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Abstract

A two-level facility location problem (FLP) arose in the transport network of maize crop in

Tanzania has been studied. The three layers, namely, production centers (PCs), distribution

centers (DCs) and customer points (CPs) are considered in the two-level FLP. The stochastic

effect on the two-level FLP due to rainfall in the network links, between the DCs and CPs,

has been studied. The flow of maize crop from PCs to CPs through DCs is designed at

a minimum cost under deterministic and stochastic scenarios. The three decisions made

simultaneously are: to determine the locations of DCs (including number of DCs), allocation

of CPs to the selected DCs, allocation of selected DCs to PCs, and to determine the amount

of maize crop transported from PCs to DCs and then from DCs to CPs.

We have modelled the problem and generate results by optimizing the model with respect

to optimal location-allocation strategies. We have considered two networks, the existing

network and an extended network. In the existing network there are four PCs, five DCs

and ninety three CPs. In the extended network three additional DCs are considered. For

the modelling purpose we have used the rainfall data from 2007 - 2010 in each week for

17 weeks. The optimized results for the existing network have shown improvements in cost

saving compared to the manually operated existing network. In the extended network, the

results have shown much more efficient and cost saving distribution system compared to the

results of the existing network.
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Chapter 1

Introduction

1.1 Background to the problem

Distribution network design problems consist of determining the best way to transfer goods

from the supply to the demand points by choosing the structure of the network such that

the overall cost is minimized [5]. Here, the network is considered from a graph theory point

of view. It is a connected graph with sets of vertices (nodes) and edges (arcs). Production

centers, warehouses (distribution centers) and customer points/demand points are assumed

to be vertices while edges or arcs can act as roads and/or railways. Associated with this

network, there are two main problems: facility location [21, 45, 63, 75] and vehicle routing

[47, 63]. There are a number of papers that deal with these two problems, both individually

or combined [9, 21, 47, 59, 71, 75].

In the classical facility location problem (FLP), it is required to determine the optimal

location of facilities or resources so as to minimize costs in terms of money, time, distance

and risks with relation to supply and demand points [4, 63]. In other words, as defined in

Sajjadi [71], ‘given a set of facility locations and a set of customers who are served from the

facilities, then which facilities should be used?, which customers should be served from which

facility so as to minimize total cost of serving all customers?’ Other names of the FLP are the
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warehouse location problem and a spatial resource allocation problem [18]. Some examples

of such facilities are schools, warehouses, hospitals, markets, industries, stadium or open

space, terminal bus stand (hub), railway stations, military centers, post offices, fire stations

and worship places [18, 42, 71]. In a FLP, the constraints such as distance between facilities

and customers are often imposed. Other typical constraints are the number of customers

(people using these facilities) and their demands, the number of facilities and their capacities

[18, 42, 57, 58, 75]. The problem studied in this thesis is a FLP that involves a distribution

system design.

The vehicle routing problem (VRP) can be simply defined as the problem of designing

least-cost delivery routes from a depot (or depots/supply points), to a set of geographically

scattered customers, subject to a number of constraints (capacity, distance, time). In the

VRP, a number of vehicle routes are created such that: (i) each route starts and ends at a

depot, (ii) each customer is visited exactly once by a single vehicle, (iii) the total demand of

a route does not exceed vehicle capacity, and (iv) the total length of a route does not exceed

a preset limit [47]. A route is a sequence of locations that a vehicle must visit along with

the indication of the service it provides. The VRP arises as a generalization of the travelling

salesman problem (TSP) which requires the determination of a minimal cost of a cycle that a

salesman passes through each vertex (city or customer) of a given graph exactly once. Since

VRP was introduced by Dantzig and Ramser 1959, there have been major developments in

both exact and heuristic solution methods as detailed in [47]. For more studies of VRPs

refer to [49, 51].

The location-routing problem (LRP) integrates FLP and VRP in a single framework. The

classical LRP seeks to minimize the total cost by simultaneously solving the location and

routing problems. In the LRP models, three decisions are made simultaneously: to determine

the locations of facilities (including number of facilities), to allocate customers to facilities,
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and to determine routing from facilities to customers. The main constraints are: (i) customer

demands are satisfied without exceeding vehicle or facility capacities, (ii) the number of

vehicles, the route lengths and the route duration not exceeding the specified limits, and

(iii) each route begins and ends at the same facility [9]. In the two main components of the

LRP, the FLP is considered as the master problem and the VRP is a sub-problem within

the LRP [63].

The LRP as an optimization problem has attracted many academicians and practitioners

in recent years. LRPs have been studied with different mathematical approaches in the

literature, see [9, 34, 63]. The models, solution procedures, and applications of LRP began

to appear in the literature in the 1970’s. LRP models can be deterministic or stochastic

[9]. Within the LRP models, the stochasticity in customer demand has been reported in

[8, 48, 71]. On the other hand, stochasticity in travel times in the context of VRP has been

reported in [49, 51, 82]. A study on travel time reliability is mostly detailed in the PhD

thesis by Tu [82]. Similar studies were also carried by Vandaele et al. [86], and Van et al.

[87]. Their observations were based on real life environment where travel times from one

point to another is not reliable due to unpredictable traffic jams (due to car accidents and

the number of cars in relation to road capacity). These factors, no doubt, affect the speed of

a vehicle. In their study [86, 87], the authors used queueing theory on traffic flow to model

the expected travel time and standard deviation of the travel times in order to measure the

travel time reliability.

The two main solution approaches to LRP are exact and approximate (heuristic) methods.

LRP arises in many applications in various forms. Most recent papers on LRP focus on

distribution of consumer goods as its practical applications [4, 34, 35, 53, 55, 59, 63, 67, 88].

Further classification and more details on LRP can be found in the review paper by Nagy

and Salha [63].
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The FLP is a broad study area within the location analysis, where the location, allocation

and shipment or transportation decisions are solved simultaneously. Usually, the allocation

of customers to a specific facility, is an implication to direct transportation of goods from

that facility to the respective customers. In this context, each customer is supplied directly

from a facility without depending on other customer’s demand [6, 42, 58]. This is a strategic

issue faced by distribution companies in designing their distribution networks [42]. Strategic

issues or decisions are defined as decisions that have a long-lasting effect on the company.

These are decisions which include the number, location and capacities of warehouses and

manufacturing industries, or the logistics network [58]. Klose and Drexl [42] mention the core

components of distribution system design as location of facilities and allocation of customers

to the facilities. The mathematical models for location-allocation are formulated in various

forms from simple to complex. These are from simple linear, single-level or multi-level,

single-product or multi-product, uncapacitated or capacitated, deterministic or stochastic

models to nonlinear models [42, 58]. There are various algorithms which are exact and/or

heuristic that are local search and mathematical programming based approaches [42].

In the literature, there are a wide range of variants and extensions of FLPs. The main

classifications are based on attributes of facilities and customers. Major attributes are

location types e.g. continuous or discrete, number and capacities, etc.

Klose and Drexl [42] consider continuous facility location models as models in the plane

which are characterized by two essential attributes. First, the solution space is continuous,

that is, it is feasible to locate facilities on every point in the plane; secondly, a distance is

measured with a suitable metric [42]. The common metric measures used are right-angled

distance metrics (the Manhattan) and the Euclidean or straight-line distance metric. The

continuous location models use coordinates to calculate distances between facilities and
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customers. The other counterpart category is the discrete facility location models. This is

the most studied area as mixed-integer programming models and network location models

[42, 58]. In discrete facility location problems, nodes represent demand points and potential

facility sites correspond to a subset of the nodes. The models are characterized by binary

decision variables. Distance metric between nodes also applies in the discrete optimization

[42, 58].

Multi-stage or multi-level distribution system models consist of facilities on several hierarchi-

cally layered levels. Hierarchical system is defined as a system of different types of interacting

facilities [69]. These hierarchical layers are also known as echelon [26, 81]. Generally, when

there are more than one hierarchical layers, then it is a multi-stage or multi-level model. In

other related classification scheme, the multi-stage models are named as multi-level models.

This is mostly used when location decisions are done to each facility layer [43, 69]. The words

stage and level are interchangeably used such as single-stage or single-level, and multi-stage

or multi-level. However, in this work we are using mostly single-level and multi-level.

In their review paper, Klose and Drexl [42] list sub-categories of discrete FLPs as single or

multi-stage models, uncapacitated or capacitated models, multiple or single-sourcing, single

or multi-product models, static or dynamic models, and, last but not the least, models

without and with routing options included [42].

In single-level models, FLPs have only one level or one group of facilities that will service

customers. Goods supplied from distribution centres (DCs) to customers without considering

the manufacturing or production centres are single-level models. When there is no limit on

the facilities’ capacity, it is known as an uncapacitated facility location problem (UFLP),

otherwise it is known as a capacitated facility location problem (CFLP). The classical UFLP

is also known as the fixed-charge location problem [42, 58, 76]. If each customer can be
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supplied by exactly one DC, then it is single-sourcing; but if many DCs can supply to one

customer, then it is multi-sourcing. In these models, there can be deliveries of single or many

products. Furthermore, when a specific number of facilities are needed in serving customers,

then it is termed as p-median FLP. This requires a number of p facilities or DCs, out of say

N , to be selected in possible potential sites for serving the specified number of customers.

The layers of a distribution network are known by various names such as plants or supply-

points, transit points and demand points or customers points, and depots or distribution

centres [71]. For instance, if a distribution network consists of plants, distribution centres

and customer points, then it is a three-layer network. In this case, plants is the first layer,

the distribution centres form a second layer, and the customers or demand points is the

third layer. There will be a flow of goods from one layer to another. The routes between

one layer and another creates routing or transportation levels which can be direct (known

as replenishment route) or tour (routes with several stops) routes. When the transportation

routes between two points, say A and B, have no stops between origin and destination, then

it is a direct or replenishment route. The study in this thesis considered only direct routes

between its layers. The direct delivery, or point to point, method of goods distribution

involves the movement of goods from an origin, plant or warehouse or DC, to a specific

destination without stopping [75].

Generally, multi-level FLPs are present if facilities (plants or DCs) have to be located or

allocated simultaneously on several layers of the distribution system. A two or three-level

capacitated facility location model can be specified if the flow of products are from two or

three capacity-constrained echelons, before the final delivery to the customer points [42].

The production centres or plants are considered as higher level facilities. The lower level

facilities are known as DCs, warehouses or transit points that act as intermediate points for

goods to be delivered to the intended customers. There are several studied models as found
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in [25, 26, 42, 58, 81]. A related area to the FLP is the supply chain management (SCM)

as presented by Melo et al. [58]. The FLP is said to be SCM when other attributes such as

procurement, production, inventory, distribution and routing are included in the model [58].

The model researched in this thesis is a two-level capacitated FLP with multi-sourcing and

single-product. The study considered both deterministic (static) and stochastic modelling.

The review study by Snyder [76] considers stochastic components in facility location

models. He classifies the decision-making environments into three categories as certainty,

risk and uncertainty. The certainty situations are when all parameters are deterministic

and known. On the other hand, both risk and uncertainty are when randomnesses occur.

The risk situations occur when uncertain parameters whose values are governed by some

known probability distributions. In uncertainty situations, parameters are uncertain, and

probabilities are not known. Snyder [76], further categorizes problems with a risk situations

as stochastic optimization problems. In such problems, a common goal is to optimize the

expected value of some objective function. The problems with uncertainty are known as

robust optimization problems [76]. The study we are dealing with, is also a stochastic

optimization study.

Most of the problems as reviewed by Snyder [76], are stochastic problems due to demand

[76]. Other randomnesses considered are the randomness in travel times, production costs,

travel costs, capacities and location points. However, there are few stochastic studies in

multi-level facility location problems. Practical applications of FLP where the distribution

network is stochastic in nature are rarely seen compared to LRPs and VRPs. The stochastic

distribution network is when there is no guarantee that, a subsection of a route/link or

sub-route can be used with certainty for various reasons. For instance, as studied in LRPs,

presence of traffic jam due to car accidents, road block by traffic authority and even floods

may affect the route to be reachable or accessible. Unfortunately, the current mathematical
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formulation of the multi-level FLP; does not address the stochasticity due to the weekly

rainfall effect, particularly in the context of real-life problems.

1.2 Research motivation and objectives

1.2.1 Research motivation

The research involves the study of a two-level FLP with stochasticity in the network links

between the distribution centres to the customers so as to achieve the food security at the

customers’ demand locations. The motivation for this study is that the current literature in

multi-level FLP does not address stochasticity in routing (direct delivery) due to unexpected

occurrences such as rainfall; and that a real life problem from Tanzania is considered. This

is aside from the fact that many studies on deterministic and stochastic cases for both

VRPs and LRPs, on real life problems; have been carried out in Western Europe and North

America [63, 76]. No similar studies for multi-level FLPs have been carried out in the context

of Africa, to the best of our knowledge. The objective of this study is to come up with food

distribution systems that are economical and cost effective in Tanzania.

The two-level FLP involving the maize crop transportation network that originally arose in a

government ministry in Tanzania; has been studied. The practical problem considered have

a number of features which make the research worthwhile as this was not considered before.

The research is two-fold. Our first task is to model the problem mathematically. The second

task is to generate solutions and analyse them critically.

The case study investigates two types of distribution networks: the existing network and an

extended network.
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The first exercise involves an analysis of the existing distribution set-up to see whether it is

optimal and to see if it will be sustainable for a future period. This network has five existing

DCs where it is possible to vary their capacities during optimization. Thus we optimize the

flow of maize crop from production centres to customer points through distribution centres.

There are two tasks in the analysis of the existing network:

• The first task is the optimization of the flow of maize crop in the existing distribution

network. An analysis of the manually operated network using a mathematical model

is done for the cost and location-allocations comparison. Through optimization of the

model, the conditions under which it is optimal compared to the manually operated

network will be found. In this situation, we will consider only the capacities of DCs to

be constant.

• The second task is the improvement of the existing network. Here we want to choose the

best possible configuration of the facilities in the existing network through optimization

tools. The aim is to satisfy the customers’ demand while minimizing the overall network

cost. The same five DCs will be used but with variable capacities in order to find the

best capacities for minimum cost. The capacities in this case are considered as decision

variables in the model.

The optimized results for the existing network will enable us to give better suggestions on

cost reduction to the Tanzanian government.

As an alternative to the existing network, an extended network using eight DCs will be

studied. Three new DCs in addition to the five existing DCs will be considered. The use

of additional DCs is based on the high production capacities of maize crop (see Table 4.4),

and also the government’s plan for additional DCs (see Figure C.2) as a result of increased

demand of maize and other cereal crops. For the extended network, DCs’ capacities are also

decision variables in the model.
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1.2.2 Objectives

The objective is to determine whether to keep the current structure (and perhaps updating

their capacities) or to use the extended network. Scientific methods will be used to come up

with an answer to the above mentioned question.

We model the problem and solve it with respect to optimal location-allocation strategies.

The specific objectives are therefore:

• To develop a two-level FLP integrated with stochastic transportation network 1;

• To apply the model to a real life problem for both deterministic and stochastic cases;

• To critically analyse and compare the optimal results obtained by deterministic and

stochastic models.

The research uses the terms plant, supply point and production centre interchangeably. The

same is true for distribution centre (DC), warehouse and depot. The terms-; customer points

and demand points are also used interchangeably.

We have used an exact method in our solution approach. This based on the fact that a

software (IBM ILOG CPLEX Optimization Studio) we are using give the same results when

the model is solved repeatedly. It is also the software defined the solution being optimal

after computations.

1.3 Organization of the thesis

The rest of the chapters are organized as follows: in the next chapter (2) we present

the literature review on multi-level FLPs. This chapter discusses more on theoretical

1By stochastic transportation network we mean, either a subsection of a network takes non-deterministic

time to travel or an alternative sub-network or link has to be used resulting in longer travel times.
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and related literature on multi-level FLPs, and also presents both the deterministic and

stochastic mathematical models from the previous studies. Chapter 3 presents the two-

level FLP that arose in Tanzania in maize crop distribution network. Chapter 4 is for the

deterministic model together with the results for maize crop production and distribution

system in Tanzania. Chapter 5 presents the stochastic model together with the results.

The research conclusion, recommendations and future proposed research directions are in

Chapter 6.

1.4 Summary

This chapter; has introduced the problem of this thesis by describing a background of the

problem and related literature. This is a facility location problem (FLP) and other related

problems which are VRPs and LRPs. The main features in each problem are explained and

the literature where these problems appeared is provided. A specific FLP studied in this

thesis is a two-level FLP where both deterministic and stochastic models are analysed. An

application to the problem is maize crop transportation in Tanzania. The specific objectives

to be achieved are also provided in this chapter.
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Chapter 2

Multi-level FLPs: A literature review

2.1 Background to the multi-level FLPs

As explained in Chapter 1, a multi-level or multi-stage facility location problem is considered

to be an extension of the classical FLP (single-level model). It is categorized in the literature

as the hierarchical location-allocation problem or as hierarchical facility location models

[28, 29, 64, 69]. Generally, the hierarchical system of facilities consist of k different types of

interacting facilities (levels) in which the lowest level is called level 1 and the highest is level

k. This classification of facilities does not include demand or customer points. The demand

or customer points are assigned to be level 0 in this regard, and the underlying structure is

assumed to be a network whose nodes represent facilities and customer points [69].

The hierarchical systems are complex systems that require an effective coordination of

services provided at different levels. They need an integration in the spatial organization of

the different facilities and the flow of goods or services provided in the respective levels [69].

The major applications are found in service provisions and products distribution systems.

The specific application areas as mentioned by Narula [64], and Sahin and Süral [69] are

production-distribution systems, health-care delivery systems, solid waste management sys-

tems, education systems, emergency medical service systems, telecommunication networks,
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postal services and banking systems. More detailed referenced studies on each application

area can be found in Sahin and Süral [69].

There are classification schemes of the hierarchical facility location problems as studied by

Sahin and Süral [69], Marianov [56], and Narula [64]. The four attributes associated with

the classification schemes and the common terms used in this area are defined as itemized

below.

• Flow pattern: This considers the customers and/or goods flow through layers or levels

of the hierarchical systems. This is either in a single flow or multi-flow pattern. The

single-flow pattern starts from lowest level (level 0) and passes through all levels and

ends at the highest level (level k). It can also be in the reverse direction: starting at

level k and ending at level 0. On the other hand, multi-flow can be from any lower level

m to any higher level n where n, m ∈ {0, 1, 2, ..., k}. Similarly, the reverse direction is

also possible for multi-flow. The two flow patterns can also have referral or non-referral

systems. In a referral system, some proportions of customers served at any level, are

referred to higher levels, while in a non-referral system no referrals between levels are

considered [69].

• Service varieties: With regard to types of services to be provided, a system is classified

as nested or non-nested. In a nested hierarchy system, a higher-level facility provides

all the services provided by a lower level facility. In addition, this level must have

at least one additional service which is different from the lower level services. In a

non-nested hierarchy, facilities at each level offer different services [56].

• Spatial configuration: Here, coherency refers to the spatial configuration of levels. As

described by Sahin and Süral [69], “In a coherent system, all demand sites or customer

points that are assigned to a particular lower-level facility are assigned to one and

the same higher-level facility. Thus, coherency resembles single-sourcing in managing

demand satisfaction in capacitated facility location problems. Non-coherent systems
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are less constrained on the spatial configuration of levels”.

• Objective function: There are three well-known types of objective functions used to

locate facilities. These are median, set covering, and fixed charge objectives. The

median models aim to minimize the demand weighted total distance (transportation

cost) between customer points and facilities. In set covering models, a customer is

considered covered by a facility if the facility is located within a particular proximity.

The main objectives here are to minimize the number of facilities needed for coverage of

all customers and to maximize covered customers with a particular number of facilities

(maximum covering). In covering models, it is not necessarily for the facility to provide

services to the nearest demand site. This might be due to facility capacity and also the

quantity of demand by customer. However, a customer should be served by at least

one facility within a given critical distance [69]. The goal of the fixed charge location

models is to minimize total facility construction and transportation costs [69].

Generally, there are several classification schemes found in hierarchical facility location

problems and there is no unique way of doing the classification [64]. Classifications, other

than what is presented above, can be based on the problem formulation and solution

procedures which depend upon the hierarchical relationship between the facility types

involved. Classifications may depend on the flow of goods and services allowed among levels

[64].

The study in this thesis is concerned with production-distribution system, where product

flow is from higher level to lower level. It is a single-flow and non-nested network, where

customers will only be serviced by lowest facility (level 1). The non-nested hierarchy is when

facilities at each level offers different services.

In the literature, the multi-level problems are also named as multi-stage problems. As

described by Klose (2000) [43], location decisions can be determined in both levels of
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facilities or only determined in one level while the other levels are fixed [43]. The multi-

level studies can be two-level, three-level, uncapacitated and capacitated facilities. Both

exact and heuristic solution methods are applied in deterministic and stochastic models

[1, 5, 36, 37, 56, 58, 64, 69, 76]. For more detailed and references of multi-level FLPs, a

study by Sahin and Süral [69] can be consulted.

2.2 The previous studies of Multi-level FLPs

The multi-level FLPs discussed in this section are mostly related to this thesis. The literature

reviewed in this section is classified into three categories as itemized below:

• Deterministic multi-level problems with exact solution methods;

• Deterministic multi-level problems with heuristic solution methods;

• Stochastic and robust multi-level problems with both exact and heuristic solution

methods.

2.2.1 Deterministic multi-level problems with exact solution meth-

ods

The multi-level FLPs are deterministic if all their input data is known by certainty. In some

literature, the deterministic models are also known as static models [71]. The exact solution

method is the solution procedure that guarantees the optimal solution [71]. There are several

deterministic studies as discussed below.

In 1974, Geoffrion and Graves [25] presented a multi-level facility location problem as a

distribution system design multi-commodity problem that is solved optimally. It is a two-

level FLP which optimizes the location of DCs. The problem is formulated as a four-indexed
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mixed integer linear program with multi-commodity flow from plants to customers through

DCs [25]. It is a capacitated constrained problem on both plants and DCs. The problem

studied by these authors is single-sourcing and single-period model. The model solution

method is developed based on Benders decomposition techniques [25]. They solved a real life

problem of a major food company using their model and algorithm. The optimal solution to

the real problem is found with up to a composition of 17 commodities, 14 plants, 45 possible

DC sites, and 121 customer points [25].

Köksalan et al. [45] in 1995 studied an application problem of a brewery company based

in Turkey. It is a two-level location-distribution problem formulated as a mixed integer

programming model. The malt factories are the higher level facilities and breweries are

the lower level facilities that supplies to customer zones. They evaluated the existing

transportation costs for shipping malt from the two malt factories to the three breweries, and

shipping beer from the breweries to 300 different customer zones [45]. The model is solved

optimally using interacting mathematical programming software (FORTRAN and LINDO).

The company’s plan is to explore the best sites for opening new breweries. After the results

of the study, two new breweries were then opened [45].

A production-distribution system design problem studied by Elhedhli and Goffin [22], is

a two-level FLP. It is a supply chain based problem that is multi-product plant, single-

sourcing DC with capacitated constraints. The optimal solution to the problem is based on

Lagrangian relaxation, interior-point methods, and branch and bound.

A study by Hindi and Basta [29] considered a similar problem as the Geoffrion and

Graves [25], but with three indexed formulation. The other difference is the absence of

single-sourcing of DCs-to-customers’ service. The multi-products were transported from

capacitated plants to capacitated DCs before the final destination to the customer points

16



with the known demand. The problem considered locations of DCs and their associated

fixed costs. In the model the shipping costs from a plant to a possible DC and thereafter

to the customer points were also considered. The problem is a mixed-integer programming

model solved by a branch and bound algorithm. Again in 1998, Hindi et al. [28] presented a

similar study that considered single-sourcing DC-to-customers’ service. In the model, they

used a four indexed formulation where it was possible to trace the plant origin of each

product quantity delivered to the customers. Generally, the objective was to choose the

locations for opening DCs such that the total cost in the distribution system was minimized.

An other similar study by Jiang et al. [38], used both heuristic and exact solution techniques.

A study by Tragantalerngsak et al. [81] is focused on a two-echelon, single-source, and

capacitated facility location problem. The problem is formulated as a mixed integer linear

program, with capacitated constraints. The model is solved optimally by a Lagrangian

relaxation-based branch and bound algorithm. In their problem, the deliveries of products

are made from the first-echelon facilities (they call them depots) to customers through the

second echelon facilities (called facilities in the model). The main goal is to determine

simultaneously, the number and location of facilities in each echelon, the flow of products

between the facilities in different echelons, and finally the assigning of the customers to open

facilities in the second echelon [81]. This problem has the following identified features:

• Two-echelon and single-source: In this case, each customer must be served by only

one facility from second echelon facilities. On the other hand, each facility in second

echelon, will also receive products (deliveries) only from one depot in the first echelon

depots. So, single-sourcing is applied to both layers of the distribution system.

• Capacitated and uncapacitated facilities: The second echelon facilities have specific

capacities that must not be violated, but the first echelon facilities (named as depots)

are uncapacitated.

• Decision variables: There are three decisions to be made. The first decision is the
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location decision for opening of facilities (second echelon); the second is the allocation

of customers to open facilities, and the third is the allocation decision of allocating

open facilities to depots (first echelon). All the decisions are made simultaneously.

The main applications mentioned in the study are in the telecommunication, distribution

and transportation industries [81].

Ambrosino and Scutella [5] considered a complex distribution network design problem with

capacitated facility location, warehousing, capacitated transportation and inventory levels.

It is a network made up of four layers, namely; plants, central depots, regional depots and

customers. The three types of routes are plant to central depots, central depots to regional

depots, and finally, the routes from regional depots to customers. The major tasks on facility

location, allocation, transportation (routing) and inventory were carried out optimally for

some small instances using CPLEX software. The authors pointed out that, for solving

larger problems and real instances, the only helpful methods have been heuristics [5].

The review paper by Klose [42] presents different problems of locating facilities and allocating

customers that covers the core topics of distribution system design. He pointed out

that, “model formulations and algorithms which address the issue vary widely in terms of

fundamental assumptions, mathematical complexity and computational performance” [42].

In the paper, multi-level models are well discussed with the concerned variations. Other

review papers that discuss this class of problems are by Melo [58], Narula [64], and Sahin

and Süral [69].
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2.2.2 Deterministic multi-level problems with heuristic solution

method

Heuristic is the term used in the field of optimization to characterize a certain kind of

mathematical problem-solving procedures. As presented by Silver [73], “the term heuristic

means a method which, on the basis of experience or judgement, seems likely to yield

a reasonable solution to a problem, but which cannot be guaranteed to produce the

mathematically optimal solution”. Generally, due to the complexity of a great number

and variety of difficult mathematical problems, the heuristic solution method is needed in

practice. The problems needed to be solved efficiently, and this has led to the development

of efficient procedures in an attempt to find good or reasonable solutions, even if they

are not optimal [71, 73]. In these methods, the process speed is an important measure in

relation to the quality of the solution obtained. Heuristics are also known as approximate

algorithms. They are mostly concerned with obtaining applicable solutions to the well

defined mathematical representations (models) of real-world problem situations [73].

Klose [44] formulated a mixed integer programming model of a two-level capacitated facility

location problem (TSCFLP). The model considered a single-product and single-source

constraints. It is a linear programming based heuristic with three tasks. The first task

is to find the optimal locations of depots from a set of possible depot sites in order to

serve customers with a given demand; the second is the optimal assignments of customers to

depots, and third, the optimal flow of product from plants to depots [44]. The model is solved

by a heuristic approach based on the Lagrangian relaxation of the demand constraints. The

procedure was tested on some problems with up to 10 plants, 50 possible depot sites and

500 customer points. “The computational results show that this method is able to compute

near-optimal solutions and useful lower bounds for the TSCFLP in short computation times,

even in the case of larger problem instances” [44]. In 2000, Klose [43] solved another similar

problem but considering a Lagrangian heuristic based on the relaxation of the capacity
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constraints. It is named as Lagrangian relax-and-cut approach. The resulting Lagrangian

sub-problem is then solved efficiently by branch-and-bound methods. Next, the results are

computed by means of a weighted Dantzig-Wolfe decomposition approach [43].

The studies by Amiri [7] and Lashine [50] are two-level FLPs addressed as the problem of

designing a distribution network in a supply chain system. Lashine [50], also includes in his

study, the routing decision. The studies by Amiri [7], Litvinchev et al. [52], and Landete &

Marin [46], determined simultaneously the best location of both plants and warehouses,

and the best strategy for distributing the products from the plants to the customers

through warehouses. Amiri’s study allows the multiple levels of capacities available to the

warehouses and plants [7]. In this case, it is possible to have several capacity values in

plants and depots/warehouses. The study considers different values of DCs’ capacity during

optimization of the model. Amiri [7] implemented an efficient heuristic solution procedure

based on Lagrangian relaxation of the problem. The tested problems are up to 500 customers,

30 potential warehouses, and 20 potential plants. The two-level problem studied by Landete

& Marin [46] is uncapacitated FLP where its solution was obtained by a heuristic approach

that involves cuts . The study by Litvinchev et al. [52] considered a two-level CFLP with a

single-product also uses a heuristic Lagrangian relaxation. The distribution network design

problem studied by Jayaraman [37] uses simulated annealing (SA) to obtain nearly optimal

distribution system design.

Hinojosa et al. [30] studied a multi-period and multi-commodity two-echelon capacitated

facility location problem. This study considered multi-period planning horizon which has

not yet been observed in the previous surveyed literature. They assumed that the capacities

of plants and warehouses change over time (T) periods. This is also applied to demands and

transportation costs. Seasonal known demands grouped in four periods are considered to

influence the capacities and other parameters and/or variables determination for each period
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[30]. Both plants and warehouses location were determined in each period. The authors have

not provided any real life application, but the model presented applies to the situations where

intermediate distribution and seasonal demand exist [30]. It is a cost minimization mixed

integer programming problem where results were obtained by a Lagrangian relaxation with

heuristic procedures.

A study by Ozsen et al. [65] was a two-echelon single product logistics system involving

a single plant and several of potential warehouse sites. Only the location of warehouses

is determined. It is a supply chain network design problem that is nonlinear integer-

programming and solved by heuristic Lagrangian relaxation. This model considered multi-

sourcing as customers (retailers) are sourced by more than one warehouse [65].

A two-level transportation problem studied by Gen et al. [24] is modelled in the supply chain

system. The study aims to determine the distribution network that involves transportation

problem and facility location to satisfy customers’ demands at minimum cost. The major

constraints are the capacities of plants and DCs, and the minimum number of DCs to be

selected. The constraints regarding the number of DCs to be selected is one of the component

which distinguishes this study from the other models. It is very important when a manager

has limited available capital [24]. In the three layers, the nature of transport is direct shipping

without multiple stops. The model is solved by a heuristic method such as priority-based

Genetic Algorithm (pb-GA) [24].

Generally, the deterministic problems found in the literature are the total cost minimization

based on location and transportation strategies. They are also categorized as mini-sum

problems [42, 69]. The target is satisfaction of customer demands with high quality service

provision. Regardless of the number of commodities involved, and other attributes, the

objective of the multi-level FLP is to design a distribution network for efficient transfer of
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goods from supply to demand points. The structure of networks such as the number of

facilities at different layers, their locations and capacities need to be determined optimally.

All of the previously discussed problems are deterministic that do not take into account the

uncertainties or risks in the modelling or planning process. The next subsection considers

studies that involve randomness (uncertainties or risks) concept.

2.2.3 Stochastic and robust multi-level problems with exact and

heuristic solution methods

Having discussed the various deterministic multi-level FLPs under exact and heuristic

solution methods, we now present the stochastic models and their solution approaches. In

FLPs, plants, DCs, transportation network and other facilities can work for several years or

decades, during which time the environment in which they operate may change significantly

[76]. The parameters such as costs, demands, travel times, and other inputs to hierarchical

facility location models, may be highly uncertain. Thus, the development of models for

multi-level facility location under uncertainty are of great importance [69, 74, 76]. There are

a large number of approaches that have been proposed for optimization under uncertainty

in general, which have also been applied to hierarchical facility location problems [76].

As defined by Snyder [76], risk and uncertainty are situations where randomness occurs.

The problems with risk situations are the one with known probability distributions to the

decision maker, and such problems are known as stochastic optimization problems. Under

uncertainty conditions, parameters are uncertain, and probabilities are not known. These

problems are termed as robust optimization problems [10, 76]. This part of the literature

study discusses the various stochastic and robust problems which appeared in the context

of hierarchical facility location problems.
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A study carried out by Min and Melachrinoudis [60] is a three-level hierarchical location-

allocation application problem based on the banking industry. It addresses the internal

dynamics and functional dependence of different hierarchies of banking services. Three

layers considered for banking services are automatic teller machines (ATMs), branch bank

offices, and main banks [60]. “In the banking industry, banking services are often rendered

to the clients through successive levels of banking facilities” [59]. In the lower level, ATMs

or drive-in banks allow clients to deposit or to receive cash, and get a statement of current-

account balance. Branch bank offices at the next level of hierarchy, provide a variety of

larger order services such as opening accounts and maintaining safe deposit boxes. These

are in addition to basic services provided by ATMs. At the highest level of the hierarchy, the

main bank offers the extended services such as corporate loan financing, credit approvals,

and long-term investment consultation [60].

