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ABSTRACT

Conformational analysis of portions of functionally-active and functionally-inactive signal peptides

(incorporating the wild-type and mutants thereof) has been performed using a variety of computational

prediction techniques based on both statistics and molecular mechanics. Molecular mechanics

conformational studies are generally plagued by the problem of combinatorial explosion; this problem was

addressed with a systematic searching procedure as well as a recently developed genetic algorithm, both

utilising tile ECEPP/3 force field. The genetic algorithm, in combination with a gradient minimiser, proved

to be successful in finding low-energy conformations for each peptide sequence studied. Analysis was

performed in both simulated hydrophobic and hydrophilic environments, under distance-constraints.

The molecular mechanics results and statistical predictions generated from the study were compared With

existing experimental observations. The reliability of statistical predictions proved to be dependent on

prediction method; the more consistent predictions were produced by methods based on membrane proteins,

as opposed to those based on globular proteins. The physical property of hydrophobicity of signal peptide

sequences, explored in these statistical predictions, was determined to be an important factor in relating

sequence to functional activity. Molecular mechanics calculations produced either interrupted or non-

interrupted ce-helical secondary structures both for functionally-efficient and for functionally-inefficient

signal peptides, indicating that cc-helixformation alone cannot be correlated with protein export competence.

It was concluded from our overall results that both cc-helicityand hydrophobicity are required for the

efficient functioning of signal peptides.
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1.1. Protein conformational prediction

CHAPTER 1

INTRODUCTION

1.1. Protein conformational prediction

1.1.1. The protein folding problem

An:finsen's[ll classic experiment with the enzyme ribonuclease revealed the reversible and spontaneous

nature of protein folding. Since then, the myste lust how a protein arranges itself into its native 3-

D conformation" (natural conformation in vivo) ,__, continued to puzzle scientists. The need to solve

the protein folding problem is fuelled by the fact that protein activity is attributed to its folded form.

Knowing how proteins fold can help in the determination and prediction of these native structures,

which can in turn promote understanding of structure-function relationships in biological processes.

The ultimate aim is to contribute fundamental information to the fields of protein engineering and

rational drug design.

A protein can adopt more than one folded conformation while traversing its folding pathway, the

interconversions between different conformations resulting from vibrations within the macromolecule.

The choice of native structure from among these conformations is governed by thermodynamic and

kinetic factors. Thermodynamically, the native structure is hypothesised to correspond to the protein's

most stable conformation (the global free energy minimum)pl However, this absolute minimum may

not always be kinetically accessible and the native state may instead correspond to a local minimum.l"
Thus, when predicting folding patterns theoretically, cognisance must be taken of the fact that the

native 3-D conformation is the global minimum only if it meets both thermodynamic and kinetic

requirements.

The spontaneous nature of protein folding[l] in vitro yields the view that all the information required to

direct the folding of a protein is encoded in the amino acid sequence of the protein. Other factors, such

as molecular chaperones and catalysts, which come into play in vivo, are believed merely to facilitate

• The traditional definition of "molecular conformations" is a set of3-D arrangements of the atoms of a molecule
in space whose interconvertibility is due solely to rotation about single bonds. [2)

1



1.1..Protein conformational prediction
the folding process.P' Using this concept, the hierarchical nature of proteins (see Fibure·l.1) can be

exploited to investigate conformations along the folding route. Protein secondary structure is predicted

from primary structure as an intermediate step towards the final goal of specific tertiary structure

prediction. This approach to protein folding is called the framework model[7] and has been validated by

experimental data. In investigating the in vitro folding of the hen lysozyme protein, Dobson et al. [5J

used a variety of complementary experimental techniques, including nuclear magnetic resonance

spectroscopy (NMR), electrospray mass spectrometry (ESMS) and circular dichroism (CD), to obtain

a detailed folding model. They discovered that the denatured protein initially collapses and then rapidly

forms a stabilised secondary structure before folding proceeds to the native conformation,

Quaternary structure (aggregabj
t

Tertiary structure (globular protein)
t

Domain
t

Supersecondary structure
t

Secondary structure
t

Primary structure (amino acid sequence)

Figure 1.1: Hierarchical. levels of structural organisation in globular proteins. t6t

Primary structure: covalent structure defined by the amino acid sequence; secondary structure: local,
zegular conformations of the polypeptide backbone; s: .persecondary structure: physically preferred
aggregates of secondary structure; domains: parts of the protein which display distinct globular regions;
tertiary structures 3-D folded arrangement of the polypeptide backbone together with the spatial
dispositions of its side chains; quaternary structure: structures of aggregates of globular proteins.

The major complication encountered in protein folding simulations is that of combinatorial explosion.

This refers to the exponential increase in the number of conformations possibly adopted by a protein as

the number of amino acid residues and rotatable bonds in its peptide chain increases. A recent model

for protein folding, developed by Wolynes et al.,ts,9J deals with this problem in an interesting way. The

number of conformations along the folding path is reduced by guiding the protein through a funnel-

shaped energy landscape. The protein moves through many possible shapes present in the energy

funnel until it reaches its most energetically stable conformation at the bottom of the funnel.

2



1.1. Protein conformational prediction

1.1.2. Knowledge-based prediction
The most widely used technique in the attempt to predict protein folding theoretically is molecular

taxonomy[IO] or knowledge-based IT.odelling.[ll] In essence, the technique evaluates structural' nd

evolutionary relationships between proteins by comparing new protein sequences with proteins of

known structure, using a combination of statistical tl- ' ,',),nnd empirical rules.

1.1.2.1. Prediction of tertiary structure

The knowledge-based method of homology modelling[1l-13]is currently the most successful way

of predicting the unknown tertiary structure of a protein from its amino acid sequence alone.

Homologous proteins are proteins that are believed to have evolved from a common ancestor and

will therefore have substantial similarities in their primary structures and perhaps display

similar folding conformations. In the first step of this modelling process, the structurally

unknown peptide sequence is aligned with sequences of other proteins of known structure to

search for patterns of homology. Several databases of known protein X-ray crystallographic

structures, such as the Brookhaven Protein databank (PDB)l14] and SwissProt, [IS]are presently

available. Sequence alignment algorithms, such as those of Needleman and Wunsch[l6j and of

Smith and Waterman[l7] use dynamic programming methods" to carry out a global comparison of

two sequences. When more than one sequence of known structure exists within a protein family,

multiple sequence alignments can be performed. Once the alignment is completed, the backbone

and loops of the new protein are constructed, the conformation- Jf the side chains are

determined, and the structure is subjected to refinement using energy minimisation techniques.

An obvious limitation of the homology modelling method is the need for known structures that

are related to the structurally unknown sequence; the success of the method depends on the

degree of similarity between the seouences. For those that are distantly related, the limitation

results in predictions of new protein structures which are, as yet, unreliable

A protein conformation modelling method that has lately received much interest because of the

hope that it may assist with the identification of distantly related sequences is knowledge-based

potentials. Knowledge-based potentials are derived either from a statistical analysis of protein

structural features and amino acid sequence data (potentials constructed within the framework of

b "Dynamic programming" is a mathematical technique for optimisation which avoids complete enumeration of
all solutions by solving subproblems in a series of stages.

3



1.1. Protein conformational prediction
statistical mechanics),[18] or from an optimisation of potential functions with known structure

and sequence data (such as interresidue contacts).:19,201 Reduced representations are often used

to describe protein conformation in this context.

1.1.2.2. Prediction of secc ••dary structure

As mentioned earlier, the levels of hierarchy which proteins display can also be employed to

predict protein tertiary architecture. Secondary structure elements are :first predicted, followed

by the assembly of these elemerrs into a compact structure. The elements are the regular

conformations of c-helices, J3-strands and reverse turns, which appear to be adopted by 90% of

the amino acid residues in most proteins. [21]

Representative examples of secondary structure prediction methods are those of Chou and

Fasman, [22]Gamier et at. [23] and Lim. [24] The first two schemes are based on the principle that

different amino acid residues demonstrate different conformational preferences. The

probabilistic Chou-Fasman[22] scheme is the most popular because of its simplicity and ease of

application. For each of the 20 naturally occurring amino acids, it assigns conformational

propensity values for the formation of c-helices, J3-strands and coils (J3-turns are included in the

coil regions).[2S] These values were originally obtained from a statistical analysis of a limited set

of protein X-ray crystal structures. Prediction of secondary structure for a particular peptide

sequence is then accomplished by a simple procedure which is dependent upon the successive

occurrence of large propensity values in the sequence, The GOR (Garnier-Osguthorpe-

Robsoni23] method is also derived from a statistical study of known tertiary structures.

Directional and positional information from the study was used to compute not only

conformational propensities for single residues, but also to explicitly include the effects of short

and medium range interactions in the calculations.

Although the Chou-Fasman and GOR schemes, among others, rely on amino acid sequence

(groups of amino acids) to conduct their predictions, secondary structure prediction can also be

achieved by taking only amino acid composition into account.[26.27j The predictive algorithm of

Eiscnhaber and co-workers[27j combines vector decomposition techniques with the amino acid

compositions of secondary structural types present in known protein tertiary structures to

calculate secondary structural content. The algorithm is also able to assign secondary structural

class[28]to new sequences. The concept of secondary structural class originated with an intuitive
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1.1. Protein conformational prediction
classification of proteins into certain structural classes or folding types (all-a, all-B, a.+p,

a.Jp).[29]

Lirn'S[24]prediction method was developed from his a priori theory of secondary structure of

globular proteins. Stereochemical criteria such as the compact packing of polypeptide chains

and the presence of hydrophobic cores and polar shells in water-soluble globular proteins form

the basis of the theory. Rules and formulae were devised to search for spans in primary

sequences which display secondary structure characteristics. In his approach to the modelling

problem, Lim took two important considerations into account: the hydrophobic nature of amino

acids, and the dependence of secondary structure determination not only on local amino acid

sequence, but also on tertiary structure.

The hydrophobic nature of amino acids plays a significant role in the formation of c-helices and

p-shects. It is thus a factor which has been well examined in the attempt to predict structure.

Hydrophobicity scales,[30]as well as amino acid solvent accessibilities (determined from multiple

sequence alignment information),[31.:;2]are used to locate regions of a peptide chain which are

either buried in the interior or exposed on the surface of a folded protein. As a general rule,

hydrophobic residues tend to occur in the interior, while hydrophilic residues tend to lie on the

surface. [6]

One of the reasons for the generally low prediction accuracies (50 to 65%) achieved with

secondary structure prediction methods is the fact that long-range interactions are not considered

in the calculations. Kabsch and Sanderl33]established that the local conformation of a protein is

determined during the folding process and is thus dependent on tertiary structure. Although

local interactions (interactions between the side groups of the amino acids and the backbone), in

particular hydrogen bonding, may define secondary structure, it would appear that long-range

interactions rue necessary to ensure stability of the structure. Hydrogen bonding, van der Waals

interactions, electrostatic interactions, disulphide bridge formation, packing density caused by

the hydrophobic C' :~J and amino acid intrinsic propensities for secondary structure are factors

that playa rol: 11stabilising secondary structure elements in native globular proteins.[34.3S]

A recent knowledge-based technique that appears to be particularly successful in terms of

prediction accuracy (>70%) is that formulated by Rost and Sander.[36] Their method employs a
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1.1. Protein conformational prediction
neural network (NN)c algorithm and protein evolutionary information in the form of multiple

se9uence alignments. Here, the input to the net is information derived from an alignment and the

output is secondary structure type. This output then serves as the input for the next network, the

process being repeated through the system ofnetworksP7J

1.1.3. Molecular modelling prediction

An alternate approach to knowledge-based modelling is molecular modelling. The latter uses first

principles and energy calculations to analyse protein conformation directly, and is useful in helping to

glean a physical understanding of how intra- and intermolecular interactions determine 3-D structure.

Molecular modelling calculations are based on the assumption that the most stable conformation of a

molecule, the thermodynamic native state in the case of proteins, corresponds to the global minimum of

the Gibbs function (free energy) of the system (molecule and solvent). The Gibbs function, G,

comprises the potential energy of all intramolecular interactions, U, the free energy of all solvent

interactions, V,including the free energy of solvation, and a vibrational entropy free energy term, 8:[38]

G=U+V+s. (1)

In this study, the term molecular modelling refers to a collective description of the vanous

computational techniques and approximations used to determine the energy of a molecular system.

These fall into one of three categories: ab initio, semi-empirical and empirical.

1.1.3.1 i":o and semi-empirical

In the . L mechanical ab initio[39] and semi-empiricall'S' approaches, molecular orbital

theor est commonly implemented to provide a description for the molecule. Ab initio

err .non-parameterised treatment for small molecules and an approximation in the form of

1 s which allow for numerical solutions. Gaussian[41] appears to be the most widely used

ab initio program at present. Semi-empirical methods are less time-consurning than ab initio

and can be applied to medium-sized molecules. They introduce additional simplifying

assumptions and approximations in their methodology. Examples of programs which

incorporate this approach are MNDO,[42] AMl[43] andPM3.[44]

C Neural networks are designed to operate in a manner corresponding to that of neurons in the brain.
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1.1. Protein conformational prediction

1.1.3.2. Molecular mechanics

For larger molecular structures such as proteins, computational limitations warrant the use of

empirical methods, i.e., methods based on both theoretical and experimental data, to calculate

conformational energy. The mol -cular mechanics (lI.1M) procedure[45) uses an empirical force

field (EFF) to provide us with a description for the potential energy hypersurface of a molecule

as a function of atomic pcsitions. It considers molecules to be collections of atoms which

interact with each other via classical forces. The potential energy of these interactions is

described in terms of an analytical function corresponding to the summation of energy terms due

to bond stretching, angle bending, torsional angle strain, nonbonded van der Waals interactions

and coulomb electrostatic interactions (equation 2).

Eto1al = Ebond + Eangle + Etorsion + Enonhond + Ecoulomb (2)

Additional terms SUCll as out-of-plane bending and hydrogen bonding potentials may be added.

Each energy term has a preferred equilibrium position of a generalised co-ordinate (bond length,

bond angle, dihedral angle, van der Waals interaction distance, etc.) and, coupled wit', it, a force

constant which associates an energetic penalty with any deviation from this equilibrium vaiue.(46)

Examples of some extensively applied force fields include MM2(47) and M1vi3(48]for small

organic molecules, ECEPP[49.51)for peptides, and AMBER[52) and

and nucleic acids.

'ARMM(53) for peptides

To obtain the geometry of a molecular structure at :.~ energy minimum, the potential energy

function for the molecule must be optimised. This is achieved with an iterative MM energy

minimisation procedure, beginning with a elected. initial molecular conformation. Optimisation

algorithms can be classified into three groupS:(54) (a) simple search procedures which do not

involve the evaluation of derivatives of the potential energy function, e.g., Rosenbrock,(55) (b)

procedures which involve the evaluation of first derivatives, e.g., steepest descent[S6) and

conjugate gradientp7) and (c) procedures which involve the evaluation of both first and second

derivatives, e.g., Newton-Raphson'P' and variants thereof.



1.1. Protein conformational prediction

1.1..~.3.Conformational searching

One of the major problems confronting the explicit MM approach to macromolecular structure

prediction is that. of multiple minima. The potential energy hypersurface of a molecule

comprises many local minima which may be similar in energy, and which complicate the search

for the global minimum. Since conventional energy minimisation procedures merely place a

molecule into the minimum corresponding to the energy well in which it is placed in the energy

landscape, other strategies are necessary to surmount the local "barriers" and so reach the global

minimum energy conformation (GMEC). These strategies involve searching the conformational

space of the molecule to locate the energy well possibly containing the GMEC, followed by

minimisation of the structures whose energies lie within that well.[S9]

An exhaustive scanning of conformational space is possible for small molecules which possess

relatively few rotatable bonds. For larger molecules, however, the large number of torsional

degrees of freedom and subsequent exponential increase in the number of available

confoonational states (the combinatorial explosion problem) makes exhaustive searches

computationally unmanageable. Ways to reduce ;''1.escope of a search, such as the imposition of

constraints on the conformations generated, and the biasing of the search towards regions of low

energy have therefore been incorporated into many scanning algoritbms.l" Another important

aspect is the selectiou of the initial set of points on the energy surface to be explored.

Information obtained from knowledge-based studies, e.g., amino acid secondary structure

propensitiesp2.23,60] residue conformational pattern clustering,[61] and conformational filtering of

small peptides,[62] is regularly used to assist the selection.

In view of the abundance of material available in the literature pertaining to conformational

sampling techniques, only a brief discussion of some of the search methodologies will be given

here. For recent reviews 011 the subject, the papers by Vasquez et ai.,[S9] Eisenhaber et al.,[13]

Piela et ai,[6J] and Scheraga[64] are recommended.

Polypeptide conformational sampling techniques appear to be broadly classified as being either

deterministic (successive conformations are determined by preceding conformations) or

stochastic {conformations are generated in a random fashion),[6S] They can be further organised

into the following categories:[2]

-----------------------------------------------------------
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1.1. Protein conformational prediction

.. Systematic searching

A complete enumeration of all possible conformations in a systematic manner is the most direct

way of exploring conformational space. This method, also called grid searching, normally

involves the variation in turn of the torsion angles of a protein sequence along a specified grid

while the remaining internal co-ordinates (bond lengths, bond angles) are fixed. Since all

possible combinations of allowed torsion values are examined, combinatorial explosion soon

leads to an overwhelming number of generated structures for a sequence of medium length (> 10

residues). If we assume that there are n rotatable bonds in a sequence and that the angular

increment on the grid is e, the number of conformations that would be produced equals (360IfJl.

This is the major disadvantage of the technique.

The efficiency of systematic searches can be improved by explicitly decreasing the number of

conformations to be searched. One way of achieving this is to perform separate optimisations

and constructions of the peptide's backbone and side chain dihedral angles.[66.67jOptimisation of

the one set of dihedrals is performed while the angles of the other set are preserved. In addition,

instead of predicting the structure of the entire protein, prediction of only short segments (loops)

of the protein can be performed. Another way of eliminating unnecessary conformations is use

of tht.' dead-end theorem, [68]an algorithm that discards any side chain rotamers that are, in

pr.nciple, incompatible with the GMEC.

Reduction of the conformational space in a systematic search may also be achieved by

considering the intrinsic propensity of amino acids to occur in favoured regions of the

Ramachandran map, E(~,IV).d Energy minima and locations of the 20 naturally occurring amino

acid residues have been characterised via MM calculations.[69.71) Results indicate the existence

of large regions of ($, '1') space that can be regarded as energetically forbidden. Each amino acid

can therefore be assigned an ensemble of conformational states, these states represen ~:J defined

regions of the Ramachandran plot as shown in Figure l.2.

d The conformation of a polypeptide chain can be described by specifying all the dlhedra, angles of each residue:
~, IVand (J) for {hebackbone, and all "1.'5 for the side chain. (J);= 1800 is normally assumed, except for proline
where (J) ;= 00 is also permitted.
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Figure 1.2: A general Ramachandran plot depicting commonly observed
(~,IJ/) regions for secondary structural conformational statesl37]

• Model building

k, mentioned above, individual amino acids have probabilities of occurring in more than one

conformation.[69-7J] Knowledge of their low-energy conformers led to the development of build-

up£72]or fragment-based approaches to peptide conformational searching. These low-energy

structures serve as the initial building blocks for the formation of Jarger low-energy polypeptide

structures and protein fragments. The fragments are combined to ultimately form the entire

molecule. During each stage of the construction process, the intermediate structures are energy

minimised and an ensemble of their lower energy conformers retained for use in the following

stage.

The enormous number of conformations that require minimisation and storage at each step is

one dilemma encountered in the build-up approach. Introduction of an energy cut-off, the

retention of only those minima with significantly different backbone conformations, and the

utilisation of geometry constraints are among the proposed solutions to the problemPl Another

restriction relates to the fundamental assumption that short-range interactions between

neighbouring residues play a more dominant role than long-range forces in determining

conformation. The application of build-up procedures is thus limited to relatively small

unconstrained oligopeptides where long-range interactions are overshadowed by local ones,cs9]

10



1.1. Protein confurmatioual prediction

. • Symbolic representations

Peptide conformations can be represented by symbolic descriptors in an effort to reduce

conformational space. Symbolic structure representations, also referred to as reduced parameter

representations, lead to simplified protein models[73]which are able to facilitate faster sampling

of conformations due to a decrease in the number of degrees of freedom.

Several conformational searching techniques have been extended to incorporate simplified

representations. Koca et al.[74]have developed a program which performs a restricted grid

search on a set of elementary fragments of a peptide. The fragments are subsets of the dihedral

angles of the peptide. .The PRISM[7S) and "representative,,[76) methods are two examples of

model-building procedures that incorporate reduced representations. They use variations of a

finite-state model" which depicts conformational states as points in the ($,'1') plane. PRISM also

uses statistical information derived from known protein structures in a pattern-recognition

technique which predicts tripeptide probabilities.

Lattice models also represent a symbolic description of polypeptide chains. [13.59.73)They depict

the chains as pseudoatom positions at discrete points on a multidimensional lattice. The

confinement of a peptide in this manner drastically reduces conformational space and, for

medium-sized chains, allows for complete enumeration of the space. Computational time is

further decreased due to the use of simplified potential functions for interresidue contact.

Interactions between such residues are often described with a two-state square model,

corresponding to native-non-native contacts, or with a three-state cubic model, corresponding to

hydrophobic-hydrophobic, hydrophilic-hydrophilic and hydrophobic-hydrophilic contacts.[73)

These simplified forms of interaction potentials, together with Monte Carlo and molecular

dynamics simulations (neural networks is a recent addition[78]),have made lattice calculations a

popular choice in the field of protein modelling. Many attempts have been made to delineate the

qualitative features of protein conformation[79.80]and folding,[81.8S]e.g., folding cooperativity,

compactness and the balance of local and nonlocal forces. Current studies with lattice models

focus either on the prediction of secondary and tertiary structure from sequence,'86.87]or on the

thermodynamics and ki: etics of protein folding. [88.89)

C A "finite state model" is a representation of protein backbone conformations using a finite number of values for
the backbone dihedral angles. [17)
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1.1. Protein conformational prediction

" Random searching
In random or stochastic sampling teclmiques, structures are randomly changed to generate new

structures, some of which are selected for the next iteration in the process. In the case of

proteins, these changes are perturbations of the torsional angles of the rotatable bonds. The

cycle of random change and selection continues until sufficient sampling has been performed

(the predefined number of iterations is exceeded or no new structures are produced). The

selection criteria for the starting structures of each iteration are usually energy-based.

Stochastic approaches frequently involve faster search speeds than deterministic approaches,

and thus provide a way of finding low-energy minima on the conformational surface without

having to execute an exhaustive search.[2,90]

The Monte Carlo (MC) stochastic method explores protein conformational space by simulating

the conformational motion of proteins. Selection of trial conformations is conducted with the

Metropolis algorithml"! which ensures that the appearance of new conformations is proportional

to their Boltzmann factors exp(-LJElkT), where L1E is the energy difference between the old and

the new conformations being compared, k is the Boltzmann constant and T is the simulation

temperature. To prevent MC methods from ueing trapped in local energy minima (a

phenomenon caused by increasingly low Boltzmann acceptance ratios for new conformations),

small steps along the conformational path are fo'" -d to be taken. Thus, although searching of

the entire conformational space is possible, the process is extremely slow.[63]

The modified MCM (Monte Carlo plus minimisation) procedure is an attempt by Li and

Scheraga[92]to circumvent the inefficiency of pure Metropolis MC methods, It enables the use

of very large steps and samples only a discrete space of local energy minima. 'This is achieved

by energy minimising each conformation after its random alteration and then subjecting it to

Metropolis selection. The EDMC (electrostatically driven Monte Carloi93]method comprises

the random generation of new conformations based on information obtained from 'the SCEF

(self-consistent electrostatic field)[94]method, followed by minimisation and application of the

Metropolis test. The SCEF procedure assumes that each amino acid residue has an optimal

electrostatic energy, and uses the orientation of their dipole moments to bias dihedral angle

jumps. An alternative way tc ias dihedral jumps is included in the MC procedure of Abagyan

and Totrov.[9sJ Knowledge derived from statistical analyses of residues in terms of their

12



1.1. Protein conformational prediction
conformational preferences is utilised to formulate probability distribution functions. These

functions are then used in the torsion randomisation step of the search procedure.

Simulated annealing (SA), introdu : by Kirkpatrick et al.,[96] is a stochastic procedure for

conformational sampling that is based on the thermodynamic process of annealing. This is a

technique by which c), many-body system, initially at high temperature, is brought to a low-

energy state by slowly lowering the temperature of the system; SA thus simulates the thermal

motion of proteins in conformational space. It is usually implemented in conjunction with the

Metropolis MC algorithm. At each temperature in the cooling process, step-wise random

changes are made to. the conformations. Selection of the lower-energy conformers is then made,

The main drawback of tills method is the fact that it depends heavily on the carefully chosen

parameters of temperature interval size (determining the cooling schedule) and step size

(controlling the size of each step), [59]

Genetic algorithms (GAs) form another class of probabilistic optimisation methods, They differ

from the class of MC methods in that they produce an arbitrary collection of conformatlons.f'?

Since the searching procedure employed in this study is a GA, a detailed discussion of the

method is warranted and is given towards the end of this section.

• Distance geometry and related methods

The maintenance of distance constraints between atoms in a molecule forms the basis of distance

geometry methods. Examples of these constraints include the equilibrium bond length

separation between covalently bonded atoms, the distance between nonbonded atoms (~ sum of

their van der Waals radii) and supplied upper and lower bounds on interatomic distances.[98]

The distance geometry algorithm does not contain any energy criterion; distances instead of

potential energies are the primary variables and conformations are represented by matrices of

interatomic distances. Consequently, its "best" structure, i.e., flu;' one that best satisfier the

distance constraints, may be relatively high in energy. Further optimisation of structures derived

in this manner is thus inevitable. [2]

Cripp(m[99]was the first to apply fundamental distance geometry concepts to the problem of

multiple minima. He addressed the issue of structure optimisation with an energy embedding

method.[tOO]The theory behind the method is that atoms in a mole cule have more freedom at

higher dimensions, thereby decreasing the number of potential barrie rs and easing the relaxation
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1.1. Protein conformational prediction
of the molecule into low-energy conformations. This results in fewer minima on the potential

energy surface, viz., a smoothing of the surface. The method entails initial energy minimisation

of conformations in a higher than 3-D space, followed by contraction of the space and projection

ofa resultant single minimum onto the 3-D "plane". Purisima and Scheraga's[lOl] relaxation of

dimensionality technique is an extension of the idea of energy embedding. The two methods

differ in the way they use interatomic distances in their energy functions and in the procedures

used for dimensionality relaxation.

Methods of conformational sampling which are related to the methods described above are target

function minimisation {derives 3-D structures consistent with distance constraints),l'02] the

antlion method (deformation of energy surface by alteration of force field components)[I03] and

the diffusion equation method or DEM (smoothing of potential energy surface by mathematical

transformation of the energy function)Y04] DEM makes use of a diffusion (or heat conduction)

equation to deform the complex potential hypersurface of a polypeptide. The deformation is

performed in successive stages and ideally leads to the disappearance of higher-energy minima

from the surface, leaving behind a single minimum. This minimum is hopefully related to the

global one, which can be attained by gradual back-propagation of the smoothing process, The

GMEC of the original potential function is thus, in principle, recovered.

• Molecular dynamics

Dynamic search methods simulate nature by modelling the actual, instantaneous motion of a

molecular system. The trajectory of conformational fluctuations experienced by a molecule is

traced by integrating Newton's (or Lagrange's) equations of motion over time for all of its

atoms. New atom positions and velocities are computed at every step in time. Molecular

dynamics (MD) is a deterministic process in that it uses previous atom positions to compute the

new positions. In theory, if the temperature of the system (simulations are coupled to a

"temperature bath") is assigned a high enough value so that the kinetic energy present in the

system allows it to surmount energy barriers, and sufficient time intervals are used, low-energy

minima should be obtained.[2,IOS]

The necessity for integration of the equations of motion by numerical methods forces the time

steps taken during simulation to be small. With larger systems, this causes an exponential

increase in the volume of conformational space and impractically high demands on computer

resources. Long simulation trajectories and efficient searching of the entire space become
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impossible. Ways of improving the effectiveness of MD sampling are the enlarging of the time

step size by freezing internal degrees of freedom,[106.107]the use of multiple steps for certain

interactionsyo8] and the reduction of conformational space size by using NMR distance

restraints.[I09]

To execute comprehensive searches of the conformational space, classic MD (which is more

suited to searching local regions of space) is often used in conjunction with other methods. ill

these instances, MD either completes the searching process on previously procured local minima

or refines final structures to relax conformational strain_[2,13] Apart from their application to

conformational sampling studies, MD simulations have also been used extensively to analyse the

dynamics and thermodynamics of in vacuo and solvated biomolecular systems.[1IQ.112]Relative

conformation stabilities and transition energetics are investigated by the estimation of the free

energies involved. ill this manner, peptide folding pathways can be emulated and

folding/unfolding mechanisms derived. MD thus fulfils an important role in the elucidation of

protein folding.

• Genetic algorithms

The GA programming technique was introduced by Hollalld[113]in 1975 and since then has been

applied to a wide range of global optimisation problems. Its popularity is due both to its

suitability for solving such problems and its ease of implementation. GA methodology is based

on analogies to the current theory of biological evolution and hereditary. It mimics natural

selection strategies from evolution, embracing the "survival of'tke fittest" principle.

Many variants of GAs have been developed for the purposes of accommodating different

applications. It has only recently been employed in molecular modelling to search for low-

energy conformations. The standard GA method which constitutes the basis of these variants

can be described as folIows:[l14-l16]

1. An initial population of parental individuals (feasible solutions) is :randomly created. Each

individual is represented by a chromosome, a string of characteristic genes.

2. All the individuals are evaluated and ranked with a fitness function appropriate to the

problem in hand. The most fit of these passes directly to the following generation; a process

referred to as "elitism".
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1.1. Protein conformational prediction
3. A breeding population is formed by selecting top-ranking individuals from those that

remain. This is the "natural selection" ste!?

