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ABSTRACT 

At a number of gold mines in South Africa, the presence of methane gases has been 

encountered when drilling into faults and/or dyke structures extending to depths 

beyond 4.5 km. Methane gas has been reported to have migrated through structures 

from within the basin to the mine working environments (~3.0 km depths) and 

caused explosions. The Booysens Shale is considered one of the possible source rocks 

for hydrocarbons and it forms the footwall to the gold-bearing Ventersdorp Contact 

Reef (VCR, ~ 1.5 m thick). The Booysens Shale lies at depths between 3.5 km and 4.5 

km below land surface and can be best described as the base of the divergent clastic 

wedge which thickens westward, hosting the quartzite and conglomerate units that 

sub-crop against the VCR towards the east of the gold mining areas.  

Geometric attributes (dip and dip azimuth) and instantaneous attributes (phase, 

frequency and envelope) computed for the Booysens Shale and Ventersdorp Contact 

Reef horizons (interpreted from 3D prestack time migrated data acquired in the 

Witwatersrand goldfields) provide insight into structures that extend from the 

Booysens Shale into the overlying mining level, the Ventersdorp Contact Reef. These 

attributes provide high-resolution mapping of the structures (faults, dykes, and joints) 

that have intersected both the Ventersdorp Contact Reef and Booysens Shale horizons. 

Volumetric fault analysis using the ant-tracking attribute incorporated with methane 

gas data also show the continuity and connections of the faults and fracture zones 

possibly linked to methane gas and fluid migration.  

Correlation between the known occurrence of fissure water and methane with 

geologically- and seismically-mapped faults show that steeply dipping structures 

(dip>60°) are most likely to channel fracture water and methane. δ13C and δ2H isotope 

results suggest that the methane gas (and associated H2 and alkanes) from the 

goldfields, particularly along seismically delineated faults and dykes, have an 

abiogenic origin produced by water-rock reactions. Isotopic data derived from 

adjacent goldfields also suggests the possibility of mixing between microbial 



 

hydrocarbons (characterized by highly depleted 2HCH4 values) and abiogenic gases. It 

is, therefore, possible that the propagation of these structures, as mapped by 3D 

seismics and enhanced volumetric attributes, between Booysens Shale and 

Ventersdorp Supergroup provide conduits for mixing of fluids and gases encountered 

at mining levels.   

 

The study may provide new evidence for the notion of hydrocarbons, particularly CH4, 

having migrated via faults and dykes from depth, within the Witwatersrand Basin, to 

where they are intersected at mining levels. The research gives new insight into 

mixing between microbial and abiogenic end-members within hydrogeologically 

isolated water pockets.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

“What profit has the worker from that which he labours? I have 

seen the God-given task with which the sons of men are to be 

occupied. He has made everything beautiful in its time. Also, He 

has put eternity in their hearts, except that no one can fathom the 

work that God has done from beginning to end…” – Ecclesiastes 

3:11-13 
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1. INTRODUCTION 

 

1.1 Motivation and Objectives 

The Archaean Witwatersrand Basin, situated in South Africa, is the second largest gold 

province in the world. It is a well-preserved and extensively studied sedimentary basin 

with a 130-year-old gold mining history (Moon, et al., 2006). The mines exploit tabular 

gold-bearing ore bodies (locally known as reefs) and mining occurs anywhere between 

approximately 1 and 4 km depths. Mining in the region occurs at depths of up to 4 km 

below the surface of the Earth, making the gold mines of the Witwatersrand Basin the 

deepest mines in the world. The depth to which mining occurs and the structural 

complexity of the basin pose substantial risks to the lives of gold miners, and this is 

reflected by the high level of fatalities and injuries recorded by gold mines in the area 

(Roberts & Schweitzer, 1999).  

 

According to annual reports published by the Department of Mineral Resources (DMR), the 

Gauteng mining sector experienced the highest number of injuries and fatalities, with gold 

mining averaging the highest incidences between 2006 and 2013 (Department of Mineral 

Resources, 2013). In the years prior to that, statistics showed that although there has been 

a general decline in the number of mine-related injuries and fatalities, there is a steady 

increase in methane gas explosions (Cook, 1998; Biffi & Cook, 2002). 

 

Methane gas in mine workings has been reported in a number of coal, platinum and gold 

mines in South Africa. The sources of the gas leading to explosions in these mines vary 

(Cook, 1998; Biffi & Cook, 2002). Until 1999, the occurrence of explosions associated with 

flammable gas in hard rock mines was minimal, overshadowed by those that frequently 

occurred in collieries. In July 1999, a gas explosion occurred that resulted in eighteen 
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casualties at the Mponeng mine, in the Far West Rand Goldfield. The following year, a major 

disaster involving a flammable gas explosion occurred at Beatrix gold mine on 15 May 

2000 in which twelve mineworkers lost their lives. These incidents increased awareness of 

the risks associated with methane gas explosions, and measures have been modified and 

put into place to mitigate these risks (Sibanye Gold Ltd., 2014). However, due to the 

sporadic and unpredictable nature of gas explosions, some of these measures have 

dwindled or become obsolete. This is particularly true in areas where mining has ceased. 

The motivation for this study is to understand the pathways of methane gas from possible 

sources to sinks using seismic and isotopic data to avoid future explosions.  

 

The hypothesis for research is as follows: The methane found at depth in mining levels 

in the West Wits Line Goldfield travels via faults and dykes (geological structures) that 

cross-cut key hydrocarbon-bearing lithologies.  

The main objective of the study is to identify possible sources of methane, and detect faults 

and dykes that may be responsible for transmitting the methane to mining levels in the 

West Wits Line Goldfield. This will be achieved using seismic attributes applied to the 1995 

Western Ultra Deep Levels (WUDLs) 3D pre-stack time migrated (PSTM) seismic data. 

Seismic attributes are used to enhance subtle structural features in the seismic data that 

cannot be detected by conventional interpretation methods. Seismic attributes include 

complex-trace attributes (e.g., instantaneous phase, frequency, and envelope), horizon-

based attributes (e.g., dip, dip azimuth and edge-detection), and volumetric attributes (e.g., 

ant tracking and coherence). The research aims to answer the following questions:  

• How well do seismic attributes enhance fault detection compared to conventional 

seismic interpretation? 

• Do all the geological structures that cross-cut mining levels provide pathways for 

methane gas? 

• How continuous and inter-connected are these structures? 
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• Is there any correlation between these structures and known occurrences of 

methane data in the mines? 

 

1.2 Location and overview of mining operations in the study area 

The mines of interest to the study are part of the West Rand and the West Wits Line, also 

known as Carletonville, Goldfields. The goldfields are located on the north-western edge of 

the Witwatersrand Basin and south-west of the city of Johannesburg, Gauteng, South Africa 

(Figure 1.1). The mines include the Driefontein, Mponeng, TauTona, Kusasalethu and 

Deelkraal gold mines. The 3D seismic survey, which covers a significant portion of the West 

Wits Line and to a lesser extent, the West Rand goldfields, extends over an area of 

approximately 300 km2, in an ENE-WSW direction (Figure 1.2).  

Mponeng and TauTona are gold mines, collectively known as the West Wits Line 

operations, are operated by AngloGold Ashanti Limited. Mponeng, the world’s deepest gold 

mine, uses sequential-grid mining to exploit the Ventersdorp Contact Reef (VCR) at depths 

between 2.4 and 3.9 km. The Mponeng lease area is constrained to the north by the 

TauTona and Savuka gold mines, to the east by Sibanye’s Driefontein gold mine and to the 

west by Kusasalethu gold mine, which is operated by the Harmony Gold Mining Company. 

Mining in TauTona takes place at depths of between 1.85 and 3.45 km. The mine has a 

three-shaft system, supported by secondary and tertiary shafts and, in 2007, embarked on 

the process of converting from longwall to scattered-grid mining; 80% of stoping 

production is carried out using sequential grid mining. The increasingly complex geology, 

seismicity and the unsuitability of longwall mining, given the occurrence of geological 

structures, drove the change in mining method to improve safety. The two gold mines 

currently employ a total of 10 905 people and have mining rights that expire in 2036 

(AngloGold Ashanti Limited, 2013; 2015). 
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Figure 1.1: Study area showing mine lease areas including the Driefontein, Mponeng, 
TauTona, Kusasalethu, and Deelkraal gold mines. These mines are located approximately 
65 km from South Africa’s economic hub, the city of Johannesburg. The extent of the 1995 
WUDLs 3D seismic survey is outlined in red. 

 

The Kloof-Driefontein Complex (KDC) is a large, well-established shallow to ultra-deep 

level gold mine that is accessed from surface through a number of shafts to its deepest 

working levels (~3.35 km below surface). It comprises eleven producing shaft systems and 

five metallurgical plants. KDC exploits three primary reefs, namely, the Carbon Leader Reef 

(CLR), Ventersdorp Contact Reef (VCR), and Middelvlei Reef (MR). The CLR represents 

most of the current mineral reserves in the west of the mining lease, and the VCR 

represents the majority of the current mineral reserves in the east of the mining lease. 

Driefontein, the main gold mine of interest, currently employs 11 721 people and the life of 

mine is estimated to the span for the next 20 years, terminating in 2037 (Sibanye Gold, 

2012a, b). 
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The Kusasalethu gold mine, operated by Harmony Gold Limited, is an amalgamation of the 

Elandsrand and Deelkreel gold mines, is located approximately 17 km southwest of 

Mponeng gold mine. This mine comprises two vertical shafts, a rock/ventilation and 

man/material shaft, as well as two sub-vertical rock/service and ventilation shafts. Mining 

of the VCR occurs between 2.2 km and 3.3 km below the Earth’s surface (Harmony Gold 

Mining Company Limited, 2015). 

 

 

Figure 1.2: Map of the extent of the 1995 WUDLs 3D seismic survey (outlined in red) and 
the mines (black boundaries) covered by the survey. 
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2. GEOLOGY AND STRUCTURAL SETTING 

 

Mineral exploration in South Africa generally occurs in rocks that are described as “hard 

rock”. These rocks are characterized by high seismic velocities and sometimes, complex 

deformational histories. The geology of the Witwatersrand Basin is very complex and 

characterized by multiple events of structural deformation, as well as different 

metamorphic grades at different places. The following section gives a detailed description 

of the geology of the Witwatersrand Basin as well as the over- and under-lying geology and 

structural framework of the West Wits Line Goldfield.  

 

2.1 Geology 

2.1.1 Archaean Basement (Kaapvaal Craton) 

The Kaapvaal Craton is a stable continental crust made up of 3.7 to 3.1 Ga greenstone belts 

and tonalite-trondjhemite-granodiorite intrusions (Robb, et al., 2006). Late Archaean to 

Palaeoproterozoic tectonics resulted in the accretion of terranes along the flanks of the 

craton. The development of these terranes was contemporary to the deposition of four 

significant meta-sedimentary and volcanic sequences: the Dominion Group, the 

Witwatersrand, Ventersdorp, and Transvaal supergroups on the basement rocks (Figure 

2.1; De Wit, et al., 1992; Robb, et al., 2006).  
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Figure 2.1: A map showing the extent of the Kaapvaal Craton (grey area) and the 
approximate size of the Witwatersrand Basin (black shaded area) within it. The craton 
covers almost all northern South Africa and portions of Lesotho and Botswana (after 
Viehmann et al., 2015). 

 

2.1.2 Dominion Group 

The deposition of fluvial sediments followed by the extrusion of mafic and felsic volcanics 

represents the stratigraphy of the Dominion Group. The poorly exposed group is divided 

into the Rhenosterspruit, Rhenosterhoek, and uppermost Syferfontein formations and is up 

to 2 km thick. It unconformably overlies basement rocks (Crow & Condie, 1987; Armstrong 

, et al., 1991; Marsh, 2006). 
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2.1.3 Witwatersrand Supergroup 

The Dominion Group is overlain by the Witwatersrand Supergroup. The onset of the 

deposition of sediments in the Witwatersrand Basin (Figure 2.2) is dated at approximately 

2.98 Ga, with sedimentation ceasing at around 2.81 Ga (Kositcin & Krapez, 2004, U–Pb 

detrital zircon SHRIMP). During this period, arenaceous and argillaceous sediments of the 

lower West Rand Group and upper Central Rand Group were deposited. The sediments 

deposition was controlled by varying palaeo-sedimentary environments and later 

underwent greenschist facies metamorphism, subsequently creating a 7 to 8 km thick, 350 

by 200-km wide succession (Figures 2.2 and 2.3; Armstrong, et al., 1991; Moon, et al., 

2006). 

 

Figure 2.2: The simplified geology of the Witwatersrand Basin as well as the main 
geological groups (after Gibson & Jones, 2002; Manzi, et al., 2013a). The goldfields (blue 
polygons) generally lie along the collar of the basin and mining occurs mostly within the 
Central Rand Group.  
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2.1.3.1 West Rand Group  

Sediments of the West Rand Group were deposited in distal fluvio-deltaic and shoreface to 

offshore sedimentary environments. These comprise equiproportional amounts of shale 

and quartzite, capped by the only igneous unit in the West Rand Group, the basaltic 

andesite known as the Crown Formation. Most of the Kaapvaal Craton was inundated at the 

time of the deposition of the sediments of the group (Stanistreet & McCarthy, 1991; 

Coward, et al., 1995; McCarthy, 2006). 

The group is divided into the Hospital Hill, Government, and Jeppestown subgroups. The 

lowermost sediments of the Hospital Hill Subgroup lie unconformably over the lavas of the 

Dominion Group. The sequence, comprising orthoquartzites, siltstones and iron formations, 

was deposited in foreshore and shoreface sedimentary environments. Apart from the few 

conglomerate reefs located close to the top of the sequence (associated with fluvial, 

regressive depositional settings), the Hospital Hill Subgroup marks a period of major 

transgression from the south-west in the basin (Robb & Meyer, 1995; McCarthy, 2006). 

Rocks of the Government and Jeppestown subgroups were deposited in a range of 

depositional settings. The diamictites, iron formations, and conglomerates represent a 

significant period of glaciation and multiple periods of major sea level rise. The subgroups 

are representative of a transition from extremely unstable and then later stable tectonic 

conditions in the craton (McCarthy, 2006). 

 

2.1.3.2 Central Rand Group  

The Central Rand Group, where nearly all the gold mining in the basin occurs, 

disconformably overlies the West Rand Group (Moon, et al., 2006). Aside from gold-bearing 

conglomerates, other rock types making up the group (characterised by multiple 

unconformities) include coarse-grained quartzites and minor siltstone units, all deposited 

under fluvial and marine settings (McCarthy, 2006). The group splits into the Johannesburg 

and Turffontein subgroups.  
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Two palaeo-sedimentary environments characterise the stratigraphy of the Central Rand 

Group: braid-plains and alluvial fans. The Johannesburg Subgroup sequence is 

characterised by alternating quartzite (dominant) and conglomerate units deposited in a 

fluvial braid-plain environment. The stratigraphy is marked by multiple erosional surfaces 

associated with periods of non-deposition as well as placer development. Reworking of 

placer sediments by incised valleys that cut-through the erosional surfaces resulted in the 

deposition of thin gravel units. These matrix-dominated, pebbly lags can be identified by 

thin layers of carbonaceous material (referred to as bitumen or kerogen) and one such 

example is the economically significant, Carbon Leader Reef (Buck & Minter, 1985; 

Mossman, et al., 2008).  

 

The peneplains were subsequently inundated as sea levels in the basin rose, resulting in 

the further concentration of heavy minerals and laterally developed mineralized reefs 

across the basin. The deposition of these reefs is variable across the basin with tectonic 

processes having a significant effect on the rates of sedimentation and deposition, as well 

as the concentration of mineralization (Robb, 2005). The Booysens Shale marks the top of 

the Johannesburg Subgroup, and separates the two subgroups. The shale bed is laterally 

extensive and is a significant stratigraphic marker that is discussed later in the chapter.  

 

The upper Turffontein Subgroup is categorized by prograding braid-plains and alluvial 

fans, in which the latter culminated in massive conglomerates and boulders beds at the top 

of the sequence. Pyrite-laden sand and shale units are typical of the reefs that underwent 

multiple periods of erosional degradation (Kingsley, 1987). The Elsburg, Kloof, Libanon, 

and Kimberley Reefs of the Johannesburg Subgroup and the Bird, North and Carbon Leader, 

and Middelvlei Reefs of the Turffontein Subgroup are all the auriferous conglomerates 

mined in the basin (McCarthy, 2006). 
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For the purposes of the seismic interpretation component of the study, two stratigraphic 

units are of importance. The Ventersdorp Contact Reef (VCR) is part of the 

lithostratigraphic formation, the Venterspost Formation. The formation has yet to be 

assigned to either the Witwatersrand or Ventersdorp Supergroup, although there has been 

significant evidence that designates it to the Ventersdorp Supergroup (Hall, et al., 2004). 

The VCR corresponds to a transition from the quartzites of the Central Rand Group and 

overlying 3 km thick volcanics of the Klipriviersberg Group of the Ventersdorp Supergroup. 

The significant contrast in acoustic impedances makes it a strong seismic reflector in the 

seismic data. The depth at which the VCR occurs ranges approximately 2 to 4 km below 

surface (Manzi, et al., 2012). The Booysens Shale is a 75-m thick, regionally extensive unit 

separating the Johannesburg and Turffontein Subgroups and was deposited during basin-

wide transgression (Phillips & Law, 1994). Its lateral extensiveness and seismic reflective 

nature make it a suitable marker for seismic interpretation (McCarthy, 2006; Manzi, et al., 

2013a). 

 

2.1.4 Ventersdorp Supergroup  

The Ventersdorp Supergroup is an 8-km thick, volcano-sedimentary sequence that 

unconformably overlies the Central Rand Group. Rocks of this largely meta-volcanic 

sequence have been dated at minimum and maximum ages of approximately 2.71 and 2.60 

Ga, respectively (Armstrong , et al., 1991; van der Westhuizen, et al., 1991). The supergroup 

is made up of the Klipriviersberg, Platberg, and Pniel groups. The Klipriviersberg Group 

comprises the continental flood basalts and komatiites and forms the basal rocks of the 

Ventersdorp Supergroup. These lavas erupted over a short period and preserve the 

mineralized VCR. The subsequent Platberg Group comprises an upward-fining succession 

of sediments and volcanics. It is characterized by dominantly porphyritic (and subordinate 

amygdoidal) mafic and felsic volcanics. The greywacke, quartzite, carbonate, and chert 

units making up the top of the Platberg Group represent the varying sedimentary 

environments at the time of deposition of these sediments. The uppermost Pniel Group is 

divided into a lower sedimentary package of conglomerates, sandstones, shales, and 
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limestones (the Bothaville Formation) and an upper unit of amygdaloidal pillow basalts 

(Allanridge Formation) (Crow & Condie, 1988).  

 

2.1.5 Transvaal Supergroup  

The Ventersdorp Supergroup is unconfomably overlain by the rocks of the Transvaal 

Supergroup. The supergroup, which was deposited around 2.65 and 2.06 Ga, is preserved 

in three structural basins: The Griqualand West and Transvaal basins in central and 

northern South Africa, respectively, and the Kanye Basin in Botswana (Eriksson & 

Altermann, 1998). The groups correlate along stratigraphy and have varying names in each 

basin. The Transvaal Basin is divided into the Chuniespoort and Pretoria groups. Rock 

types of the lower Chuniespoort Group include dolomites, shales, and ironstones deposited 

in shallow to deep marine settings. The compartmentalized (by dykes and sills) carbonates 

of the Malmani Subgroup, the largest karstic aquifer in South Africa, are largely responsible 

for flooding that occurs at mining levels in the underlying Witwatersrand Basin (Eriksson & 

Altermann, 1998; Ngcobo, 2006). The overlying Pretoria Group is a 6 to 7 km thick (at its 

thickest) volcano-sedimentary sequence made up of mudstone-sandstone units, andesite, 

and subordinate conglomerate beds and carbonates (Els, et al., 1995). 

 

The Black Reef (BLR) Formation marks a seismic reflective interface between the overlying 

dolomites of the Chuniespoort Group and underlying Ventersdorp basalts (Figure 2.3). The 

formation has a maximum thickness of 30 m in the Transvaal Basin and is located at the 

base of the lower Chuniespoort Group. It comprises an upward-fining conglomerate to 

sandstone sequence followed by inter-bedded shale and dolomite beds (Els, et al., 1995; 

Eriksson & Altermann, 1998).  
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Figure 2.3: Stratigraphy of sequences overlying the Kaapvaal Craton (Archaean Basement), 
namely the Witwatersrand (separated into the Central Rand Group – CRGp – and the West 
Rand Group – WRGp), Ventersdorp (VSgp), Transvaal (TSgp), and Karoo Supergroups. 
Strong seismic reflectors are shown on the seismic section and these are the Booysens 
Shale (BS), Ventersdorp Contact Reef (VCR), and the Black Reef (BLR) (modified after 
Jones, 2003). 
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2.2 Structural Framework 

The structural evolution of the basin is a crucial factor in understanding the distribution 

and transmission of gas and fissure water transporting dissolved gas into mining levels. 

The tectonic history is therefore noteworthy although it is not described in depth. The 

following chapter summarises the tectonic history of the West Wits Line Goldfield and 

reports on the possible dyke systems that have intruded into the goldfield.  

 

2.2.1 Structural Overview of the West Wits Line Goldfield  

Geological sequences in the West Wits Line Goldfield take on two different general 

orientations. They are SE-dipping in the south-west of the goldfield and S-dipping on the 

north-eastern end. The goldfield has a complex structural history characterized by 

regional-scale folding of the meta-sedimentary units and drag-folding related to major 

faults in the basin (Myers, et al., 1990; Jolley, et al., 1999; Gibson, et al., 2000; Jolley, et al., 

2004) 

 

The numerous fault and fracture arrays also record a multi-deformational history within 

the basin (Figure 2.4). The Bank and West Ran Faults are first-order faults transecting most 

of the stratigraphy of the Witwatersrand and Ventersdorp Supergroups. The Bank and 

West Rand Faults are part of a westward-dipping thrust system that was active for 

approximately 200 Ma (Dankert & Hein, 2010). The Bank Fault has been described as a 

reverse fault that later reactivated as a normal fault and accommodated listric block 

rotation (in the kilometre range) prior to the deposition of the Transvaal Supergroup. It is 

flanked by the Bank anticline to the west and the Kloof syncline to the east. The Bank Fault 

does not breach the base of the Transvaal Supergroup. This implies that the minimum 

relative age for fold-thrust formation began late during the deposition of the West Rand 

Group and proceeded until after the deposition of the Central Rand Group (ca. 2.9–2.7 Ga; 

Gibson, et al., 2000; Dankert & Hein, 2010; Manzi, et al., 2013).  
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Another significant fault that has been identified in this region is the Master Bedding Fault 

(MBF). It is a 1 to 50 m wide fault zone that is sub-parallel to bedding. The MBF has been 

identified by Fletcher and Gay (1972) as a gravity-driven, dominantly cataclasitic, 

decollement zone with a normal sense of displacement that hosts brecciated and mylonitic 

rock fragments. The MBF crosscuts the Witwatersrand Basin and it was initiated prior to 

the deposition of the VCR, if not during the deposition of the Transvaal Supergroup 

sequences (Dankert & Hein, 2010). 

 

Thrust systems in the Elandsrand (Kusasalethu) mining area (in west of the goldfield) are 

linked arrays of fore-, back-, and under-thrusts. These have throws that mostly range 

between 1 to 10 m, occasionally 30 to 50 m and rarely up to 100 m. Furthermore, Jolley, et 

al. (2004) suggested that the thrust system has three parallel NE/SW-trending, thin-

skinned imbricate zones (up to 800 m wide) connected by NNW/SSE-striking thicker-

skinned lateral ramps. These thrust imbricates are associated with ultracataclasites, thrust 

deformation features and most importantly, higher gold grades linked to the presence of 

hydrocarbons (Robb, et al., 1997; Drennan & Robb, 2006). Thrust-related deformation at 

the Ventersdorp Supergroup lavas/VCR contact in the Elandsrand gold mine has been 

observed by Jolley, et al. (1999, 2004). Jolley, et al. (1999) identified three stages associated 

with the formation of these thrust systems: (1) early thrust-related deformation dominated 

by layer parallel shear, (2) southeast-verging kilometre-scale thrust spread up towards the 

Ventersdorp Supergroup lavas resulting in steep mineralised fracture formation, and (3) 

propagation of the major thrust to crosscut and join with the Ventersdorp Supergroup 

lavas/VCR contact leading to widespread imbrication due to sediment shortening beneath 

the lavas.  

 

Work done by Manzi, et al. (2012) to detect faults transecting the auriferous VCR and BLR 

mining levels identifies four, second-order faults within the Western Ultra Deep Levels 

(WUDLs)/Driefontein block relevant to the study area. This includes NNE-trending faults in 
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line with the Bank Fault, variably oriented faults (identified as K1 to K3) that are 

particularly prominent at VCR mining level and the K4 fault, which lies west of Driefontein 

gold mine.  

 

 

Figure 2.4: First-order structures (faults that have vertical displacements between 400 m 
and 2.5 km) that crosscut the West Wits Line and West Rand Goldfields. The major fault 
that separates the West Rand and West Wits Line Goldfield is the Bank Fault (labelled Bank 
F; after Dankert & Hein, 2010). The area shaded light grey denotes the West Wits Line 
Goldfield, and the darker shade of grey, the West Rand Goldfield. 

 

2.2.2 Dykes intruding the Witwatersrand Basin 

Multiple types of dykes associated with different intrusive events crosscut the goldfields of 

the Witwatersrand Basin. In the West Wits Line Goldfield several large dykes contribute to 

dividing the goldfield into a series of compartments. These dykes have different impacts on 

mining: 
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• Dykes can either impede or act as conduits for lateral groundwater flow. Dykes that 

impede flow either disrupt or compartmentalize the formation through which the 

groundwater flows; such dykes are usually unweathered and massive. If the 

structure becomes fractured or weathered, it may act as an aquifer, channelling 

water through it. In the case of the West Rand Goldfield, these dykes crosscut the 

water-bearing, overlying Malmani dolomites, forming an aquifer that has been 

responsible for flooding events in the West Rand and West Wits Line Goldfields 

(Barnard & Baran, 2000; Cook, 2003; Ngcobo, 2006).  

• Intrusive events increase the geothermal gradient. An increase in temperature with 

depth plays a significant role in facilitating prime conditions for methanogenic 

reactions as well other flammable gases (Einsele, et al., 1980; Duddy, et al., 1994). 

• The intrusion of dykes may result in the re-activation of faults (Magee, et al., 2014; 

Cox, et al., 2015). 

 

Geochemical analyses of these dykes have been useful in designating them into the 

respective magmatic events with which they are associated. From a geochronological point 

of view, the data are sparse, and dating is done relatively. A study by Litthauer (2009) 

identified four events that were responsible for dyke intrusion into the West Rand and 

West Wits Line Goldfields and they are as follows: 

 

2.2.2.1 Ventersdorp Supergroup lavas  

The volcano-sedimentary sequence of the Ventersdorp Supergroup includes tholeiitic 

basalt dykes that have a mild calc-alkaline affinity which intrude the underlying 

Witwatersrand stratigraphy with extrusion of lavas occurring approximately 2.71 Ga ago 

(Schweitzer & Kroner, 1985; Bowen, et al., 1986). Most of the dykes have undergone 

greenschist facies metamorphism, and hydrothermal alteration indicated by the presence 

of secondary minerals. They have been largely interpreted as feeders to the overlying 

Klipriviersberg Group lavas and are part of a 200-km wide, NE-trending dyke swarm 
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related to the Ventersdorp rifting event (Figure 2.5; Anhaeusser, 2006; Litthauer, 2009; 

Meier, et al., 2009). 

 

Figure 2.5: The geological map showing the extent and exposures of the Ventersdorp 

Supergroup. The supergroup comprises mainly volcanic rocks with most outcrops 

identified north-west and centrally within the Witwatersrand Basin (after van der 

Westhuizen et al., 1999).  

 

2.2.2.2 Bushveld Complex  

The Bushveld Complex is considered the world’s largest, best preserved layered mafic 

intrusion. It covers an area of 65 000 km2 in the central part of the Kaapvaal Craton with 

commencing approximately 2.06 Ga ago (Figure 2.6; Cawthorn, et al., 1981). More than one 

magma injection has been responsible for the emplacement and development of the 

complex and consequently these multiple injections are associated with their individual 

sets of sills (Cawthorn, et al., 1981; Cawthorn, et al., 2006). A complex suite of sills ranges 

from quench-textured micropyroxenites, norites, pyroxenites to heterogeneously 

contaminated norites (Cawthorn, et al., 1981). These sills intruded into the surrounding 
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Transvaal Supergroup and may have intruded into the underlying Witwatersrand 

Supergroup and Vredefort Dome area.  

 

Figure 2.6: Map showing the main body of the Bushveld Igneous Complex. The saucer-
shaped complex comprises mafic and felsic rocks, and is divided into the Western, Far 
Western, Northern, Eastern and South-Eastern limbs, according to its spatial distribution 
(Cawthorn & Walraven, 1998). 

 

2.2.2.3 Pilanesberg dyke swarm   

The Pilanesberg Complex is possibly the best preserved and one of the largest alkaline 

complexes in the world. It is a radial intrusion with a 28-km diameter, covers an area of 

625 km2, and is situated at the centre of the Kaapvaal Craton. The intrusion is associated 

with a NW- trending dyke swarm extending as far as the border of Botswana to about 120 

km south of Johannesburg (Figure 2.7). Many of the dykes have ages dated at ~1.39 Ga. 

