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Abstract

A two-level facility location problem (FLP) arose in the transport network of maize crop in
Tanzania has been studied. The three layers, namely, production centers (PCs), distribution
centers (DCs) and customer points (CPs) are considered in the two-level FLP. The stochastic
effect on the two-level FLP due to rainfall in the network links, between the DCs and CPs,
has been studied. The flow of maize crop from PCs to CPs through DCs is designed at
a minimum cost under deterministic and stochastic scenarios. The three decisions made
simultaneously are: to determine the locations of DCs (including number of DCs), allocation
of CPs to the selected DCs, allocation of selected DCs to PCs, and to determine the amount

of maize crop transported from PCs to DCs and then from DCs to CPs.

We have modelled the problem and generate results by optimizing the model with respect
to optimal location-allocation strategies. We have considered two networks, the existing
network and an extended network. In the existing network there are four PCs, five DCs
and ninety three CPs. In the extended network three additional DCs are considered. For
the modelling purpose we have used the rainfall data from 2007 - 2010 in each week for
17 weeks. The optimized results for the existing network have shown improvements in cost
saving compared to the manually operated existing network. In the extended network, the
results have shown much more efficient and cost saving distribution system compared to the

results of the existing network.
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Chapter 1

Introduction

1.1 Background to the problem

Distribution network design problems consist of determining the best way to transfer goods
from the supply to the demand points by choosing the structure of the network such that
the overall cost is minimized [5]. Here, the network is considered from a graph theory point
of view. It is a connected graph with sets of vertices (nodes) and edges (arcs). Production
centers, warehouses (distribution centers) and customer points/demand points are assumed
to be vertices while edges or arcs can act as roads and/or railways. Associated with this
network, there are two main problems: facility location [21], 45| 63, [75] and vehicle routing
[47,[63]. There are a number of papers that deal with these two problems, both individually

or combined [9, 21}, A7, 59, [T, [75).

In the classical facility location problem (FLP), it is required to determine the optimal
location of facilities or resources so as to minimize costs in terms of money, time, distance
and risks with relation to supply and demand points [4, [63]. In other words, as defined in
Sajjadi [71], ‘given a set of facility locations and a set of customers who are served from the
facilities, then which facilities should be used?, which customers should be served from which

facility so as to minimize total cost of serving all customers?’ Other names of the FLP are the



warehouse location problem and a spatial resource allocation problem [18]. Some examples
of such facilities are schools, warehouses, hospitals, markets, industries, stadium or open
space, terminal bus stand (hub), railway stations, military centers, post offices, fire stations
and worship places [18, 42} [71]. In a FLP, the constraints such as distance between facilities
and customers are often imposed. Other typical constraints are the number of customers
(people using these facilities) and their demands, the number of facilities and their capacities
[18, 42, [57, 58], [75]. The problem studied in this thesis is a FLP that involves a distribution

system design.

The vehicle routing problem (VRP) can be simply defined as the problem of designing
least-cost delivery routes from a depot (or depots/supply points), to a set of geographically
scattered customers, subject to a number of constraints (capacity, distance, time). In the
VRP, a number of vehicle routes are created such that: (i) each route starts and ends at a
depot, (ii) each customer is visited exactly once by a single vehicle, (iii) the total demand of
a route does not exceed vehicle capacity, and (iv) the total length of a route does not exceed
a preset limit [47]. A route is a sequence of locations that a vehicle must visit along with
the indication of the service it provides. The VRP arises as a generalization of the travelling
salesman problem (TSP) which requires the determination of a minimal cost of a cycle that a
salesman passes through each vertex (city or customer) of a given graph exactly once. Since
VRP was introduced by Dantzig and Ramser 1959, there have been major developments in
both exact and heuristic solution methods as detailed in [47]. For more studies of VRPs

refer to [49, 51].

The location-routing problem (LRP) integrates FLP and VRP in a single framework. The
classical LRP seeks to minimize the total cost by simultaneously solving the location and
routing problems. In the LRP models, three decisions are made simultaneously: to determine

the locations of facilities (including number of facilities), to allocate customers to facilities,



and to determine routing from facilities to customers. The main constraints are: (i) customer
demands are satisfied without exceeding vehicle or facility capacities, (ii) the number of
vehicles, the route lengths and the route duration not exceeding the specified limits, and
(iii) each route begins and ends at the same facility [9]. In the two main components of the
LRP, the FLP is considered as the master problem and the VRP is a sub-problem within

the LRP [63].

The LRP as an optimization problem has attracted many academicians and practitioners
in recent years. LRPs have been studied with different mathematical approaches in the
literature, see [9] 34, [63]. The models, solution procedures, and applications of LRP began
to appear in the literature in the 1970’s. LRP models can be deterministic or stochastic
[9]. Within the LRP models, the stochasticity in customer demand has been reported in
[8, 48, [71]. On the other hand, stochasticity in travel times in the context of VRP has been
reported in [49, 51, [82]. A study on travel time reliability is mostly detailed in the PhD
thesis by Tu [82]. Similar studies were also carried by Vandaele et al. [86], and Van et al.
[87]. Their observations were based on real life environment where travel times from one
point to another is not reliable due to unpredictable traffic jams (due to car accidents and
the number of cars in relation to road capacity). These factors, no doubt, affect the speed of
a vehicle. In their study [86, [87], the authors used queueing theory on traffic flow to model
the expected travel time and standard deviation of the travel times in order to measure the

travel time reliability.

The two main solution approaches to LRP are exact and approximate (heuristic) methods.
LRP arises in many applications in various forms. Most recent papers on LRP focus on
distribution of consumer goods as its practical applications [4] [34], [35], 53], 551 591 (63, 67, [88].
Further classification and more details on LRP can be found in the review paper by Nagy

and Salha [63].



The FLP is a broad study area within the location analysis, where the location, allocation
and shipment or transportation decisions are solved simultaneously. Usually, the allocation
of customers to a specific facility, is an implication to direct transportation of goods from
that facility to the respective customers. In this context, each customer is supplied directly
from a facility without depending on other customer’s demand [0}, [42], [58]. This is a strategic
issue faced by distribution companies in designing their distribution networks [42]. Strategic
issues or decisions are defined as decisions that have a long-lasting effect on the company.
These are decisions which include the number, location and capacities of warehouses and
manufacturing industries, or the logistics network [58]. Klose and Drexl [42] mention the core
components of distribution system design as location of facilities and allocation of customers
to the facilities. The mathematical models for location-allocation are formulated in various
forms from simple to complex. These are from simple linear, single-level or multi-level,
single-product or multi-product, uncapacitated or capacitated, deterministic or stochastic
models to nonlinear models [42, 58]. There are various algorithms which are exact and/or

heuristic that are local search and mathematical programming based approaches [42].

In the literature, there are a wide range of variants and extensions of FLPs. The main
classifications are based on attributes of facilities and customers. Major attributes are

location types e.g. continuous or discrete, number and capacities, etc.

Klose and Drexl [42] consider continuous facility location models as models in the plane
which are characterized by two essential attributes. First, the solution space is continuous,
that is, it is feasible to locate facilities on every point in the plane; secondly, a distance is
measured with a suitable metric [42]. The common metric measures used are right-angled
distance metrics (the Manhattan) and the Euclidean or straight-line distance metric. The

continuous location models use coordinates to calculate distances between facilities and



customers. The other counterpart category is the discrete facility location models. This is
the most studied area as mixed-integer programming models and network location models
[42] 58]. In discrete facility location problems, nodes represent demand points and potential
facility sites correspond to a subset of the nodes. The models are characterized by binary
decision variables. Distance metric between nodes also applies in the discrete optimization

[42] 58]

Multi-stage or multi-level distribution system models consist of facilities on several hierarchi-
cally layered levels. Hierarchical system is defined as a system of different types of interacting
facilities [69]. These hierarchical layers are also known as echelon |26, BI]. Generally, when
there are more than one hierarchical layers, then it is a multi-stage or multi-level model. In
other related classification scheme, the multi-stage models are named as multi-level models.
This is mostly used when location decisions are done to each facility layer [43,169]. The words
stage and level are interchangeably used such as single-stage or single-level, and multi-stage

or multi-level. However, in this work we are using mostly single-level and multi-level.

In their review paper, Klose and Drexl [42] list sub-categories of discrete FLPs as single or
multi-stage models, uncapacitated or capacitated models, multiple or single-sourcing, single
or multi-product models, static or dynamic models, and, last but not the least, models

without and with routing options included [42].

In single-level models, FLPs have only one level or one group of facilities that will service
customers. Goods supplied from distribution centres (DCs) to customers without considering
the manufacturing or production centres are single-level models. When there is no limit on
the facilities’ capacity, it is known as an uncapacitated facility location problem (UFLP),
otherwise it is known as a capacitated facility location problem (CFLP). The classical UFLP

is also known as the fixed-charge location problem [42] 58, [76]. If each customer can be



supplied by exactly one DC, then it is single-sourcing; but if many DCs can supply to one
customer, then it is multi-sourcing. In these models, there can be deliveries of single or many
products. Furthermore, when a specific number of facilities are needed in serving customers,
then it is termed as p-median FLP. This requires a number of p facilities or DCs, out of say

N, to be selected in possible potential sites for serving the specified number of customers.

The layers of a distribution network are known by various names such as plants or supply-
points, transit points and demand points or customers points, and depots or distribution
centres [71]. For instance, if a distribution network consists of plants, distribution centres
and customer points, then it is a three-layer network. In this case, plants is the first layer,
the distribution centres form a second layer, and the customers or demand points is the
third layer. There will be a flow of goods from one layer to another. The routes between
one layer and another creates routing or transportation levels which can be direct (known
as replenishment route) or tour (routes with several stops) routes. When the transportation
routes between two points, say A and B, have no stops between origin and destination, then
it is a direct or replenishment route. The study in this thesis considered only direct routes
between its layers. The direct delivery, or point to point, method of goods distribution
involves the movement of goods from an origin, plant or warehouse or DC, to a specific

destination without stopping [75].

Generally, multi-level FLPs are present if facilities (plants or DCs) have to be located or
allocated simultaneously on several layers of the distribution system. A two or three-level
capacitated facility location model can be specified if the flow of products are from two or
three capacity-constrained echelons, before the final delivery to the customer points [42].
The production centres or plants are considered as higher level facilities. The lower level
facilities are known as DCs, warehouses or transit points that act as intermediate points for

goods to be delivered to the intended customers. There are several studied models as found



in [25], 26], 42 58| BI]. A related area to the FLP is the supply chain management (SCM)
as presented by Melo et al. [58]. The FLP is said to be SCM when other attributes such as
procurement, production, inventory, distribution and routing are included in the model [5§].
The model researched in this thesis is a two-level capacitated FLP with multi-sourcing and

single-product. The study considered both deterministic (static) and stochastic modelling.

The review study by Snyder [76] considers stochastic components in facility location
models. He classifies the decision-making environments into three categories as certainty,
risk and uncertainty. The certainty situations are when all parameters are deterministic
and known. On the other hand, both risk and uncertainty are when randomnesses occur.
The risk situations occur when uncertain parameters whose values are governed by some
known probability distributions. In uncertainty situations, parameters are uncertain, and
probabilities are not known. Snyder [76], further categorizes problems with a risk situations
as stochastic optimization problems. In such problems, a common goal is to optimize the
expected value of some objective function. The problems with uncertainty are known as
robust optimization problems [76]. The study we are dealing with, is also a stochastic

optimization study.

Most of the problems as reviewed by Snyder [76], are stochastic problems due to demand
[76]. Other randomnesses considered are the randomness in travel times, production costs,
travel costs, capacities and location points. However, there are few stochastic studies in
multi-level facility location problems. Practical applications of FLP where the distribution
network is stochastic in nature are rarely seen compared to LRPs and VRPs. The stochastic
distribution network is when there is no guarantee that, a subsection of a route/link or
sub-route can be used with certainty for various reasons. For instance, as studied in LRPs,
presence of traffic jam due to car accidents, road block by traffic authority and even floods

may affect the route to be reachable or accessible. Unfortunately, the current mathematical



formulation of the multi-level FLP; does not address the stochasticity due to the weekly

rainfall effect, particularly in the context of real-life problems.

1.2 Research motivation and objectives

1.2.1 Research motivation

The research involves the study of a two-level FLP with stochasticity in the network links
between the distribution centres to the customers so as to achieve the food security at the
customers’ demand locations. The motivation for this study is that the current literature in
multi-level FLP does not address stochasticity in routing (direct delivery) due to unexpected
occurrences such as rainfall; and that a real life problem from Tanzania is considered. This
is aside from the fact that many studies on deterministic and stochastic cases for both
VRPs and LRPs, on real life problems; have been carried out in Western Europe and North
America [63, [76]. No similar studies for multi-level FLPs have been carried out in the context
of Africa, to the best of our knowledge. The objective of this study is to come up with food

distribution systems that are economical and cost effective in Tanzania.

The two-level FLP involving the maize crop transportation network that originally arose in a
government ministry in Tanzania; has been studied. The practical problem considered have
a number of features which make the research worthwhile as this was not considered before.
The research is two-fold. Our first task is to model the problem mathematically. The second

task is to generate solutions and analyse them critically.

The case study investigates two types of distribution networks: the existing network and an

extended network.



The first exercise involves an analysis of the existing distribution set-up to see whether it is
optimal and to see if it will be sustainable for a future period. This network has five existing
DCs where it is possible to vary their capacities during optimization. Thus we optimize the
flow of maize crop from production centres to customer points through distribution centres.

There are two tasks in the analysis of the existing network:

e The first task is the optimization of the flow of maize crop in the existing distribution
network. An analysis of the manually operated network using a mathematical model
is done for the cost and location-allocations comparison. Through optimization of the
model, the conditions under which it is optimal compared to the manually operated
network will be found. In this situation, we will consider only the capacities of DCs to

be constant.

e The second task is the improvement of the existing network. Here we want to choose the
best possible configuration of the facilities in the existing network through optimization
tools. The aim is to satisfy the customers’ demand while minimizing the overall network
cost. The same five DCs will be used but with variable capacities in order to find the
best capacities for minimum cost. The capacities in this case are considered as decision

variables in the model.

The optimized results for the existing network will enable us to give better suggestions on

cost reduction to the Tanzanian government.

As an alternative to the existing network, an extended network using eight DCs will be
studied. Three new DCs in addition to the five existing DCs will be considered. The use
of additional DCs is based on the high production capacities of maize crop (see Table ,
and also the government’s plan for additional DCs (see Figure as a result of increased
demand of maize and other cereal crops. For the extended network, DCs’ capacities are also

decision variables in the model.



1.2.2 Objectives

The objective is to determine whether to keep the current structure (and perhaps updating
their capacities) or to use the extended network. Scientific methods will be used to come up

with an answer to the above mentioned question.

We model the problem and solve it with respect to optimal location-allocation strategies.

The specific objectives are therefore:
e To develop a two-level FLP integrated with stochastic transportation network E];
e To apply the model to a real life problem for both deterministic and stochastic cases;

e To critically analyse and compare the optimal results obtained by deterministic and

stochastic models.

The research uses the terms plant, supply point and production centre interchangeably. The
same is true for distribution centre (DC), warehouse and depot. The terms-; customer points

and demand points are also used interchangeably.

We have used an exact method in our solution approach. This based on the fact that a
software (IBM ILOG CPLEX Optimization Studio) we are using give the same results when
the model is solved repeatedly. It is also the software defined the solution being optimal

after computations.

1.3 Organization of the thesis

The rest of the chapters are organized as follows: in the next chapter (2) we present

the literature review on multi-level FLPs. This chapter discusses more on theoretical

!By stochastic transportation network we mean, either a subsection of a network takes non-deterministic

time to travel or an alternative sub-network or link has to be used resulting in longer travel times.

10



and related literature on multi-level FLPs, and also presents both the deterministic and
stochastic mathematical models from the previous studies. Chapter [3| presents the two-
level FLP that arose in Tanzania in maize crop distribution network. Chapter [4] is for the
deterministic model together with the results for maize crop production and distribution
system in Tanzania. Chapter |5 presents the stochastic model together with the results.
The research conclusion, recommendations and future proposed research directions are in

Chapter [6]

1.4 Summary

This chapter; has introduced the problem of this thesis by describing a background of the
problem and related literature. This is a facility location problem (FLP) and other related
problems which are VRPs and LRPs. The main features in each problem are explained and
the literature where these problems appeared is provided. A specific FLP studied in this
thesis is a two-level FLP where both deterministic and stochastic models are analysed. An
application to the problem is maize crop transportation in Tanzania. The specific objectives

to be achieved are also provided in this chapter.
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Chapter 2

Multi-level FLPs: A literature review

2.1 Background to the multi-level FLPs

As explained in Chapter [I} a multi-level or multi-stage facility location problem is considered
to be an extension of the classical FLP (single-level model). It is categorized in the literature
as the hierarchical location-allocation problem or as hierarchical facility location models
[28, 29, [64], [69]. Generally, the hierarchical system of facilities consist of k different types of
interacting facilities (levels) in which the lowest level is called level 1 and the highest is level
k. This classification of facilities does not include demand or customer points. The demand
or customer points are assigned to be level 0 in this regard, and the underlying structure is

assumed to be a network whose nodes represent facilities and customer points [69].

The hierarchical systems are complex systems that require an effective coordination of
services provided at different levels. They need an integration in the spatial organization of
the different facilities and the flow of goods or services provided in the respective levels [69].
The major applications are found in service provisions and products distribution systems.
The specific application areas as mentioned by Narula [64], and Sahin and Siiral [69] are
production-distribution systems, health-care delivery systems, solid waste management sys-

tems, education systems, emergency medical service systems, telecommunication networks,
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postal services and banking systems. More detailed referenced studies on each application

area can be found in Sahin and Siiral [69].

There are classification schemes of the hierarchical facility location problems as studied by
Sahin and Siiral [69], Marianov [56], and Narula [64]. The four attributes associated with
the classification schemes and the common terms used in this area are defined as itemized

below.

e Flow pattern: This considers the customers and/or goods flow through layers or levels
of the hierarchical systems. This is either in a single flow or multi-flow pattern. The
single-flow pattern starts from lowest level (level 0) and passes through all levels and
ends at the highest level (level k). It can also be in the reverse direction: starting at
level k£ and ending at level 0. On the other hand, multi-flow can be from any lower level
m to any higher level n where n, m € {0, 1,2, ..., k}. Similarly, the reverse direction is
also possible for multi-flow. The two flow patterns can also have referral or non-referral
systems. In a referral system, some proportions of customers served at any level, are
referred to higher levels, while in a non-referral system no referrals between levels are

considered [69].

e Service varieties: With regard to types of services to be provided, a system is classified
as nested or non-nested. In a nested hierarchy system, a higher-level facility provides
all the services provided by a lower level facility. In addition, this level must have
at least one additional service which is different from the lower level services. In a

non-nested hierarchy, facilities at each level offer different services [56].

e Spatial configuration: Here, coherency refers to the spatial configuration of levels. As
described by Sahin and Siiral [69], “In a coherent system, all demand sites or customer
points that are assigned to a particular lower-level facility are assigned to one and
the same higher-level facility. Thus, coherency resembles single-sourcing in managing

demand satisfaction in capacitated facility location problems. Non-coherent systems
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are less constrained on the spatial configuration of levels”.

e Objective function: There are three well-known types of objective functions used to
locate facilities. These are median, set covering, and fixed charge objectives. The
median models aim to minimize the demand weighted total distance (transportation
cost) between customer points and facilities. In set covering models, a customer is
considered covered by a facility if the facility is located within a particular proximity.
The main objectives here are to minimize the number of facilities needed for coverage of
all customers and to maximize covered customers with a particular number of facilities
(maximum covering). In covering models, it is not necessarily for the facility to provide
services to the nearest demand site. This might be due to facility capacity and also the
quantity of demand by customer. However, a customer should be served by at least
one facility within a given critical distance [69]. The goal of the fixed charge location

models is to minimize total facility construction and transportation costs [69].

Generally, there are several classification schemes found in hierarchical facility location
problems and there is no unique way of doing the classification [64]. Classifications, other
than what is presented above, can be based on the problem formulation and solution
procedures which depend upon the hierarchical relationship between the facility types
involved. Classifications may depend on the flow of goods and services allowed among levels

I64].

The study in this thesis is concerned with production-distribution system, where product
flow is from higher level to lower level. It is a single-flow and non-nested network, where
customers will only be serviced by lowest facility (level 1). The non-nested hierarchy is when

facilities at each level offers different services.

In the literature, the multi-level problems are also named as multi-stage problems. As

described by Klose (2000) [43], location decisions can be determined in both levels of
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facilities or only determined in one level while the other levels are fixed [43]. The multi-
level studies can be two-level, three-level, uncapacitated and capacitated facilities. Both
exact and heuristic solution methods are applied in deterministic and stochastic models
[1, Bl 36, 37, 56l 58, 64, 69], [76]. For more detailed and references of multi-level FLPs, a

study by Sahin and Siiral [69] can be consulted.

2.2 The previous studies of Multi-level FLPs

The multi-level FLPs discussed in this section are mostly related to this thesis. The literature

reviewed in this section is classified into three categories as itemized below:
e Deterministic multi-level problems with exact solution methods;
e Deterministic multi-level problems with heuristic solution methods;

e Stochastic and robust multi-level problems with both exact and heuristic solution

methods.

2.2.1 Deterministic multi-level problems with exact solution meth-

ods

The multi-level FLPs are deterministic if all their input data is known by certainty. In some
literature, the deterministic models are also known as static models [71]. The exact solution
method is the solution procedure that guarantees the optimal solution [71]. There are several

deterministic studies as discussed below.

In 1974, Geoffrion and Graves [25] presented a multi-level facility location problem as a
distribution system design multi-commodity problem that is solved optimally. It is a two-

level FLP which optimizes the location of DCs. The problem is formulated as a four-indexed
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mixed integer linear program with multi-commodity flow from plants to customers through
DCs [25]. It is a capacitated constrained problem on both plants and DCs. The problem
studied by these authors is single-sourcing and single-period model. The model solution
method is developed based on Benders decomposition techniques [25]. They solved a real life
problem of a major food company using their model and algorithm. The optimal solution to
the real problem is found with up to a composition of 17 commodities, 14 plants, 45 possible

DC sites, and 121 customer points [25].

Koksalan et al. [45] in 1995 studied an application problem of a brewery company based
in Turkey. It is a two-level location-distribution problem formulated as a mixed integer
programming model. The malt factories are the higher level facilities and breweries are
the lower level facilities that supplies to customer zones. They evaluated the existing
transportation costs for shipping malt from the two malt factories to the three breweries, and
shipping beer from the breweries to 300 different customer zones [45]. The model is solved
optimally using interacting mathematical programming software (FORTRAN and LINDO).
The company’s plan is to explore the best sites for opening new breweries. After the results

of the study, two new breweries were then opened [45].

A production-distribution system design problem studied by Elhedhli and Goffin [22], is
a two-level FLP. It is a supply chain based problem that is multi-product plant, single-
sourcing DC with capacitated constraints. The optimal solution to the problem is based on

Lagrangian relaxation, interior-point methods, and branch and bound.

A study by Hindi and Basta [29] considered a similar problem as the Geoffrion and
Graves [25], but with three indexed formulation. The other difference is the absence of
single-sourcing of DCs-to-customers’ service. The multi-products were transported from

capacitated plants to capacitated DCs before the final destination to the customer points
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with the known demand. The problem considered locations of DCs and their associated
fixed costs. In the model the shipping costs from a plant to a possible DC and thereafter
to the customer points were also considered. The problem is a mixed-integer programming
model solved by a branch and bound algorithm. Again in 1998, Hindi et al. [28] presented a
similar study that considered single-sourcing DC-to-customers’ service. In the model, they
used a four indexed formulation where it was possible to trace the plant origin of each
product quantity delivered to the customers. Generally, the objective was to choose the
locations for opening DCs such that the total cost in the distribution system was minimized.

An other similar study by Jiang et al. [38], used both heuristic and exact solution techniques.

A study by Tragantalerngsak et al. [8I] is focused on a two-echelon, single-source, and
capacitated facility location problem. The problem is formulated as a mixed integer linear
program, with capacitated constraints. The model is solved optimally by a Lagrangian
relaxation-based branch and bound algorithm. In their problem, the deliveries of products
are made from the first-echelon facilities (they call them depots) to customers through the
second echelon facilities (called facilities in the model). The main goal is to determine
simultaneously, the number and location of facilities in each echelon, the flow of products
between the facilities in different echelons, and finally the assigning of the customers to open

facilities in the second echelon [81]. This problem has the following identified features:

e Two-echelon and single-source: In this case, each customer must be served by only
one facility from second echelon facilities. On the other hand, each facility in second
echelon, will also receive products (deliveries) only from one depot in the first echelon

depots. So, single-sourcing is applied to both layers of the distribution system.

e Capacitated and uncapacitated facilities: The second echelon facilities have specific
capacities that must not be violated, but the first echelon facilities (named as depots)

are uncapacitated.

e Decision variables: There are three decisions to be made. The first decision is the
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location decision for opening of facilities (second echelon); the second is the allocation
of customers to open facilities, and the third is the allocation decision of allocating

open facilities to depots (first echelon). All the decisions are made simultaneously.

The main applications mentioned in the study are in the telecommunication, distribution

and transportation industries [81].

Ambrosino and Scutella [5] considered a complex distribution network design problem with
capacitated facility location, warehousing, capacitated transportation and inventory levels.
It is a network made up of four layers, namely; plants, central depots, regional depots and
customers. The three types of routes are plant to central depots, central depots to regional
depots, and finally, the routes from regional depots to customers. The major tasks on facility
location, allocation, transportation (routing) and inventory were carried out optimally for
some small instances using CPLEX software. The authors pointed out that, for solving

larger problems and real instances, the only helpful methods have been heuristics [5].

The review paper by Klose [42] presents different problems of locating facilities and allocating
customers that covers the core topics of distribution system design. He pointed out
that, “model formulations and algorithms which address the issue vary widely in terms of
fundamental assumptions, mathematical complexity and computational performance” [42].
In the paper, multi-level models are well discussed with the concerned variations. Other
review papers that discuss this class of problems are by Melo [58], Narula [64], and Sahin

and Stiral [69].
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2.2.2 Deterministic multi-level problems with heuristic solution

method

Heuristic is the term used in the field of optimization to characterize a certain kind of
mathematical problem-solving procedures. As presented by Silver [73], “the term heuristic
means a method which, on the basis of experience or judgement, seems likely to yield
a reasonable solution to a problem, but which cannot be guaranteed to produce the
mathematically optimal solution”. Generally, due to the complexity of a great number
and variety of difficult mathematical problems, the heuristic solution method is needed in
practice. The problems needed to be solved efficiently, and this has led to the development
of efficient procedures in an attempt to find good or reasonable solutions, even if they
are not optimal 71, [73]. In these methods, the process speed is an important measure in
relation to the quality of the solution obtained. Heuristics are also known as approximate
algorithms. They are mostly concerned with obtaining applicable solutions to the well

defined mathematical representations (models) of real-world problem situations [73].

Klose [44] formulated a mixed integer programming model of a two-level capacitated facility
location problem (TSCFLP). The model considered a single-product and single-source
constraints. It is a linear programming based heuristic with three tasks. The first task
is to find the optimal locations of depots from a set of possible depot sites in order to
serve customers with a given demand; the second is the optimal assignments of customers to
depots, and third, the optimal flow of product from plants to depots [44]. The model is solved
by a heuristic approach based on the Lagrangian relaxation of the demand constraints. The
procedure was tested on some problems with up to 10 plants, 50 possible depot sites and
500 customer points. “The computational results show that this method is able to compute
near-optimal solutions and useful lower bounds for the TSCFLP in short computation times,
even in the case of larger problem instances” [44]. In 2000, Klose [43] solved another similar

problem but considering a Lagrangian heuristic based on the relaxation of the capacity
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constraints. It is named as Lagrangian relax-and-cut approach. The resulting Lagrangian
sub-problem is then solved efficiently by branch-and-bound methods. Next, the results are

computed by means of a weighted Dantzig-Wolfe decomposition approach [43].

The studies by Amiri [7] and Lashine [50] are two-level FLPs addressed as the problem of
designing a distribution network in a supply chain system. Lashine [50], also includes in his
study, the routing decision. The studies by Amiri [7], Litvinchev et al. [52], and Landete &
Marin [46], determined simultaneously the best location of both plants and warehouses,
and the best strategy for distributing the products from the plants to the customers
through warehouses. Amiri’s study allows the multiple levels of capacities available to the
warehouses and plants [7]. In this case, it is possible to have several capacity values in
plants and depots/warehouses. The study considers different values of DCs’ capacity during
optimization of the model. Amiri [7] implemented an efficient heuristic solution procedure
based on Lagrangian relaxation of the problem. The tested problems are up to 500 customers,
30 potential warehouses, and 20 potential plants. The two-level problem studied by Landete
& Marin [46] is uncapacitated FLP where its solution was obtained by a heuristic approach
that involves cuts . The study by Litvinchev et al. [52] considered a two-level CFLP with a
single-product also uses a heuristic Lagrangian relaxation. The distribution network design
problem studied by Jayaraman [37] uses simulated annealing (SA) to obtain nearly optimal

distribution system design.

Hinojosa et al. [30] studied a multi-period and multi-commodity two-echelon capacitated
facility location problem. This study considered multi-period planning horizon which has
not yet been observed in the previous surveyed literature. They assumed that the capacities
of plants and warehouses change over time (T) periods. This is also applied to demands and
transportation costs. Seasonal known demands grouped in four periods are considered to

influence the capacities and other parameters and/or variables determination for each period
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[30]. Both plants and warehouses location were determined in each period. The authors have
not provided any real life application, but the model presented applies to the situations where
intermediate distribution and seasonal demand exist [30]. It is a cost minimization mixed
integer programming problem where results were obtained by a Lagrangian relaxation with

heuristic procedures.

A study by Ozsen et al. [65] was a two-echelon single product logistics system involving
a single plant and several of potential warehouse sites. Only the location of warehouses
is determined. It is a supply chain network design problem that is nonlinear integer-
programming and solved by heuristic Lagrangian relaxation. This model considered multi-

sourcing as customers (retailers) are sourced by more than one warehouse [65].

A two-level transportation problem studied by Gen et al. [24] is modelled in the supply chain
system. The study aims to determine the distribution network that involves transportation
problem and facility location to satisfy customers’ demands at minimum cost. The major
constraints are the capacities of plants and DCs, and the minimum number of DCs to be
selected. The constraints regarding the number of DCs to be selected is one of the component
which distinguishes this study from the other models. It is very important when a manager
has limited available capital [24]. In the three layers, the nature of transport is direct shipping
without multiple stops. The model is solved by a heuristic method such as priority-based

Genetic Algorithm (pb-GA) [24].

Generally, the deterministic problems found in the literature are the total cost minimization
based on location and transportation strategies. They are also categorized as mini-sum
problems [42] [69]. The target is satisfaction of customer demands with high quality service
provision. Regardless of the number of commodities involved, and other attributes, the

objective of the multi-level FLP is to design a distribution network for efficient transfer of
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goods from supply to demand points. The structure of networks such as the number of

facilities at different layers, their locations and capacities need to be determined optimally.

All of the previously discussed problems are deterministic that do not take into account the
uncertainties or risks in the modelling or planning process. The next subsection considers

studies that involve randomness (uncertainties or risks) concept.