4. These selected individuals undergo certain transformations via genetic operators to

reproduce children for the next generation. Operators include recombination by crossover

(two chromosomes mate by partly exchanging genes to form two new chromosomes) and

mutation (one randomly chosen gene, or more, of a chromosome is altered). Mutation

ensures a level of genetic diversity in the population.

The process (from 2 to 4) is repeated until a certain number of generations or some termination

criterion is reached. As optimisation continues, subsequent generations will consist of

increasingly fit or "superior" individuals. Relatively "strong" individuals survive and reproduce,

while relatively "weak" individuals die. With reference to peptide conformational searching, the

terms individual or solution, chromosome, gene and fitness function can be interpreted

respectively as conformation, set of physical variables encoded as a string of binary (or integer,

or real number) digits, physical variable such as dihedral angle, and decreasing function of the

potential energy. The crossover operation can therefore be depicted as in Figure 1.3.

Parents Children

111111111
0000001000

/\

111111111'1
/\

Selection of a
cross-over site

000000111000000000

111111000

Figure 1.3: A schematic representation of the crossover operator[116}

The primary advantage of the GA technique is its ability to explore diverse regions of the

conformational surface; it operates independently of initially selected surface pointS,cIl7]Genetic

diversification of a population improves its probability of creating superior individuals and, in

the case of conformational sampling, prevents the premature convergence of the search to one

local minimum structure. The mutation genetic operator accountn for diversity to some extent,

but to ensure a sufficiently high degree of diversity, tools such as space shann[fll6] and niche

interaction[1l8.119] are often introduced. Space-sharing is akin to forced mutation. New

conformations are checked against one another for diversity and those displaying too many

similarities are then mutated. Niche interaction is the sharing of genetic information between
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niches which are subpopulations of the initial population of a search. Each niche undergoes

independent searching.

Although the GA has proved to be robust and efficient in searching for local optima, it appears

to be less efficient in locating the global optimum. The h< may be achieved by combining the

GA with a minimisation method (for instance, gradient minimisction, SA, NN) to form a hybrid

system. [118.120]Minimisation can either be executed after the generation of each new population,

the fitness function being accordingly modified to become J. function of minimised potential

energy, or after generation of the final population. The GA therefore performs a global search

of the energy surface, while the complementary method refines the structures resulting from the

sea 'h.

Further variations to the GA method for searching conformational space, specifically that of

proteinsp2Qa1 i'
EFFs.[121.122123]

.duced representations of proteins[121.122-122b1and highly simplified

modifications help to speed up GA sampling time, a factor which

becomes restrictive when large numbers of conformations must be examined and their energies

computed or minimised.

A principal disadvantage of GA optimisation techniques is the configuratir ' of the algorithm. [117]

For every different application, optimal values for each parameter of the GA, e.g., population

size, number of generations, crossover and mutation rate, must be assigned. The attainment of

optimal parameter values is often tedious and the choice of values can influence significantly the

performance of the GA.[118]

• Conclusions

Much progress has been made in the effort to overcome the obstacles of multiple minima and

combinatorial explosion. Several conformational searching methods appear to be effective for

small to medium-sized peptides (5-20 residues). For larger globular proteins, these methods

become prohibitively expensive with respect to computer time and have not -net with complete

success thus fur. However, the ongoing improvement in experimental techniques, development

of new theory, and rapid advances in computer hardware and software may in the future provide

solutions to the problems eacountered in these demanding applications.
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1.1.3.4. Solvent modelling

Since proteins are surrounded by solvent molecules in physiological systems, the influence of

solvent environment on peptide energy and structure must be addressed in molecular modelling

calculatio-v Water, in particular, has a high dielectric constant and may therefore markedly

affect pel Je conformation. When modelling solvation, factors which impact on the energy of

the system such as peptide-solvent interactions, solvent-solvent interactions and cavity formation

need to be considered.[13]

Solvation, or hydration in many cases, has been treated in a number of ways within tile MM

framework. The most direct approach includes solvent molecules explicitly in the system.[S9.124]

Potential functions are also used to describe these molecules, leading to the development of

several water modelsY2S·126jThe polypeptide is placed in a box of solvent molecules and all

interaction energies are then calculated via either energy minimisation, MC, or MD prccedures.

Periodic boundary conditions at constant volume or constant pressure are usually implemented.

The long computational times required in these explicit solvent calculations have prompted the

investigation of implicit solvent treatments. Examples of the latter are empirical hydration

models[127]in which free energy of solvation for the system is approximated by assigning a

solvation free energy to every functional group of the peptide (these values are obtained by

averaging over .J1 interactions of a specific group with a nearby hydration shell of molecules),

and the integral equation model[128]in which potentials of mean force are calculated for all

peptide-scrvent interactions.

Another example of a model in which solvent is included implicitly is the computationally

favourable modified dielectric.[S9.124j In addition to local solvation effects, solvation also

influences the polarity of the peptide. Since the electrostatic potential of the peptide

incorporates the dielectric constant (8), any chai.: ~ in polarity will also cause a change in the

overall potential energy of the molecule. For in '''-TCUO (gas "phase) calculations or calculations

which explicitly include solvent, s is normally set iO unity. To simulate the charge screening

effect of solvent in implicit treatments, the value of the effective dielectric constant is increased,

resulting in a reduction of the Coulomb potential. The interior of a folded protein is generally

assumed to be a low-dielectric medium (effective 8 from 2 to 4), while the charges on the protein

surface are associated with a high-dielectric medium (8 ;:::80). This transition from a low 8

value in the interior to a high 8 in the solvent has prompted the use of a distance-dependent
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1.1. Protein conformational prediction
dielectric function in many investigations. Approximations adopted in this modified dielectric

approach appear to result in the incorrect treatment of weak electrostatic forces.[129] This

lim'tation has been addressed with the application of classical continuum electrostatics to the

model, which allows for the management of both intramolecular electrostatic interactions and

ionic strength effects.[130]

1.1.3.5. Vibrational entropy

Vibrational entropic contributions to the free energy of a peptide is a factor that is often omitted

in peptide modelling studies. Conformational entropy arises when a molecule, or parts of it,

undergoes small oscillations about each of its energy minima. ill the case where the bond

lengths and bond angles of a peptide have been fixed for :MM purposes, the oscillations result

from changes in the peptide's backbone and dihedral angles. The number of accessible

vibrational states for a particular minimum is related to the width of its conformational energy

well. The importance of this entropy factor is illustrated in Figure 1.4 which represents a

potential energy surface with two minima. The broad well of the high-energy minimum

indicates its greater flexibility when compared to the low-energy one, and could result in a lower

free energy for the higher minimum. Thus both the depth of the conformational we'I, i.P.., the

potential energy, aud its shape and width at the bottom, i.e., the vibrational entropy, are

determinants or t.rc free energy of a molecule. [38.59.131)

Figure 1.4: A schematic representation of a potential energy surface with two
minima.I1311
Because ef vibrational motion, the broad minimum of a hlgher-energy
conformer may contaia enough vibrational entropy to reduce its free energy
below that of a lower-energy conformer with an energy well which is lower
but narrower.
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1.1. Protein conformational prediction

Classical statistical mechanics has been used by Go and ScheragalI32.13J) to de., ..in"

conformational entropy. They defined librational entropy SI, the entropy at the minimum point,

i, in terms ortne equation:

Sf == -112 R In IFfI, (3)

where F is the matrix of second derivatives of the conformational energy with respect to the

independent variables (the torsion angles) calculated at i, and R is the gas constant. The relative

entropy LiS of a conformation which displays small torsion angle fluctuations about its energy

minimum can be calculated from the equation:

LiS = (Jtr)(.tJ.U-LtG), (4)

where T is the temperature, and tfH (enthalpy change) J!:J LlU (relative conformational energy)
under gas-phase conditions at constant pressure and volume. To evaluate the relative free

energy LtG of the conformation, G/5 et al. [132.133J applied an harmonic approximation with

statistical weighting. The statistical weights, which incorporate both a potential energy function

and an entropy function, are indicative of the relative populations of the different energy minima.

Free energies are thus computed by direct calculation of t~e probability distribution of the

system,
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1.2. Signal peptides

1.2. Signal pep tides

1.2.1. Function and structure

Following the synthesis of proteins by free ribosomes in the cytoplasm of the cell, those proteins that

function els rwhere within or outside the cell move to their respective locations by crossing membranes,

a phenomeaon known as translocation or topogenesis.CI34) Many of the secretory proteins, consisting of

long, polar peptide chains, would be unable to traverse the nonpolar membranes were it not for an

extension of between 15 to 26 amino acids at the amino-terminal end of the chains. Those proteins that

are destined for translocation comprise two sections: the Nsterminal signal peptide (SP) or leader

peptide extension and the mature or nascent polypeptide section; they are often referred to as

prep' .teins or precursors[1351• The temporary N-terrninal extensions appear to direct and facilitate

polypeptide translocation.

SPs are particular to each protein and, despite their unity of function, are not closely sequence-related.

However, although SPs lack primary sequence homology, they do have certain properties in

common.[134.136] Their primary structural features have been analysed in terms of physico-chemical

amino acid properties, e.g., hydrophohicity, size, polarity and ionic nature, by both statistical and

artificial intelligence-based methods.CI31,138] Thus, they typically have three distinct domains (Figure

1.5): an amino-terminal positively chi, tied region (a-region, of 1-5 residues); a central hydrophobic

part (h-region, of 7-15 residues); and a carboxy-terminal part (c-region, of3-7 residues). It seems that

the n- and h-regions are responsible for the function of selectively targeting and translocating newly

synthesised proteins to their appropriate locations, with the c-region only being needed for proper

cleavage of the SP from the mature chain.

n
+ + .J,

NH2-.2==, -IV'V'v
h c

1-5aa 7-15aa 3-7aa mature chain

Figure 1.5: The basic design of signal peptidesllJ6)
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1.2. Signal peptides

Despite much research in the field, an understanding of the exact role that SPs play in the secretory

process remains elusive. Some experiments have demonstrated that signal sequences merely perform

an indirect function, that of inhibiting protein folding and providing a tag identifying the protein to be

transported. Contrary to this, other experiments have shown the peptides to fulfil a direct role as true

targeting signals that are specifically recognised by the secretory apparatus (the different cellular and

membranous components implicated in protein transfer).[I39] It has been speculated that overall

common characteristics such as conformation, i.e.. secondary structure, and hydrophobicity may

account for this recognition.r'40]

1.2.2. Concepts in protein secretion
Before describing some of the models that have been proposed[141]in the attempt to describe the

molecular mechanism of protein secretion, certain relevant concepts require definition.

1.2.2.1. Prokaryotic and eukaryotic secretion

Prokaryotes are living organisms whose celts do not contain well-defined nuclei and organelles.

Examples are bacteria and blue-green algae. The cytoplasm in prokaryotic cells is bounded by

two membranes, inner and outer, which are themselves separated by a periplasmic space.

Generally, the only secretion of proteins which occurs is that across the inner cytoplasmic

membrane.

In contrast, eukaryotes are higher organisms, such as yeast and mammals, that possess definite

cellular compartments. Protein secretion thus occurs across diverse membranes: endoplasmic

reticulum (ER), mitochondrial, chloroplast, peroxisomal, nuclear.[134]In the literature, SPs refer

to the Neterminal extensions of proteins destined +'orthe ER, willie N-terminal extensions of

mitochondrial proteins are called presequences. Besides being evenmore diverse than SPs, they

vary greatly in length and display basic and amphiphilic characteristics. Extensions to

chloroplast proteins are similar in composition to presequences and are known as transit

peptides. Although presequences and transit peptides are similar to SPs in their basic design,

SPs are significantlymore hydrophobic.[142]Only SPs will be considered in the present study.
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1.2. Signal peptides

1.2.2.2. Cotranslational andposttranslational transfer

Cotranslational transfer occurs when a polypeptide is transferred across a membrane prior to

completion of its synthesis or translation. It embraces vectorial (residue by residue) trall~;..;r of

nascent chains. Investigation of energy factors[143.144)which drive the export of proteins across

membranes has led to the conclusion that no external energy source, other than that of protein

synthesis, is required for cotranslational translocation. Ribosomes use the energy associated

with protein elongation to push nascent chains through the membrane.

Posttranslational transfer occurs after the synthesis of a polypeptide has been completed. In

such circumstances, mature proteins often cross membranes in domains (series of residues)

rather than vectorially. It has been surmised that external energy sources are essential for

posttranslational translocation.l''P' Feasible thermodynamic sources of energy include

transmembrane electrochemical gradients, e.g., pH, ionic strength (which result in a membrane

potential), adenosine triphosphate (ATPl and post-translocational protein foldingp46]

In higher eukaryotes, the mode of translational transfer appears to be organelle-dependent:

posttranslational for mitochondria and chloroplasts, and cotranslational for the ER. Although it

has been observed that some proteins of the prokaryotic bacterium, Escherichia coli, are

secreted both co- and posttranslationally, bacterial proteins are generally secreted

posttranslationally, [141]

1.2.2.3. Molecular chaperones

Although in vitro studies of isolated proteins show folding to be a spontaneous process.l" studies

of proteins in their physiological environments indicate that folding in vivo is facilitated by other

recently-identified cellular components called molecular chaperones.[139.147.148)These are proteins

that have the ability to temporarily stabilise non-native conformations of other proteins by

binding rapidly to conformations of their substrates which may be either unfolded or partially

folded. In this way, the timing and location of folding can be controlled. This kinetic

modulation of folding may be an important factor contributing to r'ie efficient transport of

proteins across membranes .. Most membrane systems cannot transport proteins that are in their

c ATP is a reservoir of chemical potential energy; its hydrolysis to adenosine diphosphate eADP) is a highly-
exergonio reaction.
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1.2. Signal peptides
fully folded native statesLI41i)'"'""and it has been experimentally determined[l49.150Jthat certain

molecular chaperones (see Table 1.1) do indeed interact with portions of secretory proteins,

thereby impeding premature folding. Such interactions also prevent the aggregation of newly

synthesised polypeptide chains. The nature of these interactions is unclear. GroEL, a bacterial

molecular chaperone, is thought to recognise incompletely folded proteins through structural

motifs, specifically amino-terminal c-helices on nascent chains.tISI] However, another bacterial

chaperone, SecB, appears to bind weakly to multiple sites on preproteins, [152]thus demonstrating

a lack of specific recognition and non-involvement of SPs. In this case, SPs are believed to

retard the folding of proteins and so facilitate binding between preproteins and SecB.tIS3]

Table 1.1: Examples of molecular chaperones impllcatedin protein transpOJil147,1511

Chaperone Subcellular Organism Function
localisation

Eukaryotic

SRP cytosol mammals Binds SPs prior to translocation

BiPl Grp78 ER mammals Binds subunits ofER proteins

Kar2p ER Saccharomyces Promotes protein translocation into ER
cerevislae

Hsp60 mitochondria Saccharomyces Promotes folding and assembly of imported
cerevisiae proteins

Cpn60 chloroplasts plants Promotes folding and assembly of imported
Eroteins

Prokaryotic

SecA plasma membrane Escherichia coli

SecB cytosol Escherichia coli

DnaK cytosol Escherichia coli

GroEL cytosol Escherichia coli

Targets precursors for translocation

Stabilises precursors by binding with them

Stabilises newly made proteins; preserves
folding competence of proteins
Binds proteins during translocation and
foldin..[_

1.2.3, Protein secretion mechanisms

The mechanism of the protein secretory process at the molecular level can be divided into three stages:

entry into the transport pathway (targeting of the secretory protein to the membrane and their initial

association - translocation initiation); translocation across the membrane (the translocation

mechanism); and release on the opposite side (cleaving of the SP from the mature protein and

subsequent folding and assembly of the released protein)P4ll] Of the many hypotheses that exist, no

single one can account for all the experim .M~Ldata (from in vivo genetic studies and from in vitro

biochemical studies) collected thus far. However, it must be noted that the existence of many different

export pathways, which may operate in parallel to one. other, and the apparent variety of functions
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1.2. Signal pep tides
performed by signal sequences, may render the achievement of a single concordant mechanism

impossible. [141]

Translocation is the most controversial stage of the export mechanism, there being much speculation

concerning the composition of the translocation apparatus (the translocon). There are two opposing

suppositions on the nature of the environment surrounding the secretory protein during translocation:

the protein either passes through an aqueous channel which may be formed from proteins or from both

proteins and lipids (the signal hypoiliesis),P54] or inserts spontaneously into the hydrophobic membrane

bilayer (the membrane trigger hypothesis).[lS5] Both mechanisms presume direct involvement of the SP

in the secretory process. TIle ideas embodied in these hypotheses or.II form the basis of further model

development.

1.2.3.1. The signal hypothesis

The signal hypothesis is generally accepted for eukaryotic secretion, specifically in mammalian

systems. It is supported by extensive evidence from studies in eukaryotes. The initially

proposed mechanism'P" entails (1) recognition of the signal sequence, attached to a polypeptide

chain emerging from a ribosome, by a ribonucleoprotein present in the cytosol called the signal

cecognitlon particle (SRP), (2) interaction of the sequence with the SRP and subsequent

cessation of peptide elongation, (3) diffusion of the so-formed complex to the ER membrane

where it interacts with a "docking" integral membrane protein (the SRP receptor); translation of

the preprotein then resumes, (4) formation of a proteinaceous pore in the membrane through

which bY': nascent peptide is vectorially extruded into the aqueous lumen of the ER and, finally,

(5) cleavage of the SP in the aqueous medium by a signal peptidase enzyme. Elongation of the

nascent chain provides the energy required for translocation. An interesting observation recently

made by Engelhard[156]is that cleaved signal sequences play a function in the construction of

antigens in living organisms.

Some aspects of the signal hypothesis that have been probed and expanded upon by several

researchers are discussed below.

It The translocation site

The signal hypothesis proposes that proteins are transferred across the ER membrane via a

channel or translocon. Electrophysiological techniques have been used by Simon and B1obel[157)

to demonstrate the existence of an aqueous protein-conducting channel in the ER. Their results
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indicate that this channel is of a fixed size and is not freely permeable to ions when occupied by

a translocating peptide .. ,The size of the channel and its insensitivity to membrane lipid changes

suggested that it may be formed of proteins. The findings of Crowley and colleagues(15S.159jhave

reinforced the proposal of a hydrophilic channel. TIley incorporated fluorescent probes into

nascent chains during translation to identify the environment of the chains in the ER membrane.

Besides discovering that the channel is indeed aqueous and that it spans the entire membrane,

they also found that it is sealed off from the ER lumen, only opening after the nascent chain

reaches a certain residue length (Figure 1.6). The preprotein is also sealed off from the

cytoplasm by a tight binding of the ribosome to the translocon.(I5S·l60j Translocation thus occurs

directly from an aqueous tunnel in the ribosome into an aqueous pore in the membrane. It is

assumed tnat this closed tunnel-pore system dictates movement of the nascent chain across the

membrane.

Figure 1.6: The aqueous channel is gated.{IS9{
Initially, the signal sequence and nascent chain (which enter the
channel as a loop) are sealed off from both the cytoplasm (by the
tight ribosome-translocon junction) and the ER lumen (by a
lumenal protein). After translation of about 70 nascent chain
residues, the aqueous channel is opened to the lumen.

II Translocation site components

Identification of the components of the translocon has been the subject of numerous

iavestigations. There has always been the question of whether signal peptides interact with

lipids or with proteins in the membrane pore. Photo-erosslinking studiestI61.163]have revealed the

immediate proximity of a specific set of ER membrane proteins to the nascent chain during

translocation in both yeast and mammalian systems, Reconstitution experinJentstl6-l] have

suggested that, of these proteins, the Sec61p trimeric complex (consisting of a., p, and 'Y

26



1.2. Signal peptides
subunits) is the major component of the protein-conducting channel. The multispanning ce-

subunit has been found to contact continuously with the nascent polypeptide from one end of the

membrane to the other; Sec61et. thus forms a lining in the channel.[160.165]Beclanann et al.[165.]

have recently determined the cryo-electronic structure of the Sec61 complex bound to the

ribosome. Their findings corroborate the notion that the translocon extends from the ribosomal

tunnel and that the ribosome-translocon interface is both dynamic and regulated.

Contrary to the notion that SPs only interact with proteins while traversing the protein-

conducting channel, Martoglio et al. [166]have suggested that interaction with lipids is also

possible. TIley hypothesise that the channel, which is formed by proteins, is open laterally

toward the lipid bilayer during early stages of protein insertion. In this model (depicted in

Figure 1.7), the nascent polypeptide is arranged in a loop-like conformation, with the

hydrophobic h-region of the signal sequence facing the lipid bilayer, while the hydrophilic,

translocating portion of the nascent. protein is in a proteinaceous environment. The suggestion

of lipid interaction in the channel concurs with that of Rapoport[167] in his earlier amphiphilic

tunnel hypothesis. He postulated that the membrane channel was amphiphilic and is so able to

bind both hydrophobic and hydrophilic parts of the precursor.

~~... - .....

A

T· s-
sit.

8

Figure 1.7: Hypothesised arrangement of proteins and
lipids in the protein-conducting cbanJ!leI.11661
(A) side view; (8) top view. The secretory protein inserts
into the channel in a loop-like configuration with the
nascent chain facing protein (T site) and the signal
sequence contacting both protein and lipid (8 site).
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• Parallel prokaryotic mechanism

The eukaryotic and prokaryotic protein secretion mechanisms display striking analogies due

probably to the existence of an evolutionary relationship between protein transport across the

ER membrane in eukaryotic cells and transport across bacterial membranes. Similarly

structured signal sequences have been shown to be exchangeable between the two classes of

organisms, and homologous complexes implicated in their export pathways have been

discovered. For example, bacterial SRP and Ftsy[168) are the E. coli homologues of eukaryotic

SRP and the SRP receptor, and the E. coli integral membrane protein Secy[135]is analogous to

the eukaryotic Sec61p. SecY is structurally similar to Sec61p, SecY also constituting the

central translocation component, while SRPlFtsY operate in a parallel manner to their

mammalian counterparts.

Since results consistent with both transfer through an aqueous pore and direct phospholipid

transfer have been reported for bacterial systems, the nature of the immediate environment of the

precursor as it crosses the membrane has been speculated to be both phospholipid and

proteinaceous. [135]

1.2.3.2. The membrane trigger hypothesis

In the membrane trigger hypothesis,[155] specific transport apparatus such as receptor proteins

and membrane channels are postulated to be unnecessary for protein translocation. Preproteins

insert directly into the phospholipid bilayer in a spontaneous manner due to the thermodynamics

of protein folding. The energy needed for secretion is acquired from the membrane potential.

The role of the signal sequence is to modulate folding by interacting with the remainder of the

precursor protein so that the latter folds into a conformation that is export competent, i.e., able

to partition into the nonpolar part of the membrane. Conformation is therefore an important

determinant in this hypothesis and will be addressed in detail at a later stage.

The idea behind the membrane trigger model was formulated by considering primarily the ability

of synthetic SPs to interact with lipids. Biophysical studies of isolated SPs in model membrane

systems (mostly representative of prokaryotic E. coli systems) have demonstrated the effect of

signal sequence interaction on membrane lipid fluidity,fl44J lipid vesicle aggregationp69,17oJ lipid

monolayer surface pressure(171] and lipid packing and orientation.[l721 The affinity of Signal

sequences for phospholipid monolayers has been shown to correlate with their in vivo
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activity.l172·174]The thermodynamics of peptide incorporation into phospholipid bilayers has also

been exarnined,[175·175]and recent results[176)show the hydrophobic effect to be the overall driving.

force for transmembrane insertion.

The hydrophobicity of the h-region and the positive residues of the n-region on each SP are

proposed to assist spontaneous insertion: the hydrophobic core partitions into the membrane

lipids and spans the bilayer, while the amino-terminal end binds electrostatically to anionic

phospholipids at the membrane surfaceP77J Although the direct interaction of anionic

phospholipids with preproteins is speculative, it has been observed that their involvement is

essential for efficient translocation.l'I" Hydrophobicity appears. to playa crucial role in signal

sequence functioning. The composition and length of the h-core have been shown to influence

markedly SP conformation and protein translocation ability.[173,179,ISO)

1.2.3.3. Other hypotheses

Descriptions of translocation mechanisms that are variations on the signal hypothesis and the

membrane trigger hypothesis are given below.

• The loop model
Inouye and Halegoua's[ISI)loop model for protein export proposes that, after the signal sequence

is anchored to the membrane surface via electrostatic interactions, it inserts into the membrane

bilayer as a loop. The reverse tum in the loop is induced by the presence of proline and glycine

residues in the sequence. This loop structure projects further into the membrane bilayer as the

preprotein lengthens. Shaw et al.[182]have provided supporting evidence for the loop model.

They analysed. signal sequence topology during membrane insertion and found that the N-

terminus of a seen l' protein remains in the cyioplasm ,vith the growing C-terminus being

continuously translocated across the membrane.

Extensions of the loop model are the helical hairpin hypothesis[143)and the direct transfer

mode1.['83] Both propose that signal sequences partition into the hydrophobic part of the

membrane in helical conformations and that this partitioning is thermodynamically-based. The

initial driving force for protein export is the favourable free energy involved when hydrophobic

SPs are transferred from the aqueous cytoplasm to the lipidic membrane. TIle helical hairpin

hypothesis postulates that the loop which inserts into the membrane comprises two helical

regions which form a side-by-side "hairpin" structure. One region consists of the signal
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sequence, and the other is the first 15-25 residues of the mature protein. Both regions span the

membrane.

Although the loop model was originally devised as a modification of the membrane trigger

hypothesis, it has been extrapolated to the signal hypothesis.[157,165,166]In the latter case, the loop

structure of the nascent chain enters a proteinaceous channel in the membrane.

• The domain model

This export model[184]combines and modifies the targeting stage of the signal hypothesis and the

translocation stage of the membrane trigger hypothesis. The nascent chain only enters the

membrane once its synthesis is almost complete; it then crosses the membrane in domains

Translocation is thus posttranslational. Membrane potential or a conformational change ill the

secretory protein provides the energy for transfer.

.. Non-bilayer lipid structures

A more active role for membrane lipids in the translocation process has been suggested,[172,18S]

The lipids arrange themselves into inverted hexagonal structures, i.e., the membrane bilayer

organisation is disrupted, and so forms a hydrophilic tunnel through which the preprotein is

extruded. Extrusion is assisted by the elongation of the protein as well as by the motion of the

lipids. Subsequent work by de Kruijff and co_workers[186,187jhas endorsed this hypothesis and

has further demonstrated that functional SPs may induce the local formation of these

intermediate lipid structures.

1.2.4. Conformational analysis

Although there appears to be a lack of consensus in the literature about the nature of the environment

surrounding nascent polypeptide chains as they translocate across membranes, one certainty is the

important part played by secondary structure conformation in the secretory process. The

conformational changes that signal sequences undergo when either interacting with the secretory

apparatus or moving between different environments must iafluence strongly the ability of nascent

chains to be translocated. Differences in translocation efficiency of wild-type and mutated SPs have

usually been interpreted in terms of conformational changes experienced by the pep tides on mutation.

A related factor is the common characteristic of conformational homology which functional signal

sequences appear to possess.
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1.2.4.1. Experimental

Direct determinations of signal sequence conformation generally involve the application of the

experimental teciuuques of CD, infrared, ultraviolet and NMR spectroscopy to synthetic SPs,

SP fragments, and peptides resembling SPs. The determinations are performed in polar or

nonpolar bulk solvents, or in membrane-mimetic substances such as phospholipid monolayers,

lipid vesicles and micelles. Experimental conditions, e.g., peptide concentration, lipid/peptide

ratio and phospholipid type (anionic vs. zwitterionic), have t cen demonstrated by Keller et

al. [IRB] to be critical in accurate conformational analysis.

The use of isolated sigual sequences, t.e., withoi,' "

investigations of conformation has been ratified bj c

from one protein to another without loss of export fun

in lipid vesicles have shown that the SP and adjacent J,

are conformationally independent of each otherP89] If trans. ,

.~ '~oft.he precursor protein, in

. >'. Jr.€." ire transferable

·Iit.> neriments conducted

sol: LamE protein

.D occur between

signal sequences and portions of the corresponding mature protein, a. .s oeen surmised by

someY40·IS5]these are probably less significant to function than sequence conformation.

Results from conformational studies where bulk solvents have been used indicate a

predominance of either p_sheet['90j or random['69.'91] conformation in polar solvents and «-

helical[169.191-194jconformation in nonpolar solvents. Intramolecular ' ydrogen bonds are able to

form in hydrophobic solvents, thus inducing o-helix formation. Further observationsl'91.194]have

disclosed that hydrophobicity and helical propensity are related to in vivo signal sequence

function; sequences which are sufficiently hydrophobic and which have a high tendency to form

cc-helices in nonpolar solvents will funcuon efficiently. Tho stability of these helices has been

identified as the main helical property implicated in SP activity,tI93] with the helices being most

stable in the hydrophobic regions of the peptides.

The conformational response of signal sequences to different environments has lso been noted

in studies where heterogeneous solutions are employed to simulate the membrane bilayer and its

interface with water. The membrane trigger hypothesis[lsS] is :he protein secretion mechanism

assumed in these experiments. Several investigators[177.195.196]have suggested that changes in SP

conformation are induced OIl insertion into the membrane lipid region. These conformational

changes are illustrated in Figure IS. Unstruc'ured signal sequences in an aqueous milieu are
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proposed to adopt a p-structure when interacting with the membrane, i.e., at the lipid interface

with the aqueous medium, and an cc-structure when inserted into the membrane (the lipid phase).

The orientations of the p- and c-structurc with regard to the lipid-water interface are

coplanar[1711and pcrpendicular,P'12] respectively. The transition between ~·sheet and c-helical

forms of'tlie SP may be necessary for its operation.