They are composite, with marginal zones of fine-grained dolerite intruded while still hot by 

slightly younger syenite and nepheline syenite in the centre. Notable Pilanesberg-aged 

dykes intruding into the West Rand and West Wits Line Goldfields are the Venterspost and 

Gemspost dykes (Verwoed, 2006; Cawthorn, 2015).  
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Figure 2.7: A map showing the Pilanesberg Complex and dykes extending from the alkaline 
complex. The dykes outlined in the image extend for approximately 390 km; they span 
outward from the radial complex from the border of Botswana, in the north-west, to about 
120 km south of Johannesburg (after Cawthorn, 2015). 

 

2.2.2.4 Karoo dolerite suite (~183 Ma) 

The interconnected dykes and sills of the Karoo dolerite suite represent the intrusive 

feeder system that resulted in the formation of the Drakensberg Group approximately 183 

Ma ago. The suite is associated with multiple dyke events and represents one of the 

youngest set of intrusive bodies that intruded into the Witwatersrand Basin (Figure 2.8; 

Duncan & Marsh, 2006; Neumann, et al., 2011). 
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Figure 2.8: Intrusive events associated with the Karoo Supergroup, particularly the Karoo 
dolerite suite. Igneous rocks of the Karoo Supergroup (the Lebombo and Drakensberg 
Groups) are both mafic and felsic and cover a significant portion of southern Africa (after 
Duncan and Marsh, 2006). 
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3. METHANE GAS IN THE WITWATERSRAND BASIN 

 

3.1 Sources of methane at subsurface 

Natural gas emitted from the Earth comprises approximately 60-90% hydrocarbons. The 

hydrocarbon component of natural gas is made up of the simplest, most abundant alkane, 

methane (CH4), and higher hydrocarbons such as ethane (C2H6), propane (C3H8), and 

butane (C4H10). The higher hydrocarbons, denoted with the collective annotation C2+, 

generally make up less than 10% of total hydrocarbon composition (Rojey, 1997; Hoefs, 

2009).  

 

The lightness of hydrocarbons (lighter than air) allows the gas to infiltrate through porous 

rock strata and permeable geological features such as faults and dykes. Migration is 

impeded by the intersection of the gas with an impermeable rock layer. This eventually 

results in the accumulation of the gas in what is termed as a ‘gas pocket’. Most of these 

pockets are associated with oil fields and, if large and productive enough, the natural gas is 

extracted and used as a fossil fuel (Verweij, 1993).  

 

Distinguishing between different sources of hydrocarbons has been the focus of many 

studies related to oil and gas exploration. Different processes result in the production and 

migration of methane but there are fundamentally two distinct sources of methane found 

at depth: a biogenic source and an abiogenic source (Schoell, 1984; Verweij, 1993). Figure 

3.1 gives a diagrammatic overview of the main sources of methane on Earth. 
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Figure 3.1: The possible sources of methane on Earth. The processes of methane 
generation at depth include, but are not limited to, magmatic activity that results in the 
intrusion of igneous bodies such as alkaline complexes, dykes and sills, and bacterial and 
thermogenic processes occurring in buried organic matter. Faults and dykes are significant 
agents of methane migration from depth to surface (after Cook, 1998).  

 

Processes that produce biogenic methane are divided into two categories: 1) Microbial 

methanogenesis involves a process where microorganisms produce methane as a by-

product of their metabolic and respiratory activities, and 2) thermogenesis, where the deep 

burial and heating of organic matter with time results in the production of methane 

(Schoell, 1988; Sherwood Lollar, et al., 2008). Several geological processes result in the 

production of abiogenic hydrocarbons.  
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Processes involving these two kinds (biogenic and abiogenic) of methanogenic production 

are not mutually exclusive and mixing often occurs between the two end-members (Figure 

3.2). This results in a somewhat unclear indication of the source of the gas. As the following 

section will highlight, distinguishing the origin of methane requires an inter-disciplinary 

approach.  

 

Figure 3.2: Variations in the δ13C and H isotope signatures of different sources of methane. 
The grey areas represent the different fields in which the different types of methane fall 
based on their isotopic signatures. Biogenic sources, such as those produced by bacterial 
methyl-type fermentation and carbonate reduction, are generally 13C-enriched. The 
abiogenic end-member, produced through geothermal, hydrothermal, and metamorphic 
processes, is more δ13C-depleted (Whiticar, 1999). 
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3.1.1 Biogenic methane 

Approximately 20% of global natural gas accumulations comprise gas that is biogenic in 

origin. Biogenic methane is the product of the respiratory and fermentative processes 

associated with microorganisms. Methanogenesis by these microbes occurs under 

anaerobic conditions and primarily through two metabolic reactions: the reduction of 

carbon dioxide (CO2) and “acetate” fermentation (Rice & Claypool, 1981; Whiticar, 1999).  

 

CO2 reduction occurs in sulphate-free, marine sediments and is most common in older 

sediments and gas fields. It is the dominant pathway for bacterial methane formation 

through the reaction:  

 O2H + CH  8e  8H + CO 24

-

2 
 

Acetate fermentation involves the decomposition of acetate resulting in the production of 

methane and carbon dioxide as is noted in the reaction below: 

24

14

3 

14 CO + CH   COOHCH   

This process is more common in shallow, freshwater aquifers (Whiticar, 1999). Microbial 

activity results in methane isotope fractions that are depleted in 13C. CO2-reduction prone 

sediments are more depleted in 13C than biogenic gases formed through acetate 

fermentation. The values range between -110 and -50‰ for the former, and between -65 

to -50‰ for the latter reaction (Hoefs, 2009). 

 

Sherwood Lollar, et al. (2008) confirm that CO2 reduction is the most dominant process by 

which methane is produced in Precambrian shields. A useful tool in distinguishing between 

CO2 reduction and acetate fermentation processes is through the analysis of hydrogen 

isotopes. Biogenic gas is significantly depleted in 𝛿D, where marine sediments (associated 

with CO2 reduction) measure values between -250 and -170‰ and between -400 and -

250‰ for freshwater sediments (Figure 3.2). The source of hydrogen for these reactions is 
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also considerably different. Hydrogen for CO2 reduction is derived from formation water 

and it is the methyl group in the acetate fermentative process that provides hydrogen for 

the reaction (Whiticar, et al., 1986; Whiticar, 1999).  

3.1.2 Thermogenic methane 

Complex organic material and diagenetic processes are key factors in the production of 

thermogenic methane. Increased temperatures favour the breaking up of 12C-13C bonds 

resulting in higher 13C values during chemical reactions such as cracking and hydrogen 

disproportionation in kerogen (complex organic material; Kotelnikova, 2001; Hoefs, 2009). 

Thermogenically-derived methane, unlike biogenic methane, is enriched in 13C. Values 

range between -50 and -20‰. Freshwater sediments have higher 13C concentrations 

versus their marine end-member. In the case of thermogenic gases, 𝛿D levels are 

dependent on the level of maturity of kerogen and not the actual source of the H2 (as is the 

case with biogenic gases; Schoell, 1988; Hoefs, 2009).  

In other words, thermogenic and biogenic methane are differentiable by their 13C content. 

The latter has the lower 13C levels than the former. Within the biogenic end members, it can 

be concluded that methane resulting from CO2 reduction has a low 13C but enriched 𝛿D 

compared to methane from acetate fermentation. 

 

3.1.3 Abiogenic methane  

The production of abiogenic methane results from a number of on-going geological 

processes in the Earth. A review paper compiled by Etiope and Sherwood Lollar (2013) 

identifies nine different sources of abiotic methane outlined in Table 3.1. 
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Table 3.1: The three classes for the sources of abiogenic methane are magmatism, late-
magmatism, and gas-water-rock reactions. There are a number of processes that are 
responsible for the production of abiogenic methane in the Earth, with gas-water-rock 
reactions being the most dominant mode of methane formation (after Etiope and Sherwood 
Lollar, 2013). 

 

 

Mantle-derived methane is one of the most significant sources of abiogenic methane. The 

following factors established by Jenden, et al. (1994) highlight the key characteristics of 

abiogenic sources of methane derived from the mantle: 

• Methane (CH4) derived from microbial or organic activity is assumed to have been 

produced later than mantle-derived methane making the source of the former kind 

of methane a juvenile one. This observation is indicated by the enriched δ13C values 

(more than -25‰). 

• Low C2+ ratios.  
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• The δ 13C value decrease in the order CH4, C2H6, and C3H8. This is a process known as 

isotopic reversal (Horita & Berndt, 1999). 

• A 3He/4He ratio, where R/Ra is greater than 0.1, indicative of mantle-derived 

helium. R is the 3He/4He ratio found in rocks whereas Ra is the present day 

atmospheric 3He/4He ratio which is a constant measured at 1.38 x 10-6 (Jenden, et 

al., 1994). 

 

Rare gases such as helium and neon also have distinctive isotope signatures that have been 

used to characterize mantle-derived gases. Mantle-derived gases were earlier largely 

associated with mid-ocean ridge basalts but have since also been identified in continental 

settings. These mantle gases found in continental basins have been related to continental 

extension and lithospheric thinning (Sherwood Lollar, et al., 1994). Mechanisms for the 

presence of mantle methane in the crust include, but are not restricted to, the intrusion of 

ultramafic rocks and the associated magmatic and hydrothermal fluids moving through 

geological structures into the upper lithosphere (Sherwood Lollar, et al., 1993; Fruh-Green, 

et al., 2001). 

 

Alternative sources from which non-biological methane can be derived include water-gas-

rock interaction with the surrounding geology over millions of years, serpentinization of 

olivine from mafic igneous bodies, and the metamorphism of graphite-bearing rocks (Hall 

& Bodnar, 1990; Etiope & Sherwood Lollar, 2013). 

Sherwood Lollar, et al. (2008) noted that it is relatively easy to differentiate between the 

two biological end-members. It is, however, not as easy to distinguish between biogenic 

and abiogenic sources of methane because the parameters that separate the two entities 

are not well defined. There is not much clarity pertaining to the characterization of 

abiogenic methane. The carbon isotope values derived from the reduction of CO2 to form 

methane typical of a mantle source are very low (-4‰ per mil). These values tend to 

overlap with microbially produced methane. Another distinguishing factor for abiogenic 
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methane is the characteristic decrease in δ13C values as the hydrocarbons increase, i.e. CH4 

to C2H6 to C3H8 (Jenden, et al., 1994; Horita & Berndt, 1999). 

 

3.2 Methane in the Witwatersrand Basin 

Methane usually comprises more than 50% of the gas composition in gold mines in the 

West Rand and West Wits Line Goldfields. Some of the most crucial studies regarding the 

presence of hydrocarbons in the basin have been conducted because of the high gold and 

uranium grades that have been associated with carbon seams (Gray, et al., 1998; 

Spanenberg & Frimmel, 2001; Mossman, et al., 2008).  

Several different sources have been proposed for the presence of the methane found at 

mining levels. Jackson (1957) originally proposed that the methane originated from eroded 

or overlying coal seams of the Karoo sequence. However, other proposed sources of 

hydrocarbons in the Witwatersrand Basin include: 

• Compositional and isotopic studies of the hydrocarbons in the Archaean basin 

suggest that the origin of methane and higher hydrocarbons (such as ethane, 

butane, and propane) can be largely attributed to microbial respiratory and 

metabolic processes. This Precambrian-isolated microbial activity accounts for 

approximately 80% of this type (biogenic) of methane found in the basin mainly 

derived from colonies of microbial algal mats over the surface of the clastic 

sediments of the Witwatersrand Basin (Hallbauer & van Warmelo, 1974; Ward, et 

al., 2004; Sherwood Lollar, et al., 2006; Mossman, et al., 2008). 

• Kerogens disseminated in shale units in the Witwatersrand Supergroup (Robb, et al., 

1997; Gray, et al., 1998).  

• Sources outside of the Witwatersrand Basin such as shales of the Wolkberg Group 

or overlying carbonates at the base of the Chuniespoort Group in the Transvaal 

Supergroup (Robb, et al., 1997). 

• Hydrocarbons hosted in brines associated with the Mississippi Valley type Pb-Zn 

deposits in the Transvaal Basin (Roberts, et al., 1993). 
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Diagenetic processes such as burial, metamorphism and the associated hydrothermal fluids 

have led to the thermal alteration of organic matter that may have resulted in the release of 

gaseous hydrocarbons into the basin. The mobility of these gases through faults and 

fractures results in isotopic fractionation, which is used to differentiate the sources of the 

hydrocarbon. The migration of hydrocarbons through rock strata may result in lowered 

δ13C values; this is due to continued fractionation as the gases move through the strata 

(Spanenberg & Frimmel, 2001). Such an example is that of hydrocarbons derived from the 

Transvaal Supergroup that may traverse into the rocks of the Witwatersrand Supergroup 

versus those that are indigenous to sediments in the Witwatersrand Basin. Spanenberg and 

Frimmel (2001) showed that alkanes derived from Transvaal dolomites were isotopically 

lighter (i.e. depleted in δ13C) than hydrocarbons associated with reef bitumen, gold-bearing 

conglomerates that contain carbonaceous material. The term bitumen specifically refers to 

either in situ fossils of algae that colonized sedimentary beds or the residual products of 

liquid hydrocarbons. Isotopic data showed that the hydrocarbons which circulated with 

hydrothermal fluids through the dolomites and Ventersdorp Supergroup lavas and into the 

Witwatersrand bituminous reefs, were isotopically different, outlining the distinct 

difference in the sources of hydrocarbons within the strata. 

 

Biogenic and abiogenic hydrocarbon end-members have been identified in the 

Witwatersrand Basin. Biogenic methane is linked to microbial methanogenesis and 

associated with shallow, palaeometeoric groundwater with residence times between 

10 000 years and 5 million years. Sites that exhibit methane of an abiogenic origin are 

almost exclusively associated with groundwater that has older residence times (10 to 25 

million years). The fissure water is also associated with deeper, more saline aquifers in the 

basin. Gas and groundwater geochemistry points to extensive gas-water-rock interaction 

initiating and catalysing abiogenic methanogenesis (Lippmann, et al., 2003). Carbon 

fractionation in Fischer-Tropsch reactions has been associated with gas-water-rock 

interaction. In the simplest terms, the Fischer-Tropsch chemical processes involve the 

hydrogenation of CO or CO2 to produce liquid hydrocarbons and have been identified as the 
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main method responsible for some of the abiogenic methane emanating from sites in the 

basin (Sherwood Lollar, et al., 2008). 

 

Determining the origin of methane requires a basic interdisciplinary approach involving 

microbiology, geology, geophysics, and isotope chemistry. Compositional and isotopic 

(namely δ13C and δ2H) analysis and calculation of the ratio between methane and higher 

hydrocarbons (CH4/C2+) may be used to trace the possible source(s) of methane.  
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4. THE SEISMIC REFLECTION METHOD 

 

Seismic reflection is one of the numerous geophysical exploration methods used in the oil 

and gas as well as mining industries. As with any branch of exploration, the topics and sub-

topics related to the method are vast, however, for the purposes of this study, a few topics 

have been considered and they are as follows:  

• An introduction to the seismic reflection method and how it works. 

• The advantages and disadvantages of using the method and how this has been used 

globally in the oil and gas and mining industries, and more specifically, in South 

Africa. 

• Seismic attributes and their applications in enhancing seismic data. 

 

4.1 Background on the seismic reflection method and its applications 

The seismic reflection method works on the basic principle of the propagation and 

behaviour of sound energy (waves) as it travels through the subsurface. It is a measure of 

the time it takes for that energy to travel from a known locus on the surface, through the 

subsurface and reflect to the surface, where it is detected by multiple receivers (known as 

geophones) located at surface (Figure 4.1). The geophones measure the slightest ground 

movement and the sound energy created is then converted to voltage, which is directly 

proportional to velocity, thus giving a recordable seismic response. The time taken for the 

wave to go down and reflect again is known as the two-way-travel (TWT) time (Kearey, et 

al., 2002; Herron, 2011).  
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Figure 4.1: (a) A simple illustration of the propagation of seismic waves from the source, to 

the reflective interface, and back up to multiple receivers (geophones), where a record of 

the two-way-travel (TWT) time (b) is recorded.  

 

The response of a seismic wave is measured using the two physical properties of the rock 

layers at the subsurface – the density of the geological layer and the velocity at which the 

seismic wave moves through media. The degree of reflection or transmission of the seismic 

energy is dependent on the acoustic impedance contrast (Z) at the boundary between rock 

layers (Figure 4.2) and is given by equation 4.1: 

 

𝑍 =  𝜌 × 𝑉                                                                            (4.1) 

 

where Z is the acoustic impedance contrast, ρ is the density and V is the seismic velocity.  

 

These physical properties determine whether an interface, characterized by sedimentary 

bedding planes, unconformities, and/or pore-fill, will be seismically reflective or not. 

Acoustic impedance contrast (Z) cannot be directly related to any physical rock property 

but it has been noted that it is directly proportional to the hardness of the rock, i.e. more 

compressed rocks have higher Z-values. A greater contrast at the interface of two layers 

would result in a greater amount of energy being reflected. It remains, however, that at 
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rock interfaces; a large portion of the energy is transmitted rather than reflected. The 

amount of energy that is reflected at a rock layer interface is defined as the reflection 

coefficient (R; equation 4.2). Energy that is not reflected back to surface but transmitted (T) 

deeper into the Earth is expressed by equation 4.3. The transmitted energy is important in 

the detection of deeper interfaces at surface (Veeken, 2007; Herron, 2011). 

 

R= 
ρ2v2-ρ1v1

ρ2v2+ρ1v1
= 

Z2-Z1

Z2+Z1
                                                                                     (4.2) 

T=1-R                                                                                        (4.3) 

 

where R is the reflection coefficient and T, the transmission coefficient. 

 

The following can be deduced about the wave behaviour of a normal incident pulse at the 

interface of two layers, bearing in mind that -1 ≤ R ≤ +1 (Figure 4.2):  

• From the equation 4.2, it is apparent that R will be a positive number when V2 > V1, 

and a negative number when V2 < V1. A positive R means that the polarity of the 

reflected wave will be the same as that of the incident wave. A negative R means 

that the polarity of the reflected wave will be the opposite of the incident wave. 

• If R is zero, the incident ray will be completely transmitted. This implies that there is 

no contrast in the acoustic impedance (i.e. Z1 = Z2), even if the densities and 

velocities of the two layers are different.  
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Figure 4.2: An illustration of the reflection and transmission of seismic waves depicted as 
the incident pulse. The proportion of the reflected energy versus the transmitted energy is 
dependent on the acoustic impedance contrast between the upper and lower layers. The 
greater the contrast, the greater the amount of energy that will be reflected (after Herron, 
2011).  

 

The reflected pulses are recorded on surface and displayed on a seismograph as seismic 

traces (otherwise known as wiggly lines). A trace is a depiction of the seismic energy from 

depth that is reflected back to a single receiver on the surface of the Earth. The information 

about the TWT and seismic velocities enables geophysicists to reconstruct wave paths and 

produce an image of the subsurface (Kearey, et al., 2002; Bacon, et al., 2007). Figure 4.3 is a 

depiction of how rock layers are related to Z, R, and the resultant seismic trace. An increase 

in Z, which would in turn result in an increase in R, at the boundary between two layers, is 

identified as a positive change in polarity at the point that coincides with the boundary 

along the seismic trace. The opposite is true if Z and R decrease at a rock interface, then the 

polarity is negative. Polarity is important in the seismic interpretation process and two 

standards are used to describe the polarity of seismic data: the European standard or the 

American standard. The concept of polarity is described in more detail in Chapter 5.1.2.  
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Figure 4.3: The relationship between stratigraphy, the acoustic impedance contrasts (Z) 
from one lithology to the next and the related reflection coefficients (R). If the Z increases 
from one layer to the next, this results in an increase in R. This in turn affects the polarity of 
the seismic trace – an increase in Z and a positive R implies positive polarity, while a 
decrease in Z and negative R results in a negative polarity (after Kearey, et al., 2002).  

 

4.2 Seismic processing   

The reconstruction of wave paths to produce an image of the subsurface is a part of the 

seismic reflection workflow known as seismic processing. The details of the seismic 

processing are beyond the scope of this thesis except for one component that is relevant to 

the study – the migration of seismic data. The purpose of the migration is to move dipping 

events to their correct locations in the subsurface. This can be done before (pre-) or after 

(post-) stacking – the process of combining shot records that have a common reflection 

point to produce a single seismic trace. There are two types of migration processes that can 

be applied to seismic data: pre- and post-stack migration. Post-stack depth migration 

(PSDM) was initially considered a more cost effective but time-consuming option than pre-

stack time migration. However, the advancement of migration algorithms and the 

availability of more disk space at a lower cost have resulted in a greater preference in pre-

stack migration as a mode for the migration of seismic datasets (Yilmaz, 1987; Etgen, et al., 

2009).  
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4.3 The application of seismic reflection data in South Africa 

The seismic reflection method is currently one of the most widely used geophysical 

methods for exploration. This geophysical exploration method was patented in 1917 but 

the first exploration survey was acquired in Oklahoma, United States of America, in 1921 

(Weatherby, 1940). The seismic reflection method only became popular in the 1930s and 

was predominantly used for oil and gas exploration. Data acquisition was initially 

constrained to 2D seismic surveys within marine environments, with the first survey being 

acquired in the 1950s. With the growth of digital and processing techniques and the 

advancement of workstation technology, the seismic reflection method has evolved into the 

3D, land seismic survey arena. The first 3D seismic surveys were carried out in 1970s and 

the geophysical method has since gained more popularity in crustal research and mineral 

exploration within continental basins (Weatherby, 1940; Davies, et al., 2004; Trickett, et al., 

2005). 

 

The cost of acquiring seismic data is significant – it is currently one of the most expensive 

geophysical methods used for exploration – but the advantages of the method far outweigh 

the disadvantages. One advantage of using seismic reflection is the increased confidence 

and accuracy in reservoir and ore body delineation and therefore reduced exploration risk. 

Another advantage is that advancements in computer technology have resulted in a 

decreased cost (over time) in acquisition and processing of 3D seismic data but improved 

data quality (Davies, et al., 2004). The use of 3D seismic reflection to identify and constrain 

ore reserves in hardrock environments is young compared to its application in the oil and 

gas industry. Although the seismic exploration method has been building up significant 

momentum in oil and gas exploration, imaging of sedimentary-hosted mineral deposits 

only picked up in the 1980s. This was because the data acquisition and processing 

techniques had not been properly altered to fit hardrock environments. Secondly, although 

the reflection seismology was good at imaging the deep crustal structures (as far down as 

the Moho), high-resolution imaging of the upper crust fell short. Another problem was that 

mining houses, particularly in South Africa, considered the method too expensive and 
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restrictive in the types of mineralization that could be imaged. This changed, however, in 

1983 when the Gold Division of Anglo America took the plunge, and accumulated an 

extensive 2D seismic survey collection along with seven 3D seismic surveys across the 

Kaapvaal Craton. This is known to be the most extensive seismic project to date (Milkereit 

& Eaton, 1998; Pretorius, et al., 2003; Stevenson, et al., 2003).  

 

A number of studies have been done regarding 3D seismic surveys in hardrock 

environments, i.e. areas of crystalline rocks characterized by high densities and velocities 

have been driven by mineral resource exploration. The application of the geophysical 

method has been largely based on ore body delineation, mining development and planning, 

as well as the structural and stratigraphic controls of mineralization. In South Africa, the 

gold and platinum industries have been the greatest recipients of the 3D seismic reflection 

method, where it has become an integral part of mine planning and development. Probably 

the most significant component of the application of reflection seismics has been the use of 

seismic attributes to enhance particular features in seismic data (Salisbury, et al., 1997; 

Jolley, et al., 2004; Dehghannejad, et al., 2012; Manzi, et al., 2012; Ahmadi, et al., 2013; 

Manzi, et al., 2013a; Manzi, et al., 2013b; Manzi, et al., 2015).  

 

4.3.1 Western Ultra Deep Levels 3D seismic reflection survey 

The original 1995 WUDLs post-stack depth migrated 3D seismic data were interpreted by 

Manzi, et al. (2013a). However, the pre-stack time migrated data (PSTM) have been used in 

this study to maximize the usefulness of the time-dependent seismic attributes to enhance 

the structural interpretation. Manzi et al. (2012) provide a detailed description of the 

processing steps carried out for these data set but that is beyond the scope of this thesis. 

The difference in the time versus depth migrated data is that most seismic attribute 

techniques are functions of time and frequency, not depth. This is particularly the case with 

the application of complex trace attributes (e.g., instantaneous phase, instantaneous 

frequency, and envelope), which are time-dependent techniques used to identify particular 

features in seismic data.  
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The WUDLs 3D survey is a 6-second two-way-time (TWT) seismic dataset; this equates to 

approximately 12 km in depth when using the average seismic velocity of 6500 m/s. The 

data show the mapping of stratigraphy from surface down to the base of the 

Witwatersrand Supergroup. The 3D seismic data were acquired in 1995 by AngloGold 

Ashanti Ltd. with the purpose of imaging major gold-bearing horizons: the Ventersdorp 

Contact Reef (VCR) and the Black Reef (BLR). The entire sequence comprises meta-

sedimentary, basic and mafic rocks that are characterised by high velocities (Gibson, 1997; 

Manzi, et al., 2012; Manzi, et al., 2015). The high velocities (5200 m/s to 6500 m/s) in the 

data are indicative of the highly consolidated nature of the rocks of the Witwatersrand 

Basin and overlying volcano-sedimentary basins. These are described as hardrock because 

they are mechanically hard and therefore exhibit high seismic velocities, which are 

indicative of resistant crystalline rocks. The detection of an interface between two layers 

requires that at least 6% of the incident energy be reflected (Kearey, et al., 2002). Such is 

the case with the contact between the quartzites of the Central Rand Group and overlying 

Klipriviersberg lavas of the Transvaal Supergroup as well as the contact between the 

Booysens Shale Formation and overlying quartzites of the Central Rand Group. 

 

4.4 Seismic attributes  

A seismic attribute has been described by Chopra and Marfurt (2005) as “a quantitative 

measure of a seismic characteristic of interest.” The application of seismic attributes is an 

integral part of seismic interpretation. Seismic attributes have been used since the 1930s to 

derive information from the seismic data, such as faults and changes in lithology, which is 

not immediately evident or prominent using the basic observations of the seismic data on 

the amplitude displays. Over 55 seismic attributes now exist, and this has been the result of 

the substantial development in computer technology and increased data storage capacity at 

reduced costs. Attributes can either be applied to a specific seismic event (reflector) or to 

the entire seismic 2D line or 3D volume (Brown, 1996; Chopra & Marfurt, 2005). The use of 

seismic attributes has become standard practice in the seismic interpretation process. In 

the Witwatersrand Basin, seismic attribute analysis has been useful in identifying gold-
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bearing reefs and fault systems, particularly those that were below seismic resolution, 

which is a quarter of the dominant wavelength, i.e. 25 m (Manzi, et al., 2012; 2015).  

 

There are a number of studies conducted in the gold mining exploration in the 

Witwatersrand involving the use of probably the simplest seismic attribute – amplitude 

display. For example, Manzi, et al. (2012; 2013a,b) reprocessed 3D seismic data sets 

acquired in the West Wits Line and West Rand goldfields, which effectively improved the 

quality of the data, and applied a number of different types of seismic attributes to enhance 

the imaging of gold-bearing reefs, faults and fault continuity. The authors further used 

seismic attributes to investigate the relationship between methane gas and water-bearing 

structures affecting mine safety and productivity in the West Rand and West Wits Line 

Goldfields.  

 

Although there is a detailed classification of seismic attributes, the attributes that have 

been used in this study are simply divided into horizon-based and volumetric attributes. 

The horizon-based attributes are instantaneous phase, instantaneous frequency, envelope, 

dip, dip azimuth, and edge-detection. These attributes were applied to 3D seismic data 

from the West Wits Line Goldfield to detect and compare stratigraphic and structural 

relationships between the BS (i.e. a possible source of methane) and the overlying VCR (i.e. 

a gold-bearing reef or mining level). Ant tracking is a volumetric attribute that is used to 

detect any structural links between the BS, VCR and methane sampled data points. 

Chapters 4.4.1 and 4.4.2 provide a detailed description and application of these seismic 

attributes.  
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4.4.1. Horizon-based attributes 

4.4.1.1 Complex trace analysis - Instantaneous attributes  

Complex trace analysis can be described as the transformation of time seismic data in order 

to derive new information about the seismic signal. The complex trace is the sum of the real 

seismic trace, T(t), and the Hilbert transform of the real trace, iH(t), as expressed in 

equation 4.4: 

 

CT(t) =T(t)+iH(t)                                                                 (4.4) 

Where CT(t) is the complex trace, T(t) is the seismic trace, and H(t) is the Hilbert 

Transform of T(t), a 90° phase shift of T(t).  

 

Complex trace analysis separates and measures two quantities of a signal: the amplitude 

and the phase of the data. Instantaneous amplitude (envelope) and phase are the basic 

attributes and the rest are derived by differentiation, averaging, combination, or 

transformation. All instantaneous attributes provide important information regarding the 

seismic data. Instantaneous amplitude measures reflection strength in time. This attribute 

is primarily used to visualize regional characteristics such as structure, sequence 

boundaries, thickness, and lithology variations. In some cases, bright and dim spots can be 

gas indicators. Tuning characteristics can be observed using this attribute, and may help to 

identify reservoirs on a local scale. Instantaneous frequency is the rate of change of 

instantaneous phase from one time sample to the next (first vertical derivative of the 

phase). It is used for visualizing regional depositional patterns. In some cases, high 

frequency absorption can cause shadow zones beneath condensate and gas reservoirs. 

