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The work presented contributes to research in lightning protection simulations and fo-

cuses on approximating the Heidler function with an analytical integral and hence a

frequency domain representation. The integral of lightning current models is required

in the analysis of lightning events including the induced effects and frequency analyses

of lightning strikes. Previous work in this area has produced very specific forms of the

Heidler function that are used to represent lightning current waveshapes. This work

however focuses on a generic solution with parameters that can be modified to produce

any lightning current waveshape that is required. In the research presented, such an

approximation is obtained. This function has an analytical solution to the integral and

hence can be completely represented in the frequency domain. This allows for a true

representation of Maxwell’s equations for Electromagnetic (EM) fields and for an an-

alytical frequency domain analysis. It has parameters that can be changed to obtain

different waveshapes (10/350, 0.25/100, etc.). The characteristics of the approximation

are compared with those of the Heidler function to ascertain whether or not the function

is applicable for use with the lightning protection standard (IEC 62305-1). It is shown

that the approximation does represent the same characteristics as those of the Heidler

function and hence can be used in IEC 62305-1 standardised applications. This repre-

sents a valuable contribution to engineers working in the field of lightning protection,

specifically simulation models.
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Chapter 1

Introduction

Mathematical lightning current models are used in many areas of research ranging from

the design of Lightning Protection Systems (LPSs) to the understanding of electric and

magnetic fields associated with lightning discharges [1, 2]. Lightning current models

are typically used as design tools and for further research into the understanding of

the effects of a lightning strike. The Heidler function, which is the standard lightning

current model, cannot be integrated analytically and therefore the frequency domain of

the lightning strike cannot be accurately presented nor is it possible to utilise Maxwell’s

equations in analysing lightning events. This research presents a suitable replacement to

the Heidler function for situations where an integral is required.

This replacement falls under the category of an approximation to the Heidler function

and as such, it can be tailored to any waveshape required just as the Heidler function

can by varying the parameters. An investigation is carried out to determine the accuracy

of the approximation. This is done by using computer simulations of the approximation

and the results are compared to the Heidler function to determine the viability of this

approximation in the design of LPSs. All the results are based on the waveshapes defined

in the IEC 62305-1 so that there is a known control1.

Chapter 2 details the approach taken in designing and evaluating the approximation to

the Heidler function. The assumptions and constraints made in this study are outlined.

The significance of this study in the field of lightning research is discussed with reference

to the problem statements.
1Note to the reader: This research assumes familiarity with the IEC 62305-1 standard (“Protection

against lightning - Part 1: General principles”) - it is advised that the reader have access to this document
when reading this dissertation.

1



Chapter 1. Introduction 2

Chapter 3 discusses the relevant background information with respect to this research.

This includes information about the different lightning current models and their appli-

cations. Key areas relating to this study are detailed from the IEC 62305-1 standard.

A review of the existing work in the field of approximating lightning currents is also

identified.

Chapter 4 provides the approximation to the Heidler function that was developed

in this study. All the components of the equation are discussed as well as the parameters

used to create the various waveshapes. The properties of the approximation along with

its derivative and integral are detailed. A comparison of the parameters used in the

approximation and the Heidler function are also given.

Chapter 5 investigates the accuracy of the approximation by simulating results and

comparing them to the expected values obtained from the Heidler function. This includes

the waveshapes in the IEC 62305-1 standard and the frequency responses.

Chapter 6 summarises the results obtained from the simulations. A discussion of

the viability of this approximation as a suitable replacement to the Heidler function is

provided. Future work in the field of approximating lightning current models is detailed

with the goal of optimising the approximation detailed in this study.

Chapter 7 provides a conclusion to the work and discusses the viability of this function

in various fields of lightning research.

Appendix A details the development of the approximation including all the mathemat-

ical steps.

Appendix B presents an edited copy of a paper published at a peer-reviewed conference,

to provide the preliminary results obtained using the approximation.



Chapter 2

Approach Taken

An overview of the work addressed in this study is detailed in this chapter.

The problem statement, contribution of the dissertation and the methodology

of the study are provided. This gives a quick overview of why the study has

been undertaken, what it provides and how it was performed and evaluated.

2.1 Problem Statement

The Heidler function was developed to represent any lightning current waveshape for

modelling lightning currents in design or analysis [3]. However there is no analytical

integral to the Heidler function. This leads to issues when trying to calculate the Elec-

tromagnetic (EM) fields produced by a lightning stroke. Moreover, there is no way

to analytically calculate the Fourier transform of the Heidler function and hence the

frequency components of a lightning stroke. When designing LPSs and/or calculating

the induced effects of lightning strikes, there is a need for the analytical integral of the

lightning current waveshape.

The IEC 62305-1 standard defines the Heidler function as the standardised lightning

current waveshape. As there is no integral to this function, many researchers have used

the double exponential function in its place. There are several limitations associated with

the double exponential function making it an unsuitable replacement. A key limitation

is that there is an instantaneous rise in current at t = 0 which is not physically realisable.

Chapter 3 gives a more detailed background into the applications of lightning current

models, the IEC 62305-1 and the different lightning models and approximations.

There is a requirement for a function that can be used in place of the Heidler function in

the standard. This function should take a similar form to that of the Heidler function, it

3



Chapter 2. Approach Taken 4

should be intuitive when compared to the Heidler function and the mathematics in using

this function should be as simple as that of the Heidler function. Most importantly this

function must have an analytical integral for lightning current applications.

2.2 Contribution of this Dissertation

This study develops a function that approximates the Heidler function in the time do-

main. This approximation has the advantage of having an analytical integral and taking

the same form as that of the Heidler function; only the parts of the Heidler function that

cannot be integrated are replaced in producing this approximation. This approximation

is easy to use and the parameters for creating different lightning current waveshapes are

determined easily. In a system design or simulation, it would be trivial to replace the

Heidler function with this approximation. Most importantly, it can be utilised in per-

forming Maxwell’s equations or finding the Fourier transform (frequency components).

Chapter 4 details the development process of this function with its properties.

2.3 Scope and Limitations

The approximation developed in this research has a clearly defined scope: it is based

on the waveshapes mentioned in the IEC 62305-1 lightning protection standard. The

approximation is ideally suited for use in cases where the integral of the Heidler function

is required. Therefore, the IEC 62305-1 standard is used as a starting point for the

research which introduces some limitations. For example, the parameters for the various

Lightning Protection Levels (LPLs) and lightning current models are dictated by those

defined in this standard. The research is limited to the definitions in this standard and

comparisons are only made to the two waveshapes mentioned therein. The parameters

of the approximation are determined empirically from those defined in the IEC 62305-

1 for the Heidler function. No evidence is provided in this research to show that this

approximation can be used outside of the bounds of the IEC 62305-1. Chapter 6 discusses

further research that can be carried out to either overcome or verify these limitations.

2.4 Methodology of the Study

This study is performed by evaluating the limitations associated with the Heidler function

and devising a solution. The approach taken in developing this approximation is different

to the other approximations outlined in Section 3.5 because the development is done in
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the Laplace domain and the inverse Laplace transform is obtained. This is done only

for the part of the equation that cannot be integrated. This part of the function is

substituted back into the general form of the function to create the overall approximation.

This is all discussed in more detail in Chapter 4

As this study is the development of an equation, all results are based on simulations of

the approximation. In order to determine the accuracy of the approximation, a control

is required. The IEC 62305-1 details two waveshapes and gives the corresponding pa-

rameters for the Heidler function for these waveshapes. The approximation is simulated

alongside these waveshapes and the maximum errors are obtained by calculating the ab-

solute difference between the approximation and the Heidler function. The derivatives

are compared in a similar manner. Chapter 5 details all of the results obtained using

this methodology.

Conclusions are drawn about the accuracy of the approximation and the frequency com-

ponents are plotted as an indication of their similarity to the IEC 62305-1 standard.

This is all detailed in Chapter 6.

2.5 Conclusion

This chapter has given an overview of the entire study. It has essentially answered the

questions of what, why and how relating to the study. It has also given an outline to

which chapters answer what questions and how.

The following chapter gives the background that relates to the work done. This is done

by detailing some applications of lightning current models, the lightning protection stan-

dard, lightning current models and some of the work that has been done in approximating

the Heidler function.



Chapter 3

Background

This chapter provides the background knowledge that is required to under-

stand this research and why it was undertaken. Insight is given into the

applications of lightning current models, including induced currents on trans-

mission lines and lightning frequency component analyses. The terminology

used in the IEC lightning protection standard is defined giving insight into

the reason for approximating the Heidler function. The Heidler function and

the double exponential function are also defined and discussed. A literature

review is carried out showing some of the work done by other researchers in

obtaining approximations to the Heidler function.

3.1 Overview

In order to understand the research presented in this dissertation, there are certain

concepts that require further description. In the previous chapter the research questions

of what, why and how are answered. However, very little detail is given about the

concepts and ideas mentioned. This chapter explains a few of the applications where it

is appropriate to utilise lightning current models. Key components of the IEC 62305-1

(part one of the lightning protection standard) are explained. Two of the more common

lightning current models are detailed and some of the approximations that have been

developed by other researchers are detailed. This all gives some background relating to

the study.

6
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3.2 Application for Lightning Current Models

There are several instances when there is a requirement to use a lightning current model

such as in the design of LPSs. Two of the more specific cases where lightning current

models are used are detailed below. These include current path analyses using return

stroke modelling and the need for the frequency components of lightning.

3.2.1 Current Path Analyses

Return stroke models are characterised into four primary classes, namely gas dynamics

model, electromagnetic model, distributed circuit model and the engineering model [4–6].

The engineering model is the primary model used when looking at induced effects on

power lines.

(a)

i(t)
Z0

Z0

(b)

Figure 3.1: (a) Physical and (b) Transmission Line models of a lightning strike close
to a transmission line that induces over-voltages on the line.

