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Abstract

Recognition of micro-expressions is a growing research area as a result of
its application in revealing subtle intention of humans especially under high
stake situations. Owing to micro-expressions’ short duration and low inten-
sity, efforts to train humans in their recognition has resulted in very low
performance. The use of temporal methods (on image sequences) and static
methods (on apex frames) were explored for feature extraction. Supervised
machine learning algorithms which include Support Vector Machines (SVM)
and Extreme Learning Machines (ELM) were used for the purpose of classi-
fication. Extreme learning machines which has the ability to learn fast was
compared with SVM which acted as the baseline model. For experimentation,
samples from Chinese Academy of Micro-expressions (CASME II) database
were used. Results revealed that use of temporal features outperformed the
use of static features for micro-expression recognition on both SVM and
ELM models. Static and temporal features gave an average testing accuracy
of 94.08% and 97.57% respectively for five classes of micro-expressions us-
ing ELM model. Significance test carried out on these two average means
suggested that temporal features outperformed static features using ELM.
Comparison between SVM and ELM learning time also revealed that ELM
learns faster than SVM. For the five selected micro-expression classes, an av-
erage training time of 0.3405 seconds was achieved for SVM while an average
training time of 0.0409 seconds was achieved for ELM. Hence we can sug-
gest that micro-expressions can be recognised successfully by using temporal
features and a machine learning algorithm that has a fast learning speed.
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Chapter 1

Introduction

Expressions reveal what takes place in the human mind at a particular time. These
are often displayed through speech, body gestures or facial expressions. Of the
different modes of expression, facial expressions appear to be the most expressive
means through which humans show their emotions [9], [10]. Facial expressions
play a vital role in day to day life of humans. As a result, several researchers have
developed automated systems for recognition and interpretation of facial expres-
sions. For example, Vural et al. [11] proposed a system that identifies the level of
drowsiness in drivers. Another example of facial expression recognition system is
that of Whitehill et al. [12] which was used to get response/feedback from students
while being taught.

Facial expressions fall under the category of ’macro-expressions’. These are the
normal expressions that are seen daily in our interactions with people and last be-
tween 1/2 seconds and 4 seconds. However, in high stake situations, people often
conceal or suppress their true emotions because of the fear of being caught [13].
These concealed emotions take place within the duration of 1/5 and 1/25 seconds
and are known as ’micro-expressions’. These expressions were initially detected
by Haggard and Isaacs [14] and at a later time by Ekman and Friesen [15]. Apart
from the short duration of micro-expressions, they also possesses low intensity.
These two unique features make the recognition of micro-expressions by humans
more difficult even when they are trained to perform such tasks [15] [16]. Humans
who are trained can recognise micro-expressions but with a very low accuracy
due to the short duration and low intensity of these expressions[17]. Both macro-
expressions and micro-expressions can be expressed in seven different forms which
include sadness, happiness, fear, anger, surprise, disgust and contempt. Figure 1.1
shows the contrast between some macro- facial expression samples and micro-facial
expression apex frame samples.
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Owing to the limited ability of humans to recognise micro-expressions effectively,
it becomes necessary to develop automated systems that have the ability to de-
tect them automatically and effectively. Automatic micro-expression recognition
involves the use of computer-based methods for recognition of micro-expressions.

Surprise

Happiness

Fear

Disgust

JAFFE Database
CASME II 
Database

Figure 1.1: Samples of facial expression from JAFFE Database [2] and sam-
ples of micro-expression apex frames from CASME II database [3]

1.1 Potential Applications of Micro-expressions

Micro-expressions have been found to be relevant to many fields. They can be
used by security officers or law enforcement agents to detect abnormal behaviours
during interrogation of suspects. According to Ekman [15], it is believed that in
high stake situations, people tend to suppress their true emotions which gives a
clue to trained security/law enforcement agents about those with bad intentions.
In the United States, the Transportation Security Administrators (TSA) at the
airports use a technique known as Screening Passengers by Observation Technique
(SPOT) to identify people who could be a threat to people in an aircraft. [18].
One major shortcoming of SPOT used by the TSA as identified by [19] is that the
system was never subjected to controlled scientific tests.
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Micro-expressions can also be used by health care practitioners for clinical diag-
nosis [20], [21]. This is useful when the health care practitioners need to re-assure
themselves of a particular disease prediction made on a patient. In the earlier
days of micro-expression detection, Paul Ekman [22] carried out an analysis on
a patient who was believed to have depression based on an health practitioner’s
diagnosis. This patient made a suicidal attempt when he was informed about the
diagnosis. The suicidal attempt was discovered by the health practitioner when
the patient showed extreme sadness in a very short time but quickly suppressed
it with smiles. An application in education would be when teachers can get an
assessment of their teaching skills based on the response (emotions) exhibited by
their students [23], [24], [25].

1.2 Research Motivation

The limitation of human ability (time and skills) in recognition of micro-expression
has created a need to develop fully automatic systems for micro-expression recog-
nition. Since the subject of automatic micro-expression recognition systems has
come into existence, only a few studies have been carried out in this area. Some of
these studies employed the use of static feature extraction technique which may not
effectively extract features required to build micro-expression recognition systems.
It is more effective to make use of temporal data for micro-expression expression
recognition due to its short duration and low intensity. Results from past studies
([23], [26], [27]) have also shown that majority of the techniques used for auto-
matic recognition of micro-expressions require longer training period which might
amount to low or average performances.

In this study, we proposed the use of temporal feature extraction in conjunction
with supervised machine learning algorithms for automatic recognition of micro-
expressions. The combination of techniques mentioned above were compared with
existing traditional techniques.

1.3 Research Hypothesis

Micro-expressions can be automatically recognised by combining temporal feature
extraction technique and supervised machine learning techniques.
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1.4 Research Questions

Main Research Question: Can effective models be built for automatic micro-
expression recognition by using a combination of temporal feature extraction and
supervised machine learning techniques?

Sub-questions

1. Can temporal feature extraction techniques be used to effectively extract
features for micro-expression recognition?

2. Can machine learning algorithms successfully classify micro-expressions?

3. Which of the machine learning algorithms for micro-expression recognition
has a better performance?

4. Which of the machine learning algorithms has a better learning speed?

5. Aside from accuracy, can other measures be used to evaluate the performance
of micro-expression recognition systems?

1.5 Research Objectives

Based on the questions stated above, this research seeks to achieve the following
under-listed objectives.

1. To extract features from micro-expression samples using temporal feature
extraction technique

2. To compare the performance and effectiveness of static feature extraction
with temporal feature extraction techniques

3. To compare the performance of different machine learning algorithms for
micro-expression recognition

4. To compare the learning speed of two machine learning algorithms

5. To evaluate the performance developed model using other measures aside
from accuracy

4



1.6 Overview of Thesis

The thesis is structured as follows:

The first chapter is introductory.

In Chapter 2, literature on micro-expression recognition is reviewed. The review is
based on different feature extraction and classification techniques used by various
researchers.

Chapter 3 gives background information on the techniques used for the study and
other related techniques. These include feature extraction techniques, classification
methods and details on existing micro-expression databases.

Chapter 4 describes the methodology used in carrying out the research. It also
provides the mathematical formulations of the methods used.

In Chapter 5, experimental results are presented, analysed and discussed in relation
to some relevant literature. Chapter 6 concludes the dissertation. It presents an
overall analysis of the research and areas for further study.
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Chapter 2

Literature Review

2.1 Introduction

This chapter presents an in-depth review of related studies on automatic micro-
expression recognition. The review was carried out based on existing micro-
expression databases, type of feature extraction and classification techniques used
for micro-expression recognition. In reviewing the relevant literature, details on
the techniques used, results achieved and limitations/future works are presented.

2.2 Feature Extraction

Micro-expression recognition requires extraction of relevant features from the im-
ages which form feature vectors that are used as input for classification. Techniques
for feature extraction are dependent on the form of images from which features are
to be extracted. Extraction of features could be either from static (still) images
without any form of variations [28] or features from temporal data in the form of
image sequences or videos showing the continuous flow of facial movements.

2.2.1 Feature Extraction from Static Images

Some of the existing techniques for extracting features from static images in-
clude Gabor filters [2], Local Binary Patterns (LBP) [29] and Histogram of Gradi-
ents (HOG) [30]. Facial Expression Recognition (FER) systems and some micro-
expression recognition systems have been successfully used to extract features
through static feature extraction techniques on still images.
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For instance, Wu et al. [26] carried out a study on the recognition of micro-
expressions using single image frames. Gabor filters [2] which had 9 scales and 8
orientations was employed as the feature extraction technique. Gabor filters per-
formed the function of filtering the images by alteration of all individual pixels in
each image. Results showed a recognition accuracy of 85.42% which was an im-
provement over micro-expression recognition by trained human beings. However,
Gabor filters can only be used to extract features in the spatial domain. They are
also time consuming and memory intensive, as identified in [31].

Yan et al. [32] conducted a pilot study with the aim of analysing micro-expressions
by quantifying and studying the pattern of facial movements. In their work, two
feature extraction methods were applied. First, a Constraint Local Model (CLM)
[33] which is an upgraded version of Active Appearance Model (AAM) [34] and Ac-
tive Shape Model (ASM) [35]. Constraint Local Model was used to detect faces and
to track feature points, thereafter, using feature points to create region of interests
(ROI). The second feature extraction technique used was LBP which helped to
extract features from the ROI and calculate difference between the frames. Result
showed that the frame with the highest difference was marked as the apex frame.
However, the study revealed that LBP does not have the ability to quantify dy-
namic information such as direction, velocity or subtle movements since they were
meant for the purpose of describing textures of static images. Also, there was no
criteria for determining onset and offset frames.

In recent times, a few studies ([36],[37]) have shown that micro-expression recog-
nition systems can also use features extracted from static apex micro-expression
frames and obtain results. In their work, they proved that apex frames are suf-
ficient to recognise micro-expressions rather than using entire image sequences.
Liong et al. [36] hypothesized that: ”Obtaining a promising recognition accuracy
is not dependent on the use of large number of frames”. LBP and a newly pro-
posed technique called Bi-Weighted Oriented Optical Flow (Bi-WOOF) were used
for feature extraction after spotting apex frames. ”Leave one subject out” cross
validation was performed by using samples from one subject as testing data while
the remaining samples were used as training data. This process was repeated for
k times where k stands for the total number of subjects in the database. Final
performance results were calculated by getting the average performance for each
subject. SMIC and CASME II micro-expression databases were used to evaluate
the system and they had F-Score performance of 61% and 62% respectively. Re-
sults showed that apex frames provided more information when compared with
entire image sequences. However, the reason behind their findings was not fully
discovered.

