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A B S T R A C T

There has been much interest in using the Microsoft Xbox 360 Kinect
cameras for visual servo control applications. It is a relatively cheap
device with expected shortcomings. This work contributes to the prac-
tical considerations of using the Kinect for visual servo control appli-
cations. A comprehensive characterisation of the Kinect is synthesised
from existing literature and results from a nonlinear calibration proce-
dure. The Kinect reduces computational overhead on image process-
ing stages, such as pose estimation or depth estimation. It is limited
by its 0.8m to 3.5m practical depth range and quadratic depth res-
olution of 1.8mm to 35mm, respectively. Since the Kinect uses an
infra-red (IR) projector, a class one laser, it should not be used out-
doors, due to IR saturation, and objects belonging to classes of non-
IR-friendly surfaces should be avoided, due to IR refraction, absorp-
tion, or specular reflection. Problems of task stability due to invalid
depth measurements in Kinect depth maps and practical depth range
limitations can be reduced by using depth map preprocessing and
activating classical visual servoing techniques when Kinect-based ap-
proaches are near task failure.
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1
I N T R O D U C T I O N

Robotics is the intelligent connection of perception to action.

— Michael Brady [1]

The problem of guiding a robot’s actions using visual feedback from
a camera arose at least four decades ago [2]. The modern term for
this is visual servoing. Visual servoing requires, at minimum, a single
camera, but, with the availability of RGB-D cameras, classical visual
servoing techniques have been reinvestigated and new methods and
applications have been developed.

The first industrial robots were envisioned to make manufacturing
more economical than cam control systems, by being adaptable to
new tasks [3]. As tasks grew in complexity, so did the fixtures that
were required to fix objects to precise locations for the robot to inter-
act with, negating the robot’s general-purpose or flexibility [4].

A robot without sensory feedback of its environment requires its en-
vironment to be structured. The environment must be co-engineered
to facilitate the specific robot [5] and the robot must know, a priori,
the location of objects it interacts with. Visual feedback can reduce
the required tolerance on the expected location of objects [6], allow-
ing the robot to work in a more unstructured environment without
explicit reprogramming of existing tasks.

There has been much interest in using the Microsoft Xbox 360 Kinect
camera for visual servoing applications [7–14]. Of these applications,
some do not explicitly state if they consider camera calibration and
depth distortion modelling [7, 8, 10, 13, 14], and some do not con-
sider the Kinect’s limitations, such as the depth camera’s sensitivity
to sunlight [9] or its near range limitation [13, 14].

Since the Kinect is a relatively cheap device, it is expected to have its
shortcomings. This research models the Kinect’s RGB and depth cam-
eras, conducts joint camera calibration using the Kinect Calibration
Toolbox (KCT) by Herrera [15], characterises the devices limitations,
and investigates some of the consequences of using the Kinect cam-
era for visual servo control applications.

1



1.1 research questions 2

1.1 Research Questions

This research addresses the questions:

1. How are the Kinect RGB and depth cameras modelled?

2. What practical considerations does the Kinect impose on visual
servo control applications?

1.2 Methodology

The research questions are addressed by following these steps:

• Model the Kinect RGB camera using the pinhole camera model.

• Model the Kinect depth camera using supporting literature.

• Calibrate the Kinect cameras using the KCT by Herrera [15].

• Characterise the limitations of the Kinect device.

• Given the calibrated models and limitations, discuss some of
the consequences of using the Kinect for visual servo control
applications.

1.3 Structure of the Research Report

Chapter 2 covers relevant literature on visual servoing, its limitations,
and Kinect camera modelling and calibration.

Chapter 3 covers briefly the topics of: pose, image formation, image
distortion, image sensors, and the intrinsic and extrinsic camera pa-
rameters. Readers familiar with these topics can skip this chapter.

Chapter 4 shows the Kinect characterisation, discusses and conducts
the calibration procedure, and analyses the results.

Chapter 5 covers basic visual servoing techniques, and discusses some
of the consequences of using the Kinect for visual servo control appli-
cations.

Chapter 6 addresses the research questions and concludes this re-
search.

Chapter 7 provides recommendations for future research.



2
L I T E R AT U R E R E V I E W

A literature survey on the basic techniques, advanced techniques, and
problems of visual servoing is presented. Additionally, visual servo-
ing in the context of the Kinect is presented. Kinect topics are then
discussed separately, in particular, its sensor design, characterisation,
calibration, depth distortion models, interference, and noise.

2.1 Visual Servoing

The earliest found IEEE visual servoing publication was released in
1985 (Figure 2.1), but visual feedback techniques date past four decades.
Shirai and Inoue’s 1973 publication [16] is generally regarded as the
first to show end-effector positioning using visual feedback.
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Figure 2.1: Ratio of visual servoing publications to total publication output,
based on the IEEE Xplore database.

To the author’s knowledge, Agin [17] first used the term visual servo-
ing in 1977 at SRI International, for coarse positioning of an industrial
manipulator mounted with a camera for a bolt insertion task.

Most of the basic visual servoing fundamentals were established by
the early 1990s, which followed with the first visual servoing tutorial
by Hutchinson et al. [18] in 1996.

3



2.1 visual servoing 4

Early advanced techniques were developed at the turn of the mil-
lennium, which followed with updated tutorials by Chaumette and
Hutchinson [19, 20] in 2006 and 2007 respectively.

Visual servoing schemes can be classified in a number of ways. The
main classifications are based on: use of dynamic, closed-loop visual
feedback control; use of the robot’s closed-loop joint control; use of a
three-dimensional target object model; and camera configuration.

Early visual feedback systems, static look-and-move, cycled a closed-
loop joint controlled robot through a sequence of three mutually ex-
clusive steps to complete a task [21]: look, plan, and move. While the
robot was busy moving, it could not look or plan the next incremental
position to move. While these systems had elements of visual sensing,
they lacked dynamic control, hence they are no longer used.

Later visual servo systems, dynamic look-and-move, executed every step
in parallel [21]. These systems used a closed-loop visual feedback
controller to output velocity commands to the joint controller, making
the system more responsive, but dynamic performance and stability
must be evaluated for acceptable transient response.

An indirect system is synonymous with a dynamic look-and-move sys-
tem [22]. In contrast, a direct system uses the vision-based controller
to directly stabilise a robot with no joint controller [21].

Weiss et al. [21] originally proposed the distinction between visual
servo (direct) systems and dynamic look-and-move systems. The term,
dynamic look-and-move, is depreciated, and now visual servo sys-
tems generally refer to indirect systems [4]. Indirect systems are pre-
ferred because a joint controller handles low sampling rates from the
camera and robot dynamics and kinematic singularities are hidden
from the vision-based controller [18]

In model-based visual servoing, the three-dimensional model of the
target object is available [22]. The target object model and camera
intrinsic parameters are required for pose (position and orientation)
estimation algorithms. Otherwise, the method is model-free.

An eye-in-hand, or end-point closed-loop, system mounts the camera by
the robot’s end-effector. Camera motion is coupled to the robot’s mo-
tion. An eye-to-hand, or end-point open-loop, system has the camera
fixed in the workspace observing the target object and robot [4].1

For visual servoing task functions, the desired end-effector reference
is specified using either predefined Cartesian references or taught
image references [23].

1 These end-point definitions differ to Hutchinson et al. [18].



2.1 visual servoing 5

Predefined Cartesian references are naturally specified using pose,
usually from a known model, but cause the steady state end-effector
pose accuracy, or sensitivity, to suffer in the presence of camera cal-
ibration errors, robot calibration errors, and target object modelling
errors [24].

Taught image references are obtained via an offline method, teach-by-
showing [25], where the robot’s end-effector is brought to the desired
end-effector pose and a corresponding image is captured, or taught.
Calibration and modelling errors are partially circumvented [24].

2.1.1 Basic Techniques

There are two basic approaches to visual servoing: Position-Based Vi-
sual Servoing (PBVS), or three-dimensional visual servoing; and Image-
Based Visual Servoing (IBVS), or two-dimensional visual servoing.2

These control schemes are identified by their feedback signal. The
strengths and weaknesses of each method is discussed.

PBVS control schemes regulate end-effector pose in Cartesian space.
Pose estimation is used to determine the relative pose error from the
desired end-effector pose. This method bears resemblance to regulat-
ing a robot along a geodesic Cartesian trajectory.

There are few publications on PBVS. Westmore and Wilson [26] investi-
gated the feasibility and performance of using the Extended Kalman
Filter (EKF) for real-time PBVS. Their static object experiment was suc-
cessful, but it was limited to two-dimensional position control. The
three-dimensional control case and complete PBVS design methodol-
ogy was later demonstrated by Wilson et al. [27].

Since PBVS regulates pose, and not the image, the resulting Cartesian
trajectory does not guarantee that the image features of a target object
stays within the camera’s field of view (a visibility constraint), which
causes pose estimation to fail. Such a problem can be avoided by
using trajectory planning [4] or certain PBVS control laws [23].

IBVS control schemes regulate image features directly in image space.
The position of a set of image features implicitly defines a pose. By
extension, the current image and reference image implicitly define
the current pose and reference pose, respectively. Hence, regulating
the current image to look like the reference image should move the
end-effector towards the desired pose.

Sanderson and Weiss [28] proposed the first direct IBVS system. Simu-
lations of direct IBVS using adaptive control techniques were demon-
strated by Weiss et al. [25], but were limited to three or less Degree of

2 Position-based and pose-based visual servoing are used interchangeably.
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Freedom (DOF) manipulators due to the low sampling rate and time
delay of their image processing system. An indirect 4-DOF IBVS system
was later shown by Feddema and Mitchell [29], who overcame the
vision sampling rate problems using an asynchronous feature-based
trajectory generator. An indirect 6-DOF IBVS system was demonstrated
by Rives et al. [30] and Chaumette et al. [31], who formalised visual
servoing analysis using the task function approach.

In contrast to PBVS losing sight of the target object, IBVS control schemes
have no control over their Cartesian trajectories. Given the position of
an image point in the current image and its position in a reference
image, the IBVS control law pushes this image point from its current
position in a straight line towards its reference position. This trajec-
tory, or the image feature trajectory, requires the robot’s joints to do
unnatural movements. If large rotations about the camera’s optical
axis are required, the robot may exceed its joint limits [23].

IBVS requires computation of the image Jacobian, or interaction ma-
trix, which relates camera spatial velocity to image feature velocity.
The image Jacobian’s form depends on the choice of image features,
with point features being the most common form. Rives et al. [30]
solved the image Jacobian for geometric primitives, such as points,
lines, and circles. Other image features include ellipses [32] and im-
age moments [33, 34].3

Most image Jacobians are a function of feature depth. Depth can be
measured or estimated. Online estimation solutions to this problem
include: partial three-dimensional reconstruction [29], constant depth
[32], adaptive control [35], and depth from image and robot motion
[36]. A depth-independent image Jacobian approach is presented here
[37], but only for eye-to-hand (fixed camera) systems.

2.1.2 Stability, Robustness, and Sensitivity

IBVS with taught image references is known to be tolerant towards
image quantisation errors, measurement noise [38] and camera cali-
bration errors [39] - that is, systematic errors. Hence the errors from
the reference and measurement cancel out. Despite this, a case of IBVS

failure due to poor camera calibration and noise has been reported in
[40], and, even with accurate camera calibration, care must be taken
with regards to depth estimation errors of the target object [41, 42].

