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ABSTRACT 

Stochastic volatility models in financial econometrics: an application to South Africa. 

S. Malumisa 

PhD Thesis, Department of Economics, University of the Witwatersrand  

The dissertation carries out a study to understand asset price behaviour in South Africa. This 

is investigated through the application of  stochastic volatility models to trace the 

characteristics of high frequency financial data; daily temperature, exchange rates, interest 

rates, stock and house prices. Innovation in the derivatives market has seen the introduction 

of weather derivatives as a risk mitigation tool against adverse weather movements. Chapter 

Two applies three different time series models of temperature to estimate payoffs to 

determine which method offers the best hedging strategy in four South African cities. Results 

from the study suggest that the seasonality GARCH method of estimating payoffs for 

temperature based weather derivatives offers superior performance compared to the 

Cumulative Cooling Degree Days (CDD) and the historical method. This suggests that the 

seasonality GARCH method can be applied in these cities to hedge against adverse 

temperature movements. In Chapter three we consider the estimation methodology for jump 

diffusion models and GARCH models. Chapter four investigates volatility on exchange rate 

data. Use is made of the british pound/south african rand, euro/south african rand and u.s 

dollar/ south african rand exchange rates. The research introduces a jump diffusion model to 

trace the behaviour of exchange rate data. Estimation results are able to match the summary 

statistics in mean, variance, skewness and kurtosis. Results from the model can also explain 

the volatility smile for short and medium term maturities.  A fat tailed GARCH model is 

introduced to capture the persistence in volatility on exchange rate data. Results from this 

chapter have an implication for pricing currency options to offer leverage to organisations 

affected by exchange rate risk. Chapter five extends the analysis to study the behaviour of 

short term interest rates, making use of the 90 Day Treasury bill (T-Bill) rate. The chapter 

considers a variant application of the Chan et al. (1992) model for short term interest rates 

wherein a jump diffusion model is introduced. The results match the summary statistics 

equivalent suggesting the capability of the model specification. Splitting the estimation 

period suggests that the jump size is highest post inflation target though with a smaller 

intensity. However, the 90 Day T-Bill shows higher volatility after inflation targeting though 

with a lesser intensity. These findings have a bearing on valuation of short term interest 

derivatives and also investigating multi factor models of interest rates. In chapter six four 
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sectors (banking, mining, media and leisure) are considered to explore movements in stock 

prices. A jump diffusion model is applied to get estimation results. The results confirm 

related studies that stock prices have incidents of volatility which can be captured by a jump 

diffusion model.  The results also shed light on the importance of portfolio diversification 

considering the different results across the sectors investigated. The implication also lies in 

understanding market efficiency. Chapter seven applies the jump diffusion model on house 

prices to understand more on the drivers of volatility on house prices. The interesting results 

on this chapter can be summarised as follows; the four different house segments have almost 

similar jump sizes though the small house price segment has highest intensity. This can point 

to expectations and volatility from participants in this segment at a higher level than for other 

segments over different regimes over the study period. The estimated higher  moments were 

not normalised as had happened for the three previous chapters after introducing the jump 

diffusion model. Results from this chapter have an application to valuing mortgage premium 

across different house price segments. It is recommended that rigorous research on asset 

prices using various approaches be considered as it goes a long way in informing policy 

makers and investors to mitigate risk in an environment of volatile asset prices. With the 

growing interest in weather derivatives world-wide, there is a need to educate farmers, 

government entities, potential counter-parties and other organisations affected by weather 

related risk on the importance of weather derivatives so that a foundation is laid for trading in 

this special type of insurance. 
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CHAPTER ONE 

 INTRODUCTION 

1.1 Background to the study. 

Volatility and its measurement are important for the pricing of assets and risk management. 

For one, investors want to know the direction of the market as well as the velocity of such 

movements. This brings us to realise the importance of volatility in financial economics. 

Volatility even plays a big role in the valuation of derivative securities. If the stock has low 

volatility an option contract will have an equally low value. However, a high volatility in 

price movement means that the strike price will be exceeded, rendering the option expensive. 

Highlighting this importance of volatility, any successful method of forecasting will benefit 

all users affected. 

 

 This study explores the applicability of stochastic volatility models in South Africa to 

enhance understanding in volatile asset price movement and derive possible solutions for 

strategies amidst volatile financial data. One application of volatility modelling is in daily 

temperature data from which we can model weather derivatives. Weather derivatives are 

potential valuable tools for risk management against adverse weather conditions. They are 

designed as a “bet” on weather conditions with the only requirement being an observable 

objective variable agreed upon by both parties (Richards et al., 2004). Their payoffs are 

contingent on weather indices based on climatic factors. They are useful for hedging risk in 

the agricultural, energy, entertainment, beverage, construction and even apparel industries.   

Instruments thereof include swaps, options and option collars with payoffs dependent on 

weather related variables like average temperature, heating and cooling degree days (HDD 

and CDD), humidity, maximum or minimum temperatures.  

 

Another visible application of stochastic volatility models is in asset prices, perhaps 

popularised by the reverenced  basic model for capturing the movements of asset prices is the 

Geometric Brownian Motion (GBM), which underpins the Black-Scholes (1973) option 

pricing model. The Black-Scholes model has been found to be insufficient in capturing 

typical characteristics of high frequency data sets; leptokurtic, volatility smile/skew. This 

motivated the development of models embedded with jumps as a better alternative to the 

purely diffusive processes. Some of the reasons supporting models with jumps include: (i) 
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Jump processes are able to model catastrophic events in the market; (ii) The high frequency 

data in finance indicates that the path of the asset price is not continuous in small time scale,  

(iii) Compared to purely diffusion models, jump diffusion models allow one to quantify and 

take into account the risk of strong stock price movements over short periods of time, thus 

filling the gap in the diffusion framework , and (iv) Jump diffusion models can better fit the 

existence of price jumps in the real world. 

 

The study applies stochastic volatility models in five areas namely; (a) Estimating payoffs of 

temperature based weather derivatives (b) Model estimating the exchange rate returns, (c) 

Jump diffusion model for interest rates,  (d) a Jump diffusion model fitting stock price data 

and (e) Volatility and jumps in house prices. 

1.1.1 The generic model. 

According to the Black-Scholes model, volatility is assumed to be constant. However, in 

practice volatility varies with time.  If the volatility parameter in the GBM is a known 

function of time, the risk-neutral process followed by the asset price is represented thus 

(1.1)  SdztSdtdS )(   

Where; S is the price,   the drift, and   being the predictable instantaneous volatility and dz 

the Wiener process.  In practice however, volatility varies stochastically. This has led to the 

development of many complex models with two stochastic variables: the stock price and its 

volatility, given by: 

(1.2)  

vL

s

dzVdtVVadV

dzVdtqr
S

dS





)(

)(
 

,, LVa  and  are constants, and sdz and vdz are Weiner processes. The variable V in the 

model is the asset’s variance rate. The variance rate has a drift that pulls it back to a level LV

at rate a (Hull and White,1987). However, the above diffusion model does not capture all of 

the features of high frequency financial time series data. To better the model, we add jumps. 

In this study the researcher  will not select the most appropriate jump diffusion specification 

and therefore selects one jump diffusion configuration to make all the forecasts. The model 
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draws from an approach close to the seminal work of Merton (1976)
1
, specifying the risk 

neutral process followed by the asset price: 

(1.3) )( kddzdt
S

dS
  

   where    ),(~ 2hhNS   

  is the drift  

   is the standard deviation of the diffusion  

 k is the jump size  

   is a Poisson process with parameter    

 

To  compliment the jump diffusion specification there is also consideration of the GARCH 

(1,1)
2
 representation to capture the persistence of volatility in asset price data. In this the 

GARCH (1,1) model is specified as follows  

(1.4)   tt CY   

(1.5) 2

1

2

1

2

  ttt   

Equation (1.4) above  represents the conditional mean model where the returns for the asset 

price, tY  are explained by a constant and an uncorrelated, white noise disturbance. The 

conditional variance equation (1.5) consists of a constant plus a weighted average of last 

period's forecast, 2

1t  , and  the corresponding squared disturbance, 2

1t  .  

Equations (1.3) to (1.5) sum up the generic model in this study. 

1.2 Research problem. 

There is a growing research on understanding the behaviour of high frequency financial data more so 

in an era of financial crises witnessed over the past few decades. Studies carried out have shown the 

benefits of characterising asset price movements as precursor to understanding volatility and hence 

risk management.  In this category, research studies by Clements et al, (2013; 2008), Cyr and Kusy 

(2007) Mykland (2007), Sorwar (2011), Yang et al (2009) and Mizrach (2008) form part of the 

literature having explored weather derivatives, exchange rate, interest rate stock and house prices 

respectively.  

                                                             
1 see R.C Merton, “ Option  pricing when underlying stock returns are discontinuous”, Journal of Financial 

Economics, 3 :125-144. 
2 GARCH models are used in forecasting and parameter estimation in stochastic volatility settings (Flemming, 

2003) 
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However the picture changes when we look at the South African experience in documenting 

features of high frequency financial data as research studies have been limited for some asset 

prices and non-existent for others (see for example Scheepers, (2005), Geyser (2004), Taylor 

(2014), van Appel (2013), Duncan and Kabundi, (2013). This has not taken away insufficient 

understanding as some of these studies have involved complex asset prices (see for example 

Poklewski-Koziell (2012), Kalsheker (2009)) whilst there has not been investigation for some 

areas for example characterising house prices and temperature based weather derivatives.  

This has left out an in-depth analysis on understanding what drives asset prices with the aim 

of informing academia, businesses, government and other stakeholders in making decisions 

amidst volatile financial data. This also comes at a time when there is a growing global move 

on applying the latest varying financial instruments in mitigating business risk. The thesis 

therefore seeks to fill this gap by carrying out a study on five different asset types so as to 

enhance decision making amidst volatile financial data through making use of an alternative 

characterisation of the features of asset prices. Use is made of stochastic volatility models 

mainly the jump diffusion model as an alternative process representing the behaviour of asset 

prices. This is done through investigating the unexplored areas in temperature based weather 

derivatives and house prices and also proposing alternative modelling of the other asset prices 

as specified below. This contributes to understanding drivers of volatility and hence serving 

as a precursor to decision making amidst high frequency asset prices in South Africa. 

 

1.2.1 Estimating payoffs for temperature based weather derivatives. 

 

The derivatives market has been innovative in developing products to meet the needs of 

market participants, even in weather risk. Weather derivatives are a growing derivatives 

sector the world over. They began to develop in 1997, as a result of the El Nino catastrophe. 

Companies with earnings tied to weather then, realised the importance of hedging. 

This affirms that weather derivatives are valuable tools for risk management. Their payoffs 

are contingent on weather indices based on climatic factors. The objective of the study in this 

area is to enhance understanding of the benefits therein in applying weather derivatives in 

South Africa. This will be aided through an estimation of the payoffs of temperature based 

weather derivatives. Based on the availability of accurate data, the study focuses on four 



18 

 

South African cities, thus informing industry players affected about alternative strategies for 

safeguarding earnings against adverse temperature movements. This contribution fills the gap 

in the literature exploring the applicability of weather derivatives.  Use is made of three 

different methods for estimating payoffs to determine the best method for use in making 

strategies. The objectives in this contribution include reviewing the benefits of a weather 

derivatives market with an application to South Africa. In this chapter we also consider some 

studies on weather derivatives in South Africa and determine as to which weather variables 

were employed. This will help us determine as to what extent the chapter will fill the existing 

gap. We also estimate payoffs for temperature based weather derivatives using three different 

methods. Based on availability of reliable weather data this will enable us to make 

recommendations as to the applicability of temperature based weather derivatives for the 

chosen cities. 

1.2.2 Jump diffusion model for the exchange rate. 

 

The success of financial economists over the past few decades is attributable to their ability to 

be able to predict with a certain level of accuracy the movement of asset prices. One 

approach to better understand asset price movement is the application of simple diffusion 

models which approximate the stochastic process for returns on financial assets. Though 

widely used, the “volatility smiles and smirks” derived using volatility in the Black-Scholes 

model reveal that a simple geometric Brownian motion process misses important features of 

the data. High frequency returns data display excess kurtosis (fat tailed distributions), 

skewness, and volatility clustering. To capture these features, there is a need to employ jump 

diffusion models. This will enable one to also compare the intensity and size of jumps in 

asset prices thereby offering leverage in making informed decisions to mitigate against 

financial losses. 

Despite the benefits offered by understanding the asset price movements, there is a gap in 

South African literature in this regard detailing rigorous methods  so that stakeholders 

affected by volatility in the exchange rate can make better informed decisions. It is in this 

context that this chapter applies stochastic volatility models for exchange rate data in South 

Africa. Studies on the volatile exchange rate in South Africa have come short of the robust 

models (for instance Mpofu, (2013), de Jager, (2012), Alpanda et al., (2009)). Recent 

advances in computing and econometrics offer a better selection with studies carried out 
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having considered the applicability of jumps elsewhere in the world (Eraker et al., (2003), 

Ramezani and Zeng (2002), Pan (2002) and Craine at al., (2000)).  

The chapter will test the applicability of going further beyond the Black-Scholes (1973) 

model and adding jumps in estimating the british pound/south african  rand, US Dollar/south 

african rand and euro/south african  rand  exchange rates as a jump diffusion process using a 

simulation-based estimator. This fills the gap in the literature of modelling exchange rate 

movements in South Africa as it will consider the intensity and size of the jumps over the 

study period and will   also expound on the noise behind different jumps sizes, intensity and 

the implications thereof. Furthermore this will contribute to improving forecasts and decision 

making on the impact of volatility on the exchange rate. The chapter objectives can be stated 

as to provide evidence of the relevance of jump diffusion models for exchange rate data in 

South Africa. This ensures that the chapter contribution identifies with literature and thereby 

adding validity of the research. Going further we estimate jump diffusion model and fat tailed 

GARCH model for exchange rate data. This enables us to compare with other findings in 

literature and deduce conclusions relevant to South Africa. 

1.2.3 Jump diffusion model for interest rates. 

Interest rates play important roles in financial markets; they can determine an organisation’s 

profitability and they also affect the investment portfolios of organisations and individuals. 

As a result it is important to manage interest rate risk as the goals of investors and 

organisations alike hinge on interest rate movements. It is important therefore that a correct 

specification of interest rates is made in such a way that there is understanding of the 

implications of the risk after capturing the factors that drive interest rates. This has in fact led 

to a number of models being proposed to explain interest rate behaviour (Ahn and Gao, 

(1999), Andersen and Lund, (1997), Longstaff and Schwartz, (1992). However, the generic 

interest rate model as given in Chan et al., (1992) does not capture sufficient characteristics, 

even after augmenting and adding other factors. A better alternative is to augment interest 

rate models with jumps (Sorwar, (2011), Attaoui and Six, (2008), Das (2002).  Many studies 

on South African interest rates have not considered jump diffusion models (for example 

Kleynhans and Meintjes, (2013), Jordaan (2013), Maitland (2013), West (2008), Fernandes, 

(2005), implying weak understanding of the approaches for the management of interest rate 

risk. The chapter seeks to fill this gap by considering an advanced approach to understand 

interest rate movements, also paving the way for better risk management and forecasts on 
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interest rates. This will be explored through applying a variation of a linear factor model in 

the presence of jumps. The research goes further to test the applicability of the advanced 

approach model using as a proxy the 90 day treasury bill (T-Bill) rate for South Africa. The 

objectives in this chapter incorporate reviewing short rate models with implication for South 

Africa. This will enable us to identify the gap in the well-known models of short term interest 

rates and thereby justifying application of a jump diffusion model. Thereafter we proceed 

with estimating a jump diffusion model and fat tailed GARCH model for the 90Day T-bill. 

Here we will test the validity of results obtained and draw conclusions on result features in 

the interest rate specification. Furthermore we split the period to deduce parameter sizes pre 

and post inflation targeting and derive further analysis. 

1.2.4 Jump diffusion model for stock prices. 

Empirical studies have verified the existence of jumps in stock prices (Mykland, (2007), ELiu 

et al., (2003), Eraker et al., (2003), Andersen et al., (2002). The jumps in stock prices, which 

are by nature large discontinuous price movements, are as a result of infrequent and large 

surprises to investors’ information sets. For South Africa however, there has  been minimal 

work focusing on jumps in individual stock prices (for example Kutu (2012) with the 

remaining visible studies not having considered jump diffusion models (Taylor, (2010), 

Moolman (2005). In this study the researcher is therefore carrying out an analysis 

documenting the benefits of considering jumps in selected Johannesburg Stock Exchange 

(JSE) sector stocks using Poisson distributed jumps. The analysis goes a long way in 

informing stakeholders like investors, government, of the behind the scenes reasons for 

fluctuating stock prices at one of the world’s leading stock exchanges. This is also done 

through an analysis of the properties of individual stock price jumps and the jump intensity. 

The main objectives in this chapter are to estimate jump diffusion models and fat tailed 

GARCH models for stock prices for selected sectors. This enables us to compare the findings 

with literature and deduce conclusions on the characterisation of stock prices across the 

different sectors. 

1.2.5 Existence of jumps in house prices. 

The housing market is an important source of investment and forms a large part of household 

wealth. The design of financial instruments for the housing market such as mortgages 

depends on the understanding of house price movements and dynamics. As such it is 

important to understand noise in house prices as captured by jumps in this form of household 
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wealth. Visible research on applying the jump diffusion model for house prices in South 

Africa to the best of  this researcher’s knowledge has not been explored (see for instance 

Clark and Daniel, (2006), Els and von Fintel, (2008)). This gives the researcher motivation to 

fill this gap in testing the existence of jumps in house prices and as well explain the impact of 

jumps on the house prices and how their distribution has been over the years. The main 

objective is to represent the house prices as a jump diffusion process and as well compliment 

with a fat tailed GARCH model. Since few studies have attempted the applicability of the 

jump diffusion model on house prices as a tool to understand volatility the chapter will fill 

this gap for South Africa, paving the way for rigorous analysis of house prices in South 

Africa. 

1.3 Objectives of the study. 

 

The following are the main objectives in the thesis: 

Review the use and benefits of weather derivatives in South Africa. With the innovative 

derivatives market, new products are being introduced frequently as investors mitigate risk. 

Many global powerhouse countries have started trading in weather derivatives to mitigate 

weather related losses. This is also informed by empirical findings (for example Clements et 

al (2013, 2008), Cyr and Kusy (2007)). The aim will be to determine if South Africa can 

benefit from trading in weather derivatives. Having determined the usability of weather 

derivatives in South Africa the research will then model the process driving temperature and 

estimate the payoffs of temperature based weather derivatives in four South African cities. 

This will allow us to draw conclusions and policy recommendations on whether South Africa 

can pursue trade in weather derivatives as a risk management tool based on the chosen 

method. 

The research will also provide evidence of the relevance of jump diffusion models for various 

asset classes. This contributes to understanding the features of asset prices in this application 

on exchange rate, interest rate, stock and house prices. Furthermore, the research estimates 

the Jump Diffusion Model for exchange rate, interest rate, stock and house prices. The 

parameter results for these different asset classes will enable us to draw conclusions, compare 

with related literature findings and provide policy recommendations on the applicability of 

rigorous methods in understanding volatility and hence risk mitigation. 
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Complimenting the jump diffusion model the research also estimates fat tailed GARCH 

models for exchange rate, interest rate, stock and house prices to test for persistent volatility 

on the high frequency data used. We also draw comparison with literature findings and 

conclusions and implications of the results in South Africa. 

1.4 Results and benefits of the study.  

 

The main findings of the study are as follows; Contribution to the understanding of the 

application of modelling to temperature based weather derivatives products in South Africa. 

This is motivated by the fact that weather derivatives are increasingly becoming valuable 

tools for risk management worldwide. Though the majority of weather derivative deals are 

carried out in the US, there is a growing market of participants and contract types all over the 

world. In this study the researcher carries out an estimation of the payoffs of temperature 

based weather derivatives in four south african cities. This enables us to inform industry 

players and academia alike about alternative strategies for safeguarding earnings against 

adverse temperature movements in the investigated regions. 

In the analysis, the research presents three methods of estimating payoffs of temperature 

based european call options.  For rigorous analysis, a data set comprising average daily 

temperature, spanning over fifty years for four South African cities is employed in carrying 

out the study. The results inform us which method performs best in estimating payoffs amidst 

volatile temperature data. The information is important for all organisations affected by 

adverse temperature movements as they will be in a position to hedge after determining the 

method applicable in their environment. 

The “volatility smiles and smirks” derived using volatility in the Black-Scholes model reveal 

that a simple geometric Brownian motion process misses important features of the data. High 

frequency returns data display excess kurtosis, skewness, and volatility clustering. To capture 

these features, there is a need to employ a jump diffusion model. The jump diffusion models 

address the issue of “fat tails” and enable a better fit for “smiles”. The applicability of jump 

diffusion processes is seen in finance to capture discontinuous behaviour in asset pricing. The 

process is based on a Poisson distribution, which can also be applied for modelling 

systematic jumps caused by the surprise effect. This approach aids forecasts in these financial 

time series variables as results are more accurate when compared to purely diffusion models.  

Furthermore jump diffusion models play an important role in finance as they fit better the 
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jumps. All these factors enable us to arrive at conclusions crucial for policy makers and 

academia on the validity of jump diffusion models in South Africa.  

The jump diffusion process is widely used to model financial time series to capture 

discontinuous behaviour in asset returns. However, a difficulty involved in the estimation of 

general jump-diffusion processes has prevented their implementation in empirical 

applications. This study estimates general parametric jump diffusion processes from 

discretely observed currency exchange rate data, with interesting results for analysis. The 

analysis is extended to interest rates, stock and house prices. The estimation results suggest 

that jumps are important components of the exchange, interest, stock markets and even for 

house price markets. As such the study contributes to understanding of asset price 

movements. 

 

1.5 Limitations of the Study.  

 

Chapter two considers four cities in South Africa due to the unavailability of daily data for 

longer horizon for other cities. Another limitation is the current lack of an organised market 

for trading in weather derivatives in South Africa.  

The jump diffusion models and the stochastic volatility model can complement each other. 

As an example, for stochastic volatility models the kurtosis decreases as the sampling 

frequency increases. For jump diffusion models however, the instantaneous jumps are 

independent of the sampling frequency. This suggests that jump diffusion models may 

capture short-term behaviour better, while stochastic volatility models may capture long term 

behaviour better. 

 

A common problem with jump diffusion models is that they do not capture the volatility 

clustering effects sufficiently, which can be captured by affine jump diffusion models, a 

combination of jump diffusion models with stochastic volatility models. Another 

consideration is that jump diffusion models are simpler than general affine jump diffusion 

models. Jump diffusion models have fewer parameters, making calibration easier. Therefore, 

jump diffusion models attempt to strike a balance between reality and tractability, especially 

for short maturity options and short term behaviour of asset pricing. 
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1.6 Organisation of the study. 

 

The thesis has eight Chapters. Chapter one is the introduction to the study. Chapter two 

focuses on the dynamics of temperature based weather derivatives. Chapter three presents the 

methodology of jump diffusion models and GARCH models. Chapter four employs a jump 

diffusion model for estimating the returns of US$/ south african rand, euro/ south african rand 

and GBP/ south african rand exchange rates.  Chapter five applies a jump diffusion model on 

interest rates and chapter six extends the model to stock prices. Chapter seven applies the 

jump diffusion model to house prices and chapter eight concludes the study. 
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CHAPTER TWO 

TEMPERATURE RISK 

2.1 Introduction. 

 

The derivatives market has been known to take the lead in innovation through introduction of 

new products to mitigate risk. One such innovation has seen the emergence of weather 

derivatives to mitigate weather related risk. Weather derivatives are a growing derivatives 

sector the world over. They began to develop in 1997, as a result of El Nino, a prolonged 

warming of the ocean’s surface temperatures. As a result of the El Nino calamity, companies 

that had earnings tied to weather realised the importance of hedging their seasonal weather. 

Weather derivatives are valuable tools for risk management. Their payoffs are contingent on 

weather indices based on climatic factors. They are useful for hedging risk in the agricultural, 

entertainment, beverage, construction and even apparel industries.  

 

The majority of weather derivative deals are carried out in the US, but there is a growing 

market of participants and contract types all over the world. The growth within Europe is 

occurring mostly in France and the UK, with Scandinavia and Germany close behind. Most 

European deals continue to be over-the-counter (OTC)
3
 rather than exchange traded 

contracts.  Other parts of the world which have experienced growth include Asia, which has 

experienced rapid growth. The first deal on wind speed was carried out in Asia, for a wind 

power project. In addition, the Japanese have seen the majority of their deals coming from the 

non-energy sector, with banks acting as intermediaries between end users and weather risk 

management providers. In Australia, many deals have involved power retailers. The current 

size of the market is estimated at around US$20 billion (Broni-Mensah, 2012). 

 

Though with wide spread evidence of the importance of weather derivatives in mitigating 

risk, their application to South Africa has not been well documented. Few studies have 

focused on weather derivatives (for example Scheepers, 2005, Geyser 2004) focusing on 

                                                             
3
 An over-the-counter product can be a forward or option contract providing a payoff dependent on the 

cumulative HDD or CDD during a month (i.e., the total of the HDDs or CDDs for every day in the month). . 
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rainfall as a weather variable. This has left out investigation on other important weather 

variables like temperature.  This chapter therefore expounds on the benefits of applying 

temperature based weather derivatives as an instrument of mitigating risk in South Africa. In 

this application we make use of regions with reliable daily temperature data and therefore 

consideration is made of four South African cities.  

 

The chapter applies three methods for estimating payoffs of temperature based weather 

derivatives; Historical method, Cumulative CDD and the Seasonality GARCH (SGARCH). 

The method which gives the best estimated payoffs is chosen for consideration in the cities as 

it outperforms the other methods in the optimal mean and standard deviation of payoffs. In 

this case the SGARCH method proves superior over the two remaining methods. The 

implication is that the SGARCH method provides better risk mitigation against adverse 

temperature movements in the four South African cities and as such should be considered in 

these cities. 

 

2.1.1 Concepts and unique aspects of weather derivatives. 

A measure of the volume of energy required for heating during the day is referred to as a 

Heating Degree Day (HDD) where as a day’s Cooling Degree Day (CDD) is a measure of the 

volume of energy required for cooling during the day.  The contracts are on the cumulative 

HDD and CDD for a month observed at a weather station.  They are settled in cash just after 

the end of the month once the HDD and CDD are known.  The buyer of the derivative is 

compensated by the under-writer for an amount that offsets the real business losses from 

adverse weather. To illustrate, an amusement park owner would buy a CDD put that pays out 

if there is a string of unusually cold days. The value accumulated with the long put position 

will help offset the lost revenue from customers who have stayed away during the cool 

weather period.  If, on the other hand, the intervening period was unusually hot so that the 

CDD index rises well above the strike level, then the put expires worthless. The amusement 

park owner will have likely met desired risk management goals because increased business 

revenue compensates for the price of this “insurance policy” (Richards et al., 2004).  

 

Instruments of weather derivatives include swaps, options, and option collars with payoffs 

dependent on weather related variables like average temperature, HDD and CDD, humidity, 

maximum or minimum temperatures. Temperature related contracts are more prevalent.  
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Weather futures and options offered on the Chicago Mercantile Exchange (CME) have 

similar characteristics to futures and options written on other types of assets. However, 

weather contracts have a number of characteristics that are unique. One unique aspect about 

the products is the ability of hedgers to construct seasonal weather contracts, as the 

amusement park owner example above illustrated. Since weather derivatives were initially 

launched, the CME has expanded their product offering, and now offers contracts on entire 

seasons (Jones, 2007). Another unique aspect of weather derivatives is the ability of a 

company to hedge volumetric risk. A third aspect of these contracts, that hedgers must be 

aware of, is basis risk. Basis risk is not unique to weather derivatives but since these contracts 

depend on the weather, understanding the nature of weather related basis risk is of particular 

importance. 