2.2.3 Stochastic and robust multi-level problems with exact and

heuristic solution methods

Having discussed the various deterministic multi-level FLPs under exact and heuristic
solution methods, we now present the stochastic models and their solution approaches. In
FLPs, plants, DCs, transportation network and other facilities can work for several years or
decades, during which time the environment in which they operate may change significantly
[76]. The parameters such as costs, demands, travel times, and other inputs to hierarchical
facility location models, may be highly uncertain. Thus, the development of models for
multi-level facility location under uncertainty are of great importance [69} [74, [76]. There are
a large number of approaches that have been proposed for optimization under uncertainty

in general, which have also been applied to hierarchical facility location problems [76].

As defined by Snyder [76], risk and uncertainty are situations where randomness occurs.
The problems with risk situations are the one with known probability distributions to the
decision maker, and such problems are known as stochastic optimization problems. Under
uncertainty conditions, parameters are uncertain, and probabilities are not known. These
problems are termed as robust optimization problems [10, [76]. This part of the literature
study discusses the various stochastic and robust problems which appeared in the context

of hierarchical facility location problems.
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A study carried out by Min and Melachrinoudis [60] is a three-level hierarchical location-
allocation application problem based on the banking industry. It addresses the internal
dynamics and functional dependence of different hierarchies of banking services. Three
layers considered for banking services are automatic teller machines (ATMs), branch bank
offices, and main banks [60]. “In the banking industry, banking services are often rendered
to the clients through successive levels of banking facilities” [59]. In the lower level, ATMs
or drive-in banks allow clients to deposit or to receive cash, and get a statement of current-
account balance. Branch bank offices at the next level of hierarchy, provide a variety of
larger order services such as opening accounts and maintaining safe deposit boxes. These
are in addition to basic services provided by ATMs. At the highest level of the hierarchy, the
main bank offers the extended services such as corporate loan financing, credit approvals,

and long-term investment consultation [60].

The banking facilities location-allocation decisions, should comparatively be evaluated
according to the following conflicting criteria: the maximization of the market profitability
of open banks, the maximization of the customer drawing power of open banks, and the
minimization of all the risks associated with resource commitments made to open banks [60].
Through the planners guidelines for evaluating the profitability, accessibility and risk of bank
location-allocation, a chance-constrained goal programming (CCGP) model is developed [60].
However, due to the stochastic nature of risk, a chance-constrained (probabilistic constraint)
risk goal is developed. The objective function is a deterministic nonlinear integer goal
programming model computed optimally using LINGO’s (a software) modelling language.
A similar study in this area by Hochreiter and Pflug [31] based on heuristic algorithms, can

be consulted.

Hosseinijou and Bashiri [32] presented a stochastic transfer point location problem in a planar
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topology. They used the expected value approach to formulate the problem’s objective.
The model considered coordinates for the three layers namely; facility, transfer point and
demand points. The coordinates from the three layers are used in computing distances.
The coordinates of demand points are independent random variables (stochastic), with a
bi-variate uniform distribution. Thus the problem is to find the optimal location of the
transfer point, such that the maximum expected weighted distance from the fixed facility to
all demand points through the transfer point is minimized. In this problem, only the single
facility is considered, one transfer point, and several demand points. The model is computed
numerically using “fminimax” in Matlab software package [32]. The problem can be applied
to a situation where a city and its dwellers are uniformly distributed in the square region,
and a transfer point is to be located. This transfer point (e.g. helicopter pad) is to be located

so as to serve accidents such as earthquakes, floods, medical emergencies, etc [32].

A study by Tadei et al. [77] addressed the problem of locating transshipment facilities
for freight transportation from origin to destination through transshipment facility for
maximization of the total net utility. This is done by taking the expected total shipping
utility minus the total fixed cost of the facilities [77]. The problem considers the handling
utilities (costs) at the transshipment facilities as stochastic variables. The handling
operations are organized in alternative scenarios, and finite capacity and congestion effects
make costs to be stochastic variables with unknown probability distributions [77]. This
process can be termed as the robust optimization problem as defined by Snyder [76]. The
problem is computed heuristically using Lagrangian relaxation. A similar problem by Tadei
et al. [78] is presented with general transportation costs from origin to destination as a

stochastic variable.

A stochastic supply chain network model under risk, with three tiers of suppliers, distribution

centres (DCs) and customers is studied by Azad & Davoudpour [8]. They considered the
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customers’ demands as stochastic variables using a financial risk measure (conditional value
at-risk (CVaR) measure). The problem is formulated as a convex mixed integer programming
and a heuristic method is developed to solve the problem. In the model, different DC capacity
levels were used as in Amiri [7]. The authors also considered the routing design between

DCs and customers [§].

A multi-period study by You et al. [89] is a global multi-product chemical supply chain
with demand and freight rate as stochastic variables. It is a case study where the multi-
period planning model takes into consideration the production and inventory levels, the
transportation models, the times of shipments and customer service levels [89]. This real
world application study originates from the Dow Chemical Company, which supplies multiple
products to world-wide customers [89]. The company has several global business units (DCs)
to supply to its customers, and even customers can be supplied directly from manufacturing
plants (multi-sourcing). In the solution methods, the authors incorporated the Monte Carlo
sampling in a stochastic programming. They also proposed a simulation framework based
on an iteration method for solving deterministic and stochastic problems [89]. The study

considers a planning horizon as one year, and a month as a planning period.

A robust optimization model by Butler et al. [I5] focuses on the strategic-production and
distribution planning for a new product in the market environment. There is no historical
data for the new product, and hence the probability distribution is not known. The study
is a supply chain based on a new product having uncertainties in the demand, as well as
the cost and changes in the market conditions over time to be addressed [15]. The model is

implemented as the robust Lagrangian model using the mixed integer programming solver

of CPLEX 7.5 (ILOG, Inc., 2001) [15].

In the literature, the stochastic or probabilistic situations have also been observed in
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customer demand, travel times, number of customers and other input data in the context
of VRPs and LRPs [19, 47, [51), (70, [7T], [74, 82]. The stochasticity due to travel times have
been considered in VRPs where there is a delay to the destination due to several factors.
Factors revealed from literature associated with the delay are: traffic jams due to road
capacity, road blocks as a result of traffic authorities, car accidents; and weather and floods
[33, 47, 511, [70), [82]. The consideration for these factors are mostly on a daily basis. So there
will be the increase of travel times and hence travel costs that need to be considered prior

to planning decisions.

Generally, the stochastic multi-level FLPs discussed in the literature have considered various
random variables or parameters. The research in this thesis, considers the stochastic
transportation links between the DCs and customer points (CPs) during the rainy season
in Tanzanian maize crop transportation network. On the other hand, the transportation
links between production centres (PCs) to DCs are reliable since inter-regional roads are
paved, and it usually takes place during the summer season. It is a multi-period planning
horizon (rainy season), where the period of time is 17 weeks. Each week’s shipping of goods
is required to meet the known demands at CPs. The weekly actual amount of rainfall data

over 4 years will be used in our study.

2.3 Stochastic programming

2.3.1 Theoretical background to stochastic programming

The solution processes or procedures for stochastic problems are known as stochastic
programming (SP) [I7, 19]. Optimization where some input data is assumed not
available with certainty during the decision time; is termed as stochastic programming

[19, [74]. Shapiro and Philpott [72] defined SP as an approach for modelling optimization

26



problems that involves uncertainty. The uncertainty is mostly characterized by probability
distributions for the random parameters [I7]. Many real life problems have parameters that
are not known precisely due to various reasons. Corrigall [I7] in his dissertation suggested
two main reasons, first is the lack of reliable data or simple measurement error. The second
reason termed as a fundamental reason, is for some data being representing information of
unobserved events. For example, future product demand and market price are difficult to be
known in certainty [17]. Thus, the presence of random variables or parameters among the

input data in the model gives the necessity of stochastic optimization or programming.

Generally, stochastic programs are mathematical programs in which some coefficients or
parameter values incorporated into the objective model and/or constraints are usually
uncertain. The modelling or optimization of these stochastic programs is termed as stochastic
programming [I7, [19]. So the stochastic programming is the study of optimal decision-

making for stochastic programs that deal with algorithmic optimization procedures [17].

This type of modelling and solution approach has increasingly been used recently in real
life problems where uncertainties are likely to occur. The viability of SP owes much to
caused several reasons including the current advancement of computer hardware and software
technologies; as well as the sophisticated and advanced software for solution methods in
particular, that has contributed much to the current situation [19]. SP simultaneously
combines the operation research or management science models and statistical randomness
models to create a robust decision making tool [19, [74]. The operation research or
management science models are deterministic models which are mostly linear and integer
programmings. On the other hand, statistical randomness models are based on probability
distributions where historical data is known or can be estimated. In this case, scenario

generations are possible so long as there are finite number of discrete realizations [19].
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Thus, as proposed by Silverwood, [74], “stochastic programming is the replacement of
deterministic values in an optimization problem with random variables or probability
distributions describing the true nature of the parameter; thus it allows management
decisions which are usually made in uncertain environments to be considered more accurately

with fewer assumptions”.

In his dissertation, Corrigall [17] mentioned two types of stochastic programs. These are
recourse problems and chance-constrained problems. For both problems, there are two ways
of making decisions regarding the random parameters. The first decision making is before
the observation of the outcome of the random parameters known as “here-and-now” solution.
The second is a “wait-and-see” solution where the decision making is done after the outcome
of the random parameters are observed. The recourse problem requires the decision to
be made now and it minimizes the expected costs resulted from the consequences of that

decision [17, [19].

The solution obtained from different stochastic problems are known as uncertainty or
stochastic measures in comparison to the deterministic or with other stochastic solutions
[T, 17, 19]. These are the differences between the solutions of deterministic and stochastic
models and also between the solutions of stochastic models themselves. The two known
stochastic measures are the value of the stochastic solution (VSS) and the ezpected value of

perfect information (EVPI).

VSS is defined as the difference between a solution of the deterministic model (expected
deterministic solution) and a solution of the stochastic model obtained under “here-and-now”
method. If Zgy is the expected solution of the deterministic model and Zgx is the solution
of the stochastic model through “here-and-now” procedures, then V. SS = Zgy — Zyn. The

solution of “here-and-now” problem is also regarded as a solution of recourse problem (Zgp).
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This difference is considered as a measure of how much it can be saved by implementing
the “here-and-now” solution as opposed to the deterministic expected value solution [19].
On the other hand, EVPI is defined as the difference between the “wait-and-see” and the
“here-and-now” solutions. Given that Zyg is a solution of the stochastic model for the
“wait-and-see”, then EV Pl = Zygs — Zyny. The EVPI usually considered as the measures
of the maximum amount a decision maker would be ready to pay in return for complete and
precisely information about the future [11]. “A relatively small EVPI indicates that better
forecasts will not lead to much improvement; a relatively large EVPI means that incomplete

information about the future may prove costly” [19)].

2.3.2 SP approaches and other classification of problems

Domenica et al. [19] explained the classical methods of dealing with uncertainty effects
in linear and integer programming as sensitivity analysis and probability distributions.
However, Domenica et al. [I9] comments on sensitivity analysis that; “this approach shows
a number of limitations, and may provide misleading conclusions in respect to the nature of
the solutions. In general, sensitivity analysis is not a suitable approach for understanding
the effects of random behaviour of the model parameters. In many real world problems,
the uncertainty relating to one or more parameters can be modelled by means of probability
distributions”. This observation recommends that the better way of dealing with uncertainty
effects is by probability distributions that are based on the possible future of realization
scenarios [11l [66]. The real life applications of SP are mostly in the fields of financial
planning, supply chain management, transportation logistics, telecommunications, network
design, environmental planning and energy systems planning [17, 19, [72]. The study carried

out in this thesis is based on transportation logistics and location-allocation decisions.
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SP as an approach, has several techniques that have been developed, practiced and suited to
different applications and purposes [111, [74]. Several approaches or ways of solving have been
used in dealing with the effects of uncertainty. The first approach mentioned for solving SP
is the expected value model which optimizes the expected objective function subject to their

expected restrictions if any [19, [74].

The other methods are sample average approximation (SAA) [3| [72], chance constrained
programming (CCP) [3, 17, 19, 47, [72] which dealt with uncertainty by specifying the
confidence level at which the particular stochastic constraint will lie [74]. The detailed
description of SAA can be found in [3 4], [72]. More methods have been mentioned by
Silverwood [74] as dependent chance programming (DCP) and scenario based analysis.
Other classifications are robust stochastic programming, fuzzy programming, and stochastic
dynamic programming [70]. Domenica at al. [19] gives more on pictorial framework

[43

classification of SP problems and solution methods titled “ a taxonomy of SP problems”
as shown in Figure 2.1} The more detailed explanations of these classifications can be found

in the paper by Domenica et al [19].
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Figure 2.1: Taxonomy of SP problems by Domenica et al. 2007

2.4 Summary

This chapter describes in detail the literature review of multi-level FLPs. Both deterministic
and stochastic models with their solution methods are described. The solution methods
described are heuristic and exact. Since the stochastic model is the main challenge in
this thesis, it is described in several stochastic models and their solution approaches or
procedures. The main stochastic solution approaches are “here-and-now” and “wait-and-

see”. In this thesis, the “here-and-now” solution approach is applied.
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Chapter 3

A two-level FLP for the maize crop

distribution network in Tanzania

3.1 Background information

Tanzania is a country in East Africa. It is situated between latitudes 1° - 12° south of the
Equator and longitudes 29° - 41° east of the Greenwich Meridian. Tanzania is a unitary
republic formed after the union of two countries in 1964, Tanganyika (Tanzania mainland)
and Zanzibar (made of two Islands, Unguja and Pemba). The country’s total land area
is 945,000 km? with a population of 44,928 923 (Tanzania mainland is 43,625,354 and
Zanzibar is 1,303,569) as per August 2012 national population and housing census (PHC)
[83]. This study considers only the Tanzania mainland part. So in this study, Tanzania

means Tanzania’s mainland (excluding Zanzibar).

Food is one of the basic human needs as it supports the survival of mankind in relation to
other human activities. In September 2000, the United Nations set the so called Millennium
Development goals (MDGs), where food security was set to be a first goal among the eight
goals [84]. Each goal was set to have a specific targets and indicators in its achievement.

The challenges of food security are its availability, accessibility and affordability. Tanzania
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is part of the MDGs that needs to prioritize food security to her people.

Food security is concerned with its availability, procurement, storage, usage and the
associated distribution costs up to the final consumers. The Ministry of Agriculture, Food
Security and Cooperatives (MAFSC) of Tanzania, is responsible for food security. The
major cereal crops produced in the country are maize (corn), rice (paddy), millet, finger-
millet, sorghum and wheat. The country’s major food crops (main staple crops) are maize
and rice. The real life problem considered in this thesis is maize crop production and
distribution system in Tanzania. The research considers only maize crop distribution for
hunger emergency as per available data. The maize crop is the only current food crop which
is stored in the distribution centres (DCs) that are managed by the National Food Reserve
Agency (NFRA) under the MAFSC for emergency situations [54]. Other cereal crops are not
stored due to budget and space constraints [23, [85]. The emergency situations considered
are acute food shortage in some places in the country (due to drought and other disasters),
and corn flour price stabilization in markets, especially in urban areas. In the country, there
are some common deficit zones due to drought and other weather effects like small rainfall

in semi-arid areas. So, the government is responsible for food reserve and coordination.

3.2 Maize crop production and storage in Tanzania

The food crops production in the country is highly concentrated in the southern highland
regions (Rukwa, Mbeya, Iringa, Morogoro and Ruvuma) and the peripheral areas of the
country as shown in Figure 3.1l On the other hand, the traditional food deficit areas are
located mostly in the central corridor regions (Singida, Dodoma and Tabora) and northern
part (Arusha, Manyara, Kilimanjaro and Tanga), and other parts as shown in the map of
Tanzania (Figure [3.1]). The specific location of existing DCs (warehouses) are also shown in

Figure The DC in this context is a storage building where commodities can be stored for
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sometime before being taken to customers. The specific demand points (customer points);
are not shown; rather some major demand zones have been marked, but the production
centres are within the marked production zones, particularly in the southern highlands. It

is difficulty to indicate all the 93 customer points in the map.

Tanzania

¥
0 150 Kilometers
0

Legend:
Warehouses (DCs)

@ Production zones

l". ‘l“ﬁ
t....e Demand/deficit zones

Figure 3.1: The map of Tanzania showing the food production zones, DCs and demand

zZ0nes.
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The major maize surplus production is from the four regions (known as ‘The Big four’)
namely, Rukwa, Mbeya, Iringa and Ruvuma [23] [61), 85]. These are the specific production
centers (PCs) that form a production zone in the southern highland part of the country. In
this study, the PCs will form the first layer among the three layers in the two-level FLP. The
maize crop are bought from this production zone by the NFRA for storage in the DCs or
warehouses. Usually farmers bring their maize crop in the buying centre that is allocated in
the region headquarters (town or city) of the given PC. The farmers leave the maize to dry

well before removing it from the cob to be ready for selling to the NFRA.

Before reaching the customer points (CPs), the maize crop from PCs are stored in DCs which
are scattered in different parts of the country. Usually the storage in the DCs is done for
a year (a harvest season to the next harvest season). There are seven existing DCs with a
total capacity of 241 thousand tons. These are Arusha (39 tons capacities), Dar Es Salaam
(52 tons), Dodoma (39 tons), Shinyanga (14.5 tons), Makambako-Iringa (34 tons), Songea
(24 tons) and Sumbawanga (38.5 tons). These DCs, as shown in in Figure form the
second layer of the two-level FLP model of the study. The first five DCs are used for storage
of maize crop to be supplied to the deficit CPs throughout the country. The last two DCs,
Sumbawanga and Songea, are used as reserve DCs to buffer the other five DCs. These two

DCs are located in the production zones.

The third layer of the model in this study is CPs. These are specific demand points in
the country to be supplied by DCs during food deficit time. As indicated in Figure [3.1],
the major deficit zones are central corridor zone and the northern zone. The three layers
form the distribution system that needs to be designed at minimum cost while satisfying the

customers’ demands.
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3.3 Transportation network for maize crop in Tanzania

Throughout the production zone, there are plants or PCs where maize crop are bought from
public market and then destined for the DCs. On the other hand, there are demand zones
where there are specific points referred to as customer points where the stored maize crop
will be transported from DCs to CPs. This section describes the three-layer transportation

network.

In Tanzania, physical access to food is affected by inadequate transportation infrastructure.
Due to long distances between the food producing centers, DCs and deficit zones, together
with inadequate and unreliable transportation network, high transportation costs are
unavoidable. For instance, the existing distribution system have distances ranging from
120 kilometers (km) to 1,348 km between PCs and DCs. The distances between DCs and
CPs, on average, also range from 136 km to 360 km. This results, at times, in high food
prices in deficit areas, and therefore affects access to food by both low income, rural and
urban populations [61, 84]. However, the actual various data used in this thesis is presented

in Appendices A, B and C are referred accordingly in Chapters [ and

In the country, the harvest season is usually between May and September every year. This
is the summer season when surplus maize crop are bought from production centres and
transported to DCs by mid-November for storage. The southern highland zone is the major
producer of surplus maize crop and hence is the main supplier to DCs. The specific PCs
in this zone are Iringa, Mbeya, Rukwa and Ruvuma which are shown in Figure 3.1 Most
of the roads from PCs to DCs are well paved as most of them are linking cities/municipals
of the regions in the country (see Figure . The transportation network in the summer
season; in general, is reliable, and most places including the common deficit zones are not in
crop deficit. This forms the first level transportation in relation to this study. The nature

of route is a direct shipment as a full loaded truck will unload the whole truck to a specific DC.

36



Figure 3.2: Tanzania paved roads condition (Source: Michuzi Blog 2013, Southern Highland

road)

The critical maize crop deficiencies occur mainly from the middle of December up to April,

the following year [84]. During this time, the maize crop is now transported from DCs to

CPs (see appendix |D.4] [D.5| and |D.6)). Throughout the demand zones or deficit areas, there

are specific customer points. These CPs are district town locations (e.g. district towns
which are the next large towns after provincial/state or regions’ towns) where maize crop
from DCs is destined. Most of the deficit zones are semi-rural areas where the roads are

in poor conditions [61, 84, 85]. In addition, the deficiencies occur during the rainy season
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where the transportation reliability is questionable in most of the places due to rains and
floods. The deficiency during the rainy season is from the fact that most of the maize crop
harvested from the recent previous harvest have been consumed and also sold for various

purposes. The destined maize crop to CPs are usually can be sold at subsidised price or

distributed freely (See[D.4] [D.5 and |D.6). There should be a regular weekly maize crop flow

from DCs to CPs. However, this might not be possible during the rainy season as the road
networks are likely to be impassable; and vehicles might have to be delayed or have to take

many alternative long distance routes resulting in high travel costs due to longer travel times.

The transportation of maize crop from DCs to CPs during the rainy season forms the second
level transportation of the two-level FLP and distribution network. This causes the network
being stochastic. The transportation between DCs and CPs are direct shipment as in first
level. This is due to long distance route to be covered and the large quantity of customer
demands.

Figures [3.3] and [3.4] display the transport conditions during rainy season.
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Figure 3.3: Tanzania unpaved roads condition during rainy season (Source: Michuzi Blog

2010)
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Figure 3.4: Tanzania unpaved roads condition during rainy season (Source: Michuzi Blog,

January, 2013 at Lindi-Mtwara road)

3.4 Framework of the proposed FLP model

Given the demand scenario and the nature of the distribution network, an optimal number
of DCs, their locations throughout the country and sizes are imperative. This is from the
fact that the road links between these DCs to the CPs are stochastic in nature. Under
these circumstances, the problem is to find the number of DCs; and their sizes and locations

optimally so as to meet all demands at CPs per week during the rainy season.

Figure [3.5] is an illustrative sketch of the study as a network framework. There are three
layers and its transportation links as shown in the figure. From the figure, the locations-

allocations as shown by bold arrows are optimized by optimization techniques. The direct
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shipping (transportation) take place from PCs to DCs and then from DCs to CPs. The
dashed arrow from DCs to CPs represents the stochastic transportation link, while the links

from PCs to DCs, are deterministic (not dashed arrow).

Production centers (PCs)

Allocation of DCs to PCs.
Summer season: Transportation of

commodities from PCs to DCs.

Location of DCs.

Warehouses or DCs ¢

Rainy season: Stochastic
transportation of commodities from
DCs to Customers.

Allocation of
customers to DCs.

Customer (Demand) zones

Figure 3.5: The framework of three layers and two-level FLP model

The decision tasks are: where to locate the DCs (location decisions), how to allocate the DCs
to the production centers and demand points to the DCs (allocation decisions); and hence to
design the direct routes for serving the distribution network. The routing or shipping levels
(direct delivery) are from the PCs to the DCs in summer season, which is deterministic; and
from DCs to CPs in rainy season when road links are stochastic. The number and sizes of

DCs are also determined optimally.

Table gives the summary of PCs, DCs and CPs; and their location zones within the
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country. The southern highland zone is the only zone with PCs and also 3 DCs out of the
7 DCs. Notably, the Ruvuma, Rukwa, Kigoma and the Dar Es Salaam regions have no
CPs. All the mentioned regions except Dar Es Salaam, are self-sufficient in cereal crops
production and the surplus production is always expected. The Dar Es Salaam region is the
place of city dwellers that is populated mostly by employed people who earn incomes. Food
deficiencies are mostly realized by people living in the rural areas. The list DCs and their

respective CPs of the collected actual distribution data from 2004 to 2010 is summarized in

Tables [B.5] and [B.6l

Table 3.1: PCs, DCs and CPs distribution in the country

Zone Specific Regions # of PCs # of DCs # of CPs

Southern Highland Iringa, Rukwa, Mbeya, 4 3 9
Ruvuma

Central Corridor Dodoma, Singida, 0 1 17
Tabora

Northen Arusha, Manyara, 0 1 24

Tanga, Kilimanjaro

Southern Corridor ~ Mtwara, Lindi 0 0 8

Eastern Dar Es Salaam, Coast, 0 1 11
Morogoro

Lake Victoria Shinyanga, Mwanza, 0 1 24

Mara, Kagera, Kigoma

Total 4 7 93

3.5 Significance of the study

This study is useful as it will provide a mechanism for reducing food prices within the country.

This will contribute to the June 2009 Tanzania’s policy of prioritizing the importance of
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agriculture also known as ‘Agriculture First’ (Kilimo Kwanza) and as stipulated in its ten
implementation pillars. For instance, one of the pillars states the need for the identification
of priority areas for strategic food commodities in order to increase the country’s food
self-sufficiency. The pillars also state a price stabilization mechanism, which includes the
expansion of storage capacity and improvement of railway and road systems [2]. Furthermore,
in the 2012/2013 Ministry of Agriculture budget speech, the price stabilization for maize flour
(milled maize crop) in cities was addressed. The availability of maize crop in the DCs was
also to be used for milling in order to get maize flour. The government is not responsible
for milling rather it is done by the private sector. Subsequently, the government sold 41,000
tons of maize crop in the public market. As a result the maize flour price decreased by about

38% in different regions [14].

3.6 Summary

Chapter [3| contains the explanations for the practical problem of maize crop transportation
in Tanzania. It describes the three main nodes which are production centres, the distribution
centres and customer points in relation to maize crop. The distribution network in the three
nodes is formed by paved and unpaved roads in the network that are affected by rainfall.

This results in stochastic distribution network for maize crop transportation in Tanzania.
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Chapter 4

Deterministic model for the two-level

facility location problem

4.1 Mathematical model

In Chapter |3 a two-level facility location problem we are studying has been described. This

chapter presents the mathematical model and its solution.

Deterministic models for multi-level or two-level FLPs as presented in the literature are
for either single or multi-product, and for single or multi-period. Here, we consider a
deterministic model with a single-product and a single-period planning horizon. Our aim is to
design a deterministic capacitated two-level FLP model and to optimize location, allocation
and hence transportation decisions for the distribution network. The model will locate
the most economical set of DCs (optimal DCs to be selected), and then assign customers
to the selected DCs. Concurrently, the selected DCs will be allocated to PCs without
violating capacities in both PCs and DCs. From these locations and allocations, the direct
transportation decisions will be implemented to meet the customers’ demands. In the model,
we assume that each customer has a known demand which can be met in a single period

independently from other customers.
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We now present the deterministic mathematical model for a two-level, single commodity with
a single period FLP. The single period for the demand to be met consists of four months
- January to April - in a year. The model is adapted from Elhedhli et al. [22] and other

references [8, 28] [42], 45], 50, [69].

The notations used in the model are as follows:

J: J is the index set for production centers (PCs), where j € J and |J| denotes the total
number of PCs, i.e., PCj, j € J. The PCs’ locations are fixed together with their capacities.
K: K is the index set for distribution centers (DCs), where k € K and | K| denotes the total
number of possible DC sites, i.e., DC}, k € K. We also use the convention that DC}, is the
DC located at site k.

L: L is the index set for customer points (CPs), where [ € L and |L| denotes the total
number of CPs, i.e., CP, | € L. CP, have fixed location together with their associated
demand, D;.

Ry: Ry denotes the set of capacities of DCy,. Hence Ry, = {Vi, V2, ..., V/F}.

S;: Supply (production capacity) of a maize crop at PC}.

D;: Total demand for four months for maize crop at C'P, transported only once in a week.
We considered this amount to be transported in the first week of the four months period
(January to April) of a year.

F{: Total fixed annual operating cost in US dollar for a DC with V}", i.e., r € {1,2, ..., | Rg|}.
Cjr: A road distance in kilometres from PC; to DCy, j € J, k € K.

Th: A road distance in kilometres from DC} to CP, k€ K, € L.

A: This is a unit cost for transferring 1 ton of maize crop for a 1 km distance, and the cost

is in § (per km per ton).
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Decision variables for the model:

Xjr: Amount in tons flow from PC; to DCj,.

Y.: Amount in tons flow from DC) to CPF,.

Z7: A binary location variable that will be 1 if a DCy, is selected with a capacity V', and 0
otherwise. When a single capacity[] per DC}, is used we ignore the superscript r in Z;, VI

and Fj. Here the choice of capacity is not a decision variable but the choice of site k is.

The resulting mixed integer linear programming can then be formulated as:

J

Xi\’/{/ikrll’zk A(ijzkjcijjk +Zk:zl:Tszkz> + zk:Fka, (4.1)

subject to ZXjk < S5;,Y9, (4.2)
k
> Xjp = ViZy, Vk (4.3)
J
ZYkl < ViZy,VE (4.4)
1
ZY/CZ = DZ7VZ7 (45)
k
Ykl Z 07Vk7 l7 (47)
Zy €40,1},VEk. (4.8)

The following are the explanations of the model:

e The objective function (4.1)) minimizes the total distribution cost, e.g. transportation
cost from PCs to DCs and DCs to CPs, and fixed annual operation costs, F}, for DCs

and the corresponding capacities V.

e Constraints (4.2)) are the supply constraints (PCs’ capacities), where the amount to be

transported from a PC; to the selected DCs, must not exceed its capacity, S;.

Model for the multiple capacities per DC will be presented later on.
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e Constraints (4.3)) refer to the amount supplied from PC; to all selected DC}, must

satisfy the DCs’ capacity V.

e Constraints refer to the amount supplied by DC} to all CP, | € L, without
exceeding Vj. Vj (respectively Fj) are the values currently used in the current
transportation network with five DCs, e.g. DC", ..., DC5. The capacities Vj, k € K, are
not necessarily equal. This also holds for the case of three new DCs we are proposing

as per Tanzania government’s plan.

e Constraints (4.5 represent the amount to be transported from all DCy, k € K, to the

C P, must meet a demand, D;, at the C'P,.
e Constraints (4.6) and (4.7) are the non-negativity restrictions.

e Constraints (4.8)) are binary variables.

The total number of decision variables for the model is 490.

4.1.1 The expected optimized results
In the optimization results four decisions are sought. These are as follows:

(a) Location decisions: Where and how many DCs to locate out of |K|? The optimal
decisions to be made here are the number of DCs and their physical locations (i.e.,

values of Z, or Z] in the case of multiple capacities).

(b) Allocation decisions: Which DCs to be served by which PCs (i.e., the pair (PC}, DCy), j €
J, k € K) and which CPs are to be served by which selected DCs (i.e., the pair
(DCy,CP), k € K, |l € L)? The optimal results will give the allocations of DCs

to PCs and CPs to DCs simultaneously.

(c¢) Transportation decisions: From location and allocation decisions, what is the amount

to be transported from PCs to DCs (i.e. values of Xj;) and DCs to CPs (i.e. values of
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Yyi)? The transported amounts, X, and Yy, will be determined. Hence, direct shipment

routes designing from PCs to DCs and also from DCs to CPs will be established.

(d) Capacity value decisions: What is the best capacity for each DC} to be selected from
{(vil, .., V,JR’“'}. For the case of a single capacity per DC} the decision variables Z; will
suffice. In this case the total number of variables is |K|. For multiple capacities per

DC}, the total number of decision variables is | K| x | Rg|.

The optimal solutions to the above mentioned decisions are important for the government

of Tanzania to redesign the current distribution facilities.

4.2 Data and results using the deterministic model

4.2.1 Data for the deterministic model

The considered research data are from Tanzania where the three layers namely: PCs, DCs
and CPs are used. Road connections to the three layers form the production, storage and

distribution network.

