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Abstract 

A recent study has shown variable p21 expression levels linked to individuals displaying different 

levels of HIV-1 control, with elite controllers (ECs) and viraemic controllers (VCs) exhibiting 

higher p21 expression when compared to both healthy HIV-1 negative individuals and HIV-1-

infected progressors. The role of p21 in HIV-1 control in a sub-Saharan African population has 

not been established.  

Polymorphisms in the regulatory regions of p21, as well as in the microRNAs (miRNAs) that 

affect p21 regulation can contribute to differential p21 expression. In this study we developed 

real-time PCR assays to genotype the p21 exonic rs1801270 and 3‘UTR rs1059234 SNPs, in 

addition to the p21-associated miRNA (miR-106b) rs999885 SNP. We determined their allelic 

and genotypic frequencies in Black South African HIV-1 negative individuals (n=72), HIV-1 

controllers (HICs) (n=52) further subdivided into ECs (n=11), VCs (n=30) and high viral load 

long term non-progressors (HVL LTNPs) (n=11), and HIV-1 infected progressors (n=74). We 

sequenced a region of the p21 5‘UTR and 3‘UTR in a subset of these individuals (HICs: n=52, 

progressors: n=44) to identify variants that may be modulating p21 expression. We compared 

levels of p21 mRNA, a marker for p21 expression, in a smaller group of individuals (n=50) with 

similar clinical phenotypes to determine if p21 upregulation was associated with natural control 

of HIV-1. Lastly, we developed a real-time PCR assay to genotype a p21 5‘UTR SNP, rs733590, 

that alone, and together with HLA-B*2705, was recently shown to directly impact on p21 

expression in Caucasians. This SNP was genotyped and analysed in the individuals with p21 

mRNA expression data. 

The p21 rs1801270 and rs1059234 SNPs were found to occur in partial linkage disequilibrium 

(LD) (r
2
=0.61). Although ECs had markedly less representation of the 3‘UTR rs1059234 mutant 

allele (T) and heterozygosity (CT) compared to progressors (T allele: 9.1% ECs vs. 25% 

progressors; CT genotype: 18.2% ECs vs. 42% progressors), this did not reach significance 

(p=0.11, OR=3.33; p=0.19, OR=3.49, respectively). Interestingly, HIV-1 controllers with <400 

HIV-1 RNA copies/ml (<400 HICs) also had less representation of the CT genotype when 

compared to progressors (20% vs. 42%, respectively; p=0.11, OR=2.91). In silico analysis of this 

3‘UTR SNP suggested that there are functional implications in terms of miRNA regulation, 

however when p21 mRNA expression was analysed with respect to this SNP, no effect was seen. 

The role of this 3‘UTR SNP on p21 expression and/or function and HIV-1 control requires 
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further investigation. The p21 exonic rs1801270 SNP showed no difference in representation 

among the clinical phenotypic groups and no effect was seen on p21 mRNA expression.  

When comparing HIV-1 controllers with >400 HIV-1 RNA copies/ml (>400 HICs) to 

progressors, the >400 HICs had significantly lower representation of the minor allele (A) of the 

miR-106b rs999885 SNP (p=0.04, OR=2.28). In addition, heterozygosity for this SNP (GA) was 

found in a much lower frequency in >400 HICs when compared to progressors (p=0.05; 

OR=2.56). Stratification of individuals according to their miR-106b rs999885 SNP genotype and 

p21 mRNA expression revealed the GA genotype to be associated with a trend to higher p21 

mRNA expression (p=0.066). A role for the miR-106b rs999885 SNP in HIV-1 control in 

individuals with higher viraemia needs to be validated in larger cohorts. 

Characterisation of the p21 regulatory regions, namely a region of the 5‘UTR and the 3‘UTR, 

identified 19 polymorphisms (18 SNPs and one indel) and 12 SNPs in the respective regions. A 

prevalent, previously uncharacterised 11-SNP haplotype (LD: r
2
=1) was detected in the p21 

promoter region at a frequency of 39.42% in the HIV-1 controllers and 48.86% in the progressor 

cohort. In addition, a 2-SNP haplotype was identifed and was found to be in moderate LD with 

the 11-SNP haplotype (r
2
=0.67). The ECs were found to have a trend of less representation of the 

2-SNP haplotype minor allele when compared to progressors (p=0.08, OR=2.83). Other than the 

rs1059234 SNP, no other SNPs in the 3‘UTR were differentially represented in any of our 

studied groups. 

p21 mRNA expression analysis showed significant correlations between p21 mRNA expression 

and markers of disease progression (HIV-1 viral load: r=0.69, p<0.0001 and CD4+ T cell count: 

r=-0.53, p=0.0005). In our study, ECs and VCs had significantly lower p21 mRNA expression 

compared to progressors (p=0.002 and p=0.001, respectively). Furthermore, in our Black South 

African population (n=50), the p21 5‘UTR rs733590 SNP CT and TT genotypes were not 

associated with higher p21 mRNA expression as has been shown in Caucasians. This, together 

with the absence of HLA-B*2705 in our Black South African population, points to host genetic 

differences as the likely contributors to the different results seen in our study with respect to p21 

expression and HIV-1 control when compared to reported literature. 

Future work with larger sample sizes and varied population groups will be highly informative in 

determining the role of p21 and natural control of HIV-1 in the Black South African population. 
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1.1 Background 

There are two major types of Human Immunodeficiency Virus (HIV), namely HIV-1 and 

HIV-2. Both types are similar in their gene arrangement, mode of transmission, replication 

pathways and clinical consequences, but HIV-2 is known to have lower transmissibility and a 

slower progression to Acquired Immune Deficiency Syndrome (AIDS) (reviewed by 

Nyamweya et al. 2013). HIV-2 is mostly endemic in West Africa, while HIV-1 accounts for 

95% of HIV infections worldwide.  

The HIV-1 pandemic continues to affect millions of people worldwide. The World Health 

Organization (WHO) estimated there to be 35 million people living with HIV-1 in 2013. It is 

estimated that approximately 71% of HIV-1 infected individuals worldwide live in sub-

Saharan Africa. (WHO report, 2013: http://www.who.int/gho/hiv/en/index.html). In 2013, the 

WHO reported that over 2 million people became newly infected with HIV-1. In sub-Saharan 

Africa, most countries have an infection rate of >1%, with more concentrated epidemics in 

particular populations. The four sub-Saharan African countries with the highest adult HIV-1 

prevalence rates as of 2013 are shown in Table 1.1.  

South Africa alone has over 6 million people infected with HIV-1 as of 2013. The South 

African National HIV Prevalence, Incidence and Behaviour Survey by the Human Science 

Research Council (HSRC) in 2012, surveying 38 000 South Africans, showed that only 

26.8% surveyed knew how HIV-1 was transmitted or how to prevent getting the virus, which 

is down from 30.3% in 2008.  

Individuals living in sub-Saharan African countries are at an increased risk of becoming 

infected with HIV-1, with women being at the highest risk. Most sub-Saharan African 

countries have slowing economic growth and this has impacted on government spending on 

social services like healthcare and education. This translates to a lower ability to promote 

HIV-1 prevention. Poverty also has a dramatic effect on transmission of HIV-1 in sub-

Saharan Africa. It was shown that the greater the national level income inequality, the higher 

the HIV-1 prevalence (Gillespie et al., 2007). Low economic status has also been found to be 

associated with earlier age of first sexual experience, lower use of condoms, having a larger 

number of sexual partners and a higher probability of having non-consensual sex (Mabala, 

2006). 

http://www.who.int/gho/hiv/en/index.html
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Table 1.1 - Top four sub-Saharan African countries with highest HIV-1 prevalence 

Sub-Saharan Country HIV-1 Prevalence Rate (%) 

Swaziland 26.5 

South Africa 17.9 

Namibia 13.3 

Mozambique 11.1 

Reproduced and modified from UNAIDS: Global Report on the Global AIDS epidemic.                                                         
Geneva, Switzerland: Joint United Nations Program on HIV/AIDS (UNAIDS); 2013 

Despite these figures, infected individuals in sub-Saharan Africa are understudied when 

compared with other HIV-1 infected populations around the world. Given that populations 

differ remarkably with regard to their immunogenetic backgrounds and ultimately their 

response to viral infections, and that sub-Saharan populations are predominantly infected 

with HIV-1 subtype C, which differs from subtypes in most other regions of the world 

(Figure 1.1), it is important for more research to be done on these populations. 

         

Figure 1.1 - Global map showing distribution of different HIV-1 subtypes (2012) 

Reproduced from Hemelaar (2012) 
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1.2 The HIV-1 life cycle 

HIV-1 is a lentivirus of the Retroviridae family and like other lentiviruses, has a relatively 

long incubation period. Uniquely, lentiviruses are able to infect non-dividing cells nearly as 

effectively as dividing cells (reviewed by Yamashita and Emerman, 2006). HIV-1, in 

addition to having the major genes found in all retroviruses that code for enzymes and 

structural proteins (i.e. gag, pol, env), has accessory genes that are exclusively found in HIV-

1 (Figure 1.2). 

HIV-1 uses the process of reverse transcription in order to replicate inside the host cell. Upon 

reaching the surface of a cell, HIV-1 binds and primarily uses the CD4 cell surface receptors, 

recognized by the HIV-1 envelope glycoprotein gp41/gp120 trimers, to gain entry into the 

cytoplasm (reviewed by Nisole and Saib, 2004). CD4 binding to gp120 causes a 

conformational change in gp120, exposing the co-receptor binding site. When CXCR4 or 

CCR5 bind, gp41 mediated fusion results, thereby allowing entry into the host cell.  

HIV-1 ribonucleic acid (RNA) and proteins, within the viral capsid, enter into the cytoplasm 

of the host cell, where HIV-1‘s reverse transcriptase transcribes the HIV-1 RNA to 

complementary DNA (cDNA), and then to double stranded DNA (dsDNA). The viral DNA is 

then translocated into the host cell‘s nucleus and is integrated into the host DNA, where it is 

then able to undergo transcription and translation, forming new viruses (reviewed by Barre-

Sinoussi et al., 2013). Cleavage of the viral polyproteins by the protease enzyme inside the 

immature virion allows for the formation of mature Gag proteins, leading to the production of 

infectious virions that start the cycle again (reviewed by Barre-Sinoussi et al., 2013).  
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Figure 1.2 - HIV-1 genes and encoded proteins. Schematic shows how the genes are arranged in the 
HIV-1 genome 

Reproduced from The Immune System 3ed, Garland Science (2009) 

 

1.3 How HIV-1 evades the immune system 

The immune system employs multiple mechanisms in order to protect the body from disease. 

The immune system is generally divided into two main arms: the innate immune system and 

the adaptive immune system. The innate immune system is the first line of defence against 

pathogens and is necessary for the control of common bacterial/viral infections. Several 

different cell types form part of the innate immune system, including natural killer cells, mast 

cells, eosinophils, basophils, macrophages, neutrophils and dendritic cells. Receptors that are 

expressed on macrophages recognize a wide range of molecular patterns that are specific to 

pathogens (Medzhitov and Janeway, 2000).  

The adaptive immune system has evolved to provide protection against reinfection with the 

same pathogen. This protection depends on the generation of antigen receptors, namely T-cell 

receptors (TCRs) and immunoglobulins, which result from somatic rearrangement processes 

in blast cells (Hansson et al., 2002). Foreign antigen is presented to the immune system in 

association with human leukocyte antigen (HLA) class I and II molecules on antigen 

presenting cells. When T cells are presented with foreign antigen, the adaptive immune 

response is initiated against the specific antigen presented. The initiated adaptive responses 

http://www.ncbi.nlm.nih.gov/books/n/imm/A2528/def-item/A2921/
https://en.wikipedia.org/wiki/Mast_cells
https://en.wikipedia.org/wiki/Mast_cells
https://en.wikipedia.org/wiki/Eosinophils
https://en.wikipedia.org/wiki/Basophils
https://en.wikipedia.org/wiki/Macrophages
https://en.wikipedia.org/wiki/Neutrophils
https://en.wikipedia.org/wiki/Dendritic_cells
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include direct targeting and killing of cells containing the antigen, mediated by cytotoxic T 

lymphocytes, and the production of antibodies against the antigen, mediated by stimulated B 

cells (Hansson et al., 2002).   

Because HIV-1 has an error-prone reverse transcriptase (Boyer et al., 1992), the virus 

frequently acquires mutations in its genome that either aid or hinder its survival via altered 

viral protein production. Through this evolutionary journey, HIV-1 has gained the ability to 

evade the immune system via immune escape mutations, as well as by using other distinct 

mechanisms (Table 1.2).    

HIV-1 infects and destroys CD4+ T cells and therefore interferes with the functioning of the 

immune system. The immune system has mechanisms in place to attack the HIV-1 infected 

CD4+ T cell (Figure 1.3) but as more and more CD4+ T cells are infected with HIV-1, the 

massive destruction leads to a loss of immune function. Due to this inability of the immune 

system to effectively neutralize or kill HIV-1, researchers have had to focus on different 

strategies in order to be able to control HIV-1 infection. 

 

Table 1.2 - Host defences and mechanisms of HIV-1 evasion 

Immune 
Response 

Host 
Defence * 

Antiviral Effect Viral Evasion or 
Antagonistic Mechanism 

Viral Factor(s) or 
Properties 

INNATE NK cells Lysis of infected cells Selective downmodulation of 
HLA-A and -B, but not HLA-C 

and -E 

Nef 

INTRINSIC ABOBEC 3G Lethal hypermutations Polyubiquitination and 
degradation 

Vif 

TRIM5α Untimely uncoating Variation in capsid High variability 

Tetherin Blocks virion release Sequestration from the site of 
virion budding 

Vpu, Nef, Env 

ADAPTIVE Cytotoxic 
CD8+ T cells 

Lysis of infected cells 
Inhibitory cytokines 

MHC-I downmodulation, 
escape mutations, latent 

infection 

Nef, high variability 

CD4+ helper 
T cells 

Helper function to 
promote antibody and 

CTL responses 

Destruction by infection or 
bystander apoptosis; 

downmodulation of CD4, CD3, 
CD28, and CXCR4 

Nef, Vpu, viral 
cytopathicity 

B cells, 
antibodies 

Neutralization Antigenic variation, 
glycosylation, shielding of 

functional epitopes, inhibition 
of IgG2, and IgA switching 

High variability, N-
linked glycosylation 
sites, Env structure, 

Nef 

Reproduced and adapted from Kirchhoff (2010) 

*This table describes only some of the more well studied mechanisms 
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Figure 1.3 - Schematic of the immune response against HIV-1 infected CD4+ T cells. ADCC: antibody-
dependant cell-mediated cytotoxicity. MHC: major histocompatibility complex. TCR: T cell receptor. 
DC: dendritic cell. Th: T helper cell. ER: endoplasmic reticulum. 

Reproduced from Walker and Yu (2013) 
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1.4 Anti-retrovirals and consequences on HIV-1 infection 

Anti-retroviral drugs (ARVs) are the only current treatment available for HIV-1 infected 

individuals. There have been discoveries of different drugs which target different stages of 

HIV-1 replication (Figure 1.4). During the HIV-1 replication process, for every 1000 to 10 

000 nucleotides synthesized, approximately one mutation is generated (Abram et al., 2010). 

With the HIV-1 genome being 10 000 nucleotides in length, this results in one to ten 

mutations being introduced in each viral genome with every replication cycle. As a result, 

these random inserted mutations contribute to ARV resistance. Therefore, using only one 

ARV results in a much higher probability of HIV-1 developing resistance. To overcome this, 

three or more different drugs are used together to treat an infected individual. This form of 

treatment is known as highly active anti-retroviral therapy (HAART). 

ARVs have allowed for substantial improvements in the management of HIV-1 in infected 

patients, but there are several disadvantages associated with ARV therapy. These include 

complex regimens, the need for and cost of lifelong treatment, ARV resistance and the 

development of side effects including, but not limited to, gastrointestinal issues, central 

nervous system problems and haematological disturbances (Rudorf and Krikorian, 2005). 

Additionally, ARVs do not allow for full eradication of HIV-1 due to the persistence of latent 

viral reservoirs occurring in long-lived memory CD4+ T cells and immune cells in the central 

nervous system (CNS) that contain integrated provirus within host cellular DNA (Archin et 

al., 2014). These reservoirs are hidden from the immune system and unaffected by ARV 

therapy.  

In sub-Saharan Africa, improved HIV-1 care and treatment has resulted in an increased 

distribution of ARVs from 5% to 30% during 2004-2007, but for each new individual started 

on ARVs, approximately 2-3 new infections have been reported (reviewed by Braunstein et 

al., 2009), emphasizing the critical need for research into preventative and therapeutic 

treatments including vaccines for HIV-1. 

Recommendations regarding when to initiate HAART are frequently changing. The current 

guidelines in South Africa, as outlined by the WHO, are to commence treatment in an 

individual when their CD4+ T cell count is <500 cells/μl 

(http://www.who.int/hiv/mediacentre/news/niaid_start/en/). Interim results from the United 

http://www.who.int/hiv/mediacentre/news/niaid_start/en/
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States National Institute of Allergy and Infectious Diseases (NIAID) suggest that HIV-1 

infected individuals will benefit from ARV treatment regardless of CD4+ T cell count. 

 

 

Figure 1.4 - Schematic showing anti-HIV mechanisms of available anti-retroviral drugs 

Reproduced from http://kesehatan.kompasiana.com/medis/2011/03/29/sekilas-tentang-pengobatan-hivAIDS-
350452.html. Accessed 24/02/2015 

 

1.5 Natural control of HIV-1 

Individuals infected with HIV-1 show substantial variation in rates of disease progression. 

Most commonly, progression of HIV-1 results in lowered CD4+ T cell count and increased 

viral load over time. Peak levels of HIV-1 viral RNA occur after initial infection, after which 

levels decrease until a viral load set point (VLS) is reached where viral RNA levels are 

maintained for months to years (Kelley et al., 2007). While it is still unclear what determines 

VLS, a number of factors, both viral and immunological, have been proposed to have an 

influence. The VLS has been found to be a good predictor of disease progression (Figure 1.5) 

(Mellors et al., 1997, Richardson et al., 2003), with a higher viral load at the VLS being 

associated with faster disease progression to AIDS and consequently death (Lavreys et al., 

2006, Koehler et al., 2010).  

 



 

10 

 
1
0
 

 

Figure 1.5 – Graph showing varying viral set points and consequence on HIV-1 progression 

* Current WHO guidelines recommend initiation of HAART at <500 cells/μl, with interim data from NIAID      
suggesting HIV-1 infected individuals start ARV treatment regardless of CD4+ T cell count 

Reproduced from Tiemessen and Martinson (2012)  

 

Among HIV-1 infected individuals, there are unique individuals who are able to naturally 

suppress the virus and exhibit slow progression of the disease, without the use of ARVs. 

HIV-1-infected viraemic controllers (VCs) are normally defined as maintaining high CD4+ T 

cell counts and low detectable viral loads (<2000 RNA copies/ml), while rare individuals 

[less than 1% of HIV-1 infected individuals in previously studied cohorts (Okulicz et al., 

2009)] who maintain high CD4+ T cell counts and undetectable viral loads (<50 RNA 

copies/ml) after infection with HIV-1 are termed elite controllers (ECs) (Saez-Cirion et al., 

2007). There has been much interest in the idea of a functional cure for HIV-1. For an 

individual to be ‗functionally cured‘ of HIV-1, they would need to exhibit long-term control 

of viral replication to undetectable levels without the aid of anti-retrovirals (ARVs) (Katlama 

et al., 2013). Essentially, they would exhibit clinical features characteristic of ECs. 

It is not, however, always simple defining an individual in the different controller subgroups. 

The many different clinical phenotypes of HIV-1 controllers (HICs) in the literature differ in 

terms of naming of the different controller groups, as well as how each controller group is 

defined. What complicates matters is that not all HICs are necessarily long term non- 

progressors, as some individuals who are able to maintain low levels of viraemia can still 

* 
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have significant decreases in their CD4+ T cells and may even experience AIDS events (Hunt 

et al., 2008).  On the other end of the spectrum are HICs who do not necessarily suppress 

HIV-1 viral load [who are named high viral load long term non-progressors (HVL LTNPs) in 

this study]. These individuals, while maintaining CD4+ T cell counts of >500 cells/μl long 

term without ARVs, tend to have relatively high viral loads of >10 000 RNA copies/ml, a 

similar phenotype to that of SIV-infected sooty mangabeys who have high viral loads yet 

show no AIDS-related events. Interestingly, there was a report of an individual infected with 

HIV-1 who had a viral load of >150 000 RNA copies/ml yet maintained normal CD4+ T cell 

counts without the use of ARVs for over 10 years (Okulicz et al., 2009). 