 

2.1.2 Hedging volumetric risk. 

 

A great advantage of weather derivatives is that they can be used to hedge an aspect of risk 

not often able to be hedged, volumetric risk. Many businesses are exposed to various types of 

risks, some of which are more difficult to hedge than others. Weather derivatives can be used 

to hedge volumetric risk as opposed to price risk. Volumetric risk is the risk that a company 

cannot generate enough volume  to generate profit even though it is able to get the price that 

it may desire for its product (Pérez-González and Yun, (2010), Jones, 2007)). A farmer will 

not produce as much grain in times when the weather is damaging to his crops, thus he can 

use weather derivatives to hedge his yield risk, as opposed to his price risk. Agricultural 

companies have many approaches to hedge price risk, but these methods continue to leave the 

company exposed to low yield. Months of high HDD or CDD (extreme temperatures) can 

lower the yield of crops and squeeze a farmer’s revenue even if he has hedged his price risk 

properly. For example, if a corn farmer is concerned with the potential of a large loss in 

revenue when the summer is hot, he could buy CDD futures or buy CDD calls. If the summer 

is hot and he produces a low corn yield, the revenue gained from the CDD weather 

derivatives will offset the loss from the lower yield. 
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2.1.3 Basis risk. 

 

The OTC weather derivatives market includes most US cities because the derivatives are 

fitted to the needs of the individual buyers or sellers. However, the CME market only 

includes the cities listed on the exchange, which means that a company wishing to hedge 

weather for cities not listed by the CME faces basis risk, or risk that arises when the value of 

the asset used to hedge does not exactly equal the value of the asset being hedged (Considine, 

2000). For weather derivatives, basis risk arises when the weather in one area does not 

exactly equal the weather used to value the futures or options contract. Agricultural risk 

managers must be aware of the basis risk inherent in the weather derivatives market as it can 

be substantial in this market. For South Africa, Geyser (2004) incorporated the basis risk for 

the rainfall related derivatives study. 

 

The fact that the weather can be totally different in two relatively close locations, leads to a 

potentially high amount of basis risk. The information used to settle the weather contracts is 

gathered from equipment located at the end of airport runways in each respective city. Due to 

the geographic surroundings of a city, the weather of one area in a city for which a weather 

contract is written may differ from the “price” of the contract itself (Manfredo and Richards, 

(2005)). Thus, some basis risk may even exist in a hedge where a weather derivative is used 

to hedge weather in a different part of a city from where the temperature is recorded. Basis 

risk is largest in weather hedges where the hedger wishes to hedge the weather exposure in a 

city other than the city on which the weather contract is written. Basis can often be traded in 

the OTC market by writing a contract on the difference in the HDDs or CDDs between two 

cities. Numerous weather factors influence the correlation, which changes over time, between 

the HDDs and CDDs in two locations. Basis risk must be realised when a hedge is put on and 

monitored so that it does not get out of control. Even though the basis risk of a weather hedge 

may be large, the greater certainty of a firm’s revenue is typically worth the basis risk taken, 

and the basis risk is usually never greater than the risk of an unhedged position where 

weather derivatives are not used.  
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2.1.4 Hedging with weather futures. 

 

A company can use HDD and CDD futures contracts traded on the CME to hedge weather 

risk exposure. These trades like other contracts are “priced” based on degree day indexes. A 

company will buy the futures contract at a degree day index level traded in the market 

(Garman et al., 2000). If the number of degree days in the month, turns out to be higher than 

the index level where the contract was bought, the buyer gains on the futures contract. In a 

related sense, the company can sell a HDD or CDD monthly weather futures contract. If the 

number of degree days in the month is lower than the index level where the contract is sold, 

then the seller gains on the futures contract. 

 

Suppose a wheat farmer wishes to hedge against cold weather. He can buy an HDD contract, 

if the weather is very cold, he will receive the payment from the futures position because the 

HDD index went up. If however, the weather is only mildly cold, he will likely harvest a high 

yield crop and realise high revenues but lose money on the futures position, which is offset 

by revenues from the larger crop. In the same  manner as HDD futures, CDD futures can be 

used to hedge the risk of decreased revenues when the weather is very hot. 

 

2.1.5 Hedging with weather options. 

 

The buyer of the weather option has unlimited profit potential on the upside, while only 

risking the premium paid for the option on the downside. Weather options derive their value 

based on the strike price, which is indexed as the number of degree days in a period. If a 

company wishes to hedge the risk in a period of extreme weather, they will buy a call option 

with a strike price equal to the number of degree days above which they want to realise a gain 

(Considine, 2000). The higher the strike number of degree days, the cheaper the option, but 

the more degree days in the period then they  would have to accumulate for the company to 

realise a gain on the option position. This call option would increase value as the number of 

HDD or CDD in a period increases above the strike price. CME options on HDD and CDD 

futures are European style, which means that they cannot be exercised before their expiration 

date. The underlying instrument for each HDD or CDD option is one HDD or CDD futures 

contract.  
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2. 2 Literature Review 

 

This section looks at existing literature work that has been conducted regarding weather 

derivatives. Such literature will help enrich our understanding of the weather derivatives as 

well as their application in South Africa. The deregulation of the energy industry in the US 

saw the first weather derivative security issue taking place in August 1996 between Enron 

and Florida Power and Light for a value of 40 billion US dollars (Geman & Leonardi, 2005). 

Growth in  weather contracts has been largely influenced by the El Niño winter of 1997-98. 

During that time, warm weather conditions in the winter season resulted in significant 

earnings decline, thus compelling many energy companies to attempt to hedge their seasonal 

weather risk. The OTC market expanded rapidly driven largely by the energy sector and in 

September 1999 the CME started an electronic market on which standardized weather 

derivatives could be traded (Alaton et al, 2002). 

 

It is interesting to note that 1/7
th
 of the industrialised economy is weather sensitive (Hanley, 

1999) and that 30% of U.S GDP is exposed to some type and degree of weather risk 

(Finnegan, 2005). Temperature related contracts are more prevalent, accounting for at least 

80% of transactions (Cyr & Kusy, 2007; Cao & Wei, 2004; Cao et al., 2004; Garman et al, 

2000), trading on the CME for major U.S cities. 

 

There has also been a number of interesting applications developed for weather derivatives. 

One such application was when weather derivatives were used to hedge against low wine 

consumption in England. In May 2000, Corney & Barrow, a wine bar chain in London, 

England, entered into a temperature contract to hedge against low sales on cool summer days. 

In this application, they found that wine consumption declined when the temperature fell 

below 24°C. They purchased a derivative contract for the June-September season which 

entailed a payoff of £1000 x (24°C – Ti)
4
 per day for the days when the average daily 

temperature was below 24°C (Cyr & Kusy, 2007; Wei, 2002). 

 

 

In Africa, Mraoua and Bari (2005) considered temperature stochastic modelling and weather 

derivatives pricing in Morocco admitting the lack of development in weather derivatives in 

                                                             
4
 Ti is average temperature on a given day. 
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Africa save for attempts in South Africa. Literature on the application of weather derivatives 

to South Africa is thin. The first weather derivatives market deal in South Africa was 

structured to provide ZZ2 Ceres, a large producer of fruit and vegetables, protection from 

frost (Douglas-Jones, 2002). This saw the company being paid for days when temperature 

was very low, below 0 degrees Celsius. Some of the visible studies include works by Geyser 

(2004) who considered rainfall options as a yield risk management tool. In the study use was 

made of rainfall derivatives as an aid to agricultural production. The study concluded that use 

of weather derivatives is relevant to South Africa as weather related variables are source of 

economic risk in agriculture.  

 

Trading in weather derivatives can benefit many industries in the economy including farmers, 

construction and even entertainment. As an example a farmer can hedge against low yield 

and prices by combining a rainfall option with insurance contract and agriculture futures 

(Scheepers, 2005, Geyser, 2004).  A study related to Geyser (2004) is by Scheepers (2005) 

wherein rainfall options were considered as a yield management risk tool. The study 

recommended the use of weather derivatives as applicable to South Africa. 

 

 Also supporting the use of weather derivatives, Ladbury (2000) identified Agriculture and 

Construction as some of the sectors that could benefit from weather derivatives. Researchers 

who have focused on South African weather derivatives concur that there is need for 

awareness campaigns in order to encourage participation so that affected stakeholders can 

hedge against weather related risk (Scheepers, 2005, Geyser, 2004).  

  

2.2.1 The contracts. 

 

In addition to contracts traded on organised markets, there are also contracts which are 

concluded OTC. One of the most used contracts is the option, which  can be of two types; 

calls and puts. To illustrate, the buyer of a HDD call pays the seller a premium at the 

beginning of the contract. If the number of HDDs for the contract period is greater than the 

predetermined strike level the buyer will receive a payout. The payout is determined by the 

strike level and the tick amount (monetary value for each HDD exceeding the strike level of 

the option). The parameters of a typical weather option are: 

 The contract type (call or put). 



32 

 

 The contract period (e.g. January 2013). 

 The underlying index HDD or CDD. 

 A meteorological station from which the temperature data are recorded. 

 The strike level or value. 

 The tick amount or specification (e.g. x amount per Degree Day). 

 A maximum payout (if there is any)   (Mraoua, 2005, Cao and Wei 2004). 

 

To illustrate, the option will acquire value when the cumulative CDD index rises above an 

agreed strike level. At the expiry date, the holder of the option receives payment if the CDD 

index rises above the strike level. The amount of the payment is thus: 

﴾ CDD Index -  Strike Level ﴿ * Notional Rand value/unit of index. 

 

The HDDs and CDDs are commonly referenced weather indices. The utility industry in the 

U.S found that 65 degrees Fahrenheit is a benchmark temperature to differentiate between 

transactions in the heating and cooling seasons.  The standard came about because in the past, 

people often turned on their furnaces when the temperature fell to 65 degrees. Thus 

consumers will burn more energy to heat their homes for each degree below 65 and will use 

more energy for their air conditioners for each degree above 65 (Jones, 2007). The metric can 

be easily converted into degrees Celsius.
5
 

 

2.2.2 Weather  derivatives vs insurance 

Insurance products have been involved in weather related risk (Geyser, 2004). Of importance 

is to point out that weather derivatives differ substantially from insurance in that insurance 

contracts require the filing of a claim. Furthermore, insurance is also generally intended to 

cover damages as a result of infrequent high-loss events rather than limited loss and high 

probability events as is the case for weather derivatives (Richards et al, 2004, Alaton, 2002). 

However, weather derivatives are designed as a “bet” on weather conditions (Richards et al, 

2004).  

Insurance also covers once-off risks which may and at time may not be proportional to the 

risk incurred. Weather derivatives on the other hand can compensate proportionally when 

                                                             
5 Converting Fahrenheit to degrees Celsius. )9/5(*)32(  FC  
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circumstances satisfy the parameters in the contract, thereby delivering better hedging than an 

insurance product (Geyser, 2004, Dischel and Barrieu, 2002).  

 

Although the use of weather derivatives has been successful in certain sectors and countries, 

it has met with little success in other countries. In particular exposure in the power and 

energy markets are almost linear with temperature; power demand increases steadily with 

both high and low temperatures. Furthermore, few exposures in other sectors of the economy 

can experience such simple measurement. As a result the exchange traded instruments such 

as the degree-day futures and options trading on the CME for major US cities are of little use 

for many other sectors if not countries. The fact that weather is a local phenomenon and can 

differ dramatically within a small geographic area results in significant “basis” risk for those 

agricultural producers wishing to use weather derivatives to hedge (Cyr & Kusy, 2007). 

 

2.2.3 Studies on valuation of weather derivatives. 

The valuation of temperature derivatives has unique aspects. Weather is not a traded asset. As 

a result, the conventional risk-neutral, arbitrage valuation does not apply. Furthermore, 

temperature being a meteorological variable follows a predictable trend, especially over a 

longer horizon. The nature of the temperature variable brings about two important issues: 

accurate modelling of the underlying and the assessment of the market price of risk (Cao and 

Wei, 2004). 

 

The valuation methods in use can be classified into three categories: 1) insurance or actuarial 

valuation, 2) historical burn analysis, and 3) valuation based on dynamic models. Insurance 

or Actuarial methods are historically based statistical analysis methods widely used by 

insurance companies.  A probabilistic assessment is attached to the insured event and a fair 

premium is calculated. For weather derivatives, this method is less applicable for most 

contracts since the underlying variable temperatures tend to follow a recurrent, predictable 

pattern. However if the contract is written on rare weather events such as extreme heat or 

coldness, then the actuarial valuation method will be useful.  

 

The Historical Burn Analysis is simple to implement though prone to large pricing errors. 

The method evaluates the contract against historical data and takes the average of realszed 

payoffs as the fair value estimate (Dischel, 1998). The model rests on the assumption that the 
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past always reflects the future. The commonly accepted sample length in the industry appears 

to be between 20 and 30 years. 

 

Both the insurance or actuarial method and the historical burn analysis methods are incapable 

of accounting for the market price of risk associated with the temperature variable. These 

methods are only useful from the perspective of a single dealer. It remains that there is a need 

for a dynamic and forward looking model to establish a unique market price which 

incorporates a risk premium. In contrast to previous valuation models, dynamic valuation 

models directly simulate the future behaviour of temperature as a continuous or discrete 

stochastic process. 

 

Dornier and Querel (2000) fitted an Ornstein–Uhlenbeck stochastic process with constant 

variance to temperature observations at Chicago, O’Hare, airport, with temperature 

derivatives pricing in mind. Later, Alaton et al., (2002) extended the Ornstein–Uhlenbeck 

model to allow for a monthly variation in the variance, and fitted their model to temperatures 

observed on the Bromma airport outside Stockholm. They applied their model to derive 

prices for different temperature derivatives. Campbell and Diebold (2004) observed a clear 

seasonality in the autocorrelation function for the squared residuals when modelling 

temperature in several US cities with a higher-order autoregressive model. They proposed to 

use a seasonal autoregressive conditional heteroskedastic process to model this. However, in 

their study the pricing of temperature derivatives was not considered. 

 

Mraoua and Bari (2005) suggest a mean-reverting model with stochastic volatility for the 

temperature evolution in Casablanca, Morocco. A temperature swap is priced based on their 

model. A different modelling approach using fractional Brownian motion to drive the noise in 

an Ornstein–Uhlenbeck temperature model is proposed by Brody et al (2002). Prices for 

different temperature derivatives are calculated by solving certain partial differential 

equations. Benth (2003) calculates an arbitrage-free price dynamic for temperature 

derivatives based on the fractional Ornstein–Uhlenbeck model in Brody et al (2002). In the 

temperature derivatives market there is a question of choosing the ‘right’ price among a 

continuum of possible arbitrage-free prices. 

 

 In most of the aforementioned papers a new parameter called the market price of risk is 

introduced, which can be calibrated to data and thereby, using the market to pin down the 
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price. This is the approach discussed in Brigo and Mercurio (2001) for interest rate theory. 

Davis (2001) proposed to use a marginal utility technique to price temperature derivatives 

based on the HDD index. A benchmark approach using the world stock index as the 

numeraire to price temperature derivatives is suggested by Platen and West (2005). 

 

Other studies have applied jump diffusion models for  weather derivatives, drawing from the 

literature in asset pricing for  pricing derivatives for stocks; (Merton 1976; Ball & Torous 

1983, 1985; Jarrow and Rosenfeld 1984; Jorion 1988; Bates 1991, Asea and Ncube 1998), 

exchange rates (Bates 1996; Asea & Ncube 1998) and commodity prices (Hilliard and Reiss, 

1999). This can also be applied for temperature as the killer frost in California in December 

of 1998 demonstrated (Hilliard and Reiss, 1999). The weather derivatives model can be made 

more robust by allowing mean and variance to be time varying and stochastic. Other 

extensions have seen the method for pricing derivative securities on weather involving the 

use of an equilibrium approach based on a Lucas general equilibrium framework (see Cao 

and Wei, 2004; Lucas, 1976). 

 

There is also a large pool of methods for estimating expected payoffs for weather derivatives.  

Of these, the general one computes the expected value of payoffs from historical records 

(Zeng, 2000; Platen and West, 2003). A more general method is to fit a model to the time-

series of average temperature so as to capture seasonal variations in both temperature and its 

volatility (Platen and West, 2003; Campbell and Diebold, 2004). Thereafter, the model is 

used to simulate temperature outcomes over the period of the contract in order to construct 

the distribution of the temperature-based index on which the derivative is written. According 

to Benth and Saltyte-Benth (2005), there exist closed form solutions for expected payoffs 

which are not only simple to use but are viable for isolated cases.     

 

A point to note is that widely available meteorological forecasts are not suitable for the 

purpose since these forecasts are made over relatively short horizons, such as 7 days, whereas 

temperature derivatives are often traded well before contracts can generate any payoffs 

(Wilks, 1995; Jewson and Caballero, 2003; Campbell and Diebold, 2004). 
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2.3. Tick values of temperature options 

 

 Allowing T to denote the temperatures in degrees Celsius 
6
on a particular day at a weather 

station, the daily HDD and CDD indices at that station on that day are defined by: 

 

                               

(2.1)                        

The term Ti is the daily average temperature of the daily maximum (T
max

) and minimum 

temperatures (T
min

) at a specified weather station, from midnight-to-midnight, measured in 

degrees Celsius.  

(2.2)    
2

minmax TT
Ti


  

The degree days used in weather derivatives are calculated as the difference in the daily 

average temperature from 18.3333 degree Celsius. A HDD is calculated by subtracting the 

daily average temperature from 18.3333 degrees Celsius. A CDD is calculated by subtracting 

18.3333 degrees from the daily average temperature. There cannot be both HDD and CDD 

within a single day, given that the daily average temperature can only be either above or 

below 18.3333 degrees. If Ti is less than 18.3333 degrees, HDD will accumulate where as if 

Ti is greater than 18.3333, CDD will accumulate. HDD can be thought of in terms of needing 

to use the heater where as CDD can be thought of needing to use the air conditioner (Jones, 

2007). 

 

 In the southern (northern) hemisphere the HDD (CDD) season would be from May to 

September, while the CDD (HDD) season would be from November to March. These are 

obtained by summing up daily HDD/CDD indices over a period of N days to get 
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The CMEs HDD and CDD futures and options contracts are based on indexes of HDD and 

CDD. These are an accumulation of daily HDDs and CDDs, over a calendar month or an 

                                                             
6
 Converting Celsius to Fahrenheit.  F = (9/5* Degrees Celsius ) + 32 
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entire season.  We let D be the strike price of a temperature based option defined as a 

particular value of the relevant cumulative index. Therefore, the buyer of a vanilla European 

call option pays an up-front premium and receives a pay-out if the value of the relevant index 

exceeds the strike price, D, at the maturity of the option. The tick value of a CDD call option 

with strike price D and duration N days thus becomes:  

 

TN max (CN-D,0) 

 

The monetary payoff from the contract is the product of the tick value and the tick size, 

defined as the cash value of a tick.  Given the cumulative index x, the probability density 

function, fN(x) of the relevant cumulative index over the period of the contract, a call option 

for N days with strike price D, will have as an expected tick-value the representation; 

(2.4)    dxxfDxTE
D

NN )()(


  

According to the Black-Scholes (1973) valuation model of options, expected payoffs are 

discounted at riskless interest. Such a discount rate is based on a zero-arbitrage argument 

involving the formation of a portfolio consisting of a riskless combination of an option and 

the underlying asset. However, when it comes to temperature-based weather derivatives, the 

underlying indices are not tradable, and therefore these derivatives cannot be priced by means 

of a zero-arbitrage argument.  

 

2.4 Data 

 

The data set comprises daily maximum and minimum temperature records in degrees 

Fahrenheit. The analysis is conducted on the time series of average daily temperatures 

computed as the arithmetic mean of the daily maximum and minimum values.  Johannesburg 

(Jhb), Cape Town (Cpt), Durban (Dbn), Bloemfontein (Blm) were chosen as they are four 

major cities in South Africa and also because accurate temperature records of 50 years are 

available for these cities at comparable weather stations
7
. The construction of the temperature 

                                                             
7 All the data were supplied by the South African Weather Services. For all the data sets, missing values were 

treated by averaging adjacent records. Following Campbell and Diebold (2004), all occurrences of the 29 

February were removed. 
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record for each city is now discussed in detail. All data for each city has 18341 observations 

over the period 1/1/1960 ending 31/3/2010. However data is sourced from a different number 

of weather stations; two weather stations for Bloemfontein and Cape Town; three weather 

stations for Johannesburg and one station for Durban.  

 

Table 2.1: Summary Statistics Temperature Data  

iT  BLOEM CPT DURB JHB 

 Mean 15.9569  16.4401  20.8973  16.3936 

 Median  16.7 16.75 20.95 16.75 

 Maximum  30.13  29.85  30.45  27.71 

 Minimum  -0.4  0  0 -0.3 

 Std. Dev.  6.0273 4.3645 3.4354 3.9732 

 Skewness -0.2443  0.069774 -0.0589 -0.4475 

 Kurtosis  2.5135  2.0720  2.2612  2.3072 

 Observations  18341  18341  18341  18341 

 

From the table above, Durban is the hottest city on average and also records the lowest 

variability in average daily temperature.  Bloemfontein has a relatively high variability in 

average daily temperature, suggesting that it is the coldest during the sample period. There 

are differences in all the cities between the sample means of temperature for the individual 

sample as shown above. Literature abounds with various models for pricing weather 

derivatives. With these results on the data behaviour a time trend can be considered as an 

important component of a model of average daily temperatures for the four cities.  

 

Skewness quantifies how symmetrical the distribution is. A distribution that is symmetrical 

has a skewness of 0. In the case of the results presented in the table above, the data suggests 

closeness to symmetry perhaps with the exception of Jhb. Kurtosis quantifies whether the 

shape of the data distribution matches the Gaussian distribution. A Gaussian distribution has 

a kurtosis of 3. A flatter distribution has a kurtosis less than 3, and a more peaked distribution 

has a kurtosis greater than 3. For the four cities, the data are platykurtic. However, returns
8
 

                                                             

8 A return is calculated as )ln(
1t

t

y

y
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data are leptokurtic. The diagrams below indicate the volatile nature of the data and the 

density diagrams further confirm that the data are not normal distributions. 

Figure 2.1: Average Daily Temperature 1960-2010 

Figure 2.2 : Density Temperature
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2.5 Statistical models for forecasting and pricing weather derivatives 

 

The common practical approach employed in pricing temperature-based derivatives is termed 

the actuarial valuation method, discussed in Zeng (2000) and Platen and West (2003). This 

approach prices the derivative at the mean expected payout plus a premium for overhead 

expense. The simplest way of implementing this pricing scheme is to review historical 

records over the period of a contract in previous years and use these values to calculate the 

hypothetical pay-out of the contract had it been in place. The actuarially fair price for the 

derivative would then be the mean historical payoff. However the approach applies if the 

values are independent and identically distributed random variables. 

 

2.5.1 Modelling Cumulative Degree Days 

 

A straightforward approach to evaluating the expected tick value of a temperature derivative 

contract is to model cumulative CDDs directly, on the assumption that there exist historic 

temperature records for longer horizon (Clements et al., 2008) as cumulative degree days 

exhibit behaviour closest to normality.  Some studies have argued that the quadratic trend 

model can produce reliable index values (Van Keymeulen, (2013), Špička, (2011)). Should 

the simple quadratic model produce significant results then it can be used to obtain mean 

forecasts of CDD, thereby providing a basis in formulating a pricing model for the weather 

derivative. In this case the weather variable for the trend model is temperature.   

 

The model is described as follows; We let C1 , C2, …….Cn  be the time series of n historical 

observations of cumulative CDDs. Intuitively, in the absence of a trend in the temperature 

data from which the cumulative CDDs are derived, these observations will be independently 

and identically distributed realisations from the distribution of cumulative CDDs. A simple 

quadratic trend model is proposed for cumulative CDDs and is represented below; 

 

(2.5) tttt TrendTrendC  2

210   

Where t  represents the mutually independent error term; estimations for the parameters of 

this model yields: 
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E(Ct)Cape Town      = 385.241   -1.647Trend +  0.0992Trend
2

  +    0.3257et 

                      (26.8873)      (2.4322)           (0.0462)                  (0.1391) 

 

E(Ct)Johannesburg   = 213.9142    +2.5825Trend - 0.0322Trend
2

 +0.2035et 

                            (48.3816)     (4.3765)          (0.0832)           (0.1445) 

 

E(Ct)Durban            = 908.602       + 3.8248Trend    - 0.0438Trend
2

  -0.1758et 

                          (24.7283)         (2.239)             (0.0426)           (0.1485) 

 

E(Ct)Bloemfontein    = 550.4009     -32.744Trend +  0.5543Trend
2

  + 0.5904et 

                          (32.6457)      (2.9557)              (0.0563)            (0.1231) 

 

The figures in parenthesis are the standard errors. Results are not significant for all cities. 

Bloemfontein has the trend and quadratic trend terms significant. Cape Town has a quadratic 

term significant. Durban has trend significant. Johannesburg has a trace of a trend. The figure 

below presents the presents the cumulative CDD to complement the results above.   

 

Figure 2.3: Cumulative CDD 1960-2010 

 

2.5.2 Simple Option payoff pricing 

 

Simple pricing models can also be constructed using a probability distribution fitted to a 

historical data set of monthly CDDs or HDDs. Thereafter, the next step will be to integrate 

the product of the probability distribution with the payoff of the option. The expected payoff 

of a CDD option, or its theoretical value, is simply determined by:  

200

400

600

800

1,000

1,200

60 65 70 75 80 85 90 95 00 05 10

BLOEM

200

400

600

800

1,000

1,200

1,400

60 65 70 75 80 85 90 95 00 05 10

CPT

1,200

1,600

2,000

2,400

2,800

60 65 70 75 80 85 90 95 00 05 10

DURB

0

200

400

600

800

60 65 70 75 80 85 90 95 00 05 10

JHB



42 

 

(2.6)  


0

)()(
CDD

dCDDCDDQCDDPM     

Where P(CDD) is the probability distribution of CDDs, Q(CDD) is the payoff of the option in 

units of CDDs, M is the rand amount specified in the contract per CDD, and d(CDD) is the 

differential. The expected value changes as a function of the strike, the probability 

distribution of CDDs, and the rand amount per CDD. A simple, and quite often sufficient, 

formula for pricing individual options can be derived for the case of a Gaussian distribution 

of CDDs or HDDs. Assuming that one knows the mean and standard deviation of CDDs or 

HDDs in a location, it is a simple exercise to approximate the price of an option. The 

algebraic expression relates the price of an option to three factors: 

 

1. The standard deviation of the distribution; 

2. The distance of the strike from the mean value; 

3. The rand amount per degree day specified in the contract. 

If we define a normalised strike in terms of the number of standard deviations of the strike 

away from the mean value, the cost of the option can be calculated from the relationship 

below 

(2.7)  4.05.022.003.0 23  XXXY (see Considine, (2000) for discussion on the 

algebraic expression) 

Where Y is the expected value of an option and X is the standard deviation of the strike price 

from the mean.  

Table 2.2: Estimate computation of Option Value using CDD 

 Cpt Jhb Durb Bloem 

Mean 426.9 251.3 967 199.1 

Standard Deviation 81.8 108.4 61.2 157.5 

Strike Value 500 500 1000 500 

X 0.89 2.29 0.54 1.91 

Y 0.11 0.05 0.19 0.04 

Specification R 10 000/Degree 

9
Day 

R10 000 R10 000 R 10 000/Degree Day 

 

                                                             
9
 Assumption for demonstration purposes 
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Option Value: Cape Town       = R10 000* 0.11*81.8 = R89 980 

                         Johannesburg  = R10 000 * 0.05* 108   = R54 200 

                          Durban           = R10 000* 0.19* 61.2    = R116 280 

                          Bloemfontein = R10 000* 0.04*157.5   = R63 000 

 

The expected value does not include the “risk premium” that the writer of the option charges 

for carrying the risk. Nevertheless, this simple formulation provides a baseline from which to 

price an option. The largest challenge facing the options market participant is determining the 

mean and standard deviation to use as the model inputs. 