Frequency tuning can indicate changes in bed thickness (possibly pinchouts, onlaps, or 

downlaps). Spikes indicate noise or discontinuous points where frequency can become 

zero, negative or anomalously large. Instantaneous phase enhances the continuity of events 

by ignoring the amplitude information in time samples. It is the magnitude part of each pair 

of polar values, produced by applying a Hilbert transform to the original seismic trace. 
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Instantaneous phase is expressed in degrees, usually from -180 (trough) to +180 (peak) or 

+180 (trough) to 0 (peak). It is used for the regional visualization of stratigraphic 

relationships (prograding reflections, onlaps, pinchouts, etc.). In some cases, fluid contacts 

are isolated and phase reversals can indicate down-dip gas limits (Rijks & Jauffred, 1991; 

Taner, et al., 1979). The mathematical expressions and key features given by instantaneous 

attributes are tabulated below (Table 4.1). 

 

Table 4.1: The mathematical expressions of the amplitude, instantaneous phase, 
frequency, and envelope attributes, and the key features that they highlight. 

Attribute Equation Application 

Amplitude 
(Envelope) 

E(t) = [T2(t) + H2(t)]
0.5

 

• Voids 
• Fluids (oil, gas and 

or water) 
• Intrusions 

Instantaneous 

Phase 
Φ(t) = |arctan(t)/T(t)| 

• Lateral continuity 
• Unconformities 

Instantaneous 

Frequency 
F(t) = d(Φ(t))/dt 

• Change in bed 
thickness 

• Change in lithology 

 

where Φ(t)- time-dependent instantaneous phase; H(t) is the Hilbert Transform of T(t); 

T(t) is the seismic trace; F(t) is instantaneous frequency; and E(t) is the envelope 

(Subrahmanyan & Rao, 2008).  

 

4.4.1.2 Geometric attributes 

Geometric attributes are mathematical functions that resolve surface features on picked 

events, i.e. horizons. They show disturbances in bed continuity such as edges and faults on 

the surface as well as geometrical features such as the orientation of a bed namely dip and 

azimuth. The geometric attributes used in this study include dip, dip azimuth, and edge-

detection. These attributes can be applied to detect a particular geological feature or 

reservoir property, and to delineate structural or stratigraphic features from which basin 
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evolution can be inferred (Chopra & Marfurt, 2005). A single attribute may be applied to a 

dataset but, in some instances, more than one attributes may be applied to the data 

provided they are independent of each other. In order not to create bias interpretation, 

Kalkomey (1997) advises that when applying the attributes, they must enhance different 

physical properties.  

 

4.4.1.2.1 Dip and dip-azimuth  

Dip and azimuth attributes are the function of the variability in inclination and direction, 

respectively, of the time gradient from one time interval to the next (Figure 4.4; Rijks & 

Jauffred, 1991). Dip and dip-azimuth can be mathematically expressed as follows:  

 

Dip= √((dt/dx)^2+(dt/dy)^2 )                                                     (4.5) 

 Dip Azimuth=arctan((dt/dx)/(dt/dy))                                                             (4.6) 

 

Figure 4.4: A visual representation of how dip and azimuth are extracted from an 
interpreted horizon (after Rijks & Jauffred, 1991). 
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Computing dip and azimuth on an interpreted horizon is useful in resolving faults and 

flexures on an interpreted horizon. Colour plays an integral part in representing the 

discontinuities and subtle undulations along the picked surface, representing values that 

range between 0 and 90° for dip and 0 to 360° for dip azimuth. The effectiveness of these 

attributes in detecting faults depends on the difference in dip angle or dip direction along 

the horizon on each side of the fault. The dip and dip azimuth attributes are also dependent 

on the signal-to-noise ratio of the data. Dalley, et al. (1989) provide two recommendations 

when using these attributes. The first is to use automated picking when interpreting a 

chosen reflector. This will ensure that the surface is picked along the same phase, thus 

reducing background noise. The second recommendation is that where a fault, 

characterized by a disturbance along a reflector, is encountered, it should be picked as part 

of the horizon. The fault will appear as a lineament along the surface, characterized by a 

relatively high dip and an anomalous azimuth.  

 

4.4.1.2.2 Edge-detection 

The edge-detection attribute is a useful means of detecting edges or discontinuities along 

surfaces (horizons). In most instances, if a feature is continuous and appears to vertically 

displace the seismic surface, then it is most likely to be a fault. This attribute combines the 

variations in dip and dip-azimuth that have been normalized to the local noise of the picked 

horizon grid. It picks up even the slightest variations in the signal amplitudes - an optimal 

method to detect faults that are below the seismic resolution limit (Randen, et al., 2001). 

The edge-detection attribute highlights, with the help of the manipulation of the colour bar, 

finer details such as cross-cutting relationships and fault continuity. The attribute can 

detect faults that cross-cut the gold-bearing horizons of the West Wits Line Goldfield with 

throws as little as 5 m (Manzi, et al., 2012; Manzi, et al., 2013b).  
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4.4.2 Volumetric seismic attributes 

Volumetric attributes are attributes applied on an entire 3D seismic volume. There are 

many types of volumetric attributes including curvature, coherence, variance, chaos, and 

ant-tracking (Randen, et al., 2001; Chopra & Marfurt, 2007). The ant-tracking attribute, in 

particular, is used in this study to examine the extent of faulting and fault connectivity. 

 

4.4.2.1 Ant-tracking  

Fault interpretation on noisy and/or poor seismic data requires manual fault picking 

because the faults would be difficult to identify with confidence through auto-picking 

(Ngeri, et al., 2015). This is considered a tedious task that is plagued by the biases of the 

interpreter. Ant-tracking is a fault detection technique developed by Schlumberger and 

implemented in the Petrel software package. The ant-tracking workflow incorporates edge-

detection techniques, such as chaos and variance, to identify and track faults throughout 

the volume (Cox & Sietz, 2007; Godfrey & Ran, 2008; Ngeri, et al., 2015). The algorithm 

enhances the detection of geological features that are most likely to be faults. The process 

works analogously to ants in nature: ants use swarm intelligence to accomplish tasks; they 

identify the most efficient path to find food and to their nests through the most traversed 

paths using pheromones. In the ant-tracking technique swarm intelligence uses computer-

coded agents to identify, track, and sharpen faults in the seismic volume. The paths that 

have the most electronic ‘pheromones’ are most likely faults (Khair, et al., 2012; Farghal & 

Zoback, 2014; Wang, et al., 2014).  

 

The process of computing the ant-tracking technique to the seismic volume is divided into 

four parts: conditioning or filtering, edge-detection, edge enhancement, and interpretation. 

Conditioning removes the attenuated noise by using various filters. The most popular 

method of conditioning the data is through structural smoothing. This is done by applying a 

Gaussian filter, which seeks to remove random noise while preserving the edges (faults) 
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(Ngeri, et al., 2015). The edges in the data can be detected using variance and chaos 

attributes measurements.  

 

Variance and chaos attributes are edge-detection techniques that are applied during the 

ant-tracking workflow (Baytok & Pranter, 2013). Variance measures the dissimilarity of the 

local amplitude of each voxel in the data to differentiate edges from noise (Farghal & 

Zoback, 2014). It is versatile in that the user can define vertical and horizontal windows to 

allow for vertical smoothing and noise suppression. This option is data and objective 

dependent. When the variance volume is used as input for the ant-tracking, potential 

identification of constant discontinuities is enhanced (Baytok, 2010).    

 

Chaos, on the other hand, measures the degree of randomness in the dip and azimuth of the 

data. It searches for chaotic signals and identifies the presence and extent of edges in data. 

The chaos attribute is sensitive to noise; thus, it has the potential to enhance both faults 

and noise in the data (Baytok, 2010). This attribute, therefore, works best on data with high 

signal-to-noise ratio. For an in-depth description of these attribute (Baytok, 2010). 

 

The ant-tracking technique is poor when not coupled with other fault enhancing 

techniques such as variance and chaos. A seismic volume in which the variance or chaos 

attribute has been applied prior to the application of the ant-tracking attribute produces a 

volume showing the mapping of major fault systems. Edge enhancement is achieved by 

distributing ants within the seismic volume following the application of the chaos or 

variance attributes to the volume (Khair, et al., 2012; Farghal & Zoback, 2014). A full 

description of the parameters as applied at each step in the ant-tracking workflow is given 

in Chapter 5.3.2. 
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5. DATA AND METHODOLOGY  

5.1 Seismic interpretation 

Seismic interpretation is the analysis of seismic data to infer subsurface geology. 

Information that can be inferred from seismic interpretation includes geological structures 

and subsurface physical properties that can be used to create seismic models. The 

interpretation of seismic data is preceded by the acquisition and processing of the data. 

Interpretation of 3D seismic data involves identifying laterally continuous seismic 

reflectors and picking these at every inline and crossline in seismic sections, as well as 

along time or depth slices. The term inline refers to the direction in which the receiver 

cables are placed during seismic acquisition. The inline coordinates increase from west to 

east. The crossline direction, on the other hand, moves from south to north, perpendicular 

to the inline direction (Bacon, et al., 2007). Constraining the interpreted seismic horizons 

with borehole log data, surface and subsurface mapping increases the confidence in the 

final geological model. Confident interpretation relies on seismic data that are of good 

quality, the accuracy and quantity of supplementary borehole data, and the experience of 

the interpreter. This chapter provides a detailed description of the techniques used in this 

study to interpret the WUDLs 3D seismic data.  

 

5.1.1 Seismic borehole correlation 

Three hundred and fifty boreholes were used to verify the position of the BS and VCR at 

depth (Figure 5.1). Most of the boreholes lie within the Mponeng area with a few spread-

out across the other mines. Although most boreholes intersected the Booysens Shale in the 

Mponeng, TauTona, and Kusasalethu gold mines, there were no boreholes that contained 

log information about the shale unit in the Driefontein and Deelkraal gold mines. Of the 350 

boreholes, three boreholes (LIB 16, 19 and 35) are used below to illustrate the relationship 

between the Booysens Shale and the VCR (Figure 5.2) in the eastern portion of the seismic 

survey area. Figure 5.2 shows the intersection points (true vertical depth (TVD) seismic) 

for the BS and VCR. The position of the VCR was previously interpreted and corroborated 
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with borehole data by Gibson, et al. (2000) and later by Manzi, et al. (2012). The boreholes 

had a depth mistie ranging between 20 and 35 m. 

As numerous as the borehole dataset was, there was no downhole geophysical data 

available that provided information about the seismic response of the BS. This hindered the 

ability to create an accurate synthetic seismogram representing the seismic response of the 

BS, as well as for the over- and under-lying lithologies.  

 

Another limitation of the borehole data is their sparseness (~ 1 km apart) in the western 

portion of the West Wits Line Goldfield (Figure 5.1). However, numerous boreholes could 

be used to correlate the BS and VCR within the AngloGold Ashanti gold mines (Mponeng 

and TauTona gold mines) as well as in the Driefontein gold mine. However, in the 

Kusasalethu and Deelkraal survey areas the interpretation relied mainly on the reflector 

continuity because there are only four boreholes that fall within these areas. Therefore, the 

tracking of the BS horizon in these areas was dependent on the strength of the reflector, 

few borehole data, as well as the location of the reflector as identified previously by other 

authors (Gibson, et al., 2000; Jolley, et al., 2004).  
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Figure 5.1: Survey area showing the location of the boreholes that intersected Booysens 
Shale (BS) and Ventersdorp Contact Reef (VCR) horizons. Of the 350 boreholes containing 
core log data, only four formation tops were available to correlate the position of the BS in 
the Kusasalethu gold mine and there is no borehole data available for the position of the BS 
in the Driefontein gold mine.  
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Figure 5.2: Crossline 1314 showing the boreholes LIB35-D0, LIB16-D0, and LIB19-D0 used 
to locate the stratigraphic position of the Booysens Shale (BS) and Ventersdorp Contact 
Reef (VCR). The seismic section shows that the distance between the BS and VCR decrease 
towards the NE of the survey.  

 

5.1.2 Horizon interpretation 

The BS and VCR horizons were interpreted using both 3D auto-picking and manual picking. 

Manual picking was used where the continuity of the horizon could not be easily tracked 

due to the low quality of the data, particularly at the edges of the survey area or where 

there was increased structural complexity. The horizons were selected based on their 

geological significance and/or a strong reflector that had a constant phase. Seismic sections 

were initially interpreted at wide-line spacing, i.e. every tenth crossline and inline of the 3D 

volume. This was done in order to map first-order scale structures. Once a wide grid of 

picks was completed, infill picks were made at close line spacing that enabled detailed 

structural interpretation. Acoustic impedance contrast decreases from the flood basalts of 

the Klipriviersberg lavas to the quartzites of the Central Rand Group. This resulted in the 

VCR being picked as a “hard” event, i.e. a peak. The transition from the quartzites to the BS 

is characterised by an increase in acoustic impedance contrast and the BS was therefore 
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interpreted as a “soft event” or trough (Simm & Bacon, 2014) (Figure 5.3). The European 

standard of picking, where the peak is identified as positive amplitude (as opposed to the 

American standard where positive amplitude is defined by a trough), was used for the 

picking process. Picking was mostly restricted to the central part of the survey because of 

the deterioration in seismic resolution due to structural complexity and, on the southern 

end of the survey area, due to low fold of coverage. 

 

The position of the BS was constrained using borehole data that had intersected both the 

BS and the VCR horizons. The reflector strength of the VCR enabled continuous, smooth 

picking for most of the West Wits Line Goldfield. The surface was, however, re-picked using 

the 3D-seeded auto-picking. In areas of uncertainty or poor resolution, manual picking was 

used. 

 

Figure 5.3: Inline 1529 showing the seismic response of the Booysens Shale (BS) and 
Ventersdorp Contact Reef (VCR). The shift from overlying quartzites and conglomerates 
above the BS to the shale layer is characterized by an increase in seismic velocity resulting 
in negative polarity (a trough). The transition from lavas above the VCR to the underlying 
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quartzites is characterized by a decrease in the seismic velocity and is thus represented as 
a peak, i.e. positive polarity. 

 

5.1.3 Fault interpretation 

The structural complexity of the Witwatersrand Basin offers an interesting and challenging 

means of fault interpretation. Brittle geological structures in the West Wits Line Goldfield 

range from regional (km-size fault displacement) to micro-scale (cm-size fracture sets). 

The structures that could be imaged in the seismic data are limited on the lower end of the 

scale. Faults in seismic data are identified as interruptions/discontinuities along the 

seismic reflector. Due to vertical resolution limits in seismic data, the mapping a fault along 

a seismic reflector is requires that the throw of the fault be equal to or greater than one 

quarter of the dominant wavelength (Yilmaz, 1987). In the case of the WUDLs 3D seismic 

data, faults with throws of a minimum of 25 m can be detected along seismic reflectors 

(Manzi, et al., 2012). Faults that visibly intersected the BS as well as the VCR were picked. 

In some instances, there were faults that appeared to intersect only the BS and some, only 

the VCR, and were picked accordingly. Fault interpretation was done on Petrel. Each fault 

was picked along inline and crossline intersections until it could no longer be seen on the 

seismic section indicating the end of the fault plane. The faults’ surfaces were assumed to 

be planar as opposed to their actual slightly listric form that has been described in 

literature for some of the known faults.  

 

5.1.4 Data conditioning  

5.1.4.1 Filtering  

Following the interpretation of the horizons, various smoothing filters were applied to the 

BS and VCR horizons. The combination of a mean and median filter was mainly used. These 

are described by Chopra and Marfurt (2007) as structure-oriented filters because they 

remove random noise and enhance lateral continuity of the geological feature. This is 

achieved by differentiating between the dip azimuth of the reflector and the noise above 
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the reflector. When the distinction is made, the filters are then applied to improve signal 

along the horizon. Mean filtering removes random noise by computing the average values 

that fall within the chosen window of analysis. The mean filter was applied on the horizon 

using a sampling interval of 5 by 5 traces. A sample interval of 3 by 3 traces may be used 

but Chopra and Marfurt (2014) recommend using 3 by 3 traces for 2D seismic data and 5 

by 5 traces for 3D seismic data. The mean filter is computed as follows (Equation 5.1):  

 

𝑢𝑚𝑒𝑎𝑛(𝑡) =  
1

𝐽
∑ 𝑢𝑗

𝐽
𝑗=1 (𝑡)                                                                (5.1) 

 

where t is time, and uj(t) is the jth of J traces within the sampling interval.  

 

The one disadvantage of mean filtering is that it tends to smear lateral discontinuities, but 

the application of median filtering reduces that effect. A median filter reduces noise 

without jeopardizing the edges including discrete offsets on an interpreted horizon 

associated with faults. The way this filter works is that it identifies samples within the 

chosen aperture along the local dip and azimuth and replaces the amplitude of the central 

sample position with the median value of the amplitudes, thus eliminating outliers (Chopra 

& Marfurt, 2014). The median filter is computed as follows:  

 

𝑢𝑚𝑒𝑑𝑖𝑎𝑛(𝑡) =  𝑢
𝑗(𝑘=

[𝐽+1]

2
)
t                                                                (5.2) 

 

where t is time, and uj(t) is the jth of J traces within the sampling interval. k is an ordering 

index used to order the J samples within the sampling interval.  
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5.1.4.2 Surface smoothing  

The BS and VCR have varying degrees of continuity. This is related to the reflectivity and 

depth at which the horizons lie. The VCR has a more continuous and apparently smoother 

surface than the BS owing to the higher acoustic impedance contrast between metabasalts 

and quartzites than between quartzites and shales. During the picking of the shale unit, it 

was noted that the southwestern part of the survey area had a lower S/N (signal-to-noise) 

ratio than the rest of the area. This meant that for most of that portion, manual picking had 

to be employed. The use of manual picking is most advantageous in areas where the 

reflector is obscured by a poor S/N due to low fold coverage or complex geology, but the 

method has its disadvantages. The continuous use of manual picking tends to create spikes 

along the surface. Smoothing (gridding) the horizon was done using the Kriging method. 

Kriging is a spatial interpolation method that is widely used in the interpolation of the 

extent of geological bodies. The Kriging method uses a weighted average of neighbouring 

samples to determine an unknown value at a particular location. The interpolation and 

smoothing method makes a good estimation of the trend of the data, so that, if there were 

any mis-picks (marked random spikes or dips), Kriging would attempt to average that 

point based on the values of the surrounding data (Figure 5.4). Once the BS horizon was 

filtered, smoothed, and contoured, the complex trace attributes were applied whose 

applications are outlined in Chapter 4.4.1. 
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Figure 5.4: Booysens Shale horizon before (a) and after (b) gridding using the Kriging 
method. The gridding method has interpolated and smoothed areas of sparse data.  

 

5.2 Time-to-depth conversion  

The results in Chapters 6 and 7.2 are given in time. The application of the ant-tracking 

attribute and incorporation of methane gas sampling points required that the data be 

converted from the time to depth domain. Time-to-depth conversion was done using the 

domain conversion feature in Petrel software. This was done by creating a velocity model 

then using the model as the input for the domain conversion tool. The interval velocities 

inputted for the VCR and BS horizons to create the velocity model were 5600 and 5900 

m/s, respectively. These interval velocities are lower than those reported by Gibson (1997) 

which are 5899 m/s for the VCR and 6300 m/s for the BS. The velocities are, however, 

based on a best-fit velocity model that provided the most accurate depth converted volume. 

The interval velocities for the BS and the VCR were used for the conversion of the seismic 

data from time to depth domain and the resulting volume was calibrated with borehole 

data. Given a seismic reference datum of 1400 m, discrepancies between borehole data and 

seismic markers averaged ~150 m following conversion. These were accordingly adjusted 

to align with the prominent seismic markers, i.e. the VCR and BLR. UD12 was one of the 

boreholes used to correlate the positions of the VCR, BS, and the BLR (Figure 5.5).  
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Figure 5.5: Borehole correlation of the time-to-depth conversion using borehole UD12. 

 

5.3 The application of horizon-based and volumetric attributes  

5.3.1 Horizon-based attributes  

Fault and fracture characterization at the West Wits Line Goldfield is crucial in 

understanding the mechanisms and sources from which the methane identified at depth 

has migrated. A number of seismic attributes were used for structural analysis of the BS 

and VCR. The use of different seismic attributes increases confidence in the structural 

delineation and reduces the bias often associated with the interpretation of structural 

features in seismic data. The varied use of attributes also increases the reliability of the 

interpretation and allows for the interpretation of a range of different types of faults. For 

structural interpretation the dip and dip azimuth, edge-detection, and ant-tracking 

attributes were used.  

 

The original, filtered but not smoothed BS and VCR horizons was imported into Petrel and 

edge-detection, dip and dip azimuth attributes were applied to them. As mentioned earlier, 
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dip and dip azimuth are geometric attributes that are generally used as measures to reduce 

the S/N ratio while preserving discontinuities such as faults and unconformities in seismic 

volumes (Chopra & Marfurt, 2005). A full description of how dip and dip azimuth attributes 

work is given in Chapter 4.4.2. 

 

5.3.2 Volumetric attributes  

As previously stated, application of seismic attributes to the original 3D seismic data 

increases interpretation confidence. The ant-tracking attribute, in particular, improves the 

delineation of spatial discontinuities in a 3D seismic volume. This increases the confidence 

with which the interpreter can characterize the types, distribution, and orientation of 

subtle or complex faults within the seismic volume. The ant-tracking workflow is divided 

into four main parts namely, data conditioning, edge-detection, edge enhancement and 

interpretation (Khair, et al., 2012; Wang, et al., 2014).  

 

Ant-tracking works well on conditioned data, where noise has been reduced using different 

filters. To improve the structural mapping resolution, dip-corrected and structural-

oriented smoothing was applied to the 3D seismic volume using the Petrel software. 

Structure-oriented filtering reduces the artefacts created when attributes are extracted 

along vertical traces; therefore, the dip-guided with edge-enhancement filter option was 

chosen for these data (Hale, 2009; Petrel, 2015). This was done in consideration of the 20-

25° average dip of the stratigraphy as well as to enhance faults with different orientations. 

Structural smoothing first computes the dip and azimuth of the data to determine local 

structure. Thereafter, the Gaussian filter, a filter that enhances faults, is then applied 

parallel to the orientation of the local structures, which reduces the noise and thus 

improves the quality of the data. The filter is applied in the x (σx), y (σy) and z (σz) 

directions. The parameters varied from filter sizes of 1.0, 1.5, and 2.0 for σx, σy, and σz, 

respectively, and represent the standard deviation of the Gaussian filter (Baytok, 2010). 

There was no significant change with a filter size of 1.0 compared to the original amplitude 

map. Setting the value at 2.0 smeared the edges of the smaller faults. A mid-value of 1.5 
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provided a good balance between noise reduction and the maintenance of structural 

integrity (Figure 5.6).  

 

 

Figure 5.6: Amplitude display (a) with structural smoothing filter size of (b) 1.0, (c) 1.5, 
and (d) 2.0. The filter size of 1.5 (c) best preserves vertical resolution and enhances lateral 
continuity. There is also a significant decrease in noise at this filter size compared to the 
original amplitude display. 

 

The edges in the data can be detected using variance and chaos measurements. Finding the 

most fitting variables to detect some edges was a process of testing different filter 

parameters and comparison between seismic attributes (Figures 5.7 and 5.8). For variance, 

two iterations were performed with the first run having an inline and crossline range of 3, 

vertical smoothing at 14 with dip correction on. On the other hand, the chaos attribute was 
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tried with the filter sizes of 1.0, 1.5, and 2.0 for the x-, y- and z-directions, respectively, and 

1.5 was found to be best suited for the data. Of the two edge-detection attributes, which are 

not vastly different in their output for these data, chaos with a filter size of 1.5 was best 

suited because it seemingly provided more structural detail.  

Edge enhancement using the ant-tracking technique is achieved by distributing the ants 

within the chaos input volume. The final stage involves the extraction of surface segments 

and fault patches derived from the ant-tracking attribute (Randen, et al., 2001; Khair, et al., 

2012). The ant-tracking attribute is poor when not coupled with other fault enhancing 

attributes such as variance and chaos. Variance coupled with ant-tracking provides high 

resolution mapping of major faults (Ngeri et al., 2015; Farghal & Zoback, 2014). Figure 5.8 

is a schematic workflow of the ant-tracking process. The ant-tracking volume underwent 

two more runs (iterations) which enabled better fault identification, the results of which 

are detailed in Chapter 7.3.1 (Figure 5.9).  

 

 

Figure 5.7: Variance attribute of a) 3-3-14, and b) 4-4-14 inline range, crossline range, 
vertical smoothing parameters used. It is evident that the 3-3-14 combination is better than 
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4-4-14 because more structural detail (green arrows) has been resolved using the 3-3-14 
combination of values. 

 

 

 

Figure 5.8: Chaos attribute using filter sizes a) 1.0, b) 1.5, and c) 2.0. A filter size of 1.5 was 
chosen. The green arrows indication the resolution of faults from one filter size to the next. 

 

The ant-tracking attribute was iterated three times to assess optimal conditions. Several 

boundary parameters were set for the ants. The definitions of these parameters are 

tabulated below (Table 5.1). A stereonet filter may be used to filter out unwanted seismic 

events such the acquisition footprint and processing artefacts. This is done by limiting the 

dip and azimuths in which the ants can track (Baytok & Pranter, 2013). The stereonet filter, 

however, was not applied to the seismic data in order to detect not only vertical but also 

lateral discontinuities as well. The effects of not applying the filter are described in Chapter 

7.3. 

 

Table 5.1: The parameters and functions of those parameters used in creating the ant 
tracked volume.  

Parameter Function 
Initial ant boundary Defines the initial distribution of agents by putting a territorial 

radius around each agent. 
Ant-track deviation Controls the maximum allowed deviation of each agent from a 

local maximum as it tracks. 
Ant step size Defines the number of voxels an agent advances for each 
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increment within its searching step. 
Illegal steps allowed Defines how far an agent’s track can continue without finding 

an acceptable edge value. 
Legal steps required Defines the extent of connectivity of the detected edge to 

distinguish it from the noise. 
Stop criteria  Defines the percentage of illegal steps allowed through a single 

agent’s life. 
 

 

Figure 5.9: The ant-tracking workflow with the four main steps (structural smoothing, 
variance, chaos, and ant-tracking) as well as the parameters used at each step. Both 
variance and chaos were run for edge-detection but only the chaos volume was used as the 
input for the ant-track volume. 
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6. SCIENTIFIC CONTRIBUTIONS 

 

6.1 Authorship Statement  

The following chapter presents one of the research questions of this study. Chapter 6.2 

gives details of the work done by the candidate as well as summary of the publication.  

 

6.2 Manuscript  

Mkhabela, M., Manzi, M. 2017. Detection of potential methane gas pathways in deep South 

African gold mines. Published. Journal of Geophysics and Engineering. 14, pp. 960-974 

 

The candidate was responsible for the following:  

 

• Loading the 1995 Western Ultra Deep Levels (WUDLs) 3D seismic data in the SEGY 

format into the IHS Kingdom Suite seismic interpretation software using the LO27 

(Cape Datum) South African coordinate system. 

• Uploading a culture file of the mines of the West Wits Line Goldfield. 

• Modifying and creating a base map that included only the mines of interest in the 

goldfield. 

• Identifying and picking of the Booysens Shale (BS) and Ventersdorp Contact Reef 

(VCR) horizons on the western portion of the 3D seismic survey. This was done in 

both inline and crossline sections.  

• Data conditioning which entailed the smoothing and filtering of the horizons in 

preparation for the application of seismic attributes. 

• Applying the complex trace attributes, instantaneous phase, instantaneous 

frequency, and envelope to the BS horizon and reporting the results.  

• Exporting the conditioned horizons from the IHS Kingdom Suite software to the 

Petrel seismic interpretation and modelling software. 
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• Applying the dip, dip azimuth, and edge-detection horizon-based attributes on the 

gridded horizons, the BS and VCR horizons. 

• The interpretation of the Pretorius Fault including 1) mapping its vertical 

displacement (throw) as well as 2) the orientation of the fault. 

• The interpretation of other structures identified from the application of seismic 

attributes. 

• Creation and editing of all imagery was carried out by the candidate. 

• Reporting and interpretation of the results was done by the candidate and the 

supervisor; Dr. Musa Manzi assisted by giving pointers regarding scientific writing 

where necessary. 

• Dr. Musa Manzi also assisted in the journal selection process, procedures for 

uploading the manuscript and gave insight on the journal review process.  

 

6.3 Summary of publication  

At a number of gold mines in the South Africa, the presence of methane gases has been 

encountered when drilling into faults and/or dyke structures extending to depths beyond 

7000 m. Methane gas is reported to migrate up through structures from within the basin to 

the mine working environments (~3000 m depths) and cause explosions. The Booysens 

Shale is considered one of the possible source rocks for hydrocarbons and it forms the 

footwall to the gold-bearing Ventersdorp Contact Reef (VCR, ~ 1.5 m thick). The Booysens 

Shale is a 65-125 m thick (thickens towards the west) argillaceous stratigraphic marker 

that is prevalent throughout the Witwatersrand Basin. This work was a first-hand 

opportunity to apply seismic attributes (instantaneous and geometric) on prestack time-

migrated data to determine: 

• The seismic character of the Booysens Shale. 

• Structures propagating between the Booysens Shale, a possible source of 

hydrocarbons in the Witwatersrand Basin and methane found at mining levels, i.e. 

the VCR.  
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The instantaneous attributes included phase, frequency, envelope and the geometric 

attributes applied were dip, dip azimuth, and edge-detection. These attributes were 

computed for the Booysens Shale and Ventersdorp Contact Reef horizons. These attributes 

successfully mapped the sub-crop position of the Booysens Shale against the Ventersdorp 

Contact Reef and structures (faults and dykes) that have displaced both the Ventersdorp 

Contact Reef and Booysens Shale horizons. The edge-detection attributes were particularly 

useful in delineating faults with throws below the traditional seismic resolution criteria 

(e.g., a quarter of the dominant wavelength) that were not visible in the conventional 

seismic interpretation. The structural analysis of the Booysens Shale and Ventersdorp 

Contact Reef using seismic attributes gives a new visual representation of geological 

structures that may be probable conduits for hydrocarbons, particularly methane, 

migrating from depth to mining levels.  

