THEPRECAMBRIANGEOLOGYOFANAREABETWEENMESSINAANDTSHIPISELIMPOPOMOBILEBELT

Peter Charles Brammer Horrocks

A Dissertation Submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, for the degree of Doctor of Philosophy.

Johannesburg 1981

ABSTRACT

An area of about 200'sq km has been mapped at a scale of 1 : 25 000 between Messina and Tshipise. Subsequent laboratory work has included petrographic, whole-rock and mineral analysis in order to describe the Precambrian rock-types and lithologies, their structure, and their metamorphic history.

The Precambrian lithologies underlying the study area consist of grey banded basement gneisses of granodioritic composition, together with a large variety of supracrustal rocktypes. These include quartzo-feldspathic gneiss, Singeleletype granitoid gneiss, garnet-cordierite-sillimanite gneiss, sapphirine-bearing rock, garnet-orthopyroxene-plagioclase symplectite, pyroxenitic amphibolite, quartzite, banded magnetite quartzite, amphibolite, calc-silicate gneiss and marble. These supracrustal rocks may belong to a geosynclinal-type series of depunded or extruded lithologies. Intrusive rocks of the Messina Layered Intrusion consist of gabbroic and anorthositic gneiss. Metapyroxenites and serpentinites also occur. Both ancient deformed and younger fabric-free mafic dykes transect this stratigraphy.

Polyphase deformation has produced complex and intense folding of the area. Early isoclinal and ductile folds, now manifest as tight intrafolial folds, have been refolded around later structures. Most fold hinges plunge moderately to the

(ii)

south-west. Considerable flattening, attenuation and alongstrike boudinaging of the units occurs in the region, probably as a result of regional simple shear The assymetry of the folds in the region suggest that this simple shear was left lateral.

Peorce-type variation diagrams for data from the Messina Layered Intrusion show plagioclase fractionation trends, and support the argument that these rocks are of plutonic igneous origin. The anorthosites were the earliest cumulates, with the gabbros forming by subsequent fractionation. Rayleigh's law indicates that about 70 per cent fractionation has occurred in these rocks. The parental liquid appears to have been anomalously enriched in rubidium.

The supracrustal units have experienced a high-grade metamorphism between about 3 100 m.y. ago and 2 400 m.y. ago. The P-T conditions for this metamorphism range from about 9 kbar and 900°C at the 'peak' of the metamorphism, to about 4 kbar and 650°C, and thus represents a retrogression within the field of medium pressure granulites. Earlier high-pressure granulite metamorphism is indicated by assemblages reported from other regions in two Central Zone of the Limpopo Mobile Belt. These data suggest that the supracrustal rocks were subjected to burial into regions of the lower crust up to 40 km depth, and geothermal gradients between 15°C/km and 35°C/km were experienced. Water

(iii)

activities were low during this high-grade metamorphism, with water making up not more than 10 per cent of the fluid present during this event. The onset of relative tectonic stability and the end of high-grade metamorphism was achieved by about 2 200 m.y. ago.

4

(iv)

I declare that this thesis is my own, unaided work. It is being submitted for the degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University.

yours

23 rd day of DCTOBER 1981.

ACKNOWLEDGEMENTS

T.N. Clifford is thanked for supervising this project and for providing continuous encouragement and support. Sponsorship of this study by the Council for Scientific and Industrial Research as part of the South African contribution to the International Geodynamics Project is gratefully acknowledged.

Numerous colleagues provided encouragement, support, help, constructive discussion and criticism to whom the author is indebted. These include M.A.G. Andreoli, J.M. Barton, G. Davies, M.J. De Wit, R.E.P. Fripp, C. Guerin, M.J. Hudson, G.J.M. Kitching, P.A. Killy, J. Li'ly, K. Lilly, M.S. McCarthy, T.S. McCarthy, J.R. McIver, N. McLean, M.A. Miles, P. Richardson, R. Rickard, M. Taylor and M.K. Watkeys.

Special thanks are due to W. Schreyer, J.G. Ramsay, A.B. Thompson, D.J. Ellis and C. Simpson for their support and advice during part of the time while this study was in preparation.

The Messina (Transvaal) Development Company, and in particular members of its Geology Departmen! at Messina are thanked for their logistic support during the periods of field work for this study in 1975 - 1977.

Mrs Elaine Towsey is also thanked for typing the thesis.

(vi)

CONTENTS

	105		- Y-					(::)
ABSTR	ACT	• •	0 0	• •	0 0			(11)
DECLA	RATION	• •	47	**				(v)
ACKNO	WLEDGEME	NTS		••	••	••	* •	(vi)
CHAPT	ER 1: I	NTRODUCT	ON].
	Regional	setting	of the	Limpopo	Mobile	Belt		1
	The geol	ogy of th	ne Centr	al Zone	in the	Messina	area	3
	Geochron	ological	review					8
	Statemen	t of purp	bose and	work do	one			12
	Previous	work in	the are	a studie	ed	• •	9.	14
CHAPT	ER 2: R	OCK TYPE:	S AND LI	THOLOGIE	ES	• •	* *	18
	Introduc	tion	• •	**		• *		18
	Basement	gneisses	5			• •	8.4	18
	Quartzo-	feldspath	n <mark>ic gn</mark> ei	sses		+4		22
	Singelel	e-type gr	ranitoid	gneiss	0 0	• *	× •	26
	Garnet-c	ordierit	e-sillim	anite gr	neiss ar	nd variet	ties	28
	Pyroxene	amphibo.	lite			• *		41
	Quartzit	e and bar	nded mag	netite d	quartzit	.e		48
	Calc-sil	icate gne	eiss and	marble		• *		56
	Metapyro	xenite a	nd serpe	ntinite			× .	57
	Gabbroic	and ano:	rthositi	c gneis:	ses of t	he Messi	ina	
	Layered	Intrusio	n	**	••		• •	63
	Discussi	on	• •	• •	• •	••		68
СНАРТ	TER 3: S	TRUCTURE	• •			• •		76
	Introduc	tion						76
	Large sc	ale stru	cture					76
	Small sc	ale stru	ctures					87
	Faults	• •	• •					95
	Discussi	on	• •	• •	• •			96

(vii)

(viii)

CHAPTER 4: THE MESSINA LAY	YERED INT	RUSION			103
Introduction					103
Geological setting			0 0		104
Compositional variation	on of a ur	nit sampl	ed on Sl	nanyani	105
Pearce diagrams	0 0		• •		109
Rb, Sr and K ₂ O relation	onships	.,	• •		117
Discussion	0 0		• •		122
CHAPTER 5: METAMORPHISM			• •		124
Introduction	0.0			**	124
Solubility of alumini	um in ort	hopyroxer	1e	**	124
Aluminium and titanium	m in horn	blende		••	126
Parameters of metamor	phism		• •	**	128
Garnet-cordierite-sil	limanite	gneiss			131
Sapphirine-bearing ro	cks			••	136
Garnet-orthopyroxene-	plagiocla	se symplo	ectite	**	146
Garnet zonation in th	e pelitic	rock-ty	bes		154
Pyroxenitic amphiboli	tes				173
Intrusive rocks	• •				182
Water activity					184
The P-T field - a syn	thesis	**			187
CHAPTER 6: CONCLUSIONS					195
APPENDIX 1: ANALYTICAL TE	CHNIQUES				1.1
Whole-rock analysis				••	1.1
Electron probe microa	nalysis				1.1
APPENDIX 2: ELECTRON PROB	E ANALYTI	CAL DATA			2.1
Introduction	• •				2.1
Feldspar	• •				2.2
Mica	• •			**	2.3

Amphibole						2.3
Pyroxene	• •	• •				2.4
Garnet					• •	2.6
Cordierite		• •		* •	• •	2.7
Sapphirine		• •				2.7
Spinel	• •					2.9
Outline chart			• •			2.9
TABLES 2.1 - 2.2	3	8.9	• •		5.6	2.10
NDIX 3: METAMORP	HIC PARA	METERS				3 1
Introduction					• •	3.1
Orthopyroxene-cl.	inopyroxe	ene ther	mometry			3.1
Garnet-orthopyro:	xene bard	ometry a	nd therm	ometry		3.7
Garnet-clinopyro:	xene the	rmometry		• •		3.10
Biotite-garnet th	nermometi	ry				3.16
Garnet-cordierite	e thermon	netry and	d barome	try		3.20
Two-feldspar the	rmometry	**				3.28
Coexisting plagic	oclase -	clinopy	roxene -	quartz		3.30
Water activity						3 30

REFERENCES

à

MAPS IN REAR POCKET

1	Field Map (1 :	25 000)				
2	Interpretation	and Sample	Localities	(1	 50	000

(ix)

CHAPTER 1: INTRODUCTION

1.

Regional setting of the Limpopo Mobile Belt

The Limpopo Mobile Belt is an approximately linear ENE trending region underlain by Precambrian rocks which have undergone high-grade regional metamorphism and intense polyphase deformation (MacGregor, 1953). The main rock-types found within the belt include a variety of basement gneisses, porphyritic gneisses, granitoid gneisses, gabbroic and anorthositic gneisses, and supracrustal paragneisses.

The belt is situated between the Rhodesian Croton in the north and the Kaapvaal Croton in the south (Figure 1), and is approximately 500 km in length and 250 km in width. The belt is overlain in the east by younger Umkondo and Karoo strata, and by the 500 - 1 100 m.y. north-south trending Mocambique Belt (Clifford, 1970). In the west, it is also overlain by younger Proterozoic and Karoo strata and Tertiary sands in Botswana, although some workers consider the belt to terminate in this region (Key and Hutton, 1976). In this thesis, the northern margin of the belt is defined by an orthopyroxene isograd, marking the first appearance of granulite facies rocks in a southwards direction into the belt (Robertson, 1968 and 1973; see also Rhodesia Geological 1 : 1 000 000 Map Seventh Edition, 1977). Similarly, the southern margin of the belt has been defined by an orthopyroxene isograd

Figure 1: A simplified geological map of part of southern Africa showing the location of Messina and the Limpopo Mobile Belt (after Horrocks, 1980).

ne nelt (Du Tor: and Var Keenen 977).

A distinct zonation has been recognized within the belt (Figure 1) where Northern and Southern Marginal Zones between 500 and 100 km in width are separated by a Central Zone between 100 and 150 km in width. Major zones of shearing and 'ranscurrent dislocation form their boundaries. The northern margin of the belt is characterized by fault zones and shear zones which are sub-parallel to the length of the belt, and which separate the Limpopo gneisses from the granite-greenstone terrane the Rhodesian Craton in the nort. The fault and anear zones are steeply dipping and mylonitic, with horizontal d splacements of up to 40 km (Coward, 1976 Coward et al. 1976). T southern margin of the belt is somewhat obscured by the Foul- bounded Proterozoic sediments and volcanics of the Soutpansberg Group (Jansen, 1975, 1976 and 1977; Barker, 1976). However, no fundamental structural or stratigraphic breaks have meen recognized between the belt and the Kaapvaal Craton, since arliest deformations were regional horizontal compressions affecting both the belt and the Knapvaal Craton (Graham, 1974; C ward <u>et al</u>. 1976).

The geology of the Central Zone in the Messina area

-

Shike a state of the second

The Central Zone contains complexly infolded su racrustal, rphyritic and granitoid gneisses, some of which are regarded as representing a basement (Bahnemann, . 72; ripp, 1981a, c). This zone has been sub-divided into three regions in the Messing area (Figure 2) namely, the Bulai Belt, the Cross-Folded Belt and the Linear Belt. The Burai Belt occurs north-west of Messina and is underlain by the porphyritic Bulai Gneiss and in places, a grey banded gneiss which has been regarded as a basement from which the Bulai Gneiss may have been remobilized (Bahnemann, 1972). Other charnockitic, enderbitic and various paragneisses also occur (Watkeys, 1979). South-east of the Bulai Belt in the vicinity of Messina, complexly folded layers of the supracrustal paragneisses are infolded together with these 'basement' rocks and other o. thogneisses to make up the Cross-Folded Belt (Bahnemann, 1972). Further to the south-east, the Linear Belt occurs, and contains essentially similar lithologies as the Cross-Folded Belt, but here the strata are markedly attenuated and deformed to trend in the regionally pervasive ENE direction (Bahnemann, 1972).

The basement gneisses, termed the Sand River Gneisses, comprise a variety of banded gneisses of charnockitic, enderbitic, monzonitic, tonalitic and granodioritic compositions, and contain little or no garnet. These rocks occur over a wide region in the central part of the Limpopo Mobile Belt, particularly west and north-west of Messina and Beit Bridge

R.

Figure 2: A simplified geological map of the area between Messina and Tshipise in the Central Zone of the Limpopo Mobile Belt (after Horrocks, 1981).

(Bahnemann, 1972; Watkeys, 1977; Light <u>et al.</u>, 1977; Light and Wotkeys, 1978; Watkeys, 1979). In the vicinity of the Sand River (Figure 2), the Sand River Gneisses are infolded with the supracrustal gneisses (Fripp, 1981a, 1981b, and 1981c). Here they occur as hypersthene bearing granodiorite and quartz diorite gneisses and are characterized by cross-cutting ancient deformed tholeiitic dykes.

The porphyritic Bulai Gneiss also occurs over a large area west and north-west of Messina (Figure 2) and is characterized by large phenocrysts of alkali feldspar. These gneisses commonly occur at the interface between basement and supracrustal gneisses, and have been considered to be remobilized from the basement, and to be intrusive and batholithic in form (Bahnemann, 1972). In places, a strong tectonic fabric is developed by the alignment of the phenocrysts and other mineral grains, and the rock commonly contains inclusions of supracrustal and dyke-like rocks.

The supracrustal rocks are essentially paragneisses and commonly contain garnet. They include a large variety of mainly quartzo-feldspathic gneisses which contain varying proportions of amphibole, mica, pyroxene, garnet, cordierite and sillimanite. Also, quartzite, banded magnetite quartzite, pyroxenitic amphibolite, calc-silicate gneiss and marble occur. The carbonate and calc-silicate rocks became distinctly more

abundant towards Tshipise, about 30 km south-east of Messina (Figure 2). These paragneisses underlie large areas south and east of Messina (Figure 2) within the Cross-Folded and Linear Belts, and have been known as the Messina Formation (Söhnge, 1946; Söhnge <u>et al</u>., 1948) although basement sensu stricto was not distinguished. Revised stratigraphic nomenclature has been proposed (Geological Survey of South Africa, in preparation) where the basement lithologies are grouped under the term Sand River Gneisses, and the supracrustal lithologies are grouped together as the Beit Bridge Complex.

The Singelele Gneiss (Söhnge, 1946; Bahnemann, 1972 and 1973; Fripp <u>et al.</u>, 1979) is a concordant granitoid gneiss which forms prominent outcrops immediately south-east of Messina (Figure 2). The rock is silica-rich with ribbon-like grains and aggregates of quartz parallel to the tectonic fabric. It weathers to a distinctive reddish colour, and is pretectonic in age being affected by all the deformations recognized in the supracrustal rocks (Fripp <u>et al</u>., 1979). Some workers regard this lithology as remobilized at least in part from the other supracrustal rock-types and to be intrusive in nature (Bahnemann, 1972 and 1973) while others consider the rock to be a conformable and integral part of the supracrustal stratigraphy (Fripp <u>et al</u>., 1979).

Layered anorthositic and gabbroic gneisses occur as

generally conformable sill-like intrusives throughout the Central Zone (Barton <u>et al.</u>, 1979a). They are phase-layered, and in places contain thin discontinuous units of chromitite and titaniferous magnetitite (Söhnge, 1946). Most workers agree that these lithologies are derived by plutonic igneous processes, though some consider that at least in part they may have been derived from metamorphosed calcareous sediments (Bahnemann, 1970). Relict cumulate textures and phase and graded layering are common features of these socks (Hor <u>et al.</u>, 1975; Barton <u>et al.</u>, 1979a) while units of metapyroxenite and serpentinite, although not always spatially associated with the anorthositic rocks, may belong in the same suite. These rocks have been collectively grouped under the term Messina Layered Intrusion (Barton <u>et al.</u>, 1979a).

Pre- and post-tectonic dykes of tholeiitic compositions are common throughout the region. Pre-tectonic dykes are characterized by mineral fabrics and metamorphic reaction margins with their host rocks, while post-tectonic dykes are fabric-free. Several ages of dyke intrusion are recognized (Barton <u>et al.</u> 1977; Barton, 1979; Barton <u>et ul.</u>, 1981).

Geochronological review

Analytical isotopic work in the region has enabled a geochronological framework to be suggested for the Precambrian history of the Messina area (Barton and Ryan, 1977). The đ

techniques utilize Rb, Sr and Pb whole-rock isotope systematics and U-Pb zircon methods, and in the Rb-Sr ages, a 87 Rb decay constant of 1,42 x 10⁻¹¹ yr⁻¹ has been used. All dates published which use other decay constant have been recalculated for consistency. The relevant age determinations discussed here are summarized in Table 1.

The Sand River Gneisses ('basement') have yielded a Rb-Sr whole-rock age of 3 786 - 61 m.y. with an initial ⁸⁷Sr/⁸⁶Sr ratio of 0,70122 - 0,00016 (all errors are two standard deviations) which has been interpreted as reflecting a homogenization of the Sr isotopes during a metamorphism (Barton <u>et al</u>., 1978). Thus, this age which is probably associated with a tectonic fabric (Fripp, 1981a, 1981b, 1981c) defines the oldest rocks to occur in the Cantral Zone of the Limpopo Mobile Belt, and as such, they may be compared to the Isua supracrustal rocks and the Amîtsoq gneisses in Greenland (Bridgewater <u>et al.</u>, 1976).

Two suites of ancient deformed tholeiitic dyke intrusion have been recognized in the region (Barton <u>et al.</u>, 1977). The oldest of these has been dated at about 3 570 m.y. by the Rb-Sr whole-rock isochron method, and these dykes have only been recognized to intrude the Sand River Gneisses. The younger suite of dykes has given an age of about 3 060 m.y. by the Rb-Sr whole-rock isochron method and these dyke are

Table 1: Summary of geochronological events in the Messina area of the Limpopo Mobile Belt

Age m.y.	Isotope System	Interpretation
2200	Rb-Sr	Dolerite dyke intrusion - end of high- grade metamorphism and the onset of relative tectonic stability.
2430	Pb-Pb	Metamorphism of Singelele Gneiss on the Farm Ostend southeast of Messina.
246 Ŭ	Rb-Sr	As above.
26 00	Rb-Sr	Metamorphism of the Singelele Gneiss at the type area near Messina.
306 0	Rb-Sr	Suite of ancient deformed tholeiitic dykes which intrude the Sand River Gneisses, the Beit Bridge Complex and the Messina Layered Intrusion.
3150	Rb-Sr	Metamorphism of the Messina Layered Intrusion – probable peak of the high grade metamorphism.
3270	Pb-Pb	Probable age of the emplacement of the Messina Layered Intrusion.
-	-	Deposition and/or extrusion of the supracrustal rocks of the Beit Bridge Complex between 3570 and 3270 m.y. ago.
3570	Rb-Sr	Suite of ancient deformed tholeiitic dykes which intrude the Sand River Gneisses only
3790	Rb-Sr	Metamorphism of the Sand River Gneisses.
2	-	Formation of the Sand River Gneisses.

1: All ages are derived from whole-rock isochrons.

See text for references and sources or data.
 All Rb-Sr ages are calculated using a decay constant of
 1,42 x 10⁻¹¹ yr⁻¹ for⁸⁷Rb.

recognized in the Sand River Gneisses, the Beit Bridge Complex and the Messina Layered Intrusion. The latter has been dated by two different methods. A Pb-Pb whole-rock isochron for the anorthositic and gabbroic rocks has given an age of about 3 270 m.y. (Barton, 1981), while a Rb-Sr whole-rock isochron has yielded an age of about 3 150 m.y. (Barton et al., 1979a) which probably reflects a metamorphic event. Since the Beit Bridge Complex of supracrustal rocks is cut by the Messina Layered Complex, this suggests that the supracrustal lithologies were deposited and/or extruded sometime between 3 570 m.y. and 3 270 m.y. The Bulai Gneiss is dated at about 2 700 m.y. by the Rb-Sr whole-rock isochron method, and this date has been interpreted as the time of intrusion or remobilisation of this unit (Barton et al., 1979b). Age determinations by the same method on the Singelele Gneiss have suggested a date of about 2 600 m.y. and this age has been interpreted as a metamorphic age of the previously formed supracrustal granitoid (Fripp et al., 1979; Barton et al., 1979b). However, this metamorphic age was obtained from samples collected at the type locality near Messina. Other samples collected on the Form Ostend about 15 km south-east of Messina (from within the mapping area of this study) gave whole-rock Rb-Sr isochron age of 2 461 ± 19 m.y. with a very high initial ratio of 0,8308 - 0,0003. This supports the interpretation that these ages for the

Singelele Gneiss are metamorphic, since large initial ratios are characteristic of rehomogenisation of Sr isotopes during metamorphism. Close correlation with a Pb-Pb whole-rock isochron of about 2 430 m.y. was obtained using the Ostend samples.

An undeformed and unmetamorphosed dolerite dyke which occupies a fault plane on the Farm Heuningfontein about 15 km south-east of Messina has yielded a whole-rock Rb-Sr isochron age of about 2 200 m.y. This suggests that the end of highgrade metamorphism and the onset of relative tectonic stability was achieved by this time (Barton, 1979).

Statement of purpose and work done

This study is a field oriented study aimed at preparing a geological map and describing the Precambrian geology of an area situated within the Central Zone of the Limpopo Mobile Belt, south-east of Messina (Figure 1). This area lies between the Sand River in the north-west and the Bosbokpoort Fault in the south-east, and lies on either side of the main road linking Messina and Tshipise in the northern Transvaal (Figure 2). This research forms part of the South African national contribution to the International Geodynamics Project. Within this programme, three groups have been working in the Limpopo Mobile Belt: the Departments of Geology at the University of the Witwotersrand and the Rand Afrikaans

University responsible for field mapping, structural analysis, geochemistry and metamorphic petrology, and the Bernard Price Institute of Geophysical Research responsible for geochronology and isotope geochemistry. These studies have been aimed at establishing a framework for understanding the relationships among the various igneous, sedimentological and metamorphic events recognizable in the field. The objective of the South African participation in this project has been to undertake research on the dynamics and dynamic history of the earth with emphasis on deep-seated phenomena. In addition, it was hoped to provide clues to the chemical pattern of evolution of the mantle and crust in an area exposing elements encompassing a major part of early earth history.

An area of approximately 200 sq km has been mapped using aerial photographs in the field. These data have been compiled onto a base map at an approximate scale of 1 : 25 000 to produce a field map (map 1 in rear pocket). Also, an interpretive map at a scale of 1 : 50 000 has been prepared to illustrate the structural attitudes and sample localities (map 2 in rear pocket). A representative sample collection of 140 specimens has been made from which over eighty petrographic thin-sections were prepared. Full silicate analyses were carried out on over thirty-five samples using X-ray fluorescence for major elements. Rb, Sr and Ba trace element abundances were also

determined in selected samples. After the examination of the thin-sections, over twenty samples were selected from which polished thin-sections were prepared to enable electron probe microanalyses to be made of selected mineral grains. Over 70 analyses were completed using a Cambridge Microscan 5 instrument at the Department of Geochemistry, University of Cape Town, while over 250 mineral analyses were completed using an ARL-SEMQ instrument in the Department of Geology, University of the Witwatersrand.

Previous work in the area studied

The first systematic study of the geology in the area was a regional mapping programme by the Geological Survey of South Africa (Söhnge, 1946; Söhnge <u>et al.</u>, 1948). The region was mapped at a scale of 1 : 50 000 using aerial photographs, and was regarded at that time as being underlain by rocks belonging to a Precambrian 'basement complex'. Most of the rock types that occur in the area were recognized, though the distinction between basement and supracrustal sensu stricto was not made, and the rocks were collectively called the Messina Formation. It was concluded that primary textures and structures were effectively obscured by the tectonic and metamorphic conditions that had prevailed in the area. Alco, many types of granitoid gneiss were considered to have had sedimentary origins.

Wire recently, a rev with been completed of the geology around Messing and a phasigeological interpretive map prepared (Bahnemann, 1972). The cratigraphy, metamorphism, and structure of the crea was invelligated, and basement and upracrustal elements of the stratigraphy were recognized. Metamorphi conditions were considered to have reached pressure in excess of 6 kbar and possibly as high as 10 kbar, while emperatures exceeded 625°C. Thus it was concluded te grude and was uniform · metamorphism reache r argy areas. The deformation in the area was regarded ving a 'plastic' (sic) nature, with **folding'** ing at the height of the metamorphis Leformation red in response to a regional shearing parallel to the ENE trend of the Limpopo Mobile Belt. Early and late folds, a well as intersecting fold directions and interference ructures were recognized.

Two chemical analyses of Singelele Gneiss are reported for samples collected from within the area of the study reported here (Bahnemann, 1973). Consideration was given to the petrography of this rock, and to the process of anatexis, and it was concluded that the Singelele Gneiss may owe its origin to particl melting of the basement and supracrustal rocks in antiformal areas, resulting in potash feldspar and lilica-rich melts, to produce the Singelele Gneiss, leaving

'restil ' anorthos gneiss, calc-silicate gneiss and amphibolite which occu in t supracrustal ocks surroundino areas which contain Singelele Gneiss. The presence of numerous quartz-feldspar veins in these lithologies was used as further evidence of this process. The starting materials before anatexis were considered to have included shales, calcareous shales and marls. Temperatures of more than 625° and pressures approaching 10 kbar were required for this melting event, based on the experimental data of Winkler, vor Platen and others (see Winkler, 1974). However, subseauent trace element fractionation studies on granitic melting usin Rb, Sr and Ba (McCarthy, 1977) has revealed the presence of both restite and anatectite fractions within the Singelele Gneiss itself.

A mineralogical study was carried out on garnets from the Messina area, with the aim of showing that their composition may reflect the metamorphic grade (Bahnemann, 1975). This investigation included the analysis of nine garnets, one of which was collected from a leucocratic granitic gneiss on the Farm Randjesfontein within the area studied. Using experimental data of Currie (1971), equilibrium temperatures of 635°C and pressures of about 6 kbar were suggested. However, using other experimental data (Hensen and Green, 1973), temperatures between 850°C and 900°C, and pressures from 9 to 10 kbar have been obtained (Horrocks, 1975).

ueochronological work ha been completed on samples collected during the course of the present investigation (Barton, 1979; Barton <u>et al</u>., 1979a, and b) and are reviewed elsewhere.

CHAPTER 2: ROCK TYPES AND LITHOLOGIES

Introduction

In this section, the results from the field and laboratory examination of the different rock types encountered in the area under study are presented. Aspects of their field characteristics, petrography, whole-rock and mineral chemistry are also discussed. Analytical procedures are described in Appendix 1.

The fallowing rock types and lithologies have been recognized as follows: basement gneisses, quartzo-feldspathic gneisses, Singelele-type granitoid gneiss, garnet-cordierite-sillimanite gneiss and varieties, pyroxenitic amphibolite, quartzite and bonded magnetite quartzite, calc-silicate gneiss and marble, metapyroxenite and serpentinite, and the gabbroic and anorthositic gneisses of the Messina Layered Intrusion. The basement gneisses have been so called on the basis of correlation th similar gneisses in the Sand River area (fripp, 1981a-c) while all other rock types excluding the metapyroxenite, serpentinite and the Messina Layered Intrusion are considered to represent a supracrustal sequence (ibid.). In addition, dolerite dykes of various ages are abundant, and pegmatites occur in some of the serpentinite bodies.

Basement gneisses

The basement gneisses (i.e. Sand River Gneisses) have been

recognized at three loculities in the study area. One outcrop was observed on the Farm Oorsprong, and other outcrops occur on the Farm Middelbult (see Map 1 in rear pocket). These gneisses are grey in colour and weakly banded, and are transected by both melanocratic and leucocratic dykes together with numerous leucocratic veins (Figure 3). They characteristically form smooth whale-back pavement outcrops.

The grey gneiss is medium grained with the mineral grains averaging about 1 mm in diameter. Mineral banding is typically 2 or 3 mm in thickness and varies from more quartz and feldspar rich compositions to those with more abundant mica. Red garnets about 1 mm in size are dispersed in small quantities,

Figure 3: Deformed melanocratic dyke transecting grey banded basement gneisses on the farm Middelbult, about 5 km east of the main Messina-Tshipise road (Map 1 in rear pocket).

while prismatic black amphiboles up to 3 mm in length and about 1 mm in diametar are visible on weathered surfaces, and impart a linear fabric to the rocks. In thin section, the following typical mineral assemblage occurs: 40 per cent quartz, 30 per cent andesine, 15 per cent microcline, 10 per cent biotite, 3 per cent alteration minerals, 2 per cent garnet and accessory apatite. This assemblage is granodioritic in composition with biotite us the predominant ferromagnesian mineral. In addition to its obvious concentration in layers, biotite occasionally forms skeletal grains and clusters of oriented flakes in quartz. It often replaces an earlier mafic mineral, possibly orthoamphibole or orthopyroxene, which now remains in places in an amorphous and altered state. The quartz and feldspar form a granoblastic texture in which the xenoblastic grains have irregular polygonal boundaries. The microcline is a perthite with exsolved beads and stringers of plagicclase.

The cross-cutting melanocratic dykes are dark and even grained rocks with a general grain size of 1 or 2 mm in diameter. They have the following average modal mineralogy: 45 per cent tremolite amphibole, 35 per cent andesine; 10 per cent hypersthene, 5 per cent biotite, 5 per cent quartz and accessory opaque minerals. The rock preserves prograde orthopyroxene textures where weakly pleochroic hypersthene can be seen to be in a reaction relationship with the amphibole, and in places encloses

small optically continuous crystals of amphibole (Figure 4). However, biotite and hypersthene only coexist in the dyke along its boundaries with leucocratic veins.

Figure 4: Prograde orthopyroxene (opx) in a melanocratic dyke in basement gneiss on the Farm Oorsprong (about 250 m east of the main Messina-Tsh.pise road - Map 1 in rear pocket), which contains optically continuous amphibole (hnble) in a matrix of feldspar (plag). Scale bar is about 0,5 mm.

Elsewhere, biotite does not appear in the dyke.

The leucocratic veins are sub-parallel to parallel to the mineral banding in the gneiss, and ore usually a few centimetres in thickness. They are deformed together with the mineral banding, and display cuspate boundaries which are convex outwards into the grey basement gneisses, indicating that their viscosity was greater than that of the gneisses during the deformation. The veins are dioritic in composition with the following average modal assemblage: 60 per cent andesine, 30 per cent quartz, and 10 per cent biotite. Biotite is the only ferromagnesian mineral to occur in the veins, while the quartz and feldspar show even grained polygonal textures.

A whole-rock analysis of the basement gneiss is presented in Table 2. The sample (22-6-8) from the Farm Oorsprong (Map 2 in rear pocket) was chosen to contain as few veins as possible. The rock is predominantly felsic being mainly composed of SiO_2 , Al_2O_3 , Na_2O , K_2O and CaO. Femic components comprise less than 4 per cent of the rock. The rock is corundum normative with over 32 per cent normative quartz, while the only ferromagnesian mineral to appear in the norm is orthopyroxene in an amount of less than 3 per cent by weight.

Comprehensive whole-rock and mineral geochemical data for these basement rocks have been presented by a complimentary study of the Sand River Gneisses from the type area (Fripp, 1981a, 1981b, 1981c).

Quartzo-feldspathic gneisses

These gneisses are ubiquitous in the study area and underlie most of the region (see Map 1 in rear pocket). They weather readily and occupy much of the flat country or valley floors where they are largely covered by sand, soil and rubble. They show considerable heterogeneity in the proportions of their constituent minerals which include mica, amphibole, pyroxene,

	1	2	3	4	5	6	7	8	9	10	Singelele Average	10
540.5	72,61	75,81	80,28	73,21	78,94	78,33	78,96	78,50	78,80	79,21	78.79	0,32
7105	0,38	0,02	0,06	0,24	0,09	0,11	0,12	0,14	0,12	0,12	0,02	0,02
A1203	14,95	14,22	11,92	13,91	11,56	11,23	11,11	11,33	10, 92	11,13	11,21	0,22
Fe201	2,54	0,51	0,58	2,04	1,37	1,92	1,85	1,78	2,23	2,11	1,88	0,30
MnO	0,03	0,03	0,01	0,01	-	_	-	-	-	0,01	-	-
Hg0	0,62	-	0,03	0,46	0,11	0,08	0,08	0,04	0,05	0,05	0,07	0,03
CoO	2,73	1,45	2,48	1,53	0,64	0,48	0,42	0,47	0,42	0,50	0,49	0,08
Na.O	3,73	4,02	3,59	2,63	3,54	3,43	2,84	3,06	3,09	3,18	3,19	0,26
K_0	2,90	4,03	1,68	5,23	4, 37	4,54	5,03	4,80	4,70	4,36	4,63	0,26
P_0	0,11	0,07	0,05	0,07	0,02	0,03	0,04	0,05	0,04	0,04	0,04	0,01
LOI	0,16	0,05	0,22	0,27	0,17	0,09	0,24	0,15	0,18	0,19	0,17	0,05
Total	100,81	100,21	100,90	99,60	100,81	100,24	100,69	100,30	100, 57	100,90	100, 59	0,27
Rb ppm.	74	55	25	105	114	118	143	129	120	93	120	17
Sr ppm.	222	75	113	130	28	21	26	27	24	21	25	3
Ba ppm.	741	316	199	956	629	620	681	700	775	623	671	61
quartz	32,68	33,89	47,43	34,02	39,66	39,55	41,70	40,97	41,34	42,24	40,90	-
corundum	0,88	0,77		1,31	-		0,32	0,36	0,08	0,36	0,15	-
orthoclass	17,03	23,79	9,87	31,13	25,67	26,80	29,60	28,33	27,67	25, 59	27,25	-
albite	31,35	33,97	30,18	22,40	29,76	28,98	23,92	25,85	26,04	26,71	26,87	-
anorthite	12,98	6,72	11,37	7,18	2,72	1,82	1,81	2,00	1,81	2,02	2,16	-
dionaide	-	-	0,13		0,09	0,07	-			-	-	-
hedenbergite	-	-	0,32	-	0,17	0,24	-	-	-	-		-
enstatite	1,53	-	0,01	1,15	0,23	0,17	0,20	0,10	0,12	0,12	0,17	-
ferrosilite	0,75	0,28	0,04	0,70	0, 51	0,72	0,81	0,76	0,98	0,95	0,81	-
magnetite	1,83	0,38	0,42	1,49	0,98	1,39	1,33	1,29	1,60	1,51	1,36	-
ilmonite	0,72	0,04	0,11	0,46	0,71	0,21	0,23	0,23	0,27	0,23	0,23	-
opatite	0,25	0,16	0,12	0,16	0,05	0,07	0,09	0,12	0,09	0,09	0,09	14 L

Table 2: Miole-rock qualyges of humanent, quartzo-felds athic and Singeleie type gneiszes and their C.I.P.W. norms

grey bonded basement gneiss (22-6-B) - Farm Oorsprong.
dyke-like quartzo-feldspathic gneiss (77) - Farm Artonvillu.
dyke-like quartzo-feldspathic gneiss (29-1-7B) - Form Heuningfontein.
adamollitic quartzo-feldspathic gneiss (18-6-A) - farm Veenen.
tu l0: Singelele-type granitoid gneiss (876-85 to 876-90) - Farm Ostend.

Analyst: P.C.Horrocks Total Fe determined as FeaO.

LOI = loss on ignition.

and garnet in addition to quartz and feldspar. The quartz commonly forms aggregates of grains fused into ribbon-like structures typical of high grade metamorphic rocks. Grain sizes are variable from 1 to 5 mm for the leucocratic minerals and 1 to 2 mm for the melanocratic minerals. In places, more leucocratic varieties of this lithology cun be seen to form discrete layers and dyke-like bodies which transect other quartzo-feldspathic units that contain more abundant melanocratic minerals.

Three modal assemblages are presented below to demonstrute the range of compositions which occur. The first is a leucocratic dyke-like body that transects the other quartzofeldspathic types, and has a granitic mineralogy: 50 per cent microcline, 40 per cent quartz, 5 per cent albite and 5 per cent almandine. This rock has a granoblastic texture and is largely recrystallized. The quartz grains commonly display concave inward cuspate boundaries, and have clear rather than undulose extinction. The garnet has been identified as being predominantly almandine by powder X-ray diffraction techniques, while the microcline is perthitic.

A second typical variety of these rocks is adamellitic in composition, with alkali feldspar constituting between 33 per cent and 65 per cent of the total feldspar. The average modal

composition is: 35 per cent microcline, 30 per cent quartz, 20 per cent andesine, 10 per cent biotite, 3 per cent garnet, 1 per cent chlorite, accessory opaque minerals, sillimanite and phlogopite. The garnet in these varieties is typically zoned and poikiloblastic. Their cores commonly contain numerous small blebs of quartz while biotite crystals interpenetrate and coexist with an outer zone. The sillimanite replaces the pale mica and their longest crystallographic axes are colinear. These two minerals occur in only minor quantities. Some biotite laths are replaced by chlorite which in turn have abundant opaque minerals exsolved along their lamellae.

A third variety of the gneiss is dioritic with the following mineral composition: 65 per cent labradorite, 20 per cent quartz, 10 per cent augite, 1 per cent orthopyroxene, 2 per cent tremolitic amphibole, 2 per cent opaque minerals and accessory mon azite. Replacement relationships and reactions are commonly observed in this lithology. In places, the clinopyroxene and opaque minerals are seen rimmed by the greenish amphibole. The minor amounts of pleochroic hypersthene containing inclusions of small optically continuous grains of amphibole show prograde reactions where it replaces amphibole in the presence of quartz. This amphibole-pyroxene reaction can also be observed with the pale green weakly pleochroic clinopyroxene. Some idioblastic grai. of metamict monazite also occur.

Three whole-rock analyses of these gneisses are included in Table 2. Samples 77 and 29-1-7B are leucocratic dyke-like units which in places can be seen to cross-cut the other quartzofeldspathic lithologies. Sample 18-6-A contains more ferromagnesian minerals, and is adamellitic in composition. These rocks all have high SiO_2 contents which vary from about 73 per cent to 80 per cent, and variable alkali ratios. This reflects the heterogeneous nature of these rock-types. The normative assemblages are similarly variable. Sample 29-1-7B with over 80 per cent SiO_2 is not corundum normative, but contains normative clinopyroxene. In addition, this sample shows over 47 per cent normative quartz reflecting its high SiO_2 content.

Singelele-type granitoid gneiss

This granitoid gneiss occurs on the Farms Kopjesfontein, Ostend, Trotsky, Lenin and Senator (see Map 1 in rear pocket), and forms prominent hills of rarge rounded boulders on Ostend. It is characterized by a reddish weathering colour and a coarse grain size, with some minerals reaching 5 mm in diameter. The rock is quartz rich, where aggregates of quartz grains produce flat ribbon-like structures which accentuate the planar fabric. The feldspar produces the reddish colour, while small amounts of platy biotite form the predominant melanocratic mineral in the rock. Weathered surfaces commonly display a characteristic

oattern of irregular polygonal cracks.

The rock has the composition of a granite as follows: 50 per cent quartz, 40 per cent microcline, 3 per cent plagioclase, 5 per cent biotite, 2 per cent chloritized amphibole, accessory zurcon and accessory opaque minerals. Myrmekite commonly occurs in the plagioclase grains and can usually we seen to terminate against the boundary with an alkali feldspar grain. Some plagioclase-biotite grain boundaries show the development of later smaller plagioclase grains. Both the biotite and opaque mineral exhibit skeletal grain texturce, while some quartz grains show cuspate boundaries thich are concave inwards. Amphiboles are rare, and are commonly altered in chlorite. The zircon grains show two distinct morphologies: idioblastic grains, commonly metamict with radiating cracks and cloudy coronas, and smaller corroded grains which are numerically more abundant.

Table 2 shows 6 whole-rock analyses of this rock type, that nave also been used for isotope and geochronological studies (Barton <u>et al.</u>, 1979b). These samples were collected over a limited area at one locality on the Farm Ostend (Map 2 in rear pocket) and all have a similar composition. This has been used to test the 'repeatability' of the analytical technique (Appendix 1), and average values with single standard deviations have been calculated (Table 2). The rock is characterized by
high SiO, values, typically over 78 per cent. Cafemic components are minor, less than 4 per cent on average, while K₀O is the most abundant alkali (up to 5 per cent). Rb and Sr trace elementabundances have also been determined using the 'isotope dilution' technique (Barton et al., 1979b), and in general closely agree with those values determined by X-ray fluorescence used in this study. An exception is sample B76-89 which displays some considerable sotopic heterogeneity. The samples all contain normative quirtz (about 40 per cent), though unlike the others, mples B76-85 and B76-86 are not corundum normative, but show small amounts of normative clinopyroxene (less than 0,4 per cent). All samples contain normative orthopyroxene (about 1 per cent). The no.mative feldspar is largely alkaline, with only minor quantities of anorthite being calculated (about 4 per cent of the total feldspar). Normative potash and sodic feldspars are in nearly equal proportions.

Garnet-cordierite-sillimanite gneiss and varieties

These gneisses form a variety of units in general interlayered and infolded with the quartzo-feldspathic gneisses (see Map 1 in rear pocket). Apart from the more common garnetcordierite-sillimanite gne..s, corurdum-bearing, sillimanite bearing, sapphirine-bearing and symplectite-bearing varieties occur. They are characterized by a large number of mineral

phases and commonly exhibit a well developed mineral layering. Biotite-rich and leucocratic layers alternate, and vary from a few millimetres to a few centimetres in thickness. Garnet porphyroblasts are characteristic, and range up to a centimetre in diameter, with the biotite and sillimanite showing wraparound structures. Some varieties contain abundant sillimanite, and at some localities, for example on the Farm Randjesfontein (Map 1 in rear pocket), are monominerallic, and have been quarried for commercial purposes. The sillimanite occurs as clusters of needle-like grains up to 3 cm in length, and these commonly reveal small kink-bands and shear-zones in the rock. Other varieties are corundum bearing, and have also been quarried on the farm Randjesfontein. The corundum grains range up to 1 cm in diameter, and are commonly set in a matrix of biotite which wraps around the corundum porphyroblasts. Spinel and sapphirine bearing varieties usually occur as small outcrops of very limited extent within a country rock made up of the more typical garnetcordierite-sillimanite gneiss where they form tough, coarse and uneven grained rocks which have extremely irregular weathered surfaces and contain garnets up to 2 cm in diameter.

A considerable variation in mineral assemblages occur in these rocks, and some samples may contain more than 9 different phases. An example of a mode for a typical <u>garnet-cordierite-</u> sillimanite gneiss is: 5 - 10 per cent garnet, 10 - 20 per cent

cordierite; 5 - 10 per cent sillimanite, 10 - 25 per cent biotite, 20 - 25 per cent oliguclase, 15 - 25 per cent quartz, 5 - 15 per cent K-feldspar and accessory opaque minerals. The garnet is porphyroblastic with poikiloblastic cores containing quartz, plagioclase, sillimanite and biotite inclusions. In places the garnet has quartz myrmekites which radiate outwards into cordierite. Quartz myrmekites are generally abundant, and are present in quartz, plagioclase and cordierite hosts. The cordierite is well twinned and poikiloblastic, and typically contains biotite and sillimanite grains. This suggests that the following reaction reported by Holdaway and Lee (1977) has occurred in these rocks: biotite + sillimanite + quartz = cordierite + garnet + K-feldspar + H_2O Also, the reaction described by Currie (1971) is typical of these rocks, where cordierite and garnet share common grain boundaries and both contain quartz and sillimanite inclusions:

garnet + sillimanite + quartz = cordierite Both the K-feldspar and the plagioclase display perthitic and antiperthitic textures respectively, but are seldom poikiloblastic. The sillimanite occurs in two murphologies as (i) clusters of small needle-like grains within the garnet and cordierite; and (ii) larger columnar grains usually occurring within cordierite only where the sillimanite replaces the biotite (Figure 5).

A <u>corundum bearing variety</u> of <u>nese</u> gneisses has the following typical modal assemblage: 40 per cent corundum, 35

Figure 5:: Sillimanite (sill) replacing biotite (biot) in cordierite from a garnet-cordierite-sillimanite gneiss on the Farm Artonvilla (7 km east of Messina - see Horrocks, 1975). Scale bar is approximately 0,5 mm.

per cent biotite, 18 per cent alteration minerals, 5 per cent phiogopite, 2 per cent hornblende, accersory opaque minerals, and accessory allanite. The corundum forms porphyroblasts up to 1 cm in diameter and contains inclusions of brown amphibole and colourless mica (phlogopite). In places, the corundum displays a distinct zonation revealed by cloudy traces of submicroscopic particles incorporated during crystal growth. Biotite laths wrap around the corundum, and also occur as scattered prismatic grains in an amorphous groundmass of the alteration products, which include sericitic micas and clay minerals probably after a feldspar.

The almost monominerallic sillimanite rock contains

prismatic grains of sillimanite which are generally needle-like in form. Hawever, larger columnar grains of sillimanite crosscut the smaller needles and probably represent a second stage of sillimanite crystallization. Also, biotite which may comprise up to 10 per cent of the rock occurs in similar replacement relationships as illustrated in Figure 5. Late stage greenish coloured very fine grained quartz is locally present in amounts up to 5 per cent, while accessory spinel and opaque minerals are also present. Small kink-banas and shear-zones deform the sillimani 3 medles on a micro.copic scale, and in some of the shear-zones, the larger columnar grains occur with their longest axes parallel to the zone's edge.

The <u>sapphirine bearing varieties</u> are generally characterized by the presence of spinel, colundum and bronzite. A typical mineral assemblage is as follows: 30 per cent biotite/phlogopite, 30 per cent coraierite, 10 per cent sopphirine, 10 per cent garnet, 5 per cent hercynite, 5 per cent alteration minerals, 4 per cent hypersthene/bronzite, 4 per cent amphibole (gedrite), 2 per cent corundum, accessory opaque minerals. Important mineral parageneses which preserve complex reaction textures are a feature of these varieties. Canals of cordierite, sapphirine and spinel separate garnet from corundum which are never seen in contact. In the same thin section, the isotropic green spinel, hercynite, can be observed to coexist with cordierite, and in

Figure 6: Sapphirine (sapp) overgrowing hercynite (sp) in cordierite (cord) from a sopphirine rock on the Farm Randjesfontein (2 km north-east of the main Messina-Tshipise road - Map 1 in rear pocket). The scale bar is approximately 0,5 mm.

Figure 7: Reaction rims of spinel (sp), sopphirine and cordierite separating corundum and garnet, in sapphirine rock from the Farm Randjesfontein (2 km north-east of the main Messina-Tshipise road - Map 1 in rear pocket). The scale bar is approximately 0,5 mm.

adjacent areas to be 'armoured' from cordierite by a thin rim of sapphirine (Figure 6). Where corundum is present, it is always rimmed by the hercynite, which is in turn rimmed by sapphirine. The sapphirine is then separated from the garnet by larger canals of cordierite (Figure 7). Bronzite also occurs in these rocks, and coexists with both garnet and cordierite (Figure 8). The amphibole in the rock consists of pale brown gedrite, and shows particularly well developed cleavage traces. It forms porphyroblasts up to a few millimetres in diameter, and commonly include: small granules of orthopyroxene.

Figure 8: Reaction texture of garnet (gar) which coexists with both orthopyroxene (opx), cordierite (cord) and plagioclase (plag) in a sapphirine rock from the Farm Randjesfontein (2 km northeast of the main Messina-Tshipise road - Map 1 in rear pocket). The scale bar is about 0,5 mm.

Certain types of these gneisses, particularly those in close spatial association with the sapphirine bearing varieties preserve <u>symplectitic textures</u>. These contain vermicular orthopyroxene hosted within either cordierite or plagioclase. In samples with sapphirine, the orthopyroxene occurs intimately associated with biotite and may even completely overgrow the biotite (Figure 9). These minecals are then most commonly

Figure 9: Symplectite consisting of vermicular orthopyroxene (opx), biotite (biot), and cordierite (cord), in a sapphirine rock from the Farm Randjesfontein (2 km north-east of the main Messina-Tshipise road - Map 1 in rear pocket). The scale bar is approximately 0,5 mm.

hosted in cordierite. In the case of symplectites containing vermicules of orthopyroxene hosted in plagioclase, the orthopyroxenes occur radiating outwards from a garnet porphyroblast (Figure 10), and in some specimens, the garnet

may be entirely absent with only spherical 'knots' of the orthopyroxene in plagioclase remaining.

Figure 10: Symplectite consisting of radiating vermicular orthopyroxene (opx) in plagioclase (plag) around a garnet porphyroblast (gar) in a symplectite rock from the Farm Randjesfontein (2 km north-east of the main Messina-Tshipise road - Map 1 in rear pocket). The scale bar is approximately 0,5 mm.

In summary, these textures may be ascribed to the following reactions. Corundum and garnet appear to be the earliest formed metamorphic minerals, and are separated by a reaction rim of mainly cordierite (Figure 7):

 $2X_3Al_2Si_3O_{12} + Al_2O_3 + 3Al_2SiO_5 + 6SiO_2 = 3X_2Al_4Si_5O_{18}$ garnet corundum sillimanite quartz cordierite This reaction consumes alumino-silicate and quartz, which is supported by the fact that sillimanite and quartz are common inclusions within the garnet and cordierite in all varieties of these gneisses. Also, the association of enstatite + kyanite + quartz has been described from rocks in the Central Zone of the Limpopo Mobile Belt (Chinner and Sweatman, 1968) and suggests that reactions similar to:

enstatite + kyanite/sillimanite + quartz = cordierite may have been responsible for the breakdown of an earlier assemblage such as enstatite + kyanite + corundum + quartz + garnet into new phases, for example garnet + cordia i.e + spinel + sapphirine. Sapphirine forming reactions whin may be applicable in the area under study have been studied by Seifert (1974) and include:

cordierite + corundum = sapphirine + sillimanite
or cordierite + corundum = sapphirine
However, sapphirine is always 'armoured' from the corundum by
spinel probably by the reaction:

cordierite + spinel + corundum = sapphirine Such reactions are considered by Leyreloup <u>et.al</u>. (1975) to occur during retrograde transitions to low pressure granulite facies in felsic rocks at high temperatures.

Whole-rock and mineral geochemical data have been obtained for these garnet-cordierite-sillimanite gneisses and their related sapphirine, spinel, corundum and symplectitic varieties. The whcle-rock analytical data are presented in Toble 3, whilst

	1	2	3	4	5
Si0 ₂	54,99	55,02	31,01	46,29	29,33
Ti0 ₂	0,81	0,84	0,98	1,22	0,96
A1203	20,76	21,60	36,08	17,22	31,41
FeO	10,47	9,88	11,58	16,78	12,58
MnO	0,12	0,12	0,01	0,16	0,03
MgƏ	5,92	6,96	14,31	10,05	23,21
CaO	1,08	1,08	0,63	6,92	0,14
Na ₂ 0	1,17	1,07	0,51	0,80	1,05
K ₂ 0	2,85	2,71	2,02	0,35	-
P205	0,06	0,07	0,12	0,20	0,16
LOI	0,84	0,77	2,57	0,33	1,20
Total	100,07	100,11	99,82	100,32	100,07

Table 3: Whole-rock analyses of garnet-cordierite-sillimanite gneiss and related varieties

1: garnet-cordierite-sillimanite gneiss (21-7-F) - Farm Boschrand.

2: garnet-cordierite-sillimanite gneiss (21-7-G) - Farm Boschrand.

3: sapphirine bearing rock (2-8-12) - Farm Randjesfontein.

4: garnet-orthopyroxene-plagioclase symplectite (2-8-10) -Farm Randjesfontein.

5: cordierite-spinel-corundum rock (2-8-1) - Farm Chirundu.

Analyst: P.C. Horrocks Total iron determined as FeO LOI = loss on ignition

į.

the mineral analytical data (electron probe microanalyses) are presented in Appendix 2.

The whole-rock analyses for these rocks show some great variability. The garnet-cordierite-sillimanite gneiss (nos. 1 and 2, Table 3) are essentially pelitic in composition (see Pettijohn, 1957, p.106) with SiO_7 . Al_2O_3 , FeO and MgO comprising more than 90 per cent of the rock. However, compared to the compositions of typical shales, these gneisses show relative den s in the lithophile components (SiO₂, Al_2O_3 , CaO, Na₂O

nile the siderophile components (FeO, MgO) are and enviced. The sapphirine, spinel and corundum relat pearing lithologies (nos. 3 and 5, Table 3) display this trend in an even greater degree, with the exception of Al_2O_3 which is high in these rocks relative to the garnet-cordierite-sillimanite gneiss country rock. Silica and the alkalis (C₃O, Na₂O and K_2 O) are depleted, while the Al₂O₃, FeO and MgO are enriched by significant amounts, for example the Al₂0₃ is enriched from about 21 per cent in the garnet-cordierite-sillimanite graiss to about 36 per cent in the sapphirine bearing rock (see Table 3). The symplectite (no.4, Table 3) is depleted in SiO₂ and Al₂O₃ while enriched in FeO, MgO and CaO relative to the garnet-cordieritesillimanite gneisses. In the case of CaO, this enrichment is from about 1 per cent CaO to about 7 per cent CaO.

Numerous electron probe microanalyses of minerals from

these lithologies are presented in Appendix 2. These have been used in applying various geothermometers and geobaro. sters in order to establish some physical conditions of the metamorphism and in a study of compositional zonation in garnet. These topics are discussed in more detail later in this report. Suffice it to say here that the minerals analysed from the garnet-cordierite-sillimanite gneiss include feldspar, mica, garnet and cordierite. The mica is generally phlogopite with Mg/Mg+Fe ratios approaching 0,7 but phlogopite in contact with garnet is generally more magnesian than those grains isolated from the garnet. The garnet shows a distinctive zonation in Mg and Fe which is genully concentric to the margins of the porphyroblasts, and varies from about Alm₅₅Py₄₅ ct the grain cores to about Alm₇₀Py₃₀ at the grain margins. Grossular and spessartine forms negligible proportions of the garnet in the garnet-cordierite-sillimanite gneiss. However, in the symplectite, grossular forms up to 20 per cent of the _arnet, and zoning is much less marked. The sapphirine bearing varieties contain garnet which displays simila- compositions and zoning to that in the garnet-cordierite-sillimanite gneiss. The cordierite is generally unzoned, and has typical Mg/Mg+Fe ratios of about 0,8. In addition to these minerals, sapphirine, spinel, gedrite and orthopyroxene analyses have been outnined from the sapphirine and other varieties of these rocks (see

Appendix 2). In these samples, the mica is also phlogopitic, with TiO₀ contents up to 2,5 per cent which contrasts with about 1,5 per cent in the garnet-cordierite-sillimanite gneiss. The orthopyroxene is typically bronzite in the sapphirine rocks, with a Mg/Mg+Fe ratio of about 0,7 or higher.

Pyroxenitic amphibolite

Amphibolitic gneisses are c.mmon (see Map 1 in rear pocket) but display considerable variety in their field appearance and constituent mineral components. Although termed 'amphibolites' as a field term by many workers in the region, these rocks contain in general appreciable amounts of pyroxene, which can produce brown and reddish colours in outcrop as opposed to those more blackish melanocratic varieties with less pyroxene and more amphibole. The rock weathers easily, and typically occurs interlayered and infolded with quartzite, banded magnetite quartzite and also some pod-like serpentinites. This association of rock-types is characteristic in the area. However, they also occur together with the quartzo-feldspathic gneisses where they are more leucocratic and generally contain more biotite. They are even grained rocks with grain sizes ranging from 1 to 3 mm in diameter. Many varieties are distinctly garneti rous, and take on a characteristic 'spotted' appearance, in which the 'spots' are a few centimetres in diameter, and often comprise garnet centres with aggregates of plagioclase grains forming

naloes. In some samples, idioblastic outlines can be detected, while others are deformed into e lipsoidal bodies within the rock. These textures and structures occur elsewhere in highgrade metamorphic provinces, and have even been used as palaeostrain gauges (Schwerdtner <u>et al.</u>, 1974).

These rocks are mainly pyroxene-amphibole-plagioclase assemblag;s, and two modes are presented below, the first in a garnet-free variety, while the second contains garnet: 10 - 40 per cent andesine, 25 - 50 per cent hornblende, 0-35 per cent hypersthene, 0 - 25 per cent diopside, 0 - 20 per cent biotite, 3 - 15 per cent quartz, 0 - 5 per cent opaque minerals, 0 - 5 per cent chlorite, 0 - 5 per cent sphene; and 5 per cent labradorite, 75 per cent hornblende, 10 per cent hypersthere, 2 per cent diopside, 1 per cent biotite, 5 per cent quartz, 5 per The proportions of these phases vary considerably cent garnet. from locality to locality, and the above only represent typical assemblages. Many samples contain clinopyroxene without any orthopyroxene, and commonly, the diopside rims the hornblende, and blebs of optically continuous hornblende may be included within pyroxone grains. However, the diopside can also be rimmed by the hornblende, suggesting that both prograde and retrograde relationships cre preserved between these minerals. In the prograde relationship, orthopyroxene forms along grain boundaries between adjacent amphibole grains (Figure 11)

Figure 11: Prograde orthopyroxene (opx) replacing hornblende (hble) along grain boundaries in a pyroxenitic amphibolite from the Farm Artonvilla (7 km east of Messina - see Horrocks, 1975). Scale bar is about 0,5 mm.

where it consumes the amphibole and may contain optically continuous inclusions of hornblende. Alternatively, poikiloblastic grains of hornblende may 'e seen to contain optically continuous inclusions of pyroxene (Figure 12) reflecting the retrograde relationship. These textures always occur in the presence of plagioclase and quartz, and suggest that they may have been formed by the following reactions described by De Waard (1965):

hornblende + quartz = hypersthene + clinopyroxene + plagioclase + H₂O hornblende + biotite + quartz = hypersthene + K-feldspar +

plagioclase + H₂O

Figure 12: Retrograde hornblende (hnble) containing optically continuous inclusions of clinopyroxene (cpx) in a pyroxenitic amphibolite from the Farm Artonvilla (7 km east of Messina see Horrocks, 1975). Scale har about 0,5 mm.

which are both reversible reactions controlled not only by pressure and temperature, but also by the partial pressure of water at the time of the metamorphism, which may be estimated using the following reaction (S.W. Richardson, pers. comm.):

tremolite = enstatite + diopside + quartz + H₀O

Garnet bearing assemblages in these rocks have two forms: either (i) garnet may occur in coexistence with the amphibole and pyroxene; or (ii) the garnet may occur with distinctive kelyphytic coronas as is the case in hornblende-rich varieties (Figures 13 and 14) which impart the characteristic 'spotted' appearance to the handspecimen. In the former, the following reaction may in part account for the texture observed (De Waard, 1965):

Figure 13: Kelyphitic corona texture about garnet (gar) in an amphibole-rich pyroxenitic amphibolite from the Farm Artonvilla (7 km east of Messina - see Horrocks, 1975). The scale bar is approximately 0,5 mm.

Figure 14: Kelyphitic aggregates of altered plagioclase, amphibole and clinopyroxene in an amphibole-rich pyroxenitic amphibolite from the Farm Artonvilla (7 km east of Messina see Horrocks, 1975). The scale bar is about 0,5 mm. hornblende + almandine + quartz = hypersthene + plagioclase + H₂O Hevever, in the kelyphitic textures, the garnet is 'armoured' from the hornblende by a rim composed mainly of plagioclase, but which also contains inclusions of clinopyroxene and hornblende. This suggests a reaction which may have the form:

hornblende + garnet = plagioclase + pyroxene + 120 The presence of garnet in these assemblages may be ascribed to an earlier reaction described by Green and Ringwood (1967): orthopyroxene + plagioclase = garnet + clinopyroxene + quartz which signifies their transition from lower pressure granulites to higher pressure granulites.

Whole-rock geochemical data for these rock-types are presented in Table 4 together with their respective C.I.P.W. normative assemblages. They reveal the cafemic nature of these lithologies, and pyroxene, plagioclase and quartz are the major normative minerals calculated. Hornblende is not calculated in a C.I.P.W. norm. Magnetite and ilmenite are important constituents, and in some samples comprise over 7 per cent of the normative assemblage.

Electron probe microanalyses of minerals from these rocks (see Appendix 2) have been obtained for the application of various geobarometers and geothermometers. In addition, the activity of water may be calculated using these mineral parageneses. Data for feldspars, orthopyroxenes, clinopyroxenes

	1	2	3	4	5	6	7	8	9	10	Average of 3 to 10	1.
5102	57, 58	61, 57	49,92	49,98	48,39	48,72	50, 32	49,47	49,97	46,92	49,21	1,14
Ti02	1,18	0,88	1,50	1,26	1,09	1,57	1,35	1,26	1,01	1,08	1.27	0.20
ALD	13,48	15,75	13,74	14,62	15,07	13,57	14,52	14, 39	15,04	15, 41	14.55	0.64
F=203	4,45	7,08	15,40	13,18	12, 38	16,00	14,45	13,57	12,28	13,93	13,90	1.34
MnO	0,08	0,11	0,26	0,39	0,30	0,44	0,35	0,46	C, 39	0,28	0.36	0.07
MgO	5,35	3, 51	6,48	6,98	7,99	6,54	6,41	7,06	8,00	8.07	7,19	0.72
Co0	13,17	6,29	9,98	0,83	9,8:	9,64	9,35	8,78	9,46	9.87	9.47	0.46
Na ₂ 0	2,63	3,10	1,77	2,29	2,22	1,70	1,87	2,38	1.74	1.64	1.95	0.30
K20	0, 33	1,71	1,03	1,46	1,19	1,02	1,17	1,48	1.29	1.22	1.23	0.17
P205	-	ò, 20	0,09	0,08	0,06	0,10	0,08	0,09	0.06	0.04	0.08	0.02
LOI	0,86	0, 33	0,72	1,10	1,69	0,78	0,93	1,22	1,66	1,72	1,23	0,42
Total	99,15	100,53	100,89	100,17	100, 21	100,08	100,80	100,18	100,90	100,18	100, 42	0,37
Rb ppm.	11	4.4	-		- 81	-		~	~			
Sr ppm.	163	356		-				-				
Bo ppm.	53, 3	469	-				~					
K/Rb	300	389	-									
Rb/Sr	0,07	0.11		-			-		-		2	-
quartz	12,08	16, 38	1,48	-		0,60	1,63	-				
orthoclose	1,99	10,05	6,03	8,66	7,13	6,02	6,87	8,80	7.63	7 30		
albite	22,64	26,08	14,84	19,45	19,03	14,37	15,72	20,26	14.74	14 04		
onorthite	24,41	23,86	26,25	25, 38	27,98	26,33	27,58	24,34	29.43	31.44	2	
diopside	26,63	2,69	9,33	8,30	9,78	8,54	7,67	8,57	8.47	8 46		
hedenbergite	6,92	2,14	9,12	6, 58	7,52	8,72	7,24	8,01	5, 58	6 20		
enstatite	1,31	7,44	11,66	10,91	4,68	12,30	12,30	8,65	15.42	7 66		-
ferrosilite	0,41	7,20	13,86	10,53	4,38	15,29	14,10	8,60	12.36	6.82		
forsterite	-	-		2,27	7,66		-	4,28	0.41	6 13		
fayalite	-	-	•	1,57	7,45	-	-	3,06	0.35	5,68		
magnotite	1,31	2,05	4,42	2,82	2,17	4,63	4,16	2,90	3.57	4.09		
ilmonite	2,28	1,66	2,82	1,80	2.10	2,98	2,55	1,80	1,92	2.08		
opotíte	0,02	0,46	0,21	0,17	0,14	0,23	0,18	0,19	0.14	0.09		

Toble 4: Minis-rock analyses of merananitic any solites and their C.I.P.M norms

lı 2: 3 - 10:

pyroxenitic amphibolite (28-5-K) - Fore Shangani. pyroxenitic amphibolite (18-6-C) - Form Veenen. pyroxenitic amphibolite (877-44 to 877-51) - Form Magdola.

,07 Analyst: P.C. Horpocks Total Fe datarmined as Fe.O. LOI = loss of ignition. *

1

-

hornblendes and garnets which are in coexistence are presenced in Appendix 2. The garnet is generally unzoned, in contrast to those in the garnet-cordierite-sillimanite gneiss and typically gives Mg/Mg+Fe ratios of about 0,2. Grossular forms on important component of these garnets in amounts up to 30 per cent in addition to almandine and pyrope.

Quarted to and banded magnetite quartzite

The quartzites form prominent ridges in the area, particularly in the north-western region (see Map 1 in rear pocket) where they are typically interlayered with considerable thicknesses of pyroxenitic amphibolite. Boudins of banded magnetite quartzite and bodies of garnet quartzite, serpentinite and pyroxenite also occur in close and characteristic association with the quartzites. Although the quartzi as are only a few metres thick, the abundant float and scree material obscures the outcrop of other lithologies, ard creates a false impression of the thickness of the quartzite units.

The <u>quartaite</u> is largely recrystallized, and in many outcrops assumes a milky vein-quartz appearance. In places, the rock contains disseminated laucocratic and melanocratic minerals ranging from 1 to 3 mm in size. At some localities, for example on the Farm Dover, the quartzite is distinctly sillimanice bearing which imparts a marked linear fabric to the rock. An unusual garnet quortzite occurs on the Farm Heuningfontein

interlayered with other quartzo-feldspathic and amphibolitic gneisses, and is composed of quartz scattered with garnet grains ranging up to 8 mm in diameter.

In thin section, other disseminated minerals apart from quartz include oligoclase, biotite, orthopyroxene which in places contains inclusions of cJinopyroxene and amphibole, amphibole, clinopyroxene, rutile needles, sillimanite and sericitic micas. These disseminated minerals range up to 3 mm in size, and occur both along quartz grain boundaries and included within quartz grains. They often produce a microscopic fabric due to the alignment of their longest dimensions (Figure 15). The plagioclase commonly displays intense sericitization,

Figure 15: Rutile needles in quartz in a quartzite from the Farm Artonvilla (7 km east of Messina - see Horrocks, 1975). Scale bar is approximately 0,5 mm.

while the quartz grain boundaries are typically dusted with iron oxides and sericitic mica flakes. The equidimensional shapes and polygonization of the quartz grains suggest that they are largely recrystallized, and they show little or no undulose extinction. However, deformation bands are common in these rocks within the larger quartz grains (Figure 16) and are revealed by their small optical orientation differences. Trails of fluid inclusions are also common in the quartz grains.

Figure 16: Deformation band in a quartz grain in a quartzite from the Farm Artonvilla (7 km east of Messina - see Horrocks, 1975). The scale bar is about 0,5 mm.

Th: <u>garnet quartzite</u> which crops out on the Farm Heuningfontein is notable for the large garnet porphyroblasts which range up to 5 mm in diameter. The rock has the following approximate model composition: 30 per cent garnet, 60 per cent

quartz, 5 per cent andesine, 2 per cent hornblende, 1 per cent clinopyroxene, 2 per cent alteration minerals, accessory opaque minerals and accessory allanite. The garnet forms distinctive atall structures in places, with idioblastic outlines and quartzfilled cores (Figure 17). The other silicate minerals are commonly obscured by alteration products. Abundant metamict allanite grains are dispersed in the quartz and show radial fractures and trails of fluid inc'ssions surrounding them and penetrating the adjacent minera. (Figure 18). Deformation bunds are also present in this rock-type.

The <u>banded magnetite auartzite</u> is mainly developed within py oxenitic amphibolite units interlayered with the quartzite in the rorth and north-west of the study area (see Map 1 in rear

Figure 17: Atoll structure of garnet in a garnet quartzite from the Farm Heuningfontein (2 km west of the main Messina-Tshipise road - see Map 1 in rear pocket). Scale bar is about 0,5 mm.

Figure 18: Metamict allanite grains in a garnet quartzite from the Farm Heuningfontein (2 km west of the main Messina-Tshipise road - see Map 1 in rear pocket). The scale bar is approximately 0,5 mm.

pocket). The rock is notable for the presence of well developed and well exposed minor fold structures. The rock also forms a useful marker horizon. The rock has a high viscosity in comparison to the surrounding lithologies, which are mainly pyroxenitic amphibolite, and hence is extensively boudinaged during the obvious attenuation these lithologies have experienced. Thus units of this rock-type occur over an extensive but discontinuous strike length. The rock contains fine laminations from 1 to 4 mm in thickness made up of alternating quartz and magnetite layers.

This fine banding in these rocks can be clearly seen in thin section (Figure 19). The magnetite grains are typically idioblastic and detached from each other giving the rock a very granular appearance. The layers have the appearance of being 'graded' (Figure 19) with sharply bounded 'bottom' surfaces from which the densely packed and fine grained magnetite grades upwards, becoming more coarse grained, and less densely wacked with an increasing proportion of interstitial quartz. The quartz grains are recrystallized with little or no undulose extinction, and are characterized by a cloudy appearance due to large amounts of submicroscopic particles, probably iron oxides, bubbles and fluid inclusion trails (Figure 20).

A more massively recrystallized haematitic ore occurs within a unit of this rock type on the Farm Heuningfontein (see Map 1 in rear pocket) and in the past has been mined for its iron content, as have other localities of this rock type in the area under study. In places, amphibole asbestos occurs with fibres ranging up to 5 cm in length. Also, highly altered amphiboles and small radiating clusters of sillimanite needles up to 1 cm in length occur with this ore.

A whole-rock analysis of a sample of this rock type from the Farm Heuningfontein is presented in Table 5. Over 95 per cent of the rock is made up of silica and iron oxide. TiO_2 makes up a very low proportion of this rock (0,01 per cent) and distinguishes these rocks from the chromium and titanium bearing magnetitites occurring within the intrusive rocks of the Messina Layered Intrusion (Söhnge, 1946; Barton <u>et al</u>., 1979a). Na₂O

Figure 19: Laminations in a banded magnetite quartzite from the Farm Heuningfontein (1 km west of the main Messina-Tshipise road - see Map 1 in rear pocket). Note the graded grain size of magnetite granules within the laminations. The scale bar is approximately 0,5 mm.

Figure 20: Fluid inclusions, some of which contain gas bubbles, in a banded magnetite quartzite from the Farm Heuningfontein (1 km west of the main Messina-Tshipise road - see Map 1 in rear pocket). The scale bar is about 0,05 mm.

Si0 ₂	47,81
Ti0 ₂	0,01
A1203	0,59
FeO	45,18
MnO	0,06
MgO	0,91
CaO	0,09
Na ₂ 0	4,57
к ₂ 0	-
P205	0,04
LOI	0,53
Total	99,79

Analyst: P.C.B. Horrocks Total iron determined as FeO LOI = loss on ignition

and the second se

Table 5: A whole-rock analysis of a banded magnetite quartzite (sample no.4-2-13, Farm Heuningfontein - see Map 2 in rear pocket)

forms a significant amount in the rock (over 4,5 per cent) and is probably associated with altered plagioclase which occurs in small quantities in these rocks.

Calc-silicate gneiss and marble

The calc-silicate gneiss characteristically forms prominent outcrops due to its resistance to weathering. These rocks are well banded with bands usually only a few millimetres in thickness made up of alternating melanocratic and leucocratic layers. Like the banded magnetite quartzite, this rock is characterized by minor fold structures and is useful as a structural and as a mapping marker horizon. The mineral grains are of uniform size ranging from 1 to 3 mm in diameter, although some massive greyish coloured varieties containing carbonate minerals also occur, usually adjacent to units of marble.

The mineralogical composition of calc-silicate varieties occurring in the area under study is as follows: 45 - 55 per cent labradorite, 10 - 35 per cent diopside, 0 - 20 per cent hornblende, 0 - 15 per cent calcite, 0 - 10 per cent quartz, 0 -5 per cent biotite, accessory opaque minerals and accessory zircon. They are characterized by abundant calcic plagioclase and weakly pleochroic pale green diopside. The plagioclase is frequently heavily altered and replaced by sericitic micas, while some samples contain numerous zircons which are generally free of metamict texture.

Marbles are not abundant in the area mapped, but occur much more frequently in the south-east in the vicinity of the village of Tshipise (Figure 2). The main occurrence in the study area forms prominent ridges in the south-east of the area parallel to and just north-west of the Bosbokpoort Fault (see Map 1 in rear pocket). Minor quantities of carbonate-bearing rocks also occur on the Farms Shangani and Boulogne (see Map 1 in rear pocket). The interlocking carbonate grains up to 4 mm in diameter give the rock a coarsely crystalline texture. The silicate minerals, often heavily litered, range up to 5 mm in diameter and impart a speckled appearance to the rock. This lithology weathers positively in the dry climate of the area.

In thin section, the marbles typically comprise about 30 per cent ferromagnesian silicates and 70 per cent carbonate material. The greenish silicates are heavily sementinized olivines, now entirely composed of serpentine whose development resulted in magnetite exsolution. The Alizarin Red S test (sodiu alizarinsulphonate in dilute hydrochloric acid) produced a reddish violet stain when applied to the carbonate grains, indicating that the composition is largely calcitic (CaCO₃).

Metapyroxenite and serpentinite

The metapyroxenites, termed 'perknites' by Söhnge (1946), form good outcrops due to their resistance to weathering. The rock is hard and brittle, forming small hillocks of dark reddish

brown to black sharp-edged boulders. The pyroxenite is coarse grained and contains reddish pyroxene megacrysts up to 2 cm in diameter. The serpentinites, in contrast, weather more readily and form poor out rops usually covered with a rubble of whitish and greyish coloured boulders. In places, the serpentinite preserves original pyroxene occurring in layers up to 2 cm thick and is only partially serpentinized. Both of these rock types occur as pod-like or boudin-like bodies. In general, they are confined to a zone in the north, north-west and west of the area (see Map 1 in rear pocket) which contains the most extensive outcrops of quartzite, banded magnetite quartzite and pyroxenitic amphibolite. Three relatively large outcrops of these rocktypes occur within the region:

 An oval shaped body about 400 by 700 m in size is exposed on the Farm Shangani (see Map 1 in rear pocket). This locality displays amphibolitization, and the major part of the rock is made up of amphibole grains ranging up to 5 mm in size.
 Peripheral pyroxenites rim the outcrop. Several pegmatites cut the rock, some of which display green malachite staining.
 An outcrop 600 to 1 500 m occurs on the Farms Veenen and Dover enclosed by quartzites (see Map 1 in rear pocket). A few small veins of amphibole asbestos, usually less than 1 cm thick, cut through the serpentinized portions of the body, while numerous small pods and outlying lenses of pyroxenite and

Manual In the Change

serpentinite occur in the surrounding area adjacent to the large outcrop.

3. On the Farm Middelbult, an outcrop of 600 by 1 100 m in size occurs. It is strongly serpentinized and cut by numerous pegmatites.

In the reddish coarse grained metapyroxenites, thin sections reveal distinctive orthopyroxene megacrysts. These are poikiloblastic hypersthene, and commonly contain inclusions of clinopyroxene and the green spinel hercynite (Figure 21). The matrix to these hypersthenes is made up of smaller equant grains of clinopyroxene, with scattered spinels and pale-brown amphiboles.

Figure 21: Poikiloblastic hypersthene megacryst (opx) containing clinopyroxene (cpx) and hercynite inclusions (sp), in a metapyroxenite from the Farm Artonvilla (7 km east of Messina – see Horrocks, 1975). The scale bar is about 0,5 mm.

The amphibolitized variety occurring on Farm Shangani is essentially monominerallic in places. Pale amphiboles with cleavage planes either poorly developed or absent produce a recrystallized granoblastic texture, with well-formed 120^o triple point junctions between the idioblastic grains (Figure 22). An X-ray powder diffraction scan on this mineral revealed tremolite 'peaks' suggesting that this rock has resulted from a hydrous alteration. Some samples contain minor amounts of a altered clinopyroxene, and highly altered and sericitized plagioclase which occurs along the amphibole grain boundaries and in the interstices.

Figure 22: Recrystallized tremolitic amphibole in an amphibolitized metapyroxenite from the Farm Shangani (4 km west of the main Meusina-Tshipise road - see Map 1 in rear pocket). The scale bar is about 0,5 mm.

1

The serpentinites contain variable amounts of pyroxene and amphibole, many of which are obscured by hydrous alteration products. The degree of serpentinization is variable from sample to sample, with some showing complete replacement textures of serpentine and magnetite. The magnetite is exsolved along certain serpentine lamellae and reveals ghost outlines of previous cleavage planes in what was mainly pyroxene, but possibly also olivine grains. In places, orthopyroxene remnants occur surrounded by serpenting (Figure 23) perhaps reflecting the reaction:

orthopyroxene + H_2^0 = serpentine + magnetite

Figure 23: Serpentine (serp) replacing orthopyroxene (opx) in a serpentinite from the Farm Heuningfontein (500 m west af the main Messina -Tshipise road - see Map 1 in rear pocket). The scale bar is approximately 0,5 mm. Abundant hornblende (hnble) occurs in this rock.

Some samples are composed almost entirely of amphibole and pyroxene and are only cut in places by thin layers of serpentine up to 1 mm thick (Figure 24). In this case, only non-hydrous minerals such as pyroxene appear to be affected by the serpen inization process while already hydrous minerals such as amphibole have remained stable and unaffected by the growth of serpen ine. This process enhances any mineralogical layering existing in the rock.

Figure 24: Serpentine (serp) occurring in thin bands in a serpentinite from the Farm Heuningfontein (500 m west of the main Messina-Tshipise road - see Map 1 in rear pocket). Note the magnetite (mag) exsolution outlining earlier grain shapes (probably pyroxene) while the amphibole (hnble) is unserpentinized. The scale bar is about 0,5 mm.

Whole-rock and mineral geochemical data for these rocks is presented in a complementary study (Fripp, 1981c). Additional mineral analyses obtained in this study are presented in

Appendix 2 and include electron probe microanalyses of orthopyroxen;, clinopyroxene, amphibole and spinel. These data are discussed later in relation to various methods of geothermometry.

Gabbroic and anorthositic gneisses of the Messina Layer-d Intrusion

These rocks which belong to the Messing Layered Intrusion (Barton et al., 1979a) comprise a variety of plagioclase bearing units in the study area. They form sheet-like layers which appear to be concordant with the supracrustal stratigraphy over most of the area. They reach a maximum thickness of about 2 km in outcrop in the northern wart of the area on the Farm Boschrand (see Map 1 in rear pocket) where the body contains a central axis of tightly infolded units or pyroxenite, quartzite, banded magnetite quartzite, calc-silicate and other paragneisses up to a maximum thickness of about 25 m. Towards the south, the anorthos_tic and gabbroic gneisses thin appreciably and become boudinaged in places, such as on the Farms Dover, Veenen and Heuningfontein (see Map 1 in rear pocket). On the Farm Shangani, the unit displays a compositional symmetry across its width (about 500 m). More melanocratic gabbroic varieties occur along its margins with the country rock, while the centre contains a more monominerallic plagioclase anorthositic rock.

......

-

-
In places, magnetitite occurs within the anorthositic rocks such as on the Farm Boulogne and Boschrand (see Map 1 in rear pocket). The magnetitite is clearly distinguishable from the bonded magnetite quartzite which occurs within the surrounding gneisses in that it has a more mossive and crystalline appearance and lacks the presence of quartz and the finely banded laminations characteristic of the latter. The magnetite grains are up to 4 mm in diameter, while the even grained anorthositic rocks have grain sizes which vary from about 1 mm to 4 mm. Plagioclase megacrysts up to 10 cm in size are known to occur. Melanocratic minerals are predominan ly pyroxenes and amphiboles, although olivine and garnet have been described in this rock (Söhnge, 1946; Bahnemann, 1972; Barton et al., 1979a). Discrete melanocratic units accur within the anorthositic and gabbroic rocks, and are often dyke or sill-like in form. Cammonly, they are boudinaged along their strike. Also, they display a form of graded layering, where plagioclase megacrysts or aggregates grade in size across the thickness of the units (see Plates in Barton et al., 1979a). These structures have been interpreted as 'fining upward' cycles, and used to provide facing directions in these rocks (Barton et al., 1979a). Wherever they are observed, these directions appear to be consistent, although reversals in direction occur due to internal folding. Also, the metopyroxenite and serpentinites described earlier have been regarded as forming

an integral part of the Messina Layered Intrusion suite (Barton <u>et al.</u>, 1979a). However, within the study area, no direct spatial association between these rock types was observed.

The rocks of the Messina Layered Intrusion vary in composition from more plagioclase-rich anorthosites to more melanocratic gabbros. Mineralogical compositions are presented below for two typical end-members in this range. An approximate mode for the anorthosite is as follows: 90 per cent plagioclase, 7 per cent clinopyroxene, 3 per cent quartz and accessory ore; and for the gabbro: 45 per cent plagioclase, 40 per cent hornblende, 10 per cent clinopyroxene, 5 per cent quartz and alteration minerals. Using the refractive index method on cleavage fragments (see p.327, Deer et al., 1966), compositions of the plagioclase were estimated. Typical values of the refractive index, n_g, varied from about 1,560 to 1,565 which suggests anorthite contents in the plagioclase from about 60 per cent to 70 per cent (labradorite to bytownite). The plagioclase is commonly sericitized, and typically forms cumulate-type equant grains. The clinopyroxene is typically highly altered and replaced by chlorite, and together with quartz, occurs as intercumulus-type material in the interstitial spaces between the plagioclase grains (Figure 25). A replacement texture occurs in some of the more gabbroic samples whereby the often chloritized clinopyroxene appears to ruplace hornblende and contains

Figure 25: Interstitial altered clinopyroxene between plagioclase in an anorthositic gneiss from the Farm Shangani (4 km west of the main Messina-Tshipise road - see Map 1 in rear pocket). Scale bar is about 0,5 mm.

optically continuous inclusions of the amphibole (Figure 26) probably by a reaction of the form:

hornblende + quartz = clinopyroxene + H₂O Alteration is apparent in these rock-types and common alteration minerals include epidote, zoisite, chlorite and sericitic micas.

Whole-rock analyses of samples collected on Shangani, Veenen and Heuningfontein, although an integral part of the present study, are included in a joint publication (Barton <u>et al</u>., 1979a, Table 1). The six samples from Farm Shangani were collected on a slightly oblique traverse across the width of the unit at approximately 100 m intervals in an attempt to show the compositional variation which is apparent in this region.

Figure 26: Clinopyroxene (cpx) replacing and containing optically continuous inclusions of hornblende (hnble) in a gabbroic gneiss from the Farm Shangani (4 km west of the main Messina-Tshipise rood - see Map 1 in rear pocket). The scale bar is approximately 0,5 mm.

Samples 26-5-A and 26-5-F are positioned close to the margins of the unit and ore the most gabbroic in composition. Samples 26-5-B, 26-5-C, 26-5-D and 26-5-E are spaced between and reveal more anorthositic compositions. SiO_2 , AI_2O_3 and CaO are the most abundant constituents commonly making up over 90 of the rock by weight. K_2O usually comprises less than 1 per cent of the rock. Sr and Ba show wide variations.

Electron probe microanalyses of hornblende, clinopyroxene and plagioclase from these rocks are presented in Appendix 2. Use has been made of the mineral analytical data in geobarometer calculations discussed later.

Discussio.