1110 conformational flexibility of SPs has prompted the postulation of another secretion
mechanism, the "unlooping model".[1971 This model expands the loop model(lal] by proposing

that the SF unravels from its looped helix (helix-tum-helix) conformation Which it assumed on
entering the membrane, so moving the Nsterminua of the mature protein across the bilayer. "he

SF thus assumes t\ stretched conformation sometime during translocation. In their
conformational studies of signal sequences in lipophilic environments, Yamamoto et al.(lq.] have
found that it is the helix at the Csterminus of the sequence th:t adopts this extended
conformatlcn, white othors[199,200Jhave confirmed the existence of a kink in the helix between the

h-core and the Csterminus,

1

3
--

Figure 1.8: ..Model ior initial interaction of (I Signal sequence with a
nlemhrallc.1wl
(1) The signnl sequence emerges from the I'lbosome and enters the
aqueous millen in a. ralldOlil cOllfonllatioll. (2) It interacts with the
membrane surface null adopts a ~-stnlcPlrc. (3 & 4) It inserts into the
mcmbran« bilayer, where it undergoes a conrormetlonal change flu. an
extended p-stl1lcture to an cx.·ltellcal structure, The cleavage site falls on
the opposite Iace of the membrane (8 Pase ""slgnnl relltidase).
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1 :.4.2. Knowledge-based modelling

There is limited structural data available on signal sequences due to the difficulties involved in

crystallising them for diffraction studies. Their inherent hydrophobicities cause them t,.. be

almost invariably insoluble in water. Fortunately, this data is not required for the prediction of

signal sequence conformation by statistical procedures since tertiary structure can effecti vely be

ignored for membrane-bound proteins.[2011Strong constraints imposed by the environment on the

peptides appear to reduce their structural degrees of freedom to secondary structure status only.

The Chou-Fasman approach[221to predicting protein conformation from primary structure has

been applied to several SPS.[179.190.203.2041In general, the h-cores of the peptides are predicted to

form either a-helical or p-sheet conformations, or bothl However, the validity of these

predictions is dubious if spontaneous insertion of the S1>into the hydrophobic membrane is

assumed; the Chou-Pasman[221 conformational parameters are based on water-soluble, globular

proteins. This may explain the contradictory conformations detected for signal sequences, viz.,

either a-helix or p-sheet, whereas it would be expected that a common conformation would

dominate. Nevertheless, the predictions do corroborate the experimental data in suggesting the

formation of highly regular secondary structures for SPs.

Similar conclusions have been reached in an investigation by Pl'abhakaran:tm] amino acids in

the hydrophobic core of SPs show preferences for both c-helix and p-sheet conformations.

Here, adjusted Chou-Fasrnan parameters (including information about interresidue

interactions)[2021were used to calculate the statistical distribution of conformational preferences

of amino acids along the length of signal sequences and along adjacent portions of their nascent

peptides.

Emr and Silhavy[203jhave used the wild-type signal sequence and derivative strains thereof to

relate export of the E. coli Lamls protein with Chou-Fasmal1[221 predicted. conformations.

Functional SPs display a tendency to adopt c-helices in their central, hydrophobic regions, while

the same region in the non-functional SP displays a largely random conformation. These

findings were later supported by CD analysis of the relevant conformations under apolar

conditions. [1911Thus, the presence of ce-helical conformation appears to be critical for efficient

translocation,
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1.2.4.3. Molecular modelling

Few MM-based predictions of signal sequence conformation have been performed. All favour

an u-holical conformation throughout the hydrophobic region of a sequence in lipid-simulated

environments.

Conformational energy calculations have been applied to the 3D structures of the wild-type

signal sequences find several variants thereof for murine pre-re-light ehain,1205]E. coli

LamB,1206,2(11]yeast invertase,[265] and human apolipoprotein B,[26S]In a study of the murine pre-

x-light chain SP, Pincus and Klausner employed potentials from the ECEPP force field,ISO)the

Powell energy minimisation method (which uses conjugate grndicnts),7.08] and a global

conformational searching technique based on the build-up proccdure.F'' Only nondcgencratc"

local energy minima of component di- and tripeptides of the signal sequence were combined in

the construction of longer polypeptides. Solvent effects were excluded as it was assumed that

SPs function inside highly nonpolar onvironmor ts during the translocation process.

Perez and colleaguesl206l applied the updated ECEPP/2 potcntials'"! in their MM investigation of

portions of the wild-type SF and mutated SPs of the E: coli LamB protein. The Powell

minimising algorithml2US) was again used. Three strategies were used to explore the

conformational space: a build-up proecdurc; a random search of points generated on the

hyporsurfacc; and a search based on the adoption of specific secondary structures. Tho majority

of the resultant low-energy structures were obtained with the last strategy. Tho relative helicitics

displayed by the poptides agreed with previous results gleaned from CD experimcntsl1911 and

statistical prcdietionsP03] Hydrophobicity values were also calculated for each peptide. These

values equated well with SP activity, emphasising the importance of hydrophobicity in SP

function.

The wild-type signal sequence of the H. coli LamB protein and a 50% active mutant sequence

have been the subjeet of another molecular modelling r,t\:d~P01j 'The study attempts to model

peptidcs, in random-coiled and helical-constrained stru+ncs, at a cytoplasm/membrane

interface. 'IlIOR, a program that was developed specifically for the modelling of biomolcculcs

1\ "Nondcgcneratc" conformations not only have different side chain conformations, but also have distinct
backbone conformations.
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1.2. Signal pcptides
in water, nonpolar media, and at the interface between them, was used. It incorporates the

GROMOS force ficlcll209J as well as MD and energy minimisation (steepest descent)l571

procedures. The interface is represented by a discontinuity in the dielectric constant; s = 80 in

the polar medium, and s == 2 in the nonpolar medium. In the case of helical-constrained

structures, conformations arc maintained by applying high force constants to the appropriate

backbone ~rsions. The following observations were derived from this work: both random-

coiled wild-type and mutant sequences evolve from a stretched conformation to an increasingly

folded one during MD simulations in the polar medium, and have an affinity for the lipidic

phase; the helical form of the mutant is unstable under the chosen modelling conditions; the

wild-type peptide (in both random and helical conformations) is inclined to be more stable at the

interface than is the mutant peptide (in the random conformation); and the helical-constrained

wild-type experiences a conformational change at the interface (the helix is partially disrupted

and a backbone turn oceurs).

Brasseur and eo_researehersI265.267jhave performed extensive MM calculations both on SPs

(yeast invertase and apolipoprotein B (apols) ~U1don other lipid-associating ce-hclical proteins,

under conditions mimicking the phospholipid matrix of biological membranes (using values of E

varying linearly from 3 to 30 across the interface). A three-step procedure was used: energy

minimisation to model assumed o-hclical conformations of isolated molecules and optimisation

of torsional angles via a simplex procedurc;12GHJcalculation of molecular hydrophobicity

potentialsI269] of tile molecules; and energy minimisation to model orientations of the now-rigid

molecules, inserted into organised lipid bilayers.f268] A semi-empirical theoretical model

provides a molecular description of the lipid bilnyors, The hydrophobicity of the SP affects the

lipid bilayer by disrupting its structure, so casing transfer of material across the bilayer. A

correlation between the angle of insertion of the SP into the membrane and its ability to direct

secretion was identified: the oblique orientation of the SP to the membrane is important for its

proper functioning.
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1.3.Membrane proteins

Integral membrane proteins contain at least one polypeptide segment that is embedded in the membrane lipid

bilayer,P34] When two or more of the segments are present, they are connected with aqueous-located loops.

In the literature, it has generally been accepted that these membrane-embedded segments are long,

hydrophobic a.-helices. Exceptions to this are the highly polar J3-ban-el sheets found in porin membrane

proteins.[21O] Membrane proteins and signal sequences thus share common characteristics, namely, their

hydrophobic natures (with the exclusion of porins) and their abilities to adopt similar conformations upon

integration into membranes. In view of these similarities, techniques used to predict conformations of

transmembrane sequences may assist in conformational predictions of signal sequences.

Apart from the fact that transmembrane segments of membrane proteins are more hydrophobic than SPs, a

major difference between the two is the type of amphiphilicity that they exhibit. With SPs, amphiphilicity

results from the segregation of hydrophobic and hydrophilic residues in the peptide sequences while, with

membrane protei.ns, hydrophobic and hydrophilic faces form in the secondary structural regions of the

segmentsP01J Differences in primary structur-e between SPs and transmembrane sequences[2111may playa

vital role in their differentiation by components of the protein secretory apparatus. The components must be

able to identify those sequences that am destined for translocation across the membrane and those that are

destined for integration into the membrane.

1.3.1. Conformationa! analysis

1.3.1.1. Knowledge-based modelling

As with signal peptides, knowledge-based analysis of membrane protein secondary structure

using methods derived from water-soluble, globular proteins are likely to be unreliable.

Therefore, several predictive algorithms have been developed which are particular to integral

membrane proteins.

Tvpical prediction schemes focus on the delineation of lipid-buried segments by investigating the

presence or absence of hydrophobic stretches ill the proteins. Many assume that the

transmembranal stretches are synonymous with a-helices. The most widely utilised scheme is

that of Kyte and DoolittlePl2) It identifies potential membrane-spanning segments on the basis

of residue hydropathy (accounting for both hydrophilicity and hydrophobicity). To improve the
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1.3. Membrane proteins
accuracy of predictions, several modifications of standard hydrophobicity-based methods have

been made. The modifications encompass measurements of helix amphiphilicity by constructing

helical wheelsh[213Jor hydrophobic moment plots,i[214]consideration of flanking residues that

disrupt transmembrane helicespl5] superimposition of the "positive-inside" rule,i[216] and

utilisation of multiple sequence alignments of related proteins.l217] TMPRED[218} is another

prediction algorithm that attempts to improve accuracy. It embodies a "consensus procedure"

which combines results of six different prediction techniques with transmembrane helical

properties.

Hydropathy plots have been further applied to topologv prediction of rnulti-spanrung membrane

proteins[219.222Jwhe-e the locations of transmembrane helices with respect to the rest of the

protein, and their orientations with respect to the cell, are deduced. The entire conformation of

the protein can be derived once transmembrane organisation is established. Topology prediction

techniques also rely on statistical studies of amino acid distribution in cytoplasmic and

extracellular membrane protein regions since these regions exhibit differences in residue

composition.

High accuracy predictions of putative transmembrane helical sequences have been produced

with NN models. Lohmann et al.[223Juse an evolutionary algorithm to develop and optimise NN

architecture and weights, and physicochemical amino acid properties to depict sequences. Rost

and colleagues[224]derive input data from multiple sequence alignments for their NN system, so

achieving a prediction accuracy of 95%. NN-based methods have also been used to evaluate

membrane protein topology. Fanselli and Casadio[225Jdescribe one such method, RTP, which

realises a success rate of 77%.

Few secondary structure prediction methods have been designed where helical transmembrane

segments are not implicitly assumed. Furthermore, there appear to be no currently available

prediction methods for the second type of membrane protein (represented by the porin structure).

This is probably due to the scarcity of structurally known membranal p-strands.

h A "helical wheel" is a projection down the helical axis of the positions of the side chains.

A "hydrophobic moment plot" displays the hydrophobic moment of a helix as a function of its hydrophobicity.
The periodicity of the hydrophobicity is calculated.

The "positive-inside" rule states that positively charged basic residues occur with much higher frequency ill
cytoplasmic protein loops that connect membrane-spanning segments than in extracellular loops.
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1.3. Membrane proteins

1.3.1.2. Molecular modelling

In a parallel molecular modelling study to that of the murine pre-x-light chain signal sequence,

Pincus et aZ.f226] have calculated the 3-dimensional structure of the membrane-active protein,

melittin. In this case, sol ·,t effects were omitted since melittin is known (0 fold properly in

nonpolar environments and become denatured in water. Two low-energy, a-helical

conformations we..: ':. md for the membrane-bound portion of the peptide, a result which agreed

with experimental " :, .7] The native form of me1ittin has also been successfully determined

with MM by Head-Gordon and Stillinger.l228] Their calculations incorporated the antlion

method[I03]to sample the potential energy hypersurface for conformations, parameters from the

CHARMM force field,[54]and gas phase conditions.

The identification of membrane protein structural features (a-helices, loops, terminal segments)

has been explored ' 0.[229] Simulations were performed in a dielectric continuum with a

relative dielectric ' -ivity of 2, and results were verified with experimental NMR

measurements. The simulations were able to detect both amphipathic and hydrophobic

membrane-spanning helices. MM has also recently been employed to analyse properties of

transmembrane a-helices such as their spatial hydrophobic nature (using MC simulations of

nonpolar and polar solvents around the helical peptides),[2301and their relative stabilities in

different environments (using MD simulations in explicit solvent environments).[231] Another

interesting application has been the modelling of a-helix bundles it integral membrane proteins.

Evidence suggests that helix bundles, composed of varying numbers of helices, constitute the

tram membrane regions. Tuffery et al.[232] developed a MM-based strategy (conformational

sampling with energy minimisations) to optimise the packing of helices in a bundle by predicting

their relative positions and rotational orientations within the bundle.
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1.4. Objectives of this study

The primary objective of the current study was to use computational procedures to analyse in detail the

conformations assumed during the translocation process by both export-effective signal sequences and by

those mutated sequences which do not facilitate export. The literature survey has revealed the necessity for

a molecular modelling study which can provide a more quantitative basis for results obtained from previous

predictive and MM calculations and which can resolve the various conflicting conclusions, Itwas hoped to

gain a better understanding of the definitive role played by SPs in the protein secretory mechanism. It was

also hoped to produce a general method for accurate secondary structure prediction of signal sequences.

Computational procedures which we have utilised to predict protein secondary structure OJ' analyse peptide

conformations include knowledge-based methods (available from the literature and the Internet) derived

from both globular proteins and membrane proteins, and molecular modelling. The latter incorporates

systematic searches (using both the SYBYL[233]and ECEPPAK[234]programs) and GA searches (using the

ECEPPGA[120] program). MM calculations were performed with a selected sequence of distance-

constraints, the use of which will be rationalised in the following chapter, applied to each peptide sequence.

Both polar and nonpolar solvent environments were considered. Since the SP systems (consisting or wild-
type and mutated peptides) investigated in this work had been previously subjected to experimental

conformatioual analysis, current findings can be compared with experimental data. Thus, the validity of

calculated results can be evaluated.
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CHAPTER 2

PROGRAM METHODS

2.1. Knowledge-based modelling

A brief description of each knowledge-based method used to predict SP secondary structure is given in this

section. All the prediction programs are available for use on the Internet.

2.1.1. Globular protein-based predictions

The Chou-Fasman (C-P) algorithm(22)was selected for prediction in the current study because of its

previous apnlication to two of the SP systems investigated in this project, namely, LamB and CPY (cf

Chanter 3). The comparative affinities of signal sequences for the ce-helical and ~-sheet conformations

were evaluated by means of C-F profiles which were obtained from ProtScale, a primary sequence

analysis tool accessible from the University of Geneva's ExPASy WWW server

(http:t.lwww.expasy.ch). The ProtScale program calculates profiles of various kinds, e.g., polarity,

hydrophobicity, Chou-Fasman, for selected proteins using predefined amino acid scales from the

literature. The C-P conformational parameter scales were taken from a compilation made by Chou and

Pasr1an(25)from a statistical survey of29 proteins.

The performance of the C·P prediction method was compared with that of more recent methods of

predicting globular protein secondary structure. Five such methods are available from the IBCP

(Lyon, France) server at the web page http://www.ibcp.fr/predict.htmI. The server makes available

~oint protein sequence prediction; five predictive methods arc used to produce a consensus secondary

structure, The methods selected are based on different approaches: Gibrat (information tlleory);!235)

Levin (sequence simi1arity);!~36)DPM (class prediction);[237) SOPMA (self-optimised prediction from

alignment);[238,239)PHD (neural networks),[36,240,241]The progranl supplies a number of states to

describe secondary structure, the number varying with each prediction method. TIle states arc o-helix,

p-sbeet, coil, p-tum, bend and bridge. Joint analysis permits the cross-validation of methods, so

enhancing overall prediction accuracy.
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2.1. Knowledge-based modelling

2.1.2. Membrane protein-based predictions
Patterns in amino acid hydrophobicities of the signal sequences were explored with hydrophobicity

plots which distinguish between transmembranal and non-membranal proteins. The three hydropathy

scales of Hopp and Woods,[24i1Rose et al.[243]and Sweet and Eisenberg[244]were used by Bird and co-

workers[204]in their study of CPY mutant signals, and so were also employed in this work. Plots were

computed 'with the ProtScale program (ExPASy server). In addition, the average hydrophobicity of

each SP h-region was calculated by adding component residue hydrophobicity values and dividing by

the number of residues in the region.

A comprehensive, automatic service for protein structure prediction is provided by PredictProtein

(hrtp:l/www.embl-heidelberg.de/predictproteinlpredictprotein.html). The server allows access to seven

prediction-related methods: Maxlfom (for multiple sequence alignment), PHDacc (for solvent

accessibility prediction), EvalScc (for prediction accuracy evaluation) and the secondary structure

prediction programs PHDsec (for water-soluble globular proteins), PHDhtm (for integral membrane

proteins), PHDtopology (for helical transmembrane assembly) and PHDthreader (for fold recognition),

The PHD methods are based on profile neural networks and lise multiple sequence alignments as input.

PHDsec[J6.240.24IJis one of the five methods used in the joint analysis procedure described above. It

yields average three-state (n-helix, p-strand and loop or coil) accuracies of>72%. Because PHDacc

and PHDhtn1 are associated with the prediction of hydrophobic proteins, they were applied to the signal

sequences in the present study. PHDacc[24SJcomputes ten relative accessibility states and projects them

onto three states (buried, intermediate and exposed). PHDhtm[224J has an expected two-state

(transmembrane and non-transmembrane) output accuracy of>95%.

Two programs that are also suitable for transmembrane protein prediction are TMprcd and PSA.

TMpred is a conformational prediction program from the Bioinformatics Group at ISREC in

Lausanne, Switzerland, and is available from the ISREC server at the web address

http://ulrer3.unil.ch/soitwarcITMPRED.html. TMpred predicts membrane-spanning regions of

proteins as well as orientations (inside -> outside and outside ~ insidej" of these region from statistical

data extracted from TMbasep4Gl a database of naturally occurring transmembrane proteins.

k These orientations describe the position of the N-terminus of a protein. Depending on the type of organelle,
"inside" normally refers to the cytoplasmic face ofthe membrane and "outside" refers to the lumenal face.
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The Protein Sequence Analysis (PSA) server (http://bmerc-www.bu.eduipsaJ) is maintained by the

EioMolecular Engineering Research Center of Boston University, Boston, MA. PSA is based on

probabilistic discrete state-space models (DSMsi247.248]which recognise patterns of cc-helices, p-
strands, turns and loops (or coils) in specific structural classes. It analyses sequences via Type-lor

Type-2 DSMs. Type-I models are applicable to monomeric, single-domain, water-soluble, globular

proteins, while Type-2 models are suitable for multimeric, multidomain proteins and membrane-

spanning proteins. In this investigation, signal sequences were subjected to the latter type of analysis.

2.2. Molecular modelling

2.2.1. The ECEPPGA program

The central conformational searching procedure employed in this study is a GA. Itwas designed by

Stephen}l20] for the specific purpose of investigating protein folding. In conjunction with the ECEPP/3

fc ce field and a gradient minimiser, it constitutes t';1~ECEPPGA program. The program appears to be

suitable for the conformational prediction of small polypeptides and was validated by successfully

locating the global minimum conformation ofMet5-Enkephalin.

For instructions on the use ofECEPPGA, the program manual presented in Stephens's dissertation[l20]

can be consulted. Details are provided there concerning installation, compilation and execution of the

program. A description of the various input and output files is also supplied. Algorithms were

developed in a UNIX environment; the ECEPP/3 algorithm' was written in Fortran 77, and tile GA

extension in C. Thus, portability of the program is warranted for most UNIX-compatible machines. A

distributed version ofECEPPGA is included with Stephens's jisseltation.m[l20]

2.1.1.1. ECEPPI3

The ECEPP/3 algorithm[5l] is a subset of a larger MM programming package called

ECEPPAK.[234] Some of the routines available in ECEPPAK are energy evaluation and

minimisation (for single and multiple input conformations), conformational searching

(systematic and MC), energy mapping, and calculation of root mean square deviations.

ECEPP/3 is a program that reads in a single conformation, generates co-ordinates for the conformation, and
then evaluates or min'mises its energy using the ECEPP/3 force field,

m The source code for ECEPPGA is available upon request from the Chemistry Department at the University of
the Witwatersrand.
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Modelling options such as the applicatio~st .ance constraints, the specification of variable

dihedral angles, and the selection of sampling regions are also supplied.

fiCEPP/3['il] is the most recent version of the ECEPP (Empirical Conformational Energy

Program for Pcptides) program[49] which has been widely used for computational energy

calculations on polypeptides and proteins. The ECEPP atomic force field parameters are

derived fi ..m structural data and CNDO/2 (ON) molecular orbital calculations," and have been

appropriately modified[50.2S0]as new experimental information has become available. The latest

update[Sl] incorporates a revised geometry for the proline residue,

In ECEPP, the total conformational potential energy, ET, is defined as the sum of the

electrostatic energy, EJ1s, nonbonded energy, EN8 (Lennard-Jones 6-12 potential), hydrogen bond

energy, EHB (10-12 potential), and torsional energy, EroR. Rigid geometry is used, i.e., bonn

lengths and bond angles are fixed at experimental values, while dihedral angles in the backbone

(~, \If, (0) and in the side-chains (x.'s) are variable. Th, hCEPP formulation utilises the concept

that intraresidue interactions play a dominant, but not exclusive, r .~ in determining the

conformation of II polypeptide.

2.2.1.2. The genetic algorithm

The standard GA method for global optimisation has been described in section 1.1.3,3 of this

thesis. To develop an appropriate GA for the optimisation of small polypeptides, Stephens[120J

modified the standard GA. Among the strategies added were the generation gap (encures the

survival of the best individuals from generation to generation), crowding (reduces the number of

similar breeding individuals, thereby ensuring genetic diversity), distance-biased breeding

(biases breeding towards, or away from, conformational similarity), family or niche breeding

(simulates biological speciation by permitting breeding only within (J. family), template-based

breeding (simulates speciation by permitting breeding only amongst "compatible" individuals),

steady state populatio (allows newly-born individuals into the current breeding stock

generational population (forbids newly-born individuals from reproducing immediately) and

crossover and mutation restrictions (limits sampling to specific regions 'confonnational

n CNDOI2 (COmpleteNeglect of Ditferenual Overlap)[24~]is a semi-empirical self-consistent field molecular
orbital method. In ECEPP, it is used to determine the overlap normalised lvN) parr: I atomic charges of each
amino acid residue.
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space). A unique modification is the characterisation of chromosomes or genomes" as series of

torsional angles instead of bit strings. Single gene units are extended to accommodate several

torsional angles.

Parameter settings that dictate strategy choke and thus behaviour of the GA are contained in a

main input file called par am. in. An example file is reproduced in Appendix A.

Specifications in this obligatory file control the use of optional input files which provide

supporting data for operation of the GA.

For further details on the strategies available in the modified GA, as well as an overview of the

methodology, Stephens's dissertation[120)should be consulted.

2.2.1.3. Interface with ECEPPI3

The GA was written as an add-in module to the ECEPP/3 program.[Sl] It can thus be considered

as a supplementary option available to users of the ECEPP AK[234]package. It has been closely

integrated with the ma.in routines of ECEPP AK and can be invoked in the same way that the

other peptide modelling options, such as local minimisation and MC searching, are invoked.

The flow diagram in Figure 2.1 shows the interface between the GA global mini miser and

ECEPP/3. SUMSL (Secant Unconstrained Minimisation Solveri2511 is one of the local

minimisers incorporated into the standard ECEPP program."

o The terms "chromosome" and "genome" are considered equivalent for the present purposes.

P The other available local minimiser is SMSNOwhich uses numerical gradients as opposed to the analytical
gradients used by SUMSL.
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other processing i
I

Figure 2.1: Flow diagram of the interface between the GA and ECEPP/311201

2.2.1.4. Optimisationof the genetic algorithm

Since the GA was designed to be highly customisable, the algorithm comprises a large set of

input parameters that require optimisation with every new application. To evaluate the

performance of the GA when searching the conformational space of the pentapeptide MetS-

Enkephalin, Stephens[1201sought optimal values for the following parameters: crossover rate (the

probability of a crossover occurring at each gene on the genome during mating), mutation rate

(the probability of a point mutation occurring at each gene), selective pressure (via the biased

breeding rate"), population size (the number of offspring generated during each generation) and

breeding strategy.' It was established that, of these parameters, population size and breeding

strategy exert the most influence on performance.

q The "biased breeding rate" or "fitness to breeding rate relationship' biases random selection of a breeding pair
from a population according to rank or fitness. The relationship can be uniform, linear, or logarithmic. The
slope of the breeding rate is controlled by the "breeding rate parameter".

r Four breeding or mating strategies are available as options in the program: simple breeding, distance-biased
breeding, family breeding, and template- and mask-controlled breeding.
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2.2.2. Distance-constraints modelling
A partial solution to the problem of combinatorial explosion is to reduce the scope of a conformational

search by imposing constraints on the sequence under investigation (cj section 1.1.3.3). However, an

alternative use for distance-constraints has been proposed by Tobias and Brooks.[lIO] In their

investigation of the folding and unfolding of one tum of an ce-helix in tripeptides of one type of amino

acid, they subjected the peptides to a series of I\-ID simulations in water with an end-to-end hydrogen

bond distance constrained to a sequence of different values. This distance was de'ined as the distance

between two atoms which form a particular hydrogen bond and was called fie one-dimensional

"reaction co-ordinate". Itwas discovered that, at small values of this co-ordinate, the oeptides form a.-

helices while at large values the peptides are extended, as might he expected. To evaluate

conformational equilibria, continuous free energy surfaces of the peptides as a function of the reaction

co-ordinate were computed with the aid of the "umbrella sampling'" technique. This modelling

strategy, encompassing both distance-constraints and "umbrella sampling", has been further employed

in MD calculations of pep tides in various solvents.[253.254]

The technique of applying distance-constraints to peptide sequences as a means of detecting

conformational preferences was developed independently in the present work. Energetically optimal

signal sequence conformations were sought as a :function of oligomer compactness, the latter being

controlled by distance-constraints. Since SP conformation in vivo is influenced by environmental

(aqueous and lipidic) and steric conditions, it was thought that the imposition of distance-constraints

within a SP might simulate these conditions where the preference for a particular atom-to-atom

distance by the hydrophobic region of a signal sequence might enable it to be favourably located within

a lipid membrane, as evidenced by a significant energy minimum. The technique also mimics the

behaviour of signal sequences as ..rey are in nature, viz.. with the one end restrained and attached to its

nascent chain.

Distance-constraints modelling may thus be capable of performing several functions: it places

restrictions on conformational space and thereby pn tides a computationally manageable number of

structures; it can relate peptide conformational preference to molecule compactness; and it may

simulate in vivo peptide behaviour.

"Umbrella sampling" is a specialised conformational sampling technique that biases sampling toward a desired
range of the reaction co-ordinate by adding an auxiliary harmonic potential to the energy of the system.[252]
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A constraints option available in the ECEPPAK modelling package was used to model distance-

constraints in this study. Constraints in the ECEPPAK program are enforced by a pseudo-potential

which is included in Er and which is conformationaliy dependent. Distance-constraint sets are defined

in the main ECEPP/3 set-up file (xyz. Lnp),' along with other user specified inputs such as

calculation type, force field features, minimisation details, peptide sequence, and initial conformation

variables (dihedral angles). Another file, bounds. xyz must also be generated. This file contains

information pertaining to each constraint, viz., the atoms defining the constraint, upper and lower

bounds, and a weighting factor for the energy term.

"xyz" can be replacedby anyvalidfile name. An exampleset-upfile is reproducedin AppendixA.
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CHAPTER 3

EXPER1MENTAL ~THODS

3.1. Signal peptide (SP) systems studied

One way of examining the correlation between SP structure and function is to study the effect that

alterations in SP sequence have on translocation abilities. Thus, several SP systems which comprise a wild-

type (WT) peptide and at least one mutated peptide have been reported in the literature. The reports often

contain useful sequence information such as o-helical content, hydrophobicity and secondary structure

prediction. Some of the more recently reported systems are those belonging to the secretory proteins of

LamB,[173·192]CPY,l204]OmpA,[119.255]human lysozyme,[198]PhoE,[256]gC[251]and PhoA.[l94J

The SP systems belonging to LamB, CPY and gC were investigated in this study. The criteria for selecting

these particular systems were the availability of quantitative results regarding translocation efficiencies of

system peptides and the diversity in efficiencies exhibited by a wide range of system mutants.

A list of abbreviations for amino acids pertinent to this thesis can be found on page xi.

3.1.1. LamB

LamB, also known as A. phage receptor or maltoporin, is an Escherichia coli outer membrane protein.

It facilitates the passage of rnanose and maltodex ..trins through the bacterial outer membrane and serves

as the receptor for bacteriophage A.. [258JLamB has been well characterised by genetic research and its

signal sequence is the most extensively used model for protein export. Export and conformational

studies of the LamB wild-type signal sequence and mutant strains have been detailed in Chapter 1. To

summarise, there exists a relationship between translocation efficiency, sequence hydrophobicity and

secondary structure conformation. Furthermore, n-helix formation appears to be necessary for the

proper functioning of the Sf' signal sequences.