 

The paper is presented according to journal article standards. 
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ABSTRACT 

 

At a number of gold mines in South Africa, the presence of methane gases has been 

encountered when drilling into faults and/or dyke structures extending to depths beyond 

7000 m. These have been reported to have migrated up through structures from within the 

basin to the mine working environments (~3000 m depths) and caused explosions. The 

Booysens Shale is considered one of the possible source rocks for hydrocarbons and it lies 

beneath the gold-bearing Ventersdorp Contact Reef (VCR, ~ 1.5 m thick). The Booysens 

Shale lies at depths between 3500 m and 4500 m below the surface and can be best 

described as a base of the divergent clastic wedge, hosting the quartzite and conglomerate 

units that sub-crop against the VCR towards the west of the gold mining areas. Geometric 

attributes (dip and dip azimuth) and instantaneous attributes (phase, frequency and 

envelope) computed for the Booysens Shale and Ventersdorp Contact Reef horizons 

interpreted from 3D prestack time migrated data, acquired for gold exploration, provide 

insight into structures that extend from the Booysens Shale into the overlying mining level 

(i.e. Ventersdorp Contact Reef). These attributes successfully mapped the structures (faults 

and dykes) that have displaced both the Ventersdorp Contact Reef and Booysens Shale 

horizons. The edge-detection attributes were particularly useful in delineating faults with 

throws below the traditional seismic resolution criteria (e.g., a quarter of the dominant 

wavelength) that were not visible in the conventional seismic interpretation. The structural 

analysis of the Booysens Shale and Ventersdorp Contact Reef using seismic attributes gives 

a new visual representation of geological structures that may be probable conduits for 

hydrocarbons, particularly methane, migrating from depth to mining levels.  

Keywords: Booysens Shale, Ventersdorp Contact Reef, Seismic Attributes, Witwatersrand 

Basin, Hydrocarbons 
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INTRODUCTION 

 

The Witwatersrand Basin hosts some of the largest and deepest gold mines in the 

world. The gold derived from the Witwatersrand Basin is extracted from narrow, 

tabular conglomerate placers termed “reefs.” These reefs vary from a few centimetres 

to up to 5 m in thickness and are mined at depths of between 500 m and 4200 m 

below the surface of the Earth (Safonov and Prokof'ev 2006, Viljoen 2009). The 

Ventersdorp Contact Reef (VCR) is one of the most economically significant auriferous 

conglomerates in the basin. Until the late 1980s, geological and mine models were 

largely based on underground mapping and exploration drilling. The acquisition of the 

first 3D seismic reflection surveys in 1980s in the Witwatersrand Basin provided new, 

enhanced means of mapping these reefs, which ultimately created more reliable 

geomodels for exploration and mine development. The 3D seismic reflection method 

has since played an integral role in gold exploration, mine development, and safety in 

the basin. In 1995, AngloGold Ashanti Ltd. acquired 3D seismic data covering the 

Western Ultra Deep Levels (WUDLs) mining district of an area of approximately 300 

km2. The survey successfully imaged key horizons in the region, particularly the VCR 

and Black Reef (BLR) (Jolley et al 2004, Pretorius et al 2006, Dehghannejad et al 2012, 

Manzi et al 2012a, 2012b, 2014 and 2015, Ahmadi et al 2013, Malehmir et al 2014). 

The strong, continuous reflection associated with the VCR, is a result of an acoustic 

impedance contrast between the quartzites of the Central Rand Group and the 

overlying flood basalts of the Klipriviersberg Group. The quality of the seismic data 

made it possible to study the form and extent of the auriferous conglomerate bed (and 

other economic reefs such as the BLR). These data have since been used to extend the 

geological model for use in current and future mine development (Gibson 2000, Manzi 

et al 2013, 2015).  

A significant amount of methane gas has been encountered in some of the gold mines 

in South Africa (Cook 1998; du Plessis and van Greuning 2011, Breytenbach 2016). 
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The methane, which emits from deep-seated sources within geological features such 

as faults, fissures, and dykes, is unlocked during normal mining operations and 

released into the mining levels (e.g., VCR horizon) where it causes explosions. The gas 

is a major safety hazard underground and despite continuous efforts to keep methane 

levels under control, methane explosions have occurred in numerous mines in the 

region and caused a series of injuries and deaths. 

Faults also act as conduits for the migration of water and methane gas to the mining 

levels (Cook 1998; Manzi et al 2012a, Wanger et al 2012). The intersection of faults, 

and particular those that are prone to fluid transmission, affect the productivity of a 

mine and the safety of mine personnel, and can lead to substantial financial shortfalls 

for the affected mine. Thus, fault delineation using the seismic reflection method 

becomes an integral part of ensuring mine development and extending the life of a 

mine.  

Several authors (Gray et al 1998, Spanenberg and Frimmel 2001, England et al 2002) 

largely attribute the sources of methane to carbon seams of algal mats deposited 

concomitently with placer development in the basin as well as to inter-basinal shales 

such as the Booysens Shale (BS) underlying the VCR. This shale unit, considered a 

possible hydrocarbon source rock, varies in thickness and is pervasive throughout 

most of the basin. The proposed general idea is that methane migrates from the 

source to mine workings through faults and fractures as a gas or dissolved in saline 

ground water (Cook 1998, Baldassare et al 2014). 

Source rocks for hydrocarbons are described as fine-grained sedimentary rocks that 

contain carbon and hydrogen-rich matter such as the shales of the Witwatersrand 

Basin. A study by Gray et al. (1998) on the nature and origin of ‘carbon’ in the 

Witwatersrand Basin revealed the BS was a likely source of hydrocarbon in the basin. 

The authors pointed to TOC (Total Organic Carbon) values characteristic of a post-

mature hydrocarbon source rock. They also identified microscopic pyrobitumen 

particles in the BS that were interpreted as residual liquid hydrocarbons retained in 
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the source rock. In addition to this, hydrocarbon fluid inclusion, microscopy and 

spectrometry studies confirm the theory of basin-derived hydrocarbons (Spanenberg 

and Frimmel 2001, England et al 2002, Wanger et al 2012).  

The BS is also truncating the VCR, the distance between the two horizons increasing 

from the east to the west. The thickness (65 to 125 m) of the BS, as well as its 

considerable acoustic impedance contrast with the surrounding quartzite and 

conglomerate units, make it a strong seismic reflector.  

The purpose of this study is to map geological structures (faults and dykes) 

intersecting the VCR mining level and the underlying BS using instantaneous and 

geometric attributes. Various seismic attributes (e.g., edge-detection, dip and azimuth 

attributes) have been used to enhance the detection of faults and fault continuity that 

affect mine safety and productivity in the Witwatersrand goldfields (Stuart et al 2000, 

Manzi et al 2012b, 2013). Instantaneous attributes have previously applied to other 

datasets acquired in the Witwatersrand Basin as is in Stuart et al. (2000) and Manzi et 

al. (2013). It is, however, a first-hand attempt at applying these attributes to the shale 

unit as mapped in the time domain data of the 1995 WUDLs 3D seismic volume.  

The horizon-based attributes include instantaneous phase, instantaneous frequency, 

and envelope. They have been applied to the BS as an initial attempt to determine the 

effectiveness of the attributes to delineate structural and stratigraphic features. Dip, 

dip azimuth, and edge-detection attributes were then applied to both the BS and VCR 

to delineate and compare structures that propagate between the two horizons that 

may act as conduits for fluid migration from the hydrocarbon source (BS) to mining 

level (VCR). The mapping of these structures is critical for the mines as they may 

provide migration pathways for methane gas from BS to the mining levels (VCR) 

and/or represent losses of mineable ground and potential safety hazards. They may 

also cause instabilities in the hanging wall leading to poor ground conditions. 

The study further demonstrates how recent improvements in seismic attributes can 

enhance the detection of subtle faults (with throws less than ∼25 m) that fall below 
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the traditional seismic resolution limits. In terms of exploration, the detailed 

interpretation of the BS will enable mines in the West Wits Line Goldfield to better 

understand the structural framework of the mining area at depths between 3500 m 

and 4500 m below the surface. This will result in a coherent model for further 

development of the region and some indication of the prospectivity of unmined 

ground. 

 

STUDY AREA 

 

The mines investigated in this study are located in the central and western parts of the 

West Wits Line Goldfield, which lies on the northern end of the Witwatersrand Basin 

(figure 1). Mponeng gold mine is located approximately 65 km west of Johannesburg 

and, along with Savuka and TauTona gold mines, forms part of the West Wits 

Operations operated by AngloGold Ashanti. This mine, the deepest in the world, 

makes use of a twin-shaft system to mine the Carbon Leader Reef (CLR) and VCR at 

depths between 2800 m and 4200 m. The WUDLs lies south of Mponeng and is 

currently under exploration and development (AngloGoldAshanti 2014, Manzi et al 

2015). The Kusasalethu gold mine, operated by Harmony Gold (Ltd.). It is located 90 

km southwest of Johannesburg and lies west of the Mponeng gold mine. This mine 

comprises two vertical shafts, a rock/ventilation and man/material shaft, as well as 

two sub-vertical rock/service and ventilation shafts. Mining of the VCR occurs 

between 2200 m and 3300 m below the Earth’s surface (Handley et al 2000, Harmony 

2014) (figure 2).  
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THE GEOLOGY OF THE WEST WITS LINE GOLDFIELD 

 

The Archaean Witwatersrand Supergroup is a 300 km by 200 km wide, 7000-8000 m 

thick meta-sedimentary basin. It was deposited between 2985 and 2849 Ma. The 

basin is divided into the lower West Rand Group and Central Rand Group and is 

exposed along the northern and western margins of the basin. The lower West Rand 

Group comprises shale and quartzite units deposited in fluvio-deltaic and shoreface to 

offshore environments that are also comprising the basaltic andesite of the Crown 

Formation (Stanistreet and McCarthy 1991, Coward et al 1995, McCarthy 2006). The 

upper Central Rand Group, deposited between 2894 and 2714 Ma (Robb and Meyer 

1995), is approximately 2800 m thick towards the centre of the basin, and is divided 

into the Johannesburg and subsequent Turffontein Subgroups. The Johannesburg 

Subgroup is characterised by alternating quartzite and conglomerate units deposited 

in a fluvial braid-plain environment. The BS, which overlies the Johannesburg 

Subgroup, is a laterally extensive argillaceous stratigraphic marker that extends 

throughout most of the Witwatersrand Basin.  

The BS horizon has an approximate age of deposition of 2894 ± 7 (Kositcin and 

Krapez 2004) marks the transition from the lower Johannesburg Subgroup to the 

overlying Turffontein Subgroup, a time of basin-wide subsidence. Described as a thick, 

interbedded mudstone and siltstone meta-sedimentary package, it represents one of 

the transgressive sequences deposited during Central Rand deposition. The BS dips 

towards the south-east, ranging in thickness between 65 and 125 m from the east 

towards the west in the study area (Carstens 2007, Myers et al 1992). The BS and 

Turffontein Subgroup, underwent deformation, tilting and erosion, followed by the 

deposition of the VCR (Manzi et al 2013). The thickness of the BS and the acoustic 

impedance (the product of density and seismic velocity) contrast between the BS 

(~2.83 g/cm3 and ~6300 m/s) and the overlying quartzites (2.75 g/cm3 and 5899 
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m/s) makes it a strong seismic reflector (Gibson et al 2000, Manzi et al 2015) (figure 

3).  

The VCR, unconformably underlain by the Central Rand Group, is mined throughout 

the northern collar of the Witwatersrand Basin. The VCR, deposited approximately 

2729 Ma, dips at an angle of 20-25° to the southeast with a strike of approximately 

072° east. It conformably underlies the basaltic rocks of the overlying Klipriviersberg 

Group. The acoustic impedance contrast at the interface between the high-velocity, 

dense ultramafic lavas (6457 m/s, 2.98 g/cm3) of the Ventersdorp Supergroup and 

low-velocity, less dense quartzites (5899 m/s, 2.75 g/cm3) of the Central Rand Group 

creates a strong seismic reflector that correlates with the VCR horizon (Tankard et al 

1982, Pretorius et al 1997, Gibson, 1997).  

 

STRUCTURAL SETTING  

 

The West Wits Line Goldfield underwent multiple phases of extensional and 

contractional tectonics. This is evident in the structural complexity of the mining 

region (Coward et al 1995, Dankert and Hein 2010, Manzi et al 2013).  

Sediments of the West Rand Group were deposited on a post-rift thermal sag, in a 

tectonically stable environment that was preceded by Dominion-age rifting. Thrust 

tectonics affected the upper part of the West Rand as well as the Central Rand Group 

and have been related to the development of a foreland basin and associated north-

western-trending hinterland. In the West Wits Line region, sediment deposition of the 

Central Rand Group was influenced by the Rand Anticline to the north and the Bank 

Fault to the east (Coward et al 1995, Gibson et al 2000). Sustained uplift of the 

anticline resulted in the deformation and tilting of the Turffontein Subgroup and BS 

alongside the western limb of the fault. This was truncated by the deposition of the 

VCR, forming a gently dipping angular unconformity between the Turffontein 

Subgroup and BS, and the VCR.  
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Structural deformation has a significant effect on reef continuity. Up -or downthrown 

fault blocks, as well as dyke and sill intrusions, result not only in reduced mine 

productivity but also adversely affect the safety of mine personnel and mine 

development. The goldfield is also intersected by a number of sills and dykes of 

different periods of tectonism in the basin. The ages of these structures span from 

Ventersdorp (2.6 Ga) to the Transvaal (2.20 Ga), Pilanesberg (1.30 Ga) and Karoo 

volcanic events (150 Ma) (McCarthy 2006, Litthauer 2009).  

 

3D REFLECTION SEISMIC DATA  

 

In 1995, AngloGold Ashanti acquired one of the world’s largest 3D reflection seismic 

surveys in the mineral industry (Pretorius et al 1997, Manzi et al 2015). The survey 

covers an area of approximately 300 km2 of the West Wits Line Goldfield (figure 2). 

The survey was acquired by Compagnie Générale de Géophysique (CGG) and 

processed by Manzi et al. (2012a). The seismic data were initially acquired to give a 

better understanding of the extent and prospectivity of the most economic gold-

bearing reefs (VCR and CLR) in the region. The pre-stack time-migrated seismic cube 

extends from 0 to 6 s two-way time (TWT) (~0-12 km). The acquisition survey was 

designed to image reefs and geological structures as deep as 4500 m below the 

surface of the Earth. The signal-to-noise ratio of the data was improved by using a fold 

coverage of 36, which is more than twice the amount used in the historical surveys. 

The data are of good quality and efficiently imaged the main reflectors, which are 

mostly unconformities separating the major stratigraphic units in the Witwatersrand 

Basin (figure 4a). The use of prestack time migrated data are particularly useful for 

the application of instantaneous seismic attributes. The advantage of using PSTM data 

is that they preserve relative amplitudes as a function of time. They are good in areas 

with little lateral velocity variations and steeply dipping strata, and are less 
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susceptible to noise in comparison with depth-converted pre-stack time-migrated 

data (Schulte 2012, Marfurt and Alves 2015).  

The dominant frequency of the WUDLs data is approximated at 65 Hz and a mean 

velocity of 6500 m/s has been determined during processing. Using the wave 

equation (λ = v/f) the dominant wavelength would be ~100 m, and a quarter of that, 

25 m. This wavelength (25 m) is the minimum throw that can be resolved in seismic 

section using conventional interpretation tools. Gibson et al. (2000) have, however, 

proposed that faults with vertical displacements of down to 18 m can be delineated 

within the WUDLs seismic dataset because of its high signal-to-noise ratio (SNR). The 

use of seismic attributes may further enable more detailed structural interpretation 

with the lowest detected throw being down to 5 m (Manzi et al 2013, 2015).  

 

SEISMIC ATTRIBUTES  

 

The application of seismic attributes has a long-standing history in the delineation and 

enhancement of fault and fracture systems within the oil and gas industry. The use of 

instantaneous attributes (envelope, phase, and frequency) is defined by complex 

seismic trace analysis (Taner et al 1979). Envelope (also described as the reflection 

strength) is the square root of the sum of the squares of the complex and imaginary 

elements. It is sensitive to changes in the acoustic impedance and is hence a good 

indicator of changes in lithology, the presence of the fluids (gas, oil, and water), and 

porosity. Instantaneous phase is best for tracking the continuity of the reflector. The 

changes in the phase (measured in degrees ranging between -180° and 180°) along a 

horizon is a good indicator of the lateral continuity of stratigraphic horizons. 

Instantaneous frequency is described as the rate of change of the phase and sensitive 

to bed thickness and changes in lithology (Taner et al 1979, Robertson and Nogami 

1984).  
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Dip and azimuth attributes (knows as geometric attributes) are the function of the 

variability in inclination and the direction of the inclination, respectively, of the time 

gradient from trace to trace, i.e. they are calculated for each sample of the horizon 

grid. Dip and azimuth attributes are useful tools in identifying subtle faults’ 

crosscutting relationship and continuity (Dalley 2008). The edge-detection attribute, 

on the other hand, combines the variations in dip and azimuth that are normalized to 

the local noise of the interpreted horizon grid (Manzi et al 2012). The use of the edge-

detection attribute analysis requires seismic data that has a high SNR. It enhances the 

detection of the slightest variations in the signal amplitudes. Colour plays an integral 

role in dip, azimuth, and edge-detection displays, giving an almost intuitive 

representation of information about the orientation and continuity of a horizon (Zhu 

et al 1999, Randen et al 2001, Dalley 2008).  

 

METHODOLOGY  

 

The BS and VCR horizons were interpreted using both 3D auto-picking and manual 

picking. Manual picking was used where the continuity of the horizon could not be 

easily tracked due to the low quality of the data, particularly in the faulted areas and 

at the edges of the survey area. The low SNR at the edges of the survey is attributed to 

low fold of coverage. Instantaneous attribute analysis was computed for the BS 

horizon, and the edge-detection, dip and dip azimuth attributes were computed for 

both the BS and VCR. The BS was picked on every single inline and crossline, as well as 

on time slices to enable the detail picking of geological features.  

Seismic sections were initially interpreted at wide-line spacing, i.e. every tenth 

crossline and inline of the 3D volume (figure 4a, b). This was done in order to map 

major scale structures. Once a wide grid of picks was completed, infill picks were 

made at close line spacing which, enabled detailed structural interpretation. The BS 

horizon (covering an area of approximately 14.5 km x 7.6 km) was divided into Block 
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A, which covers the Mponeng/Western Ultra Deep Levels mine area, and Block B, a 

portion of the Kusasalethu and Deelkraal mines (see figure 1 and 2). Picking was 

mostly restricted to the central part of the survey because of the deterioration in the 

quality on the southern end of the survey area due to low fold of coverage. The 

position of the BS was constrained using borehole data that had intersected both the 

BS and the VCR horizons. Seismic event discontinuities were manually picked as 

faults. The completed horizon was then gridded using Kriging method and contoured 

at 25 m, thus providing a time structure map (figure 5). Subsequently, seismic 

attributes were applied on the gridded horizon to enhance seismic interpretation. 

Prior to the application of the edge-detection attribute, mean and median filters were 

applied to the horizons in order to suppress random noise without smearing faults 

and stratigraphic edges in the data (Chopra, 2011). These attributes were applied to 

both VCR and BS horizons to identify faults and fracture systems that have propagated 

between both horizons.  

 

RESULTS  

 

Conventional Interpretation 

The BS is mapped as a strong seismic reflector and can be identified and tracked 

throughout the 3D seismic cube (figure 4(a), (b), and figure 5). Seismic interpretation 

was constrained using the surface and underground boreholes drilled at 

approximately > 1 km spacing. On average, boreholes drilled from underground had a 

good tie with the VCR and BS reflectors, although the VCR at some depths is slightly 

deeper than the actual depths of the borehole formation tops. The depth discrepancy 

between the seismically mapped reflectors and borehole positions is approximately 

25-50 m (0.0125 – 0.025 s). A time structure map produced through conventional 

interpretation shows that the horizon spans time interval of 1.4 to 3.4 s, increasing in 

a southwesterly direction. The faults picked on the map can be arbitrarily divided, 
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according to continuity, into three categories: primary, secondary, and tertiary faults. 

The primary fault, the Pretorius Fault (PF), extends for approximately 11.5 km in the 

study area and has a strike of approximately 045° towards the northeast. It is, in some 

instances, intersected by secondary and tertiary faults that trend in the north-

westerly and north north-easterly directions, respectively (figure 5). The PF is a well-

documented fault in the West Wits Line Goldfield (Manzi et al 2015). An inline seismic 

section (figure 6(a)) through the PF (labelled A-B in figure 5) shows that the PF 

displaces both the BS and VCR. The normal fault displaces both horizons by an 

apparent time difference of 0.007 s and 0.005 s, respectively. The section also shows 

that there are other faults at the footwall and hanging wall of the PF that displace the 

two horizons, and in some instances, only the BS. 

The throw of the PF along its length is not uniform. In order to understand the 

variability of the throw along this major fault and how the BS is affected by this 

variability, a throw profile along the PF was plotted (figure 6(b)). The profile showed 

that throw along the structure ranged between 0.0205 and 0.1255 s, increasing from 

northeast to the southwest. There are some instances along the fault profile where the 

fault throw values dropped drastically. These drastic drops divide the profile into 

three segments and they occur at the 250m, 3500 m and 6500 m distances. The major 

variability of throw along the strike of PF indicates that the fault underwent a complex 

deformation history. This also shows that PF is not a single fault, but it is made up of a 

number of subordinate normal fault networks. 

 

Instantaneous Attributes 

Instantaneous attributes were applied to the BS horizon to detection subtle geological 

features or sub-seismic faults. Prior to the application of the seismic attributes, the BS 

horizon was smoothed using different structural smoothing filters (e.g., median, mean 

and Laplacian filters) in order to eliminate noise and increase the SNR of the horizon. 

This enabled the detection of structures not previously seen on the time structure 
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map. Figure 7(a) is the instantaneous phase map computed for the BS surface 

covering the Block A region. The instantaneous phase map has identified a number of 

subtle linear features that were clearly invisible on the time structure map (see figure 

5). The most dominant feature mapped on the phase attribute, not readily seen on the 

structure map, is a distinct north-northeast trending linear feature near the eastern 

edge of the survey. This feature is characterised by a distinct positive to negative 

phase response and it is interpreted as the sub-crop position of the BS against the VCR 

(see figure 4(a) and (b)). The reason for the poor mapping of sub-crop position by the 

amplitude attribute is due to severe destructive interference resulting from 

overlapping wavelets between the overlying VCR and the BS reflectors, and because 

the thickness between the BS and VCR approaches zero, which is below the seismic 

resolution limit.  

Although the instantaneous phase, an amplitude-independent attribute, successfully 

highlighted the BS sub-crop position against the VCR, the continuity of the sub-crop 

could not be tracked with high confidence owing to the sensitivity of instantaneous 

phase to noise. There are a couple of reasons why the mapping of the sub-crop 

position is important for mining purposes: (1) the gold grade on the VCR horizon is 

lower at the position where it intersects the shale units, and (2) if the shale unit is the 

source of methane gas at the mining levels (i.e. VCR level), the sub-crop position is 

where the shale layer is closest to the VCR horizon (i.e. the vertical separation 

between the BS and VCR is almost zero). 

To further enhance detection of the sub-crop position, we computed the 

instantaneous frequency for the BS horizon (figure 7(b)). This attribute provides a 

degree of continuity along the length of the sub-crop position, which was not 

identified by the phase attribute. On the frequency map, the sub-crop position is a 

clearly defined feature, characterised by a decrease in frequency (from approximately 

12.8 to 10.4 Hz) on the surface. Like all the derivative maps, instantaneous frequency 

is very sensitive to noise associated with low amplitude anomalies, as shown in figure 
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7(b).  Instantaneous frequency is more chaotic and exhibits less continuous signatures 

than amplitude map, particularly in most structurally complex areas.  

Seismic attributes computed for the BS horizon in Block B reveal a greater degree of 

structural variability compared to Block A, which is less structurally complex. In Block 

B, most of the subtle faults (less than 25 m throws) detected in the phase map are not 

clearly mapped by the frequency attribute. Lineaments trending in the northwest-

southeast directions can also be traced along the BS horizon throughout the block 

(figure 8). The black arrows demarcate a northeast-southwest trending structure that 

is most prominent on the instantaneous frequency map. This structure is more 

pronounced and marked by a low-frequency signature (figure 9(a)). A section through 

the linear feature affirms the existence of a low-angle thrust dipping towards the 

northwest at angles between 10-15° detaching from the BS as seen in figure 9(b). The 

fault becomes undetectable as we move along strike in the time structure map, but the 

instantaneous phase and frequency displays clearly show the extent of the thrust 

fault. This further confirms that the instantaneous attributes can enhance the 

detection of the subtle faults that cannot be mapped by conventional amplitude 

interpretations.   

Comparing Blocks A and B, the envelope (reflection strength) attribute (figure 10) 

successfully identified the variability in the acoustic impedance response of the BS 

with the surrounding rocks. The attribute is sensitive to variations in the amplitude 

due to acoustic impedance contrasts between the target and the host rock and is, in 

this study, useful in identifying areas such as mine stopes where there is a significant 

difference in acoustic properties between the mined-out areas and surrounding solid 

rock. Block A exhibits two distinct features: the sub-crop position and high amplitude 

anomaly labelled as bright-spot in Figure 10. There is no mine infrastructure data 

available at present to verify whether the high seismic amplitude anomaly could 

represent the shaft or mine stope position.  
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Inline 1088 in Block B is predominantly characterized by complex reverse faulting, 

thus confirming the existence of structural complexity mapped on the envelope 

attribute map. Faulting appears to have propagated between the VCR and BS horizons 

(figure 11(a)). A seismic section (inline 1534) across Block A provides further 

evidence for  the close proximity of the BS to VCR (figure 11(b)). 

 

Structural propagation between BS and VCR  

In order to further enhance the mapping of minor faults that crosscut the BS and VCR, 

geometric attributes such as dip and dip azimuth attributes were applied to both 

horizons (figure 12). These attribute displays provide much better information about 

the connectivity and continuity of the structures when compared to instantaneous 

attributes.  

According to dip and dip azimuth maps, the BS and VCR have an average dip of about 

20° towards the southeast across the survey areas. The dip and dip azimuth attributes 

computed for VCR and BS horizons show a high-resolution delineation of normal 

faults that have dips between 60° and 85° and reverse faults with dips no greater than 

40° (figure 12(a)-(d)). These faults have been mapped with high confidence at both 

VCR and BS levels, providing evidence for the possible methane gas pathways 

between the BS and the VCR mining level. Outstanding examples of fault networks 

that have propagated between the two horizons include the PF, K1, K2, T1 and T2 

faults. The PF is a major, northeast trending normal fault zone (with a maximum 

throw of ~ 0.1275 s) that cuts through the central vicinity of the study area. PF is also 

well mapped on the time structure map, owing to its major vertical displacement. The 

K1 and K2 fault zones, on the other hand, are small northwest trending normal faults 

with throws up to 0.025 s that truncate the PF southwest of the map (figure 12(a)-

(d)). These two faults were not well mapped on the conventional interpretation maps 

due to their throws that are approaching the vertical seismic resolution limit (25 m or 

0.0125 s). Most interestingly, these attributes have demonstrated a degree of 
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structural complexity that was not observed with conventional interpretation. For 

example, these maps show that the PF crosscuts the T1 fault demonstrating that the 

fault system pre-dates the PF. The crosscutting relations indicate that methane gas 

may be transported from one fault system to the other, if and only if these structures 

are open and are prone to gas migration. This type of structural connectivity and 

crosscutting relationship was not revealed on the instantaneous attribute maps (see 

figures 7 to 10). Although the relation of the T1 and PF can be seen on both the dip 

and dip azimuth maps of both horizons, the fault intersection is best illustrated in the 

dip map of the VCR (figure 12c). This may imply that these faults have displaced the 

VCR with relatively higher vertical displacements than the BS horizons. This 

demonstrates that the dip azimuth map shows a better degree of structural continuity 

and connectivity than the dip maps. This is probably because these faults have 

apparent dip directions that are different to that of the horizons (Zhu et al 1999, 

Randen et al 2001, Dalley, 2008). 

 

To further enhance the detection of subtle faults that crosscut both VCR and BS, we 

gridded the surfaces and computed the edge-detection attributes. Edge-detection 

maps exhibit a series of northeast trending faults with significantly low throws that 

could not be mapped by both dip and azimuth maps (figures 13 and 14). Most 

importantly, the inter-connectivity nature of these faults, as observed on the edge-

detection attribute maps, suggests that they were active after the deposition of the 

VCR and BS horizons. Generally, edge-detection attributes have provided a delineation 

of subtle faults that fall below the seismic resolution limit (0.0125 s). Their 

effectiveness was enhanced through the smoothing of the horizon using low-pass 

filters such as the combination of mean and median filters to remove noise introduced 

during manual picking. However, there are still areas that are characterized by the 

low SNR, particularly at the edges of the surveys. The effects of structural complexity 

and the deterioration in the seismic resolution of the horizon are also more evident in 

most of the southern and southwestern parts of the study area. This could be due 
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structural complexity and low fold of coverage in these areas. In the northern areas, 

the low SNR could be due to dolomite outcrop that hampered the seismic acquisition. 

Overall, the amount of structural detail that the edge-detection attribute offers is 

significantly greater than the dip, dip azimuth, and conventional interpretation. The 

detection of the vertical structural continuity, in particular, between the VCR and BS 

horizons has been greatly enhanced.  

 

DISCUSSION  

 

In this study, we have applied seismic attributes to old high-resolution 3D seismic 

data to: (1) enhance detection of subtle faults and (2) understand methane gas 

migration pathways between a hydrocarbon source rock (BS) and the mining levels 

(VCR) in deep gold mines of the Witwatersrand Basin. Although the VCR had been 

identified and interpreted in seismic data before (Manzi et al 2014), the detailed 

seismic interpretation of the BS using instantaneous attributes is reported here for the 

first time. Results attained from the use of seismic attributes for structural 

interpretation illustrate the advantages of using more than one attribute to derive 

information from a chosen horizon.  