2.5.3 Modelling Temperature  

 

Following the works of Clements et al (2008) and Campbell and Diebold (2004), this section 

seeks to determine whether the time series model for each city can provide an adequate 

model of temperature. If it does, repeated simulation of the model will allow accurate pricing 

of temperature based weather derivatives.  For the cities in use, temperature, Tt is the average 

daily temperature defined in equation (2.2). The deviations of temperature from its long term 

average ttt TT


  are modeled as a low order autoregressive (AR) process  

(2.8)    tt

m

j

jtjtt T   






1

 

Where m is the order of the AR process, t is an iid(0,1) process and 



tT
is modelled as the 

sum of a trend and a periodic component by the expression 

(2.9)    
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(see: Clements et al., (2008); Caporin and Pres, (2008)) 

 

In order to capture both the observed seasonal pattern of the volatility of temperature and any 

persistence in volatility, a conventional GARCH(1,1) model (Clements et al, 2008, 

Bollerslev, 1986) is augmented by adding a constant seasonal pattern component as a forcing 

variable in the variance equation. As a result the SGARCH (1, 1) model for conditional 

variance thus becomes: 

(2.10)  tttt S3

2

12

2

110

2     
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Where; 

(2.11)  
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Table 2.3: below, reports estimation for the SGARCH (1, 1) model of temperature for the 

entire sample period. To reduce the dimension of the optimisation problem, the parameters of 

equations (2.9) and (2.11) are pre-computed by ordinary least squares using temperature and 

squared deviations of temperature from tT


 as the other dependent variables respectively. 

 

Table 2.3: Parameter Estimates for AR(7)
10

-SGARCH(1,1) models for average daily 

temperature data 

 Cape Town Johannesburg Durban Bloemfontein 

α 0 0.0713 -0.05256 -0.0866 0.1102 

 (0.0000) (-0.0000) (0.0000) (0.0000) 

α 1 1.3929 0.0240 8.6404 0.7496 

 (0.0000) (0.0000) (0.0000) (0.0000) 

α 2 2.7730 -3.7787 -4.8180 -0.3130 

 (0.0000) (0.0000) (0.0000) (0.0000) 

α 3 -6.0078 1.4801 1.2674 1.4315 

 (0.0000) (0.0000) (0.0000) (0.0000) 

α 4 2.7987 1.5391 -1.8871 4.6194 

 (0.0000) (0.0000) (0.0000) (0.0000) 

α 5 1.7720 -2.9692 0.5353 1.0756 

 (0.0000) (0.0000) (0.0000) (0.0000) 

α 6 -0.0123 -1.4355 0.2393 2.1747 

 (0.0000) (0.0000) (0.0000) (0.0000) 

α 7 0.0000 0.00298 0.0000 0.2425 

 (0.0000) (0.0000) (0.0000) (0.0000) 

β0 1.7843 -1.3228 0.6802 0.9652 

 (  0.6368) (0.3500) (0.1110) (0.1863) 

β1 1E-7 0.0082 0.3034 0.0012 

 ( 5.1855) (0.0055) (1.6383) (0.0000) 

                                                             
10

  The  optimal lag order was based on the Bayesian Information Criterion 
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β2    0.0003 0.0003 0.0029 0.0035 

 ( 0.0000) (0.0000) (0.3327) (0.0000) 

β3    0.0084 0.0031 0.0049 0.0036 

   (  0.0000) (0.0000) (0.0014) (0.0000) 

                    * the figures in parentheses are the standard errors 

The approach used a generic model taking similar structure across all four cities. The values 

in parenthesis denote the standard error. Results from the table show that most coefficients 

are statistically significant, hence generally meeting expectations. The βs are the coefficients 

of the variance equation. β3 is the coefficient on the exogenous seasonal pattern in the 

conditional variance equation. Inclusion of this term can have a dampening effect on the 

persistence in volatility by comparison with the kinds of estimates usually obtained in 

GARCH models of financial asset returns, where the sum of β1 and β2 are close to 1. From the 

results in the table above, inclusion of the seasonality component has curtailed the persistence 

in volatility. β3 seems to have had an enlarged dampening effect especially for Cape Town 

where β1 is the smallest across cities. Cape Town and Durban specifically have weakened 

results for SGARCH.   

 

When plots of the standardised residuals from the AR-SGARCH(1,1) model incline to 

standard normal, it may suggest that the model captures the characteristics of the dynamics of 

average temperature in these major cities (Clements et al. (2008). With parameter estimates 

of the AR(7)-SGARCH (1,1) model, equation (2.10) can be used to simulate realisations of 

average daily temperatures. In this way from a series of k simulations, realisations 

kCCC


,..., 21 of cumulative CDDs for the appropriate period can be obtained. These are 

regarded as k independent drawings from the distribution of cumulative CDDs for the period 

under consideration
11

.  

 

2.6 Computing Expected Payoffs 

We first analyse the descriptive statistics of cumulative CDD before presenting the expected 

payoffs: 

 

 

 
                                                             
11

 See Clements et al (2008) and Caporin and Press (2008) for detailed discussion. 
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Table 2.4: Summary Statistics CDD 1960-2010 

 

Cape Town Johannesburg Durban Bloemfontein 

Mean 426.9 251.3 967 199.1 

Median 423.5 236.9 978.6 188.5 

Sdev 81.8 108.4 61.2 157.5 

Max 571.5 526.4 1147.7 657.2 

Min 254.3 53.6 829.7 4.47 

 

The descriptive statistics for cumulative CDDs show that for Cape Town, Johannesburg and 

Bloemfontein, the distributions are slightly skewed to the right as evidenced by the mean 

which are greater than the median. For Durban, they are slightly skewed to the left. Durban 

records the least standard deviation, perhaps indicating the heat in the city whilst 

Bloemfontein has the largest standard deviation, pointing to the cold weather. 

 

The next step is to compare the methods used and determine which one yields the best 

estimated payoffs. The methods to be compared are; the simple time series model of CDDs, 

the AR(7)-SGARCH model and the historical temperature records.  The basis for comparison 

to be used here is the mean  ‘profit’ of the call option contract over a period of years, 

following Clements et al. (2008). In computing the payoffs we specify a yardstick for two 

separate option contracts and incorporate results for the three methods written over the period 

1 January to 31 March as reported in the tables below. Computation of the values involved 

pricing options for the year 1961 using data up to and including 1960. To illustrate, the actual 

payoff for 1960 is recorded, the profit or loss stored and the data set updated to include all the 

temperature records for the next year. These steps are repeated up to and including 2010, 

giving a total of 50 separate profits for each option. The call options used in the experiment 

have respective strike prices D=μ +0.5σ and D=μ +0.75σ where μ is the unconditional mean 

and σ is the unconditional standard deviation of CDDs over the period 1961-2010. 

 

 The expressions D=μ +0.5σ and D=μ +0.75σ represent lower and higher strike price 

respectively. The goal is to determine how the different methods fare on these two strike 

prices. This we do by averaging the simulated payoffs over the period 1961-2010. The 
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method resulting with lower mean payoff and standard deviations suggests its usability for 

the region
12

. 

 

Table 2.5: Means and standard deviation of payoffs to temperature 90-day call option 

defined on CDDs with strike price D=μ +0.5σ, where μ and σ are the unconditional 

mean and standard deviation of available historical CDDs. The option is priced from 

1961-2010 

 Cape Town Johannesburg Durban Bloemfontein 

Historical     

Mean Payoff 74.47427 127.8784 128.9856 -356.206 

SDev Payoff 835.252 889.4825 958.5658 867.79 

     

CumCDD     

Mean Payoff -28.362 11.20792 11.83155 -187.581 

SDev Payoff 102.9843 91.74235 141.2208 126.2625 

     

SGARCH(1,1)     

Mean Payoff 0.369418 3.412133 0.770571 1.059303 

SDev Payoff 0.821563 4.891592 0.667595 1.483613 

 

 

Table 2.6: Means and standard deviations of payoffs to temperature 90-day call option 

defined on CDDs with strike price D=μ +0.75σ , where μ and σ are the unconditional 

mean and standard deviation of available historical CDDs. The option is priced from 

1961-2010 

 Cape Town Johannesburg Durban Bloemfontein 

Historical     

Mean Payoff 43.807 106.1702 112.4158 -456.82 

SDev Payoff 834.396 889.5702 959.0044 873.2694 

     

CumCDD     

Mean Payoff -51.9011 -6.63747 -4.38597 -230.593 

SDev Payoff 102.9213 91.53025 141.809 131.7514 

     

SGARCH(1,1)     

                                                             
12

 See Clements et al., (2008), Garman et al, (2000) for more discussion 
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Mean Payoff 0.574809 4.635031 0.93747 1.430206 

SDev Payoff 0.903719 5.380751 0.734355 1.631974 

 

 

A number of conclusions can be derived from the two tables above. The ideal condition will 

be when profits are close to zero with lower standard deviation thus ensuring risk mitigation 

in the respective cities. Table 2.5 shows the expected payoffs when a lower strike price is 

used and table 2.6 uses a higher strike price. As per the findings of Clements et al., (2008), 

the historical pricing turned out to be the least robust of all the procedures for estimating 

payoffs, particularly for call options with higher strike prices. This is despite it being a 

common model (Platen and West, 2003). The implication is that it does not apply for the four 

South African cities over the study period. Results show that the model is over-priced for the 

other three cities and under-priced for Bloemfontein. This can be seen in the high mean 

payoffs in the historical method compared to Cumulative CDD and SGARCH in both tables 

above. Furthermore, the Historical method shows a negative payoff in Bloemfontein for both 

high and low strike prices.   

 

The cumulative CDD model performs better when compared to the historical method as it has 

lower payoff and standard deviation values when compared to the Historical method. 

However, there appears to be a tendency to under-price the European call option particularly 

for Bloemfontein and Cape Town for both high and low strike prices. Interestingly the 

SGARCH(1,1) method of estimating payoffs offers superior performance relative to the other 

two methods as it has minimal payoffs and standard deviation for both high and low strike 

prices. It may imply that the mean of estimated payoffs from this approach is estimated 

relatively accurately, with the least standard deviation of the payoff across regions and 

therefore yielding reliable payoffs when compared to the Cumulative CDD and Historical 

methods. Results in this chapter confirm related works by Campbell and Diebold (2004) 

supporting the SGARCH method. 

 

2.7 Conclusion 

 

The contribution of the chapter was to consider the application of temperature based weather 

derivatives in four South African cities. With growing innovation in the derivatives market  it 
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becomes necessary that businesses find ways of mitigating weather related risk and thus be 

cushioned against huge losses as a result of adverse weather. Different sectors of the 

economy experience weather related risk. The chapter applied estimation methods for 

temperature based weather derivatives.  

 

Returns data on daily average temperatures revealed volatility clustering and the leptokurtic 

nature of the data. The simple trend model showed that Bloemfontein had trend and quadratic 

trend terms as significant whilst Cape Town had only quadratic significant and Durban trend 

significant. Johannesburg had a trace of trend. Another milestone was the demonstration of 

the computation of the option values using the CDD, adding more weight to the usability of 

weather derivative products in South Africa. The study reached its climax in comparing three 

different methods for estimating payoffs, the Historical method, Cumulative CDD and 

SGARCH.  

 

The results may be summarised as follows; The SGARCH (1,1) model of estimating payoffs 

for temperature based weather derivatives offers superior performance compared to the more 

popular methods in literature, the Cumulative CDD and Historical methods. The SGARCH 

(1,1) turned out to have minimal payoffs and standard deviation across the four cities. This 

suggests that the SGARCH (1,1) method should be applied for the cities used in the study. It 

is important that organisations and authorities be educated about the benefits therein of 

weather derivatives as a risk management tool. As a general rule, data in use for estimation 

should be sizeable enough to capture the essential characteristics, thus not rendering poor 

resolution in the distribution of the relevant index. A successful model ought to be 

parsimonious enough in estimating payoffs as excessively complex models have poor 

predicting powers. 
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CHAPTER THREE 

JUMP DIFFUSION AND GARCH MODELS METHODOLOGY 

 

3.1 Introduction 

The section presents methodology for the jump diffusion model and the fat tailed GARCH 

model which form basis for the results in chapters four to seven. The remainder of this 

chapter is organised as follows; section 3.1 highlights the jump diffusion specification. 

Section 3.2 incorporates the GARCH methodology and section 3.3 concludes. 

3.2 GBM plus jump methodology 

 

In this section the researcher presents the estimates from a popular specification in financial 

economics: GBM plus a jump process. Here the goal is to find sufficient estimates to the data 

with satisfying representation. Unlike the GBM which only matches the first two 

unconditional moments of mean and variance, the GBM plus jump can match higher 

moments of skewness and kurtosis. 

Adding Poisson jumps to the GBM approximates the movement of stock prices subject to 

occasional discontinuous breaks. The returns process under the jump-diffussion model can 

thus be presented by the following differential equation  

(3.1)      

 where      •   

    •  is the drift  

    •  the standard deviation of the diffusion  

    • k is the jump size  

    •  is a Poisson process with parameter   

Given any date  and period length , the returns  over the period  are 

given by the following 

  

where   

)(=  kddWdt
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    •  is an i.i.d. sequence with k~   

    •  is distributed Poisson with parameter   

 and for  we have Prob   

With the assumption that the first four moments of the jump size  exist and are finite. We 

denote the th moment of  by , where  is the variance. 

We can write  since  does not depend on . This means as well that 

conditional and unconditional returns coincide in a jump diffusion model  ( see Das and 

Sundaram, (1999) for more discussion on the model. The parameters of the jump diffusion 

process are estimated by maximum likelihood. The log-likelihood function is,  

(3.2)    

The sum of the logs of sums of exponentials weighted by the Poisson probabilities. The 

scores are messy nonlinear functions of the unknown parameters, θ
13

. The estimates are 

computed from the Optimization Toolbox in MATLAB.  The likelihood function is not as 

well behaved as one would expect if there are occasional discontinuous jumps. The local 

maxima and the algorithm do not always converge. The parameters estimated from the log 

likelihood function in (3.2.4) are then fed into the equations below to obtain the jump 

diffusion moments for analysis. 

 

the first four moments of  are computed as follows: 

 

(3.3) Mean =   

  

(3.4) Variance =  

   

(3.5) Skewness =  

                                                             
13 A great number of jumps could occur during the day. The maximum number of jumps per day, Q, is set to ten,  

(Craine et al, 2000; Jorion 1988). The MATLAB code is included in the appendices. 
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(3.6)            Kurtosis =  

 

3.2 GARCH methodology  

 

The GARCH (1,1) model which enables capturing of volatility clustering identified in high 

frequency data  is specified as follows  

(3.7)     

(3.8) 2

1

2

1

2

  ttt   

Equation (3.7) above   represents the conditional mean model where the returns,  , consist 

of a simple constant, plus an uncorrelated, white noise disturbance. The representation 

describes the conditional mean in financial data. The conditional variance equation (3.8) 

consists of a constant plus a weighted average of the last period's forecast,  , and  the 

corresponding squared disturbance,  . The squared returns often indicate significant 

correlation and persistence, implying correlation in the variance process, therefore an 

indication that the data should be considered for GARCH modelling. In order to assume a 

distribution that reflects the features of the data better than the normal we include the Student 

t Distribution and the Generalized Error Distribution (GED). The likelihood functions for 

these distributional assumptions are: 

The log-likelihood function for the GED; 

(3.9)  

 is the gamma function;  

 

For the Student-t distribution, the log-likelihood function becomes: 
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 (3.10)       

For the GED, the retail parameter v>0. If v=2, the GED becomes a normal distribution and is 

fat tailed when the degrees of freedom, v <2. For the Student-t, the degree of freedom v>2 

controls the tail behavior. The distribution approaches normal as v→∞. The results are 

estimated using maximum likelihood. 

3.4 Conclusion 

The chapter highlighted the methodology employed to obtain results in chapters four to six.  

The jump diffusion model applied has constant jump intensity driven by a Poisson process. In 

generating the parameter results a program was run on MATLAB. For the GARCH model , 

two specifications of the fat-tailed GRACH were used, the GED and Student’s t distributions. 
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CHAPTER FOUR 

 JUMP DIFFUSION MODEL FOR THE EXCHANGE RATE 

4.1 Introduction  

 

There is a growing need to better understand asset price movements with the objective of 

hedging against risk. For high frequency financial data the need to hedge is a necessity as 

failure can transmit to billions of rands in losses. This also comes at a time when there is 

much activity in the global economy and particularly for financial markets with companies 

big and small jostling for a better share of the market. Consequently there are exchange rate 

implications as both importing and exporting firms incur losses and profits during trade. 

Employment is also boosted through creating good forex hedging strategies, whilst  some 

companies may have to downsize after failing to predict accurately exchange rate 

movements. At the same time, the domestic economy benefits most from exports via a 

positive current account. All these build the case for understanding what drives the exchange 

rate.   

As such, there have been a number of studies carried out as researchers attempt to pin down 

the model offering the best strategy  for businesses and investors. This has seen the elevation 

to some extent of financial economists as they build complex models making use of the latest 

developments in modelling high frequency financial data. Perhaps one such popular approach 

has been the application of simple diffusion models which approximate the stochastic process 

for returns on financial assets. However, the once reverenced method of the Black-Scholes 

(1973) model was ultimately shown to have shortcomings, as it failed to capture some 

important characteristics of high frequency financial data which  were crucial for making 

accurate forecasts in the data. This has therefore motivated the need to employ more 

sophisticated models like the jump diffusion models as a better alternative  with regards to 

understanding asset price movements. 

Though there has been a wide application of jump diffusion models in many parts of the 

world for example (Figueiredo et al., 2011; Yang et al., 2009; Kou et al., 2005; Cont & 

Tankov, 2004; Ramezani and Zeng, 2002), their application in South Africa has been reduced 

to only a few studies (van Appel, 2013; Poklewski-Koziell, 2012; Kalsheker, 2009). 

Moreover, these studies have looked at the pricing of options and thus have not given due 
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diligence to the importance of  understanding jump diffusion models in exchange rates to 

complement decision making in financial econometrics. The remaining visible studies have 

not attempted to incorporate jump diffusion in exchange rate models (for instance de Jager, 

(2012), Alpanda et al., (2009)). This chapter therefore bridges this gap as it provides and 

understanding of exchange rate characteristics. This is done by drawing from different studies 

the applicability of the jump diffusion model to exchange rate data. Furthermore, we estimate 

the parameters of a jump diffusion models for the three exchange rates; british pound/south 

african rand, US dollar/south african rand and euro/south african rand exchange rates to and 

draw conclusions thereof. This enhances knowledge for risk mitigation purposes through 

analysing the parameter values.  

The results from the chapter confirm the presence of jumps and intensity across the three 

exchange rates. The higher moments of skewness and kurtosis were also obtained which 

turned out to be normalised after the incorporation of jumps. Another feature of the result was 

the dependence in jump size and intensity as confirmed in the literature. We deduce from the 

results the impact of the jump intensity and size for the exchange rate. This has a bearing for 

currency options and thus aids in improving forecasts, serving as important contributors to 

future exchange rate related decisions for companies and investors.  This further establishes 

the contribution of jump diffusion models in financial economics. The outline for the rest of 

this chapter is as follows; Section 4.2 presents the literature on jump diffusion models, 

Section 4.3 the GARCH model,  Section 4.4 Data and sample statistics. Section 4.5 Results 

from estimation and Section 4.6 concludes. 

 

 4.2 Jump diffusion models 

 

The leptokurtic nature is observable in high frequency data. However, reverenced classical 

finance models like e Black-Scholes (1973) ignore this feature, positing the Brownian motion 

model as best fit, wherein  the stock price is modelled as; 

 (4.1)   )()0()( tWteStS   ,  

Where the Brownian motion )(tW , has a normal distribution with mean 0 and variance t. In 

this setting,   is the drift measuring the average return.  

  is the volatility which measures the standard deviation of the return distribution. In this 

model setting, the continuous compounded return, ))0(/)(ln( StS , has a normal distribution, 
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which is not consistent with its leptokurtic nature. Many alternative models with jumps and 

stochastic volatility have been proposed as improvemensts to the Black-Scholes model.  

 

This has seen several approaches proposed in modifying the Black-Scholes model to explain 

the three empirical stylised facts which are; the leptokurtic nature, volatility clustering effect 

and implied volatility smile. Some of the approaches include; 

 

(a) Chaos theory and fractal Brownian motions: These models replace the Brownian motion 

by a fractal Brownian motion with dependent increments; instead of having independent 

increments (see Mandelbrot (1963)). Rogers (1997) however points out the arbitrage 

opportunities in these models. 

(b) Generalised hyperbolic models; for example log t model and log hyperbolic model, and 

stable processes. Such models replace the normal distribution assumption with other 

distributions; such as Barndorff-Nielsen and Shephard (2001), Samorodnitsky and Taqqu 

(1994), Blattberg and Gonedes (1974). 

(c) Lévy process-based models (as examples see Cont and Tankov (2004). 

(d) Stochastic volatility and GARCH models (Fouque et al. (2000), Engle (1995), Heston 

(1993), Hull and White (1987). These capture the volatility clustering effect.  

(e) Constant elasticity of variance (CEV) model (see Davydov and Linetsky (2001), Cox and 

Ross (1976).  

 

(f) Jump-diffusion models first proposed by Merton (1976) and also seen in Kou (2002). 

(4.2) 
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N(t) is a Poisson process. According to Mertons’ (1976) model, Y has a normal distribution 

and Kou (2002) shows it as having a double exponential distribution. The double exponential 

distribution allows us to get analytical solutions for many path-dependent options, including 

barrier and look back options, as well as analytical approximations for American options. 

Asea and Ncube (1998) also expanded  on the work of Merton (1976). 

 (g) Implied binomial trees; see, for example, Derman and Kani (1994) and Dupire (1994).  
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Further to the ones listed above, there are other types of models which combine many 

features, some of which are; stochastic volatility, jumps, and time changes. Two examples of 

these are; 

(h) Time changed Brownian motions and time changed Lévy processes. In these models, the 

asset price S(t) is represented as 

(4.3) )),(()( tMGtS   

G here is either a geometric Brownian motion or a Lévy process, and M(t) is a non-

decreasing stochastic process which models the stochastic activity time in the market. The 

activity process M(t) may link to trading volumes (Carr et al. (2003), Heyde (2000), Madan et 

al. (1998), Madan and Seneta (1990), Clark (1973). 

(i) Affine stochastic-volatility and affine jump-diffusion models; Duffie et al. (2000), 

combines both stochastic volatilities and jump-diffusions. 

 

In this discussion, one of the major motivations for jump diffusion models is that asset price 

returns reflect heavier tails than those from a normal distribution. Jumps in security prices are 

represented as rare events. Therefore, asset prices are modeled as  Lévy processes having a 

nonzero Gaussian component with a jump component. Compared with stochastic-volatility 

models, jump-diffusion models are simpler yet can also capture the financial market 

phenomena, like the large fluctuations in asset prices.  The representation is outlined below: 

In a jump-diffusion model with a probability measure P the asset price, S(t), is modelled as 

(4.4)  ,)1()()(
)(

)( )(

1








 



tN

i

iVdtdWtdt
tS

tdS
  

Here W(t) is a standard Brownian motion, N(t) is a Poisson process with intensity λ, and {Vi} 

is a sequence of independent identically distributed (i.i.d.) non-negative random variables. In 

this setting, all sources of randomness, N(t), W(t), and Y’s, are independent.  However, 

essentially all models are not without shortcomings as they are approximations of reality. 

Here we briefly evaluate the jump-diffusion models by four criteria; 

 

(1) self-consistent; In the finance context, a model has to be arbitrage-free and embedded in 

an equilibrium setting. Other alternative models may have arbitrage opportunities, thus are 

not self-consistent, as an example, the arbitrage opportunities for fractal Brownian motions as 

shown in Rogers (1997). In this way, Merton’s jump-diffusion model and the double 
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exponential jump-diffusion model can be embedded in a rational expectations equilibrium 

setting. 

 

(2) A model ought to capture important empirical phenomena. However, it should be pointed 

out that empirical tests are not the only benchmark to pass a model. By their nature, empirical 

tests favour models with more parameters. However, calibration is difficult for models with 

many parameters. This is one of the main arguments for practitioners’ preference of less 

complex models. As a strong case for jump diffusion models, in their lesser complexity, are 

able to reproduce the leptokurtic feature of the return distribution, and the “volatility smile” 

observed in option prices (see Kou, 2002). Furthermore, the exponential jump diffusion 

model fit outperforms the normal jump diffusion model and both fit data better when 

compared to the reverenced Black-Scholes model (Ramezani and Zeng (2002). 

 

(3) Simple enough to enable ease in computation. Similar to the Black-Scholes model, the 

double exponential jump-diffusion model not only yields closed-form solutions for standard 

call and put options, but also allows a variety of closed form solutions for path-dependent 

options, such as barrier options, look back options, perpetual American options (Kou et al., 

2005, Kou and Wang, 2004, 2003;). 

 

(4) Relate with interpretation. As an example, motivation for the double exponential jump-

diffusion model comes from behavioural finance. Many studies carried out deduce that 

markets tend to have both over-reaction and under-reaction to various good news or bad news 

(see, Barberis et al, 1998, Fama, 1965). The jump component of the model can be interpreted 

as the market response to outside news. In the absence of outside news the asset price follows 

a Geometric Brownian Motion (GBM). Good or bad news arrives according to a Poisson 

counter, and the asset price changes in response according to the jump size of the distribution.  

Since the double exponential distribution has both high peaks and heavy tails, it can be 

applied in modelling the over-reaction and under-reaction to outside news.  Many models can 

satisfy at least some of the criterions listed above. The dominating attraction of the jump 

diffusion model is its simplicity and also the model attempts to improve the empirical 

implications of the Black-Scholes model whilst retaining its analytical tractability. 
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4.2.1 Shortcomings of jump-diffusion models 

 

The main problem associated with jump diffusion models is that they cannot capture the 

volatility clustering effects sufficiently, which can be captured by other models with 

stochastic volatility, like the affine jump diffusion model.  The jump diffusion model and the 

stochastic volatility model therefore complement each other. As an example, one 

phenomenon worth mentioning is that the daily return distribution tends to have more 

kurtosis than the distribution of monthly returns. Das and Foresi (1996) point out that this is 

consistent in models with jump diffusion models, but not so for stochastic volatility models. 

In stochastic volatility models the kurtosis decreases as the sampling frequency increases; 

while in jump diffusion models the instantaneous jumps are independent of the sampling 

frequency. This suggests that jump diffusion models may capture short-term behaviour better, 

while the stochastic volatility is aligned to long term behaviour. 

 

Other general models combine jump diffusion with stochastic volatilities resulting in affine 

jump-diffusion models (Duffie et al. (2000)). Affine jump diffusion models incorporate 

jumps, stochastic volatility, and jumps in volatility.  As special cases for these models we 

have the normal and double exponential jump diffusion models. However, as a result of the 

special features of the exponential distribution, the double exponential jump-diffusion model 

has difficult analytical solutions for path-dependent options. Overall, thejJump diffusion 

models are simpler than general affine jump diffusion models since jump diffusion models 

have fewer parameters, thereby making calibration easier. Thus, jump diffusion models 

attempt to strike a balance between reality and tractability, seen in short maturity options and 

short term behaviour of asset pricing.  

 

To sum up, many alternative models may give some analytical formulae for standard 

European call and put options, however the solutions for interest rate derivatives and path-

dependent options, like perpetual American options, barrier and look back options, are 

difficult. Therefore, jump diffusion models are more suitable for pricing short maturity 

options in which the impact of the volatility clustering effect is less pronounced. 