The banking facilities location-allocation decisions, should comparatively be evaluated

according to the following conflicting criteria: the maximization of the market profitability

of open banks, the maximization of the customer drawing power of open banks, and the

minimization of all the risks associated with resource commitments made to open banks [60].

Through the planners guidelines for evaluating the profitability, accessibility and risk of bank

location-allocation, a chance-constrained goal programming (CCGP) model is developed [60].

However, due to the stochastic nature of risk, a chance-constrained (probabilistic constraint)

risk goal is developed. The objective function is a deterministic nonlinear integer goal

programming model computed optimally using LINGO’s (a software) modelling language.

A similar study in this area by Hochreiter and Pflug [31] based on heuristic algorithms, can

be consulted.

Hosseinijou and Bashiri [32] presented a stochastic transfer point location problem in a planar
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topology. They used the expected value approach to formulate the problem’s objective.

The model considered coordinates for the three layers namely; facility, transfer point and

demand points. The coordinates from the three layers are used in computing distances.

The coordinates of demand points are independent random variables (stochastic), with a

bi-variate uniform distribution. Thus the problem is to find the optimal location of the

transfer point, such that the maximum expected weighted distance from the fixed facility to

all demand points through the transfer point is minimized. In this problem, only the single

facility is considered, one transfer point, and several demand points. The model is computed

numerically using “fminimax” in Matlab software package [32]. The problem can be applied

to a situation where a city and its dwellers are uniformly distributed in the square region,

and a transfer point is to be located. This transfer point (e.g. helicopter pad) is to be located

so as to serve accidents such as earthquakes, floods, medical emergencies, etc [32].

A study by Tadei et al. [77] addressed the problem of locating transshipment facilities

for freight transportation from origin to destination through transshipment facility for

maximization of the total net utility. This is done by taking the expected total shipping

utility minus the total fixed cost of the facilities [77]. The problem considers the handling

utilities (costs) at the transshipment facilities as stochastic variables. The handling

operations are organized in alternative scenarios, and finite capacity and congestion effects

make costs to be stochastic variables with unknown probability distributions [77]. This

process can be termed as the robust optimization problem as defined by Snyder [76]. The

problem is computed heuristically using Lagrangian relaxation. A similar problem by Tadei

et al. [78] is presented with general transportation costs from origin to destination as a

stochastic variable.

A stochastic supply chain network model under risk, with three tiers of suppliers, distribution

centres (DCs) and customers is studied by Azad & Davoudpour [8]. They considered the
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customers’ demands as stochastic variables using a financial risk measure (conditional value

at-risk (CVaR) measure). The problem is formulated as a convex mixed integer programming

and a heuristic method is developed to solve the problem. In the model, different DC capacity

levels were used as in Amiri [7]. The authors also considered the routing design between

DCs and customers [8].

A multi-period study by You et al. [89] is a global multi-product chemical supply chain

with demand and freight rate as stochastic variables. It is a case study where the multi-

period planning model takes into consideration the production and inventory levels, the

transportation models, the times of shipments and customer service levels [89]. This real

world application study originates from the Dow Chemical Company, which supplies multiple

products to world-wide customers [89]. The company has several global business units (DCs)

to supply to its customers, and even customers can be supplied directly from manufacturing

plants (multi-sourcing). In the solution methods, the authors incorporated the Monte Carlo

sampling in a stochastic programming. They also proposed a simulation framework based

on an iteration method for solving deterministic and stochastic problems [89]. The study

considers a planning horizon as one year, and a month as a planning period.

A robust optimization model by Butler et al. [15] focuses on the strategic-production and

distribution planning for a new product in the market environment. There is no historical

data for the new product, and hence the probability distribution is not known. The study

is a supply chain based on a new product having uncertainties in the demand, as well as

the cost and changes in the market conditions over time to be addressed [15]. The model is

implemented as the robust Lagrangian model using the mixed integer programming solver

of CPLEX 7.5 (ILOG, Inc., 2001) [15].

In the literature, the stochastic or probabilistic situations have also been observed in

25



customer demand, travel times, number of customers and other input data in the context

of VRPs and LRPs [19, 47, 51, 70, 71, 74, 82]. The stochasticity due to travel times have

been considered in VRPs where there is a delay to the destination due to several factors.

Factors revealed from literature associated with the delay are: traffic jams due to road

capacity, road blocks as a result of traffic authorities, car accidents; and weather and floods

[33, 47, 51, 70, 82]. The consideration for these factors are mostly on a daily basis. So there

will be the increase of travel times and hence travel costs that need to be considered prior

to planning decisions.

Generally, the stochastic multi-level FLPs discussed in the literature have considered various

random variables or parameters. The research in this thesis, considers the stochastic

transportation links between the DCs and customer points (CPs) during the rainy season

in Tanzanian maize crop transportation network. On the other hand, the transportation

links between production centres (PCs) to DCs are reliable since inter-regional roads are

paved, and it usually takes place during the summer season. It is a multi-period planning

horizon (rainy season), where the period of time is 17 weeks. Each week’s shipping of goods

is required to meet the known demands at CPs. The weekly actual amount of rainfall data

over 4 years will be used in our study.

2.3 Stochastic programming

2.3.1 Theoretical background to stochastic programming

The solution processes or procedures for stochastic problems are known as stochastic

programming (SP) [17, 19]. Optimization where some input data is assumed not

available with certainty during the decision time; is termed as stochastic programming

[19, 74]. Shapiro and Philpott [72] defined SP as an approach for modelling optimization
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problems that involves uncertainty. The uncertainty is mostly characterized by probability

distributions for the random parameters [17]. Many real life problems have parameters that

are not known precisely due to various reasons. Corrigall [17] in his dissertation suggested

two main reasons, first is the lack of reliable data or simple measurement error. The second

reason termed as a fundamental reason, is for some data being representing information of

unobserved events. For example, future product demand and market price are difficult to be

known in certainty [17]. Thus, the presence of random variables or parameters among the

input data in the model gives the necessity of stochastic optimization or programming.

Generally, stochastic programs are mathematical programs in which some coefficients or

parameter values incorporated into the objective model and/or constraints are usually

uncertain. The modelling or optimization of these stochastic programs is termed as stochastic

programming [17, 19]. So the stochastic programming is the study of optimal decision-

making for stochastic programs that deal with algorithmic optimization procedures [17].

This type of modelling and solution approach has increasingly been used recently in real

life problems where uncertainties are likely to occur. The viability of SP owes much to

caused several reasons including the current advancement of computer hardware and software

technologies; as well as the sophisticated and advanced software for solution methods in

particular, that has contributed much to the current situation [19]. SP simultaneously

combines the operation research or management science models and statistical randomness

models to create a robust decision making tool [19, 74]. The operation research or

management science models are deterministic models which are mostly linear and integer

programmings. On the other hand, statistical randomness models are based on probability

distributions where historical data is known or can be estimated. In this case, scenario

generations are possible so long as there are finite number of discrete realizations [19].
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Thus, as proposed by Silverwood, [74], “stochastic programming is the replacement of

deterministic values in an optimization problem with random variables or probability

distributions describing the true nature of the parameter; thus it allows management

decisions which are usually made in uncertain environments to be considered more accurately

with fewer assumptions”.

In his dissertation, Corrigall [17] mentioned two types of stochastic programs. These are

recourse problems and chance-constrained problems. For both problems, there are two ways

of making decisions regarding the random parameters. The first decision making is before

the observation of the outcome of the random parameters known as “here-and-now” solution.

The second is a “wait-and-see” solution where the decision making is done after the outcome

of the random parameters are observed. The recourse problem requires the decision to

be made now and it minimizes the expected costs resulted from the consequences of that

decision [17, 19].

The solution obtained from different stochastic problems are known as uncertainty or

stochastic measures in comparison to the deterministic or with other stochastic solutions

[11, 17, 19]. These are the differences between the solutions of deterministic and stochastic

models and also between the solutions of stochastic models themselves. The two known

stochastic measures are the value of the stochastic solution (VSS) and the expected value of

perfect information (EVPI).

VSS is defined as the difference between a solution of the deterministic model (expected

deterministic solution) and a solution of the stochastic model obtained under “here-and-now”

method. If ZEV is the expected solution of the deterministic model and ZHN is the solution

of the stochastic model through “here-and-now” procedures, then V SS = ZEV −ZHN . The

solution of “here-and-now” problem is also regarded as a solution of recourse problem (ZRP ).
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This difference is considered as a measure of how much it can be saved by implementing

the “here-and-now” solution as opposed to the deterministic expected value solution [19].

On the other hand, EVPI is defined as the difference between the “wait-and-see” and the

“here-and-now” solutions. Given that ZWS is a solution of the stochastic model for the

“wait-and-see”, then EV PI = ZWS − ZHN . The EVPI usually considered as the measures

of the maximum amount a decision maker would be ready to pay in return for complete and

precisely information about the future [11]. “A relatively small EVPI indicates that better

forecasts will not lead to much improvement; a relatively large EVPI means that incomplete

information about the future may prove costly” [19].

2.3.2 SP approaches and other classification of problems

Domenica et al. [19] explained the classical methods of dealing with uncertainty effects

in linear and integer programming as sensitivity analysis and probability distributions.

However, Domenica et al. [19] comments on sensitivity analysis that; “this approach shows

a number of limitations, and may provide misleading conclusions in respect to the nature of

the solutions. In general, sensitivity analysis is not a suitable approach for understanding

the effects of random behaviour of the model parameters. In many real world problems,

the uncertainty relating to one or more parameters can be modelled by means of probability

distributions”. This observation recommends that the better way of dealing with uncertainty

effects is by probability distributions that are based on the possible future of realization

scenarios [11, 66]. The real life applications of SP are mostly in the fields of financial

planning, supply chain management, transportation logistics, telecommunications, network

design, environmental planning and energy systems planning [17, 19, 72]. The study carried

out in this thesis is based on transportation logistics and location-allocation decisions.
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SP as an approach, has several techniques that have been developed, practiced and suited to

different applications and purposes [11, 74]. Several approaches or ways of solving have been

used in dealing with the effects of uncertainty. The first approach mentioned for solving SP

is the expected value model which optimizes the expected objective function subject to their

expected restrictions if any [19, 74].

The other methods are sample average approximation (SAA) [3, 72], chance constrained

programming (CCP) [3, 17, 19, 47, 72] which dealt with uncertainty by specifying the

confidence level at which the particular stochastic constraint will lie [74]. The detailed

description of SAA can be found in [3, 41, 72]. More methods have been mentioned by

Silverwood [74] as dependent chance programming (DCP) and scenario based analysis.

Other classifications are robust stochastic programming, fuzzy programming, and stochastic

dynamic programming [70]. Domenica at al. [19] gives more on pictorial framework

classification of SP problems and solution methods titled “ a taxonomy of SP problems”

as shown in Figure 2.1. The more detailed explanations of these classifications can be found

in the paper by Domenica et al [19].
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Figure 2.1: Taxonomy of SP problems by Domenica et al. 2007

2.4 Summary

This chapter describes in detail the literature review of multi-level FLPs. Both deterministic

and stochastic models with their solution methods are described. The solution methods

described are heuristic and exact. Since the stochastic model is the main challenge in

this thesis, it is described in several stochastic models and their solution approaches or

procedures. The main stochastic solution approaches are “here-and-now” and “wait-and-

see”. In this thesis, the “here-and-now” solution approach is applied.
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Chapter 3

A two-level FLP for the maize crop

distribution network in Tanzania

3.1 Background information

Tanzania is a country in East Africa. It is situated between latitudes 10 - 120 south of the

Equator and longitudes 290 - 410 east of the Greenwich Meridian. Tanzania is a unitary

republic formed after the union of two countries in 1964, Tanganyika (Tanzania mainland)

and Zanzibar (made of two Islands, Unguja and Pemba). The country’s total land area

is 945,000 km2 with a population of 44,928,923 (Tanzania mainland is 43,625,354 and

Zanzibar is 1,303,569) as per August 2012 national population and housing census (PHC)

[83]. This study considers only the Tanzania mainland part. So in this study, Tanzania

means Tanzania’s mainland (excluding Zanzibar).

Food is one of the basic human needs as it supports the survival of mankind in relation to

other human activities. In September 2000, the United Nations set the so called Millennium

Development goals (MDGs), where food security was set to be a first goal among the eight

goals [84]. Each goal was set to have a specific targets and indicators in its achievement.

The challenges of food security are its availability, accessibility and affordability. Tanzania

32



is part of the MDGs that needs to prioritize food security to her people.

Food security is concerned with its availability, procurement, storage, usage and the

associated distribution costs up to the final consumers. The Ministry of Agriculture, Food

Security and Cooperatives (MAFSC) of Tanzania, is responsible for food security. The

major cereal crops produced in the country are maize (corn), rice (paddy), millet, finger-

millet, sorghum and wheat. The country’s major food crops (main staple crops) are maize

and rice. The real life problem considered in this thesis is maize crop production and

distribution system in Tanzania. The research considers only maize crop distribution for

hunger emergency as per available data. The maize crop is the only current food crop which

is stored in the distribution centres (DCs) that are managed by the National Food Reserve

Agency (NFRA) under the MAFSC for emergency situations [54]. Other cereal crops are not

stored due to budget and space constraints [23, 85]. The emergency situations considered

are acute food shortage in some places in the country (due to drought and other disasters),

and corn flour price stabilization in markets, especially in urban areas. In the country, there

are some common deficit zones due to drought and other weather effects like small rainfall

in semi-arid areas. So, the government is responsible for food reserve and coordination.

3.2 Maize crop production and storage in Tanzania

The food crops production in the country is highly concentrated in the southern highland

regions (Rukwa, Mbeya, Iringa, Morogoro and Ruvuma) and the peripheral areas of the

country as shown in Figure 3.1. On the other hand, the traditional food deficit areas are

located mostly in the central corridor regions (Singida, Dodoma and Tabora) and northern

part (Arusha, Manyara, Kilimanjaro and Tanga), and other parts as shown in the map of

Tanzania (Figure 3.1). The specific location of existing DCs (warehouses) are also shown in

Figure 3.1. The DC in this context is a storage building where commodities can be stored for
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sometime before being taken to customers. The specific demand points (customer points);

are not shown; rather some major demand zones have been marked, but the production

centres are within the marked production zones, particularly in the southern highlands. It

is difficulty to indicate all the 93 customer points in the map.

Figure 3.1: The map of Tanzania showing the food production zones, DCs and demand

zones.
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The major maize surplus production is from the four regions (known as ‘The Big four’)

namely, Rukwa, Mbeya, Iringa and Ruvuma [23, 61, 85]. These are the specific production

centers (PCs) that form a production zone in the southern highland part of the country. In

this study, the PCs will form the first layer among the three layers in the two-level FLP. The

maize crop are bought from this production zone by the NFRA for storage in the DCs or

warehouses. Usually farmers bring their maize crop in the buying centre that is allocated in

the region headquarters (town or city) of the given PC. The farmers leave the maize to dry

well before removing it from the cob to be ready for selling to the NFRA.

Before reaching the customer points (CPs), the maize crop from PCs are stored in DCs which

are scattered in different parts of the country. Usually the storage in the DCs is done for

a year (a harvest season to the next harvest season). There are seven existing DCs with a

total capacity of 241 thousand tons. These are Arusha (39 tons capacities), Dar Es Salaam

(52 tons), Dodoma (39 tons), Shinyanga (14.5 tons), Makambako-Iringa (34 tons), Songea

(24 tons) and Sumbawanga (38.5 tons). These DCs, as shown in in Figure 3.1, form the

second layer of the two-level FLP model of the study. The first five DCs are used for storage

of maize crop to be supplied to the deficit CPs throughout the country. The last two DCs,

Sumbawanga and Songea, are used as reserve DCs to buffer the other five DCs. These two

DCs are located in the production zones.

The third layer of the model in this study is CPs. These are specific demand points in

the country to be supplied by DCs during food deficit time. As indicated in Figure 3.1,

the major deficit zones are central corridor zone and the northern zone. The three layers

form the distribution system that needs to be designed at minimum cost while satisfying the

customers’ demands.
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3.3 Transportation network for maize crop in Tanzania

Throughout the production zone, there are plants or PCs where maize crop are bought from

public market and then destined for the DCs. On the other hand, there are demand zones

where there are specific points referred to as customer points where the stored maize crop

will be transported from DCs to CPs. This section describes the three-layer transportation

network.

In Tanzania, physical access to food is affected by inadequate transportation infrastructure.

Due to long distances between the food producing centers, DCs and deficit zones, together

with inadequate and unreliable transportation network, high transportation costs are

unavoidable. For instance, the existing distribution system have distances ranging from

120 kilometers (km) to 1,348 km between PCs and DCs. The distances between DCs and

CPs, on average, also range from 136 km to 360 km. This results, at times, in high food

prices in deficit areas, and therefore affects access to food by both low income, rural and

urban populations [61, 84]. However, the actual various data used in this thesis is presented

in Appendices A, B and C are referred accordingly in Chapters 4 and 5.

In the country, the harvest season is usually between May and September every year. This

is the summer season when surplus maize crop are bought from production centres and

transported to DCs by mid-November for storage. The southern highland zone is the major

producer of surplus maize crop and hence is the main supplier to DCs. The specific PCs

in this zone are Iringa, Mbeya, Rukwa and Ruvuma which are shown in Figure 3.1. Most

of the roads from PCs to DCs are well paved as most of them are linking cities/municipals

of the regions in the country (see Figure 3.2). The transportation network in the summer

season; in general, is reliable, and most places including the common deficit zones are not in

crop deficit. This forms the first level transportation in relation to this study. The nature

of route is a direct shipment as a full loaded truck will unload the whole truck to a specific DC.
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Figure 3.2: Tanzania paved roads condition (Source: Michuzi Blog 2013, Southern Highland

road)

The critical maize crop deficiencies occur mainly from the middle of December up to April,

the following year [84]. During this time, the maize crop is now transported from DCs to

CPs (see appendix D.4, D.5 and D.6). Throughout the demand zones or deficit areas, there

are specific customer points. These CPs are district town locations (e.g. district towns

which are the next large towns after provincial/state or regions’ towns) where maize crop

from DCs is destined. Most of the deficit zones are semi-rural areas where the roads are

in poor conditions [61, 84, 85]. In addition, the deficiencies occur during the rainy season
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where the transportation reliability is questionable in most of the places due to rains and

floods. The deficiency during the rainy season is from the fact that most of the maize crop

harvested from the recent previous harvest have been consumed and also sold for various

purposes. The destined maize crop to CPs are usually can be sold at subsidised price or

distributed freely (See D.4, D.5 and D.6). There should be a regular weekly maize crop flow

from DCs to CPs. However, this might not be possible during the rainy season as the road

networks are likely to be impassable; and vehicles might have to be delayed or have to take

many alternative long distance routes resulting in high travel costs due to longer travel times.

The transportation of maize crop from DCs to CPs during the rainy season forms the second

level transportation of the two-level FLP and distribution network. This causes the network

being stochastic. The transportation between DCs and CPs are direct shipment as in first

level. This is due to long distance route to be covered and the large quantity of customer

demands.

Figures 3.3 and 3.4 display the transport conditions during rainy season.
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Figure 3.3: Tanzania unpaved roads condition during rainy season (Source: Michuzi Blog

2010)
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Figure 3.4: Tanzania unpaved roads condition during rainy season (Source: Michuzi Blog,

January, 2013 at Lindi-Mtwara road)

3.4 Framework of the proposed FLP model

Given the demand scenario and the nature of the distribution network, an optimal number

of DCs, their locations throughout the country and sizes are imperative. This is from the

fact that the road links between these DCs to the CPs are stochastic in nature. Under

these circumstances, the problem is to find the number of DCs; and their sizes and locations

optimally so as to meet all demands at CPs per week during the rainy season.

Figure 3.5 is an illustrative sketch of the study as a network framework. There are three

layers and its transportation links as shown in the figure. From the figure, the locations-

allocations as shown by bold arrows are optimized by optimization techniques. The direct
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shipping (transportation) take place from PCs to DCs and then from DCs to CPs. The

dashed arrow from DCs to CPs represents the stochastic transportation link, while the links

from PCs to DCs, are deterministic (not dashed arrow).
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Figure 3.5: The framework of three layers and two-level FLP model

The decision tasks are: where to locate the DCs (location decisions), how to allocate the DCs

to the production centers and demand points to the DCs (allocation decisions); and hence to

design the direct routes for serving the distribution network. The routing or shipping levels

(direct delivery) are from the PCs to the DCs in summer season, which is deterministic; and

from DCs to CPs in rainy season when road links are stochastic. The number and sizes of

DCs are also determined optimally.

Table 3.1 gives the summary of PCs, DCs and CPs; and their location zones within the
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country. The southern highland zone is the only zone with PCs and also 3 DCs out of the

7 DCs. Notably, the Ruvuma, Rukwa, Kigoma and the Dar Es Salaam regions have no

CPs. All the mentioned regions except Dar Es Salaam, are self-sufficient in cereal crops

production and the surplus production is always expected. The Dar Es Salaam region is the

place of city dwellers that is populated mostly by employed people who earn incomes. Food

deficiencies are mostly realized by people living in the rural areas. The list DCs and their

respective CPs of the collected actual distribution data from 2004 to 2010 is summarized in

Tables B.5 and B.6.

Table 3.1: PCs, DCs and CPs distribution in the country

Zone Specific Regions # of PCs # of DCs # of CPs

Southern Highland Iringa, Rukwa, Mbeya,

Ruvuma

4 3 9

Central Corridor Dodoma, Singida,

Tabora

0 1 17

Northen Arusha, Manyara,

Tanga, Kilimanjaro

0 1 24

Southern Corridor Mtwara, Lindi 0 0 8

Eastern Dar Es Salaam, Coast,

Morogoro

0 1 11

Lake Victoria Shinyanga, Mwanza,

Mara, Kagera, Kigoma

0 1 24

Total 4 7 93

3.5 Significance of the study

This study is useful as it will provide a mechanism for reducing food prices within the country.

This will contribute to the June 2009 Tanzania’s policy of prioritizing the importance of
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agriculture also known as ‘Agriculture First’ (Kilimo Kwanza) and as stipulated in its ten

implementation pillars. For instance, one of the pillars states the need for the identification

of priority areas for strategic food commodities in order to increase the country’s food

self-sufficiency. The pillars also state a price stabilization mechanism, which includes the

expansion of storage capacity and improvement of railway and road systems [2]. Furthermore,

in the 2012/2013 Ministry of Agriculture budget speech, the price stabilization for maize flour

(milled maize crop) in cities was addressed. The availability of maize crop in the DCs was

also to be used for milling in order to get maize flour. The government is not responsible

for milling rather it is done by the private sector. Subsequently, the government sold 41,000

tons of maize crop in the public market. As a result the maize flour price decreased by about

38% in different regions [14].

3.6 Summary

Chapter 3 contains the explanations for the practical problem of maize crop transportation

in Tanzania. It describes the three main nodes which are production centres, the distribution

centres and customer points in relation to maize crop. The distribution network in the three

nodes is formed by paved and unpaved roads in the network that are affected by rainfall.

This results in stochastic distribution network for maize crop transportation in Tanzania.
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Chapter 4

Deterministic model for the two-level

facility location problem

4.1 Mathematical model

In Chapter 3, a two-level facility location problem we are studying has been described. This

chapter presents the mathematical model and its solution.

Deterministic models for multi-level or two-level FLPs as presented in the literature are

for either single or multi-product, and for single or multi-period. Here, we consider a

deterministic model with a single-product and a single-period planning horizon. Our aim is to

design a deterministic capacitated two-level FLP model and to optimize location, allocation

and hence transportation decisions for the distribution network. The model will locate

the most economical set of DCs (optimal DCs to be selected), and then assign customers

to the selected DCs. Concurrently, the selected DCs will be allocated to PCs without

violating capacities in both PCs and DCs. From these locations and allocations, the direct

transportation decisions will be implemented to meet the customers’ demands. In the model,

we assume that each customer has a known demand which can be met in a single period

independently from other customers.
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We now present the deterministic mathematical model for a two-level, single commodity with

a single period FLP. The single period for the demand to be met consists of four months

- January to April - in a year. The model is adapted from Elhedhli et al. [22] and other

references [8, 28, 42, 45, 50, 69].

The notations used in the model are as follows:

J : J is the index set for production centers (PCs), where j ∈ J and |J | denotes the total

number of PCs, i.e., PCj, j ∈ J . The PCs’ locations are fixed together with their capacities.

K: K is the index set for distribution centers (DCs), where k ∈ K and |K| denotes the total

number of possible DC sites, i.e., DCk, k ∈ K. We also use the convention that DCk is the

DC located at site k.

L: L is the index set for customer points (CPs), where l ∈ L and |L| denotes the total

number of CPs, i.e., CPl, l ∈ L. CPl have fixed location together with their associated

demand, Dl.

Rk: Rk denotes the set of capacities of DCk. Hence Rk = {V 1
k , V

2
k , ..., V

|Rk|
k }.

Sj: Supply (production capacity) of a maize crop at PCj.

Dl: Total demand for four months for maize crop at CPl transported only once in a week.

We considered this amount to be transported in the first week of the four months period

(January to April) of a year.

F r
k : Total fixed annual operating cost in US dollar for a DC with V r

k , i.e., r ∈ {1, 2, ..., |Rk|}.

Cjk: A road distance in kilometres from PCj to DCk, j ∈ J , k ∈ K.

Tkl: A road distance in kilometres from DCk to CPl, k ∈ K, l ∈ L.

λ: This is a unit cost for transferring 1 ton of maize crop for a 1 km distance, and the cost

is in $ (per km per ton).
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Decision variables for the model :

Xjk: Amount in tons flow from PCj to DCk.

Ykl: Amount in tons flow from DCk to CPl.

Zr
k : A binary location variable that will be 1 if a DCk is selected with a capacity V r

k , and 0

otherwise. When a single capacity1 per DCk is used we ignore the superscript r in Zr
k , V

r
k

and F r
k . Here the choice of capacity is not a decision variable but the choice of site k is.

The resulting mixed integer linear programming can then be formulated as:

Min
Xjk,Ykl,Zk

λ

(∑
j

∑
k

CjkXjk +
∑
k

∑
l

TklYkl

)
+
∑
k

FkZk, (4.1)

subject to
∑
k

Xjk ≤ Sj, ∀j, (4.2)

∑
j

Xjk = VkZk,∀k (4.3)

∑
l

Ykl ≤ VkZk,∀k (4.4)

∑
k

Ykl = Dl, ∀l, (4.5)

Xjk ≥ 0,∀j, k, (4.6)

Ykl ≥ 0,∀k, l, (4.7)

Zk ∈ {0, 1},∀k. (4.8)

The following are the explanations of the model:

• The objective function (4.1) minimizes the total distribution cost, e.g. transportation

cost from PCs to DCs and DCs to CPs, and fixed annual operation costs, Fk, for DCs

and the corresponding capacities Vk.

• Constraints (4.2) are the supply constraints (PCs’ capacities), where the amount to be

transported from a PCj to the selected DCs, must not exceed its capacity, Sj.

1Model for the multiple capacities per DC will be presented later on.
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• Constraints (4.3) refer to the amount supplied from PCj to all selected DCk, must

satisfy the DCs’ capacity Vk.

• Constraints (4.4) refer to the amount supplied by DCk to all CPl, l ∈ L, without

exceeding Vk. Vk (respectively Fk) are the values currently used in the current

transportation network with five DCs, e.g. DC1, ..., DC5. The capacities Vk, k ∈ K, are

not necessarily equal. This also holds for the case of three new DCs we are proposing

as per Tanzania government’s plan.

• Constraints (4.5) represent the amount to be transported from all DCk, k ∈ K, to the

CPl, must meet a demand, Dl, at the CPl.

• Constraints (4.6) and (4.7) are the non-negativity restrictions.

• Constraints (4.8) are binary variables.

The total number of decision variables for the model is 490.

4.1.1 The expected optimized results

In the optimization results four decisions are sought. These are as follows:

(a) Location decisions: Where and how many DCs to locate out of |K|? The optimal

decisions to be made here are the number of DCs and their physical locations (i.e.,

values of Zk, or Zr
k in the case of multiple capacities).

(b) Allocation decisions: Which DCs to be served by which PCs (i.e., the pair (PCj, DCk), j ∈

J, k ∈ K) and which CPs are to be served by which selected DCs (i.e., the pair

(DCk, CPl), k ∈ K, l ∈ L)? The optimal results will give the allocations of DCs

to PCs and CPs to DCs simultaneously.

(c) Transportation decisions: From location and allocation decisions, what is the amount

to be transported from PCs to DCs (i.e. values of Xjk) and DCs to CPs (i.e. values of
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Ykl)? The transported amounts, Xjk and Ykl will be determined. Hence, direct shipment

routes designing from PCs to DCs and also from DCs to CPs will be established.

(d) Capacity value decisions: What is the best capacity for each DCk to be selected from

{V 1
k , ..., V

|Rk|
k }. For the case of a single capacity per DCk the decision variables Zk will

suffice. In this case the total number of variables is |K|. For multiple capacities per

DCk, the total number of decision variables is |K| × |Rk|.

The optimal solutions to the above mentioned decisions are important for the government

of Tanzania to redesign the current distribution facilities.

4.2 Data and results using the deterministic model

4.2.1 Data for the deterministic model

The considered research data are from Tanzania where the three layers namely: PCs, DCs

and CPs are used. Road connections to the three layers form the production, storage and

distribution network.

The major maize crop production areas consists of four PCs (Iringa, Mbeya, Rukwa and

Ruvuma). Surplus maize crop production from these PCs are bought and then transported

through roads or railways to DCs which are allocated in different parts of the country as

shown in Figure 3.1 and in Table 3.1. This study considers only transportation by roads as

per data availability. In this study, the total capacity of all four PCs,
4∑
j=1

Sj, is 532,000 tons

as presented in Table B.4. These data are based on annual production capacity of 2011/2012.

The existing distribution system consists of seven DCs which are Arusha, Dar Es Salaam

(Dar), Dodoma, Shinyanga, Makambako, Songea and Sumbawanga. In the existing

distribution system, Songea and Sumbawanga DCs are used as reserve DCs to buffer the
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other five DCs and are not used to supply the CPs. They are also used as storage for export

to neighbouring countries. From now on they will be referred to as storage facilities rather

than DCs. The total capacity of the remaining five DCs,
5∑

k=1

Vk, is 178,500 tons as presented

in Table B.2.

As per the government’s plan, due to the increased production capacity and demands,

three additional new DCs are to be built with the total capacity of 159,000 tons (53,000

tons each DC, see Table B.2) as documented in Figure C.2. The new DCs are located in

the headquarters (city) of the regions (similar to province or state) that have the highest

customers’ demand based on the 2004 - 2010 maize crop distributions. The proposed new

DCs’ names are Babati (DC6), Mwanza (DC7) and Tanga (DC8). The construction or

establishment costs for new DCs are not included in this study, but the fixed annual operating

costs are. There will be a total of eight DCs after the new DCs have been established. Given

the sites of the eight DCs and their corresponding capacities, optimal number of DCs have

to be found. When there are more than one capacities per DCs, optimal capacity of each

selected DC has to be found. The fixed annual operating cost for each of the eight DCs

depends on its capacity as shown in Appendix C, Figures C.4 and C.5 together with how

these costs have been obtained. The Tanzania shillings conversion rate to USA $ for fixed

annual operating cost is based on 2012 exchange rates [13].

The CPs form the last layer of the distribution network. In this study, the customers (CPs)

are classified as 93 districts as obtained from 2004 to 2010 maize crop distribution data.

This data was collected from the head of the disaster management in the Prime Minister’s

office, in January 2011 (See copy of attached letter in Figure C.7). The 93 CPs are listed in

the first column in Tables B.7, B.8, B.9 and B.10. The total demand from all 93 CPs,
93∑
l=1

Dl,

is 145,144 tons. Within the period of 2004 to 2010, each CP had an annual demand. For

each CP the annual maximum demand (i.e. maximum annual demand for each CP in our
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2004-2010 data) is used to calculate the total demand. Hence 93 such maximum demands

are added together to obtain 145,144 tons. Each CP’s annual maximum demand value is

presented in Table A.13. Within a period of 2004 to 2010 some districts had been in food

shortage in all years (as per available data) and others once or more with minimum of 32

tons of Mafia CP in 2006 (see Tables A.14, A.15, A.16 and A.17).

