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Abstract: Let SH be the class of functions f D hC Ng that are harmonic univalent and sense-preserving in the open
unit disk U D f z W jzj < 1g for which f .0/ D f 0.0/ � 1 D 0: In this paper, we introduce and study a subclass
H.˛; ˇ/ of the class SH and the subclass NH.˛; ˇ/ with negative coefficients. We obtain basic results involving
sufficient coefficient conditions for a function in the subclass H.˛; ˇ/ and we show that these conditions are also
necessary for negative coefficients, distortion bounds, extreme points, convolution and convex combinations. In this
paper an attempt has also been made to discuss some results that uncover some of the connections of hypergeometric
functions with a subclass of harmonic univalent functions.
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1 Introduction

As a continuous complex-valued function, f D u C iv in a simply connected domain D is said to be a harmonic
if both u and v are real harmonic in D. In any simply connected domain D; we may write f D h C Ng; where h
and g are analytic in D such that h is called the analytic part and g is the co-analytic part of f . For f to be locally
univalent and sense-preserving in D , it is sufficiently agreeable that jh0.z/j > jg0.z/j, z 2 D: (see [1]).

Denote by SH the class of functions f D hC Ng that are harmonic univalent and sense-preserving in the open
unit disk U D f z W jzj < 1g for which f .0/ D f 0.0/ � 1 D 0: So, for f D hC Ng 2 SH, it can be expressed in the
analytic functions h and g as

h.z/ D z C

1X
nD2

anz
n; g.z/ D

1X
nD1

bnz
n; jb1j < 1 (1)
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Note that SH reduces to the class S of normalized analytic univalent functions if the co-analytic part of its member
is zero. Consequently, the function f .z/ for this class can be expressed as

f .z/ D z C

1X
nD2

anz
n:

Also, let NH be the subclass of SH consisting of functions f D hC Ng such that functions h and g are of the form

h.z/ D z �

1X
nD2

janjz
n; g.z/ D �

1X
nD1

jbnjz
n; jb1j < 1: (2)

Clunie and Sheil-Small (1984) [1] studied the class SH with some its geometric subclasses and calculated coefficient
bounds. For analytic functions �.z/ D zC

P1
nD2 anz

n and  .z/ D zC
P1
nD2 bnz

n, their convolution is defined
as .� �  /.z/ D z C

P1
nD2 anbnz

n, z 2 U : In the harmonic function case, with f D h C Ng and F D H C NG,
their harmonic convolution is defined as f � F D h �H C g �G. If �1 and �2 are analytic and f D hC Ng is in
SH, Ahuja and Silverman (2004) [2] defined

f �
�
�1 C N�2

�
D h � �1 C g � �2: (3)

Let F.a; b; cI z/ be the Gaussian hypergeometric function defined by the series

F.a; b; cI z/ D

1X
nD0

.a/n.b/n

.c/n.1/n
zn; z 2 U (4)

where a; b; c are complex numbers with c ¤ 0;�1;�2; ::: and .�/n is the Pochhammer symbol defined by

.�/n D
�.�C n/

�.�/
D �.�C 1/:::.�C n � 1/ for n D 1; 2; 3; ::: and .�/0 D 1:

Since the hypergeometric series in (4) converges absolutely in U , it follows that F.a; b; cI z/ defines a function which
is analytic in U , provided that c is neither zero nor a negative integer. The well-known Gauss’s summation theorem:
If Re.c � a � b/ > 0, then

F.a; b; cI 1/ D

1X
nD0

.a/n.b/n

.c/n.1/n
D
�.c/�.c � a � b/

�.c � a/�.c � b/
; c ¤ 0;�1;�2; ::: :

Throughout this paper, let G.z/ D �1.z/C �2.z/, where

�1.z/ D zF.a1; b1; c1I z/ D z C

1X
nD2

.a1/n�1.b1/n�1

.c1/n�1.1/n�1
zn; (5)

�2.z/ D F.a2; b2; c2I z/ � 1 D

1X
nD1

.a2/n.b2/n

.c2/n.1/n
zn; ja2b2j < jc2j: (6)

Harmonic mapping of hypergeometric functions plays a significant and attractive part in Geometric Function Theory
(GFT). The famed author Ahuja together with Silverman [2] in 2004 have uncovered some interesting studies on
the connections between the amazing of harmonic univalent functions and distinct hypergeometric functions. For
example, the result involves the convolution multipliers f �

�
�1 C N�2

�
, where �1; �2 are as defined by (5) and (6)

and f is an efficiently given harmonic starlike univalent (or harmonic convex univalent) function in the open unit
disk. Numerous inclusion properties and other studies, including hypergeometric functions and harmonic univalent
functions, have newly been investigated by prominent mathematician researcher Ahuja in (2007) [3], followed by
various studies in (2008) [4] and (2009) [5]. Recently, in 2011 [6], certain inclusion results by involving uniformly
harmonic starlike mappings and hypergeometric functions, have been studied. It should be remarked that some other
important studies that bring out this connection have been done in [7–10].

Let SSH formulate the subclass of SH involving functions in SH that are starlike. Moreover, we suppose SSH
is the subclass of SSH including functions in NH:
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Inequalities of harmonic univalent functions with connections of hypergeometric functions 693

The families SSH and SSH; were firstly investigated by Avic and Zlotkiewicz [11]. Later Silverman [12]
imposed the following necessary conditions:

1X
nD2

n.janj C jbnj/ � 1 (7)

for functions f D hC Ng to be in these families, and Silverman and Silvia [13] improved these outcomes of [12] to
the case when the coefficient b1 is not necessarily zero.