Furthermore, jump diffusion models can provide a useful benchmark for more complicated 

models.  
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4.2.2 Studies on application of jump diffusion models 

 

The stochastic models of price behaviour used in the financial economics literature to value 

options are selected at least in part for their ability to yield either analytical solutions or 

efficient numerical procedures. The classical example is the lognormal diffusion process, 

from which follows the BS hedging argument and Cox & Ross’ (1976)  risk neutral 

valuations. 

 

A number of researchers have established evidence further than the Black-Scholes 

application; volatility varies with time (Bollerslev et al, 1992). Other findings deduce that 

markets are characterised by the presence of jumps, especially with short frequencies data 

(Drost, Nijman, & Werker, 1995; Ball & Tourus, 1985; Jarrow & Rosenfeld, 1984).  

Literature has also documented that excess kurtosis in unconditional returns declines with 

time, (Kon, 1984). Even as far back, Fama (1965) deduced the presence of fat tails in stock 

returns in daily data. The work of Blattberg and Gonedes (1974) found that the normality 

assumption holds in stock returns with monthly data.  (Jorion, 1988) also reports that excess 

kurtosis in the $/DM exchange rate and in the value-weighted CRSP index are, respectively, 

3.29 and 2.92 under weekly data, but fall to 1.56 and 0.89 for monthly data. 

 

From these findings we can assert that diffusion models are not robust enough to capture the 

appearance of jumps in underlying asset prices. As a result, jump diffusion processes have 

gained popularity for modelling in finance.  On application, they can be calibrated to plain 

vanilla options and used to price and hedge exotic options. Other empirical works have 

deduced that a normal Poisson jump model provides a good statistical portrayal in exchange 

rate and stock returns data. A noteworthy application is by Bates (1991), who used Standard 

& Poor’s 500 futures options and found systematic behaviour in expected jumps before the 

1987 stock market crash.  Most of the jumps in the exchange rate have been linked to the 

result of the actions of the central bank (Hull, 2006). Further than that jump diffusion models 

have been introduced in literature by many researchers who observed different paths for 

different assets and their prices. 

 

The literature framework for jump diffusion models has shown to be consistent. We trace 

jump diffusion models from the seminal work of Merton (1976). Recent developments in 

mathematical finance have explored several approaches to model the underlying asset. This is 
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evidenced by the exposition carried out on the daily returns of a stock (Figueiredo et al, 2011; 

Yang et al, 2009; Craine et al, 2000; Eberlein & Keller, 1995; Eberlein & Jacod, 1997).  

 

Related literature in Duffie et al. (2000) used a simulation-based estimator to estimate a 

complex model with conditional jump intensity and stochastic volatility.  Bates (2000) 

estimated the stochastic volatility jump diffusion process for S&P futures prices implicit in 

futures option prices. Other applications supporting jump diffusion models have been 

proposed. A study by Heston (1993) employed the square root process for modelling the 

variance of the asset price, and showed how to apply the Fourier transform to solve the 

pricing problem for vanilla options. Taking this method further, Bates (1996) added to the 

Heston’s stochastic volatility model log-normal price jumps governed by a Poisson process 

with a constant intensity rate.  Fang (2000) extended the Bates’ model by introducing a 

stochastic intensity rate.  Duffie, Pan, & Singleton (2000) added to the Heston’s model price 

and volatility jumps. All these studies support jump diffusion models. 

 

It has been further shown that incorporating the jump component in both price and volatility 

in models is necessary. As examples, Bates (2000) and Pan (2002), considered models where 

prices follow a jump diffusion process. In their models, volatility was characterised by a 

correlated diffusive stochastic process. To sum it up, both authors show that these models are 

incapable of capturing empirical features of equity index returns or option prices, attributing 

this to the fact that volatility itself may contain jumps. Eraker et al. (2003) examined the 

jump in volatility models proposed by Duffie, Gray, & Hoang (1999) and provided a study 

that shows that the addition of jumps in volatility provide a significant improvement in 

explaining the returns data on the S&P 500 and NASDAQ 100 index, proving superior to a 

stochastic volatility model with just jumps in prices. Asea and Ncube (1998) used a doubly 

stochastic Poisson process to model the arrival of heterogenous information in a market. In 

their study they derived implications for the pricing of stock, index and foreign currency 

options.  

 

Other related studies carried out have thus motivated continuous work on jump diffusion 

models. However some tests using option data disagree over the importance of jumps in 

prices:  Bakshi et al (1997) found substantial benefits from including jumps in prices. 
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However, Bates (2000) found economically small benefits. Studies using the time series of 

returns unanimously support jumps in prices but disagree over jumps in volatility. 

 

There are a few studies for South Africa which have incorporated jumps and stochast ic 

volatility (for example Poklewski-Koziell, (2012), Kalsheker, (2009)). However, these 

studies have focused on calibration and option pricing without due consideration of 

expounding on benefits of jump diffusion models on asset prices like exchange rates. The 

remaining few studies on understanding the exchange rate have not considered at all the 

important application of jump diffusion models (for example de Jager, (2012), Gupta et al., 

(2011),).  The majority approach of these models has employed ordinary least squares and not 

maximum likelihood results (for example Gupta et al., (2011); Dube, (2008); Ziramba, 

(2007)).  The table below summarises  some of the important applications of jump diffusion 

models. It can be deduced from the table below that well known applications of the jump 

diffusion model can be extended as well to various asset classes investigated in this thesis for 

example exchange rate, interest rate and stock prices. 

Table 4.7: Other Jump Diffusion models in use 

Jump Diffusion model  Summary / Application 

Bernoulli  (Ball & Tourus, 1985) provided statistical evidence of log-

normally distributed jumps  for stocks 

Gauss-Hermite  The process ensures efficiency properties for valuing 

compound options. Applied by  (Omberg, 1988) 

Jumps in Interest Rates  

 

General equilibrium asset pricing model (Cox et al, 1985).  

Ahn & Thompson (1988) investigated the effect of the 

jump components of the underlying processes on the term 

structure of interest rates 

Geometric  Bates (1996) showed that the exchange rate has geometric 

jump diffusion with conditional variance following a mean 

reverting square root process. 

Jump Diffusion Models with 

Conditional Heteroscedasticity  

 

Combine jumps with an ARCH/GARCH model in discrete 

time.  Chan & Maheu (2002) developed a new conditional 

jump model to study jump dynamics in stock market 

returns. They present a discrete-time jump model with time 

varying conditional jump intensity and jump size 
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4.2.3 Estimation methods for jump-diffusion processes 

 

Before considering estimation the coefficient functions of the jump diffusion process have to 

be well behaved for the Markov transition density functions to be well defined. Literature 

abounds with estimation methods for jump diffusion models. The arbitrarily chosen moments 

of jump diffusion models like the method of cumulants matching, such as the Generalised 

Method of Moments (GMM) all present problems stemming from distinguishing whether the 

movements in the underlying process belong to the continuous path or are part of the jump 

path dynamics. 

 

Pure-jump processes have received much attention, (see Madan (2001); Carr et al. (2002). 

Literature has shown many different approaches to separate the variations in the state variable 

Xt attributable to the diffusive part from those due to jumps with a feasible econometric 

technique. For parametric models, the parameterised functional forms are imposed for the 

drift and diffusion functions and for the jump component. Related to this work Jiang and 

Oomen (2004) developed estimators based on a weighted sum of squared increments in an 

affine asset pricing model with the jump part having finite activity. In a related study, Aït-

Sahalia (2004) reveals that it is possible to disentangle jumps from the continuous variations 

using a maximum likelihood approach. Furthermore, Aït-Sahalia and Jacod (2006) construct 

a threshold estimator of the volatility where the source of randomness is a stable Lévy 

process. 

 

Barndorff-Nielsen, (2006) and Shephard, (2004),  Woerner (2005), Mancini, (2004) and 

Jacod, (2006) estimate the integrated volatility using a nonparametric approach. Barndorff-

Nielsen and Shephard, (2004) prove that when the volatility is independent of the brownian 

motion, the power variation of the state variable is a consistent estimator of the integral of the 

corresponding power of the volatility. This applies even in the presence of a finite activity 

jump process.  

distribution 

ARCH/GARCH Jump Diffusion 

Model  

 

Jorion (1988) considered a tractable specification 

combining both ARCH and jump processes for foreign 

exchange market 

Doubly stochastic Poisson process 

(DSSP) 

Applied DSPP on pricing for stock, index and foreign 

currency options (Asea and Ncube, 1998). 
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Woerner, (2005); Barndorff- Nielsen et al. (2006) and Jacod, (2006) allow an extension to the 

case of infinite activity jump component. Barndorff- Nielsen and Shephard (2006) develop 

the original theory of the bi-power variation, thus allowing the estimation of the integrated 

volatility in the presence of finite activity jumps. The bi-power variation theory has inspired 

new areas for research on financial data (see for example Andersen et al. (2006); Huang and 

Tauchen (2005); Tauchen and Zhou (2006)). Furthermore, it allows testing for the presence 

of jumps.  

 

In summary the literature has shown that the jump diffusion model is a convenient form for 

pricing other derivatives, for example currency options ((Meyer & Yu, 2000); (Merton, 

1976); (Yu et al, 2006), (Yang et al, 2009)). Also corroborating jump diffusion models, Kou 

(2002) discussed the option pricing, and Hu & Ye (2007) discussed the credit derivatives. At 

the same time, many empirical works (for example;  (Payne, 2003);  (Anderson et al, 1999);  

(Bates, 1996);  (Vlaar, 1993);  (Hsieh, 1988)) show that the financial time series have features 

of high peak and fat tail  which results mainly from the occasional jumps. The literature 

considered above therefore supports that the exchange rate data frequently exhibits jumps. 

 

4.3 GARCH Model 

To complement the Jump Diffusion model, we introduce the GARCH specification to capture 

the persistence in volatility. The General Autoregressive Conditional Heteroscedasticity 

(GARCH) is credited to the work of Bollerslev (1986). The GARCH (1, 1) specification has 

been found to be sufficient in practice for modelling volatility in high frequency financial 

series data. GARCH modelling builds on advances in the understanding and modelling of 

volatility.  It takes into account excess kurtosis and volatility clustering, the characteristics of 

financial time series. As such it can be applied to diverse fields like risk management, 

portfolio management and asset allocation, option pricing, foreign exchange, and the term 

structure of interest rates (Engle, 1982). 

 

 GARCH effects have a bearing in such areas as Value-at-Risk (VaR) and other risk 

management applications to do with the efficient allocation of capital. Furthermore, GARCH 

models are seen as a method for specifying and estimating a volatility filtration algorithm 
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(Flemming & Kirby, 2003, Nelson & Foster, 1994 and Nelson (1992)). Another motivation 

for  GARCH models is that the family of GARCH models has proven successful in 

forecasting volatility. It should be stated that volatility clustering
14

 can be captured in a 

GARCH representation. This is made possible by the distribution of the fat tailed GARCH 

process which can capture characteristics observed in high frequency asset prices. 

 

Some econometric tests for choosing between jump-diffusion and stochastic volatility models 

have been attempted ((Bates (1996); Jorion (1988)). Jorion (ibid) finds in his study that based 

on monthly data, there is minimal difference between the models he considers, but that this is 

not true under weekly data, supporting the Jump Diffusion model (Das & Sundaram, 1999). 

 

4.4 Data and sample statistics 

The data employed is daily exchange rate data across three currencies, the US dollar against 

the rand, the euro against the rand and the pound against the rand. The years of interest are 

1990-2010, giving us 5478 observations for each exchange rate. We also divide the data into 

two periods 1990-2000 and 2001-2010 to determine the period with higher jumps and 

intensity. The diagrams below shows the daily exchange rate plots of South Africa’s rand 

against major world currencies from January 1990 to December 2010
15

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
14 Observed when there are periods of high and low variance in the data and also where large changes are 

clustered around large changes and small changes clustered around small changes (Cont, 2007). In chapter three 
we specified a fat tailed GARCH capturing volatility clustering the results of which are presented in this 

chapter. 
15 The exchange rate is the price of a british pound in sa rand, united states dollar in rand and european euro in 

rand 
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Figure 4.4: Rand against major currencies 
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The figures above present exchange rate and returns data for the three major currencies. From 

the returns figures above, the exchange rate data is typical of characteristics seen in most 

foreign exchange rate data; skewness, kurtosis and  potential jumps. Within the figures, the 

financial market crashes for 1997 and 2008 which exhibit huge jumps in the returns also 

feature. Furthermore, the returns diagrams display volatility clustering. Accordingly, 

Empirical Density Function diagrams for these currencies do not yield Normal Distribution 

returns
16

. Another graphical feature displaying the nature of the data is embedded in the 

autocorrelation of the returns in the diagram below.  

 

 

 

 

 

 

 

                                                             
16 The Normal fit diagrams are presented in the appendices. 
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Figure 4.5: Autocorrelation in returns
17

 (US$/Rand exchange rate) 

 

The autocorrelation function computes and displays the sample Auto Correlation Function 

(ACF) of the returns, along with the upper and lower standard deviation confidence bounds, 

based on the assumption that all autocorrelations are zero beyond lag zero. From figure 3.5 

above there is no significant autocorrelation in returns.  Although the ACF of returns shows 

little correlation, the ACF of the squared returns may indicate significant correlation and 

persistence in the second order moments. This can be checked by plotting the ACF of the 

squared returns as shown below. 

 

Figure 4.6: Autocorrelation in squared returns (US$/Rand exchange rate) 

 

                                                             

17 Returns are calculated as )ln(
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From the figure above, the ACF of the squared returns shows that, although the returns 

themselves are uncorrelated, the variance process shows some correlation. The ACF of the 

squared returns appears to die out slowly, indicating the possibility of a variance process 

close to being non-stationary. Therefore we assert that the data shows the generic 

characteristics of financial time series data-excess kurtosis, skewness, potential jumps and 

volatility clustering. There have been many studies documenting these features as mentioned 

in the literature review. Tables 4.8 and 4.9 below give estimates of the four unconditional 

sample moments  

Table 4.8: Summary statistics exchange rate raw data 

 

 1990-2010 1990-2000 2001-2010 

 Euro Pound Dollar Euro Pound Dollar Euro Pound Dollar 

Mean 6.981 9.7373 5.8798 4.8074 6.7653 4.1944 9.373 13.0079 7.7345 

Max  14.646 18.8125 13.0028 7.3683 11.3491 7.8453 14.646 18.8125 13.0028 

Min
 

3.0351 4.094 2.5019 3.0351 4.094 2.5019 6.7704 10.2257 5.6148 

Variance 7.1594 13.44 5.0965 1.43 4.4927 1.9948 2.5422 2.8753 1.9435 

Skewness 0.339 -0.0031 0.258 0.3305 0.6825 0.7261 0.654 0.6041 1.1663 

Kurtosis 2.1474 1.747 2.4049 1.7794 1.9403 2.3637 2.7903 2.3897 3.7997 

 

 

Table 4.9: Summary statistics exchange rate returns data 

 

 1990-2010 1990-2000 2001-2010 

 Euro Pound Dollar Euro Pound Dollar Euro Pound Dollar 

Mean 8.56e-05 7.3e-05 7.6e-05 1.3e-04 1.5e-04 1.6e-04 3.8e-05 -1.6e-05 -2e-05 

Variance 4.1e-05 1.6e-05 1.6e-05 5.8e-05 1e-05 6.5e-06 2.2e-05 2.3e-05 2.7e-05 

Skewness 6.4e-02 0.522 0.724 -8.e-02 0.211 0.807 0.664 0.612 0.649 

Kurtosis 1058 10.1 12.32 1007.9 12.358 21.05 8.38 7.99 8.097 

          

          

 

For the raw data as presented in table 4.8, the mean for each currency is high for the period 

2001-2010 compared to the other periods. The result is the same for the maximum and 
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minimum values, thus showing a downslide of the rand from 1990-2010. The general 

downward slide of the-  rand could be attributed to a host  of factors, some of which are; 

escalating global risk aversion  as a result of investors' concerns over the spreading impact of 

the sub-prime crisis, and a general flight to "safe havens", away from the perceived risks of 

emerging markets and in recent years the unstable labour environment. Another factor to 

consider during the study period is the Eskom electricity crisis, which arose as the utility at 

times was unable to meet the country's rapidly growing energy demands. This had negative 

impacts on production and exports by south african companies and would worsen to a current 

account deficit. Negative sentiments towards emerging markets in late 2001 can also be  cited 

as other pointers to the depreciation of the rand.  

 

Kurtosis indicates the degree of "flatness" or "peakedness" in a distribution relative to the 

shape of normal distribution. By norm, a standard normal distribution has a kurtosis of 3, 

hence an excess kurtosis of 0. From table 3.8 above, for the period 1990-2010 the 

distributions for all the currencies are platykurtic, though with different levels with the dollar 

and euro closely trailing each other similar but both higher than the pound. When we split the 

period into 1990-2000 and 2000-2010, the latter period for the us$/r shows leptokurtic 

distribution with a positive skewness greater than 1. In this period, the skewness for the 

remaining currencies are relatively high and their kurtosis has risen as well, showing high 

volatility. In the period 1990-2000, all currencies are platykurtic, though with very high 

skews for the US$/R and the Pound/Rand. When we consider table 3.9 for the returns we can 

deduce the volatility as shown by the leptokurtic values ranging from 5 to 1057. 

4.5 Estimation Results 

 

This section presents results from estimation. We begin with stationarity results, followed by 

jump diffusion parameter estimates and finally GARCH (1,1) results. 
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Table 4.10: Stationarity results exchange rate 

 

Variables 

Dickey-Fuller Augmented Dickey-Fuller Stat. 

status 
Constant Constant & 

trend 

Constant Constant & 

trend 

Results for unit roots tests on levels  exchange rates 

LEuro -0.0418
 

-1.9346
 

-1.6398
 

-2.0559
 

I (1) 

LPound 0.2947
 

-0.8913 -1.8742
 

-0.898
 

I (1) 

LDollar 0.3586
 

-1.021
 

-1.7504
 

-1.0818 I (1) 

Results for unit roots tests on returns  

DLEuro -2.2991
** 

-3.8872
***

 -27.182
***

 -27.179
***

 I (0) 

DLPound -1.7378
* 

-3.6820
***

 -31.338
*** 

-31.335
*** 

I (0) 

DLDollar -4.1371
***

 -8.0868
*** 

-27.566
*** 

-27.563
*** 

I (0) 

 

***  ** * 
represents stationary  series at 1, 5, and 10% levels.

 

The table above presents stationarity results for the exchange rate. Results in levels for 

Dickey-Fuller (DF) and Augmented Dickey-Fuller (ADF) are not stationary whereas returns 

data are stationary, most at a 1 percent level of significance. Parameter estimates in the table 

below are generated from the returns data. 
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Table 4.11: Exchange rate parameter estimates for the jump-diffusion model 

 1990-2010 1990-2000 2001-2010  

 Euro Pound Dollar Euro Pound Dollar Euro Pound Dollar  

B  1.2e-04 

(0.0000) 

 

1e-04 

(0.0000) 

2e-04 

(0.0000) 

1e-04 

(0.0000) 

1e-04 

(0.0000) 

1.1e-04 

(0.0000) 

3.7e-04 

(0.0522) 

2e-04 

(0.0000) 

2e-04 

(0.0000) 

 

B  6.4e-03 

 (0.0000) 

3e-04 

(0.0005) 

3.45e-03 

(0.0001) 

 

7e-03 

(0.0000) 

3.1e-03 

(0.0000) 

2.4e-03 

(0.0005) 

4.6e-03 

(1.8e-15) 

9.6e-03 

(0.0000) 

5.1e-03 

(0.0000) 

 

J  7.8e-04 

(0.0000) 

 

8e-03 

(0.0000) 

9.3e-03 

(0.0000) 

5e-04 

(0.0000) 

5.7e-03 

(0.0000) 

9.8e-.03 

(0.0000) 

7e-04 

(0.0576) 

4.5e-03 

(0.0000) 

7e-04 

(0.0000) 

 

J  2.4e-05 

(0.0000) 

 

3e-04 

(0.0000) 

3.5e-03 

(0.0000) 

2.5e-03 

(0.0000) 

2e-04 

(0.0000) 

1e-04 

(0.0001) 

1e-04 

(0.0485) 

2e-04 

(0.0692) 

4.3e-03 

(0.0000) 

 

  2e-04 

(0.0000) 

1.6e-03 

(0.0002) 

1.64e-02 

(0.0056) 

 

1.9e-03 

(0.0001) 

1.5e-03 

(0.0000) 

3.2e-03 

(0.0000) 

2.7e-03 

(0.0548) 

1.6e-03 

(0.0595) 

2.3e-03 

(0.0003) 

 

Mean 1.2e-04 1.13e-04 3.53e-04 1.1e-04 1.1e-04 1.38e-04 3.72e-04 2.15e-04 2.02e-04  

Variance 4.1e-05 9.1e-06 1.35e-05 4.91e-05 9.66e-06 6.01e-06 2.12e-05 2.04e-05 2.61e-05  

Skewness 3.6e-07 0.03 0.254 5.24e-04 9.29e-03 1.48e-01 1.01e-05 1.5e-02 6.8e-04  

Kurtosis 3 3.08 3.755 3 3.02 3.53 3 3.03 3.004  
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The table above presents parameter estimates for the jump diffusion model. Using a 

likelihood ratio as a diagnostic, we reject the null hypothesis of no jumps at a 1% level. 

Jumps therefore help to explain some features in the exchange rate data.  

 

Matching the moments in the jump diffusion model 

The goal is to verify that the model can match the data characteristics. Table 4.11 above 

illustrates this by including the levels of skewness and kurtosis values for the jump diffusion 

model. The model was run for numerous iterations and deduced, overall, more positive jumps 

than negative ones. In the analysis we also allowed for higher jump size and variance to 

explore the effect on volatility. Overall, results confirmed related studies in that the jump 

diffusion model does trace levels of skewness and kurtosis for returns data with varying 

degrees of accuracy. On generating sample variance, the success rate ranged from 56% to 

around 96%. Thus the significant jump size and intensity results imply that the model can be 

used to trace the behaviour of exchange rate data, especially for short term maturities. The 

results can also serve in informing computation of currency options. Though having produced 

significant results, we have to state that the model does not satisfy all the character traits of 

returns data. 

 

 

 (1990-2010) Whole sample;. For the euro, the unconditional mean of the jump diffusion is 

1.2e-04. The drift of the GBM portion matches the unconditional mean. The mean of the 

jump process is positive at 7.8e-04 and the estimate of the jump frequency is 2e-04 and 

significant. The unconditional variance of the jump diffusion matches the sample variance.  

An interesting find is that seemingly the inclusion of jumps normalises the data, as per 

findings of Sorwar (2011), thus bringing down the skewness to levels close to zero and the 

kurtosis close to 3.  

 

For the pound, the GBM drift is 1e-04 and the unconditional mean of the jump diffusion is 

1.13e-04. The drift of the GBM portion is less than the unconditional mean. The jump 

diffusion results produced a positive mean with a jump intensity of 1.6e-03. The Jump 

Diffusion model fails to generate a sufficient level of variance comparable with the sample 

moment at 57%. The generated level of volatility is lower than for the euro at 75%. 

 



74 

 

For the dollar, the unconditional mean of the jump diffusion is 2e-04. The drift of the GBM 

portion is less than the unconditional mean (2e-04<3.53e-04). The mean of the jump process 

is positive at 9.3e-03 and is highest across all currencies in the period. The estimate of the 

jump frequency is 1.64e-02 and significant. The unconditional variance of the jump diffusion 

generated 84% of the sample variance in Table 4.9. The effect of the jump diffusion process 

is seen in the normalised skewness and kurtosis values at 0.25 and 3.78.   

 

1990-2000. Split sample; For the euro, the unconditional mean of the jump diffusion is 1.1e-

04. The drift of the GBM portion is less than the unconditional mean (1e-04<1.1e-04). The 

mean of the jump process is at 5e-04, having slightly improved form the full sample 

equivalent of 1.2e-04; the estimate of the jump frequency is 1.9e-03, also higher than the full 

sample equivalent. The unconditional variance of the jump diffusion however produced 85% 

of the sample variance, with jump diffusion volatility coming at 92% of sample volatility  

 

For the pound, the unconditional mean of the jump diffusion is 1.1e-04. The drift of the GBM 

portion is less than the unconditional mean (1e-04<1.1e-04). The mean of the jump process is 

at 5.7e-03 and the jump intensity each day is at 1.5e-03 and significant. The generated level 

of volatility is high at 98%. 

 

For the Dollar, the unconditional mean of the jump diffusion is 1.38e-04. The drift of the 

GBM portion is less than the unconditional mean (1.1e-04<1.38e-04). The mean of the jump 

process is highest across all periods at 9.8e-03; the estimate of the jump frequency is also 

highest at 3.2e-03 and significant. The unconditional variance of the jump diffusion generates 

92% of the sample variance. The levels of skewness and kurtosis have been normalised by 

the jump diffusion process to 1.48e-01 and 3.53.  

 

 

2001-2010. Split sample; For the euro, the unconditional mean of the jump diffusion process 

is 3.72e-03 and is highest across all periods. The mean jump size is 2.7e-03 with generated 

level of skewness within normal distribution range as a result of the jump diffusion process. 

The jump diffusion variance generates close to 96% of the sample moment equivalent. 

 

For the pound, the unconditional mean of the jump diffusion is 2.15e-04.  The drift of the 

ump diffusion portion is less than the unconditional mean (2e-04<2.15e-04). The mean of the 
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jump process is positive with a jump intensity of 1.6e-03. The unconditional variance does 

generate 88% of the sample equivalent.  

 

The unconditional mean for the dollar is 2e-04. The drift is less than the unconditional mean. 

The mean of the jump process is at 7e-04. The unconditional variance is equal to 97% of the 

sample moment. 

 

 The model was run again with assumed higher levels of the jump variance, and we deduced 

that excess kurtosis did increase. We deduced as well that the proposition for the moments 

given by the equations (3.3 to 3.5) imply that skewnesss and kurtosis of a jump diffusion 

model decrease as data becomes less frequent. Furthermore, as the variance of the jump 

component increases, the smile becomes deeper. However, the smile flattens out at a longer 

horizon unless the jump variance is high. From the simulations carried out we also noted that 

as the jump mean increases, excess kurtosis increases. The results have an implication on 

currency options and also on arbitrage opportunities across currencies. This also contributes 

to strategizing on currency risk management. 

  

 On the behaviour of implied volatility under jumps, there are variables which need 

adjustment for risk (Bates 1996). In the case of the jump diffusion model, the parameters to 

be adjusted for risk will be  the jump intensity  and the mean of the jump size. The variance 

of the jump size is not affected (Das and Sundaram, 1999). In a related application, after the 

appropriate variables have been adjusted for risk, options under a jump diffusion model can 

be priced using  Merton’s (1976) formula and implied volatility estimates backed out using 

the Black-Scholes model. 

 

Also important to point out in this analysis is that for high parameter values, the difference in 

the implied volatility at one year and one month is low compared to the two to three 

percentage ponts in practice  (see  Campa & Chang, 1995),  Derman & Kani, 1994).  
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Table 4.12: Exchange rate GARCH results 

 

 

The results above were generated from maximum likelihood with the number of iterations 

ranging from 18 to 20 for the student’s t distribution and 21 to 330 for the GED distribution. 

From the results we have the coefficients of the variance equation; the intercept, ARCH(1), 

the lag of the squared return and GARCH(1), the lag of the conditional variance. The 

parameter 1 , which is represented by ARCH (1) also reflects the random deviations in the 

previous period whereas 1 , represented by GARCH (1) measure the part of variance from 

the previous period that is carried over into the current period. The parameter sizes determine 

the short run dynamics of the volatility in the exchange rate time series. Large values of 1  

imply that volatility reacts intensely to market movements whereas large values of 1  imply 

that the shocks to conditional variance take a long time to die out, hence volatility is 

‘persistent’. From our results, 1   is higher than 1 ; for example for the euro/rand 1  is 0.81 

and 1 is  0.18. 