The area studied does not lend itself well to the problem of recognizing and describing the differences between 'basement' and supracrustal components of the geology of the area. The isolated autcrops of the grey banded gneisses recognized as being basement are unfortunately found in region of poor exposure, and contacts with the supracrustal gneisses were not observed. However, the basement gneisses were recognized as such by their obvious physical characteristics onparable to the Sand River Gneisses described in detail as being a basement to supracrustal cover units by Fripp (1981a-c). These gneisses are amongst the most ancient occurring on the Eaith, and have provided whole-rock Rb-Sr isochrons of about 3 800 m.y. (Barton et al., 1978). Thus they can be compared with the Isua supracrustals and Amitsoq gneisses of the Archaean terrane in Greenland (Bridgewater et al., 1976). The mafic dykes may be the equivalents of the Ameralik dykes in Greenland, though two ages of these ancient deformed dykes are described in the Sand River Gneisses (Barton et al., 1977). It has not been possible to distinguish in the mapped area which of these two dyke events, at 3 570 and 3 060 m.y. respectively (see Table 1), is represented by the mafic dykes occurring in the basement outcrops in the study area (e.g. Figure 3).

The bulk of the area is underlain by supracrustal gneisses,

which are recognized as such due to their heterogeneous composition. The interbanding of units such as quartzite, banded magnetite quartzite, marble, calc-silicate gneiss and metapelitic garnet-cordierite-sillimanite gneiss suggests a stratigraphy which can only belong to a supracrustal sequence.

The quartzo-feldspathic gneisses form the largest volume of the supracrustal rocks exposed in the study area. The observations of cross-cutting quartzo-faldspathic dykes in the .er supracrustal units, and the intrusion of large masses into the basement gneisses are suggestive of a partial melting origin for these lithologies, and it is concluded that the ubiquitous distribution and abundance of quartzo-feldspathic units in the area reflect the considerable degree of anatexis that occurred during the metamorphism anu tectonism in the region. The garnet-cordierite-sillimanite gneisses are always associated with the quartzo-feldspathic gneisses, and together with the high Al and Mg refractory corundum and sapphirine-bearing rocks ('restites') support the contention that anatexis has been widespread in these regions. Although these rocks are comprised of predominantly quartz and feldspar, considerable variations in the proportions of CaO, Na₂O, K₂O, Rb, Sr and Ba occur, revealing the relative mobilities of these components in these rocks under high grade metamorphic conditions and anatexis.

The composition of the Singelele-type granitoid gneiss may

be closely compared with average compositions of rhyolites and arkoses (Table 6) and can be seen to closely match the composition of an average rhyolite. Also, the analytical data of the Singelele samples obtained from within the study area (Table 2) when plotted in a Qz-Ab-Or ternary diagram (Figure 27) falls within the field of quartz-rich granites. Thus, although the rock may have experienced anatexis, it is highly probable that its origin was volcanic, being extruded contemporaneously with the sedimentation of the other supracrustal lithologies. A study of the Rb, Sr and Ba trace element patterns in this rock (McCarthy, 1977) has shown that considerable partial melting occurred during the peak of metamorphism that affected the Singelele gneiss, and that a partial melt fraction enriched in Rb and Ba was extracted and locally separated from a residual fraction richer in Sr. From samples collected at the type locality in the Singelele Hills near Messina (Figure 2) the partial melt fraction typically shows about 78 per cent SiO, in its composition, while the residue shows about 72 per cent SiO₂. The Singelele samples from Farm Ostend have values which average close to 78 per cent SiO₂, and probably indicates that these outcrops in the study area are made up of mainly partially melted material. Thus the conclusion of Bahnemann (1973) and McCarthy (1977) that the Singelele granitoid owes its origin in part or locally to anatexis is supported, although no evidence could be

	1	2	3
SiO	78,79	76,21	75,57
TiO,	0,12	0,07	0,42
A1_0	11,21	12,58	11,38
FegOn	1,88	0,30	0 82
FeO	-	0,73	1,63
MnO	0,01	0,04	0,05
MgO	0,07	0,03	0,72
CaO	0,49	0,61	1,69
Na ₂ 0	3,19	4,05	2,45
K_0	4,63	4,72	3,35
P.0.5	0,04	0,01	0,30
H_0+			1,06
H_0-	0,17	0,52	0,05
c02	,		0,51
Total	100, 59	99,87	100,00

Table 6: Comparison of the Singelele-type granitoid gneiss composition with those of rhvolite and arkose

l: average of 6 analyses of samples of Singelele-type
granitoid gneiss (B76-85 to B76-90) - Farm Ostend (see
Table 2, columns 5 to 10).

2: rhyolitic obsidian, Mono Craters, California (Carmichael et al., 1974, p.35).

3: average of three analyses of Torridonian arkose (Kennedy, 1951, p.258).

Figure 27: A quartz-albite-orthoclose (Qz-A. Or) ternary diagram showing the compositions (open triangles) of the Singelele-type granitoid gneiss sampled on the Farm Ostend (see Map 2 in rear pocket - data from Table 2). The dotted line outlines the region of anatectic granites, while the solid dot marks the temperature minimum on the dashed cotectic line (after Winkler, 1974).

found which supports Bahnemann's view that Singelele represents a remobilized melt from the other units in the stratigraphy, such as the anorthosite, quartzo-feldspathic gneiss, and garnetcordierite-sillimanite gneiss. The Rb, Sr and Ba population of the Singelele samples are discrete from those of the other stratigraphic units, and are not dispersed in a differentiation trend. It may therefore be concluded that the Singelele-type granitoid represents a volcano-sedimentary unit of rhyalitic composition within the stratigraphic sequence, and not a later intrusive melt fraction as suggested by Bahnemann (1973). In addition, it has been shown that this rock has experienced all the structural deformation history that the other supracrustal units have undergone (Fripp et al., 1979) and hence this unit is at least as old as the other supracrustal rocks. As a readily distinguishable unit within the stratigraphy, the Singelele gneiss provides a useful marker horizon, as does the banded magnetite quartzite, and it may be assumed that these units each formed continuous horizons prior to tectonism.

The thinly banded calc-silicate and marble units confirm the supracrustal nature of the major part of stratigraphy in the study area, and it is important to notice the steady increase in abundance of these lithologies towards the south-east, to the point where they predominate in the region around Tshipise (Figure 2). This suggests a changing environment of deposition

for the supracrustals, where a suitable shallow water marine or shelf facies occupied the south-east region during sedimentation. However, the quartzite-banded magnetite quartzite-pyroxenitic amphibolite association in the north-west of the study area suggests a deeper water environment allowing the accumulation of cherts, thin shales, and volcanic material as the precursors of the present-day lithologies. The garnet-cordierite-sillimanite metapelitic gneisses may fall in an intermed.ate position between shelf and deep water facies, where shales, greywackes and turbidites would occur. In this way, it may be concluded that the supracrustal lithologies include a range of possible facies that occur in intercontinental basins or eugeosynclines.

The metapyroxenite and serpentinite are found mainly in a zone in the north-west of the study area. These units, leases and boudins are commonly associated with the quartzites and pyroxenitic amphibolites, and appear to have belonged to a former single sheet-like or sill unit conformable with the stratigraphy. Thus it is suggested that an igneous origin is feasible for these lithologies, though no primary magmatic structures or textures were observed. However, no spacial relationship was seen between these rock types and those of the Messina Layered Intrusion, and it seems likely that they are unrelated. The gabbrcic and anorthositic gneisses also form a conformable silllike unit, and although these rock types may have been intruded

at the same time as the metapyroxenite and serpentinite, some 3 270 m.y. ago (see Table 1), there is no evidence to place all of these rock types into a single suite.

In summary, therefore, the Precambrian lithologies in the area consist of a basement of grey banded granodioritic gneisses metamorphosed about 3 800 m.y. ago and intruded by ancient tholeiitic dykes, perhaps some 3 570 m.y. ago. Subsequently, a geosylclinal-type series of supracrustal rocks or 'cover' were deposited at least partly on a ic crust, now basement gneisses, and consisted of shallow water marine or shelf facies in the south-east characterized by carbonates marbles, cherts and calc-silicates. Transitional face with shales, greywackes and turbidites, now the metapelitic garnet-cordier: *esillimanite gneiss, quartzo-feldspathic gneiss and the rhyolitic and/or a:kosic precursor material of the Singelele gneiss. Towards the north-west of the area, deeper water facies occurred containing cherts, shales, banded ironstones, and mafic volcanics which were probably continental basalts, and which now form the quartzite-banded magnetite quartzite-pyroxenitic amphibolite association. Anorthositic and gabbroic gneisses of the Messina Layered Intrusion and probably also metapyroxenites and serpentinites intruded the above lithologies at about 3 270 m.y. ago.

CHAPTER 3: STRUCTURE

Introduction

The quality of the outcrop in the study area and the complex interlayering, infolding, and lensing of the stratigraphic units does not lend itself well to detailed structural mapping. The 1 : 25 000 scale of mapping is suitable for revealing only the larger scale structures. A scale of 1 : 2 000 similar to that used by the Geology Depurtment of the Messina Copper Mines in their excellent surface mapping reveals the structural complexity of the region. Even more detailed mapping of individual outcrops and well-exposed areas has been invaluable in studying the structural features of the terrane (see Fripp, 1981a-c).

Large scale structure

Large scale structures are most obvious in the north-west of the area (see Map 1 in rear pocket). Towards the southeastern portion of the area, the strata become progressively more attenucted in thickness and aligned to the regionally pervasive ENE trend of the Limpopo Mobile Belt as the Bosbokpoort Fault is approached (see Map 1 in rear pocket). South-east of

this fault, younger Jurassic sediments and some volcanics of the Karoo Supergroup occur which have very gentle dips, less than 30°, to the north. These sediments are fault bounded to their north, and lap off to the south onto the Precambrian gneisses which again occur near the village of Tshipise (Figure 2). The Precambrian rocks within the study area have all been folded to very steep dips, over 60°, and typically are subvertical to vertical in attitude.

Mea* Mements were made of the orientation of the planes defined by the 'foliation' or mineral banding in the gneisses, and by bedding where recognized, such as in the quartzite, banded magnetite quartzite, calc-silicate gneiss and marble. The poles to these planes measured throughout the area have seen plotted in an equal area stereographic projection, and display a non-random distribution (Figure 28). A great circle has been visually fitted to this distribution and represents a plane which strikes 116° and dips 35°N. The pole to this plane plunges 55° on a bearing of 206°, and is interpreted as the axis about which the above distribution has been dispersed, namely the overall fold axis for the area.

In addition, the above data have been divided into five selected areal domains (see Map 2 in rear pocket) on the basis that each contains an individual fold closure system. In this way, the fold axes for each of these domains were sought.

Figure 28: Equal area stereographic projection showing the orientation of bedding and mineral banding planes measured in the study area: A: poles to bedding and mineral banding planes (n=297); B: contoured data from A with contours at 1, 5 and 10 per cent intervals per 0,35 per cent area. Solid circle is a pole to the visually fitted great circle and plunges about 55° cn a bearing of about 210°.

Domain I contains a fold closure in quartzites occurring in the eastern part of Tarm Heuningfontein and the southwestern part of Farm Oorsprong (see Map 2 in rear pocket). A thin anorthosite unit on the western part of Farm Boulogne also clearly reveals this structure and is included in the domain. Two thin parallel bonded magnetite quartzite units not more than 1 m in thickness occur within pyroxenitic amphibolites folded around this closure. Owing to much boudinaging of these units, no small closures were observed linking these two units. The dip directions of the quartzites around this closure and the symmetry of a minor fold exposed on its eastern flank indicate that the structure is caused by a synform whose hinge line plunges moderately to the south-west. Expanding this domain to the south-west reveals th existence of a basin-like structure, elliptical in outcrop and about 3 km by 10 km in size. Polen to mineral banding and bedding planes were used to define a great circle (Figure 29) whose pole plunges 80° on an azimuth of 173°, and which probably reflects the fold axis of the synform within the domain.

Domain II contains a folded quartzite in the area around the junction of the Farms Heuningfontein, Oorsprong, Dover and Veenen (see Map 2 in rear pocket). In this area, a large serpentinite and metapyroxenite unit occurs, and this unit internally contains a folded quartzite unit. Close examination

Figure 29: A: poles to bedding and mineral banding from Domain I (see Map 2 in rear pocket) plotted on an equal area stereographic projection (np=35). Open circles are mineral lineation orientations (auartz rodding) in this domain (n1=2). B: contoured data from A with contours at 5, 10 and 15 per cent intervals per 1 per cent area. Star symbol is the pole to the visually fitted dashed great circle.

of this quartzite isolated within the serpentinite failed to reveal any fold closures within the quartzite, and this suggests that it does not represent an interference structure, but rather a boudin within the serpentinite. A 'foliation' within the serpentinite and metapyroxenite is accentuated by elongated orthopyroxene megacrysts, which follows the layering in the surrounding quartzites around the large scale fold closure. Poles to bedding and this 'foliation' cluster about a plane whose pole plunges about 60° on a bearing of about 206° (Figure 30). The fold displays an overall 'S'-type or left-lateral symmetry.

Domain III lies in the northern part of the Farm Oorsprong (see Map 2 in rear pocket) where the mineral banding of quartzofeldspathic and other supracrustal gneisses reveal a fold closure. The symmetry and orientation of small scale parasi ic folds on this structure indicate that the closure is formed by the surface intersection of a southerly plunging antiform. Pole measurements in this domain are dispersed about a plane, whose pole plunges about 60° on a bearing of 208° (Figure 31).

Domain IV occurs in the north-west of Farm Randjesfontein (see Map 2 in rear pocket) and the closures in this area are clearly defined by a bonded magnetite quartzite as well as by thicker quartzites. The banded magnetite quartzite reveals three fold closures in this region and suggests two states of

Figure 30: A: poles to bedding and mineral banding planes $(n_p=57)$, mineral lineations (open circles, $n_1=5$) and minor fold hinges (stars, $n_f=6$) from Domain II (see Map 2 in rear pocket) plotted on an equal area stereographic projection. B: contoured data from A per 1 per cent area. The star is the pole to the visually fitted dashed great circle.

Figure 31: A: poles to bedding and mineral banding planes (n_p=20), mineral lineations (open circles, n₁ =5) and minor old hinges (stars, n_f=4) from Domain III (see Map 2 in rear pocket) plotted on an equal area stereographic projection. B: contoured data from A per 1 per cent area. The star is the pole to the visually fitted dashed great circle.

fold closure producing a 'refolded fold'. However, measurements of bedding and 'foliation' plane orientations give poles which define a plane that has a pole plunging about 50^{°°} on a bearing of about 230^{°°} (Figure 32).

Domain V contains fold closures affecting conformable units of quartzite and anorthosite on the Farm Magdala (see Map 2 in rear pocket). These closures display a similar 'S'-type or left-lateral symmetry to those in Domain II. Measurements from this region define a plane whose pole plunges 60° on an azimuth of 235° (Figure 33). This indicates that these closures are produced by a synform-antiform pair which plunges to the south-west.

Further evidence for folding recognizable at the 1 : 25 000 scale of the mapping is provided by the rootless folds affecting the banded magnetite quartzite exposed in the southern part of Farm Chirundu (see Map 1 in rear pocket). This fold is characterized by an acute isoclinal interlimb angle of less than 5° , but appears to leave the bounding quartzites and other supracrustal rocks unaffected. It is thus an intrafolial fold, and may represent the earliest stage of folding in this terrane. Also, the infolded supracrustal rocks occurring along a central axis within the gabbroic and anorthositic gneisses in the northwest of the study area (see Mcp 1 in rear pocket) are themselves folded around the synform-antiform pair in Domain V, and again

Figure 32: A: poles to bedding and mineral banding planes (n_p=23), mineral lineations (open circles, n₁=3) and a minor fold hinge (star) from Domain IV (see Map 2 in rear pocket) plotted on an equal area stereographic projection. B: contoured data from A per 1 per cent area. The star is the pole to the visually fitted dashed great circle.

Figure 33: A: poles to bedding and mineral banding planes (n_p=24), a mineral lineation (open circle) and minor fold hinges (stars, n_f=5) in Domain V (see Map 2 in rear pocket) plotted on an equal area storeographic projection. B: contoured data from A per l per cent area. The star is the pole to the visually fitted great circle.

suggests at least two stages of fold closure in this region.

Small scale structures

The structures described in this section are those observed within the scale of the outcrops and are often less than a few metres in size. Consequently they cannot be represented at the scale of the mapping.

The exposures of the basement gneisses preserved on the Farms Oorsprong and Middelbult (see Map 1 in rear pocket) exhibit structural and physical features similar to those exposed in the bed of the Sand River on the Farm Veenen (Fripp, 1931a-c). The outcrops are typically eroded into smooth whale-backed pavements, and are thus immediately distinguishable from the other heterogeneous supracrustal gneisses which form dissected and irregular outcrops, and generally are poorly exposed. Tight isoclinal folding of the mineral banding, orten only a few millimetres in thickness, occurs where these small folds are intrafolial and often do not appear to affect adjacent layers. Deformed mafic dykes transect the mineral banding of the grey gneisses, and only one age of dyke emplacement has been recognized in the outcrops within the study area on the basis of cross-cutting relationships. The dykes show cuspate boundary structures which are convex inwards into the dyke, suggesting that they were deformed under conditions

where they had lower viscosities than the host basement gneisses. In addition, abundant leucocratic veins, which are often parallel to the "heral banding, occur up to a few centimetres in thickness. Larger pegmatitic masses of predominantly fabricfree feldspar grains up to 2 cm in diameter invade the grey basement gneisses.

Minor or parasitic folds are observed throughout the area, and can be used to determine orientation of larger scale folding by considering their orientation and symmetry. The hinge lines of these s 1 folds plunge to the south-west, and give an average orientation which plunges about 50° on a bearing of Z25° (Figure 34). This corresponds closely with those fold axes determined from the poles to bedding and mineral banding from the area as a whole and from the five selected Domains described earlier (Figures Z8 - 33). Minor fold hinges measured in each of the Domains are also plotted in stereographic projections for each of these areas (Figures 29 - 33) and also show good correlations with those fold axes determined from the pole plots.

The metapyroxenite and serpentinite units reveal a layered structure in many outcrops where thin and parallel veins or layers of pyroxene up to a few centimetres in thickness occur within more massive serpentine. This layering is also preserved on a microscopic scale (Figure 24). Poikiloblastic megacrysts

Figure 34: A: minor fold hinges and other linear structures such as mineral lineations (n=57) plotted on an equal area stereographic projection. B: contoured data from A at 1, 5 and 10 per cent intervals per 2 per cent area. The maximum plunges about 50° on a bearing of about 225°.

of orthopyroxene are also present in many outcrops and are commonly ellipsoidal in shape probably reflecting the strain suffered by the rocks. Their longest orientations parallel the regional 'foliation' and thus produce a marked fabric in the rock.

Events of dyke development are widespread within the study area, and different ages are easily recognized by successive cross-cutting relationships. Dykes of melanocratic, leucocratic and pegmatitic material can be found transecting both the basement and supracrustal lithologies. A locality on the Farm Kopjesfontein shows two ages of leucocratic dykes which crosscut a host rock transected by numerous small veins (Figure 35).

Figure 35: Two ages of leucocratic dyke cross-cutting a pyroxenitic amphibolite conta; ing leucocratic veins from the Farm Kopjesfontein (4,5 km east of the main Messina-Tshipise road - see Map 1 in rear pocket). Note the xenolith of the host rock within the younger dyke.

Many mafic dyke types occur which include the less abundant deformed varieties which cut the basement gneisses, and younger diabase a.d dolerite varieties which are unmetamorphosed and free of any tectonic fabrics.

A post-tectonic dyke of possible Karoo age occurs on the Farm Kopjesfontein (4,5 km east of the main Messina-Tshipise road - see Map 1 in rear pocket) and preserves many interesting structures. Over a limited section of its length (about 250 m) it reaches a maximum thickness of over 40 m where it is distinctively and symmetrically zoned. Outer chill margins of fine grained basaltic rock between 1 and 2 m in thickness bound zones of coarser grained diabasic rock from 10 to 11 m in thickness. The centre of the dyke is filled with a breccia of fine grained diabasic rock which contains fragments of the wall rock quartzo-feldspathic gneisses. This central zone of breccia is up to 18 m in thickness, and suggests that this locality in the dyke represents a vent or diatreme structure.

Boudinage in this terrane is widespread due to the considerable along strike extension that has accompanied the deformation and attenuation which has affected these rocks. Some rock types are observed to boudinage more readily than others due to their higher viscosities at the time of deformation. These include the banded magnetite quartzite, metapyroxenite and serpentinite. The metapyroxenite and serpentinite form

small boudins along strike typically within the quartzite units in the north and west of the study area. The banded magnetite quartzite however, preserves early tight isoclinal folds within the individual boudins suggesting an earlier event during which this lithology behaved in a much more ductile fashion. Within the supracrustal gneisses, many small units are extensively and locally boudinaged making it impossible to trace them except over limited strike lengths. Thus many of the stratigraphic units ir the supracrustal gneisses have lense-like forms.

Late mylonites of a new centimetres in thickness which cross-cut the mineral banding in the gneisses are locally present as for example on the Farm Oorsprong, although these structures are not traceable over strike lengths of more than a few metres. They are not folded, and usually contain abundant porphyroclasts of quartz and feldspar (Figure 36) making this rock type a blastomylonite.

Outcrops of Singelele gneiss on the Farm Ostend rarely show structures such as folds or boudinage, but have suffered a large degree of attenuation and flattening perpendicular to strike. However, thin mafic layers occur up to 1 or 2 cm in thickness which are cut by small shear zones (Figure 37). Displacements may be up to several centimetres, though the sense of movement varies from outcrop to outcrop. Mafic dykes are rarely seen to intrude this lithology.

Figure 36: A blastomylonite traversing a pyroxenitic amphibolite on the Farm Oorsprong (1,3 km east of the main Messina-Tshipise road - see Map 1 in rear pocket).

Figure 37: Shear zones deforming thin mafic layers within the Singelele-type granitoid gneiss on Farm Ostend (5,5 km east of the main Messina-Tshipise road - see Map 1 in rear pocket).

Jointing is well developed in the quartzite units in the area causing their outcrops to be blocky and dissected. Some localities reveal both tension and shear jointing sets, and typically the line of intersection of these joints is subvertical to vertical. This suggests that the maximum and minimum stress directions producing these joints lie in the horizontal plane. None of the observed joints are folded.

Both planar and linear mineral fabrics occur in the rocks due to deformed mineral grains of mainly sillimanite, amphibole, biotite and quartz. In many outcrops, the planar fabric or cleavage is very close in orientation to the gneissic 'foliation' defined by the mineral banding and causes difficulty in recognizing primary features such as compositional banding and bedding in these rocks.

Linear fabrics imposed by the alignment of prismatic mineral grains together with rodding and mullion structures generally plunge moderately to the south-west and correlate well with the hinge line orientations of both minor and largescale folds in the area. Linear structure orientations are plotted together with fold hinges in a stereographic projection (Figure 34), and show a maximum which plunges about 50° on a bearing of about 225°. In addition, linear structures measured within each of the five selected Domains are also plotted in the individual stereographic projections for these Domains

(Figures 29 - 33) where they also show good correlations with the orientations of minor fold hinge lines.

Faults

Two large regionally extensive faults occur within the study area and in fact mark the northern and southern boundaries of the area (see Map 1 in rear pocket). In the north, a major strike-slip fault called the Dowe-Tokwe Fault (Söhnge, 1946) has a displacement in a right-lateral sense (Figure 2). Outcrops of fault breccia occur, though outcrop is generally poor in this region. The southern boundary is marked by the Bosbokpoort Fault (Söhage, 1946), which is bounded on its southern side by Karoo-age sediments. These sediments are correlated with those of the Stormberg Group (Söhnge, 1946) and lap off onto the Precambrian gneisses further south near Tshipise (Figure 2). Thus the Karoo sedimentation has occurred in yoked basins controlled by faults. Large vertical displacements are indicated for this fault due to the juxt_position of the Jurassic age Karoo sediments against the Archaean gneisses. A fault of local extent also occurs centrally in the study area with a strike which is sub-parallel to the Dowe Tokwe Fault. Outcrops of highly silicified fault breccia occur on the Farms Randjesfontein, Trotsky and Middelbult (see Map 1 in rear pocket) and the fault appears to either terminate against the quartite

units in the west of the area, or to change orientation to parallel the stratigraphy in this area. On Farm Oorsprong, the stratigraphy appears to have been displaced by right-lateral shear in the vicinity of this fault, suggesting that the fault has the same sense of movement as the Dowe-Tokwe Fault. A pivotal fault parallels the main Messina-Tshipise road on the Farms Dover and Magdala (see Map 1 in the rear pocket) and breccia is exposed in some of the road-cuttings. The eastern end of this fault displays a left-lateral displacement, marked by the thin anorthositic unit in this area, while the western end of the fault near the Sand River shows a right-lateral displacement (Fripp, 1981c).

Discussion

The study area contains only limited exposures of the grey busement gneisses similar to those occurring in the type area, in the bed of the Sand River on the Form Veenen. These outcrops are not sufficiently definitive to prove any basementcover relationships on structural evidence. However, the supracrustal gneisses within the study area show evidence for at least two and possibly even three phases of fold closure.

The two thin layers of banded magnetite quartzite occurring within a pyroxenitic amphibolite in the fold closure of Domain I (see Maps 1 and 2 in rear pocket) are probably the same unit

simply duplicated by tight isoclinal folding. However, fold closures connecting the two thin units are not observed mainly due to the poor exposure and significant along-strike extension and boudinaging which has accompanied deformation in this region. Thus, two events of fold closure are interpreted within Domain I. The first event is represented by the tight isoclinal folds which duplicate the banded magnetite quartzite, while the second event produces the large scale closure revealed at the mapping scale. This second closure has a fold axis which dunges to the south (Figure 29) at a steep angle. By x unding this Domain in a south-westerly direction, a basin-like structure of elliptical shape is revealed which suggests a possible third event of folding (see Map 2 in rear pocket). The structural style of Domain I is schematically illustrated in Figure 38.

Domain II is significant in that the serpentinite body which is folded by a synform/antiform pair which plunges moderately to the south-west (Figure 30) contains a folded boudin of quortzite (see Map 2 in rear pocket). Thus the onset of flattening perpendicular to bedding, with attendant thinning and boudinaging of the units, preceded the folding which produced the fold closures in this domain. This may also suggest two episodes of deformation, or more likely, a system of progressive deformation whereby the effect of strain accumulation, probably by simple shear, has rotated the rocks

Figure 38: Schematic structural elements from selected domains within the study area (see Map 2 in rear pocket, and text for discussion).

from a field where bou dinage occurs to one where folding is characteristic. Figure 38 illustrates schematically the style of the deformation in this domain.

The banded magnetite quartzite in Domain IV (see Map 2 in rear pocket) may be regarded as displaying the geometry of a 'refolded fold', and thus again, either records two discrete events of fold closure, or a progressive deformation situation whereby successive strain increments are added at differing or entations. By considering the eastward extension of this

d magnetite quartzite unit, a tight rootless isoclinal

If clial fold terminates the unit on the Farm Chirundu. This rootless Isocline does not appear to fold the adjacent gneisses and quartzites and is interpreted as being an earlier closure than those described as producing the refolded fold on this unit in Domain IV on Farm Randjesfontein. Figure 38 shows schematically how a succession of three possible fold phases could have produced the outcrop pattern in this domain.

In addition, the banded magnetite quartzite unit. throughout the study area commonly display tight isoclinal folds which developed probably synchronously with the rootless intrafolial fold described on Farm Chirundu. Thus during the earlier part of the deformational history of these units, they behaved in a ductile fashion, probably due to the development of recumbent or nappe-like structures following their deposition and rapid
burial. Subsequent events have refolded these units in places, for example on Farm Randjesfontein, probably by simple shear, and more commonly boudinaged them into their present disposition.

Domain V provides clear evidence of at least two phases of folding (see Map 2 in rear pocket). The anorthosite contains infolded metasediments which can be observed in the Farm Boschrand, and also in the main Messina-Tshipise road cutting on the Farm Dover. However, the anorthosite with these infolded paragneisses are again folded into the synformantiform pair of this domain, and is schematically illustrated in Figure 38.

From the above data, it appears that following any structural ovents which solely affected the basement gneisses prior to the deposition of the suprocrustal rocks (see Fripp, 1981a-c) the deformational history of the supracrustal gneisses commenced with a phase of ductile isoclinal folding which in many outcrops is now manifest by intrafolial folds. This may be related to a process of rapid burial to great depth such as would be experienced in a large geosyncline on an unstable and probably thin cialic platform. Later, the stress field induced further refolding, considerable flattening, attenuation and along strike boudinaging of the stratigraphy probably by a process of simple shear. The symmetry of folds

in the north-western portion of the study area suggests that this simple shear had a left-lateral sense of movement consequently producing the 'S'-shaped folds.

An interpretive map of the study area has been prepared at an approximate scale of 1 : 50 000 (see Map 2 in rear pocket) on which the trends of various fold axial traces are marked. Also, a NW-SE cross-section of the area has been constructed from this map, and is shown in Figure 39. The section line is marked on this map.

Figure 39: A schematic cross-section of the study area with a simplified and tentative stratigraphic column. See Map 2 in rear packet for the location of the section line. The length of the cross-section is approximately 11 km with no vertical exaggeration.

CHAPTER 4: THE MESSINA LAYERED INTRUSION

Introduction

Anorthositic and gabbroic rocks are common in high-grade and poly-deformed Archaean terranes (Windley, 1973) and have been described in the Central Zone of the Limpopo Mobile Belt (Söhnge, 1946; Söhnge <u>et al.</u>, 1948; Bahnemann, 1970, 1972; Hor et al., 1975; Barton et al., 1979a). They occur over a widespread region in the Limpopo belt (see Figure 1 of Barton et al., 1979a - in rear pocket). The presence of relict cumulate textures and phase layered mognetitites and chromitites has provided convincing evidence of an igneous origin for these rocks. Barton et al. (1979a) have argued that a tholeiitic magma may have been parental to these rocks in the Limpopo Mobile Belt on the basis of certain petrological trends revealed in a variety of Harker-type variation diagrams. Some workers (e.g. Bahnemann, 1970) have suggested that in part at least, some of the anorthosites may have been derived from the partial melting and fusion of calcareous sediments with the extraction of granitic anatectic liquids leaving an anorthositic residue. This section presents additional evidence to support the cumulate nature of these rocks and the argument that these rocks are the result of a fractionating magma.

Geological setting

The anorthositic and gabbroic rocks occurring in the Central Zone of the Limpopo Mobile Belt have been grouped together with various metapyroxenite and serpentinite units as the Messina Layered Intrusion (Barton et al., 1979a). They form a generally conformable and sill-like suite of rocks within the basement-supracrustal sequences of Archaean age which underlie the Central Zone of the Limpopo Mobile Belt. Two age determinctions have been obtained for these rocks. A whole-rock Pb-Pb isochron of about 3 270 m.y. is considered to reflect the time of emplacement (Barton, 1981) and a whole-rock Rb-Sr isochron of about 3 150 m.y. with an initial ⁸⁷Sr/⁸⁶Sr ratic of about 0,703 (Barton <u>et al.</u>, 1979a) is considered to reflect a high-grade metamorphism. The rocks show abundant evidence of being deformed (Barton et al., 1979a) and metamorphically recrystallised (Hor <u>et al.</u>, 1975), although primary structures and textures have been recognized. These latter features include units up to a metre in thickness which show both compositional and grain-size grading with the composition changing from more anorthositic types with labradorite (An₈₀) to more gabbroic compositions with andesine (An₅₀) in which clinopyroxene and hornblende become more abundant. Crystals grade in size and suggest upward fining cycles. Megacrysts of plagioclase up to 10 cm in size occur

and have been regarded as cumulate crystals, and they generally occur in a matrix of smaller clinopyroxene, amphibale and plagioclase grains. These structures and textures have been described by π ton <u>et al</u>. (1979a, see their Plates 1 and 2), although Hor <u>et al</u>. (1975) describe textures which are essentially recrystallized. The magnetites are titaniferous and occur in thin bands and lenses which show lateral impersistence. They are coarsely crystalline with grains up to 4 mm in size and are distinct from the finely laminated banded magnetite quartzites which occur in the supracrustal successions. Söhnge <u>et al</u>. (1948) describe these chromitites with strike lengths of several kilometres from within anorthositic horizons. Söhnge <u>et al</u>. (1948) concluded that the magnetitites and chromitites represent phase layers within α fractionally crystallized magmatic and plutonic rock.

Compositional variation of a unit sampled on Farm Shangani

A traverse across strike of an anorthositic and gabbroic unit of the Messina Layered Intrusion was made on the Farm Shangani about 4 km west of the main Messina-Tshipise rood see Map 1 in rear pocket. Samples were collected for wholerock and mineral analysis at approximately 100 m intervals along a farm road in this area. The observed physical and chemical data (Table 7) are presented in Figures 40 and 41 and

	1	2	З	4	e,	6	7	8
510	51.70	48,31	48,55	48,43	47,80	48,94	53,32	51,52
2	0.30	0.38	0,28	0,17	0,20	0,69	0,32	0,47
2	20.19	30,17	30,53	31, 37	27,65	24,55	25,77	18,82
2'3	7 09	2.55	2,48	1,58	2,76	6,19	3, 53	7,61
2 3	0.14	0.05	0,04	0,04	0,04	0,07	0,04	0,10
	6 83	1.10	0.93	0,53	2,37	3,56	1,71	6,90
	11 76	14 89	14, 48	15,14	16,37	13,99	9,80	11,10
	2 50	1.83	2.33	2.02	1,42	1,34	3,64	2,24
^{Ma} 2 ^U	0.74	0.28	0.27	0.25	0,27	0,67	0,90	0,73
2	0,74	0.03	0.05		-	0,02	0,04	0,09
2 ⁰ 5	0,66	0,67	0,73	0,94	0,54	0,61	1,42	0,57
Total	100,32	100, 56	100,67	100, 47	99,42	100,63	100, 49	100,15
Rb con.	16	6	3	6	5	16	25	14
Sr ppm.	172	176	187	177	160	142	188	333
80.008.	360.0	29.6	23,0	32,4	71,1	96,4	157,0	98,3
K/Rb	463	467	900	417	540	419	360	521
Rb/Sr	0,09	0,03	0,02	0,03	0,03	0,11	0,13	0,04
auastz	0,91	1,76	0,50	1,68	1,19	2, 34	3,40	0,94
corundum	2		0, 29	0,28	-	-	1,09	-
orthoclass	4,37	1,66	1,60	1,48	1,61	3,95	5,36	4,32
athite	21.15	15,48	19,71	17,.6	12,14	11,31	31,02	18,96
morthite	41.65	73,22	71,21	75,30	68,98	58,79	48,68	39,13
dionside	7.56	0,16		-	7,07	4,97	-	8,44
badanharaita	4.25	0,16		_	3,50	3, 45	-	4,00
enstatite	10.26	2,66	2, 31	1,32	2,69	6, 53	4,29	13,26
ferrosilite	7.01	3,28	3,01	1,96	1,62	5,51	4, 42	7,64
engnetite	2.06	0,83	0,72	0,47	0,81	1,79	1,04	2,20
ilmenite	0.72	0.72	0,53	0,32	0,38	1,31	0,61	0,89
opotite	0,07	0,07	0,12	0,02	0,02	0,05	0,09	0,2
SA0	66	83	78	01	95	84	61	6

Table 7: Whole- ck makes of aabbroic and anorthos is makenes of the Massing Layered Intrusion and their class norms-

i to 6: anorthositic and gabbroic gnoiss (26-5-A to 26-5-F)) (samples collected at equal intervals ocross strike).
7: anorthositic gnoiss (18-6-B) - Farm Veenen.
8: gabbroic gnoiss (30-1-20) - Farm Heuningfontein.

Analyst: P.C. Horrocks LOI - loss on ignition Total Fe as Fe₂0₃

Figure 40: Variation diagrams for per cent normative total feldspar, per cent normative anorthite, and per cent K₂O for samples 26-5-A to 26-5-F of anorthositic and gabbroic gneiss from Farm Shangani (see Map 2 in rear pocket). Geochemical data are from Table 7.

Figure 41: Variation diagrams for modified differentiation and crystallization indices (M.D.I. and M.C.I. respectively), Rb, Sr, MgO/MgO+Fe₂O₂+MnO, and Na O/K₂O for the samples of anorthositic and gabbroic gneiss from Farm Shangani as described in Figure 40.

reveal the compositional symmetry of this unit. Marginal melanocratic varieties occur adjacent to the unit's northwestern and south-eastern boundaries and are enriched in K₂0, Rb and MgO with respect to the more leucocratic central portion of the unit. The central portion shows enrichment in normative anorthite, normative total feldspar proportion, Na₂O and Sr compared with the outer zones (Figures 40 and 41) and may be explained by magmatic differentiation. The modified differentiation and crystallization indices of von Gruenewaldt (1973) are also plotted in Figure 41 and indicate that the earliest crystallized portion of the unit (i.e. that with the higher crystallization and lower differentiation indices) is the central variety. Here, the plagioclase also shows higher anorthite contents, of about An₈₀, compared with the marginal gabbros where anorthite contents of about An₅₀ are typical. Electron probe microanalyses of plagioclase from these samples (see Table 2.21, Appendix 2) correlate well with the normative values. These data indicate that plagioclase was a primary cumulate phase during the fractionation of the original magma of these rocks.

Pearce diagrams

The availability of seventy-five whole rock geochemical analyses of anorthositic and gabbroic gneisses of the Messina Layered Intrusion occurring in the Central Zone of the Limpopo

Mobile Belt has enabled the use of Pearce-type petrological diagrams (Pearce, 1970) to' illustrate cumulate trends in these rocks. The data is available from several sources (Van Zyl, 1950; Hor <u>et al</u>., 1975; Barton <u>et al</u>., 1979a; T.S.McCarthy, unpublished data) and these data have been used to plot a ternary An-Ab-Or diagram (Figure 42) of normative weight per cent values. A clear trend is indicated which varies from labradoritic compositions in the anorthositic rocks to those with significant albite and orthoclase from the more gabbroic varieties.

In the Pearce diagrams (Figures 43 and 44), K_2^0 has been used to normalize the Pearce ratios since it does not form a constituent of the cumulate phase under consideration and by inspection was found to vary by only small amounts in the analyses available. Thus $Al_2^0{}_3/K_2^0$, $Ca0/K_2^0$ (Figure 43) and Na_2^0/K_2^0 (Figure 44) were plotted against $Si0_2/K_2^0$ in each case since $Al_2^0{}_3$, Ca0, Na_2^0 and $Si0_2$ are constituent oxides of plagioclase. In all cases, good positive linear relationships exist, particularly for those data points with $Si0_2/K_2^0$ ratios of more than 70. Straight line regression curves were fitted to the plots in Figure 43 fo those points with the $Si0_2/K_2^0$ ratio of more than 70 and correlation coefficients of better than 0,98 were obtained in both cases. The Na_2^0/K_2^0 plot (Figure 44) shows a greater degree of scatter probably due to

Figure 42: An Anorthite-Albite-Orthoclose (An-Ab-Or) ternary diagram showing 75 feldspar compositions (normative weight per cent) from anorthositic and gabbroic gneisses of the Messina Layered Intrusion in the Central Zone of the Limpopo Mobile Belt (data from: Vin Zyl, 1950; Hor <u>et al.</u> 1975; Barton <u>et al.</u>, 1979a; and T.S. McCarthy, unpublished data).

AN

111

OR

AB

Figure 44: Pearce diagram for the anorthositic and gabbroic gneisses of the Messina Layered Intrusion. The straight line is visually fitted and constrained to pass through the origin.

the increased mobility of Na under the metamorphic and anatectic conditions which these rocks have experienced during their post emplacement history (Horrocks, 1980). A straight line was visually fitted to these data and constrained to pass through the origin. With the removal of a plagioclase cumulate from a pristine mayma, the residual liquid would become depleted in those components which make up the plagioclase, and later cumulate crystals would be consequently also depleted in these components. Thus the relationship between the first formed cumulates, later cumulates and the evolution of the magmatic liquid should be linear with respect to those components of the cumulate phase (Figure 45). In this way, the slopes of these Pearce plots may be used to determine the proportions of the various components in the cumulate phase, and hence its composition in a solid solution series. The slopes obtained from the Pearce diagrams (Figures 43 and 44) are as follows:

from Na_2O/K_2O versus SiO_2/K_2O : $m_{Na} = 0,043$ from CaO/K_2O versus SiO_2/K_2O : $m_{Ca} = 0,368$ from Al_2O_3/K_2O versus SiO_2/K_2O : $m_{Al} = 0,654$ and from SiO_2/K_2O versus SiO_2/K_2O : $m_{51} = 1,000$ (trivial) These wata express the proportions of these constituent oxides in weight percentages, and may be converted to molecular proportions as follows:

Figure 45: Schematic Pearce diagram showing the linear relationship produced during fractionation between cumulates and the evolving magma.

All addition of the state

115

where the factor $10^5/69$ is used to normalize the values so that the value for Na is equal to 1. Thus:

$$m_{Na} = \pm, 0$$

 $m_{Ca} = 9, 5$
 $m_{Al} = 9, 3$
 $m_{Si} = 24, 1$

These values represent the molecular proportions of the constituent oxides (Na₂O, CaO, Al₂O₃ and SiO₂) in the cumulus phase, plagioclase, and from these values, it is possible to subtract two molecules of albite to consume the Na.

$$2N_{a}AlSi_{3}O_{8} = 1N_{a_{2}}O + 1Al_{2}O_{3} + 6SiO_{2}$$

leaving:

$$m_{Na} = 0$$

 $m_{Ca} = 9,5$
 $m_{A1} = 8,3$
 $m_{Si} = 18,1$

If 8,3 molecules of anorthite are then subtracted to consume the Al_2O_3 :

$$8,3C_{a}Al_{2}Si_{2}O_{8} = 8,3C_{a}O + 8,3Al_{2}O_{3} + 16,6SiO_{2}$$

the remainder is:

$$m_{Na}^{\dagger} = 0$$

$$m_{Ca}^{\dagger} = 1,2$$

$$m_{A1}^{\dagger} = 0$$

$$m_{Si}^{\dagger} = 1,5$$

This remaining CaO and SiO₂ forms a minor proportion, and may be accounted for by the intercumulus clinopyroxene, hornblende and quartz which occurs in these rocks. Also, values with SiO₂/K₂O ratios of less than seventy appear to follow a line of less slope in Figure 43, which may signify the entrance of other cumulate phases, notably clinopyroxene and/ar hornblende, during fractionation or the mixing with intercumulus phases.

Plagioclase consisting of two parts albite and 8,3 parts anorthite (on a molecular basis) has a composition of An_{81} and it is thus suggested that this represents the composition of the primary cumulate plagioclase which fractionated from the parental magma. Electron probe microanalyses of feldspars from samples of these anorthositic and gabbroic gneisses (see Table 2.21 - Appendix 2) support this result, since plagioclase from anorthositic gneiss and thus probably an earlier cumulate, have in fact compositions of about An_{80} while compositions from the more gabbroic varieties, and thus later cumulus/ intercumulus mixtures, vary down to about An_{50} . These lower anorthite proportions may also be due to subsequent metamorphic effects such as the growth of metamorphic hornblende, or a re-equilibration of Ca between plagioclase and the mafic minerals.

Rb, Sr and K₂O relationships

The variation between Rb and K_{.0}0 and between Rb and Sr

ore shown in Figures 46 and 47 respectively, using data from Barton <u>et al.</u> (1979a) for various anorthositic and gabbroic varieties. Linear trends are revealed between these components using logarithmic scales. The data reveal that these rocks have closely similar compositions to other anorthositic rocks reported around the world (see Duchesne and Demaiffe, 1978) and are enriched in K_O relative to Rb when compared to the main trend of Shaw (1968) which describes the K-RL fractionation in average magmatic rocks. Duchesne and Demaiffe (1978) concluded that this overall trend of K/Rb relationships in anorthosites and related rocks can be simply explained by fractional crystallization of liquids with variable K/Rb ratios, rather than by fractional crystallization of a unique liquid.

The linear trend with logarithmic axes between Rb and Sr also suggests that fractionation may explain the distribution of the data. Thus, the Raleigh fractionation law:

「「「「」」

may be used to model the relationship revealed by these data. The Sr varies from about 100 ppm to over 300 ppm but the bulk of the data (about 80 per cent) range between about 150 ppm and 200 ppm (see Figure 47). Rb shows a wide variation from less than 2 ppm to about 50 ppm for the samples analysed (Figure 47). Assuming that a particular sample consists of

Figure 46: K₂O versus Rb diagram for the anorthositic and gabbroic gneisses of the Messina Layered Intrusion (data sources: solid circles, Barton <u>et al.</u>, 1979a; open circles, Table 7 in this study). MT is the main trend of Shaw (1968) describing the K-Rb fractionation in average magmatic rocks.

Figure 47: Sr versus Rb diagram for the anorthositic and gabbroic gneisses of the Messina Lavered Intrusion (see Figure 46 for data sources).

about 75 per cent cumulate and 25 per cent interstitial liquid, then a parental magma with about 100 ppm Sr and a solid phase, such as plagioclase cumulus with about 200 ppm Sr would generate a sample with about 175 ppm Sr. This value closely correlates with those values determined in samples presented in Table 7 and the data given by Barton <u>et al.</u> (1979a). 200 ppm Sr is a typical value for plagioclase, and thus suggests that the parental magma to the Messina Layered Intrusion contained Sr to the order of about 100 ppm. The distribution coefficient for Rb between plagioclase and a liquid is about 0,1, thus a parental liquid with about 100 ppm Rb would fractionate plagioclase cumulates with about 10 ppm Rb. Thus a sample consisting of 75 per cent cumulate and 25 per cent interstitial liquid would contain about 33 ppm Rb. Then Raleigh 's law becomes:

 $\frac{100}{33} = F$

and the value of F which satisfies this relationship is about O,3, or about 70 per cent fractionation. Thus a parental magma which contains 100 opm Rb is not unreasonable for the Messina Layered Intrusion. However, typical tholeiites contain about 5 ppm Rb, and hence the contention of Barton <u>et al</u>. (1979a) that the parental magma for the intrusion was tholeiitic is not entirely supported by this evidence. If the parental liquid contained only 50 ppm Rb (thus about 10

times more than average tholeiitic liquids), and a F value of about 0,28, (taking $C_{()} = 175$ ppm Sr, and D = 1,5) would yield a G value of 30 ppm Sr.

Alternatively, by considering the tectonic and metamorphic history experienced by these rocks, the admixture of anutectites in these rocks is a distinct possibility. If a cumulate plagioclase rock with 10 ppm Rb is mixed with a 200 ppm liquid for a typical anatectite in the proportion 75 per cent to 25 per cent, then a sample with about 58 ppm Rb would result. Also, a magnatic liquid with 100 ppm Rb, when mixed with this anatectite in the same proportions, would yield a liquid with 125 ppm Rb, which in turn would fractionate cumulates with about 12,5 ppm Rb. All these values are consistent with the observed analytical data.

Discussion

The data presented here support the argument that the anorthositic and gabbroic rocks of the Messina Layered Intrusion are in fact of plutonic igneous origin. Pearce diagrams reveal a clear trend of plagioclase fractionation where the composition of the plagioclase cumulate was about An₈₀. The gabbros form later differentiates with the inclusion of clinopyroxene and hornblende phases. Rb and Sr values are not consistent with those of typical tholeiitic parental liquids but show enrichment of Rb in amounts exceeding 50 ppm. Sr contents of about 100 ppm are suggested for the parental magma. Raleigh's fractionation law indicates that about 70 per cent fractionation has occurred in these rocks. A tholeiitic parental liquid has been suggested for the Messina Layered Intrusion on the basis of Harker-type variation diagrams (see Table 2 and Figure 5 of Barton <u>et al.</u>, 1979a, in rear pocket). of Rb in amounts exceeding 50 ppm. Sr contents of about 100 ppm are suggested for the parental magma. Raleigh's fractionation law indicates that about 70 per cent fractionation has occurred in these rocks. A tholeiitic parental liquid has been suggested for the Messina Layered Intrusion on the basis of Harker-type variation diagrams (see Table 2 and Figure 5 of Barton <u>et al.</u>, 1979a, in rear pccket).

CHAPTER 5: METAMORPHISM

Introduction

The availability of over 300 electron probe microanalyses of minerals made from samples collected in the study area (see Appendix 2) has allowed the application of certain experimental data together with various thermodynamic techniques in order to evaluate the physical parameters of the metamorphism which has affected the supracrustal paragneisses of the region. These include the temperature and pressure of metamorphism, and the activity of water. A metamorphic study of the basement gneisses is presented in a complementary study (Fripp, 1981a-c). An attempt has been made to reconstruct the pressure-temperature field for these lithologies, and the PT pathway experienced by these rocks.

Various topics are considered below which utilize the mineral geochemical data (Appendix 2) obtained during this study.

Solubility of aluminium in orthopyroxene

It has been suggested that the solubility of Al_2O_3 in enstatite is in part dependent on the metamorphic grade (Anastasiou and Seifert, 1972). Orthopyroxenes analysed in this study contain about 1 per cent Al_2O_3 (Appendix 2, Tables 2.16 - 2.20) in the pyroxenitic amphibolites (opx+cpx+ plag+hble+qz+ore-gar), about 3 per cent Al_2O_3 (Appendix 2, Tables 2.13 - 2.15) in the garnet-bearing symplectites (gar+ opx+plag), and up to 7 per cent Al_2O_3 (Appendix 2, Tables 2.7 - 2.12) in the sapphirine-bearing varieties of the garnetcordierite-sillimanity gneiss (gar+cord+sapph+sp+cor+plag+opx +biot+sil!). These values are not particularly high when one considers that from the experimental data, well over 7 per cent Al_2O_3 can be accommodated in enstatite at temperatures around 1 000°C and at pressures of about 5 kbar. Using the curves of Anastasiou and Seifert (1972, p.283) the variation of 1 to 7 per cent Al_2O_3 along a 5 kbar isobaric curve (experimental data) gives a temperature range from about 800°C to 1 000°C respectively, although temperatures below 900°C were out of the experimental range.

It seems unlikely that metamorphic temperatures are solely responsible for this range in Al_2O_3 contents. It appears that host rock compositions, and the Fe content of the orthopyroxene (Holdaway, 1976) may effect more control on the Al content of the pyroxenes. In the sapphirine rocks, free corundum and sillimanite occur, and it is logical that these peraluminous lithologies should have orthopyroxenes with the highest Al_2O_3 contents. The pyroxenitic amphibolites have hydrous phases in their mineralogy, and it is also possible that a high water partial pressure may play a role in suppressing Al from the enstatite molecule.

Aluminium and titanium in Hornblende

It has been shown that the Al and T1 contents of hornblende may be related to metamorphic conditions (Raase, 1974). The hornblendes studied by Raase were derived from regional metamorphic terranes varying from greenschist to granulite grade, and have enabled a curve to be defined which separates low-pressure from high-pressure hornblendes on the basis of their Al⁶⁺ and Si contents. The data collected during this study (Figure 48) fall mainly within the lowpressure field (less than 5 kbar) defined by Raase (1974), although the gedrite analysis and an analysis of a hornblende from a metapyroxenite occur in the high-pressure field. It thus appears that host-rock composition (i.e. mineral paragenesis) is a major factor controlling the composition of hornblende, and not simply metamorphic conditions. The gedrite from the peraluminous sapphirine bearing rock shows the highest Al content, and from textural evidence, probably formed at a later stage in the metamorphism after the peak of high grade conditions. Thus, according to Raase's diagram, it should plot in lower pressure regions compared to the other hornblendes from the pyroxenitic amphibolitas which coexist with metamorphic orthopyroxene.

The distribution of Ti in hornblendes from different metamorphic grades has also been compiled by Raase (1974),

Figure 48: Al versus Si (ions) diagram for hornblendes analysed from the study area. The 5 kbar line is citer Raase (1974) and separates low pressure (below) from high pressure (above) hornblendes. A, pargasite; B, edenite; C, actinolite; solid triangles, pyroxenitic amphibolites; solid diamond, metapyroxenite; open square, gedrite from the sapphirine bearing rock (sample no.2-8-12); open triangles, gabbroic and anorthositic gneisses of the Messina Layered Intrusion. All data are taken from Appendix 2.

who suggests that Ti contents increase with increasing metamorphic grade (Figure 49). The data obtained in this study are distributed over all the metamorphic grades of Raase's compilation, with the hornblendes from the pyroxenitic amphibolites having the highest Ti contents which correlate with other hornblendes occurring within hornblende granulite facies terranes. The data from anorthositic and gabbroic samples of the Messina Layered Intrusion correlate with lower amphibolite facies hornblendes, while the metapyroxenite and sapphirine-bearing samples yield hornblende compositions which correlation with greenschist-amphibolite transition varieties. These data again suggest a host-rock composition control on the composition of metamorphic hornblendes. As in the case of Al, therefore, the Ti contents of hornblendes are not good indicators of either P or T.

Parameters of metamorphism

Pressure, temperature and water activity are three equilibrium parameters which may be readily calculated for appropriate metamorphic mineral assemblages using standard thermodynamics principles (e.g. Wood and Fraser, 1976). The application and results obtained from data presented in this study (Appendix 2) of various geobarometers, geothermometers and other techniques are described in Appendix 3. The equilibria utilized are as follows:

Figure 49: Ti contents of hornblendes from different metamorphic grades, and for samples analysed in this study. Histograms A, B, C and D after Raase (1974) with: A, greenschistamphibolite transition; B, lower grade amphibolite facies; C, higher grade amphibolite facies; D, hornblende granulite facies; and E, data from this study (Appendix 2) in which the symbols are as given in Figure 48.

(1)
$$Mg_2Si_2O_{6}_{opx \ solid \ solution} = Mg_2Si_2O_{6}_{opx \ solid \ solution}$$

(2) $CaMgSi_2O_{6}_{opx} + Mg_2Si_2O_{6}_{opx} = CaMgSi_2O_{6}_{opx} + Mg_2Si_2O_{6}_{opx}$
(3) $Mg_2Si_2O_{6}_{opx} + MgAl_2SiO_{6}_{opx} = Mg_3Al_2Si_3O_{12}_{pyrope}$
(4) $\frac{1}{3}Ca_3Al_2Si_3O_{12}_{garnet} + Mg_2Si_2O_{6}_{opx} = \frac{1}{3}Mg_3Al_2Si_3O_{12}_{garnet} + CaMgAl_2O_{6}_{opx}$
(5) $Mg_2Si_2O_{6}_{opx} + CaAl_2Si_2O_{8}_{plog} = (\frac{2}{3}Mg_3Al_2Si_3O_{12} + \frac{1}{3}Ca_3Al_2Si_3O_{12})_{garnet} \ solid \ soln.$
 $+ 2SiO_{2}_{qz}$
(6) $\frac{1}{3}Mg_3Al_2Si_3O_{12}_{pyrope} + CaFeSi_2O_{6}_{hedenbergite} = \frac{1}{3}Fe_3Al_2Si_3O_{12}_{almandine} + CaMgSi_2O_{6}_{diopside}$
(7) $Fe_3Al_2Si_3O_{12}_{olmandine} + KMg_3AlSi_3O_{10}(OH)_{2}_{phlogopite} = Mg_3Al_2Si_3O_{12}_{pyrope} + KFe_3AlSi_3O_{10}(OH)_{2}_{annite}$
(8) $3(Mg,Fe)_2Al_4Si_5O_{18}_{cord} = 2(Mg,Fe)_3Al_2Si_3O_{12}_{garnet} + \frac{4Kl_2SiO_{5}_{sill}}{sill} + SSiO_{2}_{qz}$
(9) $CaAl_2Si_2O_{8}_{anorthite} = CaAl_2SiO_{6}_{Ca-Tschermak} + SiO_{2}_{az}$
(10) $Ca_2Mg_3Si_8O_{22}(OH)_{2}_{tremolite} = 2CaMgSi_2O_{6}_{diopside} + SiO_{2}_{qz}$

Pressures can be determined from equilibria (3), (4), (5), (8) and (9) (Wood and Banne, 1973; Wood, 1974, 1977; Powell, 1978; Wells, 1979). Temperatures may be calculated from equilibria (1), (2), (4), (6), (7), (8) and (9) (Currie, 1971; Hensen and Green, 1971, 1972, 1973; Wood and Banno, 1973; Råheim and Green, 1974; Thompson, 1976; Holdaway and Lee, 1977; Wells, 1977; Wood, 1977; Ferry and Spear, 1978; Powell, 1978; Ellis and Green, 1979; Wells, 1979) although equilibrium (?) in effect generates a P-T curve (Wood, 1977). Water activity may be determined from equilibrium (10) (Fisher and Zen, 1971; S.W. Richardson, pers. comm.). Thermodynamic data on mineral phases are tabulated by Robie et al. (1978) and Helgeson et al. (1978), while the thermodynamic principles used in generating these methods are discussed by Wood and Frazer (1976). Results from using these techniques are tabulated in Appendix 3, and presented graphically in the following sections according to lithology or rock-types.

Garnet-cordierite-sillimanite gneiss

Analyses of feldspar, garnet, cordierite and biotite have been made rrom these metapelitic rocks and are presented in Appendix 2 (Tables 2.2 - 2.6). Two samples (21-7-F and 21-7-G) were collected on the Farm Boschrand (see Map 2 in rear pocket) and petrographic observations indicate that the above minerals form typical reaction textures according to

the following possible equilibria:

bio[,]ite + sillimanite + quar^tz = cordierite + garnet + K-feldspor + H₂O

cordierite = garnet + sillimanite + quartz The Fe-Mg solid-solution properties of garnet, cordierite and biotite have been studied to determine eir dependence on metamorphic conditions (e.g. for garnets, see Keesmann <u>et al.</u>, (1971) and various geothermometers and geobarometers have been derived. Mineral analyses obtained in this study show biotit es of intermediate Fe-Mg composition, garnets which are richer in almandine than pyrope, and cordierites with more magnesian than iron-rich compositions. However, the garnets display a compositional zoning from more pyrope-rich cores to more almandine-rich rims, and this zonation is discussed in more detail later.

The pressure and temperature determinations using these data are given in Appendix 3 (Tables 3.7, 3.8 and 3.9) and are graphically presented in Figures 50-51 and summarized in Table 8. Fe-Mg partitioning between coexisting garnet and biotite has yielded geothermometers (Thompson, 1976; Ferry and Spear, 1978). Ferry and Spear's thermometer gives higher temperatures by about 50°C, although 50°C is a realistic error in these determinations, and both techniques suggest temperatures between 700°C and 800°C for the equilibration of garnet and

Figure 50: Pressure-temperature diagram for sample no.21-7-F of garnet-cordierite-sillimanite gneiss (Farm Boschrand - see Map 2 in rear pocket) showing the results of the geothermometer and geobarometer calculations (see Appendix 3, Tables 3.7 to 3.9). The curves are as follows:

1A: garnet-biotite thermometer of Thompson (1976);

1B: garnet-biotite thermometer of Ferry and Spear (1978);

2A: garnet-cordierite thermometer of Currie (1971);

2B: garnet-cordierite thermometer of Thompson (1976);

2C: garnet-cordierite thermometer of Wells (1979);

2D: garnet-cordierite barometer of Wells (1979) for Fe end-members;

2E: garnet-cordierite barometer of Wells (1979) for Mg end-members

3A: two feldspar thermometer of Stormer and Whitney (1977) using; sanidine-albite solid solution; and

3B: two-feldspur thermometer of Stormer and Whitney (1977) using microcline-albite solid solution.

Solid triangle is the garnet-cordierite intersection point using the method of Holdaway and Lee (1977). Only results using garnet-rim compositions have been shown in this diagram, while the alumino-silicate stability fields are taken from Richardson <u>et al</u>. (1969). The stippled area is the preferred field for coexisting garnet, biotite and cordierite.

TEMPERATURE (°C)

Figure 51 : Pressure-temperature diagram for sample no.21-7-G of garnet-cordierite-sillimanite gneiss (Farm Boschrand - see Map 2 in rear pocket) showing the results of the geothermometer and geobarometer calculations (see Appendix 3, Tables 3.7 and 3.8). Curves and symbols are as designated in Figure 50. Only results using garnet-rim compositions have been shown in this diagram. The stippled area is the preferred field for coexisting garnet, biotite and cordierite.
Table 8: Summary and range of pressure (kbar) and temperature (c) results for garnet-cordierite-sillimanite gneiss (samples 21-7-F and 21-7-G from Farm Boschrand - see Map 2 in rear pocket).

			21-7-F	21-7-6	
	Vata source (Appendix 3)	Coexisting minerals		garnet core	garne rim
IL	Table 3.7	garnet+biotite cornet+biotite	708 764	852 989	734 802
7	1 C 2 T C		783	647	705
13	Table 3.8	garnettordierite	638	880	755
14	Tchlo 2 8	aarnet+cordierite	I	850	i
c1	Table 3.8	garnet+cordierite	690	870	518
9	Table 3.8	garnet+cordieri e	7,9	6,8	7,0
17	Table 3 8	garnet+cordierite	613 - 633	84 8/2	141 - 147
P7	Table 3.8	garnet+cordierite	6,8 - 7,8	6,2-9,0	0,4 - 0,4
T1: T2: T2: T3: T4: T5: T5: T5:	Thompson (1 Ferry and S Currie (197 Thompson (1 Hensen and ind P6: Holdaway an	976) pear (1978) 1) 976) Green (1973) d Lee (1977))			

135

biotite in these lithologies. The Fe-Mg partitioning between coexisting garnet and cordierite has also allowed derivation of thermometers and barometers (Currie, 1971; Thompson, 1976; Holdaway and Lee, 1977; Wells, 1979). Good consistency between these methods suggest temperatures between 600°C and 800°C at pressures between 6,5 kbar and 8,0 kbar for the stable equilibrium between coexisting garnet and cordierite. Thus the high-grade metamorphism affecting the garnetcordierite-sillimanite gneiss and which stabilized biotite, garnet and cordierite was characterized by pressure and temperature conditions indicated by the shaded areas of Figures 50-51, namely temperatures between 600°C and 800°C, and pressures between 6,5 kbar and 8,5 kbar.

Sapphirine-bearing rocks

The textural and petrographic evidence of the sapphirinebearing varieties of the garnet-cordierite-sillimanite gneisses suggests a complex sequence of reactions involving garnet, cordierite, sapphirine, spinel and corundum (see Chapter 2). Early formed garnet (more pyrope-rich ?) and corundum, formed during the peak of metamorphism, are separated by 'canals' of cordierite, sapphirine and spinel (see Figures 6 and 7) suggesting that sapphirine formed during later retrogression in the metamorphism. Mineral chemical data are presented in Appendix 2 (Tables 2.7 - 2.12). The garnet porphyroblasts

are concentrically zoned and are approximately Fe-Mg solid solutions in which Ca and Mn comprise less than 2 per cent of the octahedrally coordinated cations as in the garnets occurring in the garnet-cordierite-sillimanite gneisses. The centres of the porphyroblasts approach $Alm_{49}Py_{50}Gross_1$ compositions, while steeper gradients towards more iron-rich compositions occur around the margins where compositions of Alm₅₅Py₄₄Gross₁ are typically obtained. The grossular content appears to be relatively constant from core to margin, while spessartine contents are relatively negligible. The cordierite shows minimal zoning, and has Fe/Fe+Mg ratios of about 0,1. The spinel composition approaches Spinel₅₅Hercynite₄₅ while the orthopyroxene is bronzite with Al₂0₃ contents of about 7 per cent. Typical coexisting minerals from these rocks are plotted in a MgO+FeO - SiO₂ - Al₂O₃ ternary diagram (Figure 52). The upper stability limits of pyrope have been studied by Schreyer (1968) and of almandine-pyrope compositions by Keesmann et al. (1971) and their data suggest that the garnet cores were stable at temperatures exceeding 800°C and pressures in excess of 8 kbar. The zonation in the garnet, and the 'rims' of spinel, sapphirine and cordierite separating garnet and corundum suggest u reaction of the following form:

 $3(Mg,Fe)_{3}Al_{2}Si_{3}O_{12} + 4Al_{2}O_{3} = (Mg,Fe)_{3}Al_{2}Si_{3}O_{12} +$ garnet core corundum garnet rim $(Mg,Fe)_{2}Al_{4}Si_{5}O_{18} + 4(Mg,Fe)Al_{2}O_{4} + SiO_{2}$ cordierite spinel quartz

Figure 52: A MgO+FeO - SiO₂ - Al₂O₃ ternary diagram showing the compositions of minerals from the sapphirine bearing variety of the garnet-cordierite-sillimanite gneiss. Solid square, garnet; open triangle, cordierite; solid triangle, sapphirine; open square, spinel; solid circle, corundum; solid diamond, biotite; open diamond, gedrite; open circle, orthopyroxene. Tie lines join coexisting phases, while the dotted line joins earlier formed garnet+corundum, now no longer in equilibrium.

where the garnet on the right-hand side of this reaction becomes more iron-rich in the presence of the magnesian phases of spinel and cordierite. The observation of sapphirine occurring along spinel-cordierite boundaries suggests that the sapphirine-forming reaction was as follows:

 $(Mg,Fe)_{2}Al_{4}Si_{5}O_{18} + 8(Mg,Fe)Al_{2}O_{4} = 5(Mg,Fe)_{2}Al_{4}Si_{10}O_{10}$

cordierite spinel sapphirine This reaction is similar to that proposed by Seifert (1974, eqn.9), which produced orthopyroxene (Figure 53), according to the reaction:

cordierite + spinel = enstatite + sapphirine This reaction occurs between 3 and 4 kbar and between $765^{\circ}C$ and 1 200°C (Figure 53). The invariant point of cordierite+ enstatite+sapphirine+spinel+chlorite+H₂0 is situated at $765^{\circ}C$ and 3,8 kbar.

Figure 53: Experimental data for the reaction cord+sp = en+sa (from Seifert, 1974)

The bronzite occurring in these lithologies was not observed to be directly related to the garnet-cordieritesapphirine-spinel-corundum assemblage, and it occurs ir only small amounts in coexistence with garnet, cordierite and plagioclase (Figure 8). Its presence may be limited by the availability of Al_2O_3 , since in Al_2O_3 deficient compositions, hypersthene + sapphirine + cordierite - spinel assemblages would be stable (Seifert, 1974), while in Al_2O_3 -rich environments, sapphirine replaces hypersthene to produce sapphirine + cordierite - spinel - corundum - sillimanite assemblages. The bronzitic orthopyroxene has an Al_2O_3 content greater than 7,5 per cent, and the work of Anas.asiou and Seifert (1972) suggests that the Al-enstatite solvus occurs at temperatures over 1 000^oC and at pressures less than 5 kbar.

The reaction of garnet with corundum described earlier produces quartz during this metamorphism, but no free quartz was observed in the sapphirine-bearing rocks under study. This may be accounted for by considering the abundant quartzrich veins and pegmatites which 'soak' the surrounding terrane and which resulted during the extensive anatexis which has affected the region. Consideration of the whole-rock compositions of the sapphirine rock (Table 3) and its host (garnet-cordierite-sillimanite gneiss) shows that the sapphirine rock is relatively depleted in SiO₂, CaO, Na₂O and

 K_2O , while enriched in '1gO, FeO and Al_2O_3 . This supports the view that these sopphirine-bearing assemblages represent metamorphic residua after the extraction of minimum melt granitic liquids (Clifford <u>et al.</u>, 1975; Lal <u>et al.</u>, 1978) and are not due to magnesium or aluminium metasomatism (e.g. Robertson, 1977).

The lack of published thermodynamic data on sapphirine precludes the direct calculation of P-T curves for the sapphirine-producing reactions. However, other thermometers and barometers can be applied to certain phases in these assemblages, notably for coexisting garnet and cordierite, and garnet and phlogopitic biotite. Also, the presence of orthopyroxene allows the application of coexisting garnet and orthopyroxene methods. The results of these determinations are tabulated in Appendix 3 (Tables 3.3, 3.4, 3.7 and 3.8) for sample nos. 2-8-12 and 11-8, and are presented graphically in Figures 54-55 and summarized in Table 9. P-T curves for coexisting garnet and phlogopite geothermometry are presented in Figures 54-55. However, for sample no.2-8-12, two sets of analytical data from two different laboratories are available (see Appendix 2 - Tables 2.8 and 2.9) and these sets of data yield distinctly different results (Figure 54). Those obtained using data from the Cape Town laboratory suggest temperatures from 600°C to 650°C while the Witwatersrand laboratory data

Figure 54: Pressure-temperature diagram for sample no.2-8-12 of sapphirine bearing rock (Farm Randjesfontein - see Map 2 in rear pocket) showing the results of the geothermometer and geobarometer calculations (see Appendix 3, Tables 3.3, 3.4, 3.7 and 3.8). The curves are as follows: 1A: garnet-biotite thermometer of Thompson (1976) - UCT laboratory; 1A': garnet-biotite thermometer of Thompson (1976) - WITS laboratory; 1B: garnet-biotite thermometer of Ferry and Spear (1978) - UCT; 1B': garnet-biotite thermometer of Ferry and Spear (1978) - WITS; 2A: garnet-cordierite thermometer of Currie (1971); 2B: garnet-cordierite thermometer of Thompson (1976); garnet-cordierite thermometer of Wells (1979); 2C: 2D: garnet-cordierite barometer of Wells (1979) for Fe end-members; 2E: garnet-cordierite barometer of Wells (1979) for Mg end-members. Solid triangle is the garnet-cordierite intersection point using the method of Holdaway and Lee (1977). Only results using garnet-rim compositions have been shown in this diagram, while the alumino-silicate stability fields are taken from Richardson et.al. (1969). Stippled area is the preferred field for coexisting carnet, biotite and cordierite.

Figure 55 : Pressure-temperature diagram for sample no.11-8 of sappnirine bearing rock (Farm Randjesfontein - see Map 2 in rear pocket) showing the results of geothermometer and geobarometer calculations (see Appendix 3, Tables 3.3, 3.4, 3.7 and 3.8). The curves are as designated in Figure 54, and, in addition, the following:

4A: coexisting garnet and orthopyroxene (Wood and Banno, 1973);
4B: coexisting garnet and orthopyroxene (Wood, 1974); and
4C: crexisting garnet and orthopyroxene (Powell, 1978).
The ruled area is the preferred field of coexisting garnet and orthopyroxene. The stippled area is the preferred field for coexisting garnet, biotite and cordierite.

Table 9: Summary and range of pressure (kbar) and temperature (^oC) results for sapphirine-bearing rock (samples 2-8-12 and 11-8 from Farm Rand esfontein - see Map 2 in rear pocket).

ļ

	Data source		2-8-12	Π	-8
		STRATE BULLETOS		garnet core	gurnet rim
Id	Table 3,3	or hopyroxene+garnet	ł	4, 1 - 6, 4	5,7 - 8,8
P2	Table 3.3	orthopyroxene+garnet	1	0 -13,7	0 -13,6
13	Table 3.4	orthopyroxene+garnet	L	928 - 979	820 - 861
T.4	Table 3.7	garnet+biotite	615 - 748	704	615
51	Table 3.7	garnet+biotite	633 - 824	759	633
T6	Table 3.8	garnet+cordierite	802	755	824
17	Table 2.8	garne++cordieri e	616	675	591
18	Table 3.8	garne + cardierite	550	630	550
P8	Table 3.8	garnet+cordierite	10,5	9,8	10,3
19	Table 3.8	garnet+cordierite	592 - 611	649 - 670	568 - 587
6d	Table 3.8	garnet+cordierite	7,8 - 8,9	7,6 - 9,2	7,5 - 8,8
P1: P2: T3: T4: T5:	Wood and Banna (1973) Wood (1974) Powell (1978) Thompsan (1976) Ferry and Spear (1978)	T6: Currie (197) T7: Thompson (197) T8 and P8: Holdaway and T9 and P9: Wells (1979)	1) 976) d Lee (1977)		

144

suggest temperatures from 750 C to 525 C. However, the results with the lower temperatures fall in the field of kyanite (after Richardson et al., 1969), and since no kyanite has been recognized in any rock-types within the study area, should be regarded with caution. Coexisting garnet and cordierite yields both thermometers and barometers, and are shown in Figures 54-55. The thermometers of Thompson (1976) and Wells (1979) agree with the temperatures for garnetphlogopite pairs using the Cape Town data, but not with the higher temperatures using the data obtained with the ARL-SEMQ instrument. However, the garnet-cordierite thermometer of Currie (1971) is consistent with the higher temperatures close to 800°C obtained from the higher temperature garnetphlogopite thermometric data. Garnet-cordierite barometers of Wells (1979) are shown for Fe and Mg end-members and indicate pressures of about 8 kbar in both samples (Figures 54-55). P-T curves for coexisting garnet and orthopyroxene define a large field (Figure 55) with temperatures from 750°C to 880°C and pressures from 7,5 kbar to 13 kbar, the latter yielded by sample no.11-8 only.

In summary, intersection of the above curves defines three fields in P-T space. Coexisting garnet, phlogopite and cordierite suggests two fields depending on the data source: from 575°C to 640°C and from 7,5 to 8,5 kbar (Cape

Town data - Cambridge Microscan 5), and from 740°C to 850°C and 7,5 kbar to 9,0 kbar (ARL-SEMQ, Wits instrument). In sample no.11-8, coexisting garnet and orthopyroxene defines a field ranging from 750°C to 850°C and from 8 kbar to 12 kbar (Figure 55 - ruled area). It is suggested that the P-T conditions which are most consistent for the entire assemblage of garnet-rim + cordierite + phlogopite + orthopyroxene (and probably also sapphirine + spinel) for the equilibrating phase of the metamorphism lie within 750°C and 850°C and close to 8 kbar.

Garnet-orthopyroxene-plagioclase symplectite

The garnet-hypersthene-plagioclase rock (samples 2-8-10A and 2-8-10B) occurs on the Farm Randjesfontein (see Map 2 in rear pocket) and contains distinctive symplectitic corona textures. Garnet porphyroblasts are rommed by an intergrowth of myrmekitic hypersthene in a plagioclase host (Figure 10; see also Horrocks, 1980, Fig.2). Leyreloup <u>et al</u>. (1975) ascribed this texture to a retrograde transition from hightemperature high-pressure to high-temperature intermediatepressure granulite facies metamorphism probably due to uplift of the lower crust with erosion. The texture is produced by the reaction:

garnet (+ diopside-augite) + quartz = hypersthene + plagioclase

in the case of garnets rich in almandine (FeO/MgO >1), which is true for garnets of this lithology in the area under study. Garnets which are particularly rich in grossular, s ch as in mafic granulites, are probably subject to the following reaction:

garnet + quartz = clinopyroxene + plagioclase

In the Southern Marginal Zone of the Limpopo Mobile Belt south of the Soutpansberg mountains (Figure 1), a similar texture has been descri' (Van Reenen and Du Toit, 1978) from 'cordierite-garnet-hype stheme-brotite granulites', which may be correlative wi ^L the garnet-cordierite-sillimanite gneisses occurring in the sludy area. However, an important difference exists between the assemblage in the Southern Marginal Zone and the symplectite assemblage describe, fr.m the study area, in that the hyperstheme is hosted n plagioclase, whereas the samples of Van Reenen and Du Toir show hypersthene hosted in cordierite. Although hyperstheme-cordierite-biotite symplectites do occur in the study area (Figure 9) mainly in rocks which are also sapphirine bearing, it appears that the samples of Van Reenen and DJ Toit (1978) contained sufficient MgO and FeO to produce cordierite rather than plagioclase, perhaps due to the enrichment of these components during anatexis. Also, the garnet is less calcic in the samples from the Southern Marginal Zone suggesting a more pelitic composition. Thus, Van Reenen and Du Toit (1978) considered

the following reaction:

garnet + quartz = cordierite + hypersthene to have produced their symplectites. Alternatively, the presence of cordierite over plagioclase south of the Soutpansberg in this corona-forming reaction may suggest different metamorphic conditions prevailed in the two renions, whereby cordierite has not reacted and equilibrated with phases such as spinel and sapphirine to take up MgO and FeO. The assemblages from Farm Randjesfontein in the study area contain no free quartz, and the garnets appear to show relatively little compositional zoning. Thus quartz may have been entirely consumed during these reactions, or may have been lost during anatexis of the region. In places within the samples, no garnet remains, and anly spherical 'knots' of myrmekitic hypersthene in plagioclase occur suggesting the complete replacement of the garnet.

Calculations of the pressure and temperature conditions for these mineral assemblages are tabulated in Appendix 3 (Tables 3.3, 3.4, 3.5, and 3.7) and are presented graphically in Figures 56a-d and summarized in Table 10. The use of different sets of analytical data reveals inconsistencies between these different methods (see Figures 56a-d) which may be due to either defective analytical data, or data from locations within mineral grains which are not in equilibrium. The latter explanation is preferred, since although severe

Figure 56a: Pressure-temperature diagram for sample no.2-8-10A of garnet-orthopyroxene-plagioclase symplectite (Farm Randjesfontein - see Map 2 in rear pocket) showing the results of the geothermometer and geobarometer calculations (Appendix 3, Tables 3.3, 3.4, 3.5 and 3.7). The curves are as follows: 4A: garnet-orthopyroxene barometer of Wood and Banno (1973); 4B: garnet-orthopyroxene barometer of Wood (1974); 4C: garnet-orthopyroxene thermometer of Powell (1978); and 4D: garnet-orthopyroxene b rometer of Powell (1978). Alumino-silicate stability fields are taken from Richardson et.al. (1969).

Figure 565: Pressure-temperature diagram for sample no.2-8-108 of garnet-orthopyroxene-plagioclase symplectite (Farm Randjesfontein - see Map 2 in rear pocket) showing the results of the geothermometer and geobarometer calculations (Appendix 3, Tables 3.3, 3.4, 3.5 and 3.7). The curves are designated as in Figure 56a and in addition the following: 1A: garnet-biotite thermometer of Thompson (1976); and 1B: garnet-biotite thermometer of Ferry and Spear (1978). Only results using garnet-core compositions are shown in this diagram, and which were obtained from the UCT laboratory (Appendix 2, Table 2.14).

Figure 56c: Pressure-temperature di gram for sample no.2-8-10B of garnet-orthopyroxene-plagioclase symplectite (Farm Randjesfontein - see Map 2 in rear pocket) showing the results of the geothermometer and geobarometer calculations (Appendix 3, Tables 3.3, 3.4, 3.5 and 3.7). The curves are as designated in Figures 56a and 56b. Only results using garnetrim compositions are shown in this diagram, and which were obtained from the UCT laboratory (Appendix 2, Table 2.14).

Figure 56d: Pressure-temperature diagram for sample no.2-8-10B of garnet-orthopyroxene-plagioclase symplectite (Farm Randjesfontein - see Map 2 in rear pocket) showing the results of the geothermometer and geobarometer calculations (Appendix 3, Tables 3.3, 3.4, 3.5 and 3.7). The curves are as designated in Figures 56a and 56b. Only results using the data from the WITS laboratory (Appendix 2, Table 2.15) are shown in this diagram. The ruled area is the preferred field of coexisting garnet, biotite and orthopyroxene.

Table 10: Summary and range of pressure (kbar) and temperature (^oC) results for garnet-or hopyroxene-plagiaclase symplectite (samples 2-8-10A and 2-F 10B from Farm Rand esfontein - see Map 2 in rear pocket).

Appendix 3)Coextering winerat garnet target rim garnet agarnet coregarnet rim garnet target rimP1Table 3.3garnet+nrthopyroxene $6, 4 - 9, 9$ $6, 6 - 11, 3$ $10, 4 - 16, 1$ P2Table 3.3garnet+orthopyroxene $3, 5 - 22, 3$ $2, 6 - 21, 6$ $5, 0 - 24, 6$ P3Table 3.4garnet+orthopyroxene $3, 5 - 22, 3$ $2, 6 - 21, 6$ $5, 0 - 24, 6$ P4Table 3.4garnet+orthopyroxene $3, 5 - 22, 3$ $2, 6 - 21, 6$ $5, 0 - 24, 6$ P4Table 3.5garnet+orthopyroxene $3, 1 - 4, 2$ $5, 9$ $4, 1 - 4, 7$ T5Table 3.7garnet+biotite $3, 1 - 4, 2$ $5, 9$ $6, 23 - 665$ T6Table 3.7garnet+biotite $3, 1 - 4, 2$ $5, 9$ $6, 23 - 665$ T6Table 3.7garnet+biotite $ 59, 9$ $6, 23 - 625$ $6, 20$ T6Table 3.7garnet+biotite $ 59, 9$ $6, 3 - 625$ $6, 30 - 640$		Data source		2-8-10A	2-8-106	
P1 Table 3.3 garnet+nrthopyroxene 6,4 - 9,9 6,6 - 11,3 10,4 - 16,1 P2 Table 3.3 garnet+orthopyroxene 3,5 - 22,3 2,6 - 21,6 5,0 - 24,6 P3 Table 3.4 garnet+orthopyroxene 3,5 - 22,3 2,6 - 21,6 5,0 - 24,6 P3 Table 3.4 garnet+orthopyroxene 3,5 - 678 540 - 609 623 - 665 P4 Table 3.5 garnet+orthopyroxene 3,4 - 4,2 5,9 4,1 - 4,7 F4 Table 3.5 garnet+orthopyroxene 3,4 - 4,2 5,9 4,1 - 4,7 F5 Table 3.7 garnet+biotite 3,4 - 4,2 5,9 4,1 - 4,7 F5 Table 3.7 garnet+biotite 5,1 - 4,2 5,9 620 F5 Table 3.7 garnet+biotite		Appendix 3	Crexising winerals		garnet core	garnet rim
P2 Table 3.3 garnet+orthapyroxene 3, 5 - 22, 3 2, 6 - 21, 6 5, 0 - 24, 6 T3 Table 3.4 garnet+orthapyroxene $634 - 678$ $540 - 609$ $623 - 665$ P4 Table 3.5 garnet+orthapyroxene $3, 1 - 4, 2$ $5, 9$ $4, 1 - 4, 7$ T5 Table 3.7 garnet+biotite $3, 1 - 4, 2$ $593 - 625$ 620 T6 Table 3.7 garnet+biotite $3, 1 - 4, 2$ $593 - 625$ 620 T6 Table 3.7 garnet+biotite $ $	μ	Table 3.3	garnet+orthopyroxene	6,4 - 9,9	6 6 - 11 3	10,4 - 16,1
T3 Table 3.4 garnet+orthopyroxene $634 - 678$ $540 - 609$ $623 - 665$ P4 Table 3.5 garnet+orthopyroxene $3.1 - 4.2$ 5.9 $4.1 - 4.7$ T5 Table 3.7 garnet+biotite $3.1 - 4.2$ 5.9 $4.1 - 4.7$ T6 Table 3.7 garnet+biotite $-603 - 605$ 620 $630 - 640$ T6 Table 3.7 garnet+biotite $-603 - 640$ 639 639	P2	Table 3.3	garnet+orthapyroxene	3, 5 - 22, 3	2,6 - 21,6	5,0 - 24,6
P4 Table 3.5 garnet+orthapyroxene 3.1 - 4.2 5,9 4.1 - 4.7 T5 Table 3.7 garnet+biotite 593 - 625 620 T6 Table 3.7 garnet+biotite - 603 - 646 639	T3	Table 3 4	garnet+orthopyroxene	634 - 678	540 - 609	623 - 665
T5 Table 3.7 garnet+biotite 593 - 625 620 T6 Table 3.7 garnet+biotite 603 - 646 639	P4	Table 3.5	garnet+orthapyroxene	3, 4 - 4, 2	5,9	4, L - 4, 7
T6 Table 3.7 garnet+biotite 639 646 639	15	Table 3.7	garnet+biotite	-1	593 - 625	620
	16	Table 3.7	garnet+biotîte		603 - 646	639

Wood and Barno (1973) Wood (1974) Powell (1978) Wells (1979)

Thompson (1976) P1: P2: T3: T5: T6:

Ferry and Spear (1978)

inconsistencies appear with the results for sample no.2-8-10A (Figure 56a) consistent intersections of the different P-T curves occur with the application of the data obtained from the same laboratory for sample no.2-8-10B where only garnetcore compositions are used. Here, a P-T field from about 550°C to 600°C and from about 6,0 kbar to 7,5 kbar is suggested for equilibrium between phlogopite, garnet-cores and hyperstheme (see Figure 56b). However, data from the same laboratory (UCT - Cambridge Microscan 5) and for the same sample (no. 2-8-10B) but usi only garnet-rim compositions (Figure 56c) again yields large inconsistencies between the different techniques. While temperatures are constrained to lie between about 600°C and 700°C, the barometers give results ranging from less than 5 kbar to over 12 kbar. Thus, disequilibrium compositions rather than faulty data appear to produce these inconsistencies. The most reliable data, from analytical quality and equilibrium composition stand-points, give the results shown in Figure 56d using data from the WITS laboratory (ARL-SEMQ) for sample no.2-8-10B. A field from about 575°C to 650°C and from 7 kbar to 9 kbar is indicated.