The major maize crop production areas consists of four PCs (Iringa, Mbeya, Rukwa and

Ruvuma). Surplus maize crop production from these PCs are bought and then transported

through roads or railways to DCs which are allocated in different parts of the country as

shown in Figure and in Table [3.1] This study considers only transportation by roads as
4

per data availability. In this study, the total capacity of all four PCs, ) S5}, is 532,000 tons
j=1

as presented in Table . These data are based on annual production capacity of 2011/2012.

The existing distribution system consists of seven DCs which are Arusha, Dar Es Salaam
(Dar), Dodoma, Shinyanga, Makambako, Songea and Sumbawanga. In the existing

distribution system, Songea and Sumbawanga DCs are used as reserve DCs to buffer the
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other five DCs and are not used to supply the CPs. They are also used as storage for export

to neighbouring countries. From now on they will be referred to as storage facilities rather
5

than DCs. The total capacity of the remaining five DCs, > Vj, is 178,500 tons as presented

k=1

in Table [B.2

As per the government’s plan, due to the increased production capacity and demands,
three additional new DCs are to be built with the total capacity of 159,000 tons (53,000
tons each DC, see Table as documented in Figure . The new DCs are located in
the headquarters (city) of the regions (similar to province or state) that have the highest
customers’ demand based on the 2004 - 2010 maize crop distributions. The proposed new
DCs’ names are Babati (DCg), Mwanza (DC7) and Tanga (DCg). The construction or
establishment costs for new DCs are not included in this study, but the fixed annual operating
costs are. There will be a total of eight DCs after the new DCs have been established. Given
the sites of the eight DCs and their corresponding capacities, optimal number of DCs have
to be found. When there are more than one capacities per DCs, optimal capacity of each
selected DC has to be found. The fixed annual operating cost for each of the eight DCs
depends on its capacity as shown in Appendix C, Figures and together with how
these costs have been obtained. The Tanzania shillings conversion rate to USA $ for fixed

annual operating cost is based on 2012 exchange rates [13].

The CPs form the last layer of the distribution network. In this study, the customers (CPs)
are classified as 93 districts as obtained from 2004 to 2010 maize crop distribution data.

This data was collected from the head of the disaster management in the Prime Minister’s

office, in January 2011 (See copy of attached letter in Figure|C.7). The 93 CPs are listed in

93
the first column in Tables|B.7, |B.§| [B.9|and [B.10| The total demand from all 93 CPs, >~ D,
=1

is 145,144 tons. Within the period of 2004 to 2010, each CP had an annual demand. For

each CP the annual maximum demand (i.e. maximum annual demand for each CP in our
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2004-2010 data) is used to calculate the total demand. Hence 93 such maximum demands
are added together to obtain 145,144 tons. Each CP’s annual maximum demand value is
presented in Table [A.13] Within a period of 2004 to 2010 some districts had been in food

shortage in all years (as per available data) and others once or more with minimum of 32

tons of Mafia CP in 2006 (see Tables |A.14] [A.15] |A.16|and [A.17)).

It can be seen that there is a high difference between the total annual demand at CPs
(145,144 tons), total DCs’ capacity (241,000 tons for all seven DCs) and the total annual
production at PCs (532,000 tons). The surplus maize crop are exported to neighbouring
countries such as Somalia, South Sudan and Kenya as addressed in 2012/13 budget speech
[14]. In addition to the two storage facilities at Songea and Sumbawanga for exporting to
neighbouring countries, it is quite clear that additional DCs need to be built. The government
of Tanzania also keeps a safety level stock for emergency situations which might happen
within the country. For example, in 2012, an estimated 41,000 tons of maize crop were sold
at domestic food crop market in certain towns and cities for price stabilization as explained
in [14]. So the extra maize crop stocked in DCs are also sold to the private business people for
milling and resale the maize flour to public in agreed government instructed prices. Through
the NFRA policies, they also hire the unused DCs’ capacity to private sector as explained
in the general information, Appendix [A] On the other hand, the private sector companies
and other local private business people are buying surplus maize crop from PCs for trading
within and outside the country [62]. Thus the involvement of private sector in the maize

crop distribution system help to balance the surplus maize crop in PCs and DCs.

Generally, the research data for the deterministic part is from the four sources based on

Tanzania food distribution system. These sources are the Tanzania National Roads Agency
(TANROADS), Ministry of Agriculture, Food Security and Cooperatives (MAFSC), National

Food Reserve Agency (NFRA) and the disaster management department in the Prime
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minister’s office. The letters requesting access to the respective data sources as presented
are shown in attached copies, Figures and The details on each source and type of

data obtained are found in Appendix [A]

4.2.2 Results using the existing distribution network

This subsection considers the existing system of maize crop distribution in Tanzania. The
current distribution network has five DCs each having fixed capacities, Vi.. The five DCs are
sites listed as K = { Dar, Arusha, Dodoma, M akambako, Shinyanga}. The listed names are
the specific city or town location within a region. Some regions have the same name as its
headquarter city. From now on, DCs and PCs will be denoted in terms of their indices as
shown in Table 4.1 The computational experiments considers the cases; Case 1 and 2, as

explained below.

Table 4.1: Notations for DCs and PCs.

DCs DCy | PCs PC;
Dar DC | Iringa PCy
Arusha DCy | Mbeya PCy

Dodoma DC5 | Rukwa  PCh4
Makambako DC, | Ruvuma PCy

Shinyanga DCj

There are several common inputs to be used in Case 1 and 2. These are |J| = 4, |K| = 5,

and |L| = 93. Other common inputs are the PCs’ fixed capacities, S;, as shown in Table

m, distances Cjj, (Table [B.1)) and T}; (Tables [B.7, [B.8 [B.9 and [B.10). The distances

in the respective tables are only for the first five named DCs. The CPs’ demands, Dy,

l=1,2,...,|L|, are given as inputs to the model in all computational experiments, and they

are given in Table We have also used the unit transportation cost A = $0.10795 (per
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km per ton) based on 2010 conversion rate between Tanzania currency and USA § [12], [13].
The unit transportation cost estimated is based on NFRA (National Food Reserve Agency)
maize crop transportation cost in 2010 as shown in Figure [C.I] We have used CPLEX
software (IBM ILOG Optimization studio) for all the computational experiments. We have
not imposed any stopping criteria; and the program will stop when it cannot enumerate any

more improved solutions.

Case 1 and computational results

Here, we consider the five DC sites together with their current capacities, R, = {Vk}
In this case, the optimization will be performed with respect to (a), (b) and (c) as in
subsection 4.1.1} The model stated by (4.1]) - (4.8) is used for optimization. The purpose of

this case is to see if the current network is optimal.

The optimized results are summarized in Table [£.2] where the first 5 columns contains some

inputs to the model.

Table 4.2: Location allocation results for true capacity in Case 1.

| Ll
j =1

DC; 52,000 340,340 PC, 100,000 | 1  PCy; PC, 22,000; 30,000 28 39,361

DCy; 39,000 255,260 PCy 251,000 |1 PCy 39,000 18 39,000
DCs3 39,000 255,260 PCs 140,000 | 1 PCy 39,000 31 39,000
DCy; 34,000 222,530 PCy 41,000 |1 PCy 34,000 11 13,283
DCs 14,500 94,900 1 PCy 14,500 10 14,500
Total 178,500 1,168,290 532,000 178,500 98 145,144

The last 5 columns in Table present the results obtained. For example, the variable

values 7}, is used to show if the corresponding DC has been selected. The selected DCs have
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to be supplied from the PCs and this has been shown in column 7. The notation PC? in
this column is used to denote the PCj that are the suppliers of the respective DCs. For
example, it can be seen from the first entry of column 7 that PC; and PC5 served the DC}.
Column 8 shows the amount of supplies received by each DC from the corresponding PCs.
For example, the second entry of column 8 shows that DC5 received 39,000 tons from PCY.
A comparison of columns under V;, and Z Xk, shows that the full capacity of each DC is

J
utilized.

We have introduced the notation Ly to denote the set of CPs (where |Lg| is the number

of CPs) served by DC}). Hence, the total shipment to these CPs from the DCY is |§I Y,

shown in the very last column. For example, DC supplied to 28 CPs with a total of 13:91,361

tons which is within its capacity. Note that, a CP can get supply from more than one DC
K|

under the so called multi-sourcing. Hence, > |Lg| > |L|, as can be seen at the last entry in
k=1

| K|
column under |Ly| (> |Lx| = 98 > |L|). In the results, the total demand of 145,144 tons
k=1

from all CPs are satisfied (see the total value at the last column, Table [£.2).

With respect to the location decision, Table shows that all five DCs have been selected

as shown in the column under 7.

With respect to the allocation decision, it can be seen in Table that all five DCs are
supplied by PC} and PCjy only as shown on the column under PC75. This clearly shows that
the existing network results are different from the manually operated system since the two
PCs (PC5 and PCy) are never used. This is based on the fact that the current network has
been using PC3 and PC} as shown in Table 4.3 Data in Table [£.3] were formed using data
from Tables and , and Appendix C (Figure for the year 2010. PC and PCs
are the largest producers among the four PCs as shown in Table [£.4] This table shows the

different annual production capacities for all the four PCs [23]. Table also shows that
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PCY is the only PC to supply its full capacity to the DCs.

In addition, results obtained by us are in disagreement with the data used in the current

network with regard to shipments between DCs to CPs. This can be seen by comparing the
results under |Lj| in Table with the data in the last column of Table [4.3] The CPs to

DCs allocations under |Ly| for Vj are detailed in Table [B.11]

Table 4.3: PCs to DCs supplies from manually operated current network.

DC, Vi PC; PCs Xk | L]
DC, 52,000 PCy | PCy, PCs, PCy 6,305; 61; 153 26
DCy 39,000 PCy PCy 9,867 16
DCy 39,000 PCy PCy 4,009 12
DC, 34,000 PC, PCs 7,523 9
DCs 14,500 30
Total 178,500 27,918 93

Table 4.4: The summary of PCs annual maize crop total production capacity in tons.

PC; Year Average

2005/06 2006/07 2007/08 2008/09 2009/10

PCy | 412,762 474270 384,273 443,905 393,164 | 421,675
PCy | 293,725 349,094 494,810 393,406 621,545 | 430,516

PC5 | 270,564 226,524 351,013 375,732 372,830 | 319,333

PC, | 211,789 138,269 236,602 176,876 289,588 | 210,625

In Case 1, the total distribution cost that includes transportation costs and DCs’ annual
fixed operation cost is $15,570,885.08. This is the minimum objective value obtained after

27 seconds.
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In Case 1, all DCs uses V. as their true capacities. However, at times the demand at CPs
increases and therefore replenishment are needed at DCs in order to cater for the additional
demand at CPs. The capacity of DC5 is an example of this situation as it can be seen by
comparing its capacities shown in Tables and [4.5] The replenishment is carried out from
the two storage facilities, Songea and Sumbawanga. On the other hand, the actual capacity
used may not exceed the true capacity. Therefore the true capacity and the capacity used
(actual capacity) may not be the same. Since the capacity used by DC} varies from year
to year, we took the maximum actual capacity, V}, used by DC}, during 2004 - 2010. This
actual capacity for the existing network, is also considered as the manually operated existing
distribution network. We have re-run the program using V;, instead of Vi (true capacity) and

results are summarized in Table[4.5] Other inputs to the model (4.1) - (4.8) remain the same.

Table 4.5: Location allocation results for actual capacity in Case 1.

DC, W By PC; S Zy  PC3 ;xjk Ly 'é’::l Yi
DCq 33,190 217,229 PCy7 100,000 | 1 PCy 33,190 26 33,190
DCy 38,532 252,192 PCy 251,000 | 1 PCy 38,532 18 38,532
D(Cs 24,650 161,334 PC5 140,000 | 1 PCy 24,650 13 24,650

DCy 9,843 64,422 PCy 41,000 |1  PCy; PCy 3,628; 6,215 9 9,843

DCs 38,929 254,790 1 PCy 38,929 29 38,929

Total 145,144 949,967 532,000 145,144 95 145,144

Columns of Table contain the same headings as in Table [£.2] We analyze the results

with respect to (a) - (¢) of subsection [4.1.1}

In the location decision, all the five DCs are selected as shown in column 6. This is due to

the fact that the DC capacities are equal to total CPs’ demands. The columns under V;, and
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| L]

>~ Y have the same values.

=1

The allocation decision in column under PC?, shows that only two PCs, PC} and PCy, have
supplied to all five selected DCs as in the case of Table[£.2] This also clearly shows that the

current network is not optimal. The CPs to DCs allocations under |L;| are detailed in Table

B.12

The amount of maize crop transported from DCs to their respective CPs are detailed in Table
The overall total network distribution cost is $13,224,626.75 with the execution time
of 23 seconds. This cost is about 15% less than the cost associated with the true capacity in
Table i.e., a net saving of $2.3 million. This reduction in cost is partly contributed by

DC} which having the larger capacity than in Table [1.2] now serves more CPs, i.e. 29 CPs

(see Table as opposed to 10 in Table [4.2]

Case 2 and computational results

In this case, the main focus is given to the use of multiple capacities per DC. Unlike Case 1,
here capacity of a selected DC is an optimization decision. Hence the mathematical model

used in this case is re-written as follows:
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subject to @2), (@5). [16) &
> Xje=> ViZ;Vk
; -
> 7 < 1,Vk,
ZYkl < ZV,;Z,Z,W{:
! r
Zr € {0,1},Vr, k.

Explanations to the model:

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

e Constraints (4.11)) refer to the amount supplied from PC; to all selected DC}, must

satisfy the DCs’ capacity level V).

e Constraints (4.12)) are now introduced to make sure that only one capacity level of

selected DC is chosen. If DCY is selected then the constraint (4.12)) makes sure that

only one of its capacity is chosen. i.e. > Z; = 1. If DC}, is not chosen, then ) Z] = 0.

e When DC}, is selected along with a capacity level, then constraint (4.13)) makes sure

that its V| for some r is not violated. The values of , r > 1, are in different ranges,

some less than or equal to V;, and some are more than Vk, the existing true capacity.

e Constraints (4.14]) are the binary values to the location variable.

The objective function (4.9)) differs from the existing ones in literature in that the last term

is modified to account for the dependence of F] on V).

We have carried out the optimization of the model (4.9) - (4.14)) using the inputs data as in

Case 1 except for each DC},, we use 14 different capacities i.e. Ry = {V1, V2, ..., V.}}. In

the given capacities, the Case 1 capacities, Vk and V, are also included. Values in the set Ry

are independent of k. These capacities together with corresponding Fj are presented in the

374 to the 10" columns of Table . In the table, there are three additional new DCs which
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are Babati (DCg), Mwanza (DC7) and Tanga (DCg). The set Ry, k = 1,2,...,8, contains
the capacities that are generated randomly in [9,843;145,144]. We have used the interval
from 9,843 to 145,144 since this range contains the minimum capacity as observed in DCs’
actual capacity, Vi, and also the maximum actual capacity used.

The optimization in this case is performed with respect to all the four decisions, (a) - (d),

as listed in subsection [4.1.1]

We run the program using the original five DCs, i.e. using the data of Table4.6|up to column
7. The results obtained are summarized in Table [£.7, where the optimized capacity chosen

are shown in brackets in the column under V. The results in Table [£.7] are self-explanatory.

Table [4.7] shows that only four DCs are selected.

The optimal decisions for the capacity of DCs are presented in column 8 under Z Xk As
shown in Table [4.7] the total optimal capacity of the four selected DCs is 145,141 which is
the same as the total CPs’ demand. DCj3 has the largest capacity (71,000 tons) for all the
selected DCs. This is an increase of 32,000 tons from its true capacity of 39,000 (f/k) DCj
also needs to be increased from its true capacity of 14,500 to the capacity of 33,144. The

results obtained indicate the need for expansions for the capacities of DC3 and DCs.

The overall distribution cost obtained after 16 seconds is $12,660,522.80. The total cost
attained in Case 2 is the best solution for the existing maize crop distribution network in
Tanzania. The cost has decreased, in comparison to Case 1, by 4.27% (actual capacity) with
a net saving of $564 thousand which is an important saving to be considered. In the case
of true capacity, the saving is 18.69% which is equivalent $2,910 thousand. The saving is
contributed by using many capacities that the program will select the best in each DC as

compared to a single capacity as used in Case 1.
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Table 4.6: The V)" and F} input sets for eight DCs.

(rd k=) | (V7 Fr) | DGy DCs DCs DCy DCs DCs DC DCg
1 v} 52000 39000 39000 34000 14500 53000 53000 53000
F} 340340 255260 255260 222530 94900 346885 346885 346885
2 V2 33190 38532 24650 9843 38929 28500 26500 45000
F2 217229 252192 161334 64422 254790 186533 173443 294525
3 V3 25000 45000 71000 16000 33144 30144 18144 29000
F3 163625 204525 464695 104720 216927 294525 118752 189805
4 v 145144 145144 145144 145144 145144 145144 145144 145144
Fp 949968 949968 949968 949968 949968 949968 949968 949968
5 VP 28500 26500 45000 18144 29000 35000 43000 16144
Fp 186533 173443 294525 118752 189805 229075 281435 105662
6 17 39361 39000 39000 13283 14500 39000 39000 13283
FS 257618 255255 255255 86937 94903 255255 255255 86937
7 V7 27144 45000 59000 20000 39000 63000 40000 45000
FT 177657 294525 386155 130900 255255 412335 261800 294525
8 Ve 52000 39000 63000 40000 45000 25000 26000 45000
F8 340340 255255 412335 261800 294525 163625 170170 294525
9 12 35000 43000 16144 25000 30000 45144 16000 33000
F? 229075 281435 105662 163625 196350 295467 104720 215985
10 V2o 32000 43000 16144 24000 30000 33190 38532 24650
FJ0 209440 281435 105662 157080 196350 217229 252192 161334
11 v 25144 26000 45000 16000 33000 45000 71000 16000
1 164567 170170 294525 104720 215985 294525 464695 104720
12 V2 25000 26144 45000 16000 33000 30000 16000 33000
R} 163625 171112 294525 104720 215985 294525 104720 215985
13 Vi3 25000 26000 45144 16000 29144 9843 38929 28500
F}3 163625 170170 295467 104720 190747 64422 254790 186533
14 V4 25000 26000 39144 16144 33000 45144 16144 33000
Fl4 163625 170170 256197 105662 215985 295467 105662 215985

k
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Table 4.7: Location allocation results in Case 2.

DC,  PC; S; (zp,r) VI Fy  PC3 2]; Xk |Ly| Ié;kl‘ Y
DC; PCy; 100,000 | (1,3) V;3(25,000) B} PC; 25,000 20 25,000
DCy  PCy 251,000 | (0,.) - - - - -

DCs  PC3 140,000 | (1,3) V(71,0000 F§  PCy 71,000 39 71,000
DCy  PCy 41,000 | (1,13) V}3(16,000) Fj3 PCy; PCa  4,000; 12,000 13 16,000
DCs (1,3) V3(33,144)  F$ PCy 33,144 24 33,144
Total 532,000 (145,144) 145,144 96 145,144

NOTE: -’ This means the corresponding DC is not selected.
4.2.3 Results using eight DCs

We continue to find the minimum possible cost for the location and allocation of facilities
in the distribution network. In this part, we use the existing five DCs and the three new
DCs to comply with government proposal as clearly stated in Appendix C, Figure|[C.2] The
use of the eight DCs; after the three new DCs as explained in sub-section forms the
extended distribution network. We have decided to use more DCs despite the fact that the
existing DCs’ capacities are enough for the present CPs’ demand in order to cater for the
general uses of the DCs. The main and primary use of DCs is to store the reserve food
crops for the nation in order to supply to the common deficit areas. This is the concern of
our study. However, since the production capacity is very high (see Table , then there
is a need to have enough storage capacities. Apart from the stored maize crop for common
deficit areas, we have also other grain crops like rice, sorghum and beans that are stored

in DCs. Thus the consideration of the new DCs for this study is very important so as to

explore the possible cost reduction using the extended distribution network.

The inputs used in the extended network are similar to those given in Case 2, but with

additional data for the three new DCs. However, rather than solving the optimization model
(4.9) - (4.14]) using | K| = 8, we run the optimization in three phases. We use three phases in

order to find the cost resulted for each new introduced DC for comparison purposes. Each
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run considers one new additional DC. Hence, Phase 1 has |K| = 6 for DCg where the 6™
DC is a new DC on top of existing five DCs. Phase 2, |K| = 7 includes DC7. And the last
phase includes all eight DCs. The number of PCs and CPs are same as used in the existing

network. The inputs in Table for C}, distances, and Tables [B.7] [B.8 [B.9] [B.10] for T},

are used in phases depends on the number of DCs involved. The corresponding inputs are
also taken from Table [4.6l The multiple capacities in the model presented in (4.9) - (4.14)

are applied to all phases.

We run the program for the three phases; and the results obtained are as follows:

e In Phase 1, the five DCs are selected including DCy with the distribution cost of

$12,346,976.95. This cost is less than the cost found in Case 2.

e For optimization in Phases 2 and 3, we obtained the same results with the cost of
$12,303,719.06. Here, the obtained cost is better compared to all previous optimization

results.

We summarize the results for all eight DCs in Table where out of six selected DCs, two
are the new DCs. DC and DC5; are the new proposed DCs which are selected in this optimal

solution as indicated in column under (Z}, 7).

The notations used in results presented in Table [4.§ are the same as that in Table [4.7]

The DCs’ optimal capacity decisions are presented in brackets as shown in column 5 under
Vi The total optimal capacities of the six selected DCs are the same as the total CPs demand
which is 145,144 tons. The obtained results, in order to meet the demands at minimal cost,
require DC] to use the capacity of 25,144 although its actual capacity is 52,000 tons. DCj
which has the largest capacity of 45,000 tons, should be increased by 6,000 tons from its
actual capacity of 39,000 tons. DCy will use only 16,000 tons from its actual capacity of

34,000 tons, while DC5 will use exactly its actual capacity; 14,500 tons. The new DCs, DCyg
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Table 4.8: Location allocation optimal results for eight DCs.

DC,  PC; S, (Zpr)y VI Fy  PC: %: Xk |Ly| lfg‘ Yii
DC; PC; 100,000 | (1,11)  V{1(25,144) FY PCy 25,144 21 25,144
DCy  PCy 251,000 | (0,.) - - - - -

DC3 PC3 140,000 | (1,5) V3 (45, 000) F3 PC 45,000 25 45,000
DCy PCsy 41,000 (1,13)  V}3(16,000) Fj3 PCi; PCy  1,356; 14,644 13 16,000
DCs (1,1) V2 (14, 500) F} PCy 14,500 15 14,500
DCq (1,2) VZ(28,500) FZ  PCy 28,500 14 28,500
DCy (1,9) V2(16,000) F?  PCy 16,000 10 16,000
DCs (0,.) - - - - ;

Total 532,000 (145,144) 145,144 98 145,144

and DC'%; and their capacities for the demand satisfaction are 28,500 tons and 16,000 tons

respectively.

The optimal cost of $12,303,719.06 is obtained after 27 seconds. The solution in this
optimization has reduced the best solution obtained in Case 2 by almost 3% with a net
saving of $356,803.74. This is a better achievement for savings with approximately $357
thousand. The actual capacity solution of Case 1 has been reduced by about 7% while
the true capacity is reduced by 21%. The use of many capacities in optimization is highly
important as it allows the program to select the best capacity in each DC accordingly. If
we consider the saving based on current practices (actual capacity in Case 1), it is very
significant since it is equivalent to Tshs 1.2 billion. This has been effectively contributed by

the two new selected DCs through the optimization tool.

The deterministic optimal solution is very important in terms of cost savings. We also need
to reflect on the geographical location of the selected DCs; and their distances to CPs, PCs,
and their optimal capacities. The results are very useful for the Tanzanian government to

redesign its existing distribution network.
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4.3 Results of the deterministic model using combined

17 weeks

The previous section considered the demand for a single period where it is assumed that
all the demand D; at C'P, are transported only once in a week from DC) to C'P, sometime
during the first week. However, from the existing network the transportation has been
carried out over four months in order to meet the demand, D; at C'P,. We now consider the
weekly transportation plan that will meet the demand per week. Hence, it is a multi-period
transportation plan. This plan will help to know the weekly demand to be supplied to each
CP. The results from this plan will also be used for comparison with the stochastic model
results due effect of weekly rainfall. In this case, our model considers all the 17 weeks (17
periods) where the demand transported in each week is the same. The week is denoted by
e, e € B, |[E| = 17. We use the decision variable Y}, as the weekly amount in tons flow from
DCY, to CP, in week e instead of Yy;. The total demand, D;, over the entire 17 week period,
will be met after the 17 weeks. We have a weekly demand at C'P, denoted by d; such that
kf:Ykl = d; and |F| g Y = ?YM = D;. In this consideration, the transformed models
—1 =1 =1
are used in both the existing distribution network and the extended network as it has been

done in sections [£.1] and [£.2] In the computational experiments, we use the same data as

stated in subsection d.2.1]

4.3.1 Results for the existing distribution network

We first consider the existing distribution network by using a single capacity per DC.
We present the combined model for the 17 week period where the amount of maize crop
transported from DCs to CPs at every week is the same. The presented model bellow is
similar to a single period model with only the number of weeks,|FE|, as a new parameter.

The model is as follows:
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Xl\/gnz )\(ZZCijjk + !E|ZZTM?M) + ZFka
ks Yal, 2k Tk 1 &

subject to , , &
B> Vi < ViZy,Vk,
!

B Y= Dy, VL.
k

Vi > 0,Yk, L.

The explanations of the above model are as follows:

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

e The objective function (4.15) with decision variable Y;, minimizes the total distri-

bution cost including the weekly distribution cost from DCs to CPs. The total cost

between DCs and CPs can be obtained by multiplying with |E|.

e Constraints (4.16|) are used as in the previous model, section .

e Constraints (4.17) refer to the amount supplied, Y, for each week in |E| weeks by

DCy, to all CP,, [ € L, not exceeding Vj / |E|. The weekly amount Y}, transported is

the same for each week.

o Constraints (4.18)) represent the weekly amount Y;; that need to be transported in

week e for |E| weeks from all DCy, k € K, to the C'F,, which must meet the demand,

D;.

e Constraints (4.19)) represent the non-negativity restrictions.
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As we have done in the single period demand, the existing maize crop distribution system is
now being evaluated using the multi-period demand. The multi-period demand data is the
annual demand data being divided equally into 17 weeks. The computational experiments

are carried out using the same cases; Case 1 and 2; as used in section [£.2]

Computational results for Case 1 under multi-period demand
The computational experiments for Case 1 in this section are carried out using the model
defined by equations (4.15) - (4.19). The computational results for Case 1 with a true

capacity (V;) and actual capacity (V;) are shown in Table .

Table 4.9: Summary results for Case 1 using multi-period demand.

DCY, True capacity, Vi Actual capacity, Vj
|Li| _ [Li| _ |Lk| _ |Lg| _
Ll X Yu o B X Ya | (Ll XY [E] X Yu
=1 =1 =1 =1

DCy | 28 2,315.35 39,361 26 1,952.35 33,190
DCy | 18 2,294.12 39,000 18 2,266.59 38,532
DC5 | 29 2,294.12 39,000 13 1,450.00 24,650
DC, | 11 781.35 13,283 9 579.00 9,843

DC5 | 10 852.94 14,500 29 2,289.94 38,929

Total | 96  8,537.88 145,144 | 95  8,537.88 145,144

Table gives the summary results for both Vk and Vj, under which the weekly demand to

be transported to CPs is determined. The column labels in Table [4.9|are self-explanatory as
ILk| _ |Lk| _

defined before except sub-columns under ) Yy, and |E| > Yy These sub-columns denote
=1 =1

the total amount of maize crop to be transported from a DCY, to all its respective CPs (| Lg|)

in a week and the total demand, D;, in a 17 weeks period respectively. The total demand
|Li| _

is satisfied as shown in the sub-column under |E| > Y. However, from the results we have
=1

the same total costs as obtained in the Case 1 for the single period demand as presented in
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section [4.2] Thus there are no significant differences in locations and allocations within the
layers when compared to the results presented for the single period in section 4.2 Thus, we

mostly focus on the weekly demand to be transported from DC} to C'P, over 17 weeks.

Computational results for Case 2 under multi-period demand
In this case, the computational experiments are carried out using the multiple capacity model

with multi-period demand. The model is presented below:

Xl\/gnzr )\(ZZCijjk + !E!ZZTM?/M) + ZZFI:ZI: (4.20)
iks Ykt 2}, ik ko1 kor

J

subject to [@11), @.14), (A.16), (£.18)& ([@.19), (4.21)

B> Yu< > VWZ, k. (4.22)
! T

The above mentioned model is now considers the multiple capacities as addressed through
Z;, Vi and F]. The constraints used are the same as (4.11) — (4.19) with only the added

constraints; (4.22)), for restriction on the DCs” multiple capacities.

Table [4.10] shows the summarized results where the column labels are the same as defined
in the sub-columns of Table [4.9 and also in Table [4.7, section 4.2 In the computational

results, we have obtained the same total cost as that found in its counterpart Case 2 for the
[Li| _

single period demand. Thus in Table 4.10] we will focus on the column under ) Y}, and
=1

other results for the comparison with results of the stochastic model presented in Chapter

Bl
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Table 4.10: Summary results for Case 2 multi-period demand.

|Lg |

|Li| _ _
DCy  PC vy | L l_ZlYkz |E|l_ZlYkz

DC,  PCy V3(25,0000 20  1,470.59 25,000
DCs - - - - -

DC;  PCy V3(71,000) 38 417647 71,000
DC, PCy; PC, V}3(16,000) 13  941.18 16,000

DCs PCs V3(33,144) 24 1,949.65 33,144

Total (145,144) 95 8,537.88 145,144

4.3.2 Results using the eight DCs

In this extended network where the new DCs are involved, we optimize the model to
. There are three phases considered for computational experiments as it was carried
out in subsection [£.2.3] Similarly, as in Cases 1 and 2, the computational results in this
section have the same total cost as the one obtained for the single period demand in section

4.2l

Table summarizes the results for the eight DCs for the multi-period demand.
The summarized results for the eight DCs computational experiments in Table 4.11; have
the same column labels as in Table 4.10, The values in the table are self-explanatory and

will be used for comparison with the stochastic results in Chapter [}
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Table 4.11: Summary results for the extended network using eight DCs.

|Lk| _ |Li| _
DC,  PCt 174 Lel XY Bl Y
=1

=1

DC,  PC,  V}Y(25,144) 21 1479.06 25,144
DC, - - - - -

DCjy PC, V2 (45,000) 26 2,647.06 45,000

DC, PCy; PC, V}3(16,000) 13  941.18 16,000
DCs  PCy V1(14,500) 14 852.94 14,500
DCs  PCy V2(28,500) 14  1,676.47 28,500
DC: PG, V(16,000) 10  941.18 16,000
DCy - - - - -
Total (145,144) 98 8,537.88 145,144

4.4 Conclusions and recommendations for the deter-

ministic results

The purpose of this study using the deterministic model is to access the suitability of
extending the existing transportation network in Tanzania. This was initiated by the
government in considering the increase of demands at the customer level as well as increased
production in recent years. The government wanted to make sure that the demands are met
but with decreased or minimal cost. Even though we put more emphasis on the stochastic
model, the results from the deterministic model can also be used to offer recommendations

to the government on the maize crop transportation network.

We have studied the problem from two angles: firstly by using the current or existing network
and secondly by using the extended network. For the current network we have optimized
the model with increased demand (where we have used maximum demands over a number of

years) and in increased capacities of DCs (maximum capacity used). The optimal solution
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for the existing network shows that one old DC has to be closed and only four DCs are to

be operated.