7



2.2.2 Feature Extraction from Image sequences (Tem-
poral Data)

Recognition of micro-expressions require that features are extracted from dynamic
facial images because of their short duration and low intensity on the facial mus-
cles. Feature extraction from image sequences is relevant to both ordinary facial
expression and micro-expression recognition. For facial expression recognition,
general techniques include facial feature point tracking and optical flow [28] which
have been used successfully in [38], [39], [40], [41] and [42]. For micro-expression
recognition, some existing techniques meant for the purpose of extracting features
from image sequences include variants of LBP, 3D Histogram of Gradients (HOG)
and optical strain.

Zhao and Pietikainen [4] proposed an approach for recognition of dynamic textures
by extending ordinary LBP to Volume LBP (VLBP) and LBP on Three Orthogo-
nal Planes (LBP-TOP). These methods combine both static and temporal features
during dynamic texture recognition. The effectiveness of these methods were eval-
uated using Cohn Kanade facial expression database [43]. Subjects from Cohn
Kanade’s database were separated randomly into n groups and ’leave one group
out’ cross validation was performed. Images were divided into 9×8 non-overlapping
blocks and features were extracted from each block. These block features were con-
catenated to serve as the final feature vector. A description of this process is given
in Figure 2.1. Both LBP-TOP and VLBP features were extracted using varying
number of neighbouring points P and radii RXY , RXT , RY T . For classification of
the facial image samples, SVM was used. Results revealed that the highest average
accuracy (96.26%) was achieved using LBP-TOP when the number of neighbour-
ing points P was set to 8 and radius set to 3. For VLBP, the highest average
accuracy (95.19%) was achieved when radii RXY , RXT , RY T were set to 3, 2 and
3 respectively. Both LBP-TOP and VLBP were found to outperform the use of
static textures.

Local Binary Patterns on Three Orthogonal Planes have also been widely used
for micro-expression recognition, as seen in Yan et al. [3] while evaluating their
spontaneous database (CASME II). Features were extracted from 5 x 5 blocks of
facial images and five classes of micro-expressions (happiness, surprise, disgust,
repression and others) were recognised. The radii in X and Y axes were varied
between 1 and 4 while radius T was varied between 2 and 4. Performances at
different radii values were also calculated and compared. Highest accuracy was
achieved at values 1, 1 and 4 for XY , XT and Y T planes respectively.
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(a) (b) (c)

Figure 2.1: (a) A dynamic texture showing three planes, (b) feature his-
togram for each plane and (c) concatenated feature histograms [4]

Davison et al. [44] carried out an investigation to check whether micro-facial move-
ment sequences can be distinguished from neutral face sequences. LBP-TOP and
Gaussian Derivatives were used to detect the presence of both micro-facial move-
ments and neutral expressions. SVM and random forest techniques were used for
classification. The system was able to help humans to interpret micro-facial move-
ments and what they mean in the context of a different situations.

Li et al. [6] and Pfister et al. [23] also used LBP-TOP feature extraction techniques
while performing a baseline evaluation for the SMIC database. Three categories
of SMIC dataset were used for their experiments. These categories were named
based on the type of camera used for their acquisition. SMIC-HS means SMIC
from High Speed camera, SMIC-VIS from visual camera while SMIC-NIR means
SMIC from near infra-red camera. Local spatio-temporal features were extracted
from pre-processed image sequences from the dataset while SVM was used for clas-
sification. The highest recognition accuracy of 49.30% was achieved on SMIC-HS
dataset.

Guo et al. [45] also presented the use of LBP-TOP for feature extraction in a
holistic manner. The term ’holistic’ means that LBP-TOP features were extracted
from entire image sequences rather than being extracted from blocks of an image.
Their motivation for employing the holistic approach was to avoid information
redundancy and to reduce the amount of calculations to be performed. Nearest
Neighbour (NN) technique was used for classification. Results revealed a recogni-
tion accuracy of 65.83% achieved at LBP-TOP radii values of 1, 1 and 2 for X, Y
and T planes respectively. However, the results showed that NN classification was
not suitable for use when the number of samples increased.
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Aside from variants of LBP, one other technique that has been used for extracting
temporal features from image sequences is 3D Histogram of Oriented Gradients
(HOG). 3D HOG was to serve as an improvement over the original HOG by Dalal
and Triggs [30]. The initial version was meant for static 2D images while the 3D
HOG was meant for the purpose of dynamic textures (videos).

Polikovsky et al. [27] and [46] explored the use of 3D HOG in their work. Their
aim was to develop a descriptor that is specifically adapted for detecting facial
movements by observing gradients histogram using a dataset comprising of 10
university students. Faces were divided into 12 regions and facial cubes were ex-
tracted from each of the regions. 3D HOG features were computed for each frame
and the resulting histogram was concatenated and normalised, which formed the
final feature vector. They were able to develop a micro-expression system capable
of measuring the three phases of micro-expression. These three micro-expression
phases included: Constrict (constriction of muscles), In Action (construction of
muscles) and Release (release of muscles).

Optical strain which originated from optical flow is another dynamic feature ex-
traction technique that has the ability to measure subtle changes that occur in the
human face. A study on the use of optical strain to distinguish between macro- and
micro-expressions were carried out in [47] and [48]. All the subjects’ faces were
divided into sub-regions and strain patterns were identified for each sub-region.
Strain patterns for each sub-region were used to identify subtle changes before
detecting micro-expressions. For macro-expressions, 85% spotting accuracy was
achieved while 74% accuracy was achieved for micro-expression spotting.

Wang et al. [49] also carried out a study on the recognition of micro-expressions.
Their intention was to reveal that colour may provide useful information for micro-
expression recognition through dynamic textures on Tensor Independent Colour
Space (TICS). A set of ROIs was defined based on FACS [50]. Later, dynamic tex-
ture histograms were calculated for each ROI. The experiments were conducted
on CASME [7] and CASME II [3] micro-expression databases. Results showed
that accuracy was 58.53% when CASME was used while accuracy was 61.85% on
CASME II database.
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2.3 Classification of Micro-expressions

Micro-expression recognition requires the use of machine learning algorithms for
classification. Existing algorithms that have been used for this purpose include
SVM, Nearest Neighbours, Random Forest, Decision Trees, Naive Bayes and ELM.
Out of these, SVM - a traditional learning algorithm is commonly used in most
studies on micro-expression recognition. Some of these studies are discussed be-
low.

Wu et al. [26] proposed a means to recognise micro-expressions using a frame by
frame approach. Gabor filter [2] were used for feature extraction from facial image
frames while GentleSVM (a combination of Gentle boost and SVM algorithm) was
used for classification. Their system recorded an accuracy of 95.83% for spotting
and 85.42% for recognition. The limitation identified from the work is the need to
increase the training set in order to achieve better results.

Pfister et al. [23] proposed a micro-expression detection system that uses SVM,
Multiple Kernel Learning and Random Forest for classification. Two different cor-
pora were used to evaluate the system (York Deception Detection Test (YorkDDT)
corpus [51] and SMIC corpus [6]). On YorkDDT corpus, highest recognition rate of
83.0% was obtained from combination of Machine Kernel Learning (MKL) classi-
fier with 10 frames of Temporal Interpolation Model (TIM 10). For SMIC corpus,
highest recognition rate of 74.3% was obtained from combination of RF classifier
with (TIM 10). SVM had a lower detection and recognition accuracy of 70.3%
and 59.8% respectively.

Yan et al. [5] performed a baseline evaluation of CASME II database using LBP-
TOP for feature extraction and SVM for classification. SVM classification results
revealed that the highest average accuracy obtained was 63.41% at LBP-TOP radii
values of 1, 1 and 4. Details on how SVM classification was performed was not
stated in the literature.

Another study that used other classification algorithms apart from SVM include
that of Shreve et al. [47] who developed a solution that has the ability to spot
both macro- and micro-expressions without training any models. Magnitude of
detected facial strain was used to recognise expressions. Their model was able to
identify regular expressions, suppressed (rapid) micro-expressions and expressed
(universal) macro-expressions separately. A spotting accuracy of 74% for micro-
expressions and 85% for macro-expressions was achieved.
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Wang et al. [52] employed the use of discriminant tensor subspace analysis (DTSA)
to extract features and ELM was used for classification of micro-expressions. Ex-
treme Learning Machine models were built using ten-fold cross validation to ensure
that all test sets were independent. All samples were divided into ten subsets and
at each time, one of the subsets were used as test set while the rest were used
as training set. The number of hidden neurons were gradually increased from 1
to 5000 at an interval of 10. Their algorithm was tested on ORL [53], Yale [54]
and YaleB [55] facial databases and CASME [7] databases. The highest accuracy
was achieved with 2,751 hidden neurons using Yale database, 4,091 hidden neu-
rons using ORL database and 661 hidden neurons using YaleB database. Their
recognition accuracies were 91.56%, 99.78% and 99.21% respectively. On CASME
database, accuracy of 46.90% was achieved. It was noted that the system had
a higher recognition accuracy when facial expression databases were used and a
lower accuracy when micro-expression database (CASME) was used for evaluation.

To improve the accuracy of micro-expression recognition, Guo et al. [56] combined
centralised binary pattern on three orthogonal planes (CBP-TOP) with ELM as
classifier. The underlying principle of CBP-TOP is similar to that of LBP-TOP.
It compares the centre pixel with pairs of neighbouring points and calculate CBP
codes in XY , XT and Y T planes as opposed to LBP-TOP that compares the
centre pixel with each neighbouring point. A recognition accuracy of 82.07% was
obtained when evaluated using CASME database.

2.4 Micro-expression Databases

Micro-expression database samples can be categorised into acted or spontaneous
samples. Acted micro-expression samples are those acquired by asking subjects
to act out micro-expression after a careful explanation of what such expressions
entails. For spontaneous samples, subjects’ emotions were stimulated by real-time
emotional occurrence. Micro-expression samples elicited spontaneously portray
the actual micro-expression when compared with the acted samples as highlighted
in [7]. Existing micro-expression database samples that were acted include USF-
HD database [5] and Polikovsky’s database [27] while spontaneous ones include
Spontaneous Micro-expression database (SMIC) [6], Chine Academy of Sciences
Micro-expression database (CASME) [7] and CASME II [3].