In contrast, PBVS control is generally said to be unstable in the pres-
ence of sensor errors. This is an often cited PBVS disadvantage. Janabi-
sharifi et al. [23] argued that PBVS instability is due to the use of prede-
fined Cartesian references. They said that PBVS and IBVS performance

3 Rives et al. [30] used the term feature sensitivity matrix for the interaction matrix.
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is expected to be the same when both schemes use the same refer-
ence type (predefined or taught references), and performance should
be evaluated with a common framework.

Given a common framework, the performance issues lie with the cam-
era, target object, and robot modelling errors. Under these errors [23]:
image feature trajectories will warp when using taught image refer-
ences; and the steady state error will increase when using predefined
Cartesian references.4

Local asymptotic stability of IBVS was shown by Espiau et al. [32],
making IBVS a local-only control method; if the initial camera dis-
placement (relative to the target pose) is too large, the current pose
may fail to converge to the desired pose.

At least three point features are required for IBVS control schemes,
such that the image Jacobian matrix has a rank of six and the image
Jacobian inverse exists. Then, the camera motion equations can be
solved, but this solution is not unique. There are four solutions [43],
or global minima, where both the camera spatial velocity and control
error, or task function error, are zero. A unique solution is available
if at least four point features are used, for which the image Jacobian
pseudo-inverse has a least squares error solution [38].

When using four or more image point features, the dimension of the
image Jacobian pseudo-inverse kernel is non-zero. This indicates that
sometimes local minima exist [43], that is, camera spatial velocity is
zero and the task function error is non-zero. If a IBVS control law with
a constant image Jacobian pseudo-inverse is used, the unique global
minimum can be reached. Nonetheless, this control law sometimes
causes image point features to leave the camera’s field of view, caus-
ing the image Jacobian to become rank deficient.

Tasks requiring a rotation around the (optical) z-axis follow unsatis-
factory Cartesian trajectories, as IBVS enforces shortest image feature
trajectory. Instead of rotating, a backwards camera translation hap-
pens first before moving towards the target object. This effect is called
camera retreat, which is a result of motion control coupling [43].

A required 180° rotation about the z-axis is an extreme case which re-
sults in task singularity. The initial and desired image point features
are reflections about the camera’s principal point. Camera retreat oc-
curs towards depth at infinity, where all image point features lie at
the centre of the image, or principal point. Either the robot becomes
joint-limited first, or the image Jacobian becomes rank deficient.

Also on 180° rotation problems, some IBVS control laws cause a for-
wards camera translation (camera advance) towards depth at zero,

4 Trajectory warping increases the task convergence time, since regulating along a
non-straight line takes longer than along a straight line.



2.1 visual servoing 8

where hopefully all image point features are out of the camera’s field
of view before colliding with the target object.

These characteristic problems of IBVS, local minima and motion con-
trol coupling, do not exist for PBVS [23].5 PBVS problems usually in-
volve pose estimation algorithms and visibility constraints, which
incur computational costs. Characteristic problems of IBVS are ad-
dressed by advanced visual servoing techniques.

2.1.3 Advanced Techniques

Several categories of (early) advanced visual servo schemes exist that
mix PBVS and IBVS behaviour together to avoid their respective dis-
advantages. Major categories are covered, but only a handful of com-
monly encountered schemes are discussed.

Hybrid techniques, such as the Koichiro Deguchi (or KD) method [45]
and 2-1/2-D visual servo [46], have been proposed. These techniques
are homography-based, which find the plane-to-plane relationship, or
homography matrix, between the current and reference images. The
homography matrix is then decomposed into separate rotation and
translation quantities for decoupled motion. Since motion control is
decoupled, IBVS local minima can be avoided. Additionally, partial
camera displacement estimation using the homography matrix does
not require the three-dimensional object model.

With homography-based approaches, however, at least four and eight
matching image feature points are required for coplanar objects and
non-coplanar objects, respectively. The homography matrix is also
susceptible to noise, which makes the performance of hybrid schemes
degrade more than plain IBVS approaches [47].

Specifically, the KD method [45] is designed around the visibility con-
straint and translation motion is constrained to take the shortest path,
but it does not address task singularity and stability issues. In con-
trast, 2-1/2-D visual servo [46] designs for robustness [48] and a task
singularity free workspace, but adaptive control of gain and system
parameters is required to enforce the visibility constraint, which in-
flicts a slow time-to-convergence due to gain adaptation.

For partitioned visual servo schemes, the XY/Z partitioned scheme
by Corke and Hutchinson [44] acknowledged that motion control cou-
pling is a z-axis translation phenomenon and task singularities are a
z-axis rotation phenomenon. These two motion controls are isolated,
which involves computing two computationally inexpensive image

5 The camera retreat problem is also called the Chaumette Conundrum [44].
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features that are mutually motion decoupled. Still, this method is sus-
ceptible to image feature points leaving the camera’s field of view.

A simple PBVS and IBVS switching controller was proposed by Gans
and Hutchinson [49]. Each controller had an accompanying Lyapunov
function with a chosen threshold. While the PBVS controller was ac-
tive, the switch to IBVS control happened when the IBVS Lyapunov
function exceeded its threshold and vice versa. PBVS flaws are miti-
gated, but characteristic problems of IBVS still exist.

More recently, authors have taken a different approach, using direct
visual servoing methods. In contrast to geometric feature-based vi-
sual servoing methods, direct methods do not require any image fea-
ture extraction, matching, and tracking, and instead perform align-
ment of whole images.6 Since whole images are used, there is high re-
dundancy, making final positioning errors much smaller than feature-
based methods and tasks more robust towards partial occlusions.
This is very useful for tasks in complex scenes.

One example of direct methods is photometric visual servoing by
Collewet and Marchand [51], where whole image luminance is used
as a visual feature. Only the corresponding reference image is re-
quired to perform a task, but tasks may diverge due to illumination
variations. Variation sensitivity depends on the illumination model.
The authors proposed that complex illumination models may provide
better insensitivity.

Of particular interest is the direct dense depth map-based visual ser-
voing by Teulière and Marchand [13], where the control law uses
whole depth maps from a Kinect sensor. Depth maps are insensitive
to illumination variations, offering improved stability over photomet-
ric visual servoing. Nonetheless, this method’s limitations lie with the
Kinect, which has limited range and inability to sense outdoors due
to infrared light from sunlight, as it is an active infrared sensor.

An extension to Teulière and Marchand [13] was presented by Ho-
jaij et al. [14]. They designed a two phase controller which first per-
formed coarse positioning using a IBVS controller with Speeded Up
Robust Features (SURF), then switched to the direct controller for fine
positioning. The fine positioning controller is activated when crossing
a hardcoded depth threshold with respect to the target object.

Direct methods are essentially IBVS methods with redundant features,
hence they suffer similar limitations. Their Cartesian trajectories are
non-optimal. In addition, control laws of direct methods are more
nonlinear, so this effect is more pronounced. Experiments by [52] us-
ing a hybrid method alleviate this problem.

6 Direct visual servoing is a subclass of nonmetric visual servoing [50].
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With IBVS, tasks will fail with large initial displacements. Similarly,
direct methods fail when there is insufficient overlap between cur-
rent and reference images or wider occlusions, that is, they have lim-
ited domain of convergence. Improvements to domain of convergence
have been proposed using hybrid methods [53] and different optimi-
sation techniques [50].

2.2 Microsoft Kinect

The Kinect is Microsoft’s vision and voice sensor, used by their Xbox
gaming devices. It has a colour (RGB) camera, a depth camera, a
multi-array microphone, and a tilt motor at its base which allows it to
pitch [54]. Its depth camera is an IR camera and projector pair. Mea-
surements are accumulated internally and either raw or processed
data is transmitted externally via USB.

Microsoft’s Kinect SDK can be used to infer information such as hu-
man body location and track body movement. For game designers,
this kind of information is useful for designing transparent user in-
terfaces with intuitive controls.7

2.2.1 Kinect-based Research

Figure 2.2: The Kinect for Xbox 360.

The Xbox 360 Kinect was advertised as a gaming interface (Figure 2.2),
and, within three months of its November 2010 release, it sold over 10
million units [54]. Its low cost and off-the-shelf availability promoted

7 Otherwise known as a Natural User Interface (NUI).
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its popularity with researchers. Microsoft termed the development of
many creative Kinect applications the “Kinect Effect” [54].

Many open source software organisations developed computer vision
library and robotics middleware support, allowing for fast prototyp-
ing of Kinect-based experiments.8

Kinect vision-based research and applications have been surveyed ex-
tensively by Han et al. [55] and Zhang [54]. In addition, some practical
robotics examples include:

• Quadrotor + Kinect by Bouffard et al. [56], a project which re-
ceived wide media coverage, and has a YouTube video with
over one million views.

• TurtleBot, a personal robot kit from the Open Source Robotics
Foundation, Inc. [57] (formerly Willow Garage) for researchers
and hobbyists.

• Kinect-based visual servoing: PBVS with redundant joints [7],
object handling [8–10], contour following [11], robust and fast
object tracking [12], and direct and hybrid methods [13, 14].

• And more recently, Future Robotic Interfaces at NASA’s Jet Propul-
sion Laboratory (JPL) [58], using the improved Kinect 2.

2.2.2 Software Drivers

Three drivers are available for communicating with the Kinect [55, 59].
Two common choices used for research are the libfreenect driver
by OpenKinect and OpenNI driver by PrimeSense.9 The third driver,
bundled in the Microsoft Kinect Software Developer Kit (SDK), is pro-
prietary and only runs on Windows 7 (or above) operating systems.

The OpenNI driver is known to enforce factory calibrated settings and
give per-pixel depth values in millimetres [60]. Only the libfreenect

driver is able to provide per-pixel disparity values in Kinect dispar-
ity units (kdu), which is a widely used metric for comparing depth
accuracy measurements [60–63].

8 Organisations such as: Open Source Computer Vision (OpenCV), Point Cloud Library
(PCL), and Robot Operating System (ROS)

9 The official PrimeSense sensor module GitHub repository does not contain any com-
piled binaries https://github.com/PrimeSense/Sensor. Cross-platform binaries can
be found in the SensorKinect repository, maintained by a user known as avin2
https://github.com/avin2/SensorKinect. PrimeSense was acquired by Apple Inc.
and official support for OpenNI has since dropped.

https://github.com/PrimeSense/Sensor
https://github.com/avin2/SensorKinect
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2.2.3 Depth Sensor Design

Since the Kinect’s hardware is proprietary, its technology is undis-
closed. Early efforts to understand the Kinect were published as in-
formal online sources.10 According to Zhang [54], Microsoft licensed
their depth-sensing technology from PrimeSense. Since there is no
direct link, Kinect characterisation authors [61, 62, 65–67] have specu-
lated that the technology is explained in the patent by Freedman et al.
[68], which was assigned to PrimeSense.