It can be seen that there is a high difference between the total annual demand at CPs

(145,144 tons), total DCs’ capacity (241,000 tons for all seven DCs) and the total annual

production at PCs (532,000 tons). The surplus maize crop are exported to neighbouring

countries such as Somalia, South Sudan and Kenya as addressed in 2012/13 budget speech

[14]. In addition to the two storage facilities at Songea and Sumbawanga for exporting to

neighbouring countries, it is quite clear that additional DCs need to be built. The government

of Tanzania also keeps a safety level stock for emergency situations which might happen

within the country. For example, in 2012, an estimated 41,000 tons of maize crop were sold

at domestic food crop market in certain towns and cities for price stabilization as explained

in [14]. So the extra maize crop stocked in DCs are also sold to the private business people for

milling and resale the maize flour to public in agreed government instructed prices. Through

the NFRA policies, they also hire the unused DCs’ capacity to private sector as explained

in the general information, Appendix A. On the other hand, the private sector companies

and other local private business people are buying surplus maize crop from PCs for trading

within and outside the country [62]. Thus the involvement of private sector in the maize

crop distribution system help to balance the surplus maize crop in PCs and DCs.

Generally, the research data for the deterministic part is from the four sources based on

Tanzania food distribution system. These sources are the Tanzania National Roads Agency

(TANROADS), Ministry of Agriculture, Food Security and Cooperatives (MAFSC), National

Food Reserve Agency (NFRA) and the disaster management department in the Prime
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minister’s office. The letters requesting access to the respective data sources as presented

are shown in attached copies, Figures C.7 and C.8. The details on each source and type of

data obtained are found in Appendix A.

4.2.2 Results using the existing distribution network

This subsection considers the existing system of maize crop distribution in Tanzania. The

current distribution network has five DCs each having fixed capacities, V̂k. The five DCs are

sites listed as K = {Dar,Arusha,Dodoma,Makambako, Shinyanga}. The listed names are

the specific city or town location within a region. Some regions have the same name as its

headquarter city. From now on, DCs and PCs will be denoted in terms of their indices as

shown in Table 4.1. The computational experiments considers the cases; Case 1 and 2, as

explained below.

Table 4.1: Notations for DCs and PCs.

DCs DCk PCs PCj

Dar DC1 Iringa PC1

Arusha DC2 Mbeya PC2

Dodoma DC3 Rukwa PC3

Makambako DC4 Ruvuma PC4

Shinyanga DC5

There are several common inputs to be used in Case 1 and 2. These are |J | = 4, |K| = 5,

and |L| = 93. Other common inputs are the PCs’ fixed capacities, Sj, as shown in Table

B.4, distances Cjk (Table B.1) and Tkl (Tables B.7, B.8, B.9 and B.10). The distances

in the respective tables are only for the first five named DCs. The CPs’ demands, Dl,

l = 1, 2, ..., |L|, are given as inputs to the model in all computational experiments, and they

are given in Table A.13. We have also used the unit transportation cost λ = $0.10795 (per
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km per ton) based on 2010 conversion rate between Tanzania currency and USA $ [12, 13].

The unit transportation cost estimated is based on NFRA (National Food Reserve Agency)

maize crop transportation cost in 2010 as shown in Figure C.1. We have used CPLEX

software (IBM ILOG Optimization studio) for all the computational experiments. We have

not imposed any stopping criteria; and the program will stop when it cannot enumerate any

more improved solutions.

Case 1 and computational results

Here, we consider the five DC sites together with their current capacities, Rk = {V̂k}.

In this case, the optimization will be performed with respect to (a), (b) and (c) as in

subsection 4.1.1. The model stated by (4.1) - (4.8) is used for optimization. The purpose of

this case is to see if the current network is optimal.

The optimized results are summarized in Table 4.2 where the first 5 columns contains some

inputs to the model.

Table 4.2: Location allocation results for true capacity in Case 1.

DCk V̂k F̂k PCj Sj Zk PCs
j

∑
j
Xjk |Lk|

|Lk|∑
l=1

Ykl

DC1 52,000 340,340 PC1 100,000 1 PC1; PC2 22,000; 30,000 28 39,361

DC2 39,000 255,260 PC2 251,000 1 PC1 39,000 18 39,000

DC3 39,000 255,260 PC3 140,000 1 PC1 39,000 31 39,000

DC4 34,000 222,530 PC4 41,000 1 PC2 34,000 11 13,283

DC5 14,500 94,900 1 PC2 14,500 10 14,500

Total 178,500 1,168,290 532,000 178,500 98 145,144

The last 5 columns in Table 4.2 present the results obtained. For example, the variable

values Zk is used to show if the corresponding DC has been selected. The selected DCs have
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to be supplied from the PCs and this has been shown in column 7. The notation PCs
j in

this column is used to denote the PCj that are the suppliers of the respective DCs. For

example, it can be seen from the first entry of column 7 that PC1 and PC2 served the DC1.

Column 8 shows the amount of supplies received by each DC from the corresponding PCs.

For example, the second entry of column 8 shows that DC2 received 39,000 tons from PC1.

A comparison of columns under V̂k and
∑
j

Xjk, shows that the full capacity of each DC is

utilized.

We have introduced the notation Lk to denote the set of CPs (where |Lk| is the number

of CPs) served by DCk. Hence, the total shipment to these CPs from the DCk is
|Lk|∑
l=1

Ykl,

shown in the very last column. For example, DC1 supplied to 28 CPs with a total of 39,361

tons which is within its capacity. Note that, a CP can get supply from more than one DC

under the so called multi-sourcing. Hence,
|K|∑
k=1

|Lk| ≥ |L|, as can be seen at the last entry in

column under |Lk| (
|K|∑
k=1

|Lk| = 98 > |L|). In the results, the total demand of 145,144 tons

from all CPs are satisfied (see the total value at the last column, Table 4.2).

With respect to the location decision, Table 4.2 shows that all five DCs have been selected

as shown in the column under Zk.

With respect to the allocation decision, it can be seen in Table 4.2 that all five DCs are

supplied by PC1 and PC2 only as shown on the column under PCs
j . This clearly shows that

the existing network results are different from the manually operated system since the two

PCs (PC3 and PC4) are never used. This is based on the fact that the current network has

been using PC3 and PC4 as shown in Table 4.3. Data in Table 4.3 were formed using data

from Tables B.5 and B.6, and Appendix C (Figure C.1) for the year 2010. PC1 and PC2

are the largest producers among the four PCs as shown in Table 4.4. This table shows the

different annual production capacities for all the four PCs [23]. Table 4.2 also shows that
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PC1 is the only PC to supply its full capacity to the DCs.

In addition, results obtained by us are in disagreement with the data used in the current

network with regard to shipments between DCs to CPs. This can be seen by comparing the

results under |Lk| in Table 4.2 with the data in the last column of Table 4.3. The CPs to

DCs allocations under |Lk| for V̂k are detailed in Table B.11.

Table 4.3: PCs to DCs supplies from manually operated current network.

DCk V̂k PCj PCs
j Xjk |Lk|

DC1 52,000 PC1 PC1, PC3, PC4 6,305; 61; 153 26

DC2 39,000 PC2 PC3 9,867 16

DC3 39,000 PC3 PC3 4,009 12

DC4 34,000 PC4 PC3 7,523 9

DC5 14,500 30

Total 178,500 27,918 93

Table 4.4: The summary of PCs annual maize crop total production capacity in tons.

PCj Year Average

2005/06 2006/07 2007/08 2008/09 2009/10

PC1 412,762 474,270 384,273 443,905 393,164 421,675

PC2 293,725 349,094 494,810 393,406 621,545 430,516

PC3 270,564 226,524 351,013 375,732 372,830 319,333

PC4 211,789 138,269 236,602 176,876 289,588 210,625

In Case 1, the total distribution cost that includes transportation costs and DCs’ annual

fixed operation cost is $15,570,885.08. This is the minimum objective value obtained after

27 seconds.
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In Case 1, all DCs uses V̂k as their true capacities. However, at times the demand at CPs

increases and therefore replenishment are needed at DCs in order to cater for the additional

demand at CPs. The capacity of DC5 is an example of this situation as it can be seen by

comparing its capacities shown in Tables 4.2 and 4.5. The replenishment is carried out from

the two storage facilities, Songea and Sumbawanga. On the other hand, the actual capacity

used may not exceed the true capacity. Therefore the true capacity and the capacity used

(actual capacity) may not be the same. Since the capacity used by DCk varies from year

to year, we took the maximum actual capacity, V̄k, used by DCk during 2004 - 2010. This

actual capacity for the existing network, is also considered as the manually operated existing

distribution network. We have re-run the program using V̄k instead of V̂k (true capacity) and

results are summarized in Table 4.5. Other inputs to the model (4.1) - (4.8) remain the same.

Table 4.5: Location allocation results for actual capacity in Case 1.

DCk V̄k F̄k PCj Sj Zk PCs
j

∑
j
Xjk |Lk|

|Lk|∑
l=1

Ykl

DC1 33,190 217,229 PC1 100,000 1 PC1 33,190 26 33,190

DC2 38,532 252,192 PC2 251,000 1 PC1 38,532 18 38,532

DC3 24,650 161,334 PC3 140,000 1 PC1 24,650 13 24,650

DC4 9,843 64,422 PC4 41,000 1 PC1; PC2 3,628; 6,215 9 9,843

DC5 38,929 254,790 1 PC2 38,929 29 38,929

Total 145,144 949,967 532,000 145,144 95 145,144

Columns of Table 4.5 contain the same headings as in Table 4.2. We analyze the results

with respect to (a) - (c) of subsection 4.1.1.

In the location decision, all the five DCs are selected as shown in column 6. This is due to

the fact that the DC capacities are equal to total CPs’ demands. The columns under V̄k and
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|Lk|∑
l=1

Ykl have the same values.

The allocation decision in column under PCs
j , shows that only two PCs, PC1 and PC2, have

supplied to all five selected DCs as in the case of Table 4.2. This also clearly shows that the

current network is not optimal. The CPs to DCs allocations under |Lk| are detailed in Table

B.12.

The amount of maize crop transported from DCs to their respective CPs are detailed in Table

B.12. The overall total network distribution cost is $13,224,626.75 with the execution time

of 23 seconds. This cost is about 15% less than the cost associated with the true capacity in

Table 4.2, i.e., a net saving of $2.3 million. This reduction in cost is partly contributed by

DC5 which having the larger capacity than in Table 4.2, now serves more CPs, i.e. 29 CPs

(see Table 4.5) as opposed to 10 in Table 4.2.

Case 2 and computational results

In this case, the main focus is given to the use of multiple capacities per DC. Unlike Case 1,

here capacity of a selected DC is an optimization decision. Hence the mathematical model

used in this case is re-written as follows:

Min
Xjk,Ykl,Z

r
k

λ

(∑
j

∑
k

CjkXjk +
∑
k

∑
l

TklYkl

)
+
∑
k

∑
r

F r
kZ

r
k , (4.9)
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subject to (4.2), (4.5), (4.6) & (4.7) (4.10)∑
j

Xjk =
∑
r

V r
k Z

r
k ,∀k (4.11)

∑
r

Zr
k ≤ 1,∀k, (4.12)

∑
l

Ykl ≤
∑
r

V r
k Z

r
k ,∀k (4.13)

Zr
k ∈ {0, 1},∀r, k. (4.14)

Explanations to the model:

• Constraints (4.11) refer to the amount supplied from PCj to all selected DCk, must

satisfy the DCs’ capacity level V r
k .

• Constraints (4.12) are now introduced to make sure that only one capacity level of

selected DC is chosen. If DCk is selected then the constraint (4.12) makes sure that

only one of its capacity is chosen. i.e.
∑
r

Zr
k = 1. If DCk is not chosen, then

∑
r

Zr
k = 0.

• When DCk is selected along with a capacity level, then constraint (4.13) makes sure

that its V r
k for some r is not violated. The values of , r ≥ 1, are in different ranges,

some less than or equal to V̂k and some are more than V̂k, the existing true capacity.

• Constraints (4.14) are the binary values to the location variable.

The objective function (4.9) differs from the existing ones in literature in that the last term

is modified to account for the dependence of F r
k on V r

k .

We have carried out the optimization of the model (4.9) - (4.14) using the inputs data as in

Case 1 except for each DCk, we use 14 different capacities i.e. Rk = {V 1
k , V

2
k , ..., V

14
k }. In

the given capacities, the Case 1 capacities, V̂k and V̄k are also included. Values in the set Rk

are independent of k. These capacities together with corresponding F r
k are presented in the

3rd to the 10th columns of Table 4.6. In the table, there are three additional new DCs which
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are Babati (DC6), Mwanza (DC7) and Tanga (DC8). The set Rk, k = 1, 2, ..., 8, contains

the capacities that are generated randomly in [9, 843; 145, 144]. We have used the interval

from 9,843 to 145,144 since this range contains the minimum capacity as observed in DCs’

actual capacity, V̄k, and also the maximum actual capacity used.

The optimization in this case is performed with respect to all the four decisions, (a) - (d),

as listed in subsection 4.1.1.

We run the program using the original five DCs, i.e. using the data of Table 4.6 up to column

7. The results obtained are summarized in Table 4.7, where the optimized capacity chosen

are shown in brackets in the column under V r
k . The results in Table 4.7 are self-explanatory.

Table 4.7 shows that only four DCs are selected.

The optimal decisions for the capacity of DCs are presented in column 8 under
∑
j

Xjk. As

shown in Table 4.7, the total optimal capacity of the four selected DCs is 145,144 which is

the same as the total CPs’ demand. DC3 has the largest capacity (71,000 tons) for all the

selected DCs. This is an increase of 32,000 tons from its true capacity of 39,000 (V̂k). DC5

also needs to be increased from its true capacity of 14,500 to the capacity of 33,144. The

results obtained indicate the need for expansions for the capacities of DC3 and DC5.

The overall distribution cost obtained after 16 seconds is $12,660,522.80. The total cost

attained in Case 2 is the best solution for the existing maize crop distribution network in

Tanzania. The cost has decreased, in comparison to Case 1, by 4.27% (actual capacity) with

a net saving of $564 thousand which is an important saving to be considered. In the case

of true capacity, the saving is 18.69% which is equivalent $2,910 thousand. The saving is

contributed by using many capacities that the program will select the best in each DC as

compared to a single capacity as used in Case 1.
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Table 4.6: The V r
k and F r

k input sets for eight DCs.

(r ↓, k →) (V r
k , F r

k ) DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8

1 V 1
k 52000 39000 39000 34000 14500 53000 53000 53000

F 1
k 340340 255260 255260 222530 94900 346885 346885 346885

2 V 2
k 33190 38532 24650 9843 38929 28500 26500 45000

F 2
k 217229 252192 161334 64422 254790 186533 173443 294525

3 V 3
k 25000 45000 71000 16000 33144 30144 18144 29000

F 3
k 163625 294525 464695 104720 216927 294525 118752 189805

4 V 4
k 145144 145144 145144 145144 145144 145144 145144 145144

F 4
k 949968 949968 949968 949968 949968 949968 949968 949968

5 V 5
k 28500 26500 45000 18144 29000 35000 43000 16144

F 5
k 186533 173443 294525 118752 189805 229075 281435 105662

6 V 6
k 39361 39000 39000 13283 14500 39000 39000 13283

F 6
k 257618 255255 255255 86937 94903 255255 255255 86937

7 V 7
k 27144 45000 59000 20000 39000 63000 40000 45000

F 7
k 177657 294525 386155 130900 255255 412335 261800 294525

8 V 8
k 52000 39000 63000 40000 45000 25000 26000 45000

F 8
k 340340 255255 412335 261800 294525 163625 170170 294525

9 V 9
k 35000 43000 16144 25000 30000 45144 16000 33000

F 9
k 229075 281435 105662 163625 196350 295467 104720 215985

10 V 10
k 32000 43000 16144 24000 30000 33190 38532 24650

F 10
k 209440 281435 105662 157080 196350 217229 252192 161334

11 V 11
k 25144 26000 45000 16000 33000 45000 71000 16000

F 11
k 164567 170170 294525 104720 215985 294525 464695 104720

12 V 12
k 25000 26144 45000 16000 33000 30000 16000 33000

F 12
k 163625 171112 294525 104720 215985 294525 104720 215985

13 V 13
k 25000 26000 45144 16000 29144 9843 38929 28500

F 13
k 163625 170170 295467 104720 190747 64422 254790 186533

14 V 14
k 25000 26000 39144 16144 33000 45144 16144 33000

F 14
k 163625 170170 256197 105662 215985 295467 105662 215985
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Table 4.7: Location allocation results in Case 2.

DCk PCj Sj (Zr
k , r) V r

k F r
k PCs

j

∑
j
Xjk |Lk|

|Lk|∑
l=1

Ykl

DC1 PC1 100,000 (1, 3) V 3
1 (25, 000) F 3

1 PC1 25,000 20 25,000

DC2 PC2 251,000 (0, .) - - - - - -

DC3 PC3 140,000 (1, 3) V 3
3 (71, 000) F 3

3 PC1 71,000 39 71,000

DC4 PC4 41,000 (1, 13) V 13
4 (16, 000) F 13

4 PC1; PC2 4,000; 12,000 13 16,000

DC5 (1, 3) V 3
5 (33, 144) F 3

5 PC2 33,144 24 33,144

Total 532,000 (145,144) 145,144 96 145,144

NOTE: ‘-’ This means the corresponding DC is not selected.

4.2.3 Results using eight DCs

We continue to find the minimum possible cost for the location and allocation of facilities

in the distribution network. In this part, we use the existing five DCs and the three new

DCs to comply with government proposal as clearly stated in Appendix C, Figure C.2. The

use of the eight DCs; after the three new DCs as explained in sub-section 4.2.1, forms the

extended distribution network. We have decided to use more DCs despite the fact that the

existing DCs’ capacities are enough for the present CPs’ demand in order to cater for the

general uses of the DCs. The main and primary use of DCs is to store the reserve food

crops for the nation in order to supply to the common deficit areas. This is the concern of

our study. However, since the production capacity is very high (see Table 4.4), then there

is a need to have enough storage capacities. Apart from the stored maize crop for common

deficit areas, we have also other grain crops like rice, sorghum and beans that are stored

in DCs. Thus the consideration of the new DCs for this study is very important so as to

explore the possible cost reduction using the extended distribution network.

The inputs used in the extended network are similar to those given in Case 2, but with

additional data for the three new DCs. However, rather than solving the optimization model

(4.9) - (4.14) using |K| = 8, we run the optimization in three phases. We use three phases in

order to find the cost resulted for each new introduced DC for comparison purposes. Each
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run considers one new additional DC. Hence, Phase 1 has |K| = 6 for DC6 where the 6th

DC is a new DC on top of existing five DCs. Phase 2, |K| = 7 includes DC7. And the last

phase includes all eight DCs. The number of PCs and CPs are same as used in the existing

network. The inputs in Table B.1 for Cjk distances, and Tables B.7, B.8, B.9, B.10 for Tkl,

are used in phases depends on the number of DCs involved. The corresponding inputs are

also taken from Table 4.6. The multiple capacities in the model presented in (4.9) - (4.14)

are applied to all phases.

We run the program for the three phases; and the results obtained are as follows:

• In Phase 1, the five DCs are selected including DC6 with the distribution cost of

$12,346,976.95. This cost is less than the cost found in Case 2.

• For optimization in Phases 2 and 3, we obtained the same results with the cost of

$12,303,719.06. Here, the obtained cost is better compared to all previous optimization

results.

We summarize the results for all eight DCs in Table 4.8 where out of six selected DCs, two

are the new DCs. DC6 and DC7 are the new proposed DCs which are selected in this optimal

solution as indicated in column under (Zr
k , r).

The notations used in results presented in Table 4.8 are the same as that in Table 4.7.

The DCs’ optimal capacity decisions are presented in brackets as shown in column 5 under

V r
k . The total optimal capacities of the six selected DCs are the same as the total CPs demand

which is 145,144 tons. The obtained results, in order to meet the demands at minimal cost,

require DC1 to use the capacity of 25,144 although its actual capacity is 52,000 tons. DC3

which has the largest capacity of 45,000 tons, should be increased by 6,000 tons from its

actual capacity of 39,000 tons. DC4 will use only 16,000 tons from its actual capacity of

34,000 tons, while DC5 will use exactly its actual capacity; 14,500 tons. The new DCs, DC6
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Table 4.8: Location allocation optimal results for eight DCs.

DCk PCj Sj (Zr
k , r) V r

k F r
k PCs

j

∑
j
Xjk |Lk|

|Lk|∑
l=1

Ykl

DC1 PC1 100,000 (1, 11) V 11
1 (25, 144) F 11

1 PC1 25,144 21 25,144

DC2 PC2 251,000 (0, .) - - - - - -

DC3 PC3 140,000 (1, 5) V 5
3 (45, 000) F 5

3 PC1 45,000 25 45,000

DC4 PC4 41,000 (1, 13) V 13
4 (16, 000) F 13

4 PC1; PC2 1,356; 14,644 13 16,000

DC5 (1, 1) V 1
5 (14, 500) F 1

5 PC2 14,500 15 14,500

DC6 (1, 2) V 2
6 (28, 500) F 2

6 PC1 28,500 14 28,500

DC7 (1, 9) V 9
7 (16, 000) F 9

7 PC2 16,000 10 16,000

DC8 (0, .) - - - - - -

Total 532,000 (145,144) 145,144 98 145,144

and DC7; and their capacities for the demand satisfaction are 28,500 tons and 16,000 tons

respectively.

The optimal cost of $12,303,719.06 is obtained after 27 seconds. The solution in this

optimization has reduced the best solution obtained in Case 2 by almost 3% with a net

saving of $356,803.74. This is a better achievement for savings with approximately $357

thousand. The actual capacity solution of Case 1 has been reduced by about 7% while

the true capacity is reduced by 21%. The use of many capacities in optimization is highly

important as it allows the program to select the best capacity in each DC accordingly. If

we consider the saving based on current practices (actual capacity in Case 1), it is very

significant since it is equivalent to Tshs 1.2 billion. This has been effectively contributed by

the two new selected DCs through the optimization tool.

The deterministic optimal solution is very important in terms of cost savings. We also need

to reflect on the geographical location of the selected DCs; and their distances to CPs, PCs,

and their optimal capacities. The results are very useful for the Tanzanian government to

redesign its existing distribution network.
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4.3 Results of the deterministic model using combined

17 weeks

The previous section considered the demand for a single period where it is assumed that

all the demand Dl at CPl are transported only once in a week from DCk to CPl sometime

during the first week. However, from the existing network the transportation has been

carried out over four months in order to meet the demand, Dl at CPl. We now consider the

weekly transportation plan that will meet the demand per week. Hence, it is a multi-period

transportation plan. This plan will help to know the weekly demand to be supplied to each

CP. The results from this plan will also be used for comparison with the stochastic model

results due effect of weekly rainfall. In this case, our model considers all the 17 weeks (17

periods) where the demand transported in each week is the same. The week is denoted by

e, e ∈ E, |E| = 17. We use the decision variable Ȳkl as the weekly amount in tons flow from

DCk to CPl in week e instead of Ykl. The total demand, Dl, over the entire 17 week period,

will be met after the 17 weeks. We have a weekly demand at CPl denoted by dl such that
|K|∑
k=1

Ȳkl = dl and |E|
|K|∑
k=1

Ȳkl =
|K|∑
k=1

Ykl = Dl. In this consideration, the transformed models

are used in both the existing distribution network and the extended network as it has been

done in sections 4.1 and 4.2. In the computational experiments, we use the same data as

stated in subsection 4.2.1.

4.3.1 Results for the existing distribution network

We first consider the existing distribution network by using a single capacity per DC.

We present the combined model for the 17 week period where the amount of maize crop

transported from DCs to CPs at every week is the same. The presented model bellow is

similar to a single period model with only the number of weeks,|E|, as a new parameter.

The model is as follows:
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Min
Xjk,Ȳkl,Zk

λ

(∑
j

∑
k

CjkXjk + |E|
∑
k

∑
l

TklȲkl

)
+
∑
k

FkZk (4.15)

subject to (4.2), (4.3), (4.6)& (4.8) (4.16)

|E|
∑
l

Ȳkl ≤ VkZk,∀k, (4.17)

|E|
∑
k

Ȳkl = Dl,∀l. (4.18)

Ȳkl ≥ 0,∀k, l. (4.19)

The explanations of the above model are as follows:

• The objective function (4.15) with decision variable Ȳkl, minimizes the total distri-

bution cost including the weekly distribution cost from DCs to CPs. The total cost

between DCs and CPs can be obtained by multiplying with |E|.

• Constraints (4.16) are used as in the previous model, section 4.1.

• Constraints (4.17) refer to the amount supplied, Ȳkl, for each week in |E| weeks by

DCk to all CPl, l ∈ L, not exceeding Vk
/
|E|. The weekly amount Ȳkl transported is

the same for each week.

• Constraints (4.18) represent the weekly amount Ȳkl that need to be transported in

week e for |E| weeks from all DCk, k ∈ K, to the CPl, which must meet the demand,

Dl.

• Constraints (4.19) represent the non-negativity restrictions.
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As we have done in the single period demand, the existing maize crop distribution system is

now being evaluated using the multi-period demand. The multi-period demand data is the

annual demand data being divided equally into 17 weeks. The computational experiments

are carried out using the same cases; Case 1 and 2; as used in section 4.2.

Computational results for Case 1 under multi-period demand

The computational experiments for Case 1 in this section are carried out using the model

defined by equations (4.15) - (4.19). The computational results for Case 1 with a true

capacity (V̂k) and actual capacity (V̄k) are shown in Table 4.9.

Table 4.9: Summary results for Case 1 using multi-period demand.

DCk True capacity, V̂k Actual capacity, V̄k

|Lk|
|Lk|∑
l=1

Ȳkl |E|
|Lk|∑
l=1

Ȳkl |Lk|
|Lk|∑
l=1

Ȳkl |E|
|Lk|∑
l=1

Ȳkl

DC1 28 2,315.35 39,361 26 1,952.35 33,190

DC2 18 2,294.12 39,000 18 2,266.59 38,532

DC3 29 2,294.12 39,000 13 1,450.00 24,650

DC4 11 781.35 13,283 9 579.00 9,843

DC5 10 852.94 14,500 29 2,289.94 38,929

Total 96 8,537.88 145,144 95 8,537.88 145,144

Table 4.9 gives the summary results for both V̂k and V̄k under which the weekly demand to

be transported to CPs is determined. The column labels in Table 4.9 are self-explanatory as

defined before except sub-columns under
|Lk|∑
l=1

Ȳkl and |E|
|Lk|∑
l=1

Ȳkl. These sub-columns denote

the total amount of maize crop to be transported from a DCk to all its respective CPs (|Lk|)

in a week and the total demand, Dl, in a 17 weeks period respectively. The total demand

is satisfied as shown in the sub-column under |E|
|Lk|∑
l=1

Ȳkl. However, from the results we have

the same total costs as obtained in the Case 1 for the single period demand as presented in
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section 4.2. Thus there are no significant differences in locations and allocations within the

layers when compared to the results presented for the single period in section 4.2. Thus, we

mostly focus on the weekly demand to be transported from DCk to CPl over 17 weeks.

Computational results for Case 2 under multi-period demand

In this case, the computational experiments are carried out using the multiple capacity model

with multi-period demand. The model is presented below:

Min
Xjk,Ȳkl,Z

r
k

λ

(∑
j

∑
k

CjkXjk + |E|
∑
k

∑
l

TklȲkl

)
+
∑
k

∑
r

F r
kZ

r
k (4.20)

subject to (4.11), (4.14), (4.16), (4.18)& (4.19), (4.21)

|E|
∑
l

Ȳkl ≤
∑
r

V r
k Z

r
k ,∀k. (4.22)

The above mentioned model is now considers the multiple capacities as addressed through

Zr
k , V

r
k and F r

k . The constraints used are the same as (4.11) − (4.19) with only the added

constraints; (4.22), for restriction on the DCs’ multiple capacities.

Table 4.10 shows the summarized results where the column labels are the same as defined

in the sub-columns of Table 4.9 and also in Table 4.7, section 4.2. In the computational

results, we have obtained the same total cost as that found in its counterpart Case 2 for the

single period demand. Thus in Table 4.10 we will focus on the column under
|Lk|∑
l=1

Ȳkl and

other results for the comparison with results of the stochastic model presented in Chapter

5.
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Table 4.10: Summary results for Case 2 multi-period demand.

DCk PCs
j V r

k |Lk|
|Lk|∑
l=1

Ȳkl |E|
|Lk|∑
l=1

Ȳkl

DC1 PC1 V 3
1 (25, 000) 20 1,470.59 25,000

DC2 - - - - -

DC3 PC1 V 3
3 (71, 000) 38 4,176.47 71,000

DC4 PC1; PC2 V 13
4 (16, 000) 13 941.18 16,000

DC5 PC2 V 3
5 (33, 144) 24 1,949.65 33,144

Total (145,144) 95 8,537.88 145,144

4.3.2 Results using the eight DCs

In this extended network where the new DCs are involved, we optimize the model (4.20) to

(4.22). There are three phases considered for computational experiments as it was carried

out in subsection 4.2.3. Similarly, as in Cases 1 and 2, the computational results in this

section have the same total cost as the one obtained for the single period demand in section

4.2.

Table 4.11 summarizes the results for the eight DCs for the multi-period demand.

The summarized results for the eight DCs computational experiments in Table 4.11; have

the same column labels as in Table 4.10. The values in the table are self-explanatory and

will be used for comparison with the stochastic results in Chapter 5.
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Table 4.11: Summary results for the extended network using eight DCs.

DCk PCs
j V r

k |Lk|
|Lk|∑
l=1

Ȳkl |E|
|Lk|∑
l=1

Ȳkl

DC1 PC1 V 11
1 (25, 144) 21 1,479.06 25,144

DC2 - - - - -

DC3 PC1 V 5
3 (45, 000) 26 2,647.06 45,000

DC4 PC1; PC2 V 13
4 (16, 000) 13 941.18 16,000

DC5 PC2 V 1
5 (14, 500) 14 852.94 14,500

DC6 PC1 V 2
6 (28, 500) 14 1,676.47 28,500

DC7 PC2 V 9
7 (16, 000) 10 941.18 16,000

DC8 - - - - -

Total (145,144) 98 8,537.88 145,144

4.4 Conclusions and recommendations for the deter-

ministic results

The purpose of this study using the deterministic model is to access the suitability of

extending the existing transportation network in Tanzania. This was initiated by the

government in considering the increase of demands at the customer level as well as increased

production in recent years. The government wanted to make sure that the demands are met

but with decreased or minimal cost. Even though we put more emphasis on the stochastic

model, the results from the deterministic model can also be used to offer recommendations

to the government on the maize crop transportation network.

We have studied the problem from two angles: firstly by using the current or existing network

and secondly by using the extended network. For the current network we have optimized

the model with increased demand (where we have used maximum demands over a number of

years) and in increased capacities of DCs (maximum capacity used). The optimal solution
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for the existing network shows that one old DC has to be closed and only four DCs are to

be operated.

Our second study for the extended network (where we have used eight DCs) suggests that

costs can be reduced further if two new DCs are opened and one old is closed. Generally,

the optimal solution for the deterministic model shows that some old DCs have to be closed

and new ones in different regions need to be opened.

The optimal solution for the deterministic model obtained as a case study is of great

importance. The total cost obtained in the computational results considers the three layers

simultaneously. This is different from the existing system which is manually operated and

has two different departments working independently.

The existing distribution system has two different independent tasks carried out by specific

different government departments. The first task is dealing with buying of maize crop

from PCs and transporting them for stocking in DCs which is done by the NFRA (first

department). The second task is the transportation of maize crop from DCs to CPs done

by the disaster management department in the Prime Minister’s Office (PMO) (second

department). This results in high cost due to fragmented co-ordinations since the two

departments operate more independently and they are also under different ministries. This

breeds inefficiency. The integrated coordination, as supported by this study, will make cost

to be economic and offer a more reliable and flexible system. Based on the discussed facts

from optimization results, we recommend the following:

• The use of optimization as a decision tool is an important aspect to be considered by

the Tanzania government in its food security system and other sectors. For example,

the saving of Tshs 1.2 billion is a significant amount achieved through optimization.
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We obtained the weekly amount of maize crop demand to be transported in each week

to CPs which is not yet implemented in the manually operated system.

• It is important to have data records that are well-secured for research and for further

developmental plans. This needs to be managed by all stakeholders. For example,

data availability in NFRA is not well-organized and accessible. There should be a

section within the department that will ensure and create effective data bases for the

department.

• The results from this study should be applied to redetermine and to recast the current

distribution system. In particular, Case 2 can be implemented since the existing DCs

can be used together with its storage facilities for the restocking of the DCs like DC3

and DC5.

• New DCs construction should be effected as per study since this is the primary demand

for the country’s self-sufficient in food. The DCs or storage facilities expansion is one

of the ten pillars stated in 2009 Tanzania policy on “Agriculture First” document [2].