Garnet zonation in the pelitic rock-types

Studies of zoning in garnets have been made to antermine histories of metamorphism in both regional and contact metamorphic terranes (Kretz, 1973; Tracey <u>et al.</u>, 1975;

Thompson et al., 1977; Berg, 1977). Zoning has also been recognized in garnets from the garnet-cordierite-sillimanite gneiss and its sapphirine-bearing varieties within the study area, and to a lesser extent, in the garnet-orthopyroxeneplagioclase symplectities. To illustrate these compositional variations, over 150 microanalyses were completed on individual garnet porphyroblasts from the above rock-types (see Appendix 2, Tables 2.4, 2.10 and 2.15), and all garnet analyses obtained in this study with the exception of those obtained from mafic rock-types (167 analyses) are plotted in three Ca+Mn - Fe²⁺ - Mg ternary diagrams for each of the above pelitic lithologies (Figures 57 - 59). Obvious compositional variation trends are revealed for the garnet-cordierite-sillimanite gneiss (Figure 57) and sopphirine-bearing rock-type garnets (Figure 58) while the garnets from the symplectite show a relatively pour zonation (Figure 59). Compositions vary from about Alm₅₄Fy₄₃Gr₃ cores to Alm₆₇Py₂₈Gr₅ rims in the garnet-cordieritesillimonite gneiss (Figure 57) for a garnet porphyroblast about 1 cm in diameter, and few garnets exceed this dimension, while many are smaller. The sapphirine-bearing variety (Figure 58) show more magnesian-rich cores of about Alm₄₁Py₅₇Gr₂ with rims of about Alm₅₃Py₄₃Gr₄. Spessartine forms negligible amounts, usually not more than 1 or 2 per cent, and Mn is grouped with Ca in the ternary diagrams for clarity. Thus

Figure 57: Ca+Mn - Fe²⁺ - Mg ternary diagram showing the compositional variation of garnet from the core to rim of a garnet porphyroblast from a garnet-cordierite-sillimanite gneiss (sample no.21-7-G, Farm Boschrand - see Map 2 in rear pocket). Data from Appendix 2, Table 2.4.

×

Figure 57: Ca+Mn - Fe - Mg ternary diagram showing the compositional variation of garnet from a garnet-orthopyrokeneplagioclase symplectite (sample no.2-8-10B, Farm Randjesfontein - see Map 2 in rear pocket). Data from Appendix 2, Table 2.15.

these garnets form near perfect Mg-Fe solid solutions and are ideal for the application of the various geothermometers and geobarometers that have been developed for Mg-Fe systems. The garnet compositions in the symplectite (Figure 59) do not show an obvious trend, but scatter about an approximate composition of $Alm_{53}Py_{35}Gr_{12}$ and are thus much more calcic than the gernets occurring in the previous two varieties Also, this symplectite is plagioclase-bearing in contrast to other symplectites described from the Limpopo Mobile Belt (Van Reenen and Du Toit, 1978) which contain cordierite, again illustrating the more calcic nature of these symplectites occurring in the study region.

Figures 60 and 61 illustrate the garnet porphyroblasts studied from the garnet-cordierite-sillimanite gneiss and sapphirine-bearing rock respectively, while Figures 62 and 03 show the locations of the electron probe microanalyses. In the case of the garnet-cordierite-sillimanite gneiss (sample no.21-7-G, Figures 60 and 62), several cordierite analyses were obtained from areas immediately surrounding the garnet, and several biotites were also analysed, occurring both as inclusions within the garnet and as small grains outside the garnet. No phlogopites were observed within the garnet from the sapphirine-bearing rock (sample no.2-8-12, Figures 61 and 63) that were suitable for analysis, but cordierites,

Figure 60: Photomicrograph of the garnet porphyroblast from a garnet-cordierite-sillimanite gneiss (sample no.21-7-G, Farm Boschrand - see Map 2 in rear pocket) used in the study of garnet zonation. The garnet has a diameter of about 1 cm.

Figure 61: Photomicrograph of the garnet porphyroblast from the sapphirine bearing rock (sample no.2-8-12, Farm Randjesfontein - see Map 2 in rear pocket) used in the study of garnet zonation. The garnet has a diameter of about 1 cm.

Figure 62: Schematic representation of the garnet porphyroblast from a garnet-cordierite-sillimanite gneiss shown in Figure 60 showing the locations of the electron probe microanalyses made on the garnet and adjacent minerals, including the biotite fragments. The arrowed location is the nearest to the geometrical centre of the grain - see text for discussion.

Figure 63: Schematic representation of the garnet porphyroblast from the sapphirine bearing rock shown in Figure 61 showing the locations of the electron probe microanalyses made on the garnet and adjacent minerals.

sapphirines and spinels were analysed from the regions immediately adjacent to the garnet. Small corundum inclusions occur within the garnet from the sapphirine-bearing rock, but are in all cases 'armoured' from the garnet by a rim of cordierite. Mole fraction data calculated from the structural formulae of these analyses have been plotted and contoured (Figures 64-66) and show similar compositional distributions for both the garnet-cordierite-sillimanite gneiss and the sapphirine-bearing variety. Figure 64 shows the distribution of ferrous iron in the Ml octahedrally coordinated site in the garnet molecule (X_{Fe}^{ML}) , and a broad plateau of values for this mole fraction between 0,525 and 0,575 is revealed which covers about 80 per cent of the garnet area. Steep gradients then occur around the grain margins, with values approaching 0,675 adjacent to the grain boundaries. These highest X^{M1}_{Fe} values are only achieved where the gar at borders against cordierite+ biotite+sillimanite assemblages, while where the garnet borders against quartz grains, values of only about 0,575 are typical. Thus, compositional profiles are dependent on adjacent assemblages on a microscopic scale, and the relevant mineral reactions between these phases. Figures 65-66 show similar patterns for the garnet porphyroblast examined from a sapphirine-bearing variety (sample no.2-8-12) with broad compositional plateaux covering most of the grain, and steep

Figure 64: Schematic diagram of the garnet porphyroblast from a garnet-cordierite-sillimanite gneiss illustrated in Figures 60 and 62, showing the compositional contours of the mole fraction of ferrous iron in the Ml octahedrally coordinated site of the garnet molecule.

Figure 65: Schematic diagram of the garnet porphyroblast from the sapphirine b' ring rock illustrated in Figures 61 and 63 showing the compositional contours of the mole fraction of ferrous iron in the M1 octahedrally coordinated site of the garnet molecule.

Figure 66: Schematic diagram of the garnet porphyroblast from the sapphirine bearing rock illustrated in Figures 61 and 63 showing the compositional contours of the mole fraction of magnesium in the M1 octahedrally coordinated site of the garnet molecule.

gradients around the grain margin. Contours of X_{Fe} and X_{Ma} for the Ml site (Figures 65 and 66 respectively) display almost 'mirror-image' patterns illustrating the binary Fe-Mg solid-solution character of these garnets. Core values of $X_{Fe}=0,425$ and $X_{Mg}=0,550$ are typical, while rim values of $X_{Fe}=0,500$ and $X_{Ma}=0,475$ are characteristic.

The data for the garnet studied in the garnet-cordieritesillimonite gneiss (Figures 62 and 64) have also been plotted against the radius of the grain (Figure 67) whereby the positions of the individual analysis points were measured on a radius passing from the arrowed analysis point which is closest to the geometrical centre of the garnet section (Figure 62) out to the grain margin. Then the radius position of the analysis point was normalized to a value between 0 and 1, such that at 0 the analysis point lies at this centre point, and at 1 the point lies on the grain boundary. Different mole fraction populations are plotted in Figure 67 and show clear trends varying from core (radius = 0) to margin (radius = 1) which are extracted and plotted in Figure 68. The iron and magnesium mole fractions for the garnet show 'mirrorimages' with almost constant values from the core to a radius value of about 0,75, while steeper opposed gradients appear towards the margins. This reflects the binary solid-solution between Mg and Fe in these garnets. However, a large scatter

Figure 67: Diagram showing the variation of mole fraction compositional data with increasing radius from the garnet porphyroblast from a garnet-cordier te-sillimanite gneiss illustrated in Figures 60 and 62. The centre of the garnet is at radius = 0, while the garnet rim is at radius = 1. For values of radius greater than 1, cordierite+biotite+ sillimanite+quartz assemblages occur. Symbols are as follows: t, mole fraction of ferrous iron in the Ml site of garnet; x, mole fraction of magnesium in the Ml site of garnet; open triangles, mole fraction of calcium in the Ml site of garnet; and open squares, mole fraction of ferrous iron in the cordierite molecule.

In the data appears towards the margin (radius = 1) due to the fact that the zoning is not concentric about the grain centre, out deflected near the grain margins depending on the adjacent mineral assemblage (see Figure 64). The curves extracted in Figure 68 ignore those data points taken from regions in the garnet adjacent to quartz grains (lower X^{gar} and higher X^{gar} values) and use the data from points adjucent to hounding cordierite-' .ring assemblages. This is valid since the mineral equilibria calibrated by various geothermometers and geobarometers involve these assemblages. X^{gar} values show almost no variation from core to rim, while X^{blot} values follow a similar trend to that for X^{gar}. X^{biot} values for analysis points outside the garnet (i.e. biotite flakes within cordierite) show a large scatter (see Figure 67 for radius values greater than 1). Cordierite values outside the garnet show little variation with distance from the garnet margin (see Figures 67 ond 68).

The availability of these compositional data from a single grain enables the application of garnet-biotite geothermometers within the grain, and garnet-condierite geothermometers and geobarometers at the grain boundr y. Thus a temperature profile may be constructed from the core to margin of this garnet grain (Figure 69). Temperatures for garnet-biotite pairs within the garnet were determined

using the methods of Thompson (1976) and Ferry and Spear (1978) taking mole fraction data directly from Figure 68. The data used in obtaining these values have all been recalculated to include an estimation of ferric iron in the garnet only (see Appendix 2). The temperatures obtained by these methods show little variation from core to rim. Thompson's temperatures vary around 560°C, while Ferry and Spear's technique gives values about 20°C to 30°C higher for pressures from 5 kbar to 7 kbar. These variations are all significantly less than the errors in the methods themselves (about -50° C) and demonstrate an excellent consistency between these techniques. Garnet-cordierite coexistence at the grain boundary allows temperatures (Thompson, 1976; Wells, 1979) and pressures (Wells, 1979) to be determined. Thompson's method gives abou. .+0°C, and Wells' method gives about 530°C for pressures from 5 kbar to 7 kbar. Pressure determinations after Wells for a temperature of 530°C yield values of 7,3 kbar (Fe system) and 6,5 kbar (Mg system , and again very good correlations and consistency are obtained between the different techniques (see Figure 69).

These results indicate that the metamorphic event producing the zoned garnet was characterized by singular values of pressure and temperature. Thus, the gradual compositional variation from core to rim (as opposed to discrete overgrowths)

is not a result of changing metamorphic conditions during the growth of the garnet, but appears to be related to the distribution coefficients, and the availability of elements during the nucleation and growth of the mineral at a fixed temperature. Instead of retrograde conditions producing garnet with successively more iron-rich compositions, it appears that the availability of magnesium is reduced during the growth of the phase, probably suggesting that the solidsolid partition coefficient for Mg in garnet is greater than that for Fe. A study of the kinetics of garnet nucleation. and growth by Kretz (1973) suggested that the growth of garnet may be represented by a function that is proportional to the surface area of the grain (as opposed to the radius or volume), and thus growth rates should not directly influence the composition of the garnet, since diffusion of elements must be constant at all points on the surface of a developing mineral phase at a particular time during the metamorphism.

Pvroxenitic amphibolites

The mafic granulites which occur interbedded mainly with the quartzites contain suitable assemblages for the application of several geothermometers and geobarometers (opx+cpx+plag+qzgar). The results obtained using these methods are plotted as P-T curves in Figures 70a-d and summarized in Table 11 for sample nos. 27, X21395 and X21399 from the Farm Artonvilla, a

Figure 70a: Pressure-temperature diagram for sample no.27 of pyroxtritic amphibolite (Farm Artonvilla - see Horrocks, 1975) showing the results of the geothermometer and geobarometer calculations (Appendix 3, Tables 3.1 - 3.6 and 3.14). The curves are as follows:

4A: garnet-orthopyroxene barometer of Wood and Banno (1973);

4B: garnet-orthopyroxene barometer of Wood (1974);

- 4C: garnet-orthopyroxene thermometer of Powell (1978);
- 4D: garnet-orthopyroxene barometer of Wells (1979);

5A: garnet-clinopyroxene thermometer of Raheim and Green (1974);

- 5B: garnet-clinopyroxene thermometer of Ellis and Green (1979);
- 5C: garnet-clinopyroxene thermometer of Wells (1979);

6A: orthopyroxene-clinopyroxene thermometer of Wood and Banno (1973);

oB: orthopyroxene-clinopyroxene thermometer of Wells (1977);

6C: orthopyroxene-clinopyroxene thermometer of Powell (1978); and

7: coexisting plagioclase+clinopyroxene+quartz (see Appendix 3, Table 3.14).

Only results using garnet-core compositions are shown in this diagram. The a umino-silicate stability fields are taken from Richardson <u>et.al</u>. (1969). The shaded area is the preferred field for coexisting orthopyroxene, clinopyroxene, plagioclase, garnet and quartz.

PERATURE (°C)

Figure 70b: Pressure temperature diagram for sample no.27 of pyroxenitic amphibolite (Farm Artonvilla - see Horrocks, 1975) showing the results of the geothermometer and geobarometer calculations (Appendix 3, Tables 3.1 - 3.6 and 3.14. The curves are as designated in Figure 70a. Only results using garnet-rim compositions are shown in this diagram, for curves 4A-4D and 5A-5C. The shaded area is the preferred field for coexisting orthopyroxene, clinopyroxene, plagroclase, garnet and quartz.

Figure 70c: Pressure-temperature diagram for sample no. X21375 of ayroxenitic anshibalite (Form Artonvilla - see Horrocks, 1975) showing the results of the geothermometer and geobarometer colculations (Aspendix 3, Tables 3.1, 3.2 and 3.14). The purves are as designinted in Figure 70a.

Figure 70d: Pressure-temperature diagram for sample no. X21399 of pyroxenitic amphibolite (Farm Artonvilla - see Horrocks, 1975) showing the results of the geothermometer and geobarometer calculations (Appendix 3, Tables 3.1 - 3.6 and 3.14). The curves are as designated in Figure 70a.

Summary and range of pressure (kbar) and temperature (^OC) results for pyrcxenile amphibolite samples 27 X2 395 and X21399 from Farm Artonvilla - see Horrocks, 1975). Table 11:

A

X21399	809 - 821 850 - 867 879 - 896	7 9 - 12 2 11 1 - 33 4 664 - 716 -	623 - 663 686 - 703 723 - 739	6 8 - 10 9
X21395	798 - 837 838 - 898 868 - 896	1 1 1 1	1 1 1	7,1 - 11,1
27	804 - 814 857 - 871 891 - 967	5, 3 - 27, 7 8, 0 - 48, 3 632 - 710 4, 0 - 6, 2	618 - 718 701 - 840 717 - 799	1,0 - 8,3 1974) 979)
Coexisting minerals	orthopyroxene+clinopyroxene orthopyroxene+clinopyroxene orthopyroxen+clinopyroxene	garnet+ortl opyroxene garnet+crthopyroxene garnet+orthopyroxene garnet+orth yroxene	garnet+clinopyroxene garnet+clinopyroxene garnet+clinopyroxene	plagioclase+clinopyroxene+quartz 1973) P7: Wells (1979) T8: Raheim ard Green (1 T9: Ellis and Green (19 10: Wells (1979) P11: see Appendix 3
Data source (Appendix 3)	Table 3.1 Table 3.1 Table 3.2	Table 3.3 Table 3.3 Table 3.4 Table 3.5	Table 3.6 Table 3.6 Table 3.6	Table 3.14 Wood and Banno (Wells (1977) Powell (1978) Wood and Banno (Wood and Banno (Wood (1974) Pnwell (1978)
	T1 T2 T3	P4 P5 T6 P7	T8 T9 T10	P11 T1: T2: T3: P4: P5: T6:

178

portion of which was mapped earlier by the author (Horrocks, 1975). Only samples 27 and X21399 contain garnet, and in the case of sample no.27, the garnet occurs in a micro-vein of quartz and not in direct coexistence with any pyroxene, so the methods relying on coexisting garnet and pyroxene will produce results that must be regarded with caution for this sample (Figures 70a,b). The garnet in sample ∠1399, however, coexists with clinopyroxene, orthopyroxene and plagioclase.

Temperature estimates using the methods of Wood and Banno (1973), Wells (1977) and Powell (1978) have been made for all three samples and give between 800 C and 900 C (see Table 11 and Figures 70a-d). Coexisting garnet and clinopyroxene has been used to derive a geothermometer by three studies: Råheim and Green (1974), Ellis and Green (1979) and Wells (1979). Using this approach in the case of sample 27, data from garnet core compositions (Figure 70a) and from garnet rim compositions (Figure 70b) yield two sets of results: garnet core data give temperatures from 680 C to 820 C (Figure 70a) while garnet rim data yield values from about 610 C to 720 C (Figure 70b). Results from data on sample X21399 (Figure 70d) using a garnet (small and unzoned) in direct coexistence with clinopyroxene, are between 630 C and 740 C and correlate with the results from cample 27 using garnet rim values. Coexisting garnet and crthopyroxene has produced both a geothermoneter

(Powell, 1978) and geobarometers (Wood and Banno, 1973; Wood, 1974; and Powell, 1978). These curves are consistent with the garnet-clinopyroxene curves in all the samples with the exception of that determined using Wood's (1974) equation which is inconsistent with any other method. The methods of Wood and Banno (1973) and Wood (1974) place much reliance on the accurate determination of aluminium site occupancy data in both tetrahedrally and octahedrally coordinated positions. O'Hara and Yarwood (1978) have made a detailed comparison of these methods and shown large discrepancies in the pressure estimates. It is thus apparent that until a better understanding of aluminium solution in pyroxene and garnet is obtained, these methods are not reliable. However, Powell (1978) calibrates his geothermometer and geobarometer using only the solution of Mg, Fe⁺⁺ and Ca in octahedrally coordinated sites in both pyroxene and garnet. These data are more readily obtained with greater reliability, and Powell's methods appear to show greater consistency in this study. Thus, fields in P-T space where garnet+orthopyroxene+ clinopyroxene are stable for the different samples may be defined, and are shaded in Figures 70a-d. For sample 27 temperatures from about 650[°]C to 800[°]C and pressures from about 5 kbar to 7 kbar are suggested using garnet core compositions, while garnet rim compositions yield 600°C to

700°C and 4 kbar to 8 kbar based on intersections between the different curves. This high pressure of up to 8 kbar can only be supported by reliance on Wood and Banno's (1973) geobarcmeter. For sample X21399 (Figure 70d), a field from 650 C to 750 C at about 10 kbar is defined, where the high pressure estimate again depends on wood and Banno's method. By rejecting pressure estimates from the methods of Wood and Banno (1973) and Wood (1974), and placing greater credence to the temperature results from sample X21399, allows the definition of a P-T field for coexisting orthopyroxene, clinopyroxene and garnet from 650°C to 750°C, and from 4 kbar to 6 kbar, which encompasses the greatest consistency between the most reliable methods. Coexisting plagioclase, clinopyroxene and quartz also allow the calculation of a P-T curve (see Appendix 3, Table 3.14) for the reaction anorthite = clinopyroxene+quartz, and results of this determination are plotted in Figures 70a-d. Since no plagioclase analysis is available for sample X21399, the plagioclase data from X21395 was used to derive a curve for X21399 (Figure 70d). For these two samples (Figures 70a and 7Cd), the curves intersect with the orthopyroxene-clinopyroxene temperature lines to suggest a field of stability of orthopyroxene+clinopyroxene+ plagioclase+quartz which clearly show petrographic evidence of mutual coexistence and equilibrium from 800°C to 900°C and

from 7 kbar to 9 kbar. Data for sample 27 (Figures 70a and 70b) suggest similar temperatures but at lower pressures of cbout 4 kbar. Owing to the obvious later stage anatexis (quartz veining), the results from samples X21395 and X21399 are preferred for their consistency.

In summary, P-T conditions interpreted from the data in Figures 70a-d suggest the orthopyroxene+clinopyroxene+ plagioclase+quartz assemblage equilibrated at about 850°C and 8 kbar, while garnetiferous assemblages (opx+cpx+gar) equilibrated at about 700°C and 5 kbar, indicating that a metamorphic transition to lower grades initicted the growth of garnet.

Intrusive rocks

Intrusive rocks, including serpentinites, metapyroxenites and the gabbros and anorthosites of the Messina Layered Intrusion exhibit all of the deformations experienced by the supracrustal rocks (Hor <u>et al</u>., 1975; Barton <u>et al</u>., 1979a) and contain metamorphic phases such as garnet (McLean, 1976) and sapphirine+kornerupine (Schreyer and Abraham, 1976). Thus mineral analytical data from these rocks may br used to estimate metamorphic parameters. Coexisting orthopyroxene and clinopyroxene in the metapyroxenite allows temperature estimates (Figure 71a) to be made using the method: of Wood and Banno (1973), Wells (1977) and Powell (1978). Results

Figure 71a: Pressure-temperature diagram of sample no.20 of metapyroxenite (Farm Artonvilla - see Horrocks, 1975) showing the results of the geothermometer calculations (Appendix 3, Tables 3.1 and 3.2). The curves are as follows: 6A: orthopyroxene-clinopyroxene thermometer of Wood and Banno (1973); 6B: orthopyroxene-clinopyroxene thermometer of Wells (1977); and 6C: orthopyroxene-clinopyroxene thermometer of Powell (1978). The alumino-silicate stability fields are taken from Richardson et al. (1969).

vary from about 700 C to 850 C depending on the method, and are in general agreement with temperature estimates made from the pyroxenitic amphibolite samples. Analytical data for coexisting plagioclase and clinopyroxene (+ quartz) in the yabbroic anorthosites enables the application of the anorthite = clinopyroxene+quartz tecnnique to produce a P-T curve (see Appendix 3) for samples 26-5-A and 26-5-E which are shown in Figure 71b. These results for the metapyroxenite and gabbroic anorthosite do not uniquely define a P-T field. However, Barton et al. (1979a) proposed that these lithologies both formed part of the Messina Layered Intrusion, and are thus genetically related, both in time and space. Although direct spatial relationships between these rock-types could not be shown within the study area, intersection of the P-T curves given in Figures 71a and 71b suggest a P-T field of 700°C to 850°C and from about 7 kbar to 9 kbar. This field is in close agreement with fields defined by other lithologies.

Water activity

Suitable assemblages such as hornblende+orthopyroxene+ clinopyroxene+quartz enable the estimation of water activities in lithologies such as pyroxenitic amphibolite and metapyroxenite. Utilization of hydrothermal equilibrium data has allowed water activities of these rocks to be calculated (Appendix 3 - Table 3.16), and they vary beteen 0 and 1. At 0, no water is present

Figure 71b: Pressure-temperature diagram for samples of gabbroic gneiss from the Messina Layered Intrusion (sample nos. 26-5-A and 26-5-E, Farm Shangani - see Map 2 in rear pocket) showing the results of the thermodynamic calculation for coexisting plagioclase, clinopyroxene and quartz (Appendix 3, Table 3.14). The curves are as follows:

7A: sample no.26-5-A using data from the UCT laboratory (Appendix 2, Table 2.22);

7B: sample no.26-5-E using UCT data (Appendix 2, Table 2.22); and

7C: sample no.26-5-A using data from the WITS laboratory (Appendix 2, Table 2.23).

in the fluid phase occurring with the other solid mineral phases, while at 1, water is the only fluid phase present in the system. Values determined in this study are all low, typically less than 0,1 and commonly less than 0,01. Thus water comprised from 1 per cent to 10 per cent of the fluids present during the stabilization of these assemblages. Typical values at about 800°C and 8 kbar for the pyroxeni c amphibolites vary from 1 per cent to 4 per cent, while for the metapyroxenite, about 5 per cent is typical. Touret (1971) made a similar study of migmatites and granulites in the basement of southern Norway, and recognized a sudden decrease in water partial pressure (at about 700°C - 800°C and 6 kbar to 8 kbar - about 20 to 30 km depth) in a transition from ampnibolites (Telemark area) to granulites (Bamble area). While all rocks contain late, water-rich and NaCl-bearing fluid inclusions in quartz, it was noted that only granulite facies rock contains inclusions rich in CO₂. Thus the fluid phase during granulite metamorphism appears to be composed almost exclusively of CO₂. Touret (1971) concluded that the provenance of these fluids is most likely juvenile (degassing of the mantle) and related to the synorogenic emplacement of mafic intrusives. These arguments are supported by the low water activities obtained for the granulites observed in the study area.

The P-T field - a synthesis

The data and results obtained from this study, and other workers (Chinner and Sweatman, 1968; Van Reenen and Du Toit, 1978; Fripp, 1981c) have been compiled in Figures 72 and 73 which shows the P-T fields for the different lithologies examined within the study region. Except for fields C and D (see Figure 72), a broad path from granulite facies at about 9 kbar and nearly 900 C to amphibolite facies at about 4 kbar and 650 C is defined. The assemblages which record the highest pressures and temperatures occur in the pyroxenitic amphibolites, and consist of orthopyroxene, clinopyroxene, plagioclase and quartz. This issemblage is typical of true mafic granulites (De Waard, 1965; Winkler, 1974). However results obtained from these lithologies using garnet show the lowest temperatures and pressures in the pathway. Clearly, the garnet appears to have formed at a later stage in the metamorphism and these are not therefore eclogitic assemblages. Thus, the reaction studied by Green and Ringwood (1967) and which Winkler (1974) also used to subdivide the regional granulite facies of metamorphism for mafic assemblages: orthopyroxene + plagioclase = clinopyroxene + garnet + quartz must have moved to the left-hand side at an early stage during the metamorphism producing this field. Aiso, the presence of plagioclase precludes the garnet-bearing assemblage from

The P-T field - a synthesis

The data and results oblained from this study, and other workers (Chinner and Sweatman, 1968; Van Reenen and Du Toit, 1978; Fripp, 1981c) have been compiled in Figures 72 and 73 which shows the P-T fields for the different lithologies examined within the study region. Except for fields C and D (see Figure 72), a broad path from granulite facies at about 9 kbar and nearly 900°C to amphibolite facies at about 4 kbar and 650°C is definea. The assemblages which record the highest pressures and temperatures occur in the pyroxenitic amphibolites, and consist of orthopyroxene, clinopyroxene, plagioclase and quartz. This assemblage is typical of true mafic granulites (De Waard, _965; Winkler, 1974). However results obtained from these lithologies using garnet show the lowest temperatures and pressures in the pathway. Clearly, the garnet appears to have formed at a later stage in the metamorphism and these are not therefore eclogitic assemblages. Thus, the reaction studied by Green and Ringwood (1967) and which Winkler (1974) also used to subdivide the regional granulite facies of metamorphism for mafic assemblages: orthopyroxene + plagioclase = clinopyroxene + garnet + quartz must have moved to the left-hand side at an early stage during the metamorphism producing this field. Also, the presence of plagioclase precludes the garnet-bearing assemblage from

TEMPERATURE (°C)

Figure 72: P-T fields for the lithologies examined in the study area:

- A: garnet-cordiorite-sillimanite gnaiss (gar+biot+cord Figures
 50-51);
- B: sapphirine bearing rock (gar+biot+cord+opx Figures 54-55);
- C: garnet-orthopyroxene-plagioclase symplectite (gar+biot+opx Figures 56a-d);
- D: data from zoned garnet study from sample no.21-7-G (garnetcordierite-sillimanite gneiss, gar+biot+cord - Figure 69);
- E: pyroxenitic amphibolite (opx+cpx+plag+qz Figures 70 a-d);
- F: pyroxenitic amphibolite (opx+cpx+gar Figures 70 a-d); and
- G: metapyroxenite and gabbroic gneiss of the Messina Layered Intrusion (opx+cpx+plag+qz - Figures 71 a,b).

Figure 73: The P-T field for the high-grade metamorphism affecting the Central Zone of the Limpopo Mobile Belt. A: pathway for lithologies determined from this study;

- B: pathway determined from basement units (Fripp, 1981c);
- C: stability field of enstatite+kyanite+quartz assemblage described from near Beit Bridge, Zimbabwe (Chinner and Sweatman, 1968); and
- D: result for coexisting garnet+biotite+cordierite+orthopyroxene from the Southern Marginal Zone of the Limpopo Mobile Belt (Van Reenen and Du Toit, 1978).

Geothermal gradients are calculated for crustal rocks, and the approximate depth scale is estimated assuming about 3,3 kbar/km. The Ab-Or-Qz-H₂O solidus is after Luth <u>et.al</u>. (1964), the stability fields of the alumino-silicates is after Richardson <u>et.al</u>. (1969), and the subdivision of the granulite field is after Green and Ringwood (1967).

being a high-pressure or eclogitic group. The garnet may have formed during a prograding reaction of the above type (i.e. the reaction moving to the right-hand side but has generally either been consumed, or has been partially consumed where preserved in samples from the study area). Classical kelyphitic coronas of plagioclase about garnet are typical in hornblende-rich varieties of these mafic granulites (see Figures 13 and 14) and illustrate this consumption of garnet: hornblende + garnet + quartz = clinopyroxene + plagioclase + H₂O. This has been described by De Waard (1965) as one of the reactions accounting for the disappearance of hydrous phases, such as amphibole, and the characteristic appearance of orthopyroxene, if the garnet is an almandine-pyrope solution with little or no grossular, and which is diagnostic of the entrance into granulite facies metamorphism. However, the garnets occurring in these mafic granulites all typically contain up to about 20 per cent grossular, s jgesting that clinopyroxene, and not orthopyroxene, appears on the righthand side of the above reaction. A similar reaction has also been recognized in eclogitic rocks for high to intermediate pressure granulite transitions (Leyreloup et al., 1975) and which produces these kelyphitic textures. Their reaction has the following generalized form:

garnet + kelyphitoid = kelyphite

where, in the case of the samples from the study area, the kelyphitoid is predominantly hornblende, and the kelyphite is predominantly the coronas of plagioclase (see Figure 13).

The P-T fields of the garnet-cordierite-sillimanite gneiss (A of Figure 72), sapphirine-bear: , rock (B of Figure 72) and the intrusive rocks (G of Figure 72) correlate closely with those of the pyroxenitic amphibolites (E and F of Figure 72) generally falling between the 'opx+cpx+plag+qz' and 'opx+cpx+gar' areas reflecting pressures of 7 to 8 kbar and temperatures between 700°C and 850°C. These results suggest a continuous progression of reactions equilibrating at successively lower temperatures and pressures following the peak in the metamorphic path. This path occurs within the sillimanite field defined by Richardson et al. (1969) and follows closely along the sillimanite-kyanite transition boundary. This is notable since no kyanite was recognized in any of the samples collected within the study area. However, former kyanite has been reported to occur further north in Zimbabwe in the neighbourhood of Beitbridge (Chinner and Sweatman, 1968). Van Reenen and Du Toit (1978) also point out the need for careful identification to distinguish between kyanite and sillimanite. Abundant needles of sillimanite are characteristic of the pelitic lithologies, and some localities such as on the Farm Randjesfontein (see

Map 1 in rear pocket) show massive monominerallic sillimanite rocks, which suggest that the metamorphism affecting the study area drove all kyanite to sillimanite during a high to low pressure or low to high temperature transition. Chinner and Sweatman (1968) favoured the former and have suggested at least two stages of metamorphic recrystallization, where an earlier high pressure stage produced an enstatite+kyanite+ quartz assemblage. A later retrogression caused kyanite to transform to sillimanite, together with the production of cordierite and the consumption of quartz. This reaction may account for the lock of quartz, and the relatively minor amounts of orthopyroxene found in the symplectit es. However, the P-T field for the garnet-orthopyroxene-plagioclase symplectite, and that determined from the study on the garnet zoning in the garnet-cordierite-sillimanite gneiss sample no. 21-7-G, fall well within the kyanite field as defined by Richardson et al. (1969), and it appears that the temperatures deduced for these assemblages are too low (see C and D of Figure 72). Their pressure values are consistent with those obtained for the other pelitic units such as garnetcordierite-sillimanite gneiss and sapphirine bearing rock, and higher temperatures would allow them to overlap with other fields defining the pathway described previously. This inconsistency in temperature is unlikely to be real since

other data from samples 21-7-F and 21-7-G give results which fall within the above mentioned pathway (see Figures 50, 51 and Field A of Figure 72) and may be caused by compositional irregularities, such as the lack of free quartz (e.g. in the symplectite), Na and H₀O activities, or high Ti contents in biotite, which could cause deviations in the results. Hensen and Green (1973) show that in silica-deficient assemblages more iron-rich sapphirine remains stable o very low temperatures, and thus the presence of this mir. I these undersaturated lithologies is not uniquely diagnostic of particular temperature regimes (see Seifert, 1974). Also, lines in Face of Al_O_ solubility in enstatite (after Anastasiou and Seifert, 1972) suggest much higher temperatures approaching 1 000°C than the other thermodynamic data. This is again influenced by rock compositional factors (3,3 per cent Al₂0₃ in the symplecti e, and 7,5 per cent Al₂0₃ in the sapphirine-bearing rock). Also, Anastasiou and Seifert's data are based on pure magnesian end-members, while Fe causes a drastic temperature lowering effect on the stability of enstatite (Holdaway, 1976). However, all the results from calculations using coexisting garnet and cordierite data fall within the garnet-cordierite stability field defined by Hensen and Green (1971, 1972, 1973).

Thus, it appears that the 'low temperature' results generating Fields C and D in Figure 72 (garnet-orthopyroxene-

plagioclase symplectite and zoned garnet data respectively) are misleading and spurious. The symplectite is a silicadeficient assemblage which contains garnet with appreciable grossular (Ca) content. Thus disequilibrium conditions probably exist which do not allow the application of thermodynamic calibrations based on Fe-Mg systems only. The biotite compositions in the study of the zoned garnet from sample 21-7-G contain up to nearly 5 per cent TiO₂ (see Appendix 2 - T ble 2.6, analyses nos. 5 and 19). Both Thompson (1976) and Ferry and Spear (1978) point out that such large TiO₂ contents are not considered by their geothermometers, and probably explain the low temperatures achieved for these samples in this study.

CHAPTER 6: CONCLUSIONS

The Precambrian lithologies in the study area consist of a basement of grey banded granodioritic gneisses metamorphosed about 3 800 m.y. ago and intruded by ancient tholeiitic dykes about 3 570 m.y. ago (Barton et al., 1977). Subsequently, a geosynclinal-type series of supracrustal rccks or 'cover' were deposited at least partly on a thin sialic crust, and consisted of shallow water marine or shelf facies in the southeast characterized by carbonates (now marbles), cherts and calc-silicates. Transitional facies with shales, greywackes and turbidites (now the metapelitic garnet-cordieritesillimanite gneiss) and the rhyolitic and/or arkosic precursor of the Singelele Gneiss occur in + .entral portion of the study area. Towards the north- est of the area, deeper water facies are present and probably represent cherts, mafic shales and/or volcanics (probably continental basalts) and banded iroustones, which now form the quartzite-banded magnetite quartzite-pyroxenitic amphibolite association. In this way, it may be concluded that the supracrustal lithologies include a range of possible facies that occur in intercontinental basins or eugeosynclines. Anorthositic and gabbroic gnaisses of the Messina Layered Intrusion, and probably also metapyroxenites and serpentinites intruded the above lithologies at about 3 270 m.y. ago (Barton, 1981). Unmetamorphosed and undeformed

mafic dykes intruded the area about 2 200 m.y. ago (Barton, 1979).

Subsequent to any structural events solely affecting the basement gneisses prior to the deposition of the supracrustal rocks, the deformational history of the supracrustal gneisses appears to have commenced with a phase of ductile isoclinal folding, which in many outcrops is now manifest by intrafolial folds. This may be related to a process of rapid burial to great depth such as would be experienced in a large geosyncline on an unstable and probably thin sialic platform. Later, the stress field induced further refolding, considerable flattening, attenuation and along-strike boudinaging of the stratigraphy probably by a process of simple shear. The asymmetry of folds in the north-western portion of the study area suggests that this simple shear had a left-lateral sense of movement consequently producing 'S'-shaped folds.

The data presented in this study support the view that the anorthositic and gabbroic rocks of the Messina Layered Intrusion are of plutonic igneous origin. Prace diagrams reveal a clear trend of plagioclase fractionation where the composition of the plagioclase cumulate was about An₈₀. The gabbros formed later differentiates with the crystallization of clinopyroxene and hornblende. The hornblende may have been metamorphically produced. Rb and Sr data suggest that

the tholeiitic parental liquid was anomalously enriched in Rb probably in amounts exceeding 50 ppm, while Sr contents of about 100 ppm are suggested for the parental liquid. Raleigh's fractionation law indicates that about 70 per cent fractionation occurred in these rocks.

The P-T fields for the different units examined in the study area define a broad region in P-T space from about 9 kbar at 900°C to about 4 kbar at 650°C for the high-grade metamorphism. The assemblages which record the highest metamorphic conditions occur in the pyroxenitic amphibolites and consist of opx+cpx+ plag+qz. Garnet-bearing assemblages in both the mafic and pelitic lithologies record lower conditions, and are probably generated by a metamorphism within the medium pressure granulite field. This contrasts with the view of Bahnemann (1972) who considered two metamorphic events: an earlier granulite facies metamorphism, and a later amphibolite facies metamorphism at about 2 600 m.y. (remobilization of the Singelele Gneiss).

An earlier high pressure granulite phase of the metamorphism has been reported by other studies (Chinner and Sweatman, 1968; Fripp, 1981c) where conditions attained pressures in excess of 12 kbar at temperatures above 800°C. Figure 73 shows a compilation of available data in order to deduce an overall metamorphic pathway for the units under study. The pathway apparent from this study of supracrustal lithologies is shown

by arrow A from about 9 kbar at 900°C to about 4 kbar at 650°C. A complementary study to this which considers the basement lithologies of the Sand River Gneisses (Fripp, 1981c) has shown another pathway (arrow B, Figure 73) derived from using opx+cpx+plag+qz assemblages in the more anhydrous Sand River Gneisses and various deformed amphibolitic dykes which transect them. These data suggest a transition from high pressure granulites to intermediate pressure granulites, as defined by Green and Ringwood (1967) from about 13 kbar at 800°C to 10 kbar at 900°C. This pathway makes a direct transition from the kyanite to sillimanite field, and is in close correlation with the field of en+ky+qz stability suggested by Chinner and Sweatman (1968) for the early highpressure phase of the metamorphism (field C, Figure 73). The result given by Van Reenen and Du Toit (1978) for a cord+gar+opx+biot assemblage occurring in the Southern Marginal Zone of the Limpopo Mobile Belt is in close agreement with results from similar assemblages examined in this study (point D, Figure 73) and all fall within Green and Ringwood's (1967) field of medium pressure granulites. All these results are within the field of melting for hydrous granitic compositions (after Luth <u>et al</u>., 1964).

Thus, a P-T pathway for these regions forms a loop from high-pressure high-temperature to lower pressure high-

temperature conditions which encompass average crustal gec hermal gradients ranging from about 15 C/km for the early high pressure event, to about 35°C/km for the later medium pressure event. These geotherms are typical for rocks that have undergone Archaean high-grade metamorphism and tectonism, and have been reported and discussed by several workers (Burke and Kidd, 1978; Drury, 1978; Bickle, 1978; England, 1979). By assuming a relationship of about 3,3 kbar/km for sialic crustal rocks, approximate depths may be estimated for the high-grade metamorphism. The early high-pressure phase suggests burial to about 40 km while subsequent uplift by either tectonic or erosional means to depths of abo 't 15 km, or pressures of about 4 kbar, produced medium pressure granulites at fairly constant temperatures. A similar P-T loop has been proposed by O'Hara (1977) for granulites and migmatities belonging to the Scourie Gneiss Complex of northwestern Scotland (Figure 74). An initial high-grade 'peak' of metamorphism was followed by a slower fall off in grade whereby pressure decreases faster than temperature. During the peak, the rocks were subjected to burial into the deep regions of the lower crust, where zones of melting and depleted residues after anatexis have been suggested (Moorbath, 1975; see Figure 75).

O'Hara (1977) was able to correlate events along his

Figure 74: Metamorphic conditions with time for the Scourie Gneiss Complex in north-western Scotland (after O'Hara, 1977): a) temperature-time diagram; b) pressure-time diagram; and c) P-T loop for the high-grade metamorphism.

-

Figure 75: Schematic diagram of geochemical differentiation and production of compositional layering within a 30 - 40 km thick portion of sialic crust, with the formation of granitic diapirs (after Moorbath, 1975).

P-T loop for the Scourie rocks with geochronologically defined events (Figure 74) and thus suggest a P-T-time path for the metamorphism. The availability of geochronological data for the Limpopo Mobile Belt allows a similar P-T-time path (Figure 76) to be suggested for the study area. The supracrustal lithologies were deposited sometime between the intrusion of about 3 570 m.y. old mafic dykes (Barton et al., 1977) and the intrusion of the Messina Layered Intrusion (Barton, 1981) at about 3 270 m.y. ago. The resetting of the Rb-Sr isotopic ratios in the Messina Layered Intrusion at about 3 150 m.y. ago probably reflects the 'peak' of the high-grade metamorphism. Thus, the lithologies experienced burial to depths of about 40 km over a period of about 200 to 300 m.y. During the subsequent excavation of the units and lowering pressures, anatexis proceeded. The intrusion of the Bulai Gneiss (or remobilization) occurred about 2 700 m.y. ago (Barton et al., 1979b) and the Singelele Gneiss has yielded metamorphic ages at about 2 600 m.y. ago (Barton et al., 1979b). The intrus ion of a fabric-free and undeformed mafic dyke about 2 200 m.y. ago (Barton, 1979) implies that the high-grade metamorphism had ended by that time. Thus, the units experienced uplift from about 40 km to nearly 15 km of depth in a period of about 900 m.y. i.e. an uplift rate of about 0,03 mm/yr. This rate is very slow when compared with

Figure 76: Schematic pressure-temperature diagram showing a P-T loop with time for the high-grade metamorphism affecting the Central Zone of the Limpopo Mobile Belt. The stipplea area represents that portion of the loop obtained from this study. Higher pressure portions of the loop are based on data from Chinner and Sweatman (1968) and Fripp (1981). See text for a discussion of the ages.

uplift rates for modern mountain belts (e.g. about lmm/yr for the Alps), but uplift rates may have been highly variable during the history of the excavation of the Limpopo rocks. The metamorphic, tectonic and geochronological events affecting the supracrustal units in the study area are summarized in Table 12.

Table 12: Summary of the metamorphic, tectonic and geochronological events affecting the supracrustan units in the area under stuly

Event	Age (m+y.)	Metamorphic conditions
Intrusion of dolerite dyres and the end of high- grade metamorphism	2 200	I
Waring (retrograding) metamorphism, deformation and onotexis	2 600 - 2 400	600°C-800°C 4 kbar - 9 kbar
Intrusion of Stockford-age dykes, now deformed and metamorphosed	3 060	1
Peak of high-grade metamorphism and deformotion	3 150	800°C-900°C 9 kbar - 13 kbar
Intrusion of the Messing Layered Intrusion	3 270	1
Formation of the supracrustal lithologies	3 570 - 3 270	1

see Toble 1 for geochronological data; and see Figure 73 for metamorphic conditions.

1: 2:
APPENDIX 1: ANALYTICAL TECHNIQUES

Whole-rock analysis

Whole-rock analysis in this study was undertaken using X-ray fluorescence techniques in the Department of Geology, University of the Witwatersrand. The large grain size of many of the rock-types analyzed meant that samples exceeding 5 kg in weight were collected with care being taken to avoid cross-cutting veins a .gmatites. Both crushed chips and powders from these samples were thoroughly mixed during the sample preparati to ensure representative samples. The major and minor elements were analysed using the fusion method of Norrish and Hutton (1969), while sodium and trace elements were determined on whole-rock pellets. In the case of trace element determination, mass absorption corrections were applied whereby a calculated value was used for Ba using the Tables of Birks (1963), and the Compton peak method for Rb and Sr (Reynolds, 1967). Information pertaining to the accuracy and precision of the analytical method is given by McCarthy (1976). For a more complete description of the analytical method and instrumental conditions, the reader is referred to McCarthy (1977).

Electron probe microanalysis

Mineral analyses (presented in Appendix 2) were obtained

from two laboratories: the Department of Geochemistry at the University of Cape Town (UCT) which uses a Cambridge Microscan 5 instrument, and the Department of Geology at the University of the Witwatersrand (WITS) which uses an ARL-SEMQ instrument. Both laboratories utilize similar procedures. The WITS laboratory operates with a 15 kV accelerating potential which generates a focused electron beam between 3 and 5 microns in diameter and produces a specimen current of 0,05 micro-amps on brass. On-line data reduction makes use of correction factors tabulated by Albee and Ray (1970). Both natural and synthetic standards were used (see Table 1.1 for those used in the WITS laboratory) and relative errors on all elements are routinely within 2 per cent. For further more detailed description of the analytical technique, see Davies (in prep.).

Element	pyroxene amphiboles micas	garnets cordierıtes	spinels sopphirines	plagioclases
Si	Wakefield diopside	spessartine	spessartine	Hakoni anorthite
Ti	Obergaarten ilmenite	Obergaarten ilmenite	Obergaarten ilmenite	Obergaarten ilmenite
Al	ferric glass (syn.)	spessartine	spinel (syn.)	Hakoni anorthite
Fe ²⁺	ferric glass (syn.)	ferric glass (syn.)	grunerite	ferric glass (syn.)
Mn	rhodonite	spessartine	spinel (syn.)	-
Mg	Wakefield diopside	Wakefield diopside	spinel (syn.)	-
Ca	Wakefield diopside	Wakefield diopside	spinel (syn.)	Hakoni anorthite
Na	Hawk oligoclase	Hawk oligoclase	-	Hawk oligoclase
К	sanidine	sanidine	sanidine	sanidine

Table 1.1: Mineral standards used during electron-probe micro-analysis at the Department of Geology, University of the Witwatersrand

(syn.) = synthetic

APPENDIX 2: ELECTRON PROBE ANALYTICAL DATA

Introduction

Jver 300 mineral analyses have been obtained in this study of feldspars, micas, amphiboles, pyroxenes, garnets, cordierites, sapphirines, and spinels. Two instruments were used to obtain these data: a Cambridge Microscan 5 in the Department of Geochemistry at the University of Cape Town, and an ARL-SEMQ in the Department of Geology at the University of the Witwatersrand. Good consistency was obtained between these two instruments.

The data are presented in computer generated Tables according to the rock-type and instrument. Rock types that were selected for study include the garnet-cordieritesillimanite gneiss together with the sapphirine and symplectite varieties, pyroxenitic amphibolite, metapyroxenite and gabbroic and anorthositic gneiss from the Messina Layered Intrusion. The Tables also present certain compositional, mole fraction and activity parameters pertinent to certain minerals as outlined in the succeeding sections. Ferric iron is estimated for amphibole, pyroxene and garnet, and recalculated analyses for these minerals are included in the Tables adjacent to the ferric-free versions. A summary chart is included and precedes the Tables. This chart provides a key to the Tables, and should be consulted to determine rock-type, number of analyses

and other details concerning the data.

Feldspar

Feldspars are recalculated into a structural formula on the basis of 32 oxygens per molecule:

In addition, the weight percentages of two feldspar end-members are given in the Tables. These are for albite and anorthite, and are calculated as follows:

$$X_{Ab} = \frac{262.231 \times Na}{262.231 \times Na + 278.34 \times K + 278.2 \times Ca}$$
$$X_{An} = \frac{278.2 \times Ca}{262.231 \times Na + 278.34 \times K + 278.2 \times Ca}$$

These values are only calculated for feldspar analyses and are labelled 'X-ANORTHIT' for X_{An} and 'X-ALBITE' for X_{Ab} in the Tables. Other parameters are not calculated and appear as zeros.

Mica

Biotite and phlogopite are recalculated on the basis of 22 oxygens according to the following formula:

$$(K, Na, Ca)_{2}(Al^{+}, Fe^{+}, Mg, Ii)_{4-6}(Si, Al^{+})_{8}O_{22}$$

neglecting 2H₂O not determined by the microprobe technique. Two ionic ratios are calculated and labelled in the Tables as follows:

$$'X-FE' = \frac{Fe^{++}}{Fe^{++} + Mg}$$
$$'MG/FE' = \frac{Mg}{Fe^{++}}$$

No other parameters are calculated, causing zeros to appear in the Tables.

Amphibole

Calcic amphiboles (hornblendes) predominate in the study area with the exception of the sapphirine and corundum bearing enclaves within the garnet-cordierite-sillimanite gneiss where gedrite occurs. The microprobe analyses are recalculated on the basis of :'3 oxygens neglecting 14.0:

(Ca, Na, K)₂₋₃(Mg, Fe⁺⁺, Al⁶⁺, Ti, Mn)₅(Si, Al⁴⁺)₈0₂₃

However, all analyses presented in the Tables are recalculated a second time where an estimate of ferric iron is considered. Powell (1975) found that on average 14 per cent of FeO is required to be converted to Fe203 to attain charge balance in calcic amphiboles (i.e. hornblendes) while about 4 per cent FeO is required in the case of calcic-poor amphiboles (e.g. cummingtonite). The value of 14 per cent is applied in calculating the ferric content of amphiboles presented in the Tables.

In addition, the activity of tremolite ('A-TREMOLIT') is calculated and presented in the Tables for all amphibole

analyses. Site occupancies are filled according to the following rules (S. Richardson, pers. comm.):

 The tetrahedral site is filled to total 8 ions by adding enough Al to Si.

2. The M2 site contains any excess Al after filling the tetrahedral site above, and also Ti and any Fe⁺⁺⁺ (if estimated). Then this site is filled to total 2 ions by Fe⁺⁺⁺ and Mg such that these ions occur in the same proportions to each other as they do in the whole analysis (ideal solution model with random mixing).

3. The M1 and M3 sites contain the remainder of the Fe⁺⁺ and Mg and should total between 3 and 4 ions.

4. The M4 site is filled with Co and Mn, and then enough Na to total 2 ions.

5. The A site is filled with the remaining Na plus any K. In addition, a vacant site (□) is filled with enough ions to make this A site total 1 ion.

Then the activity of tremolite is given by:

'A-TREMOLIT' = $(x_{\Box}^{A}) \cdot (x_{Ca}^{M4})^{2} \cdot (x_{Mg}^{M1M2M3})^{5} \cdot (x_{Si}^{Tet})^{8}$

No other parameters are calculated for amphibole analyses.

Pyroxene

Pyroxenes are recalculated on the basis of 6 oxygens according to the following formula:

where 'p' approximates 1 in orthopyroxenes, and is close to zero in clinopyroxenes. Ferric iron is also estimated for all pyroxenes in the Tables and is given in a second accompanying analysis. The ferric estimate is based on the stoichiometric charge balance method of Ryburn <u>et al</u>. (1975). The pyroxene structural formula is first calculated to a cation total of approximately 4 with all Fe as Fe⁺⁺⁺. Then, Fe⁺⁺⁺⁺ is determined by the equation:

Fe⁺⁺⁺ = Ideal cation charge - calculated charge which in pyroxenes is equivalent to:

Fe⁺⁺⁺ = 4 - 2Si - 2Ti - Al - Cr + Na + K

Then:

Fe⁺⁺ = Fe^{total} - Fe⁺⁺⁺

The following compositional parameters are calculated for all pyroxene analyses: $Fe^{++}/(Fe^{++} + Mg)$, FeO/MgO, 2. (X_{Al}^{Op}) , X_{Al}^{Tet} , M_{I} , X_{Mg}^{M2} , X_{Fe}^{M2} , X_{Ca}^{M2} and the activity of enstatite in the pyroxene. All of these calculations are made after the pyroxene sites have been filled according to the scheme of Wood and Banno (1973);

- Enough Al is added to Si to fill the tetrahedral site to
 2 ions.
- M1 contains any A1 remaining from above, plus Cr, Ti and any Fe⁺⁺⁺ (if estimated).

3. M2 contains Ca, Na and Mn.

$$\begin{bmatrix} \underline{Mg} \\ Mg + Fe^{++} \end{bmatrix}_{M1} = \begin{bmatrix} \underline{Mg} \\ Mg + Fe^{++} \end{bmatrix}_{M2} = \begin{bmatrix} \underline{Mg} \\ Mg + Fe^{++} \end{bmatrix}_{mineral}$$

(Wood and Banno, 1973, eqn.25) which assures the ideal solution model with random distribution of Mg and Fe⁺⁺ over the Ml and M2 sites. The activity of enstatite ('A-ENSTATIT') is modified after eqn. 24 of Wood and Banno (1973) as follows:

$${}^{B}_{Mg_{2}Si_{2}O_{6}} = {}^{M1}_{Mg} \cdot {}^{M2}_{Mg} \cdot {}^{(x_{Si}^{Tet})^{2}}_{Si}$$

Garnet

Garnets are recalculated on the basis of 24 oxygens with the following formula:

$$(Mg, Fe^{++}, Mn, Ca)_6 (Al^{6+}, Ti)_4 (Al^{4+}, Si)_6 O_{24}$$

Ferric estimates are made by the charge balance method of Ryburn <u>et al.</u> (1975) in a similar way to that for pyroxenes:

Fe⁺⁺⁺ = Ideal cation charge - calculated charge which in garnet is equivalent to:

Fe⁺⁺⁺ = 16 - 2Si - 2Ti - Al - Cr

on the basis of 24 oxygens per structural formula.

The following ratios are calculated and presented in the Tables for each garnet recalculation:

'X-FE' =
$$\frac{Fe^{++}}{Fe^{++} + Mg}$$

'FEO/MGO' = $\frac{FeO}{MgO}$ (wt.%)
'FE/MG' = $\frac{Fe^{++}}{Mg}$ (ions)
'MG/FE' = $\frac{Mg}{Fe^{++}}$ (ions)

In addition, three mole fractions for divalent cations in the Ml site are calculated:

$$\frac{X-A-Ml'}{Mg + Fe^{++} + Mn + Ca}$$
 (ions)

where A is Mg, Fe⁺⁺ or Ca.

Cordierite

Cordierites are recalculated into structural formulae on the basis of 18 oxygens:

$$(Mg, Fe^{++})_2(Al, Ti)_4Si_5O_{18}$$

Only one ratio is presented for cordierites:

$$'X - FE' = \frac{Fe^{++}}{Fe^{++} + Mg}$$

Sapphirine

Sapphirines are recalculated on the basis of 10 oxygens after the formula of Schreyer and Seifert (1969):

(Mg,Fe⁺⁺)_{1,75-2,00}^{Al}4,00-4,50^{S1}0,75-1,00⁰10

No compositional parameters or alculated for sapphirine analyses listed in the talles.

Spinel

Spinels are recalculated into structural formulae on the basis of 32 oxygens:

(Mg,Fe⁺⁺)₈(Al,Ti,Si)₁₆0₃₂

No parameters are presented in the Tables.

Outline chart

Table 2.1 provides a key to the computer printed data tables (Tables 2.2 - 2.23). It should be consulted to determine the following information for each data Table: sample number, locality (also given on Map 2 in rear pocket), rock type, analytical laboratory, mineral types analysed, and the numbers of analyses.

The analytical laboratories have the following

abbreviations:

UCT, Cambridge Microscan 5 instrument at the Department of Geochemistry, University of Cape Town;

WITS, ARL-SEMQ instrument at the Department of Geology, University of the Witwatersrand.

Lble umber	Se le nus r	Form locality (Map ' in reas pocket)	Rock type	l obor- story	Feldspor	Hico A	mphibole	Pyroxene	Garnet (Cordierite	Sopphirine	Spinel
22	21-7-8		garnet-cordierite- eilimanite gneiss	UCT	2	1		•	1	1	-	
2.3	21-7-6		ditto	UC1		2		-	- 4	1	-	*
2.4	21-7-6	Boschrond	ditto	W115	-			-	86		-	
2.5	21-7-G		ditto	WETS				-		12	1	-
2.6	21-7-G		ditto	WITS	-	19		-	10			-
2.7	8-7-8		sopphiring bearing	UCT		1				2	2	3
2.9	2_8_12		ditto	UCT		1	1	-	1	3	1	1
2.0	2_8_12		ditto	WITS	-	1		-	1		5	6
2.10	2_8_12	Rondy	ditto	WITS	-11	-	-	-	55		-	~
2.10	2_8_12		ditto	WITS				-		19		-
2.12	11-6		j	UCT	1.1	3		1	4	3	3	2
2.13	2-8 10A		gernet-orthopyroxene- ploglocloss symplec-	UCT	1		-	1	1		-	*
0.14	2 8 100	Rondjesfontein	ditto	UCT	1	1	-	1	2		-	
2.14	2-8-108		ditto	WITS	-	Э	-	4	12	-		÷
2.15	07		nyrozenitic mohibolit	UCT	1	p.d	1	2	1	-	7	-
2.10	27		ditto	WITS	1		1	2	2	-	9	-
2.17	¥21205	Artonvillo	ditto	UCT	1	-	1	Э	-			-
2.10	¥21305	(ane Horrocks, 1975)	ditto	WITS	-		4	7	-		-	-
2.17	x21379	1000	ditto	UCT	-		2	2	1	-	-	-
2.21	20	Artonvillo	metopyroxenite	WETS			1	5	-	-	÷	-
2 22	26.5.4		aobbro	UCT	1	-	1	1	-	-		-
6.44	26-5-6		onorthosite	UCT	1			-	-			+
	26-5-5	Shangant	gobbro	UCT	1	-	1	1	-	-		-
2.21	26-5-4		gabbroic anorthosite	WITS		-	4	2	-	-		
					10	32	17	32	171	39	11	12

Table 2.1: Outline cho.t to data tables

UCT: University of Caps Town (Combridge Microscon 5) WITS: University cf the Witwotersrond (ARL-SEMQ)

2.10

							-			
							KB L	let	F81	06.
TEPAST P	-		Et P	ne t			Col	e	C O	-
	bushing	1 3011	-			-		8	39 . 0	34.0
	00.	10.4	33.03	33.0	10 - CC	0 0 0		-	10 10 10 10 10 10 10 10 10 10 10 10 10 1	23.07
	02 **	4 . 4	20 02	32.01	2 2	32 8			0.0	0+3
	() () 11	1) 1) 1) 1)	0.0	0.0	0.0	11 2 0			01	
0 1	2		0.0	55.0	0.0	CC 4 4	5.	19.40		0.1.
2.2	0.0	12.01	27 96	271		0.49	0*0	100		
	10	C	0	***	01-7	3.0	100	0		A and
· c	000	In-46	200			6 I .			0 - 0	0.0
	0*	3 . 6	00.0	0.0	0.0			34.2	0 ° C	0.*0
	1+1		000	0.0	0.0	2				100 2 101
					6.3 G.M	00.417	C LaY 1	11 as 23	0.01	
	4	54.40	101.05	104-1-	2			17.1		-
					14.		10.0			
L NS	2 . *	100	•				6.010	10.801	4) 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	362 84
		9 10 5	901-0	5 - 1195	10 C	10		New?	01 F	1 • • • •
	110		0.002	0-001	24	-	2.1.5	016+		• •
		1 11	4.00 -	0 0		0.0	0-0			0.0
		0.0	0 * 0	0-0		5	0.1		1.967	3. 94
	20	0.0	0.0		3-5-15	30	3-243	10.4.1	0.00	0.01
1.1.1	1 4	1-7-1	3.5.1	2.425	0.0	0.004	0.0		10	2.6.10
	C - 1	0.0	0000	2.1.67	2.000	01-12		0	0.1 E	0- 97
	11 = 1 D			0.135	0+=12	0.12		9 0	0.0	30
	0+0		0 0	0.0	0		0=0	0.4	0 ° C) • •
-	100-10	1 12	0*0	0-0	0.0			N. C. L.	0.5	10.01
4				1010-Y	15.044	10.016	1 1 a 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
INTAL LONS	1=*500	151	1 Daugas			213	0.5533	7-2-20	C. F. 63	0 • C • C
	0 1 20	0.37.6	0.0284	0.6-11	0 6387	0.00	26.73	2 4 31		1.2705
X-FE	10	0 0	3.0129	1126.2	1000	7 07	1 2557	1	0.00	6.7324
	0.0	0.0		0.6101	3.5650	1.5-11	100-10	1		
MG/FE	2 . 1547	1.003			1	0 0	5 5	19 H L1	0.0	0.0
	0.0	0.0	0 * 0	0.0	0.0	0.0	0 = 0	1		0.1
C.K.AL-LFA	0.0	C • 0	00		0.0	0.0	0.02	1940	0 4:0	
X - H - H	0 - 0	0.0	0.0	0.3541	0 . 3 . 4 8	0. 3505	10 - 5 - 0		C. 5A30	195.0
X-WI-MI	0.0	00	0.5074	0.5804	0.6035	0.0157	0.0122	0-426	0.032	
X - F - A			0 •0552	0.0562	101010				0-0	6. C
1M)-X	2			0 1	0-0	0.0	0.0		C • C	0.0
MG-4	0 = 0	00	00	00	C . 0	ر • ر ر		1040	0.0	0 ° 0
X FL-42	0.0	50	0.0	0 * 0	0 • 0	0.0			C.	C = 3
X CATME			0.0	0-0	0.0	0.0	G . 0	0.0	0.0	0.0
A-ENSIAT I	0.3	0.0	11. 1 Man	0.0	0.0	0.0	0.0	0.4	0.0	3
A -THE HLIT	0 0	00	0.0	00	00	0.0	c . c	14.4	0	-
X-ALEITE	C * 0	2								

11 1
5.42 5.42 5.42 15.45 5.42 5.42 15.45 5.42 5.42 15.45 5.42 5.42 15.45 5.42 5.42 15.45 5.42 5.42 15.45 5.42 5.42 15.45 5.42 5.42 15.45 5.42 5.42 15.46 5.42 5.42 15.47 5.40 5.40 15.47 5.40 5.40 15.47 5.40 5.40 15.47 5.40 5.40 15.47 5.40 5.40 15.47 5.40 5.40 15.47 5.40 5.40 15.41 5.40 5.40 15.41 5.40 5.40 15.41 5.40 5.40 15.41 5.40 5.40 15.41 5.40 5.40 15.41 5.40 5.40 15.41 5.40 5.40 15.41 5.40 5.40 15.41
AL ICAN Vec. 45 0.0 AL ICAN 0.0 0.0 0.0 AL ICAN 0.0 0.0 0.0 0.0 AL ICAN 0.0 0.0 0.0 0.0 0.0 AL ICAN 0.0 0.0 0.0 0.0 0.0 0.0 AL ICAN 0.0
0xxxxxx 13. 13. 13. 14. 13. 15. 14. 15. 14. 15. 14. 15. 14. 15. 14. 15. 14. 15. 14. 15. 14. 15. 14. 15. 14. 15. 14. 15. 14. 15. 14. 15. 14. 15. 14. 15. 14. 15. 14. 15. 14. 16. 14. 16. 14. 16. 14. 16. 14. 17. 14. 16. 14. 16. 14. 17. 14. 16. 14. 17. 14. 16. 14. 17. 14. 16. 14. 17. 14. 16. <

AL ICAS -
AL I GNS AL I G
AL I030 0.0 0.0 0.0 Main 0.0 0.0 0.0 0.0 0.0 Main 0.0 0.0 0.0 0.0 0.0 0.0 Main 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Main 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Main 0.0
F 0.0
I-AL-CPX 0.0 0.
A-4. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

TABLE 2 3 .cont

R	30.61 39.6.	22.03	0.0	0.0	25-14 25 25				0.0	99 £2 99 6	4. 4.		6-030 6.63.	0-001	3-554 3-952	0.0	0:0:0:0	3 1 4 B	0-020	2 512	0- 10	0.0	2 6 51 255 3	C.5523 C.554.5	2.207 2.2 7	1.238 1.24 . 6.8073 6.86 2			0 0	C. 4 293 C.4.47	C.5325 C.5337	C C 2 2 3 0 0 0 0 3 3	0-0	0.0	0.0	C 0 0 C	0 0.40	0.0
	9 4 6	2 .79	0.1	0.1.	1) =					9 72	14.		n====c	3+4	0===			0.12.10	2	2.10	0	0.0	5 3 0	C - 2 2 4 8	02225	1 4 4 W U		2.5	0.1	4-22-0	9-2073		C	0.0	0*0	0	0.0	C * 0
	1 ° ° E		0.0	0.0			2 4 4	2.000	0*0	ELªEE	24 e		1+1-10	0.00	616.	0.40			400. * A	201		0.0	766*4	0.5310	2.5745	0.5922	0.1	· · ·	0.0	0.3721	0.03065		C. 7	0.0	6 • 6	0.0	0.0	
	35.02	21.75	0.0	1.0.90		10.05	1.1.1	0.0	C • O	99.54	24.		010-0		7 2 A C	0.00			207 C	0.103	0.5	0 . 0	15.003	2.6006	2.6801	1 - 5040 0 - 6049	0 - 0	0.0	0.0	0.3431	0.0101		0*0	0+0	0 • 0	G * D	0.0	
	39.02	51.75		20.70	0.04	10.05	1 . 1 .	0.0	0-0	90+22	24.	0.00	210.0	1000						0.10.0	0.0	0 - 0	10.000	0*6026	2+0955	1.5126	0 * 0	0 * 0	0*0	9-22-0	C//C-0		0 * 0	0		0*0	0.0	0.0
-	36.84	21.62	0.0	LA-1C	0.44	9.41	1.11	0.0	0 - 0	04=95	24.	A 11.4	410 ° °	3.947		0.010	3-604	0.064	2.172	0.184	0.0	0.0	16.003	0.6240	1126-2	1 - 6594 G - 602h	0.0	0.0	0.0	000.00	0.0000		0*0	0.0	2	0*0	0-0	0.0
	34.44	21.52		27.97	0.43	9.41	1.1.1	0.0	0 • 0	99.44	24.	6 017		3.948	0-0	0.0	3.024	0.064	2.172	0-194	0=0	0=0	16.009	0 -6252	6776 - 7	1 -00 dU	0 = 0	0-0			0:0105		0.0	0.0		0*0	0-0	0.0
-	36.76	21.21	-0-50	30.15	0.66	7.85	1.13	0.0	0.0	10.05	24.	6.065		10-0	0.0	-0.013	3 + 44 F	0.037	1-930	0.185	C - D	0.0	5. 59	0-0631		0.4540	C • C	0.0	0-20-4		C.0313		0.0	20		0*0	0.0	0.0
	d.78 0.0	6 1 a 6		23.30	0.05	7.45	[1.1]	0.0	0.0	÷ 0 ÷	- 4.4 -	6-00-	0.001		C . C	0.0	3 • 4 0 G	0. 667	1.028	0.109	0.0	0.0	24540		00000	0678	0 - 0	0.0	0.3011	0.6400	0 - 6 - 14		30	20		0.0	0.0	0.0
	202	20120	FEZJE	FE)	414.00	100		110		TUTAL	NO UXTENS	51		34	, U	FEIII		NN NN	N C	CA	4 4 × 1	2	ISTAL LOND	X-1 E		HI LIN	A-X-A CPX	X-AL-10 1 X-AL-11	X - M C - M	K-FE-11	A-CA-41			A-C-M2		A-E-STATT A-MEMOLIT	A ANGATHIT	X-ALEITE

(4115 2 +

	L	[ſ		8	ł			10
112	100 - 10 10 - 10 10	10°0 0°0	39-22 0-01	39-22 0-01	34+16	4 1 5 F	3 3 4 6 E	2 2 2 C	11 (1) (((((((((((((((((((20.0F
11.0			00		00		00	2		100
-		26+14	25+70	25+31	2 2 4 0 V	0 	010 010 010	3 0	19 C C C C C C C C C C C C C C C C C C C	25.00
A . L	4C - 74	10.74	11 - 13	11.22	11.45	11 25	5 5 4 • • • • •	57 7		C . 4 J
C A -	(*) **** (*	m • • •	1-12		1.7	2 2			50.	
KZC.	10		20	00		00		17.17	00	00
TUTAL ATE	59.40	- 3 * G O	14.66	9.70	2 20	1 36	18.1	<u>, , , , , , , , , , , , , , , , , , , </u>	0 - 7	
NO DALLE S	24		24.	¢ .	181	• •	34 .	4 P 1	4 °	-5-
51	0 = 0 20	6 . 01 7	2.940	5.383	6 . 0 v J	5.397	.004	10 m 75 m 70	6.015	Col
	100°2	0+001	100" 0	1001	0 * 0	0.0	00010		0.002	0
. 2	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	21010	0-0	0-0	0-0		0 40 - 0	5- 5- 7	3.9-6	5
4 7 8 7 1	• ;	0+ 623	0,2	0.058	0	0.667	· · · · · · · · · · · · · · · · · · ·	2 + 2	0.0	
112		11 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	3.140	3.229	5 CL C		3-195		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3-1-1
2 17	1 1 1 1 1 2 1 2 1	2.44		0.000	0.000		04040 744		0.00	1
1 1	40 40 40	0 - 1 0	5 · · · ·	EH 1 . 0	261-0	10	0.135	10	07	0
- ×	0.0		00	oc. 00	00.0	0.0	0-0	1 3 4	0+0	0.0
IULL LAS	1	16.004	16.023	16.010	1 - 0 - 3	0.1	6 4	Pheel.	· E. 039	10/14/01
A FL	0.5750	0-5773	0 = 36 30	3.5560	0.5611	0 5560	0.51	5= 0 + 31	C + 5 - 6 2 - 6	C =
	202 - 2		2 2059	2 2555	2-2762	23.3	6 · • · ·	2+++30	2 . 2 . 3 4	
4 /1 6	0 7672	C.7.22	3=7752	1062 0	0 - 7 6 2 2	1 7344	2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0		C. CCN.	C. 3.9.
·X-A. CF.	7 • •	C = 0	0 • 0	0 * 0	0 = 0	0 0	0-0	3	C=0	C. N.C.
X TAU TIUN X TAU TIUN	3 L 6 61 c	C.	0.0	0.0	0.0	00	0+0	1	u - 5	10.40
	0.10-4	C ~ 05 \$	0.4 33	0 4242	0.+213	0 0 0	191 0	(, , , , , , , , , , , , , , , , , , ,	0.42	5-1 10-
X-FL-A. X-JA-AL	0-03461	0.5544	0-5 24	0.5370	0.5315	0.5375 f 0319	5 5555 0 0 30 5	5 1 1 1 5 5 4 7 1 5 7 4 0 4	0.02	6+1-1-1 0+0-0+
A-MG AL	0 = 0	0.0	0 0	0 * 0	0 0	0 * 0	5	3	C . C	C.0
X-FL-4. A-LA-4.	0.1	00	000	0.0	0.0	0 - 0	5+C	11	C * 0	00
	0-0	C . C	0.0	0*0	0-0	0 ° U	u*	-+1 4-10	C. C	C. C. D
X - 8 (0 4 1 4 1 4	50	00	00	0.0	00	00	0.0	1+0	0.0	0.3

I to Linear a

	6	-11-		- m-				1 14		15-51
	4 - 0	5 2 5 M	30.25	34.45		3 1 1	34.80	3. 5	39.00	39.0.
AL C.	25.1	21.92	22.01	22.0	22.03	22 03	1.050	010 01	2.00	1.0.7
1 .	0.0	0-0	0.0	0.0	0.0	0+0	5.0	2 * 7	2:0	0-0
	11 C	10.0	20.14	25.75	25.30	25.34	26.03	107	27.27	26.95
(NN)	C1 4 - 1	0-42	0.38	0 . 38	C - + C	0.4.2	3.5	10 + 2	C . 0	C
017	1.23	11-23	50°01	10.85	10.54	10.04	0.0.9	50 × 1 × 03	9.82	3-0-
		1.00	- 20 · 20	I • 24		010	5 ° ° °	1 9 × 1		
0. 7	00	10		0.0	00	0	0.0	10	90 + +	10
1)(=r = 1)	1 60 .03	100.12	- 6 * 65	99 96	97*59	93*83	9 . 3	9 ** 30	57 5	33 5-
NU UXYGENS	- 4 -	. 4 .	24.	24.	24.	24 .	13 A .	+ * *	4 .	- 4 -
	C	6 - 062	5.993	5.947	5. 20	186.381	00.0	5 = = = 7	0.026	0.12.
	100.0	100.0	100.0	0.001	0.032	0.001	0.00	0.401	6.002	0.00
	10		200.0			2 C	10.0	775 0	0 . 0 C C C	50. ° 5
		0. 648	0.0	0.049	000	0.046	0.0	1010		0.00
FE++	3.304	3 . 252	3.338	3.285	3 307	3 - 3: 6	3 4 7	3. 40'	2 ° C ~ C	3. 63
z	0.034	010	0.049	040	0 005	0.052	0.000	0.00	0.064	0.00
U N	0.1.0	1.0	E O P	0.203	0 212	0.211	0 - 245		0.237	N • • • • • • • • • • • • • • • • • • •
47.4	00	00	0.0	00	00	00		00	0.00	
LUIAL ILNS	16.044	I6.00=	16.025	16.008	16.023	16.004	120*031	5+H+C	6-019	10.440
	0 5646	C.5610 2.2771	0 •5739 2 •4004	0.5703 2.3549	0 5811	0 577	2 5 93		C.6091	2.7.75
E E	0 7712	0.7826	0 - 7 - 2 -	0.75.35	0.7209	0 730	9.6.85		0.6617	0+0+80
2 • X - AL - CP X X - AL - TE T X - AL - TE T X - AL - TE T	000	000	000	000	0.00	000		23		000
	10 10 10			0.4117	0.4007	0.4037	0 3 0 7	0.10.5	0.3716	0.01
X-CA-41	0 10 2 2 2 2	0.00	0 . 0 3 3 A	0.0337	00	0.0352	20 0 0	1010	0.0040	0.00
	000	000	000	000	000	000	000	177 111 UCO	000	000
A-ENSIA III A-TREMLLII X-ANGATMII	0.0	C.0	0.0.0	0.0	0.0	0 0	0 0 0	0.0	0*0	0 0
X-ALEITE	0-0	0.0	0.0	0-0	0 0	0-0	0.9	N	0.0	0-0

Ilk 2 bicestait.

		91 -	1			- 18		- 101		- 20
261-	34=45	36.45	36.39	38.39	34 - 46	38.48	* 9 * e	1.0	39.50	39.50
	0.0	0.0	0.0	0.0	10.0	0=01	9.02	< O * P	0 = 01	0.0.
202.14	21=65	21.69	2: 54	21.54	21.40	21.40	E	13	13	24.75
		100		0.00		0.50		2		
FED	20.02	28.16	27.94	27.43	28.44	27.07	AC. CC	27.40	26.36	26 - 40
1NG	0.25	0.5	0.55	0.55		E 1 0	7.46	1		44 O
MED.	6-54	8.97	9= 35	9 . 36	F0.6	6=03	:0.00	00.01	10.57	10.57
C # 3	1.55		1.17	1 = 1 1			1.12	5 = 2 I		
NF KU	0.0	0	0.0		0.0	0.0	00		00	0
			0		2	2	0	7 - 7	2	2
13TAL #1.4	E 2 ***	0 = E	99° 95	tn=56	P1**5	66.23	100.25	C.1.	39 85	9 8
SNIDIE DN	- 9 -	2	2	24-	24.	24.	e ₫ C1	- + 7	24.	
10	5.5.2	5.901	5=936	5.976	6.001	5.99	5.054	07	6.6.41	6 - 44 - 7
	0-0	0.0	0=0	0.0	0.001	0-001	0.002	0 2	0.001	00.0
AL.	115-2	3.96=	3.960	3.954	3 93	3.970	3.915	3 . 6 3	3.922	3+922
21	0-0	0.0	0.0	0.0	0.0	0.0	0.0	C = C	0 . 0	0-0
•		10 - 0	0.0	10000	0.0	0.00	0.00		010	10.007
2	0-0-0	2001		200 0	100 × 0	1000		2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		0.00
	2.016	2.072	2-175	2.172	2.0040	2-096	E46 C	5 2 7 2 2	0.00	200
CA.	C . 200	C.206	0.195	0.195	216	0.215	3.198	0	0.190	0. 00
7	0-0	0.0	0-0	0.0	0 0	0.0	0.0	0.0	0.0	3.0
~	0-0	C = 0	0.0	0.0	0 * 0	0 * 0	0.0	140	0 - C	0 - 0
I VITL LUNS	c+0+3	16.014	10-034	110*01	10-030	16.00	15.985	E4445	5 - 7	66
A-Fe	0.04	5269-5	0.6-62	0.6218	0-6-47	0 6 3 4 3	0.5905	0 = 5 C	C. 8 4	C-8-0
5 - / ×C	A 17	0.77 -	12624 1	2 * 9 300	CF+1+5	2260-5	042.02	00 47 42	2.05 4.07	
MG/FL		C. 3676	3.5970	0.6002	0.5628	0.575	0	0 0	C.7.37	0
2. X-A. LP.	0 . 0	C = C	0 * 0	0 = 0	0 = 0	0 = 0	0.3	5.00	C. C	0.0
K-AL-16-1 X-21-11		0.0	0.0	0.0	0.0	0.0	0-0		0.00	0=0
N-MC-	0.3404	C.3452	0.3573	0.3513	0.3448	0 - 3479	0.1787	2.170	0 3994	0.3990
X-FE-41	0-6137	0.6082	0.5981	0.5341	1800-0	0.6348	0.5.89	0.000	0.5596	6.500
A-CA-II	0-0-41	ú.0346	1260-0	0 = 0 325	* SE C = 0	0.0.57	0.1120	52CC-0	0.0315	0.0315
121-521X	C = C	0=0	0 . 0	0*0	0*0	0 * 0	0.3	C = 2	C.0	C = 0
X-CA-42 X-CA-42	0*0	0.0	0.0	00	0*0	00	00	ייי ייי ייט	0.0	0.0
A. CHURAY F	0.0	0.0	0	0.0	0.0	0.0				
A-ISEMULT	0*0	0.0	0.0	D.0.0	0.00	0.0	0.0	9.0	0*0	0.00
X-AUGHTHIT	00	00	00	0*0	00	0*0	0,00	0.4	0.0	0

24 (cont -

		- 21		20-20	L	(21		- 25
-1-5		40 T 4	39.03	34.6	101 101	-02	3-94	1 (j) = 1 1 (j) = 1	3 = 4 3	
AL 203	21 - 0G	21.58	51 - 30	21.90	21.68	2	8 .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	2 3
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	0.0	0.0	0.0	0.0	0.0	C.C.	0 • 7 0 • 7	0	0.0
Fr 3	10.10	25.89	25.92	25.44	25-30	25.2	5 - 38	5 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	25.37	25.13
UNP.	0-42	C.42	0.43	6 4 B	61 -0	C+33	3.4.	1 + + +	0.37	
	10.05	10.06	11 . 00	11.00	1	1 1 0 1 0		2		14
	0.0	0.0	0-0	10-0	2.0	0.0	0.0			
K - 10	0-0	0.0	0.0	0 - 0	0 - 0	0.0	0.0	111	0 - 0	0-0
TO A RE	14	15 ** 3	93.23	99 . 32	93.34	93.44	98 7	54+31	10.25	. 6
N J Y E S	24.	24.	0 0	24.	2	•	+	* * 1	24 =	-4-
In	C . U1 7	c. 012	5. *92	5.300	5.404	5.975	5.003		5.027	62"
t and peak	0-005	C. 0C2	101-0	0.001	2000	0.002	.00.	Gourl	G. C02	01.0
	()) ()) () () () () () () () () () () ()	3-926	3. 104	3+360	3000	3 - 950	- 367	1 C S = 1	19 0 0 0 19 0 0 0 19 0 0	с, - с, -
	30	1 - C - C	0.0	0.0		0 - 7 -		0 + C		-0-00
111		3.01	3-315	3 263	3.309	3.233	- 262	1.1.1	3.243	3110
454	0.055	0.055	0.056	0.050	10.051	0.051	0.053	0.053	9 - 0 - 6	0-0-0
20	2 7	2.440	2.513	2.51	20 CU CU CU	2 = 5 = 9	2.579	5-263	500	200.2
1 1	0.00	0=10	6.10	A 1-0	10.0	0.180		2 + 1 (O		0 1
	0.0	0.0	0.0	0	0.0	0-0	C . C		0 - 0	
TUIAL ICAS	10.017	16.006	15.025	16.008	15.012	-6.012	. 5 # 92 3	÷	16.000	10.030
X-FC	0 = 7 = 6	0.5761	0.5584	0.50%8	0.0015	1655*0	C - 2594	10000-U	C + 55 48	10000
FENS	1 3 740	1-3601	1-31-22	1 2370	1000	1 2682	1 2504	11		202
40./FL	0 . 7273	0.7351	0.7592	3.7706	0.7715	C * 7885	P-61 V	2 = 7 = C	C * 7 9 4 5	. 7 89
C. A-AL CP	0.0	0.00	0*0	0-0	0-0	0-0	0-1	200	C = 2	0*0
X - 4L - 15 - 1	20.00		00	0.0	0.0	0.0	0.0	2.0	000	20
X- N - N	0.4051	0.4054	0.4145	0.4182	0.4190	0.4233	9+4.24.9	3++-12	0.4247	C - 4 - 4 7
XIF I	0.00 0.00 0.00	0.5515	0 0296	0.0298	0.5431	0.0300	0.0291	100100	0.0	0 0 293
	0	0.0	0	0-0	0.0	0.0	0-0		0.0	0.0
X-FE-AC	0	0.0	0.0	0.0	0-0	0.0	0.0	1.0	0 0	0
X-CA-M2	0 * 0	0.0	0.0	0 * 0	0.0	0 * 0	0 * 0	D • C	0 = 0	0=0
AHENGIATIT	0.0	0.0	0.0	0-0	0-0	C + O	0 3	* *C ***	C - C	0-0
X-ANCATET	0.0	0-0	0.0	0.0	0.0	0*0	C+0	1+1	0.0	0-0
K-AI FITF	2 0	0.0	0 = 0	0.0	0 = 0	0 0	20 m 12	222	C = 0	0.0

TABLr. 2 4 (cont.