Thus, this variability in levels of control in HICs necessitates stratification of the controller 

groups into more specific subgroups, as the outcomes of disease vary significantly between 

HICs falling within these different definitions. VCs were shown to have a much faster disease 

progression than ECs, and HICs maintaining CD4+ T cell counts of around 1500 cells/μl over 

7 years had increased mortality rates when compared to HICs maintaining these high CD4+ T 

cell counts for 10 years or more (Okulicz et al., 2009). Thus, grouping all HICs into one 

group may mask the identification of factors that may be of importance, as different immune 

factors may be at play in the different ‗modes‘ of HIV-1 control. 

Further study into how ECs and other individuals classified as HICs naturally control HIV-1 

or the effects of viraemia will be beneficial in determining the correlates of protective 

immunity which are essential for the rational design of vaccines and novel therapies.  
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1.6 Mechanisms of Control 

Both the HIV-1 pathogen and the host have an inherent variability that result in differing 

levels of individual control with regards to the progression of HIV-1 (reviewed by Santa-

Marta et al., 2013). It has been hypothesized that less virulent strains of HIV-1 may be 

resulting in the perceived control an individual may exhibit (reviewed by Tiemessen and 

Martinson, 2012). However, it was shown that in the vast majority of cases, viruses isolated 

from HIV-1 controllers were replication-competent viruses, suggesting that host-mediated 

control is the main mechanism of viral suppression leading to HIV-1 control (reviewed by 

Tiemessen and Martinson, 2012).   

Previous research has shown multiple ways in which HIV-1 controllers may suppress viral 

replication including chemokine receptor variation, human leukocyte antigen (HLA) and 

killer cell immunoglobulin-like (KIR) variation, and intrinsic host proteins, to name a few. It 

is important to note that only a subset of ECs and HICs previously studied have an identified 

protective characteristic (viral and/or host) (reviewed by Okulicz, 2012), suggesting that there 

are other as yet unidentified factors involved that allow for the control of HIV-1 by these 

individuals. 

Variation in chemokine receptor gene 5 (CCR5), HLA and KIR genes are some of the most 

commonly studied host factors with regards to differential HIV-1 control. 
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1.6.1 Variation in chemokine receptor gene CCR5 

One of the most studied genetic variations with regards to a host protein is the Δ32 mutation 

in CCR5 (CCR5Δ32). CCR5, together with the CD4+ T cell receptor, is responsible for 

allowing HIV-1 entry into the cell. Individuals homozygous for the CCR5Δ32 mutation tend 

to be resistant to R5 HIV-1 strains as these strains use the CCR5 receptor to gain entry to 

CD4+ T cells and macrophages. HIV-1 infected individuals heterozygous for the CCR5Δ32 

polymorphism have been found to have a significantly slower disease progression (Mummidi 

et al., 1998, Mulherin et al., 2003). The polymorphism results in the CCR5 co-receptor being 

rendered non-functional and not expressed on the cell surface due to a 32 bp deletion in the 

gene sequence which introduces a premature stop codon (Santa-Marta et al., 2013). This 

polymorphism is predominantly found in European populations and is essentially absent in 

African, East Asian, and American Indian populations (Sabeti et al., 2005). Single nucleotide 

polymorphisms (SNPs) identified in the CCR5 cis-regulatory region have also been attributed 

to differential control of HIV-1, particularly the CCR5-59029 A/G polymorphism. 

Individuals who have a G/G genotype were found to progress slower to AIDS and/or death 

than individuals with an A/A genotype at the SNP position (Santa-Marta et al., 2013).  

There are also various CCR5 haplotypes that have been shown to have an effect on HIV-1 

disease progression. In the study by Gonzalez et al. (1999), findings showed that the CCR5 

haplotypes that are shown to be associated with altered rates of HIV-1 disease progression are 

different in Caucasians as compared to African Americans (i.e. individuals with African 

descent).  

A study was done on a population of HIV-1 uninfected South African Africans (SAA) and 

South African Caucasians (SAC) looking at haplogroups that were previously defined by 

Gonzalez et al. (1999) (Picton et al., 2010). Figure 1.6 shows these haplogroups as well as 

their frequencies as reported by Picton et al. (2010). Results showed that within the SAA 

population, there were 5 predominant haplotypes, compared to 3 found within the SAC 

population. Interestingly, the one shared haplotype, SAA/C-HHC (Figure 1.6) was found to 

be the most frequent haplotype in the SAC study group and conversely, was found least 

frequently in the SAA study group (Picton et al., 2010).  
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It was shown that HHA haplotypes (Figure 1.6) were linked with slower disease progression 

in African individuals of African descent (Gonzalez et al., 1999). Gonzalez et al. (1999) also 

showed that individuals with the HHF*2 haplotype had a slower progression to AIDS 

(p=0.01) as well as a slower progression to death (p=0.005). This was only found in the 

African American individuals studied and not in Caucasians. Individuals homozygous and 

heterozygous for the HHF*1 haplotypes were found to be more likely to have a faster 

progression to AIDS (p=0.05) and death (p=0.04) (Gonzalez et al., 1999). This was found to 

be true for the entire cohort (p=0.05) and in African Americans (p=0.04). 

 

Figure 1.6 – Schematic showing haplogroups found in CCR5 gene. (A) Schematic showing haplotypes 
defined by Gonzalez et al. (1999) as well as the frequencies of the haplotypes within the South 
African African and South African Caucasian groups in the study by Picton et al. (2010). (B) Schematic 
showing the haplotypes that were identified within the CCR5 gene in the South African African and 
South African Caucasian study populations. The coloured boxes show the SNPs or indels that form 
the haplotype. 

Reproduced from Picton et al. 2010  
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1.6.2 Variation in HLA and KIR molecules 

The HLA and KIR molecules are both highly non-conserved and prone to multiple mutations 

and variation (Heinrichs and Orr, 1990, Yawata et al., 2002). NK cells express the KIR 

molecules on their surface which aid in the killing ability of NK cells by interacting with 

HLA molecules as ligands in order to detect infected cells or tumour cells (Middleton et al., 

2002). HLA molecules also present peptide antigen to T cells, and if the antigen presented is 

recognized as non-self (i.e. a pathogen), the immune cells will be prompted to activate in 

order to neutralize or kill the invading microbe. Both of these molecules are therefore 

involved in important immune processes including antigen presentation to T cells and 

regulation of natural killer (NK) cell responses, interacting in both innate and adaptive 

immune responses. 

There are two classes of HLA molecules, class I (consisting of HLA-A, HLA-B and HLA-C 

alleles) and class II (consisting of HLA-DP, HLA-DQ and HLA-DR alleles), each presenting 

mainly to CD8+ T cells and CD4+ T cells respectively (Figure 1.7). The most variable of 

these alleles are the HLA-B and HLA-DRB1 alleles. 

 

Figure 1.7 – Schematic showing a class I HLA molecule presenting antigen to a CD8+ T cell and a class 
II HLA molecule presenting antigen to a CD4+ T cell.  

Reproduced from http://www.mcld.co.uk/hiv/?q=HLA 

 

http://www.mcld.co.uk/hiv/?q=HLA
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The extreme diversity of HLA and KIR molecules has a significant impact on disease 

susceptibility and severity experienced among different individuals (Bashirova et al., 2011).  

HIV-1 controllers have been shown to have an overrepresentation of HLA-B*57 and -B*27 

alleles (Kiepiela et al., 2004, Pereyra et al., 2008). When studying HIV-1 positive individuals 

during acute infection, Altfeld et al. (2003) found that virus-specific CD8+ T-cell responses 

were dominated by HLA-B*57-restricted responses. Using stepwise regression modelling in 

a European sample of controllers and progressors, HLA-B*57:01, -B*27:05, -

B*14/Cw*08:02, -B*52, and -A*25 were shown to have a protective effect on HIV-1 control 

and HLA-B*35 and -Cw*07 were shown to negatively impact control of HIV-1 (reviewed by 

Goulder and Walker, 2012) . 

When studying HIV-1 cohorts during viral infection, it was found that there is a robust 

synergistic effect of KIR and HLA genes/alleles (Martin et al., 2002). HLA-B molecules 

express the Bw4 epitope at amino acid position 80, either containing an isoleucine (referred 

to as HLA-Bw4
80I

) or a threonine residue (referred to as HLA-Bw4
80T

) (Cella et al., 1994, 

Gumperz et al., 1995). The KIR3DL1 inhibitory receptor binds to this Bw4 epitope, more 

strongly at HLA-Bw4
80I

. A protective effect of a joint KIR-HLA genotype has been found, 

consisting of KIR3DS1 and Bw4
80I,

 with regards to natural killer (NK) cell mediated killing 

of HIV-1 infected cells (Figure 1.8) (Martin et al., 2002). This particular genotype was also 

shown to be associated with a lower viral load (Qi et al., 2006).  
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Figure 1.8 - Schematic showing NK cell with KIR3DS1 and killing an HIV-1 infected cell with HLA-
Bw480I presenting a viral epitope. The HIV-1 infected cell presents a stress molecule to the NK cell 
that prompts the killing of that cell by the NK cell. 

Reproduced from Pelak et al. (2011) 

 

1.6.3 Intrinsic factors 

There are pre-existing proteins that intrinsically exert an antiviral effect on HIV-1, including 

but not limited to tetherin, apolipoprotein B mRNA editing enzyme, catalytic polypeptide-

like 3G (APOBEC3G), and SAM domain and HD domain-containing protein 1 (SAMHD1) 

(Figure 1.9). These intrinsic antiviral factors target different steps of the HIV-1 replication 

cycle. However, they are not necessarily effective at combatting HIV-1, as HIV-1 has 

evolved accessory proteins that counteract these factors, in addition to using other not yet 

understood mechanisms.  
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Figure 1.9 - Schematic showing antiviral intrinsic factors at different steps in the HIV-1 replication 
cycle. Intrinsic factors are shown in yellow boxes and HIV-1 accessory proteins that target each 
intrinsic factor are shown in dark green circles. 

Reproduced from Yan and Chen (2012) 

 

1.6.3.1 Tetherin 

Tetherin is an interferon-inducible membrane protein that tethers nascent HIV-1 viral 

particles and inhibits their release from the cell surface (Venkatesh and Bieniasz, 2013). 

Tetherin therefore aids in the restriction of cell to cell infection of HIV-1. Tetherin is 

comprised of a short N-terminal cytosolic tail, a single pass transmembrane helix and an 

extracellular domain that is primarily alpha helical (Hinz et al., 2010). The HIV-1 accessory 

protein, viral protein unique (Vpu), downmodulates the cell surface expression of tetherin, 

leading to its degradation, and therefore allows for increased viral release (Kuhl et al., 2010). 
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1.6.3.2 APOBEC3G 

APOBEC3G is a cytidine deaminase protein that acts to halt HIV-1 infection by converting 

cytosine residues into uracil within the minus strand of HIV-1 viral DNA, thereby interfering 

with the reverse transcription process (Wang et al., 2012b). APOBEC3G is predominantly 

expressed in cells that are targets of HIV-1 infection, such as CD4+ T cells, macrophages and 

dendritic cells (Chiu et al., 2005). The HIV-1 encoded viral infectivity factor (Vif) disrupts 

ABOPEC3G activity by targeting APOBEC3G for ubiquitination and degradation (Chiu et 

al., 2005).  

1.6.3.3 SAMHD1 

SAMHD1 is a cellular enzyme that is able to block replication of the HIV-1 virus in dendritic 

cells, macrophages and monocytes (Laguette et al., 2011, Hrecka et al., 2011). SAMHD1 

does this by converting nucleotide triphosphates into triphosphate and a nucleoside, thus 

depleting the amount of deoxynucleotide triphosphates (dNTPs) in the cell. HIV-1 needs 

dNTPs in order to synthesise viral cDNA (Lahouassa et al., 2012). Recently, SAMHD1‘s 

nuclease activity has also been attributed to its ability to restrict HIV-1, as it was shown that 

ribonuclease activity is required for HIV-1 restriction (Ryoo et al., 2014). The Vpx (virion-

associated protein) accessory protein is encoded by HIV-2 and SIV, but is absent in HIV-1. 

Vpx is able to counteract SAMHD1 by inducing its degradation via the ubiquitin-proteasome 

pathway (Laguette et al., 2012). The degradation of SAMHD1 results in an increased 

availability of dNTPs which in turn allows for effective viral reverse transcription. Vpx is 

found in HIV-2 virions in large amounts due to its requirement in HIV-2 reverse transcription 

(Wu et al., 1994, Fujita et al., 2008). It has been found that HIV-1 infected ECs have a higher 

expression of SAMHD1 when compared to healthy controls or progressors (Riveira-Munoz 

et al., 2014).  

1.7 A role for a cyclin-dependent kinase inhibitor p21 in control of HIV-1 

infection 

A protein proposed to play a role in HIV-1 disease control is the cellular protein p21 (also 

known as CDKN1A/WAF-1/Cip-1) (Zhang et al., 2007, Bergamaschi et al., 2009, Chen et 

al., 2011). p21 is a 164 amino acid (18 kDa) cip/kip family inhibitor encoded by the CDKN1A 

gene on chromosome 6 and acts as a regulator of the cell cycle by inhibiting cyclin-dependent 

kinases and regulating the transition of replicating cells from G1 - S (Arias et al., 2007). The 
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CDKN1A gene is comprised of three exons and two introns (Figure 1.10), with exon 2 being 

the main translation region (Sivonova et al., 2013).  

 

Figure 1.10 – Schematic showing the CDKN1A gene composed of two introns and three exons. 
The coding region is shown in green. Translation begins in Exon 2. 

 

p21 is a well-known tumour suppressor (Poole et al., 2004, Kawamura et al., 2009) and 

mostly acts in conjunction with another significant tumour suppressor p53, where expression 

of p21 is induced in both a p53-dependent and independent manner after DNA damage 

(Macleod et al., 1995, reviewed by Gartel and Tyner, 2002). The p21 gene contains a p53 

binding site located 2.4 kb upstream of the translational start site (el-Deiry et al., 1993). p21 

also has the ability to bind proliferating cell nuclear antigen (PCNA) and in this way, PCNA-

dependent DNA polymerase activity is affected, resulting in inhibition of DNA replication 

and affecting multiple PCNA-dependent DNA repair processes (Li et al., 1994, Abbas and 

Dutta, 2009).  

1.7.1 Upregulation of p21 in elite controllers 

CD4+ T cells of HIV-1 infected ECs have been shown to have a noticeable upregulation of 

p21 and its associated mRNA (Chen et al., 2011). p21 has been found to inhibit HIV-1 

replication in specific cell types such as macrophages (Bergamaschi et al., 2009, Allouch et 

al., 2013) and hematopoietic stem cells (Zhang et al., 2007) and has been shown to inhibit 

mRNA transcription by the binding to and inhibition of CDK9 (Chen et al., 2011), a cyclin-

dependent kinase that is associated with the P-TEFb (positive transcription elongation factor 
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b) complex (an elongation factor for transcription directed by RNA polymerase II). By 

lowering the deoxyribonucleotide (dNTP) stores in macrophages enough to prevent viral 

cDNA synthesis, p21 has been found to suppress reverse transcription of both HIV-1 and SIV 

(Allouch et al., 2013). Allouch et al. (2013) showed that this reduction in dNTPs is a result of 

p21 repressing the expression of ribonucleotide reductase subunit R2, an enzyme necessary 

for the biosynthesis of dNTPs, via a SAMHD1-independent pathway.  

In hematopoietic stem cells, p21 complexes with HIV-1 integrase and consequently prevents 

chromosomal integration of HIV-1 (Zhang et al., 2007). The ability of p21 to inhibit multiple 

replication events of HIV-1 suggests that it may be very efficient at limiting HIV-1 

progression. When studying CD4+ T cells with regards to susceptibility to HIV-1 infection, 

Chen et al. (2011) found a highly significant inverse correlation (p<0.0001) between p21 

mRNA expression levels and ability of HIV-1 to infect the cell, thereby indicating that p21 

may play a pivotal role in how CD4+ T cells are able to resist infection by HIV-1 in ECs.  

Another study showed broad p21 expression regardless of individual phenotype (de Pablo et 

al., 2015), however they did show a trend to higher p21 expression in ECs. In the context of 

protection from HIV-1 infection, Herbeck et al. (2015) concluded that if p21 expression does 

contribute to the HIV-1 resistance in HIV-exposed seronegatives (HESN), it most likely only 

plays a minor role and possibly only in those that have had high levels of exposure to HIV-1. 

1.7.2 Genetic variation in p21 

Multiple SNPs have been identified in the p21 gene with varying associated outcomes (Li et 

al., 2005, Gravina et al., 2009, Wang et al., 2012a, Ma et al., 2013), but have not been 

investigated in the context of HIV-1 infection. The two most studied p21 SNPs, rs1801270 

(also referred to as C98A or Ser31Arg) and rs1059234 (also known as p21C70T), have been 

implicated in cancer, and frequencies of these SNPs differ greatly depending on ethnicity and 

geography of studied populations (Sivonova et al., 2013). The frequency and representation 

of the two SNPs in the sub-Saharan African population as well as other reference populations 

are shown in Table 1.3.  
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Table 1.3 - SNP frequencies and representation in sub-Saharan Africans 

p21 SNP frequency in differing populations 

SNP 
 

Location in 
gene 

Nucleotide 
change 

MINOR ALLELE FREQUENCY                                                   
(sample number) 

Caucasian African Asian Global 

rs1801270 +93 C/A 
0.040         

(N=224) 
0.308     

(N=224) 
0.394    

(N=170) 
0.244                

(N=172) 

rs1059234 +1719 C/T 
0.035        

(N=226) 
0.241     

(N=224) 
0.401    

(N=172) 
0.128     

(N=180) 

Frequency and representation of SNP genotypes in sub-Saharan Africans (N=220) 

SNP Mt/Mt WT/Mt WT/WT 

rs1801270 0.100 0.407 0.493 

rs1059234 0.045 0.393 0.562 

     Source: NCBI dbSNP database 

 

The rs1801270 mutation results in a serine to arginine substitution at codon 31 of p21 (Wang 

et al., 2012a). It is still not clear as to whether this polymorphism is beneficial or deleterious 

with regards to cancer as there are conflicting results in a number of studies. This can be 

attributed to the fact that p21 not only functions as a growth inhibitor, but can also act as an 

inhibitor of apoptosis, leading to paradoxical results (Roninson, 2002). The rs1059234 SNP is 

found within the 3‘ untranslated region (UTR) of the p21 gene, and results in a single C-T 

substitution 20 nucleotides downstream of the exon 3 stop codon.  

In a population of Chinese women, Wang et al. (2012a) found that the p21 rs1801270A 

allele, in addition to an a three SNP haplotype formed by linkage disequilibrium (LD) with 

the 3‘UTR rs1059234 T allele and another p21 SNP (rs3176352G), were associated with a 

protective effect with regards to the development of cervical cancer. rs1801270 has also been 

associated with increased risk of endometrial cancer in Korean populations (Roh et al., 2004). 

Li et al. (2005) found rs1801270 in addition to rs1059234 to be associated with susceptibility 

to squamous cell carcinoma of the head and neck. Interestingly, these two p21 variants have 

been found to be significantly underrepresented in Italian centenarians (p=0.020 for 

rs1801270; p=0.026 for rs1059234), suggesting that these SNPs may have a negative effect 

on longevity (Gravina et al., 2009). Chen et al. (2002) found rs1801270 to be associated with 

a higher risk of bladder cancer in Taiwanese patients. In Caucasian populations, the 

rs1801270 polymorphism was found to be significantly linked (p<0.001) to an overall 
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increased cancer risk (Liu et al., 2011). No studies, to our current knowledge, have been 

conducted to determine whether two these reported p21 SNPs influence HIV-1 susceptibility 

and/or disease progression. 

More recently, de Pablo et al., (2015) showed a link between possession of a 5‘UTR p21 

rs733590 SNP and/or the HLA-B*2705 allele (a well known protective HLA allele found in 

Caucasians) and higher relative p21 expression in HIV-1 infected individuals. The HLA-

B*2705 allele is rarely found in African populations, and the prevalence of the rs733590 SNP 

in the Black South African population has not been determined. Furthermore, this SNP has 

not been investigated for its effect on p21 expression in a sub-Saharan African population. 

1.7.3 Regulation of p21 

Regulation of a gene occurs at all levels during the process of converting DNA into a protein 

product. The core promoter is generally defined to be the DNA region that directs the 

initiation of transcription by RNA polymerase II (reviewed by Juven-Gershon et al., 

2008).  Regulatory elements are contained within the promoter sequence and at the 

transcription start site of a gene. A regulatory sequence acts to modulate the expression of 

genes. Promoters usually contain a TATA box (named for its core DNA sequence of 5'-

TATAAA-3'), a transcription factor II B (TFIIB) recognition site, an initiator, and the 

downstream core promoter element (Butler and Kadonaga, 2002). 

