temperature, rainfall and predator avoidance) are 

exhibited by impala, blue wildebeest and plains zebra, with these species exhibiting shifts 

in their visitation patterns as influenced by a combination of these factors.  
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6.9 Methodological Limitations  

The method used in this study to monitor mammal behavior at water sources, has not 

been widely employed to date. During the process of data collection and analysis, various 

limitations were encountered pertaining to the study sites, webcam, webcam and climate 

data and statistical analyses. Addressing these limitations should inform future research 

efforts using webcams to monitor mammal behaviour patterns.  

 

6.9.1 Study Site Limitations 

The data captured by the fixed webcams at Orpen and Satara are limited due to the 

continuous re-sampling of the two water source sites, therefore there is little context to 

the surrounding landscape. Artificial water sources supplement water in water scarce 

environments and are therefore likely to support higher numbers of mammals due to the 

permanent availability of water. Additionally, they are also likely to facilitate inter- and 

intra-species competition and interaction due to mammals congregating within these 

areas (Valeix et al., 2007a). There are many advantages of artificial water sources given 

that they provide a permanent supply of water to mammals, they are inexpensive to 

construct and require little maintenance. Artificial water sources provide a useful study 

site to conduct research on mammal behaviour, attracting a range of species (Valeix et 

al., 2008). Thus facilitating research on both large and small, diurnal and nocturnal 

mammals.  

 

Both study sites are located in close proximity to tourist roads as well as to the Orpen and 

Satara rest camps. It is likely that the presence of both tourists and cars may influence 

mammal behaviour and consequently whether mammals decide to come and drink from 

these artificial water sources (Weir & Davidson, 1965; Kamanda et al., 2008; Valeix et al., 

2008). Future studies could investigate whether this does affect specific species visitation 

patterns, by comparing mammal distribution at an artificial water source close to a rest 

camp/road with that of a water source situated in a remote area.  
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6.9.2 Webcam Image Limitations  

The method by which webcam images are captured differ according to the position of the 

webcam and the mode of the camera, both with disadvantages and advantages. The 

static camera mode allows for a consistent view of the entire waterhole/trough, however, 

it means that the captured images have a wide field of view. The panning camera mode 

captures images of the water source from different angles throughout the day, panning 

from one side of the waterhole/trough to the other, capturing a narrow field of view. The 

disadvantage of the latter mode is that mammals visiting the water source may not be 

captured if the camera is not focused on the animal(s) at a specific time. The wide or 

narrow field of view of the cameras is adjusted by SANParks, thereby providing online 

viewers of the webcams a different perspective of the water source. Given the high 

temporal resolution at which images are captured, the different views are only likely to 

influence the data received during the wet season when mammal visitations decrease 

and for species which visit the water sources infrequently.  

 

As expected, a considerable amount of time is required for image and data processing as 

reported by Ancrenaz et al. (2012). This is because a large number of images need to be 

individually viewed and interpreted due to the high temporal resolution required for data 

analysis. There are numerous 'data-empty’ images as the webcams capture images 

every 15-seconds, irrespective of whether or not mammals are visiting the artificial water 

sources. Consequently, large data storage systems are required to store the 'empty' 

images. The long-term storage of the images is therefore a potential concern, due to the 

sheer volume of images generated on a daily basis. However, the number of images 

received every month and the actual number of images which depicted mammals, was 

largely different, thus storage of the webcam images over a long-term period could be 

improved by discarding 'empty' images. It would be advantageous to develop a mammal 

recognition program which could archive only those images containing mammals. The 

pixel resolution of the webcam images is low, and it was therefore difficult to identify small 

mammals and avian species visiting the water sources, particularly in the early morning 

and late afternoon when shadows developed over the water sources. A higher pixel 
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resolution would improve the opportunity of identifying smaller species by enhancing the 

detail captured in the webcam images, as shown in a study by Verstraeten et al. (2010) 

which assessed the migratory patterns of birds using webcam technology. Therefore, the 

analysis of avian and small mammal species at the two water sources was excluded in 

this study. The reflection of the sun on the water at the Orpen artificial waterhole, and the 

resultant glare on the images between 6:00 - 8:00am during winter, confounded this.  

 

As expected, the recognition of individual mammals is not often feasible, as reported by 

(Bowkett et al., 2007). In the absence of tagging or marking individuals, it was not possible 

to identify whether the same individuals visited the water sources more than once a day; 

nor was it possible to record the exact time that each individual spent visiting the water 

sources. Addressing this short-fall would facilitate studies that specifically focused on the 

behavioural patterns of individuals. There is the possibility that resident animals (e.g. a 

local warthog clan staying close to Orpen waterhole) repeatedly utilise the waterhole, 

which is then not representative of the larger warthog population in the landscape. 

Prolonged webcam failure due to technical problems affected the continuity of the 

dataset. Large gaps in the data occurred due to power failures, resulting in missing 

imagery. Adverse weather conditions, especially rainfall affected the functioning of the 

webcam, specifically at Satara. Data received during the 2012 pilot project for the period 

March 2012 - August 2012 was manually forwarded by Steven Macintyre (SANParks) to 

the WITS FTP site, and various technological limitations were encountered with this 

process, thus resulting in large data gaps. To reduce the number of missing images, the 

automatic pull of webcam images on a daily basis was set up at the beginning of the 

Masters study.  

 

6.9.3 Climate Data Limitations 

Hourly temperature data were obtained from different sources, as during the pilot study 

in 2012, temperature loggers did not exist in close proximity to the study sites. 

Temperature data recorded at different sites are likely to have slight differences, due to 

different instruments used and differences in location. Gaps in the Hoedspruit hourly 
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temperature data are likely due to technological issues. There were no gaps in the rainfall 

data obtained from SAWS for the Kingfisherspruit and Nwanedzi rainfall stations.        