The WT and mutant LamB signal sequences chosen for this study, together with their translocation

efficiencies, are listed in Figure 3.1. Mutant 6.78 contains a deletion of four consecutive residues in the
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h-core when compared to the WT, and does not export LamB. Export is restored in two revertants of

this mutation, 6.78r1 and 6.78r2. In the revertant L178rl, the glycine residue is mutated to cysteine at

position 13, while in revertant 6.78r2, the proline residue in position 9 is replaced by leucine. The

fourth sequence, A13D, is mutated from the WT; it contains a replacement of alanine by aspartate at

position 13. The hydrophobic regions in the WT and Al3D peptides arc seven residues long, while

those in the deletion mutants are reduced to three residues in length.[I73]

trans'
%

1 5 10 15 20 25
WT met-met-ile-thr-leu-arg-lys-Ieu-pro-Ieu-ala-val-ala-val-ala-ala-gly-val-met-ser-ala-gln-ala-met-alal 100

I 5 10 15 20
6.78r2 met-met-ile-thr-leu-arg-lys-Ieu-leu - - - - val-ala-ala-gly-val-met-ser-ala-gln-ala-met-aia! 90

1 5 10 15 20
6.78r 1 met-met -ile-thr-leu-arg-lys-leu-pro val-ala-ala-cys-val-met-ser-ala-gln-ala-met-ala! 50

1 5 10 15 20 25
A13D met-met-ile-ilir-Ieu-arg-Iys-Ieu-pro-leu-ala-val-asp-val-ala-ala-gly-val-met-ser-ala-gln-ala-met-ala! 10

5 10 15 20
met-met-ile-chr-leu-arg-lys-leu-pro - - - - val-ala-ala-gly-val-met-ser-ala-gln-ala-met-ala! o

a translocation efficiency or in vivo activity; values from McKnight et al.tm)

Figure 3.1: Aligned amino acid sequences of the LamB system signal peptides.
Numbers Indicate amino acid sequence number from the N-tcrminU$; dashes represent deleted residues;
slashes represent cleavage sites; underlined residues indicate the It-coreY'·ll

3.1.2. The CPY system

The second SP system selected consists of the WT and mutated signal sequences of the vacuolar

protein carboxypeptidase Y (CPy), which occurs in Saccharomyces cerevisiae (yeast). The WT

signal sequence of CPY is an example of a SP that is not functionally equivalent in different

organisms; it functions efficiently in yeast, but not in mammals.[259] After having subjected the WT to

various point mutations, Bird and co-workers'P" discovered that the resultant mutants were able to

translocate CPYacross mammalian membranes. In addi' ,.onto translocation efficiencies, they reported

hydrophobicities and predicted secondary structures of ine mutants using statistical procedures. Their

results implied a direct relation between hydrophobicity and export activity, and suggested that the

functional mutant peptides are more structured than the non-functional CPY signal sequence around

the h-core, All sequences were predicted to adopt either an ce-helical or a J3-strand conformation, the

functional peptides displaying higher tendencies to form such conformations.
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3.1. Signal peptide systems studied

The signal peptides of CPY which were considered in this analysis, together with their translocation

efficiencies, are given in Figure 3.2. When the hydrophobicity of the WT sequence is increased by

mutating the glycine residue ill position 12 to leucine, resulting in mutant CPYm2, activity in

mammalian cells is improved considerably. This level of activity is maintainer' when the length of the

WT h-core is shortened by deleting glycine and when additionally, the remaining glycine in position 10

is replaced with leucine: CPYm6. However, the shortened h-region in CPYm12, which results from

the deletion of glycine at position 10, displays a relatively lower export activity. A lower activity is

also exhibited by CPYm8, in which the same glycine is substituted for alanineY().I]

trans"
%

1 5 10 15
CPYm6 met-Iys-ala-phe-tllr-ser-Ieu-Ieu-cvs-Ieu-Ieit - Ieu-ser-thr-thr-Ieu-ala-lys-alal 97

CPYm2
1 5 10 15 20

met-lys-ala-phe-thr-ser-Ieu-Ieu-cys-gly-Ieu-Ieu-lcu-ser-thr-tlu'-Ieu-ala-lys-alal 94

1 5 10 15 20
CPYm8 met-Iys-ala-phe-thr-ser-Ieu-Ieu-9 s-ala-leu-gly-Ieu-ser-thr-thr-Ieu-ala-Iys-alal 27

1 5 10 15
CPYm12 met-Iys-ala-phe-thr-ser-Ieu-Ieu-cvs - Ieu-gly-Ieu-ser-thr-thr-Ieu-ala-Iys-alal zz

1 5 10 15 20
WT met-lys-ala-phe-thr-ser-Ieu-leu-cys-gly-Ieu-gly-Ieu-ser-thr-thr-Ieu-ala-Iys-alal undetectable

• translocation efficiency or in vivo mammalian activity; values from f"'-d et al.1204]

Figure 3.2: Aligned amino acid sequences of the CPY system signal peptides.
Numbers indicate amino acid sequence number from the N-terminus; dashes represent deleted residues;
slashes represent cleavage sites; underlined residues indicate the h-core.P?"

3.1.3. Thf': gC system

Glycoprotein C (gC) is a eukaryotic protein encoded by a swine herpesvirus. Its signal sequence has

been genetically analysed by Ryan and Edwards[2571 in an effort to delineate the conformational

constraints experienced by a eukaryotic signal sequence. They systematically introduced proline, a

known a-helix breaker, into different positions in the sequence's h-core and then evaluated the export

competencies of the resulting mutants. It was concluded that proline affects SP function by both

rt.aucing overall hydrophobicity and interrupting secondary structure, and that some positions within

the WT a-helix are more susceptible to proline disruption than others (functional asymmetry in the a-

helix was detected). Figure 3.3 depicts the gC signal sequences examined in the current work.
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3.2. Knowledge-based modelling

It can be noted from Figure 3.3 that the deletion of a single residue in the WT h-core results in a

mutant strain MlO which is still functionally efficient and that, as proline is substituted further down

the h-region from AIOP to L14P, in vivo activity decreases s;gnificantly.

trans"
%

1 5 10 15 20
WT met-ala-ser-Ieu-ala-arg-ala-met-Ieu-ala-Ieu-Ieu-ala-leu-tvr-ala-ala-ala-ile-ala-ala-alal 100

1 5 10 15 20
MI0 met-ala-ser-Ieu-ala··arg-ala-met-Ieu - leu-Ieu-ala-Ieu-tyr-ala-ala-ala-ile··ala-ala-alal 99

1 5 10 15 20
AI0P met-ala-ser-leu-ala-arg-ala-met-Ieu-pro-Ieu-leu-ala-Ieu-tyr-ala-ala-ala-ile-ala'ala-alal 98

1 5 10 15 20
L12P met-ala-ser-leu-ala-arg-ala-met-Ieu-ala-Ieu-pro-ala-Ieu-tvr-ala-ala-ala-ile-ala-ala-alal 19

1 5 10 15 20
L14P met-ala-ser-Ieu-ala-arg-ala-met-Ieu-ala-Ieu-Ieu-ala-pro-tvr-ala-ala-ala-ile-ala-ala-alal 5

.....-translocation efficiency or in vivo activity; values from Ryan and Edwards,251j

Figure 3.3: Aligned amino acid sequences of the gC system signal peptides.
Numbers indicate amino acid sequence number from the N-terminus; dashes represent deleted residues;
slashes represent cleavage sites; underlined residues indicate the h-core, (2571

3.2. Knowledge-based modelling

Access to the knowledge-based prediction programs described in the preceding chapter was gained through

the Netscape (ver. 3.01) browser. Chou-Fasman, hydropathy, TMpred and PSA plots were graphed with

the MS EXCEL (ver. 5.0) program, belonging to the MS OFFICE (ver. 4.2) suite of programs.

Chou-Fasman conformation profiles and hydropathy profiles were computed using a window size of five

amino acid residues with the following unequal linear weighting: 1 23 2 1. Since ProtScale (cf . 'iapter 2)

requires that a peptide sequence be at least 25 residues in length for calculation purposes, the first six amino

acids of the N-terminus of the relevant mature proteins were included in the profiles. Otherwise, the

entire lengths of the signal sequences, as listed in the figures above, were submitted to prediction servers for

analysis.
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3.3. Molecular modelling

3.3. Molecular modelling

MM calculations were conducted at various stages of this project on several UNIX-based computers: two

Silicon Graphics workstations (R3000 Indigo and R4000 Iris); a Sun workstation (SPARCcenter 2000);

and a Cray computer (CS-64100). Besides these machines, MS-DOS based personal computers were also

used in analysing results.

T'..1eSYBYL (ver. 6.0)l233]and ECEPPAK[234] molecular modelling packages were employed for systematic

conformational searching; and ECEPPGA[120] 'was employed for genetic algorithm computations.

Ramachandran ($, '1') maps and other relevant plots were generated with MS EXCEL. HyperChem (ver.

4.5P60] was used to view 3-D polypeptide structures and to produce a-helical wheel plots and stereoview

diagrams.

3.3.1. Systematic conformational searches

In the initial stages of this project, the only conformational ~

the systematic and grid (systematic search combined witl

supplied with SYBYL. [233] Preliminary investigations of sign

'F',,~at O!Ir disposal were

linusation) searches

'. ed both fragment-

based (model building) and torsional angle-based approaches" on . Although various

strategies were adopted to contend with the unavoidable combinator '''I'_ sion pre DIem,e.g., limiting

the length of the SPs, imposing geometrical constraints (a-helix or p-. .id) on the h-cores, discarding

conformations that violate specified energetic and geometric criteria, and biasing the search towards

low-energy regions of conformational space, the deterministic searches proved to be extremely time-

consuming and consequently too crude for the present application. Indeed, it was found that proper

searches could only be conducted for a dipeptide. Thus, a detailed discussion of this preliminary

portion of the work will be excluded from the thesis.

Since ECEPPAK[234] also incorporates a systematic searching method for global optimisation, it was

decided to conduct a comparative study to that performed with the SYBYL systematic search. The

study was confined to two of the LamB system signal sequences: the active ~ 78r2 and the inactive

U During conformational searching, only $ and rp torsional angle values were scanned; (i) angles were fixed in the
trans position, except for proline (both trans and cis assumed). Various grids were explored. Conformational
energies were minimised using the TRIPOS force field and conjugate gradients. Charges were excluded and
solvent effects ignored.
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3.3. Molecular modelling
/:;.78. As with the SYBYL systemat. searches, several strategies were used to overcome the problem

of combinatorial explosion. The focus of the experimental procedure was the application of distance-

constraints. Each sequence was constrained between two chosen points (the N-atom of leu-8 and the

Csatom of val-LS, cf Figure 3.1) by a defined distance, which was varied systematically during

conformational searching. These points were either the two ends of the h-core, or were such that the h-

core was centred. Rotations of flanking residues beyond the fixed points were therefore permitted to be

flexible. The upper and lower bounds of these distances were selected from preliminary minimisation

results where sequences were constrained in the extreme conformations of a-helical and extended.

Several different sets of experiments were performed, the sets following a generalised scheme:

1. Eleven residues from each sequence were chosen for simulauon; blocking end groups capped the

sequences during computations (ACE or acetyl at the N-terminus and NME or methyl amide at the

C-terminus).

2. Only the $ and \jf torsional angles of the seven central residues were subjected to conformational

searching (in accord with the MM calculations of Perez et al. [206]);all other torsions remained

constant. Peptide bonds were held fixed at 180°, except for the one preceding the pyrrolidine ring

of proline (0° and 180°). The $ dihedral angle of proline was also fixed at ECEPP default values

appropriate to both puckered forms ('exo' or 'up', and 'endo' or 'down'iS!] of the prolyl ring.

3. Values for the fixed side-chain torsions were determined either by extensive minimisation from

initial ideal ce-helix and 13-strand conformations, or from the literature.[70]

4. The (cp, \jf) dihedral pairs were confined to either the A or the E region of Zimmerman

conformational space," An initial angular interval of 40° was used. At later stages of

optimisation, the interval was refined in regions around selected low-energy conformers.

5. Simultaneous searching of all the variable torsions proved to be too compute-intensive and the

number of torsions varied during a single search was limited to either six or eight.

6. Each conformational search was followed by energy minimisation of the fifty lowest-energy

structures found. Gradient minimisation, limited to 1000 iterations, was executed with the

ECEPP/3 force field and all torsions were allowed to vary. ECEPP default values, including a

dielectric constant of?. vere used for all other relevant parameters.

V Zinunerman et al.[69]use conformational letter codes to define regions of the (~, 1jI) map. A (-110° S; ~ < -40",
_(\0°S; IjI < .10°) denotes the region for the right-handed a-helix; E (-180° S; ~ < _110°, -180° S; IjI< -140° and
noo S; IjI <180°) denotes the extended conformauonal state.
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3.3. Molecular modelling
7. After minimisation, the conformational space of the lowest-energy structure was searched further;

different torsions to those used previously were scanned.

8. The process of searching and minimising was continued until all torsions (within the above

limitations) of the seven residues were explored.

3.3.2. ECEPPGA

The following experimental conditions were applied to ECEPPGA computations which cover both

optimisation of the GA and conformational searching. Conditions particular to either GA optimisation

or searching will be described later.

The specific sequences of amino acids of the LamB, CPY and gC wild-type and mutated leader

peptides which were selected for GA modelling are listed in Table 3.1. Residue numbering is as shown

in Figures 3.1,3.2 and 3.3, Only those lengths of the signal sequences which were considered essential

for conformational analysis were probed in order to reduce the combinatorial problem. It was thus

assumed that the remainder of a particular sequence would affect the conformations of t're resultant

low-energy structures in a common fashion. The choice of amino acids centralised the hydrophobic h-

region within each peptide segment. End groups ACE (amino-COCH3) and ~"'ME (carboxyl-NHCH3)

were again used to block the sequences.

The distance-constraint modelling strategy was again the focal point of the experiments, its application

neing analogous to that of the ECEPPA..-rcsystematic searches. Table 3.1 also records the end points in

each peptide which defined distance-constraints.

In this GA implementation, the conformations of each SP portion were represented by genomes which

consisted of all the torsional angles in the conformation, viz., each gene on the genome represented an

angle value for a single torsion. Conformational space was explored by random sampling of these

torsional angles during the process of gene mutation. Peptide structure was described with two identity

templates," a residue identity template and an angle identity mask. The former defines the number of

encoded residues of a genome, the type (corresponding to ECEPP residue identity numbers) and order

of these residues, and the number of torsional angles in each," The latter contains one character for

W A "template" or "mask" is either a character or a string of characters which encodes mating information,
Bitstriug and phenotype-linked (alphanumeric characters) templates and masks are supported in ECEPPGA.

x The residue identity template resides ill the main GA input file, par am. in and represents exactly the ECEPP/3
reference conformation described in the accompanying ECEPP/3 main input file, xyz . inp.
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3.3. Molecular modelling
each torsional angle position on a genome and identifies torsional angle type. Characters are available

for the following angles: arbitrary type, ~, lV, (I), xl, '1.2, "l,'1.4, "I:, '1.6,£, "l·

Table 3.1: Sequences and distance-constraint end points selected for GA modelling

Signal Selected Number of residues Distance-constraint Number of distance-
I!el!tide seguence in selected seguence end I!oints' constrained residues
LamB

WT arg-6 to ser-20 15 leu-If) to ala-If 7

Ll.78r2 arg-6 to ser-16 11 leu-S to val-14 7

Ll.78rl arg-6 to ser-16 11 leu-B to val-14 7

Al3D arg-6 to ser·20 15 leu-lO to ala-If "7

Ll.78 arg-6 to ser-16 11 ?zu-8 to val-14 7

cpy

CPYm6 phe-4 to thr-15 12 ser-6 to ser-l3 8

CPYm2 pbe-4 to thr-16 13 ser-6 to ser-14 9

CPYm8 pbe-4 to thr-16 13 ser-e to ser-14 9

CPYm12 phe-4 to thr-lS 12 ser-6 to ser-13 8

WT pbe-4 to thr-16 13 ser-6 to ser-14 9

gC

WT arg-6 to ala-If U ala-7 to tyr-15 9

Ll.AIO arg-6 to ala-IS 10 ala-7 to tyr-14 8

A10P arg-6 10 ala-16 11 ala-7 to tyr-If 9

L12P arg-6 (0 ala-Is 11 ala-7 to tyr-15 9

Ll4P arg-6 to ala-If 11 ala-? to tyr-15 9

a from the N-atom of the first residue to the C-atom of the second

Individual peptides were subjected to a series of runs dictated by a sequence of distance-constraint

values. A run is defined as the creation of an initial population, followed by the GA process iterated

over a number of user-defined generations, and ends with the attainment of a final population. Details

of significant modelling strategies used during the runs are given below.
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3.3. Molecular modelling

a. An initial population of conformations was generated in a random fashion by mutations of the

genome of a reference conformation. These gene mutations were non-local." they occurred in a

uniform distribution over the entire conformational space.

b. Two breeding or mating strategies were used to select a mating pair from a population: simple

(random) and template-based. The latter will be discussed later (see section 3.3.2.2).

c. Mating strategies were biased towards higher ranking individuals (see (i), below) with the aid of

selective pressure, i.e., the relative breeding rates of individuals were controlled according to

fitness.

d. A new generation was produced via local" point mutation of genes on the parent genomes, random

crossover at each gene during mating, and generation gaps.

e. Individual torsions were considered as sampling units" during gene mutation. Although a

completely random torsional angle sampling strategy was adopted, implying that all torsions or the

parent genomes were eligible for sampling, there were some rotations that were forced to remain at

fixed values. These were the rotations a:.JOutall the peptide bonds (the trans form was assumed

and the rotations were therefore kept consu-u at a value 00=180°), and the $ rotation of the proline

residue (the 'down' puckered form of the pyrrolidine ring was assumed and the <p value was fixed

at -68.780°). The GA distinguished between variable and fixed torsions via a fixed angie mask.

The mask assigns either a fixed angle or a variable angle character to each torsional angle on the

genome.

f. Restricted generation gaps were created, t.e., defined numbers of best individuals were copied

unaltered from each generation into the next generation.

g. A new individual was considered viable if its energy was below a certain limit and if it was not too

genetically similar to other population individuals. The latter option encompassed a "crowding" or

"space sharing" strategy where similari vas assessed in terms of a minimum root mean square

distance between superimposed conformations.

Y "Non-local mutations" ignore current gene values. Torsional angle sampling is permitted anywhere within
allowed regions of the conformational space. In this application, no regions were defined, i.e., no lengths on the
genomes were restricted, Thus, the entire (~, \jf) space was ex-ploreduniformly,

Z "Local" mutations are based on current torsional angie values. Random changes, in a Gaussian distribution
about the current value are allowed for every torsion.

aa "Sampling units" are n·dimensional maps of conformational space and "samples" are randomly selected points
on the maps. For the present application, a sampling unit is eouivalent to a gene and can consist of either an
individual torsional angle, a set of baccbone angles of each residue with separate side-chain angle sampling
units, or a set of all the torsional angles of each residue.

56



3.3. Molecular modelling
h. A population individual was evaluated according to the minimised, continuous ECEPP/3 potential

energy function. Local minimisation with the built-in SUMSL gradient optimiser was implemented

prior to each population energy evaluation. All genomes in a population were minimised, all

torsions were allowed to vary, the ECEPP default effective dielectric constant of 2 was used

(thereby simulating a hydrophobic environment), and the maximum number of iterations per

minimisation was restricted. The combination of GA global minimisation with local minimisation

throughout the experiments ensured effective exploration of the valleys present on the energy

surface (cj section 1.1.3.3).

i. The ranking of an individual was accomplished with a fitness coefficient which was minimised

ECEPP/3 energy in this case (other contributing factors to fitness may be family membership,

mask string length, etc.); conformations with lower energies were ranked higher with respect to

fitness.

j. Progress of the GA was monitored by taking snapshots of populations and of population statistics

at various generation intervals during the runs.

GA parameter settings for these modelling strategies and for those that that have not been mentioned

here, besides those discussed in the succeeding sections 3.3.2.1 and 3.3.2.2, were kept constant

throughout the experiments at values recommended by Stephens.[1201 A complete GA parameter set,

including a concise explanation of every parameter, can be found in the par am. in file supplied in

the Appendix.

3.3.2.1. Optimisation of the performance of ECEPPGA

In an attempt to optimise the performance of ECEPPGA with respect to the conformational

analysis of SPs, parameters which were thought to affect GA efficiency were examined using the

three deletion mutants of the LamB signal sequence with their very different translocation

efficiencies. Parameters investigated were generation gap size, maximum number of iterations

during local minimisation, number of generations in each run, population size, selective pressure

and breeding strategy. The variables were altered systematically for each sequence and their

effects on performance analysed. Remaining variables were held constant.

For each value of the variable parameter, three separate runs with differing random seed values

were performed. These three runs constitute a job.
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3.3. Molecular modelling

3.3.2.2. ECEPPGA conformational searches

In searching the potential energy surfaces of the signal sequences, no knowledge of their native

structures or GMECs was assumed. The lowest-energy structure from each run was postulated

to be the GMEC. At times, :final confonnationru structures which were considered dubious

because of their relatively high energies were obtained. In such cases, the seed value of the GA

random number generator was changed, and the runs were repeated, generating a revised

conformation.

Apart from the modelling strategies specified above, the following optimised parameter choices,

obtained from the GA optimisation experiments, were adopted:

II a generation gap size of 120

• 50 iterations per local minimisation

.. 15 generations per run

.. a population size of 400

• a linearly biased breeding rate with a high selective pressure: the probability of a genome

being selected as a parent was linearly related to fitness or rank, with the gradient set at 0.9

(0 represents the highest rank and 1 represents the lowest)

.. the template- and mask-controlled breeding strategy. Bitsiring templates and masksbb of 3

characters in length controlled the selection of mating pairs. A pair was selected if the mask

string of one parent matched the template string of the other, and vice versa.

Although the majority of the conformational searching runs were carried out under the

experimental conditions already described, five sets of runs adopting slightly altered conditions

were also conducted. These were (1) runs with restricted torsional angle space, (2) runs with

shorter calculated peptide lengths, (3) runs with differing proline configurations, (4) runs with

varying dielectric constants, and (5) runs without distance-constraints. Motives for performing

these additional calculations will be propounded in the following chapter. Experimental

procedures for each set will also be described.

bb "Bitstring templates" and "bitstring masks" are assigned randomly to each individual of the initial population
and then passed down the generations through inheritance. Each character is considered to be one gene. Each
gene undergoes non-local mutation and complete crossover (the entire gene at the crossover site is inherited
from the alternative parent).
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3.3. Molecular modelling

Results from the GA conformational searches were graphed as minimised energy versus

distance-constraint curves. The curves were analysed and compared in each SP system.

Ramachandran ($, '1') plots were employed to assess the o.-helical nature of the lowest-energy

structures, and helical wheelswere plotted and to assess the amphipathicity of the helices.
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4.1. Knowledge-based modelling

CHAPTER 4

RESULTS AND DISCUSSION

4.1. Knowledge-based modelling

4.1.1. Globular protein-based predictions
Attempts by several researchers[179,190.203.204]to relate signal sequence activity to secondary structure, as

predicted using the Chou-Fasman method,[22]has prompted an equivalent investigation in this work.

Predictions obtained for the three SP systems, utilising the C-F method and the Consensus procedure,

are reported below. Itwas anticipated that these prediction techniques might not furnish useful results

for this application since they are derived from the analyses of globular proteins.

4.1.1.1. Chou-Fasman
C-F profiles for signal sequences of the LamB, CPY and gC signal peptide systems are shown in

Figures 4.1, 4.2 and 4.3, respectively. The vertical axis ill each profile is the probability scale; a

probability of 1.0 signifies a 50% possibility for either the ce-helical or the ~-sheet conformation.

The horizontal axis denotes amino acid residue positions in the SPs. Those residues that

constitute the central hydrophobic region of each sequence are the ones of interest in evaluating

distinctions or similarities among the sequences of a specific system .

• LamB

Because of differences in sequence length in the LamB system (Figure 3.1), only the wr and

A13D peptides, and the il78r2, il78rl and il78 peptides can be compared directly. Predictions

indicate probabilities of the WT and Al3D h-cores (residues 10 to 16) that suggest the

formation of either an c-helix or a ~-sheet. As mentioned in the introductory chapter (section

1.2.4.2), these conflicting probabilities are possibly due to the fact the C-F parameters were

originally established for soluble proteins and not for short, hydrophobic peptides. Although the

profiles of the deletion mutants, il78r2, il78rl and il78, show that their h-cores (residues 10 to

12) favour the o-helix slightly, no definite conformational preferences can be deduced.
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Figure 4.1: Probable secondary structure of the sequences of the LamB signal peptide system determined
with the Chou-Fasmanl151 prediction method. a-Helical probabilities for the sequences are shown on the left
and f3-sheet probabilities are shown on the right. A probability of 1.0 signifies a 50% probability for the
conformation. The graphs are arranged (a) to (e) in order of decreasing translocation efficiency. Dotted
curves in (b) and (d) represent the conformational probabilities for the WT while those in (c) and (e)
represent the conformational probabilities for t.78r2. (I = residue number 9,0 = residue number 13.
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On comparing the \VT and A13D sequences in Figure 4. 1(d), it can be seen that A13D has a

decreased probability of occurring in both the a-helical and 13-sheet conformations when

compared to the WT, as evidenced by A13D's lower probability values for residues 11 to 15.

As expected, the largest difference is at residue 13 (open circle in the figure), where alanine in

the WT has been replaced with the less hydrophobic aspartate residue in Al3D. Apart from its

lower hydrophobic character, aspartate also has lower a-helical and J3-sheet tendencies than

alanine.

Graphs 4.1(c} and 4.1(e} show that the sequences of 6.78rl and 6.78 display very similar

conformational probabilities. Differences between the curves of these two SPs result from the

replacement of cysteine in 6.78rl at position 13 (open circles on the plots) by glycine; cysteine

has slightly higher a-helical and 13-sheet tendencies than glycine. The marked distinction

between these curves and that of K/8r2 results from the presence of proline at position 9 (dark

circles on the plots) in !.l78rl and 678. Proline has much lower tendencies than the leucine

mutation in 6.78r2 to occur in a-helical and J3-sheet conformations,

Observations in c-mmon with those of Emr and Si1havy1203]are: the a-helix in the WT occurs

between proline-9 and glycine-17; the a-helix in 6.78r2 only experiences a disruption at glycine-

13; and no distinct a-helix forms 'n the central region of 6.78 due to the close proximity of

proline-9 and glycine-l3. Discrepancies between results from these two sets ofC-F calculations

could arise from different window residue lengths and different decision functions, such as the

weighting of values, that may have been used, and which are crucial to the accuracy of the

predictions. Emr and Silhavy[203]calculated that the a-helix of the 6.78rl revertant peptide only

experiences a break at proline-9, whereas probability values here predict that no regular a-helix

forms in its central region due to the close proximity of proline-9 and cysteine-Is (cysteine is a

helix-indifferent residue[25]). The findings reiterate the importance in the C-F calculations of the

presence of the helix-breaking residues, proline and glycine,[25] in a sequence.

If calculations for the a-helical conformation only are considered, it would appear that C-F

predictions are able to correlate sequence with in vivo activity and a-helical content (see Table

4.1). The predictions suggest that the WT has a higher likelihood of forming an a-helix than

A13D, and that 6.78r2 has a higher chance of occurring as an a-helix than do 6.78rl and 6078.
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4.1. Knowledge-based modelling
However, the fact that the C-F predictions for the j3-sheet conformation also record high

probability values undermines the reliability of this prediction procedure with regard to the

current application.

Table 4.1: Summary of the activities and cc-belical contents of the LamB signal peptides

n-Helical content
Signal peptide In vivlJ a( itt in SDSb in ago TFE·--

% % %
WT 100 70 55

1178r2 90 75 60
.6.78r1 50 40 40
A13D 10 60 not calculated

.6.78 0 35 30
• values from McKnight et at.[173]
b calculated from CD spectra in a membrane-mimetic environment of sodium dodecyl

sulphate micelles[173)
C calculated from CD spectra in a membrane-mimetic environment of aqueous

trifluoroethanol[193)

• Cpy

Because of differences in sequence length in the CPY system (Figure 3.2), CPYm6 and

CPYm12 prediction curves were analysed separately (see Figure 4.2(d» from the curves of the

remaining sequences. As with the LamB system, the C-F algorithm predicts j3-sheet probability

values for the residues of the sequences which are com=irable to their u-helical probability

values. In fact, it would appear that, in general, the j3-strand is slightly preferred. These

findings concur with C-F predictions of this system calculated by Bird et al.[204Jwho

demonstrated that all the sequences were likely to adopt either an cc-helical or a 13-strand

conformation, with an unstructured region around residues 10 to 12 caused by the presence of

one or more glycine residues.

The residues of the CPYm6 h-core (residues 7 to 12) display a higher tendency for the cc-helical

and j3-sheet conformations than those of the CPYm12 h-core (residues 7 to 12). This is shown

in Figure 4.2(d). The difference between the CPYm6 and CPYm12 curves is due to the

substitution of leucine-ll in CPYm6 with glycine (open circles on plots) in CPYm12; glycine

has been proposed to be a strong c-helix breaker and a j3-sheet breaker.[25J
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Figure 4.2: Probable secondary structure of the sequences of the CPY signal peptide system determined with
the Chou-Fasman11SI prediction method. a-Helical probabilities for the sequences are shown on the left and
~-sheet probabilities are shown on the right. A probability of 1.0 signifies a 50% probability for the
conformation. The graphs are arranged (a) to (e) in order' of decreasing translocation efficiency. Dotted
curves in (a), (b) and (c) represent the conformational probabilities for the WT while those in (d) represent
the conformational probabilities for CPYm6. 0 = leu-12 in CPYm2, ala-l0 in CPYm8, gly-ll in CPYm12.



4.1. Knowledge-based modelling

A comparison of the CPYm2 (Figure 4.2(b» and the CPYmS (Figure 4.2(c» a-helix probability

plots with the WT plot indicates clearly that the two mutants have a higher possibility of

forming helices in their hydrophobic regions (residues 7 to 13) than does the WT. The two

glycine residues in the h-region of the WT are separated by only one residue, resulting in a low

probability for a-helix formation. In CPYm2, the second glycine residue at position 12 of the

WT has been replaced by leucine (open circles in figure), and in CPYm8, the first glycine at

position 10 of the WT has been replaced by alanine (open circles in figure). Leucine and alanine

are both presumed to be strong a-helix formers.[25] The presence of the helix indifferent

cysteine-9 adjacent to glycine-lOin the CPYm2 sequence appears to cause a disruption in a-

helix formation; this phenomenon is not observed in CPYm8, where cysteine-9 is adjacent to

alanine-l O.