Regulation can also occur after transcription in the 3‘UTR of the mRNA, resulting in 

differing mRNA stability and having an effect on translation (Merritt et al., 2008). Regulatory 

elements within the 3‘UTR are mostly expected to function post-transcriptionally at the 

mRNA level, but they can also function at the DNA level as distal enhancers to control 

transcription (Merritt et al., 2008).  

p21 is an unstable protein when it is found within actively dividing cells and has a relatively 

short half-life of 20-60 minutes. FK506-binding protein like (FKBPL), also known as 

WISp39, is a tetratricopeptide repeat (TPR) protein that works to recruit heat shock protein 

(Hsp) 90 to p21. FKBPL works to protect newly synthesised p21 from proteasomal 

degradation (Jascur et al., 2005). Cells that are depleted of this protein are unable to 

upregulate p21 when DNA damage is detected. It was found that SNPs in the C-terminal TPR 

domain of WISp39 cause a loss of interaction between WISp39 and Hsp90, resulting in the 

inability to stabilize p21 (Jascur et al., 2005). Other variants of p21, including phospho-site-

http://en.wikipedia.org/wiki/Gene_expression
http://en.wikipedia.org/wiki/TATA_box
http://en.wikipedia.org/wiki/DNA_sequence
http://en.wikipedia.org/wiki/TFIIB
http://en.wikipedia.org/wiki/Recognition_site
http://en.wikipedia.org/wiki/Initiator_element
http://en.wikipedia.org/wiki/Promoter_(genetics)#Promoter_elements
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deficient or phospho-site-mimicking mutants, have also been shown to regulate p21 stability 

by either affecting interaction with p21 binding proteins or by moving p21 into the cytoplasm 

(Jascur et al., 2005). This provides evidence that transcriptional control alone may not be 

sufficient to upregulate p21 when there is no p21 stabilisation occurring in the cell (Jascur et 

al., 2005). 

Viral proteins are also able to influence post-transcriptional control of p21, resulting in an 

effect on cellular proliferation (reviewed by Abbas and Dutta, 2009). E6 is a human 

papilloma virus (HPV) protein that has been shown to downregulate p21 independently of 

p53 (Burkhart et al., 1999, Fan et al., 2005). It was also found that the core protein in 

hepatitis C virus has an inhibitory effect on p21 post-transcriptionally, resulting in the 

activation of CDK2 and consequent tumorigenesis (Yoshida et al., 2001). This post-

transcriptional regulation of p21 by different viruses provides some insight into how viruses 

may regulate cell cycle progression and apoptosis. As to precisely how these viral proteins 

mediate regulation of p21 still needs to be elucidated.   

1.7.4 miRNA regulation of p21  

MicroRNAs (miRNAs) are short RNA molecules of +/- 22 nucleotides that bind post-

transcriptionally to the 3'UTR of target mRNAs, thereby regulating gene expression by 

silencing translation and/or degrading the targeted transcript (Lu et al., 2005).   

miRNAs in the miR-106b family have been shown to directly target p21, reducing p21 

mRNA levels by 38% and p21 protein levels by 46%, and anti-miR-106b increasing p21 

protein levels by 53% (Ivanovska et al., 2008). The coding sequences for miR-106b miRNAs 

are located in intron 13 of the  mini-chromosome maintenance 7 (MCM7) gene. A SNP, 

rs999885, has been reported in the promoter area of MCM7, causing an A to G base change 

and having an effect on transcription of miR-106b. Like rs1801270 and rs1059234, this SNP 

has been implicated in cancer progression, with one study showing that the variant genotypes 

of rs999885 were associated with a significantly decreased risk of death for intermediate or 

advanced hepatocellular carcinoma in a Chinese population (Qi et al., 2014). This SNP has 

not, to our knowledge, been studied in the context of HIV-1 control. Given that increased 

expression levels of p21 mRNA have been found in ECs, thereby suggesting a role for p21 on 

HIV-1 control, and that miR-106b has been shown to directly target the p21 3‘UTR, the 

rs999885 SNP could be playing an indirect role on p21 expression and consequently, HIV-1 
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control. The frequency and representation of this SNP in different populations are shown in 

Table 1.4. 

Table 1.4 – Frequency and representation of the miR-106b rs999885 SNP 

SNP Nucleotide Change 

Minor Allele Frequency                                                                     
(sample number) 

Caucasian African Asian 

rs999885 C/T (REV) 
0.549 

(N=224) 

0.243 

(N=218) 

0.831 

(N=172) 

Frequency and representation of SNP genotypes in sub-Saharan Africans (N=220) 

SNP Mt/Mt WT/Mt WT/WT 

rs999885 0.083 0.321 0.596 

  Source: NCBI dbSNP database. REV: Reverse 

 

Multiple miRNAs, specifically those in the miR-106b family (Ivanovska et al., 2008), have 

the ability to downregulate p21, which is helpful in understanding p21 function. As well as 

being associated with the regulation of HIV-1, p21 has been implicated in other diseases. 

Downregulation of p21 results in varied disease phenotypes, including increased spontaneous 

tumours and lupus (Arias et al., 2007). Additionally, downregulation of p21 was shown to 

result in an increased number of stem cells under normal cellular conditions i.e. when cells 

are not under stress (Cheng et al., 2000, Stier et al., 2003, Zhang et al., 2007), having 

potential consequences on the efficiency of gene therapy. miRNA-mediated p21 

downregulation in HIV-1 infected, activated CD4+ T cells resulted in increased levels of p24 

capsid protein (Chen et al., 2011).  

These miRNA studies show that p21 has serious implications on multiple diseases including 

AIDS, and therefore strategies to modulate p21 levels, or levels of other proteins upstream or 

downstream in the biochemical pathway, could be effective in modifying multiple disease 

phenotypes. 
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1.8 Study rationale 

To our knowledge, nothing is currently known about the genetic variability of the p21 gene in 

the Black South African population, and the role of p21 in elite control as well as HIV-1 

related control warrants investigation. Given that p21 expression may play a role in HIV-1 

control, SNPs and other variations within two areas of the p21 gene that are expected to 

influence expression, namely the 5‘UTR and 3‘UTR regions, were characterised. In addition, 

the possible influence of a SNP found in the miR-106b miRNA and the consequent effect on 

p21 expression was assessed.  

Given that Chen et al. (2011) found p21 to be significantly upregulated in HIV-1 controllers 

in their cohort, it is important to determine if this is true for Black South Africans, thereby 

determining the potential importance in our local setting. The study of this gene through 

comparison of different clinical phenotypes of HIV-1 infected individuals will provide 

important insights into pathways involved in HIV-1 control that could be manipulated to 

achieve functional cure for HIV-1 infected individuals. 

1.8.1 Aim of Study 

The overall purpose of this study is to explore the role of p21 (WAF1/Cip1) expression in the 

context of host ability to control HIV-1 infection. The approach taken involves the 

characterisation of genetic variation of the p21 gene and quantifying p21 transcription in 

relevant clinical samples. 

1.8.2 Specific objectives 

1. To design real-time PCR assays in order to detect known p21 rs1801270 and 

rs1059234 SNPs, in addition to the miR-106b rs999885 SNP, as well as any novel 

SNPs identified from sequencing, and describe their frequencies in a larger sample 

set of Black South African ECs, LTNPs, progressors and HIV-1 negative individuals. 

2. In a smaller subset of these individuals, to sequence a region of the p21 5‘UTR and 

3‘UTR in order to detect novel SNPs that may be implicated in modulating p21 

expression and HIV-1 control. 

3. To compare levels of p21 mRNA expression in a subset of Black South African ECs, 

LTNPs, progressors and HIV-1 negative individuals. 
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4. Based on the collective findings, to establish a genetic signature that distinguishes 

individuals who inherently are high p21-expressors (with predicted good-excellent 

control) from those who are low p21-expressors (HIV-1 progressors). 
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2 MATERIALS AND METHODS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

29 

 
2
9
 

2.1  Populations and study samples 

2.1.1 Genetic characterization of p21 

Samples used for the genetic characterisation component of the study included Black South 

African healthy controls (HCs), elite controllers (ECs), viraemic controllers (VCs), high viral 

load long term non-progressors (HVL LTNPs) and progressors. Stored DNA samples were 

available for 72 HCs, 11 ECs, 11 HVL LTNPs, 30 VCs and 74 progressors. A summary of 

the characteristics of the various cohorts are shown in Table 2.1.  

In this study, ECs are defined as having viral loads of <50 RNA copies/ml, with some ECs 

having long term data. VCs are defined as having documented CD4+ T cell counts of >500 

cells/µl with viral loads <2000 RNA copies/ml. HVL LTNPs have CD4+ T cell counts >500 

cells/µl for >7 years with viral loads exceeding 10 000 RNA copies/ml. Progressors are 

defined as having declining CD4+ T cell counts to <350 cells/µl with viral loads >10 000 

RNA copies/ml, and who require initiation of antiretroviral therapy.  

HIV-1 RNA levels were quantitated using the COBAS
®

 AmpliPrep/COBAS
®

 Taqman
®
 HIV-

1 Test, v2.0 ultrasensitive tests (<20 RNA copies/ml) (Roche Diagnostic Systems, Inc, New 

Jersey, USA) and CD4+ T cell counts were determined using FACSCount System from 

Becton Dickinson (San Jose, CA). 

 

Table 2.1 – Characteristics of HIV-1 infected study participants in the clinical phenotype groups 
studied 

Cohort n Gender  
(% female) 

 

Age (years) 
 

(Mean and range) 

CD4 Count 
(cells/μl)  

  (Median and IQR) 

Viral Load (HIV RNA 
copies/ml)  

    (Median and IQR) 

Progressors  74 83.8 42.5 (28-71) 177  
(146 – 210) 

38 444  
(19 853 – 103 042) 

VCs  30 90.0 36 (19-46) 651  
(555 – 832)* 

495  
(327 - 965)** 

ECs  11 81.8 44 (19–54) 853  
(718 - 1022) 

<40 

HVL LTNPs  11 81.8 41 (31-51) 663  
(635 – 749) 

54 375  
(13 415† – 77 820) 

*Two individuals had CD4+ T cell counts <350 cell/μl which at the time was the cutoff for starting ART (lab ID: 

TG1 and TG9). These individuals were included due to their status as LTNPs (9 years since diagnosis for both). 
**One individual (TG9) had a VL>2 000 but was included due to length of infection in the absence of ART (9 
years). The next highest VL was 1 445 HIV RNA copies/ml. 
†Two individuals, Pru2 and NP26, while considered LTNPs (>7 years infection), had VLs below 10 000 at time of 
enrolment. However, subsequent to enrolment into this study, VLs for these individuals increased dramatically 
without a drop in CD4+ T cell counts. 
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2.1.2 p21 mRNA expression analysis 

For mRNA studies, a selection of existing ECs and LTNPs and healthy controls were recalled 

to consent for additional blood samples, and a set of new HIV-1 progressors (n=12) were 

identified and recruited for blood draws. In addition, some newly identified HICs were also 

included (n=5). Three additional recruited individuals (SHP002, SHP003, SHP010) could not 

be classified as controllers based on high viral loads (>2000 RNA copies/ml) and a lack of 

long-term data that would define them as HVL LTNPs, and were therefore excluded from 

analyses when analysing data stratified according to phenotypic groupings of HIV-1. These 

three individuals were, however, included in correlation analyses where p21 expression was 

analysed in terms of CD4+ T cell counts and VL. 

To establish the relationships between markers of disease severity and quantitation of p21 

mRNA, participants were grouped according to VL and CD4+ T cell counts at the time of 

blood draw rather than predefined phenotypic groupings used for earlier genetic studies i.e. a 

participant defined as an EC (viral loads of <50 RNA copies/ml) with a VL of 1000 RNA 

copies/ml at the time of blood draw for the mRNA expression study was defined as a VC 

(Table 2.2).  

Informed consent was obtained from all individuals participating in this study. Ethics 

approval for the greater LTNP and EC study has been obtained from the Human Research 

Ethics Committee at the University of the Witwatersrand, Johannesburg under clearance 

certificate M140926 (Prof. C. T. Tiemessen). This particular study has also obtained ethics 

approval under clearance certificate M140996 from the Human Research Ethics Committee 

at the University of the Witwatersrand. 

 

 

 

 

 



 

31 

 
3
1
 

Table 2.2 – Characteristics of study participants in the p21 mRNA expression aspect of the study 

Sample ID Gender Age (2015) HIV-1 Viral Load 
(RNA copies/ml) 

CD4+ T 
Cell Count 
(cells/µl) 

Previously 
assigned clinical 
phenotype 

Assigned clinical 
phenotype for 
expression analysis 

SHP001 F 36 141 1344 - VC 
SHP002 F 35 8070   557 - Unclassified* 
SHP003 F 41 32133 752 - Unclassified* 
SHP004 F 39 275106 165 - Progressor 
SHP005 F 34 40370 88 - Progressor 
SHP006 F 40 49 641 - EC 
SHP007 M 31 894183 37 - Progressor 
SHP008 M 35 402192 222 - Progressor 
SHP009 M 39 25969000 10 - Progressor 
SHP010 F 47 4732 1147 - Unclassified* 
SHP011 F 50 278566 121 - Progressor 
SHP012 M 55 2203257 44 - Progressor 
SHP013 F 27 292 1475 - VC 
SHP014 F 20 75634 115 - Progressor 
SHP015 M 41 7676 163 - Progressor 
SHP016 F 37 47207 159 - Progressor 
SHP017 F 37 5577 165 - Progressor 
SHP018 F 53 49 640 - EC 
SHP020 F 26 27210 179 - Progressor 
SM0001 M 49 20 922 - EC 
Toga11 F 39 138 561 EC EC 
Toga4 M 42 212 605 VC VC 
Pru-048 F 58 3349 924 EC VC 
Pru-058 F 40 9897 462 VC HVL LTNP 
Pru-052 M 47 9004 465 HVL LTNP HVL LTNP 
NP1010 F 55 65 1559 EC EC 
NP1029 M 47 105 772 EC EC 
NP1035 F 42 72 778 EC EC 
NP1044 F 47 95 718 EC EC 
NP1055 F 22 155 943 EC EC 
NP1068 F 46 49 760 EC EC 
NP1004 F 44 2149 465 VC VC 
NP1016 F 43 560 701 VC VC 
NP1027 F 39 927 908 VC VC 
NP1065 F 38 1288 609 VC VC 
NP1036 F 54 11967 709 HVL LTNP HVL LTNP 
NP1069 F 37 3771 536 HVL LTNP VC 
NP1024 F 36 39945 323 HVL LTNP HVL LTNP 
NP1005 F 39 3539 747 VC VC 
NP1063 F 51 46 712 EC EC 
BC1 F 23 - - - HC 
BC2 F 25 - - - HC 
BC3 M 32 - - - HC 
BC4 M 36 - - - HC 
BC5 F NA - - - HC 
BC6 M 30 - - - HC 
BC7 F 35 - - - HC 
BC8 F NA - - - HC 
BC9 F 32 - - - HC 
BC10 F NA - - - HC 

HC = healthy control; EC = elite controller; VC = viraemic controller; HVL LTNP = high viral load long term non-progressor. 
*These three individuals were included in correlation analyses where p21 expression was analysed in terms of CD4+ T cell 
counts and viral load, however were excluded from analyses when analyzing data in terms of control. - Not applicable, NA 
= not available 
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2.2 Potential genetic biomarkers for differential p21 expression 

Figure 2.1 shows a schematic representation of the p21 gene with the regions amplified and 

sequenced as well as the position of the two SNPs (red dots) that were genotyped with respect 

to the characterisation aspect of the study. The additional p21 5‘UTR SNP that was 

genotyped as part of the expression aspect of the study is also shown (blue dot). 
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Figure 2.1 - Schematic of the p21 gene showing an overview of which regions and variations were 
characterised in the p21 gene. The regions that were sequenced are shown as blue bars and the 
three p21 SNPs genotyped are shown as red dots (rs1801270 and rs1059234) and a blue dot 
(rs733590) with their position in the p21 gene shown in brackets 
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2.2.1 Standard Polymerase Chain Reaction (PCR) Amplification 

Genomic DNA that was used in the amplifications for 2.2.3 was previously extracted from 

either whole blood or buffy coats of patients using the QIAamp DNA Blood Mini Kit 

(Qiagen). Each region of interest was PCR amplified with predesigned primers designed 

using PrimerW software and using the Expand High Fidelity PCR System (Roche, 

Mannheim, Germany) with cycling conditions carried out according to manufacturer‘s 

instructions. The mastermix used for all PCR reactions contained a 300 nM final 

concentration of each primer, 200 µM final concentration of dNTPs and 1.5 mM final 

concentration of MgCl2. The resulting PCR products were electrophoresed on 1% agarose 

gels for larger sized products (>500 bp) and 2% agarose gels for smaller fragments (<500 bp) 

with Fermentas Middle Range Molecular Weight markers (Thermo Fisher Scientific, 

Massachusettes, USA) used for size referencing. The gels were run for 30-40 minutes at 

100V. The PCR amplified products were then purified using either the MSB Spin PCRapace 

kit (STRATEC Molecular, Berlin-Buch, Germany) or Agencourt Ampure XP (Beckman 

Coulter, Missouri, USA) magnetic separation kit according to manufacturer‘s instructions, in 

preparation for downstream applications. 

2.2.2  Sanger sequencing 

Sequencing reactions were set up in 96-well plates using BigDye Terminator version 3.1 

Cycle Sequencing Chemistries (Applied Biosystems, Foster City, CA, USA). Purified PCR 

amplicons were used as the DNA template.  

After cycling, the sequencing reactions were purified using standard ethanol-sodium acetate 

precipitation. Briefly, 35 µl of an ethanol-sodium acetate solution was added to the 

sequencing reactions (10 μl) and the plate was centrifuged at 448g for 30 minutes. The plate 

was then placed upside down on absorbent paper and centrifuged at 3g for 1 minute. 

Subsequently, 70% ethanol (50 µl) was added to each well and the plate was centrifuged at 

448g for 5 minutes. Again, the plate was placed upside down in the same manner and 

centrifuged at 3g for 1 minute. The plate was then dried for 3 minutes at 63°C on a 

GeneAMP PCR System 9700 (Applied Biosystems, Foster City, CA, USA). Dried 

sequencing pellets were resuspended in 10 µl of HiDi Formamide (Life Technologies, 

California, USA). The resuspended sequenced fragments were subsequently heated at 95°C 

for 2 minutes and then electrophoresed on an automated 3100 Genetic Analyser (Applied 
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Biosystems) using Pop6 polymer and a 36cm capillary array (Life Technologies, California, 

USA), according to manufacturer‘s instructions.   

Resulting sequence chromatograms were analysed using Sequencher software version 5.1 

(Gene Codes Corporation, Ann Arbor, MI, USA). Imported sequences were aligned to a 

reference sequence obtained from the NCBI database (NCBI ref seq NC_000006.12) and 

SNPs and indels identified were recorded for downstream analysis. A summary of the 

sequencing process from DNA extraction to analysis of sequences is shown in Figure 2.2. 

 

               

Figure 2.2 – Flow diagram showing steps involved in the sequencing of PCR amplicons from genomic 
DNA extraction to analysis 

   

2.2.3  SNP Genotyping  

A number of different methods were employed in order to genotype select SNPs of interest. 

2.2.3.1 Real-time CT Shift Assay 

A real-time cycle threshold (CT) shift PCR assay was one of the methods used to obtain 

genotypic data for specific SNPs. It is an assay that uses cycle threshold shifts as a result of 

mispriming 3‘ end primer nucleotides to differentiate between the different genotypes. In 

order to develop the CT shift PCR assays, it was required to have individuals of known 

genotype at the three SNP positions (rs1801270, rs1059234 and rs999885 SNPs), determined 
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by amplifying and sequencing the region harbouring the respective SNPs from control 

samples. Generally, twenty control samples were PCR amplified and sequenced in order to 

successfully detect all three possible genotypes. The assays were optimized using two known 

homozygous WT individuals, two known heterozygous individuals and two known 

homozygous Mt individuals for each of the SNPs. The PCR primers were designed using 

PrimerW software. Genomic DNA from the newly recruited individuals [used for the p21 

expression component (see 2.3)] was extracted from whole blood using the QIAamp DNA 

Blood Mini Kit (Qiagen, Hilden, Germany), according to manufacturer‘s instructions, and 

were genotyped using the same three designed CT shift assays. 