 

6.9.4 Statistical Limitations 

Gaps in the webcam and climate datasets (Table 6.3) were considered when performing 

statistical analyses, with missing images and temperature and rainfall values having 

implications for the accuracy and consistency of results, as also for the strength of the 

findings. A large percentage of missing webcam imagery for certain months may bias 

results, and therefore skew the data. Missing webcam data was not interpolated. Small-

sample sizes may result in anomalies and were therefore not interpreted. The proximity 

to other water sources, surrounding vegetation, presence of predators and local weather 

conditions, are all external factors which may play a part in shaping visitation trends at 

different water source locations. In this study, it was not possible to test all of the potential 

drivers of mammal water source visitation patterns. A further influence of these patterns 

could be attributed to the location of artificial water sources in close proximity to rest 

camps (i.e. Satara and Orpen), which could have a deterrent influence on the more timid 

species.  

 

6.9.5 Recommendations to Overcome Outlined Limitations 

Camera-traps could be placed at strategic points covering large areas (of specific 

landscapes within KNP), which could address the concern of limited contextual data due 

to the continuous re-sampling of one particular area. To capture data that represents a 

range of species, the cameras need to maintain a wide field of view of both of the water 

sources. The development of an image processing system which could filter and store 

images which contain mammals (Porter et al., 2010), would address the amount of time 

needed to interpret each individual image. Additionally, less storage space would be 

required to store images.   
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Table 6.4: Missing webcam imagery and temperature data for Orpen (March 2012 - March 2014) and Satara (April 2012 - March 2014).  

  Webcam Imagery Temperature Data 

  Orpen Satara 
Orpen 

Logger 
Satara 

Logger 
Hoedspruit 

SAWS    

Month 
% 

Images 
Missing 

No. of missing 
days   

No. of consecutive 
gaps  

% 
Images 
Missing 

No. of 
missing days  

No. of consecutive 
gaps  

No. of missing 
days 

No. of missing 
days 

No. of missing 
days 

Mar-12 63.8 16 13 - - - - - 0 

Apr-12 48.7 9 7 51.1 11 7 - - 0 

May-12 24.7 5 2 31.8 5 2 - - 0 

Jun-12 28.8 8 8 62.1 13 13 - - 0 

Jul-12 26.2 1 1 46.6 4 3 - - 0 

Aug-12 14.2 0 0 40.4 0 0 - - 0 

Sep-12 53.7 13 10 82.7 14 10 - - 0 

Oct-12 24.5 9 8 65.5 9 8 9 9 0 

Nov-12 60.4 11 6 53.6 7 7 0 0 0 

Dec-12 13.3 2 2 78.6 13 13 0 0 0 

Jan-13 19.8 2 1 53.1 8 8 0 0 0 

Feb-13 56.2 6 3 44.2 1 1 0 0 0 

Mar-13 65.9 8 5 42.1 4 3 0 0 0 

Apr-13 49.3 3 2 33.5 0 0 0 0 0 

May-13 55.8 8 8 42.8 0 0 0 0 0 

Jun-13 56.5 6 3 50.8 1 1 0 0 0 

Jul-13 46.7 4 1 43.5 4 1 0 0 0 

Aug-13 38.0 1 1 68.1 9 4 0 0 0 

Sep-13 33.4 0 0 44.1 1 1 17 17 0 

Oct-13 41.7 2 2 38.4 1 1 20 20 8 

Nov-13 36.1 0 0 32.9 0 0 0 0 0 

Dec-13 14.2 0 0 36.6 2 2 0 0 0 

Jan-14 27.3 2 2 29.6 0 0 0 0 0 

Feb-14 30.3 3 3 32.9 0 0 0 0 0 

Mar-14 33.4 3 2 32.6 0 0 0 0 0 
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Conclusion  
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Chapter 7 - Conclusion  

7.1 Introduction 

Monitoring mammal behaviour at artificial water sources utilising webcam imagery is a 

relatively innovative research methodology in the field of wildlife ecology (Valeix et al., 

2008; Hayward & Hayward, 2012). Over the last 40-years, numerous studies have 

documented mammal visitation patterns and behaviour at water sources, over different 

periods, using various research methods (Ayeni, 1975; du Preez, 1977; Epaphras et al., 

2008; Tefempa et al., 2008; Hayward & Hayward, 2012). The use of webcams for 

scientific observation and monitoring over long time periods has many potential benefits 

and can assist in answering ecologically relevant questions; in this instance investigating 

mammal behaviour over temporal and spatial scales in relation to environmental 

variables. Orpen and Satara are both situated in the central KNP which has benefitted 

from significant supplemental water provision in the past; thus the central region is likely 

supporting higher than normal mammal densities. However, there will be a significant 

reduction in surface water in the next five years due to the revised current water provision 

policy. Consequently, it is anticipated that these densities in central KNP will likely 

decrease, or rather redistribute, thereafter. This is based on the assumption of likely 

increased future water stress in the region, as supported by future projected climate 

change scenarios for north-eastern South Africa. It is essential to therefore investigate 

current water usage by mammals in KNP under contemporary climate conditions, and 

use this knowledge of water-use behaviours and reliance to inform changes in provision 

policies under climate change.  

 

Within this framework, the primary aim of this study was to contribute to understanding 

the water-use patterns of mammals and how these are impacted by environmental and 

especially climate variables. Webcam imagery from March 2012 – March 2014 has 

provided information on species-specific water source visitation patterns under various 

climatic and astronomical conditions, and across seasonal changes. The fine temporal 

scale (15-seconds) of the imagery, which is unique to this study, has allowed for a more 
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complete representation of mammal water source utilisation patterns than presented in 

previous studies. Further to this, the likely responses of species under extreme 

temperature reduced rainfall conditions, and the consequences of these responses for 

species interactions, competition and behaviour are demonstrated.  

 

7.2 Consolidation of Research Findings 

Six study objectives were formulated to achieve the broad aim of the study. A 

consolidation of the most significant findings under each objective is presented here.  