Freedman et al. [68] explains that PrimeSense’s technology computes
the three-dimensional coordinates of points using triangulation. Com-
puting such a point requires the point to be visible in at least two im-
ages, each from a different view [4].11 To generate the first image, a
projector projects a fixed speckle pattern onto a region, which is cap-
tured by a camera. A stored reference pattern with known distance
from the sensor is used as the second image. This reference pattern is
captured during factory calibration.

The speckle and reference patterns are not stated to be the same, but
it is highly likely that they are similar so that the correspondence
problem (or image pair pixel matching) can be solved with less com-
putation. A more in-depth discussion about this technique is given
by Chow and Lichti [67]. Martinez and Stiefelhagen [69] suggest a
possible architecture to emulate the Kinect’s internal processing.

The IR projector’s light source is not limited to IR, but the near-IR

optical band is preferred for its availability of low-cost components
[68]. Zhang [54] notes that the Kinect does indeed use an IR projector
and camera pair for depth-sensing.12

Each Kinect depth map is a greyscale image. If a pixel is black, it
is an invalid depth measurement [54], or zero depth [66], because the
projected pattern cannot be seen in that region by the IR camera. This
has known to occur when points are too far or too close the sensor,
regions are shadowed due to occlusion, surfaces are not IR-friendly,
or projected pattern regions are exposed to sunlight.

2.2.4 Kinect Disparity Models

The relationship between depth and disparity (the pixel difference of
the same image point between two images) is linear, by way of sim-

10 Search ChipWorks or iFixit for Kinect Teardown. URLs are not provided. ChipWorks
have changed theirs before, which made reference tracing difficult in [62, 64].

11 Using two cameras, or a single moving camera.
12 See http://openkinect.org/wiki/Hardware_info for more information about the IR

projector and camera pair.

http://openkinect.org/wiki/Hardware_info
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ilarity of triangles [62, 65]. The Kinect, however, returns normalised
11-bit integer disparity values (kdu), and not raw image disparity.

Denormalisation of raw image disparity is required, using denormal-
isation factors. Such models are suggested by Smisek [64, pg. 12],
Khoshelham [70], Macknojia et al. [65], and Herrera et al. [60, 71].

Since the normalised disparity, or Kinect disparity, is quantised, the
measurable depth range is also quantised. As a result, depth measure-
ments are subject to depth uncertainty. This uncertainty is bounded
by a depth value’s adjacent quantised values.

2.2.5 Depth Resolution and Accuracy

The minimum measurable change in depth, or quantisation error, at
different distances from the sensor is called depth resolution. This is
found to change quadratically with distance [61, 62, 65, 72].

Smisek et al. [61] find depth resolution experimentally, by moving the
Kinect away from a planar target and recording the quantisation error
between two consecutive values around a depth map’s centre.

Macknojia et al. [65] construct a depth resolution model and verify it
empirically. Their quantisation error is constructed using two consec-
utive depth values expected by their Kinect disparity model.

2.2.6 Calibration

Microsoft’s factory calibration of the Kinect is based on the technique
by Zhang [54, 73]. Khoshelham and Elberink [62] do early work on im-
proving depth accuracy, but perform RBG and IR camera calibration
separately using proprietary software, Photomodeler. Smisek et al.
[61], Smisek [64] calibrate the RGB and IR camera separately using
the Camera Calibration Toolbox for Matlab by Bouguet [74]. In [64],
the IR projector is blocked and the scene is illuminated using a halo-
gen light for the IR camera to capture calibration images.

Herrera et al. [60] argue that Khoshelham and Elberink’s and Smisek
et al.’s approaches are incomplete, since minimising residuals (for a
camera parameter) of the RGB and IR camera separately does not
guarantee the minimum residuals when using the cameras jointly.

For this reason, joint calibration is investigated by Zhang and Zhang
[75] and Herrera et al. [60]. Both show improvements to sensor ac-
curacy over individual calibration. Herrera’s calibration procedure is
available publicly as the KCT [15].



2.2 microsoft kinect 14

Raposo et al. [63] make incremental performance improvements on
Herrera et al.’s method by using different initial parameters and a
smaller data set to shorten the calibration error minimisation run-
time. This method, however, requires the dimensions of the calibra-
tion target. Chow and Lichti [67] further improve on depth accuracy
by modelling the depth systematic errors using bundle adjustment.

Using two Kinect sensors, Herrera et al. [60] discovered the variability
of camera parameters. Colour and depth reprojection errors increase
considerably when using foreign calibration results. The exact param-
eters that are variable, however, are unmentioned. Hence, this is an
opportunity for further investigation.

2.2.7 Depth Distortion

The Kinect exhibits depth (or disparity) distortion that is more pro-
nounced on close range measurements. Smisek et al. [61] show that
this error is highly correlated on depth maps captured between 0.7m
to 1.3m. It is corrected using a depth correction image that is superim-
posed on the captured depth map, reducing the standard deviation
of depth reprojection errors. The depth correction image is created
using the mean error of the captured close range images.

Alternatively, Herrera et al. [60] argue that the depth distortion is an
exponentially decaying fixed pattern and correcting the Kinect dis-
parity units directly yields more accurate results than Smisek et al.’s
model. Both of these models are non-parametric and only account
for IR camera distortions. Yamazoe et al. [76] propose a parametric
model for depth distortion that models both the IR camera and pro-
jector. Their model parameters are estimated by minimising the plane-
fitting errors to a plane with known dimensions.

2.2.8 Depth Sensor Interference and Noise

A survey of Kinect-equipped mobile robots [77] notes the poor per-
formance of the Kinect for outdoor work. The projected pattern of
the Kinect is inherently dim, so exposure to sunlight quickly satu-
rates depth measurements. If outdoor work is absolutely necessary,
pairing the Kinect with a stereo camera is proposed [78].

Fiedler and Heinrich [79] find that depth measurements are sensitive
to device temperature changes, which increases focal lengths of the
RGB and IR camera by as much as 2mm/°C.
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Experiments by Haggag et al. [72] show that depth measurements
fluctuate due to thermal illumination from heated surfaces, making
the Kinect unsuitable for use in high temperature environments.

Depth measurements also fluctuate on non-heated stationary planar
surfaces [72], but less wildly than from thermal illumination. Mallick
et al. [66] call this temporal noise and suggest a model, but acknowl-
edge that it behaves like depth distortion. Hence, a tuned depth dis-
tortion model should sufficiently compensate for this noise.

Mallick et al. [66] define other noise classes. Specifically, shadow noise
is the depth hole formed behind occlusions due to IR camera and
projector displacement and lateral noise is the depth measurement
fluctuation around object edges due to depth discontinuities. These
noise types increase with the distance of background objects.

Multiple Kinects will interfere with each other when their projected
patterns overlap. Workarounds include setting patterns at different
angles or cycled shuttering using software, hardware, or mechanically.
This topic discussed in detail here [66, 72, 80].

2.3 Summary

Basic and most advanced visual servoing techniques require some
depth estimation or measurement. While depth errors are not prob-
lematic, using a depth camera can simplify control law computation.
A candidate depth sensor is the Kinect, as it is low cost and has a large
body of characterisation research. Based on the literature survey and
the author’s knowledge, there is no literature on Kinect characterisa-
tion specifically for visual servoing applications.



3
G E O M E T R I C C A M E R A M O D E L L I N G

A camera records visual information from the world as two-dimensional
images. In practice, these images have observable errors due to phys-
ical phenomena or manufacturing defects. A camera model acknowl-
edges these problems, such that they can be parametrised and cor-
rected. The intrinsic, extrinsic, and lens distortion parameters for a
geometric camera are derived in the following sections.1

3.1 Planar Transformations

Planar transformations map coordinates from one coordinate frame
to another. They take the form

p̄ ′ = Mp̄ (3.1)

where p̄ is an augmented coordinate, M is a homogeneous transfor-
mation matrix, and p̄ ′ is the transformation of p̄.

3.1.1 Translation

x

y

x

y

tx

ty

Figure 3.1: Two-dimensional translation.

Translation in one dimension is written x ′ = x + tx (Figure 3.1). A
positive translation shifts a coordinate frame’s position forward. The
two-dimensional translation matrix is

X(tx, ty) =

1 0 tx

0 1 ty

0 0 1

 . (3.2)

1 The notations used throughout follow Corke [4], Szeliski [81], and Bouguet [74].
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3.1.2 Rotation

x

y

x
y

θ

Figure 3.2: Two-dimensional rotation.

Counter-clockwise rotation about a coordinate system’s origin is illus-
trated in Figure 3.2, where θ is its rotation angle, or orientation. The
two-dimensional rotation matrix [4] is

Rz(θ) =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 . (3.3)

The three-dimensional rotation uses a sequence of three two-dimensional
rotations about different axes.2 Rotation about the z-axis is given in
Equation 3.3. Rotations about the x and y axes [4] are

Rx(θ) =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 (3.4)

and

Ry(θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 . (3.5)

Commonly used sequences are ZYZ and XYZ (roll-pitch-yaw), that
is, Rzyz = Rz(φ)Ry(θ)Rz(ψ) and Rxyz = Rx(θr)Ry(θp)Rz(θy), re-
spectively. A rotation is undone, or reversed, by using its transposed
matrix, given that RT = R−1 is a property of orthonormal matrices.

3.1.3 Relative Pose

An object’s position and orientation is called its pose. Pose is meaning-
less without stating a reference frame. Given two coordinate frames
{A} and {B}, relative pose of frame {B} with respect to frame {A} is
denoted A

Bξ (Figure 3.3).

2 These sequences, or Euler angles, are discussed by Corke [4].
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x

y

x

y

A
Bξ

{A}

{B}

Figure 3.3: Relative pose between two coordinate frames.

Relative pose is interpreted in either one of two ways:

1. {B}’s location relative to {A}; each frame is a different object.

2. {A}’s motion to get to {B}; both frames are the same object.

One way to represent pose is the homogeneous transformation ma-
trix, ξ(t,θ) ∼ T(t,θ).3 The three-dimensional pose matrix [4] chains
together the translation and rotation matrices

T = X(t)R(θ) =

[
R t

0 1

]
4×4

, (3.6)

which has an inverse

T−1 =

[
R t

0 1

]−1
=

[
RT −RT t

0 1

]
. (3.7)

Pose has an important property called compounding: given three co-
ordinate frames {A}, {B}, and {C}, if poses ABξ and BCξ are known, then
the two known poses can be compounded to find A

Cξ.

As an example, consider a small room with a table at its centre. Atop
the table sits two objects (Figure 3.4). Usually, the table’s location is
described with respect to the room. Similarly, the objects’ location are
described with respect to the table.

Figure 3.4: Objects in three-dimensional space.

3 Different types of pose representations are discussed by Corke [4].
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With each object stripped to its coordinate frame (Figure 3.5), it is
possible to follow, or compound, the pose between the room and ta-
ble and the pose between the table and its objects, to find the pose
between the room and the objects.

{Room} {Table}

{Bottle} {Box}

Figure 3.5: Coordinate frames in three-dimensional space.

Using T ∼ ξ for pose, composition is matrix multiplication

A
CT = A

BT B
CT

=

[
A
BR A

B t

0 1

][
B
CR B

Ct

0 1

]

=

[
A
BR B

CR A
BR B

Ct +AB t

0 1

]
. (3.8)

Essentially, T has the planar transformation form (Equation 3.1), Ap̄ =
A
CT Cp̄, and has the inverse Cp̄ = A

CT−1 Ap̄ = C
AT Ap̄.