Similarly to the C-F structural predictions of the LamB system discussed earlier, a-helix

predictions of the CPY system also correlate vaguely with in vivo activities (Figure 3.2). But,

the high probability values calculated for J3-structures once more weakens the reliability of the

predictions .

• gC

The effect on probable secondary structure formation induced by the systematic introduction of

proline (open circles on the relevant plots) into a sequence can be noted in Figure 4.3. Proline is

known to be both a strong a-helix breaker and a strong J3-sheet breaker.[25] The probability that

the gC sequences will form J3-sheets is relatively lower than their probability of forming a-

helices.

The h-core (residues 7 to 15) of the WT, whose curve is shown in Figure 4.3(e), displays a high

probability of occurring in an a-helix. As proline is substituted for along the WT sequence,

from position 10 to 12 to 14, disruption of this helix occurs in these positions. Although 0.-

helh ; iJrnbability curves (a) and (b) can be related to corresponding in vivo SP activities (both

" rvcs demonstrate a high helix content, which is proposed to be analogous to a high export

efficiency), curves (c) to (e) offer no correlation. Activity values can be referred to in Figure 3.3

of Chapter 3.
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Figure 4.3: Probable secondary structure of the sequences of the gC signal peptide system detennined with
the Chou-Fasmanl151 prediction method. a-Helical probabilities for the sequences are shown on the left and
fl-sheet ~Jrobabilities are shown on the right. A probability of 1.0 signifies a 50% probability for the
confonnation. The graphs are arranged (a) to (e) in order of decreasing translocation efficiency. Dotted
curves represent the conformational probabilities for the WT. 0 = proline position.
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4.1. Knowledge-based modelling

. ,4.1.1.2. Consensus procedure

Results from a consensus secondary structure prediction procedure for the LamB, CPY and gC

signal peptide systems are given in Tables 4.2, 4.3 and 4.5, respectively. Predictions made by

the individual mct\'ods are tabulated first, followed by joint predictions made with the consensus

procedure. Discussion of the results will focus on the correlation of peptide translocation

efficiency with predicted secondary structure. The hydrophobic regions in each sequence are in

bold typeface .

.. LamB

The Gibrat, Levin and PHDsec methods predict cs-helices for the h-regions of all the LamB

sequences, with the exception of 1178 for the Levin method. These methods falter in their ability

to forecast functional efficiencies if ce-helixcontent of the h-core is accepted as a measure of

translocational efficiency. DPM results predict that residues in the h-regions of the LamB

sequences adopt no regular structure; the regions consist cf a mixture of ce-helical,p-sheet and

coil structures. 1178is again the exception here, its h-core assuming a completely random coil

structure. Although this random coil may explain the functional inactivity of 1178, the adoption

of irregular conformations by the h-cores of the rema i, ;ng sequences offers no correlation with

activity. The failure of the SOPMA method to distiLt.~.sh between signal sequences based on

predicted h-core structure is evidenced by the similar preciictedconformations for the h-regions

of the WT and Al3D sequences and the equivalent predicted conformations for the h-regions of

the three deletionmutants.

If it is assumed tr,;t both the n-region (- residues'; to 9) and the h-region for each sequence are

involved in seCO'1JTy structure formation, the predictive accuracy of some of the above-

mentioned methods appears to improve slightly. If the presence of an o-helix in a sequence is

considered necessary for functional efficiency, and if conformations other than cc-helicalare

presumed to cause functional inactivity, then the Gibrat and Levin predictions for the deletion

mutants are able to account for relative activities. SOPMA seems to be the only method that is

capable of assessing the comparative activities of the WT and Al3D peptides.
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4.1. Knowledge-based modelling

Table 4.2: Secondary structure of the sequences of the !...amB signal peptide system determined by joht
prediction. Predictions were determined with the Gibrat,ll3S1 Levin,IZJ6)DPM,(137) SOPMAI13S,lJ9)and
PHDsecI3G,l40,241) methods. The COl1sel1SUS prediction combines these methods. H = a.-helix, E = tl-sheet, C =
coil, T = tum, - = no prediction, spaces represent deleted residues.

Prediction Signal Secondary structure prediction
method peptide"w~ MMITLRKLP~AYAYAAGVMSAQAMA

Gibrat WT
~78r2
~78rl
AIm
~78

1
H H H H
HHHH
H H H H
H H H H
H H H H

5 10 15 20 25
FHHCHHHHHHHHHHHHHHHHH
HHHHH HHHHHHHHHHHH
H CCC C H H H H H H H H H H H H
HHHCHHHHHHHHHHHHHHHHH
HHCCC HHHHHHHHHHHH

Levin WT
~78r2
~78r1
A13D
~78

I
H E H E
E H C C
HHEH
HHHH
HEHH

10 ~ W ~
CHHHHHHHHHHHHHCCC
H HHHCCHHHCCHH
C HH~HHHHHHHHH
CHHHHHHHHCHHHHCCH
C TBTHCCHHHHHH

5
H CCC
HHHH
H T C C
H CCC
H H C C

DPM WT
~78r2
~78rl
Al3D
~78

1 5
C C E E E
C C E E E
C C E E E
C C E E E
C C E E C

10
HHCCHHEBE
E H H H E
CCC C E
CCC C C H E C E
CCC C C

15
B H C E
B H C E
H H E E
H H C E
CCC E

20 25
HHHHHCC
HCHHHCC
HCHHHCC
HCHHHCC
HCHHHCC

SOPl\IA WT
~78r2
~78rl
A13D
~78

1 5
HHHHHHHHH
C C E E CCC C C
E H C E T T T C C
H H H E E CCC C
H C C E E E CCC

10 15
BHRHHBTT

C T T C
C T T E

HRHHHUBH
C T T T

20
Hl.lHH
C C H H
E E E C
HHHH
C C H H

15
H H H H
H H H H
C T H H
HHHH
HHHH

PHDscc WT
~78r2
~78r1
A13D
~78

COIISel1SUS WT
~78r2
~78rl
A13D
~78

I 5 10 15
CHHHHHCCHHHBBHHBH
C H H H H H H H H B H B H
CHHHHHCCC BBRH
CHHHHHCCHBHHHBHHH
CHllHHHCCH HBBH

20
HHHHH
HHHHH
HHHHH
HHHHH
H H H H H

25
H H C
H H C
H H C
H H C
H H C

1 5 10
HHHHHHHCHBBB
C H - - H H H H H
- H H H H - CCC
H H H H H CCC C
HHHJlHHCCC

15 20 25
BBRHHHHHHHHHC

BHBC-HHHHHHH
HHIIHHHHHllHHH

HHHHHHHHHHHHHHHH
-H-H-HHHHHHH.'~~~--~~--~~--~~--~--------~--~~~--~--~--~~~--~----for each prediction method, the signal peptides are arranged in order of decreasing translocation efficiency

b the sequence of the WT is listed as a reference; a list of amino acid residue abbreviations is available on page xi
of this thesis; residues in the b-core are underlined
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4.1. Knowledge-based modelling

Assuming that the c-helical secondary structure is a determinant of in vivo signa! sequence

translocation function, and assuming that it is the structure of the h-regions of the sequences that

is significant, joint predi.ction, i.e., the consensus procedure, fails to provide a correspondence

between activity and structure; all h-regions, besides that of !!.78, are predicted to form o-

helices. If both the n-region and the h-region are implicated in seco !ary structure formation,

joint prediction seems to enhance predictive accuracy since a clear correspondence between

activity and n-helix content can be noted; the cc-helical form of the n- and h-regions decreases

with decreasi.ig activity. Thus, in this case, although the majority of the prediction methods

individually yield inconclusive results when applied in isolation, joint analysis with the

Consensus procedure is able to produce results that arc more consistent with the literature.

It Cpy

The CPY system was submitted for analysis at a later date than those of LamB and gC. This

resulted in the unavailability of the PHDsec prediction method as the method had since been

removed from the joint prediction procedure (due to its lengthy calculation time). Thus, the

Consensus results reported in Table 4.3 incorporate only four predictive methods. A separate

submission of the CPY system was made to PHDsec through the PredictProtein server. These

results are given in Table 4.4.

Secondary structure predictions with the Gibrat method show a relationship between h-core a.-

helical content and translocation efficiency. As mammalian translocation efficiency decreases,

the number of residues in a sequence that assume conformations other than c-helical increases.

As wiln the Gibrat predictions, the Levin method proposes an a-helix for the h-region of the

active CPYm6 peptide and a mixed coil and p-strand structure for the h-region of the non-

functional WT peptide. However, inspection of the h-core residue conformations of the

remaining peptides emphasises the unreliability of the Levin method for this applicaaon; there

appears to be no direct correlation between structure and functional activity. Although the DPM

and SOPMA methods also predict a mixed coil and p-strand structure for the h-region of the

WT, their predictions for the h-core of CPYm6 are contrary to those of Gibrat and Levin; p-

sheet structures are proposed.
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4.1. ~ge-based modelling

Table 4.3: Secondary structure of the sequences of the CPY signal peptide system determined by joint
prediction. Predictions were determined with the Gibrat,12351 Levin,I236] DPMI237] and SOPMA1238,2J91
m itbnds, The Consensus prediction combines these methods. H ""cc-belix, E = p-sh!!et, C = coil, T = turn, S =
bend, - = no prediction, spaces represent deleted residues.

Prediction Signal Secondary structure prediction
method ~el!tide·

WTb M K A F T S :b 1 g Q 1 Q 1 s T T L A K A

1 5 10 15 20
Gibrat CPYm6 H H H H H H H H H H H H H H H H H H II

CPYm2 H H H H H H II II H H H H B H H H H H H II
CPYm8 H H H H H H H H H H H C H H II H H H H H
CPYm12 H H H H H H H H H H C C H H H H H H H

WT H H H H H Ii E E E C C C C C H H H H H H

1 5 10 15 20
Levin CPYmu H H H C H H H H H H H H H H H H H H H

CPYm2 H T H C C H E H H H C C n H T T C C H H
CPYm8 C H C H H E E E E C C C C C C E C C C H
CPYm12 C H T C H H H H H H H H H H C H H H H

WT C T T C C E E E E H C C C C S E E - H 'f

1 5 10 15 20
DPM CPYm6 C C H H E E E E E E E E E E E H H C C

CPYm2 C C H H E E E E E C E E E E E E H H C C
. CPYm8 C C Fl H E E E E E H E C E E E E H H C C
CPYm12 C C H H E E E E E E C E E E E H H C C

WT C C H H E E E E E C C C E C E E H H C C

1 5 10 15 20
SOPl't1A CPYm6 C C C H H H H E E E E E E E E E H H C

CPYm2 C E E E E E E E C C C T T T C H H H H H
CPYm8 C C C C E E E E E E T T C E E C C C C H
CPYm12 C C E H H H E E H T T T T T C H H H H

VlT C C C C E E E E C C C C T E C C E E H H

1 5 10 15 20
Consensus CPYm6 C C H H H H H H H H H H H H H H H H C

CPYm2 C - H H E 'H E H H C C - H H -' H H H H H
CPYm8 C C C H H E E E E H - C C E E E C C C H
CPYm12 C C H H H H H H H II C - H H C H H H H

WT C C H C E E E E E C C C C C C E H H H H

• for each prediction method, the signal peptides are arranged in order of decreasing translocation efficiency
b the sequence of the WT is listed as a reference; a list of a.aino acid residue abbreviations is available on page xi

of this thesis; residues in the h-core are underlined
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Although consensus prediction appears to improve predictive accuracy, with the exception of

CPYm12, with regard to relating secondary structure to translocational efficiency, the results

cannot be relied upon since they are derived from prediction methods which propose conflicting

structure pr ,i.,;bilities for functionally active SPs.

Secondary structure predictions calculated with the PHDsec method (Table 4.4) are somewhat

surprising since the method seems incapable of differentiating between the different peptides of

the system. It predicts that all the peptides will form complete n-helices; only the first and last

residues of the sequences are not cc-helical. Itwould be expected that the presence of the helix-

breaking glycine residue in some of the peptides would cause breaks in the helices. One possible

reason for this contrary result is the availability of teo few sequence homologues for the

purposes of multiple sequence alignment, i.e., three for the LamB WT, 'Joe for the '"?Y WT,

and four for the gC WT. This would lead to an expected decrease in prec . ')11 accuracy

«72%).

Table 4.4: Secondary structure of the sequences of the CPY signal peptide system determined with the
PHDsecl3G,140,2411 prediction method. H = n-helir, L = loop or coil, spaces represent deleted residues,

Signal Secondary structure prediction
l!cI!tidc·
WTb M K A F T S 1 1 £ Q & Q 1 s T T L A K A

1 5 10 15 20
CPYm6 L H H H H H H H H H H H H H H H H H L
CPYm2 L H H H H H H H H H H H H H H H H H H L
CPYm8 L H H H H H H H H H n H H H H H H 'H H L
CPYm12 L H H H H H R H H H H H H H H H H H L

WT L H H H H H II H H H H n n H H H H H H L

• the signal peptides are arranged in order of decreasing translocation efficiency
b the sequence of the WT is listed as a reference; a list of amino acid residue abbreviations is available on page xi

of this thesis; residues in the h-core are underlined

• gC

Predictions for the gC system (fable 4.5) are also puzzling since all the Methods predict that all

the sequences of the system will form complete or almost complete o-helical structures.

Unexpectedly, the occurrence of the helix-breaking proline residue in some of the sequences does

not induce interruptions in the helical structures. Only the DPM method offers some differences

in h-core secondary structure, where the less active peptides contain a few residues that prefer

coil structures.
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4.1. ICnowledge-based modelling

Table 4.5: Secondary structure of the sequences of the gC signal peptide system determined by joint
prediction. Predictions were determined with the Gibrat,IZ3S1Levin,11361DPM,I237] SOPMAI238,2391and
PRDsec(3G,l40,l411methods. The Consensus prediction combines these methods. H = o-helix, C = coil, T =
turn, - = no prediction, spaces represent deleted residues.

Prediction Signal Secondary structure prediction
method ~e~tide·

WTb M A S L A R ! M 1. ! 1. 1. ! 1. X A A A I A A A

1 5 10 15 20
Gibrat WT H H H H H H H H H H H H H H H H H H H H H H

AAlO H H H H H H H H H H H H H H H H H H H H H
AI0P H H H H H H H H H H H H H H H H H H H H H H
L12P H H H H H H H H It: H H H H H n H H H H H H H
L14P H H H H H H H H H l! H H H H H H H H H H H H

1 5 10 15 20
Levin WT H H H H :-r H H H H H H H H H H H H H H H H C

AAI0 C C C H H H H H H H H H H H H H H H H H H
AI0P H H H H H H H H H H H H H H H H H H H H H C
L12P H H H H H H H H H H H H H H H H H H H H H H
L14P H H H H H H H H H H H H H H H C H H H H H H

1 S 10 15 20
DPM WT C C H H H H H H H H H H H H n H H H H H C C

AAIO C C H H H H H H H H H H H H H H H H H C C
AI0P C C H H H H H H H C H H H H H H n H H ·H C C
L12P C C H H H H H H H H H C H H H H H H H H C C
I.i4P C C H H H H H H H H H H H C C H H H H H C C

1 5 10 15 20
SOPMA WT C C C H H H H H H H H H H H H H H H H H H H

AI0 H H H H H H H H H H H R H H H H H H H H T
AI0P T T C C H H R h R H H R H H H H H H H H II H
L12P T C C H H H H H H H H H H H H H H H H H H T
L14P H H H H H H H H R H H H H H H H H H H H H H

1 5 10 15 20
PHDsec WT C H H H H H R H H H B H H H H H II H H H H C

MI0 H H H H H H H H H H H H H H H H H H H II C
AIOP C H H H H E H H H H H H H H H H H H H H H C
Ll2P C H H H H H H H H H H H H H H H H H H H H C
L14P C H H H H H H H H H H H H H H H H H H H H C

1 5 10 15 20
Consensus WT C H H H H H H H H H H H H H H H H H H H II C

AAIO H H H H H H H H H H H H H H H H H H H H -
AI0P . H H H H H H H H H H H H H H H H H H H If C
L12P - H H H H H H H TI H H H H H H H H H H H
Ll4P H H H H H H H H H H H H H H H H H H H H H H

• for each prediction method, the signal peptides are arranged in order of decreasing translocation efficiency
b the sequence of the WT is listed as a reference; a list of amino acid residue abbreviations is available on page xi

of this thesis; residues in the h-core are underlined
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4.1. Knowledge-based modelling

It was initially surmised by us that the short length of the sequences was the cause of these.
similar prediction results. However, this may be ruled out as the peptides of the CPY system

that were submitted for calculation are even shorter. As a consequence of the results of the

individual prediction methods, joint analysis yields completely ce-helical structures, allowing for

no differentiation between sequences based on structure.

To summarise, the use of secondary structure prediction methods based on globular, water-soluble

proteins to predict the conformations and hence the functional efficiencies of signal sequences is

questionable. Both Chou-Fasman predictions and a Consensus prediction procedure are unable to

propose structures for peptides of a system that correlate explicitly with the in vivo activity trend ofthe

system. In the case of C-F calculations, the high J3-structure probability values obtained for the

peptides of LamB and CPY lead to inconclusive findings, and even though cc-helical probabilities are

higher than those of the ~-structure for the peptides of the gC system, activity trends cannot be

explained. In the case of Consensus prediction, only the activities of the LamB peptides can be

somewhat rationalised. Thus, although globular protein-based methods have been established to be

valid for some signal sequences, the. inconsistency of predictions makes the methods unsuitable for the

conformational analysis of hydrophobic peptides in general.

4.1.2. Membrane protein-based predictions

Hydrophobicity is postulated to be an important factor affecting SP function. Therefore, hydropathy

plots of sequences investigated in the present study have been studied. The hydrophobic nature of

signal sequences and their presumed adoption of a common conformation upon integration into

membranes also prompted the use of secondary structure prediction techniques based on

transmembrane sequences. PHDhtm, TMpred and PSA are such techniques that have been employed

here.

4.1.2.1. Hydrophobicity

Figures 4.4, 4.5 and 4.6 are hydrophobicity plots for the signal peptides of the LamB, CJ>Yand

gC systems, respectively. The plots were calculated from three different hydropathy scales: the

Hopp and WOods[242j hydrophilicity scale," the Rose et aJ)243j scale which computes mean

fractional area losses, and the "optimal matching hydrophobicity" (OMB) scale of Sweet and

ee Values obtained from this scale were assigned opposite signs and then plotted as hydrophobicity values.
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4.1. Knowledge-based modelling
Eisenberg.[244] Values of the scales have been normalised by the ProtScale program (cf section

.t.l.1) to fit the 0 to 1 range, or the -1 to 0 range for Hopp and Woods, for the purposes of

comparison. For each SP system, sequences of the same length are plotted together.

to LamB

In Figure 4.4, the graphs of WT and A13D are on the left of the page, while those for the

deletion mutants, L!.78r2, L!.78rl and L!.78, are on the right.

The hydrophobic regions of the WT and A13D signal sequences stretch from residue 10 to

residue 16 (cf Figure 3.1), and it can be clearly seen from Figure 4.4(a), (b) and (c) that this

particular region is more hydrophobic for the WTthan for the inactive A13D. This is due to the

replacement of alanine at position 13 in the WT with the highly hydrophilic residue of aspartate.

The plot derived from the Sweet and Eisenberg scale for the WT suggests an h-core that is

shifted down by two residues from the residue-IO to residue-If range, and stretching from

residue 8 to residue 14.

As with the WT and AI3D, differences between the curves of L!.78rl and L!.78 occur in the

residue-IO to residue-If range. All the scales compute L!.78rl (50% active) to be more

hydrophobic than L!.78 (inactive) in this region. The less hydrophobic nature of the L!.78 regi.on

results from the substitution of cysteine at position 13 in L!.78r 1 by the more hydrophilic glycine

residue. The absence of proline at position 9 in the active L!.78r2sequence produces a peak in its

hydropathy curve at residue 10, whereas the curves of proline -containing L!.78rl and L!.78 peak at

residue 13 or 14. Consequently, the hydrophobicity of L!.78r2 cannot be directly compared with

the hydrophobicities of L!.78rl and L!.78. These results contradict the assumption of McKnight et

al.[173] that the h-cores of these deletion mutants consist of residues 10 to 12. The plots infer that

the cores should be. lengthened to include the residues from position 8 to position 16.

Separately, the plots of the WT and A13D and of L!.78rl and L!.78 correlate with their respective

sequence activities. However, no correlation with activity can be distinguished between the

longer and shorter sequences. These findings arc confirmed by values calculated for the average

hydrophobicities of the h-regions of the pepddes; the values are tabulated in Table 4.6 Note

that the h-regions of L!.78r2,L!.78rl and L!.78 have been lengthened as discussed above.
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!.l. Knowledge-based modelling

Table 4.6: Summary of the translocation efficiencies and hydrophobicities of the signal peptides
in the LamB system

Average bydrophobicity of h-region"
Signal Translocation h-Region" Hopp Rose Sweet
peptide efficiency" 1%
WT 100 LAVAVAA 0.971 0.790 0.206

A73r2 90 LLVAAGVMS 0.860 0.713 0.326

A78r1 50 LPVAACVMS 0.780 0.711 0.239

Al3D 10 LAVDVAA 0.471 0.773 0,0757

A78 0 LPVAAGVMS 0.680 0.692 0.155

• values from McKnight et al.(l13r
b referto Figure 3.1; h-regions for A78r2, 678rl and 678 have been adjusted according to hydropathy
plot results

C calculated by adding the residue hydrophobicity values assigned by the Hopp and Woods, [242] Rose et
al. [243] and Sweet and Eisenbergl244] scales, and dividing by the number of residues

• Cpy

InFigure 4.5, the graphs for the shorter sequences of CPYm6 and CPYm12 are on the left side

of the page, while those for the longer sequences of CPYm2, CPYm8 and the WT are on the

right side.

The hydrophobic regions of CPYm6 and CPYm12 stretch from residue T to residue 12 (cj

Figure 3.2). Figure 4.5 shows that the h-region of CPYm6 is more hydrophobic than that of the

less active CPYm12. This is attributed to the replacement of leucine at position 11 in CPYm6

with the more hydrophilic residue of glycine in CPYm12.

The substitution of glycine-If in the WT by the slightly more hydrophobic alanine residue in

CPYm8 leads to similar hydrophobicity plots; CPYm8 possesses a slightly more hydrophobic h-

core (residues 7 to 13) than the WT. The area below the h-core (residues 7 to 13) curve of

CPYm2 is larger than the areas below the corresponding curves of CPYm8 and the WT. The

CPYm2 curve displays a break at position 10, which is occupied by glycine.

By combining the results from the shorter sequence plots with those from the longer sequence

plots, it can be observed that, apart from CPYm12, results correlate to some extent with

mammalian translocational efficiencies. However, the results cannot rationalise the large

variation in activity between CPYm2 and CPYm8. These observations are confirmed by

calculated values for the average hydrophobicities of the h-regions of ti I,epeptides, tabulated in
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Figure 4.5: Hydrophobicity plots of the signal sequences of the CPY signal peptide system determined from
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4.1. Knowledge-based modelling
Table 4.7. It would appear that, relative to CPYm6 and CPYm8, the average hydrophobicity

value of the h-core ofCPYm2 is too low.

Table 4.7: Summary of the mammalian translocation efficiencies and hydrophobicities of the
signal peptides in the CPY system

Average hydrophobicity of h-region"
Signal Translocation h-Reglon" Hopp Rose Sweet
pee_tide efficiency" 1%
CPYm6 97 LLCLLL 1.'567 0.860 1.05

CPYm2 94 LLCGLLL 1.429 0.840 0.800

CPYm8 27 LLCALGL 1.243 0.824 0.569

CPYm12 21 LLCLGL 1.367 0.838 0.730

CPY undetectable LLCGLGL 1.171 0.821 0.530

• values from Bird et al.1204j
b refer to Figure 3.2
C calculated by adding the residue hydrophobicity values assigned by the Hopp and Woods,[242J Rose et
al. [243J and Sweet and Eisenberg[244]scales, and dividing by the number o£residues

• gC

The graphs on the left side of Figure 4.6 compare the WT peptide with the shorter MID

sequence. The first five residues of the hydrophobic region of ll.A10, i.e., residues 8 to 12, have

higher hydrophobicity values than the corresponding residues of the WT, but the h-core curve of

the latter peptide (residues 8 to 16) is wider than that of MIO. Thus, their translocation

efficiencies are expected to be similar. This is indeed the case, as can be noted in Table 4.8.

The graphs on the right side of Figure 4.6 compare the gC sequences which contain the proline

residue. The insertion of proline into the WT sequence causes valleys to occur in the h-cores

(residues 8 to 16) of these peptides at positions corresponding to that of proline. The shallower

valley in the A10P curve seems to explain its greater ability to translocate secretory proteins

when compared with L12P and L14P. However, the curves of L12P and L14P do not offer an

immediate explanation concerning their relative translocation abilities.

Caler ated values for the average hydrophobicities of the h-regions of the gC peptides are

tabulated in Table 4.8. Trends followed by the values agree with the observations gathered from

the hydropathy plots: the WT, MlO and A10P behave similarly regarding their export abilities,

and are more translocationally efficient than Ll2P and Ll4P; no distinction in export ability

between L12P and L14P is perceived.
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Table 4.8: Summary of th.! translocation efficiencies and hydrophobicities of the signal peptides
in the gC system

'Average hydrophobicity of h-region"
Signal Translocation h-Region" Hopp Rose Sweet
peptide efficiency" 1%
WT 100 AMLALLALY 1.37 0.803 0.708

t.AIO 99 AMLLLALY 1.48 0.811 0.846

AIOP 98 AMLPLLALY 1.31 0.792 0.698

L12P 19 AMLALPALY 1.17 0.780 0.518

L14P 5 AMLALLAPY 1.17 0.780 0.518

• values from Ryan and Edwards[2S?]
b refer to Figure 3.3
C calculated by adding the residue hydrophobicity values assigned by the Hopp and Woods,[242]Rose et
al,[243]and Sweet and Eisenberg(244)scales, and dividing by the number of residues

4.1.2.2. PHD methods

A summary of prediction findings using the PHDht:m[224]method for the recognition of ex-helical

transmembrane regions in a peptide is given in Table 4.9. The program predicts two states:

helical transmembrane and non-transmembrane (loop). With the exclusion of LamB's \VT and

Al3D, results appear to be illogical, The only explanation is that the length of sequence

submitted for analysis is crucial to predictive accuracy. Indeed, membrane-spanning domains of

proteins generally consist of22 to 23 amino acids. In addition, the hydrophobic regions of these

membrane-spanning segments are longer than the hydrophobic regions of SPs.

Solvent accessibilities for the signal sequences were calculated with PHDacc[24SJ (see Table

4.10). Data is provided in respect of three accessibility states; buried; intermediate; exposed.

States listed in the table in bold typeface occur in the hydrophobic regions of the sequences.

Predictions confirm that the entire sequences are highly hydrophobic since the majority of the

sequence residues are buried or inaccessible to solvent (71 % to 80% for LamB, 65% to 68% for

CPY, 71% to 91% for gC). Buried residues implies small surface areas for the sequences which

may, in tum, imply cc-helical structure arrangement. No other usefu' 'nformation could be

deduced from the results.
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Table 4.9: Secondary structure prediction of the sequences of the LamB, CPY and gC
systems determined witb the PHDhtml1241 prediction method

Secondary structure
prediction

System Signal peptide % ce-helix % loop Length of submitted
(coil) seguenceb

WTI A'::D !~: : :
1 .6.78r2,.678r1, .6.78 i 0 100 21

·..···..CPy··· ..+..···..····....·;;Ii·....·..·....·..····j..·..···..·....O....··....·..·..·..·..····..·lOo..·····..+..·....·..·....'19·;:;~·2.Il
! ! !

.............. ; 1 , ,10 .

gC i alIa i 100 0 1 21or22
: : i

• all the sequences of the system
b number of residues submitted for analysis

Table 4.10: Solvent accessibility prediction of the sequences of the LamB, CPY and gC systems determined
with the PHDaccl24S1 prediction method. b = buried in interior, i = intermediate, e = exposed to solvent, spaces
represent deleted residues.

System Signal Solvent acccssibility prediction
!!cptide"

L~ ~ MMITLRKLPL!YAYAAGVMSAQAMA

WT
.6.78r2
.6.78r1
Al3D
.678

1
b b b b
b b b b
b b b b
b b b b
b b b b

5
b i e b e
b i e e b
bee b e
b i e b e
bee b e

10 15
b h b b b b

b b
e b

b b b b b b
e b

20
b b b b b b
b b b b b b
b b b b b b
b b b b b b
b b b b b b

e b
e b
e b
e b
e b

25
b e
b e
b e
b e
b e

CPY WTb M K AFT S 11 g Q 1 Q 1 S TTL A K A

CPYm6
CPYm2
CPYm8
CPYm12

WT

1
b e b
e e b
e e b
e e b
e e b

5 10
b b b b b bee
b b b b b b b b
b b b b b b b b
b b b b b b b
b b b b b b b b

b
c b
c b
b b
e b

b ebb bee
bee b bee
bee b bee
bee b bee
bee b bee

15 20

gC WTb MAS L A RAM L A L 1 A 1 X A A A I A A A

WT
.6.A10
AI0P
L12P
L14P

e b
e b
b b
e b
b b

5
b b bib
ebb b b
b h b e b
b b b e b
b b b b b

10 15 20
b b b b b b b ebb b b b b e
b b b bee b b b b b b e
b b b b b b b b b b b b b b e
b b b b h b b b b b b b b b e
b b b b b b b b b b b b b e

a for each system, the signal. pep tides are arranged in order ofdecreasing translocation efficiency
b the sequence of the wr is listed as a reference; a list of amino acid residue abbreviations is available on page xi

of this thesis; residues in the h-core are underlined
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Itmust be emphasised that these PHDacc predictions should be treated with circumspection as

the method, based on neural networks, was trained on a set of globular proteins, and

hydrophobic segments in globular proteins (6 to 8 residues in length) are generally shorter than

the hydrophobic regions of signal sequences (10 to 15 residues long).