 

1. To track mammal visitation patterns at two artificial water sources, over a 24- (Satara) 

and 25-month (Orpen) period using remote imagery, in the central KNP. 

 

Webcam data were analysed to determine the fine scale temporal visitation patterns of 

mammals at the Orpen and Satara artificial water sources. Species, number of 

individuals, and the times they were observed at the water sources, were recorded every 

15-seconds between March 2012 – March 2014. In order to determine the peak visitation 

periods for each species at the water sources, their visitation patterns were grouped into 

eight categories, from dawn to early morning.  

 

Orpen waterhole had 44.69% more mammal visitations than Satara, likely due to the 

higher number of predators around Satara, which may be contributing to higher herbivore 

numbers at Orpen opposed to Satara. Notably, hippopotamus were only observed at 

Orpen waterhole, along with leopard and vervet monkey. Carnivores have a higher 

percentage representation at Satara (9.15% of all mammal visits) relative to Orpen 

(3.46%). Herbivores, in particular mixed feeders and grazers, were the most commonly 

observed species at both water sources, validating their need to drink on a regular basis. 

Identifying specific species within these two feeding guilds informs management of their 

reliance on these water sources. Carnivores and primates were the least sighted species 
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at both water sources, indicating their water-independence and validating literature (e.g. 

Skinner & Chimimba, 2005).  

 

Predominant daily visitation times were documented for each observed species, with 

cluster analysis grouping species which exhibit similar diel visitation patterns. This 

approach highlighted a notable divide between diurnal (herbivores and primates) and 

nocturnal (carnivores) species visitation patterns. These results were expected, with 

previous studies (e.g. Ayeni, 1975; Hayward & Hayward, 2012) identifying similar patterns 

of visitation, and the predominantly diurnal pattern displayed by herbivores, likely being 

in response to the threat of predation during the night. Exceptions to this pattern displayed 

by herbivores are noted for African buffalo, African elephant, hippopotamus and common 

duiker.  

 

African civet, common duiker, greater kudu and warthog exhibited strong dry season 

preference in their use of both of the water sources. However, the strongly water-

dependent blue wildebeest exhibited no seasonal preference, thus relying on artificial 

water sources equally during the wet and dry seasons. Most of the grazers and some 

mixed feeders, also water-dependent species, rely heavily on artificial water sources 

during the dry season and will experience greater vulnerability to the drought conditions 

which are projected to become more frequent and severe under climate change scenarios 

(Duncan et al., 2012).  

 

2. To establish mammal water source visitation patterns (daily and monthly) and reliance 

under ‘normal’ rainfall and temperature conditions and more particularly under 

‘extreme’ (any conditions that fall outside of the standard deviation for the data 

analysed) climate conditions. 

 

At both water sources, broadly pooled species relationships with hourly Tavg across the 

study period indicate that mammal visitations typically decrease during the afternoon 

when the hottest temperatures are experienced. However, significant positive 
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relationships with monthly Tavg were exhibited for the majority of herbivores, 

demonstrating that the number of visitations increased with an increase in monthly Tavg, 

with these species drinking more during the hotter months. Conversely, the majority of 

carnivores exhibited a significant negative relationship with monthly Tavg, demonstrating 

a decrease in visitations during spring and summer. These patterns validate the distinct 

differences in water needs displayed by the two main feeding guilds. Correlation and 

regression analyses of mammal visitation patterns with hourly Tavg highlighted that 

herbivores are shifting their visitation periods earlier in the day by 36 minutes (at Orpen) 

and by 120 minutes (at Satara) per 5°C increase in mean daily temperature. In contrast, 

carnivores are shifting their visitation periods later into the night by 120 minutes (at Orpen) 

and by 18 minutes (at Satara) per 5°C increase in mean daily temperature. The large 

difference in species behaviour at Orpen and Satara in response to temperature suggests 

that there is a lot of variability of drinking patterns between the two sites. These 

differences may also reflect the plasticity of species behaviour as controlled by different 

variables between sites. However, at both water sources, impala (highly water-

dependent) are the most sensitive species to increasing mean daily temperature, as they 

initiate a shift in their visitation periods at Tavg ≥ 15°C.  

 

Mean species sightings are significantly higher on days before rainfall compared to days 

after rainfall, suggesting that reliance on these artificial water sources is higher when 

there is less natural water available in pools and rivers. However, there was no clear 

divide between species responses to the presence and absence of rainfall, with no 

species or guild driving the pooled species response. These results suggest that water 

may need to be supplemented on a seasonal basis to sustain the water needs of 

particularly water-dependent species.  

 

3. To establish mammal water source utilisation behaviour patterns (daily and monthly) 

under ‘normal’ rainfall and temperature conditions and more particularly under 

‘extreme’ climate conditions. 
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Throughout the study period, species behaviour at the artificial water sources was 

documented. Herbivores, in particular grazers and mixed feeders, were identified having 

more species associations compared to browsers, carnivores and primates. Additionally, 

grazers and mixed feeders congregated at the water sources in large herds, and in 

contrast, individuals within the latter feeding guilds were mostly solitary. At Orpen 

waterhole, hippopotamus, African buffalo and warthog were observed wallowing in the 

waterhole, and this behaviour can be linked to periods of higher Tavg (20°C - 40°C). These 

behaviours indicate that the artificial water sources are not only being used to meet the 

water requirements of mammals, but also as a thermoregulatory mechanism to tolerate 

extreme temperatures. This would likewise explain African elephant spraying themselves 

with water, and spotted hyaena sitting in the water, as observed at the Satara water 

trough.   

 

4. To establish whether various mammal species utilise the artificial water sources in 

proportion to their abundance in the area, or if specific species favour or avoid these 

artificial water sources.  