3.2 Image Formation

Photographic images are formed from structured light rays.4 This
structure holds geometric information, while the light rays carry spec-
tral information, which depend on ambient light and the reflection (or
absorption) of different surfaces (Figure 3.6).

Pinhole
camera

Point
source

Figure 3.6: Ray tracing from a point source to a pinhole camera.

4 Light can be interpreted as either rays or waves [82].
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The most basic camera is the pinhole camera. A pinhole has lim-
ited control over the light rays it captures. This allows it to capture
either, sharp images with low brightness, or blurred images with
high brightness. Both cases are not very useful. Nonetheless, pinholes
demonstrate the fundamentals of image formation.

An ideal pinhole allows one world point to project to image point.
The formed images have low brightness and they are inverted, due to
how pinholes allow light rays to go through (Figure 3.7).

Figure 3.7: Ideal pinhole image formation.

Naturally, image brightness increases by capturing more light, that
is, by increasing a pinhole’s radius. This causes, however, one world
point to project to multiple image points, because more light rays are
allowed to pass through the pinhole. Multiple images form that shift
and overlap, causing the result to blur (Figure 3.8).

Figure 3.8: Blurred pinhole image formation.

Cameras can only use light rays within their line of sight. This in-
creases along with a pinhole’s radius, but it is self-defeating without
control over light rays. To control these, pinholes must use a lens.
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3.2.1 Thin Lens Optics and Focus

A lens converges parallel light rays, that are perpendicular to it, to its
(back) focal point f . This point is at a length away from the lens called
the focal length f. The focal length of a lens measures how strongly it
bends light rays (Figure 3.9).

z
f

f

Figure 3.9: A lens converges collimated light to its focal point.

By convention, the z-axis is central and normal to the lens, pointing
away from the camera and commonly called the optical axis. The
optical centre, or z = 0, is the lens’ equivalent pinhole (Figure 3.10).

The plane cutting the focal point, perpendicular to the optical axis, is
called the (back) focal plane. Parallel to it is the (back) image plane.
The image plane intersects incoming light rays, which captures a 2-
dimensional image on it (Figure 3.10).

z
fz = 0

Back
focal plane

Back
image plane

Figure 3.10: Optical centre, focal plane, and image plane.

Light ray optics can be shown basically using the thin lens. The thin
lens equation [4] is

1

f
=

1

zw
+
1

zi
, (3.9)

where:

f focal length [mm]

zw distance between world point and lens [mm]

zi distance between lens and image point [mm]

that is, given a thin lens with focal length f, a world point at zw
projects to its sharpest image point at zi (Figure 3.11, adapted [81]).5

5 The thin lens equation is parallel addition, essentially.
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z

zw zi

f

Figure 3.11: Thin lens optics.

Here, images captured on the image plane, placed at zi, are in focus,
because all converged image points lie on the image plane.

Using the thin lens, shifting the optical centre along the optical axis
scales the image’s size. This action is called zoom. Additionally, there
are two other actions, pan and tilt, which are rotations about a lens’ x
and y axes, respectively (Figure 3.12).

x

y
z

Pan

Tilt

Figure 3.12: Pan and tilt.

In most situations, a camera views objects from an angle, and pro-
jected images are no longer parallel to the lens (Figure 3.13).

z

zw1 zi1

zw2 zi2

Figure 3.13: Viewing objects from an angle.

Here, the image plane can be placed at zi1, zi2, or in-between. Con-
verged image points that touch the image plane are in focus, while
surrounding image points are slightly out of focus; an image is only
in focus within a region, and image focus becomes ambiguous.
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The length between the nearest and furthest out of focus image points,
which are acceptably sharp, is called the depth of field. This is a phys-
ical constraint, but it is less noticeable for objects further away.6

Equation 3.9 can be arranged as a translated hyperbola

zi = f
zw

zw − f
. (3.10)

It is obvious that ∞ > zw > f⇒ f > zi > 2f, or rather zi lies between
f and 2f, if zw lies between ∞ and 2f.7

If zw is sufficiently greater than f, then zi will be sufficiently close to
f (Figure 3.14). Acceptable sufficiency depends on the application. As
an example, if f = 18mm and zw = 1.8m, then zi = 18.18mm; that
is, zw = 100f⇒ zi = 1.01f.

This behaviour is reminiscent of Figure 3.9, which illustrates how a
lens’ focal length is measured. Indeed, light rays from world points
that are far enough will appear to be collimated.
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Figure 3.14: Thin lens behaviour using focal length multiples.

If zw � f ⇒ zi ≈ f, then the whole image is nominally in focus on
the focal plane; image focus is well defined. Also, the image plane is
easily located if it coincides with the focal plane, such that it is at a
distance, f, away from the lens.

Now, a lens focuses multiple light rays from one world point to one
image point. When multiple images form, they overlap in the same
position, increasing the image brightness, while keeping image sharp-
ness (Figure 3.15).

6 A lens’ aperture size and camera’s exposure time can be adjusted to increase depth
of field, but the added latency may be unacceptable for real-time applications.

7 zw and zi are interchangeable.
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Figure 3.15: Focused image formation using a lens.

In practice, lenses are cascaded for finer adjustment over f. Hence, f
usually represents a lens system’s effective focal length.

3.2.2 Perspective Transform

The relationship between a three-dimensional point cP = (X, Y,Z)
and its image projection cp = (x,y) is modelled by the perspective
transform (Figure 3.16).

x

yz

{C}

cP = (X, Y,Z)

cp = (x,y)

f

Back
image
plane

Figure 3.16: three-dimensional point projection through an equivalent pin-
hole.

The lens’ frame is attached with the camera’s frame, {C}. {C}’s origin
coincides with the lens’ optical centre, or equivalent pinhole. It is
obvious that P and p are related via similarity of triangles,

x

f
=
X

Z
, (3.11)

y

f
=
Y

Z
. (3.12)

It is more convenient to use the central projection model, which in-
stead uses the front image plane. This plane is the reflection of the
back image plane about the optical centre (Figure 3.17).



3.2 image formation 25

x

yz

{C}

cP
cp
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f

f

Front
image
plane

Back
image
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Figure 3.17: Central projection model.

A non-inverted image is formed on the front image plane. This plane,
from the optical centre’s point of view, is consistent with an observers’
point of view, such that cP and cp move in the same direction.

3.2.3 Normalised Image Plane

A common intermediate step between cP and cp is to use normalised
image coordinates [60, 74, 83], that is, image coordinates projected
onto the plane at z = 1 (Figure 3.18).

x

y

z

{C}

cP

cp

pn = (xn,yn) f

z = 1
Front
image
plane

Normalised
image
plane

Figure 3.18: Normalised image plane and coordinates.

The normalised three-dimensional point of cP is

p̄n =

xnyn
1

 =

X/ZY/Z
Z/Z

 = CPn. (3.13)
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It follows that pn is scaled by f to obtain cp

cp̄ =

f 0 0

0 f 0

0 0 1

 p̄n. (3.14)

The normalised image coordinate pn is an unscaled intermediary for
the theoretical image projection cp which is unobservable in the pres-
ence of image distortions.

3.2.4 Geometric Lens Distortion

All lenses exhibit some sort of distortion that obfuscates the informa-
tion on a projected image. The most prominent distortions are radial
and tangential distortions (Figure 3.19, adapted [84]).

δr δt
pn pdn

x

y

{C}

Figure 3.19: Radial and tangential lens distortions on the normalised plane.

Geometric distortions are systematic errors, which are easily corrected
in software once parametrised. Let r2n := ||pn||

2 = x2n + y2n, then the
distorted normalised image coordinate is

pdn =

[
xdn

ydn

]
= pn + δr(xn,yn) + δt(xn,yn) (3.15)

= pn +
(
k1r

2
n + k2r

4
n + k3r

6
n

)
pn︸ ︷︷ ︸

δr(xn,yn)

+

[
2p1xnyn + p2(r

2
n + 2x2n)

p1(r
2
n + 2y2n) + 2p2xnyn

]
︸ ︷︷ ︸

δt(xn,yn)

=
(
1+ k1r

2
n + k2r

4
n + k3r

6
n

)
pn

+

[
2p1xnyn + p2(r

2
n + 2x2n)

p1(r
2
n + 2y2n) + 2p2xnyn

]
= ∆r(xn,yn)pn + δt(xn,yn). (3.16)
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This is the Brown-Conrady distortion model [85],8 parametrised by
the low-order (normalised) radial and tangential distortion coefficients
(k1,k2,k3,p1,p2). There are higher-order distortion coefficients, but
low-order coefficients are enough for most applications [86, 87].

Once the distortion coefficients are found, the inverse distortion can
be computed to correct the distorted image [86, 87], and the distorted
normalised coordinate p̄dn replaces the normalised image coordinate
p̄n in Equation 3.14, such that

cp̄ =

f 0 0

0 f 0

0 0 1

 p̄dn. (3.17)

3.3 Pixels, Image Sensors and Digital Images

The term pixel (px), or picture element, is a blanket term that is am-
biguous without context. A pixel refers to, among others: a single
element of an image sensor; a point sample of a digital image.

Specifically, single elements of an image sensor are differentiated us-
ing the terms: photosite, sensor element, or sensel. A sensel is respon-
sible for converting incoming photons, from the lens, into electrons.
The quantity of electrons found, over an exposure time, relates to the
intensity reported by a sensel.9 Then each sensel’s full colour value
is demosaiced (or interpolated from adjacent sensels), based on the
image sensor’s colour filter array.

A camera chip’s image sensor has a rectangular array, or pixel count,
of W × H sensels. The distance between each sensel, or a sensel’s
width or height, is called the pixel pitch, where ρw and ρh are the
horizontal and vertical pitches, respectively.10 These are usually spec-
ified in µm/px [m/px]. Hence, the image sensor has a width and
height of Wρw and Hρh, respectively.

Unsurprisingly, the image sensor is modelled as a plane, which coin-
cides with the back image plane. The sensor’s frame is called the pixel
coordinate frame {X}, with u and v axes that are parallel to a camera
frame’s x and y axes. Coordinates belonging to the pixel frame, or
pixel coordinates, are measured in pixels.

On the front image plane, from the optical centre’s point of view, the
pixel frame sits towards the upper left direction (Figure 3.20).

8 Typically organised as Equation 3.15 (additive) or Equation 3.16 (multiplicative) in
literature.

9 Reported intensity depends factors such as: quantum efficiency, lens aperture, shut-
ter speed, fill factor, and analogue gain [4, 81, 88].

10 Image sensor performance metrics are discussed in [88].
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Figure 3.20: Pixel coordinate frame on the front image plane.

The image plane intersection with the optical axis is called its princi-
ple point.11 This point, with respect to {X}, is (u0, v0) and it is speci-
fied in pixel coordinates. Pixel coordinates xp = (u, v) are found by
quantising image coordinates cp = (x,y). In general,

xp̄ =


1
ρw

0 u0

0 1
ρh

v0

0 0 1

 cp̄. (3.18)

In practice, u, v /∈ Z>0 and must be rounded to a corresponding
pixel, such that u, v ∈ Z>0. Furthermore, pixel coordinates are stored
digitally as point samples [89],12 which are commonly rendered on
digital displays as squares (Figure 3.21).

xp

u

v

{X}

0 1 2 . . .
W-1

0
1
2...