4.1.2.3. TMpred
The TMpred program selected the central region of each signal sequence and predicted its

transmembrane a-helical orientation (inside ~ outside or outside -+ inside). Predictions for the

sequences of the three SP systems are plotted in Figures 4.7, 4.8 and 4.9. Both orientation

models are depicted in the figures.

The majority of the sequences (LamB WT and Al3D, CPYm6 and CPYm12, gC system)

appear to prefer the inside ~ outside orientation, where the N-terminal of the peptide enters the

lumen of the membrane from the cytoplasm, as opposed to the outside ~ inside orientation,

where the N-terminal exits the Iumento the cytoplasm. This finding suggests that SPs may enter

the membrane in an a-helical conformation. On exiting the membrane, the SPs may adopt an

extended conformation.

Separately, the plots of the longer sequences (left of the figures) and of the shorter sequences

(right of the figures) of the LamB and the CPY systems correspond with their relative signal

sequence translocation efficiencies, e.g., the LamB WT has a higher probability of occurring as

a transmembrane helix than the less active Al3D, and transmembrane probabilities decrease

from the active .6.78r2to the inactive .6.78. However, the longer sequence plots cannot be

directly compared with the shorter sequence plots as a means of evaluating sequence activity.

For example, CPYm6 and CPYml2 are postulated to have less tendency to contain membrane-

spanning regions than CPY.m2,CPYm8 and theWT.

Although predictions for the WT and MID sequences of the gC system (left of Figure 4.9)

correlate with in Vivo activities, predictions for the proline-containing sequences, AIQP, Ll2P

and L14P (right of Figure 4.9) do not.
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4.1.2.4. PSA
Secondary structure probability trends obtained from PSA[247.248jcalculations are graphed in

Figures 4.10, 4.11 and 4.12, and the probabilities of the sequences being membrane-spanning

regions are listed in Table 4.11. PSA analyses peptides for four structures: u-helices; loops;

turns; (3-strands. The combined probabilities of these structures is unity for each sequence.

Table 4.11:. Translocation efficiencies and membrane-spanning
probabilities of the sequences of the LamB, CPY and gC systems
determined with the PSAI147,l48J prediction method

System Signal peptide Translocation Membrane-spanning
efficiency 1% probability

WT 100 0.9630

A78r2 90 0.9390

A78r1 50 0.9080

Al3D 10 0.9071

A78 0 0.8742

CPYm6 97 0.8829

CPYm2 94 0.8739

CPYm8 27 0.8651

CPYm12 22 0.8312

CPY undetectable 0.8034

WT 100 0.9922

6AIO 99 0.9910

AlOP 9f 0.9812

Ll2P 19 0.9785

Ll4P 5 0.9792

LamB

CPY

gC

The signal sequences in this study we.e predicted to form predominantly e-helices, with the loop

or coil structure favoured next. Thus, only these structure probabilities are shown in the graphs.

Probability values for the tum and p-strand structures were relatively low « 0.16 for the LamB

peptides, < 0.10 for the CPY peptides, < 0.053 for the gC peptides).
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Figure 4.10: Probable secondary structure of the sequences of the LamB signal peptide system
determined with the PSAI2~7,l4SIprediction method. (a) n-helical and (b) loop structures are shown.
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Figure 4.11: Probable secondary structure of the sequences of the CPY signal peptide system
determined with the PSAI247,l48) prediction method. (a) a-helical and (b) loop structures are shown.
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Figure 4.12: Probable secondary structure of the sequences of the gC signal peptide system determined
with the PSA1147,l4SIprediction method. (a) n-helical and (b) loop structures are shown.
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Membrane-spanning probabilities correlate well with the ability of the SPs to secrete proteins,

while cc-helioalstructure probabilities correlate less well. The effect of the hydrophilic, helix-

breaking proline residue on secondary structure formation can be distinctly discerned from

Figures 4.10 and 4.12 (minima on the cc-helixplots; maxima on the loop plots).

To summarise, secondary structure prediction methods based on rr-embrane proteins appear to yield

more useful information than methods based on globular proteins. Most of the membrane-based

programs are able to propose structures tor peptides of a system that correlate explicitly with in vivo

activities. The inconsistencies in predictions that still occur are probably due to the fact that

hydrophobic regions of the signal peptides are shorter than membrane-spanning segments, resulting in

erroneous calculations. PSA is the only prediction method that seems to deliver results which correlate

well with observations from the literature. Nevertheless, PSA and other knowledge-based modelling

algorithms are only able to partially predict SP conformation as other factors, such as peptide

interactions, may be pertinent.
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4.2. Molecular modelling

4.2.1. Systematic conformational searches

4.2.1.1. SYBYL
Although systematic searches executed with SYBYL were ton crude to yield any meaningful

results, the searches did produce two general findings which are illustrated in Figure 4.13. In

the figure, -:....-iformations attained from two searches of the 6.78 signa, sequenr one with

,t' and one with applied l3-constraints, are plotted against their respective

;; . !rf" values. The findings are: (1) signal sequences are

'~r,·. 'IV stable with their h-cores constrained in the a-helical geometry

~\.. average conformational energy for the a-helical conformations

.ege energy for the l3-sheet conformations is higher at 14.699

app":

calci,

considers

than in th. ,

is 7.443 kcal mo.

kcal mort); (2) local mu <i energy wells for the p-constrained conformations are much

shallower than those for the a-constrained conformations (the plot for the p-constrained

conformations is relatively smoother t1.1anthat for the a-constrained conformations), It would

appear that the ce-hehx secondary structure is energetically favoured, while that of the l3-sht.et is

statistically favoured.

IX-helical ~-sheet

~r-~--------------------~

Or-~---r--+-~--~--~-+~
5 9 ~ ~ ~ ~ ~

Conformation nuniJer

~r---'----------------------~

5 9 ~ 17 ~ ~ ~

Conformation nurroer

-------------------------------------- __--__---------------------
Figure 4.13: Comparison of local minima energy wells of the LamB A78 slgnal sequence constrained in
the a-helical and j3-sht:et secondary structures during systematic searching with SYBYL. Proline (I) =
lilOQ rod the prolyl ring is puckered 'down'. For comparison purpose". equal numbers of
conformations for the two structures are graphed. Note the different encrgy scales on tile ordinates.

91



4.2. Molecular modem::~

Rnmachandran plots of the.lowest cnergy-mlnlmised structures for the LamB signal sequences, .
of active ll78r2 and inactive ll78 are given in Figure 4.14. Numbers drawn beside points on the'

plo.s indicate the sequence numbers of the amino acids of the peptides (oj. Figure 3.1). Since a,.

helical conformatlonal constraints were imposed on the h-cores (residues 10 to 12) of the

sequences during conformational searching, h-core (~, '1') values reside in the Zimmerman cr..

helix region, The majority of residues flanking the h-core OSS~Ill\e other confbrmations.

(0) t\')'8r2

---------------------------- ..........------.....--------------
(b) 678

·18) -100 ·14) -1m ·1CO .m .m -4J
PhI/degrees

:[ __J L~~.~__.L__l..;.j __.
I I I I I I
I I I I I I

ro ....- -~ .........:...........!~...~~-....,..~.,.......~......-
I I I 1 I I

!!! I I I I I I

~., 43,· - -:- •• -:- - • ~ •• - -1- - - + • - - r - - •
I I I I I I

~ 0 "-.~---: L,; :---!--.L--
:f ::::: ,9 :

..t5 ..·.... !......··..:·......~- .....i..·...-+'1 .......~........
•• 3 : :.: :10 11 12

..00 ..... t· ~ ....... :- .. ~ ~ ........ ~ .... - t ..- ..~"- -
I I I I I I

~$~ ....I~~I---rl--~'~~I--_TI--~
-18) -18) ·1<0 -12) ·10) .ro .ro .I{)

~hl/degreC!s

Figm'c 4.14: Rnmnchandl'r,ll plots of the lowest ellergy-minhnlscd structures fOl' the (a) 678,'2 and (1))
607S slgna! sequences of tIle Lamn SystClI1 determlacd with S\'BYJ., systematic searches, 'For 678,
proline (i) "" 1800 lind the prolyl rlng Is puckered 'down', The h-cores of the sequences arc constrained
In the a-helix conformation,

As mentioned in section 3.3.1, both fragment-based and torsional angle-based approaches were

explored during systematic conformational searches. Nevertheless, torsional-angle searching is
tho preferred technique because, firstly, it cannot be assumed that the conformation of each
residue is independent of the entire peptide conformation, and secondly. individual residue
conformations may change when placed in a peptide chain.
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4.2. Molecular modelling

4.2.1.2. ECEPPAK
The distance-constraints modelling strategy was first employed in systematic searches performed

with ECEPPAK. Since the ECEPPAK program imposes distance-constraints vier the

application of a pseudo-potential, the energy associated with this potential (low values which

average 10,3 kcal mol") was subtracted from the total minimum potential energy obtained for

each resultant conformation. Although one cannot in principle apply calculations for isolated,

single residues to globular proteins because medium- and long-range interactions are able to

shift torsional angle values away from their pre-determined minima locations, side-chain

torsional values acquired from the literature were nonetheless used here.

Minimised energies obtained from these sets of experiments (which were conducted with a

dielectric constant of 2) are plotted as a function of distance-constraint in Figure 4.15 for cc- and

l3-conformations. Only the lowest-energy values per distance-constraint are shown. Both plots

(a) and (b) indicate that sequences constrained to be cc-belical yield lower energies than those

constrained to be in the l3-sheet. This is an anticipated result as l3-structures need to be

stabilised relative to their environment vier hydrogen bonding, which cannot happen in a

hydrophobic medium. The searches may thus validate the assumption that SPs exist in highly

hydrophobic media as e-helices. The u-hclical energies also tend to form parabolic curves,

whereas the l3-sheet energies appear to lncrease linearly with distance-constraint.

Ramachandran plots of the lowest energy-minimised structures for the active A78r2 and the

inactive tl78 are given in Figure 4.16. Only those residues with relatively divergent (~, IJI)

values are numbered in the figure. All eleven residues per sequence chosen for MM simulation

have ($, \JI) values which correspond to the Zimmerman ce-helical region. A comparison with

the Ramachandran plots in Figure 4.14 infers that the optimum structures computed with

ECEPP AK are probably closer to the GMEC than those computed with SYBYL since they

display more ce-helical character. However, this conclusion cannot be ascribed to the

performance of the respective force fields as thorough searching was unrealised and different

experimental conditions were exercised.
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Figure 4.15; Minimised energy versus distance-constraint curves for the (a) A78r2
and (b) A78 signa' sequences of the LamB system determined with ECEPPAK
systematic searches. For A78, proline (l) = 1800 and the prolyl ring is puckered
'down'. The central se.en residues of the sequences arc constrained in the n-helix
and ~-sheet conformations.
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Figure 4.16: Ramachandran plots of the lowest energy-minlmised structures for the (a) A781'2 and (b)
1:178 signal sequences of the Lamb system determined with ECEPPAK systematic searches. For A78,
proline co= 1800 and the proIyI ring is puckered 'down'. The central seven residues of the sequences
are constrained in the ce-helix conformation.

The method of deterministic searching using both SYBYL and ECEPPAK was found to be impractical

in terms of required computer time and ineffective in locating local minimum energy structures; many

more points than those shown in Figures 4.13 and 4.15 were attained, but these coincided with

relatively high energies. Conclusions drawn from these results may therefore be suspect.

4.2.2. Optimisation of the performance of ECEPPGA

ECEPPGA parameters optimised for this application and parameter values employed during

optimisation are listed in Table 4.12. The remaining parameters were fixed at values recommended by

Stephens;[1201these values can be seen in the par am. in file in the Appendix. The mutant sequences

A78r2, A78rl and A78 of LamB were subjected to investigation. Jobs, each consisting of three runs,

were conducted with and without distance-constraints for A78r2. Only jobs with distance-constraints

were conducted for A78r1 and A78.

Results presented for each job are derived from population energy statistics gathered during the

experimental run which yielded the lowest energy. The progression of a job is plotted as a function of

the number of generations passed. The plots illustrate the rate of minimisation achieved under different
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4.2. Molecular modelling
experimental conditions. The counting of gen~rations is dependent on the elected generation counting

strategy. 11 this instance, generations were counted since the last improvement in best solution or

structure.

Table 4.12: The variation of relevant ECEPPGA parameters during GA optimisation runs

Name of job Generation gap size:
populntion Size

ECEPPGA parameter
Iterations per Generations
mlnimlsatlon per run

Selective pressure" and
breeding strategy

100

50

50

50

30

30

15
15

uniform and distance bias

uniform and distance bias
uniform and distance bias

uniform and distance bias
linear and template breeding

A

B

C

D

E

0.6

0.3

0.3

0.3

0.3

100 30

a fitness to breeding-rate relationship

Results for job B have been omitted from Figure 4.l7(a) as the job required significantly more

generations (210) than the others for completion of the GA. Plotted points for job D in the same figure

cannot be distinguished due to the fact that it afforded the Same results as the first 70 generations of

job C. Job D was completed after 72 generations had been cycled.

Perusal of Figures 4.17, 4.18 and 4.19 shows a moderate degree of consistency in results when the

optimisation procedure is applied to the three peptides. Thus, certain general observations may be

made: halving of the generation gap size to population size ratio from 0.6 (job A) to 0.3 (job B)

produces very similar r inimisation rates; halving the maximum number of iterations allowed per

minimisation (from job B to job C) generates conformations that are lower in energy than those

generated by job B; halving the number of counted generations per run (from job C to job D) improves

slightly on results from job C; changing the selective pressure and breeding strategy options (from job

D to job E) yields the most noticeable effect by increasing the rate of minimisation and producing the

lowest-energy conformations. Some of the inferior performances of jobs A to D may be ascribed to

over-exploration, i.e., recombination occurred too often. 'This is evidenced by the greater number of

actual generations used to complete the runs.

The goal of optimising the GA was to reach the lowest-energy conformation using the least possible

amount of generations and tie least amount of computer time. This goal appears to have been

achieved with the parameter values employed in job E. The success of the change in selective pressure

from uniform, where the probability of a conformation being selected as a parent is independent of its
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Figure 4.17 Effect of parameter variation on the minimisation achieved at various
generations for the A78r2 signal sequence of LamB. (a): without distance-
constraints; (b): with distance-constraint (NI en-S to C"'_14) := 9.20 A.
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Figure 4.18: Effect of parameter variation on the minimisation achieved at various
generations for the A78rl signal sequence of LamB. The sequence was distance-
constrained (Nleu-8 to Cval.14) at 9.20 A.
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Figure 4.19: Effect of parameter variation 011 the minimisation achieved at various
generations for the A7S signal sequence of LamB. The seqt uce was distance-
constrained (N1 •• -8 to Cv•I•14) at 9.20 A.
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4.2. Molecular modelling
fitness, to linear, where the probability of a conformation being selected as a parent is linearly related

to its fitness, and in breeding strategy from distance bias to template breeding concurs with

observations made by Stephens.[1201 Stephens found that a strongly biased breeding rate results in high

selective pressure and thus faster optimisation, and that template breeding is highly effective in

significantly improving ECEPPGA efficiency.

Although the information gleaned from this optimisation procedure prompted the adoption of parameter

values corresponding to job E for ECEPPGA searches, the mformation must be interpreted with

caution for several reasons. Firstly, reliability of the data will be very low because only three runs

exist for every parameter setting, and more statistical data than this is required to infer reliable results.

Secondly, only the effect of single parameters in isolation is considered, and it is possible that

combinations of parameters exist that would yield better success rates. Nevertheless, the analysis has

permitted us to select a serviceable procedure.

As optimisation of the GA was not one of the primary aims of this study, and as the final optimised

parameters were judged to be satisfactory for our purposes, no further work concerning optimisation

was deemed necessary.

4.2.3. Comparison of search methods

To assess the performance of the genetic algorithm, the lowest conformational energies found with the

ECEPP AK systematic search (where residues were constrained in the cc-helix) are compared to those

found with ECEPPGA. Figure 4.20 shows minimised energies of the active LamB /:,.78r2 and the

inactive /:,.78 signal sequences plotted as a function of distance-constraint. Fewer conformers were

calculated with the systematic search than with the ECEPPGA search. It can be clearly seen that

ECEPPGA consistently succeeded ill finding lower-energy conformers,

The genetic algorithm therefore performs well relative to extensive systematic searching. However, the

latter technique is only efficient for the conformational analysis of sr-all peptides, and proper

evaluation of the genetic algorithm performance requires contrasting it with other methods which are

more competent than the systematic search. Still, ECEPPGA has succeeded in locating SP minimum-

energy conformations that compare favourably with experimental observations from IDe literature; it

has thus been proven to be a highly efficient conformational searcuing technique.
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Figure 4.10: A comparison of ininimised energy versus distance-constraint curves
for the (a) t.78r2 and (b) A78 signal sequences of the LamB system determined
with the ECEPPAK systematic search and ECEPPGA. For t.78, proline 0) = 1800

and the prolyl ring is puckered 'down'. The central seven residues of the
sequences are constrained ill the n-helix conformation for the systematic search.
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4.2.4. ECEPPGA conformational searches

Results reported in this section were obtained from runs conducted with an effective dielectric constant

of 2. Resultant ECEPPGA minimised energy versus distance-constraint curves for the three

investigated systems are shown in Figures 4.22, 4.25 and 4.28.

Approximately parabolic-shaped curves were produced which vary in well depth, steepness of well

sides and minimum position relative to distance-constraint. Although some curves display local

minima, a principal well was obtained in most cases, suggesting that the global minimum had been

reached. As the distance-constraint value increases from the principal well position, the conformation

of the sequence changes from the low-energy c-helical form to the less stable extended structure. This

is illustrated for the WT signal sequence of LamB in Figure 4.21. Generally, there is an increase in

uniformity of the curve as the distance-constraint increases beyond the value at which the energy of the

structure is a minimum. Conversely, as the distance-constraint decreases from its value at the energy

minimum, the residues in the sequence are forced to be in close contact with each other, resulting in an

irregular series of structures (Figure 4.21). Changes in peptide conformation during MM calculaticns

have been witnessed by other researchers[IIO,2S3,2S4)who also use distance-constraints as a modelling

strategy: alanine tripeptide and valine tripeptide unfold -frorn an o-helix to a tum structure to an

extended conformation;[llO,253)an MeA (c-methyl alanine) oligopeptide undergoes a transition from an

ce-helix to a 31•• uelix, [254)

Quantitative ini rmation about the lowest-energy conformation calculated for each SP is provided in

Tables 4.13, 4. ~and 4.15; data for both constrained and unconstrained runs are shown. The last

column in each t ale is pertinent to both sets of runs. Conformational searching of sequences that were

not distance-constrained attempted to confirm whether their lowest-energy structures were equivalent to

those obtained from runs on constrained sequences. As expected, if the global minimum had been

attained, minimum energy values from runs with the unconstrained sequences are similar to those

acquired with the constrained sequences. Torsional (~, 'I') values of residues belonging to lowest-

energy conformations at distance-constraint values for which the WT sequence of each SP system is a

minimum, and whose (~, '1') values reside in the Zimmerman-defined ce-helical region, are presented as

Ramachandran plots in Figures 4.23, 4.26 and 4.29. Helical wheel plots of these same minimum-

energy conformations are supplied in Figures 4.24, 4.27 and 4.30.
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(a) 9.00 A
Eccnf = -74.6964 keal mol"; residues 5 to 10 in the stereoview are a.-helical

(b) 11.00 A
Econf = -86.4877 kcal',lor'; resldues 5 to 16 in the stereoview are cc-hellcal

(e) 13.00 A
Emf = -78.4723 kcal mol"; residues 8 to 16 in the stereovleW are cc-hellcal

Figure 4.21: Stereoviews {Ifminimised energy structures for the WT signal sequence of the LamB system
determined with ECEPPGA at various distance-constraint values. Calculations were performed with a
dielectric constant 00.
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4.2.4.1. LamB

The a-helical secondary structure is adopted by the lowest-energy conformations of the five

peptide sequences of the LamB system (see Table 4.13). C f the fifteen residues (arg-6 to ser-

20) in the calculated sequences of the WT and A13D, twelve (pro-9 to ser-20) conform to the a-

helix. Of the 11 residues (arg-6 to ser-Iti) in ~78r2, ~78rl and lI.78, ~78r2 adopts a fully «-

helical structure, while ~78rl and 1.7'6 adopt a partly cc-helical structure from pro-9 to ser-Iti,

The initiation of helices in the sequences which contain proline occurs at the proline position.

Table 4.13: A comparison of the lowest-energy minimised structures f.')r the LamB signal peptide system
determined with ECEPPGA, with and without dlstance-constr .uts, Calculations were performed with a
dielectric constant of 2.

Distance-constrained Unconstrained
Signal Distance- Eta•r End to end Et•Dr Residues in a-helical
~e~tide constraint fA Ikcal mol" distance"/A !lccal mol" conformation
wr 11.00 -86.4877 10.8805 -86.4601 pro-s to ser-20

t:,,78r2 11.00 -68.6256 10.9630 -68.6445 arg I) to Ger-1':;

/:;.78r1 10.50 ·77.1797 10.4162 -77.1498 pro-s to ser-If

A13D 11.00 -101.610 10.8976 ·100.773 pro-s to ser-20

A78 10.50 -75.9978 10.4370 -76.0534 pro-s to ser-Is

• measured distance between end points described in Table 3.1

A comparison of the graphs from the calculations on the LamB sequences, Figure 4.22, shows

that the moderately active ~78rl and inactive ~78 sequences are most stable when the distance

between the defined end points is approximately 10.50 A, whereas this distance is about 11.00 A
for the WT, A13D and ~78r2. Ifideal a-helical conformation is ussumed for all the constrained

residues in each peptide, i.e., a mean rise per residue of 1.5 A, the minimum energy distance-

constraint would be expected to be 10.50 A, since seven residues were placed under constraint,

Although all seven constrained residues in the WT (from Nteu.ID to Cnla.16), A13D(from Nteu-ID to

Cala-16) and ~78r2 (from Nteu.s to Cvnl.IS) display ce-helical character, the observed distances

(values in Table 4.13) are greater than 10.50 A, so that these helices are somewhat extended.

Of the seven constrained residues in ~78rl (from Nleu-S to Cv.t.18) and La8 (from Nt.u.s to Cval-IS),

only six are cc-helical. For both peptides, the seventh residue is leucine-S, which conforms to tJ'.e

l3-sheet and which precedes proline in the sequence.
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4.2. Molecular modelling

A comparison of energy-well depths in Figure.4.22 appears to indicate that the deletion mutant..
without proline, 6.78r2, exhibits a slightly narrower and deeper well than the two proline-

containing deletion mutants, 6.78ri and 6.78. TIlls suggests that 6.78r2 has a higher a-helical

conformational specificity than do ~78rl and 6.78. The longer calculated helix of 6.78r2,

relative to t.78rl and /178, seems to corroborate this suggestion. Although the energy-well of

the WT seems to be narrower and deeper than that of Al3D, inferring that the WT is more likely

to form an o-helix, results in Table 4.13 do 110toffer any differentiating inforrnatiou concerning

structure.
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Figure 4.22: Minimised energy versus distance-constraint curves for the signal sequences of the
LamB system determined with EC:CPPGA with a dielectric constant of 2. The scale on the energy
axis is correct for the WT curve. Energy values for the remaining curves have been shifted to
accommodate this scale. The curves are arranged in order of translocation efficiency: WT
(unshiftcd); t.78r2 (shifted by -30 kcal morl); t.78rl (shifted by -40 kcal mOrl); A13D (shifted by -30
kcal mol"); A78 (shifted by -70 kcal mol"),
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4.2. Molecular modelling

Ramachandran plots in Figure 4.23 show that at a distance-constraint of 11.00 A, the (~, 'I')

values for all the amino acids in the computed D.78r2 structure fall in a limited c-helical range of

torsions, while the ce-helices of the D.n.1 and D.78 structures contain amino acids with (~, '1')

values which fall outside this limited range. The proline-9 residue, in particular, is removed

from the range. These plots thus also infer that .D.7Sr2has a greater tendency to form c-helices

than do D.78rl and D.78. However, the plots do not illuminate any conformational differences

between D.78r 1 and D.78, and between the WT and A13D.

If it is assumed that formation of an u-helix is necessary for peptide export, a higher degree of

specificity for t:!e c-helix would result in a higher efficiency of translocation across the

membrane. According to translocation efficiencies (Figure 3.1), D.78r2 is transported across the

membrane with more success than are D.78rl and D.78. Results from ECEPPGA searches agree

with this finding but do not, however, explain the differences in activity between D.78 and D.78rl;

D.78rl is 50% active, while D.78 is completely inactive. On inspection of the e-helical contents

calculated from CD spectra (in SDS micelles) in Table 4.1, D.78rl and D.78 exhibit a 5%

difference in content with a mean value of37.5%, while D.78r2 shows a relatively higher content

at 75%. The computational procedure that we have used may thus be sufficient to differentiate

among signal peptides on the basis of cc-helical content if large differences in that content exist,

but canuot discriminate between signal peptides with similar helical tendencies. It thus cannot

discriminate among translocation efficiencies if ce-helical content is to be the determining factor,

This point is reinforced when data for the WT and Al3D sequences are compared. The curves

for the peptides, depicted in Figure 4.22, are similar and their cc-helical contents differ by only

10%, but their effective activities (Table 3.1) are very different.

Since the structural properties of signal peptides, as reported here, do Dot appear to be

determinative with regard to translocation efficiency, the physical properties of these peptides

are probably also relevant. Indeed, it has already been concluded in an earlier section of tins

chapter that the hydrophobicity of each sequence correlates well with e.ficiency of translocation.

For example, one alanine residue in the WT signal peptide has been replaced by the charged,

less hydrophobic residue, aspartate, to form the A13D s:,6illll peptide. This replacement lowers

the overall hydrophobicity of the sequence, which correlates with a reduced functional ability.
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Figu:re 4.23: Ramachandran plots of the ce-helical regions of energy-minimised structures of the signal
sequences of the LaruB system determined with ECEPPGA at a distance-constraint for which the WT is a
minimum, Le., 11.00 A. Calculations were performed with a dielectric constant of 2. The graphs are
arranged (a) to (e) in order of decreasing translocation efficiency.
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4.2. Molecular modelling

Arnphipathicity of the o-helices is another physical property that' rnay contribute to the

functional differences exhibited by the signal sequences. However, apart from the helical plot

for Al3D, the helical plots in Figure 4.24 do not reveal definite divisions of the helical cyunders

into poiar and nonpolar sides.

Because neither secondary structure nor hydrophobicity nor arnphipathicity appears to

predominate in the determination of export ability, it must be presumed that the determinant is a

combination of these factors. It has been previously suggested by Perez et al.[206],in their

molecular mechanics study of the LamB system, that both a-helix formation and hydrophobicity

of the signal peptide are the characteristics needed for successful protein export. It must be

borne in mind, however, that the conformational searching strategies employed by them, viz.,

build-up, random placement of points on the hypersurface, and rigid-geometry contouring, are

not as thorough and extensive as the GA method used in this work, and their results must

therefore be viewed with discretion.

The effect of the ce-helix breaking residues, proline and glycine, on helix propagation was

highlighted by Emr and SilhavY~03] after performing Chou-Fasman secondary structure

calcula ••ions on the LamB signal peptides. TIley predicted that proline and glycine would cause

u-Iielix disruption which would, in turn, decrease peptide translocation ability, and that protein

export would be restored if the proline and giycine residues were replaced by residues that are

commonly found in o-helices, leucine and cysteine in this instance. In our modelling work, the

replacement of proline with leucine (converting !:J.78to !:J.78r2) results in a fully a-helical

structure, but the replacement of glycine with cysteine (converting !:J.78to !:J.78rl) yields very

similar results to those obtained with the original mutant, !:J.78. Since glycine is considered to

prefer the c-helix less than cysteine, it would be expected that !:J.78rl would show a higher

helical content than !:J.73.

It would appear from the data presented here that the presence of proline in sequences causes

breaks in the o-helical forms of the entire sequences, and that the potential of glycine to be a

helix-breaker is not as definitive in this molecular modelling approach. as in the Chou-Fasman

secondary stmcture prediction approach;[203]our observed minimum-energy stmctures indicate

the propagation of c-helices from the proline residue and do not indicate any breaks in the

helices due to glycine. These findings are in accord with the conclusions of Bruch and
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Figure 4.24: Helical wheel plots of energy-minimised structures of the signal sequences of the LamB system
determined with ECEPPGA at a distance-constraint for which the W"f is a minimum, i.e., 11.00 A.
Calculations were performed with a dielectric constant of 2. The graphs are arranged (a) to (e) in order of
del; :easing translocation efficiency. Polar amino acids are shown in bold.
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4.2. Molecular modelling
Gieraschl19j] who found that proline has a larger disruptive effect than does glycine, and that

glycine does not have a strong helix-disrupting influence in the LamB mutant peptides.

4.2.4.2. CPy

The minimised structures of the CPY system display o-helical character throughout their

investigated sequences (Table 4.14), resulting in the r; ....rty shaped curves in Figure 4.25 and

the similar Ramachandran plots in Figure 4.26. In accord with the GA results for the LamB

peptides, no direct correlation is found between translocation efficiency and extent of cc-helical

structure adopted by the lowest energy minimised structures of each sequence.

Table 4.14: A comparison of the lowest-energy minimised structures for the (''PY signal peptide system
determined with ECEPPGA, with and without dlstance-coustralnts, Calculations were performed with a
dielectric constant of 2.