Figure 3.1 shows the (a) physical and (b) return stroke models for a lightning strike

in close proximity to a transmission line. From these figures it can be seen that when

modelling a lightning strike occurring in close proximity to a transmission line, the

lightning channel is modelled as a monopole with a perfectly conductive ground and a

vertical current path [4, 7, 8].
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Information about the EM fields are required when calculating the induced effects of

the lightning strike on the transmission line. The induced currents can be calculated by

integrating the different components of the EM fields as outlined by Agrawal et al. [9].

The Lightning Electromagnetic Pulse (LEMP) equations need to be determined before

calculating the EM fields. The equations for the EM fields can be seen in Equations 3.1

and 3.2 respectively. These are defined by Uman et al. as the LEMP equations [10].

(3.1)Ez (D, t) =
1

2πε0

[∫ H

0

2− 3 sin2 θ

R3
×
∫ t

0
i

(
z, τ − R

c

)
dτdz

+

∫ H

0

2− 3 sin2 θ

cR2
i

(
z, t− R

c

)
dz −

∫ H

0

sin2 θ

c2R

∂i
(
z, t− R

c

)
∂t

dz

]

(3.2)Bφ (D, t) =
µ0

2π

∫ H

0

sin θ

R2
i
(
z, t− r

c

)
dz +

µ0

2π

∫ H

0

sin θ

cR

∂i
(
z, t− R

c

)
∂t

dz

The full extent of what these equations mean is beyond the scope of this study. How-

ever, what is clear is that these equations utilise the return stroke model, i (z, t). This

expression for the lightning current along a path can be defined by different models as in

[2, 4, 11]. All the models hold the form shown in Equation 3.3 where u(t) is the Heavi-

side function, P (z′) is the height-dependent current attenuation factor and i(0, t) is the

lightning channel base current which as the name suggests is the current as measured

from the base of the object that is struck [2, 4, 12].

i(z′, t) = u

(
t− z′

v

)
P
(
z′
)
i

(
0, t− z′

v

)
(3.3)

In short, there are two steps of integration required to calculate induced currents on

transmission lines [4, 11, 13].

1. Integrate some model of the lightning channel base current to obtain the EM fields.

2. Integrate the EM fields using the equations defined by Agrawal et al. to obtain the

induced currents.

Referring back to Figure 3.1, the induced effects on a nearby transmission line can be

calculated by modelling the lightning event as in Figure 3.1(b) and choosing an appropri-

ate lightning channel base current. Clearly from the equations above, at least the second

integral of this channel base current is required. Using an accurate lightning channel base

current leads to very complex models that require long computer simulations because of

numerical integration [4]. Section 3.4 details two of the more common equations used as

lightning channel base current models.
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3.2.2 Frequency Components of Lightning Currents

Obtaining frequency components of a lightning strike are important for studies such as

that done by Lee et al., where they are studying the effects of the lightning frequency

components on human injury caused by a lightning strike [14]. In this study, Lee et al.

utilise the double exponential function to obtain the frequency components of a lightning

strike. The frequency components in the double exponential are found to be an order of

magnitude different to those recommended by the standards [15].

The reason for such a study is that the sharp rise in the lightning current creates a broad-

band current. Without using the Heidler function for such applications, it is difficult to

standardise testing across the different fields of interest.

3.3 IEC 62305-1 - Lightning Protection Standard

The IEC 62305 is the lightning protection standard containing four parts. Where part

one focuses on the general principles of lightning protection and parts two to four focus

on more specific areas of lightning protection. IEC 62305-1 details all the relevant com-

ponents of a lightning flash as well as all the terminology and standard values to utilise

when designing systems such as LPSs.

Figure 3.2 shows an adaptation of Figure A.1 from the standard. This figure shows how

the different stroke currents, such as the 0.25/100 and 10/350 are composed. T1 is the

rise time (number before the ‘/’) and T2 is the fall time (number after the ‘/’).

Figures A.3 and A.4 in the standard show typical waveshapes expected from both down-

ward and upward lightning flashes respectively. The three components identified in these

images are the first short stroke, the subsequent short stroke and the long stroke. The

first and subsequent short strokes are seen to be high current impulses with a sharp

rise and a slower decay. The long stroke on the other hand is a lower current that is

maintained for a comparatively long time.

Table A.1 in the standard shows the values that should be used in system designs. The

values given here are the maximum change in current, the charge, the peak current, etc.

With these values, systems can be designed to different LPLs. The values given in this

table are based on the original studies done by Anderson and Eriksson and Berger et al.

on lightning currents [16, 17]. The standard typically makes use of the upper end values

to protect against more lightning events. For example, a system with a higher current

rating will be protected against a lower current lightning strike.
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Figure 3.2: Definitions of short stroke parameters adapted from [1]

In order to simulate lightning currents in LPS design, the standard identifies a function

that creates a waveshape with the characteristics outlined in Table A.1 of the standard.

This function is the Heidler function with a specific configuration (n = 10) (see Sec-

tion 3.4.2). This function can be used to create any lightning current waveshape with

the two of interest in the standard being the 10/350 (first short stroke) and the 0.25/100

(subsequent short stroke). These two waveshapes are simulated using the parameters

specified in Table B.1 in the standard for the different LPLs and stroke types [1].

3.4 Current Waveshape Models

The IEC lightning protection standard details the Heidler function with a specific con-

figuration as the standardised waveshape for lightning current simulations. There are

several lightning current models defined in the literature with the two most popular

being the Heidler and the double exponential. There are also applications that use a

combination of the two [11, 12, 18]. This section gives some background into these two

equations and their properties.
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3.4.1 The Double Exponential Model

The double exponential function is defined in Equation 3.4.

ie (t) =
Io
A

(
e−αt − e−βt

)
(3.4)

Where:
I0 = Peak current [A]

A = Peak current correction

α = Decay time constant [1/s]

β = Rise time constant [1/s]

The double exponential model is often used in place of the Heidler function because

it can be integrated. However the waveshape produced by the double exponential equa-

tion is not physically realistic because the maximum current steepness occurs at time

t = 0 [2, 3, 19, 20]. Moreover, this function does not allow for waveshapes that comply

with Table A.1 in the IEC 62305-1 standard. For instance, a subsequent short stroke for

LPL-I would have a maximum current steepness of about 545 kA/µs, which is far greater

than the maximum value outlined in the standard of less than 200 kA/µs [21]. Another

disadvantage to using this equation is that it is not easily adjustable, the parameters are

not easily obtained for different waveshapes [12].

3.4.2 The Heidler Function

To avoid the disadvantages of the double exponential equation, the Heidler function is

used. This can be seen in Equation 3.5.

ih (t) =
I0
η

(
t
τ1

)nh

1 +
(

t
τ1

)nh
e
− t

τ2 (3.5)

Where:
I0 = Peak current [A]

η = Peak current correction

τ1 = Rise time constant [s]

τ2 = Decay time constant [s]

nh = Heidler steepness factor

This equation more realistically approximates a lightning return stroke and the peak

current correction can be calculated using Equation 3.6 [2, 12, 19, 20, 22].

η = e
− τ1

τ2

(
nhτ2
τ1

) 1
nh

(3.6)
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Equation 3.7 shows the first derivative of the Heidler function.

i′h (t) =
I0
η

(
nht

nh−1τnh
1

(τnh
1 + tnh)2

− tnh

τ2 (τ
nh
1 + tnh)

)
e
− t

τ2 (3.7)

The IEC 62305-1 standard makes use of a specialised form of the Heidler function where

nh = 10. Using this form of the equation, there are values for the other parameters in

the standard that can be used to simulate both first and subsequent short strokes [1, 21].

The disadvantage of the Heidler function is that there is no analytical integral and hence

no analytical expression for the Heidler function in the frequency domain [2, 19]. This

creates problems when performing analyses such as those mentioned in Section 3.2 above.

3.5 Heidler Function Approximations

As there are is no analytical integral to the Heidler function, there are many researchers

working towards an approximation that can be used in its place for applications such

as those mentioned in Section 3.2. This section discusses a few of these approximations

with the disadvantages associated with each one.

Feizhou and Shanghe developed a function that they call the Pulse function [2]. Accord-

ing to their study, this function produces a maximum error of 0.5% with the waveshapes

they used. However, this function is a modified form of the double exponential function

and it requires very complex methods to determine the parameters used in the equation.

Heidler and Cvetić approximate the Heidler function utilised in the IEC 62305-1 stan-

dard [3]. This approximation has an analytical integral but the equation is specific to

the subsequent short stroke. There is no general form of this approximation and so

this equation cannot be easily manipulated. Their study also details several other ap-

proximations to the Heidler function but all with other applications. They all have the

disadvantage that they cannot be integrated analytically.

Delfino et al. conduct a study in which they develop a Prony series approximation to the

Heidler function [20]. The mathematics required for this approximation is very complex

limiting its use in engineering applications. Each scenario is different as there is no truly

generalised form and the number of terms used affects the error associated with the

approximation. This would be difficult to use for engineering applications.

Javor and Rancic develop a new approximation that they call the New Channel Base

Current (NCBC) [12, 23]. This function contains some complicated mathematics and it is
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a piecewise function which implies that there are discontinuities when taking the analyt-

ical derivative with step functions. The approximation also contains incomplete gamma

functions which are defined as integrals and hence further complicate the mathematics

[24]. There is no analytical Fourier transform to this approximation [25].

Vujević et al. define their version of the exponential approximation that is fixed for

nh = 10 [26, 27]. The mathematics presented in their study is extremely complicated

and they introduce several new unknown parameters. The approximation is not as

intuitive as the Heidler function. The frequency response presented is not as expected

at higher frequencies; it does not roll off as it does in the standard.