 

 GARCH 

Student’s t  

  GED   

 Euro Pound Dollar Euro Pound Dollar 

 6.07E-06 

(3.55E-05) 

6E-05 

(3.49E-05) 

3.47E-05 

(2.29E-05) 

 

-1.52E-06 

(3.21E-05) 

3.02E-06 

(3.15E-05) 

1.37E-06 

(2.24E-05) 

 5.181E-07 

(7.03E-08) 

1.37E-07 

(3.02E-08) 

1.86E-08 

(6.47E-09) 

5.14E-07 

(7.27E-08) 

1.53E-07 

(3.34E-08) 

 

3.16E-08 

(5.74E-09) 

 0.8126 

(0.0106) 

0.8967 

(0.008) 

0.8635 

(0.0075) 

0.8075 

(0.0115) 

0.8915 

(0.009) 

0.8823 

(0.1306) 

 0.1787 

(0.01478) 

0.106 

(0.0098) 

0.1266 

(0.0075) 

0.1727 

(0.0143) 

0.1068 

( 0.0098) 

0.13065 

( 0.0097) 

       

C

K

)1(GARCH

)1(ARCH
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In this case this entails that shocks to the variance take time to die out, indicating volatility 

clustering. Furthermore, the sum capturing the persistence in volatility, is close to 1, 

indicating the presence of ARCH and GARCH effects in exchange rate data and also a 

required condition to have a mean reverting variance process. Related findings for South 

Africa are somewhat mixed. For example Farrel (2001) used a normal GARCH 

representation and deduced volatility persistent. However, Duncan and Liu (2009) deduced 

explosive GARCH results for a normal representation. They further went on to introduce a 

structural change GARCH model which produced non explosive results. In this chapter 

however we employed a fat tailed GARCH model which showed non explosive results and 

therefore becomes useful in explaining volatility and as well to compliment jump diffusion 

models. 

4.6 Conclusion 

 

The chapter illustrated modelling volatility in exchange rate data. Consideration was made of 

three different exchange rates. The goal was to understand the movement of asset prices 

through application of the jump diffusion model on exchange rate data. The graphical 

presentations of returns showed potential jumps and volatility clustering which were more 

pronounced during trying times in the financial market. Results from the jump diffusion 

model verified related studies in  that the model incorporating jump diffusions is able to 

capture the high moments in skewness and kurtosis (Figueiredo et al., (2011), Yang et al., 

(2009), Kouet et al., (2002) thus faring better than the GBM as it is able to trace jumps in the 

data. Results revealed significant levels of jump size and intensity across all three currencies.  

Furthermore, the volatility generated from the model in many cases matched the sample 

equivalent. A better estimation for volatility is crucial for hedging against adverse movement 

in the exchange rate, through currency options.  

 

The implication for the results is that the jump diffusion model can explain the volatility 

smile for short and medium term maturities, but does not do the same for longer time 

horizons. As a result, the implied volatility smile in jump diffusions is seen for short 

maturities, dying out with time. This is important for pricing currency options as it offers 

leverage to businesses affected by currency risk as they can make informed hedging 

strategies by taking advantage of arbitrage opportunities that may lie therein. An interesting 
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result was the normalised moments in skewness and kurtosis after inclusion of the jump 

component. 

 

However, the jump diffusion model does not satisfactorily capture all the characteristics of 

the data. The study also revealed dependence in jump intensity and jump size. To 

complement the jump diffusion results the GARCH models were applied to capture the 

persistence in volatility. GARCH(1,1) models take into account the autocorrelation in the 

volatility in returns and as such low order GARCH(p,q) models are preferred  to high order 

ARCH(p) for reasons of parsimony and numerical stability in estimations. Using fat tailed 

GARCH distribution we captured presence of volatility clustering. As an improvement of the 

analysis in future we could consider the tracking the jumps sizes and intensity pre and post 

central bank announcements. Another future consideration is to merge jump diffusion models 

with stochastic volatility for South Africa and compare the generated parameters and deduce 

implications for currency options.  
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CHAPTER FIVE 

 JUMP DIFFUSION IN INTEREST RATES MODELS 

 

5.1 Introduction  

 

The understanding of the term structure of interest rates is important for practitioners in 

finance and policy makers alike. For one, the term structure can be used to determine the cost 

of capital and also to manage financial risk. Interest rates are also employed in a number of 

applications, for example; in pricing the risk of interest rate derivatives, and also importantly 

to bring about fiscal and monetary policies. It is therefore befitting that organisations manage 

financial risk brought about by volatility in the interest rate and consequently create value 

benefiting shareholders. 

 

A correct specification of the short term interest rate model is one way of understanding the 

factors that drive interest rates. This has seen various models proposed to explain the term 

structure of interest rates. Some of the models explaining the significant role of interest rates 

include Ahn and Gao (1999), Chan et al. (1992), also known as CKLS after Chan, Karolyi, 

Longstaff and Sanders, Longstaff and Schwartz (1992). However the well-known models  as 

specified in CKLS (1992) fail sufficiently capture the interest rate characteristics, even after 

augmenting and adding other  factors (see Ahn et al (2002), Ball and Tourus (1985) and 

Andersen and  Lund (1997)).  

 

 In this chapter we propose an alternative representation of the short term interest rate by 

augment interest with jumps as informed by recent literature ( for example Sorwar, 2011, Xue 

et al (2011), Attaoui and Six (2008). This is the approach we introduce for South African data 

as there have been no studies incorporating jumps on short term interest rate models. This 

representation contributes to a better understanding the behaviour of interest rates and can 

therefore prove useful to policymakers and other stakeholders in understanding interest 

volatility in the South African context. 
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Results are significant for the jump diffusion specification for all the parameters and 

therefore expound on understanding the characteristics of short term interest rates and thus 

aiding forecasting of interest rates, hence risk mitigation.  The remainder of the chapter is 

organised as follows;  Section 5.2 incorporates jumps to the short term interest rate model 

examined in the chapter. Section 5.3 discusses the methodology.  Section 5.4 looks at data 

characteristics. Section 5.5 presents estimation results and Section 5.6 concludes 

 

5.2 Jump diffusion process for interest rate models  

 

The generic term structure of single factor model takes the following stochastic process: 

(5.1) dZrdtrdr   )(  

Which can also be presented as dZrdtrdr   )( , after allowing   and    

(Chan, Karolyi, Longstaff and Sanders, 1992) 

  

The stochastic process above has drift and volatility. The volatility is heteroskedastic in that 

the variance is multiplied by the interest rate raised to a power thus the representation in (5.1) 

differs from equation (3.1) mainly as a result of the heteroscedastic volatility and exclusion of 

the Poisson distributed jump component. We can also assert that that the mean and variance 

of changes in the short term interest rate depend on r.  The parameter   in the model 

represents the threshold level of the interest rate r at which the drift is zero. Also to note is 

that the stochastic process in equation (5.1) shows a broad class of interest rate models. If we 

place restrictions on this equation, we obtain well known interest rate models as shown below 

with the corresponding parameter restrictions in the table. 

 

 

(5.2) Merton                      (1973)               dZdtdr    

(5.3) Vasicek                      (1977)              dZdtrdr   )(  

(5.4) CIR                            (1985)              dZrdtrdr 2

1

)(    

(5.5) Dothan                       (1978)              rdZdr   

(5.6) GBM                          (1973)              rdZrdtdr    

(5.7) Brennan-Schwartz      (1980)             rdZdtrdr   )(  
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(5.8) CIR VR                      (1980)             dZrdr 2

3

  

(5.9) CEV                            (1976)            dZrrdtdr    

 

Table 5.13: Parameter restrictions imposed on alternative short-term interest rates 

models 

Model     2    

Merton  0  0 

Vasicek    0 

CIR SR    ½ 

Dothan 0 0  1 

GBM 0   1 

Brennan-Schwartz    1 

CIR VR 0 0  3/2 

CEV 0    

 

Chan, Karolyi, Longstaff and Sanders (CKLS) (1992) in their study compare the above eight 

models of short term interest rate with the aim of deducing as to which model best fits the 

short term riskless rate. The models are fitted within the same generic structure of equation 

(5.1) to allow for comparison among the models. Their findings indicate that models which 

best describe the dynamics of interest rates over time are those  representing the conditional 

volatility of interest rate changes to be highly dependent on the level of the interest rates. 

 

Merton’s (1973) model for discount bond prices is represented as equation (5.2) and we can 

deduce the parameter restrictions from table 5.13 above for this model. Vasicek (1977) used 

the Ornstein-Uhlenbeck process to derive the equilibrium model of discount bond prices. 

This is represented in equation (5.3) and also shown by the parameter restrictions in the table 

above. Merton’s model is nested with the Vasicek model by restricting the parameter 0 . 

With this restriction, the models suggest a constant change in conditional volatility-  of the 
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riskless rate. The square root process (SR) in the Cox, Ingersol and Ross (CIR) (1985) single 

factor general equilibrium term structure is represented as equation (5.4). The CIR model 

considers key factors in determining the term structure of interest rates such as; anticipation 

of future events, risk preferences, investment alternatives and even preferences about the 

timing of consumption. 

 

Various valuation models for interest rate sensitive contingent claims have adopted this 

model; for example the yield valuation model by Longstaff (1990), swap pricing model  by 

Sundaresan (1989) and for  futures and futures option pricing models in Ramaswamy and 

Sundaresan (1986). 

 

Application for Dothan’s (1978) discount bond valuation model is seen in the study by 

Brennan and Schwartz (1977) for bond valuation. The model is shown above as equation 

(5.5).  Equation (4.6) presents the geometric Brownian motion GBM from which follows the 

reverenced Black-Scholes (1973) model. On application, Marsh and Rosenfeld (1983) 

consider an interest rate model from the GBM. A model with fewer restrictions, equation 

(5.7) by Brennan-Schwartz (1980) is used for bond prices. Courtadon (1982) uses a similar 

approach for a model of discount bond option prices. If we impose  0  on the Brennan-

Schwartz model we get the GBM model. 

 

The Cox, Ingersoll, Ross (1980) model is represented as equation (5.8). It was used in their 

study of the variable rate (VR) securities. Constantinides and Ingersoll (1984) use a similar 

model to CIR (1980) to value bonds with taxes. The last model, equation (5.9), gives us the 

constant elasticity of variance (CEV) process by Cox (1975) and Cox and Ross (1976). The 

model is also discussed by Marsh and Rosenfeld (1983). Imposing certain restrictions on the 

model we obtain the models of Dothan, Brennan-Schwartz and CIR VR. 

 

 Though possessing features of the interest rate models and ease of estimation, the stochastic 

process for these models as presented in equation (5.1), does not capture all the 

characteristics of the interest rate, as empirical studies have shown. In this regard, some of the 

factors considered for improving equation (5.1) include non- linear drift and a general form 

of the diffusion coefficient. Notably, Aït-Sahalia (1996) proposes the following model: 
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(5.10) dZrrdt
r

rrdr tt

t

ttt
3

210
12

0 ])([



 

18
 

As an alternative, Conley et. al (1997) propose a model of the form; 

(5.11)  tt

t

ttt dZrdt
r

rrdr 


  ])([ 12

0 ,  

with a constant elasticity of Variance (CEV) in CKLS but retaining the drift in the above  

Aït-Sahalia (1996) representation. 

 

As a better alternative to Conley et al. (1997), Ahn and Gao (1999) proposed a parametric 

model from which we also deduce affine term structure models by placing restrictions on the 

parameters. The series of the interest rate they considered is represented by the stochastic 

differential equation. In their representation, the model features a nonlinear term structure 

generating dynamics of interest rate and market price of risk close to findings by CKLS 

(1992), Aït-Sahalia (1996), Conley et al. (1997), and Stanton (1997). The model used 

provided stationary interest rate process and a closed form expression for transition and 

marginal density of interest rate and bond prices. Their findings imply nonlinear relationship 

between interest rate and yields to maturity, thus outperforming the affine class models 

discussed above.  

 

However, even with these modifications the models set above do not capture sufficiently all 

the characteristics of the interest rates. To better the model, we add a random jump 

component, giving us: 

 

(5.12) ttt

t

ttt kdNdZrdt
r

rrdr  


 ])([ 12

0  

The last term represents the jump component; this captures unanticipated market reaction, 

which can be as a result of macroeconomic news, endogenous and exogenous crashes (for 

example the Black Friday of 1987 and the September 11, 2001). tN  is a Poisson counter with 

constant intensity  and k is the jump size which follows a normal distribution of the form 

),(~ 2

JJNk  . 

 

                                                             
18 3 is equivalent to  in (4.1) 
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Therefore, adding jumps to the generic model in (5.1) improves its ability to capture 

movements in markets. Sorwar (2011) demonstrates that the behaviour of interest rates 

processes are better explained with the addition of jumps to the diffusion processes. He 

examined the performance of the linear and non- linear one factor CKLS model in the 

presence of jumps. The results support the presence of jumps as improving the linear CKLS 

model. Xue et al. (2011) apply the fractional jump-diffusion financial market model under 

stochastic interest rate.  Giesecke and Smelov (2011) develop a method for the simulation of 

one-dimensional jump-diffusion with drift, volatility, jump intensity and jump size. Their 

analysis supports jump diffusion models on interest rates. Mancini and Reno (2009) deduce 

that adding jumps is important in interest rate models as evidenced by Monte Carlo 

simulations. 

 

Jiang and Yan (2008) also studied a linear-quadratic term structure models with random 

jumps in the short rate process with a stochastic process jump arrival rate. They conclude that 

incorporating stochastic jump intensity improves model fit to interest rate and volatility term 

structure. Attaoui and Six (2008) extend the monetary equilibrium approach of Lioui and 

Poncet (2004) to a jump-diffusion setting to derive the jump-diffusion dynamics of a nominal 

short interest rate. Mora and Valdez (2007) examined jumps in a continuous-time short-term 

interest rate model for Mexico. They estimated jumps times and sizes in the time series and 

concluded that jumps in the diffusion model represents a better alternative than in a model 

without jumps. 

 

Exposition carried out by Espinosa and Vives (2005) present a generalisation of the Levy–

Merton jump-diffusion model, allowing discrete stochastic volatility, applying a quadratic 

variation to estimate jump sizes and jump times. They conclude that the model is more 

relevant for short term interest rate.  Chiarella and Sklibosios (2005) considered term 

structure models with a parameterisation of the Shirakawa (1991) representation for jump-

diffusion. In their study they considered the forward rate volatility structures that incorporate 

state dependent Wiener volatility functions and time dependent Poisson volatility functions. 

They obtained a class of jump-diffusion term structure models. Das (2002) adds jumps to the 

Vasicek (1977) model and finds evidence supporting jumps in the daily federal funds rate.  

Ahn and Thompson (1988) in their investigation of the term structure of interest rates when 

the underlying state variables and production technology follow jump diffusion processes, 

find evidence supporting jump-diffusion models. 
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With so many applications of Jump Diffusion models for interest rates, their application to 

South Africa has been limited. Maitland (2013) notes the insufficient studies in South Africa 

on stochastic models. A study by Nomoyi (2011) considers parameter estimation of a 

stochastic volatility model by Heston (1993) with implications for option pricing. The study 

estimates the Heston (1993) model through use of a Markov Chain Monte Carlo (MCMC) 

approach. In another related study on intrest rate volatility in South Africa, Fadiran and 

Ezeoha (2012) considered the error-correction model (ECM) together with the adjusted 

ECM-exponential generalised autoregressive conditional heteroscedasticity (ECM-

EGARCH) (1,1)-M. They deduced that negative volatility impact and leverage effect are 

present in the symmetric deposit interest rate adjustment process.  

 

Hassan and Aling (2012) used Gaussian estimation methods to obtain parameter estimates for 

non-linear representation for South Africa’s short-term interest rates. The results suggested 

diffusions when interest rate volatility was moderately sensitive to the level of interest rate, 

particularly after the adoption of inflation targeting. The remaining visible studies on 

volatility of the interest rate do not cover much ground (see Fadiran and Ezeoha, (2012)), 

Kotze and Joseph, (2009)), Kahn and Farrel, (2002). In this chapter we seek to fill this gap by 

considering as a linear representation of the short-term interest rates and introduce a jump 

diffusion model as an alternative to understanding the  short-term interest rate model. We 

complement this with a GARCH representation. This goes a long way in understanding 

mitigation of interest rate risk. 

5.3 Methodology 

In our specification however, we adopt a different approach from Sorwar (2011). We add 

jumps in a variation of the CKLS model with linear drift and assume jumps are normally 

distributed and that the average jump size is not zero. The data includes major periods in the 

South African economy, especially inflation targeting post year 2002. We estimate the 

unobserved jumps and jump sizes to determine the role of jumps in interest rate models.  We 

estimate the parameters of the process from the log likelihood function. We analyse the 

ability of the model to capture jumps size and intensity and also draw lessons on the 

sufficiency of the model to trace higher moments from returns data.  
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In our approach we add Poisson jumps to the stochastic process in equation (4.1) to obtain a 

process for short term interest rates.  We specify the process as;  

(4.14)   kdqdZrdtrdr   )( , which is a variant of (4.13), allowing for a linear 

drift
19

.  

 

5.4 Data and sample statistics 

 

The data we use is the 90 day T-Bill rate from January 1990 to August 2011, for South 

Africa. We also split the period into 1990-2002 and 20032011 to analyse the size and 

intensity of jumps before inflation targeting and post inflation targeting. A number of 

researchers support the use of the three month T-bill due to the advantages of liquidity, small 

bid ask spreads and also that it is free from peculiar effects which can lead to potential 

sources of non-normality (Sorwar, 2011).  Even for South Africa, there is support for use of 

the three-month rate as a proxy for the short rate model (Jones, (2010)). The study period 

yields 6784 sample observations for the 3 months T-Bill rate. The figures below show the 

time series plots for the data. 
20

 

 

Figure 5.7: 3 months T-Bill January 1990-August 2011 

 

                                                             
19 The methodology for the jump diffusion model and the GARCH model is detailed in chapter three 
20

 The normal fit plots are shown in the appendix 
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From the figures above the 90 days T-Bill show traces of volatility clustering and potential 

jumps. This is more prominent for the returns graph for the periods 1998, 2004 and 2008/9. 

The accompanying normal fit plots for returns data are shown in appendix C portraying peak, 

skew and fat tail. The summary statistics in the table below reveal more on the volatile nature 

of the data in the graphs 

 

Table 5.14: Interest rates summary statistics raw data 

 

  1990-2011 1990-2002 2003-2011 

  90DT-Bill 90DT-Bill 90DT-Bill 

Mean 11.31 13.43 8.11 

Max  22.3 22.3 12.76 

Min 5.44 8.66 5.44 

Variance 13.11 8.09 3.62 

Skewness 0.35 0.35 78 

Kurtosis 2.26 2.2 2.7 

 

Table 5.15: Interest rates summary statistics returns data 

  1990-2011 1990-2002 2003-2011 

  90DT-Bill 90DT-Bill 90DT-Bill 

Mean -7.60E-05 -4.00E-05 -1.30E-04 

Variance 8.20E-06 8.10E-06 8.40E-06 

Skewness 0.202 3.2 -4.078 

Kurtosis 94.6 104.4 80.5 

 

The tables reveal interesting statistics for the data. For the raw data the mean are high for the 

period 1990-2002 compared to other periods. The analysis is the same for the maximum and 

minimum values, suggesting overall high interest rates before the advent of inflation 

targeting. At the same time however it should be noted that the period covers turbulences in 

the global economy like the Asian crisis and the global financial crisis of 2009. Other studies 

have verified instances of high volatility in the South African economy in periods of financial 

crises (see for example Duncan and Kabundi, (2013), Duncan and Liu (2009))  and also 
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considering that the maximum values are identified with a period with some questionable 

policies in the years 1996 and 1998 (Aron and Muellbauer, 2005).  

 

The variance is highest for the full period and is least post inflation targeting. This can partly 

suggest that the phenomenal global financial market occurrences filter into interest rates 

space. The period of high volatility is also associated with the pre-1994 political instability. 

Perhaps the high volatility observed over the full period confirm some studies which deduced 

that South Africa is a small open economy prone to shocks (Steinbach et al, 2009). Volatility 

has been seen featuring prominently with emerging market economies (see for example Bae 

et al, (2003) 

 

So research studies have identified gains attributed to inflationn targeting in 2000 ( for 

example Aron and Muellbauer, (2009). Volatility for the raw data has decreased post 

inflation targeting. For the returns data in table 5.15 above, the distributions are leptokurtic 

for all the three different periods. The period 1990-2002 has a highest kurtosis of 104.4 

suggesting more volatility clustering and potential jumps compared to other periods. 

However, both the full sample  period and post inflation targeting also portray volatility 

clustering and potential jumps with kurtosis values of 94.6 and 80.5. The returns data 

statistics do confirm the non-normality observations in figure 5.7. The estimation results will 

compare the parameter sizes pre and post inflation targeting. 

5.5 Estimation results  

Below we present estimation results, starting with stationarity results, Jump diffusion 

parameter estimates and GARCH (1,1) parameter estimates 

Table 5:16: Stationarity results interest rates 

 

Variables 

Dickey-Fuller Augmented Dickey-Fuller Stat. 

status Constant Constant & 

trend 

Constant Constant & 

trend 

Results for unit root tests on levels interest rates  

L90DT-Bill 0.8076
 

-1.9169
 

-0.8490
 

-1.8855
 

I (1) 

Results for unit roots tests on returns  

DL90T-Bill -26.397
*** 

-26.397
***

 -26.395
***

 -26.393
***

 I(0) 

 

***  ** *  represents stationary series at 1, 5 and 10% level of significance.  
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From the stationarity results above, data are stationary in returns at 1% level of significance.  

 

Table 5.17 : Interest rates parameter estimates for the jump diffusion model 

 1990-

2011 

1990-2002 2003-2011 

 90DT-Bill 90DT-Bill 90DT-Bill 

B  7e-04 

(0.0000) 

 

4e-04 

(0.0000) 

2e-04 

(0.0000) 

B  2.8e-03 

(0.0000) 

 

2.8e-03 

(0.0000) 

2.8e-03 

(0.0005) 

J  6e-04 

(0.0000) 

 

7.e-04 

(0.0000) 

8.1e-03 

(0.0000) 

J  1e-04 

(0.0000) 

 

4e-04 

(0.0000) 

2e-04 

(0.0000) 

λ  1.9e-03 

(0.0007) 

 

4.2e-03 

(0.0000) 

1.5e-03 

(0.0005) 

Skewness 2.03e-04 6.49e-06 3.57e-02 

Kurtosis 3 3 3.103 

Mean 7.11e-04 4e-04 2.12e-04 

Variance 7.85e-06 7.84e-06 7.94e-06 

 

The table presents results for the jump diffusion specification. The jump diffusion model is 

able to fit data better as it generates the higher moments
21

.   Using the likelihood ratio test as 

a diagnostic, we reject the null hypothesis of no jumps at 1% level. Jumps therefore help 

explain some features in the data set. Not only do we draw jump sizes and intensity from the 

interest rate but we also compare from the two specifications as to which one is seemingly 

prone to jumps and volatility clustering. 

 

                                                             
21 Unlike the Geometric Brownian motion, the jump diffusion model does not specify that returns are 

independent and identically distributed (see Ramezani and Zeng, (2007)) Richards et al., (2002), Craine et al., 

(2000) for more discusion) 
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1990-2011. Whole sample; the three month T-bill rate is used in this study. This allows us to  

generate jump diffusion model parameters and determine whether the model is able to trace 

the characteristics of interest rate returns data. Table 5.17 presents the parameter estimates for 

the period 1990-2011, 1990-2002 and 2003-2011, capturing phases in the monetary policy 

conduct of the central bank, with the prominent one being inflation targeting. The parameter 

estimates apply to daily changes in the interest rates. The drift is at 7e-04.  The unconditional 

mean implied by the jump diffusion process lies at 7.11e-04 whereas the jump mean lies at 

6e-04  and the jump intensity at 1.9e-03. All the parameters are significant. 

 

The variance of the jump diffusion specification almost meets the sample moments for both 

rates at 96%. For skewness and kurtosis, the levels have been brought to normal by the 

inclusion of jumps, this we see in values for skewness at 2e-04 and 3 for kurtosis. 

 

 1990-2002. In this period the jump size has slightly increased from 6e-04 to 7e-04. Similarly, 

the intensity has also increased from 1.9e-03 to 4.2e-03. The jump diffusion specification 

generates 97% of the sample volatility. Compared to all periods, the unconditional mean of 

the jump diffusion is second highest at 4e-04. All parameter values are significant. 

 

2003-2011.In this last period we see the highest jump size at 8.1e-03 perhaps indicating more 

jumps in the inflation targeting period, though with lower intensity. The jump probability has 

slightly declined to 1.5e-03. The model also generates 95%  sample volatility and the higher 

moments have been normalised with the introduction of jumps 

 

Table 5.18: Interest rates GARCH results22 

 

 GARCH 

Student’s t 

GARCH 

GED 

 90T-Bill 90T-Bill 

C  9.89e-08 

(1.52e-08) 

1.3e-06 

(4.88e-05) 

 

K  8.72e-15 

(6.52e-15) 

1.6e-06 

(1.48e-07) 

                                                             
22

 Student’s t distribution d.o.f fixed at 10 and GED parameter fixed at 1.5.  
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)1(GARCH  0.9789 

(5.86e-04) 

0.674 

(0.03) 

)1(ARCH  2.55e-05 

(1.69e-06) 

0.0076 

(0.0013) 

 

 

Table 5.18 above presents the GARCH results for two scenarios; Students’ t distribution and 

GED.  The GARCH parameter sizes explain the short run dynamics of the data, in this case 

the volatility in the treasury-bill rate.  In order to have a mean reverting variance process, the 

coefficients 1  and 1  should sum up to a number less than one. For GARCH Student’s t, 

the result is very close to one, indicating a slow mean reversion process (Engle, 2001).  

Furthermore, the GARCH Student’s t suggest that volatility shocks take a longer time to die 

out. Seemingly, ARCH effects are minimal considering the low coefficient values. The 

GARCH effect is less pronounced for GARCH GED wherein 1  is 0.67 compared to 0.98 for 

GARCH Student’s t although the persistence in volatility still holds. The results confirm a 

related study that T-Bill rate exhibits volatility persistence in South Arica (Strydom and 

Charteris, 2011) 

5.6 Conclusions  

 

Modelling the volatility of interest rates has gathered interest in academia and even from 

practitioners because of its importance in risk management, interest rate derivatives, option 

pricing. The chapter examined variation of the CKLS model augmented with jumps. 

Summary statistics for the returns data revealed the leptokurtic nature and skew associated 

with interest rates. This was also complimented by the returns graph which showed traces of 

jumps and volatility clustering. The period with more leptokurtic features seemingly is 1990-

2002.  Results incorporating the jump diffusion show the jump size having increased post 

inflation targeting at 8.1e-03. For the full sample period, the jump size is smallest at 6e-04. 

However, there seems to have been a lesser intensity post inflation targeting. 