Our second study for the extended network (where we have used eight DCs) suggests that
costs can be reduced further if two new DCs are opened and one old is closed. Generally,
the optimal solution for the deterministic model shows that some old DCs have to be closed

and new ones in different regions need to be opened.

The optimal solution for the deterministic model obtained as a case study is of great
importance. The total cost obtained in the computational results considers the three layers
simultaneously. This is different from the existing system which is manually operated and

has two different departments working independently.

The existing distribution system has two different independent tasks carried out by specific
different government departments. The first task is dealing with buying of maize crop
from PCs and transporting them for stocking in DCs which is done by the NFRA (first
department). The second task is the transportation of maize crop from DCs to CPs done
by the disaster management department in the Prime Minister’s Office (PMO) (second
department). This results in high cost due to fragmented co-ordinations since the two
departments operate more independently and they are also under different ministries. This
breeds inefficiency. The integrated coordination, as supported by this study, will make cost
to be economic and offer a more reliable and flexible system. Based on the discussed facts

from optimization results, we recommend the following:

e The use of optimization as a decision tool is an important aspect to be considered by
the Tanzania government in its food security system and other sectors. For example,

the saving of Tshs 1.2 billion is a significant amount achieved through optimization.
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We obtained the weekly amount of maize crop demand to be transported in each week

to CPs which is not yet implemented in the manually operated system.

It is important to have data records that are well-secured for research and for further
developmental plans. This needs to be managed by all stakeholders. For example,
data availability in NFRA is not well-organized and accessible. There should be a
section within the department that will ensure and create effective data bases for the

department.

The results from this study should be applied to redetermine and to recast the current
distribution system. In particular, Case 2 can be implemented since the existing DCs
can be used together with its storage facilities for the restocking of the DCs like DC}3
and DC5.

New DCs construction should be effected as per study since this is the primary demand
for the country’s self-sufficient in food. The DCs or storage facilities expansion is one
of the ten pillars stated in 2009 Tanzania policy on “Agriculture First” document [2].
This can be done through public-private partnerships in order to ensure the immediate
implementation of the goal. There is an urgent need for DCs’ capacities expansion due

to the following reasons:

1. Firstly, the PCs’ capacity is always higher compared to the storage capacities as
shown in Table For example, the PCs’ capacity is 532,000 tons (surplus maize
crop production in 2011/12), while the total DCs’ and storage facilities’ capacity
is 241,000 tons. This is only for the major four surplus producer regions and it is
only maize crop being stored. The annual total maize crop production capacity
for the four PCs as in Table also supports the expansion for DCs. Generally,
production is always high and during the harvest season most of farmers sell their
crops to meet their needs like clothing, school fees for their children and other

needs [23, [84].
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2. Secondly, there is a need for stocking more food crops (rice, sorghum, beans, etc.)
in order to stabilize food crop prices in the domestic food markets in general, and
in particular for towns and cities as the need arises. The lack of enough storage
capacity causes low prices for maize crop during the harvest season and then faces

the high maize crop domestic prices later [23].

3. The third reason is the exports of food crops to other neighbouring countries,
such as Somali, Kenya, Burundi, Rwanda, Malawi, Zambia and South Sudan for

economic earnings [14] 23].

e It is possible to coordinate activities of food crop production, storage and final
distribution to customers. In order to achieve this, data availability, coordinating

management and the funding to the coordinating team are of great importance.
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Chapter 5

The stochastic model for the two-level
FLP with rainfall dependent travel

costs

5.1 Background to the stochastic problem

As explained in Chapter [3] the stochastic transportation links arise in Tanzania due to the
effect of rainfall. The road condition is directly related to the amount of rainfall which
is stochastic. Hence, the usability of road and distance are stochastic. This is because;
if there is no rainfall or there is very low rainfall, then the exact distance is known (as
in deterministic model). The distance between a DC to a CP is rainfall dependent. For
example, for a relatively moderate amount of rainfall, some sections of the link between a
DC to a CP will have diversion roads that have to be traversed. Similarly, for a high amount
of rainfall a large distance is expected to be traversed due to more diversions or detours.

This results in stochastic travel costs.

Both the paved and unpaved road links may be submerged due to rainfall. Some parts of

unpaved road links may even not be accessible even with moderate rainfall. Alternative road
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links are then used thus causing high costs. When the rainfall is high to the extent that
the travel might be postponed for a day or more; this might happen if most road links are

submerged and probably the bridges are washed away.

Figure[5.T]elaborates the possible road links and the effects of rainfall. For example, deliveries
must be done from a DC situated at A to a CP located at D. The shortest path is A to
C to D. However, for moderate rainfall of; say 30 mm, the link AC is not accessible and
therefore this has to be replaced by the links AB and BC'. For a rainfall of; say 85 mm, the

link C'D is also inaccessible and in this case the long route ABED is used causing more costs.

Figure 5.1: The road links and rainfall effects

To give a recent example of high rainfall in Tanzania, we cite the rainfall on the night of 21°
January, 2014. This caused floods in the Dumila area in the Morogoro region, Tanzania.
Many road links within Morogoro became inaccessible [20]. Figures and show the

situation of a bridge on the paved road and one of the government schools after floods caused
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by the rainfall on 215 January, 2014. However, this heavy rainfall was unique since it had
not occurred in that place for more than 50 years [20]. It is not regular kind of rainfall and
it is the specific case for bridges. Other heavy rainfall causes impassable roads mostly due to
muds as shown in Figures and No data available in the TANROADS headquarters

for number of bridges being washed away by rainfall.

Figure 5.2: The Dumila area bridge after heavy rainfall, on 22-01-2014. Source: Michuzi

Blog - hittp://issamichuzi.blogspot.com/
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Figure 5.3: Magole primary school has been submerged after heavy rainfall, picture captured
on 22-01-2014. Source:

http://mdimuz.blogspot.com/2014 /01 /jionee-hali-ya-mafuriko-ilivyokuwa-huko.html

Situations like these cause high transportation costs since long alternative road links are

used between origins and destinations [27].

Road networks in Tanzania are mainly classified as trunk roads (TR), regional roads (RR),
district roads (DR) and urban roads (UR). In Tanzania, trunk roads are primarily defined
as the main highways (national roads) which link two or more regional headquarters in
the country. The regional roads (RR) are defined as the secondary national roads that
connect TRs and regional and/or district headquarters. RR link regional and the district
headquarters [79]. The total classified road network in Tanzania mainland is estimated to
be 86,472 km based on the Road Act 2007 [79]. The national road network (NRN) is about

33,891 km comprising of 12,786 km of TRs and 21,105 km RRs (see Figure . The
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remaining network of about 53,460 km is of urban, district and feeder roads [79]. This study
uses only the NRN that comprises of both TR and RR. The status of NRN in km are as

presented in Table

Table 5.1: Tanzania NRN classification and status.

Road status | Road classes and their distances in km Percent
TR RR

Paved 5,130 840 17.6

Unpaved 7,656 20,265 82.4

Total 12,786 21,105 100

Generally, in the National Road Network (NRN) the paved roads make up 17.6% and the
unpaved roads 82.4%. This excludes the rural district roads most of which are unpaved.
Figure |5.4] shows Tanzania’s NRN. The high percentage of unpaved roads is the cause of

stochastic effect even for moderate rainfall.
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The rainfall distribution within the country varies with regions and districts, it also varies
with time. Therefore, the effect of rainfall in transportation links differs from regions to
regions as well as from a month to another. In this study, we have five existing DC zones
with different rainfall distributions. These five DC zones are from the current transportation
network. A DC zone is defined as a specific DC and its surrounding CPs (districts in a region)
that are usually serviced by that DC. Each DC zone will be assumed as having its unique
rainfall distribution per week over 17 weeks. This also applies to the newly proposed DCs
with their own rainfall distributions. The DC zone at site k, is synonymous to DCy, k € K,

as used in Chapter [4

Within a DC zone, we consider the weekly amount of rainfall for the first 17 weeks in a year.
This is based on the fact that from the field data, the maize crop transportation from DCs

to CPs are carried out mostly within the first 17 weeks of each year (January to April) (see

appendix |D.4] [D.5land [D.6)). In the field data records, eight out of nine DCs to CPs transfers

were done between January and April. The data used in this case was the weekly rainfall
from 2007 to 2010. The weekly rainfall data was obtained from the Tanzania Meteorological
Agency (TMA) in January 2011 as shown in Appendix C, Figure Table summarizes
the rainfall data in millimetre (mm) for each DC zone over 17 weeks. We present the mean,
minimum and maximum rainfall in mm for all DC zones in Table 5.2l First we calculate the

average rainfall for each week within 17 weeks in each DC zone by considering data from

2007 to 2010. We use the data presented in Tables [A.5|[A.6] [A.7] [A.8] [A.9] [A.10, [A.11] and

From the 17 data values of averages per DC zone, we then calculate the average of
averages (mean) and also identify the minimum of averages (minimum) and the maximum of
averages (maximum). The values presented in Table[5.2|are only for comparison of variations

in rainfall distributions across the DC zones.

The values presented in Table show that there are significant variations in rainfall
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Table 5.2: The DC zone showing minimum, mean and mazximum rainfall in mm (January

- April from 2007 to 2010 rainfall data)

DC zone (DCjy) | Minimum Mean Maximum
DC,y 5.5 29.2 57.2
D, 8.1 30.2 83.6
DCjs 0.4 26.0 57.2
DCy 5.5 30.5 53.2
DCs5 20.7 36.4 61.9
DCy 3.2 36.0 72.8
DCr 17.2 34.2 65.7
DCy 0.3 21.2 101.6

distributions. DCg zone has the lowest minimum rainfall of 0.3 mm and also the highest
maximum rainfall of 101.6 mm. Generally, each DC zone has different rainfall as it can be
observed in Columns 2, 3 and 4, and thus the effect on road links differs accordingly. The

variations are also from week to week as shown in the field data presented in Tables[A.5|[A.6]

A7 A8 A9, (AL 10} [A.11{ and |A.12] Weekly transportation planning over 17 weeks will now

be considered in this chapter to account for the variability in rainfall with respect to each

DC zone.

Clearly, the choice of routes (used by vehicles) results in a variable delivery cost from DCs
to CPs. These costs, often being dominant, will affect the selection of DCs, their sizes and
locations. Therefore allocations of DCs to PCs and CPs to selected DCs are expected to be

affected.
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5.2 The scenario-based approach in stochastic pro-
gramming

As it has been explained in section [2.3] there are several approaches in dealing with
randomness in stochastic problems. Here, we are considering the scenario-based approach

that is pertinent to our problem.

A scenario-based approach is one of the approaches in dealing with randomness or
uncertainty. In stochastic programming models, the scenarios are generated to represent
the uncertainty in a sensible way while taking into account: the goal of the model and its

structure, the available information and the availability of computer software [11], 68 [80].

The scenario-based approach assumes that there are a finite number of decisions that nature
can make as the outcomes of randomness [I1]. Each of the possible decisions or realizations
is called a scenario. Scenarios deal with uncertain aspects of the random variables or
parameters that are relevant to the need of the concerned problem [80]. Thus, the future
uncertainty in the considered problem is usually described by a set of alternative scenarios.
Some examples of scenarios are: the demand for a product is low, medium, or high; the
weather is dry or wet; and the market price will go up or down. These are some examples with
finite number of future realizations for stochastic modelling. The scenario-based approach
can be used in both discrete and continuous random variables provided that there are finite
number of realizations. However, even if the nature acts in a continuous manner, often a

discrete approximation is mostly used in scenario-based approach [T, [66].

In the scenario-based approach, a scenario tree can be generated which will incorporate all
possible realizations of discrete random variables or parameters into the model [80]. For
the scenario tree, the number of scenarios as well as the progression of the scenarios from

one stage or period to another depends on the requirement of the problem being considered
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[11), (68, [80].

To explain the scenario-based approach, we consider a two-stage linear stochastic model
with discrete realizations of a random variable. Here, two-stage is based on the stages of
decisions taken in solving the stochastic model. The decisions that must be taken before
the random experiment, denoted by z, are called first-stage decisions. The period during
which they are taken is called the first stage. Decisions that must be taken after the random
experiment, denoted by y, are called second-stage decisions and its corresponding period
is the second stage. Suppose the result of the random experiment is s € S where S is
the sample space of the random experiment, the sequence of decisions and events can be
represented diagrammatically as © — &(s) — y(s,z). Thus the second-stage decisions
are functions of the outcome of the random experiment and also the first-stage decision
[1'7, 40]. An elementary detailed example for a two-stage stochastic problem is the news-
vendor problem found in [I1) 17, 68]. We now consider in the next paragraph the general
two-stage linear stochastic model that can be transformed into scenario-based approach in

dealing with discrete random variables.

Generally, a two-stage stochastic linear program with recourse function can be written as

follows [111, [17, 140, [68]:

Min 'z + E:Q(x,€) (5.1)
subject to Az = b, (5.2)
x>0, (5.3)

where Ax = b is the first stage constraints and Q(z,&) is the optimal value of the second

stage problem (an extended real valued function or recourse function) given as

Q(z,€) = Min q"y (5.4)
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subject to Gr + Wy =h, (5.5)

y > 0. (5.6)

where GG and W are called technology and recourse coefficient matrices for decision variables,
x and y respectively. h is a right hand real value that limits x, y, G and W values. Here x

and y are vectors of first and second stage decision variables respectively.

The second stage problem, - , depends on the data £ := (g, h, G, W) and some or
all elements of which can be random. So { is a random vector and E¢ denotes mathematical
expectation with respect to the probability distribution of £. This probability distribution
is supposed to be known. The two-stage stochastic models where the random variables
are fully known or realized, are solved as a “wait-and-see” solution method. On the other
hand, when the stochastic models are solved before the realization of random variables,
it is a “here-and-now” solution method. In this context, usually the random parameters
are estimated using the historical data under probability distributions or density functions
[11, 17, 39, 68]. The decisions to be made in “here-and-now” are for single-stage stochastic
models [39]. In general, the random parameters or variables for stochastic models can be

either in the constraints or in the objective function, or in both [T}, 17, 39, [68].

We now consider equations (5.1)) - (5.6) to have the discrete distribution in random data with
a finite number of |S| possible realizations. These possible realizations, & := (gs, hs, G5, W),
s € S, are called scenarios with corresponding probabilities Py for its occurrence (Pr(f’s) =

PS). The other interpretation would be that the random vector £ = £(s) depends on the
S|

scenario s, which takes on S different values. In this case, EcQ(z,&) = > P.Q(x,&),
s=1

El

S~ P, = 1. This consideration is only for a single attribute. For several attributes, P! or
s=1

P, s can be adapted, meaning that the probability of scenario s at period ¢, where s € S and

t € ¢, where ¢ is the set of period times considered. Other possible attributes or dimensions
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can also be treated accordingly.

Under scenario-based approach, the model (5.1]) - (5.6) can now be written in the form:

s
Mi Te+Y Pily, 5.7
zyyh-l-l}ys c 32:; 4y (5.7)
subject to Az = b, (5.8)
Gox + Woys = hg, Vs, (5.9)
x>0,y, >0,Vs. (5.10)

Problem - is the two-stage stochastic problem formulated as one large linear
programming problem under scenario-based approach. The constraints are known as
the first stage constraints and are the second stage constraints. Such a stochastic
decision model is known as the extensive form of the stochastic program since it explicitly

describes the second stage decision variables for all scenarios [11].

We would like to point out that the objective function in equation (5.7)) is similar to our
problem stated in equation ([5.22)); which is also a scenario-based problem. In our problem

the constraints are not stochastic. Examples of scenario-based stochastic problems that are

solved numerically can be found in [IT], 17, 19} BT, 66 80].

5.3 Stochastic model with rainfall dependent travel
cost

During the rainy season, the transportation links between the DCs and CPs are unreliable

since unpaved roads are at high risk, so are the low lying paved roads. The paved roads can
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also be submerged due to heavy or high rainfall. Some low lying paved roads get submerged
under moderate rainfall too. The distance or a link between a DC and a CP in this case varies

due to rainfall. We consider this effect in the mathematical modelling of two-level FLP below.

The mathematical model for the two-level FLP in section 4.1 Chapter [d] can be extended
to include the stochastic term. The set of indices, parameters and variables for the problem
are presented below:

Let J, K, and L, as before, denotes the index sets for PCs, DCs and CPs respectively.

Ry: Same as in section Chapter [

e: Is the index set representing a week in which maize crop is transported from a selected
DC to a CP, where e € E. |E| denotes the total number of weeks.

Sj: Same as in section .1, Chapter [

D;: The total demand for four months for maize crop at C'P, transported once in a week.
We assumed that a given single period demand is transported in the first week |I| of the four
month’s period.

F}: Same as in section [£.1, Chapter [

Cj: Same as in section Chapter [

w(e, k): The amount of rainfall during week e in DC zone k, e € E, k € K. Since w(e, k) is
stochastic with respect to both e and k, we introduce the stochastic variable v(k) = w(e,.)
by fixing e.

My, (y(k)) The road distance in kilometres from DC), to C'P, that depends on rainfall of
week e.

A: Same as in section Chapter [4

Decision variables for the model:

Xk, Yy and Zj, are the same as in section {1}, Chapter [4]

'We have also considered the delivery of the total demand in other weeks.
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As stated in section [£.I, Chapter [i] we ignore the superscript  in Zj, V; and F when a

single capacityﬂ per DCY is used. Here the choice of capacity is not a decision variable but

the choice of DC}, is.

The two-level FLP is to select the DC sites, the assignment of C'P, to the selected DC}

and the assignment of selected DC}, to the PC; by considering the stochastic cost involved

between the DCs and the CPs.

Therefore, the stochastic single capacity model extended from the deterministic model is as

follows:

BUTRIPHICETES 5 wUIEEIT IS S EN

subject to ZXjk < S;,Vj,
%
> Xk = ViZ, Vk
ZYkl < ViZi,Vk,
]

ZYM = D}V,
k

X > 0,5, k,
Y > 0,Vk, 1,
Z, € {0, 1}, Vk,

e is fixed.

The following are the explanations to the above model:

2Model for the stochastic multiple capacities per DC will be presented later on.
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e The objective function (5.11)), which is a stochastic model, is the total distribution
cost, e.g. transportation cost from PCs to DCs and DCs to CPs, and fixed annual

operation costs, F}, for DCs with the corresponding capacities V}, for a fixed week e.

e Constraints (5.12)) are the supply constraints (production centres’ capacities), where
the total amount to be shipped from a PC to the selected DC}, must not exceed PC}

capacity, 5;.
e Constraints ([5.13)) is as stated in equation (4.3)).

e Constraints (5.14)) refer to the amount supplied by DCy to all CP,, | € L, without
exceeding Vj. Vj (respectively Fj) are the values currently used in the current
transportation network with five DCs, e.g. DCY, ..., DC5. The capacities Vi, k € K,

are not necessarily equal.

e Constraints ((5.15]) represent the amount to be transported from all DCy, k € K, to

C P, and this amount must meet a demand, D;, at the C'PF,.

e Constraints (5.16) and (5.17)) are non-negative variables.

e Constraints ([5.18|) are binary variables.

Constraints ((5.19) consider a week e being fixed in the model.

The term AMy, (w(e, k’))Ykl in equation 1) is the stochastic cost of transportation that
depends on the amount of rainfall at the e* week in the DC zone k. So there will be an
increase in cost which includes drivers’ expenses and other related costs. The stochastic

distance which takes values from three scenarios for interval, is calculated using:

/

T if w(e, k) < A(k),

Mya(w(e, k) = § Ty(a+ 1) if A(k) < w(e, k) < B(k), (5.20)

\Tkl(ﬁ + 1) if B(k‘) < ’LU(G, k’),
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where Ty, is a deterministic road distance in kilometres from DCy to C'P,, and A(k) and
B(k) are parameters used to determine possible ranges of amount of rainfall for the distance

calculation as explained in the next paragraph.

The reasons behind the use of equation are the historical data and the relationship
among Ty, and w(e, k) [19]. There are three scenarios realized due to rainfall classification
based on the its effect on road links. The first scenario, w(e, k) < A(k), constitutes the
weekly rainfall data values from 0 (no rainfall) to its median value in the DC zone k. Hence,
A(k) is a median data value in a given weekly rainfall data in DC}, over all 17 weeks. The
amount of rainfall in this scenario is low and is considered to have no effect on road conditions.
Hence, we have a deterministic distance between a DC and a CP. We have decided to use
the median value instead of mean since the weekly rainfall data distribution are skewed (not

normally distributed).

The second scenario for medium rainfall is A(k) < w(e, k) < B(k), where B(k) is calculated
as A(k) plus 2.5 times the standard deviation (B(k) = A(k) 4+ 2.50) in a given DC}, using

17 weeks’ data. The standard deviation for each DC}, is calculated using the weekly rainfall

data values presented in Tables [A5|[A.6] [A.7] [A.8] [A.9] [A.10, [A.11] and [A. 12l The third

scenario, B(k) < w(e, k), represents the high amount of weekly rainfall. A(k) and B(k)

data values for each DC zone, DCY%, as shown in Table [5.3] were computed using the weekly

rainfall over 17 weeks as presented in Tables [A.5[A.6], [A.7, [A.8], [A.9] [A.T0] [A.11] and [A.12]

The three scenarios were considered for realism under low, medium and high amount of

weekly rainfall classification [16].

The values in Table [5.3] are specific for each DC zone under consideration since each DC

zone has different rainfall distribution. Thus the effect of rainfall on the roads will also differ

due to the nature of rainfall distribution in a particular DC zone.
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Table 5.3: The A(k) and B(k) values (weekly rainfall data in mm) in each DC zone over

17 weeks.
DC zone A(k) B(k)
DCy 20.2 105.1
DCy 15.0 117.0
DCs 13.6 87.2
DCy 24.1 91.2
DCs 28.5 123.0
DCg 36.0 114.2
DCy 24.9 101.9
DCy 2.2 82.8

The other parameters of equation are o and 3. These are estimate parameters used
to estimates the distance increases due to various levels of rainfall. The estimate values
are o« = 0.824, f = 1 by considering Tanzania NRN information [79]. The values are
based on the effect of rainfall on the unpaved and paved roads. If the amount of rainfall is
moderate, then the estimated distance increase is due to the conditions of unpaved roads.
Thus we have estimated the value of distance increase to be proportional to the percentage of
unpaved roads, a (proportional to the unpaved roads). For high rainfall, the overall distance
increase is estimated due to both paved and unpaved roads effect. Hence, the value of 3 is 1
(percentage of unpaved roads plus percentage of paved roads). The effect of these parameters
are proportional to the amount of rainfall (probabilities) as shown in the equation (5.22)).
The value of 3 is a realistic estimate for high rainfall. The accessibility of both paved and
unpaved road is very poor for high rainfall [20]. The parameters are therefore tentative

estimates used to find the increase in distance caused by rainfall.

88



5.4 The stochastic model: A scenario-based approach

The rainfall data values which are stochastic in nature are now used to calculate the
probability of scenarios. The three scenarios in equation (5.20]) result in three respective
probabilities that are used in the stochastic model. The three scenarios corresponding to
probabilities for week e, Ps(e, k), with s = 1, 2 and 3 for each DC zone k are presented as

follows:
o Py(e,k)=Pr (w(e, k) < A(k))

o Pye k) =Pr (A(k;) <w(e k) < B(k)) and

o Py(e,k) = Pr (B(k:) < w(e, k)).

The sum of all the three probabilities in each DC zone for each week must be a unit, i.e.
Pi(e, k) + Py(e k) + Ps(e, k) = 1.
By these probabilities and equation [5.20, the stochastic model with consideration of the

rainfall effect in each week is now presented as follows:
E[My(w(e, k)] = Tu[Pi(e, k) + (a + 1) Py(e, k) + (B + 1) Ps(e, k)] (5.21)

Therefore, by including equation the objective function (5.11)) can now be re-written

as:

J}C\/{/ngk <Z Z C]kXJk -+ Z ZTlekl [Pl €, k’ (CY + 1)P2(€, k’)

(5.22)
+ (B +1)Py(e, k) ]) + ZFka

The resulting expected objective function; (5.22)), similar to equation (5.7), is then solved
subject to constraints (5.12)) to ((5.19).

Here we have considered rainfall as the stochastic data that will affect the distance covered

in transportation of maize crop from DCs to CPs. The consideration of rainfall data for the
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calculation of distance travelled in our model is similar to the example problem on farming
studied by Birge [I1]. In this problem, three weather scenarios are used to influence the crop
yields. The crop yields will depend on whether the weather is good, average or bad [I1].

The good, average and bad weather form the three possible scenarios of weather realizations.

These types of stochastic data usually influence the other data in the model using the
estimate parameters. This is due to the fact that the given stochastic data is not directly
linked to the model parameters compared to the case of new-vendor problem [IT], 17, [68].
With such circumstances, our research problem being a real life problem is limited to
other possible stochastic programming methods. These methods have different statistical
distributions such as uniform, exponential, log-normal, Poisson and Wei-bull where random
parameters can be treated [I7]. For the same reason, the sample average approximation

(SAA) approach is also not relevant to our problem.

5.4.1 Data for the stochastic model

Stochastic optimization considers the amount of rainfall in a given week as the stochastic
data. These are the weekly amount (total) of rainfall from the Tanzania Meteorological

Agency (TMA) regional stations within the DC zones. The data is over the period of 2007

- 2010 and is as presented in Tables [A5][A.6], [A.7] [A.8| [A.9] [A.10] [A.11] and [A.12] In each

year we use all data from all meteorological stations within the given DC zone. This is for
the purpose of having more samples of weekly rainfall within a DC zone. We have used the
data in the listed tables above for the computation of probability values, Pi(e, k), Py(e, k)

and P3(e, k) (see Tables and [5.5). These probabilities are calculated using data over 17

weeks for each respective DC zone.

The computations are done by first finding the total number of weekly data values in a given
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interval. We then divide that value by the total number of all data values found in that
week in respective DC zones. For example, if the first interval has three data values in week
one, and the total number of all data values in that week is twelve, then P;(e, k) = 3/12 or
0.25. The other values of Ps(e, k) and Ps(e, k) are computed in a similar way for that week
such that Pi(e, k) + Pa(e, k) + Ps(e, k) = 1. These probabilities together with deterministic

data stated in section [4.2.1 Chapter [4] are used for the optimization of objective function

(5.22)) subject to equations (5.12)) to (5.19).

Table 5.4: The weekly based DC' zones rainfall probabilities.

e# Ps(e, k), e, t |,k —] DC Zone (DCy)

DCq DC> DC3 DCy DCs DCs DCr DCg

1 Pi(1,k) 0.632 0.909 0.333 0.125 0.625 0.667 0.750 0.750
P(1,k) 0.368 0.000 0.667 0.875 0.375 0.000 0.250 0.250

P3(1,k) 0.000 0.091 0.000 0.000 0.000 0.333 0.000 0.000

2 Pi(2,k) 0.579 0.636 0.500 0.375 0.625 0.667 0.500 0.750
P(2,k) 0.421 0.364 0.417 0.625 0.375 0.333 0.500 0.250

P3(2,k) 0.000 0.000 0.083 0.000 0.000 0.000 0.000 0.000

3 Pi(3,k) 0.895 0.818 0.583 0.375 0.375 0.667 0.750 0.750
P>(3,k) 0.105 0.182 0.417 0.625 0.625 0.333 0.250 0.250

P3(3,k) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 Pi(4,k) 0.684 0.818 0.583 0.250 0.500 1.000 0.500 1.000
Ps(4,k) 0.316 0.182 0.417 0.750 0.313 0.000 0.500 0.000

P3(4,k) 0.000 0.000 0.000 0.000 0.188 0.000 0.000 0.000

5 Pi(5,k) 0.579 0.455 0.167 0.250 0.563 0.333 0.750 1.000
P(5,k) 0.368 0.545 0.750 0.625 0.438 0.667 0.250 0.000

P3(5,k) 0.053 0.000 0.083 0.125 0.000 0.000 0.000 0.000

6 Py (6,k) 0.421 0.545 0.333 0.375 0.500 0.333 0.750 0.750
P> (6,k) 0.526 0.455 0.667 0.500 0.438 0.667 0.250 0.250

P3(6,k) 0.053 0.000 0.000 0.125 0.063 0.000 0.000 0.000

7 Py (7,k) 0.526 0.364 0.583 0.375 0.375 0.333 0.250 0.500
Py(7,k) 0.368 0.545 0.333 0.625 0.563 0.333 0.750 0.500

P3(7,k) 0.105 0.091 0.083 0.000 0.063 0.333 0.000 0.000

8 Pi(8,k) 0.789 0.636 0.583 0.500 0.500 1.000 0.500 0.750
P>(8,k) 0.158 0.364 0.417 0.500 0.438 0.000 0.500 0.250

P3(8,k) 0.053 0.000 0.000 0.000 0.063 0.000 0.000 0.000
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Table 5.5: The weekly based DC' zones rainfall probabilities.

et Ps(e, k), e, t 4, k —] DC Zone (DCf)
DCy DCy DCs DCy DCs DCs DCy DCs
9 P1(9,k) 0.579 0.727 0.417 0.375 0.375 0.667 0.750 0.500
P>(9,k) 0.421 0.273 0.417 0.625 0.625 0.333 0.250 0.500
P3(9,k) 0.000 0.000 0.167 0.000 0.000 0.000 0.000 0.000
10 P (10, k) 0.632 0.727 0.583 0.500 0.500 0.667 0.500 0.750
P>(10, k) 0.368 0.182 0.417 0.500 0.500 0.000 0.500 0.250
P3(10, k) 0.000 0.091 0.000 0.000 0.000 0.333 0.000 0.000
11 Pi(11, k) 0.737 0.455 0.333 0.375 0.438 0.000 0.250 0.750
P>(11, k) 0.263 0.545 0.667 0.375 0.500 1.000 0.750 0.250
P3(11, k) 0.000 0.000 0.000 0.250 0.063 0.000 0.000 0.000
12 Pi(12, k) 0.316 0.455 0.333 0.625 0.500 0.667 0.500 0.250
P>(12, k) 0.684 0.455 0.417 0.375 0.438 0.333 0.500 0.750
P3(12, k) 0.000 0.091 0.250 0.000 0.063 0.000 0.000 0.000
13 Pi(13,k) 0.263 0.273 0.083 0.500 0.313 0.333 0.250 0.000
P>(13, k) 0.737 0.455 0.833 0.500 0.688 0.667 0.250 1.000
P3(13,k) 0.000 0.273 0.083 0.000 0.000 0.000 0.500 0.000
14 Pi(14, k) 0.263 0.273 0.667 0.750 0.750 1.000 0.750 0.250
P>(14, k) 0.632 0.727 0.333 0.125 0.250 0.000 0.250 0.750
P3(14, k) 0.105 0.000 0.000 0.125 0.000 0.000 0.000 0.000
15 Pi(15,k) 0.316 0.000 0.667 0.875 0.313 0.333 0.000 0.000
P(15,k) 0.421 0.909 0.250 0.125 0.563 0.667 1.000 0.250
P3(15,k) 0.263 0.091 0.083 0.000 0.125 0.000 0.000 0.750
16 Pi(16,k) 0.316 0.273 0.750 0.875 0.500 1.000 0.250 0.000
Ps(16, k) 0.684 0.727 0.250 0.125 0.500 0.000 0.750 1.000
P3(16, k) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
17 Pi(17,k) 0.158 0.182 0.917 1.000 0.750 0.667 0.500 0.000
Py(17,k) 0.789 0.727 0.083 0.000 0.188 0.333 0.500 1.000
P3(17,k) 0.053 0.091 0.000 0.000 0.063 0.000 0.000 0.000
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5.4.2 Results for the stochastic model using existing distribution

network

The computational experiments carried out in this section are similar to those in section |4.2.2),
Chapter [4] but with probabilities as additional inputs. In the numerical experiments, we are
determining the cost increase based on stochastic rainfall data at the e week. Although
the transportation is assumed to be carried out at the first week of a four months period,
we have also studied and observed the cost increase for all 17 weeks separately in order to
study the effect due to rainfall for each week. The stochastic computations carried out in
this chapter, in general, are single-stage decisions based on the “here-and-now” solution (see
section using probability distributions. Apart from the cost increase, the location and
allocation of facilities, and their capacities are to be affected. We consider the computational

results in cases; Case 1 and 2, as we have have done for the deterministic model, section

of Chapter [4]

Case 1 and computational results under stochastic model
The data used here is the same as explained in section for Case 1. The new additional
data is taken from Tables and [5.5] The two types of capacities to be used are true

capacity, Vk, and actual capacity, Vj.