All of the approximations above have one or more disadvantage or limitation. Overall the

problems are that the mathematics are very complicated and it would be very difficult

to simply substitute these equations in place of the Heidler function in the IEC 62305-1.

The approximation in this dissertation provides an approximation, with an analytical

integral, for use in engineering applications that does not have these limitations.

3.6 Conclusion

This chapter has given the background information relevant to this study. This includes

all the terminology, equations, applications and a literature review.

The following chapter details the approximation that is developed in this study. The

development of the function is detailed and all its properties are discussed in isolation.



Chapter 4

Heidler Function Approximation

This chapter deals with the development of the approximation. This is done

by closely analysing the Heidler function and defining the limiting parts of

the function. The development pathway of the approximation is detailed.

The approximation is defined and its parameters are explained. The time

domain properties (derivative and integral) and frequency domain properties

(Fourier transform) are also discussed.

4.1 Overview

Knowledge of which parts of the Heidler function are preventing it from having an

analytical integral allows for the development of an approximation. Once the Heidler

function has been decomposed and understood, some insight into the solution can be

gathered. As outlined in Chapter 2, the approximation function has certain criteria.

Firstly, it must approximate the Heidler function in the time domain (within certain

error limits). Secondly, it must have an analytical solution to its integral. Lastly, it

must take the same form as the Heidler function so that the Heidler function and the

approximation can be interchanged for different applications. With these criteria in mind

the approximation function is developed.

4.2 Decomposing the Heidler Function

An example of the Heidler function can be seen in Figure 4.1. This function is defined

by Equation 3.5 in Section 3.4.2. The shorthand version of the equation can be seen in

14
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Figure 4.1: Graph depicting the Heidler function in the form of a 10/350 lightning
waveform with a 200 kA peak.

Equation 4.1.

ih (t) =
I0
η
xh (t) y (t) (4.1)

Where

xh (t) =

(
t
τ1

)nh

1 +
(

t
τ1

)nh
(4.2)

and

y (t) = e
− t

τ2 (4.3)

Equations 4.2 and 4.3 are the rise and fall components of the Heidler function respectively.

The rise component cannot be analytically integrated preventing an analytical transform

of the Heidler function into the frequency domain. These equations will be analysed in

detail in Sections 4.2.1 and 4.2.2 and an approximation that overcomes this limitation

of the Heidler function is developed.

4.2.1 Heidler Rise Function

The rise time part of the Heidler function is defined by Equation 4.2 and is plotted in

Figure 4.2. This function ctakes the form of an S-curve. Clearly, this function can be

easily modified to represent any lightning waveshape rise time. This can be achieved by
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varying nh (the steepness factor) and τ1 (the rise time constant). Therefore this function

meets the criteria that it can approximate any lightning waveform. However this function

cannot be integrated and hence cannot be transformed into the frequency domain. In

order to solve this limitation another S-curve must be developed that approximates this

one and which can also be integrated.
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Figure 4.2: Graph depicting the rise function of the Heidler function (an S-curve).

There are numerous forms of the S-curve such as those given in Equation 4.4a to Equa-

tion 4.4f.

f(x) = erf

(√
π

2
x

)
(4.4a)

f(x) =
x√

1 + x2
(4.4b)

f(x) = tanh(x) (4.4c)

f(x) =
2

π
arctan

(π
2
x
)

(4.4d)

f(x) =
2

π
gd
(π
2
x
)

(4.4e)

f(x) =
x

1 + |x|
(4.4f)

These equations do not allow for an easy manipulation of parameters to tailor the wave-

shape to a specific rise time and steepness. Many of these functions can also not be
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Figure 4.3: Graph depicting the decay function of the Heidler function (exponential
decay function).

integrated which would not solve the limitation of the Heidler function. Therefore an

alternative is required that can easily be modified.

4.2.2 Heidler Fall Function

The part of the Heidler function that controls the decay time and shape is in Equation 4.3

and a graph of this is plotted in Figure 4.3. This function clearly meets all the criteria

outlined above: it can easily be altered to change the decay time and it can be trivially

integrated (and hence transformed into the frequency domain). This function is just

a complex shift of the signal in the frequency domain because of the rule of Laplace

transforms shown in Equation 4.5 [28, 29].

L
{
e−atf (t)

}
= F (s+ a) (4.5)

Therefore there is no need to redefine the decay part of the equation in any way and the

approximation function can still be defined as Equation 4.6.

ia (t) =
I0
η
xa (t) y (t) (4.6)
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Where I0, η and y(t) as per the Heidler function (Equation 3.5) and:

xa (t) = The rise function of the approximation

The next section details the development of the approximation function.

4.3 Developing an Approximation to the Heidler Function

The development of this approximation is different to the approaches taken for the ap-

proximations in the literature (see Chapter 3). The only part of the Heidler function that

is approximated is the rise function (xh(t)) and the approximation is developed in the

Laplace domain ensuring that the time domain equation can be integrated analytically

[30].

This implies that the rise equation that is developed must be transformed into the time

domain. The decay equation and peak current can be used with this to obtain the overall

approximation equation.

The step response of an n-th order, real and negative pole creates an S-curve in the time

domain. Equation 4.7 shows the start of the approximation in the Laplace domain, the

step response of an n-th order pole. See Appendix A for the full step-by-step process in

getting from this point to the final approximation.

Xa (s) =
1

s
(

s
ω0

+ 1
)na

(4.7)

Where:
ω0 = Rise time constant [rad/s]

na = Approximation steepness factor

Taking the inverse Laplace transform of this equation, the rise function of the approxi-

mation is found as shown in Equation 4.8.

xa (t) = 1− e−ω0t

(
na∑
i=0

ωi
0t

i

i!

)
(4.8)

The constants in this equation can be varied to obtain different steepness factors and rise

times (see Sections 4.4.1 and 4.4.2 respectively). This function is plotted in Figure 4.4.

This is clearly comparable to Figure 4.2 which shows the rise time function of the Heidler

function.
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Figure 4.4: Graph depicting the rise function of the approximation function (an
S-curve).

By substituting the approximated rise function back into the Heidler function shown in

Equation 4.1, the overall approximation can be obtained. The next section details the

approximation function, its properties and its frequency domain representation.

4.4 Function Definition and Properties

This approximation to the Heidler function has the advantage that it has an analytical

integral and hence an analytical solution in the frequency domain. Moreover it can still

be tailored to any waveshape, meaning that the steepness of the graph, the rise time,

the fall time and the peak current can all be modified. This allows for analyses using

10/350, 0.25/100 and any other lightning waveshapes required.

The approximation function is defined in Equation 4.9.

ia (t) =
I0
η

(
1− e−ω0t

(
na∑
i=0

ωi
0t

i

i!

))
e−t/τ2 (4.9)
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Where:
I0 = Peak current [A]

η = Correction factor of peak current

ω0 = Rise time constant [rad/s]

τ2 = Fall time constant [s]

na = Approximation steepness factor

Modifying these properties gives the desired lightning current waveform. An example

plot of this function can be seen in Figure 4.5.
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Figure 4.5: Graph of an example Heidler function approximation lightning current
waveshape in the form of a 10/350 with a 200 kA peak current.

As the approximation was designed as a modification of the Heidler function, it still takes

the same form as in Equation 4.1 with xh (t) replaced with xa (t). The difference is that

xh (t) cannot be integrated but xa (t) can be integrated and hence transformed into the

frequency domain. The following subsections show how the steepness factor, rise time

constant and fall time constant affect the shape and properties of the approximation

function.

4.4.1 Steepness Factor

The steepness factor of the approximation, na, changes the shape of the approximation

function. Figure 4.6 shows several plots of the approximation function with different
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steepness factors but constant rise time constant (ω0), fall time constant (τ2), peak

current (I0) and correction factor (η). These values are tabulated in Table 4.1 where the

values of I0, η and τ2 are obtained from the IEC 62305-1 standard and ω0 is determined

empirically for a 10/350 waveshape.
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na = 5
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na = 40

Figure 4.6: Graph showing the effect of changing the steepness factor (na) in the
approximation function while keeping all the other variables constant.

Table 4.1: Constant values used in Equation 4.9 to obtain the graphs plotted in
Figure 4.6

Variable Value
I0 200 kA
η 0.93
ω0 1 768 000 rad/s
τ2 485 µs

As expected from Equations 4.8 and 4.9, the steepness factor only affects the rise function

(xa(t)) of the entire function. From the figure, it is clear that an increased steepness

factor decreases the steepness of the rise time. The initial knee in the curve (upward

bend) is delayed by a higher value of na and hence the maximum instantaneous change

in current occurs later in time. The figure also shows that the rise time of the waveshape

changes with a change in na but this is not the defining change.

Table 4.2 shows the peak current and rise time errors as the steepness factor changes.

These errors are calculated as a percentage of a 10/350, 200 kA waveshape. Clearly the
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error in rise time is more pronounced than the peak current error. This table gives an

indication to the sensitivity of the function with a change in the steepeness factor (na).

Table 4.2: Variation of rise time and peak current of the approximation with a change
in the steepness factor (na) as a percentage of a 200 kA 10/350 waveshape.

na

Peak Current
Error (%)

Rise Time
Error (%)

5 4.93 57.40
12 3.67 36.64
19 2.54 21.30
26 1.46 9.67
33 0.43 1.91
40 0.57 12.17

4.4.2 Rise Time Constant

The rise time constant, ω0, is used primarily to change the rise time (the number before

the ‘/’) of the waveshape. Figure 4.7 shows the effect of changing the rise time constant

in the approximation while keeping the rest of the parameters constant. The constant

values used in this plot are tabulated in Table 4.3 where once again, I0, η and τ2 are

obtained from the IEC 62305-1 standard and na is determined empirically for a 10/350

waveshape.