 

This interesting result perhaps points to information filtering after inflation targeting, a 

phenomenon which might have been less pronounced before. It is a safe assertion therefore 

that jumps help to explain important features of the interest rates as the generated results 
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fared well in producing sample equivalents, having generated sample volatility of 96%, 95% 

and 95% respectively for the three different periods analysed.  Therefore results suggest that 

the model can capture unexpected movements in the market. Furthermore, this was proven by 

the generated levels of  the higher moments in skewness and kurtosis. We can also conclude 

that generally the short term interest rate market suffers many more deviations than does the 

long term. Jumps can be traced more in the short term than in the long term.  To capture the 

persistence of volatility we included scenarios for the fat GARCH model. Results from the 

parsimonious fat tailed GARCH(1,1) supported the specification in removing the ARCH 

effects, though indicating a slow mean reverting process. Findings in this chapter play a 

crucial role in interest rate forecasting, asset pricing, portfolio analysis and the valuation of 

short-term interest rate derivatives, especially where the one factor model has a yield curve 

determining variable. The application can also be extended to multi-factor models embedded 

with the stochastic behaviour on interest rates. 
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CHAPTER SIX 

 

 JUMP DIFFUSION IN STOCK PRICES 

 

6.1 Introduction  

A number of studies have confirmed the presence of jumps in asset prices, with implications 

for derivative pricing, risk management, and portfolio allocation (see for example,  Aït-

Sahalia et al. (2006), Eraker et al. (2003), Liu et al. (2003),  Andersen et al. (2002),  Duffie 

& Pan (2001), Bates (2000). This literature has enriched our understanding of return 

properties of various financial assets, such as exchange rates, interest rates, and stock 

markets.  

 

Jumps in stock prices, which are by nature large discontinuous price movements, are as a 

result of infrequent and large surprises to investors’ information set. Furthermore, there have 

been a number of tests developed to trace the existence of jumps in asset prices. In this 

category, Aït-Sahalia (2002), exploits the restrictions on the transition density of diffusion 

processes to assess the likelihood of jumps. A related study by Carr and Wu (2003) makes 

use of the decay of the time value of options with respect to maturity. Barndoff-Nielsen & 

Shephard, (2004, 2006b) propose a bi-power variation (BPV) measure to separate the jump 

variance and diffusive variance based on bi-power variation.  Yet still, the volume of 

empirics for stock prices is not a lot when compared to other asset prices like the exchange 

rate and interest rate. This translates to insufficient tools for investors when considering 

acquiring investments across different sectors. 

 

Moreover, studies incorporating South African stock price jumps are rare  (for instance Kutu 

(2012), with the remaining studies on stock prices not considering jump diffusion models at 

all (for example Kulikova and Taylor, (2010), Bonga-Bonga and Makabule, (2010), Taylor, 

(2010), Moolman (2005). Evidently, there is a need to fill the gap of insufficient studies on 

understanding the stock price characteristics in South Africa. Furthermore, since South 

Africa’s stock exchange features in the worlds’ top 20 exchanges by market capitalisation 

(African Securities Exchanges Association, 2014); it compels the need to understanding stock 
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price properties. This will enhance portfolio diversification for investors and therefore 

encourage more participation in the stock exchange via economies of scale. 

  

In this chapter we therefore carry out a study of price jumps for individual stocks, with an 

application to South Africa, making use of selected Johannesburg Stock Exchange (JSE) 

sector stocks.  The results document properties of individual stock price jumps, thus bridging 

the gap in understanding the stochastic process for stock price movements in South Africa. 

The results also help us to compare with findings in literature. The significant results suggest 

that jumps are a feature for stock prices and vary across sectors. Furthermore, results from the 

study can be used to inform stakeholders of the importance of a diversified portfolio 

considering the different jump sizes and intensity across sectors. The remainder of the chapter 

is organised as follows. Section 6.2 presents the literature review. Section 6.3 presents the 

methodology. Section 6.4 describes data. Results are presented in section 6.5 and section 6.6 

concludes. 

 

6.2. Literature review  

 

Volatility in stock markets can imply losses for some and profits for some. It is therefore 

important that there is a good understanding of stock price movement. This has seen 

continuous improvement in modelling asset prices. Finance literature has documented the 

leptokurtic nature of stock returns data with Merton (1976) laying foundations for the 

inclusion of jumps in asset prices. Since then, researchers have improved on the work of 

Merton (1976) in their quest to understand asset prices. As a result research studies by Jorion 

(1988) and Jarrow and Rosenfeld (1984) build the case for evidence of jumps in stock prices. 

Another area considered under jump diffusion related with stock prices has been option 

pricing. In this work Pan (2002), Bates (200), Bakshi et al., (1997) and Naik and Lee (1990) 

provide evidence that jumps are important for option pricing. Jumps and skewness have been 

known to be related; with positive jumps associated with positive skewness and negative 

jumps with negative skewness (Yan, (2008)). Some research findings have associated jumps 

with policy changes, market phenomena and social events (Lahaye et al., (2011), Lee and Na, 

(2005), Lee et al., (2004)). Literature also documents the importance of detecting jumps in 
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prices noting consequences for financial risk management and pricing (Arshanapalli et 

al.,(2013), Carr and Wu (2010)) 

Aït-Sahalia and Jacod (2006) propose a family of statistical tests of jumps using power 

variations of returns. Works by Lee and Mykland (2008) exploit the properties of BPV and 

develop a rolling-based nonparametric test of jumps.  Evans (2011), Barndoff-Nielsen and 

Shephard (2004, 2006a, 2006b apply non-parametric settings for detecting jumps. Lee and 

Mykland (2008) incorporated a Poisson-type jump test. Research findings by Figueiredo et 

al., (2011), Sorwar (2011), Xue et al (2011), Yang et al. (2009), Das (2002), and Craine et al. 

(2000)) show the existence of jumps in stock prices. Another class of models has seen the 

emergence of the Generalized Method of Moments (GMM) carrying out known characteristic 

functions of affine models where a jump diffusion model is combined with a stochastic 

volatility model (Singleton (2001), Pan (2002), and Viceira & Chacko, (1999)). Related 

works include the method of simulated moments (Duffie & Singleton, (1993), indirect 

inference methods (Gourieroux et al. 1993) and the efficient method of moments (EMM), 

Gallant & Tauchen, (1996) amongst others.  

 

The simulation-based methods offer several advantages. For instance, Andersen et al. (2002) 

use EMM to estimate jump diffusion models from equity returns. From the work for general 

state space models in Carlin et al,. (1992), Jacquier et al,. (1994) developed a method for 

estimating discrete time stochastic volatility models from returns data. From their study they 

deduced that the Markov Chain Monte Carlo (MCMC) is particularly well suited to deal with 

stochastic volatility models. 

Further works into multivariate models can be found in Jacquier et al., (2004). Eraker (2001) 

proposes a general approach to estimating diffusion models with arbitrary drift and diffusion 

functions and possibly latent, unobserved state variables (for example stochastic volatility). 

Other studies on MCMC-based estimation of jump diffusion models on returns data include 

works by Eraker et al, (2003). Consideration has also been taken into account to determine 

the number of jumps and their sizes. In this work Andersen et al (2007) use an algorithm 

based on Barndorff-Nielsen and Shephard’s (2004, 2006a, 2006b) work in extracting the 

jumps per day. 

In a related application, Eraker, et al. (2003), Pan (2002) and Bates (2000) carried out studies 

deducing less frequent but large jumps in stock prices. Tauchen and Zhou (2006) in their 
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study applied daily measures of quadratic and bipolar variations in testing the number of 

jumps in a given day. The culmination of their study was in obtaining the jump intensity and 

size wherein they deduced at most one jump in a day with the price movement attributed to a 

jump. It is therefore beyond doubt that diffusion processes have been employed for stock 

market data
23

. This however contrasts the South African scenario (for example Kulikova and 

Taylor, (2010), Bonga-Bonga and Makabule, (2010). This chapter contributes to building 

empirical evidence of incorporating jump diffusion model for stock prices thereby offering a 

better method for understanding stock price movements in South Africa. 

 

6.3 Methodology 

Merton’s (1976) work adds jumps to the GBM process in approximating the movement of 

stock prices. The continuous time model with instantaneous return thus becomes:  

(6.1)  )()()(
)(

)(
tdqtktdWdt

tS

tdS
BB            )0( t  

B  is the drift and B  is the volatility. )(tW  is standard Brownian motion and )(tdq is a 

Poisson counter with intensity  24. 

6.4 Data 

The data we used is the daily closing share price for indices over the period January 2008 to 

October 2011
25

 on the JSE of South Africa. The selected sectors are banking, mining, media 

and travel and leisure. For each sector, a company is chosen for analysis. Based on data 

availability for the chosen companies, the sample size for media is 891 and 953 for each of 

the remaining three sectors.  Omitting weekends and holidays has no impact on the data used 

(Jones, 2003).  The data have typical features of high frequency financial time series data; 

skewness, kurtosis. The diagrams below show the characteristics of each sector. 

 

 

 

 

                                                             
23 See Ait sahalia (2002) Duffie and Glynn (2004) ,Hansen & Scheinkman, (1995) and Conley et al. (1997) 

(moment based methods), and Ait-Sahalia (1996), Jiang and Knight (1997), Stanton (1997) and Bandi and 
Phillips (2002) (non- parametric methods) 
24 Methodology for jump diffusion model and GARCH model specified in chapter three 
25 Consistent daily data for the sectors gave us a sufficient sample to apply a jump diffusion process. Very long 

consistent daily data was not available at the time of estimation. 
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Figure 6.8: Daily closing prices and returns for banking sector index 2008-2011 
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Figure 6. 9: Daily closing prices and returns for leisure sector index 2008-2011 
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Figure 6.10: Daily closing prices and returns for media sector index 2008-2011 
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Figure 6.11: Daily closing prices and returns for mining sector index 2008-2011 
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From the figures above, the returns data for all sector stocks are typical of characteristics seen 

in most stock price data; skewness, kurtosis, potential jumps and volatility clustering. The 

accompanying logarithmic returns of stock price data reveal volatility clustering effects
26

. 

 

                                                             
26 Empirical density functions as shown in the appendices confirm that stock returns data do not follow a normal 

distribution 
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We further explore the data by looking at the summary statistics as shown in table 5.19 

below. 

 

Table 6.19: Summary statistics daily closing prices 

 

 

Mean Max Min Variance Std dev Skewness Kurtosis 

Bank 11865.38 14494 7690 3013899.76 1736.0587 -0.4969 1.9049 

 
Mining 29436.56 37714 15200 16706586 4087.369 -1.3264 4.5844 

 
Media 2085.26 3100 1330 73511.89 271.1308 0.0896 3.0805 

 
Leisure 7273.76 8547 5890 327360.5 572.1543 -0.2086 2.386 

 

 

 

Table 6.20: Stock prices summary statistics returns 

 

 

 

 

 

 

The maximum closing value for the mining sector index is at 37 714 with the minimum 

sector index at 3100 for media. In between we have banking and leisure at 14 494 and 8547 

respectively. The mean values follow this order as well. It comes as no surprise that the 

highest variability is in mining where domestic labour developments in the sector continue to 

undermine productivity and hence profitability.  

 

Mining is one of South Africa’s most important sectors crucial for job creation and GDP 

growth. The companies in the sector are some of the most successful in the world. South 

Africa is the biggest producer of platinum in the world and one of the leading producers of 

gold, diamonds, base metals and coal. The major mineral categories in this sector are; 

precious metals and minerals, energy minerals, non-ferrous metals and minerals, ferrous 

  Mean Variance Std dev Skewness Kurtosis 

Bank 9.50E-05 9.30E-05 9.70E-03 0.144 4.79 

Mining 5.30E-05 1.48E-04 1.20E-02 0.372 6.62 

Media -1.30E-04 1.05E-04 1.00E-02 0.759 11.13 

Leisure -1.20E-04 3.80E-05 6.20E-03 0.247 5.05 
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minerals, and industrial minerals. However, the sector has not been spared from volatility 

over the last few years, especially currency volatility.  

 

Other factors which have worked against the sector include; falling gold prices, escalating 

input costs, strike action, taxation and royalty contributions. From the table we can deduce 

the leptokurtic nature of the mining sector with a kurtosis of 4.6 and skewness of -1.3. The 

returns data for mining show a higher kurtosis value of 6.62. 

 

The banking system in South Africa compares well with many industrialised countries, this 

can be seen in the past decades’ transformation through consolidation, technology and 

legislation. The sector volatility in the early 1990s paved the way for consolidation through 

the mergers of several banks. Despite volatility in the past, South Africa’s banking sector 

remains solid and well regulated. Evidence of this is the number of foreign banks establishing 

branches or representative offices in the country and others acquiring stakes in major banks, 

for example the Industrial and Commercial Bank of China – Standard Bank and Barclays – 

ABSA deals. Furthermore, technology, products and the number of participants have changed 

the sector and injected high levels of competition. This we also see in smaller banks such as 

Capitec Bank and African Bank, which target the low-income and previously unbanked 

market. 

 

The  World Economic Forum Competitive Survey 2012/13 rated South African banks 2nd 

out of 144 countries for soundness, whilst occupying 3rd for financial sector development 

(Banking Association of South Africa, 2013). The outlook for South Africa’s banking system 

is stable. Some of the pointers to this stability are attributed to low interest rates and 

sustainable inflation levels as a result of the monetary authorities’ pursuit  of inflation 

targeting. This in turn has led to a decline in borrowers’ debt-servicing costs whilst consumer 

debt affordability has increased. These improved operating conditions augur well on the 

banking sector's performance. The current exchange control and restrictions provide some 

harbouring on financial market volatility. The banking sector data from the table is 

platykurtic with a significant negative skew. Returns data reveal volatility clustering 

leptokurtic distribution as shown in the graphs and accompanying statistics where kurtosis is 

at 4.8 
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Tourism is one of the fastest growing sectors in the South African economy. The sector 

contributes significantly to employment. The country has had continuing global exposure, 

with the FIFA World Cup  in 2010 and also becoming a member of the five major emerging 

economies; Brazil, Russia, India, China, South Africa group (also known as BRICS). There 

have also been upgrades to transport and accommodation infrastructure. The mean closing 

price for Leisure is 7273 from the data used in the study period. The skewness is -0.2 and the 

raw data is platykurtic as presented by a kurtosis of 2.4. However, the returns data confirms 

the leptokurtic nature with a kurtosis of 5. 

 

There is a vibrant media sector in South Africa. The sector is a central core in a network of 

industries and individuals in organisations involved in paper manufacturing, educational 

institutions, ink producers, authors, printers, designers, bookbinders, illustrators, booksellers, 

distributors and CD manufacturers. Undoubtedly, it contributes immensely to revenue and 

employment in the country.  The mean closing price is 2085 with a skewness closest to zero 

when compared with other sectors. The kurtosis at 3.08 suggests the data is closest to normal 

distribution based on raw data when compared with other sectors in the table. The returns 

data for media however shows the highest kurtosis of 11, confirming the character trait of 

high frequency financial data. 

6.5 Estimation results 

Below we present the estimation results from the models. We begin with stationarity results, 

followed by jump diffusion parameter estimates and finally GARCH (1,1) results. 

Table 6.21: Stationarity results stock prices 

 

Variables 

Dickey-Fuller Augmented Dickey-Fuller Stat. 

status Constant Constant & 

trend 

Constant Constant & 

trend 

Results for unit roots tests on levels Interest Rates  

LBanking -1.2266 -2.1179 -1.5043 -3.0711 I (1) 

LMining -1.8997
*
 -1.9914 -1.8703 -2.5498 I (1) 

LMedia -3.4115 -0.9578 -2.9898
**

 -2.9613 I(1) 

LLeisure -1.0601 -2.2567 -2.6772
*
 -2.6922 I(1) 

      

Results for unit roots tests on returns  
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DLBanking -3.7644
***

 -6.3384
***

 -17.577
***

 -17.568
***

 I(0) 

DLMining -1.3755 -2.9769
**

 -21.75
***

 -21.741
***

 I(0) 

DLMedia  -2.5081
**

 -5.0065
***

 -22.149
***

 -22.137
***

 I(0) 

DLLeisure -7.427
***

 -12.638
***

 -24.656
***

 -24.643
***

 I(0) 

 

*** ** *  
represents stationary series at 1, 5 and 10% levels of significance. 

 

Table 6.22: Stock prices jump diffusion parameter estimates 

The parameter results below are generated from the return series 

 

 Banking Mining Media Leisure  

B  1e-04 

(0.0000) 

 

1e-04 

(0.0000) 

2e-04 

(0.0000) 

2e-04 

(0.000) 

B  9.65e-03 

(0.0000) 

 

1.1e-02 

(0.0000) 

9.95e-03 

(0.0000) 

6.1e-03 

(0.0000) 

J  1e-04 

(0.0000) 

 

6.66e-03 

(0.0000) 

8e-04 

(0.0000) 

8e-04 

(0.0000) 

J  0.0025 

(0.0000) 

 

5e-04 

(0.000) 

2.1e-03 

(0.0000) 

0.5.8e-03 

(0.000) 

  1.91e-02 

(0.0000) 

 

9e-03 

(0.0002) 

3.7e-03 

(0.0000) 

1.8e-03 

(0.0000) 

Skewness 3.92E-05 1.97E-03 4.78e-05 6.12e-04 

Kurtosis 3 3.001 3 3.004 

Mean 1e-04 1e-04 2.03e-04 2.01e-04 

Variance 9.32E-05 1.2e-04 9.03e-05 3.73e-05 

 

 

Matching the moments in the jump diffusion model 

Table 6.22 above presents the parameter estimates of a Jump Diffusion model. As a 

diagnostic, if we use a likelihood ratio test, it rejects the null hypothesis of no jumps at 1% 

level. Jumps therefore help explain some features in the data set. 
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For the Banking sector, the GBM drift is less than the unconditional mean of the jump 

diffusion specification. The jump size is least among the sectors at 1e-04 and significant. The 

jump intensity is highest at 1.91e-02. The volatility generated almost matches the sample. 

Introduction of jumps seems to have normalised the skewness and kurtosis.  

 

For the Mining sector, the unconditional mean from the jump diffusion specification is 1e-04. 

The mean of the jump size is highest across sectors at 6.7e-03 and significant. The jump 

intensity is 9e-03 and also significant. Volatility for the jump diffusion generated 91% sample 

volatility.  

 

The media sector’s GBM drift is 2e-04 and almost matches the jump diffusion specification 

at 2.03e-04. The jump mean is second highest across sectors at 8e-04 with an intensity of 

3.7e-03. The jump diffusion process generated 95% of sample volatility.  

 

The model also performed fairly well in estimating parameters for the leisure sector. The 

generated unconditional mean is 2e-04 and is close to the sample moment. Also closely 

matching the sample equivalent is the generated volatility at 98%. The jump size is at 8e-04. 

The levels of skewness and kurtosis have been normalised by the inclusion of jumps. 

 

In carrying out further simulations and allowing the jump size to increase, it was discovered 

that the kurtosis levels increased for all stocks. The jump intensity had the same effect as well 

on kurtosis. Related studies, for example, Andersen et al. (2002), and Chernov et al. (2003), 

find the mean jump size of the stock index to be  negative whilst some found it positive (for 

example Campbell et al,. (1997)). Skewness can be a result of the presence of jumps, 

stochastic volatility and nonlinear drift. Findings by Andersen et al, (2002) suggest that 

jumps are important in explaining the negative skewness in market returns. From our 

findings, we can confirm the interdependence between kurtosis, skewness and jumps in stock 

prices. 
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Table 6.23: Stock prices GARCH results27
 

 

 GARCH Student’s t GARCH GED 

 Banking Mining Media Leisure Bank Mining Media Leisure 

C  0.00018 

( 0.00024) 

-1.61E-05 

(0.00029) 

-0.00018 

(0.00028) 

-0.00017 

( 0.00016) 

0.00015 

( 0.00024) 

-2.96E-05 

(0.00028) 

-2.2E-05 

(0.0003) 

-9.29E-07 

(0.00015) 

K  9.28E-07 

( 4.85E-07) 

4.84E-07 

(3.19E-07) 

5.56E-05 

(5.9E-06) 

1.44E-05 

(3.99E-06) 

9.84E-07 

(5.21E-07) 

5.1E-07 

(3.36E-07) 

6.85E-05 

(5.86E-06) 

1.29E-05 

(3.49E-06) 

)1(GARCH  0.9103 

( 0.0205) 

0.9532 

(0.012) 

0.0311 

(0.0737) 

0.3829 

(0.1071) 

0.9102 

(0.0220) 

0.9511 

(0.0131) 

-0.028 

(0.068) 

0.3842 

(0.1187) 

)1(ARCH  0.0805 

( 0.0188) 

0.042 

(0.0117) 

0.2026 

(0.0374) 

0.3449 

(0.0978) 

0.0795 

(0.0197) 

0.0437 

(0.0127) 

0.1952 

(0.0376) 

0.2904 

(0.0796) 

         

 

 

 

 

                                                             
27  Student’s t distribution d.o.f fixed at 10 and GED parameter fixed at 1.5 for media  
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The parameter sizes from the table above determine the short run dynamics of the volatility 

for the selected JSE data. Results were produced from maximum likelihood with iterations 

ranging from between 11 and 19 for the fat tailed distributions. Large values of 1  

(represented by ARCH(1)) imply an intense volatility as a result of market movements 

whereas large values of 1  (represented by GARCH(1)) imply that the shocks to conditional 

variance take a long time to die out. 

 

Most of the values for 1   and 1  are non- negative and with their sum less than 1, indicating 

stationarity. From our results, for both Student’s t and GED 1  is high especially for banking 

and mining sector companies with the corresponding sum of 1 + 1  capturing the persistence 

in volatility as it lies close to 1. For Banking, 1  is 0.91 and  1  is 0.08 for the Student’s t 

distribution. For mining, 1  is 0.95 and 1  is 0.04.  

 

It comes as no surprise that the persistence in volatility form mining is higher than for 

banking (0.995 > 0.990), considering movement of commodity prices and salient challenges 

in the mining sector in South Africa. For leisure, the persistence in volatility is considered 

sufficient at 0.73 (Depken II, (2001) though lower than for mining and banking. Seemingly 

there are no GARCH effects for media. However, the jump diffusion model for media 

produced significant results, complimenting the statistics of a high frequency data; leptokurtic 

and skewed. 

 

6.6 Conclusions 

 

There is strong evidence that stock prices contain jumps since returns data on stock prices 

series tend to show far too many outliers for a simple, constant-variance lognormal 

distribution to be valid. This was shown in the graphical presentation of returns data which 

portrayed potential jumps and also complimented by the statistics of returns data wherein for 

all sectors the data proved to be of a leptokurtic nature with skew. The high frequency data 

employed in many studies reveals these characteristics (see Figueiredo et al., (2011), Evans 

(2011), Lee and Mykland (2008)). Simple graphs of price evolutions reveal the presence of 

changes that reveal traits different from purely diffusive processes. Over the past few 
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decades, the difficulty in the estimation of jump diffusion models has limited their use in 

empirical studies.  

 

Using a database for the sectors in the JSE we reject the assumption of purely diffusive 

processes given the obtained average jump size and intensities. The jump size is highest for 

the mining sector, to some extent confirming the volatility in South Africa’s mining sector, 

especially over the last few years. The major commodities hardest hit have been gold and 

platinum as a result of weakness in the eurozone and weak demand owing to the lacklustre 

growth in the global economy. Banking has the highest intensity, perhaps pointing to the 

sector’s importance in the economy as it promotes economic growth via capital 

accumulation. It then follows that a fall in the banking sector can have catastrophic 

consequences as the recent global financial crisis demonstrated. Therefore identifying jump 

sizes and intensity is important as it can be used for understanding market efficiency and also 

allowing the financial regulators to consider optimal policies (Hanousek et al., 2013, Tiniç, 

(1995)). Results from this chapter therefore contribute immensely in this regard for South 

Africa 

 

Many researchers have noticed the heavy tails in stock prices as outlined in the literature. One 

major reason for the fat tails is the heteroskedasticity in the returns data. To capture these we 

employed GARCH models. Overall, GARCH(1,1) models take into account the 

autocorrelation in the volatility in returns and as such low order GARCH(p,q) models are 

preferred  to high order ARCH(p) for reasons of parsimony and numerical stability in 

estimations. Results from the GARCH models confirmed the persistence in volatility for 

stock price returns data and the ARCH effects were absent for the Student’s t and GED 

estimations for the banking and mining sectors. However, for the media and leisure sectors 

GARCH(1,1) results did not capture the persistence in volatility clustering. An important 

implication is that investors can reap optimal returns when they diversify their portfolios 

considering the different jumps and intensity across sectors. We also note that confirming 

findings in similar research work that stock prices are difficult to predict, more so in the 

short-run. A future study can look at the link between jumps and corporate disclosure and as 

well as the specific number of jump intensities across different frequencies.  
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CHAPTER SEVEN 

 VOLATILITY AND JUMPS IN HOUSE PRICES 

  

7. Introduction 

 

Investment in real estate is an important source of wealth for pension funds, investment banks 

and even for individuals. As such, understanding house price movements is crucial for the 

design of housing market portfolio. It is therefore important to understand the volatility of 

returns on house prices so that investors and individuals alike are enabled to make better 

decisions in managing their wealth. The house price volatility parameter is an important 

component for mortgage insurance therefore capturing jumps in the price change is crucial in 

the determination of mortgage insurance premiums.   

 

Studies have been undertaken to understand house prices. LaCour-Little et al., (2002), and 

Crawford and Rosenblatt, (1995) found that house prices affect mortgage default and 

prepayment. Other research work focused on the patterns of default and prepayment as 

explained by economic risk factors, like the interest rate and unemployment rate (Caselli et 

al. 2008, Lambrecht et al. 2003, Deng et al., 2000 and Ncube and Satchell, 1992). Some 

studies have considered the methods which best represent house price characteristics. In this 

work Mizrach, (2008) and Chen et al (2010) deduced jumps in house prices.  

 

For the South African context on studies relating to house price characteristics, to the best of 

this researcher’s knowledge studies applying a jump diffusion model have not been explored 

(see for example Clark and Daniel, (2006), Els and von Fintel, (2008)). The implication 

thereof is that property analysts and investors alike have limited tools to make an in-depth 

assessment of the property sector. Even as Clark and Daniel (2006) admit, there is limitation 

of studies on the South African residential property market.  

 

 The contribution of this chapter is to enrich understanding of the property sector. This we do 

by first reviewing work done in characterising house prices. We also run a diffusion model to 

capture the behaviour of house prices in South Africa. The results show significant jump 
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sizes and intensity across different segments, with All price and Large  price segments having 

slight higher jump sizes though the Small price segment has the highest jump intensity. The 

results have implications for insurance premiums determination. The rest of the chapter is 

organised as follows; Section 7.1 presents the housing market factors with a bearing for 

house prices. Section 7.2 gives an analysis of the literature. Section 7.3 details the 

methodology, Section 7.4 presents the data and the results from the estimates are analysed in 

section 7.5. Section 7.6 concludes. 

 

7.1 Housing market factors  

The section highlights some prominent factors relating to the house price movements, thereby 

contributing to volatility in the housing market. These factors incorporate affordability, 

building costs, interest rates, consumer confidence and even geographical location.  

7.1.1 Affordability of housing 

 

According to the ABSA Housing review (2012), housing affordability as indicated in the 

ratios of house prices and mortgage repayments to household disposable income, continued 

to improve up to the end of 2011. This was due to trends in house price and income growth in 

the previous quarter, while interest rates were still unchanged at year-end. However,  many 

households’ ability to take advantage of these affordability trends continued to be negatively 

affected by factors such as; an average debt-to-income ratio hovering above 70%, a 

significant percentage of credit-active consumers having impaired credit records; the impact 

of the National Credit Act (NCA); and banks’ resultant lending criteria. As a result, a 

downward trend in the debt-to-income ratio implies that house prices and mortgage 

repayments are rising at a slower pace than household disposable income. This has impacted 

on the affordability of housing. 

 

7.1.2 House price trends 

 

The first quarter of 2012 saw a deflation trend in house prices, both at nominal and real terms 

in the middle segment of the market. In the affordable and luxury segments of the market 

year-on-year (y/y) price growth improved in the first quarter when compared with the 
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preceding quarter. The trends in house prices occurred against the background of 

macroeconomic developments and property market-related factors which impact household 

finances. These developments affect the demand for housing and may cause changes in 

property buying trends, which will impact market activity, transaction volumes and price 

trends in the various segments and regions of the market. 