This can be done through public-private partnerships in order to ensure the immediate

implementation of the goal. There is an urgent need for DCs’ capacities expansion due

to the following reasons:

1. Firstly, the PCs’ capacity is always higher compared to the storage capacities as

shown in Table 4.4. For example, the PCs’ capacity is 532,000 tons (surplus maize

crop production in 2011/12), while the total DCs’ and storage facilities’ capacity

is 241,000 tons. This is only for the major four surplus producer regions and it is

only maize crop being stored. The annual total maize crop production capacity

for the four PCs as in Table 4.4 also supports the expansion for DCs. Generally,

production is always high and during the harvest season most of farmers sell their

crops to meet their needs like clothing, school fees for their children and other

needs [23, 84].

70



2. Secondly, there is a need for stocking more food crops (rice, sorghum, beans, etc.)

in order to stabilize food crop prices in the domestic food markets in general, and

in particular for towns and cities as the need arises. The lack of enough storage

capacity causes low prices for maize crop during the harvest season and then faces

the high maize crop domestic prices later [23].

3. The third reason is the exports of food crops to other neighbouring countries,

such as Somali, Kenya, Burundi, Rwanda, Malawi, Zambia and South Sudan for

economic earnings [14, 23].

• It is possible to coordinate activities of food crop production, storage and final

distribution to customers. In order to achieve this, data availability, coordinating

management and the funding to the coordinating team are of great importance.
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Chapter 5

The stochastic model for the two-level

FLP with rainfall dependent travel

costs

5.1 Background to the stochastic problem

As explained in Chapter 3, the stochastic transportation links arise in Tanzania due to the

effect of rainfall. The road condition is directly related to the amount of rainfall which

is stochastic. Hence, the usability of road and distance are stochastic. This is because;

if there is no rainfall or there is very low rainfall, then the exact distance is known (as

in deterministic model). The distance between a DC to a CP is rainfall dependent. For

example, for a relatively moderate amount of rainfall, some sections of the link between a

DC to a CP will have diversion roads that have to be traversed. Similarly, for a high amount

of rainfall a large distance is expected to be traversed due to more diversions or detours.

This results in stochastic travel costs.

Both the paved and unpaved road links may be submerged due to rainfall. Some parts of

unpaved road links may even not be accessible even with moderate rainfall. Alternative road
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links are then used thus causing high costs. When the rainfall is high to the extent that

the travel might be postponed for a day or more; this might happen if most road links are

submerged and probably the bridges are washed away.

Figure 5.1 elaborates the possible road links and the effects of rainfall. For example, deliveries

must be done from a DC situated at A to a CP located at D. The shortest path is A to

C to D. However, for moderate rainfall of; say 30 mm, the link AC is not accessible and

therefore this has to be replaced by the links AB and BC. For a rainfall of; say 85 mm, the

link CD is also inaccessible and in this case the long route ABED is used causing more costs.

 

A B 

C D 

E 

Figure 5.1: The road links and rainfall effects

To give a recent example of high rainfall in Tanzania, we cite the rainfall on the night of 21st

January, 2014. This caused floods in the Dumila area in the Morogoro region, Tanzania.

Many road links within Morogoro became inaccessible [20]. Figures 5.2 and 5.3 show the

situation of a bridge on the paved road and one of the government schools after floods caused
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by the rainfall on 21st January, 2014. However, this heavy rainfall was unique since it had

not occurred in that place for more than 50 years [20]. It is not regular kind of rainfall and

it is the specific case for bridges. Other heavy rainfall causes impassable roads mostly due to

muds as shown in Figures 3.3 and 3.4. No data available in the TANROADS headquarters

for number of bridges being washed away by rainfall.

Figure 5.2: The Dumila area bridge after heavy rainfall, on 22-01-2014. Source: Michuzi

Blog - http://issamichuzi.blogspot.com/
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Figure 5.3: Magole primary school has been submerged after heavy rainfall, picture captured

on 22-01-2014. Source:

http://mdimuz.blogspot.com/2014/01/jionee-hali-ya-mafuriko-ilivyokuwa-huko.html

Situations like these cause high transportation costs since long alternative road links are

used between origins and destinations [27].

Road networks in Tanzania are mainly classified as trunk roads (TR), regional roads (RR),

district roads (DR) and urban roads (UR). In Tanzania, trunk roads are primarily defined

as the main highways (national roads) which link two or more regional headquarters in

the country. The regional roads (RR) are defined as the secondary national roads that

connect TRs and regional and/or district headquarters. RR link regional and the district

headquarters [79]. The total classified road network in Tanzania mainland is estimated to

be 86,472 km based on the Road Act 2007 [79]. The national road network (NRN) is about

33,891 km comprising of 12,786 km of TRs and 21,105 km RRs (see Figure 5.4). The
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remaining network of about 53,460 km is of urban, district and feeder roads [79]. This study

uses only the NRN that comprises of both TR and RR. The status of NRN in km are as

presented in Table 5.1.

Table 5.1: Tanzania NRN classification and status.

Road status Road classes and their distances in km Percent

TR RR

Paved 5,130 840 17.6

Unpaved 7,656 20,265 82.4

Total 12,786 21,105 100

Generally, in the National Road Network (NRN) the paved roads make up 17.6% and the

unpaved roads 82.4%. This excludes the rural district roads most of which are unpaved.

Figure 5.4 shows Tanzania’s NRN. The high percentage of unpaved roads is the cause of

stochastic effect even for moderate rainfall.
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Figure 5.4: The map of Tanzania: National Roads Network. Source: TANROADS website
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The rainfall distribution within the country varies with regions and districts, it also varies

with time. Therefore, the effect of rainfall in transportation links differs from regions to

regions as well as from a month to another. In this study, we have five existing DC zones

with different rainfall distributions. These five DC zones are from the current transportation

network. A DC zone is defined as a specific DC and its surrounding CPs (districts in a region)

that are usually serviced by that DC. Each DC zone will be assumed as having its unique

rainfall distribution per week over 17 weeks. This also applies to the newly proposed DCs

with their own rainfall distributions. The DC zone at site k, is synonymous to DCk, k ∈ K,

as used in Chapter 4.

Within a DC zone, we consider the weekly amount of rainfall for the first 17 weeks in a year.

This is based on the fact that from the field data, the maize crop transportation from DCs

to CPs are carried out mostly within the first 17 weeks of each year (January to April) (see

appendix D.4, D.5 and D.6). In the field data records, eight out of nine DCs to CPs transfers

were done between January and April. The data used in this case was the weekly rainfall

from 2007 to 2010. The weekly rainfall data was obtained from the Tanzania Meteorological

Agency (TMA) in January 2011 as shown in Appendix C, Figure C.8. Table 5.2 summarizes

the rainfall data in millimetre (mm) for each DC zone over 17 weeks. We present the mean,

minimum and maximum rainfall in mm for all DC zones in Table 5.2. First we calculate the

average rainfall for each week within 17 weeks in each DC zone by considering data from

2007 to 2010. We use the data presented in Tables A.5,A.6, A.7, A.8, A.9, A.10, A.11 and

A.12. From the 17 data values of averages per DC zone, we then calculate the average of

averages (mean) and also identify the minimum of averages (minimum) and the maximum of

averages (maximum). The values presented in Table 5.2 are only for comparison of variations

in rainfall distributions across the DC zones.

The values presented in Table 5.2 show that there are significant variations in rainfall
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Table 5.2: The DC zone showing minimum, mean and maximum rainfall in mm (January

- April from 2007 to 2010 rainfall data)

DC zone (DCk) Minimum Mean Maximum

DC1 5.5 29.2 57.2

DC2 8.1 30.2 83.6

DC3 0.4 26.0 57.2

DC4 5.5 30.5 53.2

DC5 20.7 36.4 61.9

DC6 3.2 36.0 72.8

DC7 17.2 34.2 65.7

DC8 0.3 21.2 101.6

distributions. DC8 zone has the lowest minimum rainfall of 0.3 mm and also the highest

maximum rainfall of 101.6 mm. Generally, each DC zone has different rainfall as it can be

observed in Columns 2, 3 and 4, and thus the effect on road links differs accordingly. The

variations are also from week to week as shown in the field data presented in Tables A.5,A.6,

A.7, A.8, A.9, A.10, A.11 and A.12. Weekly transportation planning over 17 weeks will now

be considered in this chapter to account for the variability in rainfall with respect to each

DC zone.

Clearly, the choice of routes (used by vehicles) results in a variable delivery cost from DCs

to CPs. These costs, often being dominant, will affect the selection of DCs, their sizes and

locations. Therefore allocations of DCs to PCs and CPs to selected DCs are expected to be

affected.
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5.2 The scenario-based approach in stochastic pro-

gramming

As it has been explained in section 2.3, there are several approaches in dealing with

randomness in stochastic problems. Here, we are considering the scenario-based approach

that is pertinent to our problem.

A scenario-based approach is one of the approaches in dealing with randomness or

uncertainty. In stochastic programming models, the scenarios are generated to represent

the uncertainty in a sensible way while taking into account: the goal of the model and its

structure, the available information and the availability of computer software [11, 68, 80].

The scenario-based approach assumes that there are a finite number of decisions that nature

can make as the outcomes of randomness [11]. Each of the possible decisions or realizations

is called a scenario. Scenarios deal with uncertain aspects of the random variables or

parameters that are relevant to the need of the concerned problem [80]. Thus, the future

uncertainty in the considered problem is usually described by a set of alternative scenarios.

Some examples of scenarios are: the demand for a product is low, medium, or high; the

weather is dry or wet; and the market price will go up or down. These are some examples with

finite number of future realizations for stochastic modelling. The scenario-based approach

can be used in both discrete and continuous random variables provided that there are finite

number of realizations. However, even if the nature acts in a continuous manner, often a

discrete approximation is mostly used in scenario-based approach [11, 66].

In the scenario-based approach, a scenario tree can be generated which will incorporate all

possible realizations of discrete random variables or parameters into the model [80]. For

the scenario tree, the number of scenarios as well as the progression of the scenarios from

one stage or period to another depends on the requirement of the problem being considered
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[11, 68, 80].

To explain the scenario-based approach, we consider a two-stage linear stochastic model

with discrete realizations of a random variable. Here, two-stage is based on the stages of

decisions taken in solving the stochastic model. The decisions that must be taken before

the random experiment, denoted by x, are called first-stage decisions. The period during

which they are taken is called the first stage. Decisions that must be taken after the random

experiment, denoted by y, are called second-stage decisions and its corresponding period

is the second stage. Suppose the result of the random experiment is s ∈ S where S is

the sample space of the random experiment, the sequence of decisions and events can be

represented diagrammatically as x −→ ξ(s) −→ y(s, x). Thus the second-stage decisions

are functions of the outcome of the random experiment and also the first-stage decision

[17, 40]. An elementary detailed example for a two-stage stochastic problem is the news-

vendor problem found in [11, 17, 68]. We now consider in the next paragraph the general

two-stage linear stochastic model that can be transformed into scenario-based approach in

dealing with discrete random variables.

Generally, a two-stage stochastic linear program with recourse function can be written as

follows [11, 17, 40, 68]:

Min
x

cTx+ EξQ(x, ξ) (5.1)

subject to Ax = b, (5.2)

x ≥ 0, (5.3)

where Ax = b is the first stage constraints and Q(x, ξ) is the optimal value of the second

stage problem (an extended real valued function or recourse function) given as

Q(x, ξ) = Min
y

qTy (5.4)

81



subject to Gx+Wy = h, (5.5)

y ≥ 0. (5.6)

where G and W are called technology and recourse coefficient matrices for decision variables,

x and y respectively. h is a right hand real value that limits x, y, G and W values. Here x

and y are vectors of first and second stage decision variables respectively.

The second stage problem, (5.4) - (5.6), depends on the data ξ := (q, h,G,W ) and some or

all elements of which can be random. So ξ is a random vector and Eξ denotes mathematical

expectation with respect to the probability distribution of ξ. This probability distribution

is supposed to be known. The two-stage stochastic models where the random variables

are fully known or realized, are solved as a “wait-and-see” solution method. On the other

hand, when the stochastic models are solved before the realization of random variables,

it is a “here-and-now” solution method. In this context, usually the random parameters

are estimated using the historical data under probability distributions or density functions

[11, 17, 39, 68]. The decisions to be made in “here-and-now” are for single-stage stochastic

models [39]. In general, the random parameters or variables for stochastic models can be

either in the constraints or in the objective function, or in both [11, 17, 39, 68].

We now consider equations (5.1) - (5.6) to have the discrete distribution in random data with

a finite number of |S| possible realizations. These possible realizations, ξs := (qs, hs, Gs,Ws),

s ∈ S, are called scenarios with corresponding probabilities Ps for its occurrence
(

Pr(ξs) =

Ps
)
. The other interpretation would be that the random vector ξs = ξ(s) depends on the

scenario s, which takes on S different values. In this case, EξQ(x, ξ) =
|S|∑
s=1

PsQ(x, ξs),

|S|∑
s=1

Ps = 1. This consideration is only for a single attribute. For several attributes, P t
s or

Pt,s can be adapted, meaning that the probability of scenario s at period t, where s ∈ S and

t ∈ φ, where φ is the set of period times considered. Other possible attributes or dimensions
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can also be treated accordingly.

Under scenario-based approach, the model (5.1) - (5.6) can now be written in the form:

Min
x,y1,...,ys

cTx+
S∑
s=1

Psq
T
s ys (5.7)

subject to Ax = b, (5.8)

Gsx+Wsys = hs,∀s, (5.9)

x ≥ 0, ys ≥ 0,∀s. (5.10)

Problem (5.7) - (5.10) is the two-stage stochastic problem formulated as one large linear

programming problem under scenario-based approach. The constraints (5.8) are known as

the first stage constraints and (5.9) are the second stage constraints. Such a stochastic

decision model is known as the extensiveform of the stochastic program since it explicitly

describes the second stage decision variables for all scenarios [11].

We would like to point out that the objective function in equation (5.7) is similar to our

problem stated in equation (5.22); which is also a scenario-based problem. In our problem

the constraints are not stochastic. Examples of scenario-based stochastic problems that are

solved numerically can be found in [11, 17, 19, 31, 66, 80].

5.3 Stochastic model with rainfall dependent travel

cost

During the rainy season, the transportation links between the DCs and CPs are unreliable

since unpaved roads are at high risk, so are the low lying paved roads. The paved roads can
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also be submerged due to heavy or high rainfall. Some low lying paved roads get submerged

under moderate rainfall too. The distance or a link between a DC and a CP in this case varies

due to rainfall. We consider this effect in the mathematical modelling of two-level FLP below.

The mathematical model for the two-level FLP in section 4.1, Chapter 4, can be extended

to include the stochastic term. The set of indices, parameters and variables for the problem

are presented below:

Let J , K, and L, as before, denotes the index sets for PCs, DCs and CPs respectively.

Rk: Same as in section 4.1, Chapter 4.

e: Is the index set representing a week in which maize crop is transported from a selected

DC to a CP, where e ∈ E. |E| denotes the total number of weeks.

Sj: Same as in section 4.1, Chapter 4.

Dl: The total demand for four months for maize crop at CPl transported once in a week.

We assumed that a given single period demand is transported in the first week 1 of the four

month’s period.

F r
k : Same as in section 4.1, Chapter 4.

Cjk: Same as in section 4.1, Chapter 4.

w(e, k): The amount of rainfall during week e in DC zone k, e ∈ E, k ∈ K. Since w(e, k) is

stochastic with respect to both e and k, we introduce the stochastic variable γ(k) = w(e, .)

by fixing e.

Mkl

(
γ(k)

)
: The road distance in kilometres from DCk to CPl that depends on rainfall of

week e.

λ: Same as in section 4.1, Chapter 4.

Decision variables for the model :

Xjk, Ykl and Zr
k are the same as in section 4.1, Chapter 4.

1We have also considered the delivery of the total demand in other weeks.
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As stated in section 4.1, Chapter 4, we ignore the superscript r in Zr
k , V

r
k and F r

k when a

single capacity2 per DCk is used. Here the choice of capacity is not a decision variable but

the choice of DCk is.

The two-level FLP is to select the DC sites, the assignment of CPl to the selected DCk

and the assignment of selected DCk to the PCj by considering the stochastic cost involved

between the DCs and the CPs.

Therefore, the stochastic single capacity model extended from the deterministic model is as

follows:

Min
Xjk,Ykl,Zk

λ

(∑
j

∑
k

CjkXjk +
∑
k

∑
l

Mkl

(
w(e, k)

)
Ykl

)
+
∑
k

FkZk, (5.11)

subject to
∑
k

Xjk ≤ Sj, ∀j, (5.12)

∑
j

Xjk = VkZk,∀k (5.13)

∑
l

Ykl ≤ VkZk,∀k, (5.14)

∑
k

Ykl = Dl, ∀l, (5.15)

Xjk ≥ 0,∀j, k, (5.16)

Ykl ≥ 0,∀k, l, (5.17)

Zk ∈ {0, 1},∀k, (5.18)

e is fixed. (5.19)

The following are the explanations to the above model:

2Model for the stochastic multiple capacities per DC will be presented later on.

85



• The objective function (5.11), which is a stochastic model, is the total distribution

cost, e.g. transportation cost from PCs to DCs and DCs to CPs, and fixed annual

operation costs, Fk, for DCs with the corresponding capacities Vk for a fixed week e.

• Constraints (5.12) are the supply constraints (production centres’ capacities), where

the total amount to be shipped from a PCj to the selected DCk, must not exceed PCj

capacity, Sj.

• Constraints (5.13) is as stated in equation (4.3).

• Constraints (5.14) refer to the amount supplied by DCk to all CPl, l ∈ L, without

exceeding Vk. Vk (respectively Fk) are the values currently used in the current

transportation network with five DCs, e.g. DC1, ..., DC5. The capacities Vk, k ∈ K,

are not necessarily equal.

• Constraints (5.15) represent the amount to be transported from all DCk, k ∈ K, to

CPl, and this amount must meet a demand, Dl, at the CPl.

• Constraints (5.16) and (5.17) are non-negative variables.

• Constraints (5.18) are binary variables.

• Constraints (5.19) consider a week e being fixed in the model.

The term λMkl

(
w(e, k)

)
Ykl in equation (5.11) is the stochastic cost of transportation that

depends on the amount of rainfall at the eth week in the DC zone k. So there will be an

increase in cost which includes drivers’ expenses and other related costs. The stochastic

distance which takes values from three scenarios for interval, is calculated using:

Mkl

(
w(e, k)

)
=



Tkl if w(e, k) ≤ A(k),

Tkl(α + 1) if A(k) < w(e, k) ≤ B(k),

Tkl(β + 1) if B(k) < w(e, k),

(5.20)
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where Tkl is a deterministic road distance in kilometres from DCk to CPl, and A(k) and

B(k) are parameters used to determine possible ranges of amount of rainfall for the distance

calculation as explained in the next paragraph.

The reasons behind the use of equation (5.20) are the historical data and the relationship

among Tkl and w(e, k) [79]. There are three scenarios realized due to rainfall classification

based on the its effect on road links. The first scenario, w(e, k) ≤ A(k), constitutes the

weekly rainfall data values from 0 (no rainfall) to its median value in the DC zone k. Hence,

A(k) is a median data value in a given weekly rainfall data in DCk over all 17 weeks. The

amount of rainfall in this scenario is low and is considered to have no effect on road conditions.

Hence, we have a deterministic distance between a DC and a CP. We have decided to use

the median value instead of mean since the weekly rainfall data distribution are skewed (not

normally distributed).

The second scenario for medium rainfall is A(k) < w(e, k) ≤ B(k), where B(k) is calculated

as A(k) plus 2.5 times the standard deviation (B(k) = A(k) + 2.5σ) in a given DCk using

17 weeks’ data. The standard deviation for each DCk is calculated using the weekly rainfall

data values presented in Tables A.5,A.6, A.7, A.8, A.9, A.10, A.11 and A.12. The third

scenario, B(k) < w(e, k), represents the high amount of weekly rainfall. A(k) and B(k)

data values for each DC zone, DCk, as shown in Table 5.3, were computed using the weekly

rainfall over 17 weeks as presented in Tables A.5,A.6, A.7, A.8, A.9, A.10, A.11 and A.12.

The three scenarios were considered for realism under low, medium and high amount of

weekly rainfall classification [16].

The values in Table 5.3 are specific for each DC zone under consideration since each DC

zone has different rainfall distribution. Thus the effect of rainfall on the roads will also differ

due to the nature of rainfall distribution in a particular DC zone.
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Table 5.3: The A(k) and B(k) values (weekly rainfall data in mm) in each DC zone over

17 weeks.

DC zone A(k) B(k)

DC1 20.2 105.1

DC2 15.0 117.0

DC3 13.6 87.2

DC4 24.1 91.2

DC5 28.5 123.0

DC6 36.0 114.2

DC7 24.9 101.9

DC8 2.2 82.8

The other parameters of equation (5.20) are α and β. These are estimate parameters used

to estimates the distance increases due to various levels of rainfall. The estimate values

are α = 0.824, β = 1 by considering Tanzania NRN information [79]. The values are

based on the effect of rainfall on the unpaved and paved roads. If the amount of rainfall is

moderate, then the estimated distance increase is due to the conditions of unpaved roads.

Thus we have estimated the value of distance increase to be proportional to the percentage of

unpaved roads, α (proportional to the unpaved roads). For high rainfall, the overall distance

increase is estimated due to both paved and unpaved roads effect. Hence, the value of β is 1

(percentage of unpaved roads plus percentage of paved roads). The effect of these parameters

are proportional to the amount of rainfall (probabilities) as shown in the equation (5.22).

The value of β is a realistic estimate for high rainfall. The accessibility of both paved and

unpaved road is very poor for high rainfall [20]. The parameters are therefore tentative

estimates used to find the increase in distance caused by rainfall.
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5.4 The stochastic model: A scenario-based approach

The rainfall data values which are stochastic in nature are now used to calculate the

probability of scenarios. The three scenarios in equation (5.20) result in three respective

probabilities that are used in the stochastic model. The three scenarios corresponding to

probabilities for week e, Ps(e, k), with s = 1, 2 and 3 for each DC zone k are presented as

follows:

• P1(e, k) = Pr

(
w(e, k) ≤ A(k)

)

• P2(e, k) = Pr

(
A(k) < w(e, k) ≤ B(k)

)
and

• P3(e, k) = Pr

(
B(k) < w(e, k)

)
.

The sum of all the three probabilities in each DC zone for each week must be a unit, i.e.

P1(e, k) + P2(e, k) + P3(e, k) = 1.

By these probabilities and equation 5.20, the stochastic model with consideration of the

rainfall effect in each week is now presented as follows:

E[Mkl

(
w(e, k)

)
] = Tkl

[
P1(e, k) + (α + 1)P2(e, k) + (β + 1)P3(e, k)

]
. (5.21)

Therefore, by including equation 5.21, the objective function (5.11) can now be re-written

as:

Min
Xjk,Ykl,Zk

λ

(∑
j

∑
k

CjkXjk +
∑
k

∑
l

TklYkl

[
P1(e, k) + (α + 1)P2(e, k)

+ (β + 1)P3(e, k)
])

+
∑
k

FkZk

(5.22)

The resulting expected objective function; (5.22), similar to equation (5.7), is then solved

subject to constraints (5.12) to (5.19).

Here we have considered rainfall as the stochastic data that will affect the distance covered

in transportation of maize crop from DCs to CPs. The consideration of rainfall data for the
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calculation of distance travelled in our model is similar to the example problem on farming

studied by Birge [11]. In this problem, three weather scenarios are used to influence the crop

yields. The crop yields will depend on whether the weather is good, average or bad [11].

The good, average and bad weather form the three possible scenarios of weather realizations.

These types of stochastic data usually influence the other data in the model using the

estimate parameters. This is due to the fact that the given stochastic data is not directly

linked to the model parameters compared to the case of new-vendor problem [11, 17, 68].

With such circumstances, our research problem being a real life problem is limited to

other possible stochastic programming methods. These methods have different statistical

distributions such as uniform, exponential, log-normal, Poisson and Wei-bull where random

parameters can be treated [17]. For the same reason, the sample average approximation

(SAA) approach is also not relevant to our problem.

5.4.1 Data for the stochastic model

Stochastic optimization considers the amount of rainfall in a given week as the stochastic

data. These are the weekly amount (total) of rainfall from the Tanzania Meteorological

Agency (TMA) regional stations within the DC zones. The data is over the period of 2007

- 2010 and is as presented in Tables A.5,A.6, A.7, A.8, A.9, A.10, A.11 and A.12. In each

year we use all data from all meteorological stations within the given DC zone. This is for

the purpose of having more samples of weekly rainfall within a DC zone. We have used the

data in the listed tables above for the computation of probability values, P1(e, k), P2(e, k)

and P3(e, k) (see Tables 5.4 and 5.5). These probabilities are calculated using data over 17

weeks for each respective DC zone.

The computations are done by first finding the total number of weekly data values in a given
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interval. We then divide that value by the total number of all data values found in that

week in respective DC zones. For example, if the first interval has three data values in week

one, and the total number of all data values in that week is twelve, then P1(e, k) = 3/12 or

0.25. The other values of P2(e, k) and P3(e, k) are computed in a similar way for that week

such that P1(e, k) + P2(e, k) + P3(e, k) = 1. These probabilities together with deterministic

data stated in section 4.2.1, Chapter 4, are used for the optimization of objective function

(5.22) subject to equations (5.12) to (5.19).

Table 5.4: The weekly based DC zones rainfall probabilities.

e# Ps(e, k), [e, t ↓, k →] DC Zone (DCk)

DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8

1 P1(1, k) 0.632 0.909 0.333 0.125 0.625 0.667 0.750 0.750

P2(1, k) 0.368 0.000 0.667 0.875 0.375 0.000 0.250 0.250

P3(1, k) 0.000 0.091 0.000 0.000 0.000 0.333 0.000 0.000

2 P1(2, k) 0.579 0.636 0.500 0.375 0.625 0.667 0.500 0.750

P2(2, k) 0.421 0.364 0.417 0.625 0.375 0.333 0.500 0.250

P3(2, k) 0.000 0.000 0.083 0.000 0.000 0.000 0.000 0.000

3 P1(3, k) 0.895 0.818 0.583 0.375 0.375 0.667 0.750 0.750

P2(3, k) 0.105 0.182 0.417 0.625 0.625 0.333 0.250 0.250

P3(3, k) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 P1(4, k) 0.684 0.818 0.583 0.250 0.500 1.000 0.500 1.000

P2(4, k) 0.316 0.182 0.417 0.750 0.313 0.000 0.500 0.000

P3(4, k) 0.000 0.000 0.000 0.000 0.188 0.000 0.000 0.000

5 P1(5, k) 0.579 0.455 0.167 0.250 0.563 0.333 0.750 1.000

P2(5, k) 0.368 0.545 0.750 0.625 0.438 0.667 0.250 0.000

P3(5, k) 0.053 0.000 0.083 0.125 0.000 0.000 0.000 0.000

6 P1(6, k) 0.421 0.545 0.333 0.375 0.500 0.333 0.750 0.750

P2(6, k) 0.526 0.455 0.667 0.500 0.438 0.667 0.250 0.250

P3(6, k) 0.053 0.000 0.000 0.125 0.063 0.000 0.000 0.000

7 P1(7, k) 0.526 0.364 0.583 0.375 0.375 0.333 0.250 0.500

P2(7, k) 0.368 0.545 0.333 0.625 0.563 0.333 0.750 0.500

P3(7, k) 0.105 0.091 0.083 0.000 0.063 0.333 0.000 0.000

8 P1(8, k) 0.789 0.636 0.583 0.500 0.500 1.000 0.500 0.750

P2(8, k) 0.158 0.364 0.417 0.500 0.438 0.000 0.500 0.250

P3(8, k) 0.053 0.000 0.000 0.000 0.063 0.000 0.000 0.000
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Table 5.5: The weekly based DC zones rainfall probabilities.

e# Ps(e, k), [e, t ↓, k →] DC Zone (DCk)

DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8

9 P1(9, k) 0.579 0.727 0.417 0.375 0.375 0.667 0.750 0.500

P2(9, k) 0.421 0.273 0.417 0.625 0.625 0.333 0.250 0.500

P3(9, k) 0.000 0.000 0.167 0.000 0.000 0.000 0.000 0.000

10 P1(10, k) 0.632 0.727 0.583 0.500 0.500 0.667 0.500 0.750

P2(10, k) 0.368 0.182 0.417 0.500 0.500 0.000 0.500 0.250

P3(10, k) 0.000 0.091 0.000 0.000 0.000 0.333 0.000 0.000

11 P1(11, k) 0.737 0.455 0.333 0.375 0.438 0.000 0.250 0.750

P2(11, k) 0.263 0.545 0.667 0.375 0.500 1.000 0.750 0.250

P3(11, k) 0.000 0.000 0.000 0.250 0.063 0.000 0.000 0.000

12 P1(12, k) 0.316 0.455 0.333 0.625 0.500 0.667 0.500 0.250

P2(12, k) 0.684 0.455 0.417 0.375 0.438 0.333 0.500 0.750

P3(12, k) 0.000 0.091 0.250 0.000 0.063 0.000 0.000 0.000

13 P1(13, k) 0.263 0.273 0.083 0.500 0.313 0.333 0.250 0.000

P2(13, k) 0.737 0.455 0.833 0.500 0.688 0.667 0.250 1.000

P3(13, k) 0.000 0.273 0.083 0.000 0.000 0.000 0.500 0.000

14 P1(14, k) 0.263 0.273 0.667 0.750 0.750 1.000 0.750 0.250

P2(14, k) 0.632 0.727 0.333 0.125 0.250 0.000 0.250 0.750

P3(14, k) 0.105 0.000 0.000 0.125 0.000 0.000 0.000 0.000

15 P1(15, k) 0.316 0.000 0.667 0.875 0.313 0.333 0.000 0.000

P2(15, k) 0.421 0.909 0.250 0.125 0.563 0.667 1.000 0.250

P3(15, k) 0.263 0.091 0.083 0.000 0.125 0.000 0.000 0.750

16 P1(16, k) 0.316 0.273 0.750 0.875 0.500 1.000 0.250 0.000

P2(16, k) 0.684 0.727 0.250 0.125 0.500 0.000 0.750 1.000

P3(16, k) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

17 P1(17, k) 0.158 0.182 0.917 1.000 0.750 0.667 0.500 0.000

P2(17, k) 0.789 0.727 0.083 0.000 0.188 0.333 0.500 1.000

P3(17, k) 0.053 0.091 0.000 0.000 0.063 0.000 0.000 0.000
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5.4.2 Results for the stochastic model using existing distribution

network

The computational experiments carried out in this section are similar to those in section 4.2.2,

Chapter 4, but with probabilities as additional inputs. In the numerical experiments, we are

determining the cost increase based on stochastic rainfall data at the eth week. Although

the transportation is assumed to be carried out at the first week of a four months period,

we have also studied and observed the cost increase for all 17 weeks separately in order to

study the effect due to rainfall for each week. The stochastic computations carried out in

this chapter, in general, are single-stage decisions based on the “here-and-now” solution (see

section 2.3) using probability distributions. Apart from the cost increase, the location and

allocation of facilities, and their capacities are to be affected. We consider the computational

results in cases; Case 1 and 2, as we have have done for the deterministic model, section

4.2.2 of Chapter 4.

Case 1 and computational results under stochastic model

The data used here is the same as explained in section 4.2.2 for Case 1. The new additional

data is taken from Tables 5.4 and 5.5. The two types of capacities to be used are true

capacity, V̂k, and actual capacity, V̄k.

First we consider the true capacities, Rk = {V̂k}, where the five DCs, DC1, ..., DC5, are used.

We solve the equation (5.22) with the listed constraints (5.12) - (5.19).

The results are generated for each week as shown in Table 5.6. In Table 5.6 we also present

the corresponding deterministic results for comparison. In this table, Column 1 presents the

week number. Column 2 shows the costs of the stochastic model, and Column 3 presents

the corresponding costs of the deterministic model given in section 4.2.2, Chapter 4. The

differences between the stochastic and deterministic costs are shown in Column 4. This is
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denoted as VSS (value of stochastic solution), as stated in section 2.3. The weekly percentage

cost increases between the two solutions are presented in Column 5. The last column presents

the number of DCs selected, denoted by |Ks|, after we have solved the stochastic model.