H-1

Figure 3.21: Square rendering of pixels.

By convention, a digital image’s first and last addressable pixel coor-
dinates are usually (0, 0) and (W − 1,H− 1), respectively.

11 The principle point is not necessarily the image sensor’s geometric centre, due to
manufacturing misalignment [84].

12 Image sensing pipeline and digital post-processing are discussed by Szeliski [81].
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3.3.1 Field of View

A camera only captures light rays in its field of view. The field of view
is parametrised by its horizontal and vertical angles, subtended by the
width and height of an image sensor, respectively (Figure 3.22).

x

y

z

{C}

Sensor
plane

Field of view
projection

θh

θv

Figure 3.22: Vertical field of view.

The horizontal field of view [4] is

tan
θh
2

=
W
2 ρw

f

θh = 2 tan−1
W
2 ρw

f
, (3.19)

and similarly, the vertical field of view

θv = 2 tan−1
H
2 ρh

f
. (3.20)

The angles, θh and θv, decrease with increasing f, that is, a camera’s
field of view will narrow due to magnification.

3.3.2 Sensor Spatial Resolution

Visual detail can only be captured reliably, or resolved, if it lies within
a sensel’s field of view. The projection of a sensel’s size ρwρh sub-
tended by its field of view at z = 1 is called the sensel’s (normalised)
spatial resolutions. These are

Pw

1
=
ρw

f
, (3.21)

Ph
1

=
ρh
f

, (3.22)
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with units of (m/px)/m. The spatial x-y resolutions decrease, or im-
prove, by increasing f and losing field of view.13

If, instead, field of view is specified, then, from Equation 3.19,14

Pw =
2

W
tan

θh
2

, (3.23)

Ph =
2

H
tan

θv

2
. (3.24)

3.4 Intrinsic Parameters

Given Equation 3.17 and Equation 3.18, a complete camera model can
be formed

xp̄ =


1
ρw

0 u0

0 1
ρh

v0

0 0 1


f 0 0

0 f 0

0 0 1

 p̄dn

=


f
ρw

0 u0

0 f
ρh

v0

0 0 1

 p̄dn

= Kp̄dn, (3.25)

where:

xp̄ augmented pixel coordinate

K camera matrix

p̄dn augmented distorted normalised image coordinate.

The camera matrix K and distortion coefficients are the intrinsic pa-
rameters of a camera. These parameters are determined by a camera
calibration procedure.

The camera parameters f/ρw and f/ρh, or the pixel focal lengths [4],
are lumped values, that is, f cannot be determined independently,
unless ρw or ρh is known.

3.5 Extrinsic Parameters

A camera’s extrinsic parameters represents its relative pose with re-
spect to a world coordinate frame, be it another camera, or the base
of a robot arm on which it is mounted [18]. Once the relative pose is
found, world coordinates can be referenced by the camera’s frame.

13 Overall spatial resolution depends on the cascaded sensor and lens spatial resolution.
See http://photo.blogoverflow.com/2012/06/the-realities-of-resolution/.

14 This form is closer to Mallick et al. [66], called spatial x(y) resolution.

http://photo.blogoverflow.com/2012/06/the-realities-of-resolution/
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Figure 3.23: World coordinate frame.

In general, this is

cP̄ = c
wT wP̄ = w

c T−1 wP̄ (3.26)

where:

cP̄ augmented camera coordinate
w
c T pose of the camera with respect to its world
wP̄ augmented world coordinate.

The pose matrix w
c T is the extrinsic parameter of a camera. Along

with intrinsic parameters, extrinsic parameters can be determined by
a camera calibration procedure.

3.6 Summary

A geometric camera model based on the pinhole camera has been
presented. The result is a camera matrix which captures most of the
important parameters. These are found using a suitable camera cali-
bration procedure, after which image errors can be corrected.
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K I N E C T C A M E R A C H A R A C T E R I S AT I O N

(a) Depth camera. (b) RGB camera.

Figure 4.1: Kinect point of view.

The Kinect has a RGB and depth camera, an IR camera and projector
pair, which outputs uncalibrated images shown in Figure 4.1. RGB
camera models and calibration procedures are well known [74], but
characterising the depth camera requires more attention.

Due to the Kinect’s proprietary nature, black box testing is neces-
sary to characterise its performance and limitations. Disassembly is
avoided, to prevent unintentional changes to its characteristics. Known
characteristics about the RGB and depth camera, from various au-
thors, are compared and discussed.

A corner-based calibration procedure is conducted using an assem-
bled calibration rig and Herrera’s Kinect Calibration Toolbox (KCT),
which runs joint nonlinear minimisation [60] and corrects for depth
distortion. The procedure is followed by a comparison and discussion
of results between various data sets and authors.

4.1 Components

A LED indicates the Kinect’s operational status (Figure 4.2a). The IR

projector stands alone, emitting red light, followed by the RGB and
IR cameras, respectively. The RGB or IR camera can be identified, by
physically covering either one’s view and observing a change on its
data stream or captured image.

32
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(a) Kinect operational. (b) IR projector filter.

Figure 4.2: Kinect cameras and projector.

A blue lid covers the IR camera’s lens, possibly an IR bandpass filter,
and the IR projector is shielded by a blue-tinted disk that becomes
opaque from a viewing angle onwards (Figure 4.2b).

Figure 4.3: Kinect product information.

The Kinect’s base reveals a model number, MODEL 1414 (Figure 4.3).1

Patents US6483918 and US6775708 are assigned to Microsoft Corpora-
tion and implement techniques for robust data transmission.2 The IR

projector is a class one laser and conforms to the eye safety standard,
IEC60825-1:2007-03.

4.2 Specifications

Microsoft published only the Kinect for Windows specifications [90].
Useful metrics are unspecified, such as pixel count, frame rate, depth
resolution, and depth accuracy. Han et al. [55], OpenKinect’s protocol
documentation [91], and OpenKinect’s imaging information [92] have
provided some specifications. These are combined into Table 4.1.

1 Model numbers are unmentioned by any known author.
2 Patent search is available at https://www.google.com/patents.

https://www.google.com/patents
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Table 4.1: Kinect documented specifications.

specification description

RGB-full stream [55, 91] 1280× 1024 px, 10 fps

RGB-standard stream [55, 91] 640× 480 px, 30 fps

RGB data format [55] 8 bits/px/channel

Depth stream [55, 91] 640× 480 px, 30 fps

Depth data format [91] 16 bits/px, 11 bits used

Field of view [55]
57° horizontal

43° vertical

Depth spatial resolution (at 2m) [92] 3mm

Practical depth range [55, 92] 0.8m to 3.5m

Depth resolution (at 2m) [92] 10mm

Since spatial resolution scales linearly, the expected depth spatial res-
olution at 1.0m is 1.5mm.

The Kinect is capable of extending beyond the 3.5m practical depth
range, but at the loss of depth resolution. The actual usable depth
range is limited by the Kinect’s maximum accessible depth and an
application’s depth error tolerance.

The expected uncompressed data sizes and rates for the three streams
are calculated in Table 4.2, signalling the required throughput.

Table 4.2: Kinect image data sizes and data rates.

type data size (MB) data rate (MB/s)

RGB-full 3.932 39.32

RGB-standard 0.922 27.65

Depth 0.614 18.43

4.3 Depth Camera Characterisation

4.3.1 IR Speckle Pattern

Along with RGB and disparity images, the Kinect outputs IR images.
These record the IR projector’s speckle pattern, which act as inter-
mediaries in the depth processing pipeline, and do nothing more.
Nonetheless, the IR images explain the some of the depth sensor’s
limitations, which are not directly observable on disparity images.
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An IR image, captured with the Kinect facing a white plastered wall,
is shown in Figure 4.4a. The IR speckle pattern is superimposed with
a visible distortion. This distortion is not seen when captured by an
external IR camera [93], hence it is on-board the IR camera.

(a) Distorted speckle pattern. (b) Near range and occlusion.

Figure 4.4: Kinect IR images.

When objects approach the IR camera, the speckle pattern’s dots clump
together (Figure 4.4b) and they cannot be uniquely identified. Given
one or more unidentifiable dots, depth cannot be measured properly,
demonstrating the Kinect’s near range limitation.

Since the speckle pattern is assembled with dots, the space between
dots should have interpolated depth values. This is an issue for large
depth discontinuities, such as an object against a far background,
which have fluctuating depth values even when the Kinect and its
scene are stationary.3 By design, the Kinect excels at real-time skeletal
tracking [54]. Therefore, planar features should be considered first.

There is a relative pose between the IR camera and projector. The
speckle pattern’s dots will be occluded by the visible part of objects.
As a result, objects in IR or disparity images will always cast a shadow
behind them (Figure 4.4b).4 These are compensated for, by using a
suitable depth hole filtering technique [55].

4.3.2 Disparity

The relative shift between captured and reference speckle patterns is
used to generate the (greyscale) disparity image, where each pixel
represents Kinect disparity, measured in kdu. The relationship be-
tween Kinect disparity and depth [60] is

z(d) =
1

c1d+ c0
, (4.1)

3 Mallick et al. [66] call this lateral noise.
4 Mallick et al. [66] call this shadow noise.
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where z is depth [m], d is Kinect disparity [kdu], c0 and c1 are the
disparity coefficients. The coefficient c1 is always negative [60].

Kinect disparity is an 11-bit number, that is, d ∈ [0, 2047] ∩Z>0. The
usable interval for this disparity model is much smaller, since it is
useful only when z(d) > 0, or rather z(d) has a singularity at

d =
c0
−c1

:= ds.

This is the disparity model’s limitation. It does not represent the IR

camera’s ability to resolve speckle pattern dots at far range, which is
far more limiting than the model’s limitation, but acts as a sanity test
for using Equation 4.1. As an example, the KCT’s documentation posts
c0 = 3.12 and c1 = −0.002855. Then bdsc = 1092 and z(d) = 427.

4.3.3 Spatial Disparity Distortion

The disparity distortion model used by Herrera et al. [60] is

dk = d+ Dδ(u, v) exp(α0 −α1d), (4.2)

where dk is the undistorted disparity, d is Kinect disparity [kdu], α0
and α1 are the distortion alpha coefficients, Dδ(u, v) is a 640× 480 px
sized image of distortion beta coefficients [kdu].

The undistorted depth is then

zk(d) =
1

c1dk + c0
, (4.3)

which has a singularity at

dk =
c0
−c1

.