: Distance-constrained Unconstrained
Signal i Distance- EeaDf End to end Eeont Residues in o-hellcal:

peptide i constraint fA /kcal mol" distance" fA /kcal mol? conformation;
CPYm6 ! 12.00 -70.2973 12.0974 -70,4209 phe-4 to thr-lf

J
CPYm2 : 13.75 -72.0831 13.8565 -72.2025 phe-4 to thr-Ie:

i:
CPYm8 : 13.75 -68.9508 13.8634 -69.1528 phe-4 to thr-If:

~.
CPYm12 : 12.00 -66.4533 12.0910 -66.5627 phe-4 to thr-IS

i:
WT : 13.75 -68.5230 13.8530 -68.6361 phe-4 to thr-If:

f. measured distance between end points described in Table 3.1

The curves for the CPYrn2, CPYm8 and the WT signal peptides in Figure 4.25 indicate that the

peptides are most stable at a distance-constraint of approximately 13.75 A. The minimum

energy distance-constraint value observed for the CPYm6 and CPYm12 mutant peptides was

12.00 A (see Table 4.14). This difference in values arises from the deletion of one residue in the

sequences of both CPYm6 and CPYm12, causing them to be shorter in length than the other

peptides. The CPYm6 and CPYm12 curves in Figure 4.25 have, therefore, been shifted by 1.50

.~ the mean rise per residue for an ideal helix, in order to eliminate this mutational artefact. The

eight residues placed under constraint (from Nser-6 to Cser_13) in each of these sequences appear to

form ideal u-belical conformations, while the nine constrained residues (from Nser-6 to C."..14)in

each of the CPYrn2, CPYm8 and WT sequences appear to form o-helices that are slightly

extended. The relatively lower minimum distance-constraint values obtained with the LamB

sequences (Figure 4.22) result from the smaller number of residues constrained between the end

points of the latter.
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4.2. Molecular modelling

A comparison of energy-well depths in Figure 4.25 appears to indicate a slightly narrower arid

deeper well for CPYm6 than for CPYm12, thus suggesting that CPYm6 has a higher n-helical

conformational specificity. This correlates with the translocational efficiencies recorded in

Figure 3.2. However, energy-well depths of CPYm2, CPYm8 and the WT do not seem to

correlate with efficiency. The sole use of these energy versus distance-constraint curves to

predict translocational abilities is therefore questionable, and as suggested above, other factors

such as hydrophobicity must playa role.
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Figure 4.25: Minimised energy versus distance-constraint curves for the signal sequences of the CPY
system determined with ECEPPGA with a dielectric constant of 2. The scale on the energy axis is
correct for the WT curve. Energy values for the remaining cnrves have been shifted to accommodate
this scale. Plots for CPYm6 and CPYm12 have also been shifted right by 1.50 A along the distance-
constraint axis, becaus/ "ne fewer residue of these sequences was constrained during modelling. The
curves are arranged in order of translocation efficiency: CPYm6 (unshifted); CPYm2 (shifted by -10
kcal mOrl); CPYm8 (shifted by -30 kcal mol"); CPYm12 (shifted by -50 kcal mllr1); WT (shifted by -
60 kcal mol").
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Figure 4.26: Ramachandran plots of the c-hellcal regions of energy-minimised structures of the signal
sequences of the CPY syr.tem determined with ECEPPGA at a distance-constraint for which the WT is a
minimum, i.e; 13.75 A for CPYm2, CPYm8 and WT, and 12.25 A for CPYm6 and CPYm12. Calculations
were performed with a dielectric constant of 2. The graphs lire arranged (a) to (e) in order of decreasing
translocation efficiency.
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Figure 4.27: Helical wheel plots of energy-minimised structures of the signal sequences of the CPY system
determined with ECEPPGA at a distance-constraint for whleh the WT is a minimum, i.e., 13.75 A for
CPYm2, CPYm8 and WT, and 12.25 A for CPYm6 anti. CPYm12. Calculations were performed with a
dielectric constant of 2. The graphs are arranged (a) t'J (e) in order of decreasing translocation efficiency.
Polar amino acids are shown in hold.



4.2. Molecular modelling

Similarly to the LamB system, the a-helic~s of the minimum-energy conformations for the CPY

peptides, sketched in Figure 4.27, do not exhibit strong amphipathic character.

Chou-Fasman calculations performed by Bird et al.[204] predict breaks in the e-heliccs of

CPYm2, CPYm8, CPYm12 and the WT due to the presence of glycine. However, the results

here indicate that all the residues in these sequences form one a-helical chain. Thus, as 'Withthe

LamB system, the study shows that glycine is not a helix-breaker of sufficient strength to cause

a disruption in the secondary structures of these signal peptides.

4.2.4.3. gC

The influence exerted by the strongly helix-breaking proline residue on secondary structure

formation is clearly discernible from the results presented here. In Figure 4.28, the curves for

the signal peptides which do not contain proline, the WT and MID, show definite narabolic-Iike

character, whereas the curves for the peptides which do contain proline, A10P, A12P and L14P,

are much flatter by comparison. Disruptions in the a-helices of the proline-containing sequences

are reported in Table 4.15. These breaks occur at residues positioned just before proline.

The curve for the WT signal peptide in Figure 4.28 indicates that the peptide is most stable at a

distance-constraint of approximately 14.00 A. The minimum energy distance-constraint value

observed for the shorter MIO mutant peptide was 12.00 A (see Table 4.15). Since MIO is one

residue shorter in length than the WT, its curve has been shifted by 1.50 A. The eight residues

placed under constraint (from NaJa.7 to Ctyr.14)inM10) appear to form an ideal a.-helix, while the

nine constrained residues (from NaJa•7 to Ctyr.1S)in the WT form an extended ce-helix. Although

conformations at minimum distance-constraint values are reported for AIOP, L12P and L14P in

Table 4.15, the conformations along their curves are so similar in energy, that these choices of

lowest-energy conformations should be viewed as somewhat arbitrary. Their minimum distance-

constraint values and minimum energy values are therefore shown in parenthesis in the table.

113



4.2. Molecular modelling

Table 4.15~ A comparison of the lowest-energy minimised structures for the gC signal peptide system
determined with ECEPPGA, with and without distance-constraints. Calculations were performed with a
dielectric constant (1f2.

Distance-constrained Unconstrained
Signal Distance- E'.Df End to end E'.Df Residues in ce-helical
I!el!tide constraint fA Ikc!llmorl distance" fA Ikcal mol" conf'onnation
WT 14.00 -68.6478 13.9000 -68.7878 arg-6 to ala-16

/lp. '.0 12.00 -67.4761 12.1043 -67.6108 arg-6 to ala-15

A10P (12.25) (-78.72G2) 12.2215 -78.7248 ! arg-6 to met-8, pro-to to tyr-15

L12P (9.75) (-75.5688) 8.9126 -76.0517 ! arg-6 to ala-10, pro-12 to ala-16

L14P (12.50) (-76.9027) 11.4780 -76.5282 I arg-6 to leu-12, pro-14 to ala-16
a measured distance between end points described in Table 3.1

Ramachandran plots in Figure 4.29 show that at a distance-constraint of 14.00 A (12.50 A for

MI0 because of its shorter length), the WT structure consists of an c-helix that is more

uniform than that of MI0. It can be clearly seen from plots (c), {d) and (e) that the proline

residue in positions 10, 12 and 14 respectively distorts the u-helical structure.

These results verify once more that no distinct correlation exists between translocation efficiency

and extent of cc-helical structure adopted by each sequence. The transport abilities of the gC

WT and MI0 can be accounted for, but those of the proline-containing peptides cannot. Thus,

in agreement with the observations made by Ryan and Edwards,[257] whose work is the source

for this gC system study, it must be concluded that a disturbance of secondary structure and a

reduction of sequence hydrophobicity are jointly responsible for signal sequence dysfunction.

Weak c-helix amphipathicities of the low-energy gC conformations (Figure 4.30) lead to the

conclusion that amphipathicity has limited influence on functional efficiency.
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Signal sequence

I.wr 0 .1A10XA10-P-O-L-12-P-I-L-1-~P~.~
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Figure 4.28: Minimised energy versus distance-constraint curves for the signal sequences of the gC
system determined with ECTIF'PGA with a dielectric constant of 2. The scale on the energy axis is
correct for the WT curve. Euergy values for the remaining curves have been shifted to accommodate
this scale. The plot for MIO has also been shifted right by 1.50 A along the distance-constraint axis,
because one fewer residue of this sequence was constrained during modelling. The curves are
arranged in order of translocation efficiency: WT (unshifted); MI0 (shifted by -20 kcal mol"); AIOP
(shifted by -20 kcal mOrl); L12P (shifted by -40 kcal mOrl); LI4P (shifted by -50 kcal mol"),
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Figure 4.29~ Ramachandran plots of the ee-hellcal regions of energy-minimised structures or the signal
sequences of the gC system determined with ECEPPGA at a dlstance-constralnt for Which the WT is a
mlnlmum, i.e., 14.00 A for WT, AtOP, L12P and L14P, and 12.50 A for ~10. Calculations were performed
with a dlelectric constant of 2. The graphs are arranged (a) to (e) in order of decrea.:ing translocation
efficiency.
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(a)WT

ala-?

(b) t.A10 (c) A10P

leu-t t
a1a-13

tyr-15

leu-12
ala-15

(d) L12P (e) L14P

ala-7

met-a
met-a

leu-a leu-14

tyr-15

a1a-13

ala-7

leu-9

. Figure 4.30: Helical wheel plots of energy-mlnlmlsed structures of the signal sequences of the gC system
<'etermined with ECEPPGA at a distance-constraint Ifor which the WT is a minimum, Le., 14.00 A for WT,
AlOP, L12P and L1-1P, and 12.S0 A for t.A10. Calculations were performed with 2 dielectric constant of 2.
The graphs are arranged (a) to (e) in order of decreasing translocation efficiency. Polar amino acids are
shown in bold.
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4.2.5. ECEPPGA conformational searches with modified modelling conditions

Apart from a dependence on force field, molecular modelling calculations are also dependent on

experimental conditions such as hypervolume of conformational space to search, length of calculated

sequence, adopted proline configuration (where proline is present in a sequence), and dielectric

permitivitty, These afore-mentionedconditions were explored, each to varying extents; results thereof

are presented below.

4.2.5.1. Restricted conformationrl space

The ECEPPGA program includes an option which allows torsional angle sampling in user-

defined conformational regions. Modelling in restricted space was carried out in this work

firstly, to examine the capability of the genetic algorithm to find GMECs on selection of this

option, and secondly, to locate all regions necessary to sufficiently explore the conformational

surfaces of signal sequences. The technique of torsional angle sampling in restricted space is

anticipated to be particularly beneficial for large peptides for which adequate searching of

unrestricted space is computationally difficult.

'The three deletion mutants of the LamB system, namely 878r2, 878r1 and 878, were

investigated in diese runs, which were also executed without distance-constraints. The

Zimmerrnan[69]regions corresponding to the right-handed ce-helix(A region) and the p-strand (C,

D, E, F regions) were individually searched. GA parameters whose values were modified from

those used in runs described in section 4.2.3 are width of local mutation" (doubled), torsional

angle sampling strategy, number of generations counted per run (increased to 20), and

population size (halved). The ratio of generation gap size to population size was maintained at

0.3. Gaussian distributions within selected backbone conformational regions as opposed to

selected residue conformational regions was the chosen sampling strategy.

In Tables 4.16 and 4.17, results from runs conducted in limited space corresponding to the o-

helical conformation and to the p-strand conformation are compared with those obtained from

runs conducted in unlimited space. It can be noted that higher conformational energies and

larger end-to-end distances are attained when the moderately active 878rl and inactive 878

dd "Width of localmutation" is the fractionof the total allowedtorsionaispacethat is availableduringa local
mutation.
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4.2. Molecular modelling

sequences are compelled to form ce-helical secondary structures. Runs in unrestricted and

restricted space for the active il78r2 sequence yield equivalent conformations with the restricted

run requiring fewer generations for completion. The technique of limiting torsional angle space

can therefore be used to reduce computation time.

Table 4.16: The effect of ce-helical restricted conformational space on unconstrained conformational energies
of the deletion mutants l)f the LamB signal peptide system determined with ECEPPGA. Calculations were
performed with a dielectric constant of 2.

I Unrestricted space : o-restrlcted spaceI !
Signal i E'.DI End to end Residues in Numbed E'.Dr End to end Residues in Number
peptide i /kcal mol" distance" 'A cc-helical of gen. b llkCal mol" distance" ,A ce-helical of gen,"

:
conformation i conformation!

1l.78r2 -68.6445 10.9630 arg-6 to ser-If 52 -68.6454 10.9630 arg-6 to ser-16 37

6.781'1 -77.1498 10.4162 pro-9 to ser-If 50 -72.8305 11.0690 arg-6 to ser-16 45

6.78 -76.0534 10.4370 prr-9 ~oser-16 53 -71.7770 11.0890 arg-6 to ser-Ie 40

u measured distance between end points described in Table 3.1
b the number of actual generations cycled during the run

As expected, higher energies for p-constrained structures are obtained (see Table 4.17). These

results can be correlated with functional ability if differences in energy between unlimited space

conformations and p-limited space conformations are considered. As translocation ability

decreases fiY{)m il78r2 to il78rl to il78, this energy difference also decreases; this emphasises

the fact tha, c-structures of functional signal pep tides are much more stable than their p-
structures, while ce-structures of dysfunctional peptides are closer in energy to their p-structure

counterparts.

Table 4.17: The effect of f3-strand restricted conformational space on
unconstrained conformational energies of the deletion mutants of the LamB
signal peptide system determined with ECEPPGA. Calculations were
performed with a dielectric constant of 2.

E,.D' Ikcallllorl

Signal Unrestricted f3-restricted b(f3-restricted -
~tide s~ace s~ace unrestricted}
6.781'2 -68.6445 -48.1534 20.4911

6.78rl -77.1498 -61.6004 15.5494

6.78 -76.0534 -62.3873 13.6661
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'.
'r!;~1-'i,)t:em With imposing limits on torsional angle space is that one has to ensure that all the

appropriate regions are searched and that no regions are excluded that may be needed. For

example, the appropriate region (Zimmerman A region) for D.78r2 was searched, yet this region

was too restrictive fa' D.78rl and D.78 because their lowest-energy conformations are not

completely a-helical. Al"Jough it was assumed that the results reported here are those of the

lowest-energy conformations of the sequences subject to experimental conditions, ECEPPGA

parameter settings still require optimisation for minimisation in restricr .d space.

4.2,j:2. Varying sequence length

It was mentioned in section 3.3.2 that only those lengths of the signal sequences that were

considered essential for analysis were used in the calculations. To investigate the validity of our

choice of lengths, shorter sequences of the LamB WT and Al3D, and of the CPY WT and

CPYm2 were subjected to computation. A comparison of modelling conditions is tabulated in

Table 4.18. ECEPPGA parameter values were unchanged.

Table 4.18: The varying sequences and distance-constraint end points selected for GA modelling

Signal Selected Number of residues Distance-constraint Number of distance-
~tide seguence in selected seguence end ~oints' constrained residues

LamB

WT arg-e to ser-20 15 leu-If to a1a-16 7

short_WT leu-B to val-Is 11 leu-l0 to a1a-16 7

Al3D arg-6 to ser-20 15 leu-lO to ala-If 7

short_Al3D leu-B to val-18 11 leu-In to a1a-16 7

cpy

CPYrn2 phe-4 to thr-Is 13 ser-e to ser-Id 9

short_CPYrn2 thr-S to thr-15 11 Ieu-? to leu-13 7

'NT phe-4 to thr-16 13 ser-e to ser-14 9

short_WT thr-5 to thr-15 11 leu-7 to leu-B 7

u from the N-atom of the first residue to the C-atom of the second
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4.2. Molecular modelling

Minimised energy versus distance-constraint curves for the LamB WT and Al3D sequences can

be contrasted with the curves of their shorter variants in Figure 4.31. No prominent differences

between the shapes of the curves are observed, and similar distance-constraint values for which

the energy of the sequences are a minimum are noted. Hence, a decrease in calculated sequence

length. specifically for the LamB system peptides, would probably have been warranted in this

study.

(a)WT (b) A13D

_0 ,-a-.D-.9- ~ _

o 0 0 Q 0 0 0)0 0 0 0

----------------------------,• • • •
9 10 11 12 13 14 15 "r3

~-CJ:I'EIrart IA

,. A130 0 short_A130!~~--~========~--~
.....e- -.--- -- - - - ----- .. -- .. - - ------• • •·."'", ..... .

8 9101112131415
1JstaT:e-<XrEIr.irtl A

"r3

Figure 4.31: lY..inimised energy versus distance-constraint curves for the WT and A13D signal
sequences of the LamB system determined with ECEPPGA, using varying selected sequence lengths

The curves for the CPYm2 and WT signal peptides in Figure 4.32 indicate that the peptides are

most stable at a distance-constraint of approximately 13.75 A. The minimum energy distance-

constraint value observed for the short_CPYm2 and short_WT peptides was approximately

10.75 A. This shift in the energy potential well experienced by the shorter sequences arises from

the fewer number of residues that were chosen to be distance-constrained. The difference in

minimum energy distance-constraint values concurs with the length of two residues in an ideal

o-helix. The short_CPYm2 and short_WT curves in Figure 4.32 have, therefore, been shifted

by 3.00 A. Since the shapes of the curves are not markedly dissimilar, a decrease in calculated

sequence length. speci.fic to this system, would also have been justified.
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Figure 4.32: Minimised energy versus distance-constraint curves for the CPYm2 and WT signal
sequences of the CPY system determined with ECEPPGA, using varying selected sequence lengths.
Plots for short_ CPYm2 and short_ WT have been shitted right by 3.00 A along the distance-ceastraint
axis, because two fewer residues of the sequence was constrained during modelling,

4.2.5.3. Varying dielectric permittivity

Up till now, solvation has been unaccounted for in this molecular modelling study. For reasons

already expounded in the Introduction (section 1.1.3.4), and owing to the speculated behaviour

of SPs in vivo (the signal hypothesis postulates that nascent peptides cross cell membranes via

aqueous pores, and the membrane trigger hypothesis postulates that nascent peptides undergo

conformational changes on moving from the cytoplasm into the lipid membrane layer), the issue

of solvation needs to be addressed.

The membrane trigger hypothesis was initially assumed in the present study, prompting the use

of the ECE!'P distance-dependent default dielectric constant (8) of 2, which simulates the

hydrophobic environment of the m....mbrane bilayer. This "effective" 8 of2 actually corresponds

to a medium with a I'; of -4 (estimated 8 of polypeptide crystalS).[49]To examine the influence of

hydration on SF structure, 8 was augmented (from 2 to 10, 40 and 80) to reflect increasingly

hydrophilic environments. This approach was considered appropriate since the effect of

environment on signal peptides is non-specific, i.e., there are no specific hydrogen bonds

between the signal peptides and their surroundings. Apart from changes in dielectric

permittivity, no other modificationsto modelling conditions were made.
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4.2. Molecular modelling

Quantitative information about the lowest-energy conformation calculated for each of the signal

sequences studied in this portion of the work, i.e., the LamB system, CPYm2, the WT of CPY,

the WT of gC, and L14P, as a function of E is supplied in Tables 4.19, 4.20 and 4.21; data for

both distance-constrained and unconstrained . 'are shown (except for the CPY peptides,

where only unconstrained runs were conducted). .:'helast column in each table is appropriate to

both sets of runs. Minimised energy versus distance-constraint plots, also as a function of E, are

presented in Figures 4.33 and 4.34.

An increase in E does not appear to impact greatly on peptide secondary structure. Evidence for

this is seen from the similar shapes of the curves in the :figures, specific to each peptide, from the

last column in each table (the o-helical structure for each peptide remains constant with a

variation in E), and from the almost constant end-to-end distances measured for each peptide.

The exception in the latter case is L14P, a mutant of the gC signal peptide; the inconsistency in

its end-to-end distances results from the peptide's lack of specificity for a regular structure, viz,

the flat graphs in Figure 4.34.

Minimum-energy values decrease with an increase in E; higher dielectric constants effectively

mean suppression or removal of charges on the peptide, thereby inducing a reduction in

repulsions and attractions and a subsequent lowering in energy. For each of the studied signal

sequences (besides the LamB deletion mutants for which no calculations with E = 40 were

performed), there are nominal differences in energy between the E = 40 and the E = 80

conformations. This observation is probably a consequence of the force field, with 6 = 40

simulating the water environment.

On comparing the conformational energy curves of the LamB wr with those of A13D in Figure

4.33, it can be noted that the energy difference between conformations calculated with the two

dielectric constant extremes (totally hydrophobic, 6 = 2 and totally hydrophilic, 6 = 80) is larger

for the WT than yields the same trend: as functional activity decreases from 678r2 to 6 78r 1 to

678, the difference in energy between ",I.p a= 2 and the E = 80 conformations decreases as well.

This same phenomenon occurs for the gC WT and L14P (Figure 4.34), but not for the peptides

belonging to the CPY system (Table 4.20). Results obtained for the LamB and gC sequences

endorse the membrane trigger hypothesis; the larger energy differences imply that highly active

signal peptides are much more stable in a hydrophobic medium than in aqueous, while the
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smaller energy differences imply that the stabilities of less active peptides in hydrophobic and

hydrophilic media are comparable.

Table" 19: The effect of dielectric constant on the Iowest-energy minimised structures for the LamB signal
peptide system determined with ECE!'u ....<\, with and without distance-constraints. - = not calculated.

Signal i Dlelectric l
peptide i constant i
-wr! 2 !

I :: I
£\78r2

Distance-constrained Unconstrained
Distance- E ecor End til end E eoor Residues in a.-helical

constraint fA rkcal mol" distance" fA /kcal mol" conformation.--~~~~~~~~7--~--~~~~~---
J 1.00 -86.4877 10.8805 -86.4601 pro-9 to ser-zu

10.75 -10J.719 11).8806 -100.912 pro-9 to ser-zo

lLOO -106.350 10.8768 ~106.502 pro-s to ser-20

11.00 -108.360 10.8795 -i08.3'i7 pro-9 to ser-20

2 11.00 -68.6256 10.9630 -68.6445 arg-6 to ser-If

10 10.9724 -79.2867 arg-e to ser-If

80 11.00 -84.9244 10.9771 -84.9321 arg-6 to ser-If

£\78rl 2 10.50 -77.1797 10.4162 -77.1498 pro-s to ser-If

10 10.4014 -82.4256 pro-9 to ser-Ie

80 10.50 -85.8220 10.4117 -85.9002 pro-s to ser-If

2 lLOO -101.610 \ 10.8976 . -100.773 pro-9 to ser-20,,
10 ! 10.8723 -110.922 pro-s to ser-20

;
40 11.25 -112.116 i 10.8852 -111.087 pro-s to ser-20,,
80 lLOO -112.536 i 11.0059 -113.168 pro-s to ser-zo

--£\-7-8-4---,2--t----1o~.5".,0,.-----,:'-75.99~t_ 10.43~-::7:':'0-----7=-6::-.0::-:5::::l-;-4---,t---p-r-o--:::9-:-to-se-r--;-1-;:-6--

i10 ,10.4749 -80.3297 pro-s toser-Ie,,
80 10.50 -83.0187 i 10.4380 -83.0577 pro-s to ser-16

!

A13D

• measureddistancebetweenend points describedin Table 3.1
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Figure 4.33: l\'1inimised energy versus distance-constraint curves for the signal sequences of the LamB system
determined with ECEPPGA with varying dielectric constants. The graphs are arranged (a) to (e) in order of
decreasing translocation efficiency.
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Table 4.20: The effect of dielectric constant on the lowest-energy minimised structures for
the CPYm2 and WT signal sequences of the CPY system determined with ECEPPGA,
without distance-constraints

Signal Dielectric End to end Ec•ar Residues in o-hellcal
peptide constant distance" fA /kcal mol" conformation
CPYm2 2 13.8565 -72.2025 phe-4 to thr-16

10 13.8651 -96.5760 phe-4 to thr-16

40 13.8684 -106.514 phe-4 to thr-Ic

80 13.8696 -109.434 phe-4 to thr-16

WT 2 13.8530 -68.6361 phe-4 to thr-}(;

10 13.8634 -92.5397 phe-4 to thr-16

40 13.8683 -102.288 phe-4 to thr-If

80 13.8697 -105.152 phe-4 to thr-If

a measured distance between end points described in Table 3.1

Table 4.21: The effect of dielectric constant on the lowest-energy minimlseti structures for the WT and L14P
signal sequences of the gC system determined with ECEPPGA, with and without distance-constralnts.
not calculated.

l

Signal 1 Dielectric i
peptide i constant
WT i 2

i
i 10
:
;
: LI U

l

Distance-constrained
[);staace-

I ~nt/A
e,00

: Unconstrained! End to end Ec•ar Residues in ce-helieal
1 distance" fA Ikcal morl conformation

L14P J.

10

40

80

! 13.9000 -68.7878 arg-s to alac16
:! 13.9003 -81.3237 arg-6 to ala-16
::
i 13.9111 -85.5669 arg-6 to ala-If
i

14.00 -86.7999 1 13.9113 -87.0131 arg-6 to ala-If
+---~~----~77~~·L----~~--~~~=-+---~~--~--~~~~~12.50 -76.9027 1 11A780 -76.5282 arg-6 to leu-Iz, pro-Is (('I tyr-15

I 11.4551 -81.6901 arg-6 to leu-Iz, pro-14 to ala-If,
:
i 1l.5873 -83.8537 arg-6 to leu-Iz, pro-Id to ala-:
::
1 10.9896 .84.3952 arg-6 to leu-Iz, pro-l-l to tyr-15
:

-68.6478

11.50 -84.4948

• measured distance between end points described in Table 3.1
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Figure 4.34: Minimised energy versus distance-constraiut curves for the WT and L14P signal
sequences of the gC system determined with ECEPPGA with dielectric constants of 2 and 80. The
WT is the most translocanonally efficient, while L14P is the least translocationally efficient.

Results obtained from conformational analyses of signal peptides in vacuo (8 = 2) were

presented earlier. It was hoped that this hydrophobic-simulated environment (in which

membrane proteins would be expected to operate) would be able to distinguish between

functionally active and inactive peptides. Although this ob]. 'e was achieved in some

instances, overall results are unfortunately too inconsistent to provide conclusive information.

An equivalent conformational analysis of the signal peptides of the LamB system, conducted

with 8 = 80, yielded similar findings (see Table 4.19 above) to those obtained for the 8 = 2 runs,

Minimum-energy versus distance-constraint curves for the high dielectric .ituation are shown in
Figure 4.35. Unlike the low dielectric curves (Figure 4.22), a comparison of the deletion mutant

energy-well depths does not suJgest a higher cc-helical conformational specificity for the active

678r2 than for the moderately active 678r1 and the inactive 678. However, the curves do infer

that the WT is more likely to form an cs-helix than the inactive Al 3D (the energy-well of the

WT is narrower and deeper than that of A13D). Hence, conflicting results are observed which

offer no tangible conclusions.

The lack of useful information gleaned from this study to determine the effect of dielectric

constant on structure could be attributed to the fact that the macroenvironment (external

surrounding) and microenvironment (internal environment) of the peptides are not accounted for
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separately. Internally, the peptides require a dielectric constant of 2, but when this is effected,

the peptide is modelled in isolation - which is unrealistic. When a higher dielectric constant is

applied, the peptide is modelled artificially and any coulombic interactions that may occur are

effectively ignored. The use of a distance-dependent dielectric constant could also have led to

erroneous electrostatics. Moreover, biological membranes are highly inhomogenous and their

local dielectric constants may vary from place to place. The fact that all the signal sequences

form o-hellces here suggests that implicit solvation, as used in ECEPP, may be forcing the

sequences into these structures: if there is no environment for the sequences to interact with, they

only have the option offorming internal hydrogen bonds.

Si gnaJ sequence

l.wroA78r2:t:678r1 OA13DII A7S1

~r-------------------------------------------'
-1m •-----------~-----~------------------------------------

• " i'
-110 - - - - - - - - - - - - - - - - - - - - -'-~ I!~-----------------------------

-12J • - - - - . - - - - - - - - - - - - - - - - - - - -00- - - - - - - - - - - - - - - - - - - - - - - - --o o0000Q])OO
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188 16

FiJ,,'llrc 4.35: Minimiscd energy versus distance-constraint curves for the signal sequences of the
LamB system determined with ECEPPGA with a dielectric constant of 80. Thc scale on thc energy
axis is correct for thc W1:' curve. Encrgy values for the remaining curves have been shifted to
accommodate this scale. The curves arc arranged in order of translocation efficiency: WT
(unshiftcd)i A78r2 (shiftcd by -40 kcal mOrl); A78rl (shifted by -50 kcal mOrl); A13D (shifted by-40
kcal mOrl); A78 (shifted by -80 kca! mort).
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One possible way of overcoming the problem of solvent is to include it explicitly in the models

(cj 1.1.3.4). This entails molecular dynamics simulations of fairly large systems which would

greatly increase computation time, but which is becoming more feasible with the increase in

computer power.

4.2.5.4. Varying proline configuration

Crystal structure analyses, Nl\iR measurements and molecular mechanics computations have

ascertained that the prolyl ring of the proline residue occurs in two definite puckered

conformations: the 'exo' or 'up' form and the 'endo' or 'down' form.[sl] The 'down' puckering

of the prolyl peptide has been calculated to be more energetically stable than the 'up'

puckering.[SI.2611Two forms of the peptide CO-NH bond preceding proline are also possible: the

trans form and the cis form. Cis-trans isomerism about a peptide bond results from its partial

double bond character (due to resonance). The trans form is favoured energetically due to fewer

repulsions between nonbonded atoms surrounding the bond. However, when the peptide bond is

followed by a proline residue, the cyclic chain of the proline diminishes these repulsions,

resulting in comparable stabilities for the trans and cis isomers. In this instance, the trans

isomer is only slightly favoured.

The existence of the two proline ring conformations ('up' and 'down'), and the two peptide bond

configurations (trans and cis) prompted an investigation to determine the effect of these

variations in form on minimised structure. Results derived from this investigation are given in

Table 4.22.

The inactive deletion mutant of the LamB system, /:;,78,was modelled. During the GA runs, the

proline phi torsion was either fixed at -68.7800 for the 'up; puckered conformation of proline, or

at -53.0400 for the 'down' puckered conformation. ECEPP incot, .ates a constant energy term,

Epro, which is specific to each puckered form and which is independent of the conformation of

the sequence. Rotation about the proline peptide bond was set at (0 = 1800 for the trans form

and (0 = 00 for the cis form, The proline psi torsion was permitted to vary. No distance-

constraints were assigned and no modifications of ECEPPGA parameter values were made.