 

One of the key points of the study is that most subtle faults observed on the seismic 

sections across the survey areas do not appear to crosscut both BS and VCR horizons. 

However, seismic attribute maps demonstrate that these faults have throws below the 

vertical seismic resolution to be detected and tracked on the seismic sections. Further 

analysis on the attributes shows that these faults crosscut and offset the VCR and BS 

horizons by throws as small as 5 m. At major scale, the seismic data show the mapping 

of one dominant northeast trending structure, PF, which crosscuts and offsets the VCR 

and BS horizons with variable throws (~ 0.01 - 0.125 s). Our interpretation of this 

fault concurs with conclusions made by Gibson et al. (2000) that reduction in the 
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throw along the plane indicates the intersection of the fault with other sub-vertical 

subordinate structures. Most of the fault segments emanating from the PF zone are 

cataclasitic and have been linked to fault reactivation in the Pretorius fault zone. The 

geometry, depth positions, and apparent dips of some of these structures have been 

confirmed by underground mapping and drilling (Dankert and Hein 2010). Future 

mine development plans may need to be updated to consider these new structural 

parameters, since this horizon is proximal to commercial gold deposits (namely the 

VCR). 

 

At a minor scale, seismic attributes have enhanced the detection of subtle faults that 

displace the BS horizon and VCR with throws far below the seismic resolution limit. 

This information derived from seismic attributes introduces a novel representation of 

the interconnectivity of faults between the two horizons, but most importantly, the 

possible upward migration of methane gas to the mining levels. Instantaneous phase, 

instantaneous frequency, and envelope delineated structural features that were not 

previously identified by conventional interpretation. Structural definition and 

stratigraphic changes were largely dependent on the quality of the seismic data. Of the 

three complex trace attributes, the low SNR areas had the most significant effect on 

the phase and frequency displays. Noise in the data affects the seismic attribute 

output, which may result in poor quality and reduced reliability in seismic 

interpretation. In the instantaneous phase displays, phase changes (particularly 

negative changes) occurred at discontinuities and areas with random noise. The noisy 

and discontinuous areas in the instantaneous frequency maps were marked by low-

frequency interference. 

 

The northern portion of the survey area (which accounts for up to 8% of the entire 

survey area) has a particularly low SNR. The significant noise deterioration in that 

area is due to karst weathering of the dolomites of the overlying Transvaal 
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Supergroup that is known to cause scattering of seismic energy (Manzi et al 2012b). 

Although the seismic data used for interpretation are of good quality, the application 

of filters (mean and median – which preserve both amplitude and structural integrity) 

proved only partially useful in reducing the noise associated with both poor 

resolution and picking errors.  

 

The sub-crop identified by all three instantaneous attributes marks a stratigraphic 

position where the reef thins resulting in the accumulation of characteristically low-

grade gold (Manzi et al 2013). This sub-crop position is a zone where the 

unconformable sequence is possibly at its mechanically weakest; where there is less 

adhesion between the shales and quartzites. The BS is described as highly laminated 

and undergoes a significant amount of horizontal stress during mining operations 

west of the survey area (Carstens 2007). This point is crucial when considering 

possible mechanisms for lateral migration of fluids and gas in the basin. The close 

proximity of the shale unit to the VCR also means that if there are any structures 

intersecting the source rock at this position, the likelihood of them also affecting the 

reef is much higher.  

 

Edge-detection attributes have mapped a series of subtle faults that seem to have 

propagated between the VCR and BS. Some of these faults are new and were never 

mapped in the previous studies previously identified by Manzi et al. (2012a) as part of 

a series of horsts and grabens extending from the adjacent goldfield in the east, across 

into the West Wits Line Goldfield. These normal fault networks (which appear as 

polygons in map view) are interpreted to have formed during a major Platberg 

extensional regime (Manzi et al 2013). The highly fragmented nature of the faults 

within the graben does not appear random. Tracing the faults on the dip azimuth 

maps confirmed that there is a certain pattern analogous to the types of faults known 

as polygonal faults seen in a number of offshore sedimentary and continental margin 
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basins (Cartwright 1996, 2011, Sonnenberg and Underwood 2012). These faults are 

defined as “an array of layer-bound extensional faults within a mainly fine-grained 

stratigraphic interval that exhibit a diverse range of fault strikes that partially or fully 

intersect to form a polygonal pattern in map view” (Cartwright et al 2003).  

 

The migration of methane from depth to mining levels 

The most critical clue leading to deciphering the sources of methane in the 

Witwatersrand Basin is the carbonaceous material found in reef packages. Carbon in 

the basin occurs either as stratiform carbon seams or as pyrobitumen. Carbon is 

closely linked to gold precipitation in the basin and in most cases, this gold of a high 

grade. There are two theories regarding the presence of carbon (and associated 

hydrocarbons) in the basin. The first theory is that the carbon was derived from algal 

mats that were attached to the gold reefs (Mossman et al 2008, Spanenberg and 

Frimmel 2001). Evidence for this includes isotopic data that associates the 

carbonaceous material to the insoluble organic matter and fractures that offset the 

carbon seams. The second theory is that the carbon was derived from liquid 

hydrocarbons that migrated through fractures and faults in the basin. The source of 

these hydrocarbons may be attributed to the alteration of the carbon seams and 

basin-internal shales such as the BS. The type of methane found at depth might give an 

integral clue about the source of that methane. 

Sherwood Lollar et al. (2006) reported that most of the methane in the basin was 

abiogenic. Samples collected from fissure water at depths of up to 3400 m show that a 

significant amount of mixing has occurred between the microbial and abiogenic end-

members (Sherwood Lollar et al 2006). A few deductions/assumptions can be made 

from these observations. The meta-sedimentary rocks of the Witwatersrand Basin are 

low porosity and permeability rocks (Barnard and Baran 2000) therefore mixing had 

to have occurred through the presence of an interconnected fracture and fault 

system(s). Seismic data provide the possible migration mechanism by which the biotic 



86 

 

 

and abiotic methane can mix at greater depths. Considering the distance that these 

gases have to be migrated both vertically and laterally, it is worth noting that the most 

effective agents of transportation are hydrothermal fluids (Staude et al 2009, Burisch 

et al 2016).  

With all this information derived from the use of seismic attributes to map structural 

propagation between the BS and VCR horizons, it is also possible that not all the 

mapped-out structures may be labelled as conduits for the present-day methane 

detected at mining levels. There are a number of conditions that have to be met for a 

fracture or fault to be considered an effective pathway for fluid migration. For 

example, fault reactivation in sedimentary basin settings is considered an active agent 

in either closing or opening up pathways for fluid migration (Sherwood Lollar et al 

2006). The purpose of this is to demonstrate that 3D seismic data integrated with 

seismic attributes can provide high resolution mapping of the faults, dykes and 

fracture systems that may provide methane gas pathway to the mining levels. The 

work provides an important step towards resolving a long-standing controversy of 

the gas migration mechanism in the Witwatersrand Basin. 

 

CONCLUSION  

 

The history of methane explosions in the Witwatersrand gold mines has given cause 

for investigation of the source of this methane. The ability to seismically image and 

structurally interpret a possible source of methane in the basin may give new insight 

into the fault mechanisms that act as conduits transmitting methane from depth up 

into the mining VCR levels.  

Seismic attribute analysis in hard rock environments has gained momentum in its 

effectiveness to delineate structures that affect mine planning and development. The 

conventional interpretation of the BS outlined some of the major faults intersecting 

the horizon. The use of instantaneous phase, frequency, and reflection strength took 
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the seismic interpretation process a step further by delineating the seismic character 

of the shale. All three attributes are successful in highlighting the shoreline position 

where the BS sub-crops against the VCR. The data showed that discontinuities are 

generally characterised by abrupt phase changes, low frequencies, and strong 

reflections, particularly in the western portion of the goldfield. The application of dip, 

dip azimuth, and edge-detection maps provide a good correlation between structures 

found at both the BS and overlying VCR. This information may now be used to give 

further insight and a visual representation of structural controls of methane gas in the 

Witwatersrand Basin. In order to fully understand the nature and modes of structural 

control of the methane migration from depth, an integration of different datasets such 

as borehole and gas compositional data is required. This means that the structural 

interpretation of the BS and VCR is only part of a bigger puzzle of the occurrence and 

mobility of methane gas. Such an integrated system would shed more light into the 

hydrocarbon enigma of the Witwatersrand Basin.  
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FIGURES 

 

 

Figure 1. The geology of the Witwatersrand Basin and location of the West Wits Line 

Goldfield (outlined with a black rectangle) within the basin.  
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Figure 2. The WUDLs 3D seismic survey and the mines covered by the survey. The 

interpreted BS covers approximately half of the survey and has been divided into 

Block A (which covers portions of the Mponeng, Western Ultra Deep Levels and 

Kusasalethu mines) and Block B (which covers portions of the Kusasalethu and 

Deelkraal gold mines).  
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Figure 3. Stratigraphic overview of the specific area of interest within the 

Witwatersrand Supergroup and overlying Kliprieviersberg Group of the Ventersdorp 

Supergroup. VCR – Ventersdorp Contact Reef; BS – Booysens Shales.  
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 Figure 4. (a) 3D seismic cube (created from inline 1010, crossline 1340 and a time 

slice at 3.56 s) representative of the area of interpretation of the Booysens Shale (BS) 
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and Ventersdorp Contact Reef (VCR). The data are of good quality with most of the 

unconformities down to depth. The sub-crop position (highlighted by the white circle) 

can also be seen in the 3D seismic cube; (b) A picked time structure map of the BS 

horizon. Time increases in a southwesterly direction. The “cracks” in the horizon are 

fault picks where the Pretorius Fault (PF) is the most prominent fault displacing the 

BS.  

 

 
  

Figure 5. A time structure surface of the Booysens Shale with fault polygons. The 

contour interval was set at 0.5 s, showing no abrupt changes in continuity (i.e. 

faulting) along the horizon. A section (A-B) through the Pretorius Fault was acquired 
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and is presented in figure 6(a). Three types of faults have been identified based on 

their orientation and length – primary, secondary, and tertiary. The most prominent 

primary fault is the Pretorius Fault. The secondary faults generally trend in a NW-SE 

direction and the tertiary and smallest faults, in a NE-SW direction.  

 

 

Figure 6. (a) Section A-B displaying the significant throw of the Pretorius Fault (PF). 

The fault displaces both the Ventersdorp Contact Reef (VCR) and the Booysens Shale 

(BS). The PF is flanked by faults on either side of the fault plane (b) A variable throw 

graph of the Pretorius Fault. Substantial peaks and dips in the trendline may be 

attributed to sub-ordinate faults splays (at the 250, 3500, 6500 and 9250 m marks) 

branching out from the Pretorius Fault.  
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Figure 7. (a) Instantaneous phase and (b), the instantaneous frequency maps of the 

Booysens Shale of Block A. The white arrows, characterized by a phase change in the 

instantaneous phase map and a lower frequency in the instantaneous frequency map, 

mark the approximate location of the sub-crop position. It is evident that the extent 

sub-crop position can be more clearly seen on the instantaneous frequency map. The 

black arrows show the extension of faults where picking could not be achieved due to 

low seismic resolution.  
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Figure 8. Instantaneous phase map of the Booysens Shale for Block B. The black 

arrows denote a linear north northeast-trending feature (the distinction and 

extension of which is best delineated in the frequency map for Block B in figure 9a). 

The purple arrows point to east-west trending lineaments as well as an intersecting 

set of north-north-east trending faults. Most of the area is significantly affected by 

noise, particularly the southern portion of the block.  
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Figure 9. The instantaneous frequency map of the Booysens Shale for Block B (a) has 

a distinct linear, northeast trending feature that has been identified in the cross-

section (b) as a thrust fault detaching from the Booysens Shale horizon. Noise on the 

northern and southern portions of the instantaneous map may be attributed to 

structural complexity and/or poor fold coverage along the edges of the survey. 
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Figure 10. The envelope map of the Booysens Shale for Blocks A and B. There is 

variability in the reflective strength resulting from varying acoustic impedances 

across the horizon. Features of interest in the map include high reflectance areas 

related to faulting and a bright spot. Inline sections 1088 and 1534 (see Figure 11) of 

the different areas of interest were acquired for further interpretation within Blocks A 

and B. 
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Figure 11. (a) Complex structural mapping in Block B. Faults appear to have 

displaced the Booysens Shale (BS) and the Ventersdorp Contact Reef (VCR) and (b) a 

section showing the close proximity of the Booysens Shale to the Venterdorp Contact 

Reef close to the sub-crop position of the Booysens Shale against the Ventersdorp 

Contact Reef in Block A. 
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Figure 12. Dip and dip azimuth maps of the Booysens Shale (a and b) showing fault 

intersections and relief possibly due to folding. The dip (c) and dip azimuth (d) maps 

of the Ventersdorp Contact Reef show a greater amount of structural detail highlight 

the major structures found in the West Wits Line Goldfield. The most prominent 

structures include the PF, T1, T2 and T3, K1 and K2 faults and all of them appear to 

extend from the BS to the mining level, the VCR. 
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Figure 13. (a) Edge-detection attribute map of the Booysens Shale. There is a 

significantly degree of sub-seismic lineaments (with the example of the NE-trending 

faults in the west) that have been images by the attribute; (b) A close-up of some of 

the features such as manual picking errors and noise accentuated by edge-detection 

[*].  
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Figure 14. (a) Edge-detection display of the Ventersdorp Contact Reef. (b) Thrust 

imbrication north of the survey area is identified by the smeared edges(c) The 

crosscutting relationships between faults can clearly be observed using the edge-

detection method. Values for the attributes are represented as percentages and the 

lower the percentage (more orange than blue), the more likely it is that it attribute has 

detected a lineament. It is clear to see that edge-detection has delineated a series of 

faults that were otherwise below the seismic resolution limit (~25 m). 
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7. RESULTS ON METHANE IN THE WEST WITS LINE GOLDFIELD 

 

As previously stated, the methane found in the Witwatersrand Basin has multiple 

sources attributed to it. The occurrence of methane gas found at deep mining levels in 

the gold mines has been linked to geological structures such as faults and dykes. This 

chapter presents and examines the link between groundwater samples containing 

hydrocarbons derived from underground gold mine boreholes, and faults and dykes 

cross-cutting the mining horizons, which were detected by seismic attributes. This is 

done by comparing conventional amplitude seismic displays with seismic attributes 

(mainly ant-tracking) applied to the 3D seismic volume. In Chapter 6, only the western 

portion of the WUDLs 3D seismic survey was interpreted. In this section, due to 

boreholes being located further east of the survey area, structural interpretation has 

been extended further into the Mponeng, TauTona and Driefontein gold mines where 

most of the samples were collected. The localities of 15 methane borehole-sampled 

points are integrated into a 3D ant-tracked volume.  

 

7.1 The biohydrogeology of fracture waters of the West Wits Line Goldfield gold 

mines 

A significant body of literature documents the characteristics of the fracture water as 

well as the microbial communities that exist in deep South African gold mines (Takai, 

et al., 2001; Lippmann, et al., 2003, 2011; Ward, et al., 2004; Moser, et al., 2005; 

Sherwood Lollar, et al., 2006, 2007, 2008; Lau, et al., 2014; Borgonie, et al., 2015; 

Simkus, et al., 2016). The following section provides a background of the types and 

characteristics of the water found at these boreholes in the West Wits Line Goldfield. 

A synopsis of the types of waters found in the Driefontein, Mponeng, and TauTona 

gold mines is given and a more detailed overview of the compositional and isotopic 

characteristics of the borehole sites is presented.  
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Gas and fissure water sampling in some of the world’s deepest mines is an arduous 

task. Sampling occurs as far down as 3 500 m below the surface of the Earth, at 

temperatures ranging between 20 and 60°C. The samples for this study were collected 

over fifteen years (1998 to 2013) by a collaborative team of scholars with the help of 

mine personnel in the Mponeng, TauTona, Driefontein, and Kloof gold mines. The 

candidate is not included in the group of scholars that collected the data, but they have 

made it available for use in this research. 1596 water and gas samples were acquired 

from 55 underground boreholes. Most of the samples were collected from fissure 

water at the designated borehole collars. Parameters such as temperature, air 

pressure and groundwater salinity were measured. Most of the samples were 

analysed for gas and isotope composition. Detailed descriptions of the sampling 

methods are outlined by Ward, et al. (2004) and Sherwood Lollar, et al. (2006). The 

main purpose of the studies has been to characterize the groundwater emanating from 

the boreholes as well as understanding the types of life forms that have been found at 

these sites (Moser, et al., 2005; Sherwood Lollar, et al., 2006). At some of the borehole 

positions, geological structures, i.e. faults and dykes, were identified. The presence of 

fissure water is generally accompanied by considerable amounts of hydrocarbon 

gases, and understanding the character and spatial relation of the groundwater at the 

different sampling sites gives clues as to how structurally interconnected (or isolated) 

the groundwater systems are.  

 

There have been over 100 samples collected from gold mines in the northern and 

eastern parts of the Witwatersrand Basin, however, this study will focus only on 16 

borehole samples collected from the three aforementioned gold mines; Driefontein, 

Mponeng, and TauTona. DR546 BH1, DR548 FW, DR5IPC, DR638 FW, DR938 CH, 

DR9IPC, DR938 H3, and DR940 FW were collected from Sibanye’s Driefontein gold 

mine. Samples collected from Mponeng were MP104 and MP10, and TT100, TT107, 

TT109, and TT118 were collected from TauTona gold mine. The groundwater and gas 

samples were collected between 1998 and 2011 at depths between 896 and 3 550 
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mbls (meters below land surface). The temperature of the groundwater collected from 

the boreholes ranged between 20 and 60°C, with MP104 having the highest recorded 

temperature (Table 7.1). 

Table 7.1: The samples collected from the Driefontein (DR), Mponeng (MP), and 
TauTona (TT) gold mines including the sampling date, depth, temperature, and gas 
compositions. 

 

Source: a. Sherwood Lollar, et al. (2006); b. Duane, et al. (2005); c. Simkus, et al. (2016); d. Moser, et al. 
(2003); e. Onstott, et al. (2006). 

mbls: metres below land surface; n.m – not measured; n.d. – not detected  

 Mole (%) 

Sample name 

Sample 

Date(mo-

dy-yr) 

Sample 

Depth 

(mbls.) 
ToC H2 He O2 N2 CH4 C2H6 C3H8 

DR548 FW a 09-04-01 3 300 41,6 10,34 3,05 6,18 23,61 56,31 2,67 0,220 

DR5IPC c 07-15-11 1 050 26,8 0,000434 0,15 19,11 75,25 1,93 0,0027 n.d. 

DR546 BH1 d, e 12-01-98 3 213 37,0 3,19 2,77 0,03 3,34 84,50 3,18 0,325 

DR638 FW 11-01-98 2 700 45,0 0,0134 4,29 0,18 34,90 28,00 1,24 0,108 

DR938 CH a 09-12-02 2 712 20,0 n.d. 0,42 16,77 73,59 4,70 0,12 0,020 

DR9IPC a 10-16-02 896 26,0 n.d. 2,75 3,77 101,78 11,62 n.d. n.d. 

DR938 H3 (D3) 07-12-02 3 350 42,5 0,32 4,64 4,95 28,60 61,40 2,45 0,260 

DR938 H3 (D2) 
a 

11-11-01 2 716 43,0 0,74 5,98 0,55 13,98 76,03 3,15 0,319 

DR938 H3 (D1) 
b 

10-24-01 2 825 54,0 0,0127* n.m. n.m. n.m. 61,09* n.m. n.m. 

DR940 FW 09-26-02 2 812 20,0 n.d. 1,17 19,31 73,05 10,18 0,30 0,040 

MP104 a 09-16-02 2 825 60,0 9,85 9,11 6,12 29,31 41,96 3,30 0,480 

MP109 a 10-17-01 3 000 50,0 3,30 9,06 4,77 28,14 53,83 2,47 0,360 

TT100 e 08-27-02 3 025 46,5 n.d. 0,25 18,70 76,70 2,50 0,04 n.d. 

TT107 c 07-04-05 3 049 48,7 0,11 3,98 0,96 38,89 16 0,87 0,13 

TT109 c 07-04-05 3 137 52,1 0,011 4,46 0,04 28,28 61,9 2,58 0,37 

TT118 05-30-07 3 550 55,0 2,4 8,8 3,3 29,2 53,4 3,25 0,38 
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*Measurement based on results from Residual Gas Analyser/Flame Ionization Detector (RGA/FID) 
analysis; for the other samples, FID was used.  

 

A plot of temperature versus methane gas concentration shows that CH4 concentration 

generally increases with increasing temperature and depth (Figures 7.1 and 7.2). The 

Driefontein samples have a wide temperature range (20 - 54°C) compared to the 

samples collected from the other gold mines but like the other mines, show a positive 

linear trend in increasing methane concentration with increasing depth. An exception 

is DR938 H3 (D2), which has the highest recorded CH4 concentration at 76.03 mol% of 

the total gas composition with a coinciding temperature of 26°C. The lowest recorded 

value for CH4 was 1.93 mol% from borehole DR5IPC. Samples at depths between 

2 700 and 2 830 mbls have temperatures ranging between 20 and 26.8°C. The 

groundwater temperatures above 40°C coincide with depths greater than 2 500 mbls. 

The Mponeng gold mine samples, MP104 and MP109, have the coolest and warmest 

temperatures with a slight change in CH4 mol% content of 11%. The TauTona data are 

clustered in a narrow range of temperature of 10°C. The TT109, TT118, and MP109 

cluster has temperatures above 50°C, occurring at depths between 2 700 and 3 550 

mbls and CH4 concentrations reflecting those depths and temperatures (Figures 7.1 

and 7.2). This is significant because, although organic decomposition required to 

produce oil and gas may occur at temperatures up to 150°C, effective hydrocarbon 

generation within appropriate geological timescales occurs at temperatures below 

80°C (Wilhelms , et al., 2001; Stopler , et al., 2014). Other gases comprising the 

borehole water are also presented in Table 7.1. The gases worth noting are hydrogen 

(H2) and the higher hydrocarbons, ethane (C2H6) and propane (C3H8) due to their 

explosive nature. The boreholes with the greatest amounts of H2, which has an 

explosive limit ranging between 4 and 75 mol% of total gas composition (Yaws & 

Braker, 2001), are DR548 FW (10.34 mol%), MP104 (9.11 mol%), and MP109 (9.06 

mol%). The percentage of higher hydrocarbons increases with increasing CH4. This is 

exemplified in samples DR546 BH1 and DR938 H3 (D2), where high CH4 

concentrations have correspondingly relatively high C2H6 (3.18 and 3.15 mol%) and 
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C3H8 (0.325 and 0.319 mol%) values, respectively. The explosive limits for C2H6 range 

between 3 and 12.4 mol% and between 2.1 and 9.5 mol% for C3H8 of the total gas 

composition (Figure 7.1).  

 

 

Figure 7.1: A plot of temperature versus CH4 concentration. The plot shows that 
higher CH4 concentrations are generally associated with higher temperatures showing 
a positive linear trend.  
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Figure 7.2: A plot of the relationship between depth and CH4 concentration. The 
samples from the Driefontein, Mponeng, and TauTona gold mines samples generally 
have increasing methane concentration with increasing depth. DR - Driefontein, MP - 
Mponeng, TT- TauTona. 

 

Groundwater is a significant mode of mobility for the gases found at depth. Stable 

isotope analysis of δ2H and δ18O gives a good indication of the possible source and 

type, whether meteoric or hydrothermal, of groundwater found within a sedimentary 

basin (Blasch & Bryson, 2007; Heilweil, et al., 2009). The relative proportions of δ2H 

and δ18O contained in water are shown as an indication of the deviation from the 

global meteoric water line (GMWL). The stable isotope analyses were run for some of 

these boreholes the results are summarized in Table 7.2. The values were then plotted 

against the GMWL and the local meteoric water line (LMWL) of Pretoria. The GMWL is 

an equation, formulated by Craig (1961), that expresses the worldwide average 

relationship between hydrogen and oxygen ratios in natural terrestrial water. The 
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GWML has a regression line of δ2H = 8.0*δ18O+10. The LMWL, on the other hand, is the 

regression line derived from data collected from a local site and may differ from the 

GMWL. The LMWL has a line regression line of δ2H = 6.7*δ18O + 7.2 (IAEA/WMO, 

2017). Pretoria has been used as the LMWL because it is one of two Global Network 

for Isotopes in Precipitation (GNIP) stations in South Africa. Apart from Cape Town, 

which is located at the southernmost tip of South Africa, Pretoria has an extensive 

collection of rainfall and stable, environmental isotope data that dates back to the 

1960s (West, et al., 2014).  

Except for four samples from the Mponeng and Driefontein gold mines, the samples 

generally cluster along the meteoric water line (Figure 7.3). The Driefontein samples, 

DR546 BH1 and DR548 FW, on the far left of the LMWL, are comparatively enriched in 

δ2H and depleted in δ18O relative to the LMWL. These were both collected at depths 

greater than 3 000 mbls within the Ventersdorp Supergroup. There are three 

possibilities for these observed values. The first possible explanation is that the 

precipitation coming from a higher altitude than Pretoria, a reference point based on 

LMWL data which is located 55 km north of Johannesburg, may have resulted in the 

lighter isotopic signature. The other possibility is that the depleted δ18O signature may 

represent palaeometeoric water that precipitated during either warmer climate or 

may have been affected by magmatism associated with the extrusion of the lavas of the 

Ventersdorp Supergroup. This is because δ18O content changes as temperatures 

fluctuate (Duane, et al., 1997; Hoefs, 2009). This is palaeometeoric, fissure water is 

described by Lippmann, et al. (2003) as ranging in age between 1-100 Ma dated using 

dissolved noble gas, 36Cl, δ2H, δ18O data. A third possibility is the effect that the 

geological formation along which the water flows has on the isotopic signature of that 

water. That is, the two boreholes lie within the Ventersdorp Supergroup lavas and the 

more positive δ2H values may be the result of isotope exchange with surrounding rock 

or hydration (Lippmann, et al., 2003). Isotopic exchange between carbonates and 

silicates may produce reduced values for δ18O without affecting the δ2H. The 

possibility of such an isotopic exchange occurring within quartzites is small because 
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the rock does not readily exchange at temperatures below 100°C (Matthews & 

Beckinsale, 1979). The other, and most likely possibility, is the hydration of the 

Ventersdorp lavas that would result in more δ18O-depleted, δ2H-enriched water as 

seen in samples DR546 BH1 and DR548 FW (Onstott, et al., 2006). Clark and Fritz 

(1997) proposed that such observed values might be the result of hydrothermal fluid 

undergoing isotopic exchange with rock strata at temperatures between ~250 and 

300°C. This is likely considering that the Witwatersrand Basin has undergone 

metamorphism, with which the hydrothermal fluid is associated that raised 

temperatures up to 350 ± 50°C (Phillips & Law, 1994). The water would have cooled 

over time to the present day recorded temperatures, exhibiting the more negative δ18O 

and more positive δ2H isotopic signatures (see Table 7.2). 

 

Table 7.2: Stable δ18O and δ2H isotope data of fracture water collected from boreholes 
in the Driefontein (DR), Mponeng (MP), and TauTona (TT). Apart from samples 
DR546 BH1 and DR548 FW, which have the most negative δ18O values, the data ranges 
between approximately -4 ‰ and -7‰. The δ2H values range between -24‰ and -
34‰, where DR548 FW is the only exception with a δ2H recording of -10.30‰. A plot 
of δ18O and δ2H in Figure 7.3 shows that most of the samples lie along or close to the 
meteoric water line. 

Borehole name 
δ18O-H2O 

(‰) 
δ2H-H2O 

(‰) 
Geological 
Formation 

DR546 BH1a -13,14 -24,38 VL 

DR548 FWb -12,28 -10,30 VL 

DR5IPCc,d -4,44 -24,26 TD 

DR638 FW -6,19 -33,96 VL 

DR938 H3 (D3) e -5,64 -26,93 CRQ 

DR938 H3 (D2) -5,01 -27,87 VL 

DR938 H3 (D1) -5,80 -27,71 VL 

DR940 FW  -4,78 -27,20 VL 

MP104b -6,82 -29,13 VL 

MP109 -6,95 -30,44 CRQ 
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TT100  -4,89 -25,69 CRQ 

TT107c, d -4,78 -24,42 CRQ 

TT109c, d -5,02 -25,29 CRQ 

TT118 -5,19 -31,32 CRQ 

Source: a. Lippmann, et al. (2003); b: Silver, et al. (2012); c. Simkus, et al. (2016); d: Lau, 

et al. (2014); e. Moser, et al. (2003). Samples that do not have accompanying superscript 

have not been previously reported. VL – Ventersdorp Lavas, TD – Transvaal Dolomites, 

CRQ – Central Rand Quartzites.  

 

DR5IPC was collected from the dolomitic aquifer of the Transvaal Supergroup, and the 

observed δ2H and δ18O values are consistent with recharge originating from modern 

surface precipitation, which in turn is reflected by its position along the Local Meteoric 

Water Line (LMWL). The water derived from the DRIPC samples has been described as 

hypoxic palaeometeoric water with an approximate age of 12 300 years based on δ14C 

and 3H analyses (Borgonie, et al., 2015).  