The CT shift PCR assays were designed using SYBR Green to detect each SNP using allele-

specific PCR, with two primers used; one specific for the WT allele and one specific for the 

Mt allele of each SNP, and one common primer, either in the forward or reverse orientation, 

depending on the orientation of the allele-specific primers. Thus, for each sample, two 

reactions were conducted, one with the major allele (WT) primer and one with the minor 

allele (Mt) primer. Reactions (final volume of 10 μl) were set up in 96-well plates, with each 

reaction containing 1× Fermentas SYBR Green PCR Master Mix (Thermo Fisher Scientific, 

Massachusetts, USA), 10 ρmol of each forward and reverse primer, and ~10-50 ng of 

genomic DNA as template. The reactions were then run in an Applied Biosystems 7500 Real-

Time PCR system. The final run settings used for the CT shift assays were an initial holding 

stage at 95 °C for 10 minutes, and a cycling stage consisting of 95 °C for 15 seconds, 60 °C 

for 40 seconds and 70 °C for 1 minute, for a total of 45 cycles. A no template control (NTC) 

was included and a melt-curve analysis was performed to ensure the absence of primer-

dimers. Allele-specific primers with locked nucleic acid (LNA™) modified 3‘ ends were 

utilized as they were found to result in more optimal shift patterns. PCR primers and CT shift 

assay primers used are shown in Table 2.3. 

An LNA is a modified RNA analog, with the ribose ring ―locked‖ in the ideal conformation 

for binding. The use of highly thermo-stable LNA oligonucleotides in a primer allows for a 

shorter primer to be designed due to the resulting increased melting temperature (Tm) of the 

primer. The use of an LNA allows for a high sensitivity, high affinity primer that binds the 3‘ 

end more strongly than non-LNA primers. Therefore, using primers with LNA-modified 

bases at the 3‘end makes accidental mispriming less likely to occur, thereby resulting in 

larger CT shifts. 
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Table 2.3 - PCR primers for amplification of regions harbouring single nucleotide polymorphisms of 
interest and primers used for the CT shift assays 

  PCR primers 

SNP Forward Primer (5’-3’) Reverse Primer (5’-3’) Fragment Length (bp) 

rs1801270 GGCCTTCCTTGTATCTCTGC CTGAGAGTCTCCAGGTCCAC 443 

rs1059234 CTTCCTGTTCTCAGCAGTCG AACCTCTCATTCAACCGCCT 392 

rs999885 AGAGCGACTGGACAGGA AGCGCTGAGAGTACAGGAG 378 

 CT shift assay primers 

SNP Common Primer (5’-3’) WT Primer * (5’–3’) Mt Primer * (5’-3’) 

rs1801270 CGGTGACAAAGTCGAAGTTCCAT (R) TGGACAGCGAGCAGCTGAG[C] (F) TGGACAGCGAGCAGCTGAG[A] (F) 

rs1059234 CAAACGCCGGCTGATCTC (F) CTCGCGCTTCCAGGACT[A] (R) CTCGCGCTTCCAGGACT[G] (R) 

rs999885 CAGCCCCAAACTGTAAAG (F) AGGAGGGTGAGGAAAGA[G] (R) AGGAGGGTGAGGAAAGA[A] (R) 

*LNA modified ends indicated by a square bracket and red colour. Primer orientation indicated in round brackets. F: 
forward, R: reverse 

 

Homozygous WT individuals had a resulting CT shift (i.e. difference in cycle threshold 

between the WT reaction and Mt reaction) due to mispriming of the Mt primer in that 

respective well, heterozygous individuals resulted in both primers binding optimally, 

resulting in no CT shift, while homozygous Mt individuals resulted in a shift similar to the 

homozygous WT individuals, but with the Mt primer binding optimally. Data were analysed 

using software supplied with the 7500 Real-Time PCR system and the genotype of each 

sample was recorded. 

2.2.3.2 Restriction Fragment Length Polymorphism (RFLP) for genotyping 

Due to multiple indels being present in the promoter region of p21, sequencing of the full 

region was not always possible for certain samples. In order to genotype the rs113266348 and 

the rs113041051 SNPs residing within this unresolvable area of the promoter, we made use of 

RFLP analysis. The PflFI restriction enzyme (New England BioLabs, Massachusetts, USA) 

has a restriction pattern (Figure 2.3A) that allows for distinguishing between the WT and Mt 

allele of the rs113266348 SNP and the DraIII restriction enzyme (Life Technologies, 

California, USA) was used to genotype the rs113041051 SNP, with restriction pattern shown 

in (Figure 2.3B). Because the original sequence did not contain a DraIII restriction site 
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necessary to distinguish between the two alleles, a mutation was introduced with a PCR 

primer in order to create a cut site for the WT allele (Figure 2.3C). 

 

 

 

 

 

 

 

 

Primers used for DNA amplification are shown in Table 2.4. A 718 bp region within the 

promoter region (termed ―Promoter Small Amplicon‖) was PCR amplified (see 2.2.4). For 

the PflFI digestion, the enzyme was added directly to the ―Promoter Small Amplicon‖ with 

no additional amplification necessary. Prior to DraIII digestions, a nested PCR was 

performed in order to amplify a product using the ―Promoter Small Amplicon‖ (Table 2.5) as 

template. 

 

 

C 

B A 

Figure 2.3 - Schematic showing (A) the PflFI restriction enzyme restriction site, (B) the DraIII restriction 
enzyme restriction site, with the arrows and the red blocks showing where the restriction enzyme cuts 
and (C) the rs113041051 SNP position and primer with mutation creating a restriction site for the DraIII 
restriction enzyme, with the red block indicating the restriction site 
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Table 2.4 – Primers used to amplify DNA to be digested by PflFI restriction enzyme and DraIII 
restriction enzyme 

Restriction 

Enzyme 
F Primer (5’ – 3’) R Primer (5’ – 3’) 

PflFI TTT TTT TGA GAC GGA GTC T AAA GTT GGA TTT ATT GTT TCT G 

DraIII GGA CAG TTG AAG TTA AAA GGT TTT GA CAC TCC AGC CTG GGT CAC AGA G 

Red C: Introduced mutation site 

PflFI digestion reactions were set up in 200 µl thin-walled PCR tubes using 15 µl template 

DNA, 2 µl of 10x NEBuffer, 2 µl H2O and 1 µl of the PflFI restriction enzyme (10 U/µl) for 

each sample. The reactions were then incubated using the GeneAmp PCR System 9700 

Thermocycler (Applied Biosystems, Foster City, CA, USA) at 37°C for 1 hour followed by a 

20 minute inactivation at 65°C. Loading dye was added directly to each PCR tube and the 

total volume was electrophoresed in a 2% agarose gel in order to visualise digested fragments 

for genotyping. Samples with a Mt/Mt genotype were expected to result in 2 fragments (161 

bp and 679 bp), samples with a WT/Mt genotype were expected to result in 4 fragments (150 

bp, 161 bp, 527 bp and 679 bp), and samples with a WT/WT genotype were expected to 

result in 3 fragments (150 bp, 161 bp and 527 bp) (Figure 2.4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 – Gel image of PflFI restriction fragments showing samples representing the 3 possible 
genotypes. L: Ladder with sizes of fragments indicated in base pairs (bp) on the left of image. Lane 1: 
Unrestricted sample; Lanes 2 and 3: samples showing Mt/Mt genotype restriction pattern; Lanes 4-6: 
samples showing WT/Mt genotype restriction pattern; Lane 7: sample showing WT/WT genotype 
restriction pattern 
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DraIII digestion reactions were set up in 200 µl thin-walled PCR tubes using 10 µl template 

DNA, 2 µl 6x buffer G, 7 µl H2O and 1 µl of the DraIII restriction enzyme (10 U/µl) for each 

sample. The reactions were then incubated using the GeneAmp PCR System 9700 

Thermocycler (Applied Biosystems, Foster City, CA, USA) at 37°C for 3 hours. Loading dye 

was added directly to the sample in the PCR tube and the total volume was then 

electrophoresed in a 3% superfine resolution (SFR) agarose (Amresco, Ohio, USA) gel in 

order to genotype samples. SFR agarose was used in order to clearly differentiate between 

DNA fragments that only had a 15 bp difference in size. The gel was run at 70V for 3 hours. 

Samples with a Mt/Mt genotype were expected to result in 1 fragment (189 bp – same size as 

unrestricted sample), samples with a WT/Mt genotype were expected to result in 3 fragments 

(189 bp, 174 bp and 15 bp) and samples with a WT/WT genotype were expected to result in 2 

fragments (174 bp and 15 bp) (Figure 2.5). The 15 bp fragment, due to its small size, could 

not be visualised on the gel, however this did not impede the genotyping. 
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10 

Figure 2.5 – Gel image of DraIII restriction fragments showing samples representing the 3 possible 
genotypes. L: Ladder with sizes of fragments indicated in base pairs (bp) on the left of image. Lane 
1: unrestricted; Lanes 2-4: samples showing WT/WT genotype restriction pattern; Lanes 5-7: 
samples showing WT/Mt genotype restriction pattern, Lanes 8-10: samples showing Mt/Mt 
genotype restriction pattern 
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2.2.4 p21 5’UTR sequencing 

Since very little literature was available regarding the start site and the region spanning the 

p21 promoter, we used data from Gravina et al. (2009), who determined promoter activity 

using a luciferase assay, to select a region of the 5‘UTR for characterisation. We PCR 

amplified and sequenced a 2248 bp amplicon within the 5‘ UTR from genomic DNA with 

primers designed using PrimerW software.  

Due to secondary structure within the region as well as multiple long strings of the same 

nucleotide, a smaller 718 bp region within the promoter region (termed ―Promoter Small 

Amplicon‖) was also PCR amplified to be sequenced in order to attempt to get clearer 

sequencing data in this region. Sequencing primers were then designed to span the entire 

region. Sequencing reactions were set up and analysed as described in 2.2.2, with all 

variations recorded. PCR and sequencing primers used are shown in Table 2.5. 

 

Table 2.5 – PCR and sequencing primers used to amplify and sequence the p21 5’UTR region 

PCR Primers 

Amplicon Forward PCR primer (5’-3’) Reverse PCR primer   (5’-3’) Fragment Length (bp) 

Promoter GGTCTTGGATTGAGGAACAG CAGCACACACTCACACAAGC 2248 

Promoter Small 
Amplicon 

TTTTTTTGAGACGGAGTCT AAAGTTGGATTTATTGTTTCTG 715 

Sequencing Primers 

Primer Name Primer Sequence (5’-3’) 

P21-Pro-F * GGTCTTGGATTGAGGAACAG 

P21-Pro-Seq1 TGCTCAGCCATTGTGTCTGC 

P21-Pro-Seq2 CTGGAACAAGCTCTTCGAGG 

P21-Pro-Seq-10 TATTGGCCAGGCTGGT 

P21-Pro-R0 AAGCCAATCAGAGCCACAGC 

P21-Pro-Seq8 GATTGTGCCACTGCTGACTT 

P21-Pro-Seq6 TCCTCACATCCTCCTTCTTC 

P21-Pro-AMP-R ** GAGGCGGAACAAAGATAGAA 

P21-Pro-930-F ** GGAGTCTCACTCTGTCAC 

P21-Pro-930-R ** GCAGATCACAGGGTCAGGAG 

*Primers used for both PCR and sequencing - diluted to 30pmol/ul for PCR and diluted to 3.2pmol/ul for                       
sequencing   

** Primers used on a secondary smaller amplified region of the promoter 
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2.2.5 p21 3’UTR sequencing 

A 1902 bp amplicon was PCR amplified from genomic DNA with primers designed using 

PrimerW software. Sequencing primers were designed to span the entire region, with 200-300 

bp overlaps. Sequencing reactions were set up and analysed as described previously in 2.2.2. 

PCR and sequencing primers used are shown in Table 2.6. 

 

             Table 2.6 - PCR and sequencing primers used to amplify and sequence the p21 3'UTR 

Amplicon Primer Sequence (5’-3’) 

P21-3UTR-F * CTTCCTGTTCTCAGCAGT 

P21-3UTR-Seq1 ACTAGGCGGTTGAATGAGAG 

P21-3UTR-Seq2 CCTGAAGTGAGCACAGCCTA 

P21-3UTR-Seq3 CAGCTCAATGGACTGGAAGG 

P21-3UTR-Seq4 CAGTAGAGGCTATGGACAGG 

P21-3UTR-R * TTGCAGAGGTGTGACAGT 

*Primers used for both PCR and sequencing - diluted to 30 pmol/ul for PCR and diluted to 3.2pmol/ul  for 
sequencing 

 

2.3  p21 mRNA expression analysis 

2.3.1 Isolation of CD4+ T cells from whole blood 

Previous work showed that variable p21 expression, with respect to HIV-1 control, was found 

to occur in CD4+ T cells. Therefore, CD4+ T cells were isolated from peripheral blood 

mononuclear cells (PBMCs) to investigate if p21 mRNA expression, as a marker for p21 

protein production, was differentially expressed in relation to markers of disease severity (i.e. 

CD4+ T cell count and VL) and in terms of differential HIV-1 control (i.e. using a subset of 

individuals with different clinical phenotypes). 

2.3.1.1 Isolation of peripheral blood mononuclear cells (PBMCs) 

Approximately 60 ml of whole blood from patients was delivered to the laboratory and was 

processed on the same day, between 4 and 7 hours after the blood draw. PBMCs were first 
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isolated utilising a density gradient system. Approximately 20 ml of blood was layered onto 

20 ml of Ficoll (Sigma-Aldrich, St. Louis, Missouri, USA) in 50 ml falcon tubes and 

centrifuged for 30 minutes at 448g. After centrifugation, plasma was removed and stored at -

80°C for future studies. The PBMC layer, found between the Ficoll and the plasma layer, was 

removed and placed into a new 50 ml falcon tube containing phosphate buffered saline (PBS) 

in a final volume of 50 ml, and washed for a total of 2 washes; the first wash was carried out 

at 363g for 10 minutes and the second wash at 220g for 10 minutes. After the second wash, 

the pelleted PBMCs were resuspended in 10-20 ml of PBS, depending on pellet size. A 40 µl 

aliquot of the cell suspension was diluted 1:1 with 0.4% trypan blue (Sigma, Steinheim, 

Germany) and cell numbers were then quantified using an Improved Neubauer 

haemotycytometer. A total of 2 x 10
7
 PBMCs were utilized for CD4+ T cell isolation. Due to 

the progressors having lower CD4+ T cells, 4 x 10
7
 PBMCs were used for the CD4+ T cell 

isolations wherever possible. 

2.3.1.2 CD4+ T cell isolation 

CD4+ T cells were isolated from PBMCs using MACS
® 

cell separation technology with 

CD4+ Microbeads and MS columns (Miltenyi Biotec, Germany), and were isolated according 

to manufacturer‘s instructions. CD4+ T cells were positively isolated, i.e. the magnetic beads 

were coated with CD4-specific antibodies and hence bound the CD4+ T cells remaining in 

the column due to the column being mounted on a magnet, with all other cell types released 

from the column during the washing steps, using a buffer containing PBS, pH7.2, 0.5% 

bovine serum albumin (BSA) and 2 mM ethylene-diamine-tetraacetic acid (EDTA). The 

CD4+ T cells were subsequently eluted from the column after removal from the magnet using 

the same buffer. The resulting suspension was centrifuged for 10 minutes at 300g and the 

supernatant was removed. The CD4+ T cell pellet was then resuspended in 150 µl of 

RNAlater® solution (Life Technologies, California, USA) and stored overnight at 4°C and 

then at -80°C until needed for mRNA expression analysis. 

2.3.1.3 Flow cytometry to determine CD4+ T cell purity 

To test the separation efficiency of the MACS
® 

cell separation system as well as determining 

the purity of our isolated
 
CD4+ T cells, CD4+ T cells were isolated from PBMCs from a 

control sample as described in 2.3.1.2. The resulting CD4+ T cell pellet was resuspended in 

the PBS-BSA-EDTA buffer used in the isolation step. The resuspended CD4+ T cell pellet 

was stained with CD4 FITC and CD3 APC antibodies and incubated for 15 minutes at 4 °C. 
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This was followed by two washes using the CD4+ T cell isolation buffer. The sample was 

acquired immediately on a BD FACSCalibur™. 

2.3.2 RNA extraction and cDNA synthesis 

RNA was extracted from the isolated CD4+ T cells in RNAlater using the mirVana miRNA 

Isolation Kit (Ambion®, Life Technologies, California, USA), which allows for extraction of 

mRNA as well as miRNA, according to manufacturer‘s instructions. Although we did not use 

the miRNA in this study, future work is planned in which the miRNA component will be 

studied. Since we had stored our CD4+ T cells in RNAlater®, we needed to pellet out the 

cells prior to RNA extraction. Ice cold PBS (150 µl) was added to the RNAlater®-cell 

suspension and the tube was then centrifuged for 6 minutes at 9000g. After extraction, RNA 

quality was assessed using the Agilent RNA 6000 Nano Kit and the Agilent 2100 

Bioanalyzer system. Only RNA with a RNA Integrity Number (RIN) larger than 7 was 

subsequently used for expression analysis.  

RNA concentrations were measured using the Bioanalyzer system (Agilent Technologies, 

California, USA), the Qubit® 2.0 system for RNA (High Sensitivity) (ThermoFisher 

Scientific, Massachusetts, USA) and a NanoDrop spectrophotometer (ThermoFisher 

Scientific, Massachusetts, USA). Measurements were taken twice for each method of 

quantification in order to determine which method gave the most consistent results. The 

NanoDrop gave higher concentration values when compared to the other two methods, which 

could possibly be attributed to the presence of genomic DNA in the RNA sample, since most, 

if not all RNA extractions cannot exclude all genomic DNA without making use of DNase 

digestions. We opted not to include a DNase digestion since our quantification assay probes 

all spanned exon-exon boundaries which ensured that no contaminating genomic DNA in the 

cDNA would be amplified. Since the Bioanalyzer resulted in the most consistent 

measurements between repeats, we took an average of the two measurements from the 

Bioanalyzer system as the final RNA concentration. The RNA was standardised to the sample 

with the lowest concentration. All samples were diluted to 10 ng/µl concentration in 

preparation for cDNA synthesis.  

cDNA was synthesized using the Invitrogen Superscript III first strand synthesis system 

(Thermofisher Scientific, Massachusetts, USA), using both oligo dT primers and random 

hexamers, on an Applied Biosystems 7500 Real-Time PCR system, according to 
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manufacturer‘s instructions. Two synthesis reactions were performed for each sample, with 7 

μl of RNA used in each reaction. cDNA was stored at -20°C prior to use in the expression 

analysis.  

2.3.3 Real-time relative gene quantification using PCR 

Synthesized cDNA was used as the template for gene-specific amplification using a 

predesigned gene expression TaqMan assay for CDKN1A/p21 from Applied Biosystems 

(Life Technologies: Hs00355782_m1). In addition, we also amplified all samples using a 

predesigned Taqman assay for CCR5 (Life Technologies: Hs00152917_m1) as a marker of 

cell activation. Two endogenous controls were employed for normalisation: ribosomal 

protein large, PO (RPLPO) (Life Technologies: Hs04189669_g1), and beta-actin (ACTB) 

(Life Technologies: Hs01060665_g1). As mentioned, all purchased assays were designed 

with probes spanning exons, thereby avoiding amplification of any carryover genomic DNA.  

Reactions (10 µl final volume) were performed in triplicate for each sample and were set up 

in 96-well plates. For each sample and respective Taqman assay, a mix was made for 4 

reactions (one extra reaction included), containing 2 µl of the respective 20x Taqman Gene 

Expression Assay, 20 µl of Taqman Gene Expression Mastermix (Life Technologies), 4 µl of 

cDNA and 14 µl of nuclease-free water (Ambion). 10 µl from the mix was added to each 

well. The reactions were then run on an Applied Biosystems 7500 Real-Time PCR system. 

The amplification settings included an initial holding stage at 95 °C for 10 minutes and a 

cycling stage consisting of 95 °C for 15 seconds and 60 °C for 40 seconds. A no template 

control (NTC) was included for each assay i.e. CDKN1A/p21, CCR5, RPLPO and ACTB.  

2.4 p21 5’UTR rs733590 SNP genotyping 

The group of individuals used for the p21 mRNA expression experiment (n=50) were also 

genotyped for the p21 5‘UTR rs733590 SNP using a CT shift PCR assay as described in 

2.2.3.1. Since the SNP occurs in high frequencies in both Caucasian and Black South African 

populations, with differing minor alleles, the assay was optimised using a subset of Caucasian 

and African individuals in order to detect all three genotypes. The primers were designed 

using PrimerW software and utilized LNA™ modified 3‘ ends.   

The CT shift common primer used was 5‘-CGAGGTCAGCTGCGTTAGAG-3‘ (F), with the 

CT shift WT primer used being 5‘-TTCATCTGAACAGAAATCCCACT[G]-3‘ (R) and the 
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CT shift Mt primer used being 5‘-TTCATCTGAACAGAAATCCCACT[A]-3‘ (R). The final 

amplification settings used for the CT shift assay was an initial holding stage at 95 °C for 10 

minutes, and a cycling stage consisting of 95 °C for 15 seconds, 60 °C for 50 seconds and 72 

°C for 1 minute, for a total of 45 cycles. 