IADLE 4 ~ 1COL										
	L	- 56	1	- 2,	5	28		- 29		1 log
1 2		81 - O O	18.91	10.00 10	G . 7	70.07	13.0	10 - 10 10	38-16	36.10
1 20	10.01	10.00	21.91	21.91	21.5		0	2 . 70	23 . 30	21.93
UP N	0	0.0	0.0	0-0	E . 0	0.0	0-0	· · ·	U	0.0
E 2 3 3	0.0	0.18	0.0	10 • 00 0 • 00 0 • 00	0.00	0.00	0.00	20.0	27.87	27-6.
NO	10		0. 10	0	0	0.62	3 . 6	94 - 7	0.5	0-53
00	41-26	1.26	19.51	10.51	10.12	10.12	9-1-6	. 74	6.03	6°03
	01-7					0.20		C 1		0.00
1 3	00		0	0	0.0	0.0	0.0	10	0.0	0+0
TUTAL NTR	N 11 10 10	99.54	94.73	94.72	51-5	21*66	14.10	.22 ****	96.1	1 = PR
SN DX CN		24.	24.	24 .	. 4 .	24 •	0 []	- 9 -	2 = =	
SI	C = 610	6.006	6.011	6 - 012	6 - 01 6	6=016	696* 5	00	6.004	000
11	0.001	0.00	0-0	1.080	700-0	2010 - C	100-0		3 960	
15	0 0	14	0.0	0.0	0 - 0	6.0	C = C	3	0 0	0.0
	6.0	0.0	0-0	10°0-	0.0	0.00	202	2	2 2 2 2	10.0
		0.040	0.051	0.051	10	0.055	1.061	0.60	0.01:	0.07
2 2	10	2.502	2.419	2.419	2 . 328	2.328	. 363	10 10 10 10	2.117	2 . 1 : 1
5	000	0-180	0-184	0-164	0.208	0-208	1.192	18 4 + 0	0. 20	- 00 - 00
K N	00	00	00		00	00		0 0 • •	00	
101 T T T T	1 6 + 0 1 1	16.034	15.995	966*5E	16.002	16.001	2 C * - 1	u 2	5 0 5	CUO . 0
-FE EQ.4.0 E/4C	2.2002	5575 2455	0 5102 2 4 24 1 3118	0 5 009 2 4 02 1 3 6 2	0 = 29255	0 0 0 5 0 6 0 7	0.61190	1 + + + + + + + + + + + + + + + + + + +	0-63-0 1-73-0	C-6320 3-0 0
GIFE	0.7684	0.7936	0.7 37	9+7-14	0.5702	0.5.90	3 = 0 = 6		0.5774	C - 58-5
Cox-L CPX X-AL-IET X-AL-AL	000	000	000	000	0.0	000	000	111	000	000
X-RG-AN X-FR-AN X-CA-AL	1+2+"C	0.53630.6255	0.0000	0 4027 0 5582 0 306	0.3000	0 3E07 0 5605 0 0366	0 5363 0 5363 0 0315	0. J 05 2. J 13 0. Z 20	0-040	0.0.012
X-MG-M2 X-FL-M2 X-CA-42	0.00	000	000	000	0*0	000*00	C*C C*C	10.5	000 000	000
A - E - E - E A - I - E - A - C - A -	0 70	0.0	0*0	0.0	0*0	0*0 0*0	0.0	1 ° ° °	0 00	3.0
X-ALCAIL	0.0	0.0	D*0	2 . 2	0 0	2.0		7		2"2

c Z + (cont

	00 400 M 00 400 M 00 40 M 0 40 M 0 10 40 M	4.9 a 1.	0; m3 000 	6.016 6.016 7.17 0.17 0.17 0.07 0.07 0.07 0.07 0.07	6.00 0.0 0.367. 6.6480	000	0°0
	88 89 80 80 80 80 80 80 80 80 80 80 80 80 80	3 = 34	00010000000000000000000000000000000000	0.01 0 C+6817 3.7982 2.1315 0.4652	C.0 0.3053 0.6507	000	0*0
		- 7 - 6 -	00000000000000000000000000000000000000	0.0.0 	40k 997 1114 1144 1144 1144 1144 1144 1144	111	r*0*0
	10000000000000000000000000000000000000	5 0 3 24 •	5 • • • • • • • • • • • • • • • • • • •	5 026 8 6 5 8 3 5 5 0 5 5 5 5 5 5 5	0 0 0 0 0 3375 0 3375 0 0338	0.0	0*0 0*0
33	200 200 200 200 200 200 200 200 200 200	98.97	MGN 414 400 000 00000 000 000000 000 000000000	16 012 0 6000 2 6700 1 5000 6 6507	0.0 0.0 0.3824 0.5735 0.3373	000	0.0
	4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	33.31	MHN000000000000000000000000000000000000	16-0-6 	0.0 0.0 0.1778 0.5787 0.5787 0.5787	200	0.0
32		99.41	00000000000000000000000000000000000000	5 995 0 919 1 502 0 6896	0.0 0.0 0.3918 0.5681 0.5681	000	0*0
	33 25 21 22 20 00 20 00 20 20 10 20 10 30 01 12 00 00 01 00 01 00	93.44	00000000000000000000000000000000000000	5 98 0 5390 2 5560 1 6 367 0 6 967	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	0.0
(- 6 - 55 - 6 - 5	00000000000000000000000000000000000000	6 004 6 7055 8 2691 2 3957 0 4178	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000	0.0
	17 17 17 17 17 17 17 17 17 17	a 92	101100404000 000000000 0000000000000000	1 6 0 2 0 70 6 4 6 931 2 4 103 0 4 1 4 9	0.00	000	0.0
		NU U TULNS	* * * * 	FOTAL LLNS X-FL FLJMJJ WL/FE	2. X - AL CPX X - AL - I I X - AL - MI X - AL - MI X - FE - 4 X - FE - 4	X-F6-42 X-F6-42 X-104-42	A-ENSIATIT A-THEAJL II X-ANU2THII

2 h lowels. /.

	L	(q_2	L	20		38 7			L	40
5102 1102 Al 203		1909 • • • • • • • • • •	35 30 0 02 21 99	36 • 30 0 • 02 2 1 • 98	34.01 20.02 22.11	9.07 0.02 22.11	000 00 00 00 00 00 00 00 00 00 00 00 00	33. 0	38.8 0.02 22.02	14.4. 0.0_ 22.03
FE 203	00	0.0	0.0	0.0	20.0	0.0	0+0	00 • • • • • •	000	0.4
	25.57	23.82	25 08	24 + 00 0 - 30	21.02	0.97	10440		10.41	• • •
	11 - 75	11.75	11 50	11.50	11	1.54	10-0-	1.0.7	1 • 2 •	11.23
	100			00			3.0	110	0-0	00
I IAL al.	0 4 5	99.66	66	99.35	100 . 40	100.60	25	Ct	60.11	c2 - 30
NU C TUEN	24.	24	24.0	24.	24.	24 o	141	- 4	13 4 0	1
14	1 • G 40	5.368	5-898	5.873	5+37	5-317	556"	D a R a C	5. 27	106 .0
I I AL	0.003		3.991	0.002	3. 51	0 + 0 + 0	1000	1007 4	3 75	3 20
12	0.0	0.0	0-0	0.0	0.0	0.0	C	3. 5		0 0
-1 12		9-042	3.307	3.080	3.319		.376	3 1 1 1 0	3+ 51	3 . 7 .
12	0.0	0 025	0+0+1	0.047	0.00	0.047	1.154	4-1-4	0.00	0.053
24	2.010	2.674	2.519	2.624	2-613	2.605	101-0	2 - 4 - 2	0.10	0.010
1 4 Y	000	000	000	00	000	0.0	6.0	22	0.0	00.00
TOTAL UNS	16 12	16.037	10.104	6 0 35	10+041	6.027	090.0	16-020	10.013	10.020
X-FE FE(C/MGU) FE(MG) MC/FE	2.1762 1.2212	C.5322 2.0271 1.1376	0.5562 2.2330 1.2531	0.5400 2.0323 1.1741	2-2635	0 5172 2 1536 1 2085	6 5752 2 1123 354:	0	C.56.7 2.3302 1.3077 C.76.7	C 5040 L 2430 C 8040
2 . X - AL- CPX	00	00	00	00	00	0.0	0.0	3	0-0	0-0
X - AL - LE - X - AL - 4 X - ML - 4	001		0.00	0.0	0.00		0 0	0+ 5	0 • 0 • • 0	0.0
X-FE-4: X-CA-41	0.5261	0.5084	0+5323	0.0365	0 5371	0.527	0 5521	1040-0	C.5 24 C.0342	C = 0 35:
X NG AN	000	000	000	000	000	000	cc 0 COC	212	000	000 900 900
A-ENSIATIT A-TNEMILIT X-ANCITHIT	0.0	0*0	0 00 0 00	0 0 0	0*0	0*0	0 0 0	0.0 0.1	0 00	0 00 0 00

1.5 2 4 (dopt. /.

	1			(-				
				74						
	C10 = A -	10.02	36-27	38.57	10-90	38.40	9-9	1 2 4 5 5 2 1 0 1 2	38 6. 0 0	30°0
		01.70	30.00	22.00	22.11	22.11	54° . c	2 75	10	22 . : -
		0.0	0.0	0.0	0 0	0.0	0 ° C	2	0 0	0.0
	0.0	16.0	0-0	1 + 3C	0 0	16.0	0.0	72	0 0	
	26-32	50° + 50	20	25.34	20 · 07	12.02	20.00	1 6 7 1		
			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						1.1.1	11.1
		10.11	4.D .	10 1					1 . 4	
			10	-0	0-0	0 - 0	0.0	1	0.0	0.0
	0.0	0	0 - 0	0.0	0	0-0	0.0	0 = 0	0 - 0	0.0
	5. 5.	501.92	9a=63	99=63	90-00	00-15	19-40	14441	15 = J	100-1-
	19.	24.	24.	24 =	24 .	2 4 a	- B -	4	24=	- M-
		0 V U	8 C 2 8	1000	6 2 5 3	6.040	100-1	100	5	3=0.4.
	0-	107 0					1001	100	0.0	0.0
		1000		1001	717	3-940	3 . 394	3 - 01	3= 992	3.377
			0-0	0.0	0 0	0.0	0.0	0.2	0.0	0.0
	0-0	0-111	0 0	0.150	0.0	0.105	1.9	00.00	0.0	6 - : - 2 >
	176.5	3 252	3+413	3.246	3-416	304	3 - 95 0	3. 277	3 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	
	1 - 054	0 - 05 4	0.657	0.057	0-005	0 - 362	2.057	0.001	00	: 0 • 0
	: • 5 1 h	2-505	2 4 94	2.435		054-2				20-10
	00%		5. T . D		0-124		0.0	0.0	0	0.0
	00	0.0	0.0	0-0	0	0	0.0		J = 0	0=0
	ić Cać	510+01	16.076	10.020	0 053	6 0 B	5. 393	e - n - 9	- 6- 050	0.030
	6.57-1	0.5049	0.5778	0 56 3	0.5837	0.5761	0 = 2520	514 + ·	6 57 2	6-557
	2 - 33 - 7	2 - 31 3		2 32 3		1779-2	0777			
	1.3427	1.2.82	0.7306	0.76.7	1614 0	0.7357	121.		C. 75 8	C. 7923
	0 • 0	0 • 0	0.1	0.0	0 = 0	0=0		1	0 = 0	0+0
	0 = 0	0.0	0.1	0.0	0.0	0-0	e e	3-00		0
	0 0	0.0	0 0	0.0	0.0	0 0	5 5 5 V	2 - 2	0.01	0-4.6
	9207 .	2010-0	0.4040				2 2 2 2			
	0.00400		0.0323	0.0332	0.0322	0.0328	100	0-77+0	0.0302	0-031
									0	6
	0	0.0	0.0	0	00	000		Con	20	20
	00	00	0.0	0	0.0	0	0.0	7*0	0.0	0.0
	0.0	0.0	0 0	0 0	0 * 0	0 • 0	0 . 0	5+1	0*0	0-0
6	0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0-0	0
	00		20	00	20.0	0	000	17.0	0.0	0

		411	1	- L4		4.8		64		20)
		-	~	-						
5 14	20 - 0 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	20°20	33.56	0.0	33.66	30.05	19.69	0 •••	10.01	
11.203	£1 = 9 =	2 . 91	21-93	21-93	21.6			0.0	0.0	0-0
	30	0.0		1.97	0.0	1.64	0.0	. 75	0.0	- C-
	26.78	25.10	26.23	24.40	20.71	2 . 23	019 • 0	C+ • + C	26.58	- 4-2-
CN1	- + O	0.43	0 . 36	0 - 36	0 + b			24		
C. 14	11+16	1.26	11-57	10-11	50.					
C4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		12.0	0.0	0.0	0.10	0-0		0.0	0-0
N.O.Y	0.0	0	0.0	0	0 - 0	0.0	0+0	0 = 1	0.0	0.0
TUINL	54.31	00.10	99 ° 96	00 - 00	55×55	00-00	\$0°C	1201	44 - C4	19° 16
No. Caracha	242	24.	• 40	24.	24.	24 .	24 a		24 a	24.
					6 0 10	001 0	1000	17 T T T T T T T T T T T T T T T T T T T	5.013	1 P.M
1	116-0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00.00	210-0	100-0	0.00			102 0	10010
1.1	2.0		0.00	3.942	3.946		3 . 18 2	303	3.93	3+3:5
1.5		0.0	0.0	0.0	0 0	0.0	E.1.	741	0 0	0.0
		C.214	0.0	0.2.20	0 0	0.189	0.0	1-100	0	0 - 14
	36-36	3-206	3.360	3.119	3 2 37	3.005	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	123 0	24
NIN	0.056	0 • 056	0.047	0.046	0 0 0	0.056		100	0 001	
. C	2.55	2 = 5 4 C	2.691	- 6 1 d	2 0 1	00.	2 4 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	1000	0.00	002-0
CP	0.19	C-19C	661.0						0 0	0.0
2 ×		00		0.0	00	0.0	0°C	0.1	0 * 0	3+0
SUNI TAICI	16.138	16.036	10.113	16.038	10.0.5	16.031	5.100	6. 433	1.5 . 1	10.040
X-FE	0.5735	0.5586	0 55 99	0 . 426	0.55-0	0 5 77	2 - 5564	0 + + 0	6-5175	0 5493
FE NM W	2.3436	2.2432	2.2671	2.1140	2-1913	2.0729	2 - 2 354	100		K . 10
F0/46 40/FE		1.792	0.7850	0.4429	0.8102	N90 9 L	10404 C	0.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 2.5	0.0.33
2 K-AL C.P.X	0.0	C = 0	6 * 0	0.0	0 = 0	0 = 0	0.0	1 - U	0 ° 0	(· ·)
X AL-IET	0.0	0.0	0 0	0.0	0.0	0.0	C' (- 1	2 C	30
X-AL-AI	0.6	0.0	0 0	0.0	0 0 0	0.0.33			0.4148	0 4 3 4
X-26-41	770710	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1.5351	05.44.6	C.5-51	0.510
X-FE-4 X- A-4	10000 00	0.0017	0 00 0	0100	10 TO TO TO	0+0319	0010-0	010	0.0.2	C.0331
									0.00	C . J
	0.0	0	00	0				ר נ • •		0.0
X-FE-42 X-CA-42	00	00	00	0 0	0	0 0	0.3	5.0	C = 0	0=0
A - 201 C 1 2 1 1	0-0	0-0	0.0	0 . 0	C = 0	0.0	0.0	0.00	C = 3	C
A-TREADL	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0
X AND X I Y Y	20	0.0	0.0	0.0	0 0	0.0	0.0	244	C.C	C+0

LE 2 4 (cont

37 - 94	0.0	0.0	2.0		10.72	10	0.0	10 °	- 2 j		000	- 00 - 00	0.0	0 230	100	104 C	0.004	0 0	0 • 0	10-01	C. 585		C.7580	00	0-0	0 C-4:27	0.0340	0	00	0*0	0.0	00
37. 4		0.0	0.0	0 • 4 2	10.72			0.00	24.	1	5.000	30.00	0.0	0.0	3.500			0.0	0 = 0	1619	C.58.7	1.1.1.9	6 - 7 0 / 3	0.0	0	0.3970	0.0.0.28	0	00	0 * 0	0.6	0.0
 11. 32	10 = 0	1 7	2		1.+05	• 36	 	010		<i>v</i>	5 - C + S	14.5	0+0	207.0	100	2.0	5 IC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 · c	5.04	3- 2023	2000 • 2		20	2.2	2014-2	1200		120	2+6	r 0	1.0
EB* 4	3.91	0.0	0.0	54.C	10.05	61 · 10	0.0	0.0.0	. 06	n 2	. 475	- 00-	0.0	0-0	1 2002	690 .			0.0	194127	0 - 5971	2 c c c c c c c c c c c c c c c c c c c	4 64 0	0.0	0	1941	0 0300		C C D	C * U	0 0	0 0
37.94	0.0	· · · ·	1 = 7 7	12.63	10.32	1.15	00	00.14		• •	5.663	0000	0.0	0.207	0.52 • 1	0.062	282 • 2	0-0	0	16.015	0 5842	2 50 32	C 7119	0 - 0		0.3983	0.5595	1		0 • 0	0*0	0.0
37-96	10-0	61 . C	0.0	2 - 3	10.12	1+15	00	¥0 10		- 6 J	5-40		10.0	0.0	3.572	0.052	2 = 345		0	16.104	0.2580	2.6579	0.6704	0 = 0		0 - 3 450	0 0 0		000	0 * 0	0 0	0*0
F 1 - M4	0.0	21.10	1.68	25.08	10.93	1.16	00	00 XX		e đ	5.878	0.0		0.210	3.233	0.051	2.511	NA	0.0	14.036	0.5023	2 - 2945	0.7766	0*0		0.41.4	0 5401		00	0	0 • C	0.0
7 1 1 1 1	0.0	21.70	0 - 0	26.77	10.93	1.16	00			24.	5.904	0.0	22.00	0	3.467	0.051	0.52	0.192	10	16.109	0.5796	2 44 12	0.72.6	0 • 0	•••	0.4047	0.5562		00	0	0*0	0.0
5	10.0	21.86		24.60		1.17	0	•	2 1	24.	£ • 3 6 3	C. 001	202.00	0.233	121.6	0.050	2.568	0.193		16.035	0.5526	2-2006	0.8098	0 = 0	0.0	0.4293	0 5301		0. 90	0	0*0	0*0
	10.0	< T = 00		20.41	10	1.17	0.0	3 (2 4 8	6 g •	50.02	100		00	- 420	0.050	2.560	0-194	20	16+117	0.5700	2 -3023	1 - 3 - 5 - 4 - 0 - 7 - 4 -	0 * 0	0.0	0 4132	0 5477		00	00	0 * 0	0.0
	215	NL 20 -								J UNICENS	1	-	11	L L	10	12		4	~	IUTAL ICKS	1- Fr	FE JUNAL	FE/WG	A.A CD.B.	N-NL-TLT	A - AL -ML	14-14-1	APT PARTY	NA-MG-MC	X-CA-42	A-ENSIAT	A-TREALLIT X-ANGRIFIT

2 + 1 cont - -

TADAL - " CUL										
	1	50	L	57		1 JA	L	59	L	0
2	10 - 10 - 10 - 10	30.00	38.54	36.04	20 - 50 0 - 50	38.29	33.70	20	38. 5	36+14
- 1.7	×1 • 75	21.75	21 - 96	21.96	21.78	21.78		2 02	2: • 81	21 • B -
2072	0.0	0.0	0 = 0	0 - 0	0.0	0-0	0.0	2		0.0
FE203	C 0	•	0.0	1.70	0 0	0	0 = 0		26 10	02.04
FE J	26-30	25.25	26.37	24-19	20.11	50° 5V			0.41	
DN0	0.41	0.41	0.40	0.0	0.00				0.00	0.85
0 7 1	10.57	10.97	11 - 58	07 • 7 V	11 • 6 2	11003				
[& J	0) 	1						17	0	0.0
N IN	30			0	•••	0	0+0	1	0 • 0	0 • 0
	04	14 00	00.76	00.00	20.03	00-10	99.45	34 00	0 - 66	49+25
	20.02	22.0								
NU UXIC NS	24.	24.	• •	24.	24 -	24.	9 (g 1	• 2 -	2 4 •	- 10 -
	419-4	5.890	5.913	5.688	0.916	5.892	2.575°C	5 ° C + 1	5.913	5= 444
	001	0.001	0.0	0.0	0.001	0.001	100.0	June (0.031	00.0
41		3.946	3-972	3.935	3.967	13 . 35 .	0 : · · ·	05× = 5	3.90	1 - 200
1	0.0	0.0	0.0	0.0	0 . 0	0.0	C • C		0.0	
Fr. + +	0.0	0.212	0 0	0.202	0.0	197.0	0.0	2.24		11 10 10 10 10
FE++	3.468	3.241	3.303	3.167		0.1.	2	2 2 2	0	
MM.	0.054	0.053	0-052	0.052	0.044	440°0				104-0
A G	2.520	10.00	2.533	2.582	2 = 600	5 11 C - V			2000	0. 5
CA	C . 1 . 3	0.194	0.183	0-168	0-102	0.10				0.0
124	00.00	00	00	00	00		6.0	0.0	0.0	0.0
	201 2 4	350 0	01.41	7.0.91	000-91	10.033	5 1	650-9	D 096	10.01
ICIAL NS	1 4 10	0	10101			and the second				
X- E	0.5751	0.5530	0.5061	0.5500	0.565	0.500 8008	192 0	7561.5	0.580	0 1 2 0 0 1
FEJ/NGU	2-4521	2.3017	40.75 - 2	500 Z		C = DIA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-1002	1.3320	1 3055
AG/FE	1.3701 C.7267	C 7742	0.7563	0.8152	0.7688	0.8166	0 303	C . / C . 7	C . 723C	C. 7563
X T AL COX	0 - 0	0-0	0-0	0 . 0	0 = 0	0 = 0	9.3	1 1 1	0 - 0	C = 0
X-AL-TE T	0	0	0.0	0.0	0 . 0	0 - 0	0.1	1	0.0	0
X-AL-4	0.0	0*0	0-0	0 = 0	0=0	0.0	0 - 0		0-0	
X-46-41	0.4041	0-4164	0.4170	0.4311	10 - 4 I G	0.432		N 1 1 + + C	0.5570	
X - FE - 42	0.00				- 0 2 0 2 0 F	0.031	0.07		0.0237	C 0 10 3
X-CP-4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-								
4-NG-2	0 . 0	C C	0 - 0	0	0.0	00	0.0	2.0		0.0
X-FE 2	00	00	00	00	00	00	0.0	deal	0 0	0 0
			0	0	0-0	0-0	6-0	1.0	C - 0	0-0
A-ENGLAS	0.0	0.0	0.0	0.0	0.0	0.0	0 0	0.0	0*0	0.0
X-ANGATAT	0.0	0.0	0.0	0-0	0 0	0.0	0.0	1.1	00	0
V ALDERE	0 0	0-0	0.0	0.0	0 0	0-0	C the L	1.4.1	0.00	2=2

E 4 cont-

PABLE 2 + 1 con						2	L	- +1		5 1
		61		(2		30 EA	C 4 - 61	3 . 42	30.43	54.15
SIJe	11.6	39.11	35.35	36.00	10 01	10.0	0-0	 	0.03	20.07
T i J2	0.0	0.00	1.90	21 - 90	22 .04	22-04	1 × 1		0.0	0.0
	10.0	0.0	0.0	0.0	0.0		0	0.5	0 • 0	20-1
- N 6.0 C	0.0	1.02	0.0	1.03	0.0	27.72	11.50	2.00	29•28	23.37
	26.06	25.34	27.81	ZD • 02		0.49	0.57	4.57	0.00	
MNC	0. 41	0.41	14.0.		0 45	9.45	1.21	12.5	0 A + 12 + 12 + 12 + 12 + 12 + 12 + 12 +	- C
10	10.46	10.86	10.14	1.22	1 25	1.25	1.13	1.19	0.0	0.0
C+ .	1.18		1.00		0 0	0.0	0*0			0.0
NAZ -	0.0	00		0.0	0 * 0	0=0	0 * 0		0	
VVC		20 001	100.01	100-21	100.65	100-76	10.00	077	100.42	-C. JD
TOTAL WIX	120 . 021	100.12					. 10		24 .	241
SALE ALL	. 6 .	24.	24.		24 -	• •				101 -
and and the local				- 046	5.07A	5.910	1,154	1+2+1	5 537	
	64× = 1	5. 334	5.901		0.001	0.001	0.0	2	0	
11	G. C	0 0	10000	946.5	3.937	3 • 9 8 4	626*1	0/2.	1000	0-0
81.	0 10 11 11 11	2 3 9			0-0	0.0	6 * 1			C
(17)	0.0	0.0		0.110	0.0	0.145	0*1	1410 C		1.655
FE FEE	C • D	0 110	3 I.		3.711	3.505	5 . 5 . 1	1100		
10.00	2-417	100	0000		0.004	0-064	1.775	0.10	202	
110	0.053	0.00.4	100.0		2.165	2.160	565 . 1	260.		101.0
nc.	6 - 46 2	2.400		0.200	0.206	0.205	£6.°0	15.7.0		0.0
54	0 - 192	C. LYC		0.0	0 * 0	0 . 0	C * C			0.0
11.4		0000	0.0	0.0	0*0	0 • 0	0.*0			
				000	10 9:	16.024	0.755	210.013	J 6. 05	020-01
TOTAL LCLS	16.038	16.019	1 5*059	10.020	70.07					.0
		0.770	0-6066	0.5485	0.6314	0.6221	9.5.58	5222	C = 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	1093
A-FE	0-512		2 74 80	2.6568	3.0529	2.933	0617.5		100	7 85
LEVALO	1 1 2 2	1 . 1006	1 5421	1.4009	1.7.32	1.6461	100020 V		0.5447	L.5023
5		C. 746C	0.6485	0.6767	C.5837	0 • 00 / 2	1			
				0	0-0	0 = 0	0.0	564	0.00	
G X- AL CPA	C . O	0.0	0		0-0	0.0	C * U	0.41		
X-AL-IE F	0 - 0	0.0			0.0	0 • 0	0 . 0	2+0	0.3368	C. 3. 35
X-AL-MI	0 - 0	0.000	0.0	0 - 7 HAD	0.3524	C . 3609	0 . 3798	001040	0.194	(· · · · · · · · · · · · · · · · · · ·
X-MG-ML	0 - + 0 20		D S S D S	0.5726	0.6037	1:565.0	0.5157	2	01010	F - 0 - 0
X FE-WL	0 .000		0.0326	0.0133	0.0335	0.0343	0.0423	1		
X CA-41					0	0.0	0.0	2+1	C • C	C=0
X-MG-M2	0 . 0	C = C	0.0	0.0			C • .	2.0	0.0	0
	0.0	0 - 0	0 • 0	0.0		0.0	0.0	0.1	0.0	0.0
X-CA-M2	0 = 0	0 = 0	0.0	0.*0					5 0	0.40
2 1 0 0 0 0 0 0 0	0.0	C . O	0.0	0.0	0 * 0	0.0	0-0	T * 0 T U	0.0	0-0
A ENCLAR	0-0	0*0	0.0	0*0	C*0	0.0	0-0	0.0	0.0	0.0
X-ANGATE T	0 0	0.0	0*0	0		0.0	0.0	C = J	0.0	0=0
	0 0	0.0	0 0	0.*0	0 0	> > >				

T-LL - + CO	5414					4.9		9		02
		00	2		1		1	~		0
2	1	10 26	344 74	3.0 - 7.4	「「「「」」	00000	33.60	00	00.0	00.65
					0-02	0.02	0.0	10 - 01	0.01	0.0
21 4			100	00.00	11	HP-10	2 4	11	21 . 75	2: • 79
			100		0.0	0-0	0 * 0	0.	0.0	0.0
	20				0.0	1.12	0 0	14.	C • O	0.91
11		01 101 102 100 100 100 100 100 100 100 1		26.00	20.00	25-68	10.00	• 41	27.67	E2+92
	×c•17					1.40	0.51	4C	C . 4 -	0.4-
ONE					11 - 14	11.14	3.60	00.	10.24	0 = 2
201	200	2. 2.	P	1 . 37	90.1	1.26	1.5	67	1 0 M	1.3.
C ALL	N	VC I				0.0	0-0		0.0	0.0
Ni cl	0	0				0.0	0.0		0.0	0=0
X Z C	C • 0	0.0	0.							
TO AL ATS	10.001	100.5	100+01	0010	11.00.1	00.92	01-10	- 7	00 - 52	166 . 6 -
	-	40		24.	24.	34 .	. 72.	• •	2 .	1000
NC CAVCENS	• 67	• • • •	9							5
		210 · 2	5.942	5.9.7	5.900	5.952	24/12	· · · · ·	5.977	0.00
	100 0	0000		0.002	0.002	0.002	1.00.1	3.001	00+00	00.0
	200		3.982	3. 371	3.932	3 .922	1.983	3	166.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			0-0	0.0	0 • 0	0 - 0	5*0	0		
2 1	20	31010	0-0	0.128	0.0	0.127	0.0	2-010	- 1	
				3-326	3 . 336	3.250	-35	3.702	3+ 2 + D	011
				10010	0.051	0.051	1-0-6	120+0	0. 1	C. 02 /
2					01210	2.513	161.		5-1-15	2 + 3 30
5	007	200	00.0	0.205	0.205	0.204	1-115	3+2.810	0.012	0.21-
2	0000		10		0.0	C = 0	C+1	J	0.0	0 - 0
1 2 1	200		0.0	0.0	0.0	0.0	CTE	0	0.0	0-0
2								4.0	6 A67	16-010
JUTAL LAS	16-649	16.016	16.004	16.021	10.004	16.021	+ ZD + G1	2020		
	00000	1 2 0 0	0000	0.5417	0.5734	0.5040	9.55U7	Vicuus	0. 026	1410.0
	10.00		0.5730	2.4783	2.3950	2.30.9	3.4.395	1.1.460	k 021	2-0-21
	1 66.20	1. 207	1 4444	1 3906	1.440	1.2934	: 9302	7001 ···		10*0/0
G/FE	0 C 10	0. 576	0-6123	0612 °C	0 - 7 4 4 1	0.7731	n.5 BI	14-1-47	C + C 2 5 5	6.001.5
	0 - 0	0-0	0 - 0	0 - 0	0 0	0 0	0 • 0	3 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C = 0	0.0
		0-0	0 0	0.0	0.0	D C	C * C	3+0	5	30
		0	0.0	0.0	0.0	0 0	0.0	0+1	0-0	0.0
K-Mur Al	0.3704	0-3705	106E.0	1662.0	5904.0	0 4175	0.3263	1-1-1A	0 × F 0 × C	
		0.5725	0 - 5643	0.5550	0 5495	0.5400	0.6293	1010-10	0010-0	
	6040.0	0-0416	0.0367	0 0375	0.0333	0 0 10 0	0.0323	10-0-5	5 7 2 0 3 7 2	0 - D - D
			~	0.0	0	0-0	0.0	3 . 4	0.0	C.J
X-BG-BZ	0 - 0	0.0						2	0.0	0.0
X - FIG-4		30	0.0			0 0	0.0		0.0	C = 0
ZHING	0)						
A-ENSIATIT	0.0	0 * 0	0.0	0.0	0.0	0.0	0.0		0.0	0-0
A-THEAJL II	0-0	0.0	0*0	0*0	0.0	0.0	0.0		0-0	0.0
A - ANG ATT IT	0*0	00	0.0	0.0	5.0			17	0.0	C • 0
H-ALPSIC	0-0	0 - 11	2.0	2.0	N 0 N	2				

						3		1- 12	l	(
		r		1					0 0 0	20 - MO
-111-	00.00	33.50	34-1	39.41	20.0	30.01	01			
	0-01	0	0.02	0.02	0.02	0.02	0+6			
100	01 01	22.30	22.16	22.16	22.24	22 . 24	21+90	-	5 U U	P to a to
1000			0-0	0.0	0.0	0.0	0 = C	- 7		
100				0 . 75	0.0	0.82	0.0	4 = 4 3		11.0
	010		26. 3	59-02	26.29	25.55	26.47	S + + 1	• •	10 ° 0 1
	4 P 1 P 1 P		1-0	0.41	0.38	0.33	0.33	() T = T		0 - 3/
20			11.19	11.19	11-26	11.06	10.61	1.1.02		
				1.15	1-14	1.14	.15	0 - 0 -	01.0	C 1 • 1
	•	4		G	0 . 0	0.0	0 • 0		0.0	-0
210				0.0	0.0	0.0	0.0	() = ()	0 • 0	0.0
0									and the	
10 FAL	11.101	101.13	100.07	100.75	1 30 - 2	00.28	L Balle	10 * 21	10×101	101. 101
								- 4	24.	2.46.2
SNJOLD DI	24.	24.	- 6 2		- h -		n 7	4		
	0	200	5 37A	E. OPA	5.013	5.941	5.329	5. #12	5 96	5.940
10						0.000	0.001	10-0	0-001	C . 001
11	100.0	100 0		160	1000	3.287	4.01	000 V	3. 981	1.973
AL		106 5	207.00	200				3.	0.0	ú. ů
Ch	0-0	0 0	0.0	2.0	20		10	7. 41	0.0	6.2.5
11	C-0	0 021	0-0	080.0					020.1	
11	3.301	3.275	00 10 10 10 10 10 10 10 10 10 10 10 10 1	3.250		3) / 2 (0 (1000	10-0
27	2.047	0 047	0.053	0.053	540.0	10				
10 C	2.505	2.50E	(C)	2.524	2.511	2.507				
	C . 1 84	0.184	0.137	0.186	0.100	0.180	5 6 T • C	24 1 0		
1.2 10	0.0	0.0	0.0	0.0	0.0	0.0	0 • 0	- C		
Y	0.0	0*0	0.0	0.0	0.0	0.0	0 • 0	n•		2
	0.00	16.000	16.004	16-014	10-04	16-016	10.040.	15.011	16-015	15.000
INTAL ILNS			0							
1	1443.0	0666	0.5630	0.5626	0.5715	0 = 5645	0.5331	0.22.10	C . 50 10	C 5565
A DESCRIPTION	AAAF - C	2 32 94	2.3530	2.2923	2.3770	2.3101	2 4 9 2 5	2.341	11 2.02	2 - C - Z - Z
FILLS	1.3156	1 . 3074	1.3204	1.2864	1 = 33 39	1.2964	196.2 .	1.22.01	101201	
MG/FE	u.7601	0-7050	0.7573	0-7774	0 - 74 17	0 - 7 7 1 4	0 1 20	0+1+1	C = / D / 4	
	6			0.0	0 - 0	0.0	0 . 3	U	C 0	0 = 0
	200	0.0		0.0	0.0	0.0	C*0	3-3	0 0	2
K-AL-MI	0	0	0 0	0.0	0 • 0	0.0	0*0	0+3	0.0	0.0
X-MG-WI	0 1 . 3	0.4168	0.4141	0.4200	0.4115	0 - 4 : 5 4	000 0	1707-0		
	4949 C	0.5+48	0.5467	0.5402	0.5495	D.5.24	0.559	1011111		
X CA-41	0 0 04	0.0306	0.0306	0.6310	C = 0305	0.0310	0 * 0 3i 4	1200-0	C* C 2 0 1	
				0.0		0-0	00	24.4	C = 0	C.0
N-RG-RC	0.0						0.0	1.1	0 0	0.0
X-FE-4.	30	20				0 0	0 0	0.1	C . D	0*0
	2	2								~ ~
A-ENSIALIT	0.0	0.0	0.0	0 0	0.0	0+0	3+0		0.00	NEO UNE
A-TREWILTT	0.0	0.0	0.0	0*0	0.0	0.0	0.0	 	0-0	0.0
X-ANCAINIE	0.0	0	0.0	00	20			200	0-0	0
X-ALEITE	0.0	0 0	0.0	0 * 0	0*0	0.0				

ELE 2 - CODI

				60	1	78		62		80
					10 11	20.07	37.53	37.53	37 = 71	37
[12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10-0	10-0	10.0	10.0	0.01	0.01	10-7	0 05	0.0
v L	17.1	21.93	21.99	21.99	21.04	21.44	21.70	2 7	20 .2	
	0-0	0*0	0.0	0 * 0	0.0	0.0	0.0			-87
1	0.0	0- 5¢	0.0	1.25	0.0	[] 	10.01	00000	18.33	20.02
E 1	26.43	25.56	10.79	25.00	52°17	80°C7			0 48	0.44
	0 - 4 0	0 * 0			00.40	10.46	3.47	0.47	9.61	- 6 = 6
2	1 . 20	33.46	2001	1.17	1.18	0	1.13		1 . 32	
		20-0	0.0	0.0	0.0	0*0	0=0	0.0	00	
	0-0	0.0	0.0	0*0	0 . 0	0.0	0°C		0.0	
ATSL ALE	IC++DI	:00.60	53.54	12+4.8	22-25	99=66	0074.8	4 a = 03	00-14	17.44.4
CAYGENS	24.	24.0	24.	24+	24	24 .	27	+++	24 e	+ 2 1
				5 01 2	CLU 3	5.877	5.846	5.413	5.892	3. 865
- mail	02.	0.0	10000	1200	10010	0-001	100.0	T.aut	C=002	0.062
	100.001	10-1	100-0	3.979	3-992	3-975	1.0(3	1.447	3.992	3.973
10	0-0	0-0	0.0	0 - 0	0 = 0	0 . 0	0.0	0.0	00	
	0.0	0-110	0*0	0 - 1 44	0 - 0	0.201	0.0	Can di	3.702	3-256
	358	3.240	3.44.5	3.293		15.5		City of	0-064	0.003
7	0.051	0.051	0.053	0.053	00000	0.000	0.000	12 mar 1	2 238	2 - 23
	5 4 2 4 2	20		199-2	100	10110	003	E 0	0.221	0.120
4	0.189			V- 0 - 0	0.0	0.0	0.0	0.0	0=0	0-0
-1	***		0.0	0.0	0.0	0 " 0	5.4	0.0	0 • 0	0
AL CNS	1 = - 655	16.018	16.072	16.024	10-101	16.034	48645 C	10. 32	10-110	030
	0.5404		1 ABC-0	0.5737	0.5936	0.579-	0.0000	0+17-1	6+5133	1 1 0 C 0
- FO	20010	2 701	2.5028	2.3940	2.6052	2 .4562	3 . 1 50 2	3.3772	2.9 80	E 1 13
EVHG	1. 3172	5 4 4 4	1.4045	1.3457	1.46190.6840	1.2783	0.1010	75 - 2 - 7	C = 0 0 = 2	0.6427
2110	VACION	1 2 2							0	0 - 11
- X- AL EFT	0 . 0	0*0	0*0	0.0	0.0				0 C °	0.0
C-AL-TLT	0.0	00		0.0	0.0	0.0	0.0	0.0	C • O	0 0
C - AL - WI	0.4147	0 4223	0.3992	0.4088	0.3834	0.4025	0 = 2201	3.220	0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	12.5.0
	0.5452	0 5375	0.5607	0.5501	0.5693	0.5548	5 12 0° 0	3.3461	0.0355	C=0-03
11-03-3	0 .0 367	C.0313	0.0314	0.0341	0150.0			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1 - M(M 2	0 - 0	C . O	0.0	0 • 0	0.0	0.0	0 ° 0	2	0.0	00
(-FL-42	0-0	0.0	0.0	0.0	0.0	0.0	0.0) = C	0.0	0.0
X-CA-42	0 - 0	0 • 0	0 * 0	0		2				
11 LAISIT-V	0*0	0.0	0.0	0*0	0*0	0.0	0*0	0.0	0-0	0.0
A-THENTLIT	0+0	0-0	0*0	0.0	0.1	0.0	5 0	111	0.0	C • 0
ANUMIP I	2+ 5			010	0.0	0.0	0.0	1.4	C * D	0*0

turt Alexanta I.

			L	82		83	L	8		85]
			02 21	17.70	57.03	37.99	31.72	37 . 72	37.67	7 a 8 7
2			20.02	0.03	0.0	0.0	0.02	Shar	0.01	0.0
	10.0	10.00	1.68	21.68	21.66	21.66	21.50	21×24.	21 . 33	
1	10.49			0.0	0.0	0.0	0.0	U=0	0.0	0.0
100				2.07	0.0	(1) (1) (1)	0.0	10.7	0.0	
		10.01	10.94	20135	27-01	26.39	28.31	びかっちや	31.54	30 °C
	200 20	01.00		0.45	0 · 5 ·	0.44	9.4 V	64-0	0.65	0
		12.01	9.97	5.97	66-6	66°6	3.8.6	100 · ·	7.29	- U = U
		1.16	1.23	1.23	1.1.1	1.17	1 .21	1202	510	
			0.0	0-0	0.0	0.0	3.0	0+2		0
	00	0	0.0	0*0	0.0	0.0	0 = 0	0-0	0 • 0	0 • 0
	0 · · ·	C. 14	100.36	10.00	97.00	99.22	11.0	94+32	5 - 6	100.00
HITAK METER	0 1 e s p									4
ND DAYOENS	240	24.	24.	2 - =	24.	24 .	* **	- 4 V	54 .	
		1 4 4 4	S. RHS	5.855	5.918	5 • 096	5.395	5.400	5.957	
				0000	0-0	0.0	0.902	0.022	0.001	.0.3.0
		3.980	3.980	3.960	3-978	3 . 903	3.961	3 . 5 4 1	3.956	2
ŧ		C. 0	0.0	0 0	0 = 0	0.0	0.0	0.0	0.0	
		0.191	0.0	0.241	0-0	0 .144	0 - 0	242.0	0.0	0.02
	1.508	3.314	3-674	3.414	3.643	3.425	3.702	0 7 2 .	4 • 1 4	0 · · · · · · · · · · · · · · · · · · ·
	100.0	0.031	0.050	0.053	0 · 0 > 8	0.058	0 - 365		0.00	
	2.4.7	2.415	2 31 -	2.302	2 319	2.311	2.274	E 12 - E	1001	1.00
		261-0	0.205	0.204	0.135	0 1 35	0-503	207*0		
	0 0	0.0	0.0	0=0	0=0	0.0	0.0	2.		
	0.0	0.0	0.0	0.0	0=0	0.0	[, a [C C	2	
ILLAL LENS	1 C - C + 1	15.030	16.121	16.040	16.043	160.01	16-121	0+0-5	16-064	10-02
						0 6070	121-0	6	C.7057	C-7032
X-FE	0.5311	6-5781	0.0130	5 AC . 0		0.6A15		1000.5	. 356	4 2217
FEO/Mai	2.5756	2.942	0.72.2	0 +0 - 7		LCAL.		1202 1	C. 8447	-3 9.
FE/MG AG/FF	0.019	0.7237	0.6258	0.67+3	0.5401	0.6746	0 193	claC	C . A C 91	C 4-21
	0	0	0.0	0.0	0-0	0 * 0	0 • 3	3 = 4	C = 0	0.0
	200		0.0	0.0	0.0	0.0	0.3	2+0	0.0	200
X-AL-L	0-0	0-0	0=0	0.0	0.0	0*0	0.0	0.0	0-04-0	0.0
X-MC-1	0.3925	0-40-4	0.3701	0.3350	0-3743	0 3859	0 • 3003	3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	0.6766	0.6577
A-FE-1:	0.5673	0-5542	0.5876	0.5710	0.5846	02120	0160.0	22-7-0 	0.0354	0.036
X-64-1	C 3-20	0.0325	0.0329	0 • 0 3 4 2	0-010	C7C0.0		3		
C M T D T A	0-0	0.0	0.0	0 . 0	C = J	0 * 0	0*0	7	6.0	0.0
CT LU GTX	0-0	0.0	C • O	0*0	0.0	0*0	0.0	1	0	
X-CA-42	0.0	0.0	0=0	0.0	0 = 0	0 * 0	0*0	0 = 1	0	0
A - Coucie 7 1 1	0 0	G. 0	0.0	0.0	0*0	0*0	0.0	5+4	C. C	C.C
A-TRENL	0.0	0-0	0.0	0.0	0.0	0*0	0.0	0-0	0-0	010
X-ANDATHIT	3* 0	0.0	0.0	200	0.0	0.0	0.0	0.00	0.0	0 0
X-ALHITF	0 .0	0.0	0.0	U.SU	200	>=>				

TAEL: 2 4 CONT

		- 8								
1112 AL 202 AL 202 FFE 203 AN AN AN AN AN AN AN AN AN AN AN AN AN	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 10 10 10 10 10 10 10 10 10 10 10 10 10		000000000000000000000000000000000000000				000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
TO LAL	97 = F.s.	- 3° 71	a.a 0.	0.0	0.0	0.0		0 0	0 * 0	0.0
		10000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	100000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
SVII IVEL		15-955	0×0	0.0	0+0	0.0	D*0	0.0	0.0	0.0
X - F E X - M F - J/M M - / F E	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0055 2.7352 1.0345 0.6515	0000	0000	0000	0000	0000	1113 *** 8888	0000 0000	0000
2 • X • AC • CPX X • AL • TE T X • AL • TE T X • AG • 43 X • F E • 41 X • C A • 43 X • C A • 43		0.00 0.3764 0.3764 0.031	000000	000000	000000	000000	~~~~~~ ~~~~~~	100000		940000 •••• 4940000
X6 . #2 X-FE- #2 X-CA- 42	700*0	0.00	0.00	000	000	000	0+0	777	000 000	000
A-RENGLIT	0.0	0°0 0°0	0.0	0.0	0.00	0.0	0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·	000000000000000000000000000000000000000	0°0 0°0

142.6.2 2 w

TABLE 2 5										3
		2	3	44	5		2		2	01
21.12	90.00	1.6.	49.60	9.34	0110	9.36	49.00 0.01		9.71	100
1102	20.00	3.96	11.55	41.4	13+00	3.92	33.80	10 • •	4 ° V C	0.00
- 4203	0.0	0.0	0.0	00	0.0		0.0		0	0 0
F M 2 C 4	0.0	0	0*0	A .01	1 V * 1	A . 26	4.29	+ 7 B	3+31	10
	0.0	10-0	0.0	0.0	0.0	0.0	0.C		0.0	
	11.38	10.97	11.32	11.10	11.52	94.11	10.11	0		10-0
C+J	0.02	0.01	10*0	0.0	0.0		01.0	00	0.07	0.07
NAUC AFO		50°0	00.0	.0.0	10-10	0	0.0	0-1	0 • 0	0 0
1 184 w14	19425	25°57	30 66	00.01	57.87	00°66	39.75	G+ " f .	19-66	29×54
NU C. GENS	18.	1 E .	• •	18.	13.	18.	10.	10.0	0 () ()	-9-
				1 0	013	050	4.935	004.4	6 4 9 4 3	++ 36
- 19	100 mm	***	10.5*6			005	100°C	100.0	0.001	100-0
prod .	10		1.972	4.02B	0-0-0	002	4.013	0-0-1	4 0 0	3 980
- 0		0.0	0.0	0.0	0.0	0*0	0.0	5.00	0.0	30
FE	0 - 0	0.0	0.0	0.0	0.0	10.0	1.45.0	00220	0.325	17 0
5.00	C . 343	0.407	0+377	0.403				0.0	0.0	0 0
NT	0.0	0.0	0.00	0.0	1.7.0	1.717	1.737	1201	1.753	+L- 1
	10/01	1.000	0.001		0.002	100"J	0.001	0.0	0.001	0-0
< < <			0.010	0.025	0.036	120-0	3.929	010-01		100
		11.048	11.041	10001	11.033	11 .054	11.957	1	11.054	11 040
ISTAL TONS	0000						0 1700	5	C.1565	C-1973
X-FE	0 . 635	0.194.	0.1421	0.1940	21.1.0	0.0		1 3 10	0.0	C = 0
			000	0.0	0	0*0	0.0	0.04	0.0	0.0
AGIFE	0.5	0.0	0.0	0.0	0.0	0*0	6 • 3	1	2	2
X D J IV IV	0 - 0	0-0	0.0	0.0	0 • 0	0*0	0 • 3	31	0.00	0.
K-AL-TET	0.0	0.0	0.0	0.0	0.0	0.0	0			.0
X-4L-11	0 . 0	C • 0	0.0	00	00	0.0			0.0	0.0
17-97-X	0.0	0.0	0*0				0.0	1.0	C C	C . 0
X-FC-41 X-CA-42	00		0.0	00	0.0	0*0	0.0	0.0	C . D	0*0
			~ ~	0	0.0	0-0	0.0	Geo.	C . O	0*0
X - MG - 42			0.0		0.0	0.0	0.0	0.4	C = 0	00
X-CA-42	0*0	0.0	0.0	0 .	0.0	0=0	0.0	1.44	0	0.0
A-ENSIAIII	0.0	0.0	0.0	0 0	0.0	0.0	0.0	0-0	0-1 1-3	0 0
A-TREMILIT X-ANGAIFIT	0.0	0.0	0.0	0 0	0.00	00	0.0	2+0	0.0	300
X-ALEITE	0.0	0*0	0.0	0.0	0.0	0*0	C		2	

303696669999	a. 2	00000000000	10000	122223	000	0*0 0*0 6*0
	0*0	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000 000	0.0
00000000000000000000000000000000000000	0 0 •	0.0000000000000000000000000000000000000	3 • • • • • • • • • • • • •	1)11,10 	333	3 7 3 • • • • • • • • •
00000000000	0*		0 000C	000000	000	C - C - C - C - C - C - C - C - C - C -
*********	0.0	000000000000000000000000000000000000000			000 000 000	0.0 0.0 0.0
	0.0	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0	00000	200	0.0
	0 • 0	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000	000	0.000
00000000000	0 0	000000000000000000000000000000000000000	0000	000000	0000	0.00
100000 100000 100000 100000 10000 10000 10000 10000 10000 10000	99°36	M N U 000	11.074 0.1790 0.00 0.00	000000	000	0 00
11 11 11 11 11 11 11 11 11 11 11 11 11	12.05	40m0n00-000	1.000	000000	000	0.0 0.0 0.0
	1411			• X - FL C + X • - AL - TL 1 • - AL - ML • - AL - ML • - MC - ML • - FL - 41	1-Mu-1	A-LNSIATIT A-TREMJL X-ANGTT X-ALGIT

TABLE 25 (cont. 1.

TABL										
			15	a					2	10.30
	3.0<	30.21	30.72	20125	л (П ()	0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	5 - 37	1144	:0	- 0 · - 2
1	3-00	2.93	10.07	10+0 · · ·	1914	6.57	2.02	7+20	17.0	C = 1
L 2C	2++2	17+32	0.0	N. C.	0.0	0.0	3.6	11-12	0.	
G 23 -	20			0.0	0.0	0.0	0.0	1.4.1		1.5.1
r 2 -		200		8.69	0 * * 0	12.20	3 - 0			0.0
с с 1	200		0.02	0+01	0.01		20012	11.12	10-30	2. 9
	54.4	17.84	20.09	16+90	10-20			2.4	0.0	10-01
2 4	0.0	0-0	0.01	0.0	2.00		0	12.42	031	0.45
A_0	0.18	0.50	0.0	0.430			10	1045	9+25	0
لعا	4 - F CJ	* B * /	0	N - + P	1				0	(H -
114 111	14 × 70	~3. O¢	91 * 28	03*20	04.55	· 2 · 0 ·	5.0	л Ч	~	
			0	20.	22.	- 53	17	÷ 5	1	1
NI CATARN	422	1991	L						1.261	017 . 010
	- 640	5.5A0	5.441	0.440	5 . 32		0.440	0 C 0 C	25.	0.45:
	100	C 322	3.075	0.395	0.515	0 440			.00.	3 . 43
	90	2 982	3+242	3.077	2.0/d			0.0	O.YO	0.0
1.1	3.0	0=0	0.0	0*0			1.0	0.0	3.0	0.0
	0-1	0.0	0.6	0*0		1 500	59 1	0 * 15 5 -	0.896	0.9
11	1.264	1-070	0-8:22	500*1	1.100		00° C	- n 1 +	3.90	0.0
	0.0	0=0	20010	100.0	107.0		203	3.020	4.07	3. 1.
	3.001	3 . 862	4.4.37	2+747		500.0	0 0	0.0	0.0	0.002
1.4	0.0	0.0	9 • 0 0 5	0.0		0.067	0.035	0.140	0.090	
4	0.051	C = 15 5	0.178	0.100	1.720	1 715	1.83	1,710	1-75/	1 . 75
×	1-107	0010	7 3 ■							1 V G D M D M
SALL ILAS	101010	15.386	15.*04	15.518	15 525	13 44	5=401	220 5.	1 0 4	
			0 643	110000	0.2.56	u . 278	9. 129	C d 7 1	C 180	
N-FC	0.2500	0.2150		0-0	0.0	0 0	0.0			200
FE WHAU	0.0			0.0	0.0	0-0	0.2		A 3	4 1 0
ш с ш с	0.00	3-6291	5 3997	344475	3.0711	2.0509	4 100 · ·		-	
					0	0.0	0.0	2+1	C.+ Q	0-5
Z .X-AL CPA	0-0	0	0.0	0.00	0.0	0.0	0.0	212		30
X-AL-TLT	0.0	0.0			0-0	0.0	0.0	1+0	200	
X- AL-MI	0.0	30		0.0	0.0	0 • 0	0.0	7+0		
IN-DW-X	0	20		0.0	0-0	0.0	0 0	7+0		
H-FE-H		50		0.0	0-0	0.0	0-0	0.2	C* C	2
K-CA-41	3.0	2 2							0.0	C . O
X-MC-W/	0.0	6 - 0	0.0	0.0	00				0.0	0 = 0
X-FE-42	0*0	0.0	0	0.0		0 0	0 . 0	0	0.00	0.0
X-CA-M2	0.0	0					0	7.4.5	0-0	0 = C
A-FNSIALLI	0.1	0=0	0.0	0.0	0.0	0*0	0.0	0.5	0.0	0.0
A-TREMJLII	0+0	0.0	0*0	0.0	0.0	0.0	0 0	1.00	0.10	30
X - ANGATH	0.0	200		0.0	0.0	0=0	0 0	0.0	C=2	2
ALFITE	U.s.U.	2=2								
TADAT & A LOUI	+									
----------------	--	---------------	--------	---------	--------	--------	---------	-------------	-------------	------
		10	11	14	15	10	121	10	2	
		16	2		7. 7	11.00	10.61	144 20	15.4	10
21 12	00.01	35.96	30.15	07.0		10.0	3.73	20 +T	r = 0	10
1 12		****	17.00	17.25	46.69	17.33	1	10.01	0.0	0.0
C 2C -	0.0	0.0	0.0	0.0	0.0	00	0.0		0 4 0	0.40
1		0.0	0.0	0.0	0		HW-C -	1	14.09	0.0
	7.10	7.06	7.91	11 . 40	R	10.0	5.0	10.01	0 = 0	0.0
	0.0	0.0	0.0	0.0		17.09	14.14	四日日子に	12.40	0.0
0.0	8-23	10.35	17.19	5 0 0		60.0	0.0	1.1	0-07	0.0
CA3	0-0	0.01	0*0		21-0	0.28	9.17	D.T.a.a	0.1	* 0
No 1	0.40 0.40	0.44	0**0	0.0	04.6	6.21	6		n d • 5	
C V		C1 00	21.46	31.0	42.45	60°68	10.24	14.034	95*26	
KIINT	- Z = Z -						201	220	22 -	
NO ONICENS	22 -	22 .	274	22.	• 7 7	• 77			21. 0 M	1961
			6		5.400	5.276	100.00	*F.C.*C		0.0
o I	527	2/2.0	108-10	0.36	0.437	0.240	(24 °C	10000 m		0.0
1	100	000	3.005	-115	2.990	3-170	11		0.0	0.40
		0.0	0.0	0.0	0.0	0.0		2.0	0.0	D×0
11		0.0	0*0	c•0	0.0	0.2	ODE -	See. 1	1.80:	0*0
	0.878	0.874	696.0	1.468				10 0 . 0 21	100 -0	0.0
12	0.003	0.0	0*0	100.0			3.1.5	34250	2.827	31
212	4.031	4.090		10100	10	0.015	0.0	0-1	0 * 01 1	30
A	C = 0	0.02		0.040	0.035	0.084	6.0.0	50000	100-0	10.0
A	2 • 1 × 2	1.638	1.055	1.722	1.801	1.232	9+6	10.05	010	
			19-27	15.522	15.251	15-555	-5.53!	15.507	日間ゆきの「	0.
10) - CNS	0/0- 1	10.00	2			0.000	0 2300	0-1010	C = 389 -	10.0
* - + -	301 - 5	C.1760	0.2052	600 ° 0	0 0 0			0	0-0	0.0
FEO/M	0.6	0.0	00	200		0.0	0.0	7.0	C . J	0.0
E/MG	0.0 0 10 10 10 10 10 10 10 10 10 10 10 10	0.0 4.6816	3.8726	2.2905	1 3283	2.5190	0066" .	1222-2	0 0 0	
1		0	0.0	0 - 0	0 • 0	0 • 0	0 0	2+2	0.0	0.0
			0.0	0 0	0.0	00		110	0.0	0.0
	0.0	0.0	0.0	0 0			0	0.0	0 ° 0	3*0
X MC - 41	0.0	0.0	0.0	00	•		0 0	0.0	0.0	30
X-FE-41	0.0	0.0			0.0	0 - 0	0*0	5.6	-	2.0
X-CA-41	0	0.0	0	2				9:1	0.0	0*0
A - MC - M 2	ن . ت	0=0	0.0	0-0	0.0	00	6-0		C . D	0.0
× FE 42	0.0	0.0	0.0			000	6	0.2	0.47	D+0
X-CA-42	0 = 0	0 • 0		0						0*3
A-FNSIATI	0 - 0	0.0	0.0	3.0	0.0	0.0		0.0	0.0	1 11
A-TRE-JL IT	J.C	0.0	0.0	0=0	0.0	0.0	0.1	2-2	00	240
X-ANC-IF	200	00	0.0	0 0	0 0	5*2				

*161 - 2 F					2		14	•		
THEOREM &		-	u.				ani na l	Turning T		
	himtica	cordierite	cordierite	sapp airine	6apph	6p1ne	ran rds		0	0.0
	AF . 7.	44.23	49.38	12.40	12 65	0.01	0.0		0	0-0
1 12	1.49	0.0	0.0	20.02	20.02	6.1.22	54.24	6 34	0.0	0.0
L2C3	9 . 34	34.10	12-96		0	0.0	0=0	0.1		
E C2 8	0+0	30		0.0	0 0	0 . 0	0.0	3		
FE2-3	0.0	207		60-9	1.43	4.61	19.4.61			0.0
5		10-0	0.0	D * 0	0.0	40.00		44.7	0.0	0.0
NG		11.60	10.93	15.89	15.40	1 C = D =	10.0		0 0	0.0
	0.0	0.04	0.01	0.0			0-0	0 -	0 .0	0.0
1. T	5 4 5	00	00	20	00		0.0	C • T	0 0	0.0
1	1 9 10			1000	101	100.75	- 01. 35	101+25	D*0	1+D
TOLD. #10	たちゃいち	29.5	11 . 02		1					
5	- 11-	16.	18.	• 0 •	• 0 •	32.+	32 •	. 74		
		1 05 4	5.017	0.732	0 - 7 4 3	0 - 00 -	9 - 00 3	0.0	00	30
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			100.001	0.001	0.00	5 00 0	1.0		
I	1010	A 047	4.049	4.49		15.742	000	1.0.0	0 0	0
12		0 0	0=0	0.0	0.0			0-0	0 0	0 = 0
	0	0.0	0.0	0.0	0.0	1 2 1 4	C 1E	4	0 * 0	0.0
	1.078	0 274	0.254	0.329		100-0	C - L	0.0	0 0	3
12	6.0	0.0	0.0	0.0	1.347	3.970	. 385	3.472	0	30
16	4 • 0 18	1 7 4 0		6.001	0.0	0 00	0.002	0.0		
P					0.0	0.0	0-0			
un un	00 (0 - 0 	0 0	0.0	0.0	0.0	0.0				
Contra Contra	107-51	11.021	10.359	7.022	1.013	24 -122	2 * * 965	54 × 0 0 0	0.00	0.0
FUTT TALEL			1 4	0-0	0.6	0 - 0	0 . 0		U . 0	00
1-1-P	0.2107			0.0	0.0	0.0	0-0			0
L L W		0.0	0.0	0-0	0-0	00			0.0	C C
	2+1+50	0*0	0.0	0.0	0 • 0	2 . 2				0
	1		0	0.00	0 0	0 . 0	C+C			
Fd TH-X-	0.0			0.0	0.0	0.0	0-0			0-0
N - AL - TL -	000	0.0	0.0	0.0	0-0	0.0			0.0	0.0
	0.0	0.0	0-0	0.0	00		0.0		0.0	0
K-FE-N	0 . 0	0.0	0			0.0	0.0	0.5	0 .0	0.10
X-CA+41	0 • 0		0	1				c	0 - 0	C.0
4-MC-M-	0.0	0 = 0	0*0	0.0	0.0	00		1 1 1 0 0	0	0-0
X- E-M2	0	00	00			0.0	0.0	0-J	0 • 0	0.0
X-6.4-42	0 • 0	0.00	2				0.10		C * 0	C.O
A-ENSIATIT	0 0	0.0	0.0	0.0	0*0	0.0	0.0	0.*0	0.0	0.0
- IREMILIT	0 0	0-0	0.0	0.0	0-0	0.0	000	1 = C		0.0
X ANG 41 F 1 F	00	0.0	0.0	0.0	0*0	0*0	C . C			

uninel.	1-1 0-0 0	0.0		0.0	2.05 0.0	0-0	0.0	0.00		0.0	13. C3 C3.	11.0			0.0	0.0	0.0	0.0	3. 0 0.0	4.200 CC2.4	0.304 0.6)•c	3. r	3. UP6 0.0 0			0.0 0.0	C.O C.	0.0	0.0				0000	0.0	-
annhi rina	200 1 2 2 -	0.0	03.93		9-20	0.0	15.01	50°C	0.0	0.0	101 .01	. (b		0.103	0.004	Cont and		1000	0.0	1.404	0.001	0.0	0.0	1019		0.0	- 0°	0		0.0	0*0	C*0	0 * 0	C*0	0*0	
A New York and New	COLDIGITES	10.0	34*26	0*0	0.00	0.0	11.02	0.07	0.19	20*0	36*50	1.001		4.967	0.001	4.011			1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C.171. 1	0.007	160.037	0 0003	12.034		0.0	0.0			0.0	0 * 0	0.0	0 * 0	0=0	0.0	
	1- 190	33.67	22.89	0.0	11.0			0.35	0.0	0-0	96		∠ 4 •	5.920	0.003	4 • 00d	0.0	0-0-0					0.0	10.001		0.5226	1.0957		0.0		0.4642	0 - 50 do	0.0260	0 • 0	0.0	2
	Call	4° 5 E	22.89	0.0	0.0	24 • 2	0.0	10.0		00	*6 ° 6 €		24.0	5-352	0 003	4.063	0.0	0*0	3.053	0.008	2 769	0.00	00	010	010.01	0.52	1 1 0 2 1		0.0	0.0	0.00	0.5102	0.0259	0.0	0.0	0 * 0
	riter	43.78	1 8 - 5 5	0.0	2 . 06	11 + 48	0.0	10.01	0.00	0.01	9A.52		2 3 a	5.113	0.044	3.053	0.0	3.216	1.341	0*0	4.064	0.129	0.002		15.401	0"0		0	0.0	0.0	0-0		0.0	0.0	0*0	0*0
	the -	43.78	1		0.0	13.15	0-0	19-53	0.05	1.81	04.11		23.	2 2 2 2	0 04	3-00F		0.0	1 566	0.0	4.083	0.129	0.492		15.527	0.00	200	0 = 3	0 - 0	0.0	0.0	00	0	0	20	0*0
	hintite	00.11	• 00	01.01	0.0		0-0	1 >= 64	0.02	0 • ¢		PRASO.	24+			0.00			1.001	0 0	4.1.27	0.033	0.103		12+657	0.1926	0.0	4.1414	0.0	0	0 - 0	0.0			0.0	0.0
		1 12	1 12		10.0				-		5	TAL #13	IC LIVENS		1	1	L.	E I			2 4				FOTAL LENS	ΥĒ	HLC/MGD	*G/FE	NO	A A A A A A A A A A A A A A A A A A A	IM-JA-E	3-86-41	18-10-X	The start	*******	24-43-11

111 2 3

										C
TABLE 2 T				-	Δ.	N.	The second second	5	SD DE	2 Bpin
	bigtite	THE L	rne	p hirine	6apphir	Sappe	I LOT N. F	11.27	0.03	0.03
<1.12	- C - D -	\$0 ° 3=	40.86	13.24	30.01	1 4.03	0.14	01.	0.0	0.05
12	2.50	0.02	10.00	0.00	0.2.0	63.09	03.63	רע פיי עי	0	
L 2C	1-17	22 . 76	22.0		0.0	0.0	0.0	0 -		0.0
102 20	0	20	-0-17	0.0	0*0	0.0	0*0		22.53	23.03
FERL -	21	01-10	21.25	8.02	9.11	e.06			0.0	0.0
	0.0	0.02	0.02	0 • 0	0 0	0.0	10000	000-0	3 . 55	13.01
2	27.41	14.87	14.87	16+42	15.44	02.01	Unit.	1 2	0.0	0.0
3		0.30	0.80	0.01	10.0		0.0	3	C • C	0.0
	0.60	0.0	0.0	0	50		0.0	0.7	0.0	0.0
-20	d.01	0.0	0.0	0.0	0				00	L-AVA.
		14.001	100.41	100.17	100.55	EI-DDT	86786	00	00	
				0.1	. 01	104	10.	.0.	30.	34+
NO UN ENS	.42.	24.	54.	• 0 1						
		0.000	0 0 9	0.787	0.776	0.750	0 . 7 1 3	3.7.2		00000
15	100*10			0.004	0.002	100*0	0.005	0.00	5-762	5.723
TI	21		0000	4.375	46E • 4	42428	5.000		0.002	0.0
AL			0.0	0.0	0 - 0	0.0	0.0		0-0	0.0
LR.	0	30	0 0 10	0.0	0 - 0	0.0	0.00		3.973	4.047
F + + = =			2.623	0.331	0-402	0.4501	- 5C = E		0-0	0.0
•		005	00 0	0.0	0.0	0.0			4.364	£55.4
57	100 1	3-205	3.27.	1.455	152.1	1051		10 0	0.0	0.0
		0.120	0 127	100.001	0.00	100.0			0.0	0.0
	0+1.84	0.0	0*0	0.0	00	0.0		- 0	0 = 0	0 • 0
	254+1	0.0	0 0	0.0	0.0				and and a	c .
		1501	15.497	7.02)	7+625	7.029	1 . 042	200-2	C-9.4 8.1 1	7
I AL CNS		1 1 1 1			0	0.0	0.0	500	C+0	0.0
X-FE	0-2071	0		000		0.0	0.0	1.0	0.0	0
FEU/MUD	0+0	100	1000.0		0	0 . 0	0.0			0.1
FE/MG		1.0	1.2+67	0 0	C*0	0 - 0	0 - 0			
10110	0				0	0 - 0	C * C	C = 0	C+0	20
A-A CPX	C = C	0.0	0.0		0.0	0 • 0	0.2	3+0	00	
X-AL-IEI	0.0			0.0	0 . 0	0.0	0 . 0			0.0
X-AL-W	0	0.5-23	0.5430	0.0	0 . 0	0-0	C • 0			0-0
		0.38	0 4 356	0.0	0.0			0.0	0.0	0-0
	0	0.0211	0.0-10	0 = 0	0 = 0	-				6
	0	0.0	0 0	0 0	0 = 0	0 • 0	5.0	3.11		00
	20		0.0	0 0	0.0	0 = 0	C = 2	1110	0-0	0-0
LEFE-42		0.0	0 0	0 * 0	0 = 0	0 • 0	5 • B			
			0.0	0-0	0.0	0 . 0	0-0	0+0	0-0	0.0
N=C1514111	0.40	0.7	0.0	0.0	0.0	0*0	0=0	0.0	0-0	0.0
A-THEMIL	0.0	0.0	0.0	0.0	0.0	0-0	0.0	1.0	0	0-0
	200	0.0	0 0	0*0	0 0	0 • 0	C			

TABLE 2 % I COLT										
	2	4 onine	apinel	pinel						10 M
	SP IEL		. AC	0-02	0.6	0.0	0	2.0	0.0	0.0
25	0.02	0.00	0.0	0.0	0.0	76	0.0	5 7 • •	0+0	0.0
20 1	64 · 41	64.35	04+10	63*03		0.0	0.0	C • D	0.0	
CR 20 1	10.0	0.02	10.01	0.0	10	0*0	0.0	() ()		10.0
E 20 -	0.0	0.0	0.0	60° 64	0.0	0.0	0.0	2	0.0	0.0
FEJ	20.2		0.0	0+0	0-0	0.0			0.0	0.0
CN.	0	50 °C	13.99	12.66	0.0		0.0	7.0	0*0	0.0
1		0.0	0.0	0.0	0		0.0	10 10	0=0	0-0
	00	0.0	0.0	0.0		0.0	0.0	0 . 1	0-0	0.0
- 20	0.0	0.0	0*0						0.0	ded.
	417.22	59.1C	99*29	99.50	0.0	0*0	0.0			
II TALET				r P	0	0.	0.	.o.		*0.
OXYGENS	• 5 •	32 -	32.	26.	5					0.00
			in when	0.004	0.0	0=0	0.0	D = C	0.00	0.00
10	0.004	0*0	2000	0.0	0-0	0=0			0.0	0.0
II	1	ELO . H C	15.924	12*240	0.0	0.0	C+0	0.0	0.0	0.0
Ŧ		0.003	0*002	0*0	0.0	20	0.0	0.0	0.0	0.0
		0.0	0.0	0-0	0.0	0.0	0.0	0.0	0=0	0.0
	.575	3,036	3.718	\$10=t		0.0	0-0	0.0	0*0	0.0
	0-0	0.0	0.0	0.0		0.0	0.0	3.6	0+0	
100	4.501	4+ 307	4.389	3*3940	0.0	0.0	0.0	2.00	0*0	***
	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0		10.00
NA.	0.0	0.0	0.0	0.0	0.0	0-1	0.0	1 ° C		
	3		-				0.40	0.0	0.0	0.0
ALL IL NS	14.012	24.006	24.035	24.023	10-10					0.0
	0	0-0	0.0	0-0	0+0	0.0	0.0	1.0	00.0	
(Mind)	20	0.0	0-0		0*0	0.0	0	1.3	0.0	0.0
-E/NG	0.0	0.0	0.0	0.0	1.0	0.0	0 3	0.44		
4 /FE	0.0	N*11					c .	340	0.0	0.0
N N N N N N N N N N N N N N N N N N N	0.0	0.0	0.0	0+0	0.0	0.0	0.4	0.0	0-0	10.00
A - ICT	0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0.00
E-AL-4	0 . 0	0.0	0.0		0.0	0.0	0.0	2.1	0.0	0.0
IN-DW-	0=0	0.0		0.0	0.0	0.0	0.0	200	0.0	0.0
	•		0.0	0.0	0-0	0+0	0.0	2		
1-C 41	2				0	0.0	0.7	0.0	0.0	0.00
-MG-M2	C = 0	0.0	0.0	•		0-0	0.0	0.3	0+0	0.0
	0			0.0	0-0	0-0	0.0	0+0		
C A- 42	2			1.0	0.0	0.0	0*0	0.0	0-0	0-0
L-ENSIA III	0.0	D*D	nen v	0-0	0*0	0.0	U.0	0*0	0.0	0.0
A-TREM L	0.0	0*0	0.0	0.0	0.0	0			0.0	0.0
X-ALGITE	0.0	0-0	0-0	0*0	7.00					

ſ	-0.0 -0-0	10- DA	1 - 1	20-02	-0-0			0		53*66	- 4 -	5 - 4- 5	C-003	3-933	0.0			3.359	0.152	0-0	0.0	10.02.		1.324.	C . 7 4 30	1+3453	C+0	0.0	C.00	6.4.52	0.0253		00	0 0			0.0	د د
5	39.66	22.36		21.03	C.CA	15.11	0.95		2	99.37	24 .	R. Ch.	0.002	3. 943	0.0	0.0			0.152	0.0	0.0	16-064		C.4 385	6.7810	1.2804	0.0	0.0	0 0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.0267		0.0			0.0	0-0	0 • 0
(4 21	2 - 50	2 - 2	100	32	1+= 12	19.0		- - -	9 + + + 2	* 7 3		2 7 7 0 0 7 7 0	3 44	0.0	0.0	000	107 0			2-0	1 No. 20 A		014440	11101	1901	10.41	1.0	0. J	10.000		10.0797		- C	- - -	C=3	C	0+0
	40.21	12.50	0-0	0.00	1015	14.92	3.91	0.0	0.0	9°82	- 4 E		480° °		0.0	0.0	2.650	E 06 . 0	3 - 309	0 = 1 = 0		000	0+0+0	7.446.7	2000 B - C	1 1485	0		0.0	0.54.3	0.4339	6 T T O * O	(° = 0	0.0	6 • 0	1-0	0.0	C • 0
	40.10	20.02	C • 0	0.000			0.42	0.0	0.0	16.00	24.		040 - 5	2 0 0 0 C		0.038	2.592	0.005	3 . 255	0.145	00		16.010	0.4434	1.41.50 1.41.50	1.2558			0.0	0.5427	0.4321	0.0244	0 • 0	0.0	0.0	0.0	0.0	0.0
	90+10	0.03	0-0	0.0	21.04	- C - C -	0.92	0.5	0.0	103 .24		•	5 - 450	0.003			2.00	0.005	3.202	0.146	00		10.043	0 4525	1.125	1.102		00		0 5 40	0 4 12	0 * 7 * 0	0.0	0.0	0 * 0	C . 0	0.0	00
	40.50	10.0	0.0	0.59	22.13		1 2011	0-0-0	0.0	101.51		* 62	5 . 966	100-0	116-6	0 0	00000	200.0	105 F	0.240	00		16.011	0 . 4 7 4 7	1.6105	0.9037		0.0	0.0	0.5038	0.4553	0.0400	0.0	0.0	0 - 0	0.0	0 . 0	00
	40.50	0.01	21.20	0.0	22 - 71	0 - 04	13.77	100	0	C+ • 10 I		24.	5.375	0.001	3.983	0.0	0.0	2.000	2000 F	0.240	00	0.00	16.033	0.4807	1 14 92	0.9255	n > 0 0 • 1	0 - 0	0.0		0.4612	0.0396	0		0.0	0.0	0.0	0.0
	10-25	0	22-00	0.70	23 15	0.07	12.26	2.05	00	100		.64.	A DLA	0.001	3-995	0.0	0.041	2- 406	20.00	2 2 2 2 0		0 • 0	16.014	0.61AF	- 999-	0231	15 46 * 0	6 . 0	0.0	0.0		0.0551				0	0 0	00
	1. 2.1	10 - 01	24 = 00	20		0.07	12.26	2.05	00	100 40		24.			4.736	C • J	0°C	2-9-3	0.00	60/9/	1010	C = 0	16-041				0.9130	0.0	0.0	0 - 0	0 + 10	1000		0.0			0.0	0.0
TABLE & 10.		201	L 2C =	2.1-	L. L.		16.0	2	1 2 4 4 2 1		11196 M14	OXTORNS		1.		1 1			MM	. 7	4 4 7	2	OWC IN A CA		X - F.F.	FE(/46	MG/FE	C N AI . DX	X-AL-TLT	X-AL-ML	X-MG-MI		ELUJIK	X-MG-M2	X FE-12	35-23-2	A-ENSIAT T	

							8	L	1-4	ſ	(DI -
		1	-	-			40.44	00-55	41.02	40.22	40 - 07
		46.36	40.58	40.05	40 · D2	•		0 0	0.01	0.02	0.0
		0.02	0.02	0.02	0.0		22.66	10	251	22 67	20.13
		22.0	22.62	22 . 53	22.03			0.0	0.1	0 0	0.0
		0-0	0.0	0.0		•		0-0	7.1	0.0	0.5
			0.65	0-0	0.0			0-154	2 . 32	21.45	50.02
		50-1	20.47	21 . 40	20.02	****		0.03	40.0	0.01	0.0
		0.02	0.02	0.00	00.0			14.54	1 . 54	14.80	14.80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		15.15	15.15	14 . 33	E6 . 91	1000		C 1	61.1		1.13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		501	1.05	0.93	0.95			010	0-1	0 • 0	0.0
0.00 0.00 <th< td=""><td></td><td></td><td>0.0</td><td>0.0</td><td>0.0</td><td></td><td></td><td>0.0</td><td>1 · · ·</td><td>0.0</td><td>0.0</td></th<>			0.0	0.0	0.0			0.0	1 · · ·	0.0	0.0
(10) (10) <th< td=""><td></td><td>0-0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>•</td><td></td><td></td><td></td><td></td></th<>		0-0	0.0	0.0	0.0	0.0	•				
(d) (d) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>00 40</td> <td>101.101</td> <td>10 . 05</td> <td>100.70</td> <td>100-75</td>							00 40	101.101	10 . 05	100.70	100-75
C4+ 24+ <td>-12</td> <td>100.49</td> <td>00 . 55</td> <td>100.62</td> <td>100+01</td> <td>* 000</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-12	100.49	00 . 55	100.62	100+01	* 000					
Control Control <t< td=""><td></td><td></td><td></td><td></td><td>24.</td><td>24.</td><td>24.</td><td>34.</td><td>4.9.7</td><td>24.</td><td></td></t<>					24.	24.	24.	34.	4.9.7	24.	
	ILENS	\$4 *		0 7					C =	5.961	196 °C
0.000 0.000 <td< td=""><td></td><td></td><td>1 0 0 0 V</td><td>2005</td><td>5 998</td><td>5.495</td><td>5.989</td><td>5 DA - C</td><td></td><td>0.00</td><td>C C G</td></td<>			1 0 0 0 V	2005	5 998	5.495	5.989	5 DA - C		0.00	C C G
		10.00			200.0	0-0	0.0	.00 ° C			3 4
3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9 3.9.9		0.002	0.00	2000 F	010	3.960	3.956	- 2C+E	.11.		10
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 </td <td></td> <td>10 m U = 10</td> <td>212.0</td> <td></td> <td></td> <td>0-0</td> <td>0.0</td> <td>0+0</td> <td>2</td> <td>0.0</td> <td>C 27</td>		10 m U = 10	212.0			0-0	0.0	0+0	2	0.0	C 27
0.00 2.577 2.577 2.577 2.577 2.577 2.577 0.003 0.002 0.		0.0	0.0	50			0-050	0.1	10000	0.00	
2.000 2.000 <td< td=""><td></td><td>0.0</td><td>C. 072</td><td></td><td></td><td>222</td><td>2.705</td><td>2.670</td><td>62023</td><td>0-0-0</td><td></td></td<>		0.0	C. 072			222	2.705	2.670	62023	0-0-0	
0.002 0.002 <td< td=""><td></td><td>2.600</td><td>2.524</td><td>100 - N</td><td></td><td></td><td>0 - 004</td><td>- 0C · C</td><td>0.00</td><td></td><td></td></td<>		2.600	2.524	100 - N			0 - 004	- 0C · C	0.00		
3.333 3.335 3.335 3.335 3.357 <td< td=""><td></td><td>E00.0</td><td>0.002</td><td>0.00</td><td></td><td></td><td></td><td></td><td>19 U .</td><td></td><td>10</td></td<>		E00.0	0.002	0.00					19 U .		10
0.0 0		455+5	3.329	3.247		10100	0.167	0.183	0. 39	0.17	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		6 . 166	0.166	0.100	0.1.0		0 - 0	0.0	7.0		
0.0 0		0.0	0.0	•			0.0	0.0	0 *	0.0	0.00
CAN Ite-014 Ibe-011 16.010 Ibe-014 16.010 16.0		0.0	D	0					2011	6-020	0.0.0
1 0.4629 0.4629 0.4629 0.4629 0.4629 1 0.45316 1.23316 1.23316 1.23516 0.4629 1 0.7582 0.4529 0.4629 0.4629 0.4629 1 0.7582 0.4518 1.2557 1.2677 1.2677 1 0.7582 0.4529 0.4529 0.4629 0.4629 0.77337 1.2677 1.2677 1.2677 1.2677 1.2677 0.7582 0.7582 0.4003 0.4629 0.4629 1.2677 0.7582 0.7582 0.7582 0.4003 1.2677 1.2677 0.7582 0.000 0.000 0.000 0.000 0.000 1.2673 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002398 0.002398 0.002398 0.002398 0.002398 0.002398 0.002398 0.000 0.000 0.000 0.000 0.002398 0.002398 0.002398 0.002398 0.000 0.000 0.000 0.000 0.	L ave	1 - 0 36	10.012	16.030	16.010	10.015	16.008	10.025			
	2			P 1 4	0.4410	0.4674	0.4629	9.4554	0. + D1 4	. r . 0 U	D. + 4 3 -
1.3394 1.3394 1.3394 1.3196 1.3196 1.3196 1.3196 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.2677 1.13797 1.13797 1.2677 1.13797 1.1003 1.2677 1.13797 1.13797 1.2677 1.13797 1.1003 1.2677 1.2677 1.2677 1.2677 1.1003 1.1003 1.11003 1.1003 1.1003 1.11003 1.1003 1.1003 1.1111 1.000 1.1003 1.1111 1.000 1.1003 1.1111 1.000 1.1003 1.1111 1.000 1.1003 1.1111 1.000 1.1003 1.11111 1.000 1.1003		0.4381	C . 4 31 K			1 36 0	1.5358	+069"	000++	10	110
	i Qe	1.3834	1.3310	100 a 10	- 400 0	0.8717	0.8619	0.9354	1111111		
		7.57.97	20012 -	1.2.86	1.2677	1 13 4	1.1603	1 . 957	CC71	CA-J.	
		2707.1	10170							C = 0	C=0
	2	0.0	G.C	0 • 0	0.0	G = 0				0.0	C • O
			0-0	0.0	0.0	0.0	0.0		0	C • O	0.0
	1 1 1 1		0-0	0.0	0 . 0	0 0		0 2 20	0152-0	C.5352	0-2+03
	117	0.5464	0.5525	0.5390	0.5444	0.5170	A 170 · 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.4353	6.4.293
	12	0.4260	0.4192	1564-0	0.4294	000		0 11 0 0	0.3312	0.0254	C+0537
	1 m	0.0272	0.0275	C .0247	0.0249	0.12120				1	0
			0	0.0	0-0	0*0	0.0			30	00
	N.	30			0.0	0.0	0.0	0.0		0-0	0 • 0
	1	200		0.0	0.0	0*0	0.0	6	2	2	
	46						0	0-0	0.0	6.0	0.0
	TATEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0*0	0.0
	TT TH	0.0	0.0	0.0	0.0	0-0	0-0	0.0	0.0	0.0	0.0
	RINIT	0 0	0.0	0.0	0.00	000	0.0	0+0	0*0	0.0	2.0