The DR938 H3 borehole is probably one of the most documented boreholes in the gold 

mines of the West Wits Line Goldfield. DR938 H3 has a collar depth of 2 712 mbls and 

samples have been collected down to a depth of 3 350 mbls – the borehole spanning a 

total length of 748 m. The sample names DR938 H3 (D1), DR938 H3 (D2), DR938 H3 

(D3) denote the different times at which they were collected. DR938 H3 (D1) was 

collected in October 2001 at a depth of 2 825 mbls and less than a month later a 

second sample, DR938 H3 (D2), was collected in November 2001 at a depth of 2 716 

mbls. The last sample, DR 938 (D3), was collected in July 2002 at 3 350 mbls. The 

stable isotope data derived from the different sampling depths, collected at different 

times, exhibit a noteworthy trend pertaining to the groundwater springing from the 

borehole. In order for a change in isotopic data to be considered significant, there has 

to be a change that is greater than 0.5‰ of the previous, comparative reading (Bense 

& Hiscock, 2014). The δ18O and δ2H readings for DR938 H3 (D1) were -5.80‰ and -

27.71 ‰, respectively. The second sample, DR938 H3 (D2), was collected 
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approximately 100 m above the first sample point along the borehole and yielded 

values of -5.06‰ for δ18O and -27.87‰ for δ2H. A comparison between samples 

DR938 H3 D1 and DR938 H3 D2 shows that there is not much of a change in the δ2H, 

but there is a notable difference in the δ18O value – a 0.74‰ increase. The water in the 

borehole appears to have become more δ18O – enriched, and while DR938 H3 (D1) lies 

to the left of the LMWL, the second sample, DR938 H3 (D2), lies right along the LMWL. 

Eight months later, at a depth of 3 350 mbls, sample DR938 H3 (D3) was collected: the 

isotopic analysis shows the water comprises -5.64‰ of δ18O and -26.93‰ of δ2H. The 

δ18O value for this sample is closer to that of the first sample, which had a reading of -

5.80‰. The variable δ18O may be an indication of either a recharge of the more 

palaeometeoric water by modern precipitation via fractures and faults in the bedrock 

as noted by Moser, et al. (2005), or may be an indication of the variability of the type of 

water found along the length of the borehole. 

 

The TT118 of the TauTona samples lies along the LMWL, generally becoming more 

depleted in δ2H and δ18O with increasing depth. TT118, the deepest sampling point (3 

550 mbls), lies on the GMWL, giving an indication of water that may have precipitated 

at an earlier time, in a warmer climate. This sample also attests to the observation that 

water at greater depths is more depleted in δ18O (Bense & Hiscock, 2014). The 

variability of the gas composition of the samples gives an indication of the behaviour 

of methane as it migrates upwards. As previously stated, the methane content 

increases with increasing depth, and this is the case with the TauTona samples. This 

upwards reduction in the methane concentration, from deeper to shallower depths, 

may be an indication of the 1) diffusion of the gas from a high- to a low-pressure area, 
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and/or 2) lower temperatures as one moves up the mining levels.

 

Figure 7.3: δ18O and δ2H plot of the samples collected from the 16 boreholes. Most of 
the samples cluster along the meteoric water lines, except the Mponeng gold mine 
samples (inverted triangles) as well as samples from borehole DR546 BH1 and DR548 
FW (enclosed by red square), which were the only two samples collected from the 
Ventersdorp lavas. Although from the same borehole, D1, D2, D3 of borehole DR938 
H3 have distinctly differing values. LMWL – Local Meteoric Water Line; GMWL – 
Global Meteoric Water Line. 
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7.2 3D fault detection and visualization 

One of the integral components of this study was to identify faults and dykes that 

intersect the potential source of hydrocarbons in the BS and the auriferous VCR. The 

BS and VCR, described in detail in Chapter 6, are seismically delineated throughout 

the survey area. As previously mentioned, in seismic data interpretation, faults are 

identified as areas where reflector continuity is interrupted by poor resolution 

resulting from the vertical displacement of the reflector (Bacon, et al., 2007). Faults 

offsetting the aforementioned horizons were identified along inline and crossline 

sections across the entire seismic survey. These faults were above the seismic 

resolution limit (above a quarter of a dominant wavelength, i.e. 25 m for these data) 

and thus could be detected. Several major faults transect both the BS and the VCR but 

there are faults that appear to crosscut only the underlying BS.  

 

In Chapter 6.3, fault interpretation was mostly done for the Kusasalethu, Deelkraal 

and some portion of Mponeng and TauTona gold mines. Due to the location of most of 

the borehole sampling points, interpretation has been extended into the rest of the 

Mponeng, TauTona and the Driefontein gold mines. The process of horizon picking 

and identifying faults along the BS and VCR is detailed in Chapter 5.1.2 and 5.1.3, and 

in the methodology section of Chapter 6, and will hence not be reiterated in this 

section. For the purposes of identifying faults that were below the seismic resolution 

limit, the edge-detection method was applied to the extended portions of the BS. 

Although previously interpreted by Manzi, et al. (2012, 2014), the VCR horizon was 

also included, and the attribute applied for the purpose of comparison between the 

two horizons for this particular study (Figure 7.4).  
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Figure 7.4: A map of the WUDLs 3D seismic survey area. The shaded area are blocks A 
and B of the previously interpreted BS and VCR in Chapter 6. The area of the survey 
shows the extent of the extension of the interpretation of the survey; this extension 
includes most of the Mponeng gold mine as well as including the Driefontein and 
TauTona gold mines.  

 

In Figures 7.5 and 7.6, the edge-detected horizons reiterate the point that gold mining 

in the region occurs in the structurally complex collar of the Witwatersrand Basin. The 

edge-detected surfaces of the BS and VCR show that the area has undergone a 

considerable amount of structural deformation, particularly in the Driefontein gold 

mining area as well as in most of the southern portions of the goldfield (outlined in 

white rectangles in Figure 7.5). Two key factors have previously been noted as 

limitations in high confidence interpretation of horizons in the mentioned areas and 

these are, 1) poor seismic imaging due to the dolomite aquifers of the Transvaal 

Supergroup that directly overlie the rocks of the Witwatersrand Supergroup in the 

Driefontein area and 2) structural complexity (refer to Chapter 6). 
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Figure 7.5: Edge-detection map of the Booysens Shale (BS). The major faults 
intersecting the horizon have been identified. These are the Bank Fault Zone (BFZ), 
the DRW (Driefontein West) Fault, Tona 1 and 2 Faults and the Pretorius Fault (PF). 
Areas of low signal-to-noise (S/N) are also marked (white rectangles) on the map.  

 

The faults interpreted vary in size from first-order scale, which are faults that have 

throws between 2.5 km and 400 m, to second-order (400 m to 25 m), and third-order 

scale faults that have throws below 25 m (Manzi, et al., 2013a). Considering that the 

seismic data being used for this study are in the time domain with a total vertical span 

of 6 seconds (or 6 000 ms) which equates to approximately 12 km. The 3D seismic 

data used in this study has been previously used first-order faults would have 

displacement between 1250 ms and 200 ms, second-order faults, displacement 
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between 200 ms and 12.5 ms, and third-order faults, displacement below 12.5 ms. The 

main faults that have been identified along the BS horizon are the Bank, DRW, Tona 1 

and Tona 2, and Pretorius faults (Figure 7.5). The two horizons have many shared 

structures between them; however, Tona 2 does not appear to intersect the VCR 

(Figure 7.6).  

 

 

Figure 7.6: a) An edge-detection map of the Ventersdorp Contact Reef (VCR) shows 
that apart from Tona 2, all the faults intersecting the Booysens Shale (BS) in Figure 7.5 
intersect the VCR as well. A close-up of a portion of VCR (b) highlights that the DRW 
Fault has been crosscut by a set of left-lateral strike-slip faults (the planes of 
displacement are indicated by the black arrows and outlined in white dashed lines in 
(c)).  

 

The Bank Fault is the only first-order fault that has been identified within the seismic 

survey area. It is situated on the eastern edge of the West Wits Line Goldfield, 

separating the goldfield from the adjacent West Rand Goldfield, which lies further 
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east, beyond the boundary of the survey area. The Bank Fault is a north-northeast 

trending, normal listric fault with a maximum throw of approximately 1250 ms (2.5 

km) that dips between 65-75° westward (Figure 7.7). The fault may have formed 

during the extrusion of the Platberg Group of the Ventersdorp Supergroup, which 

occurred between 2.70 and 2.64 Ga, characterized as a major rifting event with 

concurrent heating of the lithosphere by a mantle plume (Stanistreet & McCarthy, 

1991; Manzi, et al., 2013a). The seismic data in Manzi, et al. (2013a) show that faulting 

extends from depth through the Witwatersrand and Ventersdorp Supergroups but is 

truncated at the base of the Transvaal Supergroup and with a proposed age of normal 

faulting activity ranging between 2.71 and 2.58 Ga. Fault throw mapping done by 

Manzi, et al. (2013a) shows that the Bank Fault has a variable throw along its length 

with throw values increasing towards the north-northeast. Clockwise block rotation 

during listric normal faulting was followed by the formation of a rollover anticline 

(McCarthy, 2006; Manzi, et al., 2013a).  

Figure 7.5 shows a number of second- and third-order faults that extend from the 

main fault in the hanging wall and footwall, and those along with the Bank Fault, 

make-up the Bank Fault Zone (BFZ). Unlike the main fault, which trends in the 

northeast direction, these sub-ordinate faults trend in a northwest-southeast 

direction relative to the Bank Fault and extend for approximately 3 km into the gold 

mines that lie northwest of the BFZ.  
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Figure 7.7: Inline 1801 showing the degree of displacement of the rocks of the West 
Rand Group (WRG) by the Bank Fault. The rocks of the West Rand Group (WRG) are 
significantly displaced by the Bank Fault by approximately 1 500 ms. The DRW Fault 
extends from the WRG and displaces the Booysens Shale (BS) and Ventersdorp 
Contact Reef (VCR) reflectors by about 150 ms. 

 

The DRW fault is a normal fault that trends in an east-west direction, steeply dips 

towards the south at an angle between 75-80°, and has an approximate maximum 

vertical displacement of 100 ms (Figure 7.7). The fault displaces West Rand Group 

stratigraphy, intersects both the BS and VCR and, according to edge-detection 

mapping by Manzi, et al. (2012), it also displaces the base of the Transvaal 

Supergroup. The fault forms a graben between itself and the Bank Fault. The DRW 

fault appears to terminate at the Bank Fault and displaces thrust faults in the West 

Rand Group related to compression during the emplacement of the Klipriviersberg 

Group (Stanistreet & McCarthy, 1991). The fault is not continuous along its length (see 

Figures 7.5 and 7.6) but is cut by left-lateral strike-slip faulting which is more 
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prominent on the VCR horizon (Figure 7.6b). Shearing planes are characteristically 

areas of major partings associated with bedding-parallel faults such as is seen in the 

altered Booysens and Green Bar shales. In the case of the Driefontein gold mine, stick-

slip motion that occurs along bedding-parallel faults has been associated with lensoid 

faults found in the hanging wall of the VCR (Sylvester, 1988; Roberts and Schweitzer, 

1999).  

 

The Tona 1 fault (so named after its proximity to the TauTona gold mine borehole 

samples) is a steeply dipping (70-80°) reactivated fault that extends from the BS, 

through the VCR and all the way up to the contact between the Ventersdorp 

Supergroup and the base of the Transvaal Supergroup – the BLR (Figure 7.8). This 

northwest trending second-order fault has a throw of between 25 and 50 ms. There is 

significant amplitude attenuation along the BS reflector in the hangingwall and 

footwall of the Tona 1 fault that extends from depth up to the BLR. The disturbance is 

more pronounced along the BLR and such a disturbance of reflector continuity is 

generally characteristic of dyke intrusions in seismic data (Bacon, et al., 2007). The 

Tona 1 fault also exhibits characteristics of a fault reactivation where the upper BLR 

has a different sense of displacement than the lower BS and VCR horizons. 
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Figure 7.8: Crossline 1250 showing the Tona 1 and Tona 2 faults. Tona 1 intersects 
the West Rand Group (WRG) rocks, the Ventersdorp Contact Reef (VCR) and even 
beyond the Black Reef (BLR). The fault has a differing sense of displacement in the 
WRG than it does along the VCR and BLR. It is therefore considered to have undergone 
reactivation. The dashed line illustrates the extent of a possible dyke swarm. Tona 2 
normally displaces only the Booysens Shales (BS) but leaves the VCR undisturbed.  

 

It appears that the lower horizons have undergone compressional deformation where, 

as described by Williams, et al. (1989), the hangingwall of the horizon has been 

displaced above the pre-deformational regional elevation. The Tona 1 fault was 

initially a reverse fault that was later reactivated as a normal fault that displaced the 
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BLR. Fault reactivation in the West Wits Line Goldfield has played a crucial role in 

fluid flow and gold mineralization (Phillips & Law, 1994; Jolley, et al., 2004). Tona 1 

fault is a significant fault because, as will be discussed in detail in the following 

section, three of the four TauTona samples were collected in close proximity to this 

fault. Tona 2 dips towards the east at an angle of approximately 70-80°. Like the Tona 

1 Fault, Tona 2 is a normal fault that has a throw of no more than 100 ms.  

The Pretorius Fault is the largest fault intersected at the Mponeng and TauTona gold 

mines. A full description of the characteristics of the fault and associated fault zones is 

given in Chapter 6.  

 

7.3 The application of the volumetric attributes - ant-tracking attribute  

7.3.1 The ant-tracking attribute 

The following section introduces the application of the volumetric seismic attribute 

(namely ant-tracking). Based on the workflow presented in Chapter 5.3.2, parameters 

were applied to an edge-enhanced volume to produce an ant-tracked seismic volume. 

The ant-tracking algorithm was run three times on an edge-enhanced volume in order 

to enhance fault, as well as sub-horizontal, discontinuity detection. A comparison of 

the original amplitude display seismic volume with the first- and third-run ant-

tracked volumes (Figures 7.9 to 7.11) shows the significant differences between the 

three volumes. All three iterations have different characteristics as seen in Figures 

7.12 and 7.13; however, the first and third iterations show the greatest degree of 

structural variations and are described in more detail below.  

Prior to the discussion of the results of the comparison between conventional seismic 

amplitude display and application of the ant-tracking attribute, it is worth noting the 

challenges faced in the interpretation process:  
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• Confident seismic interpretation using attribute analysis is dependent on the 

quality of the seismic data. Data that are of high quality yield good results, but 

confident interpretation is hampered in areas of low signal-to-noise ratio. 

• The stereonet filter is used in the ant-tracking workflow to filter the 

orientation of the structures that the interpreter wants highlighted. The choice 

not to apply a stereonet filter introduced artefacts. The effect of lineaments 

such as the acquisition footprint being detected as pseudo-structures was 

reduced by correlating known information about the orientation of the 

structures intersected by the boreholes. Despite the drawback of not applying 

the filter, faults and fractures could still be confidently detected by the ant-

tracking attribute, and the edge-enhancement method remains one of the best 

seismic attributes for fault enhancement.  

• Although the spatial data for the samples were provided, the borehole 

deviation surveys were not. Thus, most of the boreholes are represented as 

points. In instances where the borehole orientation and deviation are noted, 

the information is derived from literature and the authors are noted.  

 

The best indicator of the presence of a fault along a horizon is the reduction of 

reflector’s amplitude strength because of vertical displacement of the reflector. This is 

how faults (and sometimes dykes) are interpreted in amplitude display as seen in 

Figure 7.9. The shortfall with relying on basic amplitude display is that there may be 

some ambiguity regarding fault continuity and connectivity. The use of the ant-

tracking attribute reduces that ambiguity and even highlights structures that were not 

apparent before. Figure 7.10 is the result of the first-run of the edge-enhanced volume 

through the ant-tracking attribute. Several faults and fractures (and their 

connectivity) that were not apparent in the amplitude display are now evident in the 

ant-tracked volume as marked by red arrows in all three volumes. The stereonet filter 

was not applied in order to constrain the search of the intelligent “ants” to particular 

orientations, thus the attribute has also identified bedding-parallel discontinuities. 
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These are marked by the blue rectangles in all three figures (Figures 7.9 to 7.11); the 

discontinuities are identified as high amplitude areas in the amplitude display. The 

continuity of some of the fracture zones that was not discernible in the amplitude 

display is enhanced in the first run; refer to pink ellipses in Figures 7.9 to 7.11.  

 

The first-run is characterized by small-scale faulting and fracturing as well as what 

may be considered fractured rock zones. There appears to be variability in the 

distribution of the fracture zones based on the key lithologies that have been 

identified in the study area; that is dolomite (or carbonates), lavas, quartzites and 

conglomerates (see stratigraphic column in Chapter 2.1). The density of the fracture 

zones is much greater in the dolomites of the Transvaal Supergroup and this coincides 

with the hydrogeological nature of the rock as a highly permeable aquifer. The 

Ventersdorp Supergroup and Central Rand Group have similar clusters of fracturing 

and faulting as observed in the Transvaal Supergroup. The one of the causes for the 

intensity of fracturing in these rocks is mining activity, which involves blasting and 

drilling (Riemer &  Durrheim, 2011).  

Milev and Spottiswoode (2001) also found that the different rock types found in the 

mining district, particularly those that are the hanging and footwalls to the VCR 

experience different degrees of structural disturbance caused by mining induced 

seismicity. The frequency of fracturing and the isolated fracture zones decreases 

downwards towards the sediments of the West Rand Group. There are two possible 

explanations for the dispersal of these fracture zones and lack thereof in the West 

Rand Group. The first possibility is the extent and effect of mining and mine seismicity 

in the Witwatersrand Basin. A large proportion of the gold mining in the basin occurs 

in the Central Rand Group and due to the depth of any possible minable reefs, 

subsides in the West Rand Group. There exist both natural as well as mine-induced 

fractures and faults in the gold mines and the West Rand Group appears to be 

dominated by natural structural deformation (Reches, et al., 2006; Riemer & 
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Durrheim, 2011). The second possibility is frequency filtering; seismic signals are 

highly attenuated as they propagate deeper into the Earth (Bacon, et al., 2007). This is 

less likely because the initial run of the ant-tracking attribute (Figure 7.9b) highlights 

the fractured nature of the basement, which precedes the West Rand Group, quite 

well. It must be noted that some of the strong reflectors are traced faintly but they are 

discernible from this run. One disadvantage of the first run is that there are instances 

where fault extension is quite poor. Therefore, the form and extent of them diminishes 

instantaneously and is even often lost in the “chaos” of any fracture zones it intersects.  

In the third-run volume (Figure 7.11), the major discontinuities are emphasized, and 

the resolution of the smaller faults and fractures is diminished. There are instances 

where major faults have been highlighted by the ant-tracking attribute. The zones of 

concentrated fracture systems are now also absent from this iteration. The third run 

on the other hand is different from the first one in that it is the least representative of 

the structural features that are observed on the amplitude map. The run shows poor 

visibility and continuity of horizons. Although, some pseudo-structural features 

preserve their general dip direction in the inline. Most of these pseudo-structures 

cannot be correlated to the structural features observed in the 3D amplitude map or 

in the first run ant-tracking map. In summary, none of the features that were 

highlighted in the amplitude display (Figure 7.9) or first ant-track run (Figure 7.10) 

are observed in the third run of the ant-tracking inline and crossline sections (Figure 

7.11). Under the set parameter conditions, these observations suggest that the ant-

track attribute may not be reliable beyond the third iteration. While this is the case in 

the crossline and inline directions, the depth slices (Figure 7.12) give a different and 

more useful indication. As seen in Figure 7.13b, the third run ant-track volume fares 

well in the z-direction as discontinuities are well defined. A good example of this is in 

the northeastern corner of the survey where amplitude and first-run ant track 

displays show poor mapping of faults compared to the higher-run iterations, which 

shows significant improvement in fault detection. 
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On this run, it is evident that the ants preferentially track strong reflectors (with high 

amplitudes) in comparison to faults (with lower amplitudes) that intersect the 

reflectors (Figures 7.12b to d). This means that the more the ant-attribute is 

computed to an already ant-tracked volume, the more the ants will pick the signal of 

the stronger discontinuity, i.e. the reflector in this case (as highlighted by the pink 

squares on the ant-tracked depth slices in Figure 7.12). This is not always the case and 

the way the ants decide on which discontinuity to enhance is still unclear.  

 

 

Figure 7.9: A 3D representation of inline 1358 and crossline 1383 of the amplitude 

display. There are a number of faults (marked by red arrows) and reflectors such as 

the Booysens Shale (BS), Ventersdorp Contact Reef (VCR), and Black Reef (BLR) that 

can be identified in the amplitude display. A fault that distinctly displaces the BLR is 

outlined by the pink ellipse. The blue rectangles highlight areas that have been 

identified as definitive sub-horizontal discontinuities in the ant-tracking volume in 

Figure 7.10. The approximate position of the basement is indicated by a dashed line. 
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Figure 7.10: A 3D representation of inline 1358 and crossline 1383 of the first-run 

ant-tracking volume. There are a number of faults, marked by red arrows that have 

been enhanced by the ant-tracking attribute. Sub-horizontal reflectors such as the 

Booysens Shale (BS), Ventersdorp Contact Reef (VCR), and Black Reef (BLR) are 

identifiable in the ant-tracked display as well. The visibility and continuity of some of 

these sub-vertical faults as well as sub-horizontal discontinuities (outlined by blue 

rectangles) are enhanced using the first ant-tracking attribute. A fault that distinctly 

displaces the BLR and previously identified in Figure 7.9 is outlined by the pink 

ellipsoid. The extension of the fault is now visible using the ant-tracking attribute. The 

approximate position of the basement is indicated by a dashed line.  
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Figure 7.11: A 3D representation of inline 1358 and crossline 1383 of the third-run 

ant-tracking volume. A set of northwest dipping, sub-vertical lineaments and lateral 

discontinuities are apparent in the crossline (xline) and inline directions, respectively. 

Unlike in the amplitude and first-run ant-track displays (Figures 7.9 and 7.10), the 

faults (marked by red arrows) are no longer apparent. The continuity of the reflectors 

such as the Booysens Shale (BS), Ventersdorp Contact Reef (VCR), and Black Reef 

(BLR) is also not evident. The pink ellipsoid marks a visible fault in the amplitude and 

first-run displays that has not been mapped by this run. The approximate position of 

the basement is indicated by a dashed line.  
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Figure 7.12: Depth slices of an (a) amplitude display and the first run (b) ant-tracking 

attribute displays in fault detection. The faults picked in the pink dotted line on the 

amplitude display depth slice are highlighted by the red arrows on the ant-tracking 

attribute displays. 
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Figure 7.13: Depth slice of the differences between a) second-run and b) third–run 

ant-tracking attribute displays in fault detection. Faults detected in the first-run 

generally become more enhanced as the number of iterations increase, i.e. from the 

first-run to the third-run slice. 
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7.3.2 Correlation of fault networks and methane data  

The use of seismic attributes in the detection of fault networks has proven successful 

in the 1995 WUDLs 3D seismic data. The main objectives of this study have been to 

not only see how well the attributes work on PSTM data but mostly importantly, to 

identify any structures related to the methane gas that has been intersected in the 

deep gold mines of the Witwatersrand Basin. The previous sections of this chapter 

(7.1 to 7.3.1) looked at the compositional and isotopic data of the methane gas as well 

as a general overview of the major structures found at the Driefontein, Mponeng, and 

TauTona gold mines. The following section gives a visual representation of the 

methane sampling points within the 3D seismic volume to identify any structures that 

may be linked to methane gas transmission.  

 

The methods by which most of the samples were collected are documented by Ward, 

et al. (2004) and Sherwood Lollar, et al. (2008) in the Driefontein, Mponeng, and 

TauTona gold mines. For the purposes of this study, only the results from 15 of the 

samples collected will be reported for this section (Appendix A). These are samples 

whose methanogenic origin has been determined and/or a geological structure was 

associated with them at the time of sample collection. Table 7.3 is a list of all the 

samples that have been plotted within the seismic volume along with information 

about the formations in which they are found, the origin of the methane, geological 

structures that were intersected, as well as water and gas flow rates. The samples are 

represented as points rather than boreholes unless otherwise stated. These points 

represent the actual points where samples were derived along the borehole. 
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Table 7.3: A table of the samples collected from the Driefontein (DR), Mponeng (MP), 
and TauTona (TT) gold mines. The formations in which the samples are located, 
sample depth, types of methane, geological structures, and gas and water flow rates 
from the boreholes samples are noted. 

Sample 
name 

Sample 
Depth 

(m) 
Formation 

Type of 
methane 

Geological 
Structure 

Water 
Flow Rate 
(ml/min) 

Gas Flow 
Rate 

(ml/min) 

DR5IPC 1 050 
Transvaal 
Dolomite 

Microbiala - n.m. n.m. 

DR546 
BH1 

3 213 
Ventersdorp 

Lavas 
Abiogenicb Snake Dyke 16.66e 4 

DR548 
FW 

3 300 
Ventersdorp 

Lavas 
Abiogenicc - 5 000 000 15 000 000 

DR938 CH 2 712 
Ventersdorp 

Lavas 
Abiogenicc 

Spotted Dick 
Dyke 

1 300 250 

DR9IPC 896 
Transvaal 
Dolomite 

Microbialc - 26 087 160 

DR938 H3 
(D3) 

3 350 
Central Rand 

Group 
Quartzite  

Abiogenicc* - 3 317 45 

DR938 H3 
(D2) 

2 716 
Ventersdorp 

Lavas 
Abiogenicc - 4 448 2 298 

DR938 H3 
(D1) 

2 825 
Ventersdorp 

Lavas 
Abiogenicc - 120 15 

DR940 
FW 

2 812 
Ventersdorp 

Lavas 
Unknown 

Spotted Dick 
Dyke 

7 500 450 

MP104 2 825 
Ventersdorp 

Lavas 
Abiogenicc - 40 000 2 400 

MP109 3 000 
Central Rand 

Group 
Quartzite 

Abiogenicc 
Post-

Ventersdorp 
dyke 

1 000 100 

TT100 3 025 
Central Rand 

Group 
Quartzite 

Unknown CLA Dyke 150 376 100 

TT107 3 049 
Central Rand 

Group 
Quartzite 

Abiogenica, d 
Jeans Dyke; 

Pretorius 
Faulta 

n.m. n.m. 

TT109 3 137 
Central Rand 

Group 
Quartzite 

Abiogenica Jean Dykea n.m. n.m. 

TT118 3 550 Central Rand Unknown Pretorius 2 240 1 920 
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Group 
Quartzite 

Fault 

 

Source: a. Simkus, et al. (2016); b. Moser, et al. (2005); c. Sherwood Lollar, et al. (2006); d. Magnabosco, et 

al., 2016; e. Moser, et al. (2003). 

n.m – not measured 

The borehole sample points lie on the northeastern quadrant of the 3D seismic survey 

area (Figure 7.14). Apart from samples DR5IPC and DR9IPC, which have 

predominantly microbial sources of methane, most of the samples are dominated by 

abiogenetically produced methane. The boreholes from which the samples were 

collected are located within the Malmani dolomites of the Transvaal Supergroup, lavas 

of the Ventersdorp Supergroup and the quartzites of the Witwatersrand Supergroup, 

and specifically, the Central Rand Group (Figure 7.15). The Ventersdorp lavas 

generally have the highest recorded water and gas flow rates, followed by the 

Transvaal dolomites, then the Central Rand Group quartzites. The only exception to 

the Central Rand Group quartzites having the overall lowest water and gas flow rates 

is borehole TT100, which had flow rates of 150 376 ml/min for water and 100 ml/min 

for gas. As previously stated in Table 7.1, the samples were collected at mining levels 

between 895 and 3 550 m.  
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Figure 7.14: The geographic location of the samples (purple circles) from the 
Driefontein (DR), Mponeng, (MP), and TauTona (TT) gold mines that have had 
structures associated with them. The samples all cluster in the north-eastern part of 
the WUDLs 3D seismic survey (outlined in red).  
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Figure 7.15: A 3D amplitude display of the samples from the Driefontein, Mponeng, 
and TauTona. The sources of methane have been identified as either microbial (blue 
sphere), abiogenic (red sphere), or unknown (green sphere). Most of the samples lie a 
few hundred milliseconds above and below the Ventersdorp Contact Reef (VCR), 
whose edge-detected surface has been included. The Black Reef (BLR) above the VCR 
is also noted.  

 

7.3.2.1 Driefontein Gold Mine 

Eight samples were collected from six boreholes at the Driefontein gold mine. DR5IPC 

and DR9IPC are the only samples that contain predominantly microbially generated 

methane and are located in the Transvaal dolomites. The other boreholes have been 

drilled into the Ventersdorp Supergroup lavas, with the highest water and gas flow 

rates recorded at borehole DR548 FW – 5 000 000 and 15 000 000 ml/min 

respectively. DR938 H3 (D3) is the deepest sample (3350 m) collected from the gold 

mine and the only one sampled from within the Central Rand Group quartzites. The 

low water (120 ml/min) and gas (5 ml/min) flow rates recorded at the site may be an 

indication of the hydraulic conductivity of the rocks of the Witwatersrand Basin. The 
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samples were acquired from fracture water and only dykes at two of the eight 

sampling points were recorded during the sampling process. The seismic volumes 

from the standard seismic display and the ant-tracking attributes are presented in 

Figures 7.16 to 7.24 and provide insight into the observed flow rates and possible 

associated structures.  

 

7.3.2.1.1 DR9IPC – DR938 CH – DR940 FW 

These three boreholes have the same collar coordinates but occur at different mining 

depths. DR9IPC, located within the Transvaal dolomite, was sampled within the 

intermediate pumping chamber (IPC) of the mine. This is a borehole whose water, 

drawn from the dolomitic aquifer, has been used for mining operations. The flow rates 

reflect the position of the borehole within the aquifer. At 896 m, DR9IPC is the 

shallowest sample collected at the Driefontein gold mine. Due to the position of the 

borehole within the dolomites of the Transvaal Supergroup, not much is discernible in 

the amplitude display and the area surrounding the sampling point appears noisy.  