This can be solved using the same method that [60] uses to solve for
their forward disparity distortion model, that is, using the Lambert
W function.5 Hence, ds with disparity correction becomes

dks = ds +
W(−α1Dδ(u, v) exp(α0 −α1ds)

α1
. (4.4)

The disparity and distortion coefficients are subject to uncertainty in
the form c0 = c̄0 ± σc0 , where c̄0 is the mean value of c0, and σc0 is
its standard deviation. In turn, Equation 4.3 is subject to uncertainty
propagation. For expediency, the three point estimate is used

zkmin(d) 6 z̄k(d) 6 zkmax(d), (4.5)

5 The KCT has an existing lambertw_fast() implementation.
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where:

zkmax(d) =
1

(c̄1 − σc1)dkmax + (c̄0 − σc0)
,

z̄k(d) =
1

c̄1d+ c̄0
,

zkmin(d) =
1

(c̄1 + σc1)dkmin + (c̄0 + σc0)
,

and

dkmax = d+ Dδ(u, v) exp((ᾱ0 + σα0) − (ᾱ1 − σα1)d),

dkmin = d+ Dδ(u, v) exp((ᾱ0 − σα0) − (ᾱ1 + σα1)d).

4.3.4 Depth Resolution

The minimum measurable change in depth, or quantisation error, be-
tween Kinect disparity values is called the depth resolution. Experi-
mental [61] and theoretical [65] quantisation errors are modelled us-
ing univariate quadratic polynomials (Table 4.3, Figure 4.5).

Table 4.3: Kinect depth resolution.

author depth resolution (mm), depth (m)

Smisek et al. [61] q(z) = 2.73z2 + 0.74z− 0.580

Macknojia et al. [65] q(z) = 3.02z2 − 0.56z+ 0.307

0 1 2 3 4 5
0

20

40

60

80

100

Distance, z [m]

Q
ua

nt
is

at
io

n
er

ro
r,
q
(z
)

[m
m

]

Smisek et al.
Macknojia et al.

Figure 4.5: Depth resolution.

By definition, the quantisation error is

∆z(d) = z(d+ 1) − z(d), d = 0, . . . , bdsc− 1. (4.6)
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4.4 Calibration Experiment

Corner-based calibration uses images of a calibration target with de-
tectable markers and known constraints to determine camera model
parameters. A chessboard is a common calibration target, where the
intersection between every four blocks, or corners, are assumed to be
planar. This topic is well covered by Zhang [73] and Heikkilä [94].

The KCT runs within the MATLAB environment. Images are captured
using the included image capture tool. A calibration rig is assembled
with a checkerboard pattern for RGB camera calibration and planar
surface for depth camera calibration.

4.4.1 Image Capturing Tool

The KCT (v2.2) is packaged with the source code for a capture tool,
used to capture pairs of Portable Pix Map (PPM) and Portable Grey
Map (PGM) images. Project files are generated for Visual Studio 12
using CMake 2.8.12.2 and built using Visual Studio 2013. The depen-
dencies used to build the capture tool are listed below:

• libfreenect (2014-04-03)

• opencv-2.2.0

• boost_1_55_0

• libusb-win32-bin-1.2.6.0

• pthreads-w32-2-9-1-release

• glui-2.36

• glut-3.7.6-bin

• glext.h (2014-03-19)

4.4.2 Calibration Rig

A 9-by-7 squared checkerboard pattern is printed on A4 paper and
taped flush against an A2-sized wooden board.6 There are 48 squares,
where each square has a side length of 27.3mm. Then, the wooden
board is secured to a camera tripod. The full setup is shown in Fig-
ure 4.6a. Additionally, a flat wall is used as a full planar surface to
calibrate the depth camera (Figure 4.6b).

6 MATLAB’s Image Processing Toolbox has a checkerboard() function. Otherwise,
use the file from Bouguet’s toolbox, or a checkerboard pattern generator.
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(a) Calibration rig setup. (b) Full planar surface.

Figure 4.6: Full calibration setup.

4.4.3 Procedure

Guidelines by Fiedler and Heinrich [79] are used to control measure-
ment errors due to temperature. The Kinect is given a 60 minute
warm-up period to reach stable temperatures and then calibrated in
a room air-conditioned to 23 °C.

This procedure requires five types of camera shots at varying an-
gles and distances. These are: the checkerboard pattern for each of
three different plane rotations (Figure 4.7); full-viewed checkerboard
pattern images (for lens distortions, only RGB images); and fronto-
parallel wall images (for disparity distortion, only disparity images).
At least five images for each camera shot type are recommended
[15].7

(a) Frontal plane. (b) y-axis rotation. (c) x-axis rotation.

Figure 4.7: Calibration target plane rotations.

After image capturing, PPM images are compressed to JPEG format.8

RGB images undergo corner extraction. Automatic corner detection
is initiated by specifying the physical checkerboard square size, ex-
pected corner count, and pixel window size (Figure 4.8a).

Lastly, plane selection is done by manually selecting the usable, non-
edge, planar region of the wooden board and full planar surface in
each disparity image (Figure 4.8b).

7 If unsure, see the dataset included with KCT.
8 Any MATLAB readable format is fine. The KCT included dataset uses JPEG images.

Compressed images are used to speed-up the calibration process.
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(a) Automatic corner detection.

(b) Plane selection.

Figure 4.8: Corner extraction and plane selection of calibration rig.
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4.5 Calibration Results

Calibration results for RGB-full and -standard data sets, one each, are
tabulated over Table 4.4 and Table 4.5. The errors, or uncertainties,
provided by the KCT are three times the standard deviation.

Table 4.4: RGB camera calibration results.

parameter symbol rgb-full rgb-standard

Pixel focal
length (px)

f/ρw 1045.09± 0.38 522.27± 0.19
f/ρh 1045.26± 0.38 522.35± 0.19

Principle
point (px)

u0 633.41± 0.29 315.75± 0.18
v0 517.31± 0.28 258.58± 0.17

Distortion
coefficient

k1 0.2296± 0.0012 0.2321± 0.0016
k2 −0.6401± 0.0049 −0.6463± 0.0067
p1 0.0001± 0.0001 0.0005± 0.0001
p2 0.0014± 0.0001 0.0012± 0.0001
k3 0.5645± 0.0062 0.5668± 0.0088

Reprojection
error (px)

µ 0 0

σ 0.2082 0.1405

Table 4.5: Depth camera calibration results.

parameter symbol rgb-full rgb-standard

Pixel focal
length (px)

f/ρw 580.18± 0.18 584.62± 0.36
f/ρh 587.81± 0.51 591.86± 0.54

Principle
point (px)

u0 310.47± 0.32 308.80± 0.36
v0 239.51± 0.27 237.65± 0.32

Disparity
coefficient

c0 3.16 3.15

c1 −0.002 899 −0.002 883

Distortion α
coefficient

α0 1.3716± 0.0332 1.6369± 0.0330
α1 0.0025± 0.0001 0.0025± 0.0001

Distortion β
coefficients

Dδ(u, v)
{−10.2044, {−8.5699,

. . . , 5.3239} . . . , 5.1769}

Reprojection
error (kdu)

µ 0.0120 0.0023

σ 0.6971 0.6950
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The RGB-full data set has 47 RGB and 40 disparity images, and the
RGB-standard data set has 55 RGB and 52 disparity images. RGB
images from both data sets are visualised in Figure 4.9.9
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Figure 4.9: Kinect-centred, top-down view of plane rotation data sets.

9 Using the Show Extrinsic function from Bouguet’s toolbox.
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4.5.1 RGB Reprojection Error

RGB corner reprojection errors for Herrera et al. [60] (calibration with-
out the external camera) and data sets from KCT (external camera pa-
rameters removed) are compared in Table 4.6. Sub-pixel standard de-
viations indicate accurate calibration [60]. Corner reprojection errors
for RGB-full and -standard data sets are plotted in Figure 4.10.10

Table 4.6: RGB reprojection error comparison between data sets.

data set image count std. dev. (px)

RGB-full 47 RGB, 40 disparity 0.21

RGB-standard 55 RGB, 52 disparity 0.14

KCT [15] full_set 54 RGB, 55 disparity 0.21

KCT [15] small_set 11 RGB, 18 disparity 0.26

Herrera et al. [60] 60 pairs 0.26
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Figure 4.10: Plots and histograms of RGB corner reprojection errors.

10 For an in-depth look at reprojection errors, see the Main Calibration step of http:

//www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html.

http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html
http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html
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Images with large reprojection errors are borderline field of view and
full-viewed. This is expected, since distortion components are known
to be stronger towards the edge and weak around the centre.

The RGB-standard data set has eight more images than the RGB-full
data set, that is, it has 384 additional corner reprojection errors.

4.5.2 RGB Lens Distortion

Lens distortions for both RGB modes are very similar. Hence, only the
distortions for RGB-full are visualised (Figure 4.11).11 The tangential
distortions are small, compared to their radial counterparts.
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Figure 4.11: RGB-full lens distortions.

11 Using the visualize_distortions() function from Bouguet’s toolbox .
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As an example, a plane rotation image is undistorted using the dis-
tortion model to verify the undistortion (Figure 4.12).12

(a) Distorted image. (b) Undistorted image.

Figure 4.12: Undistorting an image using the distortion model.

The RGB-full and KCT full_set lens distortions are compared in Ta-
ble 4.7. Since other RGB camera parameters are expected to be similar,
Kinect RGB camera variability is largely due to lens distortions.

Table 4.7: RGB lens distortion coefficient comparison between data sets.

data set k1 k2 p1 p2 k3

RGB-full 0.2296 −0.6401 0.0001 0.0014 0.5645

KCT [15] full_set 0.1841 −0.4726 −0.0030 0.0014 0.3636

4.5.3 Depth Reprojection Error

Depth reprojection errors are compared in Table 4.6. Sub-disparity-
unit standard deviations indicate accurate calibration [60]. Depth er-
rors for both RGB data sets are plotted in Figure 4.13.

Table 4.8: Depth reprojection error comparison between data sets.

data set image count std. dev. (kdu)

RGB-full 47 RGB, 40 disparity 0.697

RGB-standard 55 RGB, 52 disparity 0.695

KCT [15] full_set 54 RGB, 55 disparity 0.772

KCT [15] small_set 11 RGB, 18 disparity 0.794

Herrera et al. [60] 60 pairs 0.765

12 Using the Undistort image function from Bouguet’s toolbox.
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Figure 4.13: Plots and histograms of depth reprojection errors.
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4.5.4 Spatial Disparity Distortion

The absolute value of the spatial disparity distortion image Dδ(u, v)
for RGB-full, RGB-standard, and the KCT full_set are shown in Fig-
ure 4.14. The RGB data set images have the same spatial distortion.

(a) RGB-full. (b) RGB-standard. (c) KCT [15] full_set.

Figure 4.14: Absolute valued spatial disparity distortion images Dδ(u, v).

At a glance, the KCT full_set’s spatial distortion is different to the
other two. Hence, distortion α and β coefficient variability will con-
tribute to Kinect depth camera variability.

4.5.5 Disparity and Depth Resolution

The disparity coefficients, c0 and c1, from different data sets are com-
pared in Table 4.9. These are similar across different Kinects, even
though only the first five data sets use joint minimisation.