Table 4.3: Constant values used in Equation 4.9 to obtain the graphs plotted in
Figure 4.7

Variable Value
I0 200 kA
η 0.93
na 33
τ2 485 µs

This plot clearly shows how the rise time changes with a change in the rise time constant.

A greater rise time constant results in a faster rise time. The change in ω0 also has an

effect on the steepness of the graph but the defining feature is the change in rise time.

Table 4.4 shows the peak current and rise time errors as the rise time constant changes.

Again, these errors are calculated as a percentage of a 10/350, 200 kA waveshape. As

with the steepness factor, the error in rise time is more pronounced than the error in

peak current. This table gives an indication to the sensitivity of the function with a

change in the rise time constant (ω0).
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Figure 4.7: Graph showing the effect of changing the rise time constant (ω0) in the
approximation function while keeping all the other variables constant.

Table 4.4: Variation of rise time and peak current of the approximation with a change
in the rise time constant (ω0) as a percentage of a 200 kA 10/350 waveshape.

ω0 (rad/s)
Peak Current

Error (%)
Rise Time
Error (%)

500000 13.40 243.67
1000000 4.09 77.36
1500000 0.65 20.31
2000000 1.15 9.12
2500000 2.25 27.29
3000000 3.01 38.91

4.4.3 Fall Time Constant

The fall time constant, τ2, changes the decay time (the number after the ‘/’) of the

waveshape. Figure 4.8 shows the effect of changing the fall time constant in the approx-

imation function with the other parameters all fixed. These static values are seen in

Table 4.5 where once again, I0 and η are obtained from the IEC 62305-1 standard and

ω0 and na are determined empirically for a 10/350 waveshape.

Several observations are made in this graph, namely:

1. This is the same effect as that seen in the Heidler function, as expected.
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Figure 4.8: Graph showing the effect of changing the fall time constant (τ2) in the
approximation function while keeping all the other variables constant.

Table 4.5: Constant values used in Equation 4.9 to obtain the graphs in Figure 4.8

Variable Value
I0 200 kA
η 0.93
na 33
ω0 1 768 000 rad/s

2. As with the Heidler function, the decay time (the time to 50% of the peak current)

is not the same as the decay time constant (τ2).

3. The peak current varies slightly with the change in fall time constant as expected

from Equation 3.6.

Table 4.6 shows the peak current and rise time errors as the fall time constant changes.

Again, these errors are calculated as a percentage of a 10/350, 200 kA waveshape. This

table is different to those of the steepness factor and rise time constant (Tables 4.2 and

4.4) because the fall time constant has a negligible effect on the rise part of the waveshape.

This table gives an indication to the sensitivity of the function with a change in the fall

time constant (τ2).
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Table 4.6: Variation of rise time and peak current of the approximation with a change
in the fall time constant (τ2) as a percentage of a 200 kA 10/350 waveshape.

τ2 (µs)
Peak Current

Error (%)
Rise Time
Error (%)

300 3.22 0.35
350 1.88 1.51
400 0.85 1.68
450 0.04 1.83
500 0.61 1.95
550 1.16 2.05

4.5 Time Domain Properties

This section shows the time domain properties of the approximation namely, the time

derivative and the integral. Unlike the Heidler function, the approximation has an ana-

lytical integral.

4.5.1 Derivative

Equation 4.10 shows the analytical derivative of the approximation. This shows the rate

of change of the current in the lightning stroke current model.

i′a (t) =
I0
η

[
e−ω0t

(
ωna+1
0 tna

na!

)
− 1

τ2

(
1− e−ω0t

(
na∑
i=0

ωi
0t

i

i!

))]
e
− t

τ2 (4.10)

A graph of the above function with the same parameters as those utilised in creating

the graph in Figure 4.5, can be seen in Figure 4.9. As is expected, the greatest rate of

change of current occurs during the rise of the graph and the negative rate of change is

comparatively small.

4.5.2 Integral

One of the primary reasons for developing an approximation to the Heidler function is

to have the ability to integrate such a function. Obtaining the integral of the approxi-

mation is trivial and can be seen in Equation 4.11 where C is some arbitrary constant

of integration because it is an indefinite integral.

∫
ia (t) dt =

I0τ2e
−t

(
1
τ2

+ω0

)
η

−etω0 +

na∑
i=0

ωi
0

i!

i∑
j=0

i! τ j2 t
i−j

(i− j)! (τ2ω0 + 1) j+1

+ C (4.11)
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Figure 4.9: Graph showing the derivative of the approximation function shown in
Figure 4.5.

4.6 Frequency Domain Properties

Another reason for using an approximation to the Heidler function is to obtain a Fourier

transform and hence a current density or frequency response. The approximation shown

in Equation 4.9 makes this process even more trivial. Rather than using the fact that the

approximation can be integrated (see Section 4.5.2), the approximation is developed in

the Laplace domain. Hence the Fourier transform is found by using the complex shifting

property of Laplace (see Equation 4.5) and replacing s with jω. The result of this can

be seen in Equation 4.12.

Ia (jω) =
I0
η

1

jω + 1
τ2

1(
jω+ 1

τ2
ω0

+ 1

)na
(4.12)

By using dimensional analysis, it can be seen that in Equation 4.12, Ia(jω) has the units

of A/Hz. This implies a current density across the angular frequency spectrum. In order

to obtain current density as a function of frequency, ω should be replaced by 2πf as seen

in Equation 4.13.

Ia (jf) =
I0
η

1

j2πf + 1
τ2

1(
j2πf+ 1

τ2
ω0

+ 1

)na
(4.13)
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Equations 4.12 and 4.13 are complex functions and the modulus is required to plot the

current density of the approximation. The modulus is shown in Equation 4.14 and a plot

of this equation, based on the waveshape shown in Figure 4.5, can be seen in Figure 4.10.

|Ia (jf)| =

∣∣∣∣∣∣∣∣
I0
η

1

j2πf + 1
τ2

1(
j2πf+ 1

τ2
ω0

+ 1

)na

∣∣∣∣∣∣∣∣
=

I0
η

1√
1
τ22

+ 4π2f2

1(√(
1 + 1

ω0τ2

)2
+ 4π2f2

ω2
0

)na
(4.14)
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Figure 4.10: Amplitude density of the approximation model produced from the wave-
shape plotted in Figure 4.5.

4.7 Conclusion

This chapter has decomposed the Heidler function into its components and found an

approximation to the rise time function that can be used in the general form of the

equation. The approximation has been detailed with all its parameters. Its time domain

and frequency domain properties have been discussed. The following chapter explains

how results are obtained and shows the simulated results.



Chapter 5

Results: A Comparison to the

Heidler Function

This chapter shows the results obtained by simulating the approximation and

comparing the simulations to those of the Heidler function. In order for the

results to be understood, the experimental methodology is first defined which

explains how the simulations are carried out and how the comparisons are

made. Both the first short stroke and the subsequent short stroke (10/350 and

0.25/100 respectively) are analysed. In the analyses, the functions and their

derivatives are compared to the Heidler function and the current densities of

the approximation are plotted.

5.1 Overview

As mentioned in Chapter 2, the results obtained in this study are simulated. The sim-

ulations used in this study are those of the short lightning current waveshapes detailed

in the IEC 62305-1 standard [1]. These are the initial and subsequent short strokes

(10/350 and 0.25/100 respectively). This chapter details the experimental methodology

and compares the waveshapes obtained using the Heidler function (Equation 3.5) with

those obtained using the approximation (Equation 4.9).

28
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5.2 Experimental Methodology

The requirement in this study is to determine the accuracy of the approximation to the

Heidler function. This is achieved by running mathematical simulations using mathe-

matical modelling software such as MATLAB R© [31], Mathematica R© [32], Maxima [33],

etc. In order to determine a level of accuracy, the values used in the IEC 62305-1 are

used as a control. The parameters used in creating the Heidler function are detailed in

Table B.1 of the IEC 62305-1 standard. These values are for the 10/350 and the 0.25/100

waveshapes (first and subsequent short strokes respectively).

Initial values are estimated for the parameters of the approximation from the Heidler

function parameters mentioned above. These values are then empirically optimized in or-

der to minimize the error between the approximation and the Heidler waveshapes. These

tabulated and calculated parameters are utilised in Equations 3.5 and 4.9 respectively

to evaluate the accuracy of the approximation. An na of 33 is found to be appropriate

for the waveshapes defined in the standard which have an nh of 10 (see Chapter 6 for

more).

There are various peak current values for the different LPLs defined in Table B.1 in the

standard [1]. However, as the peak current is only determined by I0 (peak current) and

η (peak current correction), the peak current values have no effect on the waveshapes

defined in Equations 3.5 and 4.9 or their respective errors.

The evaluation includes three simulations per waveshape. These are the current wave-

shape, the change in current (first derivative) and the current density (Fourier transform).

The current waveshapes of the Heidler function and the approximation are plotted with

the required parameters. The absolute value of the difference between the two functions

is determined and the maximum error is defined from this as a percentage of the Heidler

function. The first derivative is evaluated in very much the same manner as the current

waveshape.

The current density is evaluated by using the parameters calculated for the approxima-

tion in Equation 4.13. This is then plotted on log-log axes. As there is no analytical

Fourier transform of the Heidler function, this is purely an indication and no quantifica-

tion of error can be obtained from this.
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Figure 5.1: Graph of the first short stroke (10/350) current model using both the Hei-
dler function and the approximation. The time scale is up to 200 µs and the amplitude

is as high as 210 kA.

5.3 First Short Stroke (10/350)

The first short stroke as defined by the IEC 62305-1 has a front time of 10 µs and a

decay time of 350 µs (see Section 3.3) [1]. A graph depicting both the Heidler function

(solid line) and the approximation (dashed line) waveshapes can be seen in Figure 5.1.