TAFLE 2 10 (cont

0.0 0.0 <th>0.0 0.0<th></th><th>H</th><th>(</th><th></th><th>(</th><th>L</th><th>- E</th><th>6.4 OF</th><th></th><th>39.15</th><th>1.1.65</th></th>	0.0 0.0 <th></th> <th>H</th> <th>(</th> <th></th> <th>(</th> <th>L</th> <th>- E</th> <th>6.4 OF</th> <th></th> <th>39.15</th> <th>1.1.65</th>		H	((L	- E	6.4 OF		39.15	1.1.65
100 23.00 2	0.0 0.0 <th>5.0 A0-22</th> <th>A0-22</th> <th></th> <th>40. 5B</th> <th>40 58</th> <th>33.75</th> <th>19.75</th> <th>30.01</th> <th>10.01</th> <th>0.01</th> <th>0.0</th>	5.0 A0-22	A0-22		40. 5B	40 58	33.75	19.75	30.01	10.01	0.01	0.0
16 23.10 23	10 24 <th24< th=""> 24 24 24<!--</td--><td>0.02</td><td>0.02</td><td></td><td>0.04</td><td>0 04</td><td>20.02</td><td>10°0°</td><td>23.25</td><td></td><td>23.38</td><td>23.33</td></th24<>	0.02	0.02		0.04	0 04	20.02	10°0°	23.25		23.38	23.33
47 1	No. No. <td>22-86 22-86</td> <td>22 . 86</td> <td></td> <td>23.16</td> <td>01.02</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>C ***</td> <td>0.0</td> <td>0°C</td>	22-86 22-86	22 . 86		23.16	01.02	0.0	0.0	0.0	C ***	0.0	0°C
1 1	1 2	0.0	0.0			5.0	0.0	1.21	0.0	0 1	0.00	20.40
01 10.00 10.00 10.00 10.00 10.00 10.00 10.00 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 11.1 101110 100.1 10.0 10.0 10.0 10.0 10.0 11.1 101110 100.1 00.0 00.0 00.0 00.0 00.0 11.1 101110 100.1 10.0 10.0 10.0 10.0 10.0 11.1 101110 100.1 00.0 00.0 00.0 00.0 00.0 00.00 00.00 00.0 00.0 00.0 00.0 00.0 00.0 00.00 00.00 00.0 00.0 00.0 00.0 00.0 00.0 00.00 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.00 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.00 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.00 00.0 00.0 00.0 00.0 00.0 </td <td>000 000<td>0.0</td><td>0.00</td><td></td><td>0.0</td><td>21 00</td><td>21.51</td><td>20.42</td><td>11.0</td><td>11.10</td><td>0.03</td><td>0.03</td></td>	000 000 <td>0.0</td> <td>0.00</td> <td></td> <td>0.0</td> <td>21 00</td> <td>21.51</td> <td>20.42</td> <td>11.0</td> <td>11.10</td> <td>0.03</td> <td>0.03</td>	0.0	0.00		0.0	21 00	21.51	20.42	11.0	11.10	0.03	0.03
14.489 14.499 <td>14.498 14.498 14.498 14.498 14.498 14.498 14.498 14.113 101.11 101.12 101.13 101.13 101.13 101.14 11.113 101.11 101.11 101.12 101.13 101.13 101.13 11.113 101.11 101.13 101.13 101.13 101.14 101.14 11.113 101.11 101.25 11.43 11.43 11.43 11.43 11.113 101.11 101.25 11.43 11.43 11.43 11.43 11.113 111.13 111.13 11.444 11.444 11.444 11.444 11.113 11.253 11.235 11.435 11.435 11.444 11.13 11.253 11.444 11.444 11.444 11.444 11.13 11.444 11.444 11.444 11.444 11.444 11.13 11.444 11.444 11.444 11.444 11.444 11.13 11.444 11.444 11.444 11.444 11.444 11.14 11.444 11.444 11.444 11.444 11.444 11.14 11.444 11.444 11.444 11.444 11.444 11.15</td> <td></td> <td>0.04</td> <td>1</td> <td>0.03</td> <td>0.03</td> <td>0.05</td> <td>0°0°</td> <td>00° V .</td> <td>Cr · ·</td> <td>14.73</td> <td>14.073</td>	14.498 14.498 14.498 14.498 14.498 14.498 14.498 14.113 101.11 101.12 101.13 101.13 101.13 101.14 11.113 101.11 101.11 101.12 101.13 101.13 101.13 11.113 101.11 101.13 101.13 101.13 101.14 101.14 11.113 101.11 101.25 11.43 11.43 11.43 11.43 11.113 101.11 101.25 11.43 11.43 11.43 11.43 11.113 111.13 111.13 11.444 11.444 11.444 11.444 11.113 11.253 11.235 11.435 11.435 11.444 11.13 11.253 11.444 11.444 11.444 11.444 11.13 11.444 11.444 11.444 11.444 11.444 11.13 11.444 11.444 11.444 11.444 11.444 11.13 11.444 11.444 11.444 11.444 11.444 11.14 11.444 11.444 11.444 11.444 11.444 11.14 11.444 11.444 11.444 11.444 11.444 11.15		0.04	1	0.03	0.03	0.05	0°0°	00° V .	Cr · ·	14.73	14.073
7.97 0.097 0.00 0.00 0.00 0.00 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 <	0.007 0.007 <td< td=""><td></td><td>40.04</td><td></td><td>14.84</td><td>14-88</td><td>07.44</td><td></td><td>10.0</td><td>le . r</td><td>C.70</td><td>0.10</td></td<>		40.04		14.84	14-88	07.44		10.0	le . r	C.70	0.10
24.0 0.00 0.00 0.00 0.00 0.00 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.004 0.004 0.002 0.002 0.002 0.00 0.01 0.006 0.002 0.002 0.002 0.002 0.00 0.00 0.006 0.002 0.002 0.002 0.002 0.00 0.01 0.006 0.002 0.002 0.002 0.002 0.002 0.00 0.006 0.002 0.002 0.002 0.002 0.002 0.01 0.006 0.002 0.002 0.002 0.002 0.002 0.00 0.00 0.002 0.002 0.002 0.002 0.002 0.00 0.00 0.00 0.002 0.002 0.002 0.002 0.00 0.00 0.00 0.002 0.002 0.002 0.002 0.00 0.00 0.00 0.002 0.002 0.002 0.010 0.010 0.01	0.00 0.00 <th< td=""><td>1.05</td><td>1.05</td><td></td><td>16.0</td><td>0.97</td><td>0.09</td><td></td><td>0.0</td><td>C = 7</td><td>0.0</td><td>0.0</td></th<>	1.05	1.05		16.0	0.97	0.09		0.0	C = 7	0.0	0.0
1.13 01.16 00.11 00.25 07.45 10.13 100.12 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 5.454 5.454 5.475 5.475 2.4003 0.00 0.00 0.003 0.003 0.003 0.001 0.00 0.00 0.003 0.003 0.003 0.001 0.00 0.00 0.013 0.003 0.003 0.003 0.00 0.00 0.013 0.013 0.014 0.014 0.00 0.00 0.013 0.013 0.013 0.010 0.153 0.0141 0.014 0.014 0.014 0.010 0.153 0.0153 0.0142 0.014 0.010 0.010 0.153 0.0164 0.010 0.014 0.010 0.010 0.153 0.0164 0.010 0.014 0.010 0.010 0.153 0.0164 0.010 0.0	24. 24. <td>000</td> <td>0.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td>(J + -</td> <td>0 • 0</td> <td></td>	000	0.0		0.0	0.0		0.0	0.0	(J + -	0 • 0	
24. 2	24. 2				11.13	101+18	100.11	00.25	00.45	(ce * e 0 1	100.13	100.32
0 0 <td>0.001 5.893 1.992 5.871 5.893 1.992 5.893 0.005 0.001 5.893 1.992 5.893 1.992 5.951 0.005 0.001 5.893 1.992 5.951 2.0113 0.001 0.005 0.001 0.002 0.0135 0.002 0.001 0.001 0.006 0.003 0.0135 0.0135 0.0135 0.0121 0.001 0.001 0.001 0.001 0.0135 0.0122 0.0121 0.0121 0.001 0.001 0.0142 0.0142 0.0135 0.0121 0.0121 0.0153 0.0142 0.0142 0.0142 0.0122 0.0121 0.0121 0.0153 0.0142 0.0142 0.0141 0.0121 0.0121 0.0121 0.011 0.010 0.0142 0.01412 0.0121 0.0121 0.0121 0.011 0.010 0.010 0.0121 0.0121 0.0121 0.0121 0.011 0.010 0.0142 0.0123 0.0121 0.0121 0.0121 <td></td><td></td><td>1</td><td>24.</td><td>24.</td><td>24 .</td><td>13 th a</td><td>24 .</td><td>***</td><td>2 a .</td><td>244</td></td>	0.001 5.893 1.992 5.871 5.893 1.992 5.893 0.005 0.001 5.893 1.992 5.893 1.992 5.951 0.005 0.001 5.893 1.992 5.951 2.0113 0.001 0.005 0.001 0.002 0.0135 0.002 0.001 0.001 0.006 0.003 0.0135 0.0135 0.0135 0.0121 0.001 0.001 0.001 0.001 0.0135 0.0122 0.0121 0.0121 0.001 0.001 0.0142 0.0142 0.0135 0.0121 0.0121 0.0153 0.0142 0.0142 0.0142 0.0122 0.0121 0.0121 0.0153 0.0142 0.0142 0.0141 0.0121 0.0121 0.0121 0.011 0.010 0.0142 0.01412 0.0121 0.0121 0.0121 0.011 0.010 0.010 0.0121 0.0121 0.0121 0.0121 0.011 0.010 0.0142 0.0123 0.0121 0.0121 0.0121 <td></td> <td></td> <td>1</td> <td>24.</td> <td>24.</td> <td>24 .</td> <td>13 th a</td> <td>24 .</td> <td>***</td> <td>2 a .</td> <td>244</td>			1	24.	24.	24 .	13 th a	24 .	***	2 a .	244
901 5:055 0:005 0:005 0:005 0:005 000 0:005 0:005 0:005 0:005 0:005 000 0:005 0:005 0:005 0:005 0:005 000 0:005 0:005 0:005 0:005 0:005 000 0:005 0:005 0:005 0:005 0:005 000 0:005 0:005 0:005 0:005 0:005 000 0:005 0:005 0:005 0:005 0:055 000 0:005 0:005 0:005 0:005 0:055 000 0:005 0:005 0:055 0:055 0:055 000 0:00 0:00 0:055 0:055 0:055 000 0:00 0:00 0:00 0:055 0:055 000 0:00 0:00 0:00 0:00 0:00 000 0:00 0:00 0:00 0:00 0:00 000 0:00 0:00 0:00 0:00 0:00 000 0:00 0:00 0:00 0:00 0:00 000 0:00 0:00 0:00 0:00 0:00 000 0:00	991 5-991 5-991 5-991 5-991 5-991 000 1000 1000 1000 1000 1000 1000 000 1000 1000 1000 1000 1000 1000 000 1000 1000 1000 1000 1000 1000 000 1000 1000 1000 1000 1000 1000 000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10	- 40 F	C 9 0		n t		0.00	6.60.8	2.892	5.073	5.8	5=014
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 <	0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00	5.903 5.903	5.943		5.901	100 ° 00		0.002	0 . 001	5-421	0.0	0.00
0.057 2.557 2.557 2.557 2.557 2.557 0.038 2.5577 2.0005 2.557 2.557 2.557 0.038 2.5577 2.0005 2.5561 2.5561 2.555 0.038 2.5561 2.5561 2.5561 2.5554 2.5554 0.038 2.5554 3.5035 2.5561 2.5554 3.5764 0.1533 0.0142 0.006 0.006 0.0125 2.5554 0.1533 0.0142 0.006 0.006 0.0127 2.5554 0.1533 0.0141 0.0141 0.0121 2.775 0.121 0.000 0.00 0.00 0.00 0.00 0.0121 0.121 0.1415 1.010 1.0113 1.0113 1.0121 1.0121 1.0121 0.010 0.000 0.000 0.000 0.000 0.000 0.0121 0.0121 0.024 1.0101 1.0113 1.0113 1.0113 1.0112 0.0121 0.010 0.026 0.026 0.026 0.01213 0.01213 0	0.03 0.03	c.032 0.032	0.032		-000-0	- 000 	0101	4 . 029	- • 062	0.0.4	10	0-0
0.057 2.677 2.673 2.573 2.553	0.057 2.677 2.677 2.677 2.675 2.677 2.677 2.677 2.676 3.2555 3.255 <t< td=""><td>3.940 3.946</td><td>30.402</td><td></td><td></td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.0</td><td>0.00</td><td></td><td>0-20</td></t<>	3.940 3.946	30.402			0.0	0.0	0.0	2.0	0.00		0-20
0.04 2.577 2.675 7.705 7.105 0.004 0.003 3.205 3.1705 7.105 7.105 0.153 0.153 0.153 0.112 0.121 0.121 0.153 0.153 0.141 0.004 0.012 0.121 0.153 0.153 0.141 0.0141 0.012 0.121 0.153 0.153 0.141 0.0141 0.012 0.121 0.00 0.00 0.00 0.00 0.00 0.012 0.01 0.00 0.00 0.00 0.00 0.012 0.01 0.00 0.00 0.00 0.00 0.00 0.02 1.0010 1.0010 1.0012 0.00 0.00 0.02 1.0010 1.0010 0.00 0.00 0.00 0.02 1.0010 1.0010 1.0012 0.000 0.02 0.000 0.000 0.000 0.000 0.02 1.0012 1.0012 1.0012 0.000 0.02 0.000 0.000 0.000 0.000 0.02 0.020 0.000 0.000 0.000 0.020 0.020 0.020 0.020 0.020	0.000 2.577 2.577 2.5035 7.995 <t< td=""><td></td><td></td><td></td><td></td><td>1 C O . O</td><td>0.0</td><td>0.135</td><td>3.0</td><td></td><td>2.753</td><td>2.534</td></t<>					1 C O . O	0.0	0.135	3.0		2.753	2.534
0.004 0.004 <td< td=""><td>0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.1253 0.1253 0.1253 0.1253 0.1253 0.1274 0.1274 0.1533 0.0053 0.007 0.007 0.000 0.0017 0.0017 0.00 0.00 0.00 0.00 0.00 0.00 0.0017 0.0017 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0017 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.010 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0230 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233<!--</td--><td></td><td>0.55 A</td><td></td><td>2.638</td><td>2.577</td><td>2.675</td><td>2.032</td><td>100-10</td><td>0.005</td><td>0.004</td><td>00-00</td></td></td<>	0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.1253 0.1253 0.1253 0.1253 0.1253 0.1274 0.1274 0.1533 0.0053 0.007 0.007 0.000 0.0017 0.0017 0.00 0.00 0.00 0.00 0.00 0.00 0.0017 0.0017 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0017 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.010 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0230 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 </td <td></td> <td>0.55 A</td> <td></td> <td>2.638</td> <td>2.577</td> <td>2.675</td> <td>2.032</td> <td>100-10</td> <td>0.005</td> <td>0.004</td> <td>00-00</td>		0.55 A		2.638	2.577	2.675	2.032	100-10	0.005	0.004	00-00
•.256 0.053 0.053 0.053 0.0153 0.0153 •.153 0.00 0.0 0.0 0.0 0.0 •.153 0.00 0.0 0.0 0.0 0.0 •.153 0.0 0.0 0.0 0.0 0.0 •.02 10.010 10.010 0.0 0.0 0.0 •.02 10.010 10.010 10.011 0.0 0.0 •.02 10.011 10.011 10.011 10.010 0.0 •.02 10.011 10.011 10.011 10.010 0.0 •.02 10.011 10.011 10.011 10.010 10.010 •.02 10.010 10.011 10.011 10.010 10.010 •.02 10.010 10.010 10.011 10.010 10.010 •.02 10.020 10.020 10.020 10.010 10.010 •.02 10.020 10.020 10.020 10.010 10.010 •.02 10.020 10.020 10.020 10.010 10.010 •.02 10.020 10.020 10.020 10.020 10.010 •.02 10.020 10.020 10.020 10.020 <td< td=""><td>•</td><td>2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>0-005</td><td></td><td>+00-0</td><td>0.004</td><td>0.000</td><td></td><td>3.31.0</td><td>2 . 2 . 2 G</td><td>3-274</td><td></td></td<>	•	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0-005		+00-0	0.004	0.000		3.31.0	2 . 2 . 2 G	3-274	
-153 -0200 -020 -020 -020 -020 -020 -020 -020 -020 -020 -020		3.274 3.266	3.266		3.2.9	3.254	10400	0.141	0.44	3 44	0-121	
0.0 0.0 0.0 0.0 0.0 0.02 10.010 10.010 10.010 10.011 0.07 10.010 10.010 10.011 10.011 0.07 10.010 10.011 10.011 10.011 0.07 10.115 10.115 10.113 10.011 0.071 10.115 10.113 10.4564 10.113 0.071 10.7712 10.113 10.4564 10.7712 10.2947 10.13742 10.133 10.7713 10.2947 10.13742 10.1437 11.2525 10.2947 10.1437 10.1437 11.2525 10.2947 10.2967 10.1467 11.2525 10.2947 10.2947 10.1467 11.2525 10.2947 10.2947 10.1467 11.2525 10.2947 10.2947 10.1693 11.2555 10.2947 10.2947 10.1693 11.2555 10.2947 10.1293 10.1693 11.2555 10.2947 10.1293 10.1693 11.2555 10.2947 10.2947 10.1293 11.2555 10.2947 10.2947 10.1293 11.2555 10.2947 10.1293 <td< td=""><td>0.00 0.00 0.00 0.00 0.00 0.00 0.020 10.010 10.010 10.010 10.010 0.00 0.020 10.010 10.010 10.0115 10.010 10.010 0.020 10.010 10.0115 10.0113 10.012 10.013 0.021 10.0125 10.0123 10.0133 10.0123 10.013 0.021 10.0125 10.0123 10.0133 10.0133 10.013 0.021 10.2025 10.0123 10.1233 10.1233 10.1233 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00</td><td>C.167 0.106</td><td>0.100</td><td></td><td>0.153</td><td>0.103</td><td>0-0-0</td><td>0.0</td><td>0°6</td><td>0+1</td><td>0.0</td><td></td></td<>	0.00 0.00 0.00 0.00 0.00 0.00 0.020 10.010 10.010 10.010 10.010 0.00 0.020 10.010 10.010 10.0115 10.010 10.010 0.020 10.010 10.0115 10.0113 10.012 10.013 0.021 10.0125 10.0123 10.0133 10.0123 10.013 0.021 10.0125 10.0123 10.0133 10.0133 10.013 0.021 10.2025 10.0123 10.1233 10.1233 10.1233 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00	C.167 0.106	0.100		0.153	0.103	0-0-0	0.0	0°6	0+1	0.0	
• 02 10.010 10.020 10.010 10.010 10.010 • • • 7 * 0.• • • • • • • • • • • • • • • • • • •	•.02 1.0.010	00.00	00.0		0.00	0.0	0.0	0 • 0	0 ° 0	2.0		
A474 0.4420 0.4434 0.4334 0.4157 0.4334 0.4157 0.4334 0.4151 0.45564 A4729 1.415 1.4475 1.3742 0.4334 0.43564 0.43564 A4729 1.415 1.4475 1.3742 0.4334 1.457 1.45663 A4729 1.211 1.2967 1.2967 1.2967 1.2963 1.211 2750 0.120 0.010 0.010 0.010 0.1093 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 </td <td>A474 0.4420 0.4334 .4457 0.4356 A429 1.4115 1.4455 0.4334 .4457 A4297 0.7921 1.4457 1.415 1.4456 A475 1.415 1.4457 1.415 1.457 A5291 0.7921 1.2667 1.2964 1.139 A5295 1.2011 1.2967 1.2967 1.18993 A5199 0.00 0.00 0.012 0.133 1.18993 A5199 0.00 0.0 0.0 0.0 1.18993 7.1 A5199 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 A1205 0.0510 0.510 0.510 0.510 0.510 0.510 A1319 0.510 0.510 0.510 0.510 0.510 0.510 A1319 0.510 0.510 0.510 0.510 0.510 0.510 A1319 0.510 0.510 0.510 0.510 0.510 0.512 A1319 0.5237 0.513 0.514 0.512<td>14-0:8 10-01¢ 10</td><td>Is. 016 Is</td><td>I</td><td>0.20</td><td>10.010</td><td>10.060</td><td>16.023</td><td>E46.5 -</td><td>12-11-25</td><td>10.104</td><td></td></td>	A474 0.4420 0.4334 .4457 0.4356 A429 1.4115 1.4455 0.4334 .4457 A4297 0.7921 1.4457 1.415 1.4456 A475 1.415 1.4457 1.415 1.457 A5291 0.7921 1.2667 1.2964 1.139 A5295 1.2011 1.2967 1.2967 1.18993 A5199 0.00 0.00 0.012 0.133 1.18993 A5199 0.00 0.0 0.0 0.0 1.18993 7.1 A5199 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 A1205 0.0510 0.510 0.510 0.510 0.510 0.510 A1319 0.510 0.510 0.510 0.510 0.510 0.510 A1319 0.510 0.510 0.510 0.510 0.510 0.510 A1319 0.510 0.510 0.510 0.510 0.510 0.512 A1319 0.5237 0.513 0.514 0.512 <td>14-0:8 10-01¢ 10</td> <td>Is. 016 Is</td> <td>I</td> <td>0.20</td> <td>10.010</td> <td>10.060</td> <td>16.023</td> <td>E46.5 -</td> <td>12-11-25</td> <td>10.104</td> <td></td>	14-0:8 10-01¢ 10	Is. 016 Is	I	0.20	10.010	10.060	16.023	E46.5 -	12-11-25	10.104	
2750 1.3742 1.3742 1.3742 1.3742 1.0077 1.2025 1.3742 0.4045 1.2026 2750 1.2025 1.2067 1.2967 1.2967 2750 1.2025 1.2967 1.2967 1.2967 0.000 0.0 0.0 0.0 0.0 0.000 0.0 0.0 0.0 0.0 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.0 0.0 0.0 0.0 0.0 0.000 0.0 0.0 0.0 0.0 0.0 0.0538 0.540 0.540 0.540 0.540 0.538 0.540 0.540 0.540 0.540	0.723 1.4475 1.3742 0.3742 0.3742 0.7921 1.2675 0.3742 0.39941 1.167 2750 1.2675 1.2967 1.2967 1.2967 0.7921 1.2625 1.2967 1.2967 1.2967 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000				ATA	0-4420	0.4432	0.4354	1.4157	5	0 - 4 5 6 G	1.305
2750 0.7921 0.8123 0.7712 9.9945 1.167 1.2925 2.46 2750 1.2625 1.2967 1.2967 1.29435 1.1693 2.46 2750 0.0	2750 1.2625 0.4123 0.7712 9.4945 1.167 1.2625 2750 1.2625 1.2667 1.2945 1.2967 1.2967 1.2945 0 0 0 0 0 0 0 0 0 0	0.4417 0.4301		27	00000	1 4115	1.4475	1.3742	OFE to i		C BADB	77740
	0.0 0.0 <td>0.7815 0.7815</td> <td>0.7815</td> <td>.0</td> <td>8097</td> <td>1262.0</td> <td>0.8123</td> <td>0.7712</td> <td>1 - 24 35</td> <td>1. 167</td> <td>1000 m</td> <td>1.2.36</td>	0.7815 0.7815	0.7815	.0	8097	1262.0	0.8123	0.7712	1 - 24 35	1. 167	1000 m	1.2.36
	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.234 1.2796	1.2796	-	.2750	C707*I						0
	0 0	0.0	0-0	00	00	0.0	0.0	00	0.00	3 3 • • •	100	
5383 0.5035 0.51364 0.5000 0.516 0.6120 0.6120	5383 0.5035 0.5384 0.220 0.4246 0.534 0.420 0.475 0.428 4359 0.4305 0.4374 0.4246 0.534 0.144 0.017 0.020 0.252 0.0255 0.0232 0.0237 0.023 0.144 0.017 0.020				00	0.0	0.0	0.0	0.0	1	0.5312	0.000
	4359 0.0255 0.0232 0.0237 0.023 0.144 0.0147 0.025	0.5357 0.5453 0.	0 5453 0	0	5363	0.5435	0.5364	0.5500	0 + 34	10111	0.4.75	0.4.8
			200	000	000	0.0	0*0	000	0.0	0+1	0 . 0	0 - 0
								0-0	C = 3	2 = T	0.0	0-0
		0*0 0*0	0.0	0	0=0	0.0	0.0	0=0	0*0	0.0	0.0	0.0
			0 0		0.0	0.0	0-0	0.0	000	11	0.0	0.0
		2 2 2	5									

TABLE 2 W. cont

TAUNE	1					- 18	L	1	L	50
		10 00		1	5	0 0 0	42.44	39	40.19	40.1
•	22	39.13	39.29	39.29			0.0	J= 01	0 . 01	0.0
I I I	0.01	10.0	0.02	20.0	10*0	23.06	23.03	23.04	23.28	C 3 • C 3
	10-12	22 • 93	23.05	C0.52			0.0	0.	0 0	
	0-0	0.0	0.0	0-0		0.98	0=0	4 = 4 4	0 0	
I I I I I I I I I I I I I I I I I I I	0-0	0.71	0.0	1.2.1	0.00	10.00	21.75	22.03	22 28	V
	<2.32	21 - 68	23.40	22.22		0.04	2 05	50°°	23.0	10.01
	0.02	0.02	0.03	0.0	44.01	12.44	13.24	202	14. 1	
	14.10	14.10	13.55		10-1	1.97	20" .	52 · 7		
	0.79	0.75	0.89			0.0	0 * 0			
NAZU	0.0				0.0	0.0	0*0	D • F	2	
K R C	2	2				02 20	100111	10-+7	101.04	101 .1
TOTAL WIX	0 F = 55	10*06	100.23	100 . 3.	ANTRA				× C	14.
		141	24.	24.	24.	24.	34 .	+ + +		
NO CALCERS	C 0 0				Non N	E 873	5 375	5.000	2) • 2 2 2 3	5.922
	4 . G. 10	5-926	5.009	5.072	100		0.001	1-0-C	0.001	0.0
- 7 -	100.0	0.001	0.002	200.0	10°0	A-106	1 985	4.071	4.051	\$ - C \$
1 1	4.041	4.034	4.073	4.061		0.0	0.0	3. J	0.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10	0 - 0	0.0	0.0	0.0		0-111	0-0	3.402	0.00	
	3.0	0.000	0.0	0.1.0	0.023	2.805	2 183	2.311		100.0
10.	2.7.40	2.705	2.913	10/07	00.00	0.005	0.005	0.000		- S
12	0.003	0.003	+00-0		2.8.26	2.800	2.762	2 . 132	0 4 0 1 4 0 1 4 0	
	3+141	3.136	3.021	2000	0.320	0.319	0.163	0.108	0.1.00	0.0
	0.127	0.126	0.143		0.0	0.0	0.0	C • C	•	
47	0.0	00	0.0	00	0.0	0.0	C * C	0 ° 0	1.0	
¥	C. C	0				and and and	100 71	140.02B	15.040	16.4024
C I I NC	1 040	16.013	16.072	16.024	10+030	10.019	100-01			
						0.400	0.5313	D10+**	0 4 0	10000.
1	0 4704	0.1632	0.4922	0.4/00	19-4-1	1.7851	1.7945	10.00	573 1	
FEO/Maj	1 5830	1-374	5021°	0.0216	1.0.16	1 -001 H	1200	175.0		1101-1
FE MG	0.6683	1.501	6100.1	0.920	1096.0	0. = 982	0666	100		
4C FE	1 - 7 - 1	a 3 			0.0	0-0	0.0	- 1 × D	C-0	20
7-3-8L-CP	0 = 0	0.0	0.0			0.0	0-0	1-1		
X-AL-Tel	0+0	0.0	0.0		0.0	0.0	0.0	C	0.5210	0-5233
X-AL-41	0 0	200	0.00	0.5076	CE46.0	0.4723	0.4.4.0			C.4433
TR-DW-X	0.5183	0.5253	007400	0.4678	0.4823	0.4731	5.55 °C	100 1 00 1 00 1 00 1 00 1 00 1 00 1 00	C.02.4	0.0274
X-FE-41	0 - 4 6 0 4		0-0-24	0.0240	0.0528	0.0538	0 - 0 - 0			
X-CA-41	0-0204	0.0545					0 - 0	Con	C • D	C*0
- MC- M -	0.0	0*0	0.0	0*0	0		0.0	0	C = 0	0
X-FE-M2	0.0	0	0.0	0	0.0	0 . 0	0=0	0-2	C = D	2
X-CA-MA	0.0	0*0	0.0						0.40	C.*C
14 · · ·	0 0	0-0	0=0	0*0	0*0	0.0	0.0	0-0	0.0	0.0
A ENSIA I II	0.0	0.0	0.2	0*0	0.0	0.0	0-0	1.J.	0*0	0.0
A-INCALLIN A-ANCHINI	0*0	0 0	0.00	0*0		0.0	0.0	C*3	J*J	0.0
X-ALE TE	0*0	0 * 0	0 * 0	2						

2.10(cont

		(2	5		5-17	1	- 12	14.47	5
			AC 70	40.70	40.56	40.65	22 ° C a	100 T		0 0
2. 1	40.04		0.01	0.0	20.02	000	0.0		22 . 22	22 27
201		23.02	22.71	22 . 71	23=04	V C O V	0-0	0.0	0.0	0 0
	0.0	0-0	0.0	0.0		46.0	0.0	07	01	
	0.0	0.66	0.0			21.35	22.33	22 - 15	2 2	
	21 = 33	21-22	21 • 50	V 1 • 0 V	0.01	0.03	10°C	30.0		1000
01	G.03	0	0.00	10.00	14.01	14.63	12° v .	0.0	- T	
0.	14.49	7.0		0 1 1	1 • 0 =	1.04	-0-1	100		0
C	- 62		0.0	0-0	C - 0	0.0			0.0	0.0
0-4-		0.0	0.0	0 • 0	0-0	0.0	0			
N C					101 30	101 .04	131.27	04.29	00.67	100 . 001
TOTAL	100.00	100.73	1 00 1	10.00					141	14.
		40	24.	24.	24.	24 .	24 .	- 		
U LIGENS	V					0.00	R.006	E a a E	6.010	6-u10
	1951	5.941	6 • 0 2 2	6 3	10-105				0.0	0.0
/2		0.001	0.001	0-6 1	0.00			3.9	3. 588	- 2C - E
		1.010	3.961	3.362				0.0	0.0	0.0
		0-0	0.0	0.0	0.0	0.0		0 23	0-0	2000
Y		01010	0-0	100-00	0.0	0.00		111.0	3.504	3-5-2
+++		2.622	2.568	2.676	2.05	0		0.00	0.012	0.612
			0.003	0.003	0.004			3 . 1	2.233	2.233
Z. 4		191 6	3.136	3+135	3 . 200	0.07.0		0.0	0.250	00
		0 166	0.206	0.206	01.0			0.0	0.0	0.0
	0.0	0 0	0.0	0	30		C . 0	3.0	0.0	0.0
	0.0	0.0	0.0	0.0	0					100 T 100 T
2	0	E IO VI	15. 90	15.197	10.01	1 = + 00 6	110-91	BUD NO.	15. 150	
TUTAL LUNS	2 2					1	0000	M J C T T	C. 6 1 08	C.D.L.J
	191 - 0	0.4511	0.4597	0.4604	0.4510	0.00		1001	- 7002 ·	2-80-27
11.1X		1.4642	1.5162	1.503			0.4.25	3725	1.51.54	115724
		0.8217	0,8508	0.8532	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10000		1	C.6.72	1010+3
51115	1. 628	1.2170	1.153	1.1.21						
				0.0	0.0	0 0	0-3	2		
2 . X - AL- LPX	0 + 0	00			0.0	0.0		1		0.0
K-AL-TEI	0.0	5 0		0.0	0.0	0.0	0 = 0		0-3722	0.3110
X-AL-41	0.0	2.0	0.5.16	0.5203	0.5310	0 = 53 4			0 5 12	G . 5
TT-DE-X	102500		0.4.19	0.4444	0.4412	0.4377	100 × 0		0 0 10	0.0
X-FE-41	1044-0		0.0143	0.0 142	0.0271	0.0273	, G. D . U			
X-CA-41	2 · · · · ·				10 10	0-0	0.3	642	C = 0	
1-10-10-1	0	C • 3	0.0			0.0	0.0	013	0	2
4-FL-42	0 .0	0.0	0.0			0.0	0 0	0.0	0 0	0
A-CA-92	0.0	0 . 0	0 0	0					C_C	C. C
	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.*0
AT THE REAL PROPERTY	1.0	0-0	0*0	0.0	0*0	0-0	0.0	1.1	0.0	0
THIS DAY -X	0 0	0	0.0	00	20°0	0-0	0-0	1-0	C * 0	2

11 F 2 101 COT F

	1					8		29		100
	-	20-7				A	44.83	2007	41-31	+
	5	40.33	40-04	60°0		10-0-	0.03	20.02	0.0	
	0	0.0	0.01	10.0		22.52	22.055	20.00	23.02	
	22 64	22.54	22 . 40	0000		0-0	0.0	0.00		21.0-
100	0.0	0 = 0	0.0	0.0		-0.38	0.0		0.0	5
21	0 0	-0.40	0.0	0.0		24.13	22.57	2	21 - 36	
1	10 22	23.43	22 35	66 . 22	V P	0.04	3.00	10 13		
	20-01	0.07	0.04	0.04		AA. C	13.37	1 9	10.01	
	00-01	12.40	13-32	•	14.14		1.25	G	0.47	
0.0	101	1.04	1 37	16.1			0.0		0	30
7.	- 0	0.0	0 = 0	0.0	2 0		0-0	0.0	0 • 0	0.0
11	0	0.0	0.0	0.0	•					
L L				0.0	- CO -	100.84	27.001	101.65	104+10	•
TIAL WEST	101.31	100.25	95 29	00.00						
			2.4	2	24.	2	39.6	16.0	L FX	
O DX LEN	192	24.							6-033	0.030
			0.0	020-0	0.032	6.048	0.000		0.003	C.003
1 m	C . U30	6.031		000	100.01	0.001	200*0	C = = = C	3.966	3.972
I I	0.0			3 965	3.956	3 . 96 0	1 MAR		0.0	0.0
-		1		0-0	0.0	0=0	2.40	E T C	0.0	-6.04.
1 2	0 - 3	0.0		000	0 - 0	-0-043	0*0		2.67.7	2.723
	0.0	200.0-	0.00		2-965	3.00	1 19	2.000	- 00.0	0-00-
10	2.078		200		0000	0.005	0.00.0	01010		
	000 . 0	500.0	0000		2.771	2.774	5 · · · 3	0.0 * 0.0		
	2.763	2.766	096		0.238	0.238	0 9	*****C	0.00	0.0
	0 303	0.303	0220		0.0	0.0	0.0			0-0
2	0.0	0.0	000		0.0	0.0	0+3	1		
	0.0	0.0	0				- 111-11-1	1 2 . 1190	14.980	5.33
	A C 74	16.041	16.997	15.999	15 519	10.44	198*51	10 A +c 1		
LUNA ILING	P - 19 = 3						2 2 2	0.1	C. 568	6.4523
	0 5 0	0-1126	0484.0	0.4454	0.100	10V0 - 0		1.1.7	1.5107	1.1330
T T		CC BT I	1.6179	1.6411			5 6 0	450.34	0.3417	0.000
FE /M	1.0413	1.0602	0.9410	VERC.O	1 . 0	1 22 2	2.0.	326	1 = 1 7 9 =	I.101.7
200	1000	0 9433	1.0020	00-00						0.0
				0.0	0 0	0 = 0	0 ° C	7.00		0.0
	0 * 0	0.0			0 0	0.0	0	3		0.0
I - IL - TE I	0.0	0			0.0	0.0	0.0	22	0.5235	6 3-30
X-4141	0.0		0504 0	0.4453	0.4615	0.4602	105 0		0.448	C.4.13
1 - MG- 41	0 .4632			0.4672	0.4958	4664.0	5 5 0 5 C	100	0.0228	G-0225
14-3	0 4 6 3 4		2450-0	0.0366	0.0398	0.0395	C 5 C C * C.			
1-54-41	0 6203	C+00C4					0.0	dau.	0.0	C•0
		0.0	0=0	0 * 0	0 0	0		2.1	0.0	0.0
78-58-	200	0.0	0-0	0*0	0		0 0	1×3	0.0	0.0
		0.0	0 0	0 0	0.0	2				
J.F.L.J.L.				0.0	0-0	0.0	0.0		6.9	0-0
A-ENSIATIT	3*0	0-0		0-0	0*0	0*0	0.0		0-0	0.0
A-TREMOLIT	0.0	0.0	0-0	0.0	0.0	0.0			0.0	C . C
X-ANGALFIT	34		0 0	0-0	0 0	0.0	C = C.			