 

Observed herbivore visitation at Orpen waterhole shows stronger relationships with 

regional estimates than those at Satara. This suggests that at least in the Orpen area, 

herbivores are using the artificial water source in relative proportion to their landscape 

and regional abundance. However, the fewer strong correlations and overall weaker 

correlations for Satara suggest that species here may be drinking from other nearby water 

sources (Table 5.32). The relatively similar proportional visitation of the majority of 

grazers and mixed feeders at the artificial water sources, in relation to their regional, local 

and landscape densities, demonstrates that these water-dependent species are not 

displaying preferential or avoidance behavior in their use of the water sources. 

Conversely, water-independent browsers exhibited avoidance behaviour as their 

regional, local and landscape percentage abundances are greater than their relative 

presence at the water sources.  
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5. To determine the impact of various other environmental conditions (sunrise, sunset 

and moon phases) on water source visitation patterns and behaviours.  

 

For most species, weak relationships exist between peak daily visitation times and 

sunrise and sunset. It was expected that the peak daily visitation times for herbivores 

might show positive relationships with both sunrise and sunset, allowing species to 

capitalize on the longer period of daylight. However, only exclusively diurnal warthog 

displayed this expected relationship, and adjust its water visitation periods according to 

the seasonal variation in day length. Conversely, a negative relationship with both sunrise 

and sunset might have been expected for carnivores, however, at neither water sources, 

did carnivores exhibit such a pattern. It was further expected that nocturnal species would 

be less frequently sighted at water sources on full moon nights, as hunting success has 

been found to decrease during such periods. However, again no significant relationships 

with the maximum number of sightings of nocturnal mammals were shown with any 

particular moon phase.  

 

7.3 Touristic Appeal of Webcams  

Artificial water sources benefit mammals as well as having touristic appeal, with a large 

number of tourists viewing mammals utilising the water sources online and whilst they are 

in the park. This study has been able to contribute useful information about mammal 

behaviour at artificial water sources, therefore adding value to the project and SANParks 

webcam tourist initiative (Table 7.1). The viewing opportunities that occur outside of 

permitted camp opening hours are limited to official park activities (night drives) or online 

viewing. Tourists in KNP are permitted to be driving around outside of camps during the 

following times:  

 

• Nov, Dec and Jan: 4:30 – 18:30 

• Oct, Feb and Mar: 5:30 – 18:00 

• Aug, Sep and Apr: 6:00 – 18:00 

• May, Jun and Jul: 6:00 – 17:30 
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Table 7.1: Tourist information detailing the most opportunistic sighting periods (time and month) per species at each artificial water source. Species 

that most consistently visit at particular times are highlighted.  

Orpen  Satara  

Visitation 
Period 

Species  Time Month  
Visitation 
Period 

Species  Time Month  

Morning Blue wildebeest 8:00 - 10:59 December  Dawn African buffalo 5:00 - 7:59 July 

Plains zebra 8:00 - 10:59 August Morning Chacma baboon 8:00 - 10:59 October 
Midday  Chacma baboon 11:00 - 12:59 July Impala 8:00 - 10:59 December 

Impala 11:00 - 12:59 August Blue wildebeest 8:00 - 10:59 December 

Greater kudu 11:00 - 12:59 August Plains zebra 8:00 - 10:59 June 

Mongoose 11:00 - 12:59 March  Midday  Southern giraffe 11:00 - 12:59 April 

Vervet monkey 11:00 - 12:59 July Greater kudu 11:00 - 12:59 August 

Warthog 11:00 - 12:59 August Warthog 11:00 - 12:59 September 
Afternoon African wild cat 13:00 - 16:59 November Afternoon African elephant  13:00 - 16:59 November 

Southern giraffe 13:00 - 16:59 August Early Night African wildcat 20:00 - 22:59 August 
Dusk African buffalo 17:00 - 19:59 July Black-backed jackal  20:00 - 22:59 July 

Common duiker 17:00 - 19:59 August Mongoose 20:00 - 22:59 March  

African elephant 17:00 - 19:59 August Spotted hyaena 20:00 - 22:59 May 

Leopard 17:00 - 19:59 August Midnight Honey badger 23:00 - 1:59 September 

Serval 17:00 - 19:59 April Lion 23:00 - 1:59 December 
Early Night African civet  20:00 - 22:59 June Serval 23:00 - 1:59 May 

Honey badger 20:00 - 22:59 August Small-spotted genet 23:00 - 1:59 December 

Lion 20:00 - 22:59 December  Early Morning African civet 2:00 - 4:59 July 
Midnight Black-backed jackal  23:00 - 1:59 August Common duiker 2:00 - 4:59 August 

Hippopotamus 23:00 - 1:59 June      

Spotted hyaena 23:00 - 1:59 August      
Early Morning Small-spotted genet  2:00 - 4:59 June         
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The periods of tourist activity thus mirror seasonal changes in sunrise and sunset. Official 

night drives give tourists the advantage of extended viewing hours, however, these drives 

return to the camps around 10/10:30pm. Therefore, any peak activity occurring later than 

those hours will only be for the benefit of online viewers. The SANParks webcam initiative 

thus provides online viewers with the opportunity to view species which they would not 

normally encounter in the park during the specified gate hours.  

 

Additionally, a community of online webcam viewers has developed, with regular visitors 

posting highlights on a daily basis. With what is now essentially a continuous monitoring 

system where online viewers from different countries, not only view, but capture and 

comment on the highlights from the webcam imagery at these water sources. The online 

viewers are therefore able to monitor the webcams at a fine temporal scale, over the 24-

hour period which would provide representative data, across species and seasons. The 

webcam forum provides a platform through which online viewers could contribute to the 

long term monitoring of mammal visitation patterns at the water sources. Providing data 

which could be utilised in future studies, and establishing a long-term data record. The 

suggestion is to create what is essentially an open source monitoring system, by adding 

a tick box form to any image that is posted on the forum. This will allow any online viewer 

the opportunity to tick the species and number of individuals/species sighted as observed 

on the webcam or webcam image. This forum would then form part of a citizen science 

project, which would engage the general public in science. Citizen science is a growing 

research tool, particularly within the field of ecology, with ‘citizen scientists’ contributing 

to projects involving climate change and population monitoring (Silvertown, 2009).  