The values used in both of the equations to create the waveshapes seen in Figure 5.1 are

shown in Table 5.1.

Table 5.1: Parameters used in Equations 3.5 and 4.9 to plot the waveshapes shown
in Figure 5.1.

Parameter Heidler Approximation
I0 [kA] 200 200
η 0.93 0.93
na - 33
nh 10 -
ω0 [rad/s] - 1 768 211
τ1 [µs ] 19 -
τ2 [µs ] 485 485

It is clear from the figure that the approximation closely follows the waveshape produced

by the Heidler function. The error is quantified by determining the error as a function
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of time as seen in Equation 5.1. The maximum error is found by equating the first time

derivative of the error function to zero as in Equation 5.2 and solving for t. This time is

substituted back into the error function to obtain the maximum error in kA. This value

is found as a percentage of the peak value of the Heidler function.

e (t) = |ia (t)− ih (t)| (5.1)

e′ (t) = 0 (5.2)

Where:
e (t) = Error function [A]

e′ (t) = Derivative of error function [A/s]

In the case of the 10/350 waveshape, with the parameters defined in Table 5.1, the

maximum error is defined as 1.38%. This error is seen to occur during the rise part of

the waveshape which is expected because the decay functions are identical.

The next comparison made is between the first derivatives of both the Heidler function

and the approximation (Equations 3.7 and 4.10 respectively). This shows the difference

in the instantaneous change in current of the two waveshapes. The same parameters are

used, i.e. those in Table 5.1. The graph showing both of these waveshapes can be seen

in Figure 5.2.

The error is more pronounced in the derivative. Using the same method as above to

obtain the maximum error as a percentage of the Heidler function maximum, the maxi-

mum error is calculated to be 7.91% (as before, the error is seen during the rise part of

the waveshape).

The maximum dI/dt occurs during the rise time of the function. Another characteristic

of the plot is that the exponential decay is much longer than the rise. This causes the

negative component of the derivative to be much smaller but longer than the rise time

component.

In both Figures 5.1 and 5.2, the time scale goes up to 200 µs. This is because the tails

of the two waveshapes are the same. Therefore the resolution needs to be shown on the

rise time of the waveshapes. The amplitudes shown in the two graphs are large enough

to show the maximum values (200 kA in Figure 5.1 and 27.5 kA/µs in Figure 5.2).

For completeness, the current density of the approximated first short stroke is plotted

in Figure 5.3. This is produced using Equation 4.13 and the parameters in Table 5.1. A

current density is plotted because this is what is shown in Figure B.5 in the IEC 62305-1

standard.
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Figure 5.2: Graph of the first time derivative of the first short stroke (10/350) current
model using both the Heidler function and the approximation. The time scale is up to

200 µs and the amplitude is as high as 30 kA/µs.
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Figure 5.3: Current density of the approximation model produced from the waveshape
plotted in Figure 5.1.
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It is difficult to calculate an error in the case of the current density as there is no

analytical solution to the integral and hence the Fourier transform of the Heidler function.

Therefore any representation of this would be based on numerical methods with inherent

errors.

5.4 Subsequent Short Stroke (0.25/100)

As stated in Chapter 2, the purpose of this study is to find an appropriate approximation

to the Heidler function that can be used as a substitute when designing systems using

the guidelines of the IEC 62305-1 standard. Therefore both the waveforms prescribed

by the standard need to be analysed. Because of this, this section is similar to the last.

However slightly different conclusions can be drawn from the two different waveshapes.

According to the standard, the subsequent short stroke has a front duration of 0.25 µs

and a decay time of 100 µs [1]. This implies a much sharper rise time than that of the

first short stroke. Again, the three metrics shown here are the actual waveshape, the

first time derivative and the current density.
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Figure 5.4: Graph of a subsequent short stroke (0.25/100) current model using both
the Heidler function and the approximation. The time scale is up to 5 µs and the

amplitude is as high as 52 kA.
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A graph depicting both the Heidler function (solid line) and the approximation (dashed

line) waveshapes can be seen in Figure 5.4. The values used in both of the equations to

create the waveshapes seen in Figure 5.4 are shown in Table 5.2.

Table 5.2: Parameters used in Equations 3.5 and 4.9 to plot the waveshapes shown
in Figure 5.4.

Parameter Heidler Approximation
I0 [kA] 50 50
η 0.993 0.993
na - 33
nh 10 -
ω0 [rad/s] - 74 000 000
τ1 [µs ] 0.454 -
τ2 [µs ] 143 143

With the method outlined above, the maximum error is calculated to be 1.36% (as

before, the error is seen during the rise part of the waveshape). The decay time is so

much greater than the front duration (400×), that there is almost no decay in the graph

shown. This is so that the variation in the rise part of the function can be seen.

The first time derivative of both the Heidler function (solid line) and the approximation

(dashed line) are shown in Figure 5.5. Again the error in the first time derivative is
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Figure 5.5: Graph of the first time derivative of a subsequent short stroke current
model using both the Heidler function and the approximation. The time scale is up to

5 µs and the amplitude is as high as 300 kA/µs.
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more pronounced than in the actual waveshape and this error is calculated to be 7.86%

(as before, the error is seen during the rise part of the waveshape). The decay time is

so large in comparison to the rise time, that the negative dI/dt is negligible and in most

engineering applications can be assumed to be zero. The maximum change in current is

ten times greater than that of the first return stroke.

Once again, the current density of the approximated subsequent short stroke can be seen

in Figure 5.6. This is produced using Equation 4.13 and the parameters in Table 5.2. As

expected, there are higher frequency components in the subsequent short stroke than in

the first short stroke. However, the amplitude is lower.
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Figure 5.6: Current density of the approximation model produced from the waveshape
plotted in Figure 5.4.

5.5 Conclusion

This chapter has discussed the experimental methodology. The results of the experiment

are simulated and errors have been defined for the first and subsequent short strokes.

The following chapter utilises these results in order to draw conclusions about the vi-

ability of this approximation as a suitable replacement for the Heidler function in the

IEC 62305-1 standard. Some comments about the further work that can be carried out

are also made.



Chapter 6

Discussion and Further Work

This chapter critically analyses the results obtained in the previous chapter.

The lightning stroke current is analysed, noting some features of the wave-

shapes of the approximation and the Heidler function. A method is shown

for choosing the rise time constant in the approximation. The approxima-

tion is a good replacement for the Heidler function as it takes the same form

and contains most of the same parameters. Some notes are made about the

derivatives, in particular the effect that the subsequent short stroke can have

on a system. An untested hypothesis about the error percentages is discussed.

There is some discussion about the frequency response of the approximation

with reference to the lightning protection standard. Comments are made

about the further work that is required to optimise the approximation.

6.1 Overview

This chapter points out several observations and discusses any implications that they

may have in using the approximation. Some conclusions about the validity of the ap-

proximation and the suitability as a replacement for the Heidler function are made. Some

comments are made about the work that can be done to further this research.

6.2 Time Domain

As there is no accurate way of integrating the Heidler function and hence obtaining

frequency domain information without numerical methods, the comparisons between the

Heidler function and the approximation are made in the time domain. By using this

36
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method, the maximum errors can be quantified. The following two sections discuss the

results obtained in Sections 5.3 and 5.4.

6.2.1 Lightning Stroke Current

Chapter 5 discussed the first and subsequent stroke simulations in isolation of each

other. Several observations are made about the two strokes together. From the graphs

in Figures 5.1 and 5.4, it is obvious that the shape of the graph is the same for both

waveshapes but with different time and amplitude scales. The decay parts of the approx-

imation waveshapes follow the Heidler function decay exactly as expected. Any errors

are only present in the rise part of the waveshapes.

The values of ω0 (approximation rise time constant) and na (approximation steepness

factor) that are used in creating the approximations shown in Figures 5.1 and 5.4 are

determined empirically. These values can be seen in Tables 5.1 and 5.2 respectively. The

IEC 62305-1 is used as a control in the evaluation of the approximation and it states

that for the first and subsequent short strokes defined, a steepness factor, nh, of 10 is

required. It was found empirically that an na of 33 is appropriate for this case and

therefore in this study only the rise time constant, ω0, is increased for a faster rise time.

This increase is expected as ω0 ∝ 1
t and τ1 (Heidler rise time constant) decreases with

a quicker rise time. From the values in Table B.1 in the IEC 62305-1 standard, it is

seen that the τ1 ratio of the first stroke to the subsequent stroke is 19/0.454 = 41.85.

Looking at the same ratio of ω0 with the values used in Tables 5.1 and 5.2, there is a

ratio of 1 768 211/74 000 000 = 0.023895. This is the inverse of 41.85 and therefore it

is concluded that if the values of τ1 are known and only one value of ω0 is known, the

known value of ω0 can be multiplied or divided by the ratio of τ1. Multiplication of ω0

is done for a decrease in τ1 and division for an increase in τ1.

According to the IEC 62305-1 (Table C.3), the tolerance on peak current is ±10% for

both first and subsequent strokes [1]. Similarly the tolerance on the rise time is ±20%

for both the first and subsequent strokes. In order for an approximation to be a suitable

replacement for the Heidler function, it must fit within these boundaries. Table 6.1

shows the calculated peak current and rise time errors for both functions (Heilder and

approximation) and both waveshapes (first and subsequent strokes). The errors for the

first stroke are calculated as a percentage of a 10/350, 200 kA waveshape and the errors

for the subsequent stroke are calculated as a percentage of a 0.25/100, 50 kA waveshape.