2.5 Analysis and Statistics 

Fisher exact tests were performed using VassarStats (http://vassarstats.net/odds2x2.html) to 

calculate the statistical significance and 95% confidence intervals (CI) of odds ratios (OR) for 

genotype and allele frequency comparisons. Haploview software (Broad Institute of MIT and 

Harvard) was used to determine the linkage disequilibrium (LD) between polymorphisms, as 

well as Hardy-Weinberg equilibrium.  

Relative gene expression was calculated using the 2
∆CT 

method, subtracting the average target 

gene CT shift from the average reference gene CT shift for each individual to get the ∆CT 

value. Mann-Whitney U tests were used to compare non-parametric data (i.e. p21 mRNA 

expression), and correlations were calculated using Spearman rank correlation to calculate r 

values. Analyses were performed using GraphPad Prism version 5.0 for Windows (Graphpad 

Software, San Diego, CA, USA www.graphpad.com).  

For all analyses, two-tailed tests were used and statistical significance was set at p<0.05. 
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3 RESULTS 
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3.1 Representation of the two p21 SNPs (rs1801270 and rs1059234) and 

the miR-106b SNP (rs999885) in study groups 

3.1.1 SNP genotyping using a CT Shift Assay 

A real-time CT shift assay was developed as outlined in section 2.2.3.1 in order to genotype 

72 HCs, 52 HIV-1 controllers (11 ECs, 30 VCs, 11 HVL LTNPs) and 74 progressors for the 

rs1801270, rs1059234 and rs999885 SNPs.  

The rs1801270 and the rs1059234 SNPs are the two most commonly studied p21 SNPs, 

largely in the context of cancer research, with the rs1801270 SNP being found in codon 31 of 

the p21 gene and the rs1059234 SNP being found in the 3‘UTR of the p21 gene. The miR-

106b miRNAs have been shown to affect regulation of p21 and are hosted in intron 13 of the 

MCM7 gene, with the rs999885 SNP being found in the promoter area of MCM7.  

The CT shift assays were optimised to result in consistent shifts in CT values (i.e. the number 

of cycles differing between the WT and Mt reactions in the homozygous individuals) that 

were consistent and reproducible for each SNP. For heterozygous individuals (WT/Mt), both 

PCRs should result in very similar CT values. Figure 3.1 shows representative shift patterns 

for select individuals, but are representative of all samples genotyped.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 – CT shift patterns for the WT/WT, WT/Mt and Mt/Mt genotypes of the (A) rs1801270 SNP, (B) rs1059234 SNP, and (C) rs999885 SNP. WT/WT 

represents both alleles being of the ancestral/wild-type, WT/Mt represents one allele being of the ancestral/wild-type and one allele being of the mutated type, 

and Mt/Mt represents both alleles being of the mutated type. Colours representing the WT primer and the Mt primer are shown at the bottom of the figure. 

Mt/Mt: 5.5 cycle shift 

WT/Mt: <1 cycle shift 

WT/WT: 11 cycle shift 

Mt primer Wt primer 

C.           miR-106b rs999885 SNP 

WT/WT: 10 cycle shift 

Wt primer Mt primer 

A.            p21 rs1801270 SNP Assay 

WT/Mt : <1 cycle shift 

Mt/Mt: 3.3 cycle shift 

Mt primer Wt primer 

Mt/Mt: 6 cycle shift 

WT/Mt: <1 cycle shift 

WT/WT: 9 cycle shift 

B.           p21 rs1059234 SNP Assay 
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3.1.2 Test for Hardy-Weinberg Equilibrium  

Prior to analysis, the genotypic data generated for the rs1801270, rs1059234 and rs999885 

SNP positions were tested for deviation from Hardy-Weinberg equilibrium. There was no 

significant deviation from Hardy-Weinberg equilibrium for all three SNPs, with the resulting 

p values shown in Table 3.1.  

 

Table 3.1 - Hardy-Weinberg Exact Probability values calculated for the rs1801270, rs1059234 and 
rs999885 SNPs for the three study groups 

                                                                                                                          SNP 

 rs1801270 rs1059234 rs999885 

Cohort Hardy-Weinberg Exact Probability (Haldane) 

Healthy Controls 1.00 (n=72)* 1.00 (n=71)* 0.53 (n=70)* 

HIV Controllers (n=52) 0.77 0.59 0.85 

Progressors (n=74) 0.44 0.53 1.00 

*Healthy control sample numbers differed for each SNP as a result of exclusion of some samples due to failure to genotype 

 

3.1.3 Representation of the rs1801270, rs1059234 and rs999885 SNPs in healthy 

Black South Africans and in other reference population groups 

In order to ascertain how representation of the rs1801270, rs1059234 and rs999885 SNPs 

differed to other populations of sub-Saharan African ancestry, as well as to populations of 

European (Caucasian) ancestry, allelic and genotypic frequencies for these SNPs in healthy 

Black South African individuals were compared to those found in other populations. In 

addition, the global representation of these variants was also compared. Comparisons are 

shown in Figure 3.2. 

For the two p21 SNPs, rs1801270 and rs1059234 (Figure 3.2A and Figure 3.2B), Black South 

Africans compared similarly to four other sub-Saharan African populations (selected from the 

1000 Genomes Project: 1000genomes.org) as well as to the global population data for both 

allelic and genotypic frequencies. Europe showed marked differences with regards to allelic 

and genotypic distributions of these two SNPs when compared with the sub-Saharan African 

populations, although this was not unexpected as Caucasians and Black populations often 

differ greatly with regards to representation of a number of genetic variants. This again serves 
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to highlight the importance of studying disease-associated polymorphisms in the context of 

the specific population group affected. For both the p21 SNPs, the European population 

possessed no homozygotes. The sub-Saharan African population that showed the closest 

representation to our population was that of the Nigerian Yoruba population. 

For the miR-106b rs999885 SNP, our study cohort again compared similarly to the sub-

Saharan African populations, most closely again with the Nigerian Yoruba population, in both 

allelic and genotypic representations. Both the global and European allelic frequencies for this 

SNP varied greatly to that of the African populations, with the ancestral allele (G) (as defined 

on the NCBI database) showing less representation than the minor A allele (Figure 3.2Ci). 

With regards to genotypic frequencies, a similar pattern was seen in which the African 

populations differ greatly to the global and European populations (Figure 3.2Cii).  
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Figure 3.2 – Bar graphs showing the allelic frequencies (i) and the genotypic frequencies (ii) for the two 
p21 SNPS, rs1801270 (A) and rs1059234 (B), and the miR-106b SNP, rs999885 (C) for healthy Black South 
Africans compared to other populations. MAG: Mandinka in the Gambia; MSL: Mende in Sierra Leone; YRI: 
Yoruba in Ibadan, Nigeria; LWK: Luhya in Webuye, Kenya; Eur: European. Data for other populations 
sourced from 1000genomes.org 
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3.1.4 Testing the p21 rs1801270 and rs1059234 SNPs for linkage disequilibrium  

Population representation analysis of the two p21 SNPs, rs1801270 and rs1059234, suggested 

that there was linkage between them i.e. the presence of the one SNP was often, but not 

exclusively, associated with the presence of the second SNP. If two alleles at different loci in 

a gene or across genes are in linkage disequilibrium (LD), it suggests that they are non-

randomly linked and that they may be responsible for producing a cumulative functional 

effect i.e. may represent a functional haplotype. We thus investigated the LD between the two 

SNPs. 

The LD between the rs1801270 and rs1059234 SNPs was determined using Haploview 

software. The resulting r
2
 value was 0.61, showing a moderate to strong LD, thereby 

representing a two-SNP intragenic haplotype. Given that the Nigerian Yoruba population 

showed very similar allelic representation for these two SNPs, we also tested the two SNPs 

for LD in the Nigerian Yoruba population (genotype data from 1000genomes.org) with a 

resulting r
2
 value of 0.65, which was very comparable to our population. Therefore, in 

addition to assessing the effect of the two SNPs separately with respect to representation in 

clinical phenotype groupings, we also assessed their combined effect i.e. as a haplotype.  

3.1.5 Comparison of allelic and genotypic frequencies of the rs1801270, 

rs1059234 and rs999885 SNPs between healthy individuals, HIV-1 

controllers and progressors 

The allelic and genotypic frequencies for the rs1801270, rs1059234 and rs999885 SNPs in 

our study groups are listed in Table 3.2. In addition, the genotypic distributions of the three 

SNPs in all the groups studied are schematically shown in Figure 3.3. 

When comparing the allelic and genotypic frequencies for the two p21 SNPs, rs1801270 and 

rs1059234, between HCs and HICs and respective HIC subgroups, as well as when 

comparing HICs and respective HIC subgroups to progressors, there were no significantly 

over- or under-represented alleles or genotypes in any of the groups (Table 3.3, Table 3.4, 

Table 3.5). 

Interestingly, however, in the case of the rs1059234 SNP, there was markedly less 

representation of the minor allele (T) as well as the heterozygous genotype (CT) in ECs 

compared to progressors (T allele - ECs: 9% vs. progressors: 25%, p=0.11, OR=3.33; CT 

genotype - ECs: 18% vs. progressors: 42%, p=0.19, OR=3.49). When controllers were 

grouped and analysed according to VL, the <400 HICs also had markedly less representation 
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of the CT genotype compared to progressors (<400 HICs: 20% vs. progressors: 42%, p=0.11, 

OR=2.91). Although these associations were not significant, the high odds ratios may suggest 

a moderate effect of this SNP, and consequently p21, on control in ECs and in controllers 

with low VL.  

Analysis of the combined effect of the two SNPs i.e. the rs1801270 and the rs1059234 SNPs, 

as a two-SNP intragenic haplotype did not reveal any significant associations when 

comparing either HCs to HICs and controller subgroups or HICs and controller subgroups to 

progressors. Interestingly, when comparing HCs to HICs with VLs >400 RNA copies/ml 

(>400 HICs), HCs had markedly less representation of the rs1059234 SNP occuring without 

the rs1801270 SNP (HCs: 0% vs. >400 HICs: 6.25%, p=0.09, OR=0.09). These values are 

shown in Table 3.6. 

With regards to the miR-106b rs999885 SNP, when comparing the >400 HICs to the 

progressor cohort, the >400 HICs had significantly lower representation of the minor allele of 

the rs999885 SNP (p=0.04, OR=2.28). In addition, heterozygosity for this SNP was found in a 

much lower proportion of >400 HICs when compared to progressors (p=0.05; OR=2.56). 

These results suggest a possible role for the miR-106b miRNA in the control of HIV-1 in 

individuals with higher viral loads. 

When analyzing the genotypic frequencies between groups for the three studied SNPs (Figure 

3.3), it is interesting that homozygosity for the minor allele in all three SNPs was absent in 

both the ECs and HVL LTNPs. However, this is likely due to the rarity of the genotype in 

addition to the small sample size of both of these groups (n=11 in each).  

Although correction for multiple testing, such as the highly conservative Bonferroni 

correction, is normally used to control for Type I or ‗false-positive‘ results that occur with the 

repeated use of statistical tests such as in our study, the risk of increasing Type II error in this 

case was not a primary consideration. Due to the exploratory nature of this study, we have 

opted to not apply correction for multiple testing and strongly emphasize that any trends or 

significant associations need to be validated in additional studies. 

 

https://en.wikipedia.org/wiki/Bonferroni_correction
https://en.wikipedia.org/wiki/Bonferroni_correction
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Table 3.2 – Total number and frequency (%) of rs1801270, rs1059234 and rs999885 SNP alleles and genotypes in healthy controls, HIV-1 controllers and 
progressors 

 
Healthy 
Controls 

(HCs)  

HIV 
Controllers 

(HICs) 
Progressors  

HIV-1 controller sub-groups HIV-1 controllers stratified according to VL 

Elite Controllers 
(ECs) 

 

Viraemic 
Controllers 

(VCs) 
 

High Viral Load 
Controllers  
(HVL LTNPs) 

 

<400 HICs 
 

>400 HICs 
 

 
SNP 

rs1801270 n=72 n=52 n=74 n=11 n=30 n=11 n=20 n=32 

Allele         

C 103 (71.53) 76 (73.08) 106 (71.62) 18 (81.82) 40 (66.67) 18 (81.82) 29 (72.50) 47 (73.44) 
A 41 (28.47) 28 (26.92) 42 (28.38) 4 (18.18) 20 (33.33) 4 (18.18) 11 (27.50) 17 (26.56) 

Genotype         
CC 37 (51.39) 27 (51.92) 36 (48.65) 7 (63.64) 13 (43.33) 7 (63.64) 10 (50.00) 17 (53.13) 

CA 29 (40.28) 22 (42.31) 34 (45.95) 4 (36.36) 14 (46.67) 4 (36.36) 9 (45.00) 13 (40.63) 

AA 6 (8.33) 3 (5.77) 4 (5.40) 0 (0.00) 3 (10) 0 (0.00) 1 (5.00) 2 (6.25) 

rs1059234 n=71 n=52 n=74 n=11 n=30 n=11 n=20 n=32 

Allele         

C 112 (78.87) 84 (80.77) 111 (75.00) 20 (90.91) 46 (76.67) 18 (81.82) 34 (85.00) 50 (78.13) 
T 30 (21.13) 20 (19.23) 37 (25.00) 2 (9.09) 14 (23.33) 4 (18.18) 6 (15.00) 14 (21.87) 

Genotype         
CC 44 (61.97) 33 (63.46) 40 (54.05) 9 (81.82) 17 (56.67) 7 (63.64) 15 (75.00) 18 (56.25) 

CT 24 (33.80) 18 (34.62) 31 (41.90) 2 (18.18) 12 (40.00) 4 (36.36) 4 (20.00) 14 (43.75) 

TT 3 (4.23) 1 (1.92) 3 (4.05) 0 (0.00) 1 (3.33) 0 (0.00) 1 (5.00) 0 (0.00) 

rs999885 n=70 n=52 n=74 n=11 n=30 n=11 n=20 n=32 

Allele         

G 104 (74.29) 81 (77.88) 104 (70.27) 17 (77.27) 46 (76.67) 18 (81.82) 27 (67.50) 54 (84.37) 
A 36 (25.71) 23 (22.12) 44 (29.73) 5 (22.73) 14 (23.33) 4 (18.18) 13 (32.50) 10 (15.63) 

Genotype         
GG 40 (57.14) 31 (59.61) 36 (48.65) 6 (54.55) 18 (60) 7 (63.64) 9 (40.00) 23 (71.87) 

GA 24 (34.29) 19 (36.54) 32 (43.24) 5 (45.45) 10 (33.33) 4 (36.36) 11 (55.00) 8 (25.00) 

AA 6 (8.57) 2 (3.85) 6 (8.11) 0 (0.0) 2 (6.67) 0 (0.00) 1 (5.00) 1 (3.13) 

HCs: Healthy HIV-1-uninfected controls; HICs: HIV-1 controllers; HVL LTNPs: High viral load controllers; VCs: Viraemic controllers; ECs: Elite controllers; <400 HICs: HICs with viral load <400 

(RNA copies/ml); >400 HICs: HICs with viral load >400 (RNA copies/ml)
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Figure 3.3 – Pie charts showing genotypic representation of the (A) rs1801270 SNP, (B) rs1059234 SNP and (C) rs999885 SNP in HCs, HICs and progressors. WT/WT refers 
to both alleles being of the ancestral/wild-type, WT/Mt refers to one allele being of the ancestral/wild-type and one allele being of the mutated type, and Mt/Mt refers 
to both alleles being of the mutated type. HCs – healthy controls, HICs – HIV-1 controllers, HVL LTNPs – high viral load controllers, VCs – viraemic controllers, ECs – elite 
controllers. 
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Table 3.3 – Comparison of allelic and genotypic frequencies of the p21 rs1801270 SNP between both healthy controls and HIV-1 controllers, and HIV-1 
controllers and progressors 

HCs vs. HICs 

 
HCs vs. HICs HCs vs. HVL LTNPs HCs vs. VCs HCs vs. ECs HCs vs. <400 HICs HC vs. >400 HICs 

Allele OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

WT (C) 0.93 
0.53-
1.63 

0.89 0.56 
0.18-
1.75 

0.44 1.26 
0.66-
2.40 

0.51 0.56 
0.18-
1.75 

0.44 0.95 
0.44-
2.08 

1.00 0.91 
0.47-
1.76 

0.87 

Mt (A) 1.08 
0.61-
1.90 

0.89 1.79 
0.57-
5.61 

0.44 0.8 
0.42-
1.52 

0.51 1.79 
0.57-
5.61 

0.44 1.05 
0.48-
2.30 

1.00 1.10 
0.57-
2.13 

0.87 

Genotype OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

CA 0.96 
0.46-
2.02 

1.00 1.37 
0.37-
5.14 

0.75 0.73 
0.30-
1.79 

0.5 1.37 
0.37-
5.14 

0.75 0.87 
0.31-
2.42 

0.80 1.02 
0.43-
2.45 

1.00 

AA 1.46 
0.33-
6.36 

0.73 ∞ NaN-∞ 0.58 0.7 
0.15-
3.22 

0.69 ∞ NaN-∞ 0.59 1.62 
0.17-
15.07 

1.00 1.38 
0.25-
7.55 

1.00 

 Progressors vs. HICs 

 
Progressors vs. HICs Progressors vs. HVL LTNPs Progressors vs. VCs Progressors vs. ECs Progressors vs. <400 HICs Progressors vs. >400 HICs 

Allele OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

WT (C) 0.93 
0.53-
1.63 

0.89 0.56 
0.18-
1.76 

0.44 1.26 
0.66-
2.40 

0.51 0.56 
0.18-
1.76 

0.44 0.96 
0.44-
2.09 

1.00 0.91 
0.47-
1.77 

0.87 

Mt (A) 1.08 
0.61-
1.89 

0.89 1.78 
0.57-
5.58 

0.44 0.79 
0.42-
1.51 

0.51 1.78 
0.57-
5.58 

0.44 1.04 
0.48-
2.28 

   1.00 1.09 
0.57-
2.12 

0.87 

Genotype OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

CA 1.16 
0.56-
2.41 

0.71 1.65 
0.44-
6.16 

0.53 0.88 
0.36-
2.13 

0.82 1.65 
0.44-
6.16 

0.53 1.05 
0.38-
2.90 

1.00 1.23 
0.52-
2.92 

0.67 

AA 1.00 
0.21-
4.85 

1.00 ∞ NaN-∞ 1.00 0.48 
0.09-
2.45 

0.66 ∞ NaN-∞ 1.00 1.11 
0.11-
11.09 

1.00 0.94 
0.16-
5.67 

1.00 
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Table 3.4 - Comparison of allelic and genotypic frequencies of the p21 rs1059234 SNP between both healthy controls and HIV-1 controllers, and HIV-1 
controllers and progressors  

HCs vs. HICs 

 
HCs vs. HICs HCs vs. HVL LTNPs HCs vs. VCs HCs vs. ECs HCs vs. <400 HICs HC vs. >400 HICs 

Allele OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

WT (C) 0.89 
0.47-
1.67 

0.75 0.83 
0.26-
2.64 

1.00 1.14 
0.55-
2.34 

0.85 0.37 
0.08-
1.69 

0.25 0.66 
0.25-
1.72 

0.50 1.05 
0.51-
2.14 

1.00 

Mt (T) 1.13 
0.60-
2.12 

0.75 1.21 
0.38-
3.83 

1.00 0.88 
0.43-
1.81 

0.85 2.68 
0.59-
12.11 

0.25 1.52 
0.58-
3.95 

0.50 0.96 
0.47-
1.96 

1.00 

Genotype OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

CT 1.00 
0.47-
2.14 

1.00 0.95 
0.25-
3.59 

1.00 0.77 
0.32-
1.88 

0.65 2.45 
0.49-
12.29 

0.32 2.05 
0.61-
6.86 

0.28 0.70 
0.30-
1.65 

0.51 

TT 2.25 
0.22-
22.62 

0.64 ∞ NaN-∞ 1.00 1.16 
0.11-
11.93 

1.00 ∞ NaN-∞ 1.00 1.02 
0.1-

10.59 
1.00 ∞ NaN-∞ 0.55 

Progressors vs. HICs 

 
Progressors vs. HICs Progressors vs. HVL LTNPs Progressors vs. VCs Progressors vs. ECs Progressors vs. <400 HICs Progressors vs. >400 HICs 