Ahuja and Jahangiri [14] introduced the class NSH.ˇ/ of functions in SH such that

<

 
@
@�
f .z/

@
@z

!
� ˇ;

�
0 � ˇ < 1; z D rei� 2 U

�
and they showed that the coefficient condition

1X
nD1

n.janj C jbnj/ � 2 � ˇ (8)

is sufficient for functions f in NSH.ˇ/.
In 2003 Yalcin et al. [15] investigated the class HP.ˇ/, with the subclass of SH satisfying the condition

Refh0.z/C g0.z/g > ˇ; .0 � ˇ < 1/:

Yalcin et al. also studied the functions with negative coefficient that satisfies the above condition. Based on the class
study in [15], Al-Khal and Al-Kharsani [16] investigated inequalities associating hypergeometric functions with
planer harmonic mapping. In 2004 Yalcin and Oztork [17], introduced and studied the class HP.˛/, consisting of
functions of the form (1), satisfying the condition

Ref˛z.h00.z/C g00.z//C .h0.z/C g0.z//g > 0; .˛ � 0/:

Moreover, they studied the above negative coefficient functions defined by (2). In 2010 Chandrashekar et al. [18],
investigated a class HP.˛; ˇ/ consisting of functions of the form (1) satisfying the condition

Ref˛z.h00.z/C g00.z//C .h0.z/C g0.z//g > ˇ; .˛ � 0; 0 � ˇ < 1/;

based on the work of Yalcin and Ozturk in [17]. They have given some results that bring out the connections of
hypergeometric functions with a class HP.˛; ˇ/ of harmonic univalent functions. Such a type of study on different
subclasses was carried out by several researchers, such as Dixit et al. [19] Aouf et al. [20], El-Ashwah [21], Al-Khal
and Al-Kharsani [22], S. Nagpal and Ravichandran [23], Ponnusamy et al. [24], Porwal and Dixit [25], Shelake
et al. [26]. Pursuing this line of study and motivated by the each works of Yalcin et al. ([15, 17]), Ahuja and
Silverman [2], Al-Khal and Al-Kharsani [16], Chandrashekar et al. [18] on the subject of harmonic functions, this
paper presents and examines a geometric subclass RH.˛; ˇ/ of SH. Let H.˛; ˇ/, .˛ � 0; 0 � ˇ < 1/, denote the
subclass of harmonic functions of the form (1) which satisfies the condition

Ref.h0.z/C g0.z//C 3˛z.h00.z/C g00.z//C ˛z2.h000.z/C g000.z//g > ˇ: (9)

Also, we define the class NH.˛; ˇ/ by

NH.˛; ˇ/ D H.˛; ˇ/ \NH:

The coefficient conditions for the function in H.˛; ˇ/ are studied. Furthermore, there is a determination of the
coefficient conditions, distortion bounds, extreme points, convolution, convex combinations and neighborhoods for
the function in NH.˛; ˇ/: Moreover, the connections between harmonic univalent functions and hypergeometric
functions are studied.
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694 J. Sokół et al.

2 The class NH.˛; ˇ/

In our first theorem, we give a coefficient bound for harmonic functions in H.˛; ˇ/.

Theorem 2.1. Let f D hC Ng be such that h and g are given by (1). Assume that if

1X
nD1

nŒ1C ˛.n2 � 1/�.janj C jbnj/ � 2 � ˇ (10)

where a1 D 1; ˛ � 0 and 0 � ˇ < 1, then f is harmonic univalent.

Proof. Suppose that z1; z2 2 U such that z1 6D z2, then by the condition (10), we obtainˇ̌̌̌
f .z1/ � f .z2/

h.z1/ � h.z2/

ˇ̌̌̌
� 1 �

ˇ̌̌̌
g.z1/ � g.z2/

h.z1/ � h.z2/

ˇ̌̌̌
D 1 �

ˇ̌̌̌
ˇ

P1
nD1 bn.z

n
1
� zn

2
/

.z1 � z2/ �
P1
nD2 an.z

n
1
� zn

2
/

ˇ̌̌̌
ˇ

> 1 �

P1
nD1 njbnj

1 �
P1
nD2 njanj

� 1 �

P1
nD1

nŒ1C˛.n2�1/�
1�ˇ

jbnj

1 �
P1
nD2

nŒ1C˛.n2�1/�
1�ˇ

janj
� 0:

Hence jf .z1/ � f .z2/j > 0 and so f is univalent in U .

Theorem 2.2. Let f D h C Ng be such that h and g are given by (1) and satisfies the condition (10) then f is
sense-preserving in U and f 2 H.˛; ˇ/

Proof. Firstly, we show that f is locally univalent and sense-preserving in U . It suffices to show that jh0.z/j >
jg0.z/j by using the condition (10). We have

jh0.z/j � 1 �

1X
nD2

njanjjzj
n�1 > 1 �

1X
nD2

njanj � 1 � ˇ �

1X
nD2

nŒ1C ˛.n2 � 1/�janj

�

1X
nD1

nŒ1C ˛.n2 � 1/�jbnj >

1X
nD1

njbnjjzj
n�1
D jg0.z/j:

Now, we show that f 2 H.˛; ˇ/. We only need to indicate that (10) is satisfied, using the fact that Re.w/ � ˇ if
and only if j1 � ˇ C wj � j1C ˇ � wj. Thus, we obtainˇ̌̌

.1 � ˇ/C .h0 C g0/C 3˛z.h00 C g00/C ˛z2.h000 C g000/
ˇ̌̌

�

ˇ̌̌
.1C ˇ/ � .h0 C g0/ � 3˛z.h00 C g00/ � ˛z2.h000 C g000/

ˇ̌̌
� 0:

(11)