It is clear from the table that the approximation is also well within the allowed tolerance

and is therefore suitable as a replacement to the Heidler function.
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Table 6.1: Comparison of the errors for the approximation and the Heilder function
for both the first and subsequent strokes

Approximation Heidler

First Stroke Peak Current Error (%) 0.43 0.31
Rise Time Error (%) 2.46 0.19

Subsequent Stroke Peak Current Error (%) 0.14 0.02
Rise Time Error (%) 0.23 0.75

Another observation that is made is that the maximum absolute error in the first stroke

is 1.38% and 1.36% in the subsequent stroke. This is a small change and it could

be attributed to rounding errors when finding values of ω0. This indicates that the

maximum absolute error is constant for any approximation waveshape. This is unproven

and is merely an observation but these errors do hold true for the waveshapes defined in

the IEC 62305-1 standard which is set as the control in this study (see Chapter 2).

I0 (peak current), η (peak current correction) and τ2 (decay time constant) are the

same for both the Heidler function and the approximation. This is expected as only

xh (t) is replaced in the Heidler function with xa (t) in the approximation. As these

are the respective rise time functions, it makes sense that the amplitude and decay

time parts of the equation are unaffected. This implies that the approximation is easily

interchangeable with the Heidler function.

Figures 6.1(a) and 6.1(b) show the effects of changing the steepness factor, nh, on the

Heidler function and its first time derivative respectively. A steeper graph implies a

faster rise time and hence the steepness factor affects the rise time of the waveshape,

however the defining feature change is the steepness of the rise time. The half peak

value remains at the same point in time for different steepness factors. The maximum

instantaneous change in current occurs later in time and with a greater amplitude for a

greater nh. This occurs shortly after the first knee (the upward bend) in the curve.

Figures 6.1(c) and 6.1(d) show the effects of changing the steepness factor, na, on the

approximation and its first time derivative respectively. The change in the rise time of

the waveshape is not as significant as with the Heidler function but the upward trend

does still begin later in time. As expected, the maximum instantaneous change in current

still occurs later in time but the peak value is decreased with an increase in na.

Figures 6.2(a) and 6.2(b) show the effects of changing the rise time constant, τ1, on the

Heidler function and its first time derivative respectively. A smaller rise time constant

produces a faster rise time of the waveshape and hence the steepness is also increased.

The defining feature is the change in rise time. Again the peak instantaneous change in

current occurs later in time with an increase in τ1 but converse to what is seen with the

steepness factor, the peak amplitude decreases.
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Figure 6.1: Effects of varying the steepness factors, nh and na, in both the Heidler
function and the approximation respectively. The (a) Heidler function and the (b)
Heidler function derivative are compared to the (c) approximation and its (d) derivative.

Figures 6.2(c) and 6.2(d) show the effects of changing the rise time constant, ω0, on

the approximation and its first time derivative respectively. A greater ω0 results in a

faster rise time. Again this affects the steepness of the rise time graph but the defining

feature is the change in rise time. The derivative shows that the increase in ω0 increases

the amplitude of the peak instantaneous change in current however this occurs earlier

in time unlike the other figures. ω0 is proportional to the inverse of time (ω0 ∝ 1
t ) and

therefore the opposite of what is seen with the Heidler function (and τ1) is expected with

the approximation (and ω0).

The steepness factors and the rise time constants of the Heidler function and the ap-

proximation do not have the same effect on their respective waveshapes and hence these
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Figure 6.2: Effects of varying the rise time constants, τ1 and ω0, in both the Heidler
function and the approximation respectively. The (a) Heidler function and the (b)
Heidler function derivative are compared to the (c) approximation and its (d) derivative.

values for the approximation are calculated empirically. This method can be improved

by finding some relationship between these parameters for the two functions (see Sec-

tion 6.4).

6.2.2 Lightning Stroke Current Derivative

When looking at the waveshapes of the derivatives of the approximated waveforms com-

pared with those of the Heidler function in Figures 5.2 and 5.5, a few observations can be

made. The first is that the peak change in current is seen at about 50% of peak current

value during the rise of the waveshape. This holds true for both the Heidler function
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and the approximation. This is expected as the rise time function is an S-curve which is

most steep in the middle of the rise.

From the two graphs, it can be seen that the maximum change in current in the sub-

sequent stroke is ten times greater than that of the first stroke. This is critical when

designing LPSs as the change in current is directly proportional to the voltage produced

across an inductor (any wire). Therefore, the subsequent short strokes are more likely

to have an effect on more sensitive systems due to even the smallest inductances.

As discussed above, the difference in the errors in the first short stroke and the subsequent

short stroke is almost the same. The maximum absolute error in the first stroke is 7.91%

and 7.86% in the subsequent stroke. This could once again be attributed to rounding

errors. This further indicates that the maximum absolute error could be constant for any

approximation waveshape. However this is still merely a hypothesis and would require

further simulation and verification.

6.3 Frequency Domain

One of the reasons for undertaking this study is to obtain an analytical Fourier trans-

form for the Heidler function (see Chapter 2). This implies that any transform of the

Heidler function is done numerically which has inherent errors. There is no real way to

quantify the error of the approximation in the frequency domain. Figure 6.3 shows an

adaptation of Figure B.5 in the IEC 62305-1 standard with the results obtained from the

Fourier transform of the approximation (Equation 4.13) plotted on top. Line 2 shows

the expected amplitude density of the first short stroke current while line 3 shows the

expected amplitude density of the subsequent short stroke current. The results from the

approximation clearly follow their respective waveshape expectations.

A current amplitude density is chosen because that is what is stipulated in the standard.

Clearly, if the values are multiplied by their respective frequencies i.e. Equation 4.13 is

multiplied by frequency, the amplitude spectrum can be found. It is clear that for the

first short stroke the peak current components are between about 500 Hz and 40 kHz with

a rapid decay above 40 kHz. The subsequent short stroke has lower amplitude current

components with a wider frequency range as expected. The peak current components

here are between about 1 kHz and 1 MHz. The subsequent short stroke is more important

when analysing wideband or high frequency systems/effects.
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Figure 6.3: Amplitude densities of the different lightning currents according to LPL-
I as stipulated by the IEC 62305-1 with the results of the Fourier transform of the
approximation (adapted from Figure B.5 in [1]). The numbers point to the solid lines

obtained from the standard.

6.4 Further Work

This study provides a replacement for the Heidler function that can be integrated. There

is enough evidence given via experimentation (simulation) to define a suitable function

that can be used. The evidence in this study is based on the waveforms and information

outlined in the standard. However there are areas that can be further evaluated to

possibly optimise the use of this function.

As noted above there is an error associated with the current waveshape and its derivative

when compared with those of the Heidler function. This error is within a tolerable

range and is quantified. It can therefore be taken into account in very sensitive system

designs. It is posited above that this error could be consistent across all variations of

the waveshape, however there are only two cases dealt with in this study (the only two
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waveshapes detailed in the IEC 62305-1) and therefore this hypothesis requires further

testing.

Another area for further research is again related to the errors that are quantified above.

It is possible that the errors are as “high” as they are (no approximation will ever have

zero error) because the numbers used for na (approximation steepness factor) and ω0

(approximation rise time constant) are determined empirically. These could be better

calculated by using some form of error optimisation algorithm. With these calculated

numbers the error could be reduced.

There may be some relationship between ω0 and the parameters used in the Heidler

function, particularly τ1 (Heidler rise time constant). By the same notion there may be

some relationship between na and the parameters used in the Heidler function. These

relationships would make plotting different waveshapes even easier than using the ratio

method described in Section 6.2.1 above. Further work is required to find such rela-

tionships. This however does not affect the validity of the approximation as a suitable

replacement for the Heidler function with an analytical integral.

6.5 Conclusion

This chapter has critically analysed the results obtained in the previous chapter. It has

drawn some conclusions about these results and hence the viability of the approximation.

Some further work is posited to further optimise the approximation and lower the error.

The following chapter concludes this dissertation by summing up all the work that has

been discussed and stating the conclusions that are drawn.
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Conclusion

An approximation to the Heidler function that has an analytical integral has been de-

veloped and discussed. This is useful in situations where the EM fields produced by

a lightning stroke need to be calculated. It is also useful in any scenario where the

frequency components of a lightning stroke are required for evaluation. The properties

of the approximation are discussed with reference to the IEC 62305-1 standard. The

viability of the approximation as a suitable replacement for the Heidler function in the

standard have been evaluated through the investigation of the simulations produced.

As the study is based on the guidelines in the IEC lightning protection standard, the

lightning strokes defined therein are the ones used for the evaluation of viability.

It can be seen that the waveshapes produced by the approximation are very similar to

those produced by the Heidler function. The maximum error in amplitude for the first

and subsequent lightning stroke currents is less than 1.5%. The maximum error in the

derivative is however greater but still less than 8%. This is still within the parameters

defined in the standard which are based on some of the original lightning current analyses.

The simulations detail the frequency response of the approximation for both waveshapes.

There is no way of quantifying the error in this result because the Heidler function has

no analytical integral and hence no Fourier transform. However the results are similar

to what is expected in the lightning protection standard. All of this provides evidence

that this approximation is a suitable replacement for the Heidler function when integrals

and frequency spectra of lightning strokes are required.

The approximation has been designed using the Heidler function as a base and therefore

they are easily interchangeable. When breaking the functions into components, the

only difference is in the rise time functions. Other than that the two equations contain

the same parameters. There is a ratio for the rise time constant that is found for

different waveshapes of the Heidler function. The inverse of this ratio holds true for
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the approximation giving further evidence of the consistency across the two functions.

Therefore the approximation can easily be used in place of the Heidler function taking

into account the quantified error (if necessary).

Additional work is required to optimise the approximation. This would further reduce

the error and make working with the approximation even easier. This work includes

proving or disproving the hypothesis that the error remains constant for any waveshape

produced by the approximation. There is only an empirical optimisation of the param-

eters used in this study. A full optimisation algorithm should be run in order to reduce

the 1.5% inaccuracy between the approximation and the Heidler function. It is posited

that there may be some relationship between the parameters used in the Heidler rise

time function and the approximation rise time function. Finding this relationship would

further simplify the use of the approximation in studies and system design.