Allele OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

WT (C) 0.71 
0.39-
1.32 

0.29 0.67 
0.21-
2.10 

0.6 0.92 
0.45-
1.85 

0.86 0.3 
0.07-
1.35 

0.11 0.53 
0.21-
1.36 

0.21 0.84 
0.42-
1.69 

0.73 

Mt (T) 1.4 
0.76-
2.59 

0.29 1.5 
0.48-
4.72 

0.6 1.1 
0.54-
2.22 

0.86 3.33 
0.74-
14.95 

0.11 1.89 
0.73-
4.86 

0.21 1.19 
0.59-
2.40 

0.73 

Genotype OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

CT 1.42 
0.68-
2.98 

0.45 1.36 
0.36-
5.05 

0.75 1.1 
0.46-
2.63 

1.00 3.49 
0.70-
17.31 

0.19 2.91 
0.88-
9.63 

0.11 0.99 
0.43-
2.31 

1.00 

TT 2.48 
0.25-
24.93 

0.63 ∞ NaN-∞ 1.00 1.28 
0.12-
13.15 

1.00 ∞ NaN-∞ 1.00 1.13 
0.11-
11.6 

1.00 ∞ NaN-∞ 0.55 

Significant values and values that are trending towards significance are shown in bold and highlighted in blue
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Table 3.5 - Comparison of allelic and genotypic frequencies of the miR-106b rs999885 SNP between both healthy controls and HIV-1 controllers, and HIV-1 
controllers and progressors 

HCs vs. HICs 

 
HCs vs. HICs HCs vs. HVL LTNPs HCs vs. VCs HCs vs. ECs HCs vs. <400 HICs HC vs. >400 HICs 

Allele OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

WT (G) 0.82 0.45-1.50 0.55 0.64 0.20-2.02 0.6 0.88 0.43-1.79 0.86 0.85 0.29-2.47 0.8 1.39 0.65-2.98 0.42 0.54 0.25-1.16 0.15 

Mt (A) 1.22 0.67-2.22 0.55 1.56 0.49-4.91 0.6 1.14 0.56-2.31 0.86 1.18 0.41-3.42 0.8 0.72 0.34-1.54 0.42 1.87 0.86-4.05 0.15 

Genotype OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

GA 0.98 0.46-2.10 1.00 1.05 0.28-3.96 1.00 1.08 0.43-2.72 1.00 0.72 0.20-2.62 0.74 0.49 0.18-1.36 0.20 1.73 0.67-4.46 0.36 

AA 2.33 0.44-12.32 0.46 ∞ NaN-∞ 0.58 1.35 0.25-7.35 1.00 ∞ NaN-∞ 0.60 1.35 0.14-12.64 1.00 3.45 0.39-30.47 0.41 

Progressors vs. HICs 

 
Progressors vs. HICs Progressors vs. HVL LTNPs Progressors vs. VCs Progressors vs. ECs Progressors vs. <400 HICs Progressors vs. >400 HICs 

Allele OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

WT (G) 0.67 0.38-1.20 0.19 0.53 0.17-1.64 0.32 0.72 0.36-1.44 0.40 0.7 0.24-2.00 0.62 1.13 0.54-2.41 0.85 0.44 0.20-0.94 0.04 

Mt (A) 1.49 0.83-2.67 0.19 1.9 0.61-5.95 0.32 1.39 0.69-2.78 0.40 1.44 0.50-4.14 0.62 0.88 0.42-1.86 0.85 2.28 1.07-4.89 0.04 

Genotype OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

GA 1.45 0.69-3.05 0.35 1.56 0.42-5.81 0.54 1.6 0.65-4.00 0.37 1.07 0.30-3.83 1.00 0.73 0.27-1.98 0.61 2.56 1.00-6.51 0.05 

AA 2.58 0.49-13.73 0.29 ∞ NaN-∞ 0.57 1.5 0.27-8.19 0.71 ∞ NaN-∞ 0.58 1.50 0.16-14.08 1.00 3.83 0.43-33.94 0.25 

Significant values and values that are trending towards significance are shown in bold and highlighted in blue
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Table 3.6 - Comparison of the frequency of the rs1801270 and rs1059234 SNPs when presenting as a haplotype, and for each SNP when found without the 
other 

HCs vs. HICs 

rs1801270 + 
rs1059234 

HCs vs. HICs HCs vs. HVL LTNPs HCs vs. VCs HCs vs. ECs HCs vs. <400 HICs HC vs. >400 HICs 

OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

1.13 0.57-2.24 0.86 1.62 0.43-6.16 0.56 0.75 0.34-1.66 0.53 2.84 0.61-13.25 0.23 1.62 0.56-4.72 0.46 0.99 0.45-2.18 1 

 
                                                                                                                                Progressors vs. HICs 

rs1801270 + 
rs1059234 

Progressors vs. HICs Progressors vs. HVL LTNPs Progressors vs. VCs Progressors vs. ECs Progressors vs. <400 HICs Progressors vs. >400 HICs 

OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

0.74 0.38-1.47 0.4 0.52 0.14-1.95 0.39 0.9 0.41-1.98 0.84 3.4 0.73-15.83 0.14 1.94 0.67-5.63 0.24 1.21 0.55-2.67 0.70 

HCs vs. HICs 

rs1801270 
without 

rs1059234 

HCs vs. HICs HCs vs. HVL LTNPs HCs vs. VCs HCs vs. ECs HCs vs. <400 HICs HC vs. >400 HICs 

OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

0.59 0.20-1.73 0.41 1.14 0.13-10.06 1.00 0.45 0.13-1.56 0.29 0.66 0.12-3.52 0.64 0.38 0.11-1.32 0.15 0.95 0.23-3.90 1 

Progressors vs. HICs 

rs1801270 
without 

rs1059234 

Progressors vs. HICs Progressors vs. HVL LTNPs Progressors vs. VCs Progressors vs. ECs Progressors vs. <400 HICs Progressors vs. >400 HICs 

OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

0.55 0.18-1.69 0.39 1.06 0.12-9.60 1.00 0.42 0.12-1.52 0.28 0.62 0.11-3.38 0.63 0.35 0.09-1.28 0.14 0.88 0.21-3.76 1 

HCs vs. HICs 

rs1059234 
without 

rs1801270 

HCs vs. HICs HCs vs. HVL LTNPs HCs vs. VCs HCs vs. ECs HCs vs. <400 HICs HC vs. >400 HICs 

OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

0 0-NaN 0.17 0 0-NaN 0.15 0 0-NaN 0.25 NaN NaN-NaN 1.00 NaN NaN-NaN 1 0.09 0- NaN 0.09 

 
                                                                                                                                 Progressors vs. HICs 

rs1059234 
without 

rs1801270 

Progressors vs. HICs Progressors vs. HVL LTNPs Progressors vs. VCs Progressors vs. ECs Progressors vs. <400 HICs Progressors vs. >400 HICs 

OR CI P OR CI P OR CI P OR CI P OR CI P OR CI P 

0.74 0.10-5.40 1.00 0.35 0.03-4.20 0.40 0.71 0.06-8.14 1.00 ∞ NaN-∞ 1.00 ∞ NaN-∞ 1 0.44 0.06-3.28 0.59 

Significant values and values that are trending towards significance are shown in bold highlighted in blue

5
9

 



 

60 

 

3.2 Characterisation of the regulatory regions of p21 

A region of the 5‘UTR and the entire 3‘UTR were sequenced in order to determine if 

polymorphisms in the regulatory regions of the p21 gene were associated with HIV-1 control. 

3.2.1 Test for Hardy-Weinberg Equilibrium  

The genotypic data generated for all the SNPs found in the 5‘UTR region and the 3‘UTR 

were tested for deviation from Hardy-Weinberg equilibrium. There was no significant 

deviation from Hardy-Weinberg equilibrium for any polymorphism. 

3.2.2 Variation in the p21 5’UTR region  

A region of the p21 5‘UTR was sequenced as outlined in 2.2.4 for 52 HICs and 44 

progressors. Eighteen SNPs and one indel were identified in the sequenced 2248 bp promoter 

region. The positions and nucleotide changes of these polymorphisms are shown in Table 3.7. 

All of these polymorphisms were previously described and reported in the NCBI dbSNP 

database. No polymorphisms were found to be significantly over- or under-represented in 

either the HICs or the progressor cohort. 

Due to the presence of numerous indels and long runs of identical nucleotides in regions of 

the promoter, sequencing was problematic and consequently some data are incomplete. 

Analysis of the variants identified in the promoter revealed that eleven of the detected 

polymorphisms were found to consistently occur together. Using Haploview software to 

determine the LD of these polymorphisms using only complete data sets (n=48), the resulting 

calculated r
2
 value was 1, indicating that these eleven polymorphisms are found in complete 

LD. This putative intragenic haplotype is referred to as Hap-p21-P1 and was found in both 

the HICs and the progressor cohort at frequencies of 39.42% and 48.86% respectively. Due to 

the complete LD of SNPs making up Hap-p21-P1, we were able to assume presence of this 

putative haplotype even in incomplete data when other SNPs involved in the putative 

haplotype were also present i.e. we used these SNPs as ‗tag‘ SNPs to predict the presence of 

the haplotype. All polymorphisms present in the p21 promoter region were analysed using 

Haploview software to determine the LD of the polymorphisms present. The Haploview LD 

plot is shown in Figure 3.4. 

The rs11326348 and rs113041051 SNPs (part of putative haplotype Hap-p21-P1) were only 

resolvable if a downstream indel (rs113749555; also present in Hap-p21-P1) was found in a 
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homozygous state, resulting in a correct alignment of the DNA strands and allowing the 

sequencing primer to read through. However, when rs113749555 was present in a 

heterozygous state, the sequences were no longer in alignment and the rs11326348 and 

rs113041051 SNPs were unresolvable, as well as all sequence upstream of the indel. 

Normally, to resolve this, primers are designed in the reverse direction in order to obtain the 

sequence up until the indel in the reverse direction. In this case, however, sequencing from 

the other direction was not possible due to an extended run of T nucleotides that affected the 

ability of the sequencing polymerase to successfully read the sequence. To overcome this, 

RFLP analysis was made use of as described in 2.2.3.2 in order to genotype the individuals 

with a WT/Mt rs113749555, to confirm our expectation that the rs11326348 and 

rs113041051 SNPs would also be found in the WT/Mt form, in fitting with the inferred 

putative haplotype (Hap-p21-P1).  

The rs9368953 and rs9357222 SNPs (also part of Hap-p21-P1) were also found within a 

particularly difficult area to sequence, which accounts for the majority of the incomplete data. 

New primers were designed in an attempt to obtain clearer sequence data for the region 

harbouring the rs9368953 and rs9357222 SNPs (P21-Pro-930-F and P21-Pro-930-R; Table 

2.5), however they only provided clear data for a subset of the samples. Due to available data 

(37/64) for these two SNPs and having representation of individuals with all three potential 

genotypes (WT/WT, WT/Mt and Mt/Mt), we did not deem it necessary to perform RFLP 

analysis as we could clearly see that they were in complete linkage with the other 

polymorphisms in Hap-p21-P1. For the rs11326348 and rs113041051 SNPs discussed above 

however, we needed to determine whether the heterozygous genotype (WT/Mt) of these 

SNPs was present when the other nine SNPs in the suspected haplotype were found in the 

heterozygous state, to determine if they were in fact part of this putative haplotype and in 

complete LD. 

A 2-SNP putative intragenic haplotype (rs9394371 and rs3829963) that was also found to be 

present in both the HICs and the progressors was found to be associated with Hap-p21-P1. 

This putative haplotype is referred to as Hap-p21-P2. Hap-p21-P1 was occasionally present 

in certain individuals without Hap-p21-P2, however Hap-p21-P2 was never present without 

Hap-p21-P1, suggesting directional or conditional linkage between the two haplotypes. Hap-

p21-P2 was found at an allelic frequency of 32.69% in the HICs and 38.64% in the 

progressor cohort. The rs9394371 and rs3829963 SNPs making up Hap-p21-P2 have an r
2
 

value of 1 and are therefore in complete LD, and an r
2
 value of 0.67 when compared to the 
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other SNPs present in Hap-p21-P1 (Figure 3.4), i.e. the LD between Hap-p21-P1 and Hap-

p21-P2 is strong but not complete. The genotypic frequencies of Hap-p21-P1 and Hap-p21-

P2 when occuring together and separately are shown in Table 3.8.  

A less prevalent 2-SNP haplotype involving the rs7485748 and rs4135234 SNPs was found 

to have an r
2
 value = 0.74, suggesting relatively strong LD. 

The allelic frequencies of Hap-p21-P1 (using the rs12214686 SNP as an identifying SNP) 

and Hap-p21-P2 were calculated for the HICs and progressors, including the HIC subgroups 

(Table 3.9). When comparing the allelic frequency of Hap-p21-P2 between ECs and 

progressors, the ECs had markedly less representation of the Mt allele haplotype (p=0.08, 

OR=2.83, CI=0.88-9.10). The allelic frequencies for Hap-p21-P1 and Hap-p21-P2 for all 

groups are shown graphically in Figure 3.5. No significant associations were found between 

ECs and progressors when comparing the genotypic frequencies of Hap-p21-P1 or Hap-p21-

P2. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 – Haploview LD Plot showing the r2 values for all polymorphisms in the p21 promoter region (n=96). The eleven-SNP Hap-p21-P1 (red 
blocks) has an r2=1. The 2-SNP Hap-p21-P2 (purple blocks) has an r2=1. The r2 between Hap-p21-P1 and Hap-p21-p2 = 0.67. The numbers in each block 
show the r2 value between SNPs. 
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Table 3.7 - Minor allele frequencies of polymorphisms in the p21 promoter region for the HICs and 
progressor subgroups 

PROMOTER REGION 

SNP accession 
number 

Position in gene Base change (WT/Mt) 

Minor Allele Frequency (sample number) 

HICs  Progressors 

rs113778547 -9518 A/G 11.54 (n=52) 6.82 (n=44) 

rs10947622 -9477 C/T 39.42 (n=52) 40.91* (n=39) 

rs12214686 -9328 A/G 38.46* (n=51) 48.86 (n=44) 

rs10947623 -9043 G/A 39.42 (n=52) 48.86 (n=44) 

rs12192827 -8908 C/T 39.42 (n=52) 48.86 (n=44) 

rs12192877 -8880 C/A 39.42 (n=52) 48.86 (n=44) 

rs11964647 -8821 T/A 5.77 (n=52) 3.41 (n=44) 

rs74857438 -8802 A/G 5.77 (n=52) 2.27 (n=44) 

rs72853370 -8657 A/G 38.46* (n=51) 48.86 (n=44) 

rs113266348 -8642 C/T 39.42 (n=52) 48.86 (n=44) 

rs11962192 -8641 G/A 0.96 (n=52) 3.41 (n=44) 

rs113041051 -8633 A/G 39.42 (n=52) 48.86 (n=44) 

rs113749555 -8609 G/-G 39.42 (n=52) 48.86 (n=44) 

rs9357222 -8519 T/C 32.69* (n=48) 20.45* (n=24) 

rs9368953 -8413 C/T 32.69* (n=48) 20.45* (n=24) 

rs112078410 -8177 A/G 4.81 (n=52) 5.68 (n=44) 

rs9394371 -8124 C/T 32.69 (n=52) 38.64 (n=44) 

rs4135234 -7658 G/A 3.85 (n=52) 2.27 (n=44) 

rs3829963 -7493 C/A 32.69 (n=52) 38.64 (n=44) 

     
Polymorphisms involved in Hap-p21-P1 are highlighted in red. Polymorphisms involved in Hap-p21-P2 are highlighted in 
purple.  

*Frequencies are lower than expected due to incomplete sequencing data. Number of individuals with complete data are 
shown in brackets next to the frequency.



 

 

Table 3.8 – Comparison of the genotypic frequencies of Hap-p21-P1 and Hap-p21-P2 in the HIC group and subgroups vs. the progressor group  

Haplotype Genotypic frequency [Total number and frequency (%)] Comparison between groups (p; CI; OR) 

Hap-
p21-P1 

Hap-
p21-P2 

HICs     
(n=52) 

Progressors 
(n=44) 

HVL LTNPs 
(n=11) 

VCs (n=30) ECs (n=11) 
<400s 
(n=20) 

>400s 
(n=32) 

HICs vs. 
progressors  
 

HVL LTNPs 
vs. 

progessors  

VCs vs. 
progressors  

ECs vs. 
progressors  

<400 HICs 
vs. 

progressors  

>400 HICs 
vs. 

progressors 

WT/WT WT/WT 20 (38.46) 13 (29.55) 5 (45.45) 10 (33.33) 5 (45.45) 7 (35.00) 13 (40.63) - - - - - - 

WT/Mt WT/WT 4 (7.69) 4 (9.09) 0 (0.00) 2 (6.67) 2   (18.18) 3 (15.00) 1 (3.13) 
0.70; 0.33-
7.26; 1.54 

0.54; NaN-
∞; ∞ 

1.00; 0.23-
10.15; 1.54 

1.00; 0.11-
5.61; 0.77 

1.00; 0.12-
4.16; 0.72 

0.34; 0.39-
40.80; 4.00 

Mt/Mt WT/WT 0 (0.00) 1 (2.27) 0 (0.00) 0  (0.00) 0  (0.00) 0 (0.00) 0 (0.00) 
0.41; NaN-

∞; ∞ 
1.00; NaN-

∞; ∞ 
1.00; NaN-

∞; ∞ 
1.00; NaN-

∞; ∞ 
1.00; NaN-

∞; ∞ 
1.00; NaN-

∞; ∞ 

WT/Mt WT/Mt 19 (36.54) 19 (43.18) 5 (45.45) 11 (36.67) 3 (27.27) 6 (30.00) 13 (40.63) 
0.47; 0.60-
3.96; 1.54 

0.72; 0.35-
6.08; 1.46 

0.78; 0.44-
4.03; 1.33 

0.43; 0.49-
12.01; 2.44 

0.52; 0.47-
6.25; 1.71 

0.60; 0.51-
4.15; 1.46 

Mt/Mt WT/Mt 3 (5.77) 3 (6.82)  0 (0.00) 2 (6.67) 1 (9.09) 1 (5.00) 2 (6.25) 
0.67; 0.27-
8.82; 1.54 

0.55; NaN-
∞; ∞ 

1.00; 0.16-
8.27; 1.15 

1.00; 0.10-
13.88; 1.15 

1.00; 0.14-
18.52; 1.62 

1.00; 0.21-
10.52; 1.50 

Mt/Mt Mt/Mt 6 (11.54) 4  (9.09) 1 (9.09) 5 (16.67) 0 (0.00) 3 (15.00) 3 (9.38) 
1.00; 0.24-
4.35; 1.03 

1.00; 0.14-
17.34; 1.54 

0.70; 0.13-
2.90; 0.62 

0.54; NaN-
∞; ∞ 

1.00; 0.12-
4.16; 0.72 

1.00; 0.25-
7.17; 1.33 

6
5
 



 

66 

 

 

Table 3.9 – Allelic frequencies of Hap-p21-P1 and Hap-p21-P2 in HICs, HIC subgroups and 
progressors 

                           SNP position in p21 gene Haplotype Frequency (%) 
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Figure 3.5 - Graphical representation of Hap-p21-P1 and Hap-p21-P2 allelic frequencies in the 
different groups studied. HICs: HIV-1 controllers, ECs: elite controllers, VCs: viraemic controllers, HVL 
LTNPs: high viral load long term non-progressors, <400 VLs HICs: HICs with <400  VL (RNA copies/ml), 
>400 VLs HICs: HICs with >400 VL (RNA copies/ml) 
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3.2.3 Variation in the p21 3’UTR 

The p21 3‘UTR was sequenced for 52 HICs and 44 progressors. Twelve polymorphisms were 

detected in the sequenced region, including two SNPs that have not previously been reported 

in the NCBI dbSNP database. The positions and nucleotide changes of these polymorphisms 

are shown in Table 3.10. Minor allele frequencies of polymorphisms found in the 3‘UTR for 

the progressor and HIC cohorts and HIC subgroups are shown in Table 3.11. Genotypic 

frequencies are shown in Table 3.12. 

Analysis revealed that the rs1059234 minor T allele had markedly lower representation in the 

ECs (p=0.09, CI=0.81-17.27, OR=3.75) and <400 HIC cohort (p=0.07, CI=0.92-7.49, 

OR=2.63) when compared to progressors. As the rs1059234 SNP was one of the three SNPs 

genotyped in the larger cohort in 3.1, the statistical analyses from that analysis was 

considered as more accurate.  

In silico analysis of this SNP revealed that the binding sites for various miRNAs were either 

lost or gained, or the ddG score altered when the major allele or minor allele was present           

Table 3.13). ddG is a free energy score and thus, the more negative the value, the stronger the 

predicted binding will be (http://genie.weizmann.ac.il/pubs/mir07/mir07_notes.html). As 

there are high ddG scores present when either the major or minor allele of the rs1059234 SNP 

is present, this suggests that this SNP may have some functional impact on p21 expression. 

The number in the ‗seed‘ column refers to an "X:Y:Z" notation for describing the seed, with 

the X value representing the size of the seed, the Y value representing the number of 

mismatches and the Z value the number of G:U wobble pairs 

(http://genie.weizmann.ac.il/pubs/mir07/mir07_notes.html). Analysis was performed using 

the Segal Lab of Computational Biology‘s microRNA prediction tool 

(http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html). 