Substituting for h.z/ and g.z/ in (11), we getˇ̌̌̌
ˇ.1 � ˇ/C 1C 1X

nD2

nŒ1C ˛.n2 � 1/�anz
n�1
C

1X
nD1

nŒ1C ˛.n2 � 1/�bn Nz
n�1

ˇ̌̌̌
ˇ

�

ˇ̌̌̌
ˇ.1 � ˇ/ � 1 � 1X

nD2

nŒ1C ˛.n2 � 1/�anz
n�1
�

1X
nD1

nŒ1C ˛.n2 � 1/�bn Nz
n�1

ˇ̌̌̌
ˇ

� 2

"
.1 � ˇ/ �

"
1X
nD2

nŒ1C ˛.n2 � 1/�janj C

1X
nD1

nŒ1C ˛.n2 � 1/�jbnj

##

D 2

"
.2 � ˇ/ �

"
1X
nD1

nŒ1C ˛.n2 � 1/� .janj C jbnj/

##
� 0;

by condition (10). The harmonic function

f .z/ D z C

1X
nD2

1

nŒ1C ˛.n2 � 1/
xnz

n
C

1X
nD1

1

nŒ1C ˛.n2 � 1/
Nyn Nz

n; (12)
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Inequalities of harmonic univalent functions with connections of hypergeometric functions 695

where
P1
nD2 jxnj C

P1
nD1 jynj D 1, shows that the coefficient bound given by (10) is sharp. The functions of the

form (12) are in the class H.˛; ˇ/ because the condition (10) can be satisfied as follows:

1X
nD2

nŒ1C ˛.n2 � 1/�janj C

1X
nD1

nŒ1C ˛.n2 � 1/�jbnj D

1X
nD2

jxnj C

1X
nD1

jynj D 1

This completes the proof of Theorem 2.2.

Remark 2.3. By specializing the parameter, we obtain the following interesting results analogous to Theorem 2.2,
which have been efficiently studied by

1. Silverman [12] when ˛ D ˇ D b1 D 0,
2. Silverman and Silvia [13] when ˛ D ˇ D 0,
3. Ahuja and Jahangiri [14] when ˛ D 0,
4. Yalcin et al. [15] when also ˛ D 0.

We proceed to prove that the condition (10) is also necessary for functions f D h C Ng, where h and g are of the
form (2).

Theorem 2.4. Let f D hC Ng be such that h and g are given by (2). Then f 2 NH.˛; ˇ/ if and only if

1X
nD2

nŒ1C ˛.n2 � 1/�janj C

1X
nD1

nŒ1C ˛.n2 � 1/�jbnj � 1 � ˇ

where a1 D 1; ˛ � 0 and 0 � ˇ < 1.

Proof. Since NH.˛; ˇ/ � H.˛; ˇ/. We only need to prove the "only if" part of this theorem. For functions f .z/ of
the form (2), we have

Ref.h0.z/C g0.z//C 3˛z.h00.z/C g00.z//C ˛z2.h000.z/C g000.z//g > ˇ:

Consequently, we obtain

Re

(
.1 � ˇ/ �

1X
nD2

nŒ1C ˛.n2 � 1/�janjz
n�1
�

1X
nD1

nŒ1C ˛.n2 � 1/�jbnj Nz
n�1

)
� 0

The above required condition must hold for all values of z in U . Upon choosing the values of z on the positive real
axis where 0 < jzj D r < 1, we must have

.1 � ˇ/ �

1X
nD2

nŒ1C ˛.n2 � 1/�janjr
n�1
�

1X
nD1

nŒ1C ˛.n2 � 1/�jbnjr
n�1
� 0:

Letting r ! 1� through real values, it follows that

.1 � ˇ/ �

"
1X
nD2

nŒ1C ˛.n2 � 1/�janj C

1X
nD1

nŒ1C ˛.n2 � 1/�jbnj

#
� 0:

Therefore, we have
1X
nD2

nŒ1C ˛.n2 � 1/�janj C

1X
nD1

nŒ1C ˛.n2 � 1/�jbnj � 1 � ˇ:

Now we give distortion bounds for function in NH.˛; ˇ/.

Remark 2.5. By specializing the parameter we obtain the following significant results analogous to the Theorem 2.4
which have been investigated by

1. Silverman [12] when ˛ D ˇ D b1 D 0,
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696 J. Sokół et al.

2. Silverman and Silvia [13] when ˛ D ˇ D 0,
3. Yalcin et al. [15] when ˛ D 0.

Theorem 2.6. Let f 2 NH.˛; ˇ/. Then r D jzj < 1

jf .z/j � .1C jb1j/r C

�
.1 � ˇ/

2Œ1C 3˛�

��
1 �

1

1 � ˇ
jb1j

�
r2

jf .z/j � .1C jb1j/r �

�
.1 � ˇ/

2Œ1C 3˛�

��
1 �

1

1 � ˇ
jb1j

�
r2

Proof. Let f 2 NH.˛; ˇ/. Taking the absolute value of f , we have

jf .z/j � .1C jb1j/r C

1X
nD2

.janj C jbnj/ r
n

� .1C jb1j/r C r
2

1X
nD2

�
.1 � ˇ/

2Œ1C 3˛�

��
2Œ1C 3˛�

.1 � ˇ/
janj C

2Œ1C 3˛�

.1 � ˇ/
jbnj

�
� .1C jb1j/r C r

2

1X
nD2

�
.1 � ˇ/

2Œ1C 3˛�

� 
nŒ1C ˛.n2 � 1/�

.1 � ˇ/
janj C

nŒ1C ˛.n2 � 1/�

.1 � ˇ/
jbnj

!
� .1C jb1j/r C

�
.1 � ˇ/

2Œ1C 3˛�

��
1 �

1

1 � ˇ
jb1j

�
r2

and

jf .z/j � .1C jb1j/r �

1X
nD2

.janj C jbnj/ r
n

� .1C jb1j/r � r
2

1X
nD2

�
.1 � ˇ/

2Œ1C 3˛�

��
2Œ1C 3˛�

.1 � ˇ/
janj C

2Œ1C 3˛�

.1 � ˇ/
jbnj

�
� .1C jb1j/r � r

2

�
.1 � ˇ/

2Œ1C 3˛�

� 1X
nD2

 
nŒ1C ˛.n2 � 1/�

.1 � ˇ/
janj C

nŒ1C ˛.n2 � 1/�

.1 � ˇ/
jbnj

!
� .1C jb1j/r �

�
.1 � ˇ/

2Œ1C 3˛�

��
1 �

1

1 � ˇ
jb1j

�
r2:

In the next theorem, we determine the extreme points of closed convex hulls of NH.˛; ˇ/ denoted by coNH.˛; ˇ/.

Theorem 2.7. Let f D hC Ng be such that h and g are given by (2). If the harmonic function

f .z/ D

1X
nD1

.xnhn.z/C yngn.z// ; (13)

where

h1.z/ D z; hn.z/ D z �
1 � ˇ

n
�
1C ˛.n2 � 1/

�zn .n D 2; 3; :::/;

gn.z/ D z �
1 � ˇ

n
�
1C ˛.n2 � 1/

� Nzn .n D 1; 2; 3; :::/;

1X
nD1

.xn C yn/ D 1 xn � 0 and yn � 0:

Then f 2 coNH.˛; ˇ/.
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Inequalities of harmonic univalent functions with connections of hypergeometric functions 697

Proof. A function f of the form (13) can be written as

f .z/ D

1X
nD1

.xnhn.z/C yngn.z//

D

1X
nD1

.xn C yn/ z �

1X
nD2

1 � ˇ

n
�
1C ˛.n2 � 1/

�xnzn � 1X
nD1

1 � ˇ

n
�
1C ˛.n2 � 1/

�yn Nzn:
Thus, we obtain

1X
nD2

nŒ1C ˛.n2 � 1/�

.1 � ˇ/
janj C

1X
nD1

nŒ1C ˛.n2 � 1/�

.1 � ˇ/
jbnj �

1X
nD2

xn C

1X
nD1

yn D 1 � x1 � 1:

Hence, by Theorem 2.4, we have f 2 coNH.˛; ˇ/.

Theorem 2.8. Let f D h C Ng be such that h and g are given by (2). If f 2 coNH.˛; ˇ/ and achieves the
condition (10), then f satisfies the equation (13). In particular, the extreme points of NH.˛; ˇ/ are fhng and fgng.

Proof. Suppose that f 2 coNH.˛; ˇ/. Set

xn D
nŒ1C ˛.n2 � 1/�

.1 � ˇ/
janj; .n D 2; 3; :::/;

and

yn D
nŒ1C ˛.n2 � 1/�

.1 � ˇ/
jbnj; .n D 1; 2; :::/:

By (10), we note that 0 � xn .n D 2; 3; :::/ and 0 � yn .n D 1; 2; :::/: We define

x1 D 1 �

1X
nD2

xn C

1X
nD1

yn:

By Theorem 2.4, x1 � 0, and

f .z/ D

1X
nD1

.xnhn.z/C yngn.z//

as required.

Next, we can set the convex combination of the class NH.˛; ˇ/.

Theorem 2.9. The class NH.˛; ˇ/ is closed under convex combination.

Proof. For i D 1; 2, let fi 2 NH.˛; ˇ/ where

fi .z/ D z �

1X
nD2

jai;nj z
n
�

1X
nD2

jbi;nj Nz
n:

Then, by Theorem 2.4, we have

1X
nD2

nŒ1C ˛.n2 � 1/�

1 � ˇ
jai;nj C

1X
nD1

nŒ1C ˛.n2 � 1/�

1 � ˇ
jbi;nj � 1: (14)

For
P1
iD1 ti D 1; 0 � ti � 1, the convex combination of fi may be written as

1X
iD1

tifi D z �

1X
nD2

 
1X
iD1

ti jai;nj

!
zn �

1X
nD1

 
1X
iD1

ti jbi;nj

!
Nzn:
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Then by (2), we have

1X
nD2

nŒ1C ˛.n2 � 1/�

1 � ˇ

 
1X
iD1

ti jai;nj

!
C

1X
nD1

nŒ1C ˛.n2 � 1/�

1 � ˇ

 
1X
iD1

ti jbi;nj

!

D

1X
iD1

ti

 
1X
nD2

nŒ1C ˛.n2 � 1/�

1 � ˇ
jai;nj C

1X
nD1

nŒ1C ˛.n2 � 1/�

1 � ˇ
jbi;nj

!
�

1X
iD1

ti D 1:

Therefore,
P1
iD1 tifi 2 NH.˛; ˇ/ (see Theorem 2.4.)

The class NH.˛; ˇ/ is closed under convolution as will be shown in the next theorem.

Theorem 2.10. For 0 �  � ˇ < 1, let f 2 NH.˛; ˇ/, F 2 NH.˛; / and

1X
nD2

nŒ1C ˛.n2 � 1/�

1 � ˇ
jAnj < 1: (15)

Then .f � F / 2 NH.˛; ˇ/ � NH.˛; /.