The approximation that is developed is found to be a suitable replacement for the Heidler

function with the errors quantified and an analytical integral. Evidence is provided to

show that the approximation to the Heidler function developed in this dissertation, can

be used for the first and subsequent short strokes mentioned in the IEC 62305-1 with

less than 1.5% error.



Appendix A

Approximation to the Heidler

Function - Development

A.1 Overview

The process of developing an approximation to the Heidler function is easily described

in a few steps. This appendix goes into more detail and shows all the necessary steps in

developing the approximation.

A.2 Developing the Approximation

Equation A.1 shows the Heidler rise time function and it is clear that this function cannot

be analytically integrated.

xh (t) =

(
t
τ1

)nh

1 +
(

t
τ1

)nh
(A.1)

A plot of this is seen in Figure A.1 (an S-curve).

The S-curve rises to a value of one and remains constant. It is clear from this that a

step response is required. The approximation rise time function can be defined as in

Equation A.2.

Xa (s) =
1

s
H (s) (A.2)

Where:
H (s) = Transfer function (Laplace domain)

1
s = Unit step function in the Laplace domain

The step response of an n-th order real and negative pole in the Laplace domain produces
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Figure A.1: Graph depicting the rise function of the Heidler function (an S-curve).

an S-shaped curve response in the time domain. Therefore the transfer function can be

defined as in Equation A.3.

H (s) =
1(

s
ω0

+ 1
)na

(A.3)

Where:

ω0 = Some real and negative value

By substitution, Equation A.2 becomes Equation A.4.

Xa (s) =
1

s

1(
s
ω0

+ 1
)na

(A.4)

The time domain equation is required which can be found by taking the inverse Laplace

transform of Equation A.4 as defined in Equation A.5.

xa (t) = L−1 {Xa (s)}

= L−1

1

s

1(
s
ω0

+ 1
)na


= 1− e−ω0t

(
na∑
i=0

ωi
0t

i

i!

)
(A.5)
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By substituting this back into the generalised form of the lightning stroke current shown

in Equation A.6, the complete approximation can be seen in Equation A.7.

ia (t) =
I0
η
xa (t) y (t) (A.6)

=
I0
η

(
1− e−ω0t

(
na∑
i=0

ωi
0t

i

i!

))
y (t)

=
I0
η

(
1− e−ω0t

(
na∑
i=0

ωi
0t

i

i!

))
e−t/τ2 (A.7)

A.3 Conclusion

This appendix provides all the mathematical steps required to develop the approximation

to the Heidler function. This starts at the step response function and goes through until

the final equation.



Appendix B

Initial Findings Using the

Approximation

B.1 Preamble

This appendix is a paper that was accepted and presented for publication by the Inter-

national Conference on Lightning Protection (ICLP) in 2014, hosted in Shanghai, China.

The paper is entitled: Developing an Approximation to the Heidler Function -

With an Analytical Transformation into the Frequency Domain .

B.2 Paper Description

This paper discusses the preliminary development of the approximation to the Heidler

function. It also shows the preliminary results obtained from simulations of the approx-

imation. These results are without any optimisation.

These preliminary results indicated that this approximation is very promising and al-

lowed for further research to optimise the function. The frequency results obtained

broadened the scope of the approximation that was developed.

49



2014 International Conference on Lightning Protection (ICLP), Shanghai, China

Developing an Approximation to the Heidler
Function - With an Analytical Transformation into

the Frequency Domain
Brett R. Terespolsky and Ken J. Nixon

School of Electrical and Information Engineering
University of the Witwatersrand

Johannesburg, South Africa
Email: bteres@ieee.org

Abstract—IEC 62305 utilises the Heidler function as the
standardised lightning current waveshape because it mimics the
properties of a real lightning stroke. There is no analytical
solution to the integral of the Heidler function and this means that
it is not possible to obtain an expression for the Heidler function
in the frequency domain. There are several approximations that
are used to overcome this shortcoming. This paper proposes a
new approximation that is designed in the Laplace domain. Initial
results show that the amplitude differs with that of the Heidler
function by no more than 3.7%. Furthermore, the first derivative
of the approximated current waveshape, dI/dt, differs with that
of the Heidler function by 10.5%. This however can be explained
by the steepness factor not being calibrated correctly for the
same shape Heidler function. The approximation is created in the
Laplace domain and therefore it is trivial to plot the frequency
spectrum of the approximation. Frequency analysis shows that
the approximation agrees with those of other researchers. It
is concluded that the initial results are evident of a promising
approximation to the Heidler function.

Index Terms—Lightning Channel Base Current; LEMP; IEC
62305; Heidler; Laplace; Frequency Domain; Approximation.

I. INTRODUCTION

Lightning current data studies have shown that although
lightning currents have random waveshapes, there are cer-
tain characteristics that each lightning current has [1]–[3].
IEC 62305 defines these characteristics for different types
of lightning strokes. In order to simulate the behaviour of
a lightning stroke, the standard recommends the use of the
Heidler function as it meets the criteria outlined in the standard
[4].

This function is ideal for current amplitude and other
parameters in the time domain such as the charge and change
in current. There is however no analytical transform of the
Heidler function into the frequency domain because it cannot
be integrated. This leads to problems when trying to obtain an
accurate power spectral density plot of a particular lightning
current. With a power spectral density plot, it is possible
to analyse the effects of particular frequencies on a system.
Furthermore, the integral of a lightning channel base current is
required when carrying out Lightning Electromagnetic Pulse
(LEMP) calculations. Having a function that has an analytical

expression to its integral simplifies these LEMP calculations
[5].

Therefore an approximation to the Heidler function that is
transformable into the frequency domain is proposed. This can
be used to show the effects of lightning current frequency
components on systems.

This paper details the process of developing such an ap-
proximation by first detailing some background into the use
of the Heidler function and its limitation with respect to
Laplace/Fourier transform. Next, the Laplace domain approxi-
mation is developed and some preliminary results are given to
show the viability of the approximation. Finally, the direction
of the work is outlined and the paper is concluded.

II. BACKGROUND

The IEC standard on Lightning Protection, IEC 62305,
discusses different types of lightning currents such as a first
return stroke, subsequent strokes, etc. [4]. In this standard the
shape of a typical lightning stroke is described along with
properties (of a lightning current) that must be used in the
design of lightning protection systems. An adaptation of the
waveshape shown in IEC 62305 standard is shown in Figure 1
[4]. This figure shows how the different stroke currents, such
as the 1.2/50, 8/20 and 10/350 are composed. T1 is the rise
time (number before the ‘/’) and T2 is the fall time (number
after the ‘/’). It is important that any lightning current shape
can be obtained in order to test against different scenarios and
lightning protection levels. Therefore the Heidler function is
used in the IEC 62305 because it contains different factors
allowing for the rise time, fall time, amplitude and steepness
factors to be customised.

The Heidler function is defined as in Equation 1 [3]

i(t) =
I0
η

(
t
τ1

)n
1 +

(
t
τ1

)n e− t
τ2 (1)
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Fig. 1. Definitions of short stroke parameter adapted from [4]

Where:
I0 = Peak current [kA]

η = Correction factor of peak current

τ1 = Rise time constant [s]

τ2 = Fall time constant [s]

n = Steepness factor
Equation 1 is often written as i(t) = I0

η x(t)y(t). Where
x(t) and y(t) are the rise and fall equations represented in
Equations 2 and 3 respectfully.

x(t) =

(
t
τ1

)n
1 +

(
t
τ1

)n (2)

y(t) = e−
t
τ2 (3)

Equation 3 is the decay function and can be integrated.
Therefore this function is left as is in the approximation.
Furthermore, the constant, I0

η can also be included directly in
the approximation. Equation 2 on the other hand, is an S-curve
and the steepness of the rise as well as the front duration of
waveshape can be adjusted by modifying n and τ1 respectfully.
This allows for a configurable rise time and maximum dI/dt.

The rise time equation in Equation 2 cannot be transformed
analytically (using Laplace or Fourier transforms) into the
frequency domain because it cannot be integrated [6]. This
creates a problem when accurate analyses of the frequency
components of a lightning strike are required. For example, if
the amplitude of the 11 kHz component of a lightning stroke
is required to evaluate if lightning would introduce noise into
a system operating at 11 kHz, it would not be possible to plot
an analytical power spectral density from the Heidler function.

Furthermore, the numerical analysis of the LEMP fields is
related to the lightning channel base current. This can be seen

in Equation 4

i(z′, t) = u(t− z′/vf )P (z′)i(0, t− z′/v) (4)

where i(z′, t) is the return stroke current and i(0, t − z′/v)
is the lightning channel base current. In order to obtain the
vertical and horizontal electric fields, i(z′, t) is integrated
when solving Maxwell’s equations. When carrying out these
calculations, the use of an equation with an analytical solution
in the frequency domain is preferred as this simplifies the
mathematics [5].

Because of these limitations, several researchers have tried
to approximate the transform of the Heidler function [6]. Most
of these approximations have one or another limiting factor
that changes the Heidler function enough so that it is no longer
highly customisable: not all of the parameters remain variable.
Many approximations are for a set steepness factor or entire
waveshape [6]. In [6], the authors create an approximation that
can be used with any factors but it is extremely complex.

Another example is where Delfino et al in [7] describe how
the lightning channel base current can be approximated in
terms of a Prony series. The limitation with this approach is the
large amount of computation required for each approximation.