 

7.4 Implications for Water Provision in Wildlife Areas  

A priority for management of national parks, and particularly smaller reserves, is to 

monitor habitats, the resource usage of mammals, and determine potential threats 

biodiversity will face due to anticipated future climate change (McGeoch et al., 2011). 

SANParks management follows a learn-by-doing approach, relying on contemporary 
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research to inform decisions, as well as taking into account future projected climatic and 

environmental changes (Mabunda et al., 2003).  

 

The management implications noted within the context of this study are linked to the 

SANParks and KNP management mission, which is guided by both the over-arching 

biodiversity objectives as well as tourism requirements (SANParks, 2005). The broad 

management objective is to maintain mammal populations in as natural environment as 

possible, and underlying this are lower-tier ecosystem and biodiversity objectives 

(SANParks, 2005). The findings of this study contribute towards objectives within the 

context of 'water-in-the-landscape', and more specifically artificial water provisioning, 

providing knowledge on species-interactions at artificial water sources, concerning 

species associations, competition and predator-prey relationships, as well as informing 

management on different species reliance on supplemental water. Further to this, the 

study contributes towards the atmospheric effects objective, providing information 

concerning the contemporary control of rainfall and temperature on mammal behaviour. 

Additionally, shifting mammal visitation patterns in response to different temperature 

thresholds provides a forward looking representation of how mammal visitation patterns 

may be influenced by future climate change. The concept diagram (Figure 7.1) represents 

a summary of the most common responses of species to changes in temperature, rainfall, 

sunrise and sunset. Impala are the most sensitive species within this study, initiating a 

change in visitation patterns at the lowest temperature. At Tavg ≥ 15°C a shift towards 

earlier visitation as well as a higher number of individuals are observed. The broad 

contribution of this study therefore provides a foundation for future research to be 

expanded on, or a point of reference for similar research projects going forward. This 

study thus serves as a baseline off which changes in this environment, or other 

environments could be measured and compared.  

 

The daily, monthly and seasonal reliance of particular species on artificial water sources 

informs discussions and policies concerning the supplementation of water in future, and 

whether they should be terminated, continued or changed on a seasonal basis in relation 
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to prevailing climatic conditions. In the context of future climate change and the resultant 

decreasing natural water supplies, water provisioning policies may need to be further 

revised given that artificial water sources may become more essential. Artificial water 

source provision, however, should not be based exclusively on the needs of water-

dependent mammals, with this research highlighting that various other factors, such as 

thermoregulation, caching and the abundance and distribution of species within specific 

regions (influenced by forage availability), need to be taken into account (Smit et al., 

2007a).  

 

 
Figure 7.1: Concept diagram of the significant relationships, at both Orpen and Satara, between mammal behaviour 
responses to climatic (hourly Tavg and rainfall) and astronomical (sunrise and sunset) drivers.  

Red shapes indicate carnivore responses. Green shapes indicate herbivore responses. Zebra* exhibited different 
responses to T

avg
 at Orpen and Satara, shifting their visitation period earlier at T

avg
 ≥ 20°C at Satara and only at T

avg
 

≥ 30°C at Orpen. Positive and negative relationships are shown with a plus or minus sign. The direction of the blue 
lines indicate either an increase or decrease in the number of individuals utilising the water sources in response to 
the absence or presence of rainfall. Solid thick green and red lines represent the optimal visitation period/temperature 
range. Tapered green and red shapes represent the shift (earlier or later) in time due to an increase in T

avg
. 
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7.4.1 Management Recommendations  

The projected changes of mammal drinking patterns under increasing temperature and 

reduced rainfall conditions will impact the management of artificial water sources in KNP. 

The current water provisioning policy is closing down artificial water sources which are 

not located in areas where natural water sources exist. The decision of which artificial 

water sources management should close down, should also take into account not only 

the location but the structure of the water source itself. A more holistic approach to water 

provisioning including, particular species behaviour, location, structure and volume of 

water should be considered so as to benefit a wider range of species needs.  

 

With the observation that species not only use the water sources for drinking purposes 

but for additional purposes such as thermoregulation and caching, it is recommended that 

the long, narrow, water trough structure is less suited to a wider range of species needs. 

However, under extreme conditions it has been noted that aquatic mammals such as 

hippopotamus will utilise the artificial water sources as they are the only deep pools of 

water available.  

 

The location of artificial water sources and the abundance of predators and herbivores 

within the different KNP landscapes should be taken into account when analysing the 

temporal utilisation of water sources and the level of dependence on water, considering 

the observation that a higher number of mammals utilised Orpen waterhole, compared to 

Satara. The difference in species responses to temperature across the two study sites 

highlights the variability of behaviour of the same species in different landscapes, 

reflecting their plasticity in terms of behaviour. 

 

The structure and surface of artificial water sources can be dangerous for certain 

mammals. On two isolated occasions, a giraffe slipped into Orpen waterhole and 

struggled to lift itself out, possibly due to algae on the surface, making it slippery. One 
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giraffe managed to retrieve itself, while the other died as a consequence of slipping. The 

structure (design) of artificial water sources thus needs better consideration of lining 

methods and side slopes.  

 

It was witnessed that large herds of African buffalo and African elephant drained the 

Satara water trough. The smaller water troughs provide less water and are less likely to 

sustain the drinking needs of sizeable herds of large mammals. Thus in landscapes where 

these species are known to occur in large herds, artificial water sources should be sized 

to provide an adequate volume of standing water.  

 

7.5 Recommendations for Future Research  

The new water provision policy aims to supplement water in accordance with the natural 

distribution and availability of water which exists in KNP (Venter & Smit, 2011). Within this 

context, longer term studies could be carried out, utilising fine resolution remote imagery 

collection. Future studies that collect data over a longer period could compare multiple 

years, comprising drought conditions, flooding and average rainfall, as well as hotter than 

average years to determine whether the temporal patterns of visitation differ between 

extreme periods (Valeix, 2011). 