The unreported SNP found at position +2925 was only found in the progressor cohort, at a 

frequency of 2.27%, while the unreported SNP at position +3090 was only found in the HIC 

group, at a frequency of 0.96%. The rs111923164 and rs74801436 SNPs were only detected 

in the progressor cohort, while the rs186592256, rs114982296 and rs181350370 SNPs were 

only detected in the HIC group. LD analysis using Haploview software showed no LD 

between any polymorphisms in the 3‘UTR (Figure 3.6). 
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No SNPs were significantly under- or over-represented in either of the two groups, indicating 

that the SNPs we detected in the 3‘UTR may not be contributing to the differential expression 

of p21.  

Table 3.10 – Base change of all polymorphisms found in the 3’ UTR as well as position in the p21 
gene 

SNP accession 
number 

Position in gene Base change (WT/Mt) 

rs1059234 +1719 C/T 

rs111926164 +1750 C/T 

rs112675295 +1842 G/A 

rs114982296 +1956 C/T 

rs181350370 +2075 C/T 

rs184742749 +2353 G/C 

rs186592256 +2578 C/T 

rs74801436 +2646 C/G 

rs3176359 +2864 G/A 

Unreported SNP +2925 G/A 

Unreported SNP +3090 G/A 

rs73730143 +3101 C/T 

 

Table 3.11 – Minor allele frequencies of polymorphisms found in the 3’UTR for the progressor and 
HIC cohort and HIC subgroups 

 

 

 
 

Minor allele frequency (Total number and frequency (%)) 

SNP  
Progressors 

(n=44) 

HICs 

(n=52) 

HVL LTNPs 

(n=11) 
VCs (n=30) ECs (n=11) 

<400 HICs 

(n=20) 

>400 HICs 

(n=32) 

rs1059234 
 
 

24 (27.27) 20 (19.23) 4 (18.18) 14 (23.33) 2 (9.09) 5 (12.5) 15 (23.44) 

rs111926164  2 (2.27) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

rs112675295  2 (2.27) 6 (5.77) 1 (4.55) 3 (5.00) 2 (9.09) 3 (7.50) 3 (4.69) 

rs114982296  0 (0.00) 1 (0.96) 0 (0.00) 1 (1.66) 0 (0.00) 0 (0.00) 1 (1.56) 

rs181350370  0 (0.00) 2 (1.92) 0 (0.00) 2 (3.33) 0 (0.00) 1 (2.50) 1 (1.56) 

rs184742749  2 (2.27) 6 (5.77) 1 (4.55) 4 (6.67) 1 (4.55) 2 (5.00) 4 (6.25) 

rs186592256  0 (0.00) 1 (0.96) 0 (0.00) 0 (0.00) 1 (4.55) 1 (2.50) 0 (0.00) 

rs74801436  2 (2.27) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

rs3176359  7 (7.95) 10 (9.62) 4 (18.18) 3 (5.00) 3 (13.64) 3 (7.50) 7 (10.94) 

NI SNP 
(+2925) 

 2 (2.27) 0 (0.00)  0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

NI SNP 
(+3090) 

 0 (0.00) 1 (0.96) 0 (0.00) 0 (0.00) 1 (4.55) 1 (2.50) 0 (0.00) 

rs73730143  2 (2.27) 2 (1.92) 1 (4.55) 0 (0.00) 1 (4.55) 1 (2.50) 1 (1.56) 

NI = newly identified 
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Table 3.12 - Genotypic frequencies of polymorphisms found in the 3’UTR for the progressor and HIC 
cohort and HIC subgroups 

 

 

Genotypic frequency (Total number and frequency (%)) 

SNP Genotype 
Progressors 

(n=44) 
HICs (n=52) 

HVL LTNPs 

(n=11) 
VCs (n=30) ECs (n=11) 

<400 HICs 

(n=20) 

>400 HICs 

(n=32) 

rs1059234 

WT/WT 24 (54.55) 33 (63.46) 4 (36.36) 20 (66.67) 9 (81.82) 15 (75.00) 18 (56.25) 

WT/Mt 17 (38.64) 18 (34.62) 7 (63.64) 9 (30.00) 2 (18.18) 5 (25.00) 13 (40.63) 

Mt/Mt 3 (6.82) 1 (1.92) 0 (0.00) 1 (3.37) 0 (0.00) 0 (0.00) 1 (3.13) 

rs111926164 

WT/WT 42 (95.45) 52 (100.00) 11 (100.00) 30 (100.00) 11 (100.00) 20 (100.00) 32 (100.00) 

WT/Mt 2 (4.55) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

Mt/Mt 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

rs112675295 

WT/WT 42 (95.45) 46 (88.46) 10 (90.91) 27 (90.00) 9 (81.82) 17 (85.00) 29 (90.63) 

WT/Mt 2 (4.55) 6 (11.54) 1 (9.09) 3 (10.00) 2 (18.18) 3 (15.00) 3 (9.37) 

Mt/Mt 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

rs114982296 

WT/WT 44 (100.00) 51 (98.08) 11 (100.00) 29 (96.67) 11 (100.00) 20 (100.00) 31 (96.88) 

WT/Mt 0 (0.00) 1 (1.92) 0 (0.00) 1 (3.37) 0 (0.00) 0 (0.00) 1 (3.12) 

Mt/Mt 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

rs181350370 

WT/WT 44 (100.00) 50 (96.15) 11 (100.00) 28 (93.33) 11 (100.00) 19 (95.00) 31 (96.88) 

WT/Mt 0 (0.00) 2 (3.85) 0 (0.00) 2 (6.67) 0 (0.00) 1 (5.00) 1 (3.12) 

Mt/Mt 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

rs184742749 

WT/WT 42 (95.45) 46 (88.46) 10 (90.91) 26 (86.67) 10 (90.91) 18 (90.00) 28 (87.5) 

WT/Mt 2 (4.55) 6 (11.54) 1 (9.09) 4 (13.33) 1 (9.09) 2 (10.00) 4 (12.5) 

Mt/Mt 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

rs186592256 

WT/WT 44 (100.00) 51 (98.08) 11 (100.00) 30 (100.00) 10 (90.91) 19 (95.00) 32 (100.00) 

WT/Mt 0 (0.00) 1 (1.92) 0 (0.00) 0 (0.00) 1 (9.09) 1 (5.00) 0 (0.00) 

Mt/Mt 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

rs74801436 

WT/WT 42 (95.45) 52 (100.00) 11 (100.00) 30 (100.00) 11 (100.00) 20 (100.00) 32 (100.00) 

WT/Mt 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

Mt/Mt 2 (4.55) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

rs3176359 

WT/WT 37 (84.09) 42 (80.77) 7 (63.64) 27 (90.00) 8 (72.73) 17 (85.00) 25 (78.13) 

WT/Mt 7 (15.91) 10 (19.23) 4 (36.36) 3 (10.00) 3 (27.27) 3 (15.00) 7 (21.87) 

Mt/Mt 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

Unreported 

SNP (+2925) 

WT/WT 42 (95.45) 52 (100.00) 11 (100.00) 30 (100.00) 11 (100.00) 20 (100.00) 32 (100.00) 

WT/Mt 2 (4.55) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

Mt/Mt 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

Unreported 

SNP (+3090) 

WT/WT 44 (100.00) 51 (98.08) 11 (100.00) 30 (100.00) 10 (90.91) 19 (95.00) 32 (100.00) 

WT/Mt 0 (0.00) 1 (1.92) 0 (0.00) 0 (0.00) 1 (9.09) 1 (5.00) 0 (0.00) 

Mt/Mt 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

rs73730143 

WT/WT 42 (95.45) 50 (96.15) 10 (90.91) 30 (100.00) 10 (90.91) 19 (95.00) 31 (96.88) 

WT/Mt 2 (4.55) 2 (3.85) 1 (9.09) 0 (0.00) 1 (9.09) 1 (5.00) 1 (3.12) 

Mt/Mt 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 
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           Table 3.13 – In silico analysis of the p21 3’UTR rs1059234 SNP 

 

rs1059234 WT Allele (C) 

Gene microRNA Position Seed ddG 

Seq1 hsa-miR-509-3-5p 16  8:1:0 -6.68 

Seq1 hsa-miR-363 16  8:1:1 -2.08 

Seq1 hsa-miR-1288 18  8:1:0 -11.92 

Seq1 hsa-miR-206 18  8:1:1 -10.12 

Seq1 hsa-miR-647 18  8:1:1 -9.32 

Seq1 hsa-miR-1 18  8:1:1 0.31 

Seq1 hsa-miR-1278 19  8:1:1 0.67 

Seq1 hsa-miR-1224-5p 21  8:1:1 -10.23 

Seq1 hsa-miR-636 27  8:1:1 -4.63 

Seq1 hsa-miR-520f 28  8:1:1 -9.87 

Seq1 hsa-miR-517b 28  8:1:1 -5.01 

Seq1 hsa-miR-1249 28  8:1:0 -3.81 

Seq1 hsa-miR-517c 29  8:1:1 -3.41 

Seq1 hsa-miR-517a 29  8:1:1 -2.71 

       rs1059234 Mt Allele (T) 

Gene microRNA Position Seed ddG 

Seq1 hsa-miR-509-5p 16  8:1:1 -5.3 

Seq1 hsa-miR-509-3-5p 16  8:1:1 -5 

Seq1 hsa-miR-140-3p 16  8:1:0 -1.1 

Seq1 hsa-miR-1288 18  8:1:1 -10.2 

Seq1 hsa-miR-1224-5p 21  8:1:1 -10.49 

Seq1 hsa-miR-636 27  8:1:1 -3.35 

Seq1 hsa-miR-520f 28  8:1:1 -10.59 

Seq1 hsa-miR-517b 28  8:1:1 -4.79 

Seq1 hsa-miR-1249 28  8:1:0 -3.99 

Seq1 hsa-miR-517c 29  8:1:1 -2.82 

Seq1 hsa-miR-517a 29  8:1:1 -2.12 

       
         

   
 

Altered score 

   
 

Large change in score 

   
 

Loss of binding site for miRNA 

   
 

Gain of binding site for miRNA 
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Figure 3.6 – Haploview LD plot for all polymorphisms found in the p21 3’UTR. NI=newly identified. 
The number after NI is the position of the newly identified SNP. The numbers in each block show the 
r2 value between SNPs. 
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3.3 p21 mRNA expression analysis 

3.3.1 Flow cytometry showing CD4+ T cell purity 

Flow cytometry was performed on isolated CD4+ T cells in order to determine the purity of 

the cells as described in section 2.3.1.3. Results showed a purity of 97.4% (Figure 3.7). 

 

3.3.2 Assessing the quality of extracted mRNA 

All extracted RNA was analysed for integrity using Bioanalyzer software. An example of the 

gel and electropherogram resulting from RNA analysis is shown in Figure 3.8. The image 

shows excellent quality RNA with all RNA samples in this image having an RNA Integrity 

Number (RIN) of >7 as calculated by the Bioanalyzer system. 
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Figure 3.7 - Flow cytometry plots showing (A) gating of lymphocytes and (B) percentage of CD4+ T 
cells 
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3.3.3 Real-Time relative expression of p21 

Expression levels of p21 mRNA were determined for a total of 50 individuals, grouped into 

10 healthy controls, 12 progressors and 25 HICs (3 individuals were excluded from 

phenotypic groupings), as outlined in section 2.3.3.  

3.3.3.1 CCR5 as a marker of HIV-1 activation 

A CCR5 expression assay was included as a control since CCR5 expression is known to 

correlate with immune activation and hence viral load (Ostrowski et al., 1998). As expected, 

analysis revealed that CCR5 mRNA expression was significantly correlated with VL (r=0.53, 

CI=0.25 to 0.72, p=0.0005). In addition, a significant inverse correlation was found between 

CCR5 mRNA expression and CD4+ T cell count (r=-0.49, CI= -0.70 to -0.21, p=0.0011). 

18s 

Internal marker 

(25 nucleotide 

DNA fragment) 

28s 

Figure 3.8 – Bioanalyzer image depicting (A) a gel image of the RNA samples against an RNA ladder and 

(B) the electropherogram results of the RNA samples. The green band in the gel image depicts the 
marker, with the first black band from the bottom depicting the 18s RNA, and the second black band 
depicting the 28s RNA. The first peak in the electropherogram is the marker, the second peak is the 
detection of the 18s ribosomal RNA and the third peak is the detection of the 28s ribosomal RNA 
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3.3.3.2 Relative p21 mRNA expression and HIV-1 

When stratifying HIV-1 infected individuals (n=40) by CD4+ T cell counts (<200, 200-500, 

>500), there was a significant difference in p21 mRNA expression between those with lower 

CD4+ T cell counts (<200) and higher CD4+ T cell counts (>500), with p21 mRNA 

expression being higher in those with lower CD4+ T cell counts (p=0.004) (Figure 3.9A). 

When individuals were grouped by VL (<1000, >1000), p21 mRNA expression was 

significantly higher in individuals in the >1000 VL group (p=0.0002) (Figure 3.9B). Results 

remained significant when the outlier in the group with <200 CD4 and >1000 VL was 

removed (p=0.0008 and p=0.0003 respectively).  

A significant correlation was found between relative p21 mRNA expression and VL, (r=0.68, 

CI=0.45 to 0.82, p<0.0001). CD4+ T cell count was also found to be significantly inversely 

correlated with p21 mRNA expression (r=-0.53, CI=-0.73 to -0.25, p=0.0005), likely due to 

the strong inverse correlation found between VL and CD4 count (r=-0.75, CI=-0.86 to -0.57, 

p<0.0001). As expected, relative CCR5 mRNA expression was significantly correlated with 

relative p21 mRNA expression, most likely due to their respective relationships with VL 

(r=0.78, CI=0.61 to 0.88, p<0.0001) (Figure 3.10). 
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Figure 3.9 – Graphs showing relative p21 mRNA expression when HIV-1 infected individuals were 
stratified by (A) CD4+ T cell count (cells/μl) and (B) viral load (RNA copies/ml). The long solid line in the 
middle of the data points indicates the median, and the top and bottom lines are at the 75th and 25th 
percentiles respectively 

B 

Figure 3.10 – Correlation between relative CCR5 mRNA expression and relative p21 mRNA 
expression 

p<0.0001  
r=0.78 
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3.3.3.3 Relative p21 mRNA expression between HICs and progressors 

When comparing relative p21 mRNA expression between HICs (n=25) and progressors 

(n=12), a significant difference between the groups was found (Figure 3.11). However, 

instead of seeing p21 expression upregulated in the HIC group as previous work has shown, 

p21 mRNA expression was significantly decreased (p=0.0004) when compared to 

progressors. When the outlier in the progressor group was removed from the analysis, 

significance remained (p=0.001). When the HIC group was divided into the EC, VC and 

HVL LTNP subgroups and compared to progressors, the ECs and VCs had significantly 

decreased p21 mRNA expression when compared to the progressor group. The HC group had 

similar levels of p21 mRNA expression when compared to the HICs. Interestingly, among the 

HIC subgroups, only the HVL LTNPs were not significantly different to the progressors with 

respect to p21 mRNA expression, although this is a very small group (n=4). 

 

 

p=0.0004 

A B p=0.0002 

p=0.0023  
 

 
 

p=0.0014 

p=0.25 

Figure 3.11 – Graphs showing relative p21 mRNA expression between (A) HICs and progressor group 
and (B) the HIC subgroups and the progressor group. As this comparison was based on clinical 
phenotypic groupings, the three non-confirmed controllers were excluded from analyses. The long 
solid line in the middle of the data points indicates the median, and the top and bottom lines are at 
the 75th and 25th percentiles respectively 
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3.3.3.4 p21 rs1801270 and rs1059234 SNPs and miR-106b rs999885 SNP and HIV-1 

markers of disease progression 

Although we did not see a significant role in HIV-1 control for the two p21 SNPs, all 

individuals genotypes including controls (n=50) were stratified according to their rs1801270 

and rs1059234 genotypes in order to see if there was any difference in HIV-1 VL and CD4+ 

T cell counts with the presence or absence of the respective SNPs. 

When stratifying the p21 rs1801270 and rs1059234 SNP genotypes and comparing to viral 

load, no genotype of either of the two SNPS were significantly associated with viral load or 

CD4+ T cell count. 

When stratifying the miR-106b rs999885 SNP genotypes against viral load, no significant 

association was found. In addition, no significant association was found when stratifying 

against CD4+ T cell counts. 

3.3.3.5 p21 rs1801270 and rs1059234 SNPs and relative p21 mRNA expression 

Although we did not see a significant role in HIV-1 control for the two p21 SNPs, individuals 

were stratified according to their rs1801270 and rs1059234 genotypes in order to see if these 

SNPs were playing a role in differential p21 mRNA expression.  

Both the rs1801270 SNP genotype and the rs1059234 SNP genotype did not impact variation 

of p21 mRNA expression (Figure 3.12A and Figure 3.13A). When both genotypes with the 

minor allele (WT/Mt + Mt/Mt) were grouped against the WT/WT genotype, no significance 

between the groups for either SNP was noted (Figure 3.12B and Figure 3.13B).  
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p=0.424 

 

 

p=0.494 
 

p=0.352 

Figure 3.12 – Graphs comparing  (A) relative p21 mRNA expression for individuals with the CC, CA and 
AA genotype of the rs1801270 SNP as well as (B) the CC genotype and the CA + AA genotype. The long 
solid line in the middle of the data points indicates the median, and the top and bottom lines are at 
the 75th and 25th percentiles respectively 

A B 

p=0.241 

 

 

p=0.761 

 

p=0.356 

Figure 3.13 - Graphs comparing (A) relative p21 mRNA expression for individuals with the CC, CT and TT 
genotype of the rs1059234 SNP as well as (B) the CC genotype and the CT + TT genotype. One individual 
was excluded due to failure to genotype. The long solid line in the middle of the data points indicates 
the median, and the top and bottom lines are at the 75th and 25th percentiles respectively 

A B 

rs1801270 SNP genotype 
rs1801270 SNP genotype 

rs1059234 SNP genotype 
rs1059234 SNP genotype 
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3.3.3.6 miR-106b rs999885 SNP and relative p21 expression 

All individuals (n=50) were stratified according to their rs999885 genotype and p21 mRNA 

expression was compared.  

The GA genotype showed a strong trend of association with higher p21 mRNA expression 

when compared to the GG genotype (p=0.066) (Figure 3.14A). The influence of the AA 

genotype could not be determined as only one individual possessed the AA genotype. When 

both genotypes with the minor allele (WT/Mt + Mt/Mt) were grouped against the WT/WT 

genotype, a trend to increased p21 mRNA expression in the GA + AA group when compared 

to the GG genotype was maintained (p=0.08) (Figure 3.14B). When the outlier possessing the 

GA genotype was excluded from the analyses, however the trend towards significance was 

lost [(A) p=0.12; (B) p=0.14]. When comparing individuals with the GG genotype and the 

GA + AA genotype against VL, the GA + AA group had higher VLs when compared to the 

GG group (Figure 3.15), although this was not significant  (p=0.155). 

A bigger sample size will be necessary to determine if the mir-106b rs999885 SNP GA 

genotype truly has an effect on p21 expression. 

 

 

p=0.066 

 

 

p=0.08
2 

Figure 3.14 – Graphs comparing (A) relative p21 mRNA expression for individuals with the GG, GA and AA 
genotype of the rs999885 SNP as well as (B) the GG genotype and the GA + AA genotype. The long solid line 
in the middle of the data points indicates the median, and the top and bottom lines are at the 75th and 25th 
percentiles respectively 
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3.3.3.7 The p21 5’UTR rs733590 SNP and relative p21 mRNA expression 

Given that a recent study showed the p21 5‘UTR rs733590 SNP to be positively associated 

with increased relative p21 mRNA expression in healthy individuals (de Pablo et al., 2015), 

we next genotyped the 50 individuals for the SNP. When stratifying p21 expression 

according to the various rs733590 SNP genotypes, no effect of any genotype or allele on p21 

mRNA expression was found in our population (Figure 3.16). When the CT outlier was 

removed, the CT group compared to the TT group resulted in p=0.241. 

 

 

 

 

 

 

 

 

 

p=0.155 

Figure 3.15 – Comparison of viral loads of individuals with the rs999885 SNP GG genotype and the 
GA + AA genotype. The long solid line in the middle of the data points indicates the median, and the 
top and bottom lines are at the 75th and 25th percentiles respectively 

rs999885 SNP genotype 
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p=0.229 

 

p=0.746

p=0.189

Figure 3.16 - Graph showing relative p21 mRNA expression of individuals with the CC, CT and TT 
rs733590 SNP genotypes. The long solid line in the middle of the data points indicates the median, and 
the top and bottom lines are at the 75th and 25th percentiles respectively 
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4. DISCUSSION 
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Both the HIV-1 pathogen and the host have an inherent variability that results in differing 

levels of individual control with regards to the progression of HIV-1 (reviewed by Santa-

Marta et al., 2013). There has been great interest into the concept of a functional cure for 

HIV-1. For an individual to be ‗functionally cured‘ of HIV-1, they need to exhibit long-term 

control of viral replication to undetectable levels without the aid of ARVs (Katlama et al., 

2013). While a ‗sterilizing cure‘ rids the patient of all traces of HIV-1, functional cure can be 

achieved even if replication-competent viruses remain in the body (Katlama et al., 2013). 