Proof. Let the harmonic function f .z/ WD z �
P1
nD2 janjz

n �
P1
nD1 jbnj Nz

n and F.z/ WD z �
P1
nD2 jAnjz

n �P1
nD1 jBnj Nz

n. Then the convolution of f and F is defined as follows:

.f � F /.z/ D z �

1X
nD2

janAnjz
n
�

1X
nD1

jbnBnj Nz
n

By condition (15), Theorem 2.4 and since F 2 NH.˛; /, we conclude that jAnj � 1 and jBnj � 1. But f 2
NH.˛; ˇ/ , then we have

1X
nD2

nŒ1C ˛.n2 � 1/�janjjAnj C

1X
nD1

nŒ1C ˛.n2 � 1/�jbnjjBnj

�

1X
nD2

nŒ1C ˛.n2 � 1/�janj C

1X
nD1

nŒ1C ˛.n2 � 1/�jbnj � 1 � ˇ � 1 � :

Thus .f � F / 2 NH.˛; ˇ/ � NH.˛; /.

Here, we look at a closure property of the class NH.˛; ˇ/ under the generalized Bernardi-Libera-Livingston integral
operator F.z/ which is defined by (see [26])

F.z/ D .�C 1/

1Z
0

t��1f .tz/dt .� > �1/:

Theorem 2.11. f 2 NH.˛; ˇ/) F 2 NH.˛; ˇ/.

Proof. Let

f .z/ D z �

1X
nD2

janjz
n
�

1X
nD1

jbnj Nz
n

Then, we get

F.z/ D .�C 1/

1Z
0

t��1

 
.tz/ �

1X
nD2

janj.tz/
n
�

1X
nD1

jbnj
�
tz
�n!

dt D z �

1X
nD2

jAnjz
n
�

1X
nD1

jBnj Nz
n;

where
An D

�C 1

�C n
janj and Bn D

�C 1

�C n
jbnj:
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Thus, since f 2 NH.˛; ˇ/,

1X
nD2

nŒ1C ˛.n2 � 1/�

�
�C 1

�C n
janj

�
C

1X
nD1

nŒ1C ˛.n2 � 1/�

�
�C 1

�C n
jbnj

�
1X
nD2

nŒ1C ˛.n2 � 1/�janj C

1X
nD1

nŒ1C ˛.n2 � 1/�jbnj � 1 � ˇ:

In virtue of Theorem 2.4, we have F 2 NH.˛; ˇ/.

3 Hypergeometric functions

Here, we need the following result, which may be found in ([18, 24]).

Lemma 3.1. If a; b; c > 0, then
i.
P1
nD1 n

.a/n .b/n

.c/n .1/n
D

ab
c�a�b�1

F.a; bI cI 1/ if c > aC b C 1

ii.
P1
nD1 n

2 .a/n .b/n
.c/n .1/n

D

h
.a/2 .b/2

.c�a�b�2/2
C

ab
c�a�b�1

i
F.a; bI cI 1/ if c > aC b C 2

iii.
P1
nD1 n

3 .a/n.b/n
.c/n.1/n

D

h
.a/3.b/3

.c�a�b�3/3
C

3.a/2.b/2
.c�a�b�2/2

C
ab

c�a�b�1

i
F.a; bI cI 1/ if c > aC b C 3.

In the following theorem, we obtain the coefficient condition for the Gaussian hypergeometric function:

Theorem 3.2. If aj ; bj > 0 and cj > aj C bj C 3 for j D 1; 2, then a sufficient condition for G D �1 C �2 to
be harmonic univalent and sense-preserving in U and G 2 H.˛; ˇ/, is that�

˛ .a1/3 .b1/3

.c1 � a1 � b1 � 3/3
C

6˛ .a1/2 .b1/2

.c1 � a1 � b1 � 2/2
C

.1C 6˛/ a1 b1

c1 � a1 � b1 � 1
C 1

�
F.a1; b1I c1I 1/

C

�
˛ .a2/3 .b2/3

.c2 � a2 � b2 � 3/3
C

3˛ .a2/2 .b2/2

.c2 � a2 � b2 � 2/2
C

a2 b2

c2 � a2 � b2 � 1

�
F.a2; b2I c2I 1/ � 2 � ˇ;

(16)

where ˛ � 0 and 0 � ˇ < 1.

Proof. Let G.z/ D �1.z/C �2.z/

D z C

1X
nD2

.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
zn C

1X
nD1

.a2/n .b2/n

.c2/n .1/n
zn

Firstly, we want to show that G is locally univalent and sense-preserving in U . It is enough to show that j�0
1
.z/j >

j�0
2
.z/j

j�01.z/j D

ˇ̌̌̌
ˇ1C 1X

nD2

n
.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
zn�1

ˇ̌̌̌
ˇ > 1 � 1X

nD2

n
.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
jzjn�1

> 1 �

1X
nD2

.n � 1/
.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
�

1X
nD2

.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1

D 2 �

�
a1 b1

c1 � a1 � b1 � 1
C 1

�
F.a1; b1I c1I 1/ by part(i) of Lemma 3.1 and by Gauss summation formula

� 2 � ˇ �

�
˛ .a1/3 .b1/3

.c1 � a1 � b1 � 3/3
C

6˛ .a1/2 .b1/2

.c1 � a1 � b1 � 2/2
C

.1C 6˛/ a1 b1

c1 � a1 � b1 � 1
C 1

�
F.a1; b1I c1I 1/

�

�
˛ .a2/3 .b2/3

.c2 � a2 � b2 � 3/3
C

3˛ .a2/2 .b2/2

.c2 � a2 � b2 � 2/2
C

a2 b2

c2 � a2 � b2 � 1

�
F.a2; b2I c2I 1/ by (15)

>
a2 b2

c2 � a2 � b2 � 1
F.a2; b2I c2I 1/ >

1X
nD1

n
.a2/n .b2/n

.c2/n .1/n
jzjn�1 �

ˇ̌̌̌
ˇ 1X
nD1

n
.a2/n .b2/n

.c2/n .1/n
zn�1

ˇ̌̌̌
ˇ D j�02.z/j:
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Now to show that G is univalent in U , we suppose that z1; z2 2 U such that z1 6D z2. Since U is simply connected
and convex, we have z.t/ D .1 � t /z1 C tz2 2 U ; where 0 � t � 1. Then we can write