 

There is also the potential for a comparison project, which could identify the difference in 

water visitation patterns at natural water sources compared to artificial water sources, 

which are situated in close proximity to tourist roads and camps. Camera traps could be 

utilised to capture imagery at more remote locations, without too much interference on 

the surrounding environment. To establish whether mammal drinking patterns are 

representative throughout KNP, there is the opportunity to monitor artificial water sources 

which are situated in different landscapes within the KNP environment. The landscapes 

in KNP comprise of various geologies, vegetation, climate and mammals and therefore 

require different management strategies (Gertenbach, 1983). Mammal drinking patterns 

could also be studied in different national parks which are situated in distinct biomes 
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across the South African landscape. Comparisons could then be drawn between mammal 

drinking patterns in diverse climatic environments such as KNP, Kgalagadi Gemsbok 

National Park and Addo Elephant National Park. There is also the potential for future 

studies to explore individual mammal behaviour patterns at artificial water sources, which 

would be aided by tagging and GPS tracking mammals, thus allowing their daily water 

requirements and movements to water sources, to be tracked.  

 

7.6 Epilogue 

During the study period hippopotamus visitation at Orpen waterhole peaked during the 

dry season (84.62%) at midnight (23:00 - 1:59), although was fairly limited/rarely 

observed. Continued monitoring of the webcam imagery beyond the time frame of this 

project has revealed an adjustment in hippopotamus visitation times, daily and seasonally 

since, almost certainly due to the severe drought currently being experienced in KNP. 

Hippopotamus primarily graze nocturnally (Smuts & Whyte, 1981). However due to the 

drought they are shifting towards diurnal grazing patterns, as they need to travel further 

to find suitable forage. Additionally, during drought, fewer suitable pools of water for 

wallowing are available, and the in last remaining pools, large concentrations of 

hippopotamus can be found, which increases species-interactions and competition 

(Smuts & Whyte, 1981). Consequently, these pools become congested with these large 

herbivores and additionally become clogged with excrement (Smuts & Whyte, 1981). 

Under current drought conditions, two hippopotamus have become resident in the Orpen 

waterhole and have clogged it up (Figure 7.2a,b). This effectively makes the artificial 

water source, which is critical in the provision of supplemental water during times of 

limited natural availability, unavailable to other species within the mammal community, 

which might have been able to find other water sources if the park were ‘open’ to the 

larger landscape. The behavioural change of hippopotamus in response to the current 

drought in KNP, is an example of the resultant reliance on these artificial water sources 

during extreme climatic conditions. The shifting visitation patterns of this species has 

considerable ecological consequences, impacting on other species that utilise Orpen 

waterhole, and further to this will affect species interactions and competition. 
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a b 

Figure 7.2: a) Hippopotamus utilising Orpen waterhole during the day, likely due to the severe drought and 

b) Orpen waterhole clogged with hippopotamus excrement, and a warthog attempting to drink. 
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Appendix 

A.1 Orpen - Pooled species monthly totals, and pooled species hourly totals                           

Month  
1
:0

0
:0

0
 

2
:0

0
:0

0
 

3
:0

0
:0

0
 

4
:0

0
:0

0
 

5
:0

0
:0

0
 

6
:0

0
:0

0
 

7
:0

0
:0

0
 

8
:0

0
:0

0
 

9
:0

0
:0

0
 

1
0
:0

0
:0

0
 

1
1
:0

0
:0

0
 

1
2
:0

0
:0

0
 

1
3
:0

0
:0

0
 

1
4
:0

0
:0

0
 

1
5
:0

0
:0

0
 

1
6
:0

0
:0

0
 

1
7
:0

0
:0

0
 

1
8
:0

0
:0

0
 

1
9
:0

0
:0

0
 

2
0
:0

0
:0

0
 

2
1
:0

0
:0

0
 

2
2
:0

0
:0

0
 

2
3
:0

0
:0

0
 

0
:0

0
:0

0
 

Monthly 
Total  

Mar-12 4 2 1 0 1 0 8 33 71 87 41 73 54 6 46 7 70 48 4 6 2 2 3 0 569 

Apr-12 4 5 2 8 9 0 3 11 13 42 64 69 75 21 51 43 18 7 4 9 6 0 1 6 471 

May-12 9 8 7 14 7 2 19 43 132 164 182 224 154 108 97 97 61 31 39 13 24 8 18 5 1466 

Jun-12 16 12 10 5 6 11 9 32 136 349 306 307 329 106 106 61 76 40 25 31 23 19 15 23 2053 

Jul-12 23 16 21 10 7 2 7 101 383 772 619 409 308 129 83 61 96 39 33 22 33 33 22 24 3253 

Aug-12 29 20 15 15 10 6 52 153 514 561 505 378 295 215 108 126 116 84 47 26 31 15 18 23 3362 

Sep-12 1 0 0 0 0 0 0 7 9 38 27 43 19 20 14 4 19 8 6 3 2 10 0 2 232 

Oct-12 0 4 3 0 3 1 14 13 39 35 18 1 28 15 12 17 14 1 0 2 4 3 4 6 237 

Nov-12 2 0 0 1 0 2 7 4 5 55 35 69 29 29 5 9 3 1 2 0 8 1 3 2 272 

Dec-12 23 3 1 1 4 4 61 45 120 102 111 59 101 44 12 9 5 19 28 25 3 8 3 13 804 

Jan-13 2 2 2 1 2 4 52 106 172 121 104 116 66 77 83 38 13 15 23 8 3 3 2 1 1016 

Feb-13 0 2 1 2 1 2 3 15 62 35 66 83 94 29 47 84 21 9 1 3 1 2 1 0 564 

Mar-13 11 8 5 1 3 4 33 22 29 136 51 82 65 18 18 31 16 25 4 4 10 2 17 3 598 

Apr-13 5 6 10 4 2 6 3 10 25 17 86 36 104 52 26 16 25 8 7 8 3 4 5 5 473 

May-13 18 5 5 7 7 3 2 4 20 21 53 59 41 24 43 13 7 8 4 9 9 14 3 4 383 

Jun-13 6 7 3 5 5 2 2 65 59 170 322 145 196 175 78 49 43 14 7 9 3 2 11 5 1383 

Jul-13 3 2 5 2 7 3 5 30 127 211 257 270 201 73 115 44 35 41 15 7 1 9 6 6 1475 

Aug-13 11 6 13 2 17 3 46 117 153 388 393 299 134 112 53 49 12 19 0 5 8 19 5 7 1871 