Among HIV-1 infected individuals, there are unique individuals who are able to naturally 

suppress the virus and exhibit slow progression of the disease, without the use of ARVs. 

These rare individuals are termed elite controllers (ECs) and are found in less than 1% of 

HIV-1 infected individuals in studied HIV cohorts (reviewed by Okulicz, 2012). These 

individuals represent a model for the study of functional cure of HIV-1. 

We do not yet fully understand the correlates of protective immunity with regards to HIV-1 

infection. There is no one factor that seems to be responsible for natural control of HIV-1. 

Previous research has examined multiple mechanisms of control including chemokine 

receptor variation, HLA and KIR variation, and intrinsic host proteins. However, only a 

subset of ECs and HIV-1 controllers previously studied have an identified protective 

characteristic (viral and/or host) (reviewed by Okulicz, 2012), suggesting that there are other 

as yet unidentified factors involved that allow for the control of HIV-1 by these individuals.  

In addition to different population groups exhibiting variation in the mechanisms that may 

underlie natural control of HIV-1, there is also variation among the differently defined 

controller groups. Even individuals within the strictly defined elite controller group display 

immense heterogeneity with regards to immune and genetic characteristics (Tiemessen and 

Martinson, 2012), emphasising the fact that multiple factors may play a role in natural HIV-1 

control. In addition, different protective factors may be acting within different controller 

groups that have consistently low or high viraemia i.e. what may play a role in ECs who 

exhibit undetectable HIV-1 viraemia may not necessarily be shared by a group of controllers 

with higher viral loads who clearly do not control their viraemia but their CD4+ T cells are 

protected from the effects of high virus (unlike progressors).  

As research regarding the development of an HIV-1 vaccine has been the focus of clinical 

trials in recent years, the need to identify a vaccine-induced immune response to HIV-1 is 

imperative (Qin et al., 2007). The development of an effective HIV vaccine is greatly 
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impacted by the lack of knowledge surrounding correlates of immune protection (Prado et al., 

2011). Furthering knowledge of factors involved in natural control of HIV-1 and insight into 

both host and viral genetic variation will inform both therapeutic and protective vaccine 

design (Tomaras and Haynes, 2014). The access to cohorts exhibiting varying levels of 

natural HIV-1 control has given us the opportunity to investigate factors that could be having 

impacting HIV-1 natural control. 

The cellular protein p21 (also known as CDKN1A/WAF-1/Cip-1) has been implicated in the 

natural control of  HIV-1 infection. p21 is a cip/kip family inhibitor and acts as a regulator of 

the cell cycle by inhibiting cyclin-dependent kinases and regulating the transition of 

replicating cells from G1 - S (Arias et al., 2007). p21 has been shown to inhibit both CDK9 

(Salerno et al., 2007) and CDK2 (Brugarolas et al., 1998) disrupting HIV-1 replication 

through inhibiting HIV-1 reverse transcription and HIV-1 mRNA transcription from proviral 

DNA (Flores et al., 1999).  

A key study regarding p21 and HIV-1 control, and one that has formed the basis for our 

study, has shown that both ECs and VCs have an upregulation of p21 in CD4+ T cells when 

compared to progressors and HCs (Sáez-Cirión et al., 2011, Chen et al., 2011). Chen et al. 

(2011) found both p21 mRNA levels and p21 protein levels to be upregulated in CD4+ T 

cells of ECs and VCs, and found both to be correlated, showing that p21 mRNA expression is 

a good indicator of p21 protein expression. Therefore in our study, we have used p21 mRNA 

expression as a marker of p21 protein expression.  

Subsequent to the work conducted by Chen et al. (2011), recent studies have introduced the 

idea that HIV-1 may be exploiting various cellular mechanisms in order to regulate 

expression of specific genes, including p21 (Farberov et al., 2015, Guha et al., 2016). In 

macrophages, HIV-1-induced overexpression of p21 has been attributed to the HIV-1 Vpr 

protein (Amini et al., 2004a). In another study, Amini et al. (2004b) showed that Vpr (along 

with the cellular transcription factor Sp1 which binds to the promoter of p21) stimulated p21 

gene transcription. The role of p21 in HIV-1 control seems to be cell-dependent, as varying 

effects are shown in macrophages when compared to CD4+ T cells.  

De Pablo et al. (2015) showed that regardless of the patients‘ phenotype, there was broad 

inter-individual variation in levels of p21 expression. However, they found a positive 

association with increased p21 expression and possession of the HLA-B*2705 allele and/or 
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the p21 5‘UTR rs733590 SNP. When individuals possessed the HLA-B*2705 allele, 

significantly higher p21 expression was observed (p=0.007). This was also true when 

individuals possessed the TT genotype of the p21 5‘UTR rs733590 SNP (p=0.039). When an 

individual possessed both the T allele of the p21 5‘UTR rs733590 SNP and the HLA-B*2705 

allele, p21 expression was found to be largely increased (p=0.004). De Pablo et al. (2015) did 

not find complete linkage disequilibrium between the HLA-B*2705 allele and the p21 5‘UTR 

rs733590 SNP, however this SNP was highly enriched in individuals with the HLA-B*2705 

allele. In our opinion, this suggests that there may be a certain level of LD between these 

variants, since they are found in close proximity on chromosome 6.  

African populations in general exhibit large genetic variation when compared to Caucasian 

populations, with different polymorphisms, differential SNP or variant distributions, and 

differences in patterns of LD (Picton et al., 2010, Gentle et al., 2013). Given that most, if not 

all studies that have shown a role for p21 in the control of HIV-1 have been conducted in 

Caucasian populations infected with subtype B HIV-1, one cannot extrapolate a similar role 

for p21 in a sub-Saharan African population infected with a different subtype of HIV-1 

(subtype C). Although not stated in the cohort description, it is assumed that Chen et al. 

(2011) saw this upregulation of p21 in ECs in a Caucasian population since the study was 

conducted in the United States of America (USA). In addition, the prevalent HIV-1 subtype 

in the USA is subtype B. The current study was thus set up to investigate the role of p21 in 

HIV-1 natural control in a subtype C HIV-1 infected South African Black population.  

In this study, we undertook a thorough investigation into the variation in the two regulatory 

regions of the p21 gene (5‘UTR and 3‘UTR), determined if these variants, in addition to two 

additional p21 SNPs and a SNP in the miR-106b miRNA that has been shown to regulate 

p21, were involved in p21 HIV-1 natural control by looking at their representation in groups 

of controllers and progressors, and looked at relative p21 mRNA expression in a subset of 

these individuals. 

Gravina et al. (2009) investigated p21 polymorphisms in the context of aging and showed 

that two p21 SNPs, rs1801270 and rs1059234, were significantly under-represented among 

centenarians. They thus concluded that these two SNPs were potentially detrimental to 

longevity. The rs1801270 SNP has also been associated with increased risk of endometrial 

cancer in Korean populations (Roh et al., 2004), and Li et al. (2005) found the rs1801270 

SNP, in addition to the rs1059234 SNP, to be associated with susceptibility to squamous cell 
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carcinoma of the head and neck. Since these two SNPs have not previously been studied in 

the context of p21 and natural HIV-1 control, individuals with varying levels of HIV-1 

control were genotyped for the two SNPs to determine if the SNPs were, independently or 

together, assiciated with HIV-1 control.  

Looking at data from the 1000 Genomes Project (1000genomesproject.org), as expected, the 

representation of these two SNPs varied greatly when comparing African populations to 

Caucasian populations. Our healthy Black South African population showed similar allelic 

and genotypic frequencies for both the rs1801270 and rs1059234 SNPs when compared to 

four other sub-Saharan African populations (with the Nigerian Yoruba population being the 

most similar to our population), in addition to the global population. This, together with no 

deviations from Hardy-Weinberg equilibrium, served to further confirm that our designed CT 

shift assays to genotype these two SNPs performed well. 

The p21 exonic rs1801270 SNP was not found to be over- or under-represented in any group. 

In addition, when stratifying relative p21 mRNA expression according to the possession of 

various rs1801270 SNP genotypes, no difference was shown in expression between the WT 

or Mt alleles. The p21 3‘UTR rs1059234 SNP, however, showed a potential effect on control 

in that ECs had markedly less representation of the minor allele in addition to having a lower 

representation of the heterozygous genotype when compared to progressors, however this 

was not statistically significant. When stratifying relative p21 mRNA expression to the 

various rs1059234 genotypes, however, no significant association of this SNP on mRNA 

expression was found. Future work with larger sample sizes is needed to determine if this 

SNP is contributing to HIV-1 elite control. Given that this SNP does not appear to influence 

p21 expression, the mode of influence on control in ECs, if any, may involve mechanisms 

that do not depend on p21 expression levels. 

The miR-106b family of microRNAs has been found to strongly regulate p21 expression 

(Ivanovska et al., 2009). The miR-106b family is hosted in the MCM7 gene, where a SNP 

(rs999885) has been reported in the promoter region. When we looked at this SNP in relation 

to p21 mRNA expression, we saw a strong trend towards higher expression of p21 mRNA in 

individuals possessing the GA genotype. Given that Liu et al. (2012) report that the AG/GG 

genotype is associated with increased expression of miR-106b, one might expect that this 

increase in miR-106b would be associated with lower p21 expression, as Ivanovska et al. 

(2008) showed miR-106b to downregulate p21. Thus our study showed a tendency to the 
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opposite scenario. When an outlier was removed from our analysis, the trend was lost, 

however we still did not find an association with decreased p21 expression.  

There are two major differences between our study and the study by Liu et al. (2012). Firstly, 

Liu et al. (2012) studied the miR-106b rs999885 SNP in non-tumour liver cells whereas we 

studied the SNP in CD4+ T cells. Secondly, Liu et al. (2012) were studying an Asian 

population, and in sub-Saharan African populations, the major allele is the G allele, whereas 

in the Asian populations, the G allele is the minor allele (1000genomes.org). These 

differences may very likely contribute to the discordant results regarding this SNP‘s effect on 

miR-106b and consequent p21 expression. The significant under-representation of the GA 

genotype in controllers with higher viral loads is nonetheless interesting and worthy of future 

investigation. It is also important to note that miRNAs act on more than one gene and thus 

p21 may not be the gene impacted by the SNP in miR-106b. As HIV-1 has recently been 

shown to dysregulate p21 through regulation of miR-106b in vitro (Guha et al., 2016), the 

presence of higher HIV-1 viraemia could directly impact on miR-106b. It is possible that the 

rs999885 SNP may be facilitating a more advantageous association with HIV-1, hence its 

significant underrepresentation in controllers in the presence of higher viraemia. There is 

therefore a need for further testing with larger sample sizes in order to evaluate the true 

significance of these findings, along with functional studies of the miR-106b miRNA with 

and without the rs999885 SNP and its consequent effect on p21 and its expression. 

Since p21 expression can be affected by polymorphisms in the regulatory region of the gene, 

in addition to looking at representation of individual SNPs, a 2248 bp region from the 5‘UTR 

and the entire 3‘UTR were sequenced from a subset of the genotyped individials to 

investigate any polymorphisms found and their association with HIV-1 natural control. In the 

p21 5‘UTR region that was sequenced, 18 SNPs and one indel were detected. Eleven of these 

polymorphisms were found to always occur together, and LD analysis between these 

polymorphisms revealed an r
2
 value of 1, indicating that these eleven polymorphisms were 

found in complete linkage.  

This 11-SNP haplotype was named Hap-p21-P1 and to our knowledge is the first report of 

this haplotype in the p21 5‘UTR. An additional 2-SNP haplotype (Hap-p21-P2) was also 

discovered in this region. Interestingly, Hap-p21-P1 and Hap-p21-P2 were also found to be in 

LD, with an r
2
 value of 0.67. The linkage between these two haplotypes was found to be uni-

directional i.e. Hap-p21-P1 was occasionally found without Hap-p21-P2  but Hap-p21-P2 
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was always found with Hap-p21-P1 (hence r
2
<1). This suggests that evolutionarily, Hap-p21-

P1 was likely to have formed first and later acquired the additional SNPs. It would be 

interesting to determine if the relationship between the two haplotypes represents a functional 

evolutionary relationship and if they impact on p21 expression.  

Analysis of these haplotypes revealed that Hap-p21-P1 was not over- or under-represented in 

any group. When comparing the allelic frequency of Hap-p21-P2 between ECs and 

progressors, the ECs had markedly less representation of the Mt allele haplotype (p=0.08). 

Although we were unable to design CT shift assays to detect a tag SNP in the two haplotypes, 

future work will involve looking at p21 expression relative to these two haplotypes. 

Twelve SNPs were detected in the sequenced 3‘UTR. No SNPs in the 3‘UTR other than 

previously discussed rs1059234 were found to be significantly over- or under-represented in 

any group. In silico analysis of all the SNPs found in the 3‘UTR revealed various miRNA 

binding sites that were either lost, gained or the ddG score altered when the major allele or 

minor allele was present. rs1059234 was found to be the most prevalent SNP in the 3‘UTR 

and the one that showed a difference when comparing ECs with progressors. In silico 

analysis revealed large changes in the ddG scores of various miRNAs when comparing the 

major and minor allele of rs1059234, indicating that this SNP may be affecting p21 

regulation although no impact on p21 mRNA expression was seen. Interestingly, none of the 

SNPs detected in the 3‘UTR were located in the predictive binding region of the miR-106b 

miRNA. The SNPs identified in the 3‘UTR may very well be altering miRNA binding and 

affecting p21 expression as suggested by in silico analysis, however one needs to functionally 

assess this in in vitro assays, as in silico analysis is purely predictive and may not be 

functionally relevant. 

Since, to our knowledge, nothing is known about the genetic variation in the p21 gene 

regulatory regions in a Black South African population, these findings will help to further our 

knowledge on p21 and the effects of polymorphisms within the gene, not only in the context 

of HIV-1 control, but for cancers and other disease variants. Thus further work is required to 

determine the significance of these newly identified haplotypes and polymorphisms. 

Our expression analysis revealed that p21 mRNA expression was significantly correlated 

with both VL (r=0.68, p<0.0001) and CD4+ T cell count (r=-0.53, p=0.0005). HIV-1 

controllers and the HIV-1 controller subgroups had significantly lower p21 mRNA 

expression when compared to progressors, except for HVL LTNPs, supposedly due to the 



 

89 

 

 

impact of VL on p21 expression. CCR5 expression in CD4+ T cells has been shown to be 

upregulated in HIV-infected individuals when compared to uninfected controls (Ostrowski et 

al., 1998). Thus CCR5 mRNA expression was measured along with p21 mRNA expression as 

a marker of activation. p21 mRNA expression was significantly correlated with CCR5 

mRNA expression, further emphasising the relationship between VL and p21 mRNA 

expression.  

Guha et al. (2016) also showed in an in vitro study that HIV-1 infected CD4+ T cells had an 

upregulation of p21 expression when compared to non-infected CD4+ T cells, indicating that 

the HIV-1 itself has some impact on p21 expression. HIV-1 was also shown to downregulate 

miR-106b in CD4+ T cells, thereby increasing p21 expression (Guha et al., 2016). This 

suggests that an upregulation of p21 in ECs, as found by Chen et. al. (2011) is likely due to a 

host factor in these individuals that is responsible for increased p21 expression, as the low 

viral load in ECs cannot alone explain the increased p21 expression seen. 

As mentioned earlier, de Pablo et al. (2015) found a positive association between higher p21 

expression and possession of the HLA-B*2705 allele and/or the p21 5‘UTR rs733590 SNP. 

HLA-B*2705 is virtually absent in most of the sub-Saharan Africa populations 

(http://www.allelefrequencies.net), with Black South Africans not having any representation 

of the allele (Mijiyawa et al., 2000, Paximadis et al., 2012). As HLA-B*2705 has been 

significantly associated with an increased p21 expression, the Black South African population 

would then be expected to have an overall lower level of p21, and would therefore be 

unlikely to show an effect on HIV-1 control as has been shown in Caucasian populations. It is 

interesting to speculate whether the protective effect displayed by HLA-B*2705 against HIV-

1 could thus partially be due to the action of p21 in Caucasian populations. 

De Pablo et al. (2015) also showed that the TT genotype of the p21 5‘UTR  rs733590 SNP 

was associated with higher relative p21 mRNA expression when compared to the CC 

genotype. This was also shown previously in a Caucasian population by Korthagen et al. 

(2012). Representation data available on the 1000 Genomes Project (1000genomes.org) 

showed that the rs733590 SNP T allele has a much higher representation in the Caucasian 

populations (43.5%) versus the African populations (18%), again indicating that African 

populations may inherently have a lower level of p21 expression when compared to 

Caucasians, if this SNP is actually impacting on p21 expression and is not just in LD with 

another variant that be the true functional variant. We thus decided to genotype the 

http://www.allelefrequencies.net/
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individuals with expression data for the p21 5‘UTR rs733590 SNP and interestingly, found 

no effect of this SNP on p21 mRNA expression in our population group.  

This result, together with the absence of HLA-B*2705 in our population group, may be the 

reason that we do not see upregulation of p21 mRNA in our ECs and VCs as seen in 

Caucasian cohorts. This study thus serves to highlight the dangers of extrapolating identified 

correlates of protection from one population group to another without consideration of the 

host genetic background. 

It will be interesting to look at the rs733590 SNP in HIV-1 negative South African 

Caucasians with and without the HLA-B*2705 allele to see if this SNP is associated with p21 

expression in this population, in addition to comparing Caucasians to the Black South 

Africans that were genotyped in this study to see if the Caucasian population has inherently 

higher levels of p21 expression. 

In the Black South African population, the presence of HIV-1 itself correlates positively with 

p21 mRNA expression i.e. p21 looks to be serving as a marker of immune activation as is 

seen with CCR5 (Ostrowski et al., 1998). It has previously been shown that individuals 

infected with HIV-1 had a 2.35-fold increase in p21 mRNA expression relative to healthy 

individuals (Serrao et al., 2014). In addition, Guha et al. (2016) determined that CD4+ T cells 

that were productively infected with HIV-1 had higher amounts of p21 expression when 

compared to bystander cells. It has also been proposed that HIV-1 can affect the host 

miRNAs thereby blocking innate inhibitory mechanisms in the cell, and so promoting the 

spread of HIV-1 (Farberov et al., 2015). As there is still some confusion with regards to 

whether the host cell and/or HIV-1 is modulating p21, further studies quantitating baseline 

levels of p21 and effect on HIV-1 control in varied population groups will be highly 

informative.  

An intrinsic factor, SAMHD1, has also been shown to play a role in HIV-1 control and has 

been associated with p21. SAMHD1 is a cellular enzyme that halts replication of the HIV-1 

virus in dendritic cells, macrophages and monocytes (Laguette et al., 2011, Hrecka et al., 

2011) due to SAMHD1 depleting the amount of deoxynucleotide triphosphates (dNTPs) in 

the cell. Similarly, Allouch et al. (2013) showed that one of the protective mechanisms of p21 

against HIV-1 is its ability to block dNTP biosynthesis, through downregulating the RNR2 

subunit of ribonucleotide reductase. While Allouch et al. (2013) concluded that HIV-1 
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restriction by p21 was in a SAMHD1 independent manner, Pauls et al. (2014) suggested that 

the effect of p21 was dependent on SAMHD1 expression. More studies will need to be done 

to determine the relationship, if any, between p21 and SAMHD1 and the effect on HIV-1 

control, especially in a South African Black population.  

This study emphasises the importance of studying disease in the context of the affected 

population. We found major variations in Black South Africans when compared to 

Caucasians. Variation in protective mechanisms in different population groups can be 

attributed to host differences as well as to HIV-1 subtype/strain differences.  

In conclusion, genotypic data analysis revealed a potential role for the p21 3‘UTR rs1059234 

SNP in HIV-1 control, while the p21 exonic rs1801270 SNP did not seem to be playing a 

role. Possessing the miR-160b rs999885 SNP GA genotype was found to be associated with 

higher p21 expression, although further work is needed to understand this relationship. 

Sequencing of the p21 5‘UTR revealed two interesting haplotypes that need to be further 

studied and compared to p21 expression. Sequencing of the 3‘UTR did not reveal any 

additional SNPs, other than the rs1059234 SNP, that seemed to participate in HIV-1 control, 

however functional experiments will need to be performed to truly understand the roles of 

these SNPs and the consequent interaction of various miRNAs. Expression analysis in our 

population group showed a significant correlation between HIV-1 VL and p21 mRNA 

expression. Future work with larger sample sizes will be beneficial in uncovering more 

information regarding the role of p21 and natural HIV-1 control in a South African Black 

population. 
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