Shreve et al. [47] carried out a study on spotting and recogniton of macro- and
micro-expressions. In their work, samples from three micro-expression datasets
were used to test their algorithm. The datasets used were USF-HD dataset [5],
Canal 9 Political debate dataset [57] and Ekman’s videos [22] found on the In-
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ternet. Results from the experiments revealed that peak accuracy of 80% was
achieved when samples from USF-HD dataset were used. However, USF-HD sam-
ples had an average duration of one minute which exceeds the normal duration of
micro-expressions.

An extended study of Shreve et al. [47] was carried out by the same set of au-
thors in [58]. In this study, samples from USF [5] and SMIC [6] micro-expression
databases and Denver Intensity of Spontaneous Facial Action (DISFA) facial ex-
pression database [59] were used for testing their algorithm. SMIC samples are
spontaneous when compared with USF samples which are acted. Performance of
their algorithm was measured using Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) curve. Results revealed that SMIC was more
promising when compared with USF micro-expression database and DISFA facial
expression database.

Spontaneous micro-expression database samples were also used in [45], [60], [61]
and [62] to test their micro-expression algorithms. The authors achieved better
results when using these samples compared with acted samples. One major draw-
back of SMIC database is the lack of appropriate emotion labelling. Labelling was
carried out based on subjects’ self-reports only.

CASME database samples were used in other studies like [49], [52], [56]. These
studies revealed that experiments carried out using CASME database had better
performances when compared with earlier spontaneous micro-expression databases.
Details on results from these studies were discussed in the classification section.

More recently, many of the studies on micro-expression analysis [32], [49], [60] and
[62] have used CASME II database as a result of an increased sample size and
camera resolution quality. More details on CASME II database is provided in
background chapter.

Table 2.1 presents a summary of reviews carried out on micro-expression recogni-
tion with details on feature extraction and classification methods, databases used,
results achieved and limitations of the each study.
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Table 2.1: Summary of literature review carried out on
micro-expression recognition

Author(s) Objective Feature
Extraction

Classification Database Results / Con-
tributions

Limitations/
Future research

Wu et al.
[26]

To build a fully
automatic micro-
expression recog-
nition system

Gabor Fil-
ters

Gentle SVM
(Combination
of Gentle
Boost algo-
rithm and
SVM

Cohn &
Kanade’s
dataset

Spotting Accu-
racy: 95.83%,
Recognition Ac-
curacy: 85.42%

Evaluation of
algorithm per-
formed on facial
expression dataset
and not micro-
expression dataset

Yan et al.
[32]

To quantify
dynamic move-
ments and spot
apex frames for
micro-expression
analysis

CLM and
LBP

-

CASME II Apex frames
were detected
from samples.
This reduced
the amount of
manual coding
work during
micro-expression
analysis.

Ordinary LBP
cannot quantify
dynamic infor-
mation such as
direction and
subtle movements

Pfister et
al. [23]

To develop a
micro-expression
recognition sys-
tem that performs
better than hu-
man recognition

LBP-TOP SVM, MKL &
random forest
classifiers

YorkDDT,
SMIC

SMIC accu-
racy: 74.3%,
YorkDDT accu-
racy: 83.0%

Dataset used had
limited samples
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Shreve et
al. [58]

To propose a solu-
tion to macro- and
micro-expression
spotting in video
sequences

Optical
strain

-

USF, DISFA
and SMIC
datasets

Micro-
expression spot-
ting accuracy:
74%, Macro-
expression spot-
ting accuracy:
85%

Dataset used does
not have ground
truth labelling.

Yan et al.
[3]

Baseline evalua-
tion of CASME II
database

LBP-TOP SVM CASME II Recognition ac-
curacy: 63.41%

There is a need
to elicit samples
from more nat-
ural communica-
tion and interac-
tions in future

Wang et al.
[52]

To use a novel al-
gorithm for micro-
expression recog-
nition to improve
accuracy

Discriminant
Tensor
Sub-space
Algorithm
(DTSA)

ELM ORL, Yale
and YaleB
facial ex-
pression
databases
and CASME
database

Recognition
accuracy
(CASME):
46.90%

Low accuracy on
CASME database
as a result of
limited number of
training samples

Guo et al.
[45]

To perform
micro-expression
recognition using
a novel approach

LBP-TOP Nearest
Neighbour

SMIC
database

Accuracy:
65.83%

Little above av-
erage accuracy.
Database samples
were few
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Guo et al.
[56]

To propose a
novel feature ex-
traction technique
for recognition of
micro-expressions

CBP-TOP ELM CASME Highest recog-
nition accuracy:
82.07%

CBP-TOP was
found to be slower
than LBP-TOP
because only the
centre pixel was
considered.

Wang et al.
[63]

Extraction of
subtle motion
information from
micro-expressions

Robust
Principal
Component
Analysis
(RPCA)
and Local
Spatio-
temporal
Descriptors
(LSTD)

-

SMIC and
CASME II

Accuracy
(SMIC): 71.34%,
Accuracy (CAS-
MEII): 65.45%

Future work
identified was
to use proposed
method for mo-
tion detection in
surveillance
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2.5 Motivation for the current work based on

literature review

Owing to the critical role that feature extraction and classification plays in micro-
expression recognition, varying combination of techniques have been used in the
past. This was discussed within sections of this chapter. Studies like [26], [32], [36]
and [37] performed feature extraction on static frames. As identified in [3], [23] and
[45], temporal feature extraction is more relevant to micro-expression recognition
compared with static feature extraction. The reason for this is the short duration
of micro-expressions and their low intensity [63]. However, Liong et al. [36], [37]
carried out a study to show that static feature extraction using apex frames from
micro-expression samples are sufficient for recognition of micro-expressions.

In this study, LBP-TOP feature extraction technique was selected because of its
ability to extract both spatial and temporal features [4]. These features were ex-
tracted using a holistic approach whereby spatio-temporal features are extracted
from whole facial images instead of blocks of facial regions. This approach was
selected so as to reduce information redundancy and avoid complexity during fea-
ture extraction process as seen in [45].

In micro-expression recognition, classification is often performed using machine
learning models. Some of the existing models include: SVM [64], Random For-
est [65] and Nearest Neighbour [66]. Of these models (mentioned above), SVM
appears to be the commonly used model because of its good generalisation per-
formance irrespective of bias in training sample [67]. However, SVMs have some
major drawbacks which include their complexity and slow learning speed [68]. On
the other hand, ELM [69] is a more recent machine learning algorithm that pro-
vides a simpler and faster means of developing classification models [52], [56].

For the purpose of this study, we propose a combination of temporal feature ex-
traction technique (LBP-TOP) with ELM for classification of micro-expressions.
Comparison was made between performance of using LBP on static images and
that of using LBP-TOP for feature extraction from image sequences. Comparison
was also made between the performance of traditional SVM and ELM models for
micro-expression recognition.
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2.6 Summary

This chapter presents a review of related literature. Studies dealing with recogni-
tion of micro-expressions using both spontaneous and non-spontaneous databases,
static and dynamic feature extraction techniques and machine learning algorithms
were dealt with. This chapter also presents a motivation for techniques used in the
study. Motivation was based on some limitations identified in the previous work
done in this field.
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Chapter 3

Background

3.1 Introduction

This chapter gives a description of databases and models used in this study. Details
on existing micro-expression databases, LBP and LBP-TOP feature extraction
techniques, architecture of SVM and ELM with their mathematical formulations
are presented.

3.2 Micro-expression Databases

For micro-expression recognition systems to perform well, it is essential to have a
good set of data samples. There are two categories of micro-expression databases
that exists. These include: Acted/posed micro-expression dataset and sponta-
neous micro-expression dataset. Further details on these existing micro-expression
dataset are presented in the next section.

3.2.1 Acted USF-HD Database

USF-HD database [5] consists of 100 micro-expression samples and 181 macro-
expression samples recorded at about 30 frames per second (fps). To obtain the
micro-expression samples, subjects were asked to watch video clips that contained
micro-expressions and thereafter repeat whatever had been watched. This type of
database might not be effective for micro-expression recognition because a subject
might forget whatever he/she had watched in the video.
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3.2.2 Acted Polikovsky’s Database

Polikovsky’s database [27] is an acted micro-expression database that contains
a total of 42 samples elicited from 10 subjects. These 10 subjects includess 5
Asians, 4 Caucasians and 1 Indian students from a university recorded at 200fps.
These subjects were instructed to perform 7 basic emotions with low facial muscles
intensity and to go back to the neutral face expression immediately, thus simulating
the micro-expression motion. One of the major limitations of Polikovsky’s database
is its limited number of samples and the fact that the samples are non-spontaneous.
Some subjects from the database are shown in Figure 3.1.

Figure 3.1: Subjects from Polikovsky’s database [5]

3.2.3 Spontaneous SMIC Database

SMIC database [6] is made up of 164 spontaneous micro-expressions clips retrieved
from 16 participants and recorded with a 100fps (frames per second) camera. De-
picted emotions were labelled as positive (happy), negative (sad, anger, fear and
disgust) and surprise. An example of a sequence from SMIC database is shown in
Figure 3.2. This database was created because of the need to increase the sample
size of micro-expression databases. Samples were acquired by showing emotional
video clips to participants in an interrogation room. This targeted creating a
representation of a high stake situation. Participants were also motivated to sup-
press their facial expressions. Self-report questionnaires that included questions
on the type of emotions felt while watching the video clips were given to the
participants. Labelling was carried out based on results from each participant’s
self-report. The experiments were conducted using three separate datasets based
on the type of camera used for capturing the videos (HS- High Speed camera,
VIS- Visual camera and NIR- Near Infrared camera). The samples resulting from
these set of experiments contain sufficient data needed for automatic recogniton
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of micro-expressions. However, the need to extend the database such that micro-
expressions can be spotted from live stream videos was identified.

Figure 3.2: Surprise sequence from SMIC Database [6]

3.2.4 Spontaneous CASME Database

Chinese Academy of Sciences Micro-expression database [7] consists of 195 spon-
taneous and dynamic facial micro-expressions recorded with two separate 60 fps
cameras. When compared with previous micro-expression databases, CASME is
spontaneous and not acted and also has a higher number of samples.The samples
were elicited from about 1500 facial expressions with an onset duration that is less
than 250 ms (within the normal duration of micro-expressions). These samples
were coded with the onset, apex and offset frames. Onset frame is the first frame
where changes from the neutral expression occurs. Apex frame is the frame where
the highest intensity of the expression is reached while offset frame is the last frame
before facial expression changes to neutral. The captured emotions were labelled
and classified into seven categories: happiness, surprise, disgust, fear, sadness, re-
pression and tense. A sequence of images from one of the subjects is shown in
Figure 3.3.
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Onset 
Frame

Offset 
Frame

Apex 
Frame 1

Apex 
Frame 2

Figure 3.3: Repression micro-expression image sequence from one of the
subjects in CASME Database [7] showing onset, apex and offset frames.