First we consider the true capacities, Ry = {f/k}, where the five DCs, DCY, ..., DC5, are used.

We solve the equation ((5.22)) with the listed constraints (5.12)) - (5.19)).

The results are generated for each week as shown in Table 5.6l In Table we also present
the corresponding deterministic results for comparison. In this table, Column 1 presents the
week number. Column 2 shows the costs of the stochastic model, and Column 3 presents
the corresponding costs of the deterministic model given in section [£.2.2) Chapter 4] The

differences between the stochastic and deterministic costs are shown in Column 4. This is
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denoted as VSS (value of stochastic solution), as stated in section[2.3] The weekly percentage
cost increases between the two solutions are presented in Column 5. The last column presents

the number of DCs selected, denoted by |K*|, after we have solved the stochastic model.

Table 5.6: Total cost for true capacity in Case 1 using stochastic model as compared to the

corresponding deterministic model.

e# Stochastic cost Deterministic cost VSS cost increase (%) |K°®|
1 17,102,556.23 15,570,885.08 1,531,671.15 9.84 5
2 17,231,097.32 15,570,885.08 1,660,212.24 10.66 )
3 16,563,688.39 15,570,885.08 992,803.31 6.38 )
4 16,868,110.12 15,570,885.08 1,297,225.04 8.33 5
5 17,751,062.15 15,570,885.08 2,180,177.07 14.00 5
6 17,758,349.19 15,570,885.08 2,187,464.11 14.05 5
7 17,573,708.89 15,570,885.08 2,002,823.81 12.86 )
8 16,872,388.96 15,570,885.08 1,301,503.88 8.36 )
9 17,344,297.56 15,570,885.08 1,773,412.48 11.39 )
10 17,007,900.19 15,570,885.08 1,437,015.11 9.23 5
11 17,389,487.88 15,570,885.08 1,818,602.80 11.68 5
12 17,899,971.83 15,570,885.08 2,329,086.75 14.96 )
13 18,474,471.21 15,570,885.08 2,903,586.13 18.65 5
14 17,649,037.81 15,570,885.08 2,078,152.73 13.35 )
15 17,850,299.21 15,570,885.08 2,279,414.13 14.64 )
16 17,416,775.78 15,570,885.08 1,845,890.70 11.85 5
17 17,338,942.36 15,570,885.08 1,768,057.28 11.35 )
Average 17,419,011.33 15,570,885.08 1,848,126.25 11.87 5
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The main focus in Table is Column 5 where the percentage cost increases due to rainfall
at week e are shown. The cost increase ranges from 6.38% (week 3) to 18.65% (week 13)
for the 17 weeks with an average increase of 11.87%. In all the 17 runs, all the five DCs are

selected as shown in the last column of Table [5.6

A comparison of results for the first week obtained using the stochastic and the deterministic
model is presented in Table 5.7, The notations used in Table are the same as those used
in the deterministic case, which is in Chapter [d The results for week 1 are important for
comparison with the deterministic results summarized in Table [£.2] This is due to the fact
that a four months demand is assumed to be transported in the first week of the four months
period as discussed in the deterministic part, Chapter[dl The overall percentage cost increase

as shown in Column 5, Table [5.6] for the first week is 9.84%.

Table 5.7: Comparison of summarized results of stochastic and deterministic model for

week 1.
DCY, Results for week 1 Summary results from Table [4.2]
|Ly| |Ly|

PCY | Ly| 1:21 Y PCY | Ly 5:21 Y
DCy PCy 31 42,801 PCy; PCy 28 39,361
Dy PCy 18 39,000 PCy 18 39,000
DC;s | PCy; PCy 27 39,000 PCy 31 39,000
DC, PG, 9 9,843 PG, 11 13,283
DCj PCy 11 14,500 PCs 10 14,500
Total 96 145,144 98 145,144

In Table we study the location and allocation due to the effects of rainfall in the first

week as compared to the deterministic results in Table [4.2]
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With respect to DCs to PCs allocations, only PC} and PC5 are supplying to all the five
selected DCs. DC is supplied by both PC; and PC5 which is different from the deterministic
case where DC) is supplied by PC; and PC, (see Table [5.7). This shows the effect of

stochastic rainfall for DCs to PCs allocations.

||

A comparison of |Lg| and > Y}, values shows that they are different for DC; and DCy. This
=1

accounts for re-allocations of CPs to DCs due to rainfall effects. Furthermore, an analysis

on the effect of rainfall is now considered for the lowest and highest cost increase weeks.

Table presents a comparison of the lowest and highest cost increase weeks with the

corresponding results of the deterministic model, Table

Table 5.8: Comparison of summarized results for the lowest and highest cost weeks with

deterministic results.

DCY Results for week 3 Results for week 13 Summary results from Table
|Ll [ Lyl | Ly
pCs | L] >° Y pPCs Lkl >0 Ya pPCs L] > Y
=1 =1 =1
DCy | PCy; PCy 34 42,801 PC1;PCo 27 36,642 PCy; PC» 28 39,361
DC» PCq 18 39,000 PCq 18 39,000 PCq 18 39,000
DC3 PCq 22 39,000 PCq 26 39,000 PCq 31 39,000
DCy PCs 9 9,843 PCs> 16 16,002 PC»> 11 13,283
DCs PCsy 13 14,500 PCs> 9 14,500 PC»> 10 14,500
Total 96 145,144 96 145,144 98 145,144

Table gives more details of the results corresponding to the lowest (week 3) and highest

(week 13) and the corresponding results for the deterministic solution, Case 1, in Table .

Sub-columns under PC? in Table show that the results of week 3 and 13 are the same as
in Table[d.2] There are some differences in the number of CPs served by DCs as shown in sub-
columns under |Lg|. The exception is only for DCy where the number of CPs (|Ly|) served

is 18 in all three cases. DC5 and DC} in particular, have high differences in the number of
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CPs served by the corresponding DCs. For example, in DCj5 there are few CPs served in
week 13 as compared to that in deterministic solution. In week 13, DC}y served 16 CPs while
in deterministic results it served only 11 CPs. This situation shows that DC); can be used
during the rainy season in week 13 as compared with other DC zones. This is because DC}
has more frequent rainfall in the first interval, (see the corresponding probability P;(13,k))
as compared to other DC zones as shown in Table 5.5l Thus due to high rainfall in other

DC zones, more CPs are served by DCj as compared to the deterministic results.

For the transportation decisions, there are also some minor differences observed in the total
|Lg|

amount transported by each DC to their respective CPs as shown in columns under » Yy,
=1

Table [5.8] The differences in amount transported to CPs are shown in DC; and DC} while

other DCs are having the same amounts transported to CPs.

Generally, the results show that in every week there are some changes in the location,

allocation and transportation decisions as compared to the deterministic results.

As it has been done in the Case 1, the deterministic model, for the stochastic model we
have also re-run the program using the actual capacity, V4. The results of this re-run are

summarized in Table . The other inputs to the model apart from V, remain the same.

The results presented in Table [5.9| show that the average cost increase for all 17 weeks is
11.19% which is not much different when the true capacity was used (see Table . The
lowest and highest cost increases are 7.38% and 16.43% respectively. All the five DCs are
selected as expected since the total optimized DCs’ capacity is the same as the total CPs’

demand.
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Table 5.9: Total cost for actual capacity in Case 1 using stochastic model as compared to

the corresponding deterministic model.

e# Stochastic cost Deterministic cost VSS cost increase (%) |K°|
1 14,272,420.91 13,224,626.75 1,047,794.16 7.92 )
2 14,424,712.12 13,224,626.75 1,200,085.37 9.07 5
3 14,200,634.71 13,224,626.75 976,007.96 7.38 5
4 14,346,584.77 13,224,626.75 1,121,958.02 8.48 5
) 14,712,039.13 13,224,626.75 1,487,412.38 11.25 )
6 14,824,199.80 13,224,626.75 1,599,573.05 12.10 )
7 14,908,537.88 13,224.626.75 1,683,911.13 12.73 5
8 14,319,679.64 13,224.626.75 1,095,052.89 8.28 5
9 14,626,095.63 13,224,626.75 1,401,468.88 10.60 5
10 14,404,188.41 13,224,626.75 1,179,561.66 8.92 )
11 14,615,840.67 13,224,626.75 1,391,213.92 10.52 )
12 14,974,256.52 13,224,626.75 1,749,629.77 13.23 5
13 15,397,856.60 13,224,626.75 2,173,229.85 16.43 5
14 14,787,240.85 13,224,626.75 1,562,614.10 11.82 )
15 15,377,673.29 13,224,626.75 2,153,046.54 16.28 )
16 14,909,415.14 13,224,626.75 1,684,788.39 12.74 )
17 14,868,497.26 13,224,626.75 1,643,870.51 12.43 5
Average 14,704,110.20 13,224,626.75 1,479,483.45 11.19 5
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The results for the first week are compared with those of the deterministic model in Table
5.10. The results presented in this table are self-explanatory similar to the results presented
in Table 5.7 However, generally there are no significant differences that can be observed

between the values found in the sub-columns under the same label, e.g. |Lg| .

Table 5.10: Comparison of summarized results of stochastic and deterministic model for

week 1.
DCY, Results for week 1 Summary results from Table [4.5|
|| ||

PCY | Ly| l:zl Y PCY | Ly l:zl Y
DCy PCYy 27 33,190 PCYy 26 33,190
DO, PCy 17 38,532 PCy 18 38,532
DC;5 PCy 13 24,650 PCy 13 24,650
DC, | PCy; PCy 9 9,843 PCy; PCy 9 9,843
DCs PCs 30 38,929 PCs 29 38,929
Total 96 145,144 95 145,144

The more detailed results for the lowest and highest cost increase weeks are presented in Table
5.11} where again we have used the weeks corresponding to lowest and highest percentage

cost increase (week 3 and 13).

Table show results as comparable with those of the deterministic model of Table As
it can be seen from sub-columns of Table [5.11] there are no significant differences indicated.
This is quite different from the results when the true capacities were used. This is mostly due
to the fact that the total DCs’ capacity is the same as the total CPs’ demand, e.g. 144,145
tons. On the other hand, the total capacity of all DCs in the true capacity is 178,500 tons
where total demand is 144,145 tons. This means that the DCs’ capacity is larger than the

demand and that the re-allocations are flexible. For the actual capacity, the flexibility is
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Table 5.11: Comparison of summarized results for the lowest and highest cost weeks with

deterministic results.

DCYy Results for week 3 Results for week 13 Summary results from Table |4
[Ll [Ll |Ll
pCs | L] Z Yit pPCs [Z] z; Yit pPCs | L] Z Yit
DCq PC 27 33,190 PCq 26 33,190 PC 26 33,190
DC» PC 17 38,532 PCq 18 38,532 PC 18 38,532
DC3 PC 13 24,650 PCq 13 24,650 PCq 13 24,650
DCy | PCy; PCo 9 9,843 PCy; PCo 9 9,843 PCy; PCo 9 9,843
DCs PCy 30 38,929 PCo> 29 38,929 PCs 29 38,929
Total 96 145,144 95 145,144 95 145,144
negligible.

Case 2 and computational results under stochastic model

As before, the multiple capacities are used as decision variables in this case. Thus the index

r value is now used in Z;, V" and Fj. It is a similar approach as has been done in Case 2

in section [4.2.2] Chapter [d The difference is that the stochastic data are used in the model.

Clearly, in this case the objective function is re-written as:

Min

XjksYki,2y,

subject to

(ZZCJka + ZZTlekl [P1 e, k) + (a+1)Py(e k)

+ (B + )Pg,ekD + ZZFZ

(.12), (5.15), (5.16) (B.17) & (5.19)

Z k*ZV;Z;;,Vk

> Z; < 1,Vk,

> V<> VWZ vk
l T

Zr € {0,1},Vr, k.

100

(5.23)
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The explanations for the above model are similar to those in the deterministic model of Case

2 in Section [£.2.2] Chapter [

The optimization in this case is carried out using the same inputs data as the ones used in
Case 2 in the deterministic case with the only addition being the data in Tables[5.4 and [5.5
Results obtained for equations (5.23) - (5.28]) show clear differences when compared with

Case 2 in the deterministic case in Section [4.2.2

Table 5.12: Total cost for multiple capacities in Case 2 using stochastic model compared to

the corresponding deterministic model.

e# Stochastic cost Deterministic cost VSs cost increase (%) |K°®| l:iill Vi
1 14,096,951.53 12,660,522.80 1,436,428.73 11.35 145,247
2 14,158,620.32 12,660,522.80 1,498,097.52 11.83 145,712
3 13,880,908.81 12,660,522.80 1,220,386.01 9.64 145,247
4 14,011,318.37 12,660,522.80 1,350,795.57 10.67 145,247
5 14,567,500.95 12,660,522.80 1,906,978.15 15.06 145,712
6 14,550,492.64 12,660,522.80 1,889,969.84 14.93 145,247
7 14,482,101.31 12,660,522.80 1,821,578.51 14.39 145,215
8 14,489,388.35 12,660,522.80 1,828,865.55 14.45 145,215
9 14,317,562.84 12,660,522.80 1,657,040.04 13.09 145,247
10 14,040,098.33 12,660,522.80 1,379,575.53 10.90 145,247
11 14,414,109.13 12,660,522.80 1,753,586.33 13.85 145,712
12 14,623,164.72 12,660,522.80 1,962,641.92 15.50 145,217
13 15,123,921.37 12,660,522.80 2,463,398.57 19.46 145,429
14 14,122,471.22 12,660,522.80 1,461,948.42 11.55 145,144
15 14,606,144.17 12,660,522.80 1,945,621.37 15.37 145,144
16 14,164,641.90 12,660,522.80 1,504,119.10 11.88 145,144
17 13,689,755.32 12,660,522.80 1,029,232.52 8.13 145,144
Average  14,314,067.72 12,660,522.80 1,653,544.92 13.06 145,310

The last column in Table [5.12 shows the total capacities of all DCs which are selected for

each week.
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The percentage cost increase for week e for multiple capacities model as shown in Table [5.12]
Column 5 ranges from 8.13% in week 17 to 19.46% for week 13. Week 13 is still the highest
cost increase week as in Case 1 of stochastic model, while the lowest cost increase week is
week 17. This is from the fact that the highest cost increase is caused by high probability
values in Py(e, k) and Ps(e, k). In week 13, all five DC zones are mostly dominated by high
probability values of P»(13, k) and P5(13, k) as shown in Table compared to the values

for other weeks.

The average cost increase for all 17 weeks is 13.06% as indicated in the last row of Column
5. This percentage cost increase is as compared to deterministic cost which is also presented
in Column 3. The percentage cost increase is slightly higher compared to the previous case,
Case 1, stochastic model, using Vi, and Vj. However, this cost must be compared with the
Case 2 of the deterministic model and not with Case 1 of the stochastic model. The higher
cost is probably due to the fact that in computational results, for each week, the five DCs
are being mostly selected compared to the four DCs in the deterministic case (see Column
6 in Table . This leads to high transportation costs from PCs to DCs since all five
DCs are used instead of four DCs as in the deterministic counterpart. If we compare the
results of the stochastic model, Case 2 has an average cost of $14,314,067.72 (see Table
which is lower than Case 1 with an average cost of $17,419,011.33 for V; (see Table and
$14,704,110.20 for Vj, (see Table . This comparison shows that the use of V| variable

improves the cost for the stochastic model.

When compared to the deterministic model the number of DCs selected as presented in

Column 6, Table [5.12] are the same except week 17. This also clearly portrays the effect of

rainfall since the four selected DCs in week 17 are also the lowest cost increase compared to

all the other weeks. As shown in the last column of the table, the total capacities of selected
| K|

DCs, Y V', range from lowest value of 145,144 and the highest value of 145,712 tons.
k=1
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The summary results for the first week are detailed in Table [5.13| compared to deterministic

results, Table [4.7]

Table 5.13: Comparison of summarized results of stochastic and deterministic

model for week 1.

DCy Results for week 1 Summary results from Table @
|Ly| |Lg|
PC3 vy |L| El Y PCs vy | L] El Yiu
DCy PCy; PCy,  V1(25,144) 21 25,144 PCy V2(25,000) 20 25,000
DCy PCy V32(38,532) 19 38,532 - - -
DCs PCy Vi4(39,144) 21 39,041 PCy V§$(71,000) 39 71,000
DCy PCy V5 (13,283) 11 13,283 PCi1; PCo,  V}3(16,000) 13 16,000
DCs PCy V43(29,144) 24 29,144 PCs V3(33,144) 24 33,144
Total (145,247) 96 145,144 (145,144) 96 145,144

NOTE: ‘-’ This means a corresponding DC is not selected by the program.

We compare the summarized results in Table by considering the sub-columns PCY, Vi7,

||
|Lg| and Y Y} under Results for week 1 and Summary from Table 4.7} In the two
i=1

main columns, the major difference is the number of DCs which are selected. For week 1 five
DCs are selected while in the deterministic case only four DCs are selected. Due to this fact,
the clear differences shown between the sub-columns of the same labels are self-explanatory

as the effect of stochastic rainfall in week 1.

Table gives more details of some results for the highest and the lowest cost increase
together with the deterministic results from Table [4.7] for comparison.

Table shows that, for week 17, there is almost no difference of results compared to
the values of the same labels in Table [£.7 Moreover, for week 13, the highest cost week

differences of the results are not significant.
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Table 5.14: Comparison of summarized results for the lowest and highest cost weeks with

deterministic results.

DCYy Results for week 17 Results for week 13 Summary results from Table
[Ll [Ll |Ll
pPCy | L] >° Y pPCs ILel >0 Yu pPCs | L] > Y
=1 =1 =1
DCy PC 21 25,000 PCq 21 25,000 PC 20 25,000
DCsy - - - PCq 10 26,500
DC3 PC 37 71,000 PCq 23 39,000 PCq 39 71,000
DCy | PCy; PCy 14 16,000 PCy; PCo 13 15,715 PCy; PCo 13 16,000
DCs PCy 24 33,144 PC> 30 38,929 PCy 24 33,144
Total 96 145,144 97 145,144 96 145,144

Generally, the existing distribution system had not been considering the stochastic effect
due to rainfall as per collected field data. However, there have been complaints reported by
a Longido CP in 2009 on cost increase due to poor roads for its seven wards of maize crop
distribution out of the nine wards (Appendix @ The complaints were reported due to the
conditions of unpaved roads caused by rainfall. The poor road conditions resulted in the
increase of transportation cost in Longido CP by an average of 96.3%. This also motivated

us to consider the stochastic effect in the modelling for our study.

5.4.3 Results for the stochastic model using eight DCs

We now perform a numerical study of stochastic model using the eight DCs, as we have done
in the deterministic case in Chapter [df We use the same model, equations (5.23) - (5.28)), as

in Case 2.
The inputs used are the same as those in Case 2 in subsection [5.4.2] but with additional

data for the new three DCs. We have carried out optimization in three phases in each week

as we have done in the deterministic part (see subsection 4.2.3)).
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The results obtained in the three phases for each week are summarized as follows:

e Phase 1 is where six DCs are considered of which five DCs are selected in each week
except in week 10 where all the six DCs are selected. In the deterministic case, only
five DCs were selected. The lowest weekly cost increase is 7.52% in week 8 and the
highest is 18.45% in week 13. The average cost increase for all the 17 weeks is 12.47%

as compared to the deterministic case.

e Phase 2 and 3 are when the seven and eight DCs are considered respectively. In both
phases we obtained the same results in all weeks except for week five. Phase 2 has
an average cost increase of 11.38% and Phase 3 the average cost increase is 11.32%.
These cost increases are with respect to the corresponding costs of the deterministic

model found in subsection [4.2.3]

In Table [5.15| we have summarized the results obtained for the third phase when the eight

DCs were used.

Table [5.15 has the same notations as used in Table [5.12] From the results shown in the last
row in Column 5, we see that the average cost increase is 11.32% which is lower than that
of Case 2, Table[5.12] For the extended network of eight DCs, the cost on stochastic model
is $13,697,054.49, which is the lowest compared to the cost obtained for existing network of
five DCs using the stochastic model for Cases 1 and 2. In eight DCs, the lowest cost increase

is 6.94% in week 8, the highest is 18.43% in week 13 as shown in Table [5.15]

Column 6 in Table [5.15 shows the number of DCs selected in each week. As it can be seen,
there are five, six and seven selected DCs out of the eight DCs considered. The selection
of five DCs in week 17 is a unique case caused by high probability values of P»(17,k) and
P3(17,k) that are due to high rainfall in DCy, DCy and DCy as shown in Table . The
three listed DCs are not selected in week 17. However, in the deterministic case only six DCs

were selected (see Table 4.8 in subsection 4.2.3)). Again this is a clear effect of the stochastic
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Table 5.15: Total cost for eight DCs using stochastic model compared to the corresponding

deterministic model.

e# Stochastic cost Deterministic cost VSs cost increase (%) |K*®| |:£:1| 174
1 13,703,487.19 12,303,719.06 1,399,768.13 11.38 7 145,770
2 13,653,035.26 12,303,719.06 1,349,316.20 10.97 6 145,215
3 13,317,228.94 12,303,719.06 1,013,509.88 8.24 6 145,261
4 13,297,044.78 12,303,719.06 993,325.72 8.07 6 145,215
5 13,949,049.54 12,303,719.06 1,645,330.48 13.37 7 145,216
6 13,998,674.17 12,303,719.06 1,694,955.11 13.78 7 145,770
7 14,013,894.84 12,303,719.06 1,710,175.78 13.90 7 145,770
8 13,157,856.94 12,303,719.06 854,137.88 6.94 6 145,215
9 13,699,742.76 12,303,719.06 1,396,023.70 11.35 6 145,215
10 13,587,326.52 12,303,719.06 1,283,607.46 10.43 7 145,770
11 14,031,275.41 12,303,719.06 1,727,556.35 14.04 7 145,770
12 13,944,540.05 12,303,719.06 1,640,820.99 13.34 6 145,215
13 14,570,881.06 12,303,719.06 2,267,162.00 18.43 7 145221
14 13,289,200.19 12,303,719.06 985,481.13 8.01 6 145,215
15 14,068,900.51 12,303,719.06 1,765,181.45 14.35 6 145,144
16 13,314,118.17 12,303,719.06 1,010,399.11 8.21 6 145,500
17 13,253,670.02 12,303,719.06 949,950.96 7.72 5 145,644
Average 13,697,054.49 12,303,719.06 1,393,335.43 11.32 6 145,419
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rainfall as addressed in this study.

weeks. The different capacities observed from the stochastic model, are due to stochastic
rainfall effect compared to the deterministic model where the optimal total DCs’ capacity is

145,144 tons (see Table 4.8[in subsection |4.2.3)).

We now summarize the results for week 1 compared to deterministic case, Table 4.8 in Table
The results presented in Table are compared in a similar way as we have explained
in Table |5.13] Similar comparisons are also presented in Table[5.17 Table presents the

comparison of the results of the lowest and highest cost weeks with the deterministic results,

Table .8l

| K]
The results in the last column, »_ V[, of Table
k=1

the selected DCs. These capacities range from 145,144 tons to 145,770 tons across the 17

5.15| present the total optimal capacity of

Table 5.16: Comparison of summarized results for eight DCs of stochastic and

deterministic model for week 1.

DCy, Results for week 1 Summary results from Table
|Lp| [Lg|
PC; Vi |L| l; Y PC; 174 | L El Yiu
DCy PCy V;3(25,000) 21 25,000 PCy Vi1(25,144) 21 25,144
DCy PCy V431(26,000) 14 26,000 - -
DC3 PCy V3,6(39,000) 22 38,374 PCy V2 (45,000) 25 45,000
DCy PCy; PCy V§5(13,283) 11 13,283 PCy; PCy  V}13(16,000) 13 16,000
DCs PCy V2 (14, 500) 11 14,500 PCy V2 (14, 500) 15 14,500
DCs PCy V43(9,843) 4 9,843 PCy V2(28,500) 14 28,500
DCy PCy V3 (18, 144) 15 18,144 PCy V2 (16,000) 10 16,000
DCs - - - -
Total (145,770) 98 145,144 (145,144) 98 145,144

The results in Table have some significant differences in the values which are in the
sub-columns under week 13 compared to Table 1.8 This is from the fact that in week 13,

seven DCs are selected compared to six DCs selected in Table [4.8, However, in week 8, as
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Table 5.17: Comparison of summarized results for the lowest and highest cost weeks using

eight DCs with the deterministic results.

DCy, Results for week 8 Results for week 13 Summary results Table
[Ll |Ll |Ll
pPC3 | Lk l; Yi PC3 [ L] l; Yil pPCy | Lk l; Yi
DCy PCy 21 25,144 PCy 21 25,144 PCy 21 25,144
DCy - - - PCq 14 26,500 - -
DC3 PCq 21 39,073 PCq 13 24,573 PC 25 45,000
DCy | PCy; PCy 11 13,283 PC> 11 13,283 PCy; PCo 13 16,000
DCs PCy 14 14,500 PCs> 12 14,500 PCoy 15 14,500
DCs PCq 15 35,000 PCy; PCo 13 25,000 PC 14 28,500
DCr PCy 15 18,144 PCy 13 16,144 PC> 10 16,000
DCg - - - - - - - -
Total 97 145,144 97 145,144 98 145,144

compared to Table[4.8] there are some differences clearly shown in DC5, DCy, DCs and DC;
| L
for values under |Lg| and > Y.
=1
From the comparisons of results above, it is clear that the stochastic effect due to rainfall is
an important factor to be considered for the transportation planning in food security issues

in Tanzania. The results revealed by this study are of great importance for the restructuring

of the transportation network for food security.

5.5 Results for the stochastic model using combined

17 weeks

We have observed from the previous section that, on a weekly basis, in a period of 17 weeks,
there is an increase in the cost due to stochastic aspect of our model compared to that of the
deterministic model. The cost increase was observed for each run (that is, for each week). In
this section we are considering the model where all 17 weeks are combined and the demand,

d;, is to be met for each week. This section is similar to that of the deterministic case in
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section We are using decision variable Y}, as the weekly amount in tons flow from DCj,

to C'P; in week e. This amount will be same for each week and the total demand, D;, will

be met after the 17 weeks. In this case, a weekly demand to be met at C'F, is d;, given by

K]

3" Y = d;. The model is used in both the existing distribution network and the extended

k=1

network. We study the overall cost increase when all 17 weeks are optimized together under

the stochastic effect. Results obtained are compared with those of the deterministic model

found in sections 4.2 and [4.3]

We first consider the existing distribution network model for single capacity of the DCs. The

resulting combined model for single capacity is presented below:

Xl\/gnz A(ZZCijjk -+ ZZZTMYM[Pl(G,k') —+ (a+1)P2(e,k)
ko TRL SR ik kol e

+ (ﬁ+1)P3(e,k)}) + Y Rz

subject to (5.12)), (5.13)), (5.16) & (5.18)

|E|Z57kz < ViZy,Vk,
]

|E|> Y =Dy,Vl,
2

Y, > 0,Vk, L.

The explanations of the model:

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

e The objective function in equation (5.29)) with stochastic component minimizes the

total distribution cost and it is similar to equation (5.22)) but here we model the

combined 17 weeks.

109



e Constraints ([5.30]) are as used in the previous model.

e Constraints (5.31)) refer to the amount supplied, Y}, for each week in |E| weeks by
DCy to all CP;, 1 € L, not exceeding Vj,. The weekly amount, Y}, transported is the

same for each week.

o Constraints ([5.32)) represent the weekly amount, Y, that need to be transported in
week e for |E| weeks from all DCy,, k € K, to the C'F,, which must meet the demand,

D;.

e Constraints ([5.33)) represent the non-negativity restrictions.

5.5.1 Results for the existing distribution network

As we have done in the individual weeks, the existing maize crop distribution system is now
being evaluated using the combined 17 weeks model. The computational experiments are

carried out using the same cases as used previously.

Computational results for Case 1

The computational experiments in this section are carried out using the stochastic model
(5.29) with the constraints - . The data used are the same as those used on
weekly basis. The respective data used from several tables are only from DC; to DC5 in
this regard. We are considering the Case 1 with the true capacity, Vi.. Next, we show the

results using actual capacity, Vj.

Table presents the results of true capacity for 17 weeks model with column labels being
[L| _ |Lg| _

the same as in Table , except the sub-columns under > Y}, The results under > Yy,
=1 =1

denote the amount of maize crop, Y}, to be transported from a DC to its respective CPs

for each week over 17 weeks. All five DCs are selected and all customers are served. The

specific amount Y;; to be transported weekly to each CP from DCs are detailed in Table .
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Table 5.18: Comparison of results for Case 1 for the combined 17 weeks - true capacity.

DC}, PC? Stochastic results Deterministic results, Table
[Lgl _ [Lgl _ Lkl _
| L | > Y |E] 3 Yir | Lkl > Y
=1 =1 =1
DCy | PCy, PCy | 28 231535 39,361 28 2,315.35
DC> PCy 18 2,294.12 39,000 18 2,294.12
DCs PCy 27 2,204.12 39,000 29 2,294.12
DCy PCs 11 781.35 13,283 11 781.35
DCs5 PCs 12 852.94 14,500 10 852.94
Total 96 8,537.88 145,144 96 8,537.88

ILk| _
The values found in Table |5.18{ under |Lg| and > Y}, are comparable to the deterministic
=1

|Lk| _
case found in Table as summarized within Table [5.18] The ) Y}; values in both tables

=1

are the same. However, |L;| values are different for only DC3 and DC5 but the difference is
not highly significant (see Table . The total cost obtained for the stochastic model using
true capacity is $17,490,817.51. This cost is 10.98% higher than the cost for the deterministic
model found in subsection 4.3.1. The increase is not much different from the average cost
increase of 11.87% for the individual weeks as presented in Table [5.6, This cost increase is

mostly caused by distance increase due to the effects of rainfall on roads.

In Case 1, we re-run the program using the actual capacity, V., and results are shown in
Table [5.19 The other inputs data to the model apart from V; remain the same as used in

the case of true capacity.

The results in Table [5.19| are self-explanatory as it have been explained in the case of true
capacity. The amount of maize crop transported from each DC to each CP is shown in

Table [A.2l The values found in Tables and (actual capacity column in section
ILk| _

under |Lg| and > Y}, are almost the same. The total cost in this computational results is
=1

$14,706,927.63. Thus the percentage cost increase in this solution compared to deterministic

case for actual capacity in subsection is 10.08%.
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Table 5.19: Comparison of results for Case 1 for the combined 17 weeks - actual capacity.