Sep-13 22 10 21 15 7 5 92 232 556 583 392 215 195 98 57 52 34 15 15 23 14 10 18 9 2690 

Oct-13 6 8 11 13 7 26 76 357 279 182 187 107 76 89 60 24 52 37 49 21 10 13 32 8 1730 

Nov-13 5 0 2 1 8 12 53 164 115 105 51 78 42 98 36 98 64 36 16 7 10 12 6 11 1030 

Dec-13 4 9 9 3 3 71 146 106 287 232 239 207 189 143 65 74 58 23 42 17 14 9 14 9 1973 

Jan-14 11 1 5 0 3 25 33 19 28 61 73 82 63 66 60 35 5 0 0 0 2 17 4 6 599 

Feb-14 0 6 1 1 1 0 12 32 23 82 138 90 158 143 44 73 60 39 1 11 15 5 2 1 938 

Mar-14 3 8 3 1 0 1 6 62 16 93 68 160 77 58 41 19 59 37 5 3 2 1 1 10 734 

Hourly 
Total  218 150 156 112 120 195 744 1783 3373 4642 4388 3661 3093 1948 1360 1133 982 604 377 272 241 221 214 189 30176 
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A.2 Satara - Pooled species monthly totals, and pooled species hourly totals                            

Month 
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Monthly 
Total  

Apr-12 6 20 20 6 10 17 62 101 235 111 105 152 58 72 31 49 27 18 33 26 12 10 3 13 1197 

May-12 16 19 20 5 8 8 39 81 172 144 180 79 25 31 63 41 25 33 53 37 27 22 36 16 1180 

Jun-12 11 4 5 1 0 2 12 43 116 154 148 91 60 75 62 23 18 28 18 11 7 12 14 6 921 

Jul-12 4 10 16 16 20 7 56 63 227 155 126 156 60 96 54 35 50 38 20 31 18 12 9 8 1287 

Aug-12 17 11 16 14 11 43 44 72 259 174 141 94 75 51 28 28 30 37 37 23 19 17 18 10 1269 

Sep-12 1 0 0 0 1 14 1 20 61 16 3 23 13 9 9 7 35 5 16 7 0 3 1 1 246 

Oct-12 1 5 3 0 2 11 14 0 5 3 3 1 1 1 0 8 1 13 11 14 0 2 0 4 103 

Nov-12 5 6 2 7 17 62 47 34 29 2 11 10 16 9 8 19 23 62 17 5 16 5 3 2 417 

Dec-12 18 0 5 4 23 36 48 71 49 18 46 26 6 20 37 12 28 26 50 3 1 4 1 1 533 

Jan-13 5 3 1 0 14 109 75 103 43 24 26 41 30 42 14 38 63 34 57 15 6 4 1 0 748 

Feb-13 3 6 0 7 7 44 91 75 98 84 113 43 64 59 49 55 55 54 44 18 3 7 2 3 984 

Mar-13 7 5 10 1 2 3 114 96 113 118 40 57 46 28 38 7 38 14 7 4 6 10 2 9 775 

Apr-13 2 6 2 0 4 2 25 30 15 20 63 49 56 18 19 11 6 5 4 9 4 5 2 16 373 

May-13 2 9 2 2 3 3 43 15 55 17 35 15 28 12 1 12 33 18 18 3 4 4 2 1 337 

Jun-13 9 6 13 2 3 6 56 74 54 120 74 19 81 3 33 1 35 29 13 25 16 16 8 6 702 

Jul-13 11 14 5 8 10 9 20 44 60 48 44 45 8 7 6 20 25 25 9 13 7 10 8 7 463 

Aug-13 1 8 4 4 3 0 19 31 32 39 15 24 4 1 15 7 5 5 13 14 2 2 3 6 257 

Sep-13 5 9 13 6 8 44 24 59 27 18 5 11 13 14 7 6 26 21 45 23 13 13 8 7 425 

Oct-13 3 16 4 2 5 20 14 33 34 25 13 17 9 3 8 28 26 13 15 20 10 10 13 4 345 

Nov-13 17 5 16 7 9 26 26 56 24 9 48 46 19 43 35 42 43 32 20 30 12 5 8 7 585 

Dec-13 19 10 25 15 40 191 266 156 33 67 44 35 110 68 63 79 56 133 178 32 9 21 11 20 1681 

Jan-14 7 12 9 4 4 84 233 91 41 37 21 20 6 18 12 52 47 48 32 25 10 9 10 18 850 

Feb-14 10 3 3 0 2 2 68 106 80 50 40 83 39 12 0 75 9 6 27 5 3 4 1 2 630 

Mar-14 5 16 3 1 0 7 105 32 18 17 27 23 14 32 2 8 0 49 4 5 3 5 4 2 382 

Hourly 
Total  185 203 197 112 206 750 1502 1486 1880 1470 1371 1160 841 724 594 663 704 746 741 398 208 212 168 169 16690 
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A.3 Orpen - Species monthly totals                                             
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Species 
Total  

African wild cat 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 3 

Chacma 
baboon 

79 46 29 35 64 65 8 16 17 44 95 17 50 29 50 82 93 50 14 46 26 101 52 88 65 1261 

Black-backed 
jackal  

9 8 38 60 54 95 4 6 2 0 2 0 10 7 6 20 10 27 30 17 6 12 0 1 0 424 

African buffalo 13 36 50 138 154 141 6 7 6 79 15 3 7 19 27 30 36 15 63 59 4 6 0 2 0 916 