3.2.5 Spontaneous CASME II Database

Chinese Academy of Sciences Micro-expression II database [3] is an improved ver-
sion of CASME database. It consists of 247 facial micro-expression samples re-
trieved from 26 participants. These samples were retrieved from 18 participants
who were made to watch highly emotional video clips. While watching the videos,
a screen was placed before each of the participants and a high resolution camera
was used to record their emotions. After watching the clips, participants were told
to rate the intensity of the video clips using a 7-point Lickert scale with 0 as the
lowest and 6 as the highest.

Video recordings from each participant were divided into frames and pre-processed
by removing facial and body movements that were not regular. Final micro-
expression samples were selected based on recordings that had a total duration
of less than 500 milliseconds or an onset duration of less than 250 milliseconds.
These samples were labelled using FACS [70] but their labelling criteria were not
the same with that of ordinary facial expressions. The micro-expression samples
consist of seven (7) classes which includes happiness, surprise, repression and oth-
ers. A sample image sequence from CASME II database is described in Figure 3.4.
When compared with earlier versions of micro-expression databases, some of its
outstanding features identified by Wang et al. [52] are listed as follows:
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• Increase in sample size (247 samples)

• Video recordings with higher resolution of 200fps and proper illumination

• Spontaneous and dynamic micro-expression samples rather than acted or
posed micro-expression samples

• Properly labelled emotions with coded onset and offset frames.

Figure 3.4: CASME II Happiness frame sequence [3] showing onset, offset
and apex frames: (a) onset frame; (b) random frame between onset and apex
frame; (c) apex frame; (d) random frame between apex and offset frame and
(e) offset frame

3.3 Facial Action Coding System (FACS)

FACS was developed by Ekman and Friesen [71]. It was described as a method for
measuring facial expressions based on the activities taking place in the underlying
facial muscles. These facial movements are further classified into action units
(AUs). Ekman and Friesen defined about 46 action units each of which corresponds
to a particular activity in an underlying muscle or group of muscles. FACS has been
used as a tool in classifying facial expressions into six universal emotions (disgust,
anger, fear, sadness, happiness and surprise). However, labelling of spontaneous
micro-expressions is different from that of facial expressions and non-spontaneous
micro-expression databases. Owing to the fact that spontaneous micro-expressions
are generated based on strong stimuli, it might be improper to classify micro-
expressions into the six existing emotions as stated by Yan et al. in [5]. Therefore,
the most recent micro-expression databases (CASME and CASME 2) labelled their
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emotions partly based on AUs and also on participants’ self-report and content of
video episodes [3]. Table 3.1 shows the difference between FACS coding for Cohn
Kanade’s facial expression database and CASME II micro-expression database.

Table 3.1: Differences between emotion labelling for facial expressions and
micro-expressions database

Emotion Cohn Kanade [43] CASME II [5]

Surprise AU1 + AU2 or AU5 AU1 + AU2 or AU25

Happiness AU12 AU6 or AU12

Disgust AU9, AU10 or AU4 + AU7 AU4 + AU7 or

Sadness AU1 + AU4 + AU15 or AU11 AU1 + AU4

Repression - AU15 or AU17 or AU15 + AU17

Others - Other related facial movements

3.4 Feature Extraction Techniques

The process of extracting relevant features from data is critical to micro-expression
recognition. In order to recognise micro-expressions accurately and effectively, we
need to perform feature extraction. The next subsections present details on all
feature extraction techniques used in this study with their mathematical formula-
tions.

3.4.1 Local Binary Patterns

LBP was proposed by Ojala et al. [29] and their intention was to use it as a means
of describing 2D textures of static images. The main idea of LBP is to compare
the value of the centre pixel C of an image with the value of its neighbouring pixel
P . If the centre pixel value is greater than the neighbouring pixel value, then, 0 is
assigned, otherwise, 1 is assigned as described in Figure 3.5. This results into an 8
digit binary number comprising of 0s and 1s which is converted to decimal number
and serves as the LBP value of the centre pixel. The mathematical description is
described below:
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Given a pixel p with intensity value vp, radius r and N neighbouring pixels, a
binary label is assigned to each of the neighbouring pixels. If the intensity value of

6 4 8

7 5 3

2 3 6

1 0 1

1 0

0 0 1

thresholding
Binary: 10101001

Decimal:  169

Figure 3.5: Thresholding on Local Binary Pattern

the given pixel is greater than that of the centre pixel, then 1 is assigned, otherwise,
0 is assigned to the pixel. LBP value is then given as:

LBPxp,yp =
N−1∑
i=0

f(gi − gp)2i (3.1)

where xp, yp represents the co-ordinates of the centre pixel, gp denotes the intensity
value of the centre pixel and gi is the intensity value of the ith neighbouring pixel.
2i is the weight that corresponds to the neighbouring pixel locations and f(x) is
a sign function defined as f(x) = {1, x≥0

0, x<0}. The feature vector can then be derived
by calculating the histogram of all the LBPs as described in (3.2).

Hi =
∑
x=0

∑
y=0

I{LBP (x, y) = i}, (i = 0, ..., n− 1) (3.2)

where n represents the total number of labels produced and

I(X) = {1, ifXistrue;
0, ifXisfalse.

3.4.2 Local Binary Patterns on Three Orthogonal Planes

Local Binary Patterns on Three Orthogonal Planes was selected as a technique for
feature extraction in this study because of its ability to extract temporal features
from micro-expression samples. Ordinary LBP features were also extracted from
apex and onset micro-expression frames and its performance compared with that
of LBP-TOP.
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LBP-TOP [4] is one of the spatio-temporal descriptors for dynamic textures (tex-
tures in motion) which was created in order to overcome the drawbacks of ordinary
LBP. The major drawback of LBP is that it can only extract features from still
images. LBP-TOP cannot be described without making reference to LBP and is
described below.
LBP-TOP is one of the variants of ordinary LBPs and was proposed by Zhao et
al. [4]. LBP-TOP was proposed as a result of the need to analyse textures that
are time-dependent (i.e. videos).

For a given video with time length T , LBP value is calculated in three planes; XY ,
XT and Y T , where XY provides spatial information while XT and Y T supplies
both spatial and temporal information about space-time transitions [4]. The LBP
value for each of the planes is calculated using equation (3.1) and is concatenated
into a single histogram which serves as the final feature vector. The corresponding
LBP-TOP feature is given as

LBP − TOPPXY ,PXT ,PY T ,RXY ,RXT ,RY T

while the histogram is described in equation (3.3), where P represents the number
of neighbouring points and R represents the radius.

H(i) =
∑

I{fj(x, y, t) = i}, i = 0, ..., nj − 1; j = 0, 1, 2. (3.3)

where nj represents the number of interest patterns in the jth plane and fj(x, y, t)
represents the LBP code at pixel positions (x, y, t) along the jth plane. The final
histogram is normalised using equation (3.4).

Ni,j =
Hi,j∑k=0

nj−1Hk,j
(3.4)

Application of Uniform Local Binary Pattern

To reduce the dimensionality (feature vector length), uniform binning was intro-
duced during the feature extraction process. This means that only important
textures were put into consideration. The underlying principle behind uniform
LBP is that, if a binary pattern contains at most two bitwise transitions (0-1 or
1-0), then that binary pattern is referred to as uniform, otherwise, if the binary
pattern contains more than two bitwise transitions, then it is non-uniform [72].
For example, 01111100 has two (2) transitions from 0-1 and 1-0, and is therefore
uniform, while 11010101 has six (6) transitions and is non-uniform pattern.
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Figure 3.6: CASME II micro-expression sample showing XY, XT and YT
planes with their corresponding histograms [3]

3.5 Machine Learning Algorithms

Machine learning is essential to automatic micro-expression recognition. It is cate-
gorised into supervised, un-supervised and semi-supervised. For supervised learn-
ing, there is always a set of training samples that are labelled with their corre-
sponding target/output data. The algorithm learns from the dataset and is able
to predict correctly based on the input that is given. For unsupervised learning,
only the input data is provided while the target or output data is not given. The
learning model tries to discover the patterns that are suitable for getting the cor-
responding class of the input data. Semi-supervised machine learning uses a few
labelled data with many unlabelled data.

Some of the existing supervised learning algorithms for automatic micro-expression
recognition include decision trees, neural networks, k nearest neighbours, SVM,
ELM and random forest classifiers. For the purpose of this study, we employed
the use of ELM and SVM motivated by their success from past studies. SVM has
been widely used for both macro- and micro-expression recognition and for other
classification tasks while ELM has not been used by many for the same purpose.
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3.5.1 Support Vector Machines

Support Vector Machine is a supervised machine learning algorithm that is used
for binary classification. It can also be used to perform regression tasks.

How does SVM work?

Considering that we have two a dataset with two separate classes that are linearly
inseparable, SVM uses a hyperplane to separate the group of data into their ap-
propriate classes. There could be more than a single hyperplane separating the
classes and the one with the largest margin is chosen as the best/most correctly
classified. Figure 3.7 gives a description of how classification is performed using
SVM. The mathematical model is described as follows:

Consider a set of two-class problem given as {xi, yi}Ni=1, where xi and yi represents
input and output vectors respectively and yiε{−1,+1} is the class label of input
xi. SVM aims at finding an optimal decision boundary (hyperplane) that can
classify all points correctly. The hyperplane is written as w(xi) + b = 0 where w
is the optimal set of weights and b represents the optimal bias. The hyperplane is
optimised using minimising the optimal weight (3.4) subject to the constraints in
equation (3.5).

Figure 3.7: SVM Architecture [8]
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Minimize
1

2
‖w‖2 (3.5)

Subject to yi(w(xi) + b) ≥ 1 ∀i (3.6)

Thus, Lagrangian multipliers α are introduced and result is shown in equation
(3.7)

LM =
1

2
‖w‖2 −

n∑
i=1

αiyi(xi.w + b) +
n∑

i=1

αi (3.7)

where i = {1, ..., n}. To minimise LM with respect to w and b, its derivatives are
completely taken away by setting the gradient of the Lagrangian multiplier to 0
as seen in equation (3.7)

n∑
i=1

αiyi = 0 (3.8)

w =
n∑

i=1

αiyixi (3.9)

Thereafter, w is re-substituted onto equation (3.6) and results in:

LP =
∑
i

αi −
1

2

∑
i,j

αiαjyiyjxi.xj (3.10)

To train the dataset, LP is maximised using equations (3.7) and (3.8) as con-
straints. When there is a training point such that its Lagrangian multiplier αi0,
then such a point is called support vectors, hence the name support vector machine.