 

The use of the ant-tracking attribute in mapping faults proves advantageous. Faults 

and fracturing around the sampling point are clearly denoted by the attribute (Figures 

7.16 and 7.17). Further down, at depths of 2 712 and 2 812 mbls, samples DR938 CH 

and DR940 FW were collected (Figure 7.16). The Spotted Dick Dyke was the 

geological structure intersected during the collection of samples DR938 CH and 

DR940 FW. The differing water and gas flow rates may be an indication of the source 

of the water intersected at these boreholes. DR938 CH measured 1 300 ml/min for 

water and 250 ml/min for gas. The water flow rate at borehole DR940 FW, 100 m 

below DR938 CH, was five times higher at 7 500 ml/min. The gas flow rate also 

increased from 250 ml/min at DR938 CH to 450 ml/min at DR940 FW.  
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Figure 7.16: A 3D amplitude display with the location of samples DR9IPC, DR938 CH, 
and DR940 FW. Sample DR9IPC is located within the Transvaal Supergroup and the 
other two samples DR938 CH and DR940 FW are located within the Ventersdorp 
Supergroup; the stratigraphic marker separating the two supergroups is the Black 
Reef (BLR). DR9IPC is represented as a blue dot because of the microbial origin found 
at its location while the other two samples are marked as red dots because of 
abiogenic methane observed at the boreholes. SD – Snake Dyke. 

 

An interpretation of the seismic sections (amplitude display) suggests that the 

samples are located between a set of steeply dipping normal faults (black lines in 

Figure 7.17a and b). The amplitude display also shows that the samples lie a few 

hundred meters from the proposed Spotted Dick Dyke, the structure reported to have 

been intersected by boreholes DR938 CH and DR940 FW. The Spotted Dick Dyke is a 

metamorphosed dolerite dyke that forms part of a network of dykes in the Driefontein 

gold mine (Ilgner, 2006). The extension of the dyke at the TauTona gold mine has 

been reported to be associated with a horst system, and the dyke is seismically active 

(Scheepers, 2004). There are areas along the VCR and BS horizons where the 

amplitude has been attenuated, but the BLR is mostly undisturbed except for some 

minor faulting. This may suggest that there may have been volcanics that extruded 

into the Ventersdorp Supergroup that pre-date the deposition of the Transvaal 
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Supergroup. The corresponding ant-tracking seismic section highlights the 

inhomogeneity of the area where the Spotted Dick Dyke has been outlined. At VCR and 

BS levels, a fault that flanks the eastern side of the dyke is accentuated (Figure 7.17c). 

There are instances where faults were enhanced by the ant-tracking attribute along a 

horizon (highlighted by pink arrows in Figure 7.17d). DR940 FW is located above a 

planar discontinuity not previously noticeable on the amplitude display but apparent 

on the ant-tracked seismic section (Figure 7.17b and d). Based on its position just 

above the VCR, the discontinuity may either be an unconformity, the periphery of a 

mining stope or a bed-parallel fault. The latter option may be a repository for fluids 

and possibly help explain the higher water and gas flow rates observed at borehole 

DR940 FW versus those recorded at DR938 CH. This could imply a deeper source of 

water migrating from the Witwatersrand Basin into the mining levels within the 

Ventersdorp Supergroup.  

 

Depth slices at the three sampling points highlight the northwest trending fault into 

which the Spotted Dick Dyke intrudes (Figure 7.18). The depth slices also confirm that 

the steeply dipping normal faults mapped in the crossline and inline sections in Figure 

7.17 are north northwest trending, and are most apparent at the DR940 FW sampling 

point versus the overlying sampling points (Figure 7.18c).  
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Figure 7.17: Crossline 1354 and Inline 1793 showing structures related to samples 
DR9IPC, DR938 CH, and DR940 FW including the Spotted Dick (SD) Dyke (green line). 
The pink arrows show where faults are detected in the amplitude display (a and b) 
and ant-tracking (c and d) seismic sections, and the green sub-vertical line denote the 
edges of dyke intrusions. The faults (denoted by black lines) that are detected 
displacing the Black Reef (BLR) are clearly enhanced in the ant-tracked sections but 
disappear into the chaotic Ventersdorp Lavas and seem to reappear at the 
Ventersdorp Contact Reef (VCR) horizon. The dashed lines represent the horizons 
where blue is the BLR, green is for the VCR and purple is the Booysens Shale (BS). The 
red dashed lines represent depth slices 896, 2716, and 2812 m interpreted in Figure 
7.18.  
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Figure 7.18: Depth slices at 896, 2712 and 2812 m across the a) DR9IPC, b) DR938 
CH, and c) DR940 FW samples, respectively. The northwest trending fault into which 
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the Spotted Dick Dyke intruded is evident at b) and at c). The northeast-striking faults 
in proximity to the Driefontein samples are also well emphasized at a depth slice of 
2812 m where DR940 FW was collected. SD – Spotted Dick Dyke. 

 

7.3.2.1.2 DR938 H3 

Borehole DR938 H3 is located approximately 900 m northwest of boreholes DR9IPC, 

DR938 CH, and DR940 FW, and the methane gas produced in the borehole is abiogenic 

in origin (Sherwood Lollar, et al., 2006). The samples (D1-D3) were collected at 

varying depths along its ~750 m length of the borehole and no structure was recorded 

as being associated with the borehole. Sample DR938 H3 (D1) was the first sample 

collected at a depth of 2 825 m and has the lowest recorded water and gas flow rates – 

120 and 15 ml/min, respectively. The reduced flow rates may reflect the 

comparatively lower hydraulic conductivity of the quartzites in the Witwatersrand 

Basin compared to that of the Transvaal dolomites and Ventersdorp lavas (Barnard & 

Baran, 2000). DR938 H3 (D2) was recorded approximately one month later, 109 m 

above the first sample, and had the highest water (4 448 ml/min) and gas (2 298 

ml/min) flow rates. The last sample, DR938 H3 (D3) was collected at 3 350 m and 

recorded flow rates measuring 3 317 ml/min for water and 45 ml/min for gas. Of all 

the Driefontein samples, this sample was the only sample located within the Central 

Rand Group quartzites. The reduction in flow rates between the second and last flow 

rates may be an indication of stabilization of fluid flow over time and reduced input 

from the groundwater source, but the puzzle lies with the first sample, which is 

located between DR938 H3 (D2) and DR938 H3 (D3). One possibility is that there may 

have been replenishment of the borehole from the source in between the sampling 

periods. Another possibility is that the low flow rates could be an indication of an 

error in the equipment used during the sampling process resulting in a mis-reading. 

 

A comparison of the amplitude and ant-track attribute displays shows that the ant-

tracking attribute has successfully enhanced the detection of several faults and 



148 

 

 

fracture zones within the vicinity of the sampling points that were not apparent in the 

amplitude display (Figure 7.19a and b). The samples lie a few hundred meters east of 

the Spotted Dick Dyke. The intrusion of the dyke (which can also be tracked along the 

edge-detected map of the VCR incorporated into the 3D display) is characterized by 

seismic attenuation along the BLR reflector in Figure 7.19a. A comparison with the 

ant-tracked volume gives more information about the possible permeability and 

conductivity of the dyke. A structure that diagonally intersects the dyke, which is not 

apparent in the amplitude display, is clearly mapped by the ant-tracked volume. This 

raises the possibility of the dyke being a conduit rather than an impervious water 

barrier. The use of seismic attributes gives a visual confirmation of a study by Omar, et 

al. (2003) proposing that dykes intersecting the gold mine play a crucial role in 

distributing fluid carrying temperature sensitive microbes throughout the 

Witwatersrand, Ventersdorp, and Transvaal Supergroups. These dykes would have 

played both a conduit role for groundwater flow as well as affecting temperatures in 

the basin, which in turn affected the metabolic and respiratory processes of these 

organisms (Omar, et al., 2003).  

 

Based on the ant-tracking attribute results, fracture intensity around the borehole in 

the Ventersdorp Lavas is greater than within the rocks below the VCR horizon and 

those above the BLR horizon (Figure 7.20a and b). There is evidently less structural 

deformation down-dip and a few bed-parallel discontinuities can be seen. Depth slices 

at 2716, 2825, and 3350 m of the ant-tracked volume (Figure 7.20 a to c) show that 

the borehole is located within a set of northwest trending faults, which are prominent 

and clearly correlate with the sampling point DR938 H3 (D3) (Figure 7.21c).  
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Figure 7.19: Crossline 1387 and inline 1791 of the a) amplitude, and b) ant-tracking 
displays demonstrating a projection of the DR938 H3(D2), DR938 H3(D1), and DR938 
H3(D3) locations along borehole DR938 H3, in the order in which they were sampled. 
The borehole is located close to the Spotted Dick (SD) Dyke, made evident by the 
attenuation of the signal at the Black Reef (BLR) horizon (a), and confirmed with the 
use of the edge-detected Ventersdorp Contact Reef (VCR) horizon. It is evident on the 
ant-tracked crossline that the extent where the SD has been outlined is not as uniform 
as it appears. DRW – Driefontein West Fault. The red arrow marks a fault intersecting 
the SD.   
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Figure 7.20: Sampling points DR938 H3 (D1-D3) collected along borehole DR938 H3. 
The borehole dips at a 60° from the horizontal and is approximately 750 m in length. 
A fault can be seen displacing the Ventersdorp Contact Reef (VCR) in the amplitude 
display (a). In the ant-tracked section (b), the first two sampling points that lie within 
the Ventersdorp Supergroup lavas appear to be located in a section of what might be 
an inhomogeneous rock mass and faults on the section are indicated by the pink 
arrows. DR938 H3 (D3) appears to be intersected by a fault. The red dashed line 
denotes the location of the depth slices from the ant-tracked volume in Figure 7.21. 

 

The mine borehole name given for borehole DR938 H3 is D8A (Figure 1, Appendix B). 

A study done by Moser, et al. (2005) describes the borehole as having been drilled at a 

60° angle from the horizontal, i.e. mine tunnel. The borehole intersects the VCR at 400 

m and the Carbon Leader Reef (CLR) at 720 m. Based on the corresponding core 

samples, faults were intercepted at depths of 620 and 650 m. Studies by Moser et al. 

(2003) on geochemical and isotopic data suggest that the fracture water derived from 

the borehole originates from within the Central Rand Group quartzites rather than 

Ventersdorp Supergroup lavas. This ancient meteoric water is dated at 4 – 53 million 

years (Moser, et al., 2003).  
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Figure 7.21: Ant-tracking depth slices along the samples collected for the borehole 
DR938 H3 at a) sample DR938 H3(D2) at 2716 m, b) sample DR938 H3(D1) at 2825 
m, and c) sample DR938 H3(D3) at 3350 m. The pink arrows indicate a set of 
northwest trending faults, one of which intersects sample DR938 H3(D3). 
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7.3.2.1.3 DR546 BH1 and DR548 FW 

Boreholes DR546 BH1 and DR548 FW are located at Shaft 5 in the Driefontein gold 

mine. Isotopic data suggests an abiogenic source of methane largely as a result of 

water-rock interaction. DR546 BH1 is located approximately 3 km east of DR938 H3 

and 3 km northeast of DR548 FW. The flow rates at borehole DR548 FW were the 

highest recorded amongst the samples with 5 000 000 ml/min for water and 

15 000 000 ml/min for gas. Borehole DR546 BH1 is a 120 m long horizontal borehole 

drilled into the Ventersdorp Supergroup lavas with the water and gas flow rates 

measured at 16.66 ml/min and 4 ml/min respectively (Moser , et al., 2003). The Snake 

Dyke, the geological structure intersected by the borehole, forms part of a series of 

dykes that have intruded into the Driefontein gold mine. The fracture water derived 

from the borehole is interpreted to be emanating from a hypersaline, 

hydrogeologically isolated water “pocket” within the Ventersdorp Supergroup that 

has undergone a considerable amount of water-rock interaction with the surrounding 

lavas (Lippmann, et al., 2003; Moser , et al., 2003).  

 

DR546 BH1 is located within a syncline dubbed the Driefontein Syncline by Dankert 

and Hein (2010) (Figure 7.22). The Snake Dyke is evident on both the amplitude and 

ant-tracked sections (Figure 7.22a and b). The faults associated with the Snake Dyke 

appear to extend from depth through the VCR horizon and into the overlying BLR 

horizon. These faults have been mapped by the ant-tracking attribute at the BS, VCR, 

and BLR horizons level but are not traceable through the chaotic Ventersdorp 

Supergroup lavas. Although the ant-tracking attribute does not detect dyke intrusions, 

it may detect faults into which the dykes have intruded. Depth slices at a 3212 and 

3300 m clearly illustrates the northeast trending fault associated with the Snake Dyke 

(Figure 7.22).  

 



154 

 

 

Fracture water collected from DR548 FW was dated, using 4He analysis, to have an age 

of 15 million years (Silver, et al., 2012). Despite the observed flow rates, no geological 

structure is noted as having been intersected by the borehole. 3D seismic data do, 

however, indicate that the borehole is located between two northwest trending, 

steeply dipping (>80°) normal faults, F548(1) and F548(2) (Figure 7.23a). Assuming 

sub-horizontal borehole orientation, DR548 FW would intersect a northeast-trending, 

southeast-dipping normal fault (F548(3)). This fault runs parallel to F548(4), which 

has a normal sense of displacement and may have undergone fault reactivation 

(Figure 7.23b). A depth slice at an elevation of 3300 m shows that faults, F548(1) and 

F548(2), intersect the northeast trending F548(3) and F548(4) fault set. The ant-

tracked depth slices 3212 and 3300 m further show that F548(3) and F548(4) 

crosscut the fault associated with Snake Dyke (Figure 7.24). The fault connections, a 

means by which fracture water mixing can occur, may begin to explain the similar 

δ18O and δ2H values for samples DR548 FW and DR546 BH1 observed in Chapter 7.1. 
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Figure 7.22: Crossline 1358 showing the location of sampling point DR546 BH1 in a) 
amplitude, and b) ant-tracked seismic section. The dark green sub-vertical line 
denotes the Snake Dyke (SnD) and the sampling point is located within the 
Driefontein Syncline (DSyn). The Booysens Shale (BS – purple dashed line), 
Ventersdorp Contact Reef (VCR- light green dashed line), and Black Reef (BLR – light 
blue dashed line) are intersected by faults (black dashed lines) displacing the horizons 
and are enhanced in the ant-tracked section (highlighted by pink arrows). The red 
dashed line denotes the location of the depth slices from the ant-tracked volume in 
Figure 7.24. 
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Figure 7.23: Amplitude (a and b) and ant-tracking (c and d) displays showing the 
location of borehole DR548 FW. Faults F548(1), F548(2), F548(3), and F548(4) flank 
the sampling point. The faults displace the Booysens Shale (BS), Ventersdorp Contact 
Reef (VCR), and Black Reef (BLR). The pink arrows highlight the possible position of 
the faults in the ant-tracking attributes. The Booysens Shale (BS) horizon is denoted 
as a purple dashed line, the Ventersdorp Contact Reef (VCR) by a light green dashed 
line, and the Black Reef (BLR), by a light blue dashed line. The Driefontein Syncline 
(DSyn) is also prominent on the eastern side of the sampling point. The dark green 
dashed line denotes the Snake Dyke (SnD). The depth slice of 3300 m, marked as a red 
dashed line, can be seen in Figure 7.24b.  
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Figure 7.24: Depth slices of ant-tracked volume at 3213 m at borehole DR546 BH1 (a) 
and at 3300 m at borehole DR548 FW (b). The F548 faults have been mapped by the 
ant-tracking attribute. F548(3) intersects the fault associated with the Snake Dyke, 
which clearly intersects sample DR546 BH1. DR546 BH1 is located at an intersection 
between the northwest trending Snake Dyke and a northwest trending fault. 
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7.3.2.2 Mponeng Gold Mine 

The two samples collected from the Mponeng gold mine, MP104 and MP109, are 

located within the Ventersdorp Supergroup lavas and Central Rand Group quartzites, 

respectively. Both sites have predominantly abiogenic methane detected within the 

fracture water (Sherwood Lollar, et al., 2006) and despite a post-Ventersdorp dyke 

being noted as the structure intersected at MP109, the borehole had considerably 

lower water and gas flow rates than those observed at borehole MP104. While the 

water and gas flow rates for MP109 were measured at 1000 and 100 ml/min, 

respectively, fracture water collected from MP104 was emanating at a rate of 40 000 

ml/min and the gas reading was 2 500 ml/min (Table 7.3).   

 

A few geological features are discernible on the seismic amplitude display. The VCR, 

BS, and BLR are identifiable and continuous with a number of high amplitude areas 

present in close proximity to samples MP104 and MP109 (Figure 7.25). Amplitude 

display also shows the imaging of faults near the Mponeng gold mine samples (Figure 

7.25). The seismic data also show that MP104 intersects a north-northeast dipping 

normal fault labelled F1 in Figure 7.26a and b. The fault (F1), along with faults F2, F3, 

and F4, are visible in both the amplitude and ant-tracked sections (Figure 7.26). One 

thing that stands out in the ant-tracked sections, which is not apparent on the 

amplitude display, is the planar discontinuity located just beneath sample MP104 

(Figure 7.26c and d). The discontinuity is most likely bed-parallel faulting or shearing 

that has been identified by Jolley, et al. (2004) in the mining area, along the VCR.  

 

Dyke intrusions in seismic data may cause amplitude attenuation along laterally 

continuous horizons in seismic data. Interpretation along the amplitude displays 

suggest that the dyke imaged by seismics may be associated with the post-

Ventersdorp dyke identified during the sampling at borehole MP109 (Figure 7.27a 

and b). It is unclear however, whether the attenuation near the sample is the said 
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post-Ventersdorp dyke. A look at the ant-tracked section where MP109 was collected, 

located 300 m southeast of MP104, shows that the planar discontinuity noted at 

borehole MP104 is more pronounced and appears to be connected to a distinct set of 

faults (Figure 7.27c and d). These vertical and lateral fault connections may help 

explain the increased influx of water and gas at borehole MP104 rather than MP109. 

There is a high amplitude anomaly seen at both sampling localities in the amplitude 

displays. These are most likely a mining stopes; stopes are mining levels that which 

have been identified by Pretorius, et al. (2006) in seismic data and their locations have 

been confirmed using underground mine data from the gold mines in the region. The 

strong seismic reflection is a result of the significant acoustic impedance contrast 

between air and the surrounding rock mass. The ant-tracking attribute has 

successfully detected faults as well as planar discontinuities that occur close to and 

are intersected by MP104 and MP109 (Figures 7.26 and 7.27). A series of faults 

intersect the sampling points and for some, their continuity is apparent but for most, 

positively discriminating between individual faults is not easy.  

 

MP104 was sampled four times over the course of two months. Although the water 

flow rates significantly decreased with each sampling excursion, the gas flow rates 

remained relatively stable. The temperature decreased from 60 to 52°C from the first 

sample to the subsequent samples that were collected, and methane concentration 

increased over the observed period. Lin, et al. (2006) also conducted some isotope 

studies to determine the origin of the fracture water at MP104. Isotope analysis shows 

that water derived from the Mponeng samples lies to the side of the LMWL and model 

ages using noble gas analyses place the age of the water between 15 – 25 ± 3.8 million 

years. The age of this water is either an indication of the true residence time or mixing 

between old (up to 2.5 billion years old), saline water enriched in reduced gases and 

younger palaeometeoric water not as saline and/or as enriched in H2 and 

hydrocarbon gases. The observed decrease in temperature from the initial to the last 

sample and δ18O and δ2H analysis incorporated with thermal conductivity and heat 
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flow data of the rocks of the Witwatersrand Basin indicate fracture water from depths 

between 2 400 and 4 200 mbls. The strong correlation between geological structures 

(faults and dykes) and methane/water sampling points, as shown by ant-tracking 

attribute results, support the possibility of water coming from depth, but also, the 

ingress of water from above the borehole.  

 

 

Figure 7.25: Crossline 1391 and inline 1611 of the amplitude display showing 
samples MP104 and MP109. MP104 lies just above the Ventersdorp Contact Reef 
(VCR) and the MP109 within the Central Rand Group quartzites, above a mine stope 
(high amplitude reflection below the sample). The samples lie close to and are 
intersected by faults (black lines). BS – Booysens Shale; BLR – Black Reef.  
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Figure 7.26: Crossline 1394 and inline 1593 of amplitude (a and b) and ant-tracking 
(c and d) displays in proximity to sample MP104. Faults F1 to F4 are noted in both 
amplitude and ant-tracking (denoted by pink arrows) displays and displace the 
Ventersdorp Contact Reef (VCR) and Black Reef (BLR). Other features such as the high 
amplitude area in the amplitude display below MP104 are noted as a mine stope and 
planar discontinuities (pink rectangle), enhanced by the ant-tracking attribute.  
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Figure 7.27: Crossline 1391 and inline 1609 of amplitude (a and b) and ant-tracking 
(c and d) sections in proximity to sample MP109. Faults F1 to F4 are noted in both 
amplitude and ant-tracking (denoted by pink arrows) displays and displace the 
Ventersdorp Contact Reef (VCR) and Black Reef (BLR); F2 in particular, intersects 
borehole MP109. Other features such as the high amplitude area in the amplitude 
display below M104 are noted as a mine stope and planar discontinuities (pink 
rectangle) are enhanced by the ant-tracking attribute. 
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7.3.2.3 TauTona Gold Mine 

The TauTona samples are located northeast of MP104 and MP109, within the Central 

Rand Group quartzites at depths greater than 3 000 mbls. Of the four boreholes, only 

TT107 and TT109 were determined to have a predominantly abiogenic source of 

methane (Simkus, et al., 2016). The flow rates for the two boreholes were not 

recorded, but for the other two, TT100 and TT118, the recorded water flow rates 

were 150 376 and 2 240 ml/min and gas flow rates of 100 and 1 920 ml/min, 

respectively (Table 7.3). Although the sources of methane for boreholes TT100 and 

TT118 are unknown, there were structures that were encountered during sampling.  

 

TT118 was drilled down-dip, towards the south of the mining operations and 

intersects the Pretorius Fault (PF) approximately 50 m along the length of the 

borehole. TT118 (known in the mine as LIC118 – Figure 2, Appendix B) is a 900-m 

sub-horizontal borehole that intersects a number of faults and dykes along its length 

including the PF (Heesakkers, et al., 2011). The fracture water sample collected from 

the borehole was collected at a depth of 3550 m. 3D seismic visualization of the 

amplitude and ant-tracking displays confirm the intersection of the PF with borehole 

TT118 (Figure 7.28a and b). Despite the sampling point being in a structurally dense 

portion of the seismic survey, as highlighted by the ant-tracking attribute in Figure 

7.28b, the flow rates are consistent with average flow rates observed in the samples 

derived from the Central Rand Group quartzites (Table 7.3).  
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Figure 7.28: Crossline 1384 and inline 1701 of the a) amplitude and b) ant-tracking 
displays and the location of borehole TT118. The Pretorius Fault (PF), also shown in 
the edge-detected VCR horizon, shows a strong correlation with a fault at TT118 in 
both the amplitude and ant-tracking displays. BS – Booysens Shale.  

Borehole TT100 is located at 3025 m and intersects the CLA Dyke. The dyke is 

described by Litthauer (2009) as a mafic Bushveld-aged intrusion comprising mainly 
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plagioclase, epidote, sphene, and quartz that has undergone a significant amount of 

alteration. According to the mine structural map of AngloGold Ashanti Ltd. (Figure 3, 

Appendix B), the dyke is northwest trending and is crosscut and displaced by the PF. A 

study by Simkus, et al. (2016) noted the Jean Dyke and Pretorius Fault as the main 

structures intersected by the sub-horizontal boreholes TT107 and TT109. TT107 is a 

400-m long borehole located at 3049 m that crosscuts the Pretorius Fault as well as 

intersects the border of the north-northeast trending Jean Dyke. Borehole TT109 is 

located approximately 100 m northeast of TT107, is 100 m long, and intersects the 

Jean Dyke. Based on the geochemical analyses conducted by Litthauer, et al. (2009), 

the dyke is possibly of Ventersdorp age. The dyke comprises chlorite as the main 

mineral with epidote, plagioclase that has mostly been altered to calcite, and quartz. 

 

A comparison of amplitude and ant-tracked displays of sample points TT100, TT107, 

and TT109 outline a number of different features. While the overlying BLR and 

underlying West Rand Group shales have strong reflections, the VCR is a poor seismic 

reflector in between the two horizons. The reason for poor imaging of the VCR in this 

area is not known. Amplitude display shows that TT100, TT107, and TT109 lie right 

within the vicinity of mine stopes represented as the high amplitude areas (Figure 

7.29 a, c, and e). In the ant-tracked sections (Figure 7.29b, d, and f), the samples are 

evidently intersected by a number of dykes and faults, and sample TT100, in 

particular, appears to be located in an area of structural complexity. 
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Figure 7.29: Amplitude and ant-tracked displays along samples TT109 (a and b), 
TT107 (c and d) and TT100 (e and f). The samples are located close to the Jean Dyke 
(JD; green dashed line). There is a fault (traced by pink arrows) mapped by the ant-
tracking attribute that visibly stems from depth and crosscuts the Black Reef (BLR). 
Mine stopes are also noted in the amplitude display seismic sections of all the 
samples. 
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Structural interpretation at the TauTona gold mine using the conventional amplitude 

display was challenging. Two factors have resulted in the low signal-to-noise ratio 

observed in the gold mine. The first is the location of the mine along the periphery of 

the 3D seismic survey where there is low fold coverage, which affects the quality of 

the acquired seismic data. The other factor is the structural complexity at this portion 

of the West Wits Line Goldfield that hampers imaging of subsurface features using the 

seismic reflection method. Despite this, the possible dykes as well as faults reported as 

being intersected by the boreholes could be noted. The ant-tracking attribute even 

enhanced faults emanating from depth, intersecting boreholes TT107 and TT109.  

 

The reported geological structures and their orientations was confirmed by depth 

slices taken at 3025, 3049, 3137, and 3550 m where the four samples were located. 

The depth slices show that the TT100, TT107, and TT109 boreholes are located within 

a set of north northeast trending faults (Figure 7.30a to c). The depth slice 3550 m 

where borehole TT118 is located (Figure 7.30d), a northeast fault that is mostly likely 

the PF intersects not only TT118 but TT107, confirming the report of both boreholes 

intersecting the PF as reported by Heesakkers, et al. (2011) and Simkus, et al. (2016).  

 

Integration of standard amplitude seismic display and the ant-tracking displays show 

the mapping of faults and dykes associated with fracture waters containing methane 

gas. The results share insightful information into the degree of structural complexity 

and connectivity of geological structures that may be conduits in the West Wits Line 

Goldfield.  
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Figure 7.30: Times slices of ant-tracked volume of sample a) TT107 at 3049 m, b) 
TT100 at 3025 m, c) TT109 at 3137 m, and d) TT118 at 3550 m. At elevations 
between TT107(a) and TT109 (c) the proposed Jean Dyke (JD) as well other NNW-
trending faults (marked with the green arrows) that run parallel to the dyke. The pink 
arrows point to a NW-trending intersecting sample TT100. The Pretorius Fault (PF) 
can be seen intersecting sample TT118 (d) and the fault appears to extend and 
intersect TT107. 
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8. DISCUSSION 

 

In this study, the 1995 WUDLs 3D seismic data from the West Wits Line Goldfield 

were used to determine the structural controls of the occurrence of hydrocarbons, 

particularly methane, in the gold mines within the goldfields. A comparison of the 

structures intersecting the mining reef, the Ventersdorp Contact Reef (VCR), and 

potential source of hydrocarbons in the Witwatersrand Basin, the Booysens Shale (BS) 

was carried out. This was done by first, using conventional seismic data and then 

applying seismic attributes analysis to enhance faults and fractures in the data set that 

are undetected using conventional seismic amplitude interpretation. Data from 16 

samples collected from Driefontein, Mponeng, and TauTona gold mines in the West 

Wits Line Goldfield were incorporated into the 3D seismic data to study the 

relationship between methane/water sampling positions, rock formations, gas 

compositional and stable isotope, and seismically mapped geologically structures. The 

data collected from the boreholes included spatial information (x-, y- and z-

coordinates) that could be used to map the locations of the samples. Geological 

information such as the rock formations, the structures that intersected the boreholes, 

and gas compositional and stable isotope data from fissure water analysis was 

included.  

 

8.1 Conventional seismic display versus seismic attribute analysis  

Prior to the development of the numerous seismic attributes available for structural 

interpretation today, the interpreter relied mainly on a standard amplitude display, 

the manipulation of the colour display colour, and some experience and knowledge to 

interpret structures encountered at the subsurface (Chopra & Marfurt, 2005; Herron, 

2011). The quality and confidence with which the interpretation would be (and in 

some instances still is) carried out would depend on the quality of the seismic data. 
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Acquisition of the WUDLs 3D seismic data proved successful in mapping geological 

targets such as the VCR and BLR and the data are thus considered to be of good 

quality (Pretorius, et al., 2006; Malehmir, et al., 2014). The high acoustic impedance 

contrast between the quartzites of the Witwatersrand Supergroup and metabasalts of 

the Ventersdorp Supergroup resulted in good imaging of the VCR, which lies at the 

base of the Ventersdorp Supergroup. Imaging of the BS was also successful based on 

its acoustic impedance with the overlying Central Rand Group quartzites.  

 

An interpretation of the BS and VCR horizons using 3D seismic showed that the depth 

at which they can be intersected increases basinward, away from the collar of the 

Witwatersrand Basin. The VCR occurs at depths between approximately 1 300 and 6 

300 mbls and the BS forms the immediate footwall to the VCR in the Driefontein gold 

mine and reaches maximum depths of 6 600 mbls within the 3D seismic survey. The 

BS and VCR horizons are seismically mapped throughout most of the survey area; 

however, there were factors that hindered confident interpretation of the horizons. 