BLE 2 NO CONT

				-						
	L	31-7			10 . O .	40.05	9.57	LARET		50.00
261	40.15	0 15	41.00	0.02	0.0	C . D	0.0	2.0		27.5
1.32	0.02	20 00	22.90	12 - 96	22.42	2 . 5		0.0	0.0	0.0
	0.0	0 0	0-0	0-0	00	0.20	0.0	12+21	0.0	
	0.0	0.61	0 0	91 • C •		21.57	3.23	00.00	22.01	20.02
	21.40	20-91	22.01	20-02	0.03	E 0 = 0	1.05	51.1		
UND.	0.0	10°	0.00	14.29	14.33	14.33	01		0-84	0.6
160	- 1 · · · ·	26.44	1.00	1.04	0.06	0.46	1.65		0	0 · C
0.4	L o J			0.0	0.0	0	50	0.0	0 0	0.0
A A			0.0	0 - 0	0 • 0	0 = 0	0.00			
2	2			181 24	00-02	56°65	-0*66	0.2.00	39.42	30
1121 412	100-23	100.25	: 01 · 40	A STATE					2 B -	
		24.	24.	· #2	141	53.		•		
ZU XICE	-	2		6	1 2 2 1	5-077	5 - 212 - 5	5-uuß	5. 555	100
	405	5.956	0.020	200	0 0 0		0-0	3+0	1001	
0 =	003	0.002	0.002			2 6° E	3*935	3++27	5. 5. 6	
11	4.003	3.994	3.910		0-0	0.0	0 ° C	3.10		
10	0.0	0.0	20	0.015	0-0	0.07	0.0	1	2 200	2.62
	C. C	0.008	202	200	2.773	2 . "			0.00	00-00
++ 44	2 . 000			0.006	0.004	• 0	C 05 + C	0.17	3.24	3.135
MIA	000		3.123	3.124	3.190	-	•		0.141	0.140
5		010-0	0-163	0.163	0.138				0.0	0.0
Y I		0.0	0.0	0 • 0	0.0	30		0.0	0 . 0	C • I
~~~	0.0	0-0	0.0	0 0	0.0	2 m				Concernant of the second
	A . O 3A	10.011	15.992	15-998	PE-0.14	16.013	6 = 23 -	20040	200 to t	
I TENS						0 9670	P.5089	5- JL -3	6.4.588	57 2 2 3
4 - F. L.	0.4650	G.4452	6404.0	0.4057	10000		3466	50-02	1-5100	4-51
ST LEG	1.4913	1.4534	1 5444	0100-1		0.8447	- 3352	1-0-14	C- 1-77	110
E/HG	0.8369	0.0156	70.00	21/2 0	1	1.1838	0.9550	0515-0	1	
MG/FE	1-1949	1.2221	0				0.00	1 0	0=0	0.0
	2	0-0	0.0	0.0	0 = 0	0.0			0	0-0
C Y-B C VA	30	0.0	0.0	0.0	0 0			0	0.0	0.0
	000	0.0	0 .0	0.0	0	0.5,04	0.4583	0 + 7 21	0.5.80	2000
A - MI - MI	0.5250	5015-0	0.5206	0.5193		0.4472	0 4953	3 + 423	0.4.61	1 - C - C - C - C - C - C - C - C - C -
	\$5E t . 7	0.4130	9.4512	NCC O		0.0228	5 VAC 0	C++ T = 0	0-0230	AC 2 0 0
X-C 4-11	0.0246	0.0.50	0.0272	2120.0					0.0	( - i)
			0-0	0*0	0.0	0.0		сі с з	00	0.0
N N N N N N N N N N N N N N N N N N N	30		0.0	0 + 0	0.0	0.0			0 = 0	0=0
X FRIMA	000	0.0	0*0	0*0	0 • 0	•				
		0	0-0	0*0	0.0	0-0	0.0	0	0-0	0.0
A-ENS AT	0.*0	0.0	0.0	0*0	0*0	0.0	0-0		0 0	0.
X ANGHTHIT	0 0	0 0	0.0	00	00	0.0	C - C	0.**	0*0	0*0
1. 2. 2. P. L.	0-0	0.0	0.0	1 C 2 C 2 C						

a Plancont. /.

ARLINE P. C.	1						1	10-00		10
	L	1- 05	L			JC KA	10.44	10.00	40°50	40.50
1.2	14-21	14-55	40.07	10.01	20.00	0.0	:0.0	10-1	0.00	22.75
201	0.01	10 0	22 38	22 . 38	£2.37	22.37	20.07	10 and	0.0	0.0
		0.0	0.0	0.0	0-0	0-0		0.40	0.0	0 = 34
1 4 4 5 1	0.0	N = 0	0.0	0.63	0.0	40.00	21.52	Zivili	20.97	50°00
20	12.43	21.54	22 . 53	22.01		C.09	10.01	10.00	C • C •	5 × × ×
NO	0 - 04	0.04	0.07	0.00	12.71	12.71	14.45	117 - 4 1	10 ° C C	CE -
0,1	195°E	3.90	26 - 6 1	1.03	2 11	2.4.5	1.33			0.0
0	0.87		0-0	0.0	0-0	0.0	0.0		0.0	0.0
210			0 0	0.0	0.0	0.0	0.0	2 4 2		
, 1				11 001	100.54	01-66	E & COI	Derroy	100 - 31	100.34
UTAL WIA	9 1 ° 5 .	27.65	cn * 00 I						24.	.4.
1 1 1	24.	24.	24.	24.	24.0	24 .	20 °		1	
THE READ				1	E C 3 2	F. 365	166.**	5.481	5.055.05	0.1.0
	5+ = 4 Q	5.932	5.991	725 - 0		0.0	1.001	100*0	0.001	
	0.001	0.001	0.001	010 2	3.938	3.983	3 . 16!	3+ 426	0/5.0	
		100 mm	1.40		0.0	0.0	0*0	0.0		0.00 Ac
3	0*0	0.0	3 0	0.071	0.0	0.662	C*0	100.0	200	2.050
É I I I	C . 0		10 C C C C C C C C C C C C C C C C C C C	2.748	2.6=3	2.78	1.021	2.0.2		6.005
	A 830	212 2		0.000	0.012	0.012	106.001	120°0	0 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.229
2	0.000	0.00	CO1.5	3.097	2.854	2.861		1000 4 4 4 C	0.220	020
0	571 - 7		1910	0.165	0.342	0.341	1 12 4 0		0.0	0.0
C.A.	1+1+0		0.0	0.0	0.0	0.0		14.0	0.0	0.0
A	20	0.0	0.0	0.0	0.0	0.0				and the second
		0.0	1 1 1 1 1 1	16-012	16.033	110-21	10.015	10000	3 E+018	10.00
IUTAL ILAS	16.656	5 TO . 01	10.000						5-2254	C. 420
	10220	G . 4641	0.705	0.4701	06550	0.4932	1000		1.43	70.4
	1.6067	1.3432	1.0221	1.5812	002/1.1		1.1351	7.2137	C-8033	01610
n'nc	0.9010	0.3660	0.0103	0.8873	105.0	175.1	1.1355	11	1 24 5	
0/1 F	1901-1	1.1547	1.0986	1.1610					0	61 - (3
			0	0.0	0 = 0	0 . 0	0.0	2.00		0.0
-X-A CP	0		0.0	0.0	0.0	0.0	0.0		0-0	0.0
N-AL-IET			0.0	0.0	0.0	0.0	0.4367	2022-0	0.5339	C.53/~
E-AL-WE	0.513	0.5225	0.5036	0.5140	0.4718	0.4705		3 4 3 4 6	C.4285	0.425
	0.46.8	0.4526	0.4629	0.4500	0.4700	0000	0.0348	1456.0	0.0364	0.036/
	0.0230	0.0234	0.0271	\$120°0	5067°0	2				0.0
			0	0-0	0.0	0.0	0.1			
X-46-42	0.0	30	0.0	0 0	0.0	0,0	C* C	10	0.0	0.0
X FF AL	00	0.0	0 * 0	0=0	9 - 0		1.4.1.			2
4			0	0-0	0-0	0.0	D* 9.	2-0	0.0	0.0
A-ENSIAII	0.0	0.0	0-0	0.0	0.0	0.0	0.6	0.0	0.0	0-0
A TRENUL I	0-0	0-0	0.0	0 0	0.00	0.0			0.0	0°0
X-PNCX-Y	0	0-0	0.0	0*0	0*0					

- 2 10( cont - -

				100		43	L	44	ļ	5
	1	T 11		1	1 1 1 1	30.86	39.95	92.41	40 - 30	0 * 0 *
2112	12.79	34.7	40.14	40.04	0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •	0.01	C . 0	10	0.02	22.26
102	0	22.52	22.68	22.68	22.64	22.64			0 0	0.0
	0.0	0.0	0.0	0.0	0.0	12.0	0.0	1.50	0.0	10° 1
10	0-0	0.56	0.0	60 0		21.27	32.80	6	53 53 53 53 53 53 53 53 53 53 53 53 53 5	
	22 . 70	22 . 20	22 - 12	nc • 12		0.05	0.05	5.7	- C	19-01
L L L	0.04	0.04	0.05		14.06	14.05	13.53	20	10°0	
	12 82	12.62	14.27		62.1	1.29	1 • 5 3			0-0
	2 = 14	2-14		10	0.0	0.0	0.0			0.0
A 40	0.0			0.0	0.0	0.0	0.0			
2	2					00.00	11-50	.Ncov	100.90	10: .40
7 I AI	101001	100-01	100.13	0+*001	IF . G.F.					24-
			24.	24.	24 -	- 45	244		• 5 V	
CXYENS	1442				0.00	E C. 7	. 161	34 4 20	5.957	10 - C
	5.975	5.907	5.971	5.95		0.001	100-1	1007	0	
-	0 = 0	0*0	000	0,002		3.982	1-6-1	DORT		10.00
L.	196.3	3.962		0-0	0.0	C • O	6-6	10.00		C-114
a	0.0	0.0		0.077	0.0	0.091	1 · 3	1010	2-748	2.627
E	0.0	000000	0.750	2.470	2.750	2 • 655	145°	1000-00	0000	0.000
	2 • C ()		100.0	0-006	0.000	0.006	0.00		3.223	3.210
N#	0.00			3 58	3.132	3.126		0	0.155	0.155
			0.167	0.167	0.207	0.100	1	0.0	0 * 0	0.0
		00	0.0	0.0	•		C	0.0	0 . 0	0.0
E	0.0	0 0	0.0						1 2 0 5 7	16-613
		16-010	16.034	101	10.+045	10.015	190	5.017	10.00	
IO AL IONS	T C O C T F				0 163	0.4542	0.=351	0 = + 1 D O	0 2662	C = 4 = 37
	0.4564	0.4928	0.4052	. 454.0		1.5131	.0.80	1 - 4 - 50		
FEDZMGU	1.7707	1.7317	10001		0.878	0 849	7.742	3-1025	L . 5 1 1 1	
CE/MG	0 = 0 = 0	B1/6 0	0.000	1 1828	1.1385	1 - 1 7 7 7		1	1 1 1 1 1	
46/1 E	1 .0004	14.70.1				0	0.0		C * 0	0.0
3 X-4CPX	C . 0	0*0	0.0	0.0			0.0	3 . 3	0	
X-AL-TLT	0.0	0.0	0.0			0.0	0 0	C . C	0.5257	0.5357
X-AL-MI	0.0	0.0	0.0	0.5.62	0.5139	0.5214	0 4935	201 1	200 00	0.4377
X-MG-41	0.4727	11100		04.4.0	0.4512	0.4423	0 000	00110	0253	0-0253
X-FE-M	- F- V U C	0.0574	0.0275	0-0278	0.0334	0.0344	C 0 6 0 - C			
X-CA-41	3				0	0-0	0.1	2+5	C=0	a :
X-BG-NZ	0 * 0	0.0	0.0	00		0 0	C . J	7-01	00	
X-FE-M2	0	0	30	0 0	0.0	0 * 0	0.0	0.0	5	1
25-43-8	0	2					C C	10.1	0.0	0.0
T T T T T T T T T T T T T T T T T T T	0-6	0.0	0*0	0*0	0.0	0.1	0.0	0 0	0*0	0*0
A TREM I	0 0	0*0	0.0	0 0	0-0	0.0	0.0	0=1	0	
X ANCR HIT	0.0	00	00	0	0.0	0 • 0	6+C	7	2 = 2	
X-ALEILE	0.0	2								

TABLE 2 IDI CONT. ....

					1	(		6	L	F
		( - Ot		1 1			FC.0A	4.1.4	40.45	6 9 ° 0 -
2	40.04	40.04	40.20	\$0°20			0.0	10 - 7	0.01	0.0
0	0.01	10.0	0.00	22.63	22 79	22.74	22.75	57. 12		0.0
E -C -	24.00	2007	0-0-	0.0	0 0	0.0	0.0		0.0	16.0
50 A	2	20.0	0.0	0 • 32	0*0	0.0	0.1 10		20.57	02.01
	21.37	20.50	21 . 42	21.13	21 35	10.07	10.01	10.7	0.07	10.01
2 2 2	0.01	10.0	0 • 02	0.05		14.07	15.02	13.22	15.65	n .
	14.03	14.93	13.86	0 c n :	40 0	0.96	0.90	J . 155		
	1.03	1.08	29.1	100	0	0.0	0.0			
1ALU	0.0	0.0	00	00	0	0.0	0.0			
N			10.04	130.61	100.60	103.66	15.0011	114.43	100.57	100 - 01
INTAL WERE	170011					24.	- 4W -		29+	+ 9 H
LC CXVDENS	24.	.4.	24+	* + 2	· • 7	•			1 4 C U	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				S. ONU	5.936	5.978	3-905	7 + 3 +		10
15	44 H	3-0-0		0.0	0-001	100.0	100-0	100		3. 156
1			3.477	3 975	3-959	3.953	0.00		0.0	0.0
-	700 - 0		0.0	0.0	0.0	0.0			0.0	20.0
Z	30	0.108	0 0	0.036	0.0	0	1	10	2.533	2 . 440
		2.53	2.671	2 633	10.2		0.001	1000	500.0	0.00
	100 0	0-001	0.005	0000			7 25 F	0.2.	3.6 4.6	1.1.1
2 1		3.273	3.030	120 5	- 1 A	0.152	0.152	G. A 32	0.148	0.4
1	C . 172	0.171	0.291	162.0		0.0	0.0	0.0	0.0	34
	0.0	00	00	00		0.0	0-0	0.1	0.00	
4	5	2				1 10 101	000.0.	10*42B	16.0.4	10.03
TOTAL LINS	11-034	16.015	16.018	10.4005						0 11 2.1
	14471	C. 4368	0.40.45	0.4611	1 - 4 - 4 C	0.4283 0.4283	0 . 385	0.4475	4 4 1 4 4 1 7	
FFU/400	1.4410	1.3823		0470-1		0.7602	9.913	3 - 7 + 59	0 / 0	
HI HC	0.6085	0.7757	1.1.31	1.1688	10	1-2816	6622 . 1	1041-1	0000	
MGFE				0	C . D	0 • 0	0.0	0.0	C•0	
N. N. AL-CHR	0 = 0	0.0	00		0.0	0.0	0.0			0.0
X-AL-TET	0.0	00		0.0	0.0	0.0	0.0	0.1	0.5.00	0.5763
N-AL-N	0.0	0.00	0.5042	0.5123	0.5412	0.5372	5 - C - C		0.4136	0.4031
TH-DH-B		2.4242	0.4416	0.4383	0.4332	0.4203		20-1-0	0.0.42	0.6145
A PECKAT	0 0201	0.0246	0.0481	0.0484	0.0250	7670=0				0
			0	0-0	C • E	0.0	0.0	1.0	0	20
TW-NN-X	0	30		000	0.0	0.0	0.0	3 1	0.0	0.0
A - F E - 42	100	.0	0.0	0*0	C*0	0.0	• •			
		0-0	0 0	0.0	0.0	0*0	10.00	0-0	0 0	0.0
A-EN-IA-	0.0	0.0	0-0	0-0	0.0	0.0	0.0	2.0	0*0	0
X ANDHINIT	00	00	00	00	0	0*0	0 0	1	3 0	2

11 E 2 101 cont -

TABLE 2 MI CODI	+1+				Ŀ			54 )	1	55 - )
	1	5	L	52				12.13	38.06	33.31
	6 = 25	40 - 95	39.43	20 - 0 2 - 0	10.0	0.0	10.0	10-01	0 0	20.02
11.12	0.01	10 00	22.32	22 . 32	22.71	22.71		1	C 0.	0.0
ALECT		0.0	0.0	0.0	0.0		0.0	09.0	0 0	
EK ZU S		0.55	0.0	1.30	0.0	40.00	22.36	40	21.8	10.51
	0.70	20.21	21 - 12	19.95	11.12		10.0	20.0	C 04	5.0
	10.0	0.0	0 • 0		1 0 · 0 F	14.22	12.23	2+2		
Current Curren	11 . U Ó	15.56	14.00			1 .18	01 01 	20.9		10
	0+27	0- 37			0.0	0 0	0.0	2	000	0.0
NAZ	0.0			0.0	0.0	0 • 0	0.0	2		
K Z U	2					96.18	35465	10.440	97.19	67
TOTAL ALL	121-121	101.16	98.77	06 90	14.10					246.
		-	24.	24.	24.	- 4 ·	- 92	+ + +	•	
NU CXIGENS	244	142					000	5 1 1 1	5-873	5+8+3
	1	C CAL	5-942	5 123	2 - C - C	525-5	100 0	10	C. 0.2	C = 0 C -
51			0.002	0.002	0.601		400.0	00	3. 907	9.0.0
		1.957	3.965	3+953	5 10 1 7			0.40	0.0	0
L.			0.0	0.0				0-0.95	0 0	1000
EA	3 (	0.000	0.0	0.147	0-0	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.00.0	12420	2.816	52 ·
Ш.	1 C C		2 662	2.507		N = C / 4		0× 0 0.	0.000	0.001
L U			0.0	0.0	0.00		0 00 0	140.1	3.222	G 0 1 0 0
4N		101 - 5	3 . 3 4 2	3.331	3-170		102.0	3.321	0.210	2010
2		0.152	0.161	0.161	0.140			0-0	0.0	0.0
		0.0	0.0	0.0	0			1.2	0.0	0.0
N.A.		0.0	0=0	0.0	0.0	0.0				1.44. 44.
×		0.00	0 - 0 70	10.024	10.011	16.004	1.0.041	0 	15.1.0	10.04
INTAL IJNS	16.030	1						0	C.EDGA	C 4432
	A15-0	C-216	0.4+34	-6-4-0	5+S+0	0.4525			1.5575	C 2 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
XITE		1 987	1.4194	1.3-01		A JOH .	1.9260	3- 4423	C . B 7 A C	2022
	0.7465	0.7288	0.7.65	1 - 2 - 2	10021	1.2100	6 . 37A7		1.1442	
MG/FE	1.135	1.3721	1 - 200	16.30* 1					0 - 0	C.0
	1	0	0 - 0	0-0	0 • 0	0-0		1 1	00	0-0
Z.X-A. CP	3		0-0	0.0	0.0	0.0		1.0	0.0	0.0
X-AL-ILT	30		0.0	0.0	0.0	0.0	0.45.4	0 7+2	0.5153	0.535
(- 4L - 1	- C - C - C - C - C - C - C - C - C - C	0.5634	0.5+21	0.5553	0.5231			C. 733	0.4503	0.427
- 51.		0.4106	71E4.0	0.4178	0.4400		0.0527	0. Ju35	0 0336	0000
	0.0250	0.0252	0.0262	0 = 0 2 0 8	0.00					0 0
				0.0	0-0	0 = 0	C * C	7		0.0
X-MG-MZ	0.0			000	0.0	0.0		3	0.0	0.0
X FE-42		0.0	0	0 0	0 • 0	0 = 0		2		c
			0	0.0	0 • 0	0.0	0-0	A	0.0	0.0
A-ENSIATIT	0 0	0=0	0-0	0 0	0.11	0+0	0.0		0.0	0.0
A TREMIL	0 0 0	0.0	0.0	0-0	0.0	0-0		0.1	C . O	C 0
	50		0.0	0.0	0 = 0	2+2				

TAFLE 2 11									C	40
			1		2	-	*	0		2
		N	~			10 01	44.85	ĊF = K	50.27	50.30
	4 7	-0°1 5	49 ° 60	49.60			0.0	J . 02	0=05	0.0
1 12	0.09	3.04	0.0		C 5 - C F	34.95	31.42	1 m m	34.75	
L 20 .	13+12	04.40	10.00		0.0	0.0	0.0	2 - 2		0.0
- H 2 1 -	0-0	0		0.0	0 . 0	0.0	0.0			2 . 34
1 E Z - 3	0		2.57	2.66	2 . 60	2.20	100		0.1	C • O
FED			0.0	0.0	0.0	0-0		2.06	12.08	12.15
ONT			11 93	11.79	11.61	10.01			0.04	0.00
00		10.0	0.05	0.05	0.03			- 22	0.14	0.2
C A D		1 1 0	0.10	0.16	0.010	0.0	0.0	0-1	0.61	0 • 0
5.2	0 = 0	0.01				00-60	19-6-	94.01	19.84	LE*BE
ADTAN ALS	-3°75	49.07	99.25	E1.7E	• • •				0	
			1.6	10.	18.	. 8	8	. n.	8 D	
O DX GENS	0 1	0				A 406	690-	074	4 . 9C 8	4 26-
	4.547	4.300	4 979	5.041	0.00		0.0	1.001	0.001	-00-0
10	0.007	0.003	0.0	0.0	1.004	A.: 38	0.404.0	75	4.047	0 C C
1	1.005	4.026	4 • 0 0 0		0	0.0	0.0	] • 1		
13	C = 0	0 0	0.0		0 0	0*0	0.0	0-0	2.00	
	0.0	0.0		0-226	0 226	0.215	561*6			0-0
	0.247			0.0	0-0	0-0	0.0	0.1	1.77	1.70+
N.	0.0	J . C	1-700	1.784	1.762	1 -739		0.00.0	0.00	0.000
	1 120		0.005	E0C 0	0.003	0.000	10.00		9.03	0.94.3
100	0.00	0.00	0.031	10.031	0 020	0.000	2.00	2	0.001	0 • 0
	0 = 0 0 -	0.001	100.0	100*0					500 11	11-023
	0.0	120-11	11.034	11+01	10.592	11-4074	1.024	0.00		
AGINE TONS					0.1130	0.1099	7790.0	0 - 412	C+C013	0.0903
4-FC	0 + 1 2 4 4	0+0910	6/01°0		0.0	0.0	0.0	r • 0	0	
VED/MED	0		0.0	0.0	0.0	0-0	0.0		0	0+0
TANK T			0.0	0.0	0.0	0 - 0	d . e d)	2		
11.01	2				0 0	0 - 0	0.0	G = 1	0.0	0.0
N-N-41-00K	0 = 0	0.0	0"0	0.0		0.0	0.0	D • C	0.0	20
1 31 - 18 - 8	C ° P	0.0	0.0	30		0.0	0.0	0.0		
14-41-41	0 • 0	0	0		0	0 • 0	0.0			0-0
× - 40 - 41	0.0				0.0	0.0	0.0			0.0
X-FE-92	0 = 0	<b>9</b> 0		0	0 0	0 . 0	0.0	<b>1</b> • 5	5	
X-5.4-41	0.0	0					0.0	1	C - 0	0 0
2 MIL- 40	0.0	0-0	0 . 0	0.0	0.0			1 2	0.0	0.0
X-PR-AL	0.0	0.0	0.0		0	0.0	0.0	r = 0	0.0	2
X-CA-42	0 0	0					0.0	0.3	0.0	C 0
2-FN-14111	0 0	C . D	0*0	0.0	0.0	0-0	0=0	0.0	0=0	0.0
A-THEALL II	0.0	0.0	0 ° U	0.0	0.1	0.0	0.*0	110		000
X ANCATH I	0.0	20	000	0.0	0.0	0 * 0	5*5			

1     2     2     0       1     0     0     0     0       1     0     0     0     0       1     0     0     0     0       1     0     0     0     0       1     0     0     0     0       1     0     0     0     0       1     0     0     0     0       1     0     0     0     0       1     0     0     0     0       1     0     0     0     0       1     0     0     0     0       1     0     0     0     0       1     0     0     0     0       0     0     0     0     0       0     0     0     0     0       0     0     0     0     0       0     0     0     0     0       0     0     0     0     0       0     0     0     0     0       0     0     0     0     0       0     0     0     0     0       0     0     0     0     0 <th>I C C C C C C C C C C C C C C C C C C C</th> <th>I Change and a constrained of the constrained of th</th> <th>I Chi Contraction of the contrac</th>	I C C C C C C C C C C C C C C C C C C C	I Change and a constrained of the constrained of th	I Chi Contraction of the contrac
	I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N S I C N	I C NS I C NS	I Chi C C C C C C C C C C C C C C C C C C
18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.     18.       18.     18.     18.	18.     18.     18.     18.     18.       18.     18.     18.     18.     18.       18.     18.     18.     18.     18.       18.     18.     18.     18.     18.       18.     18.     18.     18.     18.       18.     18.     18.     18.     18.       18.     18.     18.     18.     18.       18.     18.     18.     18.     18.       18.     18.     18.     18.     18.       18.     18.     18.     18.     18.       18.     18.     18.     18.     18.       18.     18.     18.     18.     18.       18.     18.     18.     18.     18.       18.     18.     18.     18.     18.       18.     18.     18.     18.     18.       18.     18.     18.     18.     19.       18.     18.     18.     19.     19.       18.     18.     18.     19.     19.       18.     18.     18.     19.     19.       18.     18.     18.     19.     18.       18.     18.	I Chi	I Chi
	I Change I C	ILAS ILAS ILAS ILAS ILAS ILAS ILAS ILAS	I Chis I La I L
4.961 4.961 4.961 5.034 4.961 5.034 4.961 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.034 5.	I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N	I Chis I there I to 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	I CNS I T T T T T T T T T T T T T T T T T T
	I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N 2 I C N	IChis Ither It.007 10.000 0000 0000 0000 0000 0000 000	I CNS I TO 2000 000 000 000 000 000 000 000 000 0
0.0     0.053     3.957       0.0     0.0     0.0       0.0     0.0     0.0       0.1     0.223     0.026       0.1     0.0     0.220       0.1     0.0     0.0       0.1     0.0     0.0       0.1     0.0     0.0       0.1     0.0     0.0       0.1     0.0     0.0       0.1     0.0     0.0       0.1     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0	I Chi	I Chis I I - 001 32 3 3.957 1 Chis I I - 001 32 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.022 3 0.0	I CNS I T = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =
	I Chi	I Chis I 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	I CNS I T T C C P X 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1	I Chi	I Chis I Trans 11.007 11.023 0.001 I Chis I Trans 11.007 11.034 10.023 0.001 32 0.001 0.001 32 0.001 32 0.001 32 0.11221 0.000 0.00 0.00	I CNS I T 22 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	I Chi	I Chis I I 1007 11.007 11.034 10.098	I CNS 11.007 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
	I Chi	I Chis I I 1 0 3 4 10 0 998	I.C.N.S I.H.003 I.C.N.S I.H.003 I.C.N.S I.H.003 I.1.007 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.003 I.1.00
	I Chi	I Chs I 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ICNS III.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
	IChs III.034 10.998 IChs III.034 10.998 0.000 0.00 0.00 0.00	ICNS ITTOT IL.034 10.998	I Chis I 11.007 11.034 10.998 10.998 11.007 11.034 10.998 0.000 0000 0.000 0000 0.00 00000 0.00 0000 0.00 00000 0.00 0000000 0.00 0000000000
ICNS 11.444 1.0465 0.1132 0.1221			
ICNS III 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
JChs III 4 2 2 2 5 5 5 1 2 2 1 3 2 0 1 2 2 1 3 2 0 1 2 2 1 3 2 0 1 2 2 1 3 2 0 1 2 2 1 3 2 0 1 2 2 1 3 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0 0.0	

WILL'S SAS						-			14	
1	T	2	M		and a second sec	AME -	- Det -	68	rnet	
	biotite	bio te	biotit	C or she	Currontac		-			
		33 06	37.35	10-04	30.00	22-01		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	10
2112		101	2.41	0.17	0.11	1.0.1	- 9 - E C	22+30	0	
203	17.01	17.67	17-19		0.40	0.0	U ° C		5 ° C	1
R203	0.0	0.0		0.0	3.76	0.40	2.2.		20.16	0.0
r L 203	0.0		N.33	17.24	10.455	5	50 6	6075	0.07	0.0
FEQ.	E . / 6			0.02	0.02	4		1. 1.1.1.1	17.80	2.0
UNU ON P	0.0	2.0	9.08	24.41	2	0		0.60	0 • 7 H	0 * O
- 60			0.0	0.03	2404	~ 2 *		21.2	0.0	S=Q
		0.71	0.68	0*0	0.0		0 - 0	1.0	2°C	100
0.00	0.11	0-10	3+31	0.0	0.0	1.8.0				0.0
	01	64441	93.35	93.30	4-66	13.64	30°00	19444	1.422	
YOTHE WIN	P. P. #11 #				7	142	2A .		= 2 = -	-0-
C NGENS	224	22 .	22 .	• •			1		E 0.3	
		5 - 0 S	5.475	1.823	1.020	2 00 .	4 ° C • C • C • C • C • C • C • C • C • C	The state	101.1	
10		0000	0 266	0.005	600-0		C 00 V	16.1.4	£ . 2	0.0
11		3-022	2 971	0.324	+ 2 F + 0			1.5	D. C	
A.F.		0.0	0.0	0-0	0.0		0.063	5.5	0. 1 P1	
		0.0	0.0	0.0	1-0-0	004-1	3.333	1.350	c .	
	1.062	1.086	1.021	0.527	100-0	0 01 9	~ 10° 0	10070	•	
this .	0.0	0 = 0	0*0	0.001	1 . 7.24	2.9 4 6	2 8 2 3 3 4	7+292	1	 
NG	4 - 0 2 4	155 8	000		100.0	6=0=0	0.20	Laber .		
C.A.	0.0	0.00		0-0	0.1	0.0	C . C	0.4.1		
14 W		01510	1 554	0.0	0*0	0-0				
						64.00.83	110.4	15.000	16.013	14.0
101AL 10NS	15.577	15.57ê	15.048	e • 010					074.0	0.0
		5	0 1 1 1 1	0.2838	0.2755	C.== C.1		110		0.0
N-PC	0.2009	0.014		0.7063	0.6781	2. 1			0.0010	C • C
FEU/WW	0.0		0.0	0.0	0.0	1	C 2 2 4 - 0	1. 7 35	1. 099	C + C
		3.0071	4.0117	0 • 0	0 * 0					0.0
				0.1516	0-1515	0.0	0*0	7.4	 	
2.X-2L-CDB	C • C	0		0.0866	0.000	0 * L	G * C	3.		0.0
X-ALSTLT.		30		0.1469	0.1432	0 * 0	0 0 0	CT	0. 512	0.0
IN-NE-Y	0.0	30	0.0	0.6087	0.602-	0.4.6			0.4646	U • U
1H-DH-R			0.0	0.0	0.0	2400 0	9900 6	1 3275	0.00 5	C * J
A-PC-4	0	0	0 - 0	0.0	0					0
and			0	0.7115	0-7216	C _ L	1.1	1× 4	C G C C	
x-80-84	0 . 0	0		0.2828	0.2740	J* J	c (			0.0
X-14-42		00	0.0	0.0031	0.0031	0 * 0	D.* D.	-		0
THE ADDRESS			0	TOAF 0	0.3599	270	10 eV	1++	C. C	,
A-ENSIATII	0.0	0*0	0.0	0.0	0*0	0*C	0.0	100	0-0	C.C
A-TRENULT	0.0	0.0	0=0	0.0	0.	0.0		1.1	J. C	. · J
X - AN - I H	50	0	0.0	0.0	C * C	1 0 1				

THEE 2 2 COD	t.).	,			F	70	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S. S	-andreshiel
	- 23 CT	C FIN -	- garne	Call 1	cord er te	cordierite	COFGIET160	autituddag	with the state of	
		-	-				NC-D.	11111	17.12	121.0
102	11-52	39°11	39.01	39.61	1		10.0	10.01	1. 7°	5.0.
1132	0.01	10.0	10.01	23-06	3 3 9 9	14 . 17	C *11	11 411	1.1.1	0.0
ML2C3	1.0	1.1.0	0.0	0.0	0.0	3.6	010	A KD	14 D	D. 7
R203		0.10	0.0	0.55	0.0	0.0	100	3.40	1.61	0.2.
FEZO3	24.44	24.9	25.29	24.79	2.04		1000	10-1-1	0.0	0.0
	0.11	0.12	0 . 8 8	0.11	0 = 0	1 1 1 1 1	1 2 2 4 3	144.35	16.20	11.00
00	12-32	12.12	12.00	12.00	11.0%		1.0.1	21.17	C.40	10.43
	0.45	0.15	0.48	0.43	0110		1.04	0+0	0.0	0.0
KA20	0*0	0.0	0.0		0.01	0.011	0.87	140	10 * 0	11.01
Cr	0*0	0.0	0*0	2				1.41 A.	144.40	101.001
TOTAL AVE.	100-01	100.00	46*6,6	100.02	C0.84	14.76	10400			
Inter als					18.	18.	116.	10-	10.	P.4
SU CXYGENS	24.	24.	• • • 7	C 4 0						
		5 200	5.309	5.901	4.462	110+-	1.021			D.001
	300	100.0	0.001	C . 001	0.0	U*U	10000		A. 6 01	11 11
-	- 10	4.120	4.110	4.112	4 . 0 . b	5 00 S	N. N.		0-0	0.1
		0.0	0.0	0.0	0.0	0.0		2.6	C C	240
	0.0	0.000	0.0	0.003	0.0	0 0 2	I SUCCE	7. 1	0 - 6	0.40
	3.152	3. 059	3+204	3.1.16	122.0		0.0	1.0	0 0	0×0
	0.015	0.015	0.014	0.014	0.00	1 - 2 - 1	10.04 m	0 * * 1	11011	
	2.773	2.761	2 * 709	2.705		0-000	0.003	0.001	0*0	0.00
	0.057	0.057	0.078	0.070	C00.0		- 1C- 20	0.0	0=0	0.0
NA.	0.0	0.			6. OUI	100.0	14.41 B	2.5	C * 0	
2	0.0	0 - 0	0.00						in Mile	7,044
	0 2 2 4	16.010	16.032	15.941	11.043	- 70* 11	1 . * 10 C	and the		
INTAL TUND						02.85	0.1011	7.0	D.C	4 × D
	0.532	0.273	0.5418	0.5309	0.111		0.0	7.0	0.0	0.0
FFC/M(4)	2.0260	1.4875	2.1075			0-0	0.0	1.2	C . O	0.00
FE/MG	1.1369	1 153	191111	0.4625	0.0	0.0	100	1.0	L • D	14.1
WG/FE	0 - 2 - 20	105							5 ° 0	0.0
	0	0-0	0.0	0.0	0.0	0.0		2 P	0=0	640
XIAL CU		0.0	0.0	0.0	0.0				0" 0	0.0
	0.0	0.0	0.0	0.0			0.0	L."L	0.0	0.0
	0.4023	0 4570	0.4511	9.4234	•		0.0	L = 1	J° C	0*0
	0. 1256	0.5209	0.5 35	0=2580	0.0	0 0	C . C	24.2	0.0	0+0
-CA-MI	0.60 44	0000	0 • 01 30	10 1 3 1 3 1					0 0	1.1
	0.0	0-0	0.0	0 ° 0	0.0	0*0	c .	20		10.0
N BOLE	30		0.0	0 . 0	0.0	0 0		2.0	0-0	0.0
A FET46		0 0	0.0	0 • 0	0.0	0 * 0	C.* C.			
			0	0.00	0.0	0.0	11.11	- 3+2	TAT -	Della Call
A-ENSIALII	0.0	0.0	0.0	n. n. n	0-0	D. D	0 +/1	0.0	0.0	0.0
A-THENOLI	0 0	0 0	0.0	0.0	0.0	0-0	C . C	1+1	0.5	2.2
X-ANURITI	0	200	0.0	0.0	0.0	0.0	C	-0.40		

TABLE 2 12 1 CONT.	11122 1122 1222 1220 1220 1220 1220 122	UIAL EIS		I TAL LUNS R-FE FECMGO	2. X - AL - PX X - AL - FL X - AL - FL X - AL - MI X - AL - MI X - C A - MI	X - M 6 - 42 X - F 6 - 42 X - 6 A - 42 X - 6 A - 42
nel	C C C C C C C C C C C C C C C C C C C	5 77		0000	000000	000 0
spine.	60000 00000 0000 0000 0000 0000 0000 0			2 * 1 * 5	000000	000 0
		0.0	000000000000000000000000000000000000000	0000	000000	° ° ° ° °
		0.0	000000000000000000000000000000000000000	0000	000000	000 0
		4.0		0.0000	000000	000 0
		20		0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	000000 00000	¢
		2.0		: cocu : : : : : : ccc		
	11111111111			3333		110
	COCOUCCUCC	1.1 2.		0 0	000000	LLC 0 1
	007000000000	ς τ		1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	00000	000 C

Tatlable         Control/Total         Control/Total         Control/Total         Control/Total           1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         10000         1000<	Fallager         Contragrammer         Contragrammer         Contragrammer         Contragrammer           1103         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         *****         ******         ******         ******         ******         ******         ******         *******         *******         *******         *******         *******         ********         ************************************	TAPLE 3										
10.1         10.00         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000	1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000 <th< th=""><th></th><th>feldepar</th><th>rorth</th><th>Conexory</th><th>5 80</th><th>[ ]</th><th></th><th></th><th></th><th></th><th></th></th<>		feldepar	rorth	Conexory	5 80	[ ]					
		50		50 · 63	50.83	38.02	33.02	ر ب	c c c c	10.0		с с с с
		102	0*0	41.0	0.14	0 0 0	18- 6	C * 0	c - c	14.2		5.0
		L 2C3	1 A A A A	אין אין אין אין אין אין אין אין אין אין אין אין		10	0.0	0.7	C .C	10.3		00
	Contraction		0.0		0.66	0 * 0	0.01	0+0	0.0	141		) C
	MOD         Contraction         C		02-0	23.53	22.94	27.30	27.35	0.00		10.0		
	MUC         None         Contract         Contract <thcontrant< th=""> <thcontract< th=""> <thcontrac< td=""><td>NO.</td><td>0.0</td><td>0.14</td><td>0.14</td><td>000</td><td>4</td><td></td><td>0.0</td><td>242</td><td>-</td><td>0.0</td></thcontrac<></thcontract<></thcontrant<>	NO.	0.0	0.14	0.14	000	4		0.0	242	-	0.0
	Alt         Alt <td>07.</td> <td>0.0</td> <td>21.24</td> <td>- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1</td> <td>24 6</td> <td>2.77</td> <td>0.0</td> <td>0.0</td> <td>in a</td> <td></td> <td></td>	07.	0.0	21.24	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	24 6	2.77	0.0	0.0	in a		
	Alter         Alter <th< td=""><td>DA.</td><td>17.00</td><td>. v.</td><td></td><td>0 0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>222</td><td></td><td></td></th<>	DA.	17.00	. v.		0 0	0.0	0.0	0.0	222		
Mill         Mill <th< td=""><td>UNMANE         ICO.T         59-55         TAG.14         ICO.T         59-55         TAG.14         ICO.T         59-55         TAG.14         ICO.T         59-55         TAG.14         ICO.T         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54</td><td>N LI</td><td>0.02</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0*0</td><td>C • C</td><td></td><td><u>.</u></td><td>0</td></th<>	UNMANE         ICO.T         59-55         TAG.14         ICO.T         59-55         TAG.14         ICO.T         59-55         TAG.14         ICO.T         59-55         TAG.14         ICO.T         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54-5         54	N LI	0.02	0.0	0.0	0.0	0.0	0*0	C • C		<u>.</u>	0
Mathematical         Mathematical<	Main         Main         Composition         Main         Main<	7.31.AL #12	160.77	55 + 4 G	99°25	130+14	100.14	1.0	1.0		7	5
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td>Market Best Best Best Best Best Best Best Be</td> <td>11. 2 &gt; 0</td> <td></td> <td>9</td> <td>0</td> <td>24.</td> <td>24.</td> <td>*3</td> <td>10</td> <td>*0</td> <td></td> <td>*</td>	Market Best Best Best Best Best Best Best Be	11. 2 > 0		9	0	24.	24.	*3	10	*0		*
	1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	NE UNTVERSE	1				0.00	0.0	0.00	Test	°C	c
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td>1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1<td>10</td><td>E+4=1</td><td>- 40 S</td><td>1 - 909</td><td>0 00</td><td>0.00</td><td>10,10</td><td></td><td>0.1</td><td>-0</td><td>5</td></td>	1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td>10</td> <td>E+4=1</td> <td>- 40 S</td> <td>1 - 909</td> <td>0 00</td> <td>0.00</td> <td>10,10</td> <td></td> <td>0.1</td> <td>-0</td> <td>5</td>	10	E+4=1	- 40 S	1 - 909	0 00	0.00	10,10		0.1	-0	5
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td>1     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1</td> <td>11</td> <td>0.00</td> <td></td> <td>0.150</td> <td>4 06</td> <td>4.002</td> <td>0.0</td> <td>0*0</td> <td>0.0</td> <td>•</td> <td></td>	1     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1     0.00     0.00     0.00     0.00     0.00       1	11	0.00		0.150	4 06	4.002	0.0	0*0	0.0	•	
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td>First         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         <th< td=""><td>36</td><td>78.44</td><td>2 C - C - C - C - C - C - C - C - C - C</td><td>0.0</td><td>0 0</td><td>0.0</td><td>0.0</td><td>C*1</td><td>244</td><td></td><td></td></th<></td>	First         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010 <th< td=""><td>36</td><td>78.44</td><td>2 C - C - C - C - C - C - C - C - C - C</td><td>0.0</td><td>0 0</td><td>0.0</td><td>0.0</td><td>C*1</td><td>244</td><td></td><td></td></th<>	36	78.44	2 C - C - C - C - C - C - C - C - C - C	0.0	0 0	0.0	0.0	C*1	244		
0.746     0.746     0.746     0.746     0.746       0.746     0.746     0.746     0.746     0.746       0.746     0.746     0.746     0.746     0.746       0.746     0.1433     0.1433     0.1433     0.1433       0.746     0.100     0.00     0.00     0.00       0.746     0.100     0.00     0.00     0.00       0.116     0.00     0.00     0.00     0.00       0.1078     1.1433     0.00     0.00     0.00       0.1078     1.1274     0.00     0.00     0.00       0.1172     1.1274     0.1112     1.1274       0.1078     0.1112     1.1253     0.1014       0.1078     0.1112     1.1254     1.1254       0.1172     0.1112     0.1112     1.1254       0.1172     0.1112     0.1112     1.1254       0.1172     0.1112     0.1112     1.1254       0.1172     0.1112     0.1112     0.1112       0.1172     0.1112     0.1112     0.1112       0.1172     0.1112     0.1112     0.1112       0.1112     0.1112     0.1112     0.1112       0.1112     0.1112     0.1112     0.1112       0.	0.746     0.720     3.554     0.723     3.554     0.574       0.746     0.720     3.544     0.574     0.723     3.554       0.746     0.720     1.4994     1.4994     1.4994     1.4994       0.746     0.720     0.400     0.00     0.00     0.00       0.746     0.720     0.400     0.00     0.00     0.00       0.746     0.00     0.00     0.00     0.00     0.00       0.746     0.00     0.00     0.00     0.00     0.00       0.746     0.00     0.00     0.00     0.00     0.00       0.746     0.00     0.00     0.00     0.00     0.00       0.746     0.00     0.00     0.00     0.00     0.00       0.746     0.00     0.00     0.00     0.00     0.00       0.746     0.00     0.00     0.00     0.00     0.00       0.746     0.00     0.00     0.00     0.00     0.00       0.746     0.00     0.00     0.00     0.00     0.00       0.746     0.00     0.00     0.00     0.00     0.00       0.746     0.00     0.00     0.00     0.00     0.00       1.447     0.0	C. State	20	0.0	0.019	0.0	0.001	1+0		040	• •	
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	1.100     0.000     0.000     0.000     0.000     0.000       1.100     0.000     0.000     0.000     0.000     0.000       1.110     0.000     0.000     0.000     0.000     0.000       1.110     0.000     0.000     0.000     0.000     0.000       1.110     0.000     0.000     0.000     0.000     0.000       1.110     0.000     0.000     0.000     0.000     0.000       1.110     0.000     0.000     0.000     0.000     0.000       1.110     0.000     0.000     0.000     0.000     0.000       1.111     0.000     0.000     0.000     0.000     0.000       1.111     0.000     0.000     0.000     0.000     0.000       1.111     0.000     0.000     0.000     0.000     0.000       1.111     0.000     0.000     0.000     0.000     0.000       1.1112     0.000     0.000     0.000     0.000     0.000       1.1112     0.000     0.000     0.000     0.000     0.000       1.1112     0.000     0.000     0.000     0.000     0.000       1.1112     0.000     0.000     0.000     0.000   <		0.031	0.740	0.720	3+599	1.530	0+0	¢ 0	24.4	• •	c
1.199       1.199       1.199       1.199       1.199         1.199       1.199       1.199       1.199       1.199         1.112       1.199       0.00       0.00       0.00       0.00         1.112       1.100       1.100       0.00       0.00       0.00         1.112       1.100       1.100       0.00       0.00       0.00         1.112       1.100       1.1000       0.00       0.00       0.00         1.112       0.1112       0.1112       0.1112       0.100       0.00         1.112       0.100       0.1112       0.1112       0.100       0.00         1.112       0.1112       0.1112       0.1112       0.100       0.00         1.112       0.1112       0.1112       0.1112       0.100       0.00         1.112       0.1112       0.1112       0.1112       0.100       0.00         1.112       0.1112       0.1112       0.1112       0.1112       0.100         1.112       0.1112       0.1112       0.1112       0.1112       0.100       0.00         1.112       0.000       0.000       0.000       0.000       0.000       0.000	1.199     1.199     1.199     1.199       1.199     1.199     1.199     1.199       1.111     0.00     0.00     0.00     0.00       1.111     0.00     0.00     0.00     0.00       1.111     0.00     0.00     0.00     0.00       1.111     0.00     0.00     0.00     0.00       1.111     0.00     0.00     0.00     0.00       1.111     0.00     0.00     0.00     0.00       1.111     0.00     0.00     0.00     0.00       1.111     0.00     0.00     0.00     0.00       1.111     0.00     0.00     0.00     0.00       1.112     0.00     0.00     0.00     0.00       1.112     0.00     0.00     0.00     0.00       1.112     0.00     0.00     0.00     0.00       1.112     0.00     0.00     0.00     0.00       1.112     0.00     0.00     0.00     0.00       1.112     0.00     0.00     0.00     0.00       1.112     0.00     0.00     0.00     0.00       1.112     0.00     0.00     0.00     0.00       1.112     0.00     0.00 <td>AR.</td> <td>0.0</td> <td>0.004</td> <td>0-00+</td> <td>0.0</td> <td>2/0.0</td> <td>140</td> <td></td> <td>in the second</td> <td>-</td> <td></td>	AR.	0.0	0.004	0-00+	0.0	2/0.0	140		in the second	-	
1       1       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	Image: Constraint of the constr	and the	C-0	1.190	1.189		0.458	0.0	c	222	C.	6
	T-E       0.00       0.00       0.00       0.00       0.00         T-E       20.00*       4.00%       4.00%       0.00       0.00       0.00         T-E       20.00*       0.00%       1*000       0.00%       0.00%       0.00%       0.00         T-E       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%         T-E       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00% <t< td=""><td>C.</td><td></td><td></td><td></td><td>000</td><td>0 0</td><td>0.0</td><td>C=1</td><td>2.2</td><td>ċ</td><td>с.</td></t<>	C.				000	0 0	0.0	C=1	2.2	ċ	с.
		144	10000	00	0.0	0.0	0=0	0.*0	CAL			
				A.005	E00 - 4	16.000	16.000	0.0	11.44	1+1	• 0	C
T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T	FE ANG     0.3634     0.3634     0.3634     0.3634       FE ANG     0.0     0.0     0.0     0.0       FE ANG     0.0     0.0     0.0 <td>ENDI TRUN</td> <td></td> <td></td> <td></td> <td>0 - 2 - 2</td> <td>7 . 4 7</td> <td>n.r.</td> <td>1.1.1</td> <td></td> <td>J*0</td> <td></td>	ENDI TRUN				0 - 2 - 2	7 . 4 7	n.r.	1.1.1		J*0	
FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEAMAGE FEA	F. Mad       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00	1-1-	0*0	0.3634	e / / 5 = 0			C.1	7.0	0.1	0*0	
TAL-T       0.00       0.0112       0.012         TAL-T       0.00       0.012       0.012       0.012         TAL-T       0.00       0.0511       0.012       0.012         TAL-T       0.00       0.0531       0.00       0.012         TAL-T       0.00       0.0531       0.00       0.012         TAL-T       0.00       0.0531       0.00       0.012         TAL-T       0.00       0.0132       0.012       0.012         TAL-T       0.00       0.0132       0.0132       0.012         TAL-T       0.00       0.0132       0.0132       0.012         TAL-T       0.00       0.0132       0.012       0.012         TAL-T       0.00       0.00       0.012       0.012         TALE-M2       0.00       0.00       0.012       0.012         TALE-M2       0.00       0.00       0.012       0.012         TALE-M2       0.00       0.00	F = K = 0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0	EL/Mul.	0*0	R/01-1	1 • 0300	1 0 67		n. 0	676	7.1	0	
		ET MG	100	00	0.0	0 5 11	0. 112	D . D	54		J = J	
	- X - A - C - C - C - C - C - C - C - C - C				10.00	0.0	0.0	0.0	1.46	144	0	
-AL-TT 0.0000000000000000000000000000000000	-AL-IF -AL-IF -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -AL- -A	X-AL-GPR		0.000					N. N	500	L C	
	-FE-MC -FE-MC -FE-MC -CA-MC -CA-MC -CA-MC -CA-MC -FE-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -CA-MC -C	-AL-TLT			20:00 C	0 0	0.0	0.0	0.0	2.4		
-FFC- -CE- -CE- -CE- x-HG-M2 x-FE-M2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-FEC- -CE- -CE- -CE- CE- CE- CE- CE- CE- C		30		0.5722	0 308:	0.3081	0.0	0+0	2+4		
	x-HG-M2 x-HG-M2 x-HG-M2 x-FE-M2 x-FE-M2 x-FE-M2 x-FE-M2 x-FE-M2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.			0.0	0.0	0.6028	0.5323	c •	140	2.2	10	
x-wG-w2 x-FE-w2 x-FE-w2 x-FE-w2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	x-MG-M2 x-FE-M2 x-FE-M2 x-FE-M2 0.0 0.3785 0.0 0.3785 0.3785 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	x - C A- 11	0.0	0.0	0.0	0-0763	0.0100	0.0		-		
X = HG = M2 X = FE = M2 X = FE = M2 X = FE = M2 X = FE = M2 0.0 0.0 0.3785 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	x-HG-M2 x-FG-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-CA-M2 x-C			TEON.D	0.6146	0-0	0 • 0	0.0	6.40	142	C	
X-CA-M2 0.0 0.0085 0.0084 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	X-CL-M2 X-CL-M2 A-ENSINI 0.0 A-ENSINI 0.0 X-ANJATHI 0.0 X-ANJ	N H H C I W /		0.3784	0.3725	0 0	C • 0	0.18	12.2			,
	A-ENSTATT 0.0 0.3205 0.3203 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	X CA-M2	0.0	0.0035	0.0084	0 0	0.0	6 • 8	1.*0		2	
	A-TREADLIT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	II I VI VI VI VI	0-0	0.3205	0.3203	0 0	0.0	J* U	1	1.000	0-0	
		A-REMOLIT	0.0	0.0	0.0	0*0	0*0	a.a.	1.1		0.0	

TABLE 214										
	du na	Bintite	~ orthop	Lozene	CEarn	et ris-1	C	Core		
		1. La		-	-		C . 111	51×12	0 * 1	0.0
0	40 - 34		51.31	51.31	38.70		40°C	11.24	0+0	0*0
1.04	0.0	3.09	0.12	0.12	22.00	2.45	2.35	11+30	1.0	C
11.263	34.67	17.54	5 5 5 5		0.0	0 . Г	U"U			
CE DO	C • 3	0		- 0 -	0.0	0.57	0-0	dist.		10.0
FEZC3	0.0	0.0		22.30	25.04	25.33	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11441		0
P.C.	0.29	57=11 C		11.0	*E * 0	0.00	1.5.	1.11	0	0 .
DN	0.0	10		22.03	1.21	6-21		00 00		J . U
	0.0			0.17	2.00	2.66			J	0
DA.	17 2			0.0	C • O			5.0	0.1	0-0
D V V	0.02	2.4	0.0	0.0	0-0	0.0				
ואכח		P. 2	100 20	00.50	103 23	3 00.74	· · · · · ·	124421	0.0	ł
ICIAL ATA	102+07	10.04					9.0		0.	
SAR. YO	12.	22.	9	• 9	24.	C.	<b>a</b> J	1		
				1001	10 7 10	5 . 22	5. 234	5-123	1.0	
51	C . 4 76	F. 456	PC2 4		0.002	0 0 C	500.0			0.0
11	0.0	50	0110	0.146	A . 0 61	4.05	4 + 0 4 0		0.0	
AL .	7.519	ACA - 4		0 - 0	0.0	0.)	c+ c	1	2.0	C . C
(CR	0.0	50		0.030	0.0	0.00			0.40	0 0
+1 + + + + + + + + + + + + + + + + + +			0.425	0.694	3.442		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	02.5	82.6	0.0
11.21			0.003	E 00 ° 0	0.051	1.0.0		1 - 7 - 7	DNC	0+1
27		100	1.221	1.218	2 - 10		210-0	7 . 134	U * U	0.0
	0.4.5	0.0	0.007	0.007	0.45			0	0.0	0.0
1.1	0.507	C-0-3	0.0	0.0			0.0	3 - 6	1.0	0
	0.005	1.605	0.0	0.0	2.0					
	190 01	1501	4.015	4.005	16+031	110.011	1.40.000		11.4.11	
ICINE TOPS		1				r shan	5. 60A 2	7. 33	0.1	C = .
- 6 6	0.0	0.2021	0.3727	0.3028	0000000000	19 - C	U-ce E	3+++ 52	0.0	0 r 0 r
I P C/Mull	0.0	0.0	1.058		1	1 6014	EU18 -	1 = 7 - 3 -	0	
FE/MG	0	0.0	00		0.6113	Teca.0	4.55	000 +	0.41	-
	2				0.0	0.0	0.1	2-1	0 0	0-0
0.0-10-1	0 0	0.0	0-0563	0.0003			CL	0.40	J * C	
I I - I - I	0 0	0.0	0.0457	19000			0.0	010	ن 0	
- 41 - 41	0 * 0	0.0	0.0547	0 • 0 • 0 • 0	0.3433	0.3.25	4900 U	10000		
- MG- W1	0.0	0	0.0	0.0	0.5734	0.50.7	1. F. C	Card and	0	0.0
	00		0.0	0.0	0-0724	28 0 0	4			
	2				0	0.0	0.0	1+1	0*0	
X-MG-M2	0 + C	0.0	0.6209	1050.0		2°C	C * 0	14.0	L = 0	.0.0
X-FE-42	00	00	0.0066	0.0068	0+0	0.0	c • c			
X-CA-M2	0					0	1.1	Xea	D.F.C.	C.C
TITIT	0 0	0.0	0.3345	1965.0	0.0	0.0	C C	0.0	0+0	0 0
A-TREADL IT	0.0	0.0	0.0	0.0	0.0	0-0	2.02	2.4	5.0	
X-ANUR MIT	0 C C C C C C C C C C C C C C C C C C C	00	0.0	0.0	0 * 0	0.0	140			

ABL			Vaca	ayaya						
										9.
	6.77	20 = 7 7	- 9°0-	0.89	00	100				
1.02	0.07	0.07	6 <b>0 •</b> 0	2 • C • C	3-75	10.00	4	0.0		
L2C	(*) (*)	рт с Ф С			0 - 0	J.	4		2 0	
R 40 -	မ (၂) (၂) (၂)	0.0	0.0	0.95	0.0	1 0 1		10.22	ා ස ව ද	1 40 I
	24.0	0	40°	21.98	1.25	0	100		1.40	0-0
L L	0.12	0 . 2	0.18	0.18	20.0		11.11		5	5
- 14	22.30	22 - 30	1.05	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1.0		11.00	1.1.1		-+
.04	0.15	0.15	0.50		0.21			100-		u.
A.	0	0.0	00.0	0.0	0 * 0		0.1			
E NI	2			- 10 C				1171-		
CIAL WIR	12.4.6.0	10 the	* • • C	UC*NN.						
			•0	-9-	-11	÷				
<b>ハ</b> と山 - ×		-							1.8	
-	404	1.996	806.1	1.904	100-0		0	(Jacob)	ម្នាំ ។ មក	2
	0.042	0.002	0.00	12100	0-100	0.165	0	10181	1 0 0	
AL.	5+1-0	0.144	V		0.0	0.0	C	No.		1.10
a	0.0	0		0.027	0.0	0 - 1 - 0	0.1	120.0	01	1.41
			0.716	0.688	0.670	0 - 2 2		10000	34.0	170
			0.000	0.006	0.003				3 - 7 6	3.6
Z		1.242	1.221	1.213	0 1 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2		0.007	1.107	0*0	0.00
2	0.006	0.006	0.008	0.008			-00.*1	34.003	20	
(4	0.001	0.001		00		C = C	0 * C	144	1	
	•••	3				=.00.		106.1	15.616	
I AI UNS	4.020	4.007	4.013	4 • 00 ¢	4.023					
2			TOAF. A	0 - 3609	U. 34 31	ELCE J	14 M	V. A.S.VO	0.75.37	
X-FE	0 - 35.21			1.0061	0.3307	0.3-70		THE ALL	0.0	
FEC/M FE/MG	0.0			0.00	0.0	cc	C. 20	12.1	0000	•
NGIFE	0.0	0*0	0.0	2					0.74	
	6 0 0	0 0 23	0.0590	0.0689	0.0772	0220	6 0	Person and	2.5	
2 . X-AL-OP		10.0	0.0459	0.0483	0.0553	6 P C C		012000	C	ia i
X-AL-LT		0-0-0	0.0598	0.0553	0.0541	N 0 1 0 1 0	0000	00mm-0	U *U	1
		0.5941	0.5915	0.5953	0. 5173	0 PULC	0.0	1.0	J.*	14.5
	0.0	0.0	0.0	0.0			0.0	10.4.0	0.0	
M = D = X	0	0+0	0.0	0.0	0.0	2				
		0 - 0 - 0	0.6.16	0 - 304	0.0511	F . 66	1 5.25	0170-0		10
X-F-42			0.3646	0.3553	0.3400	24		2000	0* 0	1.41
X-F	0 0000	0.0066	0. 3080	0 * 00 8 0	0	0.000				
	100 0	7447	0.3317	A45E+0	0.3567	r. 1580	C 3355	2022.1	0.0	
A-ENSIAT	0.0	0.0	D.0	0*0	0-0	0*0	U*U	2+4	0.0	
I HIHCHI-X	0.00	00	00	00	0.0	0.0	C*C	2*1		

TABLE 2 151 CO.	nt. I								- 1 1 -	
	Jotice .	- KAFT	1 1 -1	C 6ªr	ne J	L Car				
		EC CE	10.27	80 68	39.08	3 6	11 × 110	Yough	19.27	00.00
5102	10 ····	0.03	0.03	0.05	0.00	0.0	10.0	27.1	12.53	0.0
A-2CJ	1 1 1 1 1 1	21.83	21.89	21.75	0.0	0		0.0	0.0	20
CH201	0	50	50.0	0.0	0.30	0+0	01.*	1× 0	13°C	
F 20	01.11	25.96	25.72	24 - 96	24.59	5 - 2 C		Port -		0.0
	0.03	C . 5 4	0.54	0.03	0.0			1.24	C	0.00
100 M	16-39	8.38	9.00	04.0					A . TO	010
213	0.0	4 = 32	4+32		10.0				0.0	040
NAZO		00		0.0	0.0		0.0	0.*1	0 • 0	0+0
	04	45.00	100-61	6.66	1.6 * 66	14.73	9 8	20.03	0 10	143
this with	20	20 20 20 20 20 20 20 20 20 20 20 20 20 2				36.	24.2		- V -	-0
NU UX VENS	2.2.5	24.	24.	2	54.	142.5				
			000	A. AOR	6.003		4.	16	5.050	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
51	20 20 20 20 20 20 20 20 20 20 20 20 20 2			0.006	0.006	0 ° Cr 2	C	400.1		
			940	3. 330	3 = 9 36	- 976		1 1 1 1 1	0 - 0	
		0-0	0.0	0.0	0.0		0.10	1.1	U 0 U	0
	000	0.0	0.029	0.0	0.04	0		1.100	1 233	0 0
	1 505	07E * E	3.289	3 204			F -0 - 0	1.443	0.08	0.0
N N N	0.004	0- 07 C	0.070	0.664			0.40	1.121	1, 92	0*0
2	3-539	1 • () ()	1 - 955		9	0.01	0 543	7 B1 47	0 785	0+0
CA	0.0	0.708	0. 108		0.0		0 0	10.01	c .	20
4 2 3	0-040		000	0.0	0.0	0 = 0	c+c	2+0	1	2
	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16.01	16.705	16.017	000001	1 . G76	5c0 · 1	8cC - 41	010*1	0.00
I INL LONG			64.2 4	0.62.6	3-6231	r . * 203	A50000	3+ 4233	6-6271	0.1
X-FE	0.178	200	CHIC. C	0.000	2 - 30.96	2.9106	1084 - 2	2 - 7 - 2 		00
FED/H-II	00	1 63 2	1.6125	1-6438	1 - 22			1.1.1.1	C. 5245	2.0
MG/IE	12111	0.26.2	0.5.44	0.6061	1210					
- 00 - V-X - C	0 - 0	C 0	0 - 0	0 • 0	0.0	0.0	C+C	1 = 1		
x-AL-FF	0.0	0 0	0.0	0.0	0.0			2.0	0*0	0*0
19-19-X	0*0	0.0	0.0	0.0	0.02	0.2.82	0 . 1 . 6 9	3 = 2 = 3 2	7. 71 92	0+0
X-MG-41	0*0	0.3231	0 • 32 • 0		2005 C	- C	2	3-2+ 5	0 × × 0	· + · ·
X FE = 4	00	0 1170	0.1175	0.1308	0.1396	(510.0	0°0 83	1 + - 3	C = 1 3C	
			0	0	0-0	C • D	0.0	10.00	0.	C+0
N I SG I K	00	00	00	0	0.0	2.4	e		c c	
N - N - N - N - N - N - N - N - N - N -	00	0 0	0.0	0 • 0	0.0	0.0				
	0.0	0-0	0.0	0 0	C = 0	2+J	0-0	1-1	7-0	L . J
A-THE-L	0.0	0.0	0-0	0*0	0.0	0-0	0.0	0+1	0 0	0.0
L L L L	00	00	00	00	0.0	c	C	1.4	2 - 2	V · S

					(		- 7 - J	C gar	D+E 8 7	C 8ar	L 6 101
	68 (	Tes	Tet 5 7	69			-				37 .
	14 . 0 Z		38.02	38.83	38.83	9. 7	10.01	5.5.5		5000	0.0
	0.03		EC = 0	0.02	20.02	21.4	42-1- 1-7-4	0.00	1 . 12	23 47	01
	21 - 37		21.37	CO = 12			0	0.4	4-5	C . C	
	0-0		0.0		0.34	0.0	0.25	3.0	6 7		
				26.36	26.06	26.01	26.41	5	0 -	1 4 C	
				0.27	0.27	0.46	0 4	4 ° C		0.4	3.6
	7-22		7 - 2 -	9.37	9+ 1	3.67				C 4	U
0.0       0.0       0.0       0.0       0.0       0.0         24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       24.       2	4.71		4.71	4.18	4 · 1 c)	• • • •			5.4	5 ° J	· ·
33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71       33.71 <td< td=""><td>0.00</td><td></td><td>000</td><td>000</td><td>0.0</td><td>•••</td><td>G * 0</td><td>0.0</td><td>0.0</td><td>0*0</td><td>*0</td></td<>	0.00		000	000	0.0	•••	G * 0	0.0	0.0	0*0	*0
24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       24.         24.       2			50 T 3	10°00	39.71	6 9 ° 6 5	74.00	alawid a	pr c	38 " 2C	* sile
24.       24.       24.       24.         25.557       5.000       5.000       5.000       5.000         31.002       5.000       5.000       5.000       5.000         31.002       5.000       5.000       5.000       5.000         31.002       5.000       5.000       5.000       5.000         31.002       5.000       5.000       5.000       5.000         31.002       5.000       5.000       5.000       5.000         31.002       5.000       5.000       5.000       5.000         31.002       5.000       5.000       5.000       5.000         31.002       5.000       5.000       5.000       5.000         51.000       5.000       5.000       5.000       5.000         51.000       5.000       5.000       5.000       5.000         51.000       5.000       5.000       5.000       5.000         51.000       5.000       5.000       5.000       5.000         51.000       5.000       5.000       5.000       5.000         51.000       5.000       5.000       5.000       5.000         51.000       5.000       5.			3							220	
	24		24 -	24.	24.	24.			• •		
				. 0.00	000	6.001	5.997	5.071	5 4 1 2 3	5 ° 0 0	10
5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5 <td>5.5</td> <td>0</td> <td>5. 55 7</td> <td>0.00</td> <td></td> <td></td> <td>0.661</td> <td>U.M.W.</td> <td>002</td> <td>0. 104</td> <td></td>	5.5	0	5. 55 7	0.00			0.661	U.M.W.	002	0. 104	
0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <td>0-00</td> <td>4</td> <td>C. 004</td> <td>0.000</td> <td></td> <td>1.467</td> <td>3.965</td> <td>3.473</td> <td>3.103</td> <td></td> <td>- </td>	0-00	4	C. 004	0.000		1.467	3.965	3.473	3.103		- 
2     0.004     0.004     0.004       2     0.005     0.005     0.005     0.005       10.005     0.005     0.005     0.005       10.005     0.005     0.005     0.005       10.005     0.005     0.005     0.005       10.005     0.005     0.005     0.005       10.005     0.005     0.005     0.005       10.005     0.005     0.005     0.005       10.005     0.005     0.005     0.005       10.005     10.007     0.005     0.005       10.007     10.007     10.007     0.005       10.007     10.007     10.007     0.007       10.007     10.007     10.007     0.007       10.007     10.007     10.007     0.007       10.007     10.007     10.007     10.007       10.007     0.007     0.007     0.007       10.007     0.007     0.007     0.007       10.007     0.007     0.007     0.007       10.007     0.007     0.007     0.007       10.007     0.007     0.007     0.007       10.007     0.007     0.007     0.007       10.007     0.007     0.007     0.007	7. 4 1	0	ビオア・コ	180.00		0.0	0.0	0.10	7	0.0	
2     0.0000     1.000     1.000     1.000       1     0.0000     1.000     1.000     1.000       1     0.000     0.000     0.000     1.000       1     0.000     0.000     0.000     0.000       1     0.000     0.000     0.000     0.000       1     0.000     0.000     0.000     0.000       1     0.000     0.000     0.000     0.000       1     0.000     0.000     0.000     0.000       1     0.000     0.000     0.000     0.000       1     0.000     0.000     0.000     0.000       1     0.000     0.000     0.000     0.000       1     0.000     0.000     0.000     0.000       1     0.000     0.000     0.000     0.000       1     0.000     0.000     0.000     0.000       1     0.000     0.000     0.000     0.000       1     0.000     0.000     0.000     0.000       1     0.000     0.000     0.000     0.000       1     0.000     0.000     0.000     0.000       0.000     0.000     0.000     0.000     0.000       0.000 <td>0-0</td> <td></td> <td>0.0</td> <td>0.0</td> <td></td> <td></td> <td>02020</td> <td>5</td> <td>1. 1 10</td> <td>L • C</td> <td>۔ ان</td>	0-0		0.0	0.0			02020	5	1. 1 10	L • C	۔ ان
2     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3 <td>0.0</td> <td></td> <td>0-040</td> <td></td> <td></td> <td>3.047</td> <td>3.416</td> <td>1.2.77</td> <td>1+-+F</td> <td></td> <td>10</td>	0.0		0-040			3.047	3.416	1.2.77	1+-+F		10
0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <td>() + 17</td> <td>23</td> <td>104-1</td> <td></td> <td></td> <td>0.06</td> <td>0-003</td> <td>0.014</td> <td>[ 0 [</td> <td>4 • O</td> <td>:</td>	() + 17	23	104-1			0.06	0-003	0.014	[ 0 [	4 • O	:
7     0.000     0.000     0.000     0.000       0.000     0.000     0.000     0.000     0.000     0.000       0.000     0.000     0.000     0.000     0.000     0.000       0.000     0.000     0.000     0.000     0.000     0.000       0.000     0.000     0.000     0.000     0.000     0.000       0.000     0.000     0.000     0.000     0.000     0.000       0.000     0.000     0.000     0.000     0.000     0.000       0.000     0.000     0.000     0.000     0.000     0.000       0.000     0.000     0.000     0.000     0.000     0.000       0.000     0.000     0.000     0.000     0.000     0.000       0.000     0.000     0.000     0.000     0.000     0.000       0.000     0.000     0.000     0.000     0.000     0.000       0.000     0.000     0.000     0.000     0.000       0.000     0.000     0.000     0.000     0.000       0.000     0.000     0.000     0.000     0.000       0.000     0.000     0.000     0.000     0.000       0.000     0.000     0.000     0.000 </td <td>0.0</td> <td>00</td> <td>0.00</td> <td></td> <td></td> <td>0.0</td> <td>5 = 2 = 2</td> <td>2.4/43</td> <td>5 . d7</td> <td></td> <td></td>	0.0	00	0.00			0.0	5 = 2 = 2	2.4/43	5 . d7		
0.00       0.00       0.00       0.00       0.00         0.00       0.00       16.001       15.000       15.000       0.00         0.00       0.00       16.001       15.000       15.000       0.00         0.00       0.00       16.001       15.000       15.000       0.00         0.00       0.00       16.001       15.000       16.010       0.00         0.00       0.00       0.001       0.001       0.00       0.00         0.00       0.001       0.001       0.001       0.001       0.001         0.00       0.001       0.002       0.002       0.001       0.001         0.000       0.002       0.002       0.002       0.002       0.002         0.000       0.002       0.002       0.002       0.002       0.002         0.000       0.002       0.002       0.002       0.002       0.002       0.002         0.000       0.002       0.002       0.002       0.002       0.002       0.002         0.000       0.002       0.002       0.002       0.002       0.002       0.002         0.000       0.002       0.002       0.002       0.002	1.0	17		207 V	1.592	0.43	6 B 9 * 0	0.521	0. 24	0 · H	
0.00       0.00       0.00       0.00         1       0.00       16.007       0.00         1       0.00       16.007       0.00         1       0.00       16.007       0.00         1       0.00       16.007       0.00         1       0.00       16.007       0.00         1       0.00       16.007       0.00         1       0.00       0.00       0.00         1       0.00       0.00       0.00         1       0.00       0.00       0.00         1       0.00       0.00       0.00         1       0.00       0.00       0.00         0       0.00       0.00       0.00         0       0.00       0.00       0.00         0       0.00       0.00       0.00         0       0.00       0.00       0.00         0       0.00       0.00       0.00         0       0.00       0.00       0.00         0       0.00       0.00       0.00         0       0.00       0.00       0.00         0       0.00       0.00       0.00	0-1	N	0 • 1 9 1		0.0	0.0	0+0	0.1	2.0		
16.026       16.007       16.007       1.000       1.000       1.000         13       20.728       0.6386       0.0275       7.500       1.000       1.000         11       20.728       0.6386       0.0275       7.500       1.000       1.000         11       20.728       0.0275       0.0275       7.500       1.000       1.000         11       20.728       0.05756       0.0071       7.511       1.0776       7.511         12       20.0556       0.5756       0.5756       7.5714       1.0776       7.5714         12       20.00       0.000       0.05756       0.5685       7.5714       1.0776       7.5714         10       20.00       0.05756       0.5685       7.5714       1.0776       7.5714         10       0.00       0.00       0.000       0.000       0.000       0.000       0.000         00.00       0.00       0.000       0.000       0.000       0.000       0.000       0.000         00.00       0.000       0.000       0.000       0.000       0.000       0.000       0.000         00.00       0.000       0.000       0.000       0.000       0.000	30		00		C • O	0.0	3*6	0*0	1.1		
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1				000	16 007	10.004	16.005	000.5	5 10 - 1	14.067	- 12
0.6386     0.6386     0.6386     0.6386     0.5366       1.77573     3.18493     3.11300     0.5726     0.5141       1.77573     3.11300     1.5766     0.5141       2.6556     1.5766     1.5766     1.5766       2.6556     1.5766     1.5766     1.5766       2.5558     1.5766     1.5766     1.5766       0.5558     1.5686     1.5766     1.5766       0.5558     0.5726     1.5586     1.5776       0.5558     0.5686     1.5586     1.5776       0.5728     0.5686     1.5586     1.5726       0.5728     0.5686     1.5586     1.5726       0.5576     0.5686     1.5586     1.5726       0.5728     0.5686     1.5586     1.5726       0.5728     0.5681     1.5586     1.5726       0.5778     0.5681     1.5586     1.5726       0.5778     0.5681     0.5726     1.5726       0.5778     0.5588     0.5586     1.5726       0.5778     0.5588     0.5726     1.5726       0.5778     0.5778     0.5766     1.5727       0.5778     0.5788     0.5788     1.5727       0.5778     0.5788     0.5788     1.5727 <t< td=""><td>1 6 + 0</td><td>5</td><td>16.010</td><td>10.020</td><td></td><td>- IN - NA</td><td></td><td></td><td></td><td></td><td></td></t<>	1 6 + 0	5	16.010	10.020		- IN - NA					
	0.0	10	0.0728	0.6386	0.6360	3.0023	C 6256 2 9771	0.51A1	11010101		
			2.0501	1.7558	1.7463	1 • 6848 0 • 5935	1 0/00	E -25 - 5	5 4 7 * L	C- 5 7 5 4	G 14
0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <th0.0< th=""> <th0.0< th=""></th0.0<></th0.0<>		2		0=0	0 • 0	0 • 0	0 0	C*C			0.0
0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <th0.0< th=""> <th0.0< th=""> <th0.0< th=""></th0.0<></th0.0<></th0.0<>			0-0	0.0	0.0	0.0				0.0	3
0.2305         0.3180         0.3381         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401         0.3401 <th0.3401< th=""> <th0.3401< th=""> <th0.3401< td="" th<=""><td></td><td></td><td>0.0</td><td>0.0</td><td>0.0</td><td>0 0</td><td>0</td><td>00 1 0</td><td>22</td><td>0.2056</td><td>56.3</td></th0.3401<></th0.3401<></th0.3401<>			0.0	0.0	0.0	0 0	0	00 1 0	22	0.2056	56.3
26 0.5768 0.5620 0.551 0.5702 0.0913 0.105 0.1439 0.1429 0.1	0.2	101	0.2305	0.3180	0.3-01	0.3384	0 5401		7	0.6271	C.5
		-01	0.5768	0.5520	0.50	207C-0	0.0913	9-1-25	9.1.19	0-1129	10.41
	0 - 0		0.0		0.0	0.0	0.0			0.0	0.0
	0.0		•••	0*0	00	0	0 0	C * C	J.J	0• 1	( • )
	-		•					2.2	N.N.	0.0	0.00
	0.0		0.0	0.0	C* 0	0.0	0.0	0 0	0.0	0*1	0.0
	100		0.00	0.0	00.00	00	011	5.41 6.41	1.1	L = 0	0.0
			-								

FLE - CODI

Filt         Contract         Contract <th< th=""><th>Remen         O         Constraint         Served         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O</th><th>RLE Z 131CU</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Remen         O         Constraint         Served         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O	RLE Z 131CU										
	102     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52     38.52 <t< th=""><th></th><th>68-1</th><th>Le 10 7</th><th>C Sara</th><th>L 1 1 10</th><th></th><th>Let the</th><th></th><th></th><th></th><th></th></t<>		68-1	Le 10 7	C Sara	L 1 1 10		Let the				
	1122     30.002     30.002     30.002     30.002     30.002       1122     31.002     31.002     31.002     31.002     30.002       112     30.002     31.002     31.002     31.002     30.002       112     30.002     31.002     31.002     30.002     30.002       112     30.002     30.002     30.002     30.002     30.002       112     30.002     30.002     30.002     30.002     30.002       112     50.013     30.012     30.012     30.012     30.012       112     50.013     30.012     30.012     30.012     30.012       112     50.013     50.013     50.012     30.012     30.012       112     50.013     50.012     50.012     30.012     30.012       113     50.013     50.012     50.012     50.012     50.012       114     50.013     50.012     50.012     50.012     50.012       114     50.013     50.012     50.012     50.012     50.012       114     50.013     50.012     50.012     50.012     50.012       114     50.012     50.012     50.012     50.012     50.012       114     50.012     50.012 <th></th> <th></th> <th></th> <th>20 63</th> <th>14.62</th> <th>10.80</th> <th>39.01</th> <th>0.0</th> <th>4+0</th> <th>0</th> <th></th>				20 63	14.62	10.80	39.01	0.0	4+0	0	
	1.22     21.55     21.55     21.55     21.55       1.22     25.73     25.53     25.53     25.55     25.55       1.23     25.54     25.55     25.55     25.55     25.55       1.23     25.55     25.55     25.55     25.55     25.55       1.24     25.51     25.57     25.55     25.55     25.55       1.25     25.55     25.55     25.55     25.55     25.55       1.25     25.57     25.57     25.57     25.55     25.55       1.25     25.57     25.57     25.57     25.55     25.55       2.24     2.35     25.57     25.57     25.57     25.57       2.24     2.45     2.575     25.57     25.57     25.57       2.24     2.357     25.57     25.57     25.57     25.57       2.24     2.47     2.47     2.47     2.4     2.4       2.357     2.357     2.357     2.357     2.4     2.4       2.45     2.47     2.47     2.4     2.4     2.4       2.45     2.47     2.4     2.4     2.4     2.4       2.45     2.357     2.357     2.357     2.357     2.4       2.45     2.45	22	1) (U 0) (U	1100	20.02	0.02	0.0	10+0	0.0	0.*0	C C	
NAME         NAME <th< td=""><td>4.4.0.3     0.00     0.00     0.00       0.10     0.00     0.00     0.00     0.00       0.10     0.00     0.00     0.00     0.00       0.10     0.00     0.00     0.00     0.00       0.10     0.00     0.00     0.00     0.00       0.10     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00</td><td>22</td><td></td><td>1.65</td><td>21.56</td><td>21.56</td><td>21 . 34</td><td>110.12</td><td>C = C</td><td>2.00</td><td></td><td></td></th<>	4.4.0.3     0.00     0.00     0.00       0.10     0.00     0.00     0.00     0.00       0.10     0.00     0.00     0.00     0.00       0.10     0.00     0.00     0.00     0.00       0.10     0.00     0.00     0.00     0.00       0.10     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00     0.00     0.00       0.11     0.00     0.00	22		1.65	21.56	21.56	21 . 34	110.12	C = C	2.00		
	F2013     C000     C000     C000     C000     C000       F201     C000     C000     C000     C000     C000     C000       C014     C000     C00	513	<1 × 0 × 0		0.0	0.0	0.0	0.11		2.2		
	A     25.17     25.17     25.17     25.17       A     25.17     25.17     25.17     25.17       A     25.17     25.17     25.17     25.17       A     25.17     55.998     25.17       A     24.1     24.1     24.1       A     24.1     24.1     24.1       A     24.1     24.1     24.1       A     24.1     24.1     24.1       B     24.1			0.44	0.0	0.58	0.0	10.01				
	NO     0.554     0.554     0.50       A23     0.00     0.00     0.00     0.00       A24     0.00     0.00     0.00     0.00       A339     0.003     0.003     0.003     0.003       A44     0.00	1	26-12	25.73	25.69	25.17	27.9	2		517	C. C	
Contract	A33     3.53     3.53     3.53     9.37     8.37       A33     0.0     0.0     0.0     0.0     0.0       233     55.03     5.06     0.0     0.0     0.0       A33     55.03     5.07     99.17     99.23       A1     55.03     5.07     99.17     99.23       A1     55.03     5.985     5.985     5.985       A1     5.975     5.985     5.985     5.917       3.032     3.302     3.505     3.951     99.17       3.032     3.975     3.951     9.917     99.23       3.032     3.9175     3.951     9.917     99.23       3.032     3.9375     3.951     9.921     24.5       3.032     3.9375     9.931     3.951     9.931       5.985     5.985     5.998     5.916     5.917       3.032     3.931     9.931     9.931     9.931       5.941     0.073     0.073     0.023     9.9011       5.941     0.073     0.073     0.023     0.023       5.941     0.073     0.030     0.030     0.030       5.941     0.073     0.032     0.030     0.030       5.941     0.073			411 - 0	0.00	0.60	C			212	0.0	
1013         1.46         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40         0.40 <th< td=""><td>A33     3.68     A.0     0.0     0.0       A23     0.0     0.0     0.0     0.0     0.0       DITAL     55003     3.068     0.0     0.0     0.0       DITAL     55003     2.01     99.17     99.23       DITAL     55003     2.01     24.23     24.23       DITAL     55003     2.075     5.088     5.01       DITAL     55003     2.075     5.075     5.098       DITAL     55.013     5.575     5.075     5.098       DITAL     5.013     5.575     5.075     5.098       DITAL     0.011     0.011     0.011     24.23       DITAL     0.012     0.013     0.011     0.011       DITAL     0.0101     0.0101     0.011     0.011       DITAL     0.0101     0.0101     0.0101     0.011       DITAL     0.0101     0.0161     0.0101     0.011       DITAL     0.0161     0.0101     0.0101     0.011       DITAL     0.0161     0.0161     0.0101     0.011       DITAL     0.0161     0.0161     0.0101     0.011       DITAL     0.0161     0.0161     0.0101     0.011       DITAL     0</td><td>24</td><td></td><td>a.53</td><td>9.37</td><td>6.37</td><td>-</td><td></td><td></td><td>515</td><td>C . C</td><td></td></th<>	A33     3.68     A.0     0.0     0.0       A23     0.0     0.0     0.0     0.0     0.0       DITAL     55003     3.068     0.0     0.0     0.0       DITAL     55003     2.01     99.17     99.23       DITAL     55003     2.01     24.23     24.23       DITAL     55003     2.075     5.088     5.01       DITAL     55003     2.075     5.075     5.098       DITAL     55.013     5.575     5.075     5.098       DITAL     5.013     5.575     5.075     5.098       DITAL     0.011     0.011     0.011     24.23       DITAL     0.012     0.013     0.011     0.011       DITAL     0.0101     0.0101     0.011     0.011       DITAL     0.0101     0.0101     0.0101     0.011       DITAL     0.0101     0.0161     0.0101     0.011       DITAL     0.0161     0.0101     0.0101     0.011       DITAL     0.0161     0.0161     0.0101     0.011       DITAL     0.0161     0.0161     0.0101     0.011       DITAL     0.0161     0.0161     0.0101     0.011       DITAL     0	24		a.53	9.37	6.37	-			515	C . C	
MU23         D.0         D.0 <thd.0< th=""> <thd.0< th=""> <thd.0< th=""></thd.0<></thd.0<></thd.0<>	7.20     0.00     0.00     0.00     0.00       2.3     55.013     55.013     55.503     50.01     000       101AL     55.013     55.503     55.986     55.986     54.5       101AL     55.013     55.576     55.986     54.5       101AL     55.013     55.576     55.986     54.5       101AL     55.576     55.986     54.5     24.5       101AL     55.576     55.986     54.6     24.5       101AL     55.975     57.612     57.986     54.6       101AL     10179     57.612     57.986     54.6       101AL     10179     54.613     54.613     54.61       101AL     11.678     11.673     54.613     54.613       101AL     11.678     11.6126     56.013     56.011       11AL     11.678     11.6126     56.013     56.011       11AL     11.6126     156.012     0.000     0.000       11AL     11.6126     156.011     0.012     0.02327       11AL     11.7128     11.6126     0.012     0.0127       11AL     11.7128     11.6126     0.010     0.000       11AL     0.010     0.010     0.010       <	1.0		3.68	4.41	4.41					ر • ر ر	
(1) AL         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0<	23     0.00     0.00     0.00     0.00     0.00       101AL     55.03     24.     24.     24.     24.       101AL     55.03     24.     24.     24.     24.       101AL     55.03     5.598     5.988     5.972     99.23       101AL     5.503     5.598     5.988     5.975     24.       101AL     5.933     5.576     5.988     5.975       10002     5.033     5.576     5.988     5.975       10012     0.03     0.03     0.0735     0.0735       10012     0.03     0.03     0.03     0.011       1101     11.026     16.007     16.011     0.011       111     11.026     16.007     16.011     0.011       111     11.026     16.0161     1.7224     0.607       111     11.1026     16.0161     1.7224     0.607       111     11.1026     16.021     0.05327     0.607       111     11.1026     16.0161     1.7224     0.607       111     11.7224     0.5370     0.5327     0.53219       111     0.00     0.00     0.00     0.00       111     0.0161     0.0161     0.007     0.532		0.0	0.0	0.0	0.0	10.0		C . C	C . F	0.0	
(1)1A. with         55.03         54.04         59.17         90.23         100.10         100.20         100.10         100.20         100.10         100.20         100.10         100.20         100.10         100.20         100.10         100.20         100.10         100.20         100.10         100.20         100.10         100.20         100.10         100.20         100.10         100.20         100.10         100.20         100.10         100.20         100.10         100.20         100.10         100.20         100.10         100.20         100.10         100.20         100.10         100.20         100.10         100.20         100.10         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20         100.20	OTAL         55.03         50.17         99.17         99.17         99.23           A         24.         24.         24.         24.         24.           A         272         5.972         5.998         5.901         24.         24.           2         5.972         5.972         5.975         5.998         5.975         24.         24.           2         5.972         5.975         5.975         5.998         5.975         24.         24.           2         5.975         5.975         5.998         5.975         5.998         5.975           2         5.976         5.976         5.976         5.998         5.975           2         5.976         5.976         5.976         5.975         5.975           2         5.976         5.976         5.976         5.975         5.975           2         5.976         5.976         5.976         5.975         5.975           2         5.976         5.976         5.976         5.975         5.975           2         5.976         5.976         5.976         5.975         5.975           2         5.7165         5.9796         5.9	0	0.0	0 • 0	0.00	•						
Andrews         Za.         Za. <thza.< th="">         Za.         <thza.< th=""> <thza.< t<="" td=""><td>A = 100000000000000000000000000000000000</td><td>TAL MER</td><td>66°03</td><td>70.92</td><td>11.66</td><td>99°23</td><td>C1 - 0C1</td><td>100.29</td><td>2+0</td><td>1</td><td>1.41</td><td></td></thza.<></thza.<></thza.<>	A = 100000000000000000000000000000000000	TAL MER	66°03	70.92	11.66	99°23	C1 - 0C1	100.29	2+0	1	1.41	
Mu Numeros         Construint         Constru	An UNIVERSE     5:975     5:975     5:975     5:975     5:975       1:975     1:975     1:975     1:975     1:975     1:975       1:975     1:975     1:975     1:975     1:975     1:975       1:975     1:975     1:975     1:975     1:975     1:975       1:975     1:975     1:975     1:975     1:975     1:975       1:975     1:975     1:975     1:975     1:975     1:975       1:975     1:975     1:975     1:975     1:975     1:975       1:976     1:976     1:077     1:075     1:077     1:077       1:11     1:1.026     1:076     1:077     1:076     1:077       1:11     1:1.026     1:6075     1:073     1:0675       1:11     1:1.026     1:6075     1:0705     1:0675       1:11     1:1.026     1:6075     1:0705     1:0675       1:11     1:1.026     1:6075     1:0705     1:0675       1:11     1:1.026     1:6075     1:0705     1:00677       1:11     1:1.026     1:6075     1:0705     1:0070       1:11     1:1.026     1:0161     1:0706     0:070       1:11     1:1.219     1:0219     0:070		0	74.	24.	24 .	2	244	*	9+		
1         5         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	5.988     5.988     5.988     5.988     5.988       7.97     5.988     5.988     5.988     5.988       7.97     5.975     5.988     5.988     5.998       7.97     5.975     5.988     5.998     5.998       7.97     5.978     5.976     5.998     5.976       7.97     5.978     5.976     5.998     5.998       7.97     5.978     5.976     5.998     5.997       7.97     5.978     5.976     5.996     5.997       7.97     5.978     5.976     5.998     5.997       7.97     5.978     5.976     5.997     5.997       7.97     5.978     5.976     5.997     5.997       7.97     5.978     5.996     5.997     5.997       7.973     5.995     5.997     5.997     5.997       7.973     5.952     5.997     5.997     5.997       7.975     5.995     5.996     5.997     5.997       7.972     5.995     5.996     5.997     5.997       7.972     5.995     5.996     5.996     5.996       7.972     5.996     5.996     5.996     5.996       7.972     5.996     5.996     5.9	LX ICE NS	0 6 9		1						11 M	
10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         100000         10000         10000 <t< td=""><td>3.375     3.575     3.575     3.551       3.399     3.375     3.551     3.551       3.399     3.375     3.551     3.551       3.399     3.375     3.575     3.551       3.399     3.375     3.575     3.575       3.399     3.375     3.575     3.575       3.399     3.575     3.575     0.007       3.399     3.575     0.0735     0.0735       0.00     0.0     0.00     0.011       1.575     1.505     1.5075     1.5075       1.575     0.0525     1.5075     0.5034       1.5724     0.5591     0.5337     0.5077       1.5675     0.5065     1.7224     0.5077       1.5725     0.5165     1.7224     0.5077       1.5725     0.5165     0.5070     0.5077       1.5727     0.5570     0.5107     0.5077       1.5728     0.5700     0.5107     0.5077       1.5728     0.5710     0.5107     0.5077       1.5728     0.5710     0.51206     0.5071       1.5728     0.5570     0.51206     0.5206       1.5728     0.5570     0.51206     0.5219       1.5728     0.5710     0.5206       &lt;</td><td></td><td>E to a to</td><td>5.576</td><td>5.986</td><td>626*5</td><td>6.054</td><td>6.00.0</td><td>0.00</td><td>141</td><td>1.1</td><td></td></t<>	3.375     3.575     3.575     3.551       3.399     3.375     3.551     3.551       3.399     3.375     3.551     3.551       3.399     3.375     3.575     3.551       3.399     3.375     3.575     3.575       3.399     3.375     3.575     3.575       3.399     3.575     3.575     0.007       3.399     3.575     0.0735     0.0735       0.00     0.0     0.00     0.011       1.575     1.505     1.5075     1.5075       1.575     0.0525     1.5075     0.5034       1.5724     0.5591     0.5337     0.5077       1.5675     0.5065     1.7224     0.5077       1.5725     0.5165     1.7224     0.5077       1.5725     0.5165     0.5070     0.5077       1.5727     0.5570     0.5107     0.5077       1.5728     0.5700     0.5107     0.5077       1.5728     0.5710     0.5107     0.5077       1.5728     0.5710     0.51206     0.5071       1.5728     0.5570     0.51206     0.5206       1.5728     0.5570     0.51206     0.5219       1.5728     0.5710     0.5206       <		E to a to	5.576	5.986	626*5	6.054	6.00.0	0.00	141	1.1	
1.2776         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276         1.276 <t< td=""><td>7.975     3.975     3.975     3.951     3.951       7.975     5.979     5.975     3.951     3.951       7.975     7.975     7.951     7.951       7.975     7.975     7.951     7.951       7.975     7.975     7.975     7.975       7.975     7.975     7.975     7.975       7.975     7.975     7.975     7.975       7.975     7.975     7.975     7.975       7.975     7.975     7.975     7.975       7.975     7.975     7.975     7.975       7.975     7.975     7.975     7.975       7.975     7.975     7.9057     7.9057       7.975     7.9756     7.9057     7.9057       7.975     7.9057     7.9057     7.90577       7.975     7.90576     0.000     0.007       7.975     7.90577     0.05726     0.007       7.976     7.9224     1.02577     0.05727       7.9767     7.9224     1.02577     0.05727       7.9767     7.9224     1.0217     0.0207       7.9767     0.01612     0.0161     0.0121       7.9777     0.0161     0.0161     0.0121       7.9767     0.0161     0</td><td></td><td>0.002</td><td>0.002</td><td>0.002</td><td>20042</td><td>0.0</td><td></td><td></td><td>1.1</td><td>0.00</td><td></td></t<>	7.975     3.975     3.975     3.951     3.951       7.975     5.979     5.975     3.951     3.951       7.975     7.975     7.951     7.951       7.975     7.975     7.951     7.951       7.975     7.975     7.975     7.975       7.975     7.975     7.975     7.975       7.975     7.975     7.975     7.975       7.975     7.975     7.975     7.975       7.975     7.975     7.975     7.975       7.975     7.975     7.975     7.975       7.975     7.975     7.975     7.975       7.975     7.975     7.9057     7.9057       7.975     7.9756     7.9057     7.9057       7.975     7.9057     7.9057     7.90577       7.975     7.90576     0.000     0.007       7.975     7.90577     0.05726     0.007       7.976     7.9224     1.02577     0.05727       7.9767     7.9224     1.02577     0.05727       7.9767     7.9224     1.0217     0.0207       7.9767     0.01612     0.0161     0.0121       7.9777     0.0161     0.0161     0.0121       7.9767     0.0161     0		0.002	0.002	0.002	20042	0.0			1.1	0.00	
6:00 Figure Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constrained Constraine Constrained Constrained Constrained Constrained Constrai	6.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0     0.0       0.0     0.0     0.0		070	10-0-10 10-0-10	3.951	3.946	3.073	-12*5	0.00		6.0	
0.001 0.001         0.001 0.000         0.0000         0.001 0.000         0.001 0.000 <t< td=""><td>0.001     0.001     0.000       1.578     1.578     1.578     1.578       1.578     1.578     1.578     1.578       1.578     1.578     1.578     1.578       1.578     1.578     1.578     1.578       1.578     1.578     1.578     1.578       1.578     1.578     0.073     0.011       0.03     0.03     0.03     0.03       0.04735     0.061     1.002     0.011       1.5728     1.5728     0.5728     0.5775       1.7103     0.5591     0.5327     0.6275       1.7104     0.5591     0.5327     0.6275       1.7103     0.5592     0.5328     0.5293       1.7103     0.5592     0.5327     0.6275       1.7104     0.5592     0.5327     0.6275       1.7104     0.5592     0.5329     0.5275       1.7104     0.5592     0.5329     0.5275       1.7104     0.55927     0.55927       1.7104     0.55927     0.5292       1.7104     0.55927     0.5292       1.7104     0.55927     0.5292       1.7104     0.55927     0.5292       1.7104     0.55927     0.5292       1.7104</td><td></td><td>0 0</td><td>C • O</td><td>0.0</td><td>0.0</td><td>0.0</td><td></td><td></td><td>111</td><td>6.0</td><td></td></t<>	0.001     0.001     0.000       1.578     1.578     1.578     1.578       1.578     1.578     1.578     1.578       1.578     1.578     1.578     1.578       1.578     1.578     1.578     1.578       1.578     1.578     1.578     1.578       1.578     1.578     0.073     0.011       0.03     0.03     0.03     0.03       0.04735     0.061     1.002     0.011       1.5728     1.5728     0.5728     0.5775       1.7103     0.5591     0.5327     0.6275       1.7104     0.5591     0.5327     0.6275       1.7103     0.5592     0.5328     0.5293       1.7103     0.5592     0.5327     0.6275       1.7104     0.5592     0.5327     0.6275       1.7104     0.5592     0.5329     0.5275       1.7104     0.5592     0.5329     0.5275       1.7104     0.55927     0.55927       1.7104     0.55927     0.5292       1.7104     0.55927     0.5292       1.7104     0.55927     0.5292       1.7104     0.55927     0.5292       1.7104     0.55927     0.5292       1.7104		0 0	C • O	0.0	0.0	0.0			111	6.0	
3.399     3.399     3.399     3.399     3.399     3.399       1.578     0.073     0.073     0.073     0.073     0.073       1.579     0.073     0.073     0.073     0.073     0.073       1.579     0.073     0.073     0.073     0.073     0.073       1.579     0.073     0.073     0.073     0.073     0.073       1.579     1.1026     1.1026     1.1011     1.5.011     1.5.013       1.574     0.073     0.073     0.073     0.073     0.073       1.574     0.073     0.073     0.073     0.073     0.073       1.574     0.073     0.073     0.073     0.073     0.073       1.5724     0.0512     0.073     0.073     0.073     0.073       1.5124     0.073     0.073     0.073     0.073     0.073       1.5124     0.073     0.073     0.073     0.073     0.073       1.5124     0.073     0.073     0.073     0.073     0.073       1.5124     0.073     0.073     0.073     0.073     0.073       1.5124     0.073     0.073     0.073     0.073     0.073       1.5124     0.073     0.073     0.073     0.0	3.399     3.3     3.340     3.340       0.071     0.071     0.071     0.079     3.340       0.073     0.073     0.073     0.073       0.073     0.073     0.073     0.011       0.073     0.073     0.073     0.011       0.073     0.073     0.073     0.011       0.073     0.073     0.073     0.073       0.073     0.073     0.073     0.073       0.073     0.073     0.073     0.073       0.073     0.073     0.073     0.073       0.073     0.073     0.073     0.073       0.075     0.073     0.073     0.073       0.075     0.073     0.073     0.073       0.075     0.073     0.073     0.073       0.075     0.073     0.073     0.073       0.076     0.070     0.070     0.073       0.075     0.070     0.070     0.073       0.075     0.0710     0.070     0.073       0.075     0.0710     0.070     0.073       0.070     0.070     0.070     0.070       0.070     0.070     0.070     0.070       0.070     0.070     0.070     0.070       0.070 <td></td> <td>0.0</td> <td>0.01</td> <td>0.0</td> <td>0.068</td> <td>0</td> <td></td> <td>1.1</td> <td>010</td> <td>0.0</td> <td></td>		0.0	0.01	0.0	0.068	0		1.1	010	0.0	
0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001 <th< td=""><td>0.071     0.071     0.079     0.079       1.578     1.575     0.079     0.073       0.03     0.03     0.03     0.011       0.15     0.05     0.03     0.03       0.15     0.05     0.03     0.011       0.15     0.05     0.03     0.027       0.16     0.05     0.03     0.011       0.16     0.05     0.05     0.027       0.16     0.05     0.05     0.027       0.17     0.05     0.05     0.011       0.11     0.05     0.05     0.027       0.11     0.05     0.05     0.027       0.11     0.05     0.05     0.0161       1.17     0.05     0.05     0.057       1.17     0.05     0.05     0.057       1.17     0.05     0.057     0.057       1.17     0.05     0.00     0.00       1.17     0.053     0.053     0.057       1.17     0.053     1.057     0.057       1.17     0.057     0.057     0.057       1.17     0.057     0.057     0.057       1.17     0.057     0.057     0.057       1.17     0.057     0.057     0.057</td><td></td><td>000 - 6</td><td>3.344</td><td>3.340</td><td>3.207</td><td></td><td></td><td></td><td>1111</td><td>in in</td><td></td></th<>	0.071     0.071     0.079     0.079       1.578     1.575     0.079     0.073       0.03     0.03     0.03     0.011       0.15     0.05     0.03     0.03       0.15     0.05     0.03     0.011       0.15     0.05     0.03     0.027       0.16     0.05     0.03     0.011       0.16     0.05     0.05     0.027       0.16     0.05     0.05     0.027       0.17     0.05     0.05     0.011       0.11     0.05     0.05     0.027       0.11     0.05     0.05     0.027       0.11     0.05     0.05     0.0161       1.17     0.05     0.05     0.057       1.17     0.05     0.05     0.057       1.17     0.05     0.057     0.057       1.17     0.05     0.00     0.00       1.17     0.053     0.053     0.057       1.17     0.053     1.057     0.057       1.17     0.057     0.057     0.057       1.17     0.057     0.057     0.057       1.17     0.057     0.057     0.057       1.17     0.057     0.057     0.057		000 - 6	3.344	3.340	3.207				1111	in in	
1:573       1:573       1:573       1:573       1:573       1:573         1:573       1:573       1:573       1:735       1:735       1:735         1:574       1:5026       1:5034       1:5034       1:5034       1:5034       1:5034         1:574       1:737       0.003       0.003       0.003       0.003       0.003       0.003         1:514       1:5034       1:5034       1:5034       1:5034       1:5034       1:5034       0.003         1:514       0.0516       0.0575       0.0575       0.0575       0.0575       0.0111       1:5094       0.004         1:7143       1:6042       1:7143       1:6075       0.5314       1:7735       1:7735       1:7735         1:7143       1:6026       0:5027       0.5319       0.5313       0.5735       0.5735       0.5735         1:7143       1:6026       0:5027       0.5319       0.5318       0.5314       0.5314       0.5735         1:7143       0:000       0:00       0.000       0.000       0.5319       0.5318       0.5319       0.5735         1:7144       0:000       0:000       0.000       0.000       0.5319       0.5319       0.5319	1.579     1.576     1.576     1.939       0.0     0.0     0.0     0.0     0.0       0.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0     0.0     0.0       1.1     0.0     0.0<		0.071	0-071	0.079	520*0	0.053	0.11		111	Suc.	