3.5.2 Extreme Learning Machine

Extreme Learning Machine is a learning algorithm for the single hidden layer feed-
forward neural networks (SLFN) proposed by Huang et al. [69]. This learning
algorithm was proposed to overcome the drawbacks of traditional feed-forward
neural networks. As stated by Huang et al. [69], one of the major drawbacks of
traditional feed-forward neural network is their slow learning speed. Some of the
advantages of ELM over other traditional learning algorithms of SLFN are stated
in [52], [73].

• ELM does not require parameter tuning

• ELM has an extremely fast learning speed as compared with other learning
algorithms such as back propagation (BP) algorithm
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• ELM is very useful in training SLFNs with many non-differentiable activa-
tion functions.

According to Wang et al. [73], the most superior and impressive of these features
is the fast training speed compared to other traditional learning algorithms. The
mathematical model is described below:

For N distinct samples (xi, ti) where xi = (xi1, xi2, ..., xin)T ∈ Rn and ti =
(ti1, ti2, ..., tin)T ∈ Rm, SLFN can be modeled using equation (3.11)

Ñ∑
i=1

βig(wi.xj + bi) = pj , j = 1, ..., N (3.11)

where g(x) represents the activation function, Ñ represents the number of hidden
neurons, the weight vector that connects the ith hidden node and the input nodes
is represented by wi = (wi1, wi2, ..., wim) and bi represents the threshold of the
hidden node. βi = (βi1, β12, ..., βim)T is the weight vector connecting the ith node
and the output nodes while wi.xj is defined as the inner product of wi and xj .
Equation (3.10) can be re-written linearly as:

Hβ = T (3.12)

whereH(w1, ..., wÑ , b1, ..., bÑ , x1, ..., xN ) =

g(w1.x1 + b1) · · · g(wÑ .xi + bÑ )
...

. . .

g(w1.x1 + b1) · · · g(wÑ .xN + bÑ )


N×Ñ,

β =

β1
T

...

βÑ
T


Ñ×M

and T =

 t1
T

...
tÑ

T


Ñ×M

where H represents the hidden layer output matrix. According to the theorem of
Huang et al. [74], it is assumed that since input weights wi and hidden layer biases
H are randomly generated, the output weight β can be determined by finding the
minimum norm least square (LS) solution to the linear system Hβ = T . The LS
solution is described in equation (3.13).

β̂ = H†T (3.13)
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where H† is the Moore-Penrose generalised inverse of H. ELM algorithm can
be summarised in three steps:

Given a training set X = {(xi, ti)|xi ∈ Rnti ∈ Rm, i = 1, 2, ..., N} with an activa-
tion function g(x) and number of hidden neurons Ñ

1. Randomly assign the input weights wi and hidden layer bias bi = 1, ..., Ñ

2. Calculate the hidden layer output matrix H

3. Calculate the output weight

3.6 Multi-class Classification

Multi-class classification is defined as a combination of several binary classifiers. A
binary classifier is such that contains instances with just two groups. It can be la-
belled either as positive or negative, yes or no, 1 or 0, 1 or −1. There are two major
types of multi-class classification. This includes One Versus One (OVO) multi-class
classification and One Versus All (OVA) multi-class classification. These methods
are described in the next sections.

3.6.1 OVO Multi-class Classification

OVO multi-class classification deals with building N(N−1)
2 classifiers. For instance,

given a 5 class problem, labelled as a, b, c, d and e, 10 pairs will derived as {a,b},
{a,c}, {a,d}, {a,e}, {b,c}, {b,d}, {b,e}, {c,d}, {c,e} and {d,e}. Each classifier is
made to distinguish between each pair of classes resulting in a total of 10 classifiers.

3.6.2 OVA Multi-class Classification

In the case of OVA multi-class classification, for N classes we have N binary
classifiers which compares a given class with the other N − 1 classes. The ith

binary classifier is trained with positive samples that belongs to class i and negative
samples that belong to class (i−1). To test a sample whose class is unknown, voting
strategy is performed whereby the classifier that generates the highest output is
said to be the winner and the class label is assigned to the given sample.

In this study, OVA multi-class classification was performed for all our experiments.
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3.7 Measures for Performance Evaluation of

Micro-expression Recognition

To measure the performance of the system, four measures were used which includes:
accuracy, precision and recall, F-score measure and confusion matrix. Confusion
matrix performs the function of describing the performance of the classifier based
on the test sample data. Precision helps to measure how relevant the result of the
classifier is while recall helps to measure the completeness of the classifier. Accu-
racy performs the function of measuring the correctness of the classifier. Other
researchers who have worked on micro-expression recognition have often times
used accuracy as the only means of measuring performance. The formulation for
these measures are described with four parameters named as True Positive (TP),
True Negative (TN), False Positive (FP), False Negative (FN). Table 3.2 gives the
description of a confusion matrix for a binary classifier.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.14)

Precision =
TP

TP + FP
(3.15)

Recall =
TP

TP + FN
(3.16)

FScore =
2× precision× recall
precision+ recall

(3.17)

Table 3.2: Confusion Matrix

Positive Negative

Positive TP FP

Negative FN TN

3.8 Summary

In this chapter, background details of computational methods used for this research
were presented. Existing micro-expression databases were explained in details and
a comparison was made between emotion labelling for both macro-expressions and
micro-expressions. Mathematical description of feature extraction and classifica-
tion methods used were also presented. Finally, measures used for evaluation of
performance (precision, recall and F-score) were explained.
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Chapter 4

Methodology

4.1 Introduction

This chapter presents details on all the methods used in this study. Methods are
presented based on the hypothesis stated earlier. The micro-expression recognition
process is made up of three main stages which includes data preparation, feature
extraction and classification as illustrated in Figure 4.1. In the following sections,
details on preparation of data samples used for experiments are provided. For
feature extraction, LBP and LBP-TOP were used and classification was performed
using SVM and ELM. Two data formats were used for the experiments conducted.
The first data format involves the use of apex and onset frames for recognition
while the second format involves the use of video sequences for micro-expression
recognition.

4.2 Data Preparation

The data samples used for this study were acquired from CASME II database
[3]. Micro-expression samples from CASME II were already pre-processed before
being made available to the public. Some of the pre-processing carried out by
the database owners includes face detection and registration, division of recorded
videos into frames, labelling of samples with relevant action units and coding with
onset, apex and offset frames. CASME II database has a total of 247 micro-
expression samples with a sampling rate of 200fps. One of the samples from
CASME II database is shown in Figure 4.2.

In this study, a total of 220 micro-expression samples were used for the first set of
experiments (micro-expression recognition using LBP features extracted from apex
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and onset frames). For the second set of experiments (micro-expression recognition
using LBP-TOP features extracted from image sequences of each sample), a total
of 230 samples were used. The variation in the number of samples used for the
two set of experiments is as a result of some samples whose coding did not include
their correct apex, onset and offset labels. These samples without correct labels
were left out of the total samples used for the first set of experiment, hence, we
had 220 onset and apex frame samples. Since the second set of experiment used
entire image sequences, a total of 230 samples were used. Details on the number of
samples for each micro-expression class are presented in Table 4.1. Pre-processing
involved conversion of frames from RGB into grey-scale images.

Data Collection and 
Pre-processing 

LBP/LBP-TOP Feature 
Extraction 

Training  SVM/ELM 
models 

Classification with 
SVM/ELM models 

Recognition: 
Disgust 

Happiness 
Repression 

Surprise  
Others 

Figure 4.1: Architecture of Micro-expression Recognition System
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(a) (d)(c) (e) (f) (g) (h)(b)

Figure 4.2: Disgust sequence from CASME II [3] showing onset, offset and
apex frames: (a) onset frame; (b-d) random frame between onset and apex
frame; (e) apex frame; (f-g) random frame between apex and offset frame
and (h) offset frame. (Size of each frame in the sequence = 144× 176)

Table 4.1: Number of samples for each micro-expression class in CASME II
and selected samples for each experiments

Class CASME II No. of Selected
Apex Frames

No. of Selected
Image Sequences

Disgust 60 57 59

Happiness 33 25 30

Repression 27 27 24

Surprise 25 23 25

Others 102 88 92

Total 247 220 230

4.3 Feature Extraction using Local Binary Pat-

tern

The first set of experiments were performed using LBP on onset frames and apex
frames. As presented in Table 4.1 above, a total of 220 samples that includes 57
disgust, 25 happiness, 27 repression, 25 surprise and 88 others samples were used
for this experiment. Selection of these samples was done based on the labelling
provided by the database owners. For each grey-scale image, LBP values were
obtained by comparing the centre pixel values with all the neighbouring pixel
values resulting in a 8-digit binary number converted into decimal. Thereafter,
the histograms of these LBP values were calculated with intensity levels on y co-
ordinates and pixel values (from 1 to 256) on x co-ordinates which resulted in a
feature vector size of 1 × 256 for each sample. An illustration of LBP histogram
for apex and onset frame samples from one of the subjects are shown in Figure 4.3
and Figure 4.4 respectively.

35



A

B

C

D

Figure 4.3: Apex frame for a disgust sample from CASME II [3] showing
A: Gray-scale Image, B: Histogram of Grayscale Image, C: Local Binary
Pattern and D: Histogram of Local Binary Pattern

A

DC

B

Figure 4.4: Onset frame for a disgust sample from CASME II [3] showing
A: Gray-scale Image, B: Histogram of Grayscale Image, C: Local Binary
Pattern and D: Histogram of Local Binary Pattern
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4.4 Feature Extraction using Local Binary Pat-

tern on Three Orthogonal Planes

The second experiment involved extraction of LBP-TOP features from entire image
sequences. To extract LBP-TOP features, grey-scale image sequences were first
read (i.e., micro-expression videos readily converted into frames of varying lengths).
Thereafter, LBP-TOP features were extracted. In this experiment, radii values at
x, y planes were varied between 1 and 4 while for t plane radii values were varied
between 2 and 4. Number of neighbouring points for XY , XT and Y T planes
were set to 8 which gave a total of 28 patterns (i.e. 256 patterns) for each of the
samples.

For each image sequence, LBP values were calculated in XY , XT and Y T planes
along with their respective histograms. The histogram derived for each of the
three planes were concatenated and the result was a 3×256 feature vector for each
image sequence. To reduce the length of the feature vector, uniform binning was
applied to extract only uniform patterns from the 256 histogram bins. Application
of uniform patterns reduced the length of the feature vector from 256 to 59. This
resulted in a 3×59 feature vector for each image sequence which was converted into
a single row vector of size 1× 177. For all 230 samples used for these experiments,
230× 177 features were used.