The first hindrance was poor resolution along the periphery of the survey due to low 

fold coverage. The general range for the fold coverage of 3D seismic surveys is 

between 10 and 120 (10 being the lowest and poorest coverage, and 120, the highest 

and best) (Ashton, et al., 1994). In most 3D seismic surveys acquired from the 

Witwatersrand Basin, fold coverage ranged between 16 and 20 and the WUDLs survey 

fell within that range. Increasing the fold coverage to 36 was a means to improve the 

imaging of the key stratigraphic horizons in the basin (Pretorius, et al., 1989; 

Pretorius, et al., 2006; Manzi, et al., 2015).  

 

Another problem encountered during the interpretation process was the poor 

imaging of seismic horizons in the north and northeastern portions of the survey. This 

has been attributed to the scattering of seismic energy due to karst weathering of the 

Transvaal dolomites that overlay the Witwatersrand Basin. The highly fractured 
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nature of the carbonate rocks creates the intense heterogeneity that can be seen on 

the seismic section, particularly in the Driefontein gold mine area (Manzi, et al., 2012; 

Doetsch, et al., 2015). While the first option may be true for MP104, the theory may 

not hold for sample MP109. The strong seismic reflections below sample MP109 

suggest a significant acoustic impedance contrast between two mediums - presumably 

air and the surrounding rock type. Pretorius, et al. (2006) have previously correlated 

seismic data with underground mine data from gold mines and identified such high 

amplitude areas as mine stopes. The likelihood of the high amplitude anomaly being a 

mine stope is also supported by Heersakkers, et al. (2011).  

  

Fault detection between the BS and VCR using various interpretation techniques has 

been done with a high amount of confidence. Interpretation of the western portion of 

the survey was done by Manzi, et al. (2012) but no interpretation had yet been done in 

the eastern part of the seismic survey (namely the Kusasalethu and Deelkraal mines). 

The faults that could be identified in conventional seismic amplitude display were 

those with throws above a quarter of the dominant wavelength (i.e. 25 m). Although 

interpreting faults using seismic amplitude display is a good basic step in fault 

interpretation, the method falters in areas of low signal-to-noise ratios caused by 

structural complexity or poor fold coverage. Confident interpretation is also low in 

areas where faults have undergone block rotation resulting in variable throw along 

the length of the fault. One such example is the Pretorius Fault (PF) whose maximum 

throw was measured at 7 ms towards the west of the survey and a minimum of 5 ms 

further east where the fault throw was above seismic resolution. The application of 

seismic attributes proved valuable in defining not only faults under-sampled by 

conventional seismic display for horizon interpretation but also highlighted the 

continuity and connectivity of faults in volumetric seismic attribute analysis. 

The work done in this dissertation involved the application of both horizon-based and 

volumetric attributes. Because the BS had never been interpreted before, three basic 
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attributes were applied to the horizon: instantaneous phase, instantaneous frequency, 

and envelope. These three attributes (collectively known as complex trace attributes) 

gave a first-hand understanding of the stratigraphic and structural character of the BS. 

The dip, dip azimuth, and edge-detection attributes were also applied to both the BS 

and VCR, and the structural relationship between the two horizons was determined.  

 

The application of the horizon-based seismic attributes, particularly the instantaneous 

attributes, emphasized areas of noisy data, which reiterated the importance of data 

conditioning prior to the application of the attribute. Data conditioning involved 

smoothing along both the horizons as well as the entire 3D seismic volume. Using dip-

corrected, structure-oriented smoothing filters as described by Hale (2009) ensured 

that the structural integrity of the fault was preserved and variations in orientation 

and coherence along the horizon and within the seismic data are accounted for. 

Smoothing filters such as median and mean filters were applied to the seismic data 

used in this study. These filters not only reduce noise and enhance structural features 

but if not applied correctly, may result in smearing along edges as was demonstrated 

when different filter sizes were applied to the 3D seismic volume. Deciding on the 

correct level of smoothness is at the discretion of the interpreter and depends on what 

features the user would like to be preserved (Hale, 2009; Herron, 2011; Chopra & 

Marfurt, 2014). The process of data conditioning set the precedent for fault mapping 

using seismic attribute application and analysis.  

 

The application of the volumetric ant-tracking attribute involved a four-step process 

of 1) data conditioning, 2) edge-detection, 3) edge enhancement, and 4) fault 

interpretation. The ant-tracking attribute successfully highlighted faults and fault 

intersects as well as fractures in the 3D seismic data. In some few areas, seismic 

attributes were not as successful due to poor signal-to-noise ratio. These could be 

attributed to acquisition footprints and processing artefacts. Cheret, et al., (2010) 
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point out that the noise, which appears as discontinuities, may be coherent and non-

coherent, attributed to the acquisition footprint identified as vertical discontinuities 

following the acquisition direction or processing artefacts. An example of the effects of 

noise because of the enhancement of the acquisition footprint was the result derived 

from running the ant-tracking volume 3 times in an attempt to accentuate structural 

detail. Although the acquisition footprint was stark in the third-run ant-track volume, 

there had to be a compromise between the quality of the extraction and the 

magnitude of the faults enhanced. This meant that in instances where particular faults 

of interest were identified in the third-run ant-track volume, this had to be correlated 

with the first-run ant-tracking volume, which was less affected by noise caused by the 

acquisition footprint.  

 

Overall, the application of seismic attributes for structural interpretation was 

successful. The attributes shed new light on faults displacing the economic VCR and 

associated source of hydrocarbons in the Witwatersrand Basin, the BS. The ant-

tracking attribute also highlighted likely structural controls of methane gas as well as 

groundwater finding its way to mining operations in the gold mines of the West Wits 

Line Goldfield.  

 

8.2 Structural controls of methane gas and the associated fracture water  

One of the key objectives of this study was to determine any links between the types 

of methane, whether biogenic or abiogenic, found at mining levels and faults or dykes 

that are associated with the boreholes where fracture water and gas samples were 

collected. The samples presented were collected from the Driefontein, Mponeng, and 

TauTona gold mines. This research forms a branch of a larger body of work where 

numerous authors have identified and attempted to characterize microbial life found 

in the deep, high temperature gold mines across the Witwatersrand Basin (Takai, et 

al., 2001; Moser, et al., 2003; Omar, et al., 2003; Ward, et al., 2004; Kieft, et al., 2005; 
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Moser, et al., 2005; Sherwood Lollar, et al., 2006, 2007, 2008; Lau, et al., 2014; 

Magnabosco, et al., 2016; Simkus, et al., 2016). The findings have been correlated with 

the categories of fracture waters emanating from boreholes located in the Central 

Rand Group quartzites, Ventersdorp Supergroup lavas, and Transvaal dolomites 

(Duane, et al., 1997; Lippmann, et al., 2003; Lippmann-Pipke, et al., 2011).  

 

8.2.1 The character of fracture waters in the West Wits Line Goldfield 

The 15 samples that were collected from the Driefontein, Mponeng, and TauTona gold 

mines and analysed for compositional, isotopic, and geochemical data were all 

fracture water. As recognized by Manzi, et al. (2012), the occurrence of methane gas in 

the Witwatersrand gold mines is intimately tied to groundwater intersected during 

mining operations. This is also the case in other Precambrian Shields in Canada, 

Finland, Sweden, and the United States of America (Kietavainen & Purkamo, 2015). 

The boreholes were located in the dolomites of the Transvaal Supergroup, the 

Ventersdorp lavas, and the Central Rand Group quartzites. Only the samples collected 

from the Transvaal dolomites were described as having a predominantly microbial 

methanogenic signature. The other sampling locations in the Ventersdorp Supergroup 

lavas and Central Rand Group quartzites were noted as having abiogenically produced 

methane (Sherwood Lollar, et al., 2006; Simkus, et al., 2016). Numerous authors 

(Moser, et al., 2003; Onstott, et al., 2006; Duane, et al., 1997) have categorized the 

fracture water found in the gold mines into two categories. The first is younger (up to 

15 Ma), saline palaeometeoric water with temperatures ranging between 30 and 40°C, 

that has lower concentrations of CH4 gas of microbial origin. Waters derived from 

samples DR5IPC and DR9IPC collected within the Transvaal dolomites exhibited these 

characteristics – they had the lowest recorded CH4 concentrations at 1.93 and 11.62 

mol%, respectively. The other category is hypersaline hydrothermal fluid that is older 

than 2 Ga with current day temperatures ranging between 45 and 60°C. Onstott, et al. 

(2006) proposes that these fluids formed at temperatures between 250 and 300°C 
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and as the fluid cooled, O and H isotopic exchange occurred, a phenomenon that has 

been witnessed in gold mines in Canada (Holland, et al., 2013). This helps explain the 

low δ18O and δ2H values observed in fracture water derived from boreholes DR546 

BH1 and DR548 FW. The samples had abiogenically generated CH4 that pointed to 

extensive water-rock interaction. In particular, according to Lippmann, et al. (2003), 

the observed stable isotope values are a result of the hydration of the surrounding 

rock minerals, specifically the alteration of silicates to clay minerals on the condition 

that the water-to-rock ratio is low.  

 

Although these categories have been defined, Sherwood Lollar, et al. (2008) found that 

most of the fracture water collected at these gold mines, both in South Africa and 

Canada, had undergone a significant degree of mixing – the palaeometeoric water 

mixing with hydrothermal fluid. The mixing has resulted in CH4 and hydrocarbon 

signatures that represent heterogeneous fluid pathways within the rocks of the 

Witwatersrand and Ventersdorp supergroups.  

 

8.2.2 Abiogenic CH4 production in the Witwatersrand Basin 

All samples collected in the three gold mines had a predominantly abiogenic methane 

signature excluding those collected from the intermediate pumping chambers (IPCs) 

of Shafts 5 and 9 of the Driefontein gold mine. For most of the samples with an 

abiogenic signature, the presence of methanogens, i.e. methane producing microbes, 

generally accounted for less than 10% of the total methane observed at the boreholes. 

One particular study by Lin, et al. (2006) looking at sulphide-reducing microbes and 

CO2-utilizing methanogens at borehole MP104 to determine the metabolic and 

respiratory patterns of these microbes, highlights the previous statement. Lin, et al. 

(2006) observed that while the methanogens were present in these deep subsurface 

conditions, their impact, based on the size of the methanogenic community (which 

made up approximately 10%), was smaller than that of the sulphide-reducing 
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microbes. δ2H and δ13C isotopic analysis of the hydrocarbons found in the fractures 

from Mponeng gold mine have isotopic signatures similar to methane found at the 

adjacent Driefontein and Kloof gold mines and other Precambrian Shield sites in 

Canada (Sherwood Lollar, et al., 2006). The methane gas production in these rocks has 

been attributed to water-rock interactions.  

 

It was noted that abiogenic CH4 found in the Witwatersrand Basin, as well as in other 

sites in Canada and Finland, was isotopically lighter than that of mantle CH4 

(Sherwood Lollar, et al. 1993; 2005). This reflects sources of carbon from within the 

basin supporting similar postulates made by Mossman, et al. (2008). Abiogenic 

methane production is attributed to extensive gas-water-rock in the basin. Geological 

processes such as serpentinization, Fischer-Tropsch synthesis, which involves the 

reaction of H2 with CO to produce CH4 and H2O, and the metamorphism of 

carbonaceous-graphite containing rocks have been known to produce abiogenic 

methane (Schoell, 1988; Etiope & Sherwood Lollar, 2013). An alternative study by 

Bons and Gomez-Rivas (2013) postulates that variable isotopic signatures from 

shallower depths to deeper reservoirs are the result of gravitational fractionation.  

 

The geochemistry of the dykes that the boreholes intersected give some light about 

the processes that may be responsible for the abiogenic production of CH4 and 

mobility of fracture water containing CH4. Dykes in the West Wits Line Goldfield are 

known to compartmentalize the rocks of the dolomites of the Transvaal Supergroup 

(Schrader & Winde, 2015). The dykes are of different ages and may act as conduits for 

water or may impede the flow of fluid. Litthauer (2011) carried out geochemical 

analyses to determine the origin of the dykes at the Mponeng and TauTona gold 

mines. The study included samples from the CLA Dyke intersected by TT100 and the 

Jean Dyke, intersected by the TT107 and TT109 boreholes. Another petrographic 

study was done by Ilgner (2006) of the Spotted Dick Dyke, intersected by boreholes 
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DR938 CH and DR940 FW. All the dykes were described as mafic and of Ventersdorp-

age (Jean and Spotted Dick Dykes) and Bushveld Complex-age (CLA Dyke). Both these 

studies showed that all these samples comprised more than 10% chlorite, an 

alteration mineral of greenschist metamorphic grade. Other key metamorphic 

minerals that were found were quartz and calcite, an alteration mineral of plagioclase. 

These secondary minerals play a crucial role in the availability of components for the 

production of CH4 and the migration of fluids within the basin. Secondary minerals 

such as chlorite, quartz, and calcite, as well as tectonic activity may control the 

opening and closing of fractures thus controlling fluid flow (McNutt, et al., 1990). 

According to Grasemann and Tschegg (2012), the formation of secondary minerals in 

fault rocks reduces the friction coefficient value thus effectively weakening the fault. 

The formation of the secondary minerals increases the permeability of the fault zone. 

This facilitates additional influx of fluid. Fluid influx is dependent on the tectonic 

stability of the fault zone and water-rock reaction rates that form the secondary 

minerals (Wästeby, et al., 2014).   

 

Numerous processes may result in the production of H2 exist within the 

Witwatersrand Basin. The hydrolysis of olivine would produce H2 but none of the 

dykes intersected by these boreholes contains olivine, which alters to serpentine, an 

important component in the production of CH4. The alteration of Fe2+-bearing olivine 

produces serpentine and hydroxides, combined with the oxidation of Fe2+, produce 

magnetite and H2 (Neubeck, et al., 2014). Lin, et al. (2005) suggests that although the 

mineral assemblages of the Ventersdorp- and Bushveld Complex-aged dykes, shales of 

the Witwatersrand Basin such as the BS and the rocks of the Ventersdorp Supergroup 

contain some Fe, these are unlikely candidates for the production of H2. The study, 

which investigated the production of H2 in the Witwatersrand Basin, found that the 

most likely source of H2 would be the interaction of water with the radiogenic 

elements U, Th, and K that have been identified and studied in the rocks of the 

Witwatersrand Supergroup. According to Wronckiewicz and Condie (1987) shales of 
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the Central Rand Group such as the BS are low in Fe2+ and Mg2+ but those of the West 

Rand Group are enriched in these elements. Some of the shale units in the West Rand 

Group are even described as magnetite-rich. This means that while the chances of the 

BS being a source of abiogenic hydrocarbons is slim, the shales of the West Rand 

Group may be a more likely candidate.  

Another study by Lippmann, et al. (2011) showed that at level 118 at the TauTona, 

where borehole TT118 is located and intersects the PF, the amount of geogas 

components such as H2, CH4, and CO2 present at mining levels peaked during mine 

blasting and drilling operations. These results point to the major role mining activity 

plays in the occurrence and transmission of flammable gases such as CH4 and H2 at 

mining levels.  

 

8.2.3 Fluid and CH4 migration in the Witwatersrand and Ventersdorp 

supergroups  

One of the main aims of this research was to not only attempt to determine the 

structural characteristics of a possible hydrocarbon source relative to a key gold-

bearing horizon, i.e. a mining level, but also to distinguish any faults related to 

methane gas that could be imaged using conventional seismic amplitude and 

enhanced using the ant-tracking attribute. The following section conveys the possible 

implications of structures identified by seismic amplitude sections and enhanced by 

the ant-tracking attributes.  

 

Fluid migration and the presence of hydrocarbons in the Witwatersrand Basin has 

been intimately tied to the occurrence of gold found in the basin. The link between the 

two is that where enrichment in hydrocarbons was encountered, any associated gold, 

whether along the reefs or in veins, would be of a high grade (Jolley, et al., 2004). The 
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migration of fluids in this meta-sedimentary basin is a result of the complex structural 

history of the Witwatersrand Basin. 

 

The ant-tracking attribute highlighted that the three stratigraphic packages had 

distinctly different structural characters. Varying degrees of what have been 

described as “fracture zones” were identified along stratigraphy with the frequency of 

these bodies decreasing from the upper Transvaal Supergroup dolomites through the 

Ventersdorp Supergroup lavas to the lower Central Rand Group quartzites. The zones 

may be attributed to noise, fracturing and faulting occurring naturally or exacerbated 

by blasting occurring during mine operations, or in the case of the Transvaal 

dolomites, might represent the highly porous nature of the aquifer. The presence of 

these observed fracture zones supports the model by Sherwood Lollar, et al. (2007) of 

mixing between less saline palaeometeoric water and hydrogeologically isolated 

pockets of water, predominantly hydrothermal fluid in the basin. A concept originally 

derived from McNutt, et al. (1994) and adapted to the case of the isotopic signatures 

observed in the fracture waters of the Witwatersrand Basin, the authors point out the 

role played by secondary minerals such as calcite and quartz as well as tectonic 

activity in the opening and closing of fractures to control fluid flow.  

 

Amplitude seismic display successfully showed that the faults that were associated 

with the sampling points were mainly normal faults that intersected the BS, VCR, and 

the BLR. The structures were NNW, NW, or NE-trending with dips greater than 75°. 

The structures are attributed to different compressional and extensional tectonics 

that has been documented in the Witwatersrand Basin. Although the tectono-

sedimentary history of the Witwatersrand Basin and overlying Ventersdorp 

Supergroup are well documented, a summary of the tectonic events that has been 

encountered at the West Wits Line Goldfield is presented by Dankert and Hein (2010).  
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The Snake Dyke (and associated fault), Jean Dyke, Pretorius Fault and faults F548 (3) 

and F548 (4) are the northeast trending geological structures identified in the study. 

The orientation of the faults coincides with a time in the tectonic history of the 

volcano-sedimentary basin characterized by the deposition of the VCR, extrusion of 

the Klipriviersberg metabasalts, and tectonic inversion of the Bank Fault (Berlenbach, 

1993). The extrusion of the Klipriviersberg Group lavas would have resulted in the 

introduction of CO2, H2O and other gases associated with magmatic extrusion into the 

Witwatersrand Basin (Gonnermann & Manga, 2012). 

 

Tectonic inversion would have resulted in fault reactivation as seen in the Pretorius 

Fault Zone. The Pretorius Fault is a steeply dipping normal fault that has a variable 

throw along its length. The fault system is also characterized by three fault zones with 

faults and fractures that have varying orientations and slips within each zone. The 

fault segments (which are connected to the variable throw of the main fault) are 

attributed to increased seismicity due to mining operations in the TauTona and 

Mponeng gold mines. Seismic interpretation shows that the fault extends much 

further (approximately 2 km more than the originally proposed 10 km) and the throw 

increases towards the southwest extension of the fault (Gibson, et al., 2000; 

Heesakkers, et al., 2011). The timing of activity of a structure implies that an originally 

normal fault undergoes compressional reactivation. Such is the case with the PF 

where the VCR has a normal sense of displacement whereas the fault has undergone 

compressional reactivation in upper BLR. As stated by Sibson (1995), and later 

reiterated by Bonini, et al. (2012), steeply dipping normal faults that have undergone 

reactivation may form crucial structural traps for hydrocarbons.  

 

North northwest and northwest- trending structure such as the Spotted Dick Dyke is 

related to a compressional event that came before the intrusion of the Bushveld 

Complex approximately 2.06 Ga. This coincides with the categorization of the CLA 
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Dyke by Litthauer (2006) as a Bushveld-aged intrusion. The orientation of the Spotted 

Dick Dyke may indicate the change from the compressional regime into which the 

Klipriviersberg Group extruded to the rifting event characterized by the extrusion of 

the Platberg Group as suggested by Stanistreet and McCarthy, et al. (1991).  

 

Another key structural feature identified in the seismic data was thrust imbricate 

faulting at VCR level in the Mponeng and Kusasalethu gold mining areas. Extensive 

structural mapping done by Jolley, et al. (1999, 2004) show that the thrust planes 

(which linked to form imbricate systems and were oriented in an north northwest and 

north westerly directions) found in the Kusasalethu gold mine are characterized by 

ultracataclasitic fault rocks. The cataclasitic material comprised within these fault 

rocks is described as having undergone fluidized granular flow that formed laminar 

bands within the thrust planes and focused fluid movement (Jolley, et al., 1999). These 

fault rocks would have low cohesion and show evidence of hydrothermal fluid flow. 

These thrust faults are associated with steeply dipping fracture systems (which were 

formed in the reef) that not only contain gold and uranium minerals, but mesophase 

hydrocarbons as well. An investigation of the fracture systems by Jolley, et al. (2004) 

and their relationship to gold mineralization revealed that most of the fractures that 

were mapped were closely associated with fault rocks. The study showed that, based 

on their position and form along the fractures, the hydrocarbons had to have migrated 

from source via faults and into the gold bearing reefs through the fractures. That said, 

there are limitations to the migration of hydrocarbons. Not all faults and fractures 

found in a sedimentary basin are conduits for gas and water transmission. This is 

particularly true in crystalline, metamorphosed sedimentary basins such as the 

Witwatersrand Basin that has a complex deformation history. Sibson (1994) explains 

that differential stresses acting within a tectonic regime affect the permeability of the 

rock mass and thus modulate fluid flow in the crust. The study shows that while faults 

and extensional fractures affect the permeability of the surrounding rocks, fluid flow 

in these faults and fracture systems is episodic. Fluid flow within a fault zone like the 



182 

 

 

PFZ that has undergone intermittent rupturing in the TauTona gold mine, is 

controlled by a number of mechanisms (Heesakkers, et al., 2011). These mechanisms, 

which include, dilatancy due to shearing, mean stress changes during fault growth and 

the discharge of overpressurized fluids in sections of the crust, act to either increase 

permeability or create impermeable barriers in the rock-mass (Sibson, 1995; Frape, et 

al., 2014).  

The results show that although there were numerous faults that transacted the BS and 

VCR, not all of them would carry methane gas from depth. Apart from the structural 

information that was noted during the extraction of fracture water from the gold 

mines of the West Wits Line Goldfield, seismic attribute analysis revealed that the 

basin is characterized by a degree of structural complexity that cannot be observed 

using traditional interpretation methods.  
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9.  CONCLUSION 

South Africa is home to some of the deepest gold mines in the world. 3D seismic 

surveys have been acquired since the 1980s in order to delineate and effectively map 

key economic horizons such as the Ventersdorp Contact Reef. The use of these surveys 

has proven to be successful over the years for not only mine development but remote 

structural mapping of these reefs. One problem that is yet to be solved regarding mine 

production is the occurrence of methane gas and subsequent explosions associated 

with them. This research applied conventional as well as enhanced (through seismic 

attribute analysis) seismic interpretation techniques in order to understand a possible 

source of this methane gas. The use of instantaneous phase, frequency, and envelope 

as well as geometric attributes dip, dip azimuth and edge-detection showed that there 

are structures that propagate between the Booysens Shale and the mining levels (i.e. 

VCR). The process was taken a step further and ant tracking (an edge enhancement 

attribute) was applied to the 3D seismic volume. Methane data points were also 

plotted in the seismic volume and depth slices through the survey revealed that the 

methane occurrences in the Witwatersrand Basin are largely structurally controlled. 

Results showed that there was variation in methane concentration that was a function 

of the temperature and the proximity of these methane data points to faults. The study 

concluded that although most of the sampling points (which were either gas or 

groundwater samples) were structurally related, not all the structures were near the 

sample locations. The study has shown that the integration of different datasets is 

useful in helping to understand the mechanism of fluid and gas transmission in the 

mining region. The study also found a link between the abiogenic sources of methane 

and the structures with which they were associated. Faults and dykes play an integral 

part in fluid flow that allows for gas-water-rock interactions, the mechanism by which 

most of the methane found in the study area is generated. The research confirmed 

postulations that the sources of the methane found at mining levels may not only 

come from depth but from more localized sources. 
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11.   APPENDICES 

Appendix A 

Table 1: Compositional gas analyses using RGA/FID mole (%) of fracture water in 

boreholes in the Driefontein (DR), Mponeng (MP), and TauTona (TT) gold mines. 
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Table 2: Compositional gas analyses of fracture water in boreholes in the Driefontein (DR), Mponeng (MP), and TauTona 

(TT) gold mines 

 

 

 

 

Gas analyses

TCD (mole%) FID (mole%)

NEW Sample Name Sample Name Ar H2 He O2 N2 CH4 C2H6 C3H8 iso-C4 n-C4 CO2 Total

DR546 BH1 120198 E5-46-Bh1 0.003 9.98 0.03 56.50 27.70 0.27 0.024 0.002 0.005 84.23

DR548 FW 090901 DR548FW090901 10.34 3.05 6.18 23.61 56.31 2.67 0.220 0.028 0.020 102.55

DR9 IPC 101602 H1 DR9 IPC H1-101602 2.75 3.77 101.78 11.62 121.21

DR938 CH 091202   DR938CH091202   0.42 16.77 73.59 4.70 0.12 0.020 95.62

DR938 H3 110701 DR938 H3 110701 0.74 5.98 0.55 13.98 76.03 3.15 0.319 0.018 0.038 100.81

DR938 H3 071202 DR938H2071202 . 0.32 4.64 4.95 28.60 61.40 2.45 0.260 0.010 0.030 102.62

DR938 H3 125M 102401 DR938 H3 125M 102401

DR940 FW 092602 DR940Shaft092602 1.17 19.31 73.05 10.18 0.30 0.040 104.05

DR5IPC FW150711 0.00043 0.15 19.11 75.25 1.93 0.003 0.33

MP104 E65XC H1 091602 MP104E65XC 091602 9.85 9.11 6.12 29.31 41.96 3.30 0.480 0.030 0.080 100.24

MP104 E65XC H1 091902 MP104E65XC 091902 ?? 12.08 11.94 2.40 16.69 53.00 4.21 0.620 0.040 0.100 101.08

MP104 E65XC H1 092702 MP104E65XC 0092702 11.54 12.32 3.65 21.14 49.59 3.99 0.600 0.040 0.100 102.97

MP104 E65XC H1 110902 MP10464XCBH1-110902 11.4 12.34 1.86 16.95 49.92 4.03 0.580 0.040 0.090 97.53

MP109 FW 101701 AUMPFW109xc61  101701 3.3 9.06 4.77 28.14 53.83 2.47 0.360 0.030 0.050 102.01

MP120 FW80212 23.17 7.38 0.96 6.11 53.2 3.46 0.49 0.05 0.07 1.69

TT100 FW 082702 TT100X/CS062802P2 0.25 18.70 76.70 2.50 0.04 98.19

TT118 FW 300507 LIB 118 2.4 8.8 3.3 29.2 53.4 3.25 0.38 0.03 0.06 100.82

TT107 FW110811 LIB107A 0.11 3.98 0.96 38.89 16 0.87 0.13 0.01 0.02 0.05

TT109 FW20212 Bh1 DPH5057 0.0035 4.17 1.33 31.85 58.58 0.09 0.05

TT109 FW80212 Bh2 DPH5060 0.011 4.46 0.04 28.28 61.9 2.58 0.37 0.03 0.06 0.05
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Table 3: Flow rates, temperature, salinity, and O2 concentrations of fracture water in boreholes in the Driefontein (DR), 

Mponeng (MP), and TauTona (TT) gold mines 

 

  

Flow rates, Temperatures, salinity and O2 concentration 

NEW Sample Name Sample Name T
o
C

Salinity 

(M)
O2  (ppm)

Water Flow 

Rate (ml/min)

Gas Flow Rate 

(ml/min)

DR546 BH1 120198 E5-46-Bh1 37.0 1.269 4

DR548 FW 090901 DR548FW090901 41.6 3.603 5,000,000 15,000,000

DR9 IPC 101602 H1 DR9 IPC H1-101602 26.0 0.002 0 26,087 160

DR938 CH 091202   DR938CH091202   20.0 0.006 1,300 250

DR938 H3 110701 DR938 H3 110701 43.0 0.058 0 4,448 2,298

DR938 H3 071202 DR938H2071202 42.5 0.057 0.25 3,317 45

DR938 H3 125M 102401 DR938 H3 125M 102401 20.0 0.053 120 15

DR940 FW 092602 DR940Shaft092602 20.0 0.007 0.3 7,500 450

DR5IPC FW150711 

MP104 E65XC H1 091602 MP104E65XC 091602 60.0 0.198 0.4 40,000 2,400

MP104 E65XC H1 091902 MP104E65XC 091902 ?? 52.0 0.198 0 40,000 2,400

MP104 E65XC H1 092702 MP104E65XC 0092702 52.0 0.198 8,200 1,200

MP104 E65XC H1 110902 MP10464XCBH1-110902 52.0 0.170 0 2,308 1,714

MP109 FW 101701 AUMPFW109xc61  101701 50.0 0.417 0.6 1,000 100

MP120 FW80212 

TT100 FW 082702 TT100X/CS062802P2 46.5 0.004 1.5 150,376 100

TT118 FW 300507 LIB 118 55.0 0.5 2240 1920.0

TT107 FW110811 LIB107A

TT109 FW20212 Bh1 DPH5057

TT109 FW80212 Bh2 DPH5060



207 

 

 

 

Appendix B 

 

 

Figure 1: Driefontein gold mine map showing the D8A borehole (highlighted in red). 

The borehole clearly intersects the Spotted Dick Dyke (after Moser et al., 2003). 
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Figure 2: Location of borehole LIC 118 (TT118), outlined in red, at the TauTona gold 

mine (after Litthauer, 2009). The blue lines denote faults, the green lines dykes, and 

the red lines, contour lines at mining levels.  
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Figure 3: Location of the CLA Dyke (outlined in dark green), outlined in red, at the 

TauTona gold mine. The dyke is intersected by the Davey and Pretorius faults (after 

Litthauer, 2009). The blue lines denote faults, the green lines dykes, and the red lines, 

contour lines at mining levels. 

 