Table 4.9: Disparity coefficient comparison between data sets and authors.

data set coefficient c0 coefficient c1

RGB-full 3.16 −0.002 899

RGB-standard 3.15 −0.002 883

KCT [15] full_set 3.13 −0.002 859

KCT [15] small_set 3.12 −0.002 854

Herrera et al. [71] 3.11 −0.002 850

Smisek [64, pg. 37] 3.15 −0.002 845

The disparity model and depth resolution for RGB-full is plotted in
Figure 4.15. The upper and lower bounds use maxu,vDδ(u, v) and
minu,vDδ(u, v) for zkmax(d) and zkmin(d), respectively, and 3σ for
the uncertainties. Here, the quantisation error is plotted as a function
of disparity. Since disparity is quantised, depth is also quantised, thus
some depth values are unachievable. These results are comparable to
the depth resolutions in Table 4.1 and Table 4.3.
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Figure 4.15: RGB-full disparity, depth and depth resolution.

Lastly, the disparity model singularities for RGB-full and -standard
are calculated using maxu,vDδ(u, v) and given in Table 4.10.

Table 4.10: Disparity model singularity for RGB-full and -standard.

data set disparity ds (kdu) disparity dks (kdu)

RGB-full 1090.03 1088.65

RGB-standard 1092.61 1090.87

4.5.6 Extrinsic Parameters

The relative pose between the RGB and IR camera from the RGB-full
calibration is

RGBTIR =


1.00000 −0.00454 −0.00260 −0.02883

0.00454 1.00000 0.00190 0.00279

0.00259 −0.00192 1.00000 −0.00360

0 0 0 1

 .

The relative pose is used to register the depth camera’s coordinate
frame into the RGB camera’s frame, such that overlapping pixels from
both images describe the same world point (Figure 4.16).
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(a) Disparity image. (b) Registered. (c) Superimposed.

Figure 4.16: RGB-full image registration using extrinsic parameters.

Similarly, the relative pose for RGB-standard is

RGBTIR =


1.00000 −0.00151 0.00031 −0.03167

0.00151 1.00000 0.00034 0.00347

−0.00031 −0.00034 1.00000 −0.00773

0 0 0 1

 ,

along with its disparity image registration in Figure 4.17.

(a) Disparity image. (b) Registered. (c) Superimposed.

Figure 4.17: RGB-standard image registration using extrinsic parameters.

4.5.7 Post-calibration Specifications

Table 4.11 and Table 4.12 present both RGB data sets’ field of views
and spatial x-y resolutions. These verify the specifications in Table 4.1.

Table 4.11: Kinect post-calibration RGB specifications.

specification symbol rgb-full rgb-std

Field of
view (deg)

θh 62.97± 0.02 62.99± 0.02
θv 52.19± 0.02 49.35± 0.02

Spatial resolution
(mm/px/m)

Pw 0.96 1.91

Ph 0.96 1.91
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The RGB-standard image appears to be a half-sampled RGB-full im-
age that is cropped at the bottom (Figure 4.18), which is due to the
change in aspect ratio from 5 : 4 to 4 : 3. This accounts for the loss in
vertical field of view from RGB-full to -standard streams.

(a) RGB-full. (b) RGB-standard.

Figure 4.18: Comparing RGB-full and -standard colour image sizes. The yel-
low strip indicates pixels cropped by the Kinect.

The differences between the RGB-full and -standard pixel focal lengths
are due to an apparent doubling of the RGB-standard pixel pitches.
Hence, its spatial resolution is about twice that of RGB-full.

Table 4.12: Kinect post-calibration depth specifications.

specification symbol rgb-full rgb-std

Field of
view (deg)

θh 57.75± 0.02 57.39± 0.03
θv 44.42± 0.03 44.16± 0.04

Spatial resolution
(mm/px/m)

Pw 1.72 1.71

Ph 1.70 1.69

Ultimately, the Kinect’s useful field of view is limited by its depth
camera’s field of view, as disparity images do not cover their entire
RGB counterparts. This is emphasised in Figure 4.17.

4.6 Summary

A thorough characterisation of the Kinect has been presented. Calibra-
tion results reveal that RGB and depth camera variability is largely
due to lens distortions and α and β coefficients, respectively, when
compared to the KCT datasets, Herrera et al. [71], and Smisek [64].
While temperature control guidelines were followed, final calibration
results do not appear to differ from the results of other authors.



5
V I S U A L S E RV O I N G I M P L I C AT I O N S

Tutorials for PBVS and IBVS are covered briefly so that the relationship
between visual servoing and the Kinect can be drawn. Conversely,
knowledge of the Kinect’s characterisation is used to explore its im-
plications to visual servoing.

5.1 Basic Visual Servoing Techniques

Most visual servoing systems assume that the underlying robot is
internally stabilised by fine-tuned tight control loops [4]. These robot
controllers are driven by velocity commands. Only single camera eye-
in-hand systems are discussed.

5.1.1 Task Function

The task function approach to visual servoing is to minimise the task
function error [19]

e(t) = s(m(t), a) − s∗, (5.1)

where s(m(t), a) is a set of extracted visual features, m(t) is a set of
image measurements, a represents the camera’s characteristics, and
s∗ is a set of reference visual features.

Consider the relationship between visual feature velocity ṡ and cam-
era spatial velocity υ = (ν,ω) = (νx,νy,νz,ωx,ωy,ωz) in the world
coordinate frame [19]

ṡ = Lυ, (5.2)

where L is the image Jacobian, or interaction matrix, which relates ṡ
to υ. By solving for υ, a velocity controller can be designed [19]

υ = L+ṡ. (5.3)

where L+ = (LTL)−1LT is the pseudo-inverse of L. If s∗ is constant,
then ṡ = ė. The following condition is imposed [19]

ė = −λe, (5.4)

51



5.1 basic visual servoing techniques 52

which makes the task function error decay exponentially to zero. In
other words, s approaches s∗ exponentially

s = s∗(1− exp(−λt)), (5.5)

where λ > 0 is a chosen rate. It follows that

υ = L+ė = −λL+e = −λL+(s − s∗). (5.6)

Since L and L+ are impossible to know perfectly [19], L+ has to be
approximated. This approximation is denoted L̂+, which results in
the velocity controller, or control law [19]

υ = −λL̂+(s − s∗). (5.7)

The approximation used for L̂+ affects the behaviour of the visual
feature trajectories.

5.1.2 Image-Based Visual Servoing

An IBVS task function using point features has s and s∗ as the current
and reference image points p = (x,y) and p∗, respectively. The task
function parameters are m = (u, v), the pixel coordinates of p, and
a = (f, ρw, ρh,u0, v0), the intrinsic camera parameters.

Each image taken by the camera requires each image point feature
to be extracted and matched to its corresponding reference image
point. Techniques for feature extraction and matching are discussed
in [4, 81]. An overview of IBVS is illustrated in Figure 5.1.

To solve for the velocity controller, find the interaction matrix for
Equation 5.2 where s = p

ṗ = Lpυ. (5.8)

Recall that the perspective projection equations for normalised image
coordinate pn, where the focal length f = 1, are

pn =

[
x

y

]
=

[
X/Z

Y/Z

]
. (5.9)

Using the quotient rule, the temporal derivative of pn is

ẋ =
ẊZ−XŻ

Z2

ẏ =
ẎZ− YŻ

Z2
. (5.10)

Now, a world point P = (X, Y,Z) that is being observed by a camera
in the world frame with instantaneous linear velocity ν = (νx,νy,νz)
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and instantaneous angular velocity ω = (ωx,ωy,ωz) has a velocity
relative to the camera frame that is [19]

Ṗ = −ν−ω× P. (5.11)

The velocity of this point has the scalar form

Ẋ = −νx −ωyZ+ωzY

Ẏ = −νy −ωzX+ωxZ (5.12)

Ż = −νz −ωxY +ωyX,

which is substituted into Equation 5.10 to yield

ẋ = −
1

Z
νx +

X

Z2
νz +

XY

Z2
ωx −

(X2 +Z2)

Z2
ωy +

Y

Z
ωz,

ẏ = −
1

Z
νy +

Y

Z2
νz +

(Y2 +Z2)

Z2
ωx −

XY

Z2
ωy −

X

Z
ωz. (5.13)

Given X = xZ and Y = yZ (Equation 5.9), it follows that

ẋ = −
1

Z
νx +

x

Z
νz + xyωx − (1+ x2)ωy + yωz,

ẏ = −
1

Z
νy +

y

Z
νz + (1+ y2)ωx − xyωy − xωz, (5.14)

which has the matrix form[
ẋ

ẏ

]
︸︷︷︸

ṗ

=

[
− 1Z 0 x

Z xy −(1+ x2) y

0 − 1Z
y
Z (1+ y2) −xy −x

]
︸ ︷︷ ︸

Lp

υ. (5.15)

The interaction matrix requires a rank r > 6 for 6-DOF control. Given
k points, or r = 2k visual features, the stacked interaction matrix is

Lp =


Lp1
Lp2

...

Lpk

 , (5.16)

which is used for the velocity control law

υ = −λL̂+
p (p − p∗), (5.17)

where L̂+
p is the pseudo-inverse approximation of the interaction ma-

trix for point features. Approximations for L̂+
p are covered in [19].

While IBVS is also called two-dimensional visual servoing, Equation 5.15
indicates that the depth Z of three-dimensional world points are re-
quired to solve the interaction matrix.1 Hence, depth estimation is
one of the problem areas of IBVS.

1 Other image features also require visual feature depth [30, 32–34].
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5.1.3 Position-Based Visual Servoing

The goal of an PBVS controller is to drive the camera pose from the
current camera frame {C} to the desired camera frame {C∗}. Like IBVS,
PBVS requires feature extraction and matching (Figure 5.2). These ex-
tracted points are used for the pose estimation algorithm on a three-
dimensional object model with coordinate frame {O}.

Given a three-dimensional object model with frame {O} that contains
k model points oPi = (Xi, Yi,Zi), i ∈ [1,k] ∩Z, a known projection
matrix Kp, and an arbitrary pose matrix T(t,θ), the image projection
of the model p∗i = (xi,yi) is

p̄∗i = KpT oP̄i

=

f 0 0 0

0 f 0 0

0 0 1 0


[

R t

0 1

]
Xi

Yi

Zi

1

 . (5.18)

The unknown pose parameters t and θ can be estimated using an
iterative pose estimation method [81] that minimises the squared re-
projection error

min
t,θ

k∑
i=1

∣∣p̄i − KT oP̄i
∣∣2 , (5.19)

where pi is a set of extracted image points from a captured image
corresponding to model points oPi. The pose estimation will produce
c
oR and c

ot, which is required by the PBVS controller.

Following from the task function, s = (cot, θu) ∼ ξ and s∗ =
(
c∗
o t, 0

)
∼

ξ∗ [19]. Hence, the task function error is

e =
(
c
ot − c

∗
o t, θu

)
, (5.20)

where θu is the Euler axis/angle representation of R = c∗
c R, that is, θ

is some rotation about an arbitrary vector u = (u1,u2,u3). The Euler
axis/angle parameters are

θ = arccos
(

tr(R) − 1

2

)
, (5.21)

and

u =
1

2 sin θ

r32 − r23r13 − r31

r21 − r12

 , (5.22)
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where rij are the elements of the rotation matrix

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 ,

and tr(R) = (r11, r22, r33) is its trace. The interaction matrix for the
PBVS controller is given by [19]

Lξ =

[
−I3 [cot]×

0 Lθu

]
6×6

, (5.23)

where Lθu is [46]

Lθu = I3 −
θ

2
[u]× +

(
1−

sinc θ
sinc2 θ2

)
[u]2×, (5.24)

and [cot]× and [u]× are the cross product matrices

[cot]× =

 0 −t3 t2

t3 0 −t1

−t2 t1 0

 ,

and

[u]× =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 .