Dielectric constants of 2 and 80 were applied. The dielectric constant of 80 "'1S employed in an

effort to research the findings of Choi et al. [261·1 who determined that solvation causes the 'down'

conformation of the proline ring to change to the 'up' conformation.
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4.2. Molecular modelling

Table 4.22: The effe :t of proline conformation on unconstrained conformational energies of the h.78
signal sequence of tile LamB system determined with ECEPPGA. Caleulations were performed with
dielectric constants of 2 and 80.

Dielectric Prnlyl ring
constant conformation'~~~2~~~= down

up

Proline Unconstrained ccnformatlonal Residues in C1.-
peptide bond" energy /kcal mol" helical conformation

trans -76.0534 pro-s to ser-If

cis -68.9490 ala-12 to ser-Ie
trans -76.3768 pro-9 to ser-If

cis -70.2392 'val-Itl to ser-Io

cis to trans" -76.9861 pro-9 to ser-16

trans -83.0469 pro-9 to ser-If

cis -79.4974 val-Iu to ser-If

trans -82.2291 pro-9 to ser-16
cis -78.4709 val-IO to ser-Ie

cis to trans" -82.8384 pro-s to ser-If

up

80 down

• proline ~ was set at either -53.040° for the 'up' puckered conformation or at -68.780° for the 'down'
puckered corr'=rmation

b proline CD was set at either 180° for the trans configuration or at 0° for the cis configuration
e during the course of the run, the peptide bond changed from cis to trans

Lower conformational energies are obtained for the cis isomers than for the trans isomers (see

Table 4.22). The instability of the cis form is accented by the flipping of the peptide bond from

the cis to the trans form during the course of some of the runs. Similar minimum energy values

are calculated for the trans isomers of the 'up' and 'down' proline ring conformations.

Calculations performed with a dielectric constant of 80 yield analogous results to those

performed with a rlie!ectric constant of2. These observations partially validate the usc of the cis

and 'down' configurations in the current study. However, to fully examine the effect of

variations in proline conformation and peptide bond configuration on peptide structure, a more

extensive study is required.
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4.2.6. Calculation of vibrational entropy

This work would be incomplete if no calculations of conformational free energy and subsequently,

vibrational entropy were attempted. As outlined in section 1.1.3.5 of this thesis, the free energy of a

single conformation can be computed by associating a statistical weight to the local conformation with

the aid of an harmonic approximation. The normalised statistical weight WI of the ith conformation is
expressed as:(132,133]

WI:: (l/Z)(27rR.T)kI2(det FJ-ll1exp(-AUlRT), (5)

where A~ is the ith conformational energy relative to the lowest energy, R is the gas constant, T is the

temperature, k is the number of variable torsions, F; is the Hessian matrix (matrix of second

derivatives) of the ith conformational energy, and Z is the partition function given by:

n
Z = (27rR.T)k12.E(det FJ"ll1exp(-AU/RT),

;=1
where n is the number of local energy minima in an accessible energy region.

(6,)

The free energy Gt of the ith conformation:

GI= -RT In Wt, (7)

and the relative free energy AGt:

AGt=Gt-Go. (8)

where Go is th, free energy of the lowest energy conformation, call then be used to calculate the relative

entropy LISt of the signal peptide conformation:

LISt = (l!J')(AUt -AGJ. (9)

It is virtually impossible to identify all of the local energy minima within an accessible energy region

(equation (6) and some approximations such as assuming the same value for all i for all determinants

in equations (5) and (6), viz., approximating the free energy as the sum of the exponential terms, and

estimating the number of accessible local equilibrium states for the system, must be made. The first

approximation is equivalent to assuming a common librational or harmonic behaviour for all local

minima within a potential well, viz., ignoring the effect of entropy. Itwas decided to follow this route

and instead of comparing conformational entropies of the SPs, statistical weights corresponding to their

lowest-energy confor+ations were analysed.
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4.2. Molecular modelling

Values calculated for the lowest-energy conformation of each SP are shown in Table 4.23. The value

of n is the number of identified local energy minima within lORT or 5.0 kcal mol" of the lowest

energy. Translocation efficiencies are also provided. It would appear from the W, values in the table

that the above-mentioned estimations proved too crude for an accurate analysis against the

translocation efficiencies; no definite trend in the values is discerned.

Table 4.:!.3:Values calculated for the lowest-energy conformations of the signal sequences of the LamB, CPY
and gC sy stems determined with ECEPPGA. ECEPPGA runs were conducted wita distance-constraints and
with a dielectric constant of 2.

Signal Distance- U/ G, Translocation
..J!cl!tide constraint fA n /kcal mort 8U, w, ikcal mort 8G, 8S, efficienct 1%
LamB

WT 11.00 9 -86.4877 0 0.5144 0.3939 0 0 100

A78r2 11.00 11 -68.6256 0 0.2601 0.7978 0 0 90

878r1 10.50 13 -77.1797 0 0.3154 0.6837 0 0 50

A13D 11.00 12 -101.610 0 0.4010 0.5414 0 0 10

t...78 10.50 13 -75.9978 0 0.3355 0.6471 0 0 0

CPY

CPYm6 12.00 7 -70.2~ 73 0 0.5173 0.3906 0 0 97

CPYm2 13.75 9 -72.0331 0 0.4798 0.4352 0 0 94

CPYm8 13.75 5 -68.~1,",'8 0 0.5028 0.4073 0 0 27

CPYml 12.00 7 -66.4533 0 0.5342 0.3715 0 0 22

2

WT 13.75 9 -68.5230 0 0.4804 0.4344 0 0 undetectable

gC

WT 14.00 11 -68.6478 0 0.4541 0.4678 0 0 100

AAlO 12.00 10 -67.4761 0 0.4908 0.4217 0 0 99

A10P 12.25 16 -78.7202 0 0.2543 0.8812 0 0 98

Ll2P 9.75 14 -75.5\188 0 0.1795 1.0176 " 0 19

L14P 12.50 18 -76.9027 0 0.2647 0.7&75 0 0 5

• values from McKnight et al.[113}for LamB, from Bird et al.[204} for CPY. from Ryan and Edwards(251}for gC
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CHAPTER 5

CONCLUSIONS

5.1. The performance of knowledge-based modelling techniques

Various knowledge-based (statistical) conformational analysis methods have been tested against signal

peptide functional activity to establish their validities as predictive tools in this study.

Methods based on globular proteins (Chou-Fasman and a consensus procedure) were found to be unreliable;

in concordance with the literature, the Chou-Fasman algorithm calculated high probabilities for the signal

sequences to occur in both u-helix and p-sheet conformations. Consensus prediction, however, proved to be

an improvement over predictions made by the individual methods comprising the consensus procedure ~ but

was still unable to render conclusive results; this was especially the case with the gC system.

In general, predictive methods based on membrane proteins (PHDhtm, TMpre4 and PSA) yielded more

meaningful information than those based on globular proteins. However, only the PSA method calculated

membrane-spanning probabilities for the signal sequences that seem to correlate well with translocation

efficiencies.

The importance of hydrophobicity for signal sequence function has been highlighted in this work. Solvent

accessibility predictions (pHDacc) indicate that the sequences are highly hydrophobic, while hydrophobicity

plots, specifically of the h-cores, correspond to some extent with sequence functional activity. However,

helical wheel plots did not produce results which could be interpreted.

Discrepancies in results obtained with the knowledge-based modelling techniques employed in this work are

probably a consequence of not only the manner in which the methods are derived, but also of the various

decision functions (window length, sequence length, homology, etc.) which are involved in the submission of

sequences for analysis. Prediction techniques are usually empirically tailored for specific functional classes

of either globular proteins or membrane proteins, and must therefore be used with caution for general

application.
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5.2. The performance of molecular modelling techniques

We appear to have developed a successful means of searching for low-energy signal peptide conformations.

The genetic algorithm used has proved to be an efficient technique in overcoming the problem of multiple

minima. (pedersen and Moult[262]have recently confirmed the effectiveness of the genetic algorithm method

for searching polypeptide conformations.) Results from our ECEPPGA searches are a considerable

improvement over those obtained with the computationally intensive systematic searches, and correlate

reasonably well with experimental data (from CD and NMR spectra) in the literature. In addition, we

appear to have been successful in improving molecular modelling procedures for the conformational

analysis of signal peptides; the present analysis is both more extended and definitive than that of Perez et

al. [206] who carried out a study of smaller portions of four of the five signal peptides of the LamB system

only. ECEPPGA also performs better than a recently-developed genetic algorithm for peptide

conformational analysis;[263]that algorithm found the relatively large size of the peptides studied here to be

unmanageable.

Our calculations were performed with a series of distance-constraints applied to each peptide sequence in an

attempt to. explain experimental observations. Although it had been anticipated #13:tthe potential !!n\,:rgy_~..,.._

hypersurface of the constrained signal sequences would prove to be complex, in fact, results were obtained -

which enabled us to follow quite readily the conformation of the lowest-energy structure as a function of

conformational compactness. A smooth trend in conformational change from extended to contracted via an

energy well was generally observed for the sequences. Unfortunately, no distinct relationship between the

shapes of the curves or the depths of the energy wells and peptide functional activities could be deduced.

Results suggest that all the signal peptides examined in this study, whether transport-effective or not, adopt

stable u-helical structures (whether completely or partially n-helical) in both hydrophobic- and hydrophilic-

simulated environments. The occurrence of proline in a sequence induces a break in the u-helix

conformation (the amide nitrogen of proline cannot form a hydrogen bond, and the bulky ring disrupts the

preceding turn of the helix), while no noticeable effects on conformation from the presence of glycine are

apparent. The extent of cc-helical secondary structure adopted by the lowest-energy conformations of the

signal pep tides appears to be insufficiently pronounced for direct correlation with their function; it would

seem that conformational properties are not paramount in determining transport efficiency ill a hydrophobic

environment. Hence, c-helical content, as calculated here, can only give a partial estimate, at best, of

translocation ability. There exists an ill-defined relation between hydrophobicity and translocation
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5.3. Signal peptide conformation during protein secretion
efficiency (as mentioned above), but 110 or little relation between helix amphiphilicity and efficiency. It is

thus clear that other factors besides secondary structure conformation, such as the hydrophobicity of th:~

sequences, must also be considered when analysing a signal peptide system for its translocation efficiency.

For obvious reasons, the ECEPPGA option of restricting the conformational space to be searched for a local

minimum proved to be successful only for those peptides whose torsional angle values resided within that

restricted space. The use of this option must therefore be limited to sequences of known conformation, and

is only valid for assessing small structural differences between sequences displaying similar conformations.

The use of shorter sequence lengths during computation did not cause a marked change in results. It is

believed that the use of longer sequence lengths (equal to the signal peptide length. or longer with the

adjacent mature protein region) than those employed here would also not affect results. Thus, it can be

concluded that only the shorter sequences are required in modelling procedures,

The primary objective of this study has been io detect differences between native signal sequences and their

mutants which would help to explain differences in sequence translocational efficiencies. An exploration of

molecular modelling possibilities has led to the conclusion that, in conjunction with certain knowledge-based

modelling techniques, e.g., PSA, and sequence hydrophobicity analysis, a clearer picture.£ft;ll.es!z:.uctura!_

differences between export-effective sequences and those mutated sequences which do .not -facilitate

translocation can be gained. The effectiveness of these procedures is clouded by the complexity of the

relations among the various properties examined.

5.3. Signal peptide conformation during protein secretion

We have attempted to formulate a more informed description of the translocation structure and process in

this study. However, the only conclusion that can be drawn from these predictions is that functionally-

active signal pep tides tend to favour the «-helical secondary structure conformation slightly more than do

functionally-inactive signal peptides. It would thus appear that the assumption that such a conformation is

adopted during effective translocation is appropriate, as has been proposed by several other researchers; the

differences in calculated energy values between the lowest-energy a-helical conformations and extended

conformations are believed to be too large to suggest that extended structures will form during membrane

crossing.
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We were unable to substantiate the postulated change in peptide secondary structure on moving from an

aqueous to a lipidic environment which arises in the membrane trigger hypothesis. If it is rather assumed

that signal peptides traverse the membrane via an aqueous channel (and recent studies[254]indicate that this

is a highly probable scenario), no environment-induced alteration in secondary structure would be expected

to occur, and it is then highly probable that hydrophobicity differences between peptides is the principal

determinant oftranslocational efficiency. Further studies in which the aqueous medium is better simulated

than simply by a change in dielectric constant alone may produce more informative results.

5.4. Suggestions for future work

ECEPPGA was subjected to a measure of optimisation with respect to this particular application, and

proved to be efficient in locating local energy minima. Nevertheless, further optimisation may improve the

performance of the GA. It is recommended that the use of the program in other applications be

accompanied by optimisation procedures specific to each application.

To ensure the attainment of the GMEC for each calculated peptide sequence, a number of low-energy

conformations could be sampled in the form of the Boltzmann distribution. This would inform us as to

whether the lowest-energy conformation obtained is also the conformation that would occur most often, i.e.,

is the most stable. Another way to ensure that the GMEC is reached is to perform multiple runs (> 3) for

each sequence. Of course, it must first be evaluated whether or not the ultimate attainment of the GMEC is

required. (A protein may not necessarily occur as its global minimum in nature; it may form a specific

conformation and the energy barrier to transition may be too high to allow it to reach its minimum-energy

structure.)

To better simulate the behaviour of signal sequences in different media, molecular dynamics computations

with solvent (aqueous and lipid bilayers) are necessary. The lipid bilayer could be modelled by setting up a

"membrane" across a periodic box, the box simulating a larger sheet structure of lipids. Molecular

mechanics calculations involving solvent will become more practical as advances in computer hardware are

made. Progress in the computer industry will not only speed up computations, but will also make possible

the application of conformational searching programs such as ECEPPGA to larger, more complex

molecular systems.
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APPENJ)IXA

EXAMPLES OF ECEPPGA INPUT FILES

A.1. Example of an ECEPPGA main input file (param. in)

/* zparm - real valued parameters */

/* 0 - p_mutate, probability of a point mutation at each site (gene)
on each genome per generation */

rO=0.3

/* 1 - p_xover, probability of a crossover occuring at each site
(gene) during mating */

r1.=0.1

/* 2 - Energy cutoff maximum maximum difference between lowest
energy and energy of new offspring */

r2=5eJ..

/* 3 - Space sharing strategy: initial RMS distance resource limit -
minimum distance between genomes in the set */

r3=10.0

/* 4 - Space sharing strategy: final RMS distance resOurce limit -
minimum distance between genomes in the set */

r4=5.0

/* 5 - Space sharing strategy: resource limit gradient - chanqe i.n
limit per generation */

r5=-0.1

/* 9 - Random seed (use a negative integer) */
r9=-123456

/* 10 - Width of log curve for parent selection probability - OR
gradient of linear curve for 3ame */

r10=0.9

/* 11 - Probability of point mutation in template string */
r11=O.1

/* 12 - Probability of crossover at each site in template string */
r12=0.1

/* 13 - Probability of point mutation in mask string */
r13=0.1
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/* 14 - Probability of crossover at each site in mask string */
r14=0.1

/* 15 - Probability of finding phenotype character/s in mask */
r15=0.9

/* 16 - Probability of finding non-phenotype character/s in mask */
r16=0.3

/* 17 - Probability of a '1' in a bitstring template */
r17=0.5

/* 18 - Probability at a '1' in a bitstring mask */
r18=0.45

/* 19 - Probability of a '#' in a bitstring mask */
r19=0.1

/* 20 - 29: These parameters control the relative probabilities of
using different types of mutation operators in templa.te strings.
Probabilities must add up to unity */

/* 20 - Duplicate gene from following or previous site in genome -
whichever exists, select at random if both exist */

r20=0.05
/* 21 - Add confs from following or previous as for 20 */
r21=0.05
/* 22 - Delete confs from follm'ling or previous (as for 20) from set

of confs in current gene */
r22=O.05
/* 23 - Add a random conf to set */
r23=O.05
/* 24 - Delete one of the confs from the set */
r24=O.05
/* 25 - Delete all confs from set, i.e. assign "don't caretl */
r25=0.05
/* 26 - Assign one (random) conf. Uses probabilities in r15-r16 if

il6 is 1 */
r26=O.05
/* 27 - Assign a random length set of randcmly selected confs. Uses

the probabilities in r15-r16 if i16 is 1.*/
r27=O.05
/* 28 - Invert set, i.e. assign all unassigned confs and unassign all

assigned confs */
r28·,O.6

1* 30 - 39: These parameters control the relative probabilities of
using different types of crossover operators in template strings.
Probabilities must add up to wlity */
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/* 30 logical AND: assign confs common to both parents */
r30=0.1
/* 31 - logical OR: assign confs occurring in either parent */
r31=0.1
/* 32 - A NOT B: assign confs occurring in parent1, not duplicated in

parent2 */
r32=O.05
/* 33 - B NOT A: assign confs occurring in parent2, not duplicated in

parent1 */
r33=0.OS
/* 34 - logical XOR: assign confs occurring in either parent except

those that occur in both parents */
r34=O.1
/* 35 - Complete crossover, inherit gene from parent2 */
r35=0.6

/* 40 - Probability of crossbreed during interbreed cycle */
r40=0.OS

/* 41 - Probability of interbreed during crossbreed cycle */
r41=0.05

1* 42 - Probability of gene mutation being local, i.e. gaussian
distr. around current value. Otherwise mutation is non-local,
i.e. random according to strategy in iO */

r42=0.9

/* 43 - Width of local mutation (Variance of gaussian distr). As a
fraction.of the total torsional space available. i.e. fraction of
width between boundaries for defined confs and fraction of 360
degrees divided by the RMS adjustment factor for unrestricted
angles. */

r43=0.05

/* 44 - Cutoff percentage for gaussian distribution, i.e. percentage
of population rejected by boundary limits of defined backbone and
residue conformations - determines relative width of gaussian
curve within such boundaries. */

r44=O.Ol /* = 1% rejected */

/* 45 - Clumping parameter for demarcation of families */
r45=0.0

/* 47 - Limiting parameter for E difference between generations (det.
end of run)*/

r47=0.3

/* 48 - Limiti.ng parameter for E difference between generations (det.
swap inter- with cross-breed*/

r48=O.3

148



Appendix A

/* iparm - integer valued parameters */

/* 0 - Torsional angle sampling strategy (for mutations and assigning
random an~les in initial population) */
/* 0: Comp'i.etieLy random - all angles between -180 and +180 */
/* 1: Ga~6sian or normal distributions within selected backbone

conformations - read data from file: bb_confs.dat. A backbone
angle mask is required (cparm2). A conformations mask
(avail_cnfs.mask) can also be used to limit the conformations
available to each monomer unit */

/* 2: Gaussian or normal distributions within selected monomer
conformations - read data from f.ile: res_confs.dat. A residue
identity string is required i addition to an angle identity
string (cparm3 and cparm4) . confioxrnat.Lona mask
(avail_cnfs.mask) can also be used. */

iO=O

/* 1 - Space sharing strategy flag */
/* 0: None - all genomes below the energy cutoff are accepted */
/* 1: Space sharing - new geno~~s must be some minimum RMS

distance removed from all other genomes in the set. i28
determines whether user has supplied distance adjustment
factors */

i1=1

/* 2 - Fitness to breeding rate relationship */
/* 0: Uniform: ~ Probability of genome being selected as a parent

does not depend on its fitness */
/* 1: Linear - Probability of genome being selected as a parent is

linearly related to fitness (Position in set). Line gradient
given by r10 */

/* 2: Power Law - Probability of genome being selected as a parent
is logarithmicaly related to fitness (Position in set). Curve
width given by r10 "'/

i2=1

/* 3 - Mating strategy */
/* 0: Random - .random parents are chosen for mating */
/* 1: Closeness bias - same as randorn, except that for each 1st

parent chosen, N (i4) other possible parents are randomly
selected, the one within the smallest or largest (depending on
the interbreed/crossbreed criterion - is) RMS distance is then
used as the 2nd parent. */

/* 2: Family breeding based on user defined classes of backbone or
residue conformation - family definitions are read from
"families.def" and conformational states are. read from
"bb_confs.dat" or "res_confs.dat". Minimum population of a
family is given by i12 */

/* 3: Family breeding based on dynamically generated families.
Families are updated every N (i6) generations and coarseness
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for demarcation of families is controlled by r1S. No families
are assigned for the first N (i7) generations. Minimum
population of a family is given by i12. Penalty/Reward tor
belonging to a family is given by i13, i14 controls whether it
is added to each genome or shared between all members of the
family */

/* 4: Template breeding - template strings are attached to the
genomes to control fit mases. Length of the string is given by
i8 and nature of the template is controlled by ~9. Mutation and
crossover rates in the template and mask are controlled by r11
through r14. Relative probabilities of using different mut.at.Lr-
and crossover opel.ators are controlled by r20 through 29 and
r30 through 39 respectively */

i3=4

/* 4 - Number of random samples of prospective parents */
i4=50

/* 6 - Number of generations between auto~atic family updates */
i6=0

1* 7 - Number of initial generations before dp.marcation of families /
s.v-o

/* 8 - Length of mating template bitstring */
i8=3

/* 9 - Template string type */
/* 0: Bit string, randomly assigned to genomes. Separate template

and iuask strings are used */
/* 1: Phenotype linked mask string. Only mask string is used,

genome serves as template by Lomparing to conformational zones
in mask. Depending on the torsional angle sample strategy (iO),
the mask string will contain either backbone or monomer
conformational characters from the files in which they are
defined. Length of string must be equal to ~..irnbea, of residues.
*/

i9=0

/* 10 - Generation gap strategy flag */
/* 0: No generation gap */
/* 1: Select N (ill) best genomes from entire set to copy

unaltered into next generation */
/* 2: Select N (ill) best genomes from each family to copy

unaltered into next generation */
/* 3: Continuous generations - no fixed generation boundaries,

parents and children co-exist and compete in the same space
Arbitrarily end of generation processing is done after every N
children - where N is the population size */

i10=1

150



Appendix A

/* 11 - Ge~eration gap size */
ill=120

/* 12 - Hinimum population of family. Members of familif!3 with fewer
cr>(~mb;.'"sthan this minimum are added to the "general" family, i.e.
remain una~8igned to a family */

i12=0

/* 13 - Penalty/Reward for belonging to a family (not the "general"
family) */
/* +ve: Reward */
/* -ve: Penalty */

i13=0

/* 14 - Penalty/Reward ahar ino
/* 0: Penalty/Reward ".3 a
/* 1: Penalty/Reward ie sh~

i14=0

"n-:>lnp.sfitness */
i ~:' , ambez s * /

1* 15 - Number of genomes to min.
i15=1000

ueration */

1* 16 - Assignment of initial mask strings 1 }:-,nenotypedepenc!ent
template breeding */
/* 0: Assign rdndom mask chars from available set */
/* 1: Assign mask chars according to probabiHties in r1S-r16 *1

i16=ol

/* 17 .. Crossover and mutiat Lon control for phenotype dependent
template

breeding *1
/* G: Crossover and mutation in mask string is separate from same

in
genome */
1* 1: Crossover and mutation occur at the same site in t:he mask as

in
the genome. Only works when whole residues are treated as gene
units on the genome */

i17==0

/,~ 18 - Number of geneJ;"ations counted befOre ending GA run *1
il8=JS

/* 19 - Number of generatiolls count.Lng strategy flag *1
1* 0: Cownt all generations *1
1* 1: Count all generations in whir.h best solution doesn I t improve

*1
1* 2: Count, all ge.....eLi ..tions in which average energy doesn't

improve */
1* 3: Count; all genera.t:i.onsin which neither improves *1
1* 4: CI:)l.Ultgenerations sincp. last improvem~nt in best solution *1
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I'll 5: Count generations since last improvement in average energy

'III
I'll 6: Count generations since last improvement in either 'III

il9=4
I'll 20 population size wi
i20=400

I'll 21 - Minimization strategy flag 'III
I'll 0: No local n\inimization *1
I'll 1: Locally minimize N (i15) random genomes 'III
I'll 2: Locally minimize the N (i15) worst genonies *1
1* 3: Locally minimize the N (il5) best genomes ~'I

i21=1

1* 22 - N"mber of generations passed before st.ax.;of llC swapping *1
i22=1
1* 23 - Number of interb~eed generations between ric swaps *1
i23:::3

1* 24 - Number of orsbreed generat Lens between ric swaps *1
i24",3

1* 25 - InterbreedlCrossbreed (l/C) strategy flag *1
I'll 0: No I/C: fit"less alone dete:t:minesbreeding pattern *1
I~I 1: Fixed interbreed or crossbreed according to i26 *1
1* 2: Swap int.erbreedlcrossbreed according t.opaeamet.exs I i26

through i27. '1< I
i25=2

I'll 26 - IIC starting st.rategy *1
1* 0: Start run with int.erbreeding strategy 'III
I'll 1: Start run with crossbreeding strategy 'III

i26=0

- Number of generat.ions (for i22-i24) counting strat.egy flag *1
0: Count all generations 'I
1: Count all generat.ions in which best solution doesn't improve
'III
2: Count all generations in which average energy d0esn't
improve 'III
3: Count all generat.ions {n which neither improves 'III
4: Count generations since last. improvement in best. solution 'III
5: Count generations s~.nce'last. improvement in average energy
'II/

I'll 6: Count, generations since last improvemrmt. in eit.her 'III
i27=4

I ,~ 27
I'll
I'll

I'~

1*
I'll
I'll

I'll 28 - Use RMS distance dist.ance adjust.ment factors 'III
I'll 0: D.:.Jn'tuse adjustment fact.ors 'II/
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1* 1: Read RMS distance adjustment factors from file IRMSD.adj".

which contains a series of floating point values (one for each
torsional a.ngle).. RNS distances for angles are then multiplied
by these faotors during RMS oalculations. The faotors are
stored in the array PC_RMS_fact_at_pos *1

i28=0

1* 29 - Snapshot interval in generations *1
i29=5

1* 30 - Use program's default parameters. If this value is not 0, all
data in this file will be ignoredl *1

i30=0

1* 31 - Maximum number' of 'overlapping regions allowed per region per
type of residue or in the entiJ::eset of backbone conformations.
i.e. eaoh defined region may not have more than this number of
regions overlapping it. */

i31=10

1* 32
i32=1

Statistics interval in gene~4tions *1

/* 35 - Maximum number of error messages to be generated *1
i35=100

1* 36 - Compress minimum square distanoe matrix *1
i36=0

1* 40 - Fitness range (ex 10nOO) of energy values *1
i40",1000

1k 41 - Tolerance of fitness range of energy values - i.e. Hml far
can fitness (due to energy) venture outside the specified range
before a re-calibration is ordered *1

141=50

1* 42
l42-=S

Fitness penalty for each # in bit mask string */

1* 43 - Fitness penalty per 5% unit of available confs present in
template mask string *1

i43=0

/'"44 - Lower limit percentage for inducing penalty in i43 - i.e.
genome is only penalized if the mask contains a larger percentage
of the avaiJable confs than that specified by this limit *1

144=100
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/* string parameters */

/* cparm1 - Fix.ed angle mask */
/* 0: Angle remains fixed at initial position */
/* 1: Angle can be varied during GA run */

c1=101101111111110111111101111101101111110J.11011111011101111101110111011
01111101111110111

/* cparm3 - angle identity mask */
/* 0: unknown angle type */
/* 1: phi angles */
/* 2 : psi angles */
/* 3 : omega angles */
/* 4 : chil angles */
/* 5: chi2 angles */
/* 6 : chi3 angles */
/* 7: chi4 angles */
/* 8 : chi5 angles */
/* 9 : chi6 angles */
/* chi7 angles */
/* chi8 angles */

03=23123456789;123456781234567231234567123412345612341234561234123412312
34561234567123451

/* cparm4 - residue identity template */
/* pos 0: number of residues encoded in template */
/* pas odd: residue identity: a number from 1-255, corresponding

to the position of the residue in the "res_confs.mask" file.
Program startup will only make assignments correctly if these
positions correspond to ECEPP residue identities */

/* pas even: number of genes belonging to current residue */
c4=17 132 2 15 10 9 8 10 7 13 2 10 7 1 4 18 6 1 4 18 6 1 4 1 4 6 2 18

6 11 7 16 5 143 1
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A.2. Example of an ECEPP/3 main input file (xyz. inp)

$cntrl
runtyp=ga
res_code=ecepp
var_angles=all
$end

$dist_const
n1pair=0
n2pair=1
$end

$minim
minim:Lzer=sumsl
ma.:x:it=50
$end

Used SUMSL as the minimizer
maximum no. of iterations during minimization.

$ffield
force_field=ecepp
constr_mov
$end

$geom
58.527-179.657

-68.502 -18.096 173.398-165.030 169.655 176.723 80.286
-1.265
-54.864 -39.380 177.562-176.441 175.873~179.572 -64.485 176.979

-119.426 75.618-175.544 -57.488 167.946 60.330 -52.236
-68.780 157.198 177.711
-69.058 -40.287-179.127 177,733 62.442 52.269 179.050
-59.920 -44.186-179.088 -60.587
-64.245 -45.470-178.612 165.195 50.758 172.534
-59.920 -44.186-179.088 -60.587
-64.245 -45.470-178.612 165.195 50.758 172.534
-59.920 -44.186-179.088 -60.587

0.246 1'i9.490

-64.135 -38.426 179.432-179.541
-62.981 -42.921-178.380
-67.922 -42.643-:7H.758 165.835 ~69.129 173.085
-64.299 -38.517 179.915 -74.372 167.979-179.791 57.781
-73.654 -37.884 178.350 -57.565 82.440

-179.370
$end

$seq
4

15 9 10 13 10 1 18 1 18 1 1 6 18 11 16
15
$end
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$ga
directo..:-y= ./11.0/
$end

A.3. Example of a distance-constraints input file (bounds.xyz)

o 154
1 6 N

15.000
1 12 C 11.000 11.000 1000.000
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