Caracal 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

African civet 0 3 9 19 11 6 0 0 0 0 0 0 0 0 4 10 2 0 3 4 0 0 1 0 0 72 

Common 
duiker 

0 0 7 42 65 77 9 1 0 0 0 0 0 0 0 2 6 2 6 4 0 0 0 0 0 221 

African 
savanna 
elephant  

41 13 127 29 137 120 27 5 31 55 21 1 48 35 44 4 120 149 118 231 76 112 33 27 70 1674 

Small-spotted 
genet 

1 3 4 8 3 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 2 1 0 1 1 29 

Southern 
giraffe 

11 7 5 14 5 21 3 0 0 0 1 0 1 1 13 7 7 33 30 40 7 0 0 0 0 206 

Hippopotamus 0 0 0 9 0 1 0 0 0 2 1 0 0 0 2 3 4 2 1 0 0 1 0 0 0 26 

Honey badger 0 0 4 8 4 7 0 4 1 1 0 0 5 1 0 2 2 5 9 1 0 2 2 1 0 59 

Spotted 
hyaena 

4 5 10 16 17 34 4 10 2 3 4 4 2 14 7 7 10 14 22 10 4 6 10 0 0 219 

Impala 160 114 480 968 1528 1509 98 99 117 363 481 214 65 168 51 620 742 1137 1887 849 680 1047 380 503 436 14696 

Greater kudu 18 24 54 32 88 122 18 9 4 8 4 4 2 6 5 42 48 121 106 86 30 16 5 0 5 857 

Leopard 1 2 5 3 2 10 0 1 3 0 1 0 0 2 4 4 4 2 4 0 0 2 0 1 0 51 

Lion 1 0 8 5 0 0 0 0 0 0 2 0 2 0 0 0 2 6 9 0 4 18 2 12 2 73 

Mongoose 0 6 12 2 0 0 0 0 0 1 0 0 20 5 4 17 0 1 2 3 19 2 0 1 13 108 

Nyala 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

Serval 1 0 0 0 0 0 0 0 0 1 0 0 0 2 0 1 0 0 0 1 0 0 0 0 0 6 

Vervet Monkey 0 3 33 63 134 43 1 5 0 3 4 0 1 6 17 13 8 3 5 3 2 0 2 2 2 353 

Warthog 80 118 288 368 559 607 27 29 25 34 58 33 57 69 69 185 170 185 214 152 82 56 24 34 33 3556 

Waterbuck 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

African wild 
dog 

0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

Blue 
wildebeest 

143 64 229 95 192 166 5 45 29 111 272 217 234 79 43 158 100 105 83 172 74 514 55 154 45 3384 

Plains zebra 6 19 72 139 236 338 21 0 35 99 55 70 94 30 36 175 109 12 84 52 12 76 33 111 62 1976 

Monthly 
Total  

569 471 1466 2053 3253 3362 232 237 272 804 1016 564 598 473 383 1383 1475 1871 2690 1730 1030 1973 599 938 734 30176 
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A.4 Satara - Species Monthly Totals                                             

Mammal 
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Species 
Total  

African wild cat 0 0 1 1 10 1 4 0 1 0 3 1 2 0 3 8 10 11 14 7 6 7 5 0 95 

Chacma baboon 15 6 12 6 11 1 4 16 7 9 19 4 34 24 29 14 1 32 56 20 7 47 21 4 399 

Black-backed jackal 23 72 48 70 86 6 6 10 5 8 17 21 1 10 34 35 14 28 26 35 54 41 9 25 684 

African buffalo 55 85 19 92 54 32 23 50 32 14 15 0 4 13 4 12 19 42 14 13 21 0 1 1 615 

African civet 0 0 0 0 3 0 3 0 0 0 0 0 0 5 12 13 9 10 1 1 1 1 0 0 59 

Common duiker 0 0 3 6 3 0 0 0 0 0 0 0 0 0 0 0 8 11 4 2 0 0 0 0 37 

African savanna 
elephant  

5 6 12 20 12 10 10 61 14 60 9 11 8 2 6 2 1 2 14 28 13 8 25 16 355 

Small-spotted genet 0 1 0 0 0 0 0 0 0 0 0 1 1 0 3 3 0 2 3 4 11 3 0 0 32 

Southern giraffe 57 22 2 3 2 0 3 0 0 4 0 4 7 6 5 0 2 4 4 0 2 0 6 6 139 

Honey Badger 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 1 0 0 2 8 

Spotted hyaena  26 69 28 50 71 9 13 17 10 9 15 17 12 12 17 28 8 30 12 19 15 7 6 7 507 

Impala 437 434 194 517 415 51 14 66 304 384 318 300 100 65 185 84 89 112 96 291 721 205 257 180 5819 

Greater kudu 34 25 4 11 21 0 0 0 0 0 0 0 0 1 4 4 17 16 0 19 0 0 0 0 156 

Lion 0 8 6 1 0 0 0 4 0 4 0 0 7 0 0 0 0 5 9 13 22 12 5 14 110 

Mongoose 0 0 0 0 0 0 0 0 0 0 2 13 3 3 1 0 0 0 0 1 1 0 0 6 30 

Serval 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 

Warthog 6 4 1 0 0 0 0 0 0 0 0 0 0 0 1 15 15 17 1 0 3 3 1 0 67 

Blue wildebeest 326 236 152 148 152 54 18 127 127 204 346 367 176 156 328 120 21 51 58 112 620 362 196 87 4544 

Plains zebra 213 211 439 362 429 82 5 66 33 52 240 36 18 39 70 125 43 47 33 20 183 154 98 34 3032 

Monthly Total 1197 1180 921 1287 1269 246 103 417 533 748 984 775 373 337 702 463 257 425 345 585 1681 850 630 382 16690 

 