Then, the velocity control law is [19]

υ =

[
ν

ω

]
=

[
−λ(

(
c∗
o t − cot

)
+ [cot]× θu)

−λθu

]
. (5.25)

Similar to IBVS, a minimum of three non-collinear feature points are
required for the pose estimation [27].

5.2 Kinect Integration

No special considerations are imposed by the Kinect RGB camera,
outside of its intrinsic parameters. Additional visual servoing consid-
erations are a result of the depth camera.
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5.2.1 Depth Measurements

Regarding PBVS, depth camera measurements can be used directly
for pose estimation. For example, instead of minimising the squared
reprojection error (Equation 5.19) to find some unknown pose matrix
T(t,θ), a matching algorithm such as Iterative Closest Point (ICP) can
be applied to minimise the distance between a captured object model
Pi and its reference model oPi

min
t,θ

k∑
i=1

|TPi − oPi|
2 . (5.26)

Depending on the reference model and matching algorithm used,
computational overhead can be saved on feature extraction and match-
ing. The required matching algorithm robustness depends on the typ-
ical initial camera displacement of a visual servoing application.

If no reference model is readily available, teach-by-showing can be
applied to generate a model by segmenting the object from the image
and providing a feature descriptor.2

Regarding IBVS, point feature depth can be used directly in the point
feature interaction matrix (Equation 5.15), by using the undistorted
depth from Equation 4.3,

Lp =

[
− 1
zk

0 x
zk

xy −(1+ x2) y

0 − 1
zk

y
zk

(1+ y2) −xy −x

]
. (5.27)

Since feature matching is done before this stage of the image process-
ing pipeline, depth values corresponding to the image point features
can be retrieved from registered depth map. The depth estimation
that was previously required becomes unnecessary, reducing compu-
tational overhead.

5.2.2 Depth Resolution

Within the Kinect’s practical depth range of 0.8m to 3.5m (Table 4.1),
the Kinect’s depth resolution is 1.8mm to 35mm. Uncertainty prop-
agation from the three point estimate (Figure 4.15) adds negligible
uncertainty on top of the quantisation error. This amount of depth
uncertainty is insufficient to cause concern over IBVS stability [4].

Small point position errors will significantly impact PBVS task accu-
racy [19]. With the Kinect, the depth resolution improves as the cam-
era approaches the goal. If the task accuracy is insufficient, teach-by-
showing should be used to generate the reference object model and
offset any remaining systematic calibration errors.

2 Object models are called point clouds in computer vision literature.
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5.2.3 IR Light Limitations

It is well-established that the Kinect depth measurements are eas-
ily saturated in outdoor use [77], due to the IR radiation from sun-
light. Similarly, IR radiation from heated surfaces also increases depth
measurement uncertainty [72]. Since IR radiation is a common phe-
nomenon, visual servo applications require controlled light environ-
ments to make Kinect depth measurements reliable.

Objects, such as transparent plastic or mirrors, which refract or ab-
sorb IR light will leave depth holes in depth maps, that is, depth map
pixels that the Kinect fails to estimate and are reported as zero depth
[66]. Furthermore, different viewing angles on objects with specular
surfaces, or specular reflection, will also form depth holes. In these
cases, much of the object recognition will depend on the RGB image,
making the benefits of a having a depth camera insignificant.

5.2.4 Depth Holes

If depth holes form over visual features during a task, the task may
fail when there are not enough visual depth features for PBVS pose
estimation or the IBVS point feature interaction matrix. The usual vi-
sual servoing approaches (without the depth camera) will need to be
active to prevent task failure. Alternatively, depth map preprocessing
techniques [55] can be applied to fill the depth holes in depth maps
before they are passed down the image processing pipeline.

5.2.5 Out-of-Bounds

The near range, far range, and field of view of the depth camera de-
scribes its practical range in three-dimensions, which can be imagined
as a trapezoidal prism attached to its front. Depth points outside of
this prism are considered out-of-bounds. Naturally, this prism repre-
sents the visibility constraint of the visual servoing task.

In addition to the field of view visibility constraint, depth values out-
side of the practical depth range are zero depth, as with depth holes
[66]. Similar to one solution for depth holes, methods without the
depth camera must be active when visual depth features disappear.

This is also a particular stability issue for methods that use depth
map-based visual features. For example, Teulière and Marchand [13]
state that their method fails when looking down corridors. Their in-
teraction matrix becomes degenerate from the far range limitation
when enough depth map pixels report zero depth. Problems with the
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near range are not mentioned by them, but it is an issue near task
convergence, as depth map pixels will report zero depth.

A solution to the far range limitation is to lock depth values after
they exceed a threshold, to prevent zero depth. Pauwels et al. [12]
overcome the near range limitation problem by using depth mea-
surements to estimate the depth of rendered models and instead use
model depth for the controller. Their approach however, requires a
Graphics Processing Unit (GPU) for real-time performance.

5.2.6 Sensor Bandwidth

Suppose the only known bandwidth about the visual servo system
is the Kinect. It is reasonable to assume that the Kinect, or camera, is
the limiting bandwidth of the visual servo system and the underlying
robot and robot compensator of the system is locally stable. Then, the
most fundamental conservation law of feedback can be described in
terms of Bode’s integral [95]

∫Ωa
0

ln |S(jω)|dω =

δs stable loops

π
∑
p∈P Re(p) + δs unstable loops

(5.28)

where S(jω) is the sensitivity function,Ωa is the available bandwidth
of the system, Re(p) is the real part of any unstable poles, and δs is
a small error associated with the tail of the complete integral due to
finite available bandwidth. The sensitivity function S(jω) expresses
the system’s ability to reject resonant disturbance signals.

If the only constraint on a signal is its bandwidth, the Nyquist-Shannon
sampling theorem requires that a perfectly band limited signal with
bandwidth fb can only be reconstructed perfectly with a sampling
rate greater than 2fb. Given that the sampling rates for RGB-full
and RGB-standard are 10 fps and 30 fps (Table 4.1), respectively, their
available bandwidths are, at most, 10π rad/s and 30π rad/s.

Stein [95] described a desirable sensitivity function in Figure 5.3. Bode’s
integral law for this sensitivity function is well approximated by∫Ωc

0

ln
[
ωSmin

Ωc

]
dω+ (Ωa −Ωc) ln (Smin) = π

∑
p∈P

Re(p) (5.29)

such that

Smin = exp
[
π
∑
p∈P Re(p) +Ωc

Ωa

]
(5.30)
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lnω
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Smin
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Figure 5.3: A desirable sensitivity function.

where Smin is the smallest sensitivity penalty and Ωc is the desired
corner frequency.

For a given problem domain, Equation 5.30 contains the fundamental
limitation on disturbance rejection for any visual servo application
using the Kinect. Ωc approximates the bandwidth of the disturbance
rejection capabilities of the system, and Smin is the maximum ampli-
fication of a resonant disturbance signal. The unstable poles are a
characteristic of the underlying system and Ωa is a function of the
mode of the Kinect.

After the corner frequency Ωc is chosen and unstable poles P are
determined, the only way to reduce Smin is to increase Ωa, that is, by
reducing the RGB image quality. Hence, there is a fundamental trade-
off between image quality and closed-loop disturbance rejection.

5.3 Summary

Practical considerations of using the Kinect for visual servoing ap-
plications are presented. The Kinect reduces computational overhead
on image processing stages, such as pose estimation and depth es-
timation. Because direct depth measurements are available via the
depth camera, two-dimensional image processing methods can be
generalised to three-dimensions and depth estimation for the interac-
tion matrices are unnecessary. Its IR light properties suggests that the
Kinect should not be used outdoors and objects belonging to classes
of non-IR-friendly surfaces should be avoided. Some problems of task
stability are due to visual features disappearing into depth holes or
when out-of-bounds. Depth holes can be filled by adding a depth map
preprocessing stage before the before feature extraction. Alternatively,
the usual visual servoing approaches, without using the depth cam-
era, should be activated near task failure, which is also one solution
to the practical depth range limitation.
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C O N C L U S I O N

So much universe, and so little time.

— Sir Terry Pratchett1

A through characterisation, modelling, and calibrated parameters of
the Kinect cameras has been presented and used to discuss its impli-
cations for visual servo control applications. The research questions
can now be addressed.

How are the Kinect RGB and depth cameras modelled? The Kinect RGB
camera is modelled using the pinhole camera model. The Kinect
depth camera is modelled using the usual Kinect disparity to depth
model found in literature, which is then augmented with spatial dis-
tortion coefficients by Herrera [15] to correct for depth distortion and
improve depth accuracy. A joint nonlinear calibration procedure us-
ing the KCT is conducted to solve for the intrinsic parameters and
relative pose between the Kinect cameras.

What practical considerations does the Kinect impose on visual servo con-
trol applications? The Kinect reduces computational overhead on im-
age processing stages, such as pose estimation or depth estimation.
Its limitations lie with its IR light, 1.8mm to 35mm quadratic depth
resolution, and 0.8m to 3.5m practical depth range. IR light prop-
erties suggests that the Kinect should not be used outdoors, due to
IR saturation, and objects belonging to classes of non-IR-friendly sur-
faces should be avoided, due to IR refraction, absorption, or specular
reflection. Problems of task stability exist, due to depth holes and
range limitations. These can be reduced by using depth hole filtering
(depth map preprocessing) and activating classical visual servoing
techniques when Kinect-based approaches are near task failure.

In conclusion, the Xbox 360 Kinect is a cheap depth sensor that re-
duces computational overhead on two-dimensional image processing
methods which require depth information, but the IR content in its
environment requires attention due to the sensitivity of its IR light
projector and stability issues of depth holes and practical depth range
need to be addressed.

1 The Last Hero, Discworld #27, 2001.
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Depth map preprocessing offers improved robustness for Kinect-based
visual servoing methods, but their computational costs have not been
discussed. It will be useful to know if the computational costs of var-
ious preprocessing techniques do not exceed the savings over and
above Kinect-based visual servoing approaches.

The same methodology can be applied to other types of RGB-D cam-
eras if they are required for visual servoing, since the KCT can be ex-
tended with other camera set-ups, but hardware compatibility with
existing software libraries is not guaranteed.

The Kinect 2 offers improved specifications, such as a 1080p RGB
camera and wider depth camera field of view [96]. Since the Kinect
2 is not developed by PrimeSense, its depth sensing technology is
likely to be different to the Xbox 360 Kinect.1 Existing literature on the
Kinect 2 is still lacking and open source driver support (libfreenect2)
is still in its very early stages.2 There is much potential for research
on its characterisation for computer vision applications in general.

1 Apple Inc. acquired PrimeSense after the Microsoft Xbox 360 Kinect was launched.
Apple Inc. now owns the patents to PrimeSense’s depth sensing technology.

2 The first stable release is dated 6 Nov 2015: https://openkinect.github.io/

libfreenect2/.
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