4.5 Classification Models

One Versus All classification was performed on both experiments using SVM and
ELM models. Five micro-expression classes were used for all experiments (disgust,
happiness, repression, surprise and others). In other words, we had a total of five
classifiers. Training was performed using all samples belonging to each class as
positive samples labelled as 1 while samples from the remaining four (4) classes
were used as negative samples labelled as 0. The description of the labels are given
in Table 4.2. In Section 4.5.1, training and optimisation of SVM is presented while
in Section 4.5.2, training of ELM for recognition of micro-expressions is presented.
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Table 4.2: Table showing positive and negative samples along with their
given labels in parenthesis

Positive Samples Negative Samples

Disgust (1) Happiness (0) Repression (0) Surprise (0) Others (0)

Happiness (1) Disgust (0) Repression (0) Surprise (0) Others (0)

Repression (1) Happiness (0) Disgust (0) Surprise (0) Others (0)

Surprise (1) Happiness (0) Disgust (0) Repression (0) Others (0)

Others (1) Happiness (0) Disgust (0) Repression (0) Surprise (0)

4.5.1 Support Vector Machine based Model

Support vector machine based model was built for the purpose of classification.
Selection of SVM as baseline model was motivated by its success in past micro-
expression studies like [3], [23] and [45]. Five-fold cross validation was used to
divide the samples into five subsets. Four training subsets and one test subset
were generated at random five times for each of the five classifiers. SVM models
were built using the two data formats that we had (apex and onset frames and
image sequences). A total of 220 samples were used for apex frame experiment
while 230 samples were used for experiments performed using image sequences.
Details on training that was performed and how parameters were optimised are
also presented in the next sections.

SVM Training on Apex and Onset Frames using LBP Features

Training SVM on apex and onset frames was performed by loading 1×177 feature
vector for 220 apex and onset samples acquired after extraction of LBP features.
Five fold cross validation was then performed to divide the samples into five inde-
pendent subsets. Linear SVM kernel was used for training. An average training
accuracy of 96.15% was achieved using LBP features from apex and onset frames
as presented in Table 4.3.

SVM training on Image Sequences using LBP-TOP Features

To perform SVM training using image sequences, a similar procedure used for
apex frame experiments was followed. Feature vector of size 1× 177 for 230 image
sequences acquired from LBP-TOP feature extraction were loaded into each clas-
sifier. Thereafter, five-fold cross validation was performed to divide the samples
into five independent subsets. Optimisation of training model was performed by
recording training accuracy at varying LBP-TOP radii values in x, y and t planes.

38



Table 4.3: Training accuracy of SVM using apex and onset frames on LBP
features using linear kernel

Class Apex Frames Onset Frames Average

Disgust 94.99 95.11 95.05

Happiness 97.62 97.62 97.62

Repression 97.62 97.61 97.62

Surprise 98.12 97.96 98.04

Others 93.16 91.71 92.44

Average 96.30 96.00 96.15

These values were varied between 1 and 4 for x and y planes while variation for t
plane was between 2 and 4. Training results showed that the highest average train-
ing accuracy (94.00%) was achieved at Rx = 1, Ry = 1 and Rt = 3 as presented in
Table 4.4. Training results as presented in the Table 4.4 revealed that there was
no more increase in average training accuracy as from radii values Rx = 3, Ry = 3
and Rt = 2 to Rx = 4, Ry = 4 and Rt = 4.

Table 4.4: Optimisation of LBP-TOP radii values using SVM. Training ac-
curacy was recorded in percentage (%)

Rx, Ry, Rt Surp. Disg. Happ. Others Repr. Average

1, 1, 2 95.22 86.96 87.83 91.30 97.39 91.74

1, 1, 3 89.15 91.95 93.80 97.61 97.50 94.00

2, 2, 2 88.70 93.04 95.65 93.04 88.70 91.82

2, 2, 3 88.26 89.57 96.52 93.92 95.65 92.78

2, 2, 4 88.70 89.57 97.83 93.48 95.65 93.05

3, 3, 2 86.09 88.70 97.39 85.65 89.13 89.39

3, 3, 3 86.09 88.69 97.39 85.22 90.44 89.57

3, 3, 4 86.52 89.13 96.96 88.70 87.82 89.83

4, 4, 2 85.22 87.83 96.96 86.52 87.83 88.87

4, 4, 3 83.04 83.05 85.22 92.61 94.78 87.74

4, 4, 4 83.91 85.22 85.65 94.78 94.78 88.86
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4.5.2 Extreme Learning Machine Model

Extreme Learning Machine (ELM) models using LBP and LBP-TOP were built
by using five-fold cross validation to partition the data samples into five subsets.
ELM model was selected as our second model because of its learning speed and
more effective training ability [69]. Training this model was performed using four
subsets out of the five subsets while the remaining one subset was reserved for
testing purpose. This process was repeated five times and the average training
accuracy was calculated. Training results in terms of training time and training
accuracy were compared with training results for both SVM (baseline model) and
ELM. Results from Training time are presented in Chapter 5.

ELM Training on Apex and Onset Frames using LBP Features

Training accuracy was recorded for varying number of hidden neurons (between
50 and 400) at an interval of 50 using LBP features as shown in Table 4.5. It
was discovered that training accuracy increased with increasing number of hidden
neurons. There was a constant 100% training accuracy from 200 hidden neurons
for the five classifiers as shown in Figure 4.5. This informed the decision to choose
300 as number of hidden neurons during validation of the model.

Table 4.5: Training accuracy with varying number of hidden neurons for the
five classifiers using LBP features

Hidden Neurons Disgust Happiness Repression Surprise Others

50 83.53 90.34 89.66 92.39 75.57

100 93.18 97.39 97.84 98.07 90.23

150 99.77 100 100 100 99.2

200 100 100 100.00 100 100

250 100 100 100 100 100

300 100 100 100 100 100

350 100 100 100 100 100

400 100 100 100.00 100 100
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Figure 4.5: Optimisation of hidden neurons using LBP features

ELM Training on Image Sequences using LBP-TOP Features

Optimisation of parameters was performed by recording training accuracy at vary-
ing LBP-TOP radii values in x, y and t planes. These values were varied between
1 and 4 for x and y planes while variation for t plane was between 2 and 4 as
presented in Table 4.6. Training results showed that the highest average training
accuracy (97.57%) using ELM was achieved at Rx = 1, Ry = 1 and Rt = 3.

To select optimal number of hidden neurons, average training accuracy was recorded
between 50 and 500 at an interval of 50 for each classifier. The highest average
training accuracy (97.54%) was achieved at 200 hidden neurons as presented in
Table 4.7.

41



Table 4.6: Optimisation of LBP-TOP radii values with ELM model. Accu-
racy was recorded in percentage (%)

Rx, Ry, Rt Disg. Happ. Rep. Surp. Others Average

1, 1, 2 92.07 91.74 99.67 99.02 99.24 96.35

1, 1, 3 94.13 94.35 99.67 99.68 100 97.57

1, 1, 4 98.37 98.37 92.17 92.66 100 96.24

2, 2, 2 94.78 100 96.85 91.74 100 96.67

2, 2, 3 94.13 99.57 97.72 91.41 100 96.57

2, 2, 4 93.8 100 97.18 91.52 100 96.5

3, 3, 2 93.59 99.68 93.58 90.65 93.04 94.11

3, 3, 3 94.35 99.57 93.48 90.44 93.04 94.17

3, 3, 4 94.13 99.57 93.91 90.65 93.15 94.28

4, 4, 2 93.69 99.57 93.59 91.09 92.72 94.13

4, 4, 3 92.07 92.39 96.96 90.33 99.68 94.28

4, 4, 4 92.5 92.72 97.17 90.65 100 94.61

Table 4.7: Training accuracy at varying number of hidden neurons for the
five classifiers using LBP-TOP features

Hidden Neurons Disg. Happ. Repr. Surp. Others Average

50 83.48 88.48 85.11 94.89 92.82 88.96

100 90.65 91.74 92.39 98.48 98.59 94.37

150 94.02 94.35 99.67 99.68 99.68 97.48

200 94.13 94.24 100 99.67 99.68 97.54

250 93.81 93.91 100 99.67 99.68 97.52

300 93.70 93.91 100 99.68 99.68 97.39

350 94.13 94.13 100 99.67 99.68 97.39

400 94.13 94.02 100 99.68 99.68 97.5

450 93.48 94.02 100 99.67 99.57 97.35

500 93.8 93.91 100 99.57 99.57 97.37
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4.6 Final Model Architecture

In the next chapter (Chapter 5) testing performance based on optimal training
results achieved from the SVM and ELM models will be presented. Summary of
details on resulting ELM model using both LBP and LBP-TOP features are pre-
sented in Table 4.8. These details include type of model (regression/classification),
number of input and output weights, number of input and output neurons and
labels. Optimal LBP-TOP radii values in x, y and t planes were 1, 1 and 3 respec-
tively based on highest average training accuracy of 94.00% using SVM model as
presented in Table 4.4. Optimal LBP-TOP training accuracy was also achieved at
Rx = 1, Ry = 1 and Rt = 3.

For ELM-based model training using LBP features from apex and onset frames,
optimal average training accuracy of 100% was achieved with 300 hidden neurons.
(See Table 4.5). This selection was made based on training accuracy recorded for
apex frames at varying number of hidden neurons between 50 and 400 at an inter-
val of 50. For ELM-based model using image sequences and LBP-TOP features,
200 hidden neurons were optimal with an average training accuracy of 97.54%.
(Table 4.7).

Table 4.8: Details on ELM model built for each classifiers

Model details Apex Frames Frame Sequence

Number of Samples 220 230

Feature Vector Size 1× 256 1× 177

ELM Type Classification Classification

Activation Function Sigmoid Sigmoid

Number of Input Neurons 256 177

Number of Output Neurons 2 2

Label 1 (Positive Samples), 1 (Positive Samples),

0 (Negative Samples) 0 (Negative Samples)

43



4.7 Summary

In this chapter, details on data samples, their labellings and preparation for the
experiments were presented. The process involved in extraction of both LBP fea-
tures from apex frames and temporal (LBP-TOP) features from image sequences
were presented. Final feature vectors used as input for the classifier were derived
from the feature extraction process. Details on both SVM and ELM models were
presented and selection of optimal parameters based on training accuracy for SVM
and ELM model was performed.
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Chapter 5

Experimental Results, Analysis
and Discussion

5.1 Introduction

In this chapter, results obtained from all experiments are presented, analysed
and discussed. The results include test performance for SVM and ELM models
using LBP features from apex and onset micro-expression frames. It also includes
test performance for SVM and ELM models using LBP-TOP features from micro-
expression image sequences. Based on the results, comparative analysis was carried
out to show which of the feature extraction and classification models performed
better. Results from the study are also discussed in relation to results obtained
from reviewed literature.