G.613         O.735         O.735 <th< td=""><td>0.013     0.013     0.033     0.033       0.03     0.03     0.03     0.03     0.03       0.03     0.04     0.03     0.03     0.03       1.026     1.026     1.026     1.007     1.0067       1.027     0.0532     1.00616     1.0266     0.003       1.026     0.0536     0.0532     1.0067       1.027     0.0536     0.0537     0.0275       1.0112     0.0516     1.0724     1.00677       1.0112     0.0318     0.0537     0.0577       1.0112     0.0318     0.0318     0.05377       1.0112     0.05577     0.05348     0.05377       1.0112     0.05577     0.05318     0.05377       1.0112     0.05577     0.05318     0.05319       1.0112     0.05577     0.05348     0.05319       1.01012     0.0329     0.00     0.00       1.01012     0.055570     0.05348     0.05319       1.01012     0.055570     0.05348     0.05319       1.01012     0.00     0.00     0.00       1.01012     0.00     0.00     0.00       1.01012     0.00     0.00     0.00       1.01012     0.00     0.00     0.00</td><td></td><td>1 579</td><td>1.976</td><td>1.939</td><td>1+930</td><td>140.0</td><td></td><td>2.2</td><td>1.00</td><td>0.0</td><td></td></th<>	0.013     0.013     0.033     0.033       0.03     0.03     0.03     0.03     0.03       0.03     0.04     0.03     0.03     0.03       1.026     1.026     1.026     1.007     1.0067       1.027     0.0532     1.00616     1.0266     0.003       1.026     0.0536     0.0532     1.0067       1.027     0.0536     0.0537     0.0275       1.0112     0.0516     1.0724     1.00677       1.0112     0.0318     0.0537     0.0577       1.0112     0.0318     0.0318     0.05377       1.0112     0.05577     0.05348     0.05377       1.0112     0.05577     0.05318     0.05377       1.0112     0.05577     0.05318     0.05319       1.0112     0.05577     0.05348     0.05319       1.01012     0.0329     0.00     0.00       1.01012     0.055570     0.05348     0.05319       1.01012     0.055570     0.05348     0.05319       1.01012     0.00     0.00     0.00       1.01012     0.00     0.00     0.00       1.01012     0.00     0.00     0.00       1.01012     0.00     0.00     0.00		1 579	1.976	1.939	1+930	140.0		2.2	1.00	0.0	
G.G         G.G <thg.g< th=""> <thg.g< th=""> <thg.g< th=""></thg.g<></thg.g<></thg.g<>	C.0     0.0     0.0     0.0       TETAL     I:026     6.01     0.0     0.0       TETAL     I:026     6.01     0.0     0.0       TETAL     I:026     6.01     0.0     0.0       TEGAU     0.6126     0.63275     0.6375       TEGAU     0.6126     0.63275     0.6375       TEGAU     0.6126     1.05126     0.6375       TEGAU     0.65275     0.63275     0.6375       TEGAU     0.6126     1.66126     1.7224     1.660275       TEGAU     0.60     0.0     0.60     0.6372       TALTE     0.65275     0.53291     0.53271     0.6372       TEGAU     0.60     0.0     0.60     0.6372       TEGAU     0.60     0.0     0.60     0.63275       TEGAU     0.6121     0.6121     0.632719     0.653219       TECAU     0.60     0.0     0.60     0.653219       TECAU     0.60     0.60     0.60     0.653219       TECAU     0.60     0.60     0.60     0.654319       TECAU     0.60     0.60     0.60     0.60       TECAU     0.60     0.60     0.60     0.60       TECAU     0.60 <t< td=""><td></td><td>0.014</td><td>C . 61 3</td><td>0.735</td><td>0+734</td><td>0.40</td><td>A DO TO</td><td>10.00</td><td>1.1</td><td>0.0</td><td></td></t<>		0.014	C . 61 3	0.735	0+734	0.40	A DO TO	10.00	1.1	0.0	
0.0       0.0       0.0       0.0       0.0         11.026       16.001       15.001       15.011       15.011       15.011         11.026       16.011       15.014       16.011       15.014       16.011         11.026       16.0121       0.6127       0.6127       0.6127       0.6127         11.026       16.0121       0.6127       0.6127       0.6127       0.6127         11.026       16.0121       1.60121       1.60121       1.60121       1.7117         11.012       0.5102       0.6127       0.6031       1.7013       1.60121         11.012       0.5112       0.6127       0.61313       0.60313       1.7117         11.012       0.5112       0.5327       0.5327       0.5327       0.5327         11.11       0.00       0.00       0.00       0.00       0.00       0.00         11.11       0.5112       0.53219       0.53219       0.5313       0.5313       0.5513         11.11       0.00       0.00       0.00       0.00       0.00       0.00       0.00         11.11       0.01219       0.5313       0.5313       0.5313       0.5313       0.5113         <	1     0.0     0.0     0.0     0.0       1     0.6     1     0.6     0.6     0.6       1     0.6     0.6     0.6     0.6     0.6       1     0.6     0.6     0.6     0.6     0.6       1     0.6     0.6     0.6     0.6     0.6       1     0.6     0.6     0.6     0.6     0.6       1     0.6     0.6     0.6     0.6     0.6       1     0.6     0.6     0.6     0.6     0.6       1     0.6     0.6     0.6     0.6     0.6       1     0.6     0.6     0.6     0.6     0.6       1     0.6     0.6     0.6     0.6     0.6       1     0.6     0.6     0.6     0.6     0.6       1     0.6     0.6     0.6     0.6     0.6       1     0.6     0.6     0.6     0.6     0.6       1     0.6     0.6     0.6     0.6     0.6       1     0.6     0.6     0.6     0.6     0.6       1     0.6     0.6     0.6     0.6     0.6       1     0.6     0.6     0.6     0.6     0.6		C . O	0.00	0.0	0.0	1000		2.4	1.2	2.40	
Itent     Iten26     I6.001     I5.001     I5.001     I5.001       -FE     0.6531     0.6327     0.6375     0.6376     0.6376       FEG/440     0.65186     0.6327     0.6376     0.6376     0.6376       FEG/440     0.65186     0.6377     0.6376     0.6376     0.6376       FEG/440     0.55186     0.6377     0.6376     0.6377     0.6376       FEG/440     0.55186     0.6377     0.5678     0.5677     0.63747       FEG/440     0.55186     0.5578     0.5677     0.5747     0.5747       FEG/440     0.55918     0.5570     0.5027     0.5747     0.5747       FEG/440     0.55918     0.55927     0.5747     0.5747     0.5747       FEG/440     0.55918     0.55927     0.5747     0.5747     0.5747       FEG/440     0.55918     0.5007     0.5017     0.5747     0.5747       FEL-MI     0.00     0.00     0.00     0.5747     0.5747       FEL-MI     0.00     0.00     0.5675     0.5747     0.5747       FEL-MI     0.00     0.00     0.5675     0.5747     0.5747       FEL-MI     0.00     0.00     0.00     0.5675     0.5747       FEL-MI<	1<026		0.0	0*0	0.0	1.4.0						
-FE       0.6321       0.6324       0.6324       0.6324         -FE       0.6321       3.0661       3.0633       3.0667       3.0784         -FE       0.5321       3.0667       1.734       1.0784       1.0184         EF/MG       0.5327       0.5327       1.737       1.0784       1.0184         EF/MG       0.5926       0.5327       0.5327       0.5344       1.0184         EF/MG       0.5927       0.5327       0.5327       0.5344       1.0184         0.5027       0.5327       0.5327       0.5327       0.5344       1.0184         0.00       0.00       0.00       0.00       0.00       0.01       0.01         1.1021       0.03279       0.5329       0.0573       0.0574       0.01         1.1021       0.00       0.00       0.00       0.00       0.00         1.1021       0.1021       0.1219       0.0077       0.0077       0.0077         1.1021       0.00       0.00       0.00       0.0077       0.0077       0.0077         1.1021       0.00       0.00       0.00       0.0077       0.0077       0.0077         1.1021       0.00       0.00       <	-FE     0.6321     3.06321     3.06321       F/GA     0.6321     3.06921     3.06921       F/GA     0.5516     0.5526     0.6372       F/GA     0.5516     1.71621     1.06972       F/GA     0.5506     0.5306     0.5370       F/GA     0.55161     0.55161     1.06972       F/GA     0.5506     0.5306     0.5327       F/GA     0.5506     0.53161     0.5067       F/A     0.00     0.00     0.00       F/A     0.01     0.00     0.00       F/A     0.01     0.00     0.00       F/A     0.1012     0.1021     0.1206       F/A     0.01     0.00     0.00       F/A     0.1012     0.1021     0.1206       F/A     0.00     0.00     0.00       F/A     0.00     0.00     0.00 <td>121 1060</td> <td>11-026</td> <td>16.005</td> <td>16.034</td> <td>10.011</td> <td>15.937</td> <td>1==000</td> <td>1.T</td> <td>0.00</td> <td></td> <td></td>	121 1060	11-026	16.005	16.034	10.011	15.937	1==000	1.T	0.00		
TFE         0.6531         0.6536         0.0532         0.6536         0.0532           EC/FE         0.66126         1.66126         1.66126         1.71475         7.714           EE/M3         0.6612         1.71475         1.71475         7.714         0.51745         7.714           EE/M3         0.6612         1.7224         0.53027         0.53027         0.57435         7.714           EE/M3         0.5006         0.53027         0.5327         0.57435         7.714         0.57435           EE/M3         0.5007         0.5327         0.5327         0.5327         0.57435         7.7145           EE/M3         0.60         0.00         0.00         0.00         0.5743         7.7145           EE/M3         0.5210         0.0527         0.53219         0.53219         0.5743         7.7145           0.00         0.00         0.00         0.00         0.00575         0.7173         7.7145           EF/M3         0.00         0.00         0.00575         0.0574         0.7173         7.7145           EF/M3         0.00         0.00         0.00575         0.00575         0.7173         7.1145           EF/M3         0.00	TFE     0.6531     0.6321     3.0626       TEC/M30     3.0621     3.0621     3.0631       TEC/M30     3.0621     1.6972       TEC/M30     1.7234     1.6673       TEC/M30     0.5506     0.5306       TEC/M30     0.5502     0.5537       TEC/M30     0.5502     0.5537       TEC/M30     0.5502     0.5306       TAL-H     0.00     0.00       TAL-M1     0.00     0.00       TAL-M1     0.00     0.00       TAL-M1     0.00     0.00       TAL-M1     0.00     0.00       TAL-M2     0.00     0.00       TELELM2     0.00     0.00       TELEM2     0.00     0.00       TELEM2     0.00<					0 4335	A 5 3 0	SEE JT2	5.0	1.1	2*0	
FLG/vic0       3:0621       3:0621       3:0621         FLG/vic0       3:0621       3:0621       3:0621         FE/NG       0:5125       1:7134       1:7134         FE/NG       0:5125       1:7134       1:7134         FE/NG       0:5125       1:7134       1:0012         0:0       0:0       0:0       0:0       0:0         0:0       0:0       0:0       0:0       0:0         0:0       0:0       0:0       0:0       0:0         0:0       0:0       0:0       0:0       0:0         0:0       0:0       0:0       0:0       0:0         0:0       0:0       0:0       0:0       0:0         0:0       0:0       0:0       0:0       0:0         0:0       0:0       0:0       0:0       0:0         0:0       0:0       0:0       0:0       0:0         0:0       0:0       0:0       0:0       0:0         0:0       0:0       0:0       0:0       0:0         0:0       0:0       0:0       0:0       0:0         0:0       0:0       0:0       0:0       0:0       0:0 <td>FLG/MGG     3.0621     3.0621     3.0621     3.0621       FE/MG     0.71134     1.71134     1.60725       FE/MG     0.57254     0.57254     1.60727       FE/MG     0.57254     0.57254     1.60727       FE/MG     0.57254     0.57254     1.60727       FE/MG     0.00     0.0     0.0     0.00       FE/MG     0.5507     0.00     0.0     0.00       FE/MG     0.5507     0.00     0.0     0.00       FE/MG     0.00     0.0     0.0     0.00       FE/MG     0.00     0.0     0.0     0.0       FE/MG     0.0     0.0     0.0     0.0       FE/MG     0.0     0.0     0.0     0.0       FE/MG     0.0     0.0     0.0     0.0       FF/MG     0.0     0.0     0.0     0.0       FF/MG     0.0     0.0     0.0     0.0       FF/MG     0.0     0.0     0.0</td> <td>E.</td> <td>0.6321</td> <td>0.5566</td> <td>125 0 0</td> <td>C 202 L</td> <td>1010</td> <td>1.03.1</td> <td>3.0</td> <td>7+3</td> <td>0.*0</td> <td></td>	FLG/MGG     3.0621     3.0621     3.0621     3.0621       FE/MG     0.71134     1.71134     1.60725       FE/MG     0.57254     0.57254     1.60727       FE/MG     0.57254     0.57254     1.60727       FE/MG     0.57254     0.57254     1.60727       FE/MG     0.00     0.0     0.0     0.00       FE/MG     0.5507     0.00     0.0     0.00       FE/MG     0.5507     0.00     0.0     0.00       FE/MG     0.00     0.0     0.0     0.00       FE/MG     0.00     0.0     0.0     0.0       FE/MG     0.0     0.0     0.0     0.0       FE/MG     0.0     0.0     0.0     0.0       FE/MG     0.0     0.0     0.0     0.0       FF/MG     0.0     0.0     0.0     0.0       FF/MG     0.0     0.0     0.0     0.0       FF/MG     0.0     0.0     0.0	E.	0.6321	0.5566	125 0 0	C 202 L	1010	1.03.1	3.0	7+3	0.*0	
E/M3       L-7143       L-5745       5745       5745         c/FE       0.5500       0.5500       0.5500       0.5745       577         c/FE       0.5105       0.5500       0.5927       0.5745       577         c/FE       0.5106       0.5927       0.5745       0.5745       577         c/FE       0.6       0.0       0.0       0.0       0.502       0.5745       577         c/FE       0.6       0.0       0.0       0.0       0.0       0.0       0.0       0.0         c/FE       0.1219       0.0575       0.5731       0.5737       0.5745       0.5745       0.5745         c/FE       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0         c/FE       0.1012       0.1219       0.56310       0.56310       0.57570       0.5731       0.1219         c/FE       0.1012       0.1219       0.1219       0.1219       0.1219       0.1519       0.1511         c/FE       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0         c/FE       0.1219       0.1219       0.00       0.0       0.0	E/M3     Lot I a     Lot I a       c/FE     0.55108     0.55108     0.5527       -A - L-     0.55108     0.55108     0.5527       -A - L-     0.00     0.00     0.00       -A - LE     0.00     0.00     0.00       -A - LE     0.00     0.00     0.00       -F - MI     0.00     0.00     0.00       -F - M2     0.00     0.00	0.400	3.0621	3.0101	2 4 0 0 4 2	1,6873	1-7175	1.7317	0.0	14.4	0+0	
CVFE       0.0       0.0       0.0       0.0         C-AL-TE       0.0       0.0       0.0       0.0         C-AL-WI       0.0       0.0       0.0       0.0         C-AL-WI       0.1012       0.1219       0.5833       0.5379         C-FALMI       0.12206       0.1219       0.5373       0.5373         C-FALMI       0.1012       0.12206       0.1219       0.5373         C-FALMI       0.0       0.0       0.0       0.0       0.0         C-FALMI       0.1219       0.1219       0.5343       0.5343       0.5441         C-FALMI       0.0       0.0       0.0       0.0       0.0       0.0         C		OW/	*01/•1	100000	0.5306	0.5927	0 57dy	1.5774	1. " L	1+1	0*0	
	- A - IE       0.0       0.0       0.0         - A - IE       0.0       0.0       0.0         - A - VI       0.0       0.0       0.0         - A - VI       0.0       0.0       0.0         - A - VI       0.0       0.0       0.0         - M - VI       0.0       0.0       0.0         - M - VI       0.0       0.0       0.0         - M - VI       0.0       0.0       0.0         - F - VI       0.55370       0.55319       0.53319         - F - VI       0.0       0.0       0.55319       0.53319         - F - VI       0.0       0.0       0.0       0.5482       0.53319         - F - VI       0.0       0.0       0.0       0.0       0.0       0.0         - F E - VI       0.0       0.0       0.0       0.0       0.0       0.0       0.0         A - TRE MOLIN       0.0       0.0       0.0       0.0       0.0       0.0       0.0         A - TRE MOLIN       0.0       0.0       0.0       0.0       0.0       0.0	/ FE		3				0.0	4.4	1.1	0.0	
-AL-TE -AL-TE -AL-WI -AL-WI -AL-WI 0.22570 -5833 0.3291 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5577 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5737 0.5757 0.5757 0.5757 0.5757 0.5757 0.5757 0.5757 0.57577 0.57577 0.57577 0.57577 0.575777 0.575777 0.57577 0.575770000000	-AL - TE     0.0     0.0       -AL - TE     0.0     0.0       -AL - VI     0.0     0.0       -AL - VI     0.0     0.0       -F - WI     0.32570     0.3219       -F - WI     0.5570     0.5571       -F - WI     0.1202     0.1219       -F - WI     0.0     0.0	X = 1 = 0 = X	0 • 0	0.0	0.0	0.0	0.0		0.0	3	0.0	
N-AL-WI       0.0       0.0       0.3176       0.373       0.373         N-M-WI       0.2263       0.3183       0.3183       0.3176       0.373         -Free       0.1012       0.1206       0.1219       0.65371       0.05371       0.3175         -Free       0.1012       0.1206       0.1219       0.65371       0.05321       0.05321         -Free       0.1012       0.1206       0.1219       0.0578       0.0578       0.0578         -Free       0.1012       0.1206       0.1219       0.0578       0.0578       0.0778         -Free       0.0       0.0       0.0       0.0       0.0       0.0       0.0         -Free       0.0       0.0       0.0       0.0       0.0       0.0       0.0         -Free       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0         Free       Free       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0	Marken with the state of th	AL-TET	0-0	0.0	0.0	0.0	0.0		0.0	0.1	0.0	
N-M-MI       0.3291       0.3189       0.3189       0.3189         -F-MI       0.5570       0.5570       0.5313       0.5313       0.5313         -F-MI       0.5570       0.5312       0.5313       0.5313       0.5313       0.5313         -F-MI       0.5570       0.5570       0.5313       0.5673       0.5673       0.574       1.1         -MG-WI       0.1206       0.1206       0.1219       0.1219       0.0574       1.1       1.1         -MG-WI       0.1206       0.1219       0.1219       0.1219       0.0574       1.1       1.1         -MG-WI       0.1206       0.1219       0.1219       0.1219       0.0574       1.1       1.1         -MG-WI       0.100       0.0       0.0       0.0       0.0       0.0       0.0       0.0         -MG-WI       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0         -MG-WI       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 <t< td=""><td>N-M         0.3263         0.3291         0.5183         0.5183           -f-m         0.5507         0.5577         0.55170         0.5183         0.5183           -f-m         0.5507         0.55170         0.55870         0.5183         0.5183           -f-m         0.5507         0.55170         0.55870         0.5183         0.5183           -f-m         0.500         0.0         0.0         0.0         0.1206         0.1219           -f-f-m         0.0         0.0         0.0         0.0         0.0         0.0         0.0           -f-f-m         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           -f-f-m         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0</td><td>AL-41</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0 .0</td><td>0 2 2 2 2 0</td><td>2 - 2 - 0</td><td>0.0</td><td>3.0</td><td>0.0</td><td></td></t<>	N-M         0.3263         0.3291         0.5183         0.5183           -f-m         0.5507         0.5577         0.55170         0.5183         0.5183           -f-m         0.5507         0.55170         0.55870         0.5183         0.5183           -f-m         0.5507         0.55170         0.55870         0.5183         0.5183           -f-m         0.500         0.0         0.0         0.0         0.1206         0.1219           -f-f-m         0.0         0.0         0.0         0.0         0.0         0.0         0.0           -f-f-m         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           -f-f-m         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0	AL-41	0.0	0.0	0.0	0 .0	0 2 2 2 2 0	2 - 2 - 0	0.0	3.0	0.0	
FMI 0.5570 0.5570 0.1219 0.0575 0.0574 7.1 7.1 0.5570 0.1219 0.1206 0.1219 0.0675 0.0574 7.1 7.1 0.575 0.0574 7.1 7.1 0.07 0.00 0.00 0.00 0.00 0.00 0	-F -MI 0.5570 0.5570 0.1219 -C + MI 0.1012 0.1206 0.1219 -F E - M2 0.0 -C Z - Z - Z - Z - Z - Z - Z - Z - Z - Z	NG-N1	0.3263	0.3291	0.3183	0.5614		r 5341	1.11	1°2	0.0	
		FE-MI	0.5007	0.5370	2840.0	0141-0	0.0075	0 0574	470	1. J	0*0	
	-MG-W2 -FE-W2 -CA-W2 A-TREMAL A-TREMAL A-TREMAL A-TREMAL A-TREMAL	CH-MI	0.1012	0 • 1 0 2 1	001100						0-0	
-FE-W2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-FE-W2 -LA-W2 A-ENSTATTT 0.0 A-TGEMOLIT 0.0 A-TGEMOLIT 0.0 A-TGEMOLIT 0.0	MG-B2	0.0	0.0	0.0	0.0		0.		1 2	c	
A-TREMOLIT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	A-TREMOLIT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	FE-M2	0.0	0.0	0.0	000	0.0	0.0	0.4	C *2	0 * 0	
F-ENSTAILT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	A-TREMOLIT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		2			0	100		4.7	2	7*0	
A-TREMOLIT 0.0 0.0 0.0 0.0 0.0	A-TREMULIT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-ENSIAILI	0.0	0.0	0.0		0-0	0.0	0.1	0.1	0.0	
	X-ANDWIHL 0.0	TREMUL !!	0=0	0.0	0.0	0-0	0.0	0.0	1×1	3.4	0.0	

E E E						ou i u	ov roxene	THE T	pet-	
	eldspar	L ho n	b ende	OU I O	ALOYENS !!			-		
			A2.54	49.12	4 2.12	0 7* 1	04.1	11. 23		D. C.
SLI.	4 C • V			0.10	0.10	0.01	10°0		29.1	10.41
1 72		11.57	11.57	1.02	1.02	10.00			0.40	0.0
		0	0.0	0.0	0.0		20.0		1221	0.*0
10/1		0-0	3.24	0.0	10	0.0	6 1 4 1	57.75	21	T.C.
11100	0.00	20.80	17.89	33 - 72	15.02		10.0	5 5 . 5	D. 10	0.40
	0.0	0.14	0-14	0.0		0.9	10.6	3 . 7	2	0.0
	0.02	0.20	8.20	13.00		99-11	1 . A S	5. 12	C* 0 * 2	22
	17.74	11.21	11.21	- C+		0.16	7.9 %	012	0*0	1.0
A20		1.11			0.01	0.02	0.02	0.1	0*0	
101	0.04	1	-					1417 No.	A 10 - 0 1	
TLAL TT	100+84	97+72	98.24	99 ° 20	09.20	31*4N	11.101			
		6 19	23.	6 °	- Q	.0	2	4 2 1		
NC OXACENS	. 75	-						A 1 4 4	5. 866	
	R.ARD	6.479	6.427	1.901	1.00.1		0.00.0	00.00	0.0.8	
	0000	C. 153	9.152	0.003	500-0	30	10010	2112	4.000	0.0
	7.522	2.077	2.001	0.040	0 = 0			2 - 2	0° L	-0
10	0-0	0.0	0.0	0.0	0 0		1 . r. r	0.0	C A	5-0
		0.0	0.368	0.0	120.0	0 . 5.7	3.46	3.037	2° 2 0	0.0
	0.046	2.649	2.260	1.120	0.040		10010	3.114	0.11	6.0
	0.0	0.018	0.018	0.010		00-00	2.509	666.6	0.9.	
	0.005	1.861	1.346	0.912		0.886	0.485	1 - 24	1.520	20
100	2.4.62	1.829	1.915	0 • 0 4 4		0.12	5:0.0	0.0	0.0	
PUA.	0.440	0.120	0.195	0.001	0.001	0.001	100-0	2.5	с • С	
X	0.004	0.140					000	16 183	16.024	. D. 0
ACTAL LONG	15.617	100.001	15. 67	4.013	4 00	100	6454	1 - D = C - 1		
				- 1000	12110	P. A.2 HII	0.1279	* · 1 JA	C . B . 7 S	0.3
X-FE	0.0	0.0	0.0	2020 - C		1 33		7.1.75	7. 617	01-0
FEC/MGU	0.0	0-0	0.0		0.0	0 0	0.0	617 °		
FE/MG	0	-			0 ° C	0 * 0	C° C	98		•
MG/FE	3	2	3				0000		0.0	0.0
	0.0	0-0	0.0	0.0206	0.0205	0200	4000			5.0
C - ATALTURA		0-0	0.0	0.0197	1120.0	0.400.0	540 M	1.0	0.0	0+0
X-AL-16 1		0-0	0.0	0.0087	0.0045	0.010		7 7 . 7	0.1 4 00	0.0
	0.0	0.0	0.0	0.4142	0.4108		c	Furc.r	P. 5 5 P.	1.0
	0.0	0.0	0.0	•		0 0	0.0	9+2+33	0.7843	D*0
X-CA-PL	0 • 0	0-0	0 • 0	0.0	2					1.14
		~	0 0	0.3928	0 3980	0 * 0 C 13	2436.00			A P P
- MG-W-				0.5445	4625 0	0 0 0 0 3	1000-1			0.0
		0.0	0*0	0.0445		0.1356	5			1
			•	0 1554	0-1-65	0.0292	Eu	1+1	0*0	
TI TELONET	0.0	0.0	0-0006343	0.0	0.0	0.0	B."	0.7	0.1	100
- ANUH MIT	0 8936	0 0	0.0	0.0	0		1.1	2.40	0.5	1.3
AL MILL	0 - 10 - 0	0 0	0=0	0 • 0	5					

							OVFOXADE ->	- <u></u>	let core -	
	dsp r	hornb	lende	L or hol	ALOT UG			-	-	
			1.01	A. 65	N . 65	50.	10.55	11. 11	2	0.
102	44 . 70	1	1 . 0	0.13	0.13	0.1	C	50.0	0	
			10.64	1 . 04	1.04	1963		21		0.0
1000	1010	0-0	0.0	0 - 0	0.0				1.07	0 • 0
	0.0	0.0	3.29	0.0	1.1			57.072	24.77	5.0
- C	0.23	21.13	18.17	10.01			1000	~ n	5 - 2	0.0
CN	0.02	0.1	0.14		1 3.16	10.44	0 ° 9 4	10-1	20.4	
5.	0 0	10.		0.81	0.02	But	· · 30	• 33		
2.	16.01			0.0	0.0	(i - 1)	0.34	10 - 21	12.45	
1420	0-0	0.74	0.74	0.0	0 * 0	. 0	c • c		0.40	•
	00 00	27.80	10.10	60 66	92.14	19.96	80°CC	2005	8.05-10	0.47
-141 -13									" Bu	0.4
U JATGENS	12+	-53	• C 1	* G	0	2		3		
				191.0	1-943	1.251	12 1	666.5	5.524	0
	n = = 20			0.00	0.604	0.00.6	- UU-	1000		
		10100	900	0.049	6 0 0 0	2-0-5	- 4 C • U	C/ 1 *		
			0-0	0.0	0.0	0*4	C	2	A 1 2 7	
			0.376	0 0	0.034	C . 0			. d.	0-0
		2.707	2.309	1.165	1.125	0 297			0.08	0.1
	0000	0 016	0.015	0.021	0.021	1000		1.4.56	C = 0 = 3	C . L
	0	1.945	1.929	0.788	OR Z O			510	1. 1.64	0.0
	3.771	1 - 506	1.094	0.030	0.00	0.00	10. 32T	1.233	ECC -0	0.0
7	0 322	0. 300	0 · · · · ·		000	0.0	0°0	C * C	0 - 2	
	2		5.475	010	4 . 006	~ 101 ×	A. 308.	15.055	1.023	0+0
1. 1.4L 10*5	30.05%								0 1 1 0	C.LC
L L	0 . 0	0-0	0.0	0.5965	4 m 10 m 1	0049490	101111	0.7	0 F - 0	0
rec/460	0.0	0.0	0.0	2.0345		11111	10.01	6 5 0 °E	3 53 6	0
7 11 / ¥ C X C / F F	0.00	0*0	00.00		00	1.4	10	3 - 271 2	0.7614	5
	0 - 0	0.0	0.0	0.0210	0.0210	- CE O - 11	100000	33	¢ ¢	00
X-AL-TET	0.0	0.0	0.0	0.0227	4020°C	0000	0.01 41	L.C	0.0	0+0
X-AL-41	0.0	0.0	0.0	0 • 0 0 5 A		0.101.0	0. 10 14	3. 6 4 3 14	0.1.64	0.
K-MG-M1	0	0*0	200		0.0	1"U	0,47	(cor .)		. 0
THE HULL		1.1	0.0	0.0	0.0	0 * C	0.0	3.2014	0.2.2.0	-
	c	0-0	0-0	0.3409	0.3870	0.0502	2+242	1.00	00	
X FR-A2		0	0.0	0.5631	0.015	0.03010	0548.0	2.5	0.0	0.0
X - C A - M2	0*0	0.0	0.0							
A-ENSIALTE	0 * 0	0.0	0.0	0.1457	0-0	0.50*0	70104 - VAD	0.0	0.0	• · · · ·
THEMOLT	0 0 5100	0.00	0.0	0.0	0.0	0.0	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 7	6 C . C	
ATALULE										

11.2.13

TH LE 217 100	stal-									
	C BBPI	let Tis 7								0
20.4	19 0 0 E	38-05	0.0	0.0	0.0	1.0	0.0	2 4 4 1	100	
AL 203	ĉ0-15	20.15	0.0	00	0.0	0.0	10.0	1.1	0.40	0.0
CR203	0.0	0.0	5 (1	0.0	0.0	0.0	0*6	212	0.0	
FE 203	24.47	28.56	0=0	0.0	040	500	10.0		2.4	0.6
ONW	1.34	alfr f. FF1 a H	•••	0.0	0.0	0.0	0.0	220	0.0	00
4.0	2000	2.69	0.0	0-0	0.0	L*D	0.00	240	N. N.	
N I I I I I I I I I I I I I I I I I I I	0	0.0	00	0.00	0.0	0.0		0.11	0.0	0 . 0
X			0.0	0.0	3.6	10.4	3.0	4-4	750	∃×0
1	0 1 0				.0	2	.0.		40	10
NU LAVGENS	24.	24.	• 0	* >						
10	6 • 0 • 5	6.030 0.008	0.0	0.0	010		****	111	0.0	
	3.774	3-765	0.0	0.0	010	0.0	1.0	0.2	0.0	5.0
100	0-0	0.0	0.0	0.0	0+0		0.0	3.0	0.0	
Ferral Control of Cont	0.0		0.0	0.0	0.0	1.0	0.0		0.0	
		0.100 0.100	0.0	0.0	0.0	01			L'ag	0-0
2 2 2	C . D A C	0 - 0 - 9	0.0	0.0	0.0	0.0	124	1.1	0.0	:30
C.A.	1-309		0.0	0.0	0.0	0.0	1.1	5-2	0.416	
K	00	0.0	0.0	0.0	0.0	0.0	1.0	P		
THE LOAS	16.029	16.020	0.0	0-0	0-0	0*0	4.4	1.1	010	
	0 10 10	EICP-U	0.0	0.0	0.0	0.49	2.0	2.2	110	0.0
a - P.C.	2.4441	1001.0	0.0	0.0	0+0	0.0			0.0	140
100	4.7346	4. 950	0.0	0.0	13*10	0.40	2	at c	5-6	1.1
			~ ~	0.0	0.0	0.0	1.3	141	9.6	01.00
Jak-AL-DRY	0.0	0.0	0.00	0.0	0.0	0*0	0.0		1.0	•••
N - NL - NL	20	0.0	0.0	9	0.0	0.0	0.40	Just .	0.0	
N-MC-W	0.1.26	0.1352	0.00	0	0.0	1416	1 Sec.	1.0	0.0	°.
10-13-3 10-1	0.6234	0.02122	000	0.0	0.0	0.0	0.0	0+0	0.0	• 0
10-0-0-0			c	0.0	0	0*0	0.0		0.0	0-0
2	00		0*0	0+0	0.0	.**	0.0	1.1	0.0	0
21-12-X	0.0	0 - 0	0.0	0*0					4	0.0
A-ShSTaTIT	0*0	0.0	0.0	0.0	0+0	0.0 et	5.0 P.	0.0	D.0	0.0
TINING N - N	0*0	0*0	0.0	0.0	6*0	0*0	C	7*0	0.0	000
an or way	0	0-0	Dell	N. B.C.						

ABL 216								00 00	vroxen =	
	reldspar	L bor b	plen ie	Cortio	pyruxen	Courses J	( uaxo			
	4	ACASC	10.40	13.9	10.04	*0*0*	50.0	7		
	10.0	010	2.29	0.10	0.10		2.0	2	3 . 6	0 ° L
L ZC 3	c; • 5 C	12 . 25	12.25	07.0		0.0	0.0	2017	ن. ن.	
1203	•••		00.0	0.0	11.1	0+0	14 L	1000	10.0	0.0
203	0.25	19.86	17.08	12.23	31-23			15	1 × · · ·	0.0
CZ	0.0	0.13	0.11	01.		B III	19.11	45.01	10.6	0.0
1(3	0.0	9*52	9.52	11.01	02.0	24.00	- 4 * UL	34	10.8	
A.U	10-25	11.43			0 0	0.37	1.5.	10.4		
A20	1 m 0 0	12+1	10.1	0.0	0 0	0.01	10-11	C+7	0.0	•
	2 20	16-40	30.62	99.26	16.66	44+42	11.41	() of a to ()	0 u * u 0	1.0
1145 414	• • • • • • • • • • • • • • • • • • •							-0	14.	D.
L CAIGENS	- 7 F	23.		*0						
	0.4.6	FUC.A	81179	1. 158	1.933	1.02	600 1	07 0		00
	0-0	0.00	0.201	0.003	0.003		001	~~~~	0.076	0-0
	6.0.8	2.203	2+100	0.045	0.040	0.10		22.0	n. Cn2	1+J
ıα	0-0	0.0	0.0	0	0.00		5.45	2 0	200	
	0.0	0+0	0.302	0.00	0101	0.1 6	6 1 V . U	00000	0.417	0
	C . C	TTTT AND	2.100	210.0	0.017	0.007	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1.0.1	012 0	2
Z		110.0	1.020	0.894	0.342	0.621	6.3	10.0	1 1 1 1	
2 •	E 4 0 - 1	1.800	1.854	EE0.0	0.033	0.857	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		HCO O	0.0
4		10 - C	0.420	00	0.0	0.000	100 L	-+	с С	0*0
				A.016	A . 005	A.026	600	16	1005	•0
TITLE INPS	19.961	12.776	1 2. 02.1						10010	0-1
	0.0	0.0	0.0	0.54 8	0.5301		0-6		19-2-1	0.0
E LI MUL	0.0	0.0	0.0	2.1240	0, 00 0	0-0	0.0	0.4	0°L	1+0
E/M.	0.0	0.0	0.0	00	00	0	C.*.	2.0	C • C	0
1			0	1010 0	10103	0.043	1.7.54	11-1335	0.1235	0.0
- K-AL-UPE	0.0	0.0	00		0.0236	0 0361	Carle V		N	14
A-AL-IET	0			0.00.30	0.0025	0.0375	Port a	0777	0.10.250	N.V.N
N-AL-WI			0.0	6 . A 5 3 5	0.4485	0 5462	9 5 75	1.50.		0.0
		0.0	0.0	0-0	0.0	<. <			0=0	10+0
IM- D	0.0	0.0	0.0	0 = 0	0 • 0	0.*0				
	0	0.0	0-0	0.4.32	0.4407	0.0515	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5. 7 . 3	0 1 0 N N N N N N N N N N N N N N N N N	
	0.0	0.0	0.0	0.5165	0.50%	0.85.62	0416-0	5	14.10	0.0
-CA-MG	0.0	0.0	0.0	67 0 0						
C-LLCTATIT	0 - 0	0.0	0.0	0.1983	0.1885	21:0°0	7.7335	5 + f = C	0.0	D. V. W.
A-TREMOLIT	0.0	0.0004012	0.0003760	0.0	0.0	0+0	6 C	3+ 4	· · · ·	0.0
THINONA-X			0.0	0.0	0=0	0+0	6 .	2 + C	101	

111 2 B								20.00	and and	ric nexon
	thop	roxen	or hcp	roxene	- arttopy	L ouero	Larmob	DIATO		
	-		20.25	50-25	43.80	9.80	20-02	No No.	50°36	30
1	45 - CE		0.11	0.11	0.1	0.14	1147 1	113	r. B6	5.6
103	1.10	1.10	0.74	0 . 74	0.00		0.0	0.	0°0	0*0
6 20 3	0.0	0.0	0.0			1.18	n.h	62.01	D.C	
E 203	0-0	1 . 1 5	0.0	12 0	1.68	10.2	N.N. 4 W	11.32		1242
LO L	31.64	10 • 0 h	01-20	0-70	0.53	5'F 4	11.0	1/ • 7	2.2	N H N N
02.	0 · 0	5 C T C T C T C T C T C T C T C T C T C	15.52	15.52	15-53	1.53	19461	10.01		D I TO
2			0.69	0.69	0 . 42	- 0 -	0.00		1.1 . 1	10×01
	0.01	0.01	0.0	0.0	0.01	0.0	0.40	0.0	0 - 0	0.*0
5	0 - 0	0			5 A		14.24.	174.40	100 * 50	1.001
TAL WIT	-y . 92	00.03	1 1 * 00 1	100.001						100
S LAW WE S	- 11	а ()	÷9	-4	9 °			•		
1					1 1 7	1.00.1	1.0055	Turad	1 . G/ F	
10	1 = a ()		1.900	0.00.0	4 0 . 0	0.001	=uc. 6	Page 0	0.13	
	0.004		0.034	0.034	0 ° 0 *	0.041	150*0	(chel	0.0	
1	1000		0.0	0.0	0.0	0.0	213			2 2
T	20	0.034	0.0	0.027	0.0	0+275		10 m m m	1-0-1	1.13
	1.037	1.000	1.052	1.023	1.0-1	1.00	A - A - A	1.443	0. 022	0 13
	0.021	0.021	0 = 023	0.023	0.023	140° N	C.JC.S	N. 235.	.10.0	C . C
N C	C.510	0. 508	0.905	00000		010-0	020125	3.432	9.029	0.0.0
	0.039	6.0.039	0.023		0.001	0.001	1+0	0.4	0-001	
4 2	10000	100-0	00	0.0	0.0	0.0	100	0.0		5
×	3		1 10 1	a nna	A.017	4.001	2.050		A+ 917	A.60
TOTAL ICKS	4.017	4 . 000	C 70.* 5							£
X-FC FFO/M	0.5325	0.5242	0.5376	0.5312	0.5137	-1-6-1	2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1	1. 1305 1. 1303 1. 1	0° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O
	00	0.0	00.0	00	0.0	0*2	6-0	2.5	C . C	• )
2 . X-A -CP	0.0220	0-0220	0.0148	0.0148	1610.0	0.01.00	1010-0	1220.		
X-ML-TLT	0.0229	0.0256	0.0105	-0.0040	0.0006	0.0050	0660.0	- 7 10	0.000	- 00 - 0
X-AL-41		0.4593	0.4667	0.4507	0 0 0	0.4587	24422		0.5	2.2
X-FE-M1	0.0	0.0	0.0	0.0	0.0	0.0	6.0	r+0	0*0	C*0
K-CA-MI	-				5752.0	0.4050	D. 4 144	24 - 12	2.445	6 . 8 . 8.
X-MG-MZ X+FE-AZ			0.5096		0.000	755A 0	THE PARTY	7100.0	0. 02 "8	0.0.5
X-CA-42	0° - 0 - 0						N. 1.0.10	The wall	0.1949	101*3
A-ENSIALIT A-TREMULIT	0.1942	0.0	0.0	0.0	C.0	0.0	0.0 N.O	0*0	0.0	0*0 0*0
X-ALUITE	00	0.0	0.0	0.0	0.0	0 * 0		n.e	# 5	-

							- want	ende 2	T horab	ede 3
	(callag)	(-1 -)	Cc nopy	Loxene 2	Danioa J.					
0	44.71	12.04	51.36	51 - 18	42.16	42.10	U + C	12		101
102	0.26	0. 6	0.32	0+10	2 . C	· · · · · · · · · · · · · · · · · · ·	19. 15		10.17	2-0-
1241	2.14				0.0	1-2	0.0	2+0	0.0	
R203	0.0			15-0	0.0	2.94	0.0	-01 × 0	0.00	
E 203		Carl I	13.82	13. 11	19.97	15.23	1		10.10	
00		0 - 2	0.33	0 = 3	0.15	5		10011		
	11.19	11.19	10.96	10.10	• •	1 4 4	10.11	12.21	11.48	1
C.V.	21=33	21 - 13	21 - 22	21.0			1.30	11.11	1.2	
A-10	5 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	00	0.0			1.5	1.55	ALC: N. N.	C.	-
	20	C 2 2 3	100.51	100.57	e1.3	37.49	1	66 * 11	20. 11	10.00
IDIAL #11	0.9	d T					also.	c.A.	38.	12-1
C DXV ENS	•		. Q. K	• 9		-				
			0.00	440 I	6.404	6.417	5. 3A	5. 33	6.4.77	
I	616 1	1020	0000	0.000	0.234	0 - 2 3 6	1 - 2 - 1	0.7.4		
		0.00.0	0.095	0.045	1.871	1.857		0		.0
		0.0	0.0	0.0	0.0	0.0		N N N N N N N N N N N N N N N N N N N	0-0	C • 337
C. A.		0.078	0.0	0.016	0.0	0 0	02.01.0	24	2.389	2.0-0
	644.0	0.368	0.438	0.421	2 + 42 3		A 10. C	01010	0.01 P	6-213
12	010 0	0.010	0.011	110.0	N 10 . 0	200	1.00.0	2.40	1 0 9 5 2	1 . 077
10	C 644	C. 640	0.619	0.010		1.96.7	6-8-1	1.445	1.003	
C A	0-042	0.871	0 862	0.00		. C M . O	CI 4 C	60	0.756	
TA A	0 0 0	000	0 0		105.0	10-203	0 12 * 0	2 10	0+ 505	0 • 7
		E 10	HOU - F	4.003	15.600	15.53	1.12.4.1	15. 17	5.637	1
TULKU IONS	503-	2					0	1.1	J * U	0 0
I I E	0.4109	0.30.5	0 - 144	0.40.2	0.0	0.0		0.40	0 0	0-0
E /MGU	1.2431	1.0263	1 = 2609	1.5240		0.0	6.6	1.1	0.0	0
E NG	0	0.0		0.0	0-0	1.1	C* C	194	0	0 • 0
C - F L	2					0.0	0.0	74.0	0.0	0+0
· - AL - C.P.	16+0-0	0.0436	0 - 0 - 2 - 0	120110	0.0	0.0	0.0	14.20	D. C	3+3
	0.0404	0000		10-040-	0.0	0+0	0.1	0.1		0.0
	0.400	1047	0.552	0.5558	0.0	0-0	C + C	2.2		0.0
			0-0	0.0	0-0	0.43	 		0 0	0.0
	0	0.0	0.0	0*0	0-0	0.01	[, • ₁ ]	2	2	
			0000	0.0412	0-0	C = 0	C * 0	3 = 4	U . C	0.0
-MG-M-	50400			0.04.7	0-0	ن = ن ن	C* v	2+2		
-FE-42 -CA-M2	0 0320	0.8707	0.8520	0.8603	0 0	0 * 0	C C	) = J		
	P	00000	EIEU-U	0 0 322	0 0	ں ° ر	C * U	1. 200	7.0 7.0	C . C
A-CNSI-11	0 0	0.0	0 0	0 0	0.0006621	0.000510	5 5 C C 0	< 1.50 0	0 * v	
X-ANUWINIT	0.0	0.0	0.0	00	00	00	L'al	c	C. L	U• J

1.5. 219 ( sont. ) .

TABLE 2 19 1COL	1t									
	darah-	dende 4-1								1. N
S 1:22	11.00	41.06	0.0	0.0	0+0	0.0	0*1		0.0	
1102	P1 - 23	ei C.	0.0	0.0	0.0	0.0	0+0	1+0	0.0	.0
AL. C.S.			0.0	0-0	0.0	c. c	0.00	010	0.00	L-0
	0.0	2 . 1	0.0	0.0			0.0	Dat	2.0	0.0
FEO.	16.74	16.12	0	0*0	10.0	0.0	940	11.0	0000	
DNM.	0			0.0	0+0	0.0	C		10.0	
		1	0.0	0*0	0*0	0.0		100	The Party	J. J
N = 20		1-31	0.0	0.0	0400	0+0	0.10	1+1	7+0	• 0
K 20	10-1	1+51	0.0						2.74	) • U
The star	47 a 24	57.63	0.0	0.0	0.0	0*0				
		EC	.0		-0		-0	-0	2	• 0
NO DATE NS	*C2	• 7 1					N. N.	100	0.0	- °C
17	6.405	C = 359	0.0	0.0	0.00	C 0	2.0	2.4	00	00
T.I.	4	212 0		0.0	0.0	0*0	1.0	2.0		
44			0.0	0-0	0.0	C*0	140	1.1	0.0	C+L
	00	0+333	0.0	0*0	0-0	0-0	1.44	1.00	0.0	
181	2 3 8	2.048	0.0	1.0	10.00	0.0	11.0	749	0	0.
	610 0	510.0	00	0.0	0.10	0.0	0.00	242		
NG	0 1	2 010		0.0	0.0	0.*0	0.0			0
100	0 389	0.300	0.0	0.0	0.0	0 4	0.0		G . P	0.
N. N.	0 2 35	6 - 5 3 3	0.0	0.0	N	2			0.0	4.4
S ALL ALLAS	1 4 0 6 6	15+542	0.0	0.0	0.0	0	0.40	200		
	1				0.12	· • 0	0.1	3.4 2	3.5	
	0.0	00	0.0	0.0	0*0	0.0	0.4	0.		
FEG/MGI	0.0		0.0	0-0	0*1	0-0	1.1			
11/12 20/11/1		0.0	0.0	0-6	0*0	C+0				
1.57			0	0.0	0.0	0.0	-	0.4	c .	
2 . X-AL-CP .	30	0		0.0	0.0	U . D	110	1.1		0
A-AL-TEF	30		0.0	0-0	0.0	0 * 0		0.4.0	0.0	6=0
X-AL-WE			0.0	0.0	0.0	0+0		and a	υ°υ	L . L
		0.0	0.0	0.0	0.0		0.0	0.0	0° L	0 + 0
X-CA-WE	0.0	0.0	0.0	2.0					5-0	0.0
	0.6	0 . 0	0.0	0 • 0	0.00	0		2.10	7.5	0-0
	0.0	0.0	0.0		3*24		0.0	0.1	0*0	0-0
X-CA-ME	0 . 0	0.0	0.0	D+0	2+2					a.r.
ALLEN STATE	0.0	0.0	0.0	0 D	0*0	0.40	L	0.0	0.0	0.6
A-TREMUL 1	0.002684	0.0006349	0+0	0.0	0.0	0-0	1.1	1.1	L.C	0
X WORLMIN	0.0	00			0.7	0 . 7	(° (	P*.	C + 1	0
and the set of the set	61 a 51	N B N								

T. B. E. 20			[4]	abre -	C or thop	roxene )	C C1 100	roze e 7	C Bar	De
	porabl	Lende 17	THO THOM		-				17 7.	7 . 4.
c	40.46	40 - BE	41.15	01+10	0.29	02.0	5 C C	Name of Street	0.04	
202	- E2	1.52	1.53	La State			5 L C		- 9 - 12	
1.201	12.001	3.51	12.42	10-0			C C	1.1.1	•	1.0.1
R201	0.			3.12	0.0	0.68			24.60	7 .
£ 201	0.0	C . Y .	0.09	14.44	30 = 34	20.55	0 P	1111	1 L L L	
ر. ۲	07-11		0.21	0.71	0.50	5	19.1	111.200	(*) (*)	271 4 -
Q	01	1 2	0.48	0 . + d	10.01		19.9	12427	22 * *	
00	11.34	4E*11	11.16	11.16	10.00	1000	5 ° C	12.42	C+C	
		1.54	1+15	100			0.0	U+3	0.0	0 • 0
20	1 - 10	1.50	1+17	1					(access)	1 0.0 -
	14.61	10-40	7.96	14.27	61-COI	E .001	10,400	WEBER		
INTAL MAR							-	-	• # C	1.01
DANA NG		22.4	23.	-02						
				0-240	() = z = ()	345.1	14.7.9	C	0.1	1 6° -
T.	G . 1 d2	C.130		0 174	0.032	0.012	1000			
11	0+123	201-1	0.037	2.220	0.0 2	0.042	10. DUM			0.1
AL.	014-0	A 5 5 4	10.0	0	0-0	0.0	100	N. T. C.	0.0	C+ 21
E.V.	0.0		0.0	0-300	0.0	0.02	14.00		1.70	0
P.L. 8 + 4	0.0	100	2.5.6	2.190	0-901	0.175	10.00 Y	1.10	0.210	2 2
11.11		0.02	0.0	0.027	EIC-0	10.0	1111	7. 71	2 3	
Max		1.934	1.6.1	1.916	0 . 5 . 5		0.00	le C	1.129	
200		1.025	1.027	1.613			0.010	7.43	0*0	0
	0.20	0.446	0.4.9	0.456	2		1.0	1.2	0.0	
	2.00	0.207	0.207	0.205	0.0	•				
		16.605	15.740	15.657	4 . 0 I 3	4.004	*107×	100.0	0.0	1 0 1 0 1
TOTAL ILAS	1 1 2 1 1						1.171.A	AL he alt	5282°0	0 - 7 - 1
	0-0	0.0	0 .0	0 " 0	1/05+0	10000	1. 3. 4 M	Same 2	8-6-2-	
	0.0	0 0	0.0	0		0.0	10 × 10	7431	8 U 2 8	
E/NG	0-0	0	00	0.0		2.0	0.4	12.1	2 3	4 F
MG/FE	0.0	0 * 0	0				0.000 D	AL 441.0	0.0	C . O
C.D.	0	0-0	0.0	0 . 0	0.150	0 10 0 1 0	1111111	716340	J* 5	0
		0-0	0.0	0.0	0.20.0	0.01.7	0,0110	7+32.43	c •0	0.0
	0	0-0	0-0	0		0.4768	0. "DE V.	010000	9. 558	0.0
	0-0	0.0	0 . 0	0			0.0	14.5		
	0 - 0	0.0	0*0	0.0		0.0	0.0	7+4	0.1 950	
-CA-MI	0 - 0	0.0	0 = 0	2	-			1		0-0
		0	0-0	0-0	0.4064	0.472	1. (2. 1.1	Thursday .	0 0	0
X-PG-ML	5		000	0.0	0.4810	C.472C	1	Find at	0.0	0 - 0
X FE-M2	20		0 5	0 - 0	0.0336	0.0410	E C C A C			
A-CA-MC					02120	C-2131	1,00.0.0	Teul H.	J.C	D.A.C.
A-ENSIALIT	0.0	0.0	0 0	0.000000	0.0	0-0	10-10	0. 7	0*0	J-0
A THEMULIT	0.0004430	10.00.0	0.0	0-0	0 0	0.0	0+0		0.0	1
X-ANDATHIT	20		0.0	0.0	0.0			2		

ABLE 2 2							**************************************	rovene 3-	rdon	L au xou
	11011	blande	- or ho y	C auene	orthop	( > 2 (vit)				
					100-00	10.2.3	54.53		- 7 - 2	
luč			53.19	20.07	0.05	50°0	10°0	- 0 -		
211	11.0	41.0	4.00	00. *	10.00	9 C - E			0 ° J	0.0
1.03	D	0.0	0.0	0.0	0.0				D.0	• 5
NC I		0,10	0.0	1.11	0.0	2 C + C +	11.2	11.0	7.7	10 10 10 10 10 10 10 10 10 10 10 10 10 1
203	0 - J	4	11.34	10.34	11.40	10.07	1 1	5	50.0	
	10.0	20.07	0.23	- N - O			10-02	12.00	1 - 59	
0.11		16.55	29.61	29.81	10.00	C	C		26.97	
20	1917	12.61	0.35	0.20		10.0	0.0	2 • 5		
20	61.1	51-1	0.0	00		0.0	5.0	0-0	0 • 0	0.0
5	0.38	0 - 32				C , 00	1 - 100	10.01	99.	9 0
	20.02	54.11	00*65	99.11	103.04	00.01				
						6.0	-	14.00	-	D
OX NEWS	24.	23.	*0						1.6.6	7 367
			007 .	1 . AGA	1.925	1:6.1	1.00	1	00	1001
		6.50H	200 0	0-002	0.001	0.001	1 1 1 1 1		0.05	0.01
2-02	0.003		0.1.8	0.168	0.127	0.125			N.N.	0.0
L.	102.02		C	0.0	0.0			1.105	Net.	
a		1000	0 0	0.030	0.0	223.0	CEE N		Nalla .	0. 00
			0 339	0.304	0.339	0 - 22		50000	7.103	0. 0
- L	0.00		0 007	0.007	0.033	0.00		1111	11. 177	1 E 2 .
Z	2.00		1 580	1.582	1.003	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.11	0.1.0	n. 91 a	0.00
		666 1	0 014	0.01	0.014	+ 20 • 0	u.n	0.0	100.0	
5		0 331	0*0	0.0	100.00	0.0	2.2	1.1	0*1	1.1
4 2 3	0.070	0.070	0*0	0.0	· · ·	11 0 11				a contra
			A.015	500.1	4.011	4.004	5 0 0 * 5	100.44	1 1 F 1	
FUTAL JUNS	704421	P					0041 0	11.016	C. 11 45	0.100
	0-0	0.0	0.1759	0.1630	9+110	0.100	0 3734	( C	9-E - 0	0
	0	0.0	0.3804	0.4470	0.72.0		C 0	7+1	C * C	0 0
	0 0	0.0	0.0		0.0		0.0	. A.A.	0.0	
G/rE	0 + C	0.0	0.0						1-0253	1 3 - 0 - 0
	0.0	0.0	0.0308	0.0807	0.0503	0.9597	11 C C C		0.1162	1 2 C - J
- A-AL-CP	20	0.0	0.0505	0.0528	0.0377		0-7569	9	0.025	0 0
-ALTER		0.0	J J J 674	0.0623	112000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C + 2 - C	1.7.32	0.8630	10 E
		0.0	0.7578	0.7583	0.7524		1.1	3.0	0.1	U = 0
THE DEL		0.0	0.0	0.0	0.0		0.0	0.0	0*0	0.0
	000	0.0	0.0	0.0	0 ° C	0.0.1				
+				C	0.2064	0.8155	5 F - 4	GO T		
	0.6	0.0	0/06.0	10 - 50V	60110	r.1614	504 5 4	1.1007	0 00	- C - C
FE- 12	0.0		0.0135	0.0137	0.0140	0.0140	9-9996			
-CA-M2	0	2					and the second	0.11.5	0.001	0.0.040
TTT TTTTT	0.0	0.0	0.5587	1855.0	2 + 85 • 0		0-0	0.0	0.0	0+1
- Trevor	0.0227689	0.0222214	0.0	0*0	0.0	0.0	0.0	2.0	5°5	
- ANUHINI	0.0	0.0	00	20.0	0.0	0.0	2.4	L = L	•	
- ALOJIE	0.6	2 8 2								
BLE CON

	THE T	2 - 5 - A	2	A	2 2	-5-A	26-5-C	21-5-E le dspar	L rorr	ablenot	
		r sp r					0000	7 26	14.44	- 5 - 2 -	C.C
	10-	24 5	45-02	<b>\$5.02</b>	51.91	3 m + + 0		0+0		.16	
	L2C3	11	10.03	4C * 01	2.00	000	UP · N				0.0
Constrain         Constrain <thconstrain< th=""> <thconstrain< th=""> <thc< td=""><td>1203</td><td>00</td><td></td><td>99-14 1-14</td><td></td><td>1.03</td><td>0.0</td><td>0.0</td><td>5 - 5</td><td>2 · - 0</td><td>01</td></thc<></thconstrain<></thconstrain<>	1203	00		99-14 1-14		1.03	0.0	0.0	5 - 5	2 · - 0	01
0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <th< td=""><td>502 E</td><td>0.26</td><td>15.81</td><td>13.60</td><td>9.95</td><td>5.03</td><td></td><td> </td><td>4</td><td></td><td>. 0 . 4 . c</td></th<>	502 E	0.26	15.81	13.60	9.95	5.03		 	4		. 0 . 4 . c
000     111     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15     25:15	DN -	0 0	12 0	10°0	0.0	13-12	0.0	C . C	00.0	0 L . U	0.0
NUM         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0.400         0	60	0	12-21	12.21	22 . 15	2	4.40	5 * 8 B	5112	5-13	
0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.21         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22         0.2.22 <th0.2.2< th=""> <th0.2.2< th="">         0.2.22</th0.2.2<></th0.2.2<>	. 42 .	4 (P () 4 (P () 4 (P ()	1.11	1.41	0 + 0	0 0	0.44		1 • 10		. 0 • 0
10.11         10.0.35         54-13         99-14         11-16         99-14         11-16         99-14         11-16         99-14         11-16         99-14         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         <	N_0	0.21	•	0.0	0 0		3				C
No.     J2.     J2.     J2.     J2.     J2.       11     507     0071     0071     0071     0071     0071       11     507     0071     0071     0071     0071     0071       11     507     0071     0071     0071     0071     0071       12     507     0070     0071     0071     0071     0071       12     507     0071     0071     0071     0071     0071       12     0070     0071     0071     0071     0071     0071       12     0070     0071     0071     0071     0071     0071       12     0070     0071     0071     0071     0071     0071       12     0070     0071     0071     0071     0071     0071       12     0070     0071     0071     0071     0071     0071       12     12     0071     0071     0071     0071     0071       13     12     0071     0071     0071     0071     0071       14     0071     001	XI . WICL	20.35	50.13	98.38	11.60	39760	66 85	UL UE	LA 201-		
Image: Second	in the s	32.	2.5%	23.	.0	.0	385	01	144	124	0
Image: constraint of the constrate constrate constraint of the constrate constraint of the constr		104	6. 570	6.631	1.951	0-6-1	6 10 6	1 - 2 J	5.107	129 .	1. I I I
F: C = C = I         I: 7 50         I: 7 50 <thi: 50<="" 7="" th=""> <thi: 50<="" 7="" th=""></thi:></thi:>			0.100	0-100	0.001	0.003	0.003		•		0.0
RR         G.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <th0.0< th=""> <th0.0< th=""> <th0.0< th=""></th0.0<></th0.0<></th0.0<>		ć.201	1.761	1.750	160.0	0.01	5.0°*		A TO I		0.6
R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R <td>R</td> <td>C - 0</td> <td>0.0</td> <td>0.0</td> <td>•••</td> <td></td> <td></td> <td></td> <td>)</td> <td>0 2 5 C</td> <td>• •</td>	R	C - 0	0.0	0.0	•••				)	0 2 5 C	• •
N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N	1		0.0		0.313	0.243	210.0	0.01		10 0 U U	0
1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	1 2	0-0-0	0 - 026	0 - 025	0.0	0 = 0	0.0	c	) • 4 4 1	0 1 2 2	
A         2.2.613         1.2.623         0.1425         0.1425         0.1625         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751         0.1751 <th0.1751< th=""> <th0.1751< th=""></th0.1751<></th0.1751<>		0.0	2.696	2.680	0.735	0.733	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.241	1	016	0.0
A - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	A		- C C	500 × 0	0.000	0.024	1 025	7.753	9.003	0 - 2 6 0	0
Invite       Z0.015       15.623       15.623       15.623       15.623       15.623       15.623       15.633       15.633       15.633       15.530       4.015       4.005       19.771       70.0       1.5.53       1       1.5.53       1.5.530       4.015       4.015       4.015       4.015       4.015       4.015       4.015       4.015       4.015       4.015       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005       7.005 <td>A ST</td> <td>0.010</td> <td>0.142</td> <td>0-141</td> <td>0 - 0</td> <td>0.0</td> <td>840*0</td> <td>- fu • c</td> <td>0</td> <td>502.00</td> <td>• •</td>	A ST	0.010	0.142	0-141	0 - 0	0.0	840*0	- fu • c	0	502.00	• •
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	INTEL TOPS	20.05	15.623	15.530	4.0.5	2 ° 0 0 5	166-61	1.0.00	5°°°°	DI THE	140
CCT       C		0-0	0-0	0.0	0.2.85	0 2785	0+0	0 0	2	5 ° 5	0.0
A F F F F F F F F F F F F F F F F F F F	LEC/4		0.0	0.0	0.7.84	0.6833	c+0				0.0
	01/1	00	0.0	00	00	00	0		, C,	0° C	0 * 1
-x - xL - CP       0.0         -xL - xL - CP       0.0         -xL - xL - TL - TL - TL - TL - TL - TL -	11/2	5	0	3			0		0 -	10.0	1.0
-AL-TET AL-TET AL-MI AL-MI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CALMI CAL	-X-AL-CP	0.6	0.0	0.0		140000		6 6	14.0	0.0	0:0
магам магам с и с с и с с с с с с с с с с с с с с с	-AL-TET	00	0.0			0.0374	0 0	0.0	9- 1	0.0	1.0
ССА-И ССА-И ССА-И ССА-И ССА-И ССА-И ССА-И ССА-И ССА-И ССА-И ССА-И ССА-И ССА-И ССА-И ССА-И ССА-И ССА-И ССА-И СССО СССО СССО СССО СССО СССО СССО СС	AL-MI			0.0	0.65 99	0.671+	0 * 0	c (	1.0	C	1111
СА-ИІ СА-ИІ СА-ИІ С.С. 0.0 С.С. 0.0 С.С. 0.0 С.С. 0.0 С.С. 0.0 С.С. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			0 0	0.0	0.0	0.0	C * C			in the second	0101
	-CA-ME	0 - 0	0-0	0 - 0	0 = 0	0.0					
	3-MG-MC	C = r	0 0	00	0.0553	000000000000000000000000000000000000000	00	• • •	2 2	C L - C - C	•••
	4- FE-M2	00	00	0.0	0.6920	0.00	0+0	c • c		C * 0	0*0
	A-EWSIAFIE	0.0	0.00	0.0	2 3 5 2 3 5 2	5150-0-0	0.0	C. P. 0. 0	5*3254aa2	0.00.5784	0*0 C*D
		0 5808	0.0	0.0	000	0	195 1	0.1400	1. E	5 5	5-0

TABLE Z 22. CORT	1005 1005 1005 1005 1005 1005 1005 1005	1074L •IX 40 CXIGENS		A-FE A-FE FECYMGU	2 • 4 - 4L - 101 * • - 4L - 11 * * - 4L - 11 * * - 4L - 41 * * - 4L - 41 *	N-90-94 N-90-94 N-90-42	A-LNSTAILT A-TREMOLIT 0
C cling	m m m m m m m m m m m m m m	59-17		00000000000000000000000000000000000000	0-0175 0-025 0-025 0-025 0-05 000 000 000 000 000 000 000 000 0	10+0-0 0-00-0	0.04
-5-1 pyrdxene		*9 91 *65		4 006 0 2162 0 4917 0 0	0.0245 0.0245 0.0244 0.0244	0 0100	0.0124
	000000000000000000000000000000000000000	0.0	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0	000000	000	0.0
		0.0			000000	000	0.0
		0.0		0000	000000	000	0.0
	00000000000000000000000000000000000000	0-0	CC 00000000000000000000000000000000000	5 0000 0 0000	000000	000	0*0
		+6 6+6	**********	- cccc		C C C C	146 140
	1111111111	4.5 4.			113333	1.00	
		-5-	CCCCCCCCCCC 66266006666	0. LOCL:	000000	 	0.0
		0 U	0.00.0000000	2000 2000	000000	5*0 5*1	0.0

ET T TTTT										
	anna -	al ande	- hornt	tende 2 7	L hornb	ende 3	r hornal	L th aba	C c nopy	L a axo.
			45.14	44-16	10.27	45.21	C4*5.5	PARTS.	51 - 2.9	51.25
Sul -	000	1*09	1.02	1.02	5.0	0.9	1.0.1	10.4.1		
1.263	5.44	9 * * C	9 <b>* *</b> 0	9	00.00	7 0	2.10		0°0	0.0
C K 203	0-0	0.0	0				1.0	1000	0.0	
E2G3	C . O	2	0.0		00-11	1 11	10.40	12+24	0. B?	C = 2
E.J.	20 - C	0		56-0	22	0	0440	4163	C + P 3	0 = 4
D'		E		11.16	11-36	13.36	102461	Clark C	14-20	
00	1 21	1 1	1 · 1 2	11.77	11.30	11+30	24*11	1		1 C
5 ×		1.16	1.09	60.1	1.17	1+12	1.41	1141		
200		0.10	0.06	0-00	0.60	C. # 0.11	1 × 1 × 12	14.45	0.0	0
111 M 11	-1-56	07.00	7.12	98.010	18. Ad	98.72	. 60	10 1 × 10.0	100 . 81	1
and a second by			23.	. 10	23.	1.	0 g 0	4.3.1	4.8	-2
NU CATOCINE	n I I						14 × 14	ACT OF	11015	C0 1
SI	6.076	6.637	6.581	6.643	6.60		•••	10000	000 0	c vor
- 1	0.115		0.11.0	0.115	1.45		- C	1.001	0.086	0.083
AL	1.659	5 50 F			0-0	0	0.0	78.2	0 0	0
L'E	0.0	0.00		190.00	0	0.245	242	0.050	0	
	3.	0.4	1.874	1.603	1.83	1.610	46. + .	120.1	0 - 2 - 7	
F E + +	Vere o		0-031	0.031	0.03	0.033	51+6	0.405		
2		2. 411	13 44	2.929	2.93	2.714	C	A D D D D D D D D D D D D D D D D D D D	0000	
A D		1.176	1.865	1.955	1.673	101.10		- Carter	3. 027	C 0 2 1
Pi A	0.325	60	0.31	111 0	0.10	1	61 C	7+121	0° U	C . C
×	0.131	0.130	21.6							P = 1
TOTAL IONS	15.612	124,521	15.549	15.511	15.013	15.576	1 5 5	50	0 × 0	
N I I I	0-0	0-0	0.0	0.0	J= 0	0	4.4	1 = D	0.7790	
CET MGD		0-0	0.0	0.0	0.0	0 • 0	1.1	1 4 1		- L - L
F. Chick	0	0.0	0.0	0.0	0.0	0.0	22.0	110	0 5	0.1
MG/FE	0 = 0	0.0	0.0	0 • 0	0.0					
		0.0	0.0	0 - 0	0 = 0	0 . 0	676	2.0	0 0100	
Z ALAL-LVA			0.0	0.0	0.0	0.0	1.1			0 - 0 - 0
X AL-IEI		0.0	0.0	0.0	0 • 0	J+J	1.40			
		0.0	0.0	0.0	0.0	0 = 0	0*0	111		5-0
	500	0.0	0.0	0.0	0.0	C • L	140	1.1		0-0
X-CA-MI	0	0 = 0	0.0	0.0	0 - 0	0 = 0	0+0		2	1
		0	0	0-0	0.0	0.0	4.0	141	2 2 2 4	0.0
X EGIES	30			0 0	0.0	2.2	C.*C	1.1	04 k0	
X-FE-M2 X-CA-M2	00	0.0	0.0	0 0	0.0	0 * 0	010	1.2	2206 0	
	0	0-0	0-0	0 0	0*0	ر • ر	14.1	1.1	0.6272	.22.3.
A THEM LI	0.0	0.008374	0.0097292	0.0091107	00.02.0230	195400 0 1.1 1.0	0.00 1.00 .0	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	υ°υ υ°υ	0.0
	0	0.0	0 - 0	0.0	2-0					

E E J

CAPLE 7 131 0001. . .

# APPENDIX 3: METAMORPHIC PARAMETERS

## Introduction

The application of various thermodynamic techniques, geothermometers and geobarometers using the analytical data obtained in this study (Appendix 2) is described in this section.

# Orthopyroxene-clinopyroxene thermometry

The miscibility gap between diopside and enstatite has been the subject of much investigation and experimental calibration (Davis and Boyd, 1966; Wood and Banno, 1973; Nehru and Wyllie, 1974; Suxena and Nehru, 1975; Lindsley and Dixon, 1976; Saxena, 1976; Wells, 1977; Herzberg, 1978; Powell, 1978) and has been applied as an approximate geothermometer. The solid solution of enstatite between orthopyroxene and clinopyroxene:

$$Mg_2Si_2O_{opx} = Mg_2Si_2O_{opx}$$

has been calibrated using the experimental data of Davis and Boyd (1966), and expressions for the equilibration temperature in a two-pyroxene assemblage have been derived. Three af these calibrations (Wood and Banno, 1973; Wells, 1977; Powell, 1978) have been applied to the data obtained in this study, and have yielded a good consistency. These techniques assume an 'ideal solution' model of the solubility of enstatite in diopside coexisting with orthopyroxene. In this model,  $Fe^{2+}$  and Mg are randomly distributed over the Ml and M2 octahedrally coordinated sites in the pyroxene molecule. Wood and Banno (1973) found that this made little difference to the results obtained when compared to those obtained using site occupancy calculations involving appropriate values of the standard free energy change of the exchange reaction. The model was able to typically reproduce experimental conditions to within about 50°C. The expression derived by Wood and Banno (1973, eqn.27) is as follows:

$$T(^{\circ}K) = \frac{-10202}{\ln \left[\frac{a_{en}^{cpx}}{a_{en}^{opx}}\right] - 7,65x_{Fe}^{opx} + 3,88(x_{Fe}^{opx})^{2} - 4,6}$$

and by Wells (1977, eqn.5):

$$T(^{\circ}K) = \frac{7 341}{3,355 + 2,44x_{Fe}^{opx} - \ln \left[\frac{a_{en}^{cpx}}{a_{en}^{opx}}\right]}$$

und by Powell (1978, eqn.22)

$$- \left\{ 1600 + 80P(kbar) + (X_{Ca}^{M2} - X_{Mg}^{M2})_{cpx} \cdot (6670 - 88P(kbar)) - 1900(X_{Fe}^{M2})_{opx} \right\}$$

$$T(^{O}K) = \frac{(\Gamma X - M2)}{(\Gamma X - M2)} = \frac{1900(X_{Fe}^{M2})_{opx}}{(\Gamma X - M2)}$$

$$\ln \left[ \left[ \frac{X_{Ca}}{X_{Mg}} \right]_{opx}^{M2} \left[ \frac{X_{Mg}}{X_{Ga}} \right]_{Ca-cpx}^{M2} \right]$$

T 9 lells calibration utilizes additional more recent experimental data to incorporate a temperature range from 800°C to 1700°C, and considers aluminous pyroxenes. Also, the effect of Fe solubility was calibrated in a more rigorous manner. This thermometer also reproduces the experimental conditions to typically within 50°C. However, the calculated temperatures deviate from those using Wood and Banno's equation (1973, eqn.27) and is attributed to inaccuracies in Wood and Banno's thermometer due to its dependence on experimental data obtained at higher temperatures (mainly over 1000°C) and compositions with lower Fe contents than those pertinent to the data obtained from the study area. Wells uses the same 'ideal solution' mixing model and activity definitions as Wood and Banno. There does not appear to be any systematic variation between the calculated and experimental values, and both thermometers produce values which may be either higher or lower than the relevant experimental value depending on the particular sample. Powell (1978) presents further refinements to these techniques, and considers Ca-Mg exchanges between coexisting pyroxenes. This avoids placing over emphasis on the ferrous iron content of the pyroxenes, since ferric iron proportions of the total iron determined by the microprobe techniques can only be estimated and may introduce inaccuracies. Also, a more riyorous application

of thermodynamic principles by Powell allows the pressure dependence (usually small) of this exchange equilibrium to be considered in the calibration. Thus, pressure estimates must be assumed, or obtained from other sources, in order to solve Powell's thermometer (1978, eqn.22). Alternatively, a PT curve can be calculated for the coexisting pyroxene pair, and intersection with other PT curves using different equilibria may provide a more precise solution of the pressure and temperature of equilibration.

The data and temperature estimates using these geothermometers are summarized in Tables 3.1 and 3.2. The mole fraction and activity data are calculated by a computer program written by the author and are listed together with the other analytical data in Appendix 2. The different methods yield fairly good consistency, where Wood and Banno's method (1973) gives the lowest estimates, and Powell's calibration (1978) gives the highest temperatures. The pyroxenitic amphibolite samples yield temperatures from about 800°C to about 950°C repending on the technique used. Estimates made from the data where Fe³⁺ recalculations have been completed differ ed by usually less than 15°C from those made using the data without Fe³⁺ calculations. Using Powell' method (Tabl. 3.2), differences of usually much less than 20°C occurred assuming 4 or 10 kbar pressures, illustrating

Somple number	27	27	X21395	X21395	X21399	20
cpx oen	0,0292	0,0270	0,0358	0,0278	0,0305	0,0199
cpx en	0,0293	0,0287	0,0379	0,0301	0,0331	0,0208
opx en	0,1564	0,1457	0,1883	0,1944	0,2130	0,5742
opx en	0,1565	0,1458	0,1885	0,1946	0,2131	0,5738
x ^{opx} Fe	0,5809	0, 5965	0,5438	0,5350	0,5077	0,1745
x ^{opx¹} Fe	0,5754	0,5894	0,5361	0,5268	0,5011	0,1659
Data source	Table 2.16 UCT	Table 2.17 WITS	Table 2.18 UCT	Table 2.19 WITS	Table 2.20 UCT	Table 2.12 WITS
т ³	811	804	827	798	809	838
T ^{1,3}	813	814	837	810	821	850
T ⁴	865	857	884	838	850	755
T ^{1,4}	868	871	898	855	867	764

Table 3.1:	Temper	rature	estimates	(°C)	for pyroxenitic	
amphibolites	(27.	X21395	.X21399)	and a	metapyroxenite	(20)

1: with Fe³⁺ recalculation

2: Appendix 2

3: Wood and Banno (1973, eqn.27)

4: Wells (1977, eqn.5)

Sample number	27	27	X21395	X21395	X21399	20
T(4 kbar)	960	891	877	868	879	695
T(4 kbar) ¹	959	896	880	875	888	699
T(6 kbar)	963	893	881	871	882	695
T(6 kbar)*	962	899	885	879	891	699
T(8 ktar)	966	896	886	874	884	694
T(8 kbar) ¹	965	902	890	882	894	698
T(10 kbar)	969	898	891	877	387	693
T(10 kbar) ¹	967	905	896	885	896	698

Table 3.2: Temperature estimates (^CC) using the method of Powell (1978) for pyroxenitic amphibolites (27, X21395, X21399) and a metapyroxenite (20).

1: with Fe³⁺ recalculation

Data sources as for Table 3.1.

the good pressure insensitivity of this geothermometer. The metapyroxenite sample (no.20) gave less satisfactory correlation between the different methods, where the Wood and Banno estimate is higher (about 840°C to 850°C) and the Powell estimate is lower (about 695°C). Thus, the two-pyroxene pair in this lithology appears to have equilibrated at lower temperatures "han those in the pyroxenitic amphibolites. Himever, the considerat" of Ca solubility by Powell's mean suggests that the Wood and Banno and Wells temperatures may be too high tor this sample. However, all the temperatures are above the minimum melting point of wet granites, and within the field of granulite facie, metamorphism.

#### Garnet-orthopyroxene barometry and thermometry

Attempts have been made to calibrate coexisting garnet and orthopyroxene in terms of the temperatures and pressures of equilibrati r (wood and Banno, 1973; Wood, 1974; Powell, 1978; Wells, 1979) although it has been shown that these methods often do not provide convincing consistency or credible results (O'Haro and Yarwood, 1978) mainly due to the considerable uncertainty over how aluminium is distributed between octahedrally and tetrahedrally coordinated sites in the orthopy oxene. Wood and Banno (1973, eqn.17) have derived a barometer by extrupolating from experimentally determined phase equilibria in the MgSiO₃-Al₂O₃ system using garnet lherzolite material

(Boyd and England, 1964; Boyd, 1970) for the following reaction:

 $Mg_2Si_2O_6 + MgAl_2SiO_6 = Mg_3Al_2Si_3O_{12}$ opx solid solution pyrope

Their barometer requires a temperature of equilibration to be estimated or assumed before application of their formulation:

$$P = 1 + \left( \frac{Rf_{o} \ln \left[ \frac{X_{Mq}^{M1} \cdot (X_{Mq}^{M2})^{2} \cdot X_{A1}^{M1}}{(X_{Mq}^{gar})^{3}} \right] + 4207 - 2,691_{o}}{V_{Mg3}^{gar} A_{12}^{Si} S_{12}^{0} - \bar{V}_{Mg2}^{Si} - \bar{V}_{MgA1}^{Si} S_{12}^{Si} - \bar{V}_{M1}^{Si} S_{12}^{Si} S_{12}^{Si} - \bar{V}_{M1}^{Si} S_{12}^{Si} - \bar{V}_{M1}^{Si} S_{12}^{Si} - \bar{V}_{M1}^{Si} S_{12}^{Si} S_{12}^{Si} - \bar{V}_{M1}^{Si} S_{12}^{Si} S_{12}^{Si} S_{12}^{Si} S_{12}^{Si} - \bar{V}_{M1}^{Si} S_{12}^{Si} S_{12}^{Si}$$

where P is in bars,  $T_o$  in  ${}^{o}K$ , R = 83,143 cm  ${}^{3}bar^{1}mole^{-1o}K^{-1}$ . and the mole fractions are for multicomponent systems. The volume data (in cm ) are listed by Wood and Banno (1973) and Wood (1974) for orthopyroxenes with different Al contents.

Wood (1974, eqn.12) refined the above barometer by including additional experimental data on more magnesian systems (for opx: about  $En_{60}Fs_{40}$ ) and derived another barometer:

$$P = \frac{RT_{o}}{\Delta V_{r}} \cdot \ln \left[ \frac{x_{A1}^{M1} \cdot (1 - x_{A1}^{M1})}{(1 - y)_{gar}} \right] + \frac{7012 - 3,98T_{o}}{\Delta V_{r}} C(x_{Fe}^{opx}) \cdot (1 - 2x_{A1}^{M1})$$

where C is a constant of 10 450 bars derived by Wood (1974), and  $(1-y)_{gar}$  is given by  $(X_{Fe}^{gar} + X_{Mg}^{gar})$  where the mole fractions refer only to the Ml or divalent site in the garnet molecule.  $\Delta V_r$  is given by  $V_{Mg_3}^{o}Al_2Si_3O_{12} - V_{Mg_2Si_2O_6} - V_{MgAl_2SiO_6}$  and is tabulated by Wood (1974, Table 1). It must be noted that in order to use this barometer with the same units and constants as in the Wood and Banno equation, it is necessary to multiply the second term on the right-hand side of Wood's expression by 41,86 in order to maintain consistency with the units.

Powell (1978, eqn.26) considers the Ca-Mg exchange between coexisting garnet and orthopyroxene, and by using the experimental data of Wood (1974) and others, has determined another thermometer with a pressure dependence:

 $T^{O}K = \frac{7500 + 63P - (2870 + 50P) \cdot (X_{Mg}^{gar} - X_{Ca}^{gar}) - 1900(X_{Fe}^{M2})_{Opx}}{4,58 - \ln K_{D} - 2,16(X_{Me}^{gar} - X_{Ca}^{gar})}$ 

where:

$$K_{D} = \begin{bmatrix} \frac{x_{Mg}^{gar}}{x_{Ca}^{gar}} \end{bmatrix} \cdot \begin{bmatrix} \frac{x_{M2}^{M2}}{x_{Mg}^{M2}} \end{bmatrix}_{opx}$$

P is in kilobars, and all garnet mole fractions refer to the Ml or divalent cation site in the garnet molecule. An error of 5 per cent in  $\chi_{Ca}^{M2}$  of the orthopyroxene at 20 kbar propagates in this equation to yield a deviation of only  $10^{\circ}$ C (Powell, 1978, p.467), and it appears that the uncertainty in the calculated temperature at a particular pressure should not be greater than  $75^{\circ}$ C.

Wells (1979, eqn.7) has also attempted to calibrate the

coexistence of garnet, orthopyroxene and plagiaclase in terms of pressure and temperature. Consideration of the equilibrium:

 $Mg_{2}Si_{2}O_{6} + CaAl_{2}Si_{6} = \frac{2}{3}Mg_{3}Al_{2}Si_{3}O_{12} + \frac{1}{3}Ca_{3}Al_{2}Si_{3}O_{12} + SiO_{2}$ opx plag garner solid solution qz
and use of the data of Hensen (1976) and Newton <u>et al</u>. (1977)
has enabled the derivation of a barometer with temperature
dependence:

$$P = 1 + \left[ \frac{3300 + 6,26T + RT \ln \left[ \frac{X_{Ca}^{gar} \cdot (X_{Mg}^{gar})^2}{X_{Mg}^{M1,opx} \cdot X_{Mg}^{M2,opx} \cdot X_{An}^{plag}} \right] \right]$$



The activity-composition data for plagioclase is tabulated by Orville (1972), while activity coefficients for garnet have beer assumed as unity. This implies an ideal solution model, ard allows a maximum pressure estimate to be obtained.

Results obtained by using these methods of Wood and Banno (1973), Wood (1974), Powell (1978) and Wells (1979) together with the analytical data obtained in this study (Appendix 2) are listed in Tables 3.3, 3.4 and 3.5.

### Garnet-clinopyroxene thermometry

The coexistence of garnet and clinopyroxene has been

Samp	ole		P (Wood	and Canr	no) kbar	Р (	(Wood) kt	Dar
refe	ere	nce	500°C	700 [°] C	900°C	500 [°] C	700 [°] C	900°C
	(	с	4,1	5,2	6,4	-2,0	5,8	13,7
1	ł	r	5,7	7,2	8,8	-2,1	5,7	13,6
2			6,4	8,1	9,9	3,5	12,9	22,3
	6	С	6,6	8,5	10,3	2,6	11,8	21,0
3	{	r	10,4	13,2	16,1	5,0	14,8	24,6
4			7,3	9,3	11,3	3,0	12,3	21,6
5			18,1	22,9	27,7	21,0	34,7	48,3
	(	С	8,8	11,2	13,7	8,0	18,1	28,3
6	{	r	5,3	6,8	8,3	9,5	20,0	30,1
7			7,9	10,1	12,2	11,1	22,2	33,4

Table 3.3	3: Pressure	estimates f	or orthop	.roxene-gar	net pairs
using the	e methods of	Wood, and Ba	nno (1.973	) and Wood	(1974)

Sample references: (composition-activity data from Appendix 2)

1: sapphirine rock (11-8) - data from Table 2.12;

2: garnet-orthopyroxene-plagioclase symplectite (2-8-10A) Table 2.13:

3: garnet-orthopyroxene-plagioclase symplectite (2-8-10B) -Table 2.14;

4: garnet-orthopyroxene-plagioclase symplectite (2-8-10B) -Table 2.15;

5: pyroxenitic amphibolite (27) - Table 2.16;

6: pyroxenitic amphibolite (27) - Table 2.17;

7: pyroxenitic amphibolite (X21399) - Table 2.20.

c: calculated using garnet core composition.

r: calculated using garnet rim composition.

and a second second

N.B. Only dota with the Fe⁺⁺⁺ recalculation have been used in determining these estimates.

Sample	refe	rence	5 kbar	Tempera ó kbar	ture ( [°] C) 8 kbar	10 kbar
	(	с	928	945	961	979
1	{	r	820	836	851	861
2			634	649	663	678
	6	С	540	554	568	582
3	{	r	623	637	651	665
4			568	582	596	609
5			656	674	69 <b>2</b>	710
	6	с	632	650	668	685
6	{	r	638	656	674	691
7			664	681	698	716

Table 3.4: Temperature estimates for orthopyroxene-garnet pairs using the method of Powell (1978)

See Table 3.3 for sample references.

Sample	refe	erence	500 [°] C	Pressure (kbar) 700 ⁰ C	900°C
2			4,2	3,8	3,4
	6	С	5,9	5,9	5,9
3	{	r	4,7	4,4	4,1
5			5,2	5,0	4,9
	6	С	6,1	6,2	6,2
6	{	r	4,6	4,3	4,0

Table 3.5: Pressure estimates for orthopyroxene-garnet pairs using the method of Wells. (1979)

See Table 3.3 for sample references.

studied in detail (De Waard, 1965; Green and Ringwood, 1967) due to its relevance in upper mantle rocks, and also highgrade mafic metamorphic rocks. It appears that these minerals may be generated by the following reaction:

orthopyroxene + plagioclase

clinopyroxene + garnet + quartz

and these minerals, together with amphibole, typically make up mafic granulites. Green and Ringwood (1967) have used the above mineral assemblage to make distinctions between low, medium and high pressure granulites and eclogites in PT space. Winkler (1974) has also used this reaction to divide a lower pressure 'hypersthene-plagioclase granolite subzone' from a higher pressure 'clinopyroxene-almandine-quartz granolite subzone' in the 'regional hypersthene zone' (or 'granolite high grade' which contains granulites formed at medium to high pressures, probably more than 4 kbar , and where water partial pressures are considerably less than the total load pressure).

An experimental determination of the pressure and temperature dependence of the iron and magnesium partitioning between garnet and clinopyroxene, particularly for eclogites, has been made by Råheim and Green (1974). They used glasses of typical tholeiitic compositions in their experiments in order to relate to eclogites with basaltic bulk compositions, and were able to calibrate a distribution coefficient  $(K_D)$ as a function of temperature and pressure in the range of 600 C to 1 500 C and from 20 kbar to 40 kbar. In this range, the relationship is linear:

$$T(^{\circ}K) = \frac{3686 + 28,35P(kbar)}{1n \left[\frac{(F=0)}{MgO}_{gar}}{(\frac{F=0}{MgO})_{cpx}}\right] + 2,33$$

Since this relationship is far more sensitive to changes in temperature than pressure, it may be applied as a geothermometer by assuming a linear extrapolation to lower pressures relevant to mafic granulites.

Ellis and Green (1979) conducted further experimental studies using similar materials and conditions, and considered the effect of Ca upon the garnet-clinopyroxene Fe-Mg exchange equilibria. An improved calibration was produced:

$$T(^{\circ}K) = \frac{3104X_{Ca}^{gar} + 3030 + 10,86P(kbar)}{\left[\frac{(F_{e}^{++})}{Mg}_{gar}\right] + 1,9034}$$

In addition, Wells (1979) has also produced a geothermometer for coexisting garnet and clinopyroxene using experimental data from several authors:

$$T(^{\circ}K) = \frac{24440 + 0,06524(P - 1)}{13,41 - 3R \ln \left[\frac{X_{Mg}^{\circ} \cdot X_{Fe}^{\circ}}{X_{Fe}^{\circ} \cdot X_{Fe}^{\circ}}\right]}$$

where P is in bars, and R is the gas constant (1,987  $cal^{lo}K^{-l}mol^{-1}$ ).

Temperature estimates at various pressures using these three expressions are presented in Table 3.6 using only the analytical data from Appendix 2 where Fe⁺⁺⁺ recalculations have been completed.

#### Biotite-garnet thermometry

A study of the partitioning of Fe and Mg between coexisting biotite and garnet which have compositions close to a binary Fe-Mg system has allowed the experimental calibration in terms of pressure and temperature of the following cation exchange reaction (Thompson, 1976; Ferry and Spear, 1978):

Fe₃Al₂Si₃O₁₂ + KMg₃AlSi₃O₁₀(OH)₂ = almandine phlogopite

 $\frac{Mg_3Al_2SI_3O_{12} + KFe_3AlSI_3O_{10}(OH)_2}{pyrope}$  annite

Thompson (1976) applied thermodynamic techniques to natural assemblages to obtain temperature estimates, and demonstrated a linear relationship between the distribution coefficient of the exchange reaction, and temperature (Figure 3.1). A linear regression curve fit to this data has enabled the derivation of a geothermometer:

Sample number	27	27	X21399
Data source (Appendix 2)	Table 2.16 UCT	Table 2.17 WITS	Table 2.20 UCT
		core rim	
Tl (4 kbar)	664	675 618	623
Tl (6 kbar)   Råheim and	678	689 631	636
T1 (8 kbar) Green (1974	) 692	703 645	650
Tl (10 kbar)	706	718 658	663
T2 (4 kbar)	792	822 701	686
T2 (6 kbar)   Ellis and	798	828 706	692
T2 (8 kbar) Green (1979	) 804	834 712	697
<b>T2 (10 kbar)</b>	810	840 718	703
T3 (4 kbar)	770	782 717	723
T3 (6 kbar)	776	787 722	728
T3 (8 kbar) Wells (1979	781	793 728	733
T3 (10 kbar)	787	799 733	739

į,

Table 3.6: Temperature estimates (°C) for pyroxenitic amphibolites using coexisting aarnet and clinopyroxene



Figure 3.1: Plot of lnK against l/T for Fe-Mg exchange between coexisting biotite and garnet (after Thompson, 1976 p.429).

.0				2739,646					
Г(~К)	10	ln	<u>Fe^{gar}</u> Mg ^{gar}	Mg ^{biot} Fe ^{biot} +	1,560				

However, Thompson (1976) indicates that temperatures determined from this calibration are about  $50^{\circ}$ C higher than those obtained by  $0^{18}/0^{16}$  isotopic thermometers, while garnet-blotite pairs from high grade metamorphic rocks show systematic displacements with increasing Ti in the biotite molecule. Some blotites analysed in this study contain over 4 per cent TiO₂ (see Appendix 2) and may introduce inaccuracies into this determination.

Ferry and Spe**a**r (1978) completed an experimental study on synthetic garnet and biotite in the range of 550°C to 800°C and at about 2 kbar. A linear relationship between the

distribution coefficient (for the binary Fe-Mg exchange equilibrium) and temperature was revealed (Figure 3.2) and numerical analysis of these data has yielded a geothermometer for rock containing biotite and garnet which are close to binary Fe-Ma compounds (largely satisfied by the data obtained in this study):

 $R_{18}^{1} = R_{18} + \frac{200}{T(\pi K)} + 0^{-82}$   $R_{18}^{1} = R_{18}^{1} + \frac{200}{T(\pi K)} + 0^{-82}$   $R_{18}^{1} = R_{18}^{1} + \frac{1}{16}$   $R_{18}^{1} = R_{18$ 

Figure 3.2: Plot of lnK_D against 1/T for coexisting biotite and garnet (after Ferry and Spear, 1978, p.115).

where T is in ^oK, P is in bars, R is the gas constant, and K is the distribution coerficient given by  $(Mg/Fe)_{gmr}/(Mg/Fe)_{biot}$ either on a weight or atomic metal basis. This expression requires a pressure estimate to be made before determining a temperature, though is very insensitive to pressure changes. Ferry and Spear (1978) claim a maximum practical resolution of about 50°C, though point out that caution must be exercised if Ca and Mn fill the divalent metallic sites (M2) by more

12454 - 4,662T + 0.057P + 3RTlnK = 0

than 20 per cent, or if Al and Ti fill the octanedrally coordinated sites (M1) by more than 15 per cent. This will ensure that the condition of a binary Fe-Mg system is largely maintained. The data obtained in this study generally satisfy these constraints.

These two garnet-tiotite thermometers have been applied to the data in this study (Appendix 2) and are presented in Table 3.7. Only data where Fe⁺⁺⁺ recalculations (for garnet have been made are used in determining these estimates, and within the pressure range of 4 to 10 kbar, the thermometer of Ferry and Spear (1978) shows no pressure dependence or effect.

# Garnet-cordierite thermometry and barometry

It has long been recognized that the coexistence of garnet and cordierite in metamorphic rocks of pelitic composition is controlled by ^factors such as pressure, temperature and host rock composition. The reaction:

3(Mg,Fe)₂Al₄Si₅O₁₈ cordierite

> 2(Mg,Fe)₃Al₂Si₃O₁₂ + 4Al₂AiO₅ + 5SiO₂ garnet sillimanite quartz

is characteristic of high-grade pelitic rocks, and this assemblage is common in pelitic rocks within the study area.

Sample number	Data source (Appendix 2)	( <u>Fe</u> ) Mg gar		( <mark>Mg</mark> ) Febiot	Tl	T2
21-7-F	Table 2.2 UCT	2,1329		1,6085	708	764
01 7 0	Table 2.3	1,2601	,		852	989
21-7-6	UCT {	1,67995	1	1,90155	734 80	802
2-8-12	Tabie 2.8 UCT	1,0957		4,1914	615	633
2-8-12	Table 2.9 WITS	0,8021		3,8284	748	824
11 0	Table 2.12 , c	0,9010	1	3.8457	704	759
11=0	UCT (r	1,1926	1	•/	T1 708 852 734 615 748 704 615 593 620 625	633
2-8-10B	Table 2.14 c	1,7638	i	0 9159	593	603
	r	1,6044	ſ	2,0130	<b>62</b> 0	639
<b>2-8-</b> 10B	Table 2.15 WITS	1,6980		2,6162	625	646

Table 3.7: Temperature estimates (°C) for coexisting biotite end garnet

garnet-cordierite-sillimanite gneiss, Farm Boschrand. 21-7-F: garnet-cordierite-sillimanite gneiss, Farm Boschrand. 21-7-G: sopphirine bearing rock, Farm Randjesfontein. 2-8-12: sapphirine bearing rock, Farm Randjesfontein. 11-8: 2-8-10B: garnet-orthopyroxene-plagioclase symplectite, Farm Randjesfontein. garnet core composition. **C**: garnet rim composition. r: temperature after Thompson (1976). T1: temperature after Ferry and Spear (1978). T2:

T2 determined in the pressure range from 4 kbar to 10 kbar.

The dependence of this reaction on the physical parameters of metamorphism has been the subject of much study (Currie, 1971; Hensen and Green, 1971, 1972, 1973; Thompson, 1976; Holdaway and Lee, 1977; Wells, 1979) and several thermometers and barometers have been suggested. Currie (1971) noticed that the volume change in a Mg-Fe exchange equilibrium between garnet and cordierite was negligible, implying that this exchange was not explicitly dependent on pressure, and thus forms the basis of a good geothermometer. However, although the exchange equilibrium is insensitive to pressure, the minerals present in a garnet-cordierite assemblage are very pressure sensitive (Hensen and Green, 1971, 1972, 1973, Thompson, 1976). Currie (1971) conducted an experimental study using cordierites of intermediate composition, and derived the following expression:

$$T(^{\circ}K) = \frac{4515}{6,37 - \ln \left[\frac{x_{Mg}^{cord}}{x_{Fe}^{cord}} + \frac{x_{Fe}^{gar}}{x_{Fe}^{gar}}\right]}$$

However, Hensen and Green (1971, 1972, 1973) conducted experimental studies on a much wider range of compositions (with Mg/Mg+Fe ratios from 0 to 0,7) and also compositions both with and without excess AL₂O₃, but all with excess SiO₂. They were able to demonstrate that garnet and cordierite coexist over a wide range of pressures and temperatures

together with hypersthene, sillimanite, quartz, sapphirine, spinel and olivine:

High P, Low T	gar + cord ?
	<pre>gar + cord + opx + sill + qz ,</pre>
	gar + cord + opx + sapph + qz
	gar + cord + opx + sp + qz
Low P, High T	ol + sp + qz

and where the Mg/Mg+Fe ratio of all the ferromagnesian minerals decreases continuously from the high pressure region to the low pressure region. Consideration of these ratios enabled the calibration of a wide P-T field where garnet and cordierite may coexist (Figure 3.3). Holdaway and Lee (1977) also undertook experimental studies on the stability of cordierite, and were able to produce a calibration of a wide region of P-T space for coexisting garnet and cordierite on the basis of their Fe/Fe+Mg ratios (see Figure 3.4). Thompson (1976) calibrated data from several sources and showed a linear relationship between the distribution coefficient for the exchange equilibrium and temperature (Figure 3.5). The analysis of these data allowed the derivation of a pressure independent thermometer:

$$T(^{O}K) = \frac{2724,948}{\ln \left[\left(\frac{Fe}{Mg}\right) \cdot \left(\frac{Mg}{Fe}\right)\right] + 0,896}$$



Figure 3.3: P-T field for coexisting garnet and cordierite in the reaction cord = gar + sill + qz showing 100Mg/Mg+Fe compositional contours (after Hensen and Green, 1973).



Figure 3.4: P-T field for coexisting garnet and cordierite after Holdaway and Lee (1977). Solid lines (cordierite) and dashed lines (garnet) are 100Fe/Fe+Mg contours. Dots refer to experimental data of Currie (1971).



Figure 3.5: Plot of lnK, against 1/T for the Fe-Mg exchange equilibrium between coexisting garnet and cordierite (after Thompson, 1976). Squares are natural assemblages from various sources; solid circles from data of Hensen and Green (1971, 1972); open circles from data of Currie (1971).

Further temperature and pressure calibrations for these minerals has been compiled by Wells (1979) using standard state thermochemical data and experimental results from Hensen and Green (1971, 1972, 1973), Holdaway (1976) and Hensen (1977). The expression for the thermometer is as follows:

$$\Gamma(K) = \frac{33248 - 0.1768(P - 1)}{10,94 + 6Rln \begin{bmatrix} gar & cord \\ Fe & Mg \\ gar & cord \\ Mg & Fe \end{bmatrix}} (P in bars)$$

In addition, Wells (1979) also calibrated the reaction:

cordierite = garnet + sillimanite + quartz as a barometer for both the Fe and Mg end-members of cordierite and garnet by extracting standard state

thermochemical data from experimental results of several workers:

$$P = 1 + \begin{cases} 21801 - 9,44T - 6RTln \left[ \frac{X_{Fe}}{X_{Fe}^{gor}} \right] \\ 3,6481 \end{cases}$$

and:

$$P = 1 + \begin{cases} \frac{16773 + 23,67T + 6RTln}{\frac{X_{Mg}^{gor}}{X_{Mg}^{cord}}} \end{cases}$$
3,8256

where P is in bars, T in ^OK, and R is the gas constant.

Results obtained using these techniques on the analytical data of this study are presented in Table 3.8 and utilize garnet analyses in which Fe⁺⁺⁺ has been recalculated. Good consistencies were obtained between the different methods, though in most cases, the Mg/Mg+Fe contours of Hensen and Green (1973) intersected out of the sillimanite field (Figure 3.3) for the data in this study. No kyanite has been recognized in samples collected within the study area, although recognized elsewhere in the Limpopo Mobile Belt (e.g. Chinner and Sweatman, 1968), and the temperature and pressure estimates determined using Hensen and Green's data (1973) must be regarded with caution.

Sample number	21-7-F	21-7	G-G	2-8-12	11-	.8
Data source Appendix 2	Table 2.2 UCT	Table 2.3 UCT		ïable 2.8 UCT	Table 2.12 UCT	
		с	r		с	r
TÌ	783	647	705	802	755	824
T2	638	880	755	616	675	591
T3 P3	н н	850 8,8	-			-
T4 P4	690 7,9	870 6,8	815 7,0	550 10,5	630 9,8	550 10,3
T5 (4 kbar)	633	872	749	611	670	587
T5 (6 kbar)	623	860	738	602	659	578
T5 (8 kbar)	613	847	727	592	649	568
P5a (500 [°] C)	6,8	6,2	6,4	7,8	7,6	8,0
P5a (650 [°] C)	7,0	6,2	6,5	8,2	7,9	8,3
P5a (800 [°] C)	7,2	6,2	6,6	8,5	8,3	8,7
Р5ь (500 [°] С)	6,8	7,7	7,3	7,6	7,9	7,5
Р5ь (650 [°] C)	7,3	8,4	7,8	8,2	8,6	8,1
Р5Ь (800 [°] С)	7,8	9,0	8,4	8,9	9,2	8,8
21-7-F: gar	net-cordie:	rite-si	lliman	ite gneiss,	, Farm	Boschra

Table 3.8: Temperature ([°]C) and pressure (kbar) estimates for coexisting garnet and cordierite

21-7-F: garnet-cordierite-sillimanite gneiss, Farm Boschrand.
21-7-G: garnet-cordierite-sillimanite gneiss, Farm Boschrand.
2-8-12: sapphirine bearing rock, Farm Randjesfontein.
11-8: sapphirine bearing rock, Farm Randjesfontein.
c: estimate using garnet core composition.
r: estimate using garnet rim composition.
T1: temperature estimate after Currie (1971).
T2: temperature estimate after Thompson (1976).

T3 & P3: temperature and pressure after Hensen and Green (1973).
T4 & P4: temperature and pressure after Holdaway and Lee (1977).
T5: temperature after Wells (1979).
P5a: pressure using Fe end-members after Wells (1979).
P5b: pressure using Mg end-members after Wells (1979).

### Two feldspar thermometry

Τ =

A geothermometric technique has been developed and successfully applied to quartzo-feldspathic granulites by Stormer and Whitney (1977). Consideration was made of equilibria between coexisting plagioclose and alkali feldspar using experimental data. The partitioning of albite between the two feldspars has been calibrated as a function of pressure and temperature to yield a geothermometer. Two expressions are presented for both high temperature sanidine high albite series and for microcline - albite series respectively:

$$6326,7 - 9963,2X_{Ab}^{AF} + 943,3(X_{Ab}^{AF})^{2} + 2690,2(X_{Ab}^{AF})^{2} + P \left\{ 0,0925 - 0,1458X_{Ab}^{AF} + 0,0141(X_{Ab}^{AF})^{2} + 0,0392(X_{Ab}^{AF})^{3} \right\}$$

$$= -1,9872 \left[ \frac{x_{Ab}^{AF}}{-x_{Ab}^{PF}} \right] + 4,6321 - 10,815X_{Ab}^{AF} + 7,7345(X_{Ab}^{AF})^{2} - 1,5512(X_{Ab}^{AF})^{5} \right]$$

$$7973,1 - 16910,6X_{Ab}^{AF} + 9901,9(X_{Ab}^{AF})^{2} + P \left\{ 0,11 - 0,22X_{Ab}^{AF} + 0,11(X_{Ab}^{AF})^{2} \right\}$$

$$-1,9872 \ln \left[ \frac{X_{Ab}^{AF}}{X_{Ab}^{PF}} \right] + 6,48 - 21,58X_{Ab}^{Af} + 23,72(X_{Ab}^{AF})^{2} - 8,62(X_{Ab}^{AF})^{3}$$

where T is in ^OK, P is in kilobars, and where X^{AF}_{Ab} and X^{PF}_{Ab} are the mole fractions of albite in alkali feldspar and plagioclase respectively.

Analytical data for a coexisting alkali feldspar and plagioclase are presented for a sample of garnet-cordieritesillimanite gneiss (sample no. 21-7-F, ... Jrm Boschrand, Appendix 2 - Table 2.2) and have been used in the application of Stormer and Whitney's (1977) two geothermometers. From Appendix 2,  $\chi_{Ab}^{AF} = 0,1135$  and  $\chi_{Ab}^{PF} = 0,6772$ , and the temperatures obtained are presented in Table 3.9.

Table 3.9: Temperature estimates for coexisting alkali feldspar and plagioclase.

Solution series	4 kbar	6 kbar	8 kbar
Sanidine-albite	469	469	469
Microcline-albite	515	515	515

Data for sample no. 21-7-F (garnet-cordierite-sillimanite gneiss - farm Boschrand) from Appendix 2 (Table 2.2). Temperatures in ^OC.

The results of this thermometer display excellent pressure insensitivity. However, the temperature estimates by this method are significantly lower than those obtained by other techniques suggesting that the feldspars equilibrate, probably with the production of perthitic textures, under much lower metamorphic conditions sometime after the peak of the high grade event, or during a later thermal event. <u>Coexisting plagioclase - clinopyroxene - quartz</u>

The equilibrium:

 $CaAl_2Si_2O_8 = CaAl_2SiO_6 + SiO_2$ anorthite Ca-Tschermak quartz

has been studied by several workers (Hariya and Kennedy, 1968; Wood, 1977, 1978, 1979), and can be used to calculate a P-T curve for this assemblage in rocks of appropriate composition (e.g. basement gneisses, anorthositic and gabbroic gneisses of the Messina Layered Intrusion). Alchough tabulated heat of formation data for these phases can be used to calculate enthalpies and entropies for this reaction, it is also possible to determine these data from experimental studies, such as those completed by Hariya and Kennedy (1968). At equilibrium, taking standard states of all components to be pure phases at the temperature and pressure of interest, we have:

 $\Delta G_{P,T}^{o} = 0 = \Delta H_{1 \text{ bor},T}^{o} - T \Delta S_{T}^{o} + \int_{1}^{P} \Delta V^{o} dp$ 

If one assumes that  $\Delta C_p$  is zero and that  $\Delta V^o$  is a constant, it is then possible to determine  $\Delta H_1^o$  and  $\Delta S^o$  from the equilibrium boundary. However, the experimental data of Hariya and Kennedy (1968) (see Table 3.10 and Figure 3.6) illustrates that experiments on phase equilibria rarely achieve equilibrium between reactants and products, and such equilibrium boundaries can only be 'bracketed', which may introduce errors

Number	Reactants	Pressure (K bor)	Temperature (°C)	Time (hours)	Products
85	An	29,5	1450	3	An
57	An	30	1400	8	An
101	Ca-Tsch + Q	30,5	1430	2,2	An
63	An	31,5	1400	3,8	Co-Tsch + Q
72	An	31,5	1460	3,5	Co-Tsch + Q
105	An	31.5	1490	2	Co-Tsch + Q + small amount gl
61	An	33	1400	4,2	Gros + Ky + Q + Co-Tsch
42	Ân	33.5	1470	3	Co-Tsch + Q
106	Grae + Ky + 0	34	1445		Jo-Tacl grew + Q
43	An	35	1400		Gros + Ky + Q + small amount Ca- Tsch (unstable)
44	An	36	1510	1,5	Co-Tach + Q + small amount gl
56	An	36,5	1445	3	Gros + Ky + small amount Ca- Tach install)
55	An	36,5	1475	3	Gros + Ky + Ca-Tsch
45	An	37	1400	3,8	Gres + Ky + Q

Tabla 3.10: 8	Experimental	ohase equ	ilibrium	regults	(after	Hariya	and	Kennedy.	1905
fer the reacti	ion: 3 anort	hite = 3C	o-Tscher	mak's mol	ecule 4	- 3 quar	tz		
			izaluzi	+= + 2 kv	cuite 4	- auartz			

An: anorthite: Ca-Tach: Ca-Tachermak's molecule; gl: glass; Gros: grossularite; Ky: kyanite; Q: quartz.

Storting materials: bot, natural and synthetic minerals.

the second second

----

1


in the determination of thermodynamic data. Thus, where products are stable, the following condition will apply (while where the reactants are stable, the reverse condition applies):

 $\Delta G_{P,T}^{o} = \Delta H_{1 \text{ bar}}^{o} - T\Delta S^{o} + (P-1)\Delta V^{o} < 0$ 

or alternatively,

$$\Delta H_{1 \text{ bar}}^{\circ}$$
 -  $T\Delta S^{\circ}$  < - (P-1) $\Delta V^{\circ}$ 

Then, the condition:

 $\Delta H_{l \text{ bar}}^{\circ}$  -  $T\Delta S^{\circ}$  = - (P-1) $\Delta V^{\circ}$ 

provides the best internally consistent values of  $\Delta H^{\circ}$  and  $\Delta S^{\circ}$  to be constrained by the experimental results.

Reactants	Products	P(kbar)	т( [°] к)	$\triangle H^{\circ} - T \triangle S^{\circ} \gtrless - (P-1) \triangle V^{\circ}$
Co-Ts + qz	An	30,5	1703	∆H [°] -1703∆S [°] > 10641
An	Ca-Ts + qz	31,5	1673	∆H [°] -1673∆S [°] < 10990
An	Ca-Ts + qz	31,5	1733	∆H ^o -1733∆S ^o < 10990
An	Ca-Ts + qz	31,5	1763	∆H ^o -1763∆S ^o < 10990
An	Ca-Ts + qz	33,5	1743	∆H ^o -1743∆S ^o < 11688
An	Ca-Ts + qz	36,0	1783	∆H [°] -1783∆S [°] < 12560

<u>Table 3.11:  $\Delta H^{\circ} - \Lambda S^{\circ}$  conditions for the experimental data</u> of Hariya and Kennedy (1968) for the reaction: anor = <u>Ca-Ts + qz</u>

 $\Delta V^{\circ} = -0,3489 \text{ cal}^{1} \text{bar}^{-1}$  (data from Robie <u>et al.</u>, 1978)







Figure 3.8: Entropy-temperature relationships for the reaction an = Ca-Is + qz from the data of Robie <u>et al</u>. (1978) (after Fripp, 1981c).