Table 5.6: Total cost for true capacity in Case 1 using stochastic model as compared to the

corresponding deterministic model.

e# Stochastic cost Deterministic cost VSS cost increase (%) |Ks|

1 17,102,556.23 15,570,885.08 1,531,671.15 9.84 5

2 17,231,097.32 15,570,885.08 1,660,212.24 10.66 5

3 16,563,688.39 15,570,885.08 992,803.31 6.38 5

4 16,868,110.12 15,570,885.08 1,297,225.04 8.33 5

5 17,751,062.15 15,570,885.08 2,180,177.07 14.00 5

6 17,758,349.19 15,570,885.08 2,187,464.11 14.05 5

7 17,573,708.89 15,570,885.08 2,002,823.81 12.86 5

8 16,872,388.96 15,570,885.08 1,301,503.88 8.36 5

9 17,344,297.56 15,570,885.08 1,773,412.48 11.39 5

10 17,007,900.19 15,570,885.08 1,437,015.11 9.23 5

11 17,389,487.88 15,570,885.08 1,818,602.80 11.68 5

12 17,899,971.83 15,570,885.08 2,329,086.75 14.96 5

13 18,474,471.21 15,570,885.08 2,903,586.13 18.65 5

14 17,649,037.81 15,570,885.08 2,078,152.73 13.35 5

15 17,850,299.21 15,570,885.08 2,279,414.13 14.64 5

16 17,416,775.78 15,570,885.08 1,845,890.70 11.85 5

17 17,338,942.36 15,570,885.08 1,768,057.28 11.35 5

Average 17,419,011.33 15,570,885.08 1,848,126.25 11.87 5
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The main focus in Table 5.6 is Column 5 where the percentage cost increases due to rainfall

at week e are shown. The cost increase ranges from 6.38% (week 3) to 18.65% (week 13)

for the 17 weeks with an average increase of 11.87%. In all the 17 runs, all the five DCs are

selected as shown in the last column of Table 5.6.

A comparison of results for the first week obtained using the stochastic and the deterministic

model is presented in Table 5.7. The notations used in Table 5.7 are the same as those used

in the deterministic case, which is in Chapter 4. The results for week 1 are important for

comparison with the deterministic results summarized in Table 4.2. This is due to the fact

that a four months demand is assumed to be transported in the first week of the four months

period as discussed in the deterministic part, Chapter 4. The overall percentage cost increase

as shown in Column 5, Table 5.6 for the first week is 9.84%.

Table 5.7: Comparison of summarized results of stochastic and deterministic model for

week 1.

DCk Results for week 1 Summary results from Table 4.2

PCs
j |Lk|

|Lk|∑
l=1

Ykl PCs
j |Lk|

|Lk|∑
l=1

Ykl

DC1 PC1 31 42,801 PC1; PC2 28 39,361

DC2 PC1 18 39,000 PC1 18 39,000

DC3 PC1; PC2 27 39,000 PC1 31 39,000

DC4 PC2 9 9,843 PC2 11 13,283

DC5 PC2 11 14,500 PC2 10 14,500

Total 96 145,144 98 145,144

In Table 5.7 we study the location and allocation due to the effects of rainfall in the first

week as compared to the deterministic results in Table 4.2.
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With respect to DCs to PCs allocations, only PC1 and PC2 are supplying to all the five

selected DCs. DC3 is supplied by both PC1 and PC2 which is different from the deterministic

case where DC1 is supplied by PC1 and PC2 (see Table 5.7). This shows the effect of

stochastic rainfall for DCs to PCs allocations.

A comparison of |Lk| and
|Lk|∑
l=1

Ykl values shows that they are different for DC1 and DC4. This

accounts for re-allocations of CPs to DCs due to rainfall effects. Furthermore, an analysis

on the effect of rainfall is now considered for the lowest and highest cost increase weeks.

Table 5.8 presents a comparison of the lowest and highest cost increase weeks with the

corresponding results of the deterministic model, Table 4.2.

Table 5.8: Comparison of summarized results for the lowest and highest cost weeks with

deterministic results.

DCk Results for week 3 Results for week 13 Summary results from Table 4.2

PCs
j |Lk|

|Lk|∑
l=1

Ykl PCs
j |Lk|

|Lk|∑
l=1

Ykl PCs
j |Lk|

|Lk|∑
l=1

Ykl

DC1 PC1; PC2 34 42,801 PC1;PC2 27 36,642 PC1; PC2 28 39,361

DC2 PC1 18 39,000 PC1 18 39,000 PC1 18 39,000

DC3 PC1 22 39,000 PC1 26 39,000 PC1 31 39,000

DC4 PC2 9 9,843 PC2 16 16,002 PC2 11 13,283

DC5 PC2 13 14,500 PC2 9 14,500 PC2 10 14,500

Total 96 145,144 96 145,144 98 145,144

Table 5.8 gives more details of the results corresponding to the lowest (week 3) and highest

(week 13) and the corresponding results for the deterministic solution, Case 1, in Table 4.2.

Sub-columns under PCs
j in Table 5.8 show that the results of week 3 and 13 are the same as

in Table 4.2. There are some differences in the number of CPs served by DCs as shown in sub-

columns under |Lk|. The exception is only for DC2 where the number of CPs (|Lk|) served

is 18 in all three cases. DC3 and DC4 in particular, have high differences in the number of
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CPs served by the corresponding DCs. For example, in DC3 there are few CPs served in

week 13 as compared to that in deterministic solution. In week 13, DC4 served 16 CPs while

in deterministic results it served only 11 CPs. This situation shows that DC4 can be used

during the rainy season in week 13 as compared with other DC zones. This is because DC4

has more frequent rainfall in the first interval, (see the corresponding probability P1(13, k))

as compared to other DC zones as shown in Table 5.5. Thus due to high rainfall in other

DC zones, more CPs are served by DC4 as compared to the deterministic results.

For the transportation decisions, there are also some minor differences observed in the total

amount transported by each DC to their respective CPs as shown in columns under
|Lk|∑
l=1

Ykl,

Table 5.8. The differences in amount transported to CPs are shown in DC1 and DC4 while

other DCs are having the same amounts transported to CPs.

Generally, the results show that in every week there are some changes in the location,

allocation and transportation decisions as compared to the deterministic results.

As it has been done in the Case 1, the deterministic model, for the stochastic model we

have also re-run the program using the actual capacity, V̄k. The results of this re-run are

summarized in Table 5.9. The other inputs to the model apart from V̄k remain the same.

The results presented in Table 5.9 show that the average cost increase for all 17 weeks is

11.19% which is not much different when the true capacity was used (see Table 5.6). The

lowest and highest cost increases are 7.38% and 16.43% respectively. All the five DCs are

selected as expected since the total optimized DCs’ capacity is the same as the total CPs’

demand.
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Table 5.9: Total cost for actual capacity in Case 1 using stochastic model as compared to

the corresponding deterministic model.

e# Stochastic cost Deterministic cost VSS cost increase (%) |Ks|

1 14,272,420.91 13,224,626.75 1,047,794.16 7.92 5

2 14,424,712.12 13,224,626.75 1,200,085.37 9.07 5

3 14,200,634.71 13,224,626.75 976,007.96 7.38 5

4 14,346,584.77 13,224,626.75 1,121,958.02 8.48 5

5 14,712,039.13 13,224,626.75 1,487,412.38 11.25 5

6 14,824,199.80 13,224,626.75 1,599,573.05 12.10 5

7 14,908,537.88 13,224,626.75 1,683,911.13 12.73 5

8 14,319,679.64 13,224,626.75 1,095,052.89 8.28 5

9 14,626,095.63 13,224,626.75 1,401,468.88 10.60 5

10 14,404,188.41 13,224,626.75 1,179,561.66 8.92 5

11 14,615,840.67 13,224,626.75 1,391,213.92 10.52 5

12 14,974,256.52 13,224,626.75 1,749,629.77 13.23 5

13 15,397,856.60 13,224,626.75 2,173,229.85 16.43 5

14 14,787,240.85 13,224,626.75 1,562,614.10 11.82 5

15 15,377,673.29 13,224,626.75 2,153,046.54 16.28 5

16 14,909,415.14 13,224,626.75 1,684,788.39 12.74 5

17 14,868,497.26 13,224,626.75 1,643,870.51 12.43 5

Average 14,704,110.20 13,224,626.75 1,479,483.45 11.19 5
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The results for the first week are compared with those of the deterministic model in Table

5.10. The results presented in this table are self-explanatory similar to the results presented

in Table 5.7. However, generally there are no significant differences that can be observed

between the values found in the sub-columns under the same label, e.g. |Lk| .

Table 5.10: Comparison of summarized results of stochastic and deterministic model for

week 1.

DCk Results for week 1 Summary results from Table 4.5

PCs
j |Lk|

|Lk|∑
l=1

Ykl PCs
j |Lk|

|Lk|∑
l=1

Ykl

DC1 PC1 27 33,190 PC1 26 33,190

DC2 PC1 17 38,532 PC1 18 38,532

DC3 PC1 13 24,650 PC1 13 24,650

DC4 PC1; PC2 9 9,843 PC1; PC2 9 9,843

DC5 PC2 30 38,929 PC2 29 38,929

Total 96 145,144 95 145,144

The more detailed results for the lowest and highest cost increase weeks are presented in Table

5.11, where again we have used the weeks corresponding to lowest and highest percentage

cost increase (week 3 and 13).

Table 5.11 show results as comparable with those of the deterministic model of Table 4.5. As

it can be seen from sub-columns of Table 5.11, there are no significant differences indicated.

This is quite different from the results when the true capacities were used. This is mostly due

to the fact that the total DCs’ capacity is the same as the total CPs’ demand, e.g. 144,145

tons. On the other hand, the total capacity of all DCs in the true capacity is 178,500 tons

where total demand is 144,145 tons. This means that the DCs’ capacity is larger than the

demand and that the re-allocations are flexible. For the actual capacity, the flexibility is
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Table 5.11: Comparison of summarized results for the lowest and highest cost weeks with

deterministic results.

DCk Results for week 3 Results for week 13 Summary results from Table 4.5

PCs
j |Lk|

|Lk|∑
l=1

Ykl PCs
j |Lk|

|Lk|∑
l=1

Ykl PCs
j |Lk|

|Lk|∑
l=1

Ykl

DC1 PC1 27 33,190 PC1 26 33,190 PC1 26 33,190

DC2 PC1 17 38,532 PC1 18 38,532 PC1 18 38,532

DC3 PC1 13 24,650 PC1 13 24,650 PC1 13 24,650

DC4 PC1; PC2 9 9,843 PC1; PC2 9 9,843 PC1; PC2 9 9,843

DC5 PC2 30 38,929 PC2 29 38,929 PC2 29 38,929

Total 96 145,144 95 145,144 95 145,144

negligible.

Case 2 and computational results under stochastic model

As before, the multiple capacities are used as decision variables in this case. Thus the index

r value is now used in Zr
k , V

r
k and F r

k . It is a similar approach as has been done in Case 2

in section 4.2.2, Chapter 4. The difference is that the stochastic data are used in the model.

Clearly, in this case the objective function is re-written as:

Min
Xjk,Ykl,Z

r
k

λ

(∑
j

∑
k

CjkXjk +
∑
k

∑
l

TklYkl

[
P1(e, k) + (α + 1)P2(e, k)

+ (β + 1)P3(e, k)
])

+
∑
k

∑
r

F r
kZ

r
k

(5.23)

subject to (5.12), (5.15), (5.16) (5.17) & (5.19) (5.24)∑
j

Xjk =
∑
r

V r
k Z

r
k ,∀k (5.25)

∑
r

Zr
k ≤ 1,∀k, (5.26)

∑
l

Ykl ≤
∑
r

V r
k Z

r
k ,∀k (5.27)

Zr
k ∈ {0, 1},∀r, k. (5.28)
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The explanations for the above model are similar to those in the deterministic model of Case

2 in Section 4.2.2, Chapter 4.

The optimization in this case is carried out using the same inputs data as the ones used in

Case 2 in the deterministic case with the only addition being the data in Tables 5.4 and 5.5.

Results obtained for equations (5.23) - (5.28) show clear differences when compared with

Case 2 in the deterministic case in Section 4.2.2.

Table 5.12: Total cost for multiple capacities in Case 2 using stochastic model compared to

the corresponding deterministic model.

e# Stochastic cost Deterministic cost VSS cost increase (%) |Ks|
|Ks|∑
k=1

V r
k

1 14,096,951.53 12,660,522.80 1,436,428.73 11.35 5 145,247

2 14,158,620.32 12,660,522.80 1,498,097.52 11.83 5 145,712

3 13,880,908.81 12,660,522.80 1,220,386.01 9.64 5 145,247

4 14,011,318.37 12,660,522.80 1,350,795.57 10.67 5 145,247

5 14,567,500.95 12,660,522.80 1,906,978.15 15.06 5 145,712

6 14,550,492.64 12,660,522.80 1,889,969.84 14.93 5 145,247

7 14,482,101.31 12,660,522.80 1,821,578.51 14.39 5 145,215

8 14,489,388.35 12,660,522.80 1,828,865.55 14.45 5 145,215

9 14,317,562.84 12,660,522.80 1,657,040.04 13.09 5 145,247

10 14,040,098.33 12,660,522.80 1,379,575.53 10.90 5 145,247

11 14,414,109.13 12,660,522.80 1,753,586.33 13.85 5 145,712

12 14,623,164.72 12,660,522.80 1,962,641.92 15.50 5 145,217

13 15,123,921.37 12,660,522.80 2,463,398.57 19.46 5 145,429

14 14,122,471.22 12,660,522.80 1,461,948.42 11.55 5 145,144

15 14,606,144.17 12,660,522.80 1,945,621.37 15.37 5 145,144

16 14,164,641.90 12,660,522.80 1,504,119.10 11.88 5 145,144

17 13,689,755.32 12,660,522.80 1,029,232.52 8.13 4 145,144

Average 14,314,067.72 12,660,522.80 1,653,544.92 13.06 5 145,310

The last column in Table 5.12 shows the total capacities of all DCs which are selected for

each week.
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The percentage cost increase for week e for multiple capacities model as shown in Table 5.12,

Column 5 ranges from 8.13% in week 17 to 19.46% for week 13. Week 13 is still the highest

cost increase week as in Case 1 of stochastic model, while the lowest cost increase week is

week 17. This is from the fact that the highest cost increase is caused by high probability

values in P2(e, k) and P3(e, k). In week 13, all five DC zones are mostly dominated by high

probability values of P2(13, k) and P3(13, k) as shown in Table 5.5 compared to the values

for other weeks.

The average cost increase for all 17 weeks is 13.06% as indicated in the last row of Column

5. This percentage cost increase is as compared to deterministic cost which is also presented

in Column 3. The percentage cost increase is slightly higher compared to the previous case,

Case 1, stochastic model, using V̂k and V̄k. However, this cost must be compared with the

Case 2 of the deterministic model and not with Case 1 of the stochastic model. The higher

cost is probably due to the fact that in computational results, for each week, the five DCs

are being mostly selected compared to the four DCs in the deterministic case (see Column

6 in Table 5.12). This leads to high transportation costs from PCs to DCs since all five

DCs are used instead of four DCs as in the deterministic counterpart. If we compare the

results of the stochastic model, Case 2 has an average cost of $14,314,067.72 (see Table 5.12)

which is lower than Case 1 with an average cost of $17,419,011.33 for V̂k (see Table 5.6) and

$14,704,110.20 for V̄k (see Table 5.9). This comparison shows that the use of V r
k variable

improves the cost for the stochastic model.

When compared to the deterministic model the number of DCs selected as presented in

Column 6, Table 5.12, are the same except week 17. This also clearly portrays the effect of

rainfall since the four selected DCs in week 17 are also the lowest cost increase compared to

all the other weeks. As shown in the last column of the table, the total capacities of selected

DCs,
|Ks|∑
k=1

V r
k , range from lowest value of 145,144 and the highest value of 145,712 tons.
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The summary results for the first week are detailed in Table 5.13 compared to deterministic

results, Table 4.7.

Table 5.13: Comparison of summarized results of stochastic and deterministic

model for week 1.

DCk Results for week 1 Summary results from Table 4.7

PCs
j V r

k |Lk|
|Lk|∑
l=1

Ykl PCs
j V r

k |Lk|
|Lk|∑
l=1

Ykl

DC1 PC1; PC2 V 11
1 (25, 144) 21 25,144 PC1 V 3

1 (25, 000) 20 25,000

DC2 PC1 V 2
2 (38, 532) 19 38,532 - - - -

DC3 PC1 V 14
3 (39, 144) 21 39,041 PC1 V 3

3 (71, 000) 39 71,000

DC4 PC2 V 6
4 (13, 283) 11 13,283 PC1; PC2 V 13

4 (16, 000) 13 16,000

DC5 PC2 V 13
5 (29, 144) 24 29,144 PC2 V 3

5 (33, 144) 24 33,144

Total (145,247) 96 145,144 (145,144) 96 145,144

NOTE: ‘-’ This means a corresponding DC is not selected by the program.

We compare the summarized results in Table 5.13 by considering the sub-columns PCs
j , V

r
k ,

|Lk| and
|Lk|∑
l=1

Ykl under Results for week 1 and Summary from Table 4.7. In the two

main columns, the major difference is the number of DCs which are selected. For week 1 five

DCs are selected while in the deterministic case only four DCs are selected. Due to this fact,

the clear differences shown between the sub-columns of the same labels are self-explanatory

as the effect of stochastic rainfall in week 1.

Table 5.14 gives more details of some results for the highest and the lowest cost increase

together with the deterministic results from Table 4.7 for comparison.

Table 5.14 shows that, for week 17, there is almost no difference of results compared to

the values of the same labels in Table 4.7. Moreover, for week 13, the highest cost week

differences of the results are not significant.
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Table 5.14: Comparison of summarized results for the lowest and highest cost weeks with

deterministic results.

DCk Results for week 17 Results for week 13 Summary results from Table 4.7

PCs
j |Lk|

|Lk|∑
l=1

Ykl PCs
j |Lk|

|Lk|∑
l=1

Ykl PCs
j |Lk|

|Lk|∑
l=1

Ykl

DC1 PC1 21 25,000 PC1 21 25,000 PC1 20 25,000

DC2 - - - PC1 10 26,500 - - -

DC3 PC1 37 71,000 PC1 23 39,000 PC1 39 71,000

DC4 PC1; PC2 14 16,000 PC1; PC2 13 15,715 PC1; PC2 13 16,000

DC5 PC2 24 33,144 PC2 30 38,929 PC2 24 33,144

Total 96 145,144 97 145,144 96 145,144

Generally, the existing distribution system had not been considering the stochastic effect

due to rainfall as per collected field data. However, there have been complaints reported by

a Longido CP in 2009 on cost increase due to poor roads for its seven wards of maize crop

distribution out of the nine wards (Appendix D). The complaints were reported due to the

conditions of unpaved roads caused by rainfall. The poor road conditions resulted in the

increase of transportation cost in Longido CP by an average of 96.3%. This also motivated

us to consider the stochastic effect in the modelling for our study.

5.4.3 Results for the stochastic model using eight DCs

We now perform a numerical study of stochastic model using the eight DCs, as we have done

in the deterministic case in Chapter 4. We use the same model, equations (5.23) - (5.28), as

in Case 2.

The inputs used are the same as those in Case 2 in subsection 5.4.2, but with additional

data for the new three DCs. We have carried out optimization in three phases in each week

as we have done in the deterministic part (see subsection 4.2.3).
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The results obtained in the three phases for each week are summarized as follows:

• Phase 1 is where six DCs are considered of which five DCs are selected in each week

except in week 10 where all the six DCs are selected. In the deterministic case, only

five DCs were selected. The lowest weekly cost increase is 7.52% in week 8 and the

highest is 18.45% in week 13. The average cost increase for all the 17 weeks is 12.47%

as compared to the deterministic case.

• Phase 2 and 3 are when the seven and eight DCs are considered respectively. In both

phases we obtained the same results in all weeks except for week five. Phase 2 has

an average cost increase of 11.38% and Phase 3 the average cost increase is 11.32%.

These cost increases are with respect to the corresponding costs of the deterministic

model found in subsection 4.2.3.

In Table 5.15 we have summarized the results obtained for the third phase when the eight

DCs were used.

Table 5.15 has the same notations as used in Table 5.12. From the results shown in the last

row in Column 5, we see that the average cost increase is 11.32% which is lower than that

of Case 2, Table 5.12. For the extended network of eight DCs, the cost on stochastic model

is $13,697,054.49, which is the lowest compared to the cost obtained for existing network of

five DCs using the stochastic model for Cases 1 and 2. In eight DCs, the lowest cost increase

is 6.94% in week 8, the highest is 18.43% in week 13 as shown in Table 5.15.

Column 6 in Table 5.15 shows the number of DCs selected in each week. As it can be seen,

there are five, six and seven selected DCs out of the eight DCs considered. The selection

of five DCs in week 17 is a unique case caused by high probability values of P2(17, k) and

P3(17, k) that are due to high rainfall in DC1, DC2 and DC8 as shown in Table 5.5. The

three listed DCs are not selected in week 17. However, in the deterministic case only six DCs

were selected (see Table 4.8 in subsection 4.2.3). Again this is a clear effect of the stochastic
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Table 5.15: Total cost for eight DCs using stochastic model compared to the corresponding

deterministic model.

e# Stochastic cost Deterministic cost VSS cost increase (%) |Ks|
|Ks|∑
k=1

V r
k

1 13,703,487.19 12,303,719.06 1,399,768.13 11.38 7 145,770

2 13,653,035.26 12,303,719.06 1,349,316.20 10.97 6 145,215

3 13,317,228.94 12,303,719.06 1,013,509.88 8.24 6 145,261

4 13,297,044.78 12,303,719.06 993,325.72 8.07 6 145,215

5 13,949,049.54 12,303,719.06 1,645,330.48 13.37 7 145,216

6 13,998,674.17 12,303,719.06 1,694,955.11 13.78 7 145,770

7 14,013,894.84 12,303,719.06 1,710,175.78 13.90 7 145,770

8 13,157,856.94 12,303,719.06 854,137.88 6.94 6 145,215

9 13,699,742.76 12,303,719.06 1,396,023.70 11.35 6 145,215

10 13,587,326.52 12,303,719.06 1,283,607.46 10.43 7 145,770

11 14,031,275.41 12,303,719.06 1,727,556.35 14.04 7 145,770

12 13,944,540.05 12,303,719.06 1,640,820.99 13.34 6 145,215

13 14,570,881.06 12,303,719.06 2,267,162.00 18.43 7 145,221

14 13,289,200.19 12,303,719.06 985,481.13 8.01 6 145,215

15 14,068,900.51 12,303,719.06 1,765,181.45 14.35 6 145,144

16 13,314,118.17 12,303,719.06 1,010,399.11 8.21 6 145,500

17 13,253,670.02 12,303,719.06 949,950.96 7.72 5 145,644

Average 13,697,054.49 12,303,719.06 1,393,335.43 11.32 6 145,419
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rainfall as addressed in this study.

The results in the last column,
|Ks|∑
k=1

V r
k , of Table 5.15 present the total optimal capacity of

the selected DCs. These capacities range from 145,144 tons to 145,770 tons across the 17

weeks. The different capacities observed from the stochastic model, are due to stochastic

rainfall effect compared to the deterministic model where the optimal total DCs’ capacity is

145,144 tons (see Table 4.8 in subsection 4.2.3).

We now summarize the results for week 1 compared to deterministic case, Table 4.8 in Table

5.16. The results presented in Table 5.16 are compared in a similar way as we have explained

in Table 5.13. Similar comparisons are also presented in Table 5.17. Table 5.17 presents the

comparison of the results of the lowest and highest cost weeks with the deterministic results,

Table 4.8.

Table 5.16: Comparison of summarized results for eight DCs of stochastic and

deterministic model for week 1.

DCk Results for week 1 Summary results from Table 4.8

PCs
j V r

k |Lk|
|Lk|∑
l=1

Ykl PCs
j V r

k |Lk|
|Lk|∑
l=1

Ykl

DC1 PC1 V 3
1 (25, 000) 21 25,000 PC1 V 11

1 (25, 144) 21 25,144

DC2 PC1 V 11
2 (26, 000) 14 26,000 - - - -

DC3 PC1 V 3, 6(39, 000) 22 38,374 PC1 V 5
3 (45, 000) 25 45,000

DC4 PC1; PC2 V 6
4 (13, 283) 11 13,283 PC1; PC2 V 13

4 (16, 000) 13 16,000

DC5 PC2 V 1
5 (14, 500) 11 14,500 PC2 V 1

5 (14, 500) 15 14,500

DC6 PC1 V 13
6 (9, 843) 4 9,843 PC1 V 2

6 (28, 500) 14 28,500

DC7 PC2 V 3
7 (18, 144) 15 18,144 PC2 V 9

7 (16, 000) 10 16,000

DC8 - - - - - - - -

Total (145,770) 98 145,144 (145,144) 98 145,144

The results in Table 5.17 have some significant differences in the values which are in the

sub-columns under week 13 compared to Table 4.8. This is from the fact that in week 13,

seven DCs are selected compared to six DCs selected in Table 4.8. However, in week 8, as
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Table 5.17: Comparison of summarized results for the lowest and highest cost weeks using

eight DCs with the deterministic results.

DCk Results for week 8 Results for week 13 Summary results Table 4.8

PCs
j |Lk|

|Lk|∑
l=1

Ykl PCs
j |Lk|

|Lk|∑
l=1

Ykl PCs
j |Lk|

|Lk|∑
l=1

Ykl

DC1 PC1 21 25,144 PC1 21 25,144 PC1 21 25,144

DC2 - - - PC1 14 26,500 - - -

DC3 PC1 21 39,073 PC1 13 24,573 PC1 25 45,000

DC4 PC1; PC2 11 13,283 PC2 11 13,283 PC1; PC2 13 16,000

DC5 PC2 14 14,500 PC2 12 14,500 PC2 15 14,500

DC6 PC1 15 35,000 PC1; PC2 13 25,000 PC1 14 28,500

DC7 PC2 15 18,144 PC2 13 16,144 PC2 10 16,000

DC8 - - - - - - - - -

Total 97 145,144 97 145,144 98 145,144

compared to Table 4.8, there are some differences clearly shown in DC3, DC4, DC6 and DC7

for values under |Lk| and
|Lk|∑
l=1

Ykl.

From the comparisons of results above, it is clear that the stochastic effect due to rainfall is

an important factor to be considered for the transportation planning in food security issues

in Tanzania. The results revealed by this study are of great importance for the restructuring

of the transportation network for food security.

5.5 Results for the stochastic model using combined

17 weeks

We have observed from the previous section that, on a weekly basis, in a period of 17 weeks,

there is an increase in the cost due to stochastic aspect of our model compared to that of the

deterministic model. The cost increase was observed for each run (that is, for each week). In

this section we are considering the model where all 17 weeks are combined and the demand,

dl, is to be met for each week. This section is similar to that of the deterministic case in
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section 4.3. We are using decision variable Ȳkl as the weekly amount in tons flow from DCk

to CPl in week e. This amount will be same for each week and the total demand, Dl, will

be met after the 17 weeks. In this case, a weekly demand to be met at CPl is dl, given by
|K|∑
k=1

Ȳkl = dl. The model is used in both the existing distribution network and the extended

network. We study the overall cost increase when all 17 weeks are optimized together under

the stochastic effect. Results obtained are compared with those of the deterministic model

found in sections 4.2 and 4.3.

We first consider the existing distribution network model for single capacity of the DCs. The

resulting combined model for single capacity is presented below:

Min
Xjk,Ȳkl,Zk

λ

(∑
j

∑
k

CjkXjk +
∑
k

∑
l

∑
e

TklȲkl

[
P1(e, k) + (α + 1)P2(e, k)

+ (β + 1)P3(e, k)
])

+
∑
k

FkZk

(5.29)

subject to (5.12), (5.13), (5.16) & (5.18) (5.30)

|E|
∑
l

Ȳkl ≤ VkZk,∀k, (5.31)

|E|
∑
k

Ȳkl = Dl, ∀l, (5.32)

Ȳkl ≥ 0,∀k, l. (5.33)

The explanations of the model:

• The objective function in equation (5.29) with stochastic component minimizes the

total distribution cost and it is similar to equation (5.22) but here we model the

combined 17 weeks.
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• Constraints (5.30) are as used in the previous model.

• Constraints (5.31) refer to the amount supplied, Ȳkl, for each week in |E| weeks by

DCk to all CPl, l ∈ L, not exceeding Vk. The weekly amount, Ȳkl, transported is the

same for each week.

• Constraints (5.32) represent the weekly amount, Ȳkl, that need to be transported in

week e for |E| weeks from all DCk, k ∈ K, to the CPl, which must meet the demand,

Dl.

• Constraints (5.33) represent the non-negativity restrictions.

5.5.1 Results for the existing distribution network

As we have done in the individual weeks, the existing maize crop distribution system is now

being evaluated using the combined 17 weeks model. The computational experiments are

carried out using the same cases as used previously.

Computational results for Case 1

The computational experiments in this section are carried out using the stochastic model

(5.29) with the constraints (5.30) - (5.33). The data used are the same as those used on

weekly basis. The respective data used from several tables are only from DC1 to DC5 in

this regard. We are considering the Case 1 with the true capacity, V̂k. Next, we show the

results using actual capacity, V̄k.

Table 5.18 presents the results of true capacity for 17 weeks model with column labels being

the same as in Table 5.8, except the sub-columns under
|Lk|∑
l=1

Ȳkl. The results under
|Lk|∑
l=1

Ȳkl,

denote the amount of maize crop, Ȳkl, to be transported from a DC to its respective CPs

for each week over 17 weeks. All five DCs are selected and all customers are served. The

specific amount Ȳkl to be transported weekly to each CP from DCs are detailed in Table A.1.
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Table 5.18: Comparison of results for Case 1 for the combined 17 weeks - true capacity.

DCk PCs
j Stochastic results Deterministic results, Table 4.9

|Lk|
|Lk|∑
l=1

Ȳkl |E|
|Lk|∑
l=1

Ȳkl |Lk|
|Lk|∑
l=1

Ȳkl

DC1 PC1, PC2 28 2,315.35 39,361 28 2,315.35

DC2 PC1 18 2,294.12 39,000 18 2,294.12

DC3 PC1 27 2,294.12 39,000 29 2,294.12

DC4 PC2 11 781.35 13,283 11 781.35

DC5 PC2 12 852.94 14,500 10 852.94

Total 96 8,537.88 145,144 96 8,537.88

The values found in Table 5.18 under |Lk| and
|Lk|∑
l=1

Ȳkl are comparable to the deterministic

case found in Table 4.9 as summarized within Table 5.18. The
|Lk|∑
l=1

Ȳkl values in both tables

are the same. However, |Lk| values are different for only DC3 and DC5 but the difference is

not highly significant (see Table 5.18). The total cost obtained for the stochastic model using

true capacity is $17,490,817.51. This cost is 10.98% higher than the cost for the deterministic

model found in subsection 4.3.1. The increase is not much different from the average cost

increase of 11.87% for the individual weeks as presented in Table 5.6. This cost increase is

mostly caused by distance increase due to the effects of rainfall on roads.

In Case 1, we re-run the program using the actual capacity, V̄k, and results are shown in

Table 5.19. The other inputs data to the model apart from V̄k remain the same as used in

the case of true capacity.

The results in Table 5.19 are self-explanatory as it have been explained in the case of true

capacity. The amount of maize crop transported from each DC to each CP is shown in

Table A.2. The values found in Tables 5.19 and 4.9 (actual capacity column in section 4.3)

under |Lk| and
|Lk|∑
l=1

Ȳkl are almost the same. The total cost in this computational results is

$14,706,927.63. Thus the percentage cost increase in this solution compared to deterministic

case for actual capacity in subsection 4.3.1 is 10.08%.
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Table 5.19: Comparison of results for Case 1 for the combined 17 weeks - actual capacity.

DCk PCs
j Stochastic results Deterministic results, Table 4.9

|Lk|
|Lk|∑
l=1

Ȳkl |E|
|Lk|∑
l=1

Ȳkl |Lk|
|Lk|∑
l=1

Ȳkl

DC1 PC1 26 1,952.35 33,190 26 1952.352941

DC2 PC1 17 2,266.59 38,532 18 2266.588235

DC3 PC1 13 1,450.00 24,650 13 1,450.00

DC4 PC1 ; PC2 9 579.00 9,843 9 579.00

DC5 PC2 30 2,289.94 38,929 29 2289.941176

Total 95 8,537.88 145,144 95 8,537.88

Computational results for Case 2

In this case, the computational experiments are carried out using the multiple capacities

under the stochastic model are presented below:

Min
Xjk,Ȳkl,Z

r
k

λ

(∑
j

∑
k

CjkXjk +
∑
k

∑
l

∑
e

TklȲkl

[
P1(e, k) + (α + 1)P2(e, k)

+ (β + 1)P3(e, k)
])

+
∑
k

∑
r

F r
kZ

r
k

(5.34)

subject to (5.12), (5.16), (5.25), (5.26), (5.28), (5.32) & (5.33), (5.35)

|E|
∑
l

Ȳkl ≤
∑
r

V r
k Z

r
k ,∀k. (5.36)

The objective function of the stochastic model now considers the multiple capacities as

addressed through Zr
k , V

r
k and F r

k . The constraints are the same except equation (5.36)

which is a newly modified constraint for restriction on the DCs’ multiple capacities.