G.z1/ �G.z2/ D

1Z
0

h
.z2 � z1/�

0
1.z.t//C .z2 � z1/�

0
2
.z.t//

i
dt

such that

Re
G.z1/ �G.z2/

z2 � z1
D

1Z
0

Re

"
�01.z.t//C

.z2 � z1/

z2 � z1
�0
2
.z.t//

#
dt

>

1Z
0

�
Re �01.z.t// �

ˇ̌
�02.z.t//

ˇ̌�
dt:

(17)

On the other hand, by condition (16), we conclude that

Re �01.z/ �
ˇ̌
�02.z/

ˇ̌
� 1 �

1X
nD2

n
.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
jzjn�1 �

1X
nD1

n
.a2/n .b2/n

.c2/n .1/n
jzjn�1

> 1 �

1X
nD2

.n � 1C 1/
.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
�

1X
nD1

n
.a2/n .b2/n

.c2/n .1/n

D 2 �

1X
nD2

.a1/n�1 .b1/n�1

.c1/n�1 .1/n�2
�

1X
nD0

.a1/n .b1/n

.c1/n .1/n
�
a2 b2

c2

1X
nD1

.a2 C 1/n�1 .b2 C 1/n�1

.c2 C 1/n�1 .1/n�1

D 2 �

�
a1 b1

c1 � a1 � b1 � 1
C 1

�
F.a1; b1I c1I 1/ �

a2 b2

c2 � a2 � b2 � 1
F.a2; b2I c2I 1/

� 2 �

�
˛ .a1/3 .b1/3

.c1 � a1 � b1 � 3/3
C

6˛ .a1/2 .b1/2

.c1 � a1 � b1 � 2/2
C

.1C 6˛/ a1 b1

c1 � a1 � b1 � 1
C 1

�
F.a1; b1I c1I 1/

C

�
˛ .a2/3 .b2/3

.c2 � a2 � b2 � 3/3
C

3˛ .a2/2 .b2/2

.c2 � a2 � b2 � 2/2
C

a2 b2

c2 � a2 � b2 � 1

�
F.a2; b2I c2I 1/ � ˇ � 0:

Thus (17) by the above inequality, we receive thatG.z1/ 6D G.z2/ and henceG is univalent in U . Finally, we proceed
to prove that G 2 H.˛; ˇ/. In view of Theorem 2.2, we need to prove that

1X
nD1

nŒ1C ˛.n2 � 1/�

�
.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
C
.a2/n .b2/n

.c2/n .1/n

�
� 2 � ˇ: (18)

But,

1X
nD1

nŒ1C ˛.n2 � 1/�

�
.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
C
.a2/n .b2/n

.c2/n .1/n

�
D

1X
nD1

.1 � ˛/.n � 1/
.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
C

1X
nD1

.1 � ˛/
.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
C

1X
nD1

˛.n � 1C 1/3
.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1

C

1X
nD1

.1 � ˛/n
.a2/n .b2/n

.c2/n .1/n
C

1X
nD1

˛n3
.a2/n .b2/n

.c2/n .1/n

D .1C 2˛/

1X
nD1

.n � 1/
.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
C

1X
nD1

.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
C ˛

1X
nD1

.n � 1/3
.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1

C 3˛

1X
nD1

.n � 1/2
.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
C .1 � ˛/

1X
nD1

n
.a2/n .b2/n

.c2/n .1/n
C ˛

1X
nD1

n3
.a2/n .b2/n

.c2/n .1/n

 - 10.1515/math-2015-0066
Downloaded from PubFactory at 08/16/2016 03:39:51PM

via University of the Witwatersrand - Wits University



Inequalities of harmonic univalent functions with connections of hypergeometric functions 701

D .1C 2˛/

1X
nD1

n
.a1/n .b1/n

.c1/n .1/n
C

1X
nD0

.a1/n .b1/n

.c1/n .1/n
C ˛

1X
nD1

n3
.a1/n .b1/n

.c1/n .1/n
C 3˛

1X
nD1

n2
.a1/n .b1/n

.c1/n .1/n

C .1 � ˛/

1X
nD1

n
.a2/n .b2/n

.c2/n .1/n
C ˛

1X
nD1

n3
.a2/n .b2/n

.c2/n .1/n

D

�
˛ .a1/3 .b1/3

.c1 � a1 � b1 � 3/3
C

6˛ .a1/2 .b1/2

.c1 � a1 � b1 � 2/2
C

.1C 6˛/ a1 b1

c1 � a1 � b1 � 1
C 1

�
F.a1; b1I c1I 1/

C

�
˛ .a2/3 .b2/3

.c2 � a2 � b2 � 3/3
C

3˛ .a2/2 .b2/2

.c2 � a2 � b2 � 2/2
C

a2 b2

c2 � a2 � b2 � 1

�
F.a2; b2I c2I 1/;

Thus, in view of Lemma 3.1, we get the inequality (18). This completes the proof.

For our next theorem, we need to define the following function:

G1.z/ D z

�
2 �

�1.z/

z

�
� �2.z/ D z �

1X
nD2

.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
zn �

1X
nD1

.a2/n .b2/n

.c2/n .1/n
zn

on using (5) and (6). Clearly G1 2 NH.˛; ˇ/, (see [18, 21]).

Theorem 3.3. Let ˛ � 0, 0 � ˇ < 1, aj ; bj > 0, cj > aj C bj C 3 for j D 1; 2 and a2b2 < c2. Then
G1 2 NH.˛; ˇ/ if and only if (16) holds.