DC}, PC? Stochastic results Deterministic results, Table
[Lgl _ [Lgl _ [Lgl| _
| Ll > Y [E] 3 Yi | Lkl > Y
=1 =1 =1
DC, PCy 26 1,952.35 33,190 26 1952.352941
DC> PCy 17 2,266.59 38,532 18 2266.588235
DCs PCy 13 1,450.00 24,650 13 1,450.00
DCy PCy ; PCo 9 579.00 9,843 9 579.00
DCs5 PCs 30 2,289.94 38,929 29 2289.941176
Total 95 8,537.88 145,144 95 8,537.88

Computational results for Case 2
In this case, the computational experiments are carried out using the multiple capacities

under the stochastic model are presented below:

XNgnZT )\<ZZC]kX]k + ZZZTMYM[Pl(Q,k‘) + ((Jé+1)P2(€,]<?)
ko Tkl Sk ik kol e

J

(5.34)
+ (B+1)Pye, k)D + Y Y Rz
subject to G-12), (B.16), (G-25), (5.26), (5-23), (5-32) & (B.33), (5.35)
B> Yu<> VWZ, k. (5.36)
l r

The objective function of the stochastic model now considers the multiple capacities as
addressed through Z;, V;” and F]. The constraints are the same except equation (5.36]

which is a newly modified constraint for restriction on the DCs’ multiple capacities.

The 17 weeks model in this case uses the same data as in Case 2 for individual weeks. Table

[5.20] shows the results where column and sub-column labels are same as defined for Case 1
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Table 5.20: Comparison of results for Case 2 for the combined 17 weeks.

Stochastic results Deterministic results, Table
Lkl _ Ikl _

DCy PC; %4 |Li| l; Vi PC; v | Ll El Yiu

DC, PC; V7 (25,144) 22 1,596.71 PC; V;3(25,000) 20 1,470.59

DCy PC,y V$(26,500) 12 1,558.82 - - - -

DCs PCy Vi#3(45,144) 27 2,651.35 PC; V3(71,000) 38 4,176.47

DCy | PCy; PCy;  VP(13,283) 11 781.35 PCy; PCy;  V}3(16,000) 13 941.18

DCs PCy V3(33,144) 25 1,949.65 PCy V3(33,144) 24 1,949.65
Total (145,215) 97  8537.88 (145,144) 95 8,537.88

above. The exceptions are the sub-columns under V,” that accounts for multiple capacities.
These results are different from the corresponding deterministic results, Table [£.10] in terms

of the number of DCs selected. All five DCs are selected for the stochastic case while only

[Li| _
four DCs are selected in the deterministic case. So |Lg|, Y Y and V) values in Tables |5.20
=1

and are clearly different. Table[A.3]shows the specific amount of maize crop transported

from DCs to each CP for this case.

The total cost obtained from this study is $14,360,877.40 with the percentage of cost increase

of 11.84% as compared to the corresponding cost of the deterministic model.

5.5.2 Results for the stochastic model using eight DCs

In this extended network where new DCs are involved, the same stochastic model, i.e.
equation ([5.34) and the constraints (5.35)) to (5.36) are used. We use the same input
data as used in Case 2 of subsection [5.5.1l However, there are some additional input data
corresponding to the three new DCs as it was done in deterministic case, section [4.2.3] The

three phases are considered in these computational experiments.

In Phase 1 we run the program using six DCs. The computational results for Phase 1 have a

cost increase of 11.73% as compared to the deterministic case where all six DCs are selected.
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In phases 2 and 3, where seven and eight DCs are considered respectively, the cost increase
of 10.57% was observed in both cases. A total cost observed in both of these two phases
is $13,758,193.63. Table details the results of Phase 3 where six out of eight DCs are

selected.

Table 5.21: Comparison of results using eight DCs for the combined 17 weeks.

Stochastic results Deterministic results, Table E 1
Ikl _ Ikl _

DCy, PC3 vr | L El Yi PC3 vy |L| l; Yi
DC; PCy Vit(25,144) 21 1,479.06 PCy Vit(25,144) 21 1,479.06
DOy - - - - - -
DCs3 PCy Vi4(39,144) 24 2,298.41 PCy V3 (45,000) 26 2,647.06
DCy | PC1; PCy,  VJ(13,283) 11 781.35 PCy ; PCy  V}3(16,000) 13 941.18
DCs5 PCy V4 (14, 500) 11 852.94 PCy V4 (14,500) 14 852.94
DCsg PCy V$(35,000) 17 2,058.82 PCy V2 (28,500) 14 1,676.47
DCy PC, V3 (18,144) 13 1,067.29 PC, V2 (16,000) 10 941.1764706
DCs - - - - - -

Total (145,215) 97 8,537.88 (145,144) 98 8,537.88

The computational results in Table [5.21| are very much similar to the deterministic case as
summarized in Table[£.11]l This is from the fact that the same number and the same DCs are

selected as the results shown in columns under stochastic and deterministic case. However,

[Lg| _
the values under |Ly| and ) Yy, for both Tables |5.21| and 4.11{ are different except only for
=1

DC;. Similarly the values under V) (indicated in brackets) are also significantly different for
DC5, DCy, DCgs and DC;. These are clearly a reflection on the allocations due to stochastic
rainfall. Table shows in details the amount of maize crop transported from DCs to each

CP.

In further comparison with the deterministic case, the values under the PC} are the same in
both cases, while the V,” values are different except for DC; and DCj as shown in respective
sub-columns in Table [5.21] These are re-allocations resulting from the stochastic rainfall

effect with a cost increase of 10.57% for the eight considered DCs.
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Table gives the summary of the 17 weeks results for all types of computational
experiments conducted. Some labels used in the columns of Table are explained below

the table.

Table 5.22: Summary table for computational results and some comparisons.

Type of Opt. | |[K®| Stochastic cost Deterministic cost VSS X(%) Y%) Z(%)
Cl(vk) 5 17,490,817.51 15,570,885.08 1,919,932.43 10.98 11.87 0.86
C1(Vy) 5 14,706,927.63 13,224,626.75 1,482,300.88 10.08 11.19 1.11
C2 (Vkr) 5 14,360,877.40 12,660,522.80 1,700,354.60 11.84 13.06 1.22
6 DCs 6 13,988,157.14 12,346,976.95 1,641,180.19 11.73 12.45 0.72
7 DCs 6 13,758,193.63 12,303,719.06 1,454,474.57 10.57 11.39 0.82
8 DCs 6 13,758,193.63 12,303,719.06 1,454,474.57 10.57 11.35 0.78

Average 14,677,194.49 13,068,408.28 1,608,786.21 | 10.96 11.88  0.92

NOTE: Opt. = Optimization, C1 = Case 1, C2 = Case 2,

X = Cost increase for stochastic model using combined 17 weeks compared to the
corresponding deterministic model,

Y = An average cost increase for stochastic model using individual week compared to
the corresponding deterministic model,

Z = Difference between the results in columns X (%) and Y (%), i.e. (Y — X)%.

The summarized results in Table [5.22] give the general overview of cost increase due to
stochastic rainfall effect for a number of cases. The cost increase is above 10% of the
corresponding cost of the deterministic model. This is clearly shown in Table [5.22] under
columns X (%) and Y (%). Since these costs are in thousands of US dollar, thus the costs
are important to be considered. This also calls for the attention in reviewing the existing

distribution network in order to ensure its smooth operation with reasonable costs.
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5.6 An alternative model for combined 17 weeks

The combined 17 weeks model studied in section [5.9| can be presented in another form when
the three probabilities are computed from entire data set of 17 weeks’ rainfall for each DC
zone. In section [5.5 we used three intervals in each week for calculations of the three
probabilities for each DC zone. This section considers the same intervals in calculations of

the three probabilities using entire data set of 17 weeks instead of each week for each DC zone.

For the computation of the three probabilities, we consider Py(k) instead of Ps(e, k), where
3

s = 1,2 and 3, corresponding to three intervals. Thus, > Ps(k) = 1 for each DC zone k.
s=1

Table presents the probabilities in each DC zone k to be used in the present model.

Table 5.23: The probability values for all three scenarios over 17 weeks in each DC' zone k.

P, DC zone (DCY)

DCy DCy DCs DCy DCs DCs DC; DCg

Py 10511 0.503 0.495 0.500 0.500 0.608 0.500 0.515

P, | 0.449 0.449 0456 0.463 0.460 0.333 0471 0.441

P; 1 0.040 0.048 0.049 0.037 0.040 0.059 0.029 0.044

5.6.1 The mathematical model and results

The model in this section is an alternative model but similar to the one used in section [5.5]
where the probabilities in Table have been calculated using rainfall data over 17 week

period.

The model to be optimized is given by:
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o Min ( Z Z CinXjp + Z Z ne [Pl + (a+1)Py(k)

(5.37)
+ (B+ 1)Py(k ]) + ZFka
subject to (5.30)), (5.31)), (5.32) & (5.33)). (5.38)
For multiple capacities per DC the model becomes:
Min (Z 3 CuXpe + Z Z I [P1 + (a+ 1)Py(k)
(5.39)

+(B+1) ]) + ZZFka

subject to (5.35) & (5.36]). (5.40)

Table [5.24] shows the computational results in both single and multiple capacity models.
Results in Table shows insignificant differences, while the data under |K*| differ by one

only in the row under 6 DCs (V}'), the remaining results are almost the same.

The main reason to the observed results is that, we used the same rainfall data (Tables

IA.5IA6f [A.7] JA.8 JA.9] [A.10] [A.11] and |A.12)) with the same intervals (values of A(k) and

B(k) in Table in each DC zone for calculation of the three probabilities using 17-week
period instead of each week. This means that the probabilities in the combined 17 weeks is
similar to the finding of averages of the probabilities in each week for all 17 weeks for each

interval.
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Table 5.24: Comparison of stochastic model results for Sections and .

Type of Opt Section [5.5] results Section [5.6] results Cost differences
|K®| Stochastic cost | |[K®| Stochastic cost | Numerical Percentage
C1(Vy) 5 17,490,817.51 5 17,489,886.66 930.85 0.01
C1(Vi) 5 14,706,927.63 5 14,705,302.35 1,625.28 0.01
c2 (V) 5 14,360,877.40 5 14,359,424.01 1,453.39 0.01
6 DCs (Vkr) 6 13,988,157.14 5 13,987,511.59 645.56 0.00
7 DCs (Vkr) 6 13,758,193.63 6 13,758,046.43 147.20 0.00
8 DCs (V)) 6 13,758,193.63 6 13,758,046.43 147.20 0.00
Average 14,677,194.49 14,676,369.58 824.91 0.01

5.7 Results for the projected demand using extended

network

In Tanzania, the 2012 national population census revealed the annual population growth to
be 2.7% [83]. Hence there will be an increase in demand of the maize crop. We have therefore
studied the performance of the extended network based on the projected demands in the next
five and ten years. We have denoted the projected demand by D,. This is calculated from D,
by considering a percentage increase for annual demand (denoted by D,;(1) in Table in
each corresponding number of years. In particular, we have considered the annual demand
increase of 5%, 10% and 12% as indicated in Table [5.25] Apart from the new demand, the
remaining inputs used for optimization are the same as those used in section for eight
DCs. For this experiment we have used the mathematical model for the extended network
presented with the equations - . The results are summarized in Table where

the notations used in the columns are the same as those found in the text.

The results in Table indicate the sustainability of the extended network for the next
five and ten years where up to 12% annual demand increase is possible. This is from the fact
that the current total capacity for eight DCs is 337,500 tons while the maximum observed

total capacity to be utilized is 319,317 tons. This is for 12% annual demand increase in the
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Table 5.25: Summary results for the increased demand

next ten years (see last row in Table

projected demand D,, are seven and eight (see column

5.25

under Y V)
k=1

L] [ K|
Years | >0, | D, (1) |K®| X Vf | DCi  DC, DCs  DCy  DCs  DCs  DC;  DCs
=1 k=1
5 181,430 5% 7 181,571 | 25,000 - 39,000 18,144 29,000 39,000 18,144 13,283
217,716 10% 8 217,783 | 25,000 26,000 45,000 24,000 33,000 25,000 26,500 13,283
232,230 12% 7 232,288 | 28,500 - 45,144 24,000 39,000 53,000 26,500 16,144
10 217,716 5% 8 217,783 | 25,000 26,000 45,000 24,000 33,000 25,000 26,500 13,283
290,288 10% 7 290,573 | 39,361 - 59,000 34,000 38,929 63,000 43,000 13,283
319,317 12% 8 319,361 | 39,361 26,000 63,000 34,000 45,000 53,000 43,000 16,000
I

. The number of DCs to be used in

under |K#| in Table [5.25). Notice

that under the current demand D;, only six DCs were found to be optimal.

The last eight columns under DC} to DCg in Table [5.25| indicate the capacity for each

selected DC. DC3 and DCg mostly appear to have higher selected capacities than others

while DCg has the lowest selected capacity. This is due to the number of CPs together with

their demands being higher for DC5 and DCg. These two DCs are located in semi-arid areas

where there is always deficit of maize crop harvest every year.

The results obtained with the above experiment clearly suggest that the government’s plan to

build three new DCs with suggested maximum capacities is appropriate, given the increased

demands.
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Chapter 6

Conclusions and future research

6.1 Conclusions

The capacitated two-level facility location problem (FLP) has been studied in this thesis.
The study involves a model that integrates three layers namely: production centers (PCs),

distribution centers (DCs) and customer points (CPs).

Using the mathematical model, a distribution network is established with minimum cost
for transportation of maize crop from PCs to CPs through DCs. We have studied both a
deterministic and a stochastic version of our model using a case study in Tanzania. The
consideration of the deterministic model in this thesis is mainly for comparison with the
results of the stochastic model. In both cases, we have studied two types of distribution
networks, the existing distribution network and an extended distribution network. The
existing distribution network is when five DCs are used while in the extended distribution
network, the same five DCs are used together with the three new proposed DCs. In these
two networks, the general goal is to satisfy the customers’ demand with minimum overall
distribution cost. We have considered four PCs, eight DCs and 93 CPs. These are the

ingredients of the studied network.
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The following are the summary results that have been revealed in the existing distribution

network for the deterministic model as detailed in Chapter [4}

(a) The manually operated network was found not to be optimal. This is due to the observed
overall cost saving that results from reallocation of PCs, DCs and CPs compared to the

manually operated network. The details are presented in section 4.2.2] Chapter [4]

(b) Through optimization, an improved network was established, resulting in an average
cost saving of $564 thousand, compared to the manually operated network. The model
predicted 4.27% of cost reduction from the cost of manually operated network. The

improved results show that only four DCs should be used out of the five DCs considered.

When considering the sustainability of the network over a period of time (e.g. five or ten
years to come) with maximum annual demands being satisfied, we have also studied and
analysed the extended network using eight DCs. This is based on high production capacities
in PCs and future increased demands. The results for this extended network are stated

below:

e By using eight DCs, an improvement in terms of cost reduction was achieved compared

to the existing network.

e The results for eight DCs have reduced the cost obtained in the existing network
in part (b) above by 3%. This is equivalent to a saving of $357 thousand. When we
compared to the cost of the manually operated existing network, the extended network
had reduced the cost by 7.27% (3% + 4.27%). This is a significant saving which has
been achieved through the extended network. In this experiment, only six DCs are
selected out of eight DCs where two of the six selected DCs are the newly proposed

DCs.

The stochastic model presented in Chapter |5 is an extension of the deterministic model
by considering the effect of rainfall in the transportation network. In the computational

experiments for the stochastic model, we have observed an overall network cost increase as
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compared to the cost of the corresponding deterministic model. Furthermore, the analysis
on location-allocations for PCs, DCs and CPs, also have been addressed in Chapter [f We
have carried out these computations in the existing network and the extended network.

The computational results for the stochastic model are as follows:

(i) In the existing network, an average cost increase of 13.06% was observed compared to

the corresponding cost of the deterministic model.

(ii) In the case of the extended network using eight DCs, the cost increase for the stochastic
model is 11.32% as compared to the corresponding cost of the deterministic model.
This cost increase obtained for the extended network, is lower than that of the existing
network (13.06%) as presented in (i) above. This also clearly indicates the potential of

using extended network for cost reduction.

Generally, the cost increase due to stochastic rainfall is an important factor to be considered
prior to transportation planning. This is due to the fact that the condition of road networks,
in Tanzania, can be affected by rainfall (see Longido case in Appendix @[) The Tanzanian

government is encouraged to consider this factor as suggested by this study.

The results obtained show that optimization as a decision tool in logistic problems is
important. It can be used by all stakeholders and practitioners in their planning. The
results of extended network also give more potential for future planning (e.g. expansion of
PCs’ and DCs’ capacities), and that this should be done using optimization as one of the
decision tools. The Tanzanian government is encouraged to use the results from this study

for reviewing its existing maize crop distribution network.

We have also studied the structure of the optimized extended network using increased annual
demand of maize crop over five and ten year horizons. Results show that in both horizons,

the proposed extended network is sustainable under 12% annual increase in demand over a
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period of 10 years.

6.2 Contributions

In the current literature, the two-level FLP does not address the stochasticity due to rainfall
effect, in particular in the context of a real life problem. In addition, to the best of our
knowledge, this is the first real life case study that has been carried out in the context of

Africa. The contributions of our study in the literature are as follows:

e The mathematical modelling of the real life problem;
e The study of the effectiveness of the current network used;
e The viability of the current network;

e The extension of the network to deal with increased demand.

6.3 Future research

There are possible directions that this research could lead to the following:

e The modelling carried out in this study can be done in other similar applications

particularly in the context of Africa.
e The two-level FLP studied here can be extended to VRP, supply chain and LRP.

e The model can be extended by the use of different transportation modes such as
railways. The railways are a cost effective mode of transportation as compared to
transportation by vehicles. A combination of two different modes, such as vehicles and

trains, can also be considered in the future modelling.

e The mathematical model can be extended to include the cost of carbon emissions. In

this case vehicles with different carbon emission rates can be decision variables.
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Appendix A

General information for collected data

and tables

The list of data used in this research and their sources are stated below.

e Tanzania National Roads Agency (TANROADS): This is an authority that deals with
road management in Tanzania. They managed National Roads Network (NRN) which
are classified into Trunk Roads (TR) and Regional Roads (RR). Through TANROADS,

I obtained road distances between regions as updated in March 2009. Distances in

thousand of kilometers (km), shown in Tables|B.1} |B.7, [B.8} [B.9 and [B.10} were sourced

from this authority. The original data is presented in Figure [C.3]

e Ministry of Agriculture, Food Security and Cooperatives (MAFSC): This is the
ministry that responsible for all agricultural matters including data for all crops and
production forecasts. Maize crop production capacity and surplus was obtained from
‘Volume 1: The 2010/11 Final Food Crop Production Forecast for 2011/12 Food
Security EXECUTIVE SUMMARY’( http://www.kilimo.go.tz/publications). The
used PCs’ capacity are based on 2011/12 production year and are sourced from website

of this ministry. The production capacity for each PC is shown in Table[B.4] The values
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were obtained through the computations presented in Table

National Food Reserve Agency (NFRA): This is an established autonomous agency
under MAFSC that specifically deals with food reserve (buying food crops for storage).
The main functions are defined as to (i) procure and store emergency food stock that
should suffice to address a food disaster for at least three (3) months period, (ii) Stock
re-cycling, and (iii) stock release that would stabilize food prices in the market. All the
DCs are managed by NFRA. The unused DCs or some capacities within DCs by NFRA
can be hired by private companies under public private partnership (PPP) policy of
the country. The private companies used these DCs to store their grain crops for the
business purposes within and outside the country. Data on DCs’ existing capacities,
transportation cost (Tanzania shillings per km per ton) and DCs’ annual fixed cost

are collected in NFRA as shown in Figures [C.1], [C.4] and [C.5]

Prime Minister Office (Disaster Department): The disaster management department
in the Prime Minister’s office (PMO) deals with all disaster cases in the country. Food
shortage is one of the disaster that is managed by this department. The management
of maize crop from DCs to CPs is under this department. In this department,
districts’ (customers) demand quantities of maize crop (2004-2010) were obtained.
Some distances between DCs and CPs (93 districts) are also sourced here. Customers’
demand are as shown in the Table The regional distances (from TANROADS)
and some given distances from DCs to CPs are used to compute the other DCs to
CPs distances. The task was also done by using Tanzania map showing regions and
their districts. The map is in the appendix as presented in Figure[C.6, The DC to CP
distances in kilometers are shown in Tables[B.7], [B.§], [B.9|and [B.10] In general data for
optimization are presented in Tables [B.1] [A.13] [B.2] [B.3] [B.4] [B.7] [B.8], [B.9] and [B.10]

The tables are referred in the text accordingly as per computations requirement.
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Table A.1: Computational results: C' P, to DCY, allocation and d; for combined 17 weeks

Case 1, true capacity (V).

CP, & d; (K = DC3) CP & d; (K = DCh) ‘ CP, & d; (K = DCh) ‘ CP, & d; (K = DC5)
Babati 83.53 Bagamoyo 160.06 Same 152.29 Biharamulo 53.06
Bahi 73.47 Handeni 192.18 Simanjiro 200.76 BukobaR 16.94
Bariadi 3.71 Kibaha 84.18 Geita 22.53
Chamwino 112.47 Kilindi 69.53 Ilemela 5.35
DodomaR 191.71 Kilosa 66.94 Kwimba 25.35
DodomalU 38.18 Kilwa 43.06 Magu 329.00
Hanang 106.88 Kisarawe 107.76 CP&d;(K = DC?) Meatu 246.00
Igunga 68.94 Korogwe 37.94 Arumeru 117.94 Misungwi 72.59
Iramba 137.53 LindiR 44.76 ArushaU 73.41 Muleba 21.71
Kahama 50.41 Liwale 40.76 Bunda 213.94 Nyamagana 4.24
Kishapu 93.18 Lushoto 76.35 Hai 25.35 Sengerema 11.76
Kiteto 51.35 Mafia 1.88 Hanang 1.59 Ukerewe 44.41
Kondoa 108.65 Masasi 139.65 Karatu 133.94

Kongwa 194.53 Mkinga 81.18 Longido 264.88 CP&d;(K = DCy)
Kwimba 96.41 Mkuranga 46.94 Mbulu 72.82 Chunya 60.59
Manyoni 227.71 MorogoroR 98.06 Monduli 255.59 IringaR 233.76
Maswa 133.76 Mpwapwa 158.35 MoshiR 59.24 Kilolo 18.88
Mpwapwa 17.71 MtwaraR 39.29 Musoma 58.53 Kilombero 17.65
Nzega 135.41 Mubheza 11.76 MusomaR 191.00 Ludewa 8.82
ShinyangaR 37.76 Mvomero 84.94 Ngorongoro 378.00 Makete 2.41
ShinyangaU 5.88 Mwanga 53.94 Rombo 215.47 Mbarali 100.29
Sikonge 29.76 Nachingwea 70.94 Rorya 129.18 Mbozi 5.88
SingidaR 180.88 Nanyumbu 49.06 Serengeti 29.94 Mufindi 45.18
SingidaU 8.82 Pangani 54.94 Siha 19.59 Njombe 103.18
TaboraR 4.00 Ruangwa 41.24 Tarime 53.71 Ulanga 184.71
TaboraU 10.71 Rufiji 106.59

Uyui 90.76
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Table A.2: Computational results: C' P, to DCY, allocation and d; for combined 17 weeks

Case 1, actual capacity (Vk)

CP, & d; (K = DCy)

CP & d; (K = DCj)

CP, & d; (K = DCs)

CP & d; (K = DCs)

Bagamoyo
Handeni
Kibaha
Kilindi
Kilombero
Kilosa
Kilwa
Kisarawe
Korogwe
LindiR
Liwale
Lushoto
Mafia
Masasi
Mkinga
Mkuranga
MorogoroR
MtwaraR
Muheza
Mvomero
Nachingwea
Nanyumbu
Pangani
Ruangwa
Rufiji

Ulanga

160.06

192.18

84.18

69.53

17.65

66.94

43.06

107.76

37.94

44.76

40.76

76.35

1.88

139.65

81.18

46.94

98.06

39.29

11.76

84.94

70.94

49.06

54.94

41.24

106.59

184.71

Bariadi
Biharamulo
BukobaR
Bunda
Geita
Igunga
Tlemela
Iramba
Kahama
Kishapu
Kwimba
Magu
Maswa
Meatu
Misungwi
Muleba
Musoma
MusomaR
Nyamagana
Nzega
Rorya
Sengerema
ShinyangaR
ShinyangaU
Sikonge

TaboraR

3.71

53.06

16.94

213.94

22.53

68.94

5.3

137.53

50.41

93.18

121.76

329.00

133.76

246.00

72.59

21.71

58.53

191.00

4.24

135.41

21.59

11.76

37.76

5.88

29.76

4.00

TaboraU
Tarime
Ukerewe

Uyui

10.71

53.71

44.41

90.76

CP&d)(K = DCy)

Arumeru
ArushaU
Hai
Hanang
Karatu
Longido
Mbulu
Monduli
MoshiR
Mwanga
Ngorongoro
Rombo
Rorya
Same
Serengeti
Siha

Simanjiro

117.94

73.41

25.35

105.82

133.94

264.88

72.82

255.59

59.24

53.94

378.00

215.47

107.59

152.29

29.94

19.59

200.76

Babati
Bahi
Chamwino
DodomaR
DodomalU
Hanang
Kiteto
Kondoa
Kongwa
Manyoni
Mpwapwa
SingidaR

SingidaU

83.53

73.47

112.47

191.71

38.18

2.65

51.35

108.65

194.53

227.71

176.06

180.88

8.82

CP&d)(K = DCy)

Chunya
IringaR
Kilolo

Ludewa
Makete
Mbarali
Mbozi

Mufindi

Njombe

60.59

233.76

18.88

8.82

2.41

100.29

5.88

45.18

103.18
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Table A.3: Computational results: C' P, to DCYy, allocation and d; for combined 17 weeks in

Case 2.

CP, & d; (K = DC3) | CP, & d; (K = DC5) | CP, & d; (K = DC,) | CP, & d; (K = DCy)

Babati 83.53 Bariadi 3.71 Arumeru 117.94 Bagamoyo 160.06
Bahi 73.47 Biharamulo 53.06 ArushaU 73.41 Handeni 192.18
Chamwino  112.47 BukobaR 16.94 Hai 25.35 Kibaha 84.18
DodomaR  191.71 Bunda 213.94 Longido 264.88 Kilindi 69.53
DodomaU  38.18 Geita 22.53 Monduli 255.59 Kilwa 43.06
Hanang 108.47 Ilemela 5.35 MoshiR 59.24 Kisarawe 107.76
Igunga 68.94 Kahama 50.41 Ngorongoro 378.00 Korogwe 37.94
Iramba 137.53 Kishapu 93.18 Rombo 215.47 LindiR 44.76
Karatu 133.94 Kwimba 121.76 Rorya 63.76 Liwale 40.76
Kilosa 66.94 Magu 329.00 Same 55.65 Lushoto 76.35
Kiteto 51.35 Maswa 133.76 Serengeti 29.94 Mafia 1.88
Kondoa 108.65 Meatu 246.00 Siha 19.59 Masasi 139.65
Kongwa 194.53 Misungwi 72.59 Mkinga 81.18
Manyoni 227.71 Muleba 21.71 CP & d; (K = DC4 | Mkuranga 46.94
Mbulu 72.82 Musoma 58.53 Chunya 60.59 MtwaraR 39.29
MorogoroR  98.06 MusomaR 191.00 IringaR 233.76 Muheza 11.76
Mpwapwa  176.06 Nyamagana 4.24 Kilolo 18.88 Nachingwea 70.94
Mvomero 84.94 Rorya 65.41 Kilombero  17.65 Nanyumbu  49.06
Mwanga 53.94 Sengerema  11.76 Ludewa 8.82 Pangani 54.94
Nzega 135.41 ShinyangaR  37.76 Makete 2.41 Ruangwa 41.24
Sikonge 27.53 ShinyangalU 5.88 Mbarali 100.29 Rufiji 106.59
Simanjiro 200.76 Sikonge 2.24 Mbozi 5.88 Same 96.65
SingidaR 180.88 Tarime 53.71 Mufindi 45.18

SingidaU 8.82 Ukerewe 44.41 Njombe 103.18

TaboraR 4.00 Uyui 90.76 Ulanga 184.71

TaboraU 10.71
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using eight DCs.