The 17 weeks model in this case uses the same data as in Case 2 for individual weeks. Table

5.20 shows the results where column and sub-column labels are same as defined for Case 1
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Table 5.20: Comparison of results for Case 2 for the combined 17 weeks.

Stochastic results Deterministic results, Table 4.10

DCk PCs
j V r

k |Lk|
|Lk|∑
l=1

Ȳkl PCs
j V r

k |Lk|
|Lk|∑
l=1

Ȳkl

DC1 PC1 V 7
1 (25, 144) 22 1,596.71 PC1 V 3

1 (25, 000) 20 1,470.59

DC2 PC1 V 5
2 (26, 500) 12 1,558.82 - - - -

DC3 PC1 V 13
3 (45, 144) 27 2,651.35 PC1 V 3

3 (71, 000) 38 4,176.47

DC4 PC1; PC2 V 6
4 (13, 283) 11 781.35 PC1; PC2 V 13

4 (16, 000) 13 941.18

DC5 PC2 V 3
5 (33, 144) 25 1,949.65 PC2 V 3

5 (33, 144) 24 1,949.65

Total (145,215) 97 8537.88 (145,144) 95 8,537.88

above. The exceptions are the sub-columns under V r
k that accounts for multiple capacities.

These results are different from the corresponding deterministic results, Table 4.10, in terms

of the number of DCs selected. All five DCs are selected for the stochastic case while only

four DCs are selected in the deterministic case. So |Lk|,
|Lk|∑
l=1

Ȳkl and V r
k values in Tables 5.20

and 4.10 are clearly different. Table A.3 shows the specific amount of maize crop transported

from DCs to each CP for this case.

The total cost obtained from this study is $14,360,877.40 with the percentage of cost increase

of 11.84% as compared to the corresponding cost of the deterministic model.

5.5.2 Results for the stochastic model using eight DCs

In this extended network where new DCs are involved, the same stochastic model, i.e.

equation (5.34) and the constraints (5.35) to (5.36) are used. We use the same input

data as used in Case 2 of subsection 5.5.1. However, there are some additional input data

corresponding to the three new DCs as it was done in deterministic case, section 4.2.3. The

three phases are considered in these computational experiments.

In Phase 1 we run the program using six DCs. The computational results for Phase 1 have a

cost increase of 11.73% as compared to the deterministic case where all six DCs are selected.
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In phases 2 and 3, where seven and eight DCs are considered respectively, the cost increase

of 10.57% was observed in both cases. A total cost observed in both of these two phases

is $13,758,193.63. Table 5.21 details the results of Phase 3 where six out of eight DCs are

selected.

Table 5.21: Comparison of results using eight DCs for the combined 17 weeks.

Stochastic results Deterministic results, Table 4.11

DCk PCs
j V r

k |Lk|
|Lk|∑
l=1

Ȳkl PCs
j V r

k |Lk|
|Lk|∑
l=1

Ȳkl

DC1 PC1 V 11
1 (25, 144) 21 1,479.06 PC1 V 11

1 (25, 144) 21 1,479.06

DC2 - - - - - - - -

DC3 PC1 V 14
3 (39, 144) 24 2,298.41 PC1 V 5

3 (45, 000) 26 2,647.06

DC4 PC1 ; PC2 V 6
4 (13, 283) 11 781.35 PC1 ; PC2 V 13

4 (16, 000) 13 941.18

DC5 PC2 V 1
5 (14, 500) 11 852.94 PC2 V 1

5 (14, 500) 14 852.94

DC6 PC1 V 5
6 (35, 000) 17 2,058.82 PC1 V 2

6 (28, 500) 14 1,676.47

DC7 PC2 V 3
7 (18, 144) 13 1,067.29 PC2 V 9

7 (16, 000) 10 941.1764706

DC8 - - - - - - - -

Total (145,215) 97 8,537.88 (145,144) 98 8,537.88

The computational results in Table 5.21 are very much similar to the deterministic case as

summarized in Table 4.11. This is from the fact that the same number and the same DCs are

selected as the results shown in columns under stochastic and deterministic case. However,

the values under |Lk| and
|Lk|∑
l=1

Ȳkl for both Tables 5.21 and 4.11 are different except only for

DC1. Similarly the values under V r
k (indicated in brackets) are also significantly different for

DC3, DC4, DC6 and DC7. These are clearly a reflection on the allocations due to stochastic

rainfall. Table A.4 shows in details the amount of maize crop transported from DCs to each

CP.

In further comparison with the deterministic case, the values under the PCs
j are the same in

both cases, while the V r
k values are different except for DC1 and DC5 as shown in respective

sub-columns in Table 5.21. These are re-allocations resulting from the stochastic rainfall

effect with a cost increase of 10.57% for the eight considered DCs.
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Table 5.22 gives the summary of the 17 weeks results for all types of computational

experiments conducted. Some labels used in the columns of Table 5.22 are explained below

the table.

Table 5.22: Summary table for computational results and some comparisons.

Type of Opt. |Ks| Stochastic cost Deterministic cost VSS X(%) Y(%) Z(%)

C1(V̂k) 5 17,490,817.51 15,570,885.08 1,919,932.43 10.98 11.87 0.86

C1(V̄k) 5 14,706,927.63 13,224,626.75 1,482,300.88 10.08 11.19 1.11

C2 (V r
k ) 5 14,360,877.40 12,660,522.80 1,700,354.60 11.84 13.06 1.22

6 DCs 6 13,988,157.14 12,346,976.95 1,641,180.19 11.73 12.45 0.72

7 DCs 6 13,758,193.63 12,303,719.06 1,454,474.57 10.57 11.39 0.82

8 DCs 6 13,758,193.63 12,303,719.06 1,454,474.57 10.57 11.35 0.78

Average 14,677,194.49 13,068,408.28 1,608,786.21 10.96 11.88 0.92

NOTE: Opt. = Optimization, C1 = Case 1, C2 = Case 2,

X = Cost increase for stochastic model using combined 17 weeks compared to the

corresponding deterministic model,

Y = An average cost increase for stochastic model using individual week compared to

the corresponding deterministic model,

Z = Difference between the results in columns X(%) and Y(%), i.e. (Y −X)%.

The summarized results in Table 5.22, give the general overview of cost increase due to

stochastic rainfall effect for a number of cases. The cost increase is above 10% of the

corresponding cost of the deterministic model. This is clearly shown in Table 5.22 under

columns X(%) and Y (%). Since these costs are in thousands of US dollar, thus the costs

are important to be considered. This also calls for the attention in reviewing the existing

distribution network in order to ensure its smooth operation with reasonable costs.
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5.6 An alternative model for combined 17 weeks

The combined 17 weeks model studied in section 5.5 can be presented in another form when

the three probabilities are computed from entire data set of 17 weeks’ rainfall for each DC

zone. In section 5.5, we used three intervals in each week for calculations of the three

probabilities for each DC zone. This section considers the same intervals in calculations of

the three probabilities using entire data set of 17 weeks instead of each week for each DC zone.

For the computation of the three probabilities, we consider Ps(k) instead of Ps(e, k), where

s = 1, 2 and 3, corresponding to three intervals. Thus,
3∑
s=1

Ps(k) = 1 for each DC zone k.

Table 5.23 presents the probabilities in each DC zone k to be used in the present model.

Table 5.23: The probability values for all three scenarios over 17 weeks in each DC zone k.

Ps DC zone (DCk)

DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8

P1 0.511 0.503 0.495 0.500 0.500 0.608 0.500 0.515

P2 0.449 0.449 0.456 0.463 0.460 0.333 0.471 0.441

P3 0.040 0.048 0.049 0.037 0.040 0.059 0.029 0.044

5.6.1 The mathematical model and results

The model in this section is an alternative model but similar to the one used in section 5.5

where the probabilities in Table 5.23 have been calculated using rainfall data over 17 week

period.

The model to be optimized is given by:
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Min
Xjk,Ykl,Zk

λ

(∑
j

∑
k

CjkXjk +
∑
k

∑
l

TklYkl

[
P1(k) + (α + 1)P2(k)

+ (β + 1)P3(k)
])

+
∑
k

FkZk

(5.37)

subject to (5.30), (5.31), (5.32) & (5.33). (5.38)

For multiple capacities per DC the model becomes:

Min
Xjk,Ykl,Z

r
k

λ

(∑
j

∑
k

CjkXjk +
∑
k

∑
l

TklYkl

[
P1(k) + (α + 1)P2(k)

+ (β + 1)P3(k)
])

+
∑
k

∑
r

F r
kZ

r
k

(5.39)

subject to (5.35) & (5.36). (5.40)

Table 5.24 shows the computational results in both single and multiple capacity models.

Results in Table 5.24 shows insignificant differences, while the data under |Ks| differ by one

only in the row under 6 DCs (V r
k ), the remaining results are almost the same.

The main reason to the observed results is that, we used the same rainfall data (Tables

A.5,A.6, A.7, A.8, A.9, A.10, A.11 and A.12) with the same intervals (values of A(k) and

B(k) in Table 5.3) in each DC zone for calculation of the three probabilities using 17-week

period instead of each week. This means that the probabilities in the combined 17 weeks is

similar to the finding of averages of the probabilities in each week for all 17 weeks for each

interval.

117



Table 5.24: Comparison of stochastic model results for Sections 5.5 and 5.6.

Type of Opt Section 5.5 results Section 5.6 results Cost differences

|Ks| Stochastic cost |Ks| Stochastic cost Numerical Percentage

C1(V̂k) 5 17,490,817.51 5 17,489,886.66 930.85 0.01

C1(V̄k) 5 14,706,927.63 5 14,705,302.35 1,625.28 0.01

C2 (V r
k ) 5 14,360,877.40 5 14,359,424.01 1,453.39 0.01

6 DCs (V r
k ) 6 13,988,157.14 5 13,987,511.59 645.56 0.00

7 DCs (V r
k ) 6 13,758,193.63 6 13,758,046.43 147.20 0.00

8 DCs (V r
k ) 6 13,758,193.63 6 13,758,046.43 147.20 0.00

Average 14,677,194.49 14,676,369.58 824.91 0.01

5.7 Results for the projected demand using extended

network

In Tanzania, the 2012 national population census revealed the annual population growth to

be 2.7% [83]. Hence there will be an increase in demand of the maize crop. We have therefore

studied the performance of the extended network based on the projected demands in the next

five and ten years. We have denoted the projected demand by D̂l. This is calculated from Dl

by considering a percentage increase for annual demand (denoted by Dl(↑) in Table 5.25) in

each corresponding number of years. In particular, we have considered the annual demand

increase of 5%, 10% and 12% as indicated in Table 5.25. Apart from the new demand, the

remaining inputs used for optimization are the same as those used in section 5.6 for eight

DCs. For this experiment we have used the mathematical model for the extended network

presented with the equations (5.39) - (5.40). The results are summarized in Table 5.25 where

the notations used in the columns are the same as those found in the text.

The results in Table 5.25 indicate the sustainability of the extended network for the next

five and ten years where up to 12% annual demand increase is possible. This is from the fact

that the current total capacity for eight DCs is 337,500 tons while the maximum observed

total capacity to be utilized is 319,317 tons. This is for 12% annual demand increase in the
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Table 5.25: Summary results for the increased demand

Years
|L|∑
l=1

D̂l Dl (↑) |Ks|
|Ks|∑
k=1

V r
k DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8

5 181,430 5% 7 181,571 25,000 - 39,000 18,144 29,000 39,000 18,144 13,283

217,716 10% 8 217,783 25,000 26,000 45,000 24,000 33,000 25,000 26,500 13,283

232,230 12% 7 232,288 28,500 - 45,144 24,000 39,000 53,000 26,500 16,144

10 217,716 5% 8 217,783 25,000 26,000 45,000 24,000 33,000 25,000 26,500 13,283

290,288 10% 7 290,573 39,361 - 59,000 34,000 38,929 63,000 43,000 13,283

319,317 12% 8 319,361 39,361 26,000 63,000 34,000 45,000 53,000 43,000 16,000

next ten years (see last row in Table 5.25 under
|Ks|∑
k=1

V r
k ). The number of DCs to be used in

projected demand D̂l, are seven and eight (see column under |Ks| in Table 5.25). Notice

that under the current demand Dl, only six DCs were found to be optimal.

The last eight columns under DC1 to DC8 in Table 5.25, indicate the capacity for each

selected DC. DC3 and DC6 mostly appear to have higher selected capacities than others

while DC8 has the lowest selected capacity. This is due to the number of CPs together with

their demands being higher for DC3 and DC6. These two DCs are located in semi-arid areas

where there is always deficit of maize crop harvest every year.

The results obtained with the above experiment clearly suggest that the government’s plan to

build three new DCs with suggested maximum capacities is appropriate, given the increased

demands.
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Chapter 6

Conclusions and future research

6.1 Conclusions

The capacitated two-level facility location problem (FLP) has been studied in this thesis.

The study involves a model that integrates three layers namely: production centers (PCs),

distribution centers (DCs) and customer points (CPs).

Using the mathematical model, a distribution network is established with minimum cost

for transportation of maize crop from PCs to CPs through DCs. We have studied both a

deterministic and a stochastic version of our model using a case study in Tanzania. The

consideration of the deterministic model in this thesis is mainly for comparison with the

results of the stochastic model. In both cases, we have studied two types of distribution

networks, the existing distribution network and an extended distribution network. The

existing distribution network is when five DCs are used while in the extended distribution

network, the same five DCs are used together with the three new proposed DCs. In these

two networks, the general goal is to satisfy the customers’ demand with minimum overall

distribution cost. We have considered four PCs, eight DCs and 93 CPs. These are the

ingredients of the studied network.
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The following are the summary results that have been revealed in the existing distribution

network for the deterministic model as detailed in Chapter 4:

(a) The manually operated network was found not to be optimal. This is due to the observed

overall cost saving that results from reallocation of PCs, DCs and CPs compared to the

manually operated network. The details are presented in section 4.2.2, Chapter 4.

(b) Through optimization, an improved network was established, resulting in an average

cost saving of $564 thousand, compared to the manually operated network. The model

predicted 4.27% of cost reduction from the cost of manually operated network. The

improved results show that only four DCs should be used out of the five DCs considered.

When considering the sustainability of the network over a period of time (e.g. five or ten

years to come) with maximum annual demands being satisfied, we have also studied and

analysed the extended network using eight DCs. This is based on high production capacities

in PCs and future increased demands. The results for this extended network are stated

below:

• By using eight DCs, an improvement in terms of cost reduction was achieved compared

to the existing network.

• The results for eight DCs have reduced the cost obtained in the existing network

in part (b) above by 3%. This is equivalent to a saving of $357 thousand. When we

compared to the cost of the manually operated existing network, the extended network

had reduced the cost by 7.27% (3% + 4.27%). This is a significant saving which has

been achieved through the extended network. In this experiment, only six DCs are

selected out of eight DCs where two of the six selected DCs are the newly proposed

DCs.

The stochastic model presented in Chapter 5 is an extension of the deterministic model

by considering the effect of rainfall in the transportation network. In the computational

experiments for the stochastic model, we have observed an overall network cost increase as
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compared to the cost of the corresponding deterministic model. Furthermore, the analysis

on location-allocations for PCs, DCs and CPs, also have been addressed in Chapter 5. We

have carried out these computations in the existing network and the extended network.

The computational results for the stochastic model are as follows:

(i) In the existing network, an average cost increase of 13.06% was observed compared to

the corresponding cost of the deterministic model.

(ii) In the case of the extended network using eight DCs, the cost increase for the stochastic

model is 11.32% as compared to the corresponding cost of the deterministic model.

This cost increase obtained for the extended network, is lower than that of the existing

network (13.06%) as presented in (i) above. This also clearly indicates the potential of

using extended network for cost reduction.

Generally, the cost increase due to stochastic rainfall is an important factor to be considered

prior to transportation planning. This is due to the fact that the condition of road networks,

in Tanzania, can be affected by rainfall (see Longido case in Appendix D). The Tanzanian

government is encouraged to consider this factor as suggested by this study.

The results obtained show that optimization as a decision tool in logistic problems is

important. It can be used by all stakeholders and practitioners in their planning. The

results of extended network also give more potential for future planning (e.g. expansion of

PCs’ and DCs’ capacities), and that this should be done using optimization as one of the

decision tools. The Tanzanian government is encouraged to use the results from this study

for reviewing its existing maize crop distribution network.

We have also studied the structure of the optimized extended network using increased annual

demand of maize crop over five and ten year horizons. Results show that in both horizons,

the proposed extended network is sustainable under 12% annual increase in demand over a
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period of 10 years.

6.2 Contributions

In the current literature, the two-level FLP does not address the stochasticity due to rainfall

effect, in particular in the context of a real life problem. In addition, to the best of our

knowledge, this is the first real life case study that has been carried out in the context of

Africa. The contributions of our study in the literature are as follows:

• The mathematical modelling of the real life problem;

• The study of the effectiveness of the current network used;

• The viability of the current network;

• The extension of the network to deal with increased demand.

6.3 Future research

There are possible directions that this research could lead to the following:

• The modelling carried out in this study can be done in other similar applications

particularly in the context of Africa.

• The two-level FLP studied here can be extended to VRP, supply chain and LRP.

• The model can be extended by the use of different transportation modes such as

railways. The railways are a cost effective mode of transportation as compared to

transportation by vehicles. A combination of two different modes, such as vehicles and

trains, can also be considered in the future modelling.

• The mathematical model can be extended to include the cost of carbon emissions. In

this case vehicles with different carbon emission rates can be decision variables.
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Appendix A

General information for collected data

and tables

The list of data used in this research and their sources are stated below.

• Tanzania National Roads Agency (TANROADS): This is an authority that deals with

road management in Tanzania. They managed National Roads Network (NRN) which

are classified into Trunk Roads (TR) and Regional Roads (RR). Through TANROADS,

I obtained road distances between regions as updated in March 2009. Distances in

thousand of kilometers (km), shown in Tables B.1, B.7, B.8, B.9 and B.10, were sourced

from this authority. The original data is presented in Figure C.3.

• Ministry of Agriculture, Food Security and Cooperatives (MAFSC): This is the

ministry that responsible for all agricultural matters including data for all crops and

production forecasts. Maize crop production capacity and surplus was obtained from

‘Volume 1: The 2010/11 Final Food Crop Production Forecast for 2011/12 Food

Security EXECUTIVE SUMMARY’( http://www.kilimo.go.tz/publications). The

used PCs’ capacity are based on 2011/12 production year and are sourced from website

of this ministry. The production capacity for each PC is shown in Table B.4. The values
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were obtained through the computations presented in Table B.3.

• National Food Reserve Agency (NFRA): This is an established autonomous agency

under MAFSC that specifically deals with food reserve (buying food crops for storage).

The main functions are defined as to (i) procure and store emergency food stock that

should suffice to address a food disaster for at least three (3) months period, (ii) Stock

re-cycling, and (iii) stock release that would stabilize food prices in the market. All the

DCs are managed by NFRA. The unused DCs or some capacities within DCs by NFRA

can be hired by private companies under public private partnership (PPP) policy of

the country. The private companies used these DCs to store their grain crops for the

business purposes within and outside the country. Data on DCs’ existing capacities,

transportation cost (Tanzania shillings per km per ton) and DCs’ annual fixed cost

are collected in NFRA as shown in Figures C.1, C.4 and C.5.

• Prime Minister Office (Disaster Department): The disaster management department

in the Prime Minister’s office (PMO) deals with all disaster cases in the country. Food

shortage is one of the disaster that is managed by this department. The management

of maize crop from DCs to CPs is under this department. In this department,

districts’ (customers) demand quantities of maize crop (2004-2010) were obtained.

Some distances between DCs and CPs (93 districts) are also sourced here. Customers’

demand are as shown in the Table A.13. The regional distances (from TANROADS)

and some given distances from DCs to CPs are used to compute the other DCs to

CPs distances. The task was also done by using Tanzania map showing regions and

their districts. The map is in the appendix as presented in Figure C.6. The DC to CP

distances in kilometers are shown in Tables B.7, B.8, B.9 and B.10. In general data for

optimization are presented in Tables B.1, A.13, B.2, B.3, B.4, B.7, B.8, B.9 and B.10.

The tables are referred in the text accordingly as per computations requirement.
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Table A.1: Computational results: CPl to DCk allocation and dl for combined 17 weeks

Case 1, true capacity (V̂k).

CPl & dl (K = DC3) CPl & dl (K = DC1) CPl & dl (K = DC1) CPl & dl (K = DC5)

Babati 83.53 Bagamoyo 160.06 Same 152.29 Biharamulo 53.06

Bahi 73.47 Handeni 192.18 Simanjiro 200.76 BukobaR 16.94

Bariadi 3.71 Kibaha 84.18 Geita 22.53

Chamwino 112.47 Kilindi 69.53 Ilemela 5.35

DodomaR 191.71 Kilosa 66.94 Kwimba 25.35

DodomaU 38.18 Kilwa 43.06 Magu 329.00

Hanang 106.88 Kisarawe 107.76 CPl&dl(K = DC2) Meatu 246.00

Igunga 68.94 Korogwe 37.94 Arumeru 117.94 Misungwi 72.59

Iramba 137.53 LindiR 44.76 ArushaU 73.41 Muleba 21.71

Kahama 50.41 Liwale 40.76 Bunda 213.94 Nyamagana 4.24

Kishapu 93.18 Lushoto 76.35 Hai 25.35 Sengerema 11.76

Kiteto 51.35 Mafia 1.88 Hanang 1.59 Ukerewe 44.41

Kondoa 108.65 Masasi 139.65 Karatu 133.94

Kongwa 194.53 Mkinga 81.18 Longido 264.88 CPl&dl(K = DC4)

Kwimba 96.41 Mkuranga 46.94 Mbulu 72.82 Chunya 60.59

Manyoni 227.71 MorogoroR 98.06 Monduli 255.59 IringaR 233.76

Maswa 133.76 Mpwapwa 158.35 MoshiR 59.24 Kilolo 18.88

Mpwapwa 17.71 MtwaraR 39.29 Musoma 58.53 Kilombero 17.65

Nzega 135.41 Muheza 11.76 MusomaR 191.00 Ludewa 8.82

ShinyangaR 37.76 Mvomero 84.94 Ngorongoro 378.00 Makete 2.41

ShinyangaU 5.88 Mwanga 53.94 Rombo 215.47 Mbarali 100.29

Sikonge 29.76 Nachingwea 70.94 Rorya 129.18 Mbozi 5.88

SingidaR 180.88 Nanyumbu 49.06 Serengeti 29.94 Mufindi 45.18

SingidaU 8.82 Pangani 54.94 Siha 19.59 Njombe 103.18

TaboraR 4.00 Ruangwa 41.24 Tarime 53.71 Ulanga 184.71

TaboraU 10.71 Rufiji 106.59

Uyui 90.76
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Table A.2: Computational results: CPl to DCk allocation and dl for combined 17 weeks

Case 1, actual capacity (V̄k).

CPl & dl (K = DC1) CPl & dl (K = DC5) CPl & dl (K = DC5) CPl & dl (K = DC3)

Bagamoyo 160.06 Bariadi 3.71 TaboraU 10.71 Babati 83.53

Handeni 192.18 Biharamulo 53.06 Tarime 53.71 Bahi 73.47

Kibaha 84.18 BukobaR 16.94 Ukerewe 44.41 Chamwino 112.47

Kilindi 69.53 Bunda 213.94 Uyui 90.76 DodomaR 191.71

Kilombero 17.65 Geita 22.53 DodomaU 38.18

Kilosa 66.94 Igunga 68.94 CPl&dl(K = DC2) Hanang 2.65

Kilwa 43.06 Ilemela 5.35 Arumeru 117.94 Kiteto 51.35

Kisarawe 107.76 Iramba 137.53 ArushaU 73.41 Kondoa 108.65

Korogwe 37.94 Kahama 50.41 Hai 25.35 Kongwa 194.53

LindiR 44.76 Kishapu 93.18 Hanang 105.82 Manyoni 227.71

Liwale 40.76 Kwimba 121.76 Karatu 133.94 Mpwapwa 176.06

Lushoto 76.35 Magu 329.00 Longido 264.88 SingidaR 180.88

Mafia 1.88 Maswa 133.76 Mbulu 72.82 SingidaU 8.82

Masasi 139.65 Meatu 246.00 Monduli 255.59

Mkinga 81.18 Misungwi 72.59 MoshiR 59.24 CPl&dl(K = DC4)

Mkuranga 46.94 Muleba 21.71 Mwanga 53.94 Chunya 60.59

MorogoroR 98.06 Musoma 58.53 Ngorongoro 378.00 IringaR 233.76

MtwaraR 39.29 MusomaR 191.00 Rombo 215.47 Kilolo 18.88

Muheza 11.76 Nyamagana 4.24 Rorya 107.59 Ludewa 8.82

Mvomero 84.94 Nzega 135.41 Same 152.29 Makete 2.41

Nachingwea 70.94 Rorya 21.59 Serengeti 29.94 Mbarali 100.29

Nanyumbu 49.06 Sengerema 11.76 Siha 19.59 Mbozi 5.88

Pangani 54.94 ShinyangaR 37.76 Simanjiro 200.76 Mufindi 45.18

Ruangwa 41.24 ShinyangaU 5.88 Njombe 103.18

Rufiji 106.59 Sikonge 29.76

Ulanga 184.71 TaboraR 4.00

127



Table A.3: Computational results: CPl to DCk allocation and dl for combined 17 weeks in

Case 2.

CPl & dl (K = DC3) CPl & dl (K = DC5) CPl & dl (K = DC2) CPl & dl (K = DC1)

Babati 83.53 Bariadi 3.71 Arumeru 117.94 Bagamoyo 160.06

Bahi 73.47 Biharamulo 53.06 ArushaU 73.41 Handeni 192.18

Chamwino 112.47 BukobaR 16.94 Hai 25.35 Kibaha 84.18

DodomaR 191.71 Bunda 213.94 Longido 264.88 Kilindi 69.53

DodomaU 38.18 Geita 22.53 Monduli 255.59 Kilwa 43.06

Hanang 108.47 Ilemela 5.35 MoshiR 59.24 Kisarawe 107.76

Igunga 68.94 Kahama 50.41 Ngorongoro 378.00 Korogwe 37.94

Iramba 137.53 Kishapu 93.18 Rombo 215.47 LindiR 44.76

Karatu 133.94 Kwimba 121.76 Rorya 63.76 Liwale 40.76

Kilosa 66.94 Magu 329.00 Same 55.65 Lushoto 76.35

Kiteto 51.35 Maswa 133.76 Serengeti 29.94 Mafia 1.88

Kondoa 108.65 Meatu 246.00 Siha 19.59 Masasi 139.65

Kongwa 194.53 Misungwi 72.59 Mkinga 81.18

Manyoni 227.71 Muleba 21.71 CPl & dl (K = DC4 Mkuranga 46.94

Mbulu 72.82 Musoma 58.53 Chunya 60.59 MtwaraR 39.29

MorogoroR 98.06 MusomaR 191.00 IringaR 233.76 Muheza 11.76

Mpwapwa 176.06 Nyamagana 4.24 Kilolo 18.88 Nachingwea 70.94

Mvomero 84.94 Rorya 65.41 Kilombero 17.65 Nanyumbu 49.06

Mwanga 53.94 Sengerema 11.76 Ludewa 8.82 Pangani 54.94

Nzega 135.41 ShinyangaR 37.76 Makete 2.41 Ruangwa 41.24

Sikonge 27.53 ShinyangaU 5.88 Mbarali 100.29 Rufiji 106.59

Simanjiro 200.76 Sikonge 2.24 Mbozi 5.88 Same 96.65

SingidaR 180.88 Tarime 53.71 Mufindi 45.18

SingidaU 8.82 Ukerewe 44.41 Njombe 103.18

TaboraR 4.00 Uyui 90.76 Ulanga 184.71

TaboraU 10.71
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Table A.4: Computational results: CPl to DCk allocation and dl for combined 17 weeks

using eight DCs.

CPl & dl (K = DC6) CPl & dl (K = DC6) CPl & dl (K = DC3) CPl & dl (K = DC4)

Arumeru 117.94 Nyamagana 4.24 Babati 39.24 Chunya 60.59

ArushaU 73.41 Rorya 75.29 Bahi 73.47 IringaR 233.76

Babati 44.29 Sengerema 11.76 Chamwino 112.47 Kilolo 18.88

Hai 25.35 Ukerewe 44.41 DodomaR 191.71 Kilombero 17.65

Hanang 108.47 DodomaU 38.18 Ludewa 8.82

Karatu 133.94 CPl & dl (K = DC1) Handeni 21.00 Makete 2.41

Longido 264.88 Bagamoyo 160.06 Igunga 68.94 Mbarali 100.29

Mbulu 72.82 Handeni 171.18 Iramba 137.53 Mbozi 5.88

Monduli 255.59 Kibaha 84.18 Kilosa 66.94 Mufindi 45.18

MoshiR 59.24 Kilindi 69.53 Kiteto 51.35 Njombe 103.18

Ngorongoro 378.00 Kilwa 43.06 Kondoa 108.65 Ulanga 184.71

Rombo 215.47 Kisarawe 107.76 Kongwa 194.53

Rorya 53.88 Korogwe 37.94 Manyoni 227.71 CPl & dl (K = DC5)

Same 152.29 LindiR 44.76 MorogoroR 98.06 Bariadi 3.71

Serengeti 29.94 Liwale 40.76 Mpwapwa 176.06 Biharamulo 53.06

Siha 19.59 Lushoto 76.35 Mvomero 84.94 Kahama 50.41

Tarime 53.71 Mafia 1.88 Mwanga 53.94 Kishapu 93.18

CPl & dl (K = DC7) Masasi 139.65 Nzega 135.41 Kwimba 121.76

BukobaR 16.94 Mkinga 81.18 Sikonge 13.12 Maswa 133.76

Bunda 213.94 Mkuranga 46.94 Simanjiro 200.76 Meatu 246.00

Geita 22.53 MtwaraR 39.29 SingidaR 180.88 ShinyangaR 37.76

Ilemela 5.35 Muheza 11.76 SingidaU 8.82 ShinyangaU 5.88

Magu 329.00 Nachingwea 70.94 TaboraR 4.00 Sikonge 16.65

Misungwi 72.59 Nanyumbu 49.06 TaboraU 10.71 Uyui 90.76

Muleba 21.71 Pangani 54.94

Musoma 58.53 Ruangwa 41.24

MusomaR 191.00 Rufiji 106.59
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Table A.5: DC1: DC zone - weekly rainfall in mm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2007 4.9 0.0 1.8 0.0 1.8 0.0 0.0 29.2 10.2 39.5 61.8 1.7 144.9 4.2 89.8 31.4 8.4

2008 0.0 3.7 11.5 37.1 0.0 11.0 45.1 0.0 3.7 23.1 0.0 43.4 91.2 129.8 65.4 51.5 56.9

2009 0.0 0.5 0.0 13.9 13.8 0.1 29.6 5.4 16.8 30.5 33.3 1.6 38.0 74.9 16.6 18.7 129.9

2010 9.7 4.3 0.0 0.0 3.9 12.9 0.0 3.6 64.4 51.5 0.0 62.6 91.0 32.1 10.2 41.8 239.1

2007 18.0 1.0 0.2 0.0 19.3 12.2 0.0 9.0 16.9 15.6 28.4 27.4 64.9 24.9 61.0 11.5 47.1

2008 0.0 16.5 10.8 69.0 0.0 35.2 7.6 0.0 4.7 70.3 1.2 96.1 99.7 138.3 73.5 55.4 71.9

2009 0.2 0.0 0.0 28.9 1.0 0.4 63.2 4.5 32.3 36.3 0.5 1.3 65.8 33.9 1.1 24.2 54.6

2010 12.2 28.0 0.0 0.0 1.6 4.8 1.2 2.6 55.6 12.3 0.0 32.9 14.3 55.6 24.8 25.8 140.7

2007 35.0 5.8 0.0 3.8 143.6 12.1 5.4 21.5 53.5 3.3 12.7 20.6 54.5 15.0 69.0 58.3 0.0

2008 0.0 67.8 37.4 41.3 79.5 96.7 50.6 0.0 3.3 2.6 60.6 79.1 0.0 40.7 120.7 21.9 29.9

2010 78.6 20.2 0.0 36.5 0.0 0.0 107.1 14.9 2.0 0.0 39.0 63.8 61.1 128.3 44.3 2.5 24.8

2007 45.0 37.6 0.0 0.0 42.1 40.2 0.1 34.0 3.3 10.6 77.8 17.4 44.6 31.8 0.5 31.2 71.9

2008 0.0 1.5 0.3 13.5 25.3 28.7 9.6 17.2 8.5 0.8 13.8 57.7 85.2 52.3 150.0 42.6 46.4

2009 0.0 0.0 0.0 11.8 40.7 28.7 9.6 17.2 12.8 13.7 14.7 0.0 54.1 31.8 0.5 31.2 71.9

2010 47.4 39.9 0.0 0.0 0.0 55.1 15.3 10.2 34.8 9.7 0.2 24.7 22.0 39.1 16.6 77.9 63.5

2007 11.1 0.7 0.0 4.4 69.9 71.1 60.3 5.9 74.7 28.1 25.6 27.2 35.2 10.6 95.2 46.1 25.1

2008 73.7 37.7 11.5 47.7 41.1 61.3 47.9 113.8 52.5 71.4 11.2 65.5 0.0 9.1 94.1 12.2 40.6

2009 0.0 0.7 10.7 3.0 13.7 159.2 36.6 90.7 32.2 52.3 0.8 36.0 88.2 15.7 0.0 26.5 19.3

2010 32.2 49.4 0.0 86.5 0.1 22.8 171.3 91.4 63.7 36.0 3.0 92.4 32.8 32.9 32.9 32.9 32.9

2007 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 2.2 8.2 4.7 29.3 0.0 139.4 41.2 10.3

2008 0.0 0.0 46.2 1.7 0.0 2.1 40.2 0.0 8.7 1.8 0.3 26.1 53.5 66.0 14.2 7.1 39.3

2009 0.0 0.0 1.4 1.3 1.0 0.0 47.4 9.6 0.5 0.0 0.7 0.2 22.1 45.8 139.7 16.8 25.2

2010 56.1 70.5 0.0 0.0 0.2 33.0 0.0 0.0 8.5 25.8 0.5 50.2 46.4 75.6 113.2 65.7 43.1

Max 78.6 70.5 46.2 86.5 143.6 159.2 171.3 113.8 74.7 71.4 77.8 96.1 144.9 138.3 150.0 77.9 239.1

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0

Average 18.5 16.8 5.7 17.4 21.7 29.9 32.5 20.9 24.5 23.4 17.1 36.2 53.9 47.3 59.7 33.7 56.2
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Table A.6: DC2: DC zone - weekly rainfall in mm.