Proof. It is clear that NH.˛; ˇ/ � H.˛; ˇ/. In view of Theorem 3.2, we need only to show the necessary condition
for G1 to be in H.˛; ˇ/. If G1 2 NH.˛; ˇ/, then G1 satisfies the inequality (18) by Theorem 2.4 and hence (16)
holds.

In the following theorem, we give the convolution f � .�1C�2/, where �1 and �2, which are defined by (5) and (6).

Theorem 3.4. Let ˛ � 0, 0 � ˇ < 1, aj ; bj > 0, cj > aj Cbj C3 for j D 1; 2 and a2b2 < c2. Then a necessary
and sufficient condition such that f � .�1 C �2/ 2 NH.˛; ˇ/ for f 2 NH.˛; ˇ/ is that

F.a1; b1I c1I 1/C F.a2; b2I c2I 1/ � 3; (19)

where �1; �2 are defined, respectively, by (5) and (6).

Proof. Let f D hC Ng 2 NH.˛; ˇ/, where h and g are given by (2). Then

f � .�1 C �2/.z/ D h.z/ � �1.z/C g.z/ � �2.z/

D z �

1X
nD2

.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
anz

n
�

1X
nD1

.a2/n .b2/n

.c2/n .1/n
bnzn:

In view of Theorem 2.4, we need to prove that f � .�1 C �2/ if and only if

1X
nD1

nŒ1C ˛.n2 � 1/�

�
.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
an C

.a2/n .b2/n

.c2/n .1/n
bn

�
� 2 � ˇ: (20)

An application of Theorem 2.4, we get

1X
nD1

nŒ1C ˛.n2 � 1/� .an C bn/ � 2 � ˇ:

or
1X
nD2

nŒ1C ˛.n2 � 1/� an C

1X
nD1

nŒ1C ˛.n2 � 1/� bn � 1 � ˇ; (21)

which implies that
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nŒ1C ˛.n2 � 1/� an � 1 � ˇ and nŒ1C ˛.n2 � 1/� bn � 1 � ˇ:

Thus, we attain

an �
1 � ˇ

nŒ1C ˛.n2 � 1/�
and bn �

1 � ˇ

nŒ1C ˛.n2 � 1/�
; .n � 1/: (22)

Rewriting (20), we get

1X
nD2

nŒ1C ˛.n2 � 1/�
.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
an C

1X
nD1

nŒ1C ˛.n2 � 1/�
.a2/n .b2/n

.c2/n .1/n
bn � 1 � ˇ: (23)

By applying (22), the left hand side of (23) is bounded above by

1X
nD2

.1 � ˇ/
.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
C

1X
nD1

.1 � ˇ/
.a2/n .b2/n

.c2/n .1/n

D .1 � ˇ/

 
1X
nD1

.a1/n .b1/n

.c1/n .1/n
C

1X
nD1

.a1/n .b1/n

.c1/n .1/n

!
D .1 � ˇ/ .F.a1; b1I c1I 1/C F.a2; b2I c2I 1/ � 2/ :

The last expression is bounded above by .1 � ˇ/ if and only if (19) is satisfied. This proves (20) and the result
follows.

The integral operator for the Gaussian hypergeometric function will be studied at the end of this section.

Theorem 3.5. If aj ; bj > 0 and cj > aj C bj C 2 for j D 1; 2. Then a necessary and sufficient condition for a
function

G2.z/ D

zZ
0

F.a1; b1I c1I 1/dt C

zZ
0

F.a2; b2I c2I 1/dt

to be in H.˛; ˇ/, is that�
1C

˛ .a1/2 .b1/2

.c1 � a1 � b1 � 2/2
C

3˛ a1 b1

c1 � a1 � b1 � 1

�
F.a1; b1I c1I 1/

C

�
1C

˛ .a2/2 .b2/2

.c2 � a2 � b2 � 2/2
C

3˛ a2 b2

c2 � a2 � b2 � 1

�
F.a2; b2I c2I 1/ � 3 � ˇ:

where ˛ � 0, 0 � ˇ < 1.

Proof. In view of Theorem 2.2, the function

G2.z/ D z �

1X
nD2

.a1/n�1 .b1/n�1

n .c1/n�1 .1/n�1
zn �

1X
nD2

.a2/n�1 .b2/n�1

n .c2/n�1 .1/n�1
zn

is in H.˛; ˇ/ if

1X
nD2

nŒ1C ˛.n2 � 1/�

�
.a1/n�1 .b1/n�1

n .c1/n�1 .1/n�1
C
.a2/n�1 .b2/n�1

n .c2/n�1 .1/n�1

�
� 1 � ˇ: (24)
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The left side of (24) can be written as follows:

1X
nD2

Œ1C ˛.n2 � 1/�

�
.a1/n�1 .b1/n�1

.c1/n�1 .1/n�1
C
.a2/n�1 .b2/n�1

.c2/n�1 .1/n�1

�
D

1X
nD1

.a1/n .b1/n

.c1/n .1/n
C

1X
nD1

.a2/n .b2/n

.c2/n .1/n
C ˛

1X
nD1

n2
.a1/n .b1/n

.c1/n .1/n
C ˛

1X
nD1

n2
.a2/n .b2/n

.c2/n .1/n

C 2˛

1X
nD1

n
.a1/n .b1/n

.c1/n .1/n
C 2˛

1X
nD1

n
.a2/n .b2/n

.c2/n .1/n

D .F.a1; b1I c1I 1/ � 1/C .F.a2; b2I c2I 1/ � 1/C

�
˛ .a1/2 .b1/2

.c1 � a1 � b1 � 2/2
C

˛ a1 b1

c1 � a1 � b1 � 1

�
F.a1; b1I c1I 1/

C

�
˛ .a2/2 .b2/2

.c2 � a2 � b2 � 2/2
C

˛ a2 b2

c2 � a2 � b2 � 1

�
F.a2; b2I c2I 1/C

�
2˛ a1 b1

c1 � a1 � b1 � 1

�
F.a1; b1I c1I 1/

C

�
2˛ a2 b2

c2 � a2 � b2 � 1

�
F.a2; b2I c2I 1/

D

�
1C

˛ .a1/2 .b1/2

.c1 � a1 � b1 � 2/2
C

3 ˛ a1 b1

c1 � a1 � b1 � 1

�
F.a1; b1I c1I 1/

C

�
1C

˛ .a2/2 .b2/2

.c2 � a2 � b2 � 2/2
C

3 ˛ a2 b2

c2 � a2 � b2 � 1

�
F.a2; b2I c2I 1/ � 2:

The last expression is bounded above by 1 � ˇ and the result follows.

Theorem 3.6. If a1b1 > �1, c1 > 0, a1b1 < 0, a2 > 0, b2 > 0 and cj > aj C bj C 2 for j D 1; 2, then a
necessary and sufficient condition for a function

G3.z/ D

zZ
0

F.a1; b1I c1I 1/dt �

zZ
0

ŒF .a2; b2I c2I 1/ � 1� dt

to be in NH.˛; ˇ/ is�
.1C 3˛/C

a1 b1

c1 � a1 � b1 � 1

�
F.a1; b1I c1I 1/

�

�
.1C ˛/C

˛ .a2/2 .b2/2

.c2 � a2 � b2 � 2/2
C

3˛ a2 b2

c2 � a2 � b2 � 1

�
F.a2; b2I c2I 1/C 1 � ˇ:

where ˛ � 0, 0 � ˇ < 1.

Proof. In view of Theorem 2.4, the function

G3.z/ D z �
ja1b1j

c1

1X
nD2

.a1 C 1/n�2 .b1 C 1/n�2

n.c1 C 1/n�2 .1/n�1
zn �

1X
nD2

.a2/n�1 .b2/n�1

n .c2/n�1 .1/n�1
zn

is in NH.˛; ˇ/ if

1X
nD2

h
1C ˛.n2 � 1/

i �
ja1b1j

c1

.a1 C 1/n�2 .b1 C 1/n�2

.c1 C 1/n�2 .1/n�1
C
.a2/n�1 .b2/n�1

.c2/n�1 .1/n�1

�
� 1 � ˇ: (25)

After computation, inequality (25) can be written as

1X
nD2

ja1b1j

c1

.a1 C 1/n�2 .b1 C 1/n�2

.c1 C 1/n�2 .1/n�1
C

1X
nD2

.a2/n�1 .b2/n�1

.c2/n�1 .1/n�1

C ˛

1X
nD2

.n2 � 1/
ja1b1j

c1

.a1 C 1/n�2 .b1 C 1/n�2

.c1 C 1/n�2 .1/n�1
C ˛

1X
nD2

.n2 � 1/
.a2/n�1 .b2/n�1

.c2/n�1 .1/n�1
� 1 � ˇ:
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Thus

1X
nD0

ja1b1j

c1

.a1 C 1/n .b1 C 1/n

.c1 C 1/n .1/nC1
C ˛

1X
nD0

n
ja1b1j

c1

.a1 C 1/n .b1 C 1/n

.c1 C 1/n .1/n

C 3˛

1X
nD0

ja1b1j

c1

.a1 C 1/n .b1 C 1/n

.c1 C 1/n .1/n
C ˛

1X
nD1

n2
.a2/n .b2/n

.c2/n .1/n

C 2˛

1X
nD1

n
.a2/n .b2/n

.c2/n .1/n
C .1C ˛/

1X
nD1

.a2/n .b2/n

.c2/n .1/n
� 1 � ˇ;

which implies

.1C 3˛/c1

a1b1

1X
nD1

ja1b1j

c1

.a1/n .b1/n

.c1/n .1/n
C

˛c1

a1b1

1X
nD1

n
ja1b1j

c1

.a1/n .b1/n

.c1/n .1/n
C ˛

1X
nD1

n2
.a2/n .b2/n

.c2/n .1/n

C 2˛

1X
nD1

n
.a2/n .b2/n

.c2/n .1/n
C .1C ˛/

1X
nD1

.a2/n .b2/n

.c2/n .1/n
� 1 � ˇ:

Therefore, we have

�

�
.1C 3˛/C

a1 b1

c1 � a1 � b1 � 1

�
F.a1; b1I c1I 1/

C

�
.1C ˛/C

˛ .a2/2 .b2/2

.c2 � a2 � b2 � 2/2
C

3˛ a2 b2

c2 � a2 � b2 � 1

�
F.a2; b2I c2I 1/ � 1 � ˇ;

which yields �
.1C 3˛/C

a1 b1

c1 � a1 � b1 � 1

�
F.a1; b1I c1I 1/

�

�
.1C ˛/C

˛ .a2/2 .b2/2

.c2 � a2 � b2 � 2/2
C

3˛ a2 b2

c2 � a2 � b2 � 1

�
F.a2; b2I c2I 1/C 1 � ˇ:

This completes the proof.

In this paper, we have discussed a subclass of the class of functions that are harmonic univalent and sense-preserving
in the open unit disc. Some results are gained by involving coefficient conditions and by showing the significance of
these conditions for negative coefficient, distortion bounds, extreme points, convolution and convex combinations.
Moreover, in this paper an investigation on some results is done to reveal some of the connections of hypergeometric
functions with a subclass of harmonic univalent functions.
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