Table A.4: Computational results: C' P, to DCY, allocation and d; for combined 17 weeks

CP, & d; (K = DCs)

CP, & d; (K = DCs)

CP & d; (K = DCs) ‘ CP, & d; (K = DCy)

Arumeru 117.94
ArushaU 73.41
Babati 44.29
Hai 25.35
Hanang 108.47
Karatu 133.94
Longido 264.88
Mbulu 72.82
Monduli 255.59
MoshiR 59.24
Ngorongoro 378.00
Rombo 215.47
Rorya 53.88
Same 152.29
Serengeti 29.94
Siha 19.59
Tarime 53.71

CP, & d; (K = DCv)

BukobaR 16.94
Bunda 213.94
Geita 22.53
Ilemela 5.35
Magu 329.00
Misungwi 72.59
Muleba 21.71
Musoma 58.53
MusomaR 191.00

Nyamagana
Rorya
Sengerema

Ukerewe

CP, & d; (K
Bagamoyo
Handeni
Kibaha
Kilindi
Kilwa
Kisarawe
Korogwe
LindiR
Liwale
Lushoto
Mafia
Masasi
Mkinga
Mkuranga
MtwaraR
Mubheza
Nachingwea
Nanyumbu
Pangani
Ruangwa

Rufiji

4.24 Babati
75.29 Bahi
11.76 Chamwino
44.41 DodomaR
DodomaU
= DCh) Handeni
160.06 Igunga
171.18 Iramba
84.18 Kilosa
69.53 Kiteto
43.06 Kondoa
107.76 Kongwa
37.94 Manyoni
44.76 MorogoroR
40.76 Mpwapwa
76.35 Mvomero
1.88 Mwanga
139.65 Nzega
81.18 Sikonge
46.94 Simanjiro
39.29 SingidaR
11.76 SingidaU
70.94 TaboraR
49.06 TaboraU
54.94
41.24
106.59

39.24
73.47
112.47
191.71
38.18
21.00
68.94
137.53
66.94
51.35
108.65
194.53
227.71
98.06
176.06
84.94
53.94
135.41
13.12
200.76
180.88
8.82
4.00

10.71

Chunya 60.59
IringaR 233.76
Kilolo 18.88
Kilombero 17.65
Ludewa 8.82
Makete 2.41
Mbarali 100.29
Mbozi 5.88
Mufindi 45.18
Njombe 103.18
Ulanga 184.71

CP, & d; (K = DCs)

Bariadi 3.71
Biharamulo 53.06
Kahama 50.41
Kishapu 93.18
Kwimba 121.76
Maswa 133.76
Meatu 246.00
ShinyangaR 37.76

ShinyangaU 5.88
Sikonge 16.65

Uyui 90.76
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Table A.5: DC:: DC zone - weekly rainfall in mm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2007 49 00 1.8 00 1.8 00 0.0 29.210.239561.8 1.7 1449 4.2 89.8 314 84
2008 0.0 3.7 11.537.1 0.0 11.0 45.1 0.0 3.7 23.1 0.0 43.4 91.2 129.8 65.4 51.5 56.9
2009 0.0 0.5 0.0 139 13.8 0.1 296 5.4 16.830.533.3 1.6 38.0 74.9 16.6 18.7129.9
2010 9.7 43 0.0 00 39 129 00 3.6 64.451.5 0.0 62.6 91.0 32.1 10.2 41.8 239.1
2007 18.0 1.0 0.2 0.0 193 122 0.0 9.0 16.915.628.427.4 64.9 24.9 61.0 11.5 47.1
2008 0.0 16.510.869.0 0.0 352 7.6 0.0 4.7 70.3 1.2 96.1 99.7 138.3 73.5 554 71.9
2009 0.2 0.0 0.0 289 1.0 04 632 45 323363 0.5 1.3 65.8 339 1.1 24.2 54.6
2010 122280 0.0 0.0 1.6 48 1.2 2.6 556123 0.0 32.9 14.3 55.6 24.8 25.8 140.7
2007 35.0 5.8 0.0 3.8 143.6 12.1 5.4 21.5 53.5 3.3 12.720.6 54.5 15.0 69.0 58.3 0.0
2008 0.0 67.837.441.3 79.5 96.7 50.6 0.0 3.3 2.6 60.679.1 0.0 40.7 120.721.9 29.9
2010 78.620.2 0.0 36.5 0.0 0.0 107.1 149 2.0 0.0 39.063.8 61.1 128.3 44.3 2.5 24.8
2007 45.037.6 0.0 0.0 42.1 40.2 0.1 340 3.3 10677.817.4 446 31.8 0.5 31.2 719
2008 0.0 1.5 0.3 13.5 253 287 9.6 17.2 85 0.8 13.857.7 85.2 52.3 150.0 42.6 46.4
2009 0.0 0.0 0.0 11.8 40.7 28.7 9.6 17.2 12.813.714.7 0.0 54.1 31.8 0.5 31.2 71.9
2010 474399 0.0 0.0 0.0 55.1 153 10.2 34.8 9.7 0.2 24.7 22.0 39.1 16.6 77.9 63.5
2007 11.1 0.7 0.0 44 699 71.1 60.3 5.9 74.728.125.627.2 35.2 10.6 95.2 46.1 25.1
2008 73.737.711.547.7 41.1 61.3 479 113.852.571.411.265.5 0.0 9.1 94.1 12.2 40.6
2009 0.0 0.7 10.7 3.0 13.7 159.2 36.6 90.7 32.252.3 0.8 36.0 88.2 15.7 0.0 26.5 19.3
2010 32.2494 0.0 86.5 0.1 22.8 171.3 91.4 63.736.0 3.0 92.4 32.8 32.9 32.9 32.9 32.9
2007 04 0.0 00 00 0.0 00 00 00 04 22 82 47 293 0.0 139.441.2 10.3
2008 0.0 0.0 46.2 1.7 0.0 21 40.2 0.0 87 1.8 0.3 26.1 53.5 66.0 14.2 7.1 39.3
2009 00 00 14 13 10 0.0 474 96 05 0.0 0.7 0.2 22.1 45.8 139.716.8 25.2
2010 56.170.5 0.0 0.0 0.2 33.0 0.0 0.0 85 258 0.5 50.2 46.4 75.6 113.265.7 43.1
Max 78.6 70.546.2 86.5 143.6 159.2 171.3 113.8 74.7 71.4 77.8 96.1 144.9 138.3 150.0 77.9 239.1
Min 0.0 0.0 00 00 00 0.0 00 00 04 00 0.0 00 00 0.0 0.0 25 0.0
Average 18.516.8 5.7 174 21.7 29.9 32.5 20.9 24.523.417.136.2 53.9 47.3 59.7 33.7 56.2
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Table A.6: DCy: DC zone - weekly rainfall in mm.

Year Week

1 2 3 4 5 6 7 8§ 9 10 11 12 13 14 15 16 17

2007 82 6.5 3.9 142385 6.1 49 2.9 13.0 10.2 9.9 13.5 122.2 6.3 40.0 40.5 18.0
2008 0.0 189 2.0 44 0.0 47.7 280 2.0 6.3 98 5.5 73.3 132.640.8 86.8 17.1 132.7
2009 0.0 0.0 26.7 1.0 19.315.3 15.3 153 89 0.0 181 0.0 11.7 31.0 73.4 1.2 15.1
2010 12.4 63.410.3 0.0 25.123.6 22.5 29.9 76 7.5 35.1 309 758 94.5 33.5 111.9 25.5
2007 9.2 0.0 0.0 4.2 536 36 0.3 0.0 00 00 7.0 83 209 19 469 90.0 6.0
2008 0.0 0.0 79 36.2 0.0 1.0 39.6 0.0 14.6 1.0 40.9150.5267.421.0 84.8 47.1 85.0
2009 0.0 0.0 0.0 199 96 0.0 23.0 23.717.1 3.6 0.0 0.0 14.5 294 93.3 0.2 115.2
2010 0.0 150 0.0 0.0 0.5 0.0 53 06 0.0 25 88 32.2 111.189.7194.3115.9 144
2007 128.474.3 3.5 2.6 39.539.0 60.4 15.9 8.4 118.490.0 20.7 0.5 34.1 34.1 34.1 34.1
2008 0.0 8.3 41.0 0.5 15.098.2118.0 1.8 60.1 17.7 65.8 45.1 68.2 9.9 43.2 23.4 49.5

2009 24 0.0 1.5 6.5 57.1 23 3.9 7.3 243 254 627 0.0 94.3 23.9104.2 0.0 18.7

Max 128.474.3 41 36.257.198.2 118 29.960.1 118.4 90 150.5267.4 94.5 194.3 115.9 132.7
Min 0 O 0 o0 o 0O 03 0 O 0 0 0 05 19 335 0 6

Average 14.6 16.9 8.8 8.1 23.521.5 29.2 9.0 14.6 17.8 31.3 34.0 83.6 34.8 75.9 43.8 46.7
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Table A.7: DC5: DC zone - weekly rainfall in mm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2007 84.3 55.8 83.130.797.361.1 74.9 5.5 105.8 35.8 0.0 30.0 54.4 0.0 2.9 1.50.0
2008 1.7 0.0 6.8 36.042.411.897.1 8.2 20.7 3.8 40.061.4 60.3 3.7 3.0 2.6 0.0
2009 29.1 0.0 0.0 12.969.837.7 2.1 344 31.7 0.0 23.7 1.4 54.9 85.612.00.00.2
2010 38.8 44.9 0.0 20.366.519.0 4.2 30.8 15.2 1.0 0.0 82 170 1.5 0.0 2.10.1
2007 73.2113.840.6 12.1 36.851.145.3 0.0 5.2 17.819.713.5 0.0 1.0 47.44.70.0
2008 4.0 49 21.834.579.129.147.0 9.2 1.5 5.2 13.795.0100.4 0.5 0.2 3.02.4
2009 59.5 65.6 10.446.0 34.532.0 0.4 104 61.7 41.966.3 5.2 34.2 44.3 5.2 0.00.0

2010 44.5 249 12.812.131.0 7.0 10.477.2 12.3 22.4 2.0 15.0 174 3.1 0.0 0.00.2

Max 84.3113.883.146.097.361.197.177.2105.841.9 66.3 95.0 100.4 85.6 47.4 4.7 2.4
Min 1.7 0.0 0.0 12.131.0 70 04 0.0 15 00 0.0 14 0.0 0.0 0.0 0.00.0

Average 41.9 38.7 21.925.6 57.2 31.1 35.2 22.0 31.8 16.0 20.7 28.7 42.3 17.5 8.8 1.70.4

Table A.8: DCy: DC zone - weekly rainfall in mm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2007 15.131.931.358.2 30.7 9.1 27.1 2.3 10.324.7104.5 6.3 169 80 7.4 0.0 0.0
2008 48.511.440.355.7 9.0 98.382.619.0 5.8 10.8 16.8 60.946.3 13.942.8 0.0 1.7
2009 30.0 6.4 10.2 0.8 113.6 45.7 1.6 24.530.7 19.2 62.8 22.216.6 99.1 0.0 0.0 10.2
2010 33.248.0 0.0 27.3 0.9 18.813.967.637.112.1 10.2 109 7.8 4.4 0.0 10.8 4.1
2007 35.865.380.026.6 63.8 24.155.1 1.5 40.146.4 48.3 2.0 33.310.1 7.6 34.517.9
2008 60.5 36.6 29.4 59.8 45.0 68.9 65.0 19.5 26.0 19.8 18.7 68.4 36.1 45.017.1 13.3 1.3
2009 87.5 8.2 73.323.4 80.3 89.3 34.1 31.8 9.3 48.8103.113.6 0.5 24.0 0.8 0.0 0.5

2010 42.250.1 1.4 47.6 45.3 18.220.147.1 50.1 39.6 61.4 59.2 31.819.0 8.7 1.6 8.5

Max 87.565.3 80.0 59.8 113.6 98.3 82.6 67.6 50.1 48.8 104.5 68.4 46.3 99.1 42.8 34.5 17.9
Min 15.1 64 0.0 08 09 9.1 1.6 1.5 5.8 10.8 10.2 2.0 0.5 44 0.0 0.0 0.0

Average 44.1 32.2 33.2 37.4 48.6 46.5 37.4 26.7 26.2 27.7 53.2 30.4 23.727.910.5 7.5 5.5
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Table A.9: DC5: DC zone -

weekly rainfall in mm.

1 2 3 4 5 6

7 8

9 10

11 12

13 14

15 16

17

2007

2008

2009

2010

2007

2008

2009

2010

2007

2008

2009

2010

2007

2008

2009

2010

2007

2008

2009

2010

23.851.719.3 7.7 8.7 224

16.0 7.8 37.5 26.4 38.2 40.7
23.5 9.1 48.5 86.1 24.2 25.9
124 1.7 1.0 10.2 36.6 6.4
439 1.0 83 4.5 46.6 11.6
5.5 3.2 183 0.0 0.0 429
4.0 0.0 5.1 119 7.7 19.7
33.835.617.5 3.7 31.1 13.1
56.116.7 72.8 24.9 24.9 76.2
2.1 60.294.0 156.8 0.4 126.5
38.6 42.469.3 138.9 9.3 93.1
14.512.943.8 60.0 13.3 57.4
24.435.784.3 0.0 35.7 4.6
1.4 24.413.3 34.3 7.0 13.0
12.5 3.1 13.9 86.5 14.5 54.8
73.9455 0.0 6.1 11.7 14.3
92.4 18.0 34.7 43.5 89.3 41.1
20.441.652.5 21.3 46.2 4.6
33.3 25.7 35.9 155.0 33.7 67.2

84.0 8.4 0.6 26.9 53.1 12.8

36.1 3.2
28.6 32.3
175 32.9
23.3 46.9
16.3 20.8
11.1 3.0
1.5 0.0
5.4 49.7
20.0 8.6
173 7.0
12.0 77.3
147.1 144.4
55.4 43.8
37.3 3.1
0.8 204
100.4 71.8
76.6 15.8
64.9 21.1
37.6 44.6

34.7 12.6

25.7 49.7
108.1 11.2
345 7.0
53.3 11.9
3.8 8.6
5.6 12.5
79 8.6
138.9 15.9
25.6 54.6
36.3 102.6
36.1 45.6
71.1 13.8
o7.7 58.7
247 9.1
10.9 4.9
22.8 45.1
8.9 614
32.6 26.4
825 1.5

58.3 45.3

57.6 9.3
22.3 447
359 3.5
0.9 284
27.8 38.0
41.7 1324
4.3 18.2
14.4 142.5
14.6 36.4
24.1 46.1
168.3 84.7
25.9 55.0
31.3 229
59.1 61.2
37.3 3.6
0.0 854
6.2 6.5
80.9 16.9
73.6 0.7

45.6 125.7

0.8 0.0
54.6 4.6
66.1 52.6
52.7 7.3
174 0.0
36.2 0.0
27.7 36.3
19.8 30.5
61.3 0.0

78.5 0.0

54.5 39.9
96.1 119.0
43.0 0.0

5.8 0.0
107.1 92.2
106.7 3.5
0.0 0.0
46.4 0.9
25.3 27.2

18.7 0.7

47.8 31.7

30.2 84.1

8.0 14.0

26.2 32.2

73.7 84

42.5 28.8

4.4 453

3.7

0.0

0.9

3.8

7.8

0.6

3.0

104.1 35.5 28.1

176.7120.4 50.3

103.5 95.0

5.2

179.3118.9 724

20.5 8.9 2014

84.1
44.1 18.1
93.2 25.0
354
8.0 222
78.5 13.1
72.4 0.3

4.6 26.7

77.0 25.3

6.2

9.9

35.3 32.6

0.0

1.7

3.7

9.3

Max

Min

92.4 60.2 94.0 156.8 89.3 126.5

1.4 0.0 0.0 0.0 0.0 4.6

147.1 144.4

0.8 0.0

Average 30.8 22.2 33.5 45.2 26.6 37.4 37.2 33.0

138.9 102.6
3.8 1.5

42.3 29.7

168.3 142.5
0.0 0.7

38.6 48.1

107.1 119.0
0.0 0.0

459 20.7

179.3 120.4 201.4

4.4 0.3

0.0

61.9 42.0 23.3
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Table A.10: DCq: DC zone - weekly rainfall in mm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2007 0 0 1505 15 23 39 1.8 84 17.7 62.7 0 0.5 34.1 34.1 34.134.1
2008 24 83 3.5 26395 39 604 7.3 24.3 25.4 65.820.7 68.2 23.9 43.2 23.449.5

2009 1284743 41 6.557.198.2 118 15.960.1 1184 90 45.194.3 9.9 104.2 0 18.7

Max 128.474.341.06.557.198.2118.015.9 60.1 118.4 90.0 45.1 94.3 34.1 104.2 34.1 49.5
Min 0.0 0.0 1.5 0.515.0 23 39 18 84 17.7 62.7 0.0 0.5 9.9 34.1 0.0 18.7

Average 43.6 27.515.33.237.246.5 60.8 8.3 30.9 53.8 72.8 21.9 54.3 22.6 60.5 19.2 34.1

Table A.11: DC%: DC zone - weekly rainfall in mm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2007 14 3.1 0.0 00 7.0 46 08 3.1 109 49 00 3.6 58 0.0 354181 6.2
2008 12.524.413.3 6.1 11.713.0 37.3 20.4 22.8 9.1 31.322.9 43.0 0.0 44.125.0 9.9
2009 24.435.713.934.314.514.3 55.4 43.824.745.1 37.3 61.2106.7 3.5 84.1 35.3 25.3

2010 73.945.584.3 86.5 35.7 54.8 100.4 71.8 57.7 58.7 59.1 85.4 107.1 92.2 93.2 77.0 32.6

Max 73.9 45.5 84.3 86.5 35.7 54.8 100.4 71.8 57.7 58.7 59.1 85.4 107.1 92.2 93.2 77.0 32.6
Min 14 3.1 00 00 7.0 46 0.8 3.1 109 49 0.0 3.6 5.8 0.0 35.418.1 6.2

Average 28.1 27.227.931.717.2 21.7 48.5 34.8 29.0 29.4 31.9 43.3 65.6 23.9 64.2 38.8 18.5

Table A.12: DCs: DC zone - weekly rainfall in mm.

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17

2007 0.0 0.0 0.0 0.00.0 0.0 0.0 0.00.4 0.0 0.3 0.2 22.1 0.0 14.2 7.1 10.3
2008 0.0 0.0 0.0 0.00.0 0.0 0.0 0.00.5 1.8 0.5 4.7 29.345.8113.2 16.8 25.2
2009 04 0.0 1.4 130.2 2.1 40.20.08.5 2.2 0.7 26.1 46.4 66.0 139.4 41.2 39.3

2010 56.170.546.21.71.033.047.49.6 8.725.88.250.253.575.6 139.7 65.7 43.1

Max 56.170.546.21.71.033.047.49.6 8.7 25.8 8.2 50.2 53.5 75.6 139.7 65.7 43.1
Min 0.0 0.0 0.0 0.00.0 0.0 0.0 0.00.4 0.0 0.3 0.2 22.1 0.0 14.2 7.1 10.3

Average 14.117.611.90.70.3 8.8 21.92.44.5 7.5 2.420.3 37.8 46.8 101.6 32.7 29.5
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Table A.13: CPs, (CP, | € L) and their annual respective demands obtained from the

field, Dy (tons).

lel D; leL D; lel Dy lel Dy
Arumeru 2,005 Kilolo 321 Meatu 4,182 Ruangwa 701
ArushalU 1,248 Kilombero 300 Misungwi 1,234  Rufiji 1,812
Babati 1,420 Kilosa 1,138 Mkinga 1,380 Same 2,589
Bagamoyo 2,721 Kilwa 732 Mkuranga 798 Sengerema 200
Bahi 1,249 Kisarawe 1,832 Monduli 4,345 Serengeti 509
Bariadi 63 Kishapu 1,584 MorogoroR 1,667 ShinyangaR 642
Biharamulo 902 Kiteto 873 MoshiR 1,007 ShinyangaU 100
BukobaR 288 Kondoa 1,847 Mpwapwa 2,993 Siha 333
Bunda 3,637 Kongwa 3,307 MtwaraR 668 Sikonge 506
Chamwino 1,912 Korogwe 645 Mufindi 768 Simanjiro 3,413
Chunya 1,030 Kwimba 2,070  Muheza 200 SingidaR 3,075
DodomaR 3,259 Lindi-R 761 Muleba 369 SingidaU 150
DodomalU 649 Liwale 693 Musoma 995 TaboraR 68
Geita 383 Longido 4,503 MusomaR 3,247 TaboraU 182
Hai 431 Ludewa 150 Mvomero 1,444 Tarime 913
Hanang 1,844 Lushoto 1,298 Mwanga 917 Ukerewe 755
Handeni 3,267 Mafia 32 Nachingwea 1,206 Ulanga 3,140
Igunga 1,172 Magu 5,593 Nanyumbu 834 Uyui 1,543
Ilemela 91 Makete 41 Ngorongoro 6,426

Iramba 2,338 Manyoni 3,871 Njombe 1,754

IringaR 3,974 Masasi 2,374 Nyamagana 72

Kahama 857 Maswa, 2,274 Nzega 2,302

Karatu 2,277 Mbarali 1,705 Pangani 934

Kibaha 1,431 Mbozi 100 Rombo 3,663

Kilindi 1,182 Mbulu 1,238 Rorya 2,196
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Table A.14: The demand within 2004 - 2010 in each year in given CP

S/N | District Year and demand (D;) in tons
2004 | 2005 | 2006 | 2009 | 2010 | Max D, value

1 Arumeru 1023 | 819 520 | 2005 | 833 2005
2 Arusha-U 1248 | 454 1248
3 Babati 1150 379 | 1420 | 667 1420
4 Bagamoyo 2721 1194 | 1509 | 1320 2721
) Bahi 1249 | 896 1249
6 Bariadi 63 63
7 Biharamulo 902 902
8 Bukoba-R 288 288
9 Bunda 3637 | 832 | 851 553 3637
10 Chamwino 1837 | 1912 1912
11 Chunya 1030 259 1030
12 Dodoma-R | 2207 | 1090 | 3259 3259
13 Dodoma-U 100 322 422 600 649 649
14 Geita 383 383
15 Hai 193 316 431 387 431
16 Hanang 488 111 | 1844 | 761 1844
17 Handeni 1429 3267 | 556 3267
18 | Igunga 1172 | 1119 1172
19 [lemela 91 91
20 [ramba 2338 | 526 582 2338
21 Iringa-R 3974 | 251 731 | 1238 | 321 3974
22 Kahama 857 857
23 Karatu 724 725 | 1770 | 2277 | 681 2277
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Table A.15: The demand within 2004 - 2010 in each year in given CP

S/N | District Year and demand (D;) in tons
2004 | 2005 | 2006 | 2009 | 2010 | Max D; value

24 Kibaha 1431 109 348 1431
25 Kilindi 1182 300 883 1182
26 Kilolo 184 284 321 70 321
27 Kilombero 300 300
28 Kilosa 500 0 1138 | 482 1138
29 Kilwa 413 394 621 732 732
30 Kisarawe 1832 52 21 1832
31 Kishapu 1584 526 | 1070 1584
32 Kiteto 693 148 873 845 873
33 Kondoa 1847 60 1212 | 737 017 1847
34 Kongwa 200 2311 | 3307 | 2507 3307
35 Korogwe 605 67 645 581 645
36 Kwimba 2070 | 1123 969 89 2070
37 Lindi-R 200 626 622 761 234 761
38 Liwale 150 138 130 693 131 693
39 Longido 4503 | 1419 4503
40 Ludewa 150 150
41 Lushoto 627 1298 | 950 1298
42 Mafia 32 32
43 Magu 5593 | 1241 1127 5593
44 Makete 41 41
45 Manyoni 3871 | 1133 1112 | 533 3871
46 Masasi 1914 | 941 2374 26 2374
47 Maswa 2274 | 324 953 475 2274
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Table A.16: The demand within 2004 - 2010 in each year in given CP

S/N | District Year and demand (D;) in tons
2004 | 2005 | 2006 | 2009 | 2010 | Max D, value

48 Mbarali 1705 674 1705
49 Mbozi 100 100
50 Mbulu 100 591 | 1238 | 274 1238
ol Meatu 4182 | 1898 296 | 1318 4182
02 Misungwi 1234 | 765 954 1234
593 Mkinga 1380 | 134 1380
54 Mkuranga 798 798
95 Monduli 2031 | 1085 | 1429 | 4345 | 1280 4345
56 Morogoro-R | 1667 772 443 1667
o7 Moshi-R 394 | 1007 | 605 642 1007
o8 Mpwapwa 2157 | 236 673 | 2993 | 1189 2993
29 Mtwara-R 668 668
60 Mufindi 768 201 123 768
61 Muheza 200 71 200
62 Muleba 369 369
63 Musoma 995 995
64 Musoma-R | 3146 | 525 5H2 | 3247 3247
65 Mvomero 1444 1089 | 616 1444
66 Mwanga 917 126 179 814 434 917
67 Nachingwea | 500 226 | 1206 1206
68 Nanyumbu 695 834 834
69 Ngorongoro 499 820 | 6426 | 3024 6426
70 Njombe 1754 | 366 587 1754
71 Nyamagana 72 72
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Table A.17: The demand within 2004 - 2010 in each year in given CP

S/N District Year and demand (D) in tons
2004 2005 2006 2009 2010 Max D, value
72 Nzega 2302 262 2302
73 Pangani 934 706 934
74 Rombo 874 3663 3663
75 Rorya 2196 2196
76 Ruangwa 336 241 211 701 89 701
7 Rufiji 1812 298 999 1812
78 | Same 1387 1139 1598 2589 1548 2589
79 Sengerema 200 200
80 Serengeti 509 509
81 Shinyanga-R 50 568 642 642
82 | Shinyanga -U 100 76 91 100
83 Siha 125 333 333
84 Sikonge 192 506 506
85 Simanjiro 1519 504 1024 3413 2239 3413
86 | Singida -R 3075 310 3075
87 | Singida U 150 150
88 Tabora -R 68 68
89 Tabora-U 182 182
90 Tarime 381 913 913
91 Ukerewe 047 755 755
92 Ulanga 3140 3140
93 Uyui 1543 1543
Total annual | 94,649 | 27,614 | 37,319 | 92,067 | 41,317 145,144
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Appendix B

Research data

Table B.1: PCs and DCs: Road distances (Cji) (kilometers).

PC,

DCy,

DC, DCy, DCs DCy DCs; DCys DC; DCg

PCy
PCy
PCs

PC,

492 689 264 120 802 521 965 629
822 1020 594 210 761 766 924 939
1150 1348 922 538 790 1094 953 1287

947 1144 719 335 1257 976 1420 1084

Table B.2: DCs’ true or initial capacities in tons (Vk ).

DCy,

DCy D, DCjs DC, DC5 DCy DCy DCy

Capacity (V},)

52,000 39,000 39,000 34,000 14,500 53,000 53,000 53,000
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Table B.3: PCs’ capacity (2011-2012 production) computations summary table.

PC; 1 2 3 4 5 6 7
PC, 426,945 359,157 67,788 84.12 118,383  99,586.8 100
PC, 810,425 628,418 182,007 77.54 323,615 250,936.8 251
PC; 515,492 330,822 184,670 64.18 218,915  140,490.8 140
PCy 297,290 225,470 71,820 75.84 53,630  40,673.9 41
Total 2,050,152 1,543,867 506,285 305.68207 714,543 531,688.4 532

NOTE:

1: Total cereals production (2011-2012), 2: Total maize crop production, 3: Other total

cereals production, 4: Maize crop% in total cereal production 5: Total cereal surplus, 6:

Total maize crop surplus, 7: Total maize crop surplus in thousand.

Table B.4: PCs’ Capacities, S;.

PC; Capacity, S; (tons)
PC,y 100,000
PCs 251,000
PCs 140,000
PC, 41,000
Total 532,000
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Table B.5: The existing non-optimized (manually operated) CPs to DCs allocations.

DC Region (0 o DC Region CP
Arusha Arusha Karatu Shinyaga Mara Bunda
Arusha U Musoma U
Arumeru Serengeti
Longido Rorya
Monduli Tarime
Musoma R
Arusha Kilimanjaro Mwanga Shinyaga  Tabora Uyui
Siha Tabora U
Hai Igunga
Moshi R Nzega
Rombo Tabora R
Same Sikonge
Arusha Manyara Hanang Dar Coast  Kibaha
Ngorongoro Mafia
Babati Rufiji
Simanjiro Kisarawe
Mbulu Mkuranga
Bagamoyo
Shinyanga Shinyanga, Meatu Dar Tanga Kilindi
Maswa Muheza
Kahama Handeni
Bariadi Pangani
Shinyanga U Mkinga
Kishapu Lushoto
Shinyanga R Korogwe
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Table B.6: The existing non-optimized (manually operated) CPs to DCs allocations.

DC Region CP DC Region Ccp
Shinyanga Mwanza Misungwi Dodoma Singida Manyoni
Geita Singida R
Ukerewe Singida U
Nyamagana Iramba
Tlemela Dodoma  Dodoma Kondoa
Sengerema Bahi
Magu Chamwino
Kwimba Kongwa
Shinyanga  Kagera Bukoba R Dodoma R
Muleba Dodoma U
Biharamulo Mpwapwa
Dodoma Manyara  Kiteto
Makambako Iringa  Mufindi Dar Morogoro Mvomero
Njombe Kilombero
Ludewa Morogoro R
Makete Kilosa
Ulanga
Iringa R Dar Mtwara Masasi
Kilolo Mtwara R
Makambako  Mbeya Mbarali Nanyumbu
Chunya Dar Lindi Ruangwa
Mbozi Lindi R
Liwale
Nachingwea
Kilwa
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Table B.7:  CPs and DCs: Road distances, Ty (kms).
CP/(le L) DCy (k € K)

pc, DG, DGy DCy  DCs  DCs  DC;  DCs
Arumeru 666 20 445 829 644 188 807 455
ArushaU 668 22 447 831 646 190 809 457
Babati 814 168 257 641 456 20 619 603
Bagamoyo 63 709 514 675 1,052 751 1,215 291
Bahi 516 490 65 449 473 322 636 653
Bariadi 1127 762 676 1,082 160 594 230 1,197
Biharamulo | 1402 1,037 951 1,335 413 869 706 1,472
BukobaR 1,567 1,202 1,116 1,500 578 1,478 416 1,637
Bunda 1,409 578 958 1,342 420 428 138 1,479
Chamwino 426 450 25 409 563 282 726 613
Chunya 895 1,012 587 203 1,125 844 1,288 952
DodomaR 461 435 10 394 548 267 711 598
DodomaU 461 435 10 394 548 267 711 598
Geita 1,234 863 783 1,167 245 695 119 1,298
Hai 586 60 485 869 684 228 847 375
Hanang 927 280 370 754 344 112 507 15
Handeni 240 406 474 1,215 1,034 574 1,193 125
Tgunga 819 794 368 752 170 286 333 889
Tlemela 1,149 784 698 1,082 160 616 20 1,219
Tramba 836 456 370 754 168 288 331 891
IringaR 492 689 279 135 817 521 980 644
Kahama 1,101 736 598 978 112 568 252 1,171
Karatu 826 180 525 909 724 188 807 615
Kibaha 10 606 a1 572 949 779 1,112 314
Kilindi 200 456 524 908 1,080 624 1,243 218
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Table B.8: CPs and DCs: Road distances, Ty (kms).

CP(lel) DCy, (k € K)

DC, DCy, DCs DCy DCs DCs DC; DCg
Kilolo 492 889 344 200 882 601 1,045 709
Kilombero | 450 879 517 420 1,056 774 1,218 587
Kilosa 400 829 467 628 1,006 724 1,168 537
Kilwa 294 940 745 906 1,283 1,108 1,446 648
Kisarawe 30 676 481 642 1,019 844 1,182 384
Kishapu 1,039 674 588 972 20 516 133 1,109
Kiteto 671 158 179 563 556 151 880 593
Kondoa 682 235 190 574 023 67 686 670
Kongwa 438 499 74 458 612 331 775 514
Korogwe 350 296 584 1,105 920 464 1,083 139
Kwimba 1,109 744 658 1,042 120 276 43 1,179
Lindi-R 459 1,105 910 1,071 1448 1273 1,611 813
Liwale 764 1410 1215 1376 1,753 1578 1916 1,118
Longido 731 85 010 894 709 253 872 520
Ludewa 840 1,037 612 228 1,153 869 1,313 977
Lushoto 365 311 600 1,120 935 479 1,098 124
Mafia 200 846 651 812 1,189 1,014 1,172 554
Magu 1,339 974 888 1,272 350 806 187 1,409
Makete 772 869 544 160 1,082 801 1,245 909
Manyoni o7l 456 120 504 418 273 581 708
Masasi 600 1,246 1,061 1,212 1,589 1,414 1,752 954
Maswa 1,077 712 626 1,110 88 544 163 1,147
Mbarali 686 883 458 74 996 715 1,159 823
Mbozi 899 1,096 671 287 1,209 928 1,372 1,036
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Table B.9: CPs and DCs: Road distances, Ty (kms).

CP(lel) DCy (k€ K)

DbCc, DC, DC; DCy DCs DCsg DC; DCy
Mbulu 891 245 590 974 424 89 587 680
Meatu 1,140 775 689 1,073 151 607 304 1,210
Misungwi 1,169 804 718 1,102 180 636 20 1,239
Mkinga 390 340 634 1,149 964 508 1,127 36
Mkuranga 35 681 486 647 994 849 1,187 389
Monduli 696 50 450 834 649 124 812 485
MorogoroR | 196 625 263 424 801 520 956 333
MoshiR 561 85 510 894 704 253 867 270
Mpwapwa 400 545 120 504 638 377 821 688
MtwaraR 575 1,221 1,026 1,187 1,564 1,389 1,727 929
Mufindi 662 759 434 50 972 591 1,135 699
Muheza 330 435 564 1,244 1,059 498 1,222 24
Muleba 1,38 1,173 1,087 1471 549 1,006 386 1,608
Musoma 1,489 498 1,038 1422 500 513 218 933
MusomaR 1,489 498 1,038 1422 500 513 218 933
Mvomero 280 533 171 508 709 428 872 417
Mwanga 496 150 440 959 Tv4 318 937 285
Nachingwea | 614 1,260 1,065 1,226 1,603 1,428 1,766 968
Nanyumbu 656 1,302 1,107 1,268 1,645 1,470 1,808 1,010
Ngorongoro | 946 300 725 1,109 899 308 1,062 735
Njombe 674 907 482 62 1,020 739 1,183 847
Nyamagana | 1,149 787 698 1,082 160 616 10 1,212
Nzega 895 530 444 828 94 362 257 965
Pangani 399 566 633 1,017 1,189 734 1,353 45
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Table B.10: CPs and DCs:

Road distances, Ty (kms).