 

The average price of affordable houses
28

 increased nominally by 2.8% y/y, from a previous 

increase of 10.2% in 2008. In essence, this was a decline of 4%. By the end of 2009, the 

average price of an affordable house increased by 2.9% y/y to reach R296 700.  

 

Houses in the middle segment (80m
2
-400m

2
) were priced at R3.6m on average in the first 

quarter of 2012, up from R3.1m in the first quarter of 2010.  This was a 1.4% decline y/y to 

around R1m, after an increase of 3.7% in the first quarter of 2011. There was a deflation of 

7.1%, after a drop in real prices by 2.4% from the previous quarter. In summary the following 

price trends occurred in the middle-segment categories of the housing market in the first 

quarter of 2012: 

 Small houses (80m
2
-140m

2
): -17.2% y/y (nominal) and -22% y/y (real) 

 Medium Houses (141m
2
-220m

2
): 0.1% y/y (nominal) and -5.7% y/y (real). 

 Large houses (221m
2
-400m

2
): 0.7% y/y (nominal) and -5.1% y/y (real) 

 

For luxury houses, the average nominal price (houses valued at between R3,6 million and 

R13,4 million by the first quarter of 2012) increased by 3,3% y/y to R5m. In real terms, this 

was a 2.6% movement. This is a marked growth when compared to the first quarter of 2010 

where the nominal price for this segment increased by 0.9% in 2009. After taking into 

consideration adjustments for inflation, prices went down 5.8% in 2009. By the fourth quarter 

of the same year, the nominal price declined 1.2% y/y 

7.1.3 Regional house price movements 

 

At regional level, prices varied on a nominal as well as on a real basis in the first quarter of 

2012. Macroeconomic developments weighed on current and prospective homeowners, 

spilling over to the performance of the residential property market. Amongst the factors 

affecting the performance of the residential property market were; infrastructure-related 

                                                             
28

 Houses of  40m
2
-79m

2
 and valued at R430 000 or less 
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aspects; the  availability of serviced residential development land; regional economic 

performance; the extent of sectorial economic development; socio-economic conditions; the 

extent of property investment; location and the relative size and market activity per segment. 

 

The general decline in real terms can be traced back  to 2009 where economic factors had a 

huge impact on the decline. Area specific factors also contributed to this decline. The 

following table depicts the summary performance house prices at provincial level in 2009: 

 

Table 7. 24: House price provincial performance  in 2009 

 

Province Nominal Increase Real Increase 

Northern Cape 4.8%  -2.1% 

Free State 2.6% -4.2% 

Gauteng 1.9% -4.9% 

Mpumalanga 1.4% -5.3% 

KwaZulu-Natal 0.6% -6.1% 

Limpopo -0.1% -6.7% 

Western Cape -1% -7.6% 

North West -1.8% -8.4% 

Eastern Cape -5.4% -11.7% 

Source: Absa housing review 2010 

 

Further to the above table, the performance of the metropolitan areas was lacklustre as seen in 

house prices which weakened in nominal terms with the exception of Johannesburg which 

recorded an increase of almost 3%. As for the coastal regions, there was also a drop in real 

terms by 11.1%. 

7.1.4 Building costs on new and existing house price trends 

Building plans are one of the key indicators of house prices. The number of building plans 

approved is affected by current and future demand for property. When many plans are 

approved, it can serve as an indicator of a positive attitude towards residential property. 

Considering a brief history on building costs, the year 2009 saw a 6% increase in the cost of 

building a new house in the middle segment. When compared to the previous year, this was a 

marked decline as 2008 recorded an 8.3% increase from the previous  year. This translates to 
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the average price of a new house costing R1.2m, a 5.5% increase from 2008. The average 

price for an existing house reached R0.96m in 2009, R0.26m cheaper than building a new one 

(ABSA, 2010).  

 

By the end of 2009, the cost of a new house would increase by 5.5% in nominal terms, in line 

with  consumer inflation which averaged 6% in the same period. By the first quarter of 2012, 

the cost of having a new house built increased by 4.2% y/y. As a result of rising building 

costs, the average nominal price of a new house increased by 7.2% y/y to  R1.6m in the first 

quarter of the year. Adjusting for the effect of consumer inflation, the price of a new house 

increased by  1% y/y in the quarter. However, the average price of an existing house dropped 

by a nominal 2,3% y/y to about R996 600 in the first quarter, which comes to a real decline 

of 7,9% y/y, implying that it was R0.59m, or 37,2%, cheaper to buy an existing house than to 

have a new one built.  

 

There are therefore a host of factors determining building costs some of which include; 

planning and professional services related to aspects such as rezoning where applicable, the 

drafting and approval of building plans. Other building related costs contributing to the house 

price include relevant professional and consulting fees, development finance, preparation of 

land for construction, providing road, electricity, water and sewage infrastructure, building 

materials, equipment, transport and labour. 

. 

7.1.5 Mortgage finance 

 

The value of outstanding household mortgage balances grew at less than 2% y/y in early 

2012. The continued slow pace of growth in these mortgage balances is seen as a reflection of 

continued capital repayments on mortgage accounts and the state of household finances, 

affected by factors such as debt levels, impaired credit records and consumer price inflation, 

impacting real disposable income. Consumer confidence may have also played a role in the 

growth in credit extension, including mortgage finance. 

 

The South African reserve bank kept the monetary policy interest rate, the repo rate 

unchanged from August 2009, when the rate was cut by 50 basis points. The mortgage 

interest rate then became stable at a level of 10.5%.  Monthly mortgage repayments were 
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26.3% lower in 2009 than their December 2008 equivalent, when the mortgage rate was 

15.5%. In a global economy that was in dire need of recovery, the banking sector in 2009 

relaxed selectively its mortgage lending criteria. This improved the affordability of housing 

and contributed to higher levels of market activity. 

 

7.2 Literature review 

 

Research on house price trends is not thoroughly documented when compared to other asset 

types like stock prices, exchange rates and interest rates. Studies on house prices have 

considered the implications of economic factors. An increase in interest rates results  in 

increased costs of borrowing, implying high loan repayments on mortgage finance.  To 

support this hypothesis researchers have found a strong negative correlation between real 

interest rates and housing prices (Kostas and Zhu (2004), Borio and Mcguire (2004), Sutton 

(2002) and Englund and Ioannides (1997)).  

 

 Related findings have confirmed the negative effect high interest rates have on the residential 

property market. Ling and Naranjo (1998); Chan et al,. (1990) deduced that the term structure 

of interest rates is an important consideration when modelling real estate returns. In a related 

study, Brooks and Tsolacos (1999) analysed the economic and financial impacts on the 

property sector in the UK. They concluded that the interest rate term spread is one of the 

significant drivers of the real estate series. Ncube and Satchell (1994) also deduced related 

findings. Sutton (2002) reported a significant effect of real interest rates, GNP and equity 

prices on house prices. 

 

Attempts have also been made  at deducing volatility on house prices. In  their research work 

West and Worthington (2004) and Liow (2004) employed GARCH models taking account of 

conditional variance in returns and volatility clustering. Cont (2007) showed that housing 

market participants’ inactivity can  be linked to volatility clustering. As a result, GARCH 

effects could be traced in the housing market. In a related application, Gu (2002) confirms 

volatility in real estate indices.  

Mizrach (2008) applied a jump diffusion model and found jumps in housing markets from the 

returns on the Chicago Mercantile Exchange (CME) futures. The results suggested that on 
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average, it required 69 jumps risks to be significant in the 315 day sample. Studies for South 

Africa have not accounted for volatility clustering on house prices (see Els and von Fintel, 

(2008), Clark and Daniel, (2006)). The contribution of this chapter argues for a better 

understanding of house prices in South Africa by applying a jump diffusion model.  

7.4.Data  

 

The data we used in the study is for monthly house prices for four different sub-group sizes; 

All, high, medium and low. The months of interest lie between, January 1966- April 2012, 

giving us 556 observations for each house size
29

. The figures below show the volatile nature 

of South Africa’s house prices. The data reveals characteristics seen in most high frequency 

financial data; such as skewness, kurtosis, potential jumps and volatility clustering.  Plotting 

the log returns data reveals volatility clustering as shown below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
29

 The monthly SA house prices were supplied by ABSA.  House prices are based on the total purchase price of 

all houses (including all improvements) in respect of which loan applications were approved by Absa Bank. 

Houses of which the prices exceed R3 600 000 in 2012 have been excluded from the calculations. Prices are 

smoothed for all houses between 80m² and 400m². 
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Figure 7.12: House price trend: 1966-2012 
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The graphs above reveal volatile house price data across all segments. Therein we can also 

deduce volatility clustering in the returns graphs. Data are also leptokurtic over the study 

period, indicating the impact of economic development on house prices. The current house 

price growth in the South Africa’s residential property market is relatively low, affected by 
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economic developments impacting household finances, consumers’ risk profile, levels of 

confidence and housing demand and supply. These factors are reflected in property buying 

patterns, the demand for and the affordability and accessibility of mortgage finance. Tables 

7.25 and 7.26 below document the summary statistics for the data.  

 

Table 7.25: House prices summary statistics 

 1966-2012 

 All Large Medium Small  

Mean 246427 346370 234718 177751 

Max  1074934 1512441 1006136 806685 

Min
 

9114 12313 9045 7454 

Variance 1.03E+11 2.06E+11 9.34E+10 5.14E+10 

Skewness 1.525 1.55 1.54 1.51 

Kurtosis 3.876 3.969 3.91 3.89 

 

Table 7.26: House prices summary statistics returns 

 1966-2012 

 All Large Medium Small  

Mean 3.7e-03 3.7e-03 3.7e-03 3.5e-03 

Variance 1.4e-05 2.9e-05 1.5e-05 2.4e-05 

Skewness 0.140 -0.20  0.57 -0.38 

Kurtosis 3.34 6.82 3.74 4.04 

 

The statistics from the tables are computed for the period January 1996-April 2012. The 

statistics confirm the volatility pattern observed in the figures above. From the table we can 

deduce the high skew for all the data sets, with the large house prices showing highest skew. 

The peakedness of large house price data is seen in the kurtosis value of 4 with the remaining 

house prices also showing varying degrees of kurtosis. Further than that, house price data 

show high levels of skewness with the large house price showing high skew at 1.6. For 

returns data, the statistics show the leptokurtic nature with varying levels of kurtosis from 3.7 

to 6.8, again with large house price data having highest kurtosis at 6.8. 
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7.5 Estimation results
30

 

Table 7. 27 Stationarity results house prices 
 

Variables 

Dickey-Fuller Augmented Dickey-Fuller Stat. 

status 
Constant Constant & 

trend 

Constant Constant & 

trend 

Results for unit roots tests on levels House Prices  

LAll 1.229
 

-1.237
 

-0.634
 

-1.156 I (1) 

LLarge 3.876
 

-2.351 0.178
 

-2.454
 

I (1) 

LMed 1.705 -2.889
* 

-0.570 -2.890 I(1) 

LSmall 0.491 -3.590
* 

-1.037 -3.591
* 

I(1) 

Results for unit roots tests on first differences  

DLAll -2.487
** 

-4.593
***

 -22.853
**

 -22.83
***

 I(0) 

DLLarge -2.139
**

 -4.077
***

 -17.581
*** 

-17.554
**

 I(0) 

DLMed  -3.317
***

 -4.559
*** 

-6.584
*** 

-6.592
*** 

I(0) 

DLSmall -1.777
*
 -3.494

***
 -17.354

***
 -17.36

***
 I(0) 

 

*** ** * 
represents stationary series at 1, 5 and 10% level of significance 

The stationarity results show that data are not stationary in levels but stationary with first 

differencing. Below we present the summary results of a Jump Diffusion process using 

stationary data. 

 

 

 

 

                                                             
30 The data suggests structural break in January 2004 for All price and Small price and March  2004 for Medium 

and Large price. 
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Table 7.28: House prices parameter estimates for the jump-diffusion model 

 All Large Medium Small 

B  0.0035 

(1e-04) 

0.004 

(0.0000) 

 

0.0034 

(0.0000) 

0.003 

(1.93e-

04) 

B  0.004 

(1e-04) 

 

0.004 

(1e-04) 

 

0.0035 

(0.0000) 

0.0035 

(4.33e-

03) 

J  0.009 

(1e-04) 

0.009 

(0000) 

 

0.008 

(0.0000) 

0.008 

(0.0000) 

J  0.0005 

(3.7e-07) 

 

0.0045 

(0.0000) 

 

0.004 

(0.0000) 

0.0025 

(1.33e-

02) 

λ 0.015 

(2e-04) 

 

0.0143 

(0.0000) 

0.0177 

(6e-04) 

0.0224 

(3e-03) 

Mean 3.64e-03 4.1e-03 3.54e-03 3.178e-03 

Variance 1.73e-05 1.66E-05 1.33e-05 1.38e-05 

Skewness 0.159 0.2634 0.3034 0.2868 

Kurtosis 3.35 3.8929 4.01 3.7709 

 

The table above presents parameter estimates for the jump diffusion model. Using a 

likelihood ratio as a diagnostic, we reject the null hypothesis of no jumps at 1% level. Jumps 

therefore help explain some features in the exchange rate data. 

 

Matching the moments in the jump diffusion model 

The aim is to verify that the model can match the data characteristics with observed levels of 

skewness and kurtosis at specified intervals. Table 6.28 illustrates this including the levels of 

skewness and kurtosis values for the jump diffusion model. We ran the model for numerous 

iterations and deduced overall more positive jumps than negative ones. We present results for 

positive jumps. We also allowed for higher jump size and variance to explore the effect on 

volatility. 
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All housing segment. The unconditional mean for the all housing price is 0.00364, this is  

quite close to the sample mean of 0.0037. The mean of the jump process is positive at 0.009 

and the estimate of the jump frequency is 0.015 and is significant. The unconditional variance 

of the jump diffusion is also not too far from the sample variance for all house prices. 

 

Large segment. For the large house prices, the unconditional mean of the jump diffusion is 

4.1e-03, which is a close match to the sample mean. The mean of the jump process is positive 

with a jump frequency at 0.014, which is least across house prices. The volatility of the jump 

diffusion almost matches the sample at 76%. The levels of skewness and kurtosis have been 

normalised by the jump diffusion process.  

 

Medium segment. The jump diffusion model generated the unconditional mean of 3.54e-03, 

which is not too far from the sample mean of 3.7e-03. The accompanying jump intensity is 

0.018 and is significant. Volatility generated in the process almost matches the sample at 

95%. The level of skewness has been normalised at close to 0.3. 

 

Small segment. Finally, for the small housing price, the unconditional mean of 3.2e-03 is not 

too far from the sample mean of 3.5e-03, with highest intensity at 0.0224. The volatility of 

the process generates 99% of the sample equivalent and the result is significant. 

 

From the results we deduce that house prices contain jumps and volatility clustering. Overall, 

the different house segments show similar jump sizes however the small house segment has 

highest intensity. The high intensity can serve to point to high volatility over the over certain 

regime periods. Furthermore it could imply that buyers of houses in this segment had high 

expectations and as the housing market recovers prices can rise at a higher percentage than 

for other segments. What is also striking with these results compared to other chapters in the 

study is that the higher moment of kurtosis closed matched the sample equivalents, 

complementing the significant jump diffusion parameters. This suggest that the model was 

able to trace house price characteristics 
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Table 7.29: House prices GARCH results 

 

 GARCH Student’s t GARCH GED 

 All Large Medium Small All Large Medium Small 

C  0.0042 

(8.4E-05) 

0.0041 

(1.16E-

04) 

0.0041 

(1.04E-04) 

0.0040 

(9.45E-05) 

0.0042 

(9.47E-05) 

0.0037 

(1.24E-04) 

0.0029 

(1.02E-

04) 

0.0037 

(1E-04) 

K  1.01E-06 

(1.64E-

07) 

1.867E-06 

(3.60E-

07) 

1.46E-06 

(3.41E-07) 

8.31E-07 

(2.29E-07) 

1.22E-06 

( 1.2E-07 ) 

1.67E-06 

(2.63E-07) 

4.75E-06 

( 2.61E-

07 

9.71E-07 

(2.06E-07) 

GARCH (1)
 

0.053 

(0.031) 

0.0444 

( 0.028) 

0.0059 

(0.0445) 

0.196 

(0.045) 

0.1202 

(0.021) 

0.186 

(0.027) 

-0.634 

( 0.029) 

0.232 

(0.042) 

)1(ARCH  0.926 

(0.1739) 

1.03 

( 0.152) 

 

0.943 

(0.156) 

0.934 

(0.143) 

0.697 

(0.0686) 

0.774 

(0.067) 

0.742 

(0.0486) 

0.807 

(0.0886) 

 

 The table above presents the GARCH results for South Africa’s house prices. Most of the 

values for 1  and 1  are non-negative indicating stationarity. 1 , (represented by ARCH 

(1)) indicates the random deviations in the previous period whereas 1 , represented by 

GARCH (1) measure the part of variance from the previous period that is carried over into 

the current period. The results for house prices appear different from other asset prices 

investigated in the previous chapters. This we see in the  values of 1  which are higher than 

for 1 , indicating the intensity of volatility reacting to previous period, a feature more 

prominent in house prices. The sum of 1 + 1 , capturing the persistence in volatility, is close 

to 1, indicating the presence of ARCH and GARCH effects in house price returns. However 

for GARCH student’s t results are explosive for both the large and small price segments. 

Explosive results can also be seen for GED distribution under the small segment. This can 

imply the effect of different regimes over the study period which to a greater extent affected 

the small price housing segment seeing as it is explosive for both specifications of the fat 

tailed GARCH model (see Medeiros and Veiga, (2009) for discussion). 
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7.6 Conclusion 

The chapter presented a model characterising jumps in house prices in South Africa. An 

extension of the analysis introduced fat tailed GARCH scenarios; Student’s t distribution and 

GED to capture the persistence in volatility. The overall contribution of the chapter was to 

trace the existence of Poisson distributed jumps and the existence of volatility. Our empirical 

results indicate that the volatility of house price data contains significant jumps, intensity and 

volatility clustering. Generally the different house price segments have more or less similar 

jump sizes. However, the small segment has highest jump intensity with the large segment 

having the lowest jump intensity. Perhaps the high intensity for the small segment points to 

high volatility over specific regime periods. The unconditional mean generated from the jump 

diffusion model for all, large, medium and small house price segments almost matched the 

sample equivalents. Furthermore, the volatiltity generated from the jump diffusion process 

almost matched the sample equivalents as well save for the large house prices which was a 

distant 76%. However, the model overestimated volatility for all house price segment. 

 

Another interesting deduction  from the results are the higher moments of skewness and 

kurtosis which turned out to be closer to sample equivalents, even after introducing jumps. 

This result is different from previous chapter results where the introduction of jumps 

normalised skewness and kurtosis. The different jump intensities in this chapter could be used 

as a precursor to understanding the mortgage premium for different housing segments. As an 

example, the intensity for the small price segment could suggest  higher expectations from 

buyers during the study period which was not observed for other segments. Having this 

knowledge can be vital for determining the mortgage premium. Furthermore, another 

implication could be that when the housing market recovers, prices can rise  higher in the 

small price segment compared to other segments. 

 

For the GARCH findings, most parameter values confirm the persistence of volatility 

clustering. The small price house segment was explosive for both fat tailed GARCH 

specifications, implying the influence of different regimes over the study period.   
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CHAPTER EIGHT 

 CONCLUSION 

8.1 Results and conclusion 

The section summarises the findings in the thesis, highlighting all the five areas investigated 

to understand the asset price movement after incorporating volatility and jumps. Furthermore, 

the research also includes an implication of the results across different asset prices for South 

Africa. 

8.1.1 Temperature risk  

 

Continuous innovation in the derivatives market has seen the emergence of new products 

being introduced to mitigate against risk. One new interesting development has been in the 

area of weather derivatives which has grown as companies embrace the benefits of hedging 

against weather related factors. Thus weather derivatives are increasingly becoming valuable 

tools for risk management worldwide. Organisations always need to hedge risk to avoid the 

costs of failure and bankruptcy and therefore attain value for shareholders. Thus weather 

derivatives complement risk management tools like swaps, options and futures. Many 

companies for instance from agriculture, energy, construction and tourism all experience 

some form of weather related risk and therefore the importance of weather derivatives in 

South Africa can never be overemphasised. 

Chapter two carried out an estimation of the payoffs of temperature based weather derivatives 

in four South African cities using three different methods; Autoregressive (AR) seasonality 

Generalised Autoregressive  Conditional Heteroskedasticity (SGARCH), historical method 

and cumulative cooling degree day (CDD). This enables us to inform practitioners about 

alternative strategies for safeguarding earnings against adverse temperature movements.   

 

Graphical presentation of the returns data complimented the summary statistics by portraying 

patterns in volatility clustering. Using a simple trend model, we found that Bloemfontein had 

trend and quadratic trend terms significant whilst Cape Town had only quadratic significant 

and Durban trend significant. Johannesburg had a trace of trend. Knowing the trend model 

contributes to developing pricing for temperature based weather derivatives of these cities. 

We also demonstrated the computation of option values to illustrate the monetary values of 
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the temperature products. If there was an existing weather derivatives market, the amounts 

involved could be enormous, as organisations benefit from investing in mitigating against 

weather related risks. 

 

The chapter went further to estimate the AR (7) SGARCH (1,1) model which confirmed the 

dampening effect of the seasonality component as it reduced volatility persistence in the 

parameters beta and alpha as their sum became a distant from 1. Using three different 

methods in comparing estimated payoffs, the results revealed that the SGARCH (1,1) method 

of estimating payoffs performed best when compared to the other two methods. The mean of 

estimated payoffs from this approach was estimated relatively accurately, with values close to 

zero for the mean and lower standard deviation   overall. This suggests that the   SGARCH 

(1, 1) model can be applied to the regions: Cape Town, Johannesburg, Bloemfontein and 

Durban. 

 

The historical method was rejected as it tended to be overpriced in three cities and under-

priced in one city for both the high and low strike price. Though better than the historical 

price, the cumulative CDD also overpriced for the low strike price in two cities and under-

priced for the remaining cities. Using a higher strike price the method under-priced for all 

four cities. The analysis in the chapter goes further as it can serve as a guide to enriching the 

understanding of pricing temperature related derivatives for other cities in the country. 

8.1.2 Jump diffusion model for the exchange rate  

 

Exporters, financial institutions, non-financial institutions, investors and government are all 

affected by exchange rate risk. As a result, an understanding of exchange rate movements 

will enable these players to make informed decisions when considering a hedge against 

adverse exchange rate movements. Chapter three modelled exchange rate movements in 

South Africa using a jump diffusion model as a contribution to understanding exchange rate 

fluctuations. The exchange rate data investigated were; british pound/ south african rand; 

euro/south african rand and U.S dollar/ south african rand.  

 

Returns data showed high potential jumps in periods of financial market bubbles and crashes. 

The jump diffusion results were significant for the jumps and intensities. Inclusion of jumps 

was also shown to normalise the returns data, affecting skewness and kurtosis. The results 
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confirmed related studies in literature in the ability of the jump diffusion model to capture 

skewness and kurtosis whilst at the same time allowing the mean and volatility parameters 

match the sample equivalents. We can assert that the model explains the volatility smile for 

short and medium term maturities, but may not do the same for longer time horizons. The 

jump diffusion results also revealed dependence in jump intensity and jump size. The 

implication of the results is on currency options since a better estimate of exchange rate 

volatility is needed to enable hedging. 

 

Complementing the jump diffusion model, we also applied the fat GARCH models to capture 

the persistence in volatility. Mostly, results for the GARCH specification showed that 

parameters were stationary and the beta parameter was higher than alpha with their sum less 

than 1 and confirming the persistence in volatility in exchange rate returns. 

 

8.1.3 Jump diffusion in interest rate models 

 

Various attempts have been made to understand interest rate behaviour considering its effect 

on investment portfolios of organisations and individuals alike. Even more,  high interest 

bearing rates have dire consequences on company profitability via accessing loans for 

production and even investment purposes. Chapter four applied the Jump diffusion model in 

examining variation of the Chan et al., (1992) model. We also considered a fat tailed 

GARCH specification. The study tested the model on the 90 day treasury bill (T-Bill) for 

South Africa. Our review for short rate models and results implied that a jump diffusion 

model can be considered to capture short term interest rate properties for South Africa.  

 

Summary statistics portrayed the period 1990-2002 showing stronger leptokurtic features 

with a higher kurtosis than for other periods. Estimation results showed that the 90 day T-Bill 

rate had higher jump size for the post  inflation targeting period though with a lower 

intensity. Seemingly, the jump intensity seems to have weakened after inflation targeting. We 

can infer form the results that jumps can be traced more in the short term than in the long 

term. Results from the chapter proved that the jump diffusion level can capture unanticipated 

market movements as seen in the generated levels of skewness and kurtosis which mirrored 

the sample equivalents. 
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Another contribution of the estimation was in sufficient faring in capturing volatility of the 

interest rates as estimation results matched sample moments satisfactorily. Generally the 

short term interest rate market exhibits more deviations than does the long term. The 

parsimonious fat tailed GARCH (1,1) supported the specification in removing the ARCH 

effects, indicating a slow mean reverting process. Findings in this chapter contribute to 

portfolio analysis, interest rate forecasting and also to the valuation of short term interest rate 

derivatives in single factor models. However, the analysis can be extended to multi factor 

models applying stochastic behaviour to interest rates. 

 

8.1.4 Jump diffusion in stock prices 

 

Surprises to investors’ information sets have been attributed as causing unexpected 

movements in stock prices. Chapter five tested the applicability of this hypothesis to South 

Africa. Using a database of the sectors in the Johannesburg Stock Exchange we found that a 

pure diffusive process did not suffice. Parameter results captured significant jumps, intensity 

and stochastic volatility, verifying related studies on stock prices.  

 

The jumps and intensities were significant in all four sector representatives; mining, banking, 

media and leisure. However, jump size was highest in the mining sector with intensity highest 

in the banking sector. The model generated levels of moments which matched the sample 

values and went further to generate skewness and kurtosis which were normalised as per 

related findings. This underscores the performance of the jump diffusion model in tracing 

returns data. Understanding jumps in stock prices sheds more light on market efficiency. 

 

Nonetheless, jumps remain isolated events and days with more than one jump are few. The 

introduction of jumps normalises the higher moments. From a probabilistic viewpoint, the 

commonly assumed Poisson distribution seems to describe the rate of occurrence of 

discontinuities fairly. Fat tailed GARCH models captured volatility persistence for the 

banking and mining Sectors. For media and leisure volatility persistence was seemingly 

absent. The results underpin the importance of portfolio diversification when investing in the 

stock market.  
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8.1.5 Volatility and jumps in house prices 

 

In Chapter Six, we extended the jump diffusion model to house prices to learn more about 

price movement in this important source of wealth.  We considered four different house price 

segments; all, large, medium and small. 

 

Empirical findings in the chapter indicate that that house price data contains significant 

jumps, intensity and volatility clustering. Jump sizes seem to be evenly distributed across all 

four segments. However, the small house price segment had a higher jump intensity whereas 

the large house price segment had the lowest intensity. The intensity for the small house price 

could have been influenced by different regimes over the study period at a higher level than 

for other segments. Higher expectations from participants in the small house price segment 

could be linked to the high intensity. The volatility generated was lowest for the large house 

price and yet matching the sample equivalent for the remaining segments. 

 

More surprise came in the higher moments which were not normalised after introducing 

jumps. In the previous three chapters the moments skewness and kurtosis were normalised 

after adding jumps. On application, the mortgage premium calculation can draw from jump 

diffusion model results. The fat tailed GARCH generated persistence in volatility. For small 

house price however, the results were explosive for both specifications of the fat tailed 

GARCH. 