5.2 Micro-expression recognition using SVM

Classification process involved loading grey-scale image samples into each of the
five classifiers. The grey-scale images were read and features (LBP/LBP-TOP)
extracted from them. Feature extraction process resulted in a feature vector size
of 1×256 and 1×177 for LBP and LBP-TOP features respectively. For each of the
five classifiers, testing was performed via a one versus all classification approach
by assigning label 1 to positive samples and label 0 to negative samples using the
trained SVM model.
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5.2.1 SVM-based Classification using LBP Features

For this experiment, a total of 220 samples (57 disgust, 25 happiness, 27 repression,
25 surprise and 88 others) were divided into training and test sets using five-fold
cross validation. Number of training samples used for each classifier was within the
range of 174 and 176 while number of test samples was within the range of 44 and
46 samples. After LBP features were extracted and training performed, classifica-
tion of the micro-expression samples was performed on the test subsets for each of
the five classifiers. Test results were recorded on both onset and apex frames. The
mean accuracy, precision, recall and F-score performances were recorded for each
classifier as presented in Tables 5.1, 5.2, 5.3 and 5.4 respectively. Overall average
testing accuracy, precision, recall and F-score results achieved were 94%, 82.61%,
89.31% and 85.67% respectively using SVM model.

Table 5.1: Testing accuracy (%) of SVM using LBP features from apex and
onset frames

Class Apex Frames Onset Frames Average

Disgust 90.88 90.46 90.67

Happiness 96.36 96.36 96.36

Repression 95.42 95 95.21

Surprise 96.37 95.92 96.15

Others 90.47 92.76 91.62

Average 93.9 94.1 94.0

Table 5.2: Precision Results (%) of SVM using LBP features from apex and
onset frames

Class Apex Frames Onset Frames Average

Disgust 81.82 81.82 81.82

Happiness 80 80 80

Repression 80 80 80

Surprise 83.33 83.33 83.33

Others 87.5 82.68 87.87

Average 82.53 82.68 82.61
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Table 5.3: Recall Results (%) of SVM using LBP features from apex and
onset frames

Class Apex Frames Onset Frames Average

Disgust 81.82 90 85.91

Happiness 80 80 80

Repression 100 80 90

Surprise 100 100 100

Others 87.5 93.75 90.63

Average 89.86 88.75 89.31

Table 5.4: F-score Results (%) of SVM using LBP features from apex and
onset frames

Class Apex Frames Onset Frames Average

Disgust 81.82 85.72 83.77

Happiness 80 80 80

Repression 88.89 80 84.45

Surprise 90.91 90.91 90.91

Others 87.5 90.91 89.21

Average 85.82 85.51 85.67

5.2.2 SVM-based Classification using LBP-TOP Fea-
tures

For this experiment, a total of 230 image sequence samples (59 disgust, 30 happi-
ness, 24 repression, 25 surprise and 92 others) were divided into training and test
sets using a five-fold cross validation. Since one vs all classification was used, we
had a total of five classifiers. Number of training samples used for each classifier
was within the range of 184 and 186 while number of test samples was within the
range of 44 and 46 samples. After LBP-TOP features were extracted and training
performed, classification was performed on the test subsets using feature vectors
from LBP-TOP and trained SVM model for each of the five classifiers. Test results
were recorded using test subsets (samples) for each of the five classifiers. Perfor-
mance of the classifiers was evaluated using accuracy, precision, recall and F-score
in Table 5.5. Average performances for the five classifiers were also recorded. An
average precision of 92.85% was achieved for the class classified which shows the
exactness of the classifiers while average recall of 93.94% was achieved which shows
the completeness of the classifiers.
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Table 5.5: Test results for LBP-TOP with SVM model including accuracy,
precision, recall and F-score for five classifiers (measured in %)with radius x,
y and t = 1, 1 and 3 respectively

Measure Disg. Happ. Repr. Surp. Others Average

Accuracy 91.3 95.74 100 100 95.65 96.54

Precision 78.57 85.71 100 100 100 92.85

Recall 96.88 83.33 100 100 89.47 93.94

F-Score 86.77 42.86 100 100 94.44 84.81

5.2.3 Comparative Results from LBP and LBP-TOP
Features using SVM Model

Average testing accuracy from apex and onset frames using LBP features were
compared with average testing accuracy from image sequences using LBP-TOP.
The comparison is illustrated using a column chart as shown in Figure 5.1. In
terms of their testing accuracy, results showed that LBP-TOP features with SVM-
based model had higher average test performance when compared with the use of
LBP features using SVM-based model. Average testing accuracy for LBP on apex
frames was 94% while average testing accuracy for LBP-TOP was 96.54%.

Using these average values, a t-test was conducted to show if the use of apex
and onset LBP features is significant than the use of LBP-TOP features from
image sequences. T-test results showed a probability value (p-value) of 0.2438 at
a confidence interval of 95%. This means that there was no significant difference
in their average mean. Based on this t-test, we cannot ascertain which feature
extraction approach is more efficient. We can suggest that LBP-TOP features
with SVM-based model results in a higher performance when compared with LBP
features with SVM model.
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Disgust Happiness Others Repression Surprise Average

LBP 90.67 96.36 95.21 96.15 91.62 94.00

LBP-TOP 91.3 95.74 100 100 95.65 96.54
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Figure 5.1: Comparative results for LBP on apex frames and LBP-TOP on
entire image sequence using SVM

5.3 Micro-expression Recognition using ELM

Classification process involved loading grey-scale image samples into the classifier.
Grey-scale images were read and features (LBP/LBP-TOP) were extracted from
them. Feature extraction process resulted in a feature vector size of 1 × 256 and
1×177 for LBP and LBP-TOP respectively. For each of the five classifiers, testing
the ELM model was conducted through a one versus all classification by assigning
1 to positive samples and label 0 to negative samples.

5.3.1 ELM-based Classification on Apex Frames using
LBP Features

A total of 220 onset and apex samples (57 disgust, 25 happiness, 27 repression, 25
surprise and 88 others) were divided into training and test sets using a five-fold
cross validation. Number of training samples used for each classifier varied between
the range of 174 and 176 while number of test samples was within the range of
44 and 46 samples. After LBP features were extracted and training performed,
classification of the micro-expression samples was performed on the test subsets
for each of the five classifiers using the trained ELM model. Test performances
were recorded on both onset and apex frames. The mean accuracy, precision,
recall and F-score from the test results were recorded for each classifier. Results
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are presented in Tables 5.6, 5.7, 5.8 and 5.9. Overall average testing accuracy,
precision, recall and F-score performances achieved were 94.08%, 87.86%, 90.99%
and 89.01% respectively using SVM model.

Table 5.6: Testing accuracy for LBP on apex frames and onset frames using
ELM model with 300 hidden neurons

Class Apex Frames (%) Onset Frames (%) Average

Disgust 91.75 91.74 91.75

Happiness 94.54 95.91 95.23

Repression 95.03 94.55 94.79

Surprise 97.74 97.30 97.52

Others 91.38 90.85 91.12

Average 94.09 94.07 94.08

Table 5.7: Precision Results for LBP on apex frames and onset frames using
ELM model with 300 hidden neurons

Class Apex Frames (%) Onset Frames (%) Average

Disgust 81.82 81.82 81.82

Happiness 80 100 90

Repression 80 80 80

Surprise 100 100 100

Others 87.5 87.5 87.5

Average 85.86 89.86 87.86
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Table 5.8: Recall Results for LBP on apex frames and onset frames using
ELM model with 300 hidden neurons

Class Apex Frames (%) Onset Frames (%) Average

Disgust 100 100 100

Happiness 100 80 90

Repression 80 80 80

Surprise 100 100 100

Others 87.5 82.35 84.93

Average 93.5 88.47 90.99

Table 5.9: F-score Results for LBP on apex frames and onset frames using
ELM model with 300 hidden neurons

Class Apex Frames (%) Onset Frames (%) Average

Disgust 90 90 90

Happiness 88.89 88.89 88.89

Repression 80 80 80

Surprise 100 100 100

Others 87.5 84.85 86.18

Average 89.28 88.75 89.01

5.3.2 ELM-based Classification on Image Sequences
using LBP-TOP Features

A total of 230 image sequence samples (59 disgust, 30 happiness, 24 repression, 25
surprise and 92 others) were divided into training and test sets using a five-fold
cross validation. Number of training samples used for each classifier was within
the range of 184 and 186 while number of test samples was within the range of 44
and 46 samples. After LBP-TOP features were extracted and training performed,
classification was performed on the test subsets using feature vectors from LBP-
TOP and trained ELM model for each of the five classifiers.

Test results were recorded using test subsets for each of the five classifiers. Perfor-
mance of the classifiers was evaluated using accuracy, precision, recall and F-score
in Table 5.10. Average performance of the five classifiers was also recorded. Per-
formances of the classifiers were evaluated using accuracy, precision, recall and
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F-score as presented in Table 5.10. Confusion matrices for the five classifiers are
presented in Figure 5.2. An average precision of 93.51% was achieved for the class
classified which shows the exactness of the classifiers while average recall of 94.66%
was achieved which shows the completeness of the classifiers.