Year Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2007 8.2 6.5 3.9 14.2 38.5 6.1 4.9 2.9 13.0 10.2 9.9 13.5 122.2 6.3 40.0 40.5 18.0

2008 0.0 18.9 2.0 4.4 0.0 47.7 28.0 2.0 6.3 9.8 5.5 73.3 132.6 40.8 86.8 17.1 132.7

2009 0.0 0.0 26.7 1.0 19.3 15.3 15.3 15.3 8.9 0.0 18.1 0.0 11.7 31.0 73.4 1.2 15.1

2010 12.4 63.4 10.3 0.0 25.1 23.6 22.5 29.9 7.6 7.5 35.1 30.9 75.8 94.5 33.5 111.9 25.5

2007 9.2 0.0 0.0 4.2 53.6 3.6 0.3 0.0 0.0 0.0 7.0 8.3 20.9 1.9 46.9 90.0 6.0

2008 0.0 0.0 7.9 36.2 0.0 1.0 39.6 0.0 14.6 1.0 40.9 150.5 267.4 21.0 84.8 47.1 85.0

2009 0.0 0.0 0.0 19.9 9.6 0.0 23.0 23.7 17.1 3.6 0.0 0.0 14.5 29.4 93.3 0.2 115.2

2010 0.0 15.0 0.0 0.0 0.5 0.0 5.3 0.6 0.0 2.5 8.8 32.2 111.1 89.7 194.3 115.9 14.4

2007 128.4 74.3 3.5 2.6 39.5 39.0 60.4 15.9 8.4 118.4 90.0 20.7 0.5 34.1 34.1 34.1 34.1

2008 0.0 8.3 41.0 0.5 15.0 98.2 118.0 1.8 60.1 17.7 65.8 45.1 68.2 9.9 43.2 23.4 49.5

2009 2.4 0.0 1.5 6.5 57.1 2.3 3.9 7.3 24.3 25.4 62.7 0.0 94.3 23.9 104.2 0.0 18.7

Max 128.4 74.3 41 36.2 57.1 98.2 118 29.9 60.1 118.4 90 150.5 267.4 94.5 194.3 115.9 132.7

Min 0 0 0 0 0 0 0.3 0 0 0 0 0 0.5 1.9 33.5 0 6

Average 14.6 16.9 8.8 8.1 23.5 21.5 29.2 9.0 14.6 17.8 31.3 34.0 83.6 34.8 75.9 43.8 46.7
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Table A.7: DC3: DC zone - weekly rainfall in mm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2007 84.3 55.8 83.1 30.7 97.3 61.1 74.9 5.5 105.8 35.8 0.0 30.0 54.4 0.0 2.9 1.5 0.0

2008 1.7 0.0 6.8 36.0 42.4 11.8 97.1 8.2 20.7 3.8 40.0 61.4 60.3 3.7 3.0 2.6 0.0

2009 29.1 0.0 0.0 12.9 69.8 37.7 2.1 34.4 31.7 0.0 23.7 1.4 54.9 85.6 12.0 0.0 0.2

2010 38.8 44.9 0.0 20.3 66.5 19.0 4.2 30.8 15.2 1.0 0.0 8.2 17.0 1.5 0.0 2.1 0.1

2007 73.2 113.8 40.6 12.1 36.8 51.1 45.3 0.0 5.2 17.8 19.7 13.5 0.0 1.0 47.4 4.7 0.0

2008 4.0 4.9 21.8 34.5 79.1 29.1 47.0 9.2 1.5 5.2 13.7 95.0 100.4 0.5 0.2 3.0 2.4

2009 59.5 65.6 10.4 46.0 34.5 32.0 0.4 10.4 61.7 41.9 66.3 5.2 34.2 44.3 5.2 0.0 0.0

2010 44.5 24.9 12.8 12.1 31.0 7.0 10.4 77.2 12.3 22.4 2.0 15.0 17.4 3.1 0.0 0.0 0.2

Max 84.3 113.8 83.1 46.0 97.3 61.1 97.1 77.2 105.8 41.9 66.3 95.0 100.4 85.6 47.4 4.7 2.4

Min 1.7 0.0 0.0 12.1 31.0 7.0 0.4 0.0 1.5 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0

Average 41.9 38.7 21.9 25.6 57.2 31.1 35.2 22.0 31.8 16.0 20.7 28.7 42.3 17.5 8.8 1.7 0.4

Table A.8: DC4: DC zone - weekly rainfall in mm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2007 15.1 31.9 31.3 58.2 30.7 9.1 27.1 2.3 10.3 24.7 104.5 6.3 16.9 8.0 7.4 0.0 0.0

2008 48.5 11.4 40.3 55.7 9.0 98.3 82.6 19.0 5.8 10.8 16.8 60.9 46.3 13.9 42.8 0.0 1.7

2009 30.0 6.4 10.2 0.8 113.6 45.7 1.6 24.5 30.7 19.2 62.8 22.2 16.6 99.1 0.0 0.0 10.2

2010 33.2 48.0 0.0 27.3 0.9 18.8 13.9 67.6 37.1 12.1 10.2 10.9 7.8 4.4 0.0 10.8 4.1

2007 35.8 65.3 80.0 26.6 63.8 24.1 55.1 1.5 40.1 46.4 48.3 2.0 33.3 10.1 7.6 34.5 17.9

2008 60.5 36.6 29.4 59.8 45.0 68.9 65.0 19.5 26.0 19.8 18.7 68.4 36.1 45.0 17.1 13.3 1.3

2009 87.5 8.2 73.3 23.4 80.3 89.3 34.1 31.8 9.3 48.8 103.1 13.6 0.5 24.0 0.8 0.0 0.5

2010 42.2 50.1 1.4 47.6 45.3 18.2 20.1 47.1 50.1 39.6 61.4 59.2 31.8 19.0 8.7 1.6 8.5

Max 87.5 65.3 80.0 59.8 113.6 98.3 82.6 67.6 50.1 48.8 104.5 68.4 46.3 99.1 42.8 34.5 17.9

Min 15.1 6.4 0.0 0.8 0.9 9.1 1.6 1.5 5.8 10.8 10.2 2.0 0.5 4.4 0.0 0.0 0.0

Average 44.1 32.2 33.2 37.4 48.6 46.5 37.4 26.7 26.2 27.7 53.2 30.4 23.7 27.9 10.5 7.5 5.5
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Table A.9: DC5: DC zone - weekly rainfall in mm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2007 23.8 51.7 19.3 7.7 8.7 22.4 36.1 3.2 25.7 49.7 57.6 9.3 0.8 0.0 47.8 31.7 3.7

2008 16.0 7.8 37.5 26.4 38.2 40.7 28.6 32.3 108.1 11.2 22.3 44.7 54.6 4.6 30.2 84.1 0.0

2009 23.5 9.1 48.5 86.1 24.2 25.9 17.5 32.9 34.5 7.0 35.9 3.5 66.1 52.6 8.0 14.0 0.9

2010 12.4 1.7 1.0 10.2 36.6 6.4 23.3 46.9 53.3 11.9 0.9 28.4 52.7 7.3 26.2 32.2 3.8

2007 43.9 1.0 8.3 4.5 46.6 11.6 16.3 20.8 3.8 8.6 27.8 38.0 17.4 0.0 73.7 8.4 7.8

2008 5.5 3.2 18.3 0.0 0.0 42.9 11.1 3.0 5.6 12.5 41.7 132.4 36.2 0.0 42.5 28.8 0.6

2009 4.0 0.0 5.1 11.9 7.7 19.7 1.5 0.0 7.9 8.6 4.3 18.2 27.7 36.3 4.4 45.3 3.0

2010 33.8 35.6 17.5 3.7 31.1 13.1 5.4 49.7 138.9 15.9 14.4 142.5 19.8 30.5 104.1 35.5 28.1

2007 56.1 16.7 72.8 24.9 24.9 76.2 20.0 8.6 25.6 54.6 14.6 36.4 61.3 0.0 176.7 120.4 50.3

2008 2.1 60.2 94.0 156.8 0.4 126.5 17.3 7.0 36.3 102.6 24.1 46.1 78.5 0.0 103.5 95.0 5.2

2009 38.6 42.4 69.3 138.9 9.3 93.1 12.0 77.3 36.1 45.6 168.3 84.7 54.5 39.9 179.3 118.9 72.4

2010 14.5 12.9 43.8 60.0 13.3 57.4 147.1 144.4 71.1 13.8 25.9 55.0 96.1 119.0 20.5 8.9 201.4

2007 24.4 35.7 84.3 0.0 35.7 4.6 55.4 43.8 57.7 58.7 31.3 22.9 43.0 0.0 84.1 77.0 25.3

2008 1.4 24.4 13.3 34.3 7.0 13.0 37.3 3.1 24.7 9.1 59.1 61.2 5.8 0.0 44.1 18.1 6.2

2009 12.5 3.1 13.9 86.5 14.5 54.8 0.8 20.4 10.9 4.9 37.3 3.6 107.1 92.2 93.2 25.0 9.9

2010 73.9 45.5 0.0 6.1 11.7 14.3 100.4 71.8 22.8 45.1 0.0 85.4 106.7 3.5 35.4 35.3 32.6

2007 92.4 18.0 34.7 43.5 89.3 41.1 76.6 15.8 8.9 61.4 6.2 6.5 0.0 0.0 8.0 22.2 0.0

2008 20.4 41.6 52.5 21.3 46.2 4.6 64.9 21.1 32.6 26.4 80.9 16.9 46.4 0.9 78.5 13.1 1.7

2009 33.3 25.7 35.9 155.0 33.7 67.2 37.6 44.6 82.5 1.5 73.6 0.7 25.3 27.2 72.4 0.3 3.7

2010 84.0 8.4 0.6 26.9 53.1 12.8 34.7 12.6 58.3 45.3 45.6 125.7 18.7 0.7 4.6 26.7 9.3

Max 92.4 60.2 94.0 156.8 89.3 126.5 147.1 144.4 138.9 102.6 168.3 142.5 107.1 119.0 179.3 120.4 201.4

Min 1.4 0.0 0.0 0.0 0.0 4.6 0.8 0.0 3.8 1.5 0.0 0.7 0.0 0.0 4.4 0.3 0.0

Average 30.8 22.2 33.5 45.2 26.6 37.4 37.2 33.0 42.3 29.7 38.6 48.1 45.9 20.7 61.9 42.0 23.3
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Table A.10: DC6: DC zone - weekly rainfall in mm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2007 0 0 1.5 0.5 15 2.3 3.9 1.8 8.4 17.7 62.7 0 0.5 34.1 34.1 34.1 34.1

2008 2.4 8.3 3.5 2.6 39.5 39 60.4 7.3 24.3 25.4 65.8 20.7 68.2 23.9 43.2 23.4 49.5

2009 128.4 74.3 41 6.5 57.1 98.2 118 15.9 60.1 118.4 90 45.1 94.3 9.9 104.2 0 18.7

Max 128.4 74.3 41.0 6.5 57.1 98.2 118.0 15.9 60.1 118.4 90.0 45.1 94.3 34.1 104.2 34.1 49.5

Min 0.0 0.0 1.5 0.5 15.0 2.3 3.9 1.8 8.4 17.7 62.7 0.0 0.5 9.9 34.1 0.0 18.7

Average 43.6 27.5 15.3 3.2 37.2 46.5 60.8 8.3 30.9 53.8 72.8 21.9 54.3 22.6 60.5 19.2 34.1

Table A.11: DC7: DC zone - weekly rainfall in mm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2007 1.4 3.1 0.0 0.0 7.0 4.6 0.8 3.1 10.9 4.9 0.0 3.6 5.8 0.0 35.4 18.1 6.2

2008 12.5 24.4 13.3 6.1 11.7 13.0 37.3 20.4 22.8 9.1 31.3 22.9 43.0 0.0 44.1 25.0 9.9

2009 24.4 35.7 13.9 34.3 14.5 14.3 55.4 43.8 24.7 45.1 37.3 61.2 106.7 3.5 84.1 35.3 25.3

2010 73.9 45.5 84.3 86.5 35.7 54.8 100.4 71.8 57.7 58.7 59.1 85.4 107.1 92.2 93.2 77.0 32.6

Max 73.9 45.5 84.3 86.5 35.7 54.8 100.4 71.8 57.7 58.7 59.1 85.4 107.1 92.2 93.2 77.0 32.6

Min 1.4 3.1 0.0 0.0 7.0 4.6 0.8 3.1 10.9 4.9 0.0 3.6 5.8 0.0 35.4 18.1 6.2

Average 28.1 27.2 27.9 31.7 17.2 21.7 48.5 34.8 29.0 29.4 31.9 43.3 65.6 23.9 64.2 38.8 18.5

Table A.12: DC8: DC zone - weekly rainfall in mm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2007 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.3 0.2 22.1 0.0 14.2 7.1 10.3

2008 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.8 0.5 4.7 29.3 45.8 113.2 16.8 25.2

2009 0.4 0.0 1.4 1.3 0.2 2.1 40.2 0.0 8.5 2.2 0.7 26.1 46.4 66.0 139.4 41.2 39.3

2010 56.1 70.5 46.2 1.7 1.0 33.0 47.4 9.6 8.7 25.8 8.2 50.2 53.5 75.6 139.7 65.7 43.1

Max 56.1 70.5 46.2 1.7 1.0 33.0 47.4 9.6 8.7 25.8 8.2 50.2 53.5 75.6 139.7 65.7 43.1

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.3 0.2 22.1 0.0 14.2 7.1 10.3

Average 14.1 17.6 11.9 0.7 0.3 8.8 21.9 2.4 4.5 7.5 2.4 20.3 37.8 46.8 101.6 32.7 29.5
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Table A.13: CPs, (CPl, l ∈ L) and their annual respective demands obtained from the

field, Dl (tons).

l ∈ L Dl l ∈ L Dl l ∈ L Dl l ∈ L Dl

Arumeru 2,005 Kilolo 321 Meatu 4,182 Ruangwa 701

ArushaU 1,248 Kilombero 300 Misungwi 1,234 Rufiji 1,812

Babati 1,420 Kilosa 1,138 Mkinga 1,380 Same 2,589

Bagamoyo 2,721 Kilwa 732 Mkuranga 798 Sengerema 200

Bahi 1,249 Kisarawe 1,832 Monduli 4,345 Serengeti 509

Bariadi 63 Kishapu 1,584 MorogoroR 1,667 ShinyangaR 642

Biharamulo 902 Kiteto 873 MoshiR 1,007 ShinyangaU 100

BukobaR 288 Kondoa 1,847 Mpwapwa 2,993 Siha 333

Bunda 3,637 Kongwa 3,307 MtwaraR 668 Sikonge 506

Chamwino 1,912 Korogwe 645 Mufindi 768 Simanjiro 3,413

Chunya 1,030 Kwimba 2,070 Muheza 200 SingidaR 3,075

DodomaR 3,259 Lindi-R 761 Muleba 369 SingidaU 150

DodomaU 649 Liwale 693 Musoma 995 TaboraR 68

Geita 383 Longido 4,503 MusomaR 3,247 TaboraU 182

Hai 431 Ludewa 150 Mvomero 1,444 Tarime 913

Hanang 1,844 Lushoto 1,298 Mwanga 917 Ukerewe 755

Handeni 3,267 Mafia 32 Nachingwea 1,206 Ulanga 3,140

Igunga 1,172 Magu 5,593 Nanyumbu 834 Uyui 1,543

Ilemela 91 Makete 41 Ngorongoro 6,426

Iramba 2,338 Manyoni 3,871 Njombe 1,754

IringaR 3,974 Masasi 2,374 Nyamagana 72

Kahama 857 Maswa 2,274 Nzega 2,302

Karatu 2,277 Mbarali 1,705 Pangani 934

Kibaha 1,431 Mbozi 100 Rombo 3,663

Kilindi 1,182 Mbulu 1,238 Rorya 2,196
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Table A.14: The demand within 2004 - 2010 in each year in given CP

S/N District Year and demand (Dl) in tons

2004 2005 2006 2009 2010 Max Dl value

1 Arumeru 1023 819 520 2005 833 2005

2 Arusha-U 1248 454 1248

3 Babati 1150 379 1420 667 1420

4 Bagamoyo 2721 1194 1509 1320 2721

5 Bahi 1249 896 1249

6 Bariadi 63 63

7 Biharamulo 902 902

8 Bukoba-R 288 288

9 Bunda 3637 832 851 553 3637

10 Chamwino 1837 1912 1912

11 Chunya 1030 259 1030

12 Dodoma-R 2207 1090 3259 3259

13 Dodoma-U 100 322 422 600 649 649

14 Geita 383 383

15 Hai 193 316 431 387 431

16 Hanang 488 111 1844 761 1844

17 Handeni 1429 3267 556 3267

18 Igunga 1172 1119 1172

19 Ilemela 91 91

20 Iramba 2338 526 582 2338

21 Iringa-R 3974 251 731 1238 321 3974

22 Kahama 857 857

23 Karatu 724 725 1770 2277 681 2277
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Table A.15: The demand within 2004 - 2010 in each year in given CP

S/N District Year and demand (Dl) in tons

2004 2005 2006 2009 2010 Max Dl value

24 Kibaha 1431 109 348 1431

25 Kilindi 1182 300 883 1182

26 Kilolo 184 284 321 70 321

27 Kilombero 300 300

28 Kilosa 500 0 1138 482 1138

29 Kilwa 413 394 621 732 732

30 Kisarawe 1832 52 21 1832

31 Kishapu 1584 526 1070 1584

32 Kiteto 693 148 873 845 873

33 Kondoa 1847 60 1212 737 517 1847

34 Kongwa 200 2311 3307 2507 3307

35 Korogwe 605 67 645 581 645

36 Kwimba 2070 1123 969 89 2070

37 Lindi-R 200 626 622 761 234 761

38 Liwale 150 138 130 693 131 693

39 Longido 4503 1419 4503

40 Ludewa 150 150

41 Lushoto 627 1298 950 1298

42 Mafia 32 32

43 Magu 5593 1241 1127 5593

44 Makete 41 41

45 Manyoni 3871 1133 1112 533 3871

46 Masasi 1914 941 2374 26 2374

47 Maswa 2274 324 553 475 2274
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Table A.16: The demand within 2004 - 2010 in each year in given CP

S/N District Year and demand (Dl) in tons

2004 2005 2006 2009 2010 Max Dl value

48 Mbarali 1705 674 1705

49 Mbozi 100 100

50 Mbulu 100 591 1238 274 1238

51 Meatu 4182 1898 296 1318 4182

52 Misungwi 1234 765 954 1234

53 Mkinga 1380 134 1380

54 Mkuranga 798 798

55 Monduli 2031 1085 1429 4345 1280 4345

56 Morogoro-R 1667 772 443 1667

57 Moshi-R 394 1007 605 642 1007

58 Mpwapwa 2157 236 673 2993 1189 2993

59 Mtwara-R 668 668

60 Mufindi 768 201 123 768

61 Muheza 200 71 200

62 Muleba 369 369

63 Musoma 995 995

64 Musoma-R 3146 525 552 3247 3247

65 Mvomero 1444 1089 616 1444

66 Mwanga 917 126 179 814 434 917

67 Nachingwea 500 226 1206 1206

68 Nanyumbu 695 834 834

69 Ngorongoro 499 820 6426 3024 6426

70 Njombe 1754 366 587 1754

71 Nyamagana 72 72
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Table A.17: The demand within 2004 - 2010 in each year in given CP

S/N District Year and demand (Dl) in tons

2004 2005 2006 2009 2010 Max Dl value

72 Nzega 2302 262 2302

73 Pangani 934 706 934

74 Rombo 874 3663 3663

75 Rorya 2196 2196

76 Ruangwa 336 241 211 701 89 701

77 Rufiji 1812 298 599 1812

78 Same 1387 1139 1598 2589 1548 2589

79 Sengerema 200 200

80 Serengeti 509 509

81 Shinyanga-R 50 568 642 642

82 Shinyanga -U 100 76 91 100

83 Siha 125 333 333

84 Sikonge 192 506 506

85 Simanjiro 1519 504 1024 3413 2239 3413

86 Singida -R 3075 310 3075

87 Singida U 150 150

88 Tabora -R 68 68

89 Tabora-U 182 182

90 Tarime 381 913 913

91 Ukerewe 547 755 755

92 Ulanga 3140 3140

93 Uyui 1543 1543

Total annual 94,649 27,614 37,319 92,067 41,317 145,144
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Appendix B

Research data

Table B.1: PCs and DCs: Road distances (Cjk) (kilometers).

PCj DCk

DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8

PC1 492 689 264 120 802 521 965 629

PC2 822 1020 594 210 761 766 924 959

PC3 1150 1348 922 538 790 1094 953 1287

PC4 947 1144 719 335 1257 976 1420 1084

Table B.2: DCs’ true or initial capacities in tons (V̂k).

DCk DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8

Capacity(V̂k) 52,000 39,000 39,000 34,000 14,500 53,000 53,000 53,000
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Table B.3: PCs’ capacity (2011-2012 production) computations summary table.

PCj 1 2 3 4 5 6 7

PC1 426,945 359,157 67,788 84.12 118,383 99,586.8 100

PC2 810,425 628,418 182,007 77.54 323,615 250,936.8 251

PC3 515,492 330,822 184,670 64.18 218,915 140,490.8 140

PC4 297,290 225,470 71,820 75.84 53,630 40,673.9 41

Total 2,050,152 1,543,867 506,285 305.68207 714,543 531,688.4 532

NOTE:

1: Total cereals production (2011-2012), 2: Total maize crop production, 3: Other total

cereals production, 4: Maize crop% in total cereal production 5: Total cereal surplus, 6:

Total maize crop surplus, 7: Total maize crop surplus in thousand.

Table B.4: PCs’ Capacities, Sj.

PCj Capacity, Sj (tons)

PC1 100,000

PC2 251,000

PC3 140,000

PC4 41,000

Total 532,000
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Table B.5: The existing non-optimized (manually operated) CPs to DCs allocations.

DC Region CP DC Region CP

Arusha Arusha Karatu Shinyaga Mara Bunda

Arusha U Musoma U

Arumeru Serengeti

Longido Rorya

Monduli Tarime

Musoma R

Arusha Kilimanjaro Mwanga Shinyaga Tabora Uyui

Siha Tabora U

Hai Igunga

Moshi R Nzega

Rombo Tabora R

Same Sikonge

Arusha Manyara Hanang Dar Coast Kibaha

Ngorongoro Mafia

Babati Rufiji

Simanjiro Kisarawe

Mbulu Mkuranga

Bagamoyo

Shinyanga Shinyanga Meatu Dar Tanga Kilindi

Maswa Muheza

Kahama Handeni

Bariadi Pangani

Shinyanga U Mkinga

Kishapu Lushoto

Shinyanga R Korogwe
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Table B.6: The existing non-optimized (manually operated) CPs to DCs allocations.

DC Region CP DC Region CP

Shinyanga Mwanza Misungwi Dodoma Singida Manyoni

Geita Singida R

Ukerewe Singida U

Nyamagana Iramba

Ilemela Dodoma Dodoma Kondoa

Sengerema Bahi

Magu Chamwino

Kwimba Kongwa

Shinyanga Kagera Bukoba R Dodoma R

Muleba Dodoma U

Biharamulo Mpwapwa

Dodoma Manyara Kiteto

Makambako Iringa Mufindi Dar Morogoro Mvomero

Njombe Kilombero

Ludewa Morogoro R

Makete Kilosa

Ulanga

Iringa R Dar Mtwara Masasi

Kilolo Mtwara R

Makambako Mbeya Mbarali Nanyumbu

Chunya Dar Lindi Ruangwa

Mbozi Lindi R

Liwale

Nachingwea

Kilwa
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Table B.7: CPs and DCs: Road distances, Tkl(kms).

CPl(l ∈ L) DCk (k ∈ K)

DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8

Arumeru 666 20 445 829 644 188 807 455

ArushaU 668 22 447 831 646 190 809 457

Babati 814 168 257 641 456 20 619 603

Bagamoyo 63 709 514 675 1,052 751 1,215 291

Bahi 516 490 65 449 473 322 636 653

Bariadi 1,127 762 676 1,082 160 594 230 1,197

Biharamulo 1,402 1,037 951 1,335 413 869 706 1,472

BukobaR 1,567 1,202 1,116 1,500 578 1,478 416 1,637

Bunda 1,409 578 958 1,342 420 428 138 1,479

Chamwino 426 450 25 409 563 282 726 613

Chunya 895 1,012 587 203 1,125 844 1,288 952

DodomaR 461 435 10 394 548 267 711 598

DodomaU 461 435 10 394 548 267 711 598

Geita 1,234 863 783 1,167 245 695 119 1,298

Hai 586 60 485 869 684 228 847 375

Hanang 927 280 370 754 344 112 507 715

Handeni 240 406 474 1,215 1,034 574 1,193 125

Igunga 819 794 368 752 170 286 333 889

Ilemela 1,149 784 698 1,082 160 616 20 1,219

Iramba 836 456 370 754 168 288 331 891

IringaR 492 689 279 135 817 521 980 644

Kahama 1,101 736 598 978 112 568 252 1,171

Karatu 826 180 525 909 724 188 807 615

Kibaha 40 606 411 572 949 779 1,112 314

Kilindi 290 456 524 908 1,080 624 1,243 218
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Table B.8: CPs and DCs: Road distances, Tkl(kms).

CPl(l ∈ L) DCk (k ∈ K)

DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8

Kilolo 492 889 344 200 882 601 1,045 709

Kilombero 450 879 517 420 1,055 774 1,218 587

Kilosa 400 829 467 628 1,005 724 1,168 537

Kilwa 294 940 745 906 1,283 1,108 1,446 648

Kisarawe 30 676 481 642 1,019 844 1,182 384

Kishapu 1,039 674 588 972 50 516 133 1,109

Kiteto 671 158 179 563 556 151 880 593

Kondoa 682 235 190 574 523 67 686 670

Kongwa 438 499 74 458 612 331 775 514

Korogwe 350 296 584 1,105 920 464 1,083 139

Kwimba 1,109 744 658 1,042 120 576 43 1,179

Lindi-R 459 1,105 910 1,071 1,448 1,273 1,611 813

Liwale 764 1,410 1,215 1,376 1,753 1,578 1,916 1,118

Longido 731 85 510 894 709 253 872 520

Ludewa 840 1,037 612 228 1,153 869 1,313 977

Lushoto 365 311 600 1,120 935 479 1,098 124

Mafia 200 846 651 812 1,189 1,014 1,172 554

Magu 1,339 974 888 1,272 350 806 187 1,409

Makete 772 869 544 160 1,082 801 1,245 909

Manyoni 571 456 120 504 418 273 581 708

Masasi 600 1,246 1,051 1,212 1,589 1,414 1,752 954

Maswa 1,077 712 626 1,110 88 544 163 1,147

Mbarali 686 883 458 74 996 715 1,159 823

Mbozi 899 1,096 671 287 1,209 928 1,372 1,036
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Table B.9: CPs and DCs: Road distances, Tkl(kms).

CPl(l ∈ L) DCk (k ∈ K)

DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8

Mbulu 891 245 590 974 424 89 587 680

Meatu 1,140 775 689 1,073 151 607 304 1,210

Misungwi 1,169 804 718 1,102 180 636 20 1,239

Mkinga 390 340 634 1,149 964 508 1,127 36

Mkuranga 35 681 486 647 994 849 1,187 389

Monduli 696 50 450 834 649 124 812 485

MorogoroR 196 625 263 424 801 520 956 333

MoshiR 561 85 510 894 704 253 867 270

Mpwapwa 400 545 120 504 658 377 821 688

MtwaraR 575 1,221 1,026 1,187 1,564 1,389 1,727 929

Mufindi 662 759 434 50 972 591 1,135 699

Muheza 330 435 564 1,244 1,059 498 1,222 24

Muleba 1,538 1,173 1,087 1,471 549 1,005 386 1,608

Musoma 1,489 498 1,038 1,422 500 513 218 933

MusomaR 1,489 498 1,038 1,422 500 513 218 933

Mvomero 280 533 171 508 709 428 872 417

Mwanga 496 150 440 959 774 318 937 285

Nachingwea 614 1,260 1,065 1,226 1,603 1,428 1,766 968

Nanyumbu 656 1,302 1,107 1,268 1,645 1,470 1,808 1,010

Ngorongoro 946 300 725 1,109 899 308 1,062 735

Njombe 674 907 482 62 1,020 739 1,183 847

Nyamagana 1,149 787 698 1,082 160 616 10 1,212

Nzega 895 530 444 828 94 362 257 965

Pangani 399 566 633 1,017 1,189 734 1,353 45

146



Table B.10: CPs and DCs: Road distances, Tkl(kms).

CPl(l ∈ L) DCk (k ∈ K)

DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8

Rombo 656 190 610 999 814 358 977 425

Rorya 1,529 538 1,078 1,462 540 553 258 973

Ruangwa 565 1,211 1,016 1,177 1,554 1,379 1,717 919

Rufiji 160 806 611 772 1,149 974 1,312 514

Same 436 210 630 1,019 934 378 997 225

Sengerema 1,178 813 727 1,111 189 645 26 1,248

Serengeti 1,547 440 1,096 1,480 558 455 170 875

ShinyangaR 1,019 658 568 952 30 486 193 1,089

ShinyangaU 999 638 548 932 10 466 173 1,069

Siha 616 60 485 869 684 228 847 375

Sikonge 1,086 721 635 1,019 252 573 415 1,223

Simanjiro 546 205 361 745 829 373 992 640

SingidaR 696 331 230 614 293 163 456 766

SingidaU 696 331 230 614 293 163 456 766

TaboraR 1,026 661 575 959 192 493 357 1,098

TaboraU 1,026 661 575 959 192 493 357 1,098

Tarime 1,529 540 1,078 1,462 540 543 258 973

Ukerewe 1,499 1,134 1,048 1,432 510 966 347 1,569

Ulanga 600 1,029 667 570 1,205 924 1,368 737

Uyui 1,114 749 663 1,047 280 581 443 1,184
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Table B.11: Case 1 results (V̂k): CPl to DCk allocations and Dl for existing network.