 

 

8.2 Policy implications and areas for further research 

 

This study provided insights into stochastic volatility and jump diffusion models. 

Furthermore, the study also contributed to the existing literature, more so in the South 

African context where there is a gap in understanding behaviour of asset prices. This we did 

through application of stochastic volatility models in South Africa.  A number of implications 

can be derived from this study.  There is a need to develop rigorous research in asset prices in 

the South African scenarios. Such studies will go a long way in informing policy makers and 

investors alike about the various strategies to consider in mitigating volatility in asset prices.   
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With the global interest in phenomenal weather, there are opportunities to consider in 

mitigating weather related risk, especially for businesses affected by weather components. 

Results from the study reinforce that trading in weather derivatives in South Africa is one 

possible risk management tool to be considered.  South Africa has yet to have any organised 

trading in weather derivatives. The agriculture, tourism and energy sectors can benefit 

immensely from weather derivatives as they can combine for example rainfall or temperature 

options with their current insurance contracts. This will enable them to carry on business 

without fearing huge losses brought about weather catastrophes. There is therefore a need to 

educate farmers, government entities, potential counter-parties to weather related contracts 

and other organisations affected by weather related risk on the importance of weather 

derivatives so that foundation is laid for trading in this special type of insurance. 

 

Another important consideration is availability and accessibility of lengthy historical records 

for all asset types. Measurability of variables for different assets enables various estimation 

models to be considered and allowing the most optimal method to be considered for each in 

hedging risk. As an example if the weather variable can be measured accurately for lengthy 

periods for most cities, it will allow the best method for mitigating weather related risk to be 

considered in each of those cities in South Africa. 

 

8.3 Future research  

 

1. Future research in stochastic volatility models in financial econometrics in the South 

African context can look at using time varying parameters and as well merging jump 

diffusion models with stochastic volatility.  

2. Another interesting consideration is to look at the link between jumps and corporate 

disclosure as well as investigating jump intensities across different frequencies. 

3. Tracking jump sizes pre and post central bank announcements can give more 

enlightenment to understanding asset price movements. 
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APPENDICES 

Appendix A:  MATLAB Codes for Weather Derivatives 

 

function main( ); 

global  newData1     

clear all; 

    clc; 

      

    name = { 'Cape_Town'  

             'johannesburg'  

             'Durban'  

             'Bloemfontein' }; 

   % Johannesburg 

     % Looping over the cities 

     

    for j = 1:4 

       [Data]= importfile1( char( strcat(  

'C:\Users\malumisa\Documents\MATLAB\',name(j),'.mat'))); 

  [Data]; 

   Ave = mean( Data,2 ); 

    

  

%strResponse = input(prompt, 's')      

  %msgbox yyyy 

        Nyears = (length(Ave)/365); 

            

      %   Tmp1 = reshape(Ave(1:Nyears*365),365,Nyears); 

       Tmp1 = reshape(Ave(1:Nyears*365),365,Nyears); 

     % evalResponse = input(prompt) 

        % input(prompt, 's') 

      %    [ Sf,Sfv, ms ] = GetSeasFF( Tmp1 ); 

%%%[ ms ] = GetSeasFF( Tmp1 ); 

  

  

    % Mean  

    tgrid = (1:1:length(Tmp1))'; 

     

    th    = (2*pi/365).*tgrid; 
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   % X     = [ ones(length(tgrid),1) tgrid cos(th)  sin(th) cos(2*th) 

sin(2*th) cos(3*th) sin(3*th) ] 

        X     = [ ones(length(tgrid),1) tgrid cos(th)  sin(th) cos(2*th) 

sin(2*th) cos(3*th) sin(3*th) cos(4*th) sin(4*th) cos(5*th) sin(5*th) ]; 

          

    [x,se_x,mse]= lscov( Tmp1,X ); 

     Sm=mean( x )  %the ordinary least squares solution to the linear 

system of equations A*x = b,   

      Sv=mean(se_x) %the estimated standard errors of b 

      mse  %   mse; %mean squared error. 

      xx=[ Sm' Sv'] 

    %   input(prompt, 's') 

      tg=size(tgrid); 

    sX=size(X); 

    Sn=size(Tmp1); 

    m=size(Sm); 

    v=size(Sv); 

    

   Y  = xx(:,1) - xx(:,2); 

        n = length( Y ); 

     %   strResponse = input(prompt, 's') 

      %   n = size( Y ) 

       % Starting values 

        load( 'SGARCHInitialVals.txt' ); 

        theta = SGARCHInitialVals(:,j); 

         

         % Call optimizing routine  

      %     Y = [Y mse'.^2] 

        Y = [Y mse' ] ;   

        %    strResponse = input(prompt, 's') 

     %    options = 

optimset('Display','iter','MaxIter',15000,'MaxFunEvals',10000,'TolFun',1e-

7,'TolX',1e-7); 

  

        options = 

optimset('Display','iter','MaxIter',15000,'MaxFunEvals',10000,'TolFun',1e-

7,'TolX',1e-7); 

        [theta] = fminsearch( @glogl,theta,options,Y ); 

  

        % Saving parameters and standard errors 



150 

 

        theta(9) = abs( theta(9) ); 

        theta(10) = abs( theta(10) ); 

        theta(11) = abs( theta(11) ); 

        theta(12) = abs( theta(12) ); 

         

         

        % Compute standard errors 

        g = numgrad(@logl,theta,Y) 

        se  = sqrt(diag(inv(g'*g))) 

        tstat = theta./se        

                 

        tmp1 = [ theta se tstat]; 

        SGARCHpms=tmp1 

        % save( char( strcat( 

'h:\Sambulo\CURRENT\WDeriv\Output\',name(j),'SGARCH.pms' ) ),'tmp1','-

ascii' ); 

       % save( char( strcat(  

'C:\Users\Malumisa\Documents\MATLAB\',name(j),'SGARCH.pms' ) ),'tmp1','-

ascii' ); 

         save( char( 

strcat('C:\Users\malumisa\Documents\MATLAB\',name(j),'SGARCH.pms') ) 

,'tmp1','-ascii' ); 

     % Residuals and conditional variance at optimal parameters 

        [ Resid,CVar,Fval ] = dlogl(theta,Y); 

        sr1 = Resid 

     % Saving conditional variance and permanent component 

        tmp2 = CVar 

       % SGARCHvar=tmp2 ; 

        %save( char( strcat( 

'h:\Sambulo\CURRENT\WDeriv\Output\',name(j),'SGARCH.var' ) ),'tmp2','-

ascii' ); 

      %  save( char( strcat(  'C:\Users\malumisa\Documents\MATLAB\' 

name(j),'SGARCH.var'  ) ),'tmp2','-ascii' ); 

        save(  char( strcat('C:\Users\malumisa\Documents\MATLAB\' 

,name(j),'SGARCH.var') ) ,'tmp2','-ascii' ) 

      % Save standardised residuals 

        sr1 = Resid./sqrt(CVar); 

         

        SGARCHres=sr1 
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        %save( char( strcat( 

'h:\Sambulo\CURRENT\WDeriv\Output\',name(j),'SGARCH.res' ) ),'sr1','-ascii' 

); 

     %  save( char( strcat(  'C:\Users\malumisa\Documents\MATLAB\' 

name(j),'SGARCH.res' ) ),'sr1';'-ascii' ); 

         save(  char( strcat('C:\Users\malumisa\Documents\MATLAB\', 

name(j),'SGARCH.res') ),'sr1','-ascii' ); 

          

 %input(prompt, 's') 

%%%[ms] 

          %  input(prompt, 's') 

%%%         x1=mean(Tmp1); 

        % X  = [ Tmp1' Sf Sfv]; 

%         X  = [ Sf' Sfv' ms']; 

%%%          input(prompt, 's') 

      %    X  = [ Sf Sfv]; 

        % Sf 

        %Sfv  

      

   

        % Computing ACF of standardised residuals 

         

        % [ACF, Lags, Bound] = autocorr(sr1,730); 

   %%%%      

   %%[ACF, Lags] = corr(sr1',730) 

 %%  input(prompt, 's') 

      %  save( char( strcat( outfolder,name(j),'SGARCH.sr1' ) ),'ACF','-

ascii' ); 

    %  save( char( strcat(  'C:\Users\malumisa\Documents\MATLAB\' 

name(j),'SGARCH.sr1' ) ),'ACF','-ascii' ); 

%%%%       save(  char( strcat('C:\Users\malumisa\Documents\MATLAB\', 

name(j)) ),'SGARCH.sr1','ACF','-ascii' ); 

   

      % save( char( strcat( outfolder,name(j),'SGARCH.sr1' ) ),'ACF','-

ascii' ); 

     %%sr2 = sr1.^2; 

      %[ACF, Lags, Bounds] = autocorr(sr2,730); 

       %% [ACF, Lags] = corr(sr2',730); 

       % save( char( strcat( outfolder,name(j),'SGARCH.sr2' ) ),'ACF','-

ascii' ); 
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     %   save( char( strcat(  'C:\Users\Kenny\Documents\MATLAB\' 

name(j),'SGARCH.sr2' ) ),'ACF','-ascii' ); 

%%%%%          save(  char( strcat(  'C:\Users\Kenny\Documents\MATLAB\', 

name(j)) ),'SGARCH.sr2' ,'ACF','-ascii' ); 

   

        %============================================================== 

     %    (char( strcat(  

'C:\Users\Malumisa\Documents\MATLAB\',name(j),'.mat'))) 

    %  char( strcat(name(j),'.mat')) 

       

     %    ave=mean((char( strcat(  name(j)))),1) 

   %     ave=mean((char( strcat(  

'C:\Users\Malumisa\Documents\MATLAB\',name(j),'.mat'))),2) 

    end 

function [Ave]=importfile1(fileToRead1) 

%IMPORTFILE1(FILETOREAD1) 

%  Imports data from the specified file 

%  FILETOREAD1:  file to read 

  

%  Auto-generated by MATLAB on 17-Nov-2009 21:46:58 

  

% Import the file 

newData1 = load('-mat', fileToRead1); 

%newData1 

%are=mean(newData1) 

  

% Create new variables in the base workspace from those fields. 

vars = fieldnames(newData1); 

for i = 1:length(vars) 

    nn=newData1.(vars{i}); 

    assignin('base', vars{i}, newData1.(vars{i})); 

end 

Ave=nn;  

  

%  

% ===================================================================== 

  

%function [ Sm,Sv, mse] = GetSeasFF( nn ) 

function [ xx ] = GetSeasFF( nn ) 
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 %   results = ols(nn,X ); 

 %   Sm      = results.yhat; 

     

   % Variance 

 %   Svar = (se_x).^2 

 %   X    = [ ones(length(tgrid),1) cos(th)  sin(th) cos(2*th) sin(2*th) 

cos(3*th) sin(3*th) cos(4*th) sin(4*th) cos(5*th) sin(5*th) cos(6*th) ]; 

 %   X 

 %   [x1, se_x1, mse1] = lscov( Svar,X' ) 

 %   Sv      = x1; 

 %   input(prompt, 's') 

  

%====================================================================== 

%  

%  Wrapper function to return log-likeliehood of AR(7)-GARCH(1,1) model 

% 

%====================================================================== 

function lf = glogl( beta,data) 

  

    lf = sum( logl(beta,data) ); 

%end 

  

%====================================================================== 

%  

% Procedure to return log-likeliehood of AR(7)-GARCH(1,1) model 

% 

%====================================================================== 

function lf = logl( beta,data )  

  

    beta(9) = abs(beta(9)); 

    beta(10) = abs(beta(10)); 

    beta(11) = abs(beta(11)); 

    beta(12) = abs(beta(12)); 

     

    MaxLag = 7; 

    % Set up data for Garch model 

    y  = data(MaxLag+1:end,1); 

    s  = data(MaxLag+1:end,2); 

    n  = length(y); 
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    x  = ones(n,1); 

     

    for i = 1:MaxLag; 

         

            x = [x data(MaxLag+1-i:end-i,1)]; 

    end 

     

    % Construct residuals 

    u  = y - x*beta(1:8); 

    u2 = u.^2; 

     

    % Allocate memory 

    lf = zeros(n,1); 

    h  = zeros(n,1); 

  

    % Starting value for volatility 

    h(1) = data(MaxLag,2); 

     

    for i = 2:n 

        

        h(i) = beta(9) + beta(10)*u2(i-1) + beta(11)*h(i-1) + 

beta(12)*s(i); 

        lf(i)= (1/2)*log(2*pi)+0.5*log(h(i))+0.5*(u(i)^2/h(i)); 

    end 

    

%end 

%====================================================================== 

%  

% Procedure to return log-likeliehood of AR(7)-GARCH(1,1) model 

% 

%====================================================================== 

function [u,h,logl] = dlogl( beta,data );  

  

    MaxLag = 7; 

    % Set up data for Garch model 

    y  = data(MaxLag+1:end,1); 

    s  = data(MaxLag+1:end,2); 

    n  = length(y); 

    x  = ones(n,1); 
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    for i = 1:MaxLag; 

         

            x = [x data(MaxLag+1-i:end-i,1)]; 

    end 

     

    % Construct residuals 

    u  = y - x*beta(1:8); 

    u2 = u.^2; 

     

    % Allocate memory 

    logl = zeros(n,1); 

    h    = zeros(n,1); 

  

    % Starting value for volatility 

    h(1) = mean(u2); 

     

    for i = 2:n 

        

        h(i) = abs(beta(9)) + abs(beta(10))*u2(i-1) + abs(beta(11))*h(i-1)+ 

beta(12)*s(i); 

    end 

  

    % Log likelihood 

    logl=-(1/2)*log(2*pi)-0.5*log(h)-0.5*(u2./h); 

    logl = -sum(logl); 

%end 

  

% ===================================================================== 

% numerical derivative function 

% calculates the numerical derivative of function f at the parameter value  

% bd (uses central difference) 

% inputs:   f, needs to be a function handle, ie if the function's name 

%               is test you need to pass @test 

%               f can be (columns) vector valued, ie its output 

%               can be (q x 1) 

%           bd, this is the parameter value at which to evaluate the  

%             derivative  this vector has dim (k x 1) 

%           y and x, further inputs into function f 



156 

 

%               eg function a = test(b,y,x) 

% outputs:  der, a (q x k) vector of numerical derivatives 

% ======================================================================= 

function der = numgrad(f,bd,varargin) 

  

    k = size(bd,1); 

    temp = repmat(feval(f,bd,varargin{:}),k,2); 

  

    % compute stepsize (as in GAUSS' gradp) 

    abd = abs(bd); 

    if bd ~= 0 

        dabd = bd./abd; 

    else 

        dabd = 1; 

    end 

    h1 = [abd (1e-2*ones(k,1))]; 

    h = 1e-8 * max(h1,[],2) .* dabd; 

    temp = bd + h; 

    h = temp - bd; 

  

    for i = 1:k 

        b_temp = repmat(bd,1,2);   

        b_temp(i,1) = b_temp(i,1) + h(i,1); 

        b_temp(i,2) = b_temp(i,2) - h(i,1); 

        temp1(:,i) = feval(f,b_temp(:,1),varargin{:}); 

        temp2(:,i) = feval(f,b_temp(:,2),varargin{:}); 

    end 

    q = size(temp1,1); 

    der = (temp1 - temp2)./(2*repmat(h,1,q)'); 

%end 

  

  

  

% ======================================================================= 

% PURPOSE: Computes finite difference Hessian 

% ------------------------------------------------------- 

% Usage:  H = hessian(func,x,varargin) 

% Where: func = function name, fval = func(x,varargin) 

%           x = vector of parameters (n x 1) 

%    varargin = optional arguments passed to the function 
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% ------------------------------------------------------- 

% RETURNS: 

%           H = finite differnce hessian 

% ------------------------------------------------------- 

  

% Code from: 

% COMPECON toolbox [www4.ncsu.edu/~pfackler] 

% documentation modified to fit the format of the Ecoometrics Toolbox 

% by James P. LeSage, Dept of Economics 

% University of Toledo 

% 2801 W. Bancroft St, 

% Toledo, OH 43606 

% jlesage@spatial-econometrics.com 

% ======================================================================= 

  

function H = hessian(f,x,varargin) 

     

    eps = 1e-5; 

  

    n = size(x,1); 

    fx = feval(f,x,varargin{:}); 

  

    % Compute the stepsize (h) 

    h = eps.^(1/3)*max(abs(x),1e-2); 

    xh = x+h; 

    h = xh-x;     

    ee = sparse(1:n,1:n,h,n,n); 

  

    % Compute forward step  

    g = zeros(n,1); 

    for i=1:n 

        g(i) = feval(f,x+ee(:,i),varargin{:}); 

    end 

    

    H=h*h'; 

    % Compute "double" forward step  

    for i=1:n 

        for j=i:n 

            H(i,j) = (feval(f,x+ee(:,i)+ee(:,j),varargin{:})-g(i)-

g(j)+fx)/H(i,j); 
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            H(j,i) = H(i,j); 

        end 

    end 

%end 
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 Appendix B: Derivative Financial instruments traded on organised exchanges 

By instrument and location 

Notional principal in billions of US dollars 

Instrument/location Turnover 

 Q1 2010 Q2 2010 Q3 2010 Q4 2010 

Futures     

All Markets 346,816.4 384,716.5 305,361.8 343,493.1 

Interest rate 313,5656.2 344,455 270,635 307,181.1 

Currency 8,457.7 9,825 8,306.8 9,120.2 

Equity index 24,793.5 30,436.5 26,420.1 27,191.9 

North America 177,625.6 210,146.2 153,648.6 187,774.9 

Interest rate 161,033.8 189,903.7 136,806.6 170,450.3 

Currency 6,794.1 7,824.1 6,736. 7,292.6 

Equity index 9,797.7 12,418.3 10,106.1 10,031.9 

Europe 145,105.9 144,657.8 120,590.1 122,791.2 

Interest rate 136,405.8 135,108.9 112,784.2 114,463 

Currency 19,1 36 56,9 83,7 

Equity index 8,681 9,512.7 7,749 8,244.5 

Asia and Pacific 18,106.3 23,036.8 24,956.1 26,183.4 

Interest rate 12,316.5 15,057.7 16,352.3 17,181.7 

Currency 335,6 420,6 379,9 458,2 

Equity index 5,454.2 7,558.5 8,223.9 8,543.5 
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Other Markets 5,978.6 6,875.9 6,167 6,6743.6 

Interest rate 3,809.2 4,384.7 4,691.9 5,086 

Currency 1,308.8 1,544.2 1,134 1,285.6 

Equity index 860,6 947 341 372 

Options     

All Markets 168,119.3 170,949.9 132,386.7 135,125.5 

Interest rate 136,820.5 135,190.9 100,874.2 95,957.6 

Currency 790.3 837.3 725.5 696.2 

Equity index 30,508.5 34,921.7 30,788 38,471.7 

North America 59,334.7 80,344 59,979.7 61,885.4 

Interest rate 50,290. 69,593.8 51,976.8 53,482.3 

Currency 318.5 473.3 380.4 428.4 

Equity index 8,726.2 10,276.8 7,622.5 7,974.7 

Europe 88,978.4 68,100.2 50,149.7 44,226.3 

Interest rate 84,172.3 63,463.5 46,382.6 39,884.9 

Currency 1.4 1.5 1 1.2 

Equity index 4,804.7 4,635.3 3,766.1 4,340.2 

Asia and Pacific 16,995.8 19,905.6 19,577.1 26,260.9 

Interest rate 558.8 568.2 718.2 760.5 

Currency - - 0 6.2 

Equity index 4,804.7 4,635.3 3,766.1 4,340.2 

Other Markets 2,810.4 2,600.1 2,680.2 2,752.8 
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Interest rate 1,799.4 1,565.4 1,796.6 1,829.9 

Currency 470.4 362.4 343.1 260.4 

Equity index 540.7 672.2 540.5 662.5 

     

Source: BIS www.bis.org/publ/cpss23a.pdf  
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Appendix C: Empirical Density Functions for Exchange Rates  
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Appendix D: Empirical Density function for Interest Rate 
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Appendix E: Empirical Density Function for Stock prices 
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Appendix F: Empirical Density Function for House prices 

 

Appendix G: Structural breaks test for House prices 

All House price 

Multiple breakpoint tests  

Bai-Perron tests of L+1 vs. L sequentially determined breaks 

Date: 12/09/14   Time: 13:59  

Sample: 1966M01 2012M04  

Included observations: 556  

Breakpoint variables: C  

Break test options: Trimming 0.15, Max. breaks 5, Sig. level 0.05 

Test statistics employ HAC covariances (Prewhitening with lags 

        = 1, Quadratic-Spectral kernel, Andrews bandwidth) 

        assuming common data distribution 
    
    Sequential F-statistic determined breaks:  1 
    
      Scaled Critical 

Break Test   F-statistic F-statistic Value** 
    
    0 vs. 1 * 19.56104 19.56104 8.58 

1 vs. 2 8.208377 8.208377 10.13 
    
    * Significant at the 0.05 level.  

** Bai-Perron (Econometric Journal, 2003) critical values. 

    

Break dates:   

 Sequential Repartition  

1 2004M01 2004M01  
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Large House price 

Multiple breakpoint tests  

Bai-Perron tests of L+1 vs. L sequentially determined breaks 

Date: 12/09/14   Time: 13:58  

Sample: 1966M01 2012M04  

Included observations: 556  

Breakpoint variables: C  

Break test options: Trimming 0.15, Max. breaks 5, Sig. level 0.05 

Test statistics employ HAC covariances (Prewhitening with lags 

        = 1, Quadratic-Spectral kernel, Andrews bandwidth) 

        assuming common data distribution 
    
    Sequential F-statistic determined breaks:  1 
    
      Scaled Critical 

Break Test   F-statistic F-statistic Value** 
    
    0 vs. 1 * 17.02250 17.02250 8.58 

1 vs. 2 8.611825 8.611825 10.13 
    
    * Significant at the 0.05 level.  

** Bai-Perron (Econometric Journal, 2003) critical values. 

    

Break dates:   

 Sequential Repartition  

1 2004M03 2004M03  
    
    

 

Medium House price 

Multiple breakpoint tests  

Bai-Perron tests of L+1 vs. L sequentially determined breaks 

Date: 12/09/14   Time: 13:54  

Sample: 1966M01 2012M04  

Included observations: 556  

Breakpoint variables: C  

Break test options: Trimming 0.15, Max. breaks 5, Sig. level 0.05 

Test statistics employ HAC covariances (Prewhitening with lags 

        = 1, Quadratic-Spectral kernel, Andrews bandwidth) 

        assuming common data distribution 
    
    Sequential F-statistic determined breaks:  1 
    
      Scaled Critical 

Break Test   F-statistic F-statistic Value** 
    
    0 vs. 1 * 21.32367 21.32367 8.58 

1 vs. 2 9.693994 9.693994 10.13 
    
    * Significant at the 0.05 level.  

** Bai-Perron (Econometric Journal, 2003) critical values. 

    

Break dates:   

 Sequential Repartition  

1 2004M03 2004M03  
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Small House price 

Multiple breakpoint tests  

Bai-Perron tests of L+1 vs. L sequentially determined breaks 

Date: 12/09/14   Time: 13:46  

Sample: 1966M01 2012M04  

Included observations: 556  

Breakpoint variables: C  

Break test options: Trimming 0.15, Max. breaks 5, Sig. level 0.05 

Test statistics employ HAC covariances (Prewhitening with lags 

        = 1, Quadratic-Spectral kernel, Andrews bandwidth) 

        assuming common data distribution 
    
    Sequential F-statistic determined breaks:  1 
    
      Scaled Critical 

Break Test   F-statistic F-statistic Value** 
    
    0 vs. 1 * 20.74897 20.74897 8.58 

1 vs. 2 9.854830 9.854830 10.13 
    
    * Significant at the 0.05 level.  

** Bai-Perron (Econometric Journal, 2003) critical values. 

    

Break dates:   

 Sequential Repartition  

1 2004M01 2004M01  
    
    

 

Multiple breakpoint tests  

Bai-Perron tests of L+1 vs. L sequentially determined breaks 

Date: 12/09/14   Time: 13:54  

Sample: 1966M01 2012M04  

Included observations: 556  

Breakpoint variables: C  

Break test options: Trimming 0.15, Max. breaks 5, Sig. level 0.05 

Test statistics employ HAC covariances (Prewhitening with lags 

        = 1, Quadratic-Spectral kernel, Andrews bandwidth) 

        assuming common data distribution 
    
    Sequential F-statistic determined breaks:  1 
    
      Scaled Critical 

Break Test   F-statistic F-statistic Value** 
    
    0 vs. 1 * 21.32367 21.32367 8.58 

1 vs. 2 9.693994 9.693994 10.13 
    
    * Significant at the 0.05 level.  

** Bai-Perron (Econometric Journal, 2003) critical values. 

    

Break dates:   

 Sequential Repartition  

1 2004M03 2004M03  
    
    

 
 

Multiple breakpoint tests  

Bai-Perron tests of L+1 vs. L sequentially determined breaks 

Date: 12/09/14   Time: 13:54  

Sample: 1966M01 2012M04  

Included observations: 556  

Breakpoint variables: C  

Break test options: Trimming 0.15, Max. breaks 5, Sig. level 0.05 

Test statistics employ HAC covariances (Prewhitening with lags 

        = 1, Quadratic-Spectral kernel, Andrews bandwidth) 

        assuming common data distribution 
    
    Sequential F-statistic determined breaks:  1 
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Appendix H:Maximum Likelihood Estimation 

We briefly characterise maximum likelihood estimation. If prices follow a diffusion process 

with constant drift parameter  ]/[ PPE  and constant variance 2]/[  PPV , the 

logarithm of price relatives )/ln( 1 ttt PPx is normally distributed with mean 
2

2
   

and variance 2 . With T independent observations, the logarithm of the likelihood function 

),( xL  , which is viewed as a function of the parameter vector ),( 2  can be stated as 

(A1)   
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If we consider a Process where   is the mean number of jumps occurring per unit of time 

and the jump size Y having a distribution ),(~ln 2NY . The loglikelihood function for the 

mixed jump diffusion process is 

(A2)    
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To optimize the above log-likelihood function, the infinite sum is truncated after some value 

of N (Jorion, 1988). Ball and Torous (1985) derive a formula for the upper bound  on the 

truncation error, it can be used to select desirable level of N. However, in  practice, truncation 

at N=10 is considered satisfactory for all parameter values. The leptokurtic distributions can 

also arise as a result of time varying parameters instead of discontinuities. The ARCH 

process is one such approach (Engle, 1982). It is a tractable specification where the 

conditional variance th is modelled as  non stochastic function of past squared deviations  

(Jorion, 1988). The simplest specification to choose from here is the first order ARCH model. 

The conditional volatility hereunder is written as: 

(A3)   2

110

2

10 )(   ttt xh  

Where t , is defined as tx . In the presence of heteroscedasticity, the parameter   tends 

to zero, in which  case 0 represents the variance of a stationary diffusion process. This can 

be explained to include a weighted average of a number of past observations, or in general 

predetermined information. For the ARCH model, the log-likelihood is 

(A4)   
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If the conditional distribution of has a Poisson distribution, the log-likelihood function is 

written as 
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The likelihood function includes the jump process, the ARCH process, and the normal 

process as special cases. It can be used therefore to construct a generalised likelihood ratio

);(sup/);(sup 0 xLxL    , where the likelihood functions have been maximised (1) 

over the parameter space 0 under the null hypothesis and (2) over the parameter space

10  , which includes the alternative 1 . Under the null hypothesis, the statistic -

2ln  has a chi-square distribution with degrees of freedom equal to the number of 

parameters between the two models. This asymptotic result holds because the two hypotheses 

0 and   are nested in the parameter space (Jorion, 1988). 

 

 

 

 

 

 

 

 

 

 

 

 

 