Table 5.10: Test results for LBP-TOP with ELM model showing accuracy,
precision, recall and F-score for five classifiers (measured in %)with radius
x,y and t = 1, 1 and 3 respectively, 8 neighbouring points and 200 hidden
neurons

Measure Disg. Happ. Repr. Surp. Others Average

Accuracy 95.65 95.65 100 97.83 98.71 97.57

Precision 91.67 83.33 100 97.56 95 93.51

Recall 91.67 83.33 100 100 100 94.66

F-Score 91.67 83.33 100 98.76 97.44 94.24
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ED

CB

(1) (1) (1)

(1) (1)

(0) (0) (0)

(0) (0)

Figure 5.2: Confusion matrices for five classifiers used; labelled as A,B,C,D
and E representing disgust, happiness, repression, surprise and others respec-
tively
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5.3.3 Comparing Test Results from LBP and LBP-
TOP Features using ELM

Average testing accuracy from apex and onset frames using LBP features was
compared with average testing accuracy from image sequences using LBP-TOP.
The comparison was based on test results from ELM model. This is illustrated
using a column chart (Figure 5.3). Results showed that an average testing accuracy
for LBP on apex frames using ELM was 94.08% while average testing accuracy for
LBP-TOP on temporal data using ELM was 97.57%. Using these average values, a
t-test was conducted to show if the use of LBP-TOP features on image sequences
is significantly better than using apex and onset LBP features. T-test results
gave a p-value of 0.0466 at a confidence interval of 95%. This means that there
was a significant difference in their average mean. Based on the t-test results, we

Disgust Happiness Others Repression Surprise Average

LBP 91.75 95.23 94.79 97.52 91.12 94.08

LBP-TOP 95.65 95.65 100 97.83 98.71 97.57
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Figure 5.3: Comparative results for LBP on apex frames and LBP-TOP on
entire image sequence using ELM

can deduce that LBP-TOP features on micro-expression image sequences is more
relevant when compared with using LBP on apex and onset frames only using
ELM model. As opposed to an assertion made by Liong et al. [36] and [37] that
apex frames alone is enough to effectively recognize micro-expressions, results from
this study showed that static feature extraction using apex frames only might not
be effective for micro-expression recognition when ELM model is used. However,
with SVM models we were not able to fully ascertain this fact. Although, based
on the testing accuracy LBP-TOP outperformed LBP. This partly answered one
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of our research questions on the use of temporal feature extraction for effective
micro-expression recognition.

5.3.4 Comparative Test Results for SVM and ELM us-
ing LBP-TOP features

A comparison was made between SVM and ELM models (uisng LBP-TOP fea-
tures) based on their average testing accuracy and F-score. LBP-TOP features
with SVM model yielded an average testing accuracy and F-score of 96.54% and
84.81% respectively while LBP-TOP features with ELM model yielded an average
accuracy and F-score of 97.57% and 94.24% respectively. Results show that ELM
outperformed SVM in terms of average testing accuracy and F-score measures for
the five classifiers as seen in Figure 5.4 and Figure 5.5.

Based on this comparative analysis, we cannot draw a conclusion that SVM model
is actually better than ELM. For this reason, a significance test was performed
to check if SVM’s average test accuracy and F-score is significantly different from
ELM’s test accuracy and F-score. T-test results for accuracy showed a p-value of

Disgust Happiness Others Repression Surprise Average

SVM 91.3 95.74 100 100 95.65 96.54

ELM 95.65 95.65 100 97.83 98.71 97.57

86

88

90

92

94

96

98

100

102

Te
st

 A
cc

u
ra

cy

Micro-expression Classes

SVM ELM

Figure 5.4: Comparative results for SVM and ELM using LBP-TOP features

0.5903 at 95% confidence interval. T-test results for F-score also gave a p-value of
0.4243 at 95% confidence interval. This means that there was no significant dif-
ference between these two average means. Hence, we cannot conclude that ELM
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Disgust Happinness Repression Surprise Others

SVM 86.77 42.86 100 100 94.44

ELM 91.67 83.33 98.76 98.76 97.44
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Figure 5.5: Comparative results for SVM and ELM F-score performance
using LBP-TOP features

is actually better than SVM. In terms of learning speed ELM was found to learn
faster than SVM. This is further discussed in the next section.

5.3.5 Comparative Results on SVM and ELM Learn-
ing Speed

In the previous experiments, a conclusion could not be drawn to show that ELM
performs better than SVM in terms of recognition rates. The major difference
that was identified between these models is their learning speed. To ascertain this,
training times for each class of micro-expression was recorded and the average
training time for the five classes of micro-expressions calculated. Results were
recorded using both SVM and ELM. Average training time using SVM was 0.3405
seconds while ELM had an average training time of 0.0499 seconds. Hence, we
can deduce that ELM learns faster than SVM. The difference between the training
time of SVM and ELM for the five classes of micro-expressions using LBP-TOP
features is presented in Table 5.11.
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Table 5.11: Training time (seconds) of SVM and ELM using LBP-TOP fea-
tures

Model Disg. Happ. Repr. Surp. Others Average

SVM 0.2808 0.3806 0.2434 0.2995 0.3182 0.3405

ELM 0.0468 0.0499 0.0593 0.0530 0.0406 0.0499

5.4 Our Study Vs Past Studies

Results obtained from this study were compared with results from past related
studies. Table 5.12 and Table 5.13 shows the comparative results using apex/static
frames and image sequences respectively. A similar study was carried out by Yan
et al. [3] while evaluating the performance of their micro-expression algorithm
using LBP-TOP for feature extraction and SVM for classification. In their work,
images were divided into blocks before applying LBP-TOP feature extraction on
each block which resulted in an accuracy of 63.41%.

In this study images were used in holistic manner which means that images were
not divided into blocks before extraction of features to reduce computational com-
plexity as expressed by Guo et al. [45].

Furthermore, results from LBP-TOP with SVM model gave an average testing ac-
curacy of 96.54% while results from LBP-TOP features with ELM model gave an
average testing accuracy of 97.57%. These two results showed higher recognition
performances when compared with the study in [3]. From the study of Guo et al.
[56], CBP-TOP, a variant of LBP which compares the centre pixel with pairs of
neighbouring pixels was used for feature extraction. Classification was performed
using ELM and an average test performance of 82.07% was achieved on the five
classes of micro-expression used. Our study outperforms Guo et al’s [56] study in
terms of recognition accuracy.

From our results, we can also deduce that recognition of micro-expressions using
LBP-TOP features (holistic) for SVM and ELM on CASME II database outper-
formed other methods. Even though the difference in performance of SVM and
ELM was not statistically significant, ELM provided a faster learning model when
compared with SVM. The learning speed of ELM was believed to contribute to
the overall performance of the micro-expression recognition process.
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Table 5.12: Comparative results with past studies that used static features
Author(s) Feature Ext. Classification Database Performance

Wu et al. [26] Gabor Filters GentleSVM Cohn Kanade 85.42% Accuracy

Lyons et al. [36] LBP & Bi-
WOOF

SVM SMIC &
CASME II

61% F-score for SMIC
and 62% for CASME II

Lyons et al. [37] CLM & LBP None CASME II Over 20% improve-
ment when compared
with baseline method
used in [32]

Our Study LBP ELM CASME II 94.08% Accuracy,
85.67% F-score

Our Study LBP SVM CASME II 94.14% Accuracy,
89.01% F-score

Table 5.13: Comparative results with past studies that used temporal fea-
tures
Author(s) Feature Ext. Classification Database Performance (%)

Wang et al. [52] DTSA ELM CASME 46.90

Yan et al. [3] LBP-TOP SVM CASME II 63.41

Guo et al. [45] LBP-TOP NN SMIC 65.83

Guo et al. [56] CBP-TOP ELM CASME 82.07

Our Study LBP-TOP SVM CASME II 96.54 Accuracy,
92.85 Precision,
93.94 Recall &
84.81 F-score

Our Study LBP-TOP ELM CASME II 97.57 Accuracy,
93.51 Precision,
94.66 Recall &
94.24 F-score
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5.5 Summary

This chapter presents the test results achieved using the two trained models (SVM
and ELM). Test results in the form of accuracy, precision, recall and F-score were
calculated and recorded for all experiments. Comparative analysis was carried out
to show the difference in performance of LBP/LBP-TOP and SVM/ELM. Results
were also discussed in relation to past related literature.
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Chapter 6

Conclusion and Future Work

6.1 Introduction

This chapter seeks to present a summary of all that this study entails. It also
summarises how the research questions asked have been answered. Limitations
encountered are also discussed and future areas of research presented based on
these limitations.

6.2 Conclusion

This study has been able to show that it is possible to recognise micro-expressions
automatically and achieve promising results through the use of temporal feature
extraction technique (LBP-TOP) and a machine learning algorithm with an ef-
ficient and very fast learning speed (ELM). Two data formats were used for the
experiments. The first format includes onset and apex frames extracted from
CASME II micro-expression samples. The second data format include temporal
image sequences from CASME II micro-expression samples.

The first set of experiments were conducted by extracting LBP features from on-
set and apex frame samples using SVM and ELM for classification. The second
set of experiments were conducted by extracting LBP-TOP features from micro-
expression image sequence samples using SVM and ELM for classification. Results
showed that LBP-TOP features with SVM had a higher average testing accuracy
of 96.54% when compared with LBP features and ELM which resulted in an aver-
age testing accuracy of 94.00%. However, the difference in their average accuracy
was not statistically significant.
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Results also showed that using LBP-TOP features from image sequence samples
with ELM had a higher average test accuracy (97.57%) while using LBP features
from apex and onset frames gave average test accuracy of 94.08% using ELM.
An independent t-test was conducted on these two average results from LBP with
ELM and LBP-TOP with ELM and a p-value of 0.0466 was achieved with p < 0.05
confidence interval. This t-test result suggests that there is a significant difference
between their average means and hence we say LBP-TOP features with ELM is
better than LBP features with ELM for micro-expression recognition.

Since the two models resulted in high test performance using LBP-TOP features,
an independent t-test was performed on test results for LBP-TOP features with
SVM and LBP-TOP features with ELM. The purpose was to check which machine
learning algorithm performed better for micro-expression classification. T-test re-
sults showed that there was no significant difference between these two results.
Hence, we cannot conclude that one algorithm performed better than the other.
One advantage of ELM over SVM as stated earlier is their fast learning speed [69],
[74]. Results from average training time for ELM outperformed results from SVM
training time using LBP-TOP features.

Based on this results, we were able to draw the following conclusions and answer
our research questions as stated below:

1. Recognition of micro-expression using temporal features is more effective
than recognition of micro-expression using static features. However, this
depends on the classification model used and the number of samples.

2. Supervised machine learning algorithms (SVM and ELM) have the ability
to successfully allocate micro-expressions into their appropriate classes.

3. Exteme learning machine algorithm learns faster than SVM.

6.3 Future Work

Future work should include employing a better means of reducing LBP-TOP fea-
ture vector size and optimising the features (feature selection). In this study, we
reduced the feature vector size from 1× 256 to 1× 177 by applying uniform pat-
terns. We were not sure whether this reduction to 177 features were efficient in
improving classification. Hence, we propose the use of optimisation algorithms
such as genetic algorithm or ant colony in the future. This will help to optimise
the features used for micro-expression recognition and hence improve performance
as identified in [75]. The use of different kernels for SVMs and different activation
functions for ELMs is also an area of interest that can be further studied.
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