3.35

of equilibrium for this reaction:

$$-RTlnK_{D} = \Delta H_{1 \text{ bar}, T}^{\circ} - T \Delta S_{T}^{\circ} + \int_{1}^{P} \Delta V^{\circ} dP$$

where K_D is the equilibrium constant given by:

$$K_{D} = \frac{a_{Ca-Ts}^{cpx} \cdot a_{SiO_2}^{qz}}{a_{an}^{plag}}$$

Alternatively, a P-T curve can be calculated directly from tabulated heat capacity data without reliance on specific experimental studies. Heat capacity data for minerals can be readily obtained by calorimetric or electrochemical methods and is tabulated by various authors for a wide range of common rock-forming minerals (e.g. Robie <u>et al.</u>, 1978; Helgeson <u>et al.</u>, 1978). It has been shown that heat capacity at a particular pressure is a function of temperature, which may be represented by the following simple equation:

 $C_p = a + bT + c/T^2$ 

where a, b and c are experimentally determined constants for the phase of interest, and T is in ⁶K. Then, since the following relationship between an increase in enthalpy and temperature exists:

$$dH = C_{\rm D} dT$$

it is possible to determine the enthalpy of a phase at a particular temperature:

$$\int_{298}^{T} dH = \int_{298}^{T} C_{p} dT$$

$$H_{T} = H_{298} + \left[aT + \frac{bT^{2}}{2} - \frac{c}{T}\right]_{298}^{T}$$

where T is the temperature of interest ( $^{\circ}$ K) and where H₂₉₈, a, b and c are experimentally determined parameters for the phase of interest. Increasing the heat content of a phase also increases its entropy, and if an amount of heat dH is added at constant pressure, the following applies (Wood and Fraser, 1976):

$$dS = \frac{dH}{T}$$

which becomes:

$$dS = \frac{C_p dT_p}{T}$$

and thus an expression for entropy in terms of the heat capacity may be obtained:

$$\int_{298}^{T} dS = \int_{298}^{T} \frac{C}{T} dT$$

$$S_{T} - S_{298} = \int_{298}^{T} (\frac{a}{T} + b + \frac{c}{T}) dT$$

$$S_{T} = S_{298} + \left[a \cdot \ln T + bT - \frac{c}{2T^{2}}\right]_{298}^{T}$$

Thus, after the calculation of  $H_T$  and  $S_T$  for the relevant mineral phases at the temperature of interest,  $\triangle H$  and  $\triangle S$ 

may be obtained:

∆H _T	-	H _T cpx	+	H ^{q z} T	-	H ^{plag}
∆s _T		scpx	+	sqz T		splag T

and the volume change is given by:

 $\Delta V^{o} = V^{o}_{cpx} + V^{o}_{qz} - V^{o}_{plag}$ 

Then, by substitution into the equation of state at equilibrium:

$$-RT \ln K_{D} = \Delta H - T\Delta S + (P-1)\Delta V^{\circ}$$

or alternatively:

$$P = \begin{bmatrix} \frac{T \triangle S - \triangle H - RTlnh_D}{\Delta V^{\circ}} \end{bmatrix} + 1$$

generates a P-T expression for the assemblage plagioclase + clinopyroxene + quartz. T is given in ^OK, P is in bars, and K_D is the equilibrium constant for the reaction given by:

$$k_{\rm D} = \frac{\frac{a_{\rm Cpx}^{\rm cpx} \cdot a_{\rm SiO_2}^{\rm qz}}{a_{\rm qp}^{\rm plag}}$$

The activity of SiO₂ in quartz is unity (trivial), while an is given by Orville (1972) as a function of the readily determined mole fraction X^{plag}. The activity of Calcium-Tschermak in clinopyroxene is discussed in detail by Wood (1979). Firstly, X_{Ca-Ts} is calculated by the following:

3.38

The X_{Ca-Ts} is determined by iteration or graphical techniques from:

$$(X_{Ca-Ts})^2 \cdot (2-X_{Ca-Ts}) = \overline{X}_{Ca-Ts}$$

Then for the temperature range 900°C to 1 100°C:

$$a_{Ca-Ts}^{cpx} \approx (1,3 - 0,4X_{Fe}).X_{Ca-Ts}$$

where:

Results obtained using this method involving heat capacity and other thermodynamic parameters (Table 3.12) for a range of  $K_D$  values from 0,020 to 0,100 are presented in Table 3.13.

Pressure estimates have also been "ade using the analytical data obtained in this study (Appendix 2) and are presented in Table 3.14. Samples of pyroxenitic amphibolite and gabbroic gneiss (from the Messina Layered Intrusion) were used, and only clinopyroxene analyses with the Fe⁺⁺⁺ recalculation were utilized in the calculation of P-T curves (using the heat capacity technique).

### Water activity

The activity of water may be c lculated for assemblages involving hydrous mineral phases, such as amphibole. Estimation of the distribution coefficient of a dehydration reaction and the distribution coefficient for the solid phase alone enables the solution of the water activity. One such

Mineral	v°	a	bx10 ³	cx10 ⁻⁵	H ⁰ 1,298	s ^o 1,298
SjO ₂ quartz	22,683	11,220	8,200	2,70	-217,650	9,88
CaAl ₂ SiO ₆ Ca-Al pyroxene	63,500	54,130	6,420	14,90	-784,013	35,00
CaAl ₂ Si ₂ 0 ₈ anorthite	100,790	63,311	14,794	15,44	-1007,772	49,10

Table 3.12: Thermodynamic parameters for anorthite, calcium-Tschermak and quartz (from Helgeson et al., 1978)

Units: V°: cm³mol⁻¹ a : cal¹mol⁻¹ % b : cal mal -1 0 k-2

s°: cal¹mol⁻¹°K⁻¹

К	500	550	600	650	700	750	800	850	900	950	1000
0 020	7.106	6,172	5,213	4,247	3,260	2,256	1,240	0,207	<b>), 836</b>	-1,374	-2,961
0,025	8,068	7,218	6,328	5,420	4, 497	3,556	2,603	1,634	0,654	-0, 340	-1,343
0,030	8, 451	8,072	7,235	6,379	5,507	4,618	3,717	2,800	1,872	0,930	-0,022
0,035	9,069	8,795	8,001	7,189	6,351	5,516	4,659	3,786	2,902	2,004	1,096
0,040	10,157	9,421	8,665	7,891	7,101	6,294	5,475	4,640	3,794	2,934	2,064
0,045	10,676	9,973	9,250	8,510	7,764	<b>6,98</b> 0	6, 195	5,394	4, 581	3,754	2,918
0,050	11,140	10, 467	9,774	9,064	8,338	7,594	6,839	6,067	5,284	4, 488	3,681
0,055	11,559	10,913	10, 248	9,565	8,866	8,149	7,421	6,677	5,921	5,152	4, 372
0,060	11,942	11,321	10,681	10,022	9,348	8,656	7,953	7,233	6,502	5,768	5,003
0,065	12,295	11,696	11,079	10, 443	9,791	9,123	9,442	7,745	7,037	6,315	5,583
0,070	12,621	12,044	11,447	10,832	10,202	9,554	8,895	8,219	7,532	6,831	6,121
0,075	12,925	12,367	11,790	11,195	10,584	9,956	9,316	8,660	7,993	7,312	6,621
0,080	13,209	12,670	12,111	11,534	10,942	10, 332	9,710	9,073	8,424	7,761	7,089
0,085	13,476	12,954	12,412	11,853	11,278	10,685	10,081	9,451	8,829	8,183	7,528
0,090	13,/27	13,222	12,697	12,153	11,594	11,016	10,430	9,826	9,211	8,591	7,942
0,095	13,965	13, 475	12,965	12,438	11,894	11,333	10,761	10, 172	9,572	8,955	8,334
0,100	14, 191	13,715	13,220	12,707	12,178	11,632	11,074	10,500	9,915	9,315	8,706

Tuble 3.13: Pressure estimates (abox) for the reaction and Cu-to + or for a range in K_p values from 0.020 to 0.100, and a range in temperatures from 500°C to 1000°C

			Pressure (kbar)			
Sample number	Data source (Appendix 2)	к _D	600 [°] C	750 [°] C	900 [°] C	
27	Table 2.16 - UCT	0,02636	6,6	3,8	1,0	
27	Table 2.17 - WITS	0,03638	8,3	5,8	3,2	
X21395	Table 2.18 - UCT	0,06559	11,1	9,2	7,1	
X21395	Table 2.19 - WITS	0,06521	11,1	9,1	7,1	
X21399	Table 2.20 - UCT	0,06324	10,9	9,0	6,8	
26-5-A	Table 2.22 - UCT	0,07034	11,5	9,6	7,6	
26-5-A	Table 2.23 - WITS	0,05234	10,0	7,9	5,6	
26-5-E	Table 2.22 - UCT	0,05230	10,0	7,8	5,6	

Table 3.14: Pressure estimates for pyroxenitic amphibolites and samples from the Messina Layered Intrusion using coexistina plaaioclase, clinopyroxene and quartz

27: pyroxenitic amphibolite, Form Artonvilla.
X21395: pyroxenitic amphibolite, Farm Artonvilla.
X21399: pyroxenitic amphibolite, Farm Artonvilla.
26-5-A: gabbroic gneiss, Farm Shangani.
26-5-E: gabbroic gneiss, Farm Shangani.

3.42

reaction "nich nas been used in this study involves the dehydration of tremolite:

Ca₂Mg₅SigU₂₂(OH)₂ 2CaMgSi₂O₆ + 1,5Mg₂Si₂O₆ + SiO₂ + H₂O remolite diopside enstatite quartz .nich has the following distribution coefficient:

$$T = \frac{(a_{diop}^{opx})^2 \cdot (a_{en}^{opx})^{1,5} \cdot (a_{H_20}^{fluid})}{(a_{trem}^{omph})}$$

ind thus:

$$a_{H_2O}^{\text{fluid}} = \frac{K_D}{K_{\text{solids}}}$$

The activities of tremolite for amphiboles and enstatite for orthopyroxenes are listed in Appendix 2, while the activity diopside in clinopyroxene is given by:

$$a_{diop}^{cpx} = (x_{Co}^{M2}).(x_{Mg}^{M1}).(x_{Si}^{Tet})^2$$

and it is thus possible to determine  $K_{solids}$  for this eauilibrium using the analytical data. It may be calculated for different temperatures and pressures from the equation of state using published thermodynamic parameters. However, the presence of water introduced a complication into what is otherwise a solid-state system. Fisher and Zen (1971) have introduced an approximation by calculating the Gibb's free energy of water ( $G_{H,D}$ ). This enables the calculation of thermodynamic parameters of solid phases 'rom hydrothermal equilibrium data. The equation for the free energy of the system then becomes:

$$\Delta G_{p} = \Delta G_{f}^{0} \qquad - (T-298) \Delta S_{f}^{0} \qquad (1,298)_{\text{solids}} \qquad + G_{H_{2}0} \qquad + (P-1) \Delta V_{\text{solids}}^{0} \qquad + RT \ln K_{D}$$

and the maximum value of  $K_D$  will occur when  $\Delta G_0 = 0$  (i.e. with just enough water to 1 ize tremolite). Thus:

$$\ln K_{\rm D} = \frac{(T-298)}{RT} = \frac{(P-1)\Delta V^{\circ} - G_{\rm H_2O} - \Delta G^{\circ}}{RT}$$

Thermodynamic parameters of the mineral phases are available in the literature (see Table 3.15) to calculated  $K_D$  and together with  $K_{solids}$  has enabled the determination of the water activity for samples collected in the study area (Table 3.16) at temperatures of 700°C, 800°C and 900°C, and at pressures of 6 kbar, 8 kbar and 10 kbar.

Mineral	∆G° cal/mal	∆H ^o cal/mol	∆S ^o col/mol. [©] K	V ⁰ cm ³ /mol
tremolite Ca2 ^{Mg} 5 ^{S180} 22 ^(OH) 2	-2770685	- 2944478	-583,35	272,92
diopside CaMgSi ₂ 0 ₆	-724000	-765598	-139,65	66,09
enstatite MgSiO ₃	-348930	-369686	- 69,64	31,28
quartz 5 -2	-204646	-217650	- 43,62	22,69

Table 3.15: Thermodynamic parameters for tremolite, diopside, enstatite and quartz, for the reaction: trem = 2 diop + 1,5en + qz + H20

 $\Delta G_{f}^{o}, \Delta H_{f}^{o}, \text{ and } V^{o} \text{ data trom Helgeson <u>et al.</u> (1978).$  $<math>\Delta S_{f}^{o} \text{ data from Robie <u>et al.</u> (1978).$ 

-	
21	
151	
21	
X	
9	
a	
2	
-	
-10	NE
čl	
	31
a	E .
4	
	SI
2	9
싊	0
12	E I
a	0
E	X
9	21
0	5
	a
<b>.</b>	0
12	-51
×	5
0	
- 54	-
	91
14	X
0	0
-	14
- 01	H H
- 44	č
T	- L
mat	lind
timat	cline
stimat	cline
stimat	e cline
estimat	le cline
ty estimat	ole, cline
ity estimat	ibole cline
vity estimat	hibole, cline
ivity estimat	nphibole, cline
tivity stimat	umphibole, cline
activity estimat	amphibole cline
activity estimat	g amphibole, cline
r activity estimat	ng amphibole, cline
ter activity estimat	ting amphibole cline
ater activity stimat	sting amphibole, cline
Mater activity stimat	isting amphibole, cline
Water activity stimat	xisting amphibole, cline
Water activity estimat	oexisting amphibole, cline
5 Water activity stimat	coexisting amphibole cline
16 Water activity stimat	coexisting amphibole cline
16 Water activity stimat	n coexisting amphibole, cline
3 16 Water activity stimat	on coexisting amphibole cline
3 16 Water activity stimat	d on coexisting amphibole, cline
le 3 16 Water activity stimat	ed on coexisting amphibole cline
ble 3 16 Water activity stimat	sed on coexisting amphibole cline
able 3 16 Mater activity stimat	ased on coexisting amphibole, cline

Samp	le number		27	27	X21395	X21395	X21399	20
Data Appe	source ndix 2		Table 2.16 UCT	Table 2.17 WITS	Table 2.18 UCT	Table 2.19 WITS	Table 2.20 UCT	Table 2.21 WITS
Jot	P kbor	K _D						
	9	0,2009	0,0088	0,0144	0,0052	0,0069	0,0034	0,0183
700	00	0,2137	0,0094	0,0153	0,0055	0,0073	0,0036	0,0195
	10	0, 2365	0,0104	0,0169	0,0061	0,0681	0,0040	0,0216
	9	0, 5361	0,0236	0,0384	0,0138	0,0184	0,0091	0, 0489
80C	00	0, 5503	0,0242	0,0394	0,0141	0,0189	0,0094	0, 0502
	10.	0, 5901	0,0260	0,0422	0,0152	0, 0202	0, 0101	0, 0539
	ġ	1 2348	0,0543	0,0884	0,0317	0,0432	0,0210	0,1127
900	00	1,2294	0,0541	0,0880	0,0316	0,0414	0, 0209	0,1122
	10	1,2816	0, 0564	0,0917	0,0329	0,0439	0,0218	0,1170
27, 20:	X21395 a	nd X21399:	pyroxeniti metapyroxe	c amphibolite nite, Farm Ar	s, Farm Arton tonvilla.	villa.		

3.46

# REFERENCES

Albee, A.L. and Ray, L. (1970) Correction factors for electron probe microanalysis of silicates, oxides, carbonates, phosphates and sulfates. Anal.Chem. 42, 1408-1414.

Anastasi H, P. and Seifert, F. (1972) Solid wolubility of Al₂O₃ in enstatite at high temperatures and 1-5 kbar water pressure. Contr.Mineral.Petrol. 34, 272-287.

- Bahnemann, K.P. (1970) A note on the anorthositic gneiss in the Messina district, northern Transvaal. Geol.5oc. S.Afr.Spec.Pub. 1, 715-720.
- Bahnemann, K.P. (1972) A review of the structure, stratigraphy and the metamorphism of the basement rocks in the Messina district, northern Transvaal, D.Sc thesis Univ. Pretoria (unpub.), 156 p.
- Bahnemann, K.P. (1973) The origin of the Singelele granite gneiss near Messina, northern Transvaal, Geol.Soc.S. Afr.Spec.Pub. 3, 235-244.
- Bahnemann, K.P. (1975) Garnets as possible indicators of metamorphic grade in the Limpopo folded belt near Messina in the northern Transvaal. Trans.Geol.Soc. S.Afr. 78, 251-256.
- Barker, O.B. (1976) Discussion on: The Soutpansberg trough (northern Transvaal) – an aulacogen, by H. Jansen. Trans.Geol.Soc.S.Afr. 79, 146–148.
- Barton, J.M. (1979) The chemical compositions, Rb-Sr isotopic systematics and tectonic setting of certain Proterozoic basic igneous rocks, Limpopo Mobile Belt, southern Africa. Precamb.Res. 9, 57-80.
- Barton, J.M. (1981) Pb-isotopic evidence for the age of the Messina Layered Intrusion, Central Zone, Limpopo Mobile Belt. Geol.Soc.S.Afr.Spec.Pub. (in prep.).
- Barton J.M. and Ryan, B. (1977) A review of the geochronologic framework of the Limpopo Mobile Belt, Botswana Geol. Surv.Bull. 12, 183-200.
- Barton, J.M., Fripp, R.E.P. and Ryan, B. (1977) Rb/Sr ages and geological setting of ancient dykes in the Sand River area, Limpopo Mobile Belt, South Africa. Nature 267, 487-490.

- Barton, J.M., Ryan, B. and Fripp, R.E.P. (1978) The relationship between Rb-Sr and U-Th-Pb whole-rock and zircon systems in the 3790 m.y. old Sand River Gneisses, Limpopo Mobile Belt, southern Africa, U.S.Geol.Surv.Open-File Report 78-701, 27-28.
- Barton, J.M., Fripp, R.E.P., Horrocks, P.C. and McLean, N. (1979a) The geology, age and tectonic setting of the Messina Layered Intrusion, Limpopo № bile Belt. Amer J.Sc.279, 1108-1134.
- Barton, J.M., Ryan, B., Fripp, R.E.P. and Horrocks, P.C. (1979b) Effects of metamorphism on the Rb-Sr and U-Pb systematics of the Singelele and Bulai Gneisses, Limoopo Mobile Belt, southern Africa. Trans.Geol. Soc.S.Afr. 82, 259-269.
- Barton, J.M., Fripp, R.E.P. and Horrocks, P.C. (1981) Rb-Sr ages and cherical compositions of some deformed Archaea, mafic dykes, Central Zone, Limpopo Mobile Belt, southern Africa. Geol.Soc.S.Afr.Spec.Pub. (in prep.).
- Berg, J.H. (1977) Regional geobarometry in the contact aureoles of the anorthositic Nain Complex, Labrador. J.Petrol. 18, 399-430.
- Bickle, M.J. (1978) Heat loss from the earth: a constraint on Archaean tectonics from the relation between geothermal gradients and the rate of plate production. Earth Planet.Sc.Lett. 40, 301-315.
- Birks, L.S. (1963) Electron Probe Microanalysis. Interscience, 237 p.
- Boyd, F.R. (1970) Garnet periodite and the system CaSiO₃-MgSiO₃-Al₂O₃ Mineral.Soc.Amer.Spec.Papers 3, 63-75.
- Boyd, F.R. and England, J.L. (1964) The system enstatite-pyrope. Yearbook Carnegie Inst.Wash.63, 157-161.
- Bridgewater, D., Keto, L., McGregor, V.R. and Myers, J.S. (1976) Archaean gneiss complex of Greenland. In "Geology of Greenland", eds. Escner, A. and Watt, W.S., Geol. Surv. Greenland, 19-75.

Burke, K. and Kidd, W.S.F. (1978) Were Archaean continental geothermal gradients much steeper than those of today? Nature 272, 240-2-1.

Carr choel, I.S.E., Turner, F.J. and Verhoogen, J. (1974) Igneous Petrology. McGraw-Hill, New York, 739 p.

Chinner, G.A. and Sweatman, T.R. (1968) A former association of enstatite and kyanite. Mineral.Mag. 36, 1052-1060.

Clifford, T.N. (1970) The structural framework of Africa. In "African Magmatism and Tectonics", Eds. Clifford, T.N. and Gass, I.G., Oliver and Boyd, Edinburgh, 1-26.

Clifford, T.N., McIver, J.R. and Stumpfl, E.F. (1975) A sapphirine-cordierite-bronzite-phlogopite paragenesis from Namaqualand, South Africa, Mineral.Mag. 40, 347-356.

Coward, M.P. (1976) Archaech deformation patterns in southern Africa, Phil.Trans.Roy.Scc.Lond. A283, 313-331.

Coward, M.F., Jumes, P.R. and Wright, L. (1976) Northern margin of the Limpopo Mobile Balt, southern Africa. Geol.Soc.Amer.Bull. 87, 601-611.

Cox, K.G., Johnson, R.L., Monkman, L.J., Stillman, C.J., Vail, J.R. and Wood, D.N. (1965) The geology of the Nuanetsi igneous province. Phil.Trans.Roy.Soc.Lond. A257, 71-218.

Currie, K.L. (1971) The reaction 3cordierite = 2garnet + 4sillimanite + 5 quartz as a geological thermometer in the Opinicon Lake region, Ontario, Contr.Mineral. Petrol. 33, 215-226.

Davies, G. (1981) The petrogenesis of quartz norites in the area around Buffelspoort Dam, Rustenburg district. Ph.D thesis Univ.Witwatersrand (unpub. in prep.)

Davis, B.T.C. and Boyd, F.R. (1966) The join Mg_Si_0_-CaMgSi_06 at 30 kilobars pressure and its application to pyroxenes from kimberlites. J.Geophy.Res. 71, 3567-3576.

Deer, W.A., Howie, R.A. and Zussman, J. (1966) An introduction to the rock-forming minerals. Longman, London, 528p.

- De Waard, D. (1965) A proposed subdivision of the granulite facies. Amer.J.Sc. 263, 455-461.
- Drury, S.A. (1978) Were Archaean continental geothermal gradients much steeper than today? Nature 274, 720-721.
- Duchesne, J.C. and Demaiffe, D. (1978) Trace elements and anorthosite genesis. Earth Planet. Sc.Lett. 38, 249-272.
- Du Toit, M.C. and Van Reenen, D.D. (1977) The southern margin of the Limpopo Mobile Belt, northern Transvaal, with special reference to metamorphism and structure. Botswana Geol.Surv.Bull. 12, 83-97.
- Ellis, D.J. and Green, D.H. (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contr.Mineral.Petrol. 71, 13-22.
- England, P.C. (1979) Continental geotherms during the Archaean. Nature 277, 556-558.
- Ferry, J.M. and Spear, F.S. (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contr.Mineral.Petrol.66, 113-117.
- Fisher, J.R. and Zen, E-An. (1971) Thermochemical calculations from hydrothermal phase equilibrium data and the free energy of H₂O. Amer.J.Sc. 270, 297-314.
- Fripp, R.E.P. (1981a) The geology of the Sand River area near Messina, Limpopo Mobile Belt, South Africa. Geol. Soc.S.Af.Spec.Pub. (in press).
- Fripp, R.E.P. (1981b) The ancient Sand River Gneisses, Limpopo Mobile Belt, South Africa. Geol.Soc.Aust. Spec.Pub. 7 (in press).
- Fripp, R.E.P. (1981c) The Precambrian geology of an area around the Sand River near Messina, northern Transvaal. Ph.D thesis Univ.Witwatersrand (in prep.).
- Fripp, R.E.P., Lilly, P.A. and Barton, J.M. (1979) The structure and origin of the Singelele Gneiss, Limpopo Mobile Belt, South Africa. Trans.Geol.Soc. S.Afr. 82, 161-167.

Green, D.H. and Ringwood, A.E. (1967) An experimental investigation of the gabbro to eclogite transformation and its petrological implications. Geochim.Cosmochim. Acta 31, 767-833.

Graham, R.H. (1974) A structural investigation of the southern part of the Limpopo Mobile Belt and the adjacent Kaapvaal craton, South Africa. 18th Ann.Rep.Res. Inst.Afr.Geol. Univ.Leeds.

- Horiya, Y. and Kennedy, G.C. (1968) Equilibrium study of anorthite under high pressure and high temperature. Amer.J.Sc. 266, 193-203.
- Helgeson, H.C., Delany, J.M., Nesbitt, H.W. and Bird, D.K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Amer.J.Sc. 278A, 1-229.
- Hensen, B.J. (1976) The stability of pyrope-grossular garnet with excess silica. Contr.Mineral.Petrol. 55, 279-292.
- Hensen, B.J. and Green, D.H. (1971) Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures - 1. Compositions with excess alumino-silicate. Contr. Mineral.Petrol. 33, 309-330.
- Hensen, B.J. and Green, D.H. (1972) Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures - II. Compositions without excess alumino-silicate. Contr.Mineral.Petrol. 35, 331-354.
- Hensen, B.J. and Green, D.H. (1973) Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures - III. Synthesis of experimental data and geological applications. Contr.Mineral.Petrol. 38, 151-166.
- Herzberg, C.T. (1978) Pyroxene geothermometry and geobarometry: experimental and thermodynamic evaluation of some subsolidus phase relations involving pyroxenes in the system CaO-MgO-Al₂O₃ - SiO₂ Geochim.Cosmoclim.Acta 42, 945-957.

Holdaway, M.J. (1976) Mutual compatibility relations of the Fe²⁺-Mg-Al silicates at 800°C and 3 kbar. Amer.J. Sc. 276, 285-308.

Holdaway, M.J. and Lee, S.M. (1977) Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical and natural observations. Contr.Mineral. Petrol. 63, 175-198.

Hor, A.K., Hutt, D.K., Smith, J.V., Wakefield, J. and Windley, B.F. (1975) Petrochemistry and mineralogy of early Precambrian anorthositic rocks of the Limpopo Mobile Belt, southern Africa. Lithos 8, 297-310.

Horrocks, P.C. (1975) The geology of the southern portion of the farm Artonvilla 778, east of Messina, northern Transvaal. B.Sc.Hons.Report Univ.Witwatersrand (unpub.), 59p.

- Horrocks, P.C. (1980) Ancient Archaean supracrustal rocks from the Limpopo Mobile Belt. Nature 286, 596-599.
- Horrocks, P.C. (1991) The Precambrian geology of an are between Messina and Tshipise, Limpopo Mobile Belt. Geol.Soc.S.Afr.Spec.Pub. (in prep.)
- Jansen, H. (1975) The Soutpansberg trough (northern Transvaal) - aulacogen. Trans.Geol.Soc.S.Afr. 78, 129–136.
- Jansen, H. (1976). Author's reply on 'Discussion' hy O.B. Barker of 'The Soutpansberg trough (northern Transvaal) - an aulacogen' by H. Jansen (op.cit.), Trans.Geol.Soc.S. Afr. 79, 146-148.
- Jansen, H. (1977) Limpopo Belt- Transvaal craton relationships. Botswana Geol.Surv.Bull. 12, 99-104.
- Kennedy, W.Q. (1951) Sedimentary differentiation as a factor in Moine-Torridonian correlation, Geol.Mag. 88, p.258.
- Keesmann, I., Matthies, S., Schreyer, W. and Seifert, F. (1971) Stability of almandine in the system FeO-Fe₂O₂-Al₂O₃-SiO₂-H₂O at elevated pressures. Contr.Mineral. Petrol. 31, 132-144.
- Key, R.M. and Hutton, S.M. (1976) The tectonic generation of the Limpopo Mobile Belt and a definition of its western extremity. Precamb.Res. 3, 79-90.

- Kratz, R. (1973) Kinetics of the crystallization of garnet ot two localities near Yellowknife, Conad. Mineral. 12, 1-20.
- Lal, R.K., Ackermand, D., Seifert, F. and Haldar, S.K. (1978) Chemographic relationships in sapphirine-bearing rocks from Sonapahar, Assam, India, Contr.Mineral. Petrol. 67, 169-187.
- Leyreloup, A., Lasnier, B. and Marchand, J. (1975) Retrograde corona-forming reactions in high-pressure granulite facies rocks, Petrologie, I, 43-55.
- Light, M.P.R., Broderick, T.J. and Watkeys, M.K. (1977) A preliminary report on the Central Zone of the Limpopo Mobile Belt, Rhodesia. Bot were Geol. Surv.Bull. 12, 61-73.
- Light, M.P.R. and Watkeys, M.K. (1978) an outline of the Archaean and early Proterozoic goological history of the region around Beitbridge. Rhodesia Geol. Surv.Ann. III, 35-40.
- Lindeley, D.H. and Dixon, S.A. (1976) Diopside-enstatite equilibric at 850°C to 1400°C, 5 to 35 kbor. Amer. J.Sc. 276, 1285-1301.
- Luth, W.C., Jahnes, R.H. and Tuttle, O.F. (1964) The granite system at pressures of 4 to 10 kilobars. J.Geophys. Res. 69, 759-773.
- MacGregor, A.M. (1953) Precambrian formations of tropical southern Africa. Int.Congr.Algiers 1952, 1.
- McCarthy, T.S. (1976) Chemical interrelationships in a lowpressure granulite terrain in Namaqualand, South Africa, and their bearing on granito genesis and the composition of the lower crust. Geochim. Cosmochim.Acta 40, 1057-1068.
- McCarthy, T.S. (1977) Geochemical studies of selected granitic terrains in South Africa. Ph.D thesis Univ.Witwatersrand (unpub.).
- Moorbath, S. (1975) The geological significance of early Precambrian rocks. Proc.Geol.Assoc. 86, 259-279.

- Nehru, C.E. and Wyllie, P.J. (1974) Electron Microprobe measurement of pyroxenes oexisting with H₂O. undersaturated liquid in the join CangSi₂O₆-Mg₂Si₂O₆-H₂O at 30 kilobars, with appl. dations to geothermometry. Contr.Mineral.Petr. .48, 221-228.
- Newton, R.C., Charlu, T.V. and Kleppa, O.J. (1977) Thermochemistry of high pressure garnets and clin pyroxenes in the system CaO-MgO-Al₂O₃-SiO₂. Geochim.Cosmochim.Acta 41, 369-377.
- Norrish, K. and Hutton, J.T. (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological materials. Geochim.Cosmochim.Acta 33, ~31-453.
- O'Hara, M.J. (1977) Thermal history of excavations of Archaean gneisses from the base of the continental crust. J.Geol.Soc.Lond. 134, 185-200.
- O'Hara, M.J. and Yarwood, G. (1978) High pressure-temperature point on an Archaean geotherm, implied magma genesis by crustal anatexis, and consequences for garnetpyroxene thermometry and barometry. Phil.Trans.Roy. Soc.Lond. A288, 441-456.
- Orville, P.M. (1972) Plagioclose cation exchange equilibria with aqueous chloride solution at 700°C and 2000 bers in the presence of quartz. Amer.J.Sc. 272, 234-272.
- Pearce, T.H. (1970) Chemical variations in the Palisade sill. J.Petrol. 11, 15-32.
- Pettijohn, F.J. (1957) Sedimentary Rocks. Harper and Bros (2nd ed.), New York, 718p.
- Powell, R. (1975) Thermodynamics of coexisting cummingtonitehornblende pairs. Contr.Mineral.Petrol. 51, 29-37.
- Powell, R. (1978) The thermodyanmics of pyroxene geotherms. Phil.Trans.Rov.Soc.Lond. A288, 457-469.
- Raase, P. (1974) Ai and Ti contents of hornblende, indicators of pressure and temperature of regional metamorphism. Contr.Mineral.Petrol. 45, 231-236.

- and Green, D.H. (1974) Experimental determination of the temperature and pressure dependence of the Fe-Mg partition coefficient for coexisting garnet and alinopyroxene. Contr.Mineral.Petrol. 48, 179-203.
- ync a R.C. (1967) The estimation of mass absorption coefficients by Compton scattering: improvements and extensions of the method. Amer.Mineral. 52, 1493-1502.

Phodesia Geological 1 : 1 000 000 Map, 1977 (7th ed.).

- Experimental determination of the kyarıte-andalusīte and andalusite-sillimanite equilibria: the aluminium sılicate triple-point. Amer.J.Sc. 267, 259-272.
  - I.D.M. (1968) Granulite metamorphism of the basement complex in the Limpopo metamorphic zone. Geol.Soc.S.Afr.Annex, 125-132.
- Der son, I.D.M. (1973) Potash granites of the southern edge of the Rhodesian craton and the northern granulite zone of the Limpopo Mobile Belt. Geol.Soc.S.Afr. Spec.Pub. 3, 265-276.
- Robertson, I.D.M. (1977) Some granulite facies metasediments of the Rhodesian part of the North Marginal Zone of the Limpopo Mobile Belt. Botswana Geol.Surv.Bull. 12, 157-176.
- Robie, R.A., Hemingway, B.S. and Fisher, J.R. (1972) Thermodynamic properties of minerals and related substances at 298,15°K and 1 bar (10° Pascals) pressure and at higher temperatures. U.S.Geol.Surv. Bull. 1452, 456p.
- Ryburn, R.J., Råheim, A. and Green, D.H. (1976) Determination of the P,T paths of natural eclogites during metamorphism - a record of subduction. Lithos 9, 161-164.
- Saxena, S.K. (1976) Two-pyroxene geothermometer: a model with an approximate solution. Amer.Mineral. 61, 643-652.

Saxena, S.K. and Nehru, C.E. ( 975) Enstatite-di 59and geothernometry. Contr.Mineral.Petr 59-267.

Schreyer, W. (1968) A reconnailsance stud, or MgO-Al₂O₃-SLO₂-H₂O at pressures between 10 and 25 kbor. Carnegie Inst.Wash.Year Book 66, 380-392.

Schreyer, W. and Seifert, F. (1969) Compatibility reta of the aluminium silicates in the system MgO-Al_O_SiO_H_O and K_O -MgO-Al_O_SiO_ high pressures. Amer. Sc. 267, 371-388.

Schreyer, W. and Abraham, K. (1976) Natural boron-fr kornerupine and its breakdown products in sapphirine rock of the Limpopo Bert nouther Assico. Contr.Mineral.Petrol. 54, 109-126.

Schwerdtner, W.M., Woddington, D.H. und Stollery - ... (1974 Polycrystalline pseudomorphs is natural gauges incremental palaeo-strain. W.Jb.Mineral.MH, -... 174-182.

Seiter: F. (1974, Stability of sapphirine: a stud. aluminous part of the system MgO-J.Geol. 82, 173-204.

Show, D.M. (1968) A review of K/RD fractionation trends by covariance analysis. Geochim.Conmochim.Acta 32 573-597.

Shaw, D.M. (1970) Trace element fractionation during anatex: . Geochim.Cosmochim.Acta 34, 237-243.

S8hnge, P.G. (1946) The geology of the Messing copper mines and surrounding country. Geol.Surv.S.Afr.Mem. 40, 272p.

Söhnge, P.G., Le Roex, H.D. and Nel, H.J. (1948) The geology of the country around Messino. Geol.Surv.S.Afr. Explan.Sheet 46.

Stormer, J.C. and Whitne, J.A. (1977) Two-feldspor geothermometry in granulite facies metamorphic rocks - sapphirine granulites from Brazil. Contr.Mineral.Petrol.65, 123-133. Touret, J. (1971) Le faries granulite en Norvege Méridionale. Lithos 4, 42?-430

Tracy, R.J., Robinson, P. and Thompson, A.B. (1976) Garne composition and zoning in the determination of temperature and pressure of metamorphism, Centra. Massachusetts. Amer.Mineral. 61, 762-775.

- Thompson, J.B. (1957) The graphical analysis of mineral assemblages in pelitic schists. Amer.Mineral. 42, 842-858.
- Thompson, A.B. (1976) Mineral reactions in pelitic rocks: II. Colculation of some P-T-X(Fe-Mg) phase relations. Amer.J.Sc. 276, 425-454.
- Thempson, A.B., Tracy, R.J., Lyttle, P.T. and Thempson, J.B. (1977) Prograde reaction histories deduced from compositional zonation and mineral inclusions in garnet from the Gassetts schist, Vermont. Amer.J.Sc. 277, 1152-1167.
- Van Reenen, D.D. and Du Toit, M.C. (197.) The reaction garnet + quartz = cordierite + hypersthene in granulites of the Limpopo Metamorphic Complex in northern Transvaal. Geol.Soc.S.Afr.Spec.Pub. 4, 149-177.
- Van Zyl, J.S. (1950) Aspects of the geology of the northern Soutpansberg area. Ann. Univ. Stellenbosch 26, 1–95.
- Von Gruenewaldt, G. (1973) The modified differentiation index and the modified crystallization index as parameters of differentiation in layered intrusions. Trans. Geol.Soc.S.Afr. 76, 53-61.
- Watkeys, M.K. (1977) The geology of the area west of Beitbridge. Rhodesia Geol.Surv.Ann. 2, 1-14.
- Watkeys, M.K. (1979) Explanat n of the geological map of the country west of Beitbridge. Rhodesic Geol.Surv. Short Report 45, 96p.
- Wells, P.R.A. (1977) Pyroxene thermometry in simple and complex systems. Contr.Mineral.Petrol. 62, 129-139.

- Wells, P.R.A. (1979) Chemical and thermal evolution of Archaean sialic crust, southern west Greenland. J.Petrol. 20, 187-226.
- Windley, B.F. (1973) Archaean anorthosites: a review with the Fiskenaesset Complex, West Greenland as a model for interpretation. Geol.Soc.5.Afr.Spec.Pub. 3, 319-332.
- Winkler, H.G.F. (1974) Petrogenesis of Metamorphic Rocks. Springer-Verlag (3rd ed.), New York, 320p.
- Wood, B.J. (1974) The solubility of alumina in orthopyroxene coexisting with garnet. Contr.Mineral.Petrol. 46, 1-15.
- Wood, B.J. (1977) The activities of components in clinopyroxene and garnet solid solutions and their application to rocks. Phil.Trans.Roy.Soc.Lond. A286, 331-342.
- Wood, B.J. (1978) Reactions involving anorthite and CaAl₂SiO₆ pyroxene at high pressures and temperatures. Amer. J.Sc. 278, 930-942.
- Wood, B.J. (1979) Activity-composition relationships in Ca(Mg,Fe)Si₂O,-CaAl₂SiO₆ clinopyroxene solid solutions. Amer.J.Sc. 279, 854-875.
- Wood, B.J. and Banno, S. (1973) Garnet-orthopyroxene and orthcpyroxene-clinopyroxene relationships in simple and complex systems. Contr.Mineral.Petrol. 42, 109-124.
- Wood, B.J. and Fraser, D.G. (1976) Elementary Thermodynamics for Geologists. Oxford Univ. Press, 303p.

Trans geol Soc S (1r 82 (1979). . 1.69

## EFFFCTS OF METAMORPHISM ON THE Rb-Sr AND U-Pb SYSTEMATICS OF THE SINGELFLE AND BUT ALGNEISSES, LIMPOPO MOBILE BELL, SOUTHERN AFRICA*

## J. M. BARTON Jr., B. RYAN, R. L. P. FRIPP and F. HORROCKS

#### ABSTRACT

ABSTRACT The results at the term of the second of the sec

	CONTENTS	Page
1 11 15	INTRODUCTION THE SINGLELLE GNEISS EVEN ONE IS ANALYTICAL TECHNIQUES, SAMPLING LOCATIONS AND RESULTS	250 260 260 260
VI	DISCUSSION CONCILISIONS WERNOWILDGMENTS RELERENCES	268 268

#### E INTRODUCTION

As more and more isotopic ige determinations are being made it is becoming increasingly evident that, in some instances, and perhaps in most instances, the ages placement of the rock unit involved, even though the measured ages are statistically meaningful (see e.g. Allsopp, 1970, 1977 Moorbath, 1975; Roddick and Comp-ston, 1977; Barton *et al.*, 1978; Bell and Blenkinsop, 1978, Cooper *et al.*, 1979, Black *et al.*, 1979. Welke *et al.*, 1980) This relationship involving mice model, mice whole-rock and other mineral ages using Rb Sr and K Ar techniques well documented (see e.g. Hart, 1964, Armstrong, 1960; Faure and Powell, 1972; Faure 19, "). In the cases of **Rb-Sr**, **Th-Pb**, Srie-Nd and ²⁰⁷Pb ²⁰⁴Pb versus ²⁰⁸Pb/²⁰⁶Pb (Pb-Pb) whole-rock and U Pb zircon dating, this re-lationship is sometimes less obvious, especially in meta-(Pb-Pb) whole-rock and t Pb zircon dating, this re-lationship is sometimes less obvious, especially in meta-morphic rocks of Precambrian age that lack fossils for stratigraphic comparison. Nevertheless ages determined by these latter techniques are often different than their "true ages" of emplacement as deduced by other means (see Roddick and Compston, 1977, Barton *et al.*, 1978; Allsopp *et al.*, 1979, Black *et al.*, 1979) In the instances of smaller ages, these may often be equated with subsequent metamorphic events affecting the rocks or with the pass ing of the rocks through some conditions of temperature. ing of the recks through some conditions of temperature *A South African Contribution to the International Geodynamics Project, No. 45

and, to a lesser extent, pressure whereby they become closed systems with respect to the parent and daughter isotopes (regional uplift and consequent crosion to a new topes (regional uplift and consequent erosion to a new level) Larger ages may result from analysing rocks com-posed of two radically different isotopic natures or from analysing rocks representing different sized isotopic do-mains within a single unit (Roddick and Compston, 1977, Welke *et al.*, 1980) Where other criteria are lacking, to distinguish between "true ages" of emplacement and younger or older ages is a subjective business, at best, and more probably is impossible (Allsopp, 197). Hence, to blindly accept isotopic ages as ages of emplacement or as uses of metamorphism is rife with tisk

ages of metamorphism is rife with risk To illustrate this risk, the results of Rb-Sr and Pb-Pb whole rock and t Pb zircon isotopic studies are presented of the Singelele and Bulu Gneisses of the Central Zone of the Limpopo Mobile Belt. These isotopic dating techniques are the ones most commonly applied to Precam brian rocks. The Central Zone of the Limpopo Mobile Belt is a highly deformed polymetamorphic terrain situ-Belt is a highly deformed polymetamorphic terrain situ-ated between the Rhodesian and Kaapvaal Cratons (Barton and Key, 1980) and the emplacement ages of the two gnetssic units into this terrane are reasonably well known from other criteria. The present "state of the art" multiple technique approach to isotopic studies in Pre-cambrian terranes is discussed. This approach is designed to minimize the uncertainting of interpretation inherent in to minimise the uncertainties of interpretation inherent in

### IL THE SINGLETTE GNEISS

1. THE SINGLET CALLS

### THE THE BULALGNEISS

The Bulai Gneiss (Sohnge, 1945). Sohnge et al., 1948) is a distinctive brown weathering, pinkish, coarse-grained por-phyritic gneiss occurring primarily west of Messina (Lig.1). Small outerops of a litbologically similar rock also occur near Tshipise (Fig. 1). This unit is an orthogneiss of occur near 1 shipse (Fig 1). This unit is an orthogness of granitic composition, containing appreciable hornblende and biotite, and it was intruded into the sequence of supra-crustal rocks of the Central Zone of the Limpopo Mobile Belt, including the Singelele Gneiss, after the second penetrative deformation of these rocks about 3.150 m.y. ago (Barton and Key, 1980). It contains xenoliths of de-formed supracrustal gneisses and was affected by the third and fourth regional deformational events between about 2.700 m.v. ago and about 2.600 m.v. ago. As with the Singelele Gneiss, the terrain in which the Bulai Gneiss occurs was raised to approximately its present crustal level by about 1.950 m.y. igo (Barton and Ryan, 1977).

# IV ANALYTICAL TECHNIQUES, SAMPLING

TOCATIONS AND RESULTS Fhe analytical techniques utilised in this study are fairly standard and are described in Barton *et al* (1977) and Bar-



Ga-Tshirungule'a) including views 1, 2 and 3; 3 Singerele Cheros, Farm Osten (4) S is elefe Gnoiss, Farm Skullpoint (10)

### 

in a front Andreas i many a data and an and an arrivation of the strength of t

Construction of an endown of a second sec

		CARLE	1		
AUGURE DI	ALC: NO.	And south	The American	- Martin	
A Designation of the	the second second		the trease	the second	

	192500	150.000		100.00.00(pr	Sall with
	- I Aral				
		TTOOL 1			
		Theory of			I CAL
					1.47
H.THEFT.					
					14160
				Language -	
H TTOR			40, 2		
			11.01		
			11.45	TLUM	18.12
1.70.007	1.0 10.1				29.40
					11.03
					11.24
provide a second					1. 1.1.
SF of the		(and			~ ~ ~
(). m. ]					
R-T-T-N					
H- 75-73	0.114-0			10.46	L. AV
	() Carol				10.13
M. m. W					10 Mil
		10 10 3			List rick
	and the second sec				
	a contra e				
		10 28 0	10.00		13.22
0.17.17					10.32
Portante Ballin					
(LPL)	A THEFT	O LIT HE			13.13
	11Auril	01.000	12.03	0.35	13.00
	1.0000	11.000.00	10.00		
	1 Tanks	11.6.17.78	103.000	12.00	La Lo
		in a los	Tes Tes		
11 22-43		the la	100.000		1000
10 CONT		10. mile 174	14.71		14.54
0.25.75	1002	30.000 1m	OF W	11.10	(certa)
0.2118	1.18+4	10.3.1.1 1.*	40.10	14, 19	15.18
		THE R. L. LEWIS CO.	10. A.	14.91	16.77

Parman - 0------

# TRANSACTIONS OF THE OLODGICAL SOCIETY OF SOUTH AVEC. 5

	~ *		
10.00			

				91	Providence In X II X	
P & Al II throughout Disso General Converse Trying Converse Armon Converse - Prove Converse Records on Converse - France Converse Records Converse - France Converse Record Converse - France Converse Record Converse France Con				1111		
One stress process Value Management and Children (1977)		001 J. 0006		1.00		
Partitioners Handwood Doors Harris Lines		1001 L001 L				
Second Over Tree Local Act (						
Superconnect Transmission 1997						
Koppins Graves - Lass Consul-						
	100-14					
Parent State	100.252					

Samples if the start transmission and a two be-sent of Missions and a some streng bar of the Bar for-start of Missions and a some strength of the samples of start Grayes assived by Van Brownes and Decision (1972) along from the type issuelly. Approximation (0 kg semples are ablighted a such formts and a some strengt these samples from the opp arm of the Bars freques the sample same same from papering of the Bars freques the sample same same from papering of the Bars freques the sample same same from

Bally improved any one collimned from Com-

"From any particular the second state of the second nearly restlined contractly monoid may advisedly metamolet

15011.00

			Chrome Descripte, Learning						
Surper				$= (a_1) \cdots (a_{\bar{n}})$	$= V \pi^{-} = (1 + 1)$	white a second s	10(15)/41.0		
Long And Con- Market I Bartist I Bartist I Bartist I Bartist I	THE REAL PROPERTY IN	1 (12) 1	1 1 1009 1 1009 1 1009 1 1009 1 1000 1	11(位	A 1980 11 000 11 000 11 000 11 000	11(1) 1.075 3.075 3.051 4.076 10.090	0.500 F 0.500 + 0 0.500 F 0.500 F		
South States	1200 1200 1700 (*100 (*100)	2403 2 403 2 403 2 100 1 200		(iku OMD) RT4 RC2	044 2000 2020 2020	0.52 1.29 ¹ 1.400 0.004	0.0811 ( 0.08210 01.000 ( 0.0993 8		
Hadar Xyene B.25,17 B.26,17 B.26,17 B.26,17 B.26,17	AND DE LA CALCOLINA DE LA CALC		0.0110 00090 00090 00001 00099	(100.) (1000,0 (1000,0 (1000,0 (1000,0) (1000,0)	8.V.1 0.0010 1.226 7.9(2)	ないない	0.211 4 10.529 5 10.558 7 10.245 7		
Parentsona B. 5.41 B. 7.41 B. 7.41 B. 7.41 B. 7.41	A	Communication of the second se	1220 (289.1 (289.1 (289.1 (289.1) (289.1) (289.1)	30,94 54,91 16,66	1107. 30.00 40.9	10000 10000 10000	0.2307 # 0.1965 0 00042 5 00042 9		

² Annu American Statements From L Statements and Statements in Alleria National American Statements (1997), 2010.

# FEFECTS OF METAMORPHISM ON SYSTEMATICS OF SINGLEFFE AND BUEAU GNEISSES

Blank concentrations were sufficiently small that no corrections were made

The results of Rb Sr and Pb isot analyses of whoterock samples are listed in Table I and the results of the regression of the analytical results are summarised in Table II. These data are also plotted on Figs 2 through 10. The results of U and Pb analyses of zircons are listed in Table III and are plotted on Fig. 11.

### V. DISCUSSION

The simplest, and to most people, philosophically the most satisfying approach to interpreting 1.-Th-Pb isotopic data is to make the same assumptions that are commonly made for Rb-Sr isotopic dating. (i.e. isochrons result when



Figure 2 Rb-Sr isochron diagram for the samples of the Singelele Gine from the type locality (Ga Ishir ingulela) if learly the sample population from Area 1, including the samples inalised by V and Diodson (1977), are distinct from those from Areas (1) system has been closed to parent and daughter elements and (2) a system had a uniform daughter isotopic composition but variable parent-daughter elemental compositions at the time it became closed. The slope of the dato array on an isochron diagram is thus related to the time elapsed since the system became closed. This time span may be the time elapsed since a rock unit was emplayed or since it was metamorphosed.

However, it is also possible to obtain statistically significant rectilinear data arrays for both 1. Th Pb and Rb-Sr sotopic data that have no time significance as far as the rock unit is concerned. One possible way is to have the samples composed of two components with homogeneous but distinct compositions. Then a range in measured isotopic compositions is a mixing line between the compositions of these two end member components. A second way is for the rock system to behave regularly in a neterogeneous and or open manner, i.e. for the initial daughter isotopic ratios to vary exactly proportionally to the parent daughter elemental ratio and/or for changes i, the parent daughter elemental ratios to be exactly proportional to the values of these ratios. For example, a tertiary Pb-Pb isochron may be generated in this way (Gale and Mussett, 1973).

The lack, in detail, of widespread regularity in geochemical processes argues that the implest approach of assigning isochrons some age significance is probably the most reliable method of interpreting the data. Secondary chemical changes other than rehomogenisation of the daughter isotopic composition, have a tendency to produce scatter in the data and linear arrays that are errorchrons (see e.g. Roddick and Compsion, 1977). It must be remembered, however, that the simplest approach is *fallible*. Mixing lines may be recognised by the age differences of the end members compared to the age associated with the slope of the mixing line. However, in general, to test for n = 0



Ensure 3 The second of the se

100.00





Figure 4 in for the samples of the Singele¹. Or very large initial "Str "Str itso of this isochro-very large initial "Str "Str isotopes durin Rb-Sr isochron di from Farm Ostend is characteristic o metam rphism

ondar isochrons (Gale and Mussell. The users of samples for each unit analysed for this study we chomogeneous on the sample scale, being ap parently composed of one rock type with no veins of younger material. In addition, crude estimations of 1 and Th contents of the whole-rock samples show that the samples are presently active and producing daughter. Ph isotopes (Barton, unpublication) A mixing line interpret-ation for the analytical results may hus be discounted. No interpret material tests may be made with the



Pb/-04 Pb Figure 5 Pb 204Pb versus 20 Pb 204Pb diagram for the simples of the Sing-lele Giness from Farm Oxtend The turrestrial Pb isotopic growth curve of Stacey and Kramers (1975), alibrated in 10° years, is shown for comparison and all of the results plot awas from this curve, sug-gesting that these rocks have been in an environment with a larger than average 1 Pb ratio.



Figure 6 Rh-Sr (sochton diagram for the samples of the Singelele Gneiss from 1 itm Skullpoint. This is an errorchron

(1915) The possible tests are de ribed in Gale and Mus-sett (1973), but essentially the isochrons do not pass through either the present-day Pb isotopic ratios used in these models nor do they pass inrou in the impropulate Pb isotopic ratios for the ages indicated by the slopes of the isochrons. The data may be interpreted as representing models of two-stage, three-stage, four-stage, etc de-velopment by making the appropriate assumptions includ-ing the 1 Pb ratios of the rocks prior to the recent U loss. This, however, is a nonconstructive enterprise due to the lack of proper constraints so that unique solutions are im-

An alternative approach to interpreting whole-rock I Ih-Ph and Rh-Sr isotopic data is to look at the fre-quency that specific isochron and mineral ages occur in a ages occur from units of distinctive stratigraphic ages, then the chances of spurious ages going unrecognised de creases and ages in any given cluster may be assigned, with fair confidence, to at least specific metamorphic events and to possibly emplacement events. This naturally re-quires a great deal of isotopic age data by numerous tech-inques as well as a good understanding of the tectonic evolution of the domain by alternative means such as structural analysis hurthermore, the more complex the

Clusters of radiometric ages from rocks near Messina in the Central Zone of the Limpopo Mobile Helt that are correlated with tectonic and metamorphic events, occur at 1.150 + 50 m y., 2.95.1 + 100 m y., 2.650 + 100 m y and 1.950 + 50 m v. (Barton and Rvan, 1977 Barton *et al.* 1978; Barton and Key, 1980 Barton, unpubli data). The majority of the whole-rock isochron ages presented here fall in these clusters (see Table II) and, consequently, they may be equated with isotopic homogenisation during specific tectonic and or metamorphic events. The data from the Singelele Gneus on Farm Ostend are anomolous and from the Singelele Gness on Farm Ostend are anomolous and their significance is unclear. The similarity between the Rb-Sr isochron and the Pb-Pb errorchron ages suggests, however,

EFFECTS OF METAMORPHISM ON SYSTEMATICS OF SINGELFTE AND BUT ALGNEISSES



country error Human retrieves and for the samples of pol-currer of Research and Recourts (1975), solitoniand on D2 vents, is shown for comparison. The results plot slightl

that the numbers may not be spurious. The Rb-Sr error from inge for the Singelele Gneiss on Farm Skullpoint suggests that the Sr isotopes in this unit may have been only partially homogenised about 2 700 m.y ago. The data from the Singelele Gneiss at Area 1 are consistent with the Ph isotopes in these rocks being homogenised during copper mineralisa-

tion at Messina about 1 770 m v. ago (Barton, 1977) It is evident that node of the whole-rock isochron ages measured from the Singelele Cineiss even closely approxi-mate the age of emplacement of this unit. On the other hand, the samples of the Bulai Cineiss from the type local its and form. ity and from Farm Skullpoint yield whole rock isochron and errorchron ages of between about 2.950 m/s and about 2.700 m/s, which are consistent with the span of about 2.700 m.y., which are consistent with the span of possible ages of this unit is deduced from other sources. The uncertainty associated with the Pb-Pb whole-rock isochron from the samples from 1 arm Skullpoint is very large and so this age is of little use. It is, therefore, reason able to assume, as a working hypothesis, that the Bulai Gneiss was emplaced about 2.700 m y ago. However, the possibility grates that this unit was emplaced as much as possibility exists that this unit was emplaced as much as about 3 150 m.y ago.

The common Pb isotopic correction values assumed for the zircon age calculations are (²⁰Pb ²⁰⁴Pb)₀ 14,64 and (²⁰⁵Pb/²⁰⁴Pb)₀ 13,52. Of necessity, these are only crude estimations of the correct values, and changes the assumed values of the common i'b isotopic correction

values will make large differences in the positions of some of the analytical results of Fig. 11 (see Table III). However, these differences are not large enough to remove the





TRANSACTIONS OF THE GEOLOGICAL SOCIETY OF SOUTH AFRICA.

fact that zircons from both the Singelele and Bular Gneisses have suffered may we Pb loss during their his-tornes. Furthermore, it is obvious from the plotted pos-it ons of the data on Fig. 11 that model ages, constructed by projecting individual analytical results on to the con-cordin curve by straight lines from the origin, are too small for each unit to reflect either emplacement or one of the later deformational events. Three proportional Pb loss curves (Wasserberg, 1963) are shown for comparison on Fig. 11. These have values of 2 000 m  $\sim$  2 00 m/s and 3 000 m/s, the last two being minimum is of empla-ment of the Bulai and Singelele Gneisses respectively. The analytical results do not ht well on to any of these curves, indicating that the histories of the zircons have been com-plicated and irregular. The results do fit reasonably well between the 3 200 m/s curve and the 2 000 m/s curve, consistent with the probability that the compleated and which the units were undergoing periodic metamorphism in addition, the majority of the results plot between the 2 000 m/s, curve and the 2 000 m/s curve, possibling the definition of the results plot between the 2 000 m/s, curve and the 2 000 m/s curve, possibling the addition, the majority of the results plot between the 2 000 m/s, curve and the 2 000 m/s curve, possibling the flow of the process occurs most commonly in metamiet zircons which the ones analysed for this study are not, but possibly these zircons with widely discordant precise age, he it of emplacement or of metamorphism in the flow Such as these are of little use as indicators of precise age, he it of emplacement or of metamorphism in thermore, widely discordant compositions are the rule rather than the exception with zircons from polymetamor-phic terrains such as the Limpopo Mobile Helt (see e.g. Barton *et al.*, 1978). phie terrains such as the Limpopo Mobile Belt (see e.g. Barton et al., 1978).

The initial "SrmSr ratios of the isochrons from the



Figure 10 Figure 10 Gneiss from the type locality (the Bulai pluton) and from Larm Skullpoint The terrestrial Pb isotopic growth curve of Stacey and Kiamets (1975), calibrated in 10^o years, is shown for comparison and most of the results plot away from this curve



The is 1 2 Sr.¹⁰ Sr rate 5 of the isochrons from the Bular origins are, on the other hand, small enough so not be-age the of either a primary or a secondary value A that often used to estimate a maximum Rb-Sr shole-rock in for 5 uite of rocks 5 to calculate the time ricce 51.5 for rock with the present average "Rb Sr and the temperature of the temperature are commen-original "Sty Sr ratio less than about 0.7 is unusual. These units of scample to the Sing-Sel Crite from the spe-locality at Areas I and 2 to the sing Sel Crite in the Train or "Sp^{an}Sr ratio of 0. To the initial "Sr^a ratio of the nuclificity requires 12%. To may (20%) similarly, for the Singel to Circus on Farm Optend toverage "Units for the Singel to Circus on Farm Optend toverage "Units for the Singel to Circus on Farm Optend toverage "Units for the it requires 687 + 2 m/s. Got and for the Singclele Oneiss in Frant Skollpoint (average "RN-"Sr = 14,27), it requires only 14 = 2 m/s. (Jm) This suggests that the maximum uges the three suites of rocks are about 2.921 m/s, 3.148 m/s, and 2.758 respectively. In each case, the maximum are a too small and, harthurmore, the maximum ages do not agree. This, then

shows that the model is invalid and suggests, assuming that the estimated "Rb/"Sr ratios are correct that some changes in the some time before or during the last resetting of the Rb-Sr

Such models predict a maximum age for the Bulai Gne (110) typ 15 000 of 3013 (110) 1700 (100) age "Rh¹⁰⁶St (0,08) and for the porphyritic "Bulai-type"

Input up as that both the Singerere and Bular and a second of the second of the second of the second of the second and the second of the second of the second second of the second second of the second second of the second of th 1976). Perhaps the Central Zone of the Limpopo Mobile Belt has more genetic affinity with the Rhodesian Craton than with the K tanyaal Craton.

Why certain rock units such as the Bulai Gneiss appar-ently retain isotopic memory of their emplacement age to the second state of the second state of the second state time second state of the second state of the second state for the second state of the second state of the second state for the second state of the second sta aestan minerals such as amphibole and pyroxene Smigabbroic rocks tend to be more resistant than do more shier rock and to be more resistant than as more shier rock and the main and and the field and Blenkinsop 1022 though to be to be to be to be the Singelele tencos o e very famoscento quarterialdapathic crick while in Hido Fargas is an originitiale and bastite baaring

The scale of sampling can also affect the ages obtained from specific rock units (see e.g. Roddick and Compston, 1977) If samples are collected over a large area on the scale of kilometres between samples, there is a possibility that "inherited" ages may be measured that reflects the source of the rocks Yet, within metamorphic rocks, an outcrop increases the probability that be measured. For all of the units studied here, except the Bulai Gneiss from the type locality, the
### 1118 J. M. Barton Jr. R. I. P. Eripp. P. H. rocks, and N. Mel

though where relolded, the same unit is a coherent – arrowhend (type) – terference pattern younging away from the D2 and D.) anticlinal axialtraces. These occurrences, therefore, suggest that thrusting out of some structures occurred post-D2 and syn and post D3 folding. Finally, all the gneiss units in the area were folded about cast-west trending (xial surface here designated D4 (fig. )  $\Lambda$ .

Mineral labrics, mainly schistosity involving oriented plagioclase and hornblende crystals, are most readily seen in the gabbroic units of the Messina I avered Intrusion. These are folded about the D and D1 hinge zones and are folded about at least some of the D2 hinle cones. Accord ingly, it appears that this schistosity was heterogeneously developed duing D1 deformation and widely developed during D2 deformation. The D3 and the D4 deformations did not involve penetrative recrystallization of the gneisses.

It is important to recognize that the interpretation of the deformational history of the Messina Lay red Intrusion presented here differfrom those histories postulated childer by Graham (1974) and by Coward, Junes, and Weight 1976 in that the former invoked only three deformational events while the latter invoked five deformational events. Their 12 event along with their 15 event is roughly equivalent to our D2 event furthermore, the interpretations presented here of the structure and the vounging directions within the Messina Layered Intrusion are it odds with those given by Hor and others (1975), who interpreted the antiformal exposure of the Intrusion immediately south of the Limpopo River (fig. (A) as being the edge of a single sheet younging from east to west.

1. *C1* Fifty four new major element analyses of rocks from the Messina Layered Intrusion are listed in table 1, see also app 1. An A1 M diagram flig, b) displaying these data combined with analyses previously reported by van Zv1, 1950) and by Hor and others (1975) shows a rather broad zone of points crossing from the field of calc alkaline rocks into the field of tholeiitic rocks as defined by fryine and Barager (1971). This, no doubt, reflects the primarily cumulus plagoetase nature of these rocks. Unfortunately, however, the scatter of the data is such that very little may be gleaned from this diagram as to the actual chemical nature of the magma giving rise to the Messina Layered Intrusion or to the exact path of its crystallization, although a tholeiitic parental magma of approximately the composition of the sampley of gabbro is suggested.

The compositions of some preserved cumulus xenocrysts as well as of the CTPW. Norms of the major element analytical results show that plagoclase of a composition of An 75 and An 85 was on the liquidus throughout much of the crystallizational history of the Intrusion. Similarly, the CTPW. Norms of the major element analytical results from the melagabbros at 1 from the ultramafic rocks indicate that olivine of a composition of 16/80 to 16/85 and or orthopyroxene of a composition of 1 n 89 to 1 n/86 were on the liquidus during crystallization of these rocks. These data make it possible to define a plagioclase fractionation from (P.1/1) and an oliving fractionation from (O/1/1) on a plot of wr per-

.

### Geology, age, and tectomic settin. Messing Layered Intrusion 1119

cent M₁O versus will percent ALO (h = 5A). If it is assumed that essentially isochemical covstallization was taking place and that the volume of the magma was very much greater than the volume of the crystals forming, both the MgO and the MLO contents of the parental malma may be estimated. Similar plagioclase and oliving fractionation trends are illustrated on plots of wt percent CiO versus wt percent MLO. fig. (B) ind of wt percent LeO versus wt percent MLO fig. (B) ind of wt percent LeO versus wt percent MLO fig. (B) ind of wt percent LeO versus wt percent MLO fig. (B) ind of wt percent LeO versus wt percent MLO fig. (B) ind of wt percent LeO versus wt percent almagma. In each of these instances, the estimated parental magma has a composition similar to that of some of the gabbroic samples from the Messina Lavered Intrusion. Combining these compositions with other fractionistic from samples of the Messina Layered Intrusion (h = iD to 1) yields the estimated composition of the parental magma listed in column V of table [-

This parental magma is quartz tholeritic in composition, not cdcalkaline as was suggested by Hor and others (1975), and it is low in K O, similar to volcanic rocks in some Archean greenstone belts in the C madian Shield and to modern occanic tholeittic basalts (Hart and others, 1970). The planoclast (ich rocks Lave S) concentrations generally in the range of from 150 to 200 ppm (table 1). As the partitioning coefficient for Sr



FULL An VT M dougram. I the analysis of samples from the Messina Layered Intrusion. The solid line separates the field of tholeritic rocks from the field of calc alkaline tooks according to Tryine and Bara, n. (1971).

					1001	man Me		. Finnos	001	
wend i	1) 0 ( v )		W.TR -	B-2-4 TX	n	The second	A	16-73 - 1,64	R. S. S.	N NAL
D Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr	A DESCRIPTION OF THE PARTY OF T			L'un and a state of the state o	A ST				SANT BALL DAGE DAGE DAGE DAGE DAGE DAGE DAGE DAGE	AND
A STATE STAT	A	MI CONTRACTOR	A Date of the second se	6.73.001 5. 0.74 0.74 0.74 0.74 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	A CARTAR AND A CARTA		La Contra da Caracteria da Car	10 MAIN AND AND AND AND AND AND AND AND AND AN	X (0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	A 00 101 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.10 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.11 100.110

				R. Oak	BUTT D-	N =	0	W	10.	
Man	NUC					TO AL	-915	5.0 -	- 0	He .
1.1	1.0							45.59	10.11	
S. 1.0								1.0.5		
Al Cr.										3.60
1:0										2.00
MINO-										
M (D)									101	
NO										
6.0		10.4								a ve d
10.00 H.h. 10.00										
STATIST.										
N. Dist.										
1.0.						-1.7 6		0.5.0	$A \in D_{2^{n}}$	1021
Sample		0.0	Sec. 0.					1	1.87	L.C.
Date		1.		11	10			1.11	15.40	44.03
1.0*								10.00	2.63	28.05
45.00								20.1	0	- 51,055
1.03								0.04	0.03	0.16
E. ()									115	2.5%
31,001		0.40			- 1 1		8 Y 40		TURN	1.24
1.007		1.07								0.02
Lar								10.00	0.01	10
0.0								150		142
Date of the									111	310
K. RO.									10001	
William West										

				1.10					-
Sample Rock Evpt SiO FiO FiO KEO Rb (p) K Rb Rb (s)	Cl All States of the second se	Al X man of the second	01 × 101 101 100 100 100 100 100	111 X 11 10 10 10 10 10 10 10 10 10	YE X Sector Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition	OF THE REPORT OF			12 J. M. Roy on Pr. M. W. F. WY
Sample Rock	390	aci d	( ) ( ) X	2.01					h a u
5:0 10:0 10:0 10:0 10:0 10:0 10:0 10:0 1			010 010 100 010 100 010 1124 010 1124 010 000 000 000 000	NAL STREET, ST					Contrast and another and another

A strendence II. Representation, in addition Miles and stress oper Cal

i have prevented by some official area personally and in

# Turning one and manning array Alexand Larged Internant 1128

Territoria placing for and a fladering ment is strated than 1 reiniparts and Scincerds. 1970s the partitud migma of the Mexima Lavered Intrusion would p. Actually common less than 150 ppm 5r. a sub-remained with the superstrates of modern means flow sholes in basely and of some Merkean resonances (Harr end others, 1970).

The average anti-position of the Mession Layered Burrowin estimated from the distribution of cost every presently expanded a foreit or relation and rable 2. This composition is enriched as ALO, and Cate and depleted in E-11. This and MeD compared with the estimated parented assignation is that the K-O content of the second estimated parented assignaies estimated to the at the properties of the comparent of K-O in the Alessins Layreal formation properties approximation of K-O in the Alessins Layready absorbed to the at the parenter of K-O in the Alessins Layready absorbed to the at the parenter of K-O in the Alessins Layready formation properties approximation of K-O in the Alessins Layready formation of v costs 1.5.5 pressure, the partitioning methods are for K-revenue discontance and a material assistance formation to K-revenue discontance and a material of one tampie of a private formation formation of the formation of one tampie of a private formation

The maps stemmit composition of one tample of a printice familie from written the word Royer Onesees (E-26,000) is mean in table 1 and one tentres i and/o. In general, the reache modes had written the cause of a sub-from the took types written the 'theorem Liberted Introston, energy that it relations for barb Na.O and K.O. Sur is guaratment could be a result of the reaction between the banding and the enclosing Sami-Ricer Concess (pt. 1). The element of composition of time bundles in particular communic with the paradoffly that they are remnance of the particular to the Maximo Fayaret Intruston.

No consistent patterns was observed to tarino commonly a mineral case of computation to striction place positions within the Messina I arened futuration. They is to be expected to the volume of mineral generating the futuration apositis exceeded for volume of comming enerating the futuration sponthy exceeded for volume of comming sorthly been one the futuration to the cases compositional changes within the Messina Excercit Intrusion for the cases compositional changes within the Messina Excercit Intrusion would likely reflect only metamorphism over crystallizations. How and offices 1975 cdul report such compositional changes with returns splate position as defined by there interpretation of the structures of the Messina I received Intrusion. These were in the context of the structures of the Messina I received Intrusion.

### Yante

I summarial composition of the magnia groung the structure Missing Layered Intrusion (A) and

of the average composition of the

Mession Loverney Intrusion (B)

	Λ.	.11
5013		
ALCE.	110	21.8
THE	1.1	11.2
DuO.=	12.8.	-+ U
Strift-		20.1
81000	1000	
1.01		1.2.0
7001		
RXX		
N 3 CO	44.1	(200

a Road Le as Triff.



10. A REALT OF A DESCRIPTION OF A DES

(1) Plantakes Automational 2011 (1) and the horizon trend in an appendium presented form than patterns core to be become but in an appendium presented form the horizontal core in the become but in the action of the internal dramesuphy of the horizontal in the reason as an above in the barateria k samples from the internal dramesum the Sami River Gaussian (Refs. 00) wave analysed for above the horizon proper sight an variation of size the internal internal de horizon proper sight an variation of size the internal of its multiple internal of 0,700 (1) and 0.000 (2000) (10) wave in this iso internality of the announce sample from a pathona bould form the internal internality of the announce sample from a pathona bould for an this iso internality of the announce sample from a pathona bould for the on this iso internality of the announce sample from a pathona bould for the on this iso internality of the announce sample from a pathona bould for the solution in writing of the announce sample from a pathona bould for the solution internality of the announce sample from a pathona bould for the solution internality of the announce sample from a pathona bould for the solution internality of the announce sample from a pathona bould for the solution internality of the announce sample from a pathona bould for the solution of the solution of the solution in the solution of the so



the stand termine relies Mr. and Friend Tollarian 112)

# 1166 J. M. Darion Is R. F. P. Lepis, P. Harman Stram & McLean

The which variable 4. Bh mitro of dots and to table 1) and the half of good correlation however rather Rh m 4.0 concentration and 5 RP integrations of these elements have excepted by general these variation posturations of the relative posturation of the elements have excepted by general these variation of posturations of K. Information (K. Mb rather of mitro of the following of the mountain of K. Information (K. Mb rather of mitro of the following of the mountain of K. Information (K. Mb rather of mitro of the following of the mountain of K. Information (K. Mb rather of mitro of the following of the mountain of K. Information (K. Mb rather of mitro of the following of the following of the following of the mountain (K. O) which is the following of the followin

tena farmoro			(R) - TH	-mc -m -
19.773	1.15			
10.00				
				P LIPO
				10 10001
AL POINT				
N. Change			DIST	10.700U
1. 53.00				X0.7330X
No. of the second				n 7000
in the second				n Trini.
IT I I I I				
I II. I. I. Press and Advances				5071152
H				
$M_{cl} = 10^{-1}$				1. 1200.0
D. 1 1 1 1 1	10	1000		
Billoc				to other
FF. 100. 8				
P. 70.		14.0		0010100
Lation				
B.7.5.300				
D DATE:				
AD Loublan				
B		0.011		0.0011
Describer Inc.				
The state of the s				
0.00.000	(1.1			
Ar an and				

be broaded at a from the Mission Lovered Intention

- Normali at the state of the state of a little

### Geology, and tec sina to this intrusion 11-7

topic "clocks" occurred within the rocks of this area ~ 3150 m.v. we (of occurred more recently), and the alteration reflected in the isochron nomthe Messma Layered Intrusion must have been primarily restricted to that body or rock. Obvious mechanisms for this type of restricted alteration are (1) reaction of the magma with the wall rocks – rough which it passed and into which it was intruded, and (2) reaction of the solidihed ocks with post crystallization fluids. We favor the latter possibility, but unfortunately, subsequent deformations and recrystallizations of this Intrusion make evaluation of these mechanisms exceedingly difficult. However, in either case, this alteration had no noticeable effect on the initial

Si Si ratio of the intrusion, consequency, it would need increase curred, when the coarseness of our present calibration of Archean time and the magnitude of the uncertainty in the isochron from the Messina Layered Intrusion uself are considered, only an indistinguishable period









### 1130 J. M. Barton Jr., R. I. C. Upp 11

Minimum Fund bee for Scomple. Minippe and others, this components, one Baara Urpp, and Ram. 1975). However, whether time imponents, or kears to har secretarize with all the other operational antisectory by bartiers counted from the functions. Motion Bell is a mean question by bartiers counted from the coales of the Mesama Laveral Interaction and the imponentarity autoonnibus, appreciated order and the Sand Roser Guesser termine more and possibly times from the mappe or thron sheet. Can explore the sheet from the mesanal order and the Sand Roser Guesser termine more and possibly times from the mappe or thron sheet. Can explore the sheet flow are presently to mark that part of a period at antitack controlling the Mesone Lavered Introduct common bandial mahamation and no combined at racks while in the corronal bandial mahamation and no combined to solve to mark that the surrounding area. He appeared to the combined by Solves to a family of a regional strateing termine and no combines to the surrounding area. He appeared to the construction to be surrounding areas. He is to mark of the strategies to a more and Net (1918) the "Messin formation" are characterized by more one familed non-through the termine control with the solves fittle on the handed non-formation (sec. By eximpto basing, 1015). Solver, he Rous, and Net (1918) Mann, 1975 We deside by 1056. Granted, these techs to a the regional terms work with an of the appeared to a separative possible baserset that on the mark required tasks sequence to a separative possible baserset that on the mark required tasks sequence to a sequely possible baserset that on the mark required tasks sequence to a sequely possible baserset that and the fungence required tasks sequence to a sequely possible baserset that and the fungence

Monte Belt us source al arres de mplacement of the Messina Layered In B.P.T. In ormeral annue if integration of the Messina Layered In a financial annue if integration of the Messina Layered In a financial arrest source in an annue of the Messina Layered In a contract of the source integration of the Messina Layered in a contract of the source integration of the Messina Layered in a contract of the source integration of the Messina Layered in a contract of the source integration of the mession of the mession of the source of the figure integration of the source integration of the source of the source integration of the mession of the mession of the source of the figure integration of the mession of the figure of the source of the figure integration of the mession of the mession of the source of the figure integration of the mession of the mession of the source of the figure integration of the mession of the figure of the source of the figure integration of the mession of the mession of the source of the figure integration of the mession of the mession of the source of the figure integration of the mession of the mession of the body of the mession of the mession of the mession of the body of the source of the mession of the mession of the body of the source of the mession of the mession of the body of the source of the mession of the mession of the mession of the body of the source of the mession of the mession of the mession of the body of the source of the mession o

Sapulirine kornerupine corundum bearing minoral assemblages detorent locally throughout the Messina Ervered Intrusion (Sohuge, 1945) and on dysis of one such assemblage yielded equilibrium pressures greates that Tkb and temperatures in excess of 700 C for  $P_{\rm H,0}$ . This is a and Abrilian, 1976 A this pressure is in excession of the likely pressure during emplacement of the Intrusion, the formation of these numeral a

### Geology, age, and to tom setting. Messina Layered Intrusion 1131

semblages must have taken place subsequently and not as simple contact metamorphic reactions. These P-I conditions are verging on those of granulite facies metamorphism. It appears, therefore, that a high grade metamorphic event occurred in this area after the formation of the Messina Lavered Intrusion. It is not completely evident at this point exactly when the sapphirine forming reactions occurred. However, the sapphirine bearing rocks were deformed during the D2 event. The presence of the Messina Lavered Intrusion in a high grade metamorphic terrain is, there fore, a fact of fate and not a result of a cause and effect relationship

### COMPARISON OF THE MESSINA LAVERED IN IRUSION WITH THE EISKENAESSEE COMPLEX OF WEST GREENEAND

The Mc ina Layered Intrusion and the Eiskenaesser Complex of West Greenland have many Littnes in common. Windley, 1973, Windley and Smith, 1976, but they differ su nificantly in two respects. The apparent inverse relationship between the morthite content of the cumulus plagioclase and the hornblende concentrations in the rocks of the Messina Layered Intrusion argues against hornblende being an appreciable primary phase and suggests that the Intrusion formed from a relatively dry ma-ma-However, no such inverse relationship exists in the Eiskenaesset Complex where very calcic plagoelase coexists with abundant hornblende (M. R. Sharpe, personal commun., 1957), suggesting instead that the horn-

Messina Eavered Intrusion arc smaller and much less frequent than in the Liskenaesset Complex (Windley and Smith, 1974, 1976), suggesting that Liskenaesset Complex formed from a wet oxidized basaltic magma pos-sibly in a back are environment; the Messina Lavered Intrusion appear

This study was supported by the Council for Scientific and Industrial Research of South Milica as a part of the South Milican contribution to the International Geodynamics Project. We thank II T. Allsopp. C. W. Clark, N.C. Gay, J. B. & Jacobsen, R. M. Key, J. D. Kramets, J. R. McIver, and J. O. Nicolaysen for critically commenting on an earlier version of this manuscript.

Major clement concentrations were determined by X (1) fluorescence spectrometry the total que discontrations were determined by X (1) fluorescence spectrometry (1907) Complete replicate analyses indicate that the metricone of the discontrations at the confidence level of two standard deviations are site 0.0 percent. M O = 1.8 percent, TO = 0 percent 1 (10) = 0 percent. MnO = 0 percent. M O = 1.8 percent, TO = 0 percent 1 (10) = 0 percent. MnO = 0 percent. M O = 1.8 percent, percent. Ni O, 6.0 percent. K O = 11 percent. P.O., 6.0 percent. Rb = 0 percent. = 0 = 0 = recur. Analyses of common standard took powders agree with the accepted values to within the precisions of the techniques (McC arthy 1976).

 In the provide the provided from a character of the provided of the provided of the provided from a character of the provided from a c

Description
 Allisepp, R. L. Ivos, R. B. & de Georgers, A. Arthurs, S. Standows, I. O. 1989; Reverse at Known and the source from the source of t

¹/₁/₁
¹/₁
¹/

Park, I. provide the comparison of the comparison of the transfer matter of the transfer of the t

B. B. Bertekert Kromp, J. K. Dever, U. L. and Nike D. Bert Amoral and Branchest P. B. Bertekert Kromp, J. E. Dever, U. L. and Nike D. Bert Amoral and Hart 5 B. Bertekert Kromp, J. E. Dever, U. L. and Nike D. Bert Amoral and Branchest Sciences and concerning and states in The Approx.

Han S. B., Bareks, Y., Kromell, Y. E., Diver, G. I. and Natal D. Jewo Annual and p. 17-20.
Han S. B., Bareks, Y. Kromell, Y. E., Diver, G. I. and Natal D. Jewo Annual and p. 17-20.
Han S. B., Bareks, S. C. Y. Handerson, streamment frame in welf-and poster frame in the second strength in the strength in the

# 11ab I. M. Harlus T. R. L. P. Lapp & Howsell and a Milean

Manually is along the and socially contraining the discretion of defenses that is Windley H 1, ed. Fred Barly Mission of the Paris, New York, Josef W 6, a man-

Windfer H F etc. Fins First Another in the first product of a product of a product model.
 Messe & X. Direl, Keylapath ranges channels and applied and a product model.
 Musse M B. Benn Republic control of some analysis of a product of an Armynia.
 Musse M B. Benn Republic control of some and armynia.
 Musse M B. Benn Republic control of some and armynia.
 Musse M B. Benn Republic control of some and armynia.
 Musse M B. Benn Republic control of some and armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.
 Musse M B. Benn Republic control of some armynia.

Marriels K. and Thipper B. W. Using and Physics are an ended on the model of the model of the second decision of the second deci

A. I. and P. Barra, and a second of a second of a non-construction for a second of a second o

## Ancient Archaean supracrustal rocks from the Limpopo Mobile Belt

### Peter C. Horrocks

Department of Geology, University of the Witwaterstand Jan Smuts Avenue, Johannesburg 2001, South Africa,

A preliminary study has been made to establish pressure, temperature and water activity parameters for the high grade metamorphism of the early Archaean supracrustal rocks exposed in the Limpopo Mobile Belt near Messina. South Africa. The results reported here indicate that a significant orogenic crustal thickness up to -30 km wm. developed before -3,100 Myr ago in the region.

The high-grade and poly-deformed supracrustal gneisses studied occur south-east of Messina in the Central Zone of the Limpop (Mobile Belt (Fig. 1). They are thought to have been deposited at least partly on a sialic basement made up of the 3,800 Myr old Sand River Gneisses, which are cut by 3,570 Myr old tholeittic dykes that have not been recognized in the supracrustal gneisses. The supracrustal gneisses were intruded by the anorthositic, gabbroic and peridotitic gneisses of the Messina layered intrusion ³ probably  $\rightarrow$ ,270 Myr ago 1 M Barton Jr, work in preparation). Subsequently, an important event of igneous and metamorphic activity affected all of these rocks  $\sim$  3,150 Myr ago⁴, and a second suite of -3,060 Myr old tholeittic dykes were intruded

spathic, but contain numerous interlavers and lenses of pyroxenitic amphibolite, quartzite, magnetite quartzite, garnet cordierite gneiss, cale-silicate gneiss and marble. The matic lithologies commonly preserve othopyroxene + clinopyroxene + amphibole + plagioclase + quartz + magnetite ± garnet assemblages, and frequently show prograde metamorphic textures in which orthopyroxene has replaced and overgrown amphibole, while some localities show coexisting clinopyroxene and garnet. Kelyphitic coronas predominatly made up of plagioclase are developed around the garnet in lithologies with abundant amphibole, and in some simples, the garnet is almost completely replaced, or remains only as a few scattered optically continuous remnants in the centres of these reaction coronas. Thus, these kelyphitic textures are thought to be the result of retrograde processes ref. 5, and P ( H) in preparation, and not due to a second prograde metamorphism as has been described for previously metamorphosed rocks with a resulting low water partial pressure. The metapelitic lithologies contain garnet cordierite + biotite + sillimanite (±kvanite) + plag oclase + quartz ± K-feldspar ± amphibole + orthopyroxene. The garnet is commonly distinctly zoned with more inclusion-filled cores, which are more pyrope rich, overgrown by thin more almandine-rich and inclusion-poor rims (work in preparation). Some localities preserve kyante overgrown by sillimanite. Peraluminous and magnesia rich rocks within these metapelitic

 garnet · phlogopite ± orthopyroxene gedrite, and these undersaturated assemblages apparently represent metamorphic residua after the extraction of minimum mett granitic anatectic hquids Symplectitic coronas about garnet are developed in places where the garnet is replaced by an intergrowth of radial orthopyroxene grains in plagioclase (Fig. 2). This garnet is relatively unzoned, and it is not obvious whether this reaction is prograde or retrograde. However, some samples preserve only spherical knots' comprising myrmekitic orthopyroxene grains in plagioclase suggesting the complete breakdown and replacement of garnet probably by a retrograde process similar

I lectron microprobe analyses of the above mineral assemblages mean that several thermodynamic techniques can be used to estimate some of the pressure, temperature and water activity parameters of the high-grade metamorphism these rocks have experienced. The analytical technique used natural and synthetic standards, and was routinely at le to repeat known international standards typically to within 2% for all relevant elements. Temperature estimates have been calculated using the following equilibria.

$$\mathrm{MR}(21, \Omega)^{-1} = \mathrm{MR}(21, \Omega)^{-1}$$

aMeSt O. + MeSt O. CaMeSt O. + Ma St O

- срх орх орх срх
- garnet opx
- $= Ca_1AI_5SI_5O_{12} + 3Mg_5SI_2O_{A}$ garnet opx

Mg Al-ShO₁, + 3CaFeSt₂O₆

- garnet cpx Fc1Al2Si3O12 + 3CaMgSl2O8
- garnet cpx

l e Al Si O + KMg AlSi₃O₁ (OH),

MgiAl ShO12 KFerAlSinO1 (OH)-

31 ALSLO. + 2Mg. ALSLO

cordierite garnet

 $^{2}Mg_{2}Al_{4}Si_{5}O_{18} + 2Fe_{4}Al_{5}Si_{5}O_{17}$ 



Fig. 1. A simplified geological map of part of southern Africa showing the location of Messina and the Limpopo Mobile Belt.



And the second sec

Table 1			



Fig.3 systems merce parts y and y and

If the keyphotes error and the second process provides the point of the point of the orthopy review research instance physical second product of the orthopy review research assemblances of the matter is an efficient preserver research obtained to the point of the point of the parameters were characterized by temperature of a construction of the preserver of the temperature of the construction of the preserver pressures up to 10 k (or 11) or When a construction of the matter recks were how with H. O entry of the the third press at during the high grant physical pressure the matter probably the entry theory and pressure the matter

Was sports and by the South African Council for
 I.I. and Indestrial Research, and is Contribution No. 56 in
 State Africa Contribution to the Internation in Geodynamics
 Prove to Depark T.N. Chillord W., schower K. B. Thompson,
 D. I. D. P. Luppe, J. M. Barten, b. and M. K. Watkeys for

- A REAL PROPERTY OF THE REAL PR
- 1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1

 $\begin{array}{l} \begin{array}{l} \mbox{ In the set } 1 \mbox{ Ad a mass } 1 \mbox{ Ad a mass$ 





and and the second second second





## Author Horrocks P C B Name of thesis The Precambrian Geology of an area between Messina and Tshipise Limpopo Mobile Belt 1981

PUBLISHER: University of the Witwatersrand, Johannesburg ©2013

## **LEGAL NOTICES:**

**Copyright Notice:** All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

**Disclaimer and Terms of Use:** Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.