Therefore the purpose of this research is to formulate a
lightning channel-base current function that has “customis-
able” parameters and can be transformed analytically into the
frequency domain for use in frequency design and analysis as
well as LEMP calculations. The approximation is simple to
use and understand. It is also closely related to the Heidler
function and so most of the parameters stay the same and the
structure of the equation is the same (i.e. i(t) = I0

η x(t)y(t)).
This function is approximating the Heidler function and the
parameters outlined in the IEC 62305 and therefore any errors
are with respect to the Heidler function.

III. HEIDLER FUNCTION APPROXIMATION

A different approach is taken to approximate the Heidler
function. A transfer function is defined in the Laplace domain
and then an inverse Laplace transform is carried out to obtain
the Heidler function approximation. With this approach, the
equation is already in the frequency domain and therefore an
analytical transform is no longer required.

A. Creating the Heidler Function Approximation

The Heidler function is not analytically transformable into
the frequency domain because of the rise function, x(t) in
Equation 2. This function is merely an S-curve and therefore
the step response of an n-th order, real and negative, pole is
used to approximate this part of the function. The start of the
approximation is seen in Equation 5.

X(s) =
1

s
(

s
ω0

+ 1
)n (5)

Where:
ω0 = Rise time constant (rad/s)

n = Steepness factor



By varying the values of n and ω0, the shape of the
S-curve that is produced by the inverse Laplace transform
of Equation 5 can be “customised”. The inverse Laplace
transform of Equation 5 can be seen in Equation 6.

x(t) = 1− e−ω0t

(
n∑

i=0

ωi
0t

i

i!

)
(6)

The Heidler function also has a decay function as shown
in Equation 3. There is no need to modify this function as it
behaves exactly as required and is analytically transformable
into the frequency domain. By including the constant and the
decay function from Equation 1 in Equation 6, the complete
time domain approximation is obtained as in Equation 7

i(t) =
I0
η

(
1− e−ω0t

(
n∑

i=0

ωi
0t

i

i!

))
e−t/τ2 (7)

where I0, η and τ2 are the same as those in the Heidler
function.

Equation 8 shows the complex shifting property of the
Laplace transform.

L
{
e−atf (t)

}
= F (s+ a) (8)

By applying this property to Equation 5 and using Equation 3
as the model, an overall approximation to the Heidler func-
tion in the frequency domain can be obtained, as shown in
Equation 9. The constants I0 and η have also been included
in Equation 9 as they are real constants and are only required
for changing the peak amplitude of the impulse current.

I(s) =
I0
η

1

s+ 1
τ2

1(
s+ 1

τ2

ω0
+ 1

)n (9)

B. Frequency Domain
As the function is developed in the Laplace domain, simply

replacing the s with jω in Equation 9 gives rise to the
frequency domain equation as seen in Equation 10.

I(jω) =
I0
η

1

jω + 1
τ2

1(
jω+ 1

τ2

ω0
+ 1

)n (10)

This can be used directly in LEMP equations or the modulus
and argument can be found and the power spectral density and
phase of the lightning current can be analysed. Alternatively
a bode plot of Equation 9 can be plotted directly to obtain a
frequency response.

IV. RESULTS

There are several aspects of importance with this approxi-
mation.

1) The amplitude and other properties such as the derivative
need to be comparable to the Heidler function.

2) The parameters outlined in the IEC62305 must be
comparable to the approximation (intended as future
research).

3) A frequency analysis must be carried out to show the
frequency spectra of the function.

A. Comparison to Heidler
The proposed approximation is with respect to the Heidler

function and therefore tested against it to determine accuracy
of the approximation. The two aspects looked at in this paper
are the amplitude of the current waveshape as well as the
instantaneous derivative.

1) Amplitude: A 4 kA, 10/350 lightning current waveshape
is used to test the approximation against the Heidler function.
To obtain this current with both functions the parameters in
Table I are used. It is clear that the parameters are similar

TABLE I
TABLE OF PARAMETERS USED IN CREATING EQUATIONS FOR Figure 2.

Heidler Approximation
τ1 (µs) 19 -
τ2 (µs) 485 485
n 10 33
ω0 (rad/s) - 1700000
I0 (kA) 4 4
η 0.9341 0.9341

for the two functions with the notable differences being the
steepness factor (n) and the rise time constants (τ1 and ω0).
The reason for this is that the approximation’s parameters are
defined in the Laplace domain and this leads to the steepness
factor having to be larger. Moreover, a number in rad/s is
required for the approximation while the Heidler function
expects a rise time constant in µs. However as the decay
function as shown in Equation 3 is unchanged, τ2 is identical
to that used in the Heidler function. Moreover, the shape of
the rise function (S-curve) is the same as that of the Heidler
function and therefore the same I0 and η are used to achieve
the required peak current.

Figure 2 shows the plots of both the Heidler function
and the approximation with a 4 kA current and a 10/350
waveshape. The parameters used in the approximation are
found by brute-force trial-and-error. The authors made some
educated guesses and then optimised the values by hand until
the curves looked very similar. A better method is required
for this (see Section VI). The absolute value of the difference
between the two functions shows that there is a maximum
error of about 3.7% of the maximum amplitude of the Heidler
waveshape.

2) Derivative: The derivative of a lightning current is
important when determining the effects of inductive elements
in a system. Therefore the approximation must represent a
similar dI/dt graph to that of the Heidler function. Figure 3
shows the first derivative of both the Heilder function and
the approximation. There is a fairly large discrepancy in the
peak values which reaches about 10.5%. This is a large error
however the peak amplitude of the approximation function
could be increased when carrying out these kinds of analyses.
Moreover, this discrepancy results from the steepness factor
being too small. This can be rectified by finding the correct
correlation between the steepness factors of both functions (see
Section VI).
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Fig. 2. Comparison between the approximation and the Heidler functions
(tails shortened to show a more detailed comparison).
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Fig. 3. Comparison between the first derivative of the approximation and the
Heidler functions.

B. Frequency Analysis

A frequency analysis of lightning currents is useful to
determine the effects that a particular frequency has on a
system. Having a function that can be analytically transformed
into the frequency domain allows for such an analysis. The
power spectral density of the approximation can be plotted
and hence the amplitude of the lightning current at a specific
frequency can be determined.

Furthermore, having an expression for the lightning channel
base current that is integrate-able is useful for carrying out
LEMP calculations. The approximation is developed in the
Laplace domain and is therefore trivially transformed into the
frequency domain (s = jω) as expressed in Equation 10.

Preliminary analysis of the approximation in the frequency
domain gives rise to the bode plot seen in Figure 4. The results
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Fig. 4. Bode plot of the Heidler function approximation.

thus far look promising as they are aligned with the work done
by Vujevic et al in [6] and [8] as well as that of Heidler et al
in [9].

V. DISCUSSION

This new proposed approximation to the Heidler function
shows some promising preliminary results. Further work is
required to fully understand how this function behaves with
changing parameters (see Section VI).

The initial modelling has been carried out using a 4 kA,
10/350 lightning current waveshape. The parameters used in
plotting the approximation are based on a trial-and-error brute-
force process (see Section III). With these values the maximum
error in the approximation with respect to the Heilder function
is 3.7%. This is an acceptable error percentage in most
engineering applications. However the instantaneous change
in current is as much as 10.5% inaccurate. This can be easily
explained by the steepness factor being incorrect. Therefore
some optimisation and design is required to make sure that
the parameters used in the approximation are the correct ones
for the shape of the Heidler function used.



Because the approximation is developed in the Laplace
domain, an expression for the approximation in the frequency
domain is obtained by substitution rather than calculation.
The initial plot of the frequency spectra shows that this
approximation agrees with previous research.

VI. FUTURE RESEARCH

There are several analyses required to determine the validity
of such an approximation. In future work, the areas to be
focused on are:

1) Correlating the parameters to those of the Heidler func-
tion.

2) Carrying out analyses on different waveshapes (such as
the 1.2/50 and 8/20).

3) Comparing the characteristics of the approximation with
those outlined in the IEC 62305 standard.

4) Further frequency analyses.
The parameters used in the approximation are similar to

those used in the Heidler function. τ2, I0 and η are the
same for both functions. n and ω0 in the approximation are
utilised in the Laplace domain and therefore are not necessarily
correlated with n and τ1 of the Heidler function. Further work
is required to determine whether or not there is a relationship
between these parameters in the approximation and in the
Heidler function. If there is no obvious relationship then a
table of parameter values for common waveshapes should be
obtained.

Moreover, analyses should be carried out on different wave-
shapes. The analysis in this paper is done by modelling a 4
kA, 10/350 lightning current waveshape. It is still necessary to
determine whether or not this approximation holds value for
other lightning current waveshapes with varying amplitudes.

In order to make sure that this function can be used and
is compliant with the standards, further work is required to
determine whether or not this approximation holds the same
characteristics as those outlined by the IEC for lightning
currents.

Finally, more work is required to determine the accuracy of
the power spectral density of this approximation.

VII. CONCLUSION

Lightning current waveshapes are utilised in analyses that
can vary from instantaneous current change to frequency
analysis. It is therefore important to have a standardised
lightning current waveshape that can be used to perform these
analyses. The IEC endorses the Heidler function for this use
and although it shares the characteristics with those of a typical
lightning current, it is limited in that an analytical integral
cannot be obtained. An integral of such a function could be
required in any scenario where an analysis is required on the
frequency components of a lightning current or the effects

thereof on a particular system. It is also required in calculating
electric fields in LEMP analyses. Therefore approximations
have been proposed throughout the years to solve this problem.
No one approximation is perfect as all of them are limited
in one or another aspect. Therefore another approximation is
proposed that is developed in the Laplace domain, alleviating
the need to transform into the frequency domain by taking the
integral of the function.

This new approximation shows that it does a good job of
approximating the Heidler function in the time domain. It
also has characteristics (such as dI/dt) that are similar to the
Heidler function. An initial frequency analysis shows that the
approximation gives a similar frequency response to that of
other researchers.
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