CPl & Dl (K = DC3) CPl & Dl (K = DC3) CPl & Dl (K = DC1) CPl & Dl (K = DC2)

Babati 1,420 TaboraR 68 Bagamoyo 2,721 Arumeru 2,005

Bahi 1,249 TaboraU 182 Handeni 3,267 ArushaU 1,248

Bariadi 63 Uyui 1,543 Kibaha 1,431 Bunda 3,637

Biharamulo 902 Kilindi 1,182 Hai 431

BukobaR 288 CPl & Dl (K = DC4) Kilosa 1,138 Hanang 27

Chamwino 1,912 Chunya 1,030 Kilwa 732 Karatu 2,277

DodomaR 3,259 IringaR 3,974 Kisarawe 1,832 Longido 4,503

DodomaU 649 Kilolo 321 Korogwe 645 Mbulu 1,238

Geita 383 Kilombero 300 LindiR 761 Monduli 4,345

Hanang 1,817 Ludewa 150 Liwale 693 MoshiR 1,007

Igunga 1,172 Makete 41 Lushoto 1,298 Musoma 995

Ilemela 91 Mbarali 1,705 Mafia 32 MusomaR 3,247

Iramba 2,338 Mbozi 100 Masasi 2,374 Ngorongoro 6,426

Kahama 857 Mufindi 768 Mkinga 1,380 Rombo 3,663

Kishapu 1,584 Njombe 1,754 Mkuranga 798 Rorya 2,196

Kiteto 873 Ulanga 3,140 MorogoroR 1,667 Serengeti 509

Kondoa 1,847 Mpwapwa 2,692 Siha 333

Kongwa 3,307 CPl & Dl (K = DC5) MtwaraR 668 Tarime 913

Kwimba 2,070 Magu 4,672 Muheza 200

Magu 921 Maswa 2,274 Mvomero 1,444

Makete - Meatu 4,182 Mwanga 917

Manyoni 3,871 Misungwi 1,234 Nachingwea 1,206

Mpwapwa 301 Muleba 369 Nanyumbu 834

Nzega 2,302 Nyamagana 72 Pangani 934

Sikonge 506 Sengerema 200 Ruangwa 701

Simanjiro - ShinyangaR 642 Rufiji 1,812

SingidaR 3,075 ShinyangaU 100 Same 2,589

SingidaU 150 Ukerewe 755 Simanjiro 3,413
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Table B.12: Case 1 results (V̄k): CPl to DCk allocations and Dl for existing network.

CPl & Dl (K = DC1) CPl & Dl (K = DC5) CPl & Dl (K = DC5) CPl & Dl (K = DC3)

Bagamoyo 2,721 Bariadi 63 Tarime 913 Babati 1,420

Handeni 3,267 Biharamulo 902 Ukerewe 755 Bahi 1,249

Kibaha 1,431 BukobaR 288 Uyui 1,543 Chamwino 1,912

Kilindi 1,182 Bunda 3,637 DodomaR 3,259

Kilombero 300 Geita 383 DodomaU 649

Kilosa 1,138 Igunga 1,172 CPl & Dl (K = DC2) Hanang 45

Kilwa 732 Ilemela 91 Arumeru 2,005 Kiteto 873

Kisarawe 1,832 Iramba 2,338 ArushaU 1,248 Kondoa 1,847

Korogwe 645 Kahama 857 Hai 431 Kongwa 3,307

LindiR 761 Kishapu 1,584 Hanang 1,799 Manyoni 3,871

Liwale 693 Kwimba 2,070 Karatu 2,277 Mpwapwa 2,993

Lushoto 1,298 Magu 5,593 Longido 4,503 SingidaR 3,075

Mafia 32 Maswa 2,274 Mbulu 1,238 SingidaU 150

Masasi 2,374 Meatu 4,182 Monduli 4,345

Mkinga 1,380 Misungwi 1,234 MoshiR 1,007 CPl & Dl (K = DC4)

Mkuranga 798 Muleba 369 Musoma 995 Chunya 1,030

MorogoroR 1,667 MusomaR 2,413 MusomaR 834 IringaR 3,974

MtwaraR 668 Nyamagana 72 Mwanga 917 Kilolo 321

Muheza 200 Nzega 2,302 Ngorongoro 6,426 Ludewa 150

Mvomero 1,444 Rorya 2,196 Rombo 3,663 Makete 41

Nachingwea 1,206 Sengerema 200 Same 2,589 Mbarali 1,705

Nanyumbu 834 ShinyangaR 642 Serengeti 509 Mbozi 100

Pangani 934 ShinyangaU 100 Siha 333 Mufindi 768

Ruangwa 701 Sikonge 506 Simanjiro 3,413 Njombe 1,754

Rufiji 1,812 TaboraR 68

Ulanga 3,140 TaboraU 182
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Table B.13: Case 2 results (V r
k ): CPl to DCk allocations and Dl for existing network.

CPl & Dl (K = DC3) CPl & Dl (K = DC3) CPl & Dl (K = DC5) CPl & Dl (K = DC1)

Arumeru 2005 Ngorongoro 6426 Bariadi 63 Bagamoyo 2721

ArushaU 1248 Nzega 2302 Biharamulo 902 Handeni 2966

Babati 1420 Rombo 3663 BukobaR 288 Kibaha 1431

Bahi 1249 Same 2589 Bunda 3637 Kilindi 1182

Chamwino 1912 Siha 333 Geita 383 Kilwa 732

DodomaR 3259 Sikonge 506 Ilemela 91 Kisarawe 1832

DodomaU 649 Simanjiro 3413 Kahama 845 Korogwe 645

Hai 431 SingidaR 3075 Kishapu 1584 LindiR 761

Hanang 1844 SingidaU 150 Kwimba 2070 Liwale 693

Handeni 301 TaboraR 68 Magu 5593 Lushoto 1298

Igunga 1172 TaboraU 182 Maswa 2274 Mafia 32

Iramba 2338 Uyui 1543 Meatu 4182 Masasi 2374

Kahama 12 Misungwi 1234 Mkinga 1380

Karatu 2277 CPl & Dl (K = DC4) Muleba 369 Mkuranga 798

Kiteto 873 Chunya 1030 Musoma 995 MtwaraR 668

Kondoa 1847 IringaR 3974 MusomaR 3247 Nachingwea 1206

Kongwa 3307 Kilolo 321 Nyamagana 72 Nanyumbu 834

Longido 4503 Kilombero 300 Rorya 2196 Pangani 934

Manyoni 3871 Kilosa 1138 Sengerema 200 Ruangwa 701

Mbulu 1238 Ludewa 150 Serengeti 509 Rufiji 1812

Monduli 4345 Makete 41 ShinyangaR 642

MorogoroR 88 Mbarali 1705 ShinyangaU 100

MoshiR 1007 Mbozi 100 Tarime 913

Mpwapwa 2993 MorogoroR 1579 Ukerewe 755

Muheza 200 Mufindi 768

Mvomero 1444 Njombe 1754

Mwanga 917 Ulanga 3140
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Table B.14: Optimal results: CPl to DCk allocations and Dl for eight DCs.

CPl & Dl (K = DC5) CPl & Dl (K = DC4) CPl & Dl (K = DC6) CPl & Dl (K = DC3)

Bariadi 63 Chunya 1030 Serengeti 509 Babati 1420

Biharamulo 902 IringaR 3974 Siha 333 Bahi 1249

Geita 383 Kilolo 321 Tarime 913 Chamwino 1912

Ilemela 91 Kilombero 300 CPl & Dl (K = DC1) DodomaR 3259

Kahama 857 Kilosa 1138 Bagamoyo 2721 DodomaU 649

Kishapu 1584 Ludewa 150 Handeni 3267 Igunga 1172

Kwimba 2070 Makete 41 Kibaha 1431 Iramba 2338

Maswa 2274 Mbarali 1705 Kilindi 825 Kilindi 357

Meatu 4182 Mbozi 100 Kilwa 732 Kiteto 873

Misungwi 1093 MorogoroR 1579 Kisarawe 1832 Kondoa 1847

Nyamagana 72 Mufindi 768 Korogwe 645 Kongwa 3307

ShinyangaR 642 Njombe 1754 LindiR 761 Manyoni 3871

ShinyangaU 100 Ulanga 3140 Liwale 693 MorogoroR 88

Sikonge 119 CPl & Dl (K = DC6) Lushoto 1298 Mpwapwa 2993

TaboraR 68 Arumeru 2005 Mafia 32 Mvomero 1444

CPl & Dl (K = DC7) ArushaU 1248 Masasi 2374 Mwanga 917

BukobaR 288 Bunda 1421 Mkinga 1380 Nzega 2302

Bunda 2216 Hai 431 Mkuranga 798 Rombo 3663

Magu 5593 Hanang 1844 MtwaraR 668 Same 2589

Misungwi 141 Karatu 2277 Muheza 200 Sikonge 387

Muleba 369 Longido 4503 Nachingwea 1206 Simanjiro 3413

Musoma 995 Mbulu 1238 Nanyumbu 834 SingidaR 3075

MusomaR 3247 Monduli 4345 Pangani 934 SingidaU 150

Rorya 2196 MoshiR 1007 Ruangwa 701 TaboraU 182

Sengerema 200 Ngorongoro 6426 Rufiji 1812 Uyui 1543

Ukerewe 755
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Appendix C

Original data documents

Figure C.1: NFRA - PCs to DCs maize crop transportation, 2010
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http://dailynews.co.tz/home/?n=14034               : Tuesday April 23, 2013 

 

Local News 

Construction of maize grain storage facility underway  
 

    

 

Most Read 
 

 

  

 

More News 
 

  Herbal healers remain secretive 

  Sefue is new Chief Secretary 

  Tibaijuka calls for school investments 

  SUMATRA to act on unruly bus owners 

  Rukwa sets aside over 2bn/- for irrigation 

  Funds set aside for irrigation in Rukwa 

  Mwanza city on a major shopping project 

  Mara faces critical shortage of petrol 

  Korea alumni in Tanzania set on development 

  Police hunt for theft suspect 

  Flood victims will not be kicked from schools: RC 

  Driver convicted of overloading 

  Tanzania eligible for one more year of AGOA 

  70 get legal aid from KWIECO’s litigation 
programme 

  Broadcaster Ngahyoma dies in Dar es Salaam 

  TSN set to launch re-designed website 

  City fathers warn on building sites 

  EWURA acts on rogue traders 

  Isles Quran schools for registration 

  NBAA to award 268 accountants with CPA 
 

 

 

  
 

 

From PETI SIYAME in Sumbawanga, 24th October 2010 @ 
12:00, Total Comments: 2, Hits: 3513 
 
THE government is constructing a grain storage facility that can hold 
more than 200,000 tonnes of maize which the National Reserve Food 
Authority (NFRA) has recently been instructed to purchase from 
farmers in the country.  
 
Prime Minister Mizengo Pinda revealed the plans when responding to 
members of Regional Consultative Committee (RCC) here yesterday 
who prayed to the government to let more maize buyers in the region 
instead of the current arrangement of allowing Energy Mill as the sole 
buyer.  
 
Rukwa Regional Commissioner, Mr Daniel ole Njoolay, told the 
Premier that the request for more buyers followed a bumper cereal 
production realized by farmers in the region this season. The region 
has doubled grain production from less than one million tonnes in 
2005 to over 2 million tonnes.  
 
According to the RC farmers have harvested over 700,000 tonnes of 
maize while the actual demand stands at 200,000 tonnes but NFRA 
has been allocated to purchase only 60,000 tonnes of maize.  
 
''That is already a crisis as more than 400,000 tonnes of 
maize which are still in the hands of farmers are may rot 
away due to lack of markets and absence of proper storage 
facilities,'' he added.  
 
Mr Pinda accepted the request and allowed Saccos and cooperatives as 
well as local business men to purchase maize from farmers in the 
region but cautioned farmers not to sell their entire stocks and 
directed the regional authorities to ensure that farmers kept 
between10 to15 bags of 100 kg of maize in their house holds.  
 
He further said that initially the government had directed NFRA to increase purchase of maize from farmers from 
150,000 tonnes to over 400,000 tonnes but after finding out that the storage facilities have the capacity 
of storing up only 200,000 tonnes then they decided to convert the remaining 200,000 tonnes of maize to cash 
which would be used to construct huge storage facility that would be able to pile up over 400,000 tonnes 
of maize during next season.  
 
The bumper haverst of different food crops realized by farmers in Rukwa region was due to friendly weather condition and 
timely applications of agriculture inputs including improved seed, fertilizers and insecticides . 

Figure C.2: News from Government magazine on new DCs to be built
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DAR ARUSHA BABATI BUKOBA DODOMA IRINGA KIBAHA KIGOMA LINDI MBEYA MOROGORO MOSHI MTWARA MUSOMA MWANZA SHINYANGA SINGIDA SONGEA S'WANGA TABORA TANGA

DAR 646 814 1433 451 492 35 1539 452 822 192 566 556 1370 1152 989 696 947 1150 1026 354

ARUSHA 646 168 1068 425 689 611 1174 1098 1020 621 80 1202 498 787 624 331 1144 1348 661 435

BABATI 814 168 900 257 521 779 1006 1266 766 516 248 1370 666 619 456 163 976 1094 493 603

BUKOBA 1433 1068 900 982 1246 1398 551 1885 1205 1241 1148 1989 634 416 516 737 1701 1122 638 1503

DODOMA 451 425 257 982 264 416 1088 903 594 259 505 1007 919 701 538 245 719 922 575 588

IRINGA 492 689 521 1246 264 457 1229 944 330 300 769 1048 1183 965 802 509 455 658 839 629

KIBAHA 35 611 779 1398 416 457 1504 487 787 157 531 591 1109 1117 954 661 912 1115 991 319

KIGOMA 1539 1174 1006 551 1088 1229 1504 1991 899 1347 1254 2095 851 633 622 843 1365 571 744 1609

LINDI 452 1098 1266 1885 903 944 487 1991 1068 644 1018 104 1597 1604 1441 1148 602 1396 1478 806

MBEYA 822 1020 766 1205 594 330 787 899 1068 630 1100 1122 1142 924 761 603 466 328 567 959

MOROGORO 192 621 516 1241 259 300 157 1347 644 630 541 748 1178 960 797 504 755 958 834 329

MOSHI 566 80 248 1148 505 769 531 1254 1018 1100 541 1122 578 758 704 411 1224 1428 741 355

MTWARA 556 1202 1370 1989 1007 1048 591 2095 104 1122 748 1122 1701 1708 1545 1252 656 1450 1582 910

MUSOMA 1370 498 666 634 919 1183 1109 851 1597 1142 1178 578 1701 218 381 674 1638 1171 575 933

MWANZA 1152 787 619 416 701 965 1117 633 1604 924 960 758 1708 218 163 456 1420 953 357 1113

SHINYANGA 989 624 456 516 538 802 954 622 1441 761 797 704 1545 381 163 293 1257 790 194 1059

SINGIDA 696 331 163 737 245 509 661 843 1148 603 504 411 1252 674 456 293 964 931 330 766

SONGEA 947 1144 976 1701 719 455 912 1365 602 466 755 1224 656 1638 1420 1257 964 794 1033 1084

S'WANGA 1150 1348 1094 1122 922 658 1115 571 1396 328 958 1428 1450 1171 953 790 931 794 596 1287

TABORA 1026 661 493 638 575 839 991 744 1478 567 834 741 1582 575 357 194 330 1033 596 1096

TANGA 354 435 603 1503 588 629 319 1609 806 959 329 355 910 933 1113 1059 766 1084 1287 1096

NOTE: 
ROUTE VIA ROUTE VIA ROUTE VIA
Dar - Musoma Dodoma - Singida Babati - Iringa Dodoma Kigoma - Morogoro Singida - Dodoma
Dar - Mwanza Dodoma - Singida Babati - Mbeya Singida - Rungwa Lindi - Songea Masasi
Arusha - Dodoma Babati Babati - Morogoro Dodoma Lindi - Mbeya Masasi - Songea
Arusha - Iringa Babati - Dodoma Babati - Musoma Arusha - Serengeti Mbeya - Moshi Iringa - Dodoma
Arusha - Mbeya Babati - Dodoma - Iringa Dodoma - Mbeya Mtera Mbeya - Mtwara Masasi - Songea
Arusha - Musoma Serengeti Iringa - Moshi Dodoma Moshi - Iringa Babati - Dodoma
Arusha - Mwanza Babati - Singida Iringa - Tabora Dodoma - Singida Musoma - S'wanga Mpanda - Ipole 
Arusha - Songea Babati - Dodoma - Iringa Kigoma - Iringa Sumbawanga Mwanza - Tanga Serengeti -Arusha
Arusha - S'wanga Babati - Dodoma - Iringa Kigoma - Mbeya Sumbawanga Shinyanga - Tanga Singida - Babati - Arusha

Singida - S'wanga Rungwa - Mbeya

TANROADS
TANZANIA ROAD DISTANCE CHART IN KM - MARCH 2009

Figure C.3: Tanzania roads - Regional distances in km as from TANROADS
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N.F.R.A. 

ANNUAL STORAGE COSTS 

TAKE THE PRACTICAL SITUATION OF THE STORAGE OF 8000 TONS  

OF MAIZE IN GODOWN NO. 1 SONGEA 

LAYER DUSTING:          

Is done during procurement when stacking grain-filled bags, using pirimiphos methyl dust. 

- The dosage rate in 250 grams per ton. 

- Total pesticide dust used in 8,000 tons is 2,000 kgs. 

- Its price is sh. 10,000/= per kg. 

- Total cost of pesticide used is 2,000 kgs x 10,000/-   =           Sh.      20,000,000/= 

FUMIGATION:  

Is done 5 times in 1 year using Aluminium phosphide tablets. 

- The fumigation of 8000 tons once required 121 kgs of Aluminium phosphide tablets. 

- Total fumigant used in one year is 121 kgs x 5 =     605 kgs 

- Total fumigant cost is 605 kgs x 65,000/-      =                      Sh.        39,325,000/=      

      

ROUTINE PESTCIDE SPRAYING:     

Routine spraying and spraying during fumigation is done using Organophosphate pesticides and 

is usually carried out twice monthly, and two times during any fumigation operation:-  

- The rate of pesticide use for the whole godown is  10 litres in a single operation 

- Quantity of pestcide used for: 

1. Routine spraying is 10 litres x 2 x 12 months =              240 litres 

2. Fumigation spraying is  10 litres x 2 x 5  =                   100 lts 

- Total Pesticide used is                                                              340 litres 

- So total cost of pesticide used is 340 lts x 36,000/=     =     Sh.       12,240,000/=      

LABOR COSTS 

- During Fumigation:    

 We need 21 days to carry out a single fumigation operation, and we use 12 casual operators. 

Labor cost is: 12 x 4,500/= x 21 days x 5 operations =                             Sh.     5,670,000/=    

 

Figure C.4: Songea DC annual operation costs - 2012
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- Pesticide Spraying and Warehouse Cleanliness:  

We use 4 workers to do routing spraying and sanitation in and around the warehouse 

The cost is: Sh.4500/= x 4 x 30days x 12 months          =               Sh.          6,480,000/= 

TOTAL STORAGE COSTS FOR 8,000 TONS   

                                               Is   Sh.            20,000,000/= 

                                                                      39,000,000/= 

                                                                      12,000,000/=                  

                            5,670,000/= 

                                                                   +   6,480,000/=  

                                                       = Sh.       83,150,000/=       

                             

So the cost of preserving 8000 tons of maize for one year is Tsh.          83,150,000/= 

                                                                                                                       8,000 

 

                                              Which is    Tsh.   10,393.75 per ton 

                                                          or   Tsh.   10.40 per kg 

 

 

     

Prepared by:    E.R.Mtango 

 

05
th

 March 2012 

                         

       

 

Figure C.5: Songea DC annual operation costs - 2012
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Polyconic Projection
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Printed by Surveys and Mapping Division,  Ministry of Lands, 

                  Housing and Human Settlements Development, 

                                          Dar es salaam Tanzania, 2012 .
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Figure C.6: Tanzania map showing regions and districts- 2013
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UNIVERSITY OF DAR ES SALAAM

COLLEGE OF NATURAL AND APPLIED SCIENCNS
DEPARTMENT OF MATHBMATICS

Telegrams: University
Phone : 0655/0 7 84 I -840620
EMAIL: elnassawe@maths .udsm.ac.tz

emassawe@uccmail. co.tz ffiq/F

P.O.BOX 35062
Dar Es Salaam
TANZANIA

24 December.2010

CHIEF' EXECUTIVE OFFICER
NATIONAL FOOD RESERVE AGENCY
P.O.BOX 5384
DAR ES ER SALAAM

RE: Ph.D STUDIES THESIS DATA

The holder of this letter, Mr. Saidi Sima is an academic member of staff at the

Department of mathematics. Mr Sima is cuffently pursuing his Ph.D studies at the

University of Witswatersrand, South Africa. Mr. Sima is writing a thesis on "Integrated

stochastic routine distribution network design: A two-level location routine problem with

application to food crops transportation in Tanzartia" using the available data in your

esteemed executive agency.

I am therefore kindly requesting you to assist him in any information/data which he may

need. Thanking you in advance

Dr. E. S. Massawe

Head, Mathernatics Department, UDSM

*

seg*sr$

Figure C.7: Letter for PhD Data collection in Tanzania - 2010/2011
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UNIVERSITY OF DAR ES SALAAM
COLLEGE OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS

Telegrams: University
Phone : 0655/07 84 I -840620
EMAIL: emassawe@naths .udsrn.ac.tz

emassawe@uccmail.co.tz #
avc

P.O.BOX 35062
Dar Es Salaam
TANZANIA

28 Januarv.2011

To whom it may

RE: Ph.D STUDIES THESIS DATA

The holder of this letter, Mr. Saidi Sima, staff at the Department of mathematics. Mr

Sima is currently pursuing his Ph.D studies at the University of Witswatersrand, South

Africa.. Mr. Sima is writing a thesis on o'Integrated stochastic routine distribution

network design: A two-level location routine problem with application to food crops

transportation in Tanzania" using the available data in your esteemed executive agency.

I am therefore kindly requesting you to assist him in any informationldata which he may

need. Thanking you in advance

/rru=
Dr. E. S. Massawe

Head, Mathematics Department, UDSM

.X,IAT-HEMANCS DEPr.i . i."E RstrY Op oan€ssiv-,qAfuo c Box 3s@, DAR:€SrSA[1fr;

Figure C.8: Letter for PhD Data collection in Tanzania -2010/2011
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Appendix D

Cost increase due to rainfall
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HALMASHAURI YA WILAYA YA LONGIDO

Baru.a zote ziandikwe kwa
Mkurugenzi Mtendaji Wilaya.
Halmashauri ya Wilaya ya Longido,
Tel Na. 027 - 253960U3,
Fax Na. A27 - 25396A3

s. L. P. 84
LONGIDO

MKOA WA ARUSHA

V rnnau MKUU,
OFISI YA WAZIRI MKUU,
S.L.P.3A2I ,
DAR ES SALAAM.

Unapojibu tafadhali taja:

Kum b. Na. HWLONG/FIII|VOL.2| 39 L6lLtl2009

@
28-lA'-5

1 .

2.

YAH: FEDHA ZA KUSAMBAZA MAHINDI TANI 1509 TSHS 43,006,000 KUTOTOSHA.

Mhe. IGtibu Mkuu,

Naomba urejee barua Kumb.Na. HB.Ll4t268tOLt57 ya tarehe zSlLOl2OOg ililonielekeza kutuatilia
mahindi tani 1509 SGR Arusha. Pia kupata taarifa ya fedha za kusambazia chakula hicho kwa'
walengwa

lGma ilivyokuwa katika migao 2 iliyohngulia (tani 3600 na tani 936) fedha zillzotumwa zilikuwa
hazitoshi kulingana na ubovu wa barabara zetu ukiondoa barabara ya lami ya Arusha - Namanga
itoayo huduma kwa kata 2 kati ya 9.

Juhudi ziliendelea kufanywa za kuwatafuta wasambazaji chakula hadi makao makuu ya kila kata
kwa ujumla fedha zilizokuwa zinatengwa kwa Halmashauri yetu zilikuwa pungufu kema ifuatavyo:

Na. MGAO KIASI CHA FEDHA
KILICHOTENGWA

MAHITATI
HALISI

TOFAUTI MAONI

1 Tani 3600 92,900,000180,000,000 97,200,000Tulilipwa zidio.

/ Tani 939 26,76A,L32 49,7L1r395 22,95t,263 Tulilipwa
22,A00,A0C tu.

3. Mhe. lGtibu Mkuu baada ya kuendelea kupata fedha isyokidhi mahitaji halisi ya Wilaya kwa migao
hii ofisi ya Mkurugenzi Mtendaji ilifuatilia taratibu zinazofanywa na wasambazaji krara Wilaya ya
Ngorongoro ili,.kuona kama kuna unafuu wowote wa bei ili kuwaomba wasambazaji wa huko kuja
kuipa huduma Longido.

Kwa msaada wa Uongozi wa Halmashauri ya Wilaya ya Ngorongoro (DALDO) nilipatiwa bei (400
kwa tani kwa kilometa).

7 I f t lnu 9f lna

Figure D.1: Letter to Prime Ministers’ office from Longido CP - 2009
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a) Uzito tani 939
Na. KATA UMBALI

TOKA
SGR
ftm)

TANI GHARAMA
USAFIRISHA'I
(NGORONGORO)

USAFIRISHAII
LONGIDO
RATE/TANI

GHARAMA
USAFIRISHATI
LONGIDO

TOFAUTI YA
USAFIRI
NGORONGORO
NA LONGIDO

1 Longido 90 km 92.042 3,312,072 35,000 3,220,770 9L,302
2 Namanga 115 km t38.972 6,392,712 40,000 5.558.880 834,432
3 Tinqatinoa 115 km 65.926 3,032,596 60,000 3,955,560 G922,964\
4 Ketumbeine 140 km L57.752 B,B34,TLz 50,000 7,887,640 946,5L2
5 Olmolog 165 km r77.47t 11,763,086 55,000 9,760,905 1,952,381
6 Meirugoi 225 km 64.984 5,848,560 60,000 3,899,040 L,949,524
7' Lumbwa 210 km 51.799 4,351,116 60,000 3,L47,940 L,243,L76
B MaLale 155 km 42.65L 2,644,362 50,000 2,L32,550 511.812
9 Engarenaibor125 km L47.423 7 ,37L,L50 50,000 7,37t,150 0

Jumla 53,549,766 46 5 6,555,371

Mlinganisho ulionyesha gharama kama ifuatavyo:

Jumla ya gharama (Ngorongoro) = 53,549,766 + (upakiaji) 2,817,000 = liumla) 56,366,7661=

Jumla ya gharama (Longido) = 46,894,395 + (upakiaji) 2,817,000 = (lumla) 49,71t,3951=

Fedha ili),otengwa = 26,760,L32
Upungufu Longido = 22,95t,2631=

4. Mgao mpya (Bado kusambazwa tani 1509 fedha iliyotolewa kusambaza ni Tshs 43,006,000/=.
Bado gharama halisi iko juu l(\^/a viwango Wa wasambazaji wa Ngorongoro kuja kusambaza
mahindi hayo Longido na pia kwa viwango vya sasa vya wasambazaji wa Longido wale wa
Ngorongoro watahitaji Tshs 90,498,900/=

Na. KATA TANI UMBALI
TOKA SGR
(tfi)

NGORONGORO
KIWANGO
USAFIRI
4OAFANT/KM

KWA WALE WASAMBAZAJT
WA LONGIDO
USAFIRISHA'I
KIWANGO
KWA TANI

GHARAMA

1 Olmolos 285.542 165 t8,845,772 55,000 15.704.810
2 Namanga 223.749 115 10.292.454 40,0000 8,949,960
3 Tingatinqa 105.203 1 1 5 4,839,338 60,000 6,312,180
4 Ketumbeine 254.1t4 t40 t4,230,384 50.000 t2,705,7A0
5 Engarenaibor 236.834 LZs LL,84L,700 50,000 rt,84t,700
6 Lurnbwa 82.79 214 6,954,360 60,000 4,967.440
7 Meirugoi 104.831 225 9,434,79A 60,000 6,289,860
8 Matale 67.6s6 155 4,t94,672 50,000 3,382,800
9 Lonqido 148.28 90 5,338,000 35,000 51,89,800

Jumla ndogo 85,971,900 75,344,210
Uoakiaii 4,527,O4O 4,527,OO4

Jumla kuu 9$,498,900 v9,B7L,ZLO

Fedha iliyotengwa na Wizara = 43,006,000/= upungufu Longido = 36,865,2L01=

Figure D.2: Letter to Prime Ministers’ office from Longido CP - 2009
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Mhe. Ictibu Mkuu nimetoa maelezo marefu kutokana na Mkurugen4 Mtendaji Longido kuathiriwa na
zoezi hili la kusambaza mahindi ya njaa l(fla awamu ya 5, 6 na sasa ya 7. Kwa vile tu wasafirishaji
hawako tayari kufuata viwango vya kusafirisha mahindi vilivyowekwa na Wizara. Mbaya zaidi
Halmashauri yangu haina uwezo kimapato kujazia nakisi ya fedha inayotolewa.

Mhe. Katibu Mkuu nilifuaulia pia kujua uzoefu wa wenzetu wa Ngorongoro juu ya usambazaji
chakula/mahindi kwa fedha kidogo - majibu ni kuwa wao wana fursa ya mamlaka ya Hifadhai ya
Ngorongoro kusadia usambazaji (sisi hatuna fursa hiyo).

Awamu za 1 - 4 ziliandamana na fedha ya kukidhi hali halisi ya usafirishaji.

Naiomba ofisi yako izingatie ushauri uliotolewa na Halmashauri yangu kupitia kamati ya maafa ya
Wilaya.

MKURUGENZI MTENDAJI
HALMASHAURI YA WILAYA YA LONGIDO.

Nakala:
1) Mhe. Mkuu wa Mkoa

s.L.P. 3050,
ARUSHA. (Kwa msaada tena wa kuwasilisha Wizarani hali halisi ya Halmashauri hii)

2) Ketibu Ta'sala Mkca,
s.L.P. 3050,
ARUSHA.

3) Mkuu wa Wilaya
s.L.P. 2,
LONGIDO

4) Mhe. Michael L. Laizer
Mbunge - Jimbo la Longido

Mhe, Mwenyekiti wa Halmashauri
s.L.P. 84,
LONGIDO.

Utekelezaji wa maagizo ya Kamati ya Maafa (W)
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Figure D.3: Letter to Prime Ministers’ office from Longido CP - 2009
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Figure D.4: Sample of DC to CP Transportation of maize showing a month it took place
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Figure D.5: Sample of DC to CP Transportation of maize showing a month it took place
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Figure D.6: Sample of DC to CP Transportation of maize showing a month it took place
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Week Av. Rainfall in mm

1 14.60
2 16.95
3 8.80
4 8.14
5 23.47
6 21.52
7 29.20
8 9.03
9 14.57

10 17.83
11 31.25
12 34.05
13 83.56
14 34.77
15 75.86
16 43.76
17 46.75

Week Av. Rainfall in mm

1 18.46
2 16.77
3 5.73
4 17.41
5 21.68
6 29.90
7 32.53
8 20.90
9 24.52

10 23.37
11 17.14
12 36.20
13 53.86
14 47.32
15 59.68
16 33.67
17 56.21

8.14
12.14
16.14
20.14
24.14
28.14
32.14
36.14
40.14
44.14
48.14
52.14
56.14
60.14
64.14
68.14
72.14
76.14
80.14
84.14
88.14
92.14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Raifall in mm 

Week no. 

Arusha rainfall distribution in mm 

Av. Rainfall in mm

5.73
7.73
9.73

11.73
13.73
15.73
17.73
19.73
21.73
23.73
25.73
27.73
29.73
31.73
33.73
35.73
37.73
39.73
41.73
43.73
45.73
47.73
49.73
51.73
53.73
55.73
57.73
59.73

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Rainfall in mm 

Week no. 

Dar rainfall distribution in mm 

Av. Rainfall in mm

Figure D.7: Some DC zones rainfall distributions graphs
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Week Av. Rainfall in mm

1 41.89
2 38.74
3 21.94
4 25.58
5 57.18
6 31.10
7 35.18
8 21.96
9 31.76

10 15.99
11 20.67
12 28.71
13 42.33
14 17.46
15 8.84
16 1.74
17 0.36

Week Av. Rainfall in mm

1 44.10
2 32.24
3 33.24
4 37.43
5 48.58
6 46.55
7 37.44
8 26.66
9 26.17

10 27.67
11 53.23
12 30.44
13 23.66
14 27.94
15 10.55
16 7.53
17 5.52

0.30
4.30
8.30

12.30
16.30
20.30
24.30
28.30
32.30
36.30
40.30
44.30
48.30
52.30
56.30
60.30
64.30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Rainfall in mm 

Week no.  

Dodoma rainfall distribution  in mm 

Av. Rainfall in mm

5.52
9.52

13.52
17.52
21.52
25.52
29.52
33.52
37.52
41.52
45.52
49.52
53.52
57.52

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Rainfall in mm 

Week no.  

Makambako rainfall distribution in mm 

Av. Rainfall in mm

Figure D.8: Some DC zones rainfall distributions graphs
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Week Av. Rainfall in mm

1 30.83
2 22.24
3 33.53
4 45.24
5 26.61
6 37.42
7 37.19
8 32.97
9 42.26

10 29.72
11 38.59
12 48.10
13 45.93
14 20.74
15 61.86
16 42.04
17 23.29

20.00
24.00
28.00
32.00
36.00
40.00
44.00
48.00
52.00
56.00
60.00
64.00
68.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Rainfall in mm 

Week no. 

Shinyanga rainfall distribution in mm 

Av. Rainfall in mm

Figure D.9: Some DC zones rainfall distributions graphs
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