CP(le L) DCy (k € K)

DbCc, DC, DCs DCy DC; DCsg DC; DCy
Rombo 656 190 610 999 814 358 977 425
Rorya 1,529 538 1,078 1,462 540 553 258 973
Ruangwa 565 1,211 1,016 1,177 1,554 1,379 1,717 919
Rufiji 160 806 611 772 1,149 974 1,312 514
Same 436 210 630 1,019 934 378 997 225
Sengerema | 1,178 813 727 1,111 189 645 26 1,248
Serengeti 1,47 440 1,096 1,480 558 455 170 875
ShinyangaR | 1,019 658 568 952 30 486 193 1,089
ShinyangaU | 999 638 548 932 10 466 173 1,069
Siha 616 60 485 869 684 228 847 375
Sikonge 1,086 721 635 1,019 252 573 415 1,223
Simanjiro 546 205 361 745 829 373 992 640
SingidaR 696 331 230 614 293 163 456 766
SingidaU 696 331 230 614 293 163 456 766
TaboraR 1,026 661 575 959 192 493 357 1,098
TaboraU 1,026 661 575 959 192 493 357 1,098
Tarime 1,529 540 1,078 1,462 540 543 258 973
Ukerewe 1,499 1,134 1,048 1432 510 966 347 1,569
Ulanga 600 1,029 667 570 1,205 924 1,368 737
Uyui 1,114 749 663 1,047 280 581 443 1,184
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Table B.11: Case 1 results (Vk) CP, to DCY}, allocations and D, for existing network.

CP, & D; (K = DCs) ‘ CP, & D; (K = DCs) CP, & D; (K = DCh) ‘ CP, & D, (K = DC5)
Babati 1,420 TaboraR 68 Bagamoyo 2,721 Arumeru 2,005
Bahi 1,249 TaboraU 182 Handeni 3,267 ArushaU 1,248
Bariadi 63 Uyui 1,543 Kibaha 1,431 Bunda 3,637
Biharamulo 902 Kilindi 1,182 Hai 431
BukobaR 288 CP, & D; (K = DCy) Kilosa 1,138 Hanang 27
Chamwino 1,912 Chunya 1,030 Kilwa 732 Karatu 2,277
DodomaR 3,259 IringaR 3,974 Kisarawe 1,832 Longido 4,503
DodomaU 649 Kilolo 321 Korogwe 645 Mbulu 1,238
Geita 383 Kilombero 300 LindiR 761 Monduli 4,345
Hanang 1,817 Ludewa 150 Liwale 693 MoshiR 1,007
Igunga 1,172 Makete 41 Lushoto 1,298 Musoma 995
Ilemela 91 Mbarali 1,705 Mafia 32 MusomaR 3,247
Iramba 2,338 Mbozi 100 Masasi 2,374 Ngorongoro 6,426
Kahama 857 Mufindi 768 Mkinga 1,380 Rombo 3,663
Kishapu 1,584 Njombe 1,754 Mkuranga 798 Rorya 2,196
Kiteto 873 Ulanga 3,140 MorogoroR 1,667 Serengeti 509
Kondoa 1,847 Mpwapwa 2,692 Siha 333
Kongwa 3,307 CP, & D; (K = DCs) MtwaraR 668 Tarime 913
Kwimba 2,070 Magu 4,672 Mubheza 200

Magu 921 Maswa 2,274 Mvomero 1,444

Makete - Meatu 4,182 Mwanga 917

Manyoni 3,871 Misungwi 1,234 Nachingwea 1,206

Mpwapwa 301 Muleba 369 Nanyumbu 834

Nzega 2,302 Nyamagana 72 Pangani 934

Sikonge 506 Sengerema 200 Ruangwa 701

Simanjiro - ShinyangaR 642 Rufiji 1,812

SingidaR 3,075 ShinyangaU 100 Same 2,589

SingidaU 150 Ukerewe 755 Simanjiro 3,413
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Table B.12: Case 1 results (Vk) CP, to DCYy, allocations and D, for existing network.

CP, & D, (K = DC,) | CP, & D, (K = DCs) | CP, & D, (K = DCs) | CP, & D, (K = DCj)

Bagamoyo 2,721 Bariadi 63 Tarime 913 Babati 1,420
Handeni 3,267 Biharamulo 902 Ukerewe 755 Bahi 1,249
Kibaha 1,431 BukobaR 288 Uyui 1,543 Chamwino 1,912
Kilindi 1,182 Bunda 3,637 DodomaR 3,259
Kilombero 300 Geita 383 DodomaU 649
Kilosa 1,138 Igunga 1,172 CP & D; (K = DC3) Hanang 45
Kilwa 732 Ilemela 91 Arumeru 2,005 Kiteto 873
Kisarawe 1,832 Iramba 2,338 ArushaU 1,248 Kondoa 1,847
Korogwe 645 Kahama 857 Hai 431 Kongwa 3,307
LindiR 761 Kishapu 1,584 Hanang 1,799 Manyoni 3,871
Liwale 693 Kwimba 2,070 Karatu 2,277 Mpwapwa 2,993
Lushoto 1,298 Magu 5,593 Longido 4,503 SingidaR 3,075
Mafia 32 Maswa 2,274 Mbulu 1,238 SingidaU 150
Masasi 2,374 Meatu 4,182 Monduli 4,345

Mkinga 1,380 Misungwi 1,234 MoshiR 1,007 CP & D; (K = DCy)
Mkuranga 798 Muleba 369 Musoma 995 Chunya 1,030
MorogoroR 1,667 MusomaR 2,413 MusomaR 834 IringaR 3,974
MtwaraR 668 Nyamagana 72 Mwanga 917 Kilolo 321
Muheza 200 Nzega 2,302 Ngorongoro 6,426 Ludewa 150
Mvomero 1,444 Rorya 2,196 Rombo 3,663 Makete 41
Nachingwea 1,206 Sengerema 200 Same 2,589 Mbarali 1,705
Nanyumbu 834 ShinyangaR 642 Serengeti 509 Mbozi 100
Pangani 934 ShinyangalU 100 Siha 333 Mufindi 768
Ruangwa 701 Sikonge 506 Simanjiro 3,413 Njombe 1,754
Rufiji 1,812 TaboraR 68

Ulanga 3,140 TaboraU 182
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Table B.13: Case 2 results (V' ): CP, to DCy, allocations and Dy for ezisting network.

CP, & D, (K = DCj3)

CP, & D, (K = DC3)

CP, & D, (K = DC5)

CP, & D, (K = DCy)

Arumeru 2005
ArushaU 1248
Babati 1420
Bahi 1249

Chamwino 1912
DodomaR 3259

DodomaU 649

Hai 431
Hanang 1844
Handeni 301
Tgunga 1172
Iramba 2338
Kahama 12
Karatu 2277
Kiteto 873
Kondoa 1847
Kongwa 3307
Longido 4503
Manyoni 3871
Mbulu 1238
Monduli 4345

MorogoroR 88
MoshiR 1007

Mpwapwa 2993

Muheza 200
Mvomero 1444
Mwanga 917

Ngorongoro
Nzega
Rombo
Same
Siha
Sikonge
Simanjiro
SingidaR
SingidaU
TaboraR
TaboraU

Uyui

6426
2302
3663
2589
333
506
3413
3075
150
68
182

1543

CP, & D, (K = DCy)

Chunya
IringaR
Kilolo
Kilombero
Kilosa
Ludewa
Makete
Mbarali
Mbozi
MorogoroR
Mufindi
Njombe

Ulanga

1030
3974
321
300
1138
150
41
1705
100
1579
768
1754

3140

Bariadi 63
Biharamulo 902

BukobaR 288

Bunda 3637
Geita 383
Ilemela 91

Kahama 845
Kishapu 1584

Kwimba 2070

Magu 5593
Maswa 2274
Meatu 4182

Misungwi 1234
Muleba 369
Musoma 995
MusomaR 3247
Nyamagana 72
Rorya 2196
Sengerema 200
Serengeti 509
ShinyangaR 642
ShinyangalU 100
Tarime 913

Ukerewe 755

Bagamoyo
Handeni
Kibaha
Kilindi
Kilwa
Kisarawe
Korogwe
LindiR
Liwale
Lushoto
Mafia
Masasi
Mkinga
Mkuranga
MtwaraR
Nachingwea
Nanyumbu
Pangani
Ruangwa

Rufiji

2721

2966

1431

1182

732

1832

645

761

693

1298

32

2374

1380

798

668

1206

834

934

701

1812
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Table B.14: Optimal results: C P, to DCY, allocations and D, for eight DCs.

CP, & D, (K = DCs)

CP, & D, (K = DCy)

CP, & D, (K = DCg)

CP, & D, (K = DCs)

Bariadi 63
Biharamulo 902
Geita 383
Ilemela 91
Kahama 857
Kishapu 1584
Kwimba 2070
Maswa 2274
Meatu 4182
Misungwi 1093

Nyamagana 72

ShinyangaR 642

ShinyangalU 100
Sikonge 119
TaboraR 68

CP, & D, (K = DCy)

BukobaR 288
Bunda 2216
Magu 5593
Misungwi 141
Muleba 369
Musoma 995
MusomaR 3247
Rorya 2196
Sengerema 200
Ukerewe 755

Chunya 1030
IringaR 3974
Kilolo 321
Kilombero 300
Kilosa 1138
Ludewa 150
Makete 41
Mbarali 1705
Mbozi 100
MorogoroR 1579
Mufindi 768
Njombe 1754
Ulanga 3140

CP, & D, (K = DCg)

Arumeru 2005
ArushalU 1248
Bunda 1421
Hai 431

Hanang 1844
Karatu 2277
Longido 4503
Mbulu 1238
Monduli 4345
MoshiR 1007
Ngorongoro 6426

Serengeti 509
Siha 333
Tarime 913

CP, & D, (K = DC))

Bagamoyo 2721
Handeni 3267
Kibaha 1431
Kilindi 825
Kilwa 732
Kisarawe 1832
Korogwe 645
LindiR 761
Liwale 693
Lushoto 1298
Mafia 32
Masasi 2374
Mkinga 1380
Mkuranga 798
MtwaraR 668
Muheza 200
Nachingwea 1206
Nanyumbu 834
Pangani 934
Ruangwa 701
Rufiji 1812

Babati 1420
Bahi 1249
Chamwino 1912
DodomaR 3259
DodomalU 649

Igunga 1172
Iramba 2338
Kilindi 357
Kiteto 873

Kondoa 1847
Kongwa 3307
Manyoni 3871

MorogoroR 88

Mpwapwa 2993
Mvomero 1444
Mwanga 917

Nzega 2302
Rombo 3663
Same 2589
Sikonge 387
Simanjiro 3413
SingidaR 3075
SingidaU 150

TaboraU 182

Uyui 1543

151



Appendix C

Original data documents
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Figure C.1: NFRA - PCs to DCs maize crop transportation, 2010
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http://dailynews.co.tz/home/?n=14034 : Tuesday April 23, 2013

Local News

Construction of maize grain storage facility underway

Share on Facebook

From PETI SIYAME in Siilibananga: 24th October 2616 @

12:00, Total Comments: 2, Hits: 3513

THE government is constructing a grain storage facility that can hold
more than 200,000 tonnes of maize which h
Atithority (NFRA) has recently been instructed to purchase from
farmers in the country.

Prime Minister Mizengo Pinda revealed the plans when responding to
members of Regional Consultative Committee (RCC) here yesterday
who prayed to the government to let more maize buyers in the region
instead of the current arrangement of allowing Energy Mill as the sole
buyer.

Rukwa Regional Commissioner, Mr Daniel ole Njoolay, told the
Premier that the request for more buyers followed a bumper cereal
production realized by farmers in the region this season. The region
has doubled grain production from less than one million tonnes in
2005 to over 2 million tonnes.

According to the RC farmers have harvested over 700,000 tonnes of
maize while the actual demand stands at 200,000 tonnes but NFRA
has been allocated to purchase only 60,000 tonnes of maize.

"That is already a crisis as more than 400,000 tonnes of
maize which are still in the hands of farmers are may rot
away due to lack of markets and absence of proper storage
facilities," he added.

Mr Pinda accepted the request and allowed Saccos and cooperatives as
well as local business men to purchase maize from farmers in the
region but cautioned farmers not to sell their entire stocks and
directed the regional authorities to ensure that farmers kept
between10 to15 bags of 100 kg of maize in their house holds.

Most Read

More News

® Herbal healers remain secretive

® Sefue is new Chief Secretary

® Tibaijuka calls for school investments

® SUMATRA to act on unruly bus owners

® Rukwa sets aside over 2bn/- for irrigation

® Funds set aside for irrigation in Rukwa

® Mwanza city on a major shopping project

® Mara faces critical shortage of petrol

® Korea alumni in Tanzania set on development
® Police hunt for theft suspect

® Flood victims will not be kicked from schools: RC
® Driver convicted of overloading

® Tanzania eligible for one more year of AGOA

.

70 get legal aid from KWIECO’s litigation
programme

® Broadcaster Ngahyoma dies in Dar es Salaam
® TSN set to launch re-designed website

® City fathers warn on building sites

® EWURA acts on rogue traders

® Isles Quran schools for registration

® NBAA to award 268 accountants with CPA

He further said that initially the government had directed NFRA to increase purchase of maize from farmers from
150,000 tonnes to over 400,000 tonnes but after finding out that the storage facilities have the capacity
of storing up only 200,000 tonnes then they decided to convert the remaining 200,000 tonnes of maize to cash
which would be used to construct huge storage facility that would be able to pile up over 400,000 tonnes

of maize during next season.

The bumper haverst of different food crops realized by farmers in Rukwa region was due to friendly weather condition and
timely applications of agriculture inputs including improved seed, fertilizers and insecticides .

Figure C.2: News from Government magazine on new DCs to be built
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TANROADS
TANZANIA ROAD DISTANCE CHART IN KM - MARCH 2009

ARUSHA [BABATI |BUKOBA |[DODOMA |IRINGA |KIBAHA [KIGOMA(LINDI  [MBEYA |MOROGORO [MOSHI |MTWARA [MUSOMA [MWANZA |SHINYANGA |SINGIDA[SONGEA [SWANGA |TABORA |TANGA

814 1433 451 492 35 1539 | 452 822 192 566 556 1370 1152 989 696 947 1150 1026 354
ARUSHA 646 168 1068 425 689 611 | 1174 | 1098 | 1020 621 80 1202 498 787 624 331 1144 1348 661 435
BABATI 814 168 900 257 521 779 | 1006 | 1266 | 766 516 248 1370 666 619 456 163 976 1094 493 603
BUKOBA 1433 | 1068 900 982 1246 | 1398 [ 551 [ 1885 [ 1205 1241 1148 | 1989 634 416 516 737 1701 1122 638 1503
DODOMA 451 425 257 982 416 1088 903 594 259 505 1007 919 701 538 245 719 922 575 588
IRINGA 492 689 521 1246 1229 | 944 330 300 769 1048 1183 965 802 509 455 658 839 629
KIBAHA 35 611 779 1398 416 457 487 787 157 531 591 1109 1117 954 661 912 1115 991 319
KIGOMA 1539 | 1174 | 1006 | 551 1088 1229 | 1504 622 843 1365 571 744 1609
LINDI 452 1098 | 1266 | 1885 903 944 487 1148 602 1396 1478 806
MBEYA 822 1020 766 1205 594 330 787 603 466 328 567 959
MOROGORO | 192 621 516 1241 259 300 157 504 755 958 834 329
MOSHI 566 80 248 1148 505 769 531 411 1224 1428 741 355
MTWARA 556 1202 | 1370 | 1989 1007 1048 | 591 1252 656 1450 1582 910
MUSOMA 1370 | 498 666 | 634 919 | 1183 | 1109 674 | 1638 1171 575 933
MWANZA 1152 787 619 416 701 965 | 1117 | 633 924 357 1113
SHINYANGA 989 624 456 516 538 802 954 622 | 1441 | 761 797 704 1545 381
SINGIDA 696 331 163 737 245 509 661 843 | 1148 | 603 504 411 1252 674
SONGEA 947 1144 976 1701 719 455 912 | 1365 | 602 466 755 1224 656 1638
S'WANGA 1150 1348 | 1094 | 1122 922 658 1115 571 1396 328 958 1428 1450 1171 953 794
TABORA 1026 661 493 638 575 839 991 744 | 1478 | 567 834 741 1582 575 357 194 330 1033
TANGA 354 435 603 | 1503 588 629 | 319 | 1609 | 806 | 959 329 355 910 933 1113 1059 766 | 1084
NOTE:
ROUTE VIA ROUTE VIA ROUTE VIA
Dar - Musoma Dodoma - Singida Babati - Iringa Dodoma Kigoma - Morogoro Singida - Dodoma
Dar - Mwanza Dodoma - Singida Babati - Mbeya Singida - Rungwa Lindi - Songea Masasi
Arusha - Dodoma Babati Babati - Morogoro Dodoma Lindi - Mbeya Masasi - Songea
Arusha - Iringa Babati - Dodoma Babati - Musoma Arusha - Serengeti Mbeya - Moshi Iringa - Dodoma
Arusha - Mbeya Babati - Dodoma - Iringa Dodoma - Mbeya Mtera Mbeya - Mtwara Masasi - Songea
Arusha - Musoma Serengeti Iringa - Moshi Dodoma Moshi - Iringa Babati - Dodoma
Arusha - Mwanza Babati - Singida Iringa - Tabora Dodoma - Singida Musoma - S'wanga Mpanda - Ipole
Arusha - Songea Babati - Dodoma - Iringa Kigoma - Iringa Sumbawanga Mwanza - Tanga Serengeti -Arusha
Arusha - S'wanga Babati - Dodoma - Iringa Kigoma - Mbeya Sumbawanga Shinyanga - Tanga Singida - Babati - Arusha

Singida - S'wanga Rungwa - Mbeya

Figure C.3: Tanzania roads - Regional distances in km as from TANROADS
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N.F.R.A.
ANNUAL STORAGE COSTS
TAKE THE PRACTICAL SITUATION OF THE STORAGE OF 8000 TONS

OF MAIZE IN GODOWN NO. 1 SONGEA

LAYER DUSTING:

Is done during procurement when stacking grain-filled bags, using pirimiphos methyl dust.

- The dosage rate in 250 grams per ton.

- Total pesticide dust used in 8,000 tons is 2,000 kgs.

- Its price is sh. 10,000/= per kg.

- Total cost of pesticide used is 2,000 kgs x 10,000/- = Sh.  20,000,000/=
FUMIGATION:

Is done 5 times in 1 year using Aluminium phosphide tablets.

- The fumigation of 8000 tons once required 121 kgs of Aluminium phosphide tablets.
- Total fumigant used in one year is 121 kgsx 5= 605 kgs
- Total fumigant cost is 605 kgs x 65,000/- = Sh. 39,325,000/=

ROUTINE PESTCIDE SPRAYING:

Routine spraying and spraying during fumigation is done using Organophosphate pesticides and
is usually carried out twice monthly, and two times during any fumigation operation:-

- The rate of pesticide use for the whole godown is 10 litres in a single operation
- Quantity of pestcide used for:

1. Routine spraying is 10 litres X 2 x 12 months = 240 litres
2. Fumigation spraying is 10 litresx 2 x5 = 100 Its
- Total Pesticide used is 340 litres
- So total cost of pesticide used is 340 Its x 36,000/= = Sh.  12,240,000/=
LABOR COSTS

- During Fumigation:
We need 21 days to carry out a single fumigation operation, and we use 12 casual operators.

Labor cost is: 12 x 4,500/= x 21 days x 5 operations = Sh. 5,670,000/=

Figure C.4: Songea DC annual operation costs - 2012
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- Pesticide Spraying and Warehouse Cleanliness:
We use 4 workers to do routing spraying and sanitation in and around the warehouse

The cost is: Sh.4500/= x 4 x 30days x 12 months = Sh. 6.480,000/=

TOTAL STORAGE COSTS FOR 8,000 TONS

Is Sh. 20,000,000/=
39,000,000/=
12,000,000/=
5,670,000/=

+ 6,480,000/=
=Sh.  83,150,000/=

So the cost of preserving 8000 tons of maize for one year is Tsh. 83,150,000/=
8,000

Whichis Tsh. 10,393.75 per ton

or Tsh. 10.40 per kg

Prepared by: E.R.Mtango

05" March 2012

Figure C.5: Songea DC' annual operation costs - 2012
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Figure C.6: Tanzania map showing regions and districts- 2013
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UNIVERSITY OF DAR ES SALAAM
COLLEGE OF NATURAL AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS

P.0.BOX 35062
Dar Es Salaam
TANZANIA

Telegrams: University
Phone: 0655/0784/-840620

EMAIL: emassawe@maths .udsm.ac.tz

emassawe@uccmail.co.tz

24 December, 2010

CHIEF EXECUTIVE OFFICER
NATIONAL FOOD RESERVE AGENCY
P.0.BOX 5384

DAR ES ER SALAAM

RE: Ph.D STUDIES THESIS DATA

The holder of this letter, Mr. Saidi Sima is an academic member of staff at the
Department of mathematics. Mr Sima is currently pursuing his Ph.D studies at the
University of Witswatersrand, South Africa. Mr. Sima is writing a thesis on “Integrated
stochastic routine distribution network design: A two-level location routine problem with
application to food crops transportation in Tanzania” using the available data in your

esteemed executive agency.

[ am therefore kindly requesting you to assist him in any information/data which he may

need. Thanking you in advance

}W’@ - Dt,\;-.-;: j\

Dr. E. S. Massawe »wﬂgééig;es’sp.\_w
W

Head, Mathematics Department, UDSM
Figure C.7: Letter for PhD Data collection in Tanzania - 2010/2011
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UNIVERSITY OF DAR ES SALAAM
COLLEGE OF NATURAL AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS

Telegrams: University P.0.BOX 35062
Phone: 0655/0784/-840620 Dar Es Salaam
EMAIL: emassawe@maths .udsm.ac.tz TANZANIA

emassawe@uccmail.co.tz

28 January, 2011

To whom it may

RE: Ph.D STUDIES THESIS DATA

The holder of this letter, Mr. Saidi Sima, staff at the Department of mathematics. Mr
Sima is currently pursuing his Ph.D studies at the University of Witswatersrand, South
Africa.. Mr. Sima is writing a thesis on “Integrated stochastic routine distribution
network design: A two-level location routine problem with application to food crops

transportation in Tanzania” using the available data in your esteemed executive agency.

I am therefore kindly requesting you to assist him in any information/data which he may

need. Thanking you in advance

m,‘ W\
Dr. E. S. Massawe
Head, Mathematics Department, UDSM

. MATHEMATICS DEPT
' VERSITY OF DAR-ES-SALAAM
O Box 35082, DAR-ES-SALAAM

Figure C.8: Letter for PhD Data collection in Tanzania -2010/2011
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Appendix D

Cost increase due to rainfall

\ &

Barua zote ziandikwe kwa
Mkurugenzi Mtendaji Wilaya.
Halmashauri ya Wilaya ya Longido,
Tel Na. 027 - 25396023,

Fax Na. 027 - 2539603

S.L.P. 84
LONGIDO
MKOA WA ARUSHA

Unapojibu tafadhali taja:
Kumb.Na. HW/LONG/FIII/VOL.2/39 MM ’ 16/11/2009
20,
V/KATIBU MKUU,
OFISI YA WAZIRI MKUU, @
S.L.P. 3021, ’@
DAR ES SALAAM. 2E—U— 95’7

YAH: FEDHA ZA KUSAMBAZA MAHINDI TANI 1509 TSHS 43,006,000 KUTOTOSHA.

Mhe. Katibu Mkuu,

Naomba urejee barua Kumb.Na. HB.114/268/01/57 ya tarehe 28/10/2009 iliyonielekeza kufuatilia
mahindi tani 1509 SGR Arusha. Pia kupata taarifa ya fedha za kusambazia chakula hicho kwa
walengwa

1. Kama ilivyokuwa katika migao 2 iliyotangulia (tani 3600 na tani 936) fedha zilizotumwa zilikuwa
hazitoshi kulingana na ubovu wa barabara zetu ukiondoa barabara ya lami ya Arusha — Namanga
itoayo huduma kwa kata 2 kati ya 9.

2. Juhudi ziliendelea kufanywa za kuwatafuta wasambazaji chakula hadi makao makuu ya kila kata
kwa ujumla fedha zilizokuwa zinatengwa kwa Halmashauri yetu zilikuwa pungufu kema ifuatavyo:

Na. MGAO KIASI CHA FEDHA MAHITAJI TOFAUTI MAONI
KILICHOTENGWA HALISI
i Tani 3600 82,800,000 | 180,000,000 97,200,000 | Tulilipwa zidio.
2 Tani 939 26,760,132 49,711,395 | 22,951,263 | Tulilipwa
L 22,000,000 tu.

3. Mhe. Katibu Mkuu baada ya kuendelea kupata fedha isyokidhi mahitaji halisi ya Wilaya kwa migao
hii ofisi ya Mkurugenzi Mtendaji ilifuatilia taratibu zinazofanywa na wasambazaji kwa Wilaya ya
Ngorongoro ili kuona kama kuna unafuu wowote wa bei ili kuwaomba wasambazaji wa huko kuja
kutoa huduma Longido.

Kwa msaada wa Uongozi wa Halmashauri ya Wilaya ya Ngorongoro (DALDO) nilipatiwa bei (400
kwa tani kwa kilometa).

7 WAZRT
@ YA RF
7 Gé" R ”f'!'!‘)_r,vnk‘?(,; \

{ \}
{ 7 7 New 98an i

NS it NGy LY/
Figure D.1: Letter to Prime Ministers’ office from Longido CP - 2009
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Mlinganisho ulionyesha gharama kama ifuatavyo:

a) Uzito tani 939
KATA UMBALI | TANI GHARAMA USAFIRISHAJI | GHARAMA TOFAUTI YA
TOKA USAFIRISHAJI | LONGIDO USAFIRISHAJI | USAFIRI
SGR (NGORONGORO) | RATE/TANI LONGIDO NGORONGORO
(km) NA LONGIDO
1 Longido 90 km 92.002 3,3120072 35,000 3,220,770 91,302
2 Namanga 115 km | 138.972 6,392,712 40,000 5,558,880 834,432
3 | Tingatinga 115 km 65.926 3,032,596 60,000 3,955,560 (-922,964)
4 Ketumbeine | 140 km | 157.752 8,834,112 50,000 7,887,600 946,512
5 | Olmolog 165 km [ 177.471 11,763,086 55,000 9,760,905 1,952,381
6 Meirugoi 225 km 64.984 5,848,560 60,000 3,899,040 1,949,520
7 Lumbwa 210 km 51.799 4,351,116 60,000 3,107,940 1,243,176
8 Matale 155 km 42.651 2,644,362 50,000 2,152,550 ikl
9 Engarenaibor | 125 km | 147.423 %, 871,150 50,000 7,0 7150 0
Jumla 53,549,766 46,894,395 6,655,371

Jumla ya gharama (Ngorongoro) = 53,549,766 + (upakiaji) 2,817,000 = (jumla) 56,366,766/=
Jumla ya gharama (Longido) = 46,894,395 + (upakiaji) 2,817,000 = (jumla) 49,711,395/=

Fedha iliyotengwa = 26,760,132
Upungufu Longido = 22,951,263/=

4. Mgao mpya (Bado kusambazwa tani 1509 fedha iliyotolewa kusambaza ni Tshs 43,006,000/=.
Bado gharama halisi iko juu kwa viwango vya wasambazaji wa Ngorongoro kuja kusambaza
mahindi hayo Longido na pia kwa viwango vya sasa vya wasambazaji wa Longido wale wa
Ngorongoro watahitaji Tshs 90,498,900/=

Na. | KATA TANI UMBALI NGORONGORO | KWA WALE WASAMBAZAJI
TOKA SGR | KIWANGO WA LONGIDO
(KM) USAFIRI USAFIRISHAJI | GHARAMA
400/TANI/KM | KIWANGO
KWA TANI
1 Olmolog 285.542 165 18,845,772 55,000 | 15,704,810
2 Namanga 223.749 115 10,292,454 40,0000 8,949,960
3 Tingatinga 105.203 1l 4,839,338 60,000 6,312,180
4 Ketumbeine 254.114 140 14,230,384 50,000 | 12,705,700
5 Engarenaibor 236.834 125 11,841,700 50,000 | 11,841,700
6 Lumbwa 82.79 210 6,954,360 60,000 4,967,400
7 Meirugoi 104.831 225 9,434,790 60,000 6,289,860
8 Matale 67.656 155 4,194,672 50,000 3,382,800
9 Longido 148.28 90 5,338,000 35,000 51,89,800
Jumia ndogo 85,971,900 - | 75,344,210
Upakiaji 4,527,000 - | 4,527,000
Jumla kuu 290,498,900 - 179,871,210

Fedha iliyotengwa na Wizara = 43,006,000/= upungufu Longido = 36,865,210/=

Figure D.2: Letter to Prime Ministers’ office from Longido CP - 2009
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Mhe. Katibu Mkuu nimetoa maelezo marefu kutokana na Mkurugenzi Mtendaji Longido kuathiriwa na
zoezi hili la kusambaza mahindi ya njaa kwa awamu ya 5, 6 na sasa ya 7. Kwa vile tu wasafirishaji
hawako tayari kufuata viwango vya kusafirisha mahindi vilivyowekwa na Wizara. Mbaya zaidi
Halmashauri yangu haina uwezo kimapato kujazia nakisi ya fedha inayotolewa.

Mhe. Katibu Mkuu nilifuatilia pia kujua uzoefu wa wenzetu wa Ngorongoro juu ya usambazaji
chakula/mahindi kwa fedha kidogo — majibu ni kuwa wao wana fursa ya mamlaka ya Hifadhai ya
Ngorongoro kusadia usambazaji (sisi hatuna fursa hiyo).

Awamu za 1 - 4 ziliandamana na fedha ya kukidhi hali halisi ya usafirishaji.

Naiomba ofisi yako izingatie ushauri uliotolewa na Halmashauri yangu kupitia kamati ya maafa ya
Wilaya.

Wako

. M. Lai
MKURUGENZI MTENDAJI
HALMASHAURI YA WILAYA YA LONGIDO.

Nakala:
1)  Mhe. Mkuu wa Mkoa
SIP-3050,
ARUSHA. (Kwa msaada tena wa kuwasilisha Wizarani hali halisi ya Halmashauri hii)

2)  Katibu Tawala Mkea,
S.L.P. 3050,
ARUSHA.

3)  Mkuu wa Wilaya =\
LI 2,
LONGIDO

4)  Mhe. Michael L. Laizer
Mbunge — Jimbo la Longido > Utekelezaji wa maagizo ya Kamati ya Maafa (W)

5)  Mhe. Mwenyekiti wa Halmashauri
S.L.P. 84,
LONGIDO. )

Figure D.3: Letter to Prime Ministers’ office from Longido CP - 2009
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Figure D.5: Sample of DC to CP Transportation of maize showing a month it took place
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Figure D.7:

Some DC' zones rainfall distributions graphs
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Figure D.8: Some DC zones rainfall distributions graphs
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Figure D.9: Some DC zones rainfall